1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/spinlock.h> 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 #include "zoned.h" 18 #include "delayed-inode.h" 19 20 /* 21 * HOW DOES SPACE RESERVATION WORK 22 * 23 * If you want to know about delalloc specifically, there is a separate comment 24 * for that with the delalloc code. This comment is about how the whole system 25 * works generally. 26 * 27 * BASIC CONCEPTS 28 * 29 * 1) space_info. This is the ultimate arbiter of how much space we can use. 30 * There's a description of the bytes_ fields with the struct declaration, 31 * refer to that for specifics on each field. Suffice it to say that for 32 * reservations we care about total_bytes - SUM(space_info->bytes_) when 33 * determining if there is space to make an allocation. There is a space_info 34 * for METADATA, SYSTEM, and DATA areas. 35 * 36 * 2) block_rsv's. These are basically buckets for every different type of 37 * metadata reservation we have. You can see the comment in the block_rsv 38 * code on the rules for each type, but generally block_rsv->reserved is how 39 * much space is accounted for in space_info->bytes_may_use. 40 * 41 * 3) btrfs_calc*_size. These are the worst case calculations we used based 42 * on the number of items we will want to modify. We have one for changing 43 * items, and one for inserting new items. Generally we use these helpers to 44 * determine the size of the block reserves, and then use the actual bytes 45 * values to adjust the space_info counters. 46 * 47 * MAKING RESERVATIONS, THE NORMAL CASE 48 * 49 * We call into either btrfs_reserve_data_bytes() or 50 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 51 * num_bytes we want to reserve. 52 * 53 * ->reserve 54 * space_info->bytes_may_use += num_bytes 55 * 56 * ->extent allocation 57 * Call btrfs_add_reserved_bytes() which does 58 * space_info->bytes_may_use -= num_bytes 59 * space_info->bytes_reserved += extent_bytes 60 * 61 * ->insert reference 62 * Call btrfs_update_block_group() which does 63 * space_info->bytes_reserved -= extent_bytes 64 * space_info->bytes_used += extent_bytes 65 * 66 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 67 * 68 * Assume we are unable to simply make the reservation because we do not have 69 * enough space 70 * 71 * -> reserve_bytes 72 * create a reserve_ticket with ->bytes set to our reservation, add it to 73 * the tail of space_info->tickets, kick async flush thread 74 * 75 * ->handle_reserve_ticket 76 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 77 * on the ticket. 78 * 79 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 80 * Flushes various things attempting to free up space. 81 * 82 * -> btrfs_try_granting_tickets() 83 * This is called by anything that either subtracts space from 84 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 85 * space_info->total_bytes. This loops through the ->priority_tickets and 86 * then the ->tickets list checking to see if the reservation can be 87 * completed. If it can the space is added to space_info->bytes_may_use and 88 * the ticket is woken up. 89 * 90 * -> ticket wakeup 91 * Check if ->bytes == 0, if it does we got our reservation and we can carry 92 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 93 * were interrupted.) 94 * 95 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 96 * 97 * Same as the above, except we add ourselves to the 98 * space_info->priority_tickets, and we do not use ticket->wait, we simply 99 * call flush_space() ourselves for the states that are safe for us to call 100 * without deadlocking and hope for the best. 101 * 102 * THE FLUSHING STATES 103 * 104 * Generally speaking we will have two cases for each state, a "nice" state 105 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 106 * reduce the locking over head on the various trees, and even to keep from 107 * doing any work at all in the case of delayed refs. Each of these delayed 108 * things however hold reservations, and so letting them run allows us to 109 * reclaim space so we can make new reservations. 110 * 111 * FLUSH_DELAYED_ITEMS 112 * Every inode has a delayed item to update the inode. Take a simple write 113 * for example, we would update the inode item at write time to update the 114 * mtime, and then again at finish_ordered_io() time in order to update the 115 * isize or bytes. We keep these delayed items to coalesce these operations 116 * into a single operation done on demand. These are an easy way to reclaim 117 * metadata space. 118 * 119 * FLUSH_DELALLOC 120 * Look at the delalloc comment to get an idea of how much space is reserved 121 * for delayed allocation. We can reclaim some of this space simply by 122 * running delalloc, but usually we need to wait for ordered extents to 123 * reclaim the bulk of this space. 124 * 125 * FLUSH_DELAYED_REFS 126 * We have a block reserve for the outstanding delayed refs space, and every 127 * delayed ref operation holds a reservation. Running these is a quick way 128 * to reclaim space, but we want to hold this until the end because COW can 129 * churn a lot and we can avoid making some extent tree modifications if we 130 * are able to delay for as long as possible. 131 * 132 * RESET_ZONES 133 * This state works only for the zoned mode. On the zoned mode, we cannot 134 * reuse once allocated then freed region until we reset the zone, due to 135 * the sequential write zone requirement. The RESET_ZONES state resets the 136 * zones of an unused block group and let us reuse the space. The reusing 137 * is faster than removing the block group and allocating another block 138 * group on the zones. 139 * 140 * ALLOC_CHUNK 141 * We will skip this the first time through space reservation, because of 142 * overcommit and we don't want to have a lot of useless metadata space when 143 * our worst case reservations will likely never come true. 144 * 145 * RUN_DELAYED_IPUTS 146 * If we're freeing inodes we're likely freeing checksums, file extent 147 * items, and extent tree items. Loads of space could be freed up by these 148 * operations, however they won't be usable until the transaction commits. 149 * 150 * COMMIT_TRANS 151 * This will commit the transaction. Historically we had a lot of logic 152 * surrounding whether or not we'd commit the transaction, but this waits born 153 * out of a pre-tickets era where we could end up committing the transaction 154 * thousands of times in a row without making progress. Now thanks to our 155 * ticketing system we know if we're not making progress and can error 156 * everybody out after a few commits rather than burning the disk hoping for 157 * a different answer. 158 * 159 * OVERCOMMIT 160 * 161 * Because we hold so many reservations for metadata we will allow you to 162 * reserve more space than is currently free in the currently allocate 163 * metadata space. This only happens with metadata, data does not allow 164 * overcommitting. 