xref: /linux/fs/btrfs/subpage.c (revision 09e61efd884ca68a768717d60858f138685b161b)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/slab.h>
4 #include "messages.h"
5 #include "ctree.h"
6 #include "subpage.h"
7 #include "btrfs_inode.h"
8 
9 /*
10  * Subpage (sectorsize < PAGE_SIZE) support overview:
11  *
12  * Limitations:
13  *
14  * - Only support 64K page size for now
15  *   This is to make metadata handling easier, as 64K page would ensure
16  *   all nodesize would fit inside one page, thus we don't need to handle
17  *   cases where a tree block crosses several pages.
18  *
19  * - Only metadata read-write for now
20  *   The data read-write part is in development.
21  *
22  * - Metadata can't cross 64K page boundary
23  *   btrfs-progs and kernel have done that for a while, thus only ancient
24  *   filesystems could have such problem.  For such case, do a graceful
25  *   rejection.
26  *
27  * Special behavior:
28  *
29  * - Metadata
30  *   Metadata read is fully supported.
31  *   Meaning when reading one tree block will only trigger the read for the
32  *   needed range, other unrelated range in the same page will not be touched.
33  *
34  *   Metadata write support is partial.
35  *   The writeback is still for the full page, but we will only submit
36  *   the dirty extent buffers in the page.
37  *
38  *   This means, if we have a metadata page like this:
39  *
40  *   Page offset
41  *   0         16K         32K         48K        64K
42  *   |/////////|           |///////////|
43  *        \- Tree block A        \- Tree block B
44  *
45  *   Even if we just want to writeback tree block A, we will also writeback
46  *   tree block B if it's also dirty.
47  *
48  *   This may cause extra metadata writeback which results more COW.
49  *
50  * Implementation:
51  *
52  * - Common
53  *   Both metadata and data will use a new structure, btrfs_subpage, to
54  *   record the status of each sector inside a page.  This provides the extra
55  *   granularity needed.
56  *
57  * - Metadata
58  *   Since we have multiple tree blocks inside one page, we can't rely on page
59  *   locking anymore, or we will have greatly reduced concurrency or even
60  *   deadlocks (hold one tree lock while trying to lock another tree lock in
61  *   the same page).
62  *
63  *   Thus for metadata locking, subpage support relies on io_tree locking only.
64  *   This means a slightly higher tree locking latency.
65  */
66 
67 bool btrfs_is_subpage(const struct btrfs_fs_info *fs_info, struct page *page)
68 {
69 	if (fs_info->sectorsize >= PAGE_SIZE)
70 		return false;
71 
72 	/*
73 	 * Only data pages (either through DIO or compression) can have no
74 	 * mapping. And if page->mapping->host is data inode, it's subpage.
75 	 * As we have ruled our sectorsize >= PAGE_SIZE case already.
76 	 */
77 	if (!page->mapping || !page->mapping->host ||
78 	    is_data_inode(page->mapping->host))
79 		return true;
80 
81 	/*
82 	 * Now the only remaining case is metadata, which we only go subpage
83 	 * routine if nodesize < PAGE_SIZE.
84 	 */
85 	if (fs_info->nodesize < PAGE_SIZE)
86 		return true;
87 	return false;
88 }
89 
90 void btrfs_init_subpage_info(struct btrfs_subpage_info *subpage_info, u32 sectorsize)
91 {
92 	unsigned int cur = 0;
93 	unsigned int nr_bits;
94 
95 	ASSERT(IS_ALIGNED(PAGE_SIZE, sectorsize));
96 
97 	nr_bits = PAGE_SIZE / sectorsize;
98 	subpage_info->bitmap_nr_bits = nr_bits;
99 
100 	subpage_info->uptodate_offset = cur;
101 	cur += nr_bits;
102 
103 	subpage_info->error_offset = cur;
104 	cur += nr_bits;
105 
106 	subpage_info->dirty_offset = cur;
107 	cur += nr_bits;
108 
109 	subpage_info->writeback_offset = cur;
110 	cur += nr_bits;
111 
112 	subpage_info->ordered_offset = cur;
113 	cur += nr_bits;
114 
115 	subpage_info->checked_offset = cur;
116 	cur += nr_bits;
117 
118 	subpage_info->total_nr_bits = cur;
119 }
120 
121 int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
122 			 struct page *page, enum btrfs_subpage_type type)
123 {
124 	struct btrfs_subpage *subpage;
125 
126 	/*
127 	 * We have cases like a dummy extent buffer page, which is not mapped
128 	 * and doesn't need to be locked.
