1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "linux/spinlock.h" 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 18 /* 19 * HOW DOES SPACE RESERVATION WORK 20 * 21 * If you want to know about delalloc specifically, there is a separate comment 22 * for that with the delalloc code. This comment is about how the whole system 23 * works generally. 24 * 25 * BASIC CONCEPTS 26 * 27 * 1) space_info. This is the ultimate arbiter of how much space we can use. 28 * There's a description of the bytes_ fields with the struct declaration, 29 * refer to that for specifics on each field. Suffice it to say that for 30 * reservations we care about total_bytes - SUM(space_info->bytes_) when 31 * determining if there is space to make an allocation. There is a space_info 32 * for METADATA, SYSTEM, and DATA areas. 33 * 34 * 2) block_rsv's. These are basically buckets for every different type of 35 * metadata reservation we have. You can see the comment in the block_rsv 36 * code on the rules for each type, but generally block_rsv->reserved is how 37 * much space is accounted for in space_info->bytes_may_use. 38 * 39 * 3) btrfs_calc*_size. These are the worst case calculations we used based 40 * on the number of items we will want to modify. We have one for changing 41 * items, and one for inserting new items. Generally we use these helpers to 42 * determine the size of the block reserves, and then use the actual bytes 43 * values to adjust the space_info counters. 44 * 45 * MAKING RESERVATIONS, THE NORMAL CASE 46 * 47 * We call into either btrfs_reserve_data_bytes() or 48 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 49 * num_bytes we want to reserve. 50 * 51 * ->reserve 52 * space_info->bytes_may_reserve += num_bytes 53 * 54 * ->extent allocation 55 * Call btrfs_add_reserved_bytes() which does 56 * space_info->bytes_may_reserve -= num_bytes 57 * space_info->bytes_reserved += extent_bytes 58 * 59 * ->insert reference 60 * Call btrfs_update_block_group() which does 61 * space_info->bytes_reserved -= extent_bytes 62 * space_info->bytes_used += extent_bytes 63 * 64 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 65 * 66 * Assume we are unable to simply make the reservation because we do not have 67 * enough space 68 * 69 * -> __reserve_bytes 70 * create a reserve_ticket with ->bytes set to our reservation, add it to 71 * the tail of space_info->tickets, kick async flush thread 72 * 73 * ->handle_reserve_ticket 74 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 75 * on the ticket. 76 * 77 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 78 * Flushes various things attempting to free up space. 79 * 80 * -> btrfs_try_granting_tickets() 81 * This is called by anything that either subtracts space from 82 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 83 * space_info->total_bytes. This loops through the ->priority_tickets and 84 * then the ->tickets list checking to see if the reservation can be 85 * completed. If it can the space is added to space_info->bytes_may_use and 86 * the ticket is woken up. 87 * 88 * -> ticket wakeup 89 * Check if ->bytes == 0, if it does we got our reservation and we can carry 90 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 91 * were interrupted.) 92 * 93 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 94 * 95 * Same as the above, except we add ourselves to the 96 * space_info->priority_tickets, and we do not use ticket->wait, we simply 97 * call flush_space() ourselves for the states that are safe for us to call 98 * without deadlocking and hope for the best. 99 * 100 * THE FLUSHING STATES 101 * 102 * Generally speaking we will have two cases for each state, a "nice" state 103 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 104 * reduce the locking over head on the various trees, and even to keep from 105 * doing any work at all in the case of delayed refs. Each of these delayed 106 * things however hold reservations, and so letting them run allows us to 107 * reclaim space so we can make new reservations. 108 * 109 * FLUSH_DELAYED_ITEMS 110 * Every inode has a delayed item to update the inode. Take a simple write 111 * for example, we would update the inode item at write time to update the 112 * mtime, and then again at finish_ordered_io() time in order to update the 113 * isize or bytes. We keep these delayed items to coalesce these operations 114 * into a single operation done on demand. These are an easy way to reclaim 115 * metadata space. 116 * 117 * FLUSH_DELALLOC 118 * Look at the delalloc comment to get an idea of how much space is reserved 119 * for delayed allocation. We can reclaim some of this space simply by 120 * running delalloc, but usually we need to wait for ordered extents to 121 * reclaim the bulk of this space. 122 * 123 * FLUSH_DELAYED_REFS 124 * We have a block reserve for the outstanding delayed refs space, and every 125 * delayed ref operation holds a reservation. Running these is a quick way 126 * to reclaim space, but we want to hold this until the end because COW can 127 * churn a lot and we can avoid making some extent tree modifications if we 128 * are able to delay for as long as possible. 129 * 130 * ALLOC_CHUNK 131 * We will skip this the first time through space reservation, because of 132 * overcommit and we don't want to have a lot of useless metadata space when 133 * our worst case reservations will likely never come true. 134 * 135 * RUN_DELAYED_IPUTS 136 * If we're freeing inodes we're likely freeing checksums, file extent 137 * items, and extent tree items. Loads of space could be freed up by these 138 * operations, however they won't be usable until the transaction commits. 139 * 140 * COMMIT_TRANS 141 * This will commit the transaction. Historically we had a lot of logic 142 * surrounding whether or not we'd commit the transaction, but this waits born 143 * out of a pre-tickets era where we could end up committing the transaction 144 * thousands of times in a row without making progress. Now thanks to our 145 * ticketing system we know if we're not making progress and can error 146 * everybody out after a few commits rather than burning the disk hoping for 147 * a different answer. 148 * 149 * OVERCOMMIT 150 * 151 * Because we hold so many reservations for metadata we will allow you to 152 * reserve more space than is currently free in the currently allocate 153 * metadata space. This only happens with metadata, data does not allow 154 * overcommitting. 155 * 156 * You can see the current logic for when we allow overcommit in 157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 158 * is no unallocated space to be had, all reservations are kept within the 159 * free space in the allocated metadata chunks. 160 * 161 * Because of overcommitting, you generally want to use the 162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 163 * thing with or without extra unallocated space. 164 */ 165 166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 167 bool may_use_included) 168 { 169 ASSERT(s_info); 170 return s_info->bytes_used + s_info->bytes_reserved + 171 s_info->bytes_pinned + s_info->bytes_readonly + 172 s_info->bytes_zone_unusable + 173 (may_use_included ? s_info->bytes_may_use : 0); 174 } 175 176 /* 177 * after adding space to the filesystem, we need to clear the full flags 178 * on all the space infos. 179 */ 180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 181 { 182 struct list_head *head = &info->space_info; 183 struct btrfs_space_info *found; 184 185 list_for_each_entry(found, head, list) 186 found->full = 0; 187 } 188 189 /* 190 * Block groups with more than this value (percents) of unusable space will be 191 * scheduled for background reclaim. 192 */ 193 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 194 195 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 196 197 /* 198 * Calculate chunk size depending on volume type (regular or zoned). 