165 * 166 * You can see the current logic for when we allow overcommit in 167 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 168 * is no unallocated space to be had, all reservations are kept within the 169 * free space in the allocated metadata chunks. 170 * 171 * Because of overcommitting, you generally want to use the 172 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 173 * thing with or without extra unallocated space. 174 */ 175 176 struct reserve_ticket { 177 u64 bytes; 178 int error; 179 bool steal; 180 struct list_head list; 181 wait_queue_head_t wait; 182 spinlock_t lock; 183 }; 184 185 /* 186 * after adding space to the filesystem, we need to clear the full flags 187 * on all the space infos. 188 */ 189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 190 { 191 struct list_head *head = &info->space_info; 192 struct btrfs_space_info *found; 193 194 list_for_each_entry(found, head, list) 195 found->full = false; 196 } 197 198 /* 199 * Block groups with more than this value (percents) of unusable space will be 200 * scheduled for background reclaim. 201 */ 202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 203 204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 205 206 /* 207 * Calculate chunk size depending on volume type (regular or zoned). 208 */ 209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 210 { 211 if (btrfs_is_zoned(fs_info)) 212 return fs_info->zone_size; 213 214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK, "flags=%llu", flags); 215 216 if (flags & BTRFS_BLOCK_GROUP_DATA) 217 return BTRFS_MAX_DATA_CHUNK_SIZE; 218 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 219 return SZ_32M; 220 221 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 223 return SZ_1G; 224 225 return SZ_256M; 226 } 227 228 /* 229 * Update default chunk size. 230 */ 231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 232 u64 chunk_size) 233 { 234 WRITE_ONCE(space_info->chunk_size, chunk_size); 235 } 236 237 static void init_space_info(struct btrfs_fs_info *info, 238 struct btrfs_space_info *space_info, u64 flags) 239 { 240 space_info->fs_info = info; 241 for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++) 242 INIT_LIST_HEAD(&space_info->block_groups[i]); 243 init_rwsem(&space_info->groups_sem); 244 spin_lock_init(&space_info->lock); 245 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 246 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 247 INIT_LIST_HEAD(&space_info->ro_bgs); 248 INIT_LIST_HEAD(&space_info->tickets); 249 INIT_LIST_HEAD(&space_info->priority_tickets); 250 space_info->clamp = 1; 251 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 252 space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY; 253 254 if (btrfs_is_zoned(info)) 255 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 256 } 257 258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags, 259 enum btrfs_space_info_sub_group id, int index) 260 { 261 struct btrfs_fs_info *fs_info = parent->fs_info; 262 struct btrfs_space_info *sub_group; 263 int ret; 264 265 ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY, 266 "parent->subgroup_id=%d", parent->subgroup_id); 267 ASSERT(id != BTRFS_SUB_GROUP_PRIMARY, "id=%d", id); 268 269 sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS); 270 if (!sub_group) 271 return -ENOMEM; 272 273 init_space_info(fs_info, sub_group, flags); 274 parent->sub_group[index] = sub_group; 275 sub_group->parent = parent; 276 sub_group->subgroup_id = id; 277 278 ret = btrfs_sysfs_add_space_info_type(sub_group); 279 if (ret) { 280 kfree(sub_group); 281 parent->sub_group[index] = NULL; 282 } 283 return ret; 284 } 285 286 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 287 { 288 289 struct btrfs_space_info *space_info; 290 int ret = 0; 291 292 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 293 if (!space_info) 294 return -ENOMEM; 295 296 init_space_info(info, space_info, flags); 297 298 if (btrfs_is_zoned(info)) { 299 if (flags & BTRFS_BLOCK_GROUP_DATA) 300 ret = create_space_info_sub_group(space_info, flags, 301 BTRFS_SUB_GROUP_DATA_RELOC, 302 0); 303 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 304 ret = create_space_info_sub_group(space_info, flags, 305 BTRFS_SUB_GROUP_TREELOG, 306 0); 307 308 if (ret) 309 goto out_free; 310 } 311 312 ret = btrfs_sysfs_add_space_info_type(space_info); 313 if (ret) 314 goto out_free; 315 316 list_add(&space_info->list, &info->space_info); 317 if (flags & BTRFS_BLOCK_GROUP_DATA) 318 info->data_sinfo = space_info; 319 320 return ret; 321 322 out_free: 323 kfree(space_info); 324 return ret; 325 } 326 327 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 328 { 329 struct btrfs_super_block *disk_super; 330 u64 features; 331 u64 flags; 332 int mixed = 0; 333 int ret; 334 335 disk_super = fs_info->super_copy; 336 if (!btrfs_super_root(disk_super)) 337 return -EINVAL; 338 339 features = btrfs_super_incompat_flags(disk_super); 340 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 341 mixed = 1; 342 343 flags = BTRFS_BLOCK_GROUP_SYSTEM; 344 ret = create_space_info(fs_info, flags); 345 if (ret) 346 goto out; 347 348 if (mixed) { 349 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 350 ret = create_space_info(fs_info, flags); 351 } else { 352 flags = BTRFS_BLOCK_GROUP_METADATA; 353 ret = create_space_info(fs_info, flags); 354 if (ret) 355 goto out; 356 357 flags = BTRFS_BLOCK_GROUP_DATA; 358 ret = create_space_info(fs_info, flags); 359 } 360 out: 361 return ret; 362 } 363 364 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 365 struct btrfs_block_group *block_group) 366 { 367 struct btrfs_space_info *space_info = block_group->space_info; 368 int factor, index; 369 370 factor = btrfs_bg_type_to_factor(block_group->flags); 371 372 spin_lock(&space_info->lock); 373 space_info->total_bytes += block_group->length; 374 space_info->disk_total += block_group->length * factor; 375 space_info->bytes_used += block_group->used; 376 space_info->disk_used += block_group->used * factor; 377 space_info->bytes_readonly += block_group->bytes_super; 378 btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable); 379 if (block_group->length > 0) 380 space_info->full = false; 381 btrfs_try_granting_tickets(space_info); 382 spin_unlock(&space_info->lock); 383 384 block_group->space_info = space_info; 385 386 index = btrfs_bg_flags_to_raid_index(block_group->flags); 387 down_write(&space_info->groups_sem); 388 list_add_tail(&block_group->list, &space_info->block_groups[index]); 389 up_write(&space_info->groups_sem); 390 } 391 392 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 393 u64 flags) 394 { 395 struct list_head *head = &info->space_info; 396 struct btrfs_space_info *found; 397 398 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 399 400 list_for_each_entry(found, head, list) { 401 if (found->flags & flags) 402 return found; 403 } 404 return NULL; 405 } 406 407 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 408 { 409 struct btrfs_space_info *data_sinfo; 410 u64 data_chunk_size; 411 412 /* 413 * Calculate the data_chunk_size, space_info->chunk_size is the 414 * "optimal" chunk size based on the fs size. However when we actually 415 * allocate the chunk we will strip this down further, making it no 416 * more than 10% of the disk or 1G, whichever is smaller. 