129 	 */
130 	if (page->mapping)
131 		ASSERT(PageLocked(page));
132 
133 	/* Either not subpage, or the page already has private attached */
134 	if (!btrfs_is_subpage(fs_info, page) || PagePrivate(page))
135 		return 0;
136 
137 	subpage = btrfs_alloc_subpage(fs_info, type);
138 	if (IS_ERR(subpage))
139 		return  PTR_ERR(subpage);
140 
141 	attach_page_private(page, subpage);
142 	return 0;
143 }
144 
145 void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
146 			  struct page *page)
147 {
148 	struct btrfs_subpage *subpage;
149 
150 	/* Either not subpage, or already detached */
151 	if (!btrfs_is_subpage(fs_info, page) || !PagePrivate(page))
152 		return;
153 
154 	subpage = detach_page_private(page);
155 	ASSERT(subpage);
156 	btrfs_free_subpage(subpage);
157 }
158 
159 struct btrfs_subpage *btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
160 					  enum btrfs_subpage_type type)
161 {
162 	struct btrfs_subpage *ret;
163 	unsigned int real_size;
164 
165 	ASSERT(fs_info->sectorsize < PAGE_SIZE);
166 
167 	real_size = struct_size(ret, bitmaps,
168 			BITS_TO_LONGS(fs_info->subpage_info->total_nr_bits));
169 	ret = kzalloc(real_size, GFP_NOFS);
170 	if (!ret)
171 		return ERR_PTR(-ENOMEM);
172 
173 	spin_lock_init(&ret->lock);
174 	if (type == BTRFS_SUBPAGE_METADATA) {
175 		atomic_set(&ret->eb_refs, 0);
176 	} else {
177 		atomic_set(&ret->readers, 0);
178 		atomic_set(&ret->writers, 0);
179 	}
180 	return ret;
181 }
182 
183 void btrfs_free_subpage(struct btrfs_subpage *subpage)
184 {
185 	kfree(subpage);
186 }
187 
188 /*
189  * Increase the eb_refs of current subpage.
190  *
191  * This is important for eb allocation, to prevent race with last eb freeing
192  * of the same page.
193  * With the eb_refs increased before the eb inserted into radix tree,
194  * detach_extent_buffer_page() won't detach the page private while we're still
195  * allocating the extent buffer.
196  */
197 void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
198 			    struct page *page)
199 {
200 	struct btrfs_subpage *subpage;
201 
202 	if (!btrfs_is_subpage(fs_info, page))
203 		return;
204 
205 	ASSERT(PagePrivate(page) && page->mapping);
206 	lockdep_assert_held(&page->mapping->private_lock);
207 
208 	subpage = (struct btrfs_subpage *)page->private;
209 	atomic_inc(&subpage->eb_refs);
210 }
211 
212 void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
213 			    struct page *page)
214 {
215 	struct btrfs_subpage *subpage;
216 
217 	if (!btrfs_is_subpage(fs_info, page))
218 		return;
219 
220 	ASSERT(PagePrivate(page) && page->mapping);
221 	lockdep_assert_held(&page->mapping->private_lock);
222 
223 	subpage = (struct btrfs_subpage *)page->private;
224 	ASSERT(atomic_read(&subpage->eb_refs));
225 	atomic_dec(&subpage->eb_refs);
226 }
227 
228 static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
229 		struct page *page, u64 start, u32 len)
230 {
231 	/* Basic checks */
232 	ASSERT(PagePrivate(page) && page->private);
233 	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
234 	       IS_ALIGNED(len, fs_info->sectorsize));
235 	/*
236 	 * The range check only works for mapped page, we can still have
237 	 * unmapped page like dummy extent buffer pages.