199 */ 200 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 201 { 202 if (btrfs_is_zoned(fs_info)) 203 return fs_info->zone_size; 204 205 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 206 207 if (flags & BTRFS_BLOCK_GROUP_DATA) 208 return BTRFS_MAX_DATA_CHUNK_SIZE; 209 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 210 return SZ_32M; 211 212 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 213 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 214 return SZ_1G; 215 216 return SZ_256M; 217 } 218 219 /* 220 * Update default chunk size. 221 */ 222 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 223 u64 chunk_size) 224 { 225 WRITE_ONCE(space_info->chunk_size, chunk_size); 226 } 227 228 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 229 { 230 231 struct btrfs_space_info *space_info; 232 int i; 233 int ret; 234 235 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 236 if (!space_info) 237 return -ENOMEM; 238 239 space_info->fs_info = info; 240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 241 INIT_LIST_HEAD(&space_info->block_groups[i]); 242 init_rwsem(&space_info->groups_sem); 243 spin_lock_init(&space_info->lock); 244 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 245 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 246 INIT_LIST_HEAD(&space_info->ro_bgs); 247 INIT_LIST_HEAD(&space_info->tickets); 248 INIT_LIST_HEAD(&space_info->priority_tickets); 249 space_info->clamp = 1; 250 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 251 252 if (btrfs_is_zoned(info)) 253 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 254 255 ret = btrfs_sysfs_add_space_info_type(info, space_info); 256 if (ret) 257 return ret; 258 259 list_add(&space_info->list, &info->space_info); 260 if (flags & BTRFS_BLOCK_GROUP_DATA) 261 info->data_sinfo = space_info; 262 263 return ret; 264 } 265 266 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 267 { 268 struct btrfs_super_block *disk_super; 269 u64 features; 270 u64 flags; 271 int mixed = 0; 272 int ret; 273 274 disk_super = fs_info->super_copy; 275 if (!btrfs_super_root(disk_super)) 276 return -EINVAL; 277 278 features = btrfs_super_incompat_flags(disk_super); 279 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 280 mixed = 1; 281 282 flags = BTRFS_BLOCK_GROUP_SYSTEM; 283 ret = create_space_info(fs_info, flags); 284 if (ret) 285 goto out; 286 287 if (mixed) { 288 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 289 ret = create_space_info(fs_info, flags); 290 } else { 291 flags = BTRFS_BLOCK_GROUP_METADATA; 292 ret = create_space_info(fs_info, flags); 293 if (ret) 294 goto out; 295 296 flags = BTRFS_BLOCK_GROUP_DATA; 297 ret = create_space_info(fs_info, flags); 298 } 299 out: 300 return ret; 301 } 302 303 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 304 struct btrfs_block_group *block_group) 305 { 306 struct btrfs_space_info *found; 307 int factor, index; 308 309 factor = btrfs_bg_type_to_factor(block_group->flags); 310 311 found = btrfs_find_space_info(info, block_group->flags); 312 ASSERT(found); 313 spin_lock(&found->lock); 314 found->total_bytes += block_group->length; 315 found->disk_total += block_group->length * factor; 316 found->bytes_used += block_group->used; 317 found->disk_used += block_group->used * factor; 318 found->bytes_readonly += block_group->bytes_super; 319 found->bytes_zone_unusable += block_group->zone_unusable; 320 if (block_group->length > 0) 321 found->full = 0; 322 btrfs_try_granting_tickets(info, found); 323 spin_unlock(&found->lock); 324 325 block_group->space_info = found; 326 327 index = btrfs_bg_flags_to_raid_index(block_group->flags); 328 down_write(&found->groups_sem); 329 list_add_tail(&block_group->list, &found->block_groups[index]); 330 up_write(&found->groups_sem); 331 } 332 333 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 334 u64 flags) 335 { 336 struct list_head *head = &info->space_info; 337 struct btrfs_space_info *found; 338 339 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 340 341 list_for_each_entry(found, head, list) { 342 if (found->flags & flags) 343 return found; 344 } 345 return NULL; 346 } 347 348 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 349 { 350 struct btrfs_space_info *data_sinfo; 351 u64 data_chunk_size; 352 353 /* 354 * Calculate the data_chunk_size, space_info->chunk_size is the 355 * "optimal" chunk size based on the fs size. However when we actually 356 * allocate the chunk we will strip this down further, making it no 357 * more than 10% of the disk or 1G, whichever is smaller. 358 * 359 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 360 * as it is. 361 */ 362 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 363 if (btrfs_is_zoned(fs_info)) 364 return data_sinfo->chunk_size; 365 data_chunk_size = min(data_sinfo->chunk_size, 366 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 367 return min_t(u64, data_chunk_size, SZ_1G); 368 } 369 370 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 371 struct btrfs_space_info *space_info, 372 enum btrfs_reserve_flush_enum flush) 373 { 374 u64 profile; 375 u64 avail; 376 u64 data_chunk_size; 377 int factor; 378 379 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 380 profile = btrfs_system_alloc_profile(fs_info); 381 else 382 profile = btrfs_metadata_alloc_profile(fs_info); 383 384 avail = atomic64_read(&fs_info->free_chunk_space); 385 386 /* 387 * If we have dup, raid1 or raid10 then only half of the free 388 * space is actually usable. For raid56, the space info used 389 * doesn't include the parity drive, so we don't have to 390 * change the math 391 */ 392 factor = btrfs_bg_type_to_factor(profile); 393 avail = div_u64(avail, factor); 394 if (avail == 0) 395 return 0; 396 397 data_chunk_size = calc_effective_data_chunk_size(fs_info); 398 399 /* 400 * Since data allocations immediately use block groups as part of the 401 * reservation, because we assume that data reservations will == actual 402 * usage, we could potentially overcommit and then immediately have that 403 * available space used by a data allocation, which could put us in a 404 * bind when we get close to filling the file system. 405 * 406 * To handle this simply remove the data_chunk_size from the available 407 * space. If we are relatively empty this won't affect our ability to 408 * overcommit much, and if we're very close to full it'll keep us from 409 * getting into a position where we've given ourselves very little 410 * metadata wiggle room. 411 */ 412 if (avail <= data_chunk_size) 413 return 0; 414 avail -= data_chunk_size; 415 416 /* 417 * If we aren't flushing all things, let us overcommit up to 418 * 1/2th of the space. If we can flush, don't let us overcommit 419 * too much, let it overcommit up to 1/8 of the space. 420 */ 421 if (flush == BTRFS_RESERVE_FLUSH_ALL) 422 avail >>= 3; 423 else 424 avail >>= 1; 425 426 /* 427 * On the zoned mode, we always allocate one zone as one chunk. 428 * Returning non-zone size alingned bytes here will result in 429 * less pressure for the async metadata reclaim process, and it 430 * will over-commit too much leading to ENOSPC. Align down to the 431 * zone size to avoid that. 432 */ 433 if (btrfs_is_zoned(fs_info)) 434 avail = ALIGN_DOWN(avail, fs_info->zone_size); 435 436 return avail; 437 } 438 439 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 440 struct btrfs_space_info *space_info, u64 bytes, 441 enum btrfs_reserve_flush_enum flush) 442 { 443 u64 avail; 444 u64 used; 445 446 /* Don't overcommit when in mixed mode */ 447 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 448 return 0; 449 450 used = btrfs_space_info_used(space_info, true); 451 avail = calc_available_free_space(fs_info, space_info, flush); 452 453 if (used + bytes < space_info->total_bytes + avail) 454 return 1; 455 return 0; 456 } 457 458 static void remove_ticket(struct btrfs_space_info *space_info, 459 struct reserve_ticket *ticket) 460 { 461 if (!list_empty(&ticket->list)) { 462 list_del_init(&ticket->list); 463 ASSERT(space_info->reclaim_size >= ticket->bytes); 464 space_info->reclaim_size -= ticket->bytes; 465 } 466 } 467 468 /* 469 * This is for space we already have accounted in space_info->bytes_may_use, so 470 * basically when we're returning space from block_rsv's. 471 */ 472 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 473 struct btrfs_space_info *space_info) 474 { 475 struct list_head *head; 476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 477 478 lockdep_assert_held(&space_info->lock); 479 480 head = &space_info->priority_tickets; 481 again: 482 while (!list_empty(head)) { 483 struct reserve_ticket *ticket; 484 u64 used = btrfs_space_info_used(space_info, true); 485 486 ticket = list_first_entry(head, struct reserve_ticket, list); 487 488 /* Check and see if our ticket can be satisfied now. */ 489 if ((used + ticket->bytes <= space_info->total_bytes) || 490 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 491 flush)) { 492 btrfs_space_info_update_bytes_may_use(fs_info, 493 space_info, 494 ticket->bytes); 495 remove_ticket(space_info, ticket); 496 ticket->bytes = 0; 497 space_info->tickets_id++; 498 wake_up(&ticket->wait); 499 } else { 500 break; 501 } 502 } 503 504 if (head == &space_info->priority_tickets) { 505 head = &space_info->tickets; 506 flush = BTRFS_RESERVE_FLUSH_ALL; 507 goto again; 508 } 509 } 510 511 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 512 do { \ 513 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 514 spin_lock(&__rsv->lock); \ 515 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 516 __rsv->size, __rsv->reserved); \ 517 spin_unlock(&__rsv->lock); \ 518 } while (0) 519 520 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 