417 * 418 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 419 * as it is. 420 */ 421 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 422 if (btrfs_is_zoned(fs_info)) 423 return data_sinfo->chunk_size; 424 data_chunk_size = min(data_sinfo->chunk_size, 425 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 426 return min_t(u64, data_chunk_size, SZ_1G); 427 } 428 429 static u64 calc_available_free_space(const struct btrfs_space_info *space_info, 430 enum btrfs_reserve_flush_enum flush) 431 { 432 struct btrfs_fs_info *fs_info = space_info->fs_info; 433 u64 profile; 434 u64 avail; 435 u64 data_chunk_size; 436 int factor; 437 438 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 439 profile = btrfs_system_alloc_profile(fs_info); 440 else 441 profile = btrfs_metadata_alloc_profile(fs_info); 442 443 avail = atomic64_read(&fs_info->free_chunk_space); 444 445 /* 446 * If we have dup, raid1 or raid10 then only half of the free 447 * space is actually usable. For raid56, the space info used 448 * doesn't include the parity drive, so we don't have to 449 * change the math 450 */ 451 factor = btrfs_bg_type_to_factor(profile); 452 avail = div_u64(avail, factor); 453 if (avail == 0) 454 return 0; 455 456 data_chunk_size = calc_effective_data_chunk_size(fs_info); 457 458 /* 459 * Since data allocations immediately use block groups as part of the 460 * reservation, because we assume that data reservations will == actual 461 * usage, we could potentially overcommit and then immediately have that 462 * available space used by a data allocation, which could put us in a 463 * bind when we get close to filling the file system. 464 * 465 * To handle this simply remove the data_chunk_size from the available 466 * space. If we are relatively empty this won't affect our ability to 467 * overcommit much, and if we're very close to full it'll keep us from 468 * getting into a position where we've given ourselves very little 469 * metadata wiggle room. 470 */ 471 if (avail <= data_chunk_size) 472 return 0; 473 avail -= data_chunk_size; 474 475 /* 476 * If we aren't flushing all things, let us overcommit up to 477 * 1/2th of the space. If we can flush, don't let us overcommit 478 * too much, let it overcommit up to 1/8 of the space. 479 */ 480 if (flush == BTRFS_RESERVE_FLUSH_ALL) 481 avail >>= 3; 482 else 483 avail >>= 1; 484 485 /* 486 * On the zoned mode, we always allocate one zone as one chunk. 487 * Returning non-zone size aligned bytes here will result in 488 * less pressure for the async metadata reclaim process, and it 489 * will over-commit too much leading to ENOSPC. Align down to the 490 * zone size to avoid that. 491 */ 492 if (btrfs_is_zoned(fs_info)) 493 avail = ALIGN_DOWN(avail, fs_info->zone_size); 494 495 return avail; 496 } 497 498 static inline bool check_can_overcommit(const struct btrfs_space_info *space_info, 499 u64 space_info_used_bytes, u64 bytes, 500 enum btrfs_reserve_flush_enum flush) 501 { 502 const u64 avail = calc_available_free_space(space_info, flush); 503 504 return (space_info_used_bytes + bytes < space_info->total_bytes + avail); 505 } 506 507 static inline bool can_overcommit(const struct btrfs_space_info *space_info, 508 u64 space_info_used_bytes, u64 bytes, 509 enum btrfs_reserve_flush_enum flush) 510 { 511 /* Don't overcommit when in mixed mode. */ 512 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 513 return false; 514 515 return check_can_overcommit(space_info, space_info_used_bytes, bytes, flush); 516 } 517 518 bool btrfs_can_overcommit(const struct btrfs_space_info *space_info, u64 bytes, 519 enum btrfs_reserve_flush_enum flush) 520 { 521 u64 used; 522 523 /* Don't overcommit when in mixed mode */ 524 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 525 return false; 526 527 used = btrfs_space_info_used(space_info, true); 528 529 return check_can_overcommit(space_info, used, bytes, flush); 530 } 531 532 static void remove_ticket(struct btrfs_space_info *space_info, 533 struct reserve_ticket *ticket, int error) 534 { 535 lockdep_assert_held(&space_info->lock); 536 537 if (!list_empty(&ticket->list)) { 538 list_del_init(&ticket->list); 539 ASSERT(space_info->reclaim_size >= ticket->bytes, 540 "space_info->reclaim_size=%llu ticket->bytes=%llu", 541 space_info->reclaim_size, ticket->bytes); 542 space_info->reclaim_size -= ticket->bytes; 543 } 544 545 spin_lock(&ticket->lock); 546 /* 547 * If we are called from a task waiting on the ticket, it may happen 548 * that before it sets an error on the ticket, a reclaim task was able 549 * to satisfy the ticket. In that case ignore the error. 550 */ 551 if (error && ticket->bytes > 0) 552 ticket->error = error; 553 else 554 ticket->bytes = 0; 555 556 wake_up(&ticket->wait); 557 spin_unlock(&ticket->lock); 558 } 559 560 /* 561 * This is for space we already have accounted in space_info->bytes_may_use, so 562 * basically when we're returning space from block_rsv's. 563 */ 564 void btrfs_try_granting_tickets(struct btrfs_space_info *space_info) 565 { 566 struct list_head *head; 567 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 568 u64 used = btrfs_space_info_used(space_info, true); 569 570 lockdep_assert_held(&space_info->lock); 571 572 head = &space_info->priority_tickets; 573 again: 574 while (!list_empty(head)) { 575 struct reserve_ticket *ticket; 576 u64 used_after; 577 578 ticket = list_first_entry(head, struct reserve_ticket, list); 579 used_after = used + ticket->bytes; 580 581 /* Check and see if our ticket can be satisfied now. */ 582 if (used_after <= space_info->total_bytes || 583 can_overcommit(space_info, used, ticket->bytes, flush)) { 584 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes); 585 remove_ticket(space_info, ticket, 0); 586 space_info->tickets_id++; 587 used = used_after; 588 } else { 589 break; 590 } 591 } 592 593 if (head == &space_info->priority_tickets) { 594 head = &space_info->tickets; 595 flush = BTRFS_RESERVE_FLUSH_ALL; 596 goto again; 597 } 598 } 599 600 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 601 do { \ 602 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 603 spin_lock(&__rsv->lock); \ 604 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 605 __rsv->size, __rsv->reserved); \ 606 spin_unlock(&__rsv->lock); \ 607 } while (0) 608 609 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 610 { 611 switch (space_info->flags) { 612 case BTRFS_BLOCK_GROUP_SYSTEM: 