238 	 */
239 	if (page->mapping)
240 		ASSERT(page_offset(page) <= start &&
241 		       start + len <= page_offset(page) + PAGE_SIZE);
242 }
243 
244 void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
245 		struct page *page, u64 start, u32 len)
246 {
247 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
248 	const int nbits = len >> fs_info->sectorsize_bits;
249 
250 	btrfs_subpage_assert(fs_info, page, start, len);
251 
252 	atomic_add(nbits, &subpage->readers);
253 }
254 
255 void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
256 		struct page *page, u64 start, u32 len)
257 {
258 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
259 	const int nbits = len >> fs_info->sectorsize_bits;
260 	bool is_data;
261 	bool last;
262 
263 	btrfs_subpage_assert(fs_info, page, start, len);
264 	is_data = is_data_inode(page->mapping->host);
265 	ASSERT(atomic_read(&subpage->readers) >= nbits);
266 	last = atomic_sub_and_test(nbits, &subpage->readers);
267 
268 	/*
269 	 * For data we need to unlock the page if the last read has finished.
270 	 *
271 	 * And please don't replace @last with atomic_sub_and_test() call
272 	 * inside if () condition.
273 	 * As we want the atomic_sub_and_test() to be always executed.
274 	 */
275 	if (is_data && last)
276 		unlock_page(page);
277 }
278 
279 static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
280 {
281 	u64 orig_start = *start;
282 	u32 orig_len = *len;
283 
284 	*start = max_t(u64, page_offset(page), orig_start);
285 	/*
286 	 * For certain call sites like btrfs_drop_pages(), we may have pages
287 	 * beyond the target range. In that case, just set @len to 0, subpage
288 	 * helpers can handle @len == 0 without any problem.
289 	 */
290 	if (page_offset(page) >= orig_start + orig_len)
291 		*len = 0;
292 	else
293 		*len = min_t(u64, page_offset(page) + PAGE_SIZE,
294 			     orig_start + orig_len) - *start;
295 }
296 
297 void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
298 		struct page *page, u64 start, u32 len)
299 {
300 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
301 	const int nbits = (len >> fs_info->sectorsize_bits);
302 	int ret;
303 
304 	btrfs_subpage_assert(fs_info, page, start, len);
305 
306 	ASSERT(atomic_read(&subpage->readers) == 0);
307 	ret = atomic_add_return(nbits, &subpage->writers);
308 	ASSERT(ret == nbits);
309 }
310 
311 bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
312 		struct page *page, u64 start, u32 len)
313 {
314 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
315 	const int nbits = (len >> fs_info->sectorsize_bits);
316 
317 	btrfs_subpage_assert(fs_info, page, start, len);
318 
319 	/*
320 	 * We have call sites passing @lock_page into
321 	 * extent_clear_unlock_delalloc() for compression path.
322 	 *
323 	 * This @locked_page is locked by plain lock_page(), thus its
324 	 * subpage::writers is 0.  Handle them in a special way.
325 	 */
326 	if (atomic_read(&subpage->writers) == 0)
327 		return true;
328 
329 	ASSERT(atomic_read(&subpage->writers) >= nbits);
330 	return atomic_sub_and_test(nbits, &subpage->writers);
331 }
332 
333 /*
334  * Lock a page for delalloc page writeback.
335  *
336  * Return -EAGAIN if the page is not properly initialized.
337  * Return 0 with the page locked, and writer counter updated.
338  *
339  * Even with 0 returned, the page still need extra check to make sure
340  * it's really the correct page, as the caller is using
341  * filemap_get_folios_contig(), which can race with page invalidating.