521 { 522 switch (space_info->flags) { 523 case BTRFS_BLOCK_GROUP_SYSTEM: 524 return "SYSTEM"; 525 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 526 return "DATA+METADATA"; 527 case BTRFS_BLOCK_GROUP_DATA: 528 return "DATA"; 529 case BTRFS_BLOCK_GROUP_METADATA: 530 return "METADATA"; 531 default: 532 return "UNKNOWN"; 533 } 534 } 535 536 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 537 { 538 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 539 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 540 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 541 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 542 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 543 } 544 545 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 546 struct btrfs_space_info *info) 547 { 548 const char *flag_str = space_info_flag_to_str(info); 549 lockdep_assert_held(&info->lock); 550 551 /* The free space could be negative in case of overcommit */ 552 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 553 flag_str, 554 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 555 info->full ? "" : "not "); 556 btrfs_info(fs_info, 557 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 558 info->total_bytes, info->bytes_used, info->bytes_pinned, 559 info->bytes_reserved, info->bytes_may_use, 560 info->bytes_readonly, info->bytes_zone_unusable); 561 } 562 563 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 564 struct btrfs_space_info *info, u64 bytes, 565 int dump_block_groups) 566 { 567 struct btrfs_block_group *cache; 568 u64 total_avail = 0; 569 int index = 0; 570 571 spin_lock(&info->lock); 572 __btrfs_dump_space_info(fs_info, info); 573 dump_global_block_rsv(fs_info); 574 spin_unlock(&info->lock); 575 576 if (!dump_block_groups) 577 return; 578 579 down_read(&info->groups_sem); 580 again: 581 list_for_each_entry(cache, &info->block_groups[index], list) { 582 u64 avail; 583 584 spin_lock(&cache->lock); 585 avail = cache->length - cache->used - cache->pinned - 586 cache->reserved - cache->delalloc_bytes - 587 cache->bytes_super - cache->zone_unusable; 588 btrfs_info(fs_info, 589 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 590 cache->start, cache->length, cache->used, cache->pinned, 591 cache->reserved, cache->delalloc_bytes, 592 cache->bytes_super, cache->zone_unusable, 593 avail, cache->ro ? "[readonly]" : ""); 594 spin_unlock(&cache->lock); 595 btrfs_dump_free_space(cache, bytes); 596 total_avail += avail; 597 } 598 if (++index < BTRFS_NR_RAID_TYPES) 599 goto again; 600 up_read(&info->groups_sem); 601 602 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 603 } 604 605 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 606 u64 to_reclaim) 607 { 608 u64 bytes; 609 u64 nr; 610 611 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 612 nr = div64_u64(to_reclaim, bytes); 613 if (!nr) 614 nr = 1; 615 return nr; 616 } 617 618 /* 619 * shrink metadata reservation for delalloc 620 */ 621 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 622 struct btrfs_space_info *space_info, 623 u64 to_reclaim, bool wait_ordered, 624 bool for_preempt) 625 { 626 struct btrfs_trans_handle *trans; 627 u64 delalloc_bytes; 628 u64 ordered_bytes; 629 u64 items; 630 long time_left; 631 int loops; 632 633 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 634 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 635 if (delalloc_bytes == 0 && ordered_bytes == 0) 636 return; 637 638 /* Calc the number of the pages we need flush for space reservation */ 639 if (to_reclaim == U64_MAX) { 640 items = U64_MAX; 641 } else { 642 /* 643 * to_reclaim is set to however much metadata we need to 644 * reclaim, but reclaiming that much data doesn't really track 645 * exactly. What we really want to do is reclaim full inode's 646 * worth of reservations, however that's not available to us 647 * here. We will take a fraction of the delalloc bytes for our 648 * flushing loops and hope for the best. Delalloc will expand 649 * the amount we write to cover an entire dirty extent, which 650 * will reclaim the metadata reservation for that range. If 651 * it's not enough subsequent flush stages will be more 652 * aggressive. 653 */ 654 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 655 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 656 } 657 658 trans = current->journal_info; 659 660 /* 661 * If we are doing more ordered than delalloc we need to just wait on 662 * ordered extents, otherwise we'll waste time trying to flush delalloc 663 * that likely won't give us the space back we need. 664 */ 665 if (ordered_bytes > delalloc_bytes && !for_preempt) 666 wait_ordered = true; 667 668 loops = 0; 669 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 670 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 671 long nr_pages = min_t(u64, temp, LONG_MAX); 672 int async_pages; 673 674 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 675 676 /* 677 * We need to make sure any outstanding async pages are now 678 * processed before we continue. This is because things like 679 * sync_inode() try to be smart and skip writing if the inode is 680 * marked clean. We don't use filemap_fwrite for flushing 681 * because we want to control how many pages we write out at a 682 * time, thus this is the only safe way to make sure we've 683 * waited for outstanding compressed workers to have started 684 * their jobs and thus have ordered extents set up properly. 685 * 686 * This exists because we do not want to wait for each 687 * individual inode to finish its async work, we simply want to 688 * start the IO on everybody, and then come back here and wait 689 * for all of the async work to catch up. Once we're done with 690 * that we know we'll have ordered extents for everything and we 691 * can decide if we wait for that or not. 692 * 693 * If we choose to replace this in the future, make absolutely 694 * sure that the proper waiting is being done in the async case, 695 * as there have been bugs in that area before. 696 */ 697 async_pages = atomic_read(&fs_info->async_delalloc_pages); 698 if (!async_pages) 699 goto skip_async; 700 701 /* 702 * We don't want to wait forever, if we wrote less pages in this 703 * loop than we have outstanding, only wait for that number of 704 * pages, otherwise we can wait for all async pages to finish 705 * before continuing. 706 */ 707 if (async_pages > nr_pages) 708 async_pages -= nr_pages; 709 else 710 async_pages = 0; 711 wait_event(fs_info->async_submit_wait, 712 atomic_read(&fs_info->async_delalloc_pages) <= 713 async_pages); 714 skip_async: 715 loops++; 716 if (wait_ordered && !trans) { 717 btrfs_wait_ordered_roots(fs_info, items, NULL); 718 } else { 719 time_left = schedule_timeout_killable(1); 720 if (time_left) 721 break; 722 } 723 724 /* 725 * If we are for preemption we just want a one-shot of delalloc 726 * flushing so we can stop flushing if we decide we don't need 727 * to anymore. 728 */ 729 if (for_preempt) 730 break; 731 732 spin_lock(&space_info->lock); 733 if (list_empty(&space_info->tickets) && 734 list_empty(&space_info->priority_tickets)) { 735 spin_unlock(&space_info->lock); 736 break; 737 } 738 spin_unlock(&space_info->lock); 739 740 delalloc_bytes = percpu_counter_sum_positive( 741 &fs_info->delalloc_bytes); 742 ordered_bytes = percpu_counter_sum_positive( 743 &fs_info->ordered_bytes); 744 } 745 } 746 747 /* 748 * Try to flush some data based on policy set by @state. This is only advisory 749 * and may fail for various reasons. The caller is supposed to examine the 750 * state of @space_info to detect the outcome. 751 */ 752 static void flush_space(struct btrfs_fs_info *fs_info, 753 struct btrfs_space_info *space_info, u64 num_bytes, 754 enum btrfs_flush_state state, bool for_preempt) 755 { 756 struct btrfs_root *root = fs_info->tree_root; 757 struct btrfs_trans_handle *trans; 758 int nr; 759 int ret = 0; 760 761 switch (state) { 762 case FLUSH_DELAYED_ITEMS_NR: 763 case FLUSH_DELAYED_ITEMS: 764 if (state == FLUSH_DELAYED_ITEMS_NR) 765 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 766 else 767 nr = -1; 768 769 trans = btrfs_join_transaction_nostart(root); 770 if (IS_ERR(trans)) { 771 ret = PTR_ERR(trans); 772 if (ret == -ENOENT) 773 ret = 0; 774 break; 775 } 776 ret = btrfs_run_delayed_items_nr(trans, nr); 777 btrfs_end_transaction(trans); 778 break; 779 case FLUSH_DELALLOC: 780 case FLUSH_DELALLOC_WAIT: 781 case FLUSH_DELALLOC_FULL: 782 if (state == FLUSH_DELALLOC_FULL) 783 num_bytes = U64_MAX; 784 shrink_delalloc(fs_info, space_info, num_bytes, 785 state != FLUSH_DELALLOC, for_preempt); 786 break; 787 case FLUSH_DELAYED_REFS_NR: 788 case FLUSH_DELAYED_REFS: 789 trans = btrfs_join_transaction_nostart(root); 790 if (IS_ERR(trans)) { 791 ret = PTR_ERR(trans); 792 if (ret == -ENOENT) 793 ret = 0; 794 break; 795 } 796 if (state == FLUSH_DELAYED_REFS_NR) 797 btrfs_run_delayed_refs(trans, num_bytes); 798 else 799 btrfs_run_delayed_refs(trans, 0); 800 btrfs_end_transaction(trans); 801 break; 802 case ALLOC_CHUNK: 803 case ALLOC_CHUNK_FORCE: 804 trans = btrfs_join_transaction(root); 805 if (IS_ERR(trans)) { 806 ret = PTR_ERR(trans); 807 break; 808 } 809 ret = btrfs_chunk_alloc(trans, 810 btrfs_get_alloc_profile(fs_info, space_info->flags), 811 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 812 CHUNK_ALLOC_FORCE); 813 btrfs_end_transaction(trans); 814 815 if (ret > 0 || ret == -ENOSPC) 816 ret = 0; 817 break; 818 case RUN_DELAYED_IPUTS: 819 /* 820 * If we have pending delayed iputs then we could free up a 821 * bunch of pinned space, so make sure we run the iputs before 822 * we do our pinned bytes check below. 