613 return "SYSTEM"; 614 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 615 return "DATA+METADATA"; 616 case BTRFS_BLOCK_GROUP_DATA: 617 return "DATA"; 618 case BTRFS_BLOCK_GROUP_METADATA: 619 return "METADATA"; 620 default: 621 return "UNKNOWN"; 622 } 623 } 624 625 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 626 { 627 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 628 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 629 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 630 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 631 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 632 } 633 634 static void __btrfs_dump_space_info(const struct btrfs_space_info *info) 635 { 636 const struct btrfs_fs_info *fs_info = info->fs_info; 637 const char *flag_str = space_info_flag_to_str(info); 638 lockdep_assert_held(&info->lock); 639 640 /* The free space could be negative in case of overcommit */ 641 btrfs_info(fs_info, 642 "space_info %s (sub-group id %d) has %lld free, is %sfull", 643 flag_str, info->subgroup_id, 644 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 645 info->full ? "" : "not "); 646 btrfs_info(fs_info, 647 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 648 info->total_bytes, info->bytes_used, info->bytes_pinned, 649 info->bytes_reserved, info->bytes_may_use, 650 info->bytes_readonly, info->bytes_zone_unusable); 651 } 652 653 void btrfs_dump_space_info(struct btrfs_space_info *info, u64 bytes, 654 bool dump_block_groups) 655 { 656 struct btrfs_fs_info *fs_info = info->fs_info; 657 struct btrfs_block_group *cache; 658 u64 total_avail = 0; 659 int index = 0; 660 661 spin_lock(&info->lock); 662 __btrfs_dump_space_info(info); 663 dump_global_block_rsv(fs_info); 664 spin_unlock(&info->lock); 665 666 if (!dump_block_groups) 667 return; 668 669 down_read(&info->groups_sem); 670 again: 671 list_for_each_entry(cache, &info->block_groups[index], list) { 672 u64 avail; 673 674 spin_lock(&cache->lock); 675 avail = cache->length - cache->used - cache->pinned - 676 cache->reserved - cache->bytes_super - cache->zone_unusable; 677 btrfs_info(fs_info, 678 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 679 cache->start, cache->length, cache->used, cache->pinned, 680 cache->reserved, cache->delalloc_bytes, 681 cache->bytes_super, cache->zone_unusable, 682 avail, cache->ro ? "[readonly]" : ""); 683 spin_unlock(&cache->lock); 684 btrfs_dump_free_space(cache, bytes); 685 total_avail += avail; 686 } 687 if (++index < BTRFS_NR_RAID_TYPES) 688 goto again; 689 up_read(&info->groups_sem); 690 691 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 692 } 693 694 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 695 u64 to_reclaim) 696 { 697 u64 bytes; 698 u64 nr; 699 700 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 701 nr = div64_u64(to_reclaim, bytes); 702 if (!nr) 703 nr = 1; 704 return nr; 705 } 706 707 /* 708 * shrink metadata reservation for delalloc 709 */ 710 static void shrink_delalloc(struct btrfs_space_info *space_info, 711 u64 to_reclaim, bool wait_ordered, 712 bool for_preempt) 713 { 714 struct btrfs_fs_info *fs_info = space_info->fs_info; 715 struct btrfs_trans_handle *trans; 716 u64 delalloc_bytes; 717 u64 ordered_bytes; 718 u64 items; 719 long time_left; 720 int loops; 721 722 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 723 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 724 if (delalloc_bytes == 0 && ordered_bytes == 0) 725 return; 726 727 /* Calc the number of the pages we need flush for space reservation */ 728 if (to_reclaim == U64_MAX) { 729 items = U64_MAX; 730 } else { 731 /* 732 * to_reclaim is set to however much metadata we need to 733 * reclaim, but reclaiming that much data doesn't really track 734 * exactly. What we really want to do is reclaim full inode's 735 * worth of reservations, however that's not available to us 736 * here. We will take a fraction of the delalloc bytes for our 737 * flushing loops and hope for the best. Delalloc will expand 738 * the amount we write to cover an entire dirty extent, which 739 * will reclaim the metadata reservation for that range. If 740 * it's not enough subsequent flush stages will be more 741 * aggressive. 742 */ 743 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 744 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 745 } 746 747 trans = current->journal_info; 748 749 /* 750 * If we are doing more ordered than delalloc we need to just wait on 751 * ordered extents, otherwise we'll waste time trying to flush delalloc 752 * that likely won't give us the space back we need. 753 */ 754 if (ordered_bytes > delalloc_bytes && !for_preempt) 755 wait_ordered = true; 756 757 loops = 0; 758 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 759 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 760 long nr_pages = min_t(u64, temp, LONG_MAX); 761 int async_pages; 762 763 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 764 765 /* 766 * We need to make sure any outstanding async pages are now 767 * processed before we continue. This is because things like 768 * sync_inode() try to be smart and skip writing if the inode is 769 * marked clean. We don't use filemap_fwrite for flushing 770 * because we want to control how many pages we write out at a 771 * time, thus this is the only safe way to make sure we've 772 * waited for outstanding compressed workers to have started 773 * their jobs and thus have ordered extents set up properly. 774 * 775 * This exists because we do not want to wait for each 776 * individual inode to finish its async work, we simply want to 777 * start the IO on everybody, and then come back here and wait 778 * for all of the async work to catch up. Once we're done with 779 * that we know we'll have ordered extents for everything and we 780 * can decide if we wait for that or not. 781 * 782 * If we choose to replace this in the future, make absolutely 783 * sure that the proper waiting is being done in the async case, 784 * as there have been bugs in that area before. 785 */ 786 async_pages = atomic_read(&fs_info->async_delalloc_pages); 787 if (!async_pages) 788 goto skip_async; 789 790 /* 791 * We don't want to wait forever, if we wrote less pages in this 792 * loop than we have outstanding, only wait for that number of 793 * pages, otherwise we can wait for all async pages to finish 794 * before continuing. 795 */ 796 if (async_pages > nr_pages) 797 async_pages -= nr_pages; 798 else 799 async_pages = 0; 800 wait_event(fs_info->async_submit_wait, 801 atomic_read(&fs_info->async_delalloc_pages) <= 802 async_pages); 803 skip_async: 804 loops++; 805 if (wait_ordered && !trans) { 806 btrfs_wait_ordered_roots(fs_info, items, NULL); 807 } else { 808 time_left = schedule_timeout_killable(1); 809 if (time_left) 810 break; 811 } 812 813 /* 814 * If we are for preemption we just want a one-shot of delalloc 815 * flushing so we can stop flushing if we decide we don't need 816 * to anymore. 