342  */
343 int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
344 		struct page *page, u64 start, u32 len)
345 {
346 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {
347 		lock_page(page);
348 		return 0;
349 	}
350 	lock_page(page);
351 	if (!PagePrivate(page) || !page->private) {
352 		unlock_page(page);
353 		return -EAGAIN;
354 	}
355 	btrfs_subpage_clamp_range(page, &start, &len);
356 	btrfs_subpage_start_writer(fs_info, page, start, len);
357 	return 0;
358 }
359 
360 void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
361 		struct page *page, u64 start, u32 len)
362 {
363 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))
364 		return unlock_page(page);
365 	btrfs_subpage_clamp_range(page, &start, &len);
366 	if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
367 		unlock_page(page);
368 }
369 
370 static bool bitmap_test_range_all_set(unsigned long *addr, unsigned int start,
371 				      unsigned int nbits)
372 {
373 	unsigned int found_zero;
374 
375 	found_zero = find_next_zero_bit(addr, start + nbits, start);
376 	if (found_zero == start + nbits)
377 		return true;
378 	return false;
379 }
380 
381 static bool bitmap_test_range_all_zero(unsigned long *addr, unsigned int start,
382 				       unsigned int nbits)
383 {
384 	unsigned int found_set;
385 
386 	found_set = find_next_bit(addr, start + nbits, start);
387 	if (found_set == start + nbits)
388 		return true;
389 	return false;
390 }
391 
392 #define subpage_calc_start_bit(fs_info, page, name, start, len)		\
393 ({									\
394 	unsigned int start_bit;						\
395 									\
396 	btrfs_subpage_assert(fs_info, page, start, len);		\
397 	start_bit = offset_in_page(start) >> fs_info->sectorsize_bits;	\
398 	start_bit += fs_info->subpage_info->name##_offset;		\
399 	start_bit;							\
400 })
401 
402 #define subpage_test_bitmap_all_set(fs_info, subpage, name)		\
403 	bitmap_test_range_all_set(subpage->bitmaps,			\
404 			fs_info->subpage_info->name##_offset,		\
405 			fs_info->subpage_info->bitmap_nr_bits)
406 
407 #define subpage_test_bitmap_all_zero(fs_info, subpage, name)		\
408 	bitmap_test_range_all_zero(subpage->bitmaps,			\
409 			fs_info->subpage_info->name##_offset,		\
410 			fs_info->subpage_info->bitmap_nr_bits)
411 
412 void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
413 		struct page *page, u64 start, u32 len)
414 {
415 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
416 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
417 							uptodate, start, len);
418 	unsigned long flags;
419 
420 	spin_lock_irqsave(&subpage->lock, flags);
421 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
422 	if (subpage_test_bitmap_all_set(fs_info, subpage, uptodate))
423 		SetPageUptodate(page);
424 	spin_unlock_irqrestore(&subpage->lock, flags);
425 }
426 
427 void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
428 		struct page *page, u64 start, u32 len)
429 {
430 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
431 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
432 							uptodate, start, len);
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&subpage->lock, flags);
436 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
437 	ClearPageUptodate(page);
438 	spin_unlock_irqrestore(&subpage->lock, flags);
439 }
440 
441 void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
442 		struct page *page, u64 start, u32 len)
443 {
444 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
445 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
446 							error, start, len);
447 	unsigned long flags;
448 
449 	spin_lock_irqsave(&subpage->lock, flags);
450 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
451 	SetPageError(page);
452 	spin_unlock_irqrestore(&subpage->lock, flags);
453 }
454 
455 void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
456 		struct page *page, u64 start, u32 len)
457 {
458 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
459 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
460 							error, start, len);
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&subpage->lock, flags);
464 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
465 	if (subpage_test_bitmap_all_zero(fs_info, subpage, error))
466 		ClearPageError(page);
467 	spin_unlock_irqrestore(&subpage->lock, flags);
468 }
469 
470 void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
471 		struct page *page, u64 start, u32 len)
472 {
473 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
474 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
475 							dirty, start, len);
476 	unsigned long flags;
477 
478 	spin_lock_irqsave(&subpage->lock, flags);
479 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
480 	spin_unlock_irqrestore(&subpage->lock, flags);
481 	set_page_dirty(page);
482 }
483 
484 /*
485  * Extra clear_and_test function for subpage dirty bitmap.
486  *
487  * Return true if we're the last bits in the dirty_bitmap and clear the
488  * dirty_bitmap.
489  * Return false otherwise.
490  *
491  * NOTE: Callers should manually clear page dirty for true case, as we have
492  * extra handling for tree blocks.