823 */ 824 btrfs_run_delayed_iputs(fs_info); 825 btrfs_wait_on_delayed_iputs(fs_info); 826 break; 827 case COMMIT_TRANS: 828 ASSERT(current->journal_info == NULL); 829 /* 830 * We don't want to start a new transaction, just attach to the 831 * current one or wait it fully commits in case its commit is 832 * happening at the moment. Note: we don't use a nostart join 833 * because that does not wait for a transaction to fully commit 834 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 835 */ 836 ret = btrfs_commit_current_transaction(root); 837 break; 838 default: 839 ret = -ENOSPC; 840 break; 841 } 842 843 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 844 ret, for_preempt); 845 return; 846 } 847 848 static inline u64 849 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 850 struct btrfs_space_info *space_info) 851 { 852 u64 used; 853 u64 avail; 854 u64 to_reclaim = space_info->reclaim_size; 855 856 lockdep_assert_held(&space_info->lock); 857 858 avail = calc_available_free_space(fs_info, space_info, 859 BTRFS_RESERVE_FLUSH_ALL); 860 used = btrfs_space_info_used(space_info, true); 861 862 /* 863 * We may be flushing because suddenly we have less space than we had 864 * before, and now we're well over-committed based on our current free 865 * space. If that's the case add in our overage so we make sure to put 866 * appropriate pressure on the flushing state machine. 867 */ 868 if (space_info->total_bytes + avail < used) 869 to_reclaim += used - (space_info->total_bytes + avail); 870 871 return to_reclaim; 872 } 873 874 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 875 struct btrfs_space_info *space_info) 876 { 877 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 878 u64 ordered, delalloc; 879 u64 thresh; 880 u64 used; 881 882 thresh = mult_perc(space_info->total_bytes, 90); 883 884 lockdep_assert_held(&space_info->lock); 885 886 /* If we're just plain full then async reclaim just slows us down. */ 887 if ((space_info->bytes_used + space_info->bytes_reserved + 888 global_rsv_size) >= thresh) 889 return false; 890 891 used = space_info->bytes_may_use + space_info->bytes_pinned; 892 893 /* The total flushable belongs to the global rsv, don't flush. */ 894 if (global_rsv_size >= used) 895 return false; 896 897 /* 898 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 899 * that devoted to other reservations then there's no sense in flushing, 900 * we don't have a lot of things that need flushing. 901 */ 902 if (used - global_rsv_size <= SZ_128M) 903 return false; 904 905 /* 906 * We have tickets queued, bail so we don't compete with the async 907 * flushers. 908 */ 909 if (space_info->reclaim_size) 910 return false; 911 912 /* 913 * If we have over half of the free space occupied by reservations or 914 * pinned then we want to start flushing. 915 * 916 * We do not do the traditional thing here, which is to say 917 * 918 * if (used >= ((total_bytes + avail) / 2)) 919 * return 1; 920 * 921 * because this doesn't quite work how we want. If we had more than 50% 922 * of the space_info used by bytes_used and we had 0 available we'd just 923 * constantly run the background flusher. Instead we want it to kick in 924 * if our reclaimable space exceeds our clamped free space. 925 * 926 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 927 * the following: 928 * 929 * Amount of RAM Minimum threshold Maximum threshold 930 * 931 * 256GiB 1GiB 128GiB 932 * 128GiB 512MiB 64GiB 933 * 64GiB 256MiB 32GiB 934 * 32GiB 128MiB 16GiB 935 * 16GiB 64MiB 8GiB 936 * 937 * These are the range our thresholds will fall in, corresponding to how 938 * much delalloc we need for the background flusher to kick in. 939 */ 940 941 thresh = calc_available_free_space(fs_info, space_info, 942 BTRFS_RESERVE_FLUSH_ALL); 943 used = space_info->bytes_used + space_info->bytes_reserved + 944 space_info->bytes_readonly + global_rsv_size; 945 if (used < space_info->total_bytes) 946 thresh += space_info->total_bytes - used; 947 thresh >>= space_info->clamp; 948 949 used = space_info->bytes_pinned; 950 951 /* 952 * If we have more ordered bytes than delalloc bytes then we're either 953 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 954 * around. Preemptive flushing is only useful in that it can free up 955 * space before tickets need to wait for things to finish. In the case 956 * of ordered extents, preemptively waiting on ordered extents gets us 957 * nothing, if our reservations are tied up in ordered extents we'll 958 * simply have to slow down writers by forcing them to wait on ordered 959 * extents. 960 * 961 * In the case that ordered is larger than delalloc, only include the 962 * block reserves that we would actually be able to directly reclaim 963 * from. In this case if we're heavy on metadata operations this will 964 * clearly be heavy enough to warrant preemptive flushing. In the case 965 * of heavy DIO or ordered reservations, preemptive flushing will just 966 * waste time and cause us to slow down. 967 * 968 * We want to make sure we truly are maxed out on ordered however, so 969 * cut ordered in half, and if it's still higher than delalloc then we 970 * can keep flushing. This is to avoid the case where we start 971 * flushing, and now delalloc == ordered and we stop preemptively 972 * flushing when we could still have several gigs of delalloc to flush. 973 */ 974 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 975 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 976 if (ordered >= delalloc) 977 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 978 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 979 else 980 used += space_info->bytes_may_use - global_rsv_size; 981 982 return (used >= thresh && !btrfs_fs_closing(fs_info) && 983 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 984 } 985 986 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 987 struct btrfs_space_info *space_info, 988 struct reserve_ticket *ticket) 989 { 990 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 991 u64 min_bytes; 992 993 if (!ticket->steal) 994 return false; 995 996 if (global_rsv->space_info != space_info) 997 return false; 998 999 spin_lock(&global_rsv->lock); 1000 min_bytes = mult_perc(global_rsv->size, 10); 1001 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1002 spin_unlock(&global_rsv->lock); 1003 return false; 1004 } 1005 global_rsv->reserved -= ticket->bytes; 1006 remove_ticket(space_info, ticket); 1007 ticket->bytes = 0; 1008 wake_up(&ticket->wait); 1009 space_info->tickets_id++; 1010 if (global_rsv->reserved < global_rsv->size) 1011 global_rsv->full = 0; 1012 spin_unlock(&global_rsv->lock); 1013 1014 return true; 1015 } 1016 1017 /* 1018 * We've exhausted our flushing, start failing tickets. 1019 * 1020 * @fs_info - fs_info for this fs 1021 * @space_info - the space info we were flushing 1022 * 1023 * We call this when we've exhausted our flushing ability and haven't made 1024 * progress in satisfying tickets. The reservation code handles tickets in 1025 * order, so if there is a large ticket first and then smaller ones we could 1026 * very well satisfy the smaller tickets. This will attempt to wake up any 1027 * tickets in the list to catch this case. 1028 * 1029 * This function returns true if it was able to make progress by clearing out 1030 * other tickets, or if it stumbles across a ticket that was smaller than the 1031 * first ticket. 