817 */ 818 if (for_preempt) 819 break; 820 821 spin_lock(&space_info->lock); 822 if (list_empty(&space_info->tickets) && 823 list_empty(&space_info->priority_tickets)) { 824 spin_unlock(&space_info->lock); 825 break; 826 } 827 spin_unlock(&space_info->lock); 828 829 delalloc_bytes = percpu_counter_sum_positive( 830 &fs_info->delalloc_bytes); 831 ordered_bytes = percpu_counter_sum_positive( 832 &fs_info->ordered_bytes); 833 } 834 } 835 836 /* 837 * Try to flush some data based on policy set by @state. This is only advisory 838 * and may fail for various reasons. The caller is supposed to examine the 839 * state of @space_info to detect the outcome. 840 */ 841 static void flush_space(struct btrfs_space_info *space_info, u64 num_bytes, 842 enum btrfs_flush_state state, bool for_preempt) 843 { 844 struct btrfs_fs_info *fs_info = space_info->fs_info; 845 struct btrfs_root *root = fs_info->tree_root; 846 struct btrfs_trans_handle *trans; 847 int nr; 848 int ret = 0; 849 850 switch (state) { 851 case FLUSH_DELAYED_ITEMS_NR: 852 case FLUSH_DELAYED_ITEMS: 853 if (state == FLUSH_DELAYED_ITEMS_NR) 854 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 855 else 856 nr = -1; 857 858 trans = btrfs_join_transaction_nostart(root); 859 if (IS_ERR(trans)) { 860 ret = PTR_ERR(trans); 861 if (ret == -ENOENT) 862 ret = 0; 863 break; 864 } 865 ret = btrfs_run_delayed_items_nr(trans, nr); 866 btrfs_end_transaction(trans); 867 break; 868 case FLUSH_DELALLOC: 869 case FLUSH_DELALLOC_WAIT: 870 case FLUSH_DELALLOC_FULL: 871 if (state == FLUSH_DELALLOC_FULL) 872 num_bytes = U64_MAX; 873 shrink_delalloc(space_info, num_bytes, 874 state != FLUSH_DELALLOC, for_preempt); 875 break; 876 case FLUSH_DELAYED_REFS_NR: 877 case FLUSH_DELAYED_REFS: 878 trans = btrfs_join_transaction_nostart(root); 879 if (IS_ERR(trans)) { 880 ret = PTR_ERR(trans); 881 if (ret == -ENOENT) 882 ret = 0; 883 break; 884 } 885 if (state == FLUSH_DELAYED_REFS_NR) 886 btrfs_run_delayed_refs(trans, num_bytes); 887 else 888 btrfs_run_delayed_refs(trans, 0); 889 btrfs_end_transaction(trans); 890 break; 891 case ALLOC_CHUNK: 892 case ALLOC_CHUNK_FORCE: 893 trans = btrfs_join_transaction(root); 894 if (IS_ERR(trans)) { 895 ret = PTR_ERR(trans); 896 break; 897 } 898 ret = btrfs_chunk_alloc(trans, space_info, 899 btrfs_get_alloc_profile(fs_info, space_info->flags), 900 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 901 CHUNK_ALLOC_FORCE); 902 btrfs_end_transaction(trans); 903 904 if (ret > 0 || ret == -ENOSPC) 905 ret = 0; 906 break; 907 case RUN_DELAYED_IPUTS: 908 /* 909 * If we have pending delayed iputs then we could free up a 910 * bunch of pinned space, so make sure we run the iputs before 911 * we do our pinned bytes check below. 912 */ 913 btrfs_run_delayed_iputs(fs_info); 914 btrfs_wait_on_delayed_iputs(fs_info); 915 break; 916 case COMMIT_TRANS: 917 ASSERT(current->journal_info == NULL); 918 /* 919 * We don't want to start a new transaction, just attach to the 920 * current one or wait it fully commits in case its commit is 921 * happening at the moment. Note: we don't use a nostart join 922 * because that does not wait for a transaction to fully commit 923 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 924 */ 925 ret = btrfs_commit_current_transaction(root); 926 break; 927 case RESET_ZONES: 928 ret = btrfs_reset_unused_block_groups(space_info, num_bytes); 929 break; 930 default: 931 ret = -ENOSPC; 932 break; 933 } 934 935 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 936 ret, for_preempt); 937 return; 938 } 939 940 static u64 btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info *space_info) 941 { 942 u64 used; 943 u64 avail; 944 u64 to_reclaim = space_info->reclaim_size; 945 946 lockdep_assert_held(&space_info->lock); 947 948 avail = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL); 949 used = btrfs_space_info_used(space_info, true); 950 951 /* 952 * We may be flushing because suddenly we have less space than we had 953 * before, and now we're well over-committed based on our current free 954 * space. If that's the case add in our overage so we make sure to put 955 * appropriate pressure on the flushing state machine. 956 */ 957 if (space_info->total_bytes + avail < used) 958 to_reclaim += used - (space_info->total_bytes + avail); 959 960 return to_reclaim; 961 } 962 963 static bool need_preemptive_reclaim(const struct btrfs_space_info *space_info) 964 { 965 struct btrfs_fs_info *fs_info = space_info->fs_info; 966 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 967 u64 ordered, delalloc; 968 u64 thresh; 969 u64 used; 970 971 lockdep_assert_held(&space_info->lock); 972 973 /* 974 * We have tickets queued, bail so we don't compete with the async 975 * flushers. 976 */ 977 if (space_info->reclaim_size) 978 return false; 979 980 thresh = mult_perc(space_info->total_bytes, 90); 981 982 /* If we're just plain full then async reclaim just slows us down. */ 983 if ((space_info->bytes_used + space_info->bytes_reserved + 984 global_rsv_size) >= thresh) 985 return false; 986 987 used = space_info->bytes_may_use + space_info->bytes_pinned; 988 989 /* The total flushable belongs to the global rsv, don't flush. */ 990 if (global_rsv_size >= used) 991 return false; 992 993 /* 994 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 995 * that devoted to other reservations then there's no sense in flushing, 996 * we don't have a lot of things that need flushing. 997 */ 998 if (used - global_rsv_size <= SZ_128M) 999 return false; 1000 1001 /* 1002 * If we have over half of the free space occupied by reservations or 1003 * pinned then we want to start flushing. 1004 * 1005 * We do not do the traditional thing here, which is to say 1006 * 1007 * if (used >= ((total_bytes + avail) / 2)) 1008 * return 1; 1009 * 1010 * because this doesn't quite work how we want. If we had more than 50% 1011 * of the space_info used by bytes_used and we had 0 available we'd just 1012 * constantly run the background flusher. Instead we want it to kick in 1013 * if our reclaimable space exceeds our clamped free space. 1014 * 1015 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 1016 * the following: 1017 * 1018 * Amount of RAM Minimum threshold Maximum threshold 1019 * 1020 * 256GiB 1GiB 128GiB 1021 * 128GiB 512MiB 64GiB 1022 * 64GiB 256MiB 32GiB 1023 * 32GiB 128MiB 16GiB 1024 * 16GiB 64MiB 8GiB 1025 * 1026 * These are the range our thresholds will fall in, corresponding to how 1027 * much delalloc we need for the background flusher to kick in. 1028 */ 1029 1030 thresh = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL); 1031 used = space_info->bytes_used + space_info->bytes_reserved + 1032 space_info->bytes_readonly + global_rsv_size; 1033 if (used < space_info->total_bytes) 1034 thresh += space_info->total_bytes - used; 1035 thresh >>= space_info->clamp; 1036 1037 used = space_info->bytes_pinned; 1038 1039 /* 1040 * If we have more ordered bytes than delalloc bytes then we're either 1041 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 1042 * around. Preemptive flushing is only useful in that it can free up 1043 * space before tickets need to wait for things to finish. In the case 1044 * of ordered extents, preemptively waiting on ordered extents gets us 1045 * nothing, if our reservations are tied up in ordered extents we'll 1046 * simply have to slow down writers by forcing them to wait on ordered 1047 * extents. 