1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef BTRFS_SPACE_INFO_H 4 #define BTRFS_SPACE_INFO_H 5 6 #include "volumes.h" 7 8 /* 9 * Different levels for to flush space when doing space reservations. 10 * 11 * The higher the level, the more methods we try to reclaim space. 12 */ 13 enum btrfs_reserve_flush_enum { 14 /* If we are in the transaction, we can't flush anything.*/ 15 BTRFS_RESERVE_NO_FLUSH, 16 17 /* 18 * Flush space by: 19 * - Running delayed inode items 20 * - Allocating a new chunk 21 */ 22 BTRFS_RESERVE_FLUSH_LIMIT, 23 24 /* 25 * Flush space by: 26 * - Running delayed inode items 27 * - Running delayed refs 28 * - Running delalloc and waiting for ordered extents 29 * - Allocating a new chunk 30 */ 31 BTRFS_RESERVE_FLUSH_EVICT, 32 33 /* 34 * Flush space by above mentioned methods and by: 35 * - Running delayed iputs 36 * - Committing transaction 37 * 38 * Can be interrupted by a fatal signal. 39 */ 40 BTRFS_RESERVE_FLUSH_DATA, 41 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 42 BTRFS_RESERVE_FLUSH_ALL, 43 44 /* 45 * Pretty much the same as FLUSH_ALL, but can also steal space from 46 * global rsv. 47 * 48 * Can be interrupted by a fatal signal. 49 */ 50 BTRFS_RESERVE_FLUSH_ALL_STEAL, 51 52 /* 53 * This is for btrfs_use_block_rsv only. We have exhausted our block 54 * rsv and our global block rsv. This can happen for things like 55 * delalloc where we are overwriting a lot of extents with a single 56 * extent and didn't reserve enough space. Alternatively it can happen 57 * with delalloc where we reserve 1 extents worth for a large extent but 58 * fragmentation leads to multiple extents being created. This will 59 * give us the reservation in the case of 60 * 61 * if (num_bytes < (space_info->total_bytes - 62 * btrfs_space_info_used(space_info, false)) 63 * 64 * Which ignores bytes_may_use. This is potentially dangerous, but our 65 * reservation system is generally pessimistic so is able to absorb this 66 * style of mistake. 67 */ 68 BTRFS_RESERVE_FLUSH_EMERGENCY, 69 }; 70 71 enum btrfs_flush_state { 72 FLUSH_DELAYED_ITEMS_NR = 1, 73 FLUSH_DELAYED_ITEMS = 2, 74 FLUSH_DELAYED_REFS_NR = 3, 75 FLUSH_DELAYED_REFS = 4, 76 FLUSH_DELALLOC = 5, 77 FLUSH_DELALLOC_WAIT = 6, 78 FLUSH_DELALLOC_FULL = 7, 79 ALLOC_CHUNK = 8, 80 ALLOC_CHUNK_FORCE = 9, 81 RUN_DELAYED_IPUTS = 10, 82 COMMIT_TRANS = 11, 83 }; 84 85 struct btrfs_space_info { 86 spinlock_t lock; 87 88 u64 total_bytes; /* total bytes in the space, 89 this doesn't take mirrors into account */ 90 u64 bytes_used; /* total bytes used, 91 this doesn't take mirrors into account */ 92 u64 bytes_pinned; /* total bytes pinned, will be freed when the 93 transaction finishes */ 94 u64 bytes_reserved; /* total bytes the allocator has reserved for 95 current allocations */ 96 u64 bytes_may_use; /* number of bytes that may be used for 97 delalloc/allocations */ 98 u64 bytes_readonly; /* total bytes that are read only */ 99 /* Total bytes in the space, but only accounts active block groups. */ 100 u64 active_total_bytes; 101 u64 bytes_zone_unusable; /* total bytes that are unusable until 102 resetting the device zone */ 103 104 u64 max_extent_size; /* This will hold the maximum extent size of 105 the space info if we had an ENOSPC in the 106 allocator. */ 107 /* Chunk size in bytes */ 108 u64 chunk_size; 109 110 /* 111 * Once a block group drops below this threshold (percents) we'll 112 * schedule it for reclaim. 