1032 */ 1033 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1034 struct btrfs_space_info *space_info) 1035 { 1036 struct reserve_ticket *ticket; 1037 u64 tickets_id = space_info->tickets_id; 1038 const bool aborted = BTRFS_FS_ERROR(fs_info); 1039 1040 trace_btrfs_fail_all_tickets(fs_info, space_info); 1041 1042 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1043 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1044 __btrfs_dump_space_info(fs_info, space_info); 1045 } 1046 1047 while (!list_empty(&space_info->tickets) && 1048 tickets_id == space_info->tickets_id) { 1049 ticket = list_first_entry(&space_info->tickets, 1050 struct reserve_ticket, list); 1051 1052 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1053 return true; 1054 1055 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1056 btrfs_info(fs_info, "failing ticket with %llu bytes", 1057 ticket->bytes); 1058 1059 remove_ticket(space_info, ticket); 1060 if (aborted) 1061 ticket->error = -EIO; 1062 else 1063 ticket->error = -ENOSPC; 1064 wake_up(&ticket->wait); 1065 1066 /* 1067 * We're just throwing tickets away, so more flushing may not 1068 * trip over btrfs_try_granting_tickets, so we need to call it 1069 * here to see if we can make progress with the next ticket in 1070 * the list. 1071 */ 1072 if (!aborted) 1073 btrfs_try_granting_tickets(fs_info, space_info); 1074 } 1075 return (tickets_id != space_info->tickets_id); 1076 } 1077 1078 /* 1079 * This is for normal flushers, we can wait all goddamned day if we want to. We 1080 * will loop and continuously try to flush as long as we are making progress. 1081 * We count progress as clearing off tickets each time we have to loop. 1082 */ 1083 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1084 { 1085 struct btrfs_fs_info *fs_info; 1086 struct btrfs_space_info *space_info; 1087 u64 to_reclaim; 1088 enum btrfs_flush_state flush_state; 1089 int commit_cycles = 0; 1090 u64 last_tickets_id; 1091 1092 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1093 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1094 1095 spin_lock(&space_info->lock); 1096 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1097 if (!to_reclaim) { 1098 space_info->flush = 0; 1099 spin_unlock(&space_info->lock); 1100 return; 1101 } 1102 last_tickets_id = space_info->tickets_id; 1103 spin_unlock(&space_info->lock); 1104 1105 flush_state = FLUSH_DELAYED_ITEMS_NR; 1106 do { 1107 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1108 spin_lock(&space_info->lock); 1109 if (list_empty(&space_info->tickets)) { 1110 space_info->flush = 0; 1111 spin_unlock(&space_info->lock); 1112 return; 1113 } 1114 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1115 space_info); 1116 if (last_tickets_id == space_info->tickets_id) { 1117 flush_state++; 1118 } else { 1119 last_tickets_id = space_info->tickets_id; 1120 flush_state = FLUSH_DELAYED_ITEMS_NR; 1121 if (commit_cycles) 1122 commit_cycles--; 1123 } 1124 1125 /* 1126 * We do not want to empty the system of delalloc unless we're 1127 * under heavy pressure, so allow one trip through the flushing 1128 * logic before we start doing a FLUSH_DELALLOC_FULL. 1129 */ 1130 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1131 flush_state++; 1132 1133 /* 1134 * We don't want to force a chunk allocation until we've tried 1135 * pretty hard to reclaim space. Think of the case where we 1136 * freed up a bunch of space and so have a lot of pinned space 1137 * to reclaim. We would rather use that than possibly create a 1138 * underutilized metadata chunk. So if this is our first run 1139 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1140 * commit the transaction. If nothing has changed the next go 1141 * around then we can force a chunk allocation. 1142 */ 1143 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1144 flush_state++; 1145 1146 if (flush_state > COMMIT_TRANS) { 1147 commit_cycles++; 1148 if (commit_cycles > 2) { 1149 if (maybe_fail_all_tickets(fs_info, space_info)) { 1150 flush_state = FLUSH_DELAYED_ITEMS_NR; 1151 commit_cycles--; 1152 } else { 1153 space_info->flush = 0; 1154 } 1155 } else { 1156 flush_state = FLUSH_DELAYED_ITEMS_NR; 1157 } 1158 } 1159 spin_unlock(&space_info->lock); 1160 } while (flush_state <= COMMIT_TRANS); 1161 } 1162 1163 /* 1164 * This handles pre-flushing of metadata space before we get to the point that 1165 * we need to start blocking threads on tickets. The logic here is different 1166 * from the other flush paths because it doesn't rely on tickets to tell us how 1167 * much we need to flush, instead it attempts to keep us below the 80% full 1168 * watermark of space by flushing whichever reservation pool is currently the 1169 * largest. 1170 */ 1171 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1172 { 1173 struct btrfs_fs_info *fs_info; 1174 struct btrfs_space_info *space_info; 1175 struct btrfs_block_rsv *delayed_block_rsv; 1176 struct btrfs_block_rsv *delayed_refs_rsv; 1177 struct btrfs_block_rsv *global_rsv; 1178 struct btrfs_block_rsv *trans_rsv; 1179 int loops = 0; 1180 1181 fs_info = container_of(work, struct btrfs_fs_info, 1182 preempt_reclaim_work); 1183 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1184 delayed_block_rsv = &fs_info->delayed_block_rsv; 1185 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1186 global_rsv = &fs_info->global_block_rsv; 1187 trans_rsv = &fs_info->trans_block_rsv; 1188 1189 spin_lock(&space_info->lock); 1190 while (need_preemptive_reclaim(fs_info, space_info)) { 1191 enum btrfs_flush_state flush; 1192 u64 delalloc_size = 0; 1193 u64 to_reclaim, block_rsv_size; 1194 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1195 1196 loops++; 1197 1198 /* 1199 * We don't have a precise counter for the metadata being 1200 * reserved for delalloc, so we'll approximate it by subtracting 1201 * out the block rsv's space from the bytes_may_use. If that 1202 * amount is higher than the individual reserves, then we can 1203 * assume it's tied up in delalloc reservations. 1204 */ 1205 block_rsv_size = global_rsv_size + 1206 btrfs_block_rsv_reserved(delayed_block_rsv) + 1207 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1208 btrfs_block_rsv_reserved(trans_rsv); 1209 if (block_rsv_size < space_info->bytes_may_use) 1210 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1211 1212 /* 1213 * We don't want to include the global_rsv in our calculation, 1214 * because that's space we can't touch. Subtract it from the 1215 * block_rsv_size for the next checks. 1216 */ 1217 block_rsv_size -= global_rsv_size; 1218 1219 /* 1220 * We really want to avoid flushing delalloc too much, as it 1221 * could result in poor allocation patterns, so only flush it if 1222 * it's larger than the rest of the pools combined. 1223 */ 1224 if (delalloc_size > block_rsv_size) { 1225 to_reclaim = delalloc_size; 1226 flush = FLUSH_DELALLOC; 1227 } else if (space_info->bytes_pinned > 1228 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1229 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1230 to_reclaim = space_info->bytes_pinned; 1231 flush = COMMIT_TRANS; 1232 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1233 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1234 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1235 flush = FLUSH_DELAYED_ITEMS_NR; 1236 } else { 1237 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1238 flush = FLUSH_DELAYED_REFS_NR; 1239 } 1240 1241 spin_unlock(&space_info->lock); 1242 1243 /* 1244 * We don't want to reclaim everything, just a portion, so scale 1245 * down the to_reclaim by 1/4. If it takes us down to 0, 1246 * reclaim 1 items worth. 1247 */ 1248 to_reclaim >>= 2; 1249 if (!to_reclaim) 1250 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1251 flush_space(fs_info, space_info, to_reclaim, flush, true); 1252 cond_resched(); 1253 spin_lock(&space_info->lock); 1254 } 1255 1256 /* We only went through once, back off our clamping. */ 1257 if (loops == 1 && !space_info->reclaim_size) 1258 space_info->clamp = max(1, space_info->clamp - 1); 1259 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1260 spin_unlock(&space_info->lock); 1261 } 1262 1263 /* 1264 * FLUSH_DELALLOC_WAIT: 1265 * Space is freed from flushing delalloc in one of two ways. 1266 * 1267 * 1) compression is on and we allocate less space than we reserved 1268 * 2) we are overwriting existing space 1269 * 1270 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1271 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1272 * length to ->bytes_reserved, and subtracts the reserved space from 1273 * ->bytes_may_use. 1274 * 1275 * For #2 this is trickier. Once the ordered extent runs we will drop the 1276 * extent in the range we are overwriting, which creates a delayed ref for 1277 * that freed extent. This however is not reclaimed until the transaction 1278 * commits, thus the next stages. 1279 * 1280 * RUN_DELAYED_IPUTS 1281 * If we are freeing inodes, we want to make sure all delayed iputs have 1282 * completed, because they could have been on an inode with i_nlink == 0, and 1283 * thus have been truncated and freed up space. But again this space is not 1284 * immediately re-usable, it comes in the form of a delayed ref, which must be 1285 * run and then the transaction must be committed. 