1048 * 1049 * In the case that ordered is larger than delalloc, only include the 1050 * block reserves that we would actually be able to directly reclaim 1051 * from. In this case if we're heavy on metadata operations this will 1052 * clearly be heavy enough to warrant preemptive flushing. In the case 1053 * of heavy DIO or ordered reservations, preemptive flushing will just 1054 * waste time and cause us to slow down. 1055 * 1056 * We want to make sure we truly are maxed out on ordered however, so 1057 * cut ordered in half, and if it's still higher than delalloc then we 1058 * can keep flushing. This is to avoid the case where we start 1059 * flushing, and now delalloc == ordered and we stop preemptively 1060 * flushing when we could still have several gigs of delalloc to flush. 1061 */ 1062 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 1063 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 1064 if (ordered >= delalloc) 1065 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 1066 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 1067 else 1068 used += space_info->bytes_may_use - global_rsv_size; 1069 1070 return (used >= thresh && !btrfs_fs_closing(fs_info) && 1071 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 1072 } 1073 1074 static bool steal_from_global_rsv(struct btrfs_space_info *space_info, 1075 struct reserve_ticket *ticket) 1076 { 1077 struct btrfs_fs_info *fs_info = space_info->fs_info; 1078 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1079 u64 min_bytes; 1080 1081 lockdep_assert_held(&space_info->lock); 1082 1083 if (!ticket->steal) 1084 return false; 1085 1086 if (global_rsv->space_info != space_info) 1087 return false; 1088 1089 spin_lock(&global_rsv->lock); 1090 min_bytes = mult_perc(global_rsv->size, 10); 1091 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1092 spin_unlock(&global_rsv->lock); 1093 return false; 1094 } 1095 global_rsv->reserved -= ticket->bytes; 1096 if (global_rsv->reserved < global_rsv->size) 1097 global_rsv->full = false; 1098 spin_unlock(&global_rsv->lock); 1099 1100 remove_ticket(space_info, ticket, 0); 1101 space_info->tickets_id++; 1102 1103 return true; 1104 } 1105 1106 /* 1107 * We've exhausted our flushing, start failing tickets. 1108 * 1109 * @space_info - the space info we were flushing 1110 * 1111 * We call this when we've exhausted our flushing ability and haven't made 1112 * progress in satisfying tickets. The reservation code handles tickets in 1113 * order, so if there is a large ticket first and then smaller ones we could 1114 * very well satisfy the smaller tickets. This will attempt to wake up any 1115 * tickets in the list to catch this case. 1116 * 1117 * This function returns true if it was able to make progress by clearing out 1118 * other tickets, or if it stumbles across a ticket that was smaller than the 1119 * first ticket. 1120 */ 1121 static bool maybe_fail_all_tickets(struct btrfs_space_info *space_info) 1122 { 1123 struct btrfs_fs_info *fs_info = space_info->fs_info; 1124 struct reserve_ticket *ticket; 1125 u64 tickets_id = space_info->tickets_id; 1126 const int abort_error = BTRFS_FS_ERROR(fs_info); 1127 1128 trace_btrfs_fail_all_tickets(fs_info, space_info); 1129 1130 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1131 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1132 __btrfs_dump_space_info(space_info); 1133 } 1134 1135 while (!list_empty(&space_info->tickets) && 1136 tickets_id == space_info->tickets_id) { 1137 ticket = list_first_entry(&space_info->tickets, 1138 struct reserve_ticket, list); 1139 if (unlikely(abort_error)) { 1140 remove_ticket(space_info, ticket, abort_error); 1141 } else { 1142 if (steal_from_global_rsv(space_info, ticket)) 1143 return true; 1144 1145 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1146 btrfs_info(fs_info, "failing ticket with %llu bytes", 1147 ticket->bytes); 1148 1149 remove_ticket(space_info, ticket, -ENOSPC); 1150 1151 /* 1152 * We're just throwing tickets away, so more flushing may 1153 * not trip over btrfs_try_granting_tickets, so we need 1154 * to call it here to see if we can make progress with 1155 * the next ticket in the list. 1156 */ 1157 btrfs_try_granting_tickets(space_info); 1158 } 1159 } 1160 return (tickets_id != space_info->tickets_id); 1161 } 1162 1163 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info) 1164 { 1165 struct btrfs_fs_info *fs_info = space_info->fs_info; 1166 u64 to_reclaim; 1167 enum btrfs_flush_state flush_state; 1168 int commit_cycles = 0; 1169 u64 last_tickets_id; 1170 enum btrfs_flush_state final_state; 1171 1172 if (btrfs_is_zoned(fs_info)) 1173 final_state = RESET_ZONES; 1174 else 1175 final_state = COMMIT_TRANS; 1176 1177 spin_lock(&space_info->lock); 1178 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1179 if (!to_reclaim) { 1180 space_info->flush = false; 1181 spin_unlock(&space_info->lock); 1182 return; 1183 } 1184 last_tickets_id = space_info->tickets_id; 1185 spin_unlock(&space_info->lock); 1186 1187 flush_state = FLUSH_DELAYED_ITEMS_NR; 1188 do { 1189 flush_space(space_info, to_reclaim, flush_state, false); 1190 spin_lock(&space_info->lock); 1191 if (list_empty(&space_info->tickets)) { 1192 space_info->flush = false; 1193 spin_unlock(&space_info->lock); 1194 return; 1195 } 1196 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1197 if (last_tickets_id == space_info->tickets_id) { 1198 flush_state++; 1199 } else { 1200 last_tickets_id = space_info->tickets_id; 1201 flush_state = FLUSH_DELAYED_ITEMS_NR; 1202 if (commit_cycles) 1203 commit_cycles--; 1204 } 1205 1206 /* 1207 * We do not want to empty the system of delalloc unless we're 1208 * under heavy pressure, so allow one trip through the flushing 1209 * logic before we start doing a FLUSH_DELALLOC_FULL. 1210 */ 1211 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1212 flush_state++; 1213 1214 /* 1215 * We don't want to force a chunk allocation until we've tried 1216 * pretty hard to reclaim space. Think of the case where we 1217 * freed up a bunch of space and so have a lot of pinned space 1218 * to reclaim. We would rather use that than possibly create a 1219 * underutilized metadata chunk. So if this is our first run 1220 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1221 * commit the transaction. If nothing has changed the next go 1222 * around then we can force a chunk allocation. 