493  */
494 bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
495 		struct page *page, u64 start, u32 len)
496 {
497 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
498 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
499 							dirty, start, len);
500 	unsigned long flags;
501 	bool last = false;
502 
503 	spin_lock_irqsave(&subpage->lock, flags);
504 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
505 	if (subpage_test_bitmap_all_zero(fs_info, subpage, dirty))
506 		last = true;
507 	spin_unlock_irqrestore(&subpage->lock, flags);
508 	return last;
509 }
510 
511 void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
512 		struct page *page, u64 start, u32 len)
513 {
514 	bool last;
515 
516 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
517 	if (last)
518 		clear_page_dirty_for_io(page);
519 }
520 
521 void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
522 		struct page *page, u64 start, u32 len)
523 {
524 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
525 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
526 							writeback, start, len);
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&subpage->lock, flags);
530 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
531 	set_page_writeback(page);
532 	spin_unlock_irqrestore(&subpage->lock, flags);
533 }
534 
535 void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
536 		struct page *page, u64 start, u32 len)
537 {
538 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
539 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
540 							writeback, start, len);
541 	unsigned long flags;
542 
543 	spin_lock_irqsave(&subpage->lock, flags);
544 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
545 	if (subpage_test_bitmap_all_zero(fs_info, subpage, writeback)) {
546 		ASSERT(PageWriteback(page));
547 		end_page_writeback(page);
548 	}
549 	spin_unlock_irqrestore(&subpage->lock, flags);
550 }
551 
552 void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
553 		struct page *page, u64 start, u32 len)
554 {
555 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
556 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
557 							ordered, start, len);
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(&subpage->lock, flags);
561 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
562 	SetPageOrdered(page);
563 	spin_unlock_irqrestore(&subpage->lock, flags);
564 }
565 
566 void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
567 		struct page *page, u64 start, u32 len)
568 {
569 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
570 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
571 							ordered, start, len);
572 	unsigned long flags;
573 
574 	spin_lock_irqsave(&subpage->lock, flags);
575 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
576 	if (subpage_test_bitmap_all_zero(fs_info, subpage, ordered))
577 		ClearPageOrdered(page);
578 	spin_unlock_irqrestore(&subpage->lock, flags);
579 }
580 
581 void btrfs_subpage_set_checked(const struct btrfs_fs_info *fs_info,
582 			       struct page *page, u64 start, u32 len)
583 {
584 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
585 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
586 							checked, start, len);
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&subpage->lock, flags);
590 	bitmap_set(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
591 	if (subpage_test_bitmap_all_set(fs_info, subpage, checked))
592 		SetPageChecked(page);
593 	spin_unlock_irqrestore(&subpage->lock, flags);
594 }
595 
596 void btrfs_subpage_clear_checked(const struct btrfs_fs_info *fs_info,
597 				 struct page *page, u64 start, u32 len)
598 {
599 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
600 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,
601 							checked, start, len);
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&subpage->lock, flags);
605 	bitmap_clear(subpage->bitmaps, start_bit, len >> fs_info->sectorsize_bits);
606 	ClearPageChecked(page);
607 	spin_unlock_irqrestore(&subpage->lock, flags);
608 }
609 
610 /*
611  * Unlike set/clear which is dependent on each page status, for test all bits
612  * are tested in the same way.
613  */
614 #define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name)				\
615 bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info,	\
616 		struct page *page, u64 start, u32 len)			\
617 {									\
618 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
619 	unsigned int start_bit = subpage_calc_start_bit(fs_info, page,	\
620 						name, start, len);	\
621 	unsigned long flags;						\
622 	bool ret;							\
623 									\
624 	spin_lock_irqsave(&subpage->lock, flags);			\
625 	ret = bitmap_test_range_all_set(subpage->bitmaps, start_bit,	\
626 				len >> fs_info->sectorsize_bits);	\
627 	spin_unlock_irqrestore(&subpage->lock, flags);			\
628 	return ret;							\
629 }
630 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
631 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
632 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
633 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
634 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
635 IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(checked);
636 
637 /*
638  * Note that, in selftests (extent-io-tests), we can have empty fs_info passed
639  * in.  We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
640  * back to regular sectorsize branch.