1286 * 1287 * COMMIT_TRANS 1288 * This is where we reclaim all of the pinned space generated by running the 1289 * iputs 1290 * 1291 * ALLOC_CHUNK_FORCE 1292 * For data we start with alloc chunk force, however we could have been full 1293 * before, and then the transaction commit could have freed new block groups, 1294 * so if we now have space to allocate do the force chunk allocation. 1295 */ 1296 static const enum btrfs_flush_state data_flush_states[] = { 1297 FLUSH_DELALLOC_FULL, 1298 RUN_DELAYED_IPUTS, 1299 COMMIT_TRANS, 1300 ALLOC_CHUNK_FORCE, 1301 }; 1302 1303 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1304 { 1305 struct btrfs_fs_info *fs_info; 1306 struct btrfs_space_info *space_info; 1307 u64 last_tickets_id; 1308 enum btrfs_flush_state flush_state = 0; 1309 1310 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1311 space_info = fs_info->data_sinfo; 1312 1313 spin_lock(&space_info->lock); 1314 if (list_empty(&space_info->tickets)) { 1315 space_info->flush = 0; 1316 spin_unlock(&space_info->lock); 1317 return; 1318 } 1319 last_tickets_id = space_info->tickets_id; 1320 spin_unlock(&space_info->lock); 1321 1322 while (!space_info->full) { 1323 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1324 spin_lock(&space_info->lock); 1325 if (list_empty(&space_info->tickets)) { 1326 space_info->flush = 0; 1327 spin_unlock(&space_info->lock); 1328 return; 1329 } 1330 1331 /* Something happened, fail everything and bail. */ 1332 if (BTRFS_FS_ERROR(fs_info)) 1333 goto aborted_fs; 1334 last_tickets_id = space_info->tickets_id; 1335 spin_unlock(&space_info->lock); 1336 } 1337 1338 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1339 flush_space(fs_info, space_info, U64_MAX, 1340 data_flush_states[flush_state], false); 1341 spin_lock(&space_info->lock); 1342 if (list_empty(&space_info->tickets)) { 1343 space_info->flush = 0; 1344 spin_unlock(&space_info->lock); 1345 return; 1346 } 1347 1348 if (last_tickets_id == space_info->tickets_id) { 1349 flush_state++; 1350 } else { 1351 last_tickets_id = space_info->tickets_id; 1352 flush_state = 0; 1353 } 1354 1355 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1356 if (space_info->full) { 1357 if (maybe_fail_all_tickets(fs_info, space_info)) 1358 flush_state = 0; 1359 else 1360 space_info->flush = 0; 1361 } else { 1362 flush_state = 0; 1363 } 1364 1365 /* Something happened, fail everything and bail. */ 1366 if (BTRFS_FS_ERROR(fs_info)) 1367 goto aborted_fs; 1368 1369 } 1370 spin_unlock(&space_info->lock); 1371 } 1372 return; 1373 1374 aborted_fs: 1375 maybe_fail_all_tickets(fs_info, space_info); 1376 space_info->flush = 0; 1377 spin_unlock(&space_info->lock); 1378 } 1379 1380 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1381 { 1382 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1383 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1384 INIT_WORK(&fs_info->preempt_reclaim_work, 1385 btrfs_preempt_reclaim_metadata_space); 1386 } 1387 1388 static const enum btrfs_flush_state priority_flush_states[] = { 1389 FLUSH_DELAYED_ITEMS_NR, 1390 FLUSH_DELAYED_ITEMS, 1391 ALLOC_CHUNK, 1392 }; 1393 1394 static const enum btrfs_flush_state evict_flush_states[] = { 1395 FLUSH_DELAYED_ITEMS_NR, 1396 FLUSH_DELAYED_ITEMS, 1397 FLUSH_DELAYED_REFS_NR, 1398 FLUSH_DELAYED_REFS, 1399 FLUSH_DELALLOC, 1400 FLUSH_DELALLOC_WAIT, 1401 FLUSH_DELALLOC_FULL, 1402 ALLOC_CHUNK, 1403 COMMIT_TRANS, 1404 }; 1405 1406 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1407 struct btrfs_space_info *space_info, 1408 struct reserve_ticket *ticket, 1409 const enum btrfs_flush_state *states, 1410 int states_nr) 1411 { 1412 u64 to_reclaim; 1413 int flush_state = 0; 1414 1415 spin_lock(&space_info->lock); 1416 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1417 /* 1418 * This is the priority reclaim path, so to_reclaim could be >0 still 1419 * because we may have only satisfied the priority tickets and still 1420 * left non priority tickets on the list. We would then have 1421 * to_reclaim but ->bytes == 0. 1422 */ 1423 if (ticket->bytes == 0) { 1424 spin_unlock(&space_info->lock); 1425 return; 1426 } 1427 1428 while (flush_state < states_nr) { 1429 spin_unlock(&space_info->lock); 1430 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1431 false); 1432 flush_state++; 1433 spin_lock(&space_info->lock); 1434 if (ticket->bytes == 0) { 1435 spin_unlock(&space_info->lock); 1436 return; 1437 } 1438 } 1439 1440 /* 1441 * Attempt to steal from the global rsv if we can, except if the fs was 1442 * turned into error mode due to a transaction abort when flushing space 1443 * above, in that case fail with the abort error instead of returning 1444 * success to the caller if we can steal from the global rsv - this is 1445 * just to have caller fail immeditelly instead of later when trying to 1446 * modify the fs, making it easier to debug -ENOSPC problems. 1447 */ 1448 if (BTRFS_FS_ERROR(fs_info)) { 1449 ticket->error = BTRFS_FS_ERROR(fs_info); 1450 remove_ticket(space_info, ticket); 1451 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1452 ticket->error = -ENOSPC; 1453 remove_ticket(space_info, ticket); 1454 } 1455 1456 /* 1457 * We must run try_granting_tickets here because we could be a large 1458 * ticket in front of a smaller ticket that can now be satisfied with 1459 * the available space. 1460 */ 1461 btrfs_try_granting_tickets(fs_info, space_info); 1462 spin_unlock(&space_info->lock); 1463 } 1464 1465 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1466 struct btrfs_space_info *space_info, 1467 struct reserve_ticket *ticket) 1468 { 1469 spin_lock(&space_info->lock); 1470 1471 /* We could have been granted before we got here. */ 1472 if (ticket->bytes == 0) { 1473 spin_unlock(&space_info->lock); 1474 return; 1475 } 1476 1477 while (!space_info->full) { 1478 spin_unlock(&space_info->lock); 1479 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1480 spin_lock(&space_info->lock); 1481 if (ticket->bytes == 0) { 1482 spin_unlock(&space_info->lock); 1483 return; 1484 } 1485 } 1486 1487 ticket->error = -ENOSPC; 1488 remove_ticket(space_info, ticket); 1489 btrfs_try_granting_tickets(fs_info, space_info); 1490 spin_unlock(&space_info->lock); 1491 } 1492 1493 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1494 struct btrfs_space_info *space_info, 1495 struct reserve_ticket *ticket) 1496 1497 { 1498 DEFINE_WAIT(wait); 1499 int ret = 0; 1500 1501 spin_lock(&space_info->lock); 1502 while (ticket->bytes > 0 && ticket->error == 0) { 1503 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1504 if (ret) { 1505 /* 1506 * Delete us from the list. After we unlock the space 1507 * info, we don't want the async reclaim job to reserve 1508 * space for this ticket. If that would happen, then the 1509 * ticket's task would not known that space was reserved 1510 * despite getting an error, resulting in a space leak 1511 * (bytes_may_use counter of our space_info). 1512 */ 1513 remove_ticket(space_info, ticket); 1514 ticket->error = -EINTR; 1515 break; 1516 } 1517 spin_unlock(&space_info->lock); 1518 1519 schedule(); 1520 1521 finish_wait(&ticket->wait, &wait); 1522 spin_lock(&space_info->lock); 1523 } 1524 spin_unlock(&space_info->lock); 1525 } 1526 1527 /* 1528 * Do the appropriate flushing and waiting for a ticket. 1529 * 1530 * @fs_info: the filesystem 1531 * @space_info: space info for the reservation 1532 * @ticket: ticket for the reservation 1533 * @start_ns: timestamp when the reservation started 1534 * @orig_bytes: amount of bytes originally reserved 1535 * @flush: how much we can flush 1536 * 1537 * This does the work of figuring out how to flush for the ticket, waiting for 1538 * the reservation, and returning the appropriate error if there is one. 1539 */ 1540 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1541 struct btrfs_space_info *space_info, 1542 struct reserve_ticket *ticket, 1543 u64 start_ns, u64 orig_bytes, 1544 enum btrfs_reserve_flush_enum flush) 1545 { 1546 int ret; 1547 1548 switch (flush) { 1549 case BTRFS_RESERVE_FLUSH_DATA: 1550 case BTRFS_RESERVE_FLUSH_ALL: 1551 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1552 wait_reserve_ticket(fs_info, space_info, ticket); 1553 break; 1554 case BTRFS_RESERVE_FLUSH_LIMIT: 1555 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1556 priority_flush_states, 1557 ARRAY_SIZE(priority_flush_states)); 1558 break; 1559 case BTRFS_RESERVE_FLUSH_EVICT: 1560 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1561 evict_flush_states, 1562 ARRAY_SIZE(evict_flush_states)); 1563 break; 1564 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1565 priority_reclaim_data_space(fs_info, space_info, ticket); 1566 break; 1567 default: 1568 ASSERT(0); 1569 break; 1570 } 1571 1572 ret = ticket->error; 1573 ASSERT(list_empty(&ticket->list)); 1574 /* 1575 * Check that we can't have an error set if the reservation succeeded, 1576 * as that would confuse tasks and lead them to error out without 1577 * releasing reserved space (if an error happens the expectation is that 1578 * space wasn't reserved at all). 