1223 */ 1224 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1225 flush_state++; 1226 1227 if (flush_state > final_state) { 1228 commit_cycles++; 1229 if (commit_cycles > 2) { 1230 if (maybe_fail_all_tickets(space_info)) { 1231 flush_state = FLUSH_DELAYED_ITEMS_NR; 1232 commit_cycles--; 1233 } else { 1234 space_info->flush = false; 1235 } 1236 } else { 1237 flush_state = FLUSH_DELAYED_ITEMS_NR; 1238 } 1239 } 1240 spin_unlock(&space_info->lock); 1241 } while (flush_state <= final_state); 1242 } 1243 1244 /* 1245 * This is for normal flushers, it can wait as much time as needed. We will 1246 * loop and continuously try to flush as long as we are making progress. We 1247 * count progress as clearing off tickets each time we have to loop. 1248 */ 1249 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1250 { 1251 struct btrfs_fs_info *fs_info; 1252 struct btrfs_space_info *space_info; 1253 1254 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1255 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1256 do_async_reclaim_metadata_space(space_info); 1257 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) { 1258 if (space_info->sub_group[i]) 1259 do_async_reclaim_metadata_space(space_info->sub_group[i]); 1260 } 1261 } 1262 1263 /* 1264 * This handles pre-flushing of metadata space before we get to the point that 1265 * we need to start blocking threads on tickets. The logic here is different 1266 * from the other flush paths because it doesn't rely on tickets to tell us how 1267 * much we need to flush, instead it attempts to keep us below the 80% full 1268 * watermark of space by flushing whichever reservation pool is currently the 1269 * largest. 1270 */ 1271 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1272 { 1273 struct btrfs_fs_info *fs_info; 1274 struct btrfs_space_info *space_info; 1275 struct btrfs_block_rsv *delayed_block_rsv; 1276 struct btrfs_block_rsv *delayed_refs_rsv; 1277 struct btrfs_block_rsv *global_rsv; 1278 struct btrfs_block_rsv *trans_rsv; 1279 int loops = 0; 1280 1281 fs_info = container_of(work, struct btrfs_fs_info, 1282 preempt_reclaim_work); 1283 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1284 delayed_block_rsv = &fs_info->delayed_block_rsv; 1285 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1286 global_rsv = &fs_info->global_block_rsv; 1287 trans_rsv = &fs_info->trans_block_rsv; 1288 1289 spin_lock(&space_info->lock); 1290 while (need_preemptive_reclaim(space_info)) { 1291 enum btrfs_flush_state flush; 1292 u64 delalloc_size = 0; 1293 u64 to_reclaim, block_rsv_size; 1294 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1295 const u64 bytes_may_use = space_info->bytes_may_use; 1296 const u64 bytes_pinned = space_info->bytes_pinned; 1297 1298 spin_unlock(&space_info->lock); 1299 /* 1300 * We don't have a precise counter for the metadata being 1301 * reserved for delalloc, so we'll approximate it by subtracting 1302 * out the block rsv's space from the bytes_may_use. If that 1303 * amount is higher than the individual reserves, then we can 1304 * assume it's tied up in delalloc reservations. 1305 */ 1306 block_rsv_size = global_rsv_size + 1307 btrfs_block_rsv_reserved(delayed_block_rsv) + 1308 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1309 btrfs_block_rsv_reserved(trans_rsv); 1310 if (block_rsv_size < bytes_may_use) 1311 delalloc_size = bytes_may_use - block_rsv_size; 1312 1313 /* 1314 * We don't want to include the global_rsv in our calculation, 1315 * because that's space we can't touch. Subtract it from the 1316 * block_rsv_size for the next checks. 1317 */ 1318 block_rsv_size -= global_rsv_size; 1319 1320 /* 1321 * We really want to avoid flushing delalloc too much, as it 1322 * could result in poor allocation patterns, so only flush it if 1323 * it's larger than the rest of the pools combined. 1324 */ 1325 if (delalloc_size > block_rsv_size) { 1326 to_reclaim = delalloc_size; 1327 flush = FLUSH_DELALLOC; 1328 } else if (bytes_pinned > 1329 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1330 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1331 to_reclaim = bytes_pinned; 1332 flush = COMMIT_TRANS; 1333 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1334 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1335 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1336 flush = FLUSH_DELAYED_ITEMS_NR; 1337 } else { 1338 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1339 flush = FLUSH_DELAYED_REFS_NR; 1340 } 1341 1342 loops++; 1343 1344 /* 1345 * We don't want to reclaim everything, just a portion, so scale 1346 * down the to_reclaim by 1/4. If it takes us down to 0, 1347 * reclaim 1 items worth. 1348 */ 1349 to_reclaim >>= 2; 1350 if (!to_reclaim) 1351 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1352 flush_space(space_info, to_reclaim, flush, true); 1353 cond_resched(); 1354 spin_lock(&space_info->lock); 1355 } 1356 1357 /* We only went through once, back off our clamping. */ 1358 if (loops == 1 && !space_info->reclaim_size) 1359 space_info->clamp = max(1, space_info->clamp - 1); 1360 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1361 spin_unlock(&space_info->lock); 1362 } 1363 1364 /* 1365 * FLUSH_DELALLOC_WAIT: 1366 * Space is freed from flushing delalloc in one of two ways. 1367 * 1368 * 1) compression is on and we allocate less space than we reserved 1369 * 2) we are overwriting existing space 1370 * 1371 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1372 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1373 * length to ->bytes_reserved, and subtracts the reserved space from 1374 * ->bytes_may_use. 1375 * 1376 * For #2 this is trickier. Once the ordered extent runs we will drop the 1377 * extent in the range we are overwriting, which creates a delayed ref for 1378 * that freed extent. This however is not reclaimed until the transaction 1379 * commits, thus the next stages. 1380 * 1381 * RUN_DELAYED_IPUTS 1382 * If we are freeing inodes, we want to make sure all delayed iputs have 1383 * completed, because they could have been on an inode with i_nlink == 0, and 1384 * thus have been truncated and freed up space. But again this space is not 1385 * immediately reusable, it comes in the form of a delayed ref, which must be 1386 * run and then the transaction must be committed. 1387 * 1388 * COMMIT_TRANS 1389 * This is where we reclaim all of the pinned space generated by running the 1390 * iputs 1391 * 1392 * RESET_ZONES 1393 * This state works only for the zoned mode. We scan the unused block group 1394 * list and reset the zones and reuse the block group. 1395 * 1396 * ALLOC_CHUNK_FORCE 1397 * For data we start with alloc chunk force, however we could have been full 1398 * before, and then the transaction commit could have freed new block groups, 1399 * so if we now have space to allocate do the force chunk allocation. 