641  */
642 #define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func,	\
643 			       test_page_func)				\
644 void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info,		\
645 		struct page *page, u64 start, u32 len)			\
646 {									\
647 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
648 		set_page_func(page);					\
649 		return;							\
650 	}								\
651 	btrfs_subpage_set_##name(fs_info, page, start, len);		\
652 }									\
653 void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info,	\
654 		struct page *page, u64 start, u32 len)			\
655 {									\
656 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
657 		clear_page_func(page);					\
658 		return;							\
659 	}								\
660 	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
661 }									\
662 bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info,	\
663 		struct page *page, u64 start, u32 len)			\
664 {									\
665 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
666 		return test_page_func(page);				\
667 	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
668 }									\
669 void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info,	\
670 		struct page *page, u64 start, u32 len)			\
671 {									\
672 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
673 		set_page_func(page);					\
674 		return;							\
675 	}								\
676 	btrfs_subpage_clamp_range(page, &start, &len);			\
677 	btrfs_subpage_set_##name(fs_info, page, start, len);		\
678 }									\
679 void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
680 		struct page *page, u64 start, u32 len)			\
681 {									\
682 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page)) {	\
683 		clear_page_func(page);					\
684 		return;							\
685 	}								\
686 	btrfs_subpage_clamp_range(page, &start, &len);			\
687 	btrfs_subpage_clear_##name(fs_info, page, start, len);		\
688 }									\
689 bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info,	\
690 		struct page *page, u64 start, u32 len)			\
691 {									\
692 	if (unlikely(!fs_info) || !btrfs_is_subpage(fs_info, page))	\
693 		return test_page_func(page);				\
694 	btrfs_subpage_clamp_range(page, &start, &len);			\
695 	return btrfs_subpage_test_##name(fs_info, page, start, len);	\
696 }
697 IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
698 			 PageUptodate);
699 IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
700 IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
701 			 PageDirty);
702 IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
703 			 PageWriteback);
704 IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
705 			 PageOrdered);
706 IMPLEMENT_BTRFS_PAGE_OPS(checked, SetPageChecked, ClearPageChecked, PageChecked);
707 
708 /*
709  * Make sure not only the page dirty bit is cleared, but also subpage dirty bit
710  * is cleared.
711  */
712 void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
713 				 struct page *page)
714 {
715 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
716 
717 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
718 		return;
719 
720 	ASSERT(!PageDirty(page));
721 	if (!btrfs_is_subpage(fs_info, page))
722 		return;
723 
724 	ASSERT(PagePrivate(page) && page->private);
725 	ASSERT(subpage_test_bitmap_all_zero(fs_info, subpage, dirty));
726 }
727 
728 /*
729  * Handle different locked pages with different page sizes:
730  *
731  * - Page locked by plain lock_page()
732  *   It should not have any subpage::writers count.
733  *   Can be unlocked by unlock_page().
734  *   This is the most common locked page for __extent_writepage() called
735  *   inside extent_write_cache_pages().
736  *   Rarer cases include the @locked_page from extent_write_locked_range().
737  *
738  * - Page locked by lock_delalloc_pages()
739  *   There is only one caller, all pages except @locked_page for
740  *   extent_write_locked_range().
741  *   In this case, we have to call subpage helper to handle the case.
742  */
743 void btrfs_page_unlock_writer(struct btrfs_fs_info *fs_info, struct page *page,
744 			      u64 start, u32 len)
745 {
746 	struct btrfs_subpage *subpage;
747 
748 	ASSERT(PageLocked(page));
749 	/* For non-subpage case, we just unlock the page */
750 	if (!btrfs_is_subpage(fs_info, page))
751 		return unlock_page(page);
752 
753 	ASSERT(PagePrivate(page) && page->private);
754 	subpage = (struct btrfs_subpage *)page->private;
755 
756 	/*
757 	 * For subpage case, there are two types of locked page.  With or
758 	 * without writers number.
759 	 *
760 	 * Since we own the page lock, no one else could touch subpage::writers
761 	 * and we are safe to do several atomic operations without spinlock.
762 	 */
763 	if (atomic_read(&subpage->writers) == 0)
764 		/* No writers, locked by plain lock_page() */
765 		return unlock_page(page);
766 
767 	/* Have writers, use proper subpage helper to end it */
768 	btrfs_page_end_writer_lock(fs_info, page, start, len);
769 }
770