1579 */ 1580 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1581 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1582 start_ns, flush, ticket->error); 1583 return ret; 1584 } 1585 1586 /* 1587 * This returns true if this flush state will go through the ordinary flushing 1588 * code. 1589 */ 1590 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1591 { 1592 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1593 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1594 } 1595 1596 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1597 struct btrfs_space_info *space_info) 1598 { 1599 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1600 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1601 1602 /* 1603 * If we're heavy on ordered operations then clamping won't help us. We 1604 * need to clamp specifically to keep up with dirty'ing buffered 1605 * writers, because there's not a 1:1 correlation of writing delalloc 1606 * and freeing space, like there is with flushing delayed refs or 1607 * delayed nodes. If we're already more ordered than delalloc then 1608 * we're keeping up, otherwise we aren't and should probably clamp. 1609 */ 1610 if (ordered < delalloc) 1611 space_info->clamp = min(space_info->clamp + 1, 8); 1612 } 1613 1614 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1615 { 1616 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1617 flush == BTRFS_RESERVE_FLUSH_EVICT); 1618 } 1619 1620 /* 1621 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1622 * fail as quickly as possible. 1623 */ 1624 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1625 { 1626 return (flush != BTRFS_RESERVE_NO_FLUSH && 1627 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1628 } 1629 1630 /* 1631 * Try to reserve bytes from the block_rsv's space. 1632 * 1633 * @fs_info: the filesystem 1634 * @space_info: space info we want to allocate from 1635 * @orig_bytes: number of bytes we want 1636 * @flush: whether or not we can flush to make our reservation 1637 * 1638 * This will reserve orig_bytes number of bytes from the space info associated 1639 * with the block_rsv. If there is not enough space it will make an attempt to 1640 * flush out space to make room. It will do this by flushing delalloc if 1641 * possible or committing the transaction. If flush is 0 then no attempts to 1642 * regain reservations will be made and this will fail if there is not enough 1643 * space already. 1644 */ 1645 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1646 struct btrfs_space_info *space_info, u64 orig_bytes, 1647 enum btrfs_reserve_flush_enum flush) 1648 { 1649 struct work_struct *async_work; 1650 struct reserve_ticket ticket; 1651 u64 start_ns = 0; 1652 u64 used; 1653 int ret = -ENOSPC; 1654 bool pending_tickets; 1655 1656 ASSERT(orig_bytes); 1657 /* 1658 * If have a transaction handle (current->journal_info != NULL), then 1659 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1660 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1661 * flushing methods can trigger transaction commits. 1662 */ 1663 if (current->journal_info) { 1664 /* One assert per line for easier debugging. */ 1665 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1666 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1667 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1668 } 1669 1670 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1671 async_work = &fs_info->async_data_reclaim_work; 1672 else 1673 async_work = &fs_info->async_reclaim_work; 1674 1675 spin_lock(&space_info->lock); 1676 used = btrfs_space_info_used(space_info, true); 1677 1678 /* 1679 * We don't want NO_FLUSH allocations to jump everybody, they can 1680 * generally handle ENOSPC in a different way, so treat them the same as 1681 * normal flushers when it comes to skipping pending tickets. 1682 */ 1683 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1684 pending_tickets = !list_empty(&space_info->tickets) || 1685 !list_empty(&space_info->priority_tickets); 1686 else 1687 pending_tickets = !list_empty(&space_info->priority_tickets); 1688 1689 /* 1690 * Carry on if we have enough space (short-circuit) OR call 1691 * can_overcommit() to ensure we can overcommit to continue. 1692 */ 1693 if (!pending_tickets && 1694 ((used + orig_bytes <= space_info->total_bytes) || 1695 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1696 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1697 orig_bytes); 1698 ret = 0; 1699 } 1700 1701 /* 1702 * Things are dire, we need to make a reservation so we don't abort. We 1703 * will let this reservation go through as long as we have actual space 1704 * left to allocate for the block. 1705 */ 1706 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1707 used = btrfs_space_info_used(space_info, false); 1708 if (used + orig_bytes <= space_info->total_bytes) { 1709 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1710 orig_bytes); 1711 ret = 0; 1712 } 1713 } 1714 1715 /* 1716 * If we couldn't make a reservation then setup our reservation ticket 1717 * and kick the async worker if it's not already running. 1718 * 1719 * If we are a priority flusher then we just need to add our ticket to 1720 * the list and we will do our own flushing further down. 1721 */ 1722 if (ret && can_ticket(flush)) { 1723 ticket.bytes = orig_bytes; 1724 ticket.error = 0; 1725 space_info->reclaim_size += ticket.bytes; 1726 init_waitqueue_head(&ticket.wait); 1727 ticket.steal = can_steal(flush); 1728 if (trace_btrfs_reserve_ticket_enabled()) 1729 start_ns = ktime_get_ns(); 1730 1731 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1732 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1733 flush == BTRFS_RESERVE_FLUSH_DATA) { 1734 list_add_tail(&ticket.list, &space_info->tickets); 1735 if (!space_info->flush) { 1736 /* 1737 * We were forced to add a reserve ticket, so 1738 * our preemptive flushing is unable to keep 1739 * up. Clamp down on the threshold for the 1740 * preemptive flushing in order to keep up with 1741 * the workload. 1742 */ 1743 maybe_clamp_preempt(fs_info, space_info); 1744 1745 space_info->flush = 1; 1746 trace_btrfs_trigger_flush(fs_info, 1747 space_info->flags, 1748 orig_bytes, flush, 1749 "enospc"); 1750 queue_work(system_unbound_wq, async_work); 1751 } 1752 } else { 1753 list_add_tail(&ticket.list, 1754 &space_info->priority_tickets); 1755 } 1756 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1757 /* 1758 * We will do the space reservation dance during log replay, 1759 * which means we won't have fs_info->fs_root set, so don't do 1760 * the async reclaim as we will panic. 1761 */ 1762 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1763 !work_busy(&fs_info->preempt_reclaim_work) && 1764 need_preemptive_reclaim(fs_info, space_info)) { 1765 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1766 orig_bytes, flush, "preempt"); 1767 queue_work(system_unbound_wq, 1768 &fs_info->preempt_reclaim_work); 1769 } 1770 } 1771 spin_unlock(&space_info->lock); 1772 if (!ret || !can_ticket(flush)) 1773 return ret; 1774 1775 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1776 orig_bytes, flush); 1777 } 1778 1779 /* 1780 * Try to reserve metadata bytes from the block_rsv's space. 1781 * 1782 * @fs_info: the filesystem 1783 * @space_info: the space_info we're allocating for 1784 * @orig_bytes: number of bytes we want 1785 * @flush: whether or not we can flush to make our reservation 1786 * 1787 * This will reserve orig_bytes number of bytes from the space info associated 1788 * with the block_rsv. If there is not enough space it will make an attempt to 1789 * flush out space to make room. It will do this by flushing delalloc if 1790 * possible or committing the transaction. If flush is 0 then no attempts to 1791 * regain reservations will be made and this will fail if there is not enough 1792 * space already. 1793 */ 1794 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1795 struct btrfs_space_info *space_info, 1796 u64 orig_bytes, 1797 enum btrfs_reserve_flush_enum flush) 1798 { 1799 int ret; 1800 1801 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1802 if (ret == -ENOSPC) { 1803 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1804 space_info->flags, orig_bytes, 1); 1805 1806 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1807 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1808 } 1809 return ret; 1810 } 1811 1812 /* 1813 * Try to reserve data bytes for an allocation. 1814 * 1815 * @fs_info: the filesystem 1816 * @bytes: number of bytes we need 1817 * @flush: how we are allowed to flush 1818 * 1819 * This will reserve bytes from the data space info. If there is not enough 1820 * space then we will attempt to flush space as specified by flush. 