113 */ 114 int bg_reclaim_threshold; 115 116 int clamp; /* Used to scale our threshold for preemptive 117 flushing. The value is >> clamp, so turns 118 out to be a 2^clamp divisor. */ 119 120 unsigned int full:1; /* indicates that we cannot allocate any more 121 chunks for this space */ 122 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */ 123 124 unsigned int flush:1; /* set if we are trying to make space */ 125 126 unsigned int force_alloc; /* set if we need to force a chunk 127 alloc for this space */ 128 129 u64 disk_used; /* total bytes used on disk */ 130 u64 disk_total; /* total bytes on disk, takes mirrors into 131 account */ 132 133 u64 flags; 134 135 struct list_head list; 136 /* Protected by the spinlock 'lock'. */ 137 struct list_head ro_bgs; 138 struct list_head priority_tickets; 139 struct list_head tickets; 140 141 /* 142 * Size of space that needs to be reclaimed in order to satisfy pending 143 * tickets 144 */ 145 u64 reclaim_size; 146 147 /* 148 * tickets_id just indicates the next ticket will be handled, so note 149 * it's not stored per ticket. 150 */ 151 u64 tickets_id; 152 153 struct rw_semaphore groups_sem; 154 /* for block groups in our same type */ 155 struct list_head block_groups[BTRFS_NR_RAID_TYPES]; 156 157 struct kobject kobj; 158 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES]; 159 }; 160 161 struct reserve_ticket { 162 u64 bytes; 163 int error; 164 bool steal; 165 struct list_head list; 166 wait_queue_head_t wait; 167 }; 168 169 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info) 170 { 171 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) && 172 (space_info->flags & BTRFS_BLOCK_GROUP_DATA)); 173 } 174 175 /* 176 * 177 * Declare a helper function to detect underflow of various space info members 178 */ 179 #define DECLARE_SPACE_INFO_UPDATE(name, trace_name) \ 180 static inline void \ 181 btrfs_space_info_update_##name(struct btrfs_fs_info *fs_info, \ 182 struct btrfs_space_info *sinfo, \ 183 s64 bytes) \ 184 { \ 185 const u64 abs_bytes = (bytes < 0) ? -bytes : bytes; \ 186 lockdep_assert_held(&sinfo->lock); \ 187 trace_update_##name(fs_info, sinfo, sinfo->name, bytes); \ 188 trace_btrfs_space_reservation(fs_info, trace_name, \ 189 sinfo->flags, abs_bytes, \ 190 bytes > 0); \ 191 if (bytes < 0 && sinfo->name < -bytes) { \ 192 WARN_ON(1); \ 193 sinfo->name = 0; \ 194 return; \ 195 } \ 196 sinfo->name += bytes; \ 197 } 198 199 DECLARE_SPACE_INFO_UPDATE(bytes_may_use, "space_info"); 200 DECLARE_SPACE_INFO_UPDATE(bytes_pinned, "pinned"); 201 202 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 203 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 204 struct btrfs_block_group *block_group); 205 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 206 u64 chunk_size); 207 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 208 u64 flags); 209 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 210 bool may_use_included); 211 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 212 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 213 struct btrfs_space_info *info, u64 bytes, 214 int dump_block_groups); 215 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 216 struct btrfs_block_rsv *block_rsv, 217 u64 orig_bytes, 218 enum btrfs_reserve_flush_enum flush); 219 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 220 struct btrfs_space_info *space_info); 221 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 222 struct btrfs_space_info *space_info, u64 bytes, 223 enum btrfs_reserve_flush_enum flush); 224 225 static inline void btrfs_space_info_free_bytes_may_use( 226 struct btrfs_fs_info *fs_info, 227 struct btrfs_space_info *space_info, 228 u64 num_bytes) 229 { 230 spin_lock(&space_info->lock); 231 btrfs_space_info_update_bytes_may_use(fs_info, space_info, -num_bytes); 232 btrfs_try_granting_tickets(fs_info, space_info); 233 spin_unlock(&space_info->lock); 234 } 235 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 236 enum btrfs_reserve_flush_enum flush); 237 void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info); 238 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 239 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 240 241 #endif /* BTRFS_SPACE_INFO_H */ 242