1821 */ 1822 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1823 enum btrfs_reserve_flush_enum flush) 1824 { 1825 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1826 int ret; 1827 1828 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1829 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1830 flush == BTRFS_RESERVE_NO_FLUSH); 1831 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1832 1833 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1834 if (ret == -ENOSPC) { 1835 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1836 data_sinfo->flags, bytes, 1); 1837 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1838 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1839 } 1840 return ret; 1841 } 1842 1843 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1844 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1845 { 1846 struct btrfs_space_info *space_info; 1847 1848 btrfs_info(fs_info, "dumping space info:"); 1849 list_for_each_entry(space_info, &fs_info->space_info, list) { 1850 spin_lock(&space_info->lock); 1851 __btrfs_dump_space_info(fs_info, space_info); 1852 spin_unlock(&space_info->lock); 1853 } 1854 dump_global_block_rsv(fs_info); 1855 } 1856 1857 /* 1858 * Account the unused space of all the readonly block group in the space_info. 1859 * takes mirrors into account. 1860 */ 1861 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1862 { 1863 struct btrfs_block_group *block_group; 1864 u64 free_bytes = 0; 1865 int factor; 1866 1867 /* It's df, we don't care if it's racy */ 1868 if (list_empty(&sinfo->ro_bgs)) 1869 return 0; 1870 1871 spin_lock(&sinfo->lock); 1872 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1873 spin_lock(&block_group->lock); 1874 1875 if (!block_group->ro) { 1876 spin_unlock(&block_group->lock); 1877 continue; 1878 } 1879 1880 factor = btrfs_bg_type_to_factor(block_group->flags); 1881 free_bytes += (block_group->length - 1882 block_group->used) * factor; 1883 1884 spin_unlock(&block_group->lock); 1885 } 1886 spin_unlock(&sinfo->lock); 1887 1888 return free_bytes; 1889 } 1890 1891 static u64 calc_pct_ratio(u64 x, u64 y) 1892 { 1893 int err; 1894 1895 if (!y) 1896 return 0; 1897 again: 1898 err = check_mul_overflow(100, x, &x); 1899 if (err) 1900 goto lose_precision; 1901 return div64_u64(x, y); 1902 lose_precision: 1903 x >>= 10; 1904 y >>= 10; 1905 if (!y) 1906 y = 1; 1907 goto again; 1908 } 1909 1910 /* 1911 * A reasonable buffer for unallocated space is 10 data block_groups. 1912 * If we claw this back repeatedly, we can still achieve efficient 1913 * utilization when near full, and not do too much reclaim while 1914 * always maintaining a solid buffer for workloads that quickly 1915 * allocate and pressure the unallocated space. 1916 */ 1917 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 1918 { 1919 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 1920 1921 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 1922 } 1923 1924 /* 1925 * The fundamental goal of automatic reclaim is to protect the filesystem's 1926 * unallocated space and thus minimize the probability of the filesystem going 1927 * read only when a metadata allocation failure causes a transaction abort. 1928 * 1929 * However, relocations happen into the space_info's unused space, therefore 1930 * automatic reclaim must also back off as that space runs low. There is no 1931 * value in doing trivial "relocations" of re-writing the same block group 1932 * into a fresh one. 1933 * 1934 * Furthermore, we want to avoid doing too much reclaim even if there are good 1935 * candidates. This is because the allocator is pretty good at filling up the 1936 * holes with writes. So we want to do just enough reclaim to try and stay 1937 * safe from running out of unallocated space but not be wasteful about it. 1938 * 1939 * Therefore, the dynamic reclaim threshold is calculated as follows: 1940 * - calculate a target unallocated amount of 5 block group sized chunks 1941 * - ratchet up the intensity of reclaim depending on how far we are from 1942 * that target by using a formula of unalloc / target to set the threshold. 1943 * 1944 * Typically with 10 block groups as the target, the discrete values this comes 1945 * out to are 0, 10, 20, ... , 80, 90, and 99. 1946 */ 1947 static int calc_dynamic_reclaim_threshold(struct btrfs_space_info *space_info) 1948 { 1949 struct btrfs_fs_info *fs_info = space_info->fs_info; 1950 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 1951 u64 target = calc_unalloc_target(fs_info); 1952 u64 alloc = space_info->total_bytes; 1953 u64 used = btrfs_space_info_used(space_info, false); 1954 u64 unused = alloc - used; 1955 u64 want = target > unalloc ? target - unalloc : 0; 1956 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 1957 1958 /* If we have no unused space, don't bother, it won't work anyway. */ 1959 if (unused < data_chunk_size) 1960 return 0; 1961 1962 /* Cast to int is OK because want <= target. */ 1963 return calc_pct_ratio(want, target); 1964 } 1965 1966 int btrfs_calc_reclaim_threshold(struct btrfs_space_info *space_info) 1967 { 1968 lockdep_assert_held(&space_info->lock); 1969 1970 if (READ_ONCE(space_info->dynamic_reclaim)) 1971 return calc_dynamic_reclaim_threshold(space_info); 1972 return READ_ONCE(space_info->bg_reclaim_threshold); 1973 } 1974 1975 /* 1976 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 1977 * recently seen successful allocations, as we are desperate to reclaim 1978 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 1979 */ 1980 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 1981 { 1982 struct btrfs_fs_info *fs_info = space_info->fs_info; 1983 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 1984 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 1985 1986 return unalloc < data_chunk_size; 1987 } 1988 1989 static int do_reclaim_sweep(struct btrfs_fs_info *fs_info, 1990 struct btrfs_space_info *space_info, int raid) 1991 { 1992 struct btrfs_block_group *bg; 1993 int thresh_pct; 1994 bool try_again = true; 1995 bool urgent; 1996 1997 spin_lock(&space_info->lock); 1998 urgent = is_reclaim_urgent(space_info); 1999 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 2000 spin_unlock(&space_info->lock); 2001 2002 down_read(&space_info->groups_sem); 2003 again: 2004 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2005 u64 thresh; 2006 bool reclaim = false; 2007 2008 btrfs_get_block_group(bg); 2009 spin_lock(&bg->lock); 2010 thresh = mult_perc(bg->length, thresh_pct); 2011 if (bg->used < thresh && bg->reclaim_mark) { 2012 try_again = false; 2013 reclaim = true; 2014 } 2015 bg->reclaim_mark++; 2016 spin_unlock(&bg->lock); 2017 if (reclaim) 2018 btrfs_mark_bg_to_reclaim(bg); 2019 btrfs_put_block_group(bg); 2020 } 2021 2022 /* 2023 * In situations where we are very motivated to reclaim (low unalloc) 2024 * use two passes to make the reclaim mark check best effort. 2025 * 2026 * If we have any staler groups, we don't touch the fresher ones, but if we 2027 * really need a block group, do take a fresh one. 2028 */ 2029 if (try_again && urgent) { 2030 try_again = false; 2031 goto again; 2032 } 2033 2034 up_read(&space_info->groups_sem); 2035 return 0; 2036 } 2037 2038 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2039 { 2040 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2041 2042 lockdep_assert_held(&space_info->lock); 2043 space_info->reclaimable_bytes += bytes; 2044 2045 if (space_info->reclaimable_bytes >= chunk_sz) 2046 btrfs_set_periodic_reclaim_ready(space_info, true); 2047 } 2048 2049 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2050 { 2051 lockdep_assert_held(&space_info->lock); 2052 if (!READ_ONCE(space_info->periodic_reclaim)) 2053 return; 2054 if (ready != space_info->periodic_reclaim_ready) { 2055 space_info->periodic_reclaim_ready = ready; 2056 if (!ready) 2057 space_info->reclaimable_bytes = 0; 2058 } 2059 } 2060 2061 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2062 { 2063 bool ret; 2064 2065 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2066 return false; 2067 if (!READ_ONCE(space_info->periodic_reclaim)) 2068 return false; 2069 2070 spin_lock(&space_info->lock); 2071 ret = space_info->periodic_reclaim_ready; 2072 btrfs_set_periodic_reclaim_ready(space_info, false); 2073 spin_unlock(&space_info->lock); 2074 2075 return ret; 2076 } 2077 2078 int btrfs_reclaim_sweep(struct btrfs_fs_info *fs_info) 2079 { 2080 int ret; 2081 int raid; 2082 struct btrfs_space_info *space_info; 2083 2084 list_for_each_entry(space_info, &fs_info->space_info, list) { 2085 if (!btrfs_should_periodic_reclaim(space_info)) 2086 continue; 2087 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) { 2088 ret = do_reclaim_sweep(fs_info, space_info, raid); 2089 if (ret) 2090 return ret; 2091 } 2092 } 2093 2094 return ret; 2095 } 2096