1400 */ 1401 static const enum btrfs_flush_state data_flush_states[] = { 1402 FLUSH_DELALLOC_FULL, 1403 RUN_DELAYED_IPUTS, 1404 COMMIT_TRANS, 1405 RESET_ZONES, 1406 ALLOC_CHUNK_FORCE, 1407 }; 1408 1409 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info) 1410 { 1411 struct btrfs_fs_info *fs_info = space_info->fs_info; 1412 u64 last_tickets_id; 1413 enum btrfs_flush_state flush_state = 0; 1414 1415 spin_lock(&space_info->lock); 1416 if (list_empty(&space_info->tickets)) { 1417 space_info->flush = false; 1418 spin_unlock(&space_info->lock); 1419 return; 1420 } 1421 last_tickets_id = space_info->tickets_id; 1422 spin_unlock(&space_info->lock); 1423 1424 while (!space_info->full) { 1425 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1426 spin_lock(&space_info->lock); 1427 if (list_empty(&space_info->tickets)) { 1428 space_info->flush = false; 1429 spin_unlock(&space_info->lock); 1430 return; 1431 } 1432 1433 /* Something happened, fail everything and bail. */ 1434 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1435 goto aborted_fs; 1436 last_tickets_id = space_info->tickets_id; 1437 spin_unlock(&space_info->lock); 1438 } 1439 1440 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1441 flush_space(space_info, U64_MAX, 1442 data_flush_states[flush_state], false); 1443 spin_lock(&space_info->lock); 1444 if (list_empty(&space_info->tickets)) { 1445 space_info->flush = false; 1446 spin_unlock(&space_info->lock); 1447 return; 1448 } 1449 1450 if (last_tickets_id == space_info->tickets_id) { 1451 flush_state++; 1452 } else { 1453 last_tickets_id = space_info->tickets_id; 1454 flush_state = 0; 1455 } 1456 1457 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1458 if (space_info->full) { 1459 if (maybe_fail_all_tickets(space_info)) 1460 flush_state = 0; 1461 else 1462 space_info->flush = false; 1463 } else { 1464 flush_state = 0; 1465 } 1466 1467 /* Something happened, fail everything and bail. */ 1468 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1469 goto aborted_fs; 1470 1471 } 1472 spin_unlock(&space_info->lock); 1473 } 1474 return; 1475 1476 aborted_fs: 1477 maybe_fail_all_tickets(space_info); 1478 space_info->flush = false; 1479 spin_unlock(&space_info->lock); 1480 } 1481 1482 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1483 { 1484 struct btrfs_fs_info *fs_info; 1485 struct btrfs_space_info *space_info; 1486 1487 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1488 space_info = fs_info->data_sinfo; 1489 do_async_reclaim_data_space(space_info); 1490 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) 1491 if (space_info->sub_group[i]) 1492 do_async_reclaim_data_space(space_info->sub_group[i]); 1493 } 1494 1495 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1496 { 1497 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1498 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1499 INIT_WORK(&fs_info->preempt_reclaim_work, 1500 btrfs_preempt_reclaim_metadata_space); 1501 } 1502 1503 static const enum btrfs_flush_state priority_flush_states[] = { 1504 FLUSH_DELAYED_ITEMS_NR, 1505 FLUSH_DELAYED_ITEMS, 1506 RESET_ZONES, 1507 ALLOC_CHUNK, 1508 }; 1509 1510 static const enum btrfs_flush_state evict_flush_states[] = { 1511 FLUSH_DELAYED_ITEMS_NR, 1512 FLUSH_DELAYED_ITEMS, 1513 FLUSH_DELAYED_REFS_NR, 1514 FLUSH_DELAYED_REFS, 1515 FLUSH_DELALLOC, 1516 FLUSH_DELALLOC_WAIT, 1517 FLUSH_DELALLOC_FULL, 1518 ALLOC_CHUNK, 1519 COMMIT_TRANS, 1520 RESET_ZONES, 1521 }; 1522 1523 static bool is_ticket_served(struct reserve_ticket *ticket) 1524 { 1525 bool ret; 1526 1527 spin_lock(&ticket->lock); 1528 ret = (ticket->bytes == 0); 1529 spin_unlock(&ticket->lock); 1530 1531 return ret; 1532 } 1533 1534 static void priority_reclaim_metadata_space(struct btrfs_space_info *space_info, 1535 struct reserve_ticket *ticket, 1536 const enum btrfs_flush_state *states, 1537 int states_nr) 1538 { 1539 struct btrfs_fs_info *fs_info = space_info->fs_info; 1540 u64 to_reclaim; 1541 int flush_state = 0; 1542 1543 /* 1544 * This is the priority reclaim path, so to_reclaim could be >0 still 1545 * because we may have only satisfied the priority tickets and still 1546 * left non priority tickets on the list. We would then have 1547 * to_reclaim but ->bytes == 0. 1548 */ 1549 if (is_ticket_served(ticket)) 1550 return; 1551 1552 spin_lock(&space_info->lock); 1553 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info); 1554 spin_unlock(&space_info->lock); 1555 1556 while (flush_state < states_nr) { 1557 flush_space(space_info, to_reclaim, states[flush_state], false); 1558 if (is_ticket_served(ticket)) 1559 return; 1560 flush_state++; 1561 } 1562 1563 spin_lock(&space_info->lock); 1564 /* 1565 * Attempt to steal from the global rsv if we can, except if the fs was 1566 * turned into error mode due to a transaction abort when flushing space 1567 * above, in that case fail with the abort error instead of returning 1568 * success to the caller if we can steal from the global rsv - this is 1569 * just to have caller fail immediately instead of later when trying to 1570 * modify the fs, making it easier to debug -ENOSPC problems. 1571 */ 1572 if (unlikely(BTRFS_FS_ERROR(fs_info))) 1573 remove_ticket(space_info, ticket, BTRFS_FS_ERROR(fs_info)); 1574 else if (!steal_from_global_rsv(space_info, ticket)) 1575 remove_ticket(space_info, ticket, -ENOSPC); 1576 1577 /* 1578 * We must run try_granting_tickets here because we could be a large 1579 * ticket in front of a smaller ticket that can now be satisfied with 1580 * the available space. 1581 */ 1582 btrfs_try_granting_tickets(space_info); 1583 spin_unlock(&space_info->lock); 1584 } 1585 1586 static void priority_reclaim_data_space(struct btrfs_space_info *space_info, 1587 struct reserve_ticket *ticket) 1588 { 1589 /* We could have been granted before we got here. */ 1590 if (is_ticket_served(ticket)) 1591 return; 1592 1593 spin_lock(&space_info->lock); 1594 while (!space_info->full) { 1595 spin_unlock(&space_info->lock); 1596 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1597 if (is_ticket_served(ticket)) 1598 return; 1599 spin_lock(&space_info->lock); 1600 } 1601 1602 remove_ticket(space_info, ticket, -ENOSPC); 1603 btrfs_try_granting_tickets(space_info); 1604 spin_unlock(&space_info->lock); 1605 } 1606 1607 static void wait_reserve_ticket(struct btrfs_space_info *space_info, 1608 struct reserve_ticket *ticket) 1609 1610 { 1611 DEFINE_WAIT(wait); 1612 1613 spin_lock(&ticket->lock); 1614 while (ticket->bytes > 0 && ticket->error == 0) { 1615 int ret; 1616 1617 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1618 spin_unlock(&ticket->lock); 1619 if (ret) { 1620 /* 1621 * Delete us from the list. After we unlock the space 1622 * info, we don't want the async reclaim job to reserve 1623 * space for this ticket. If that would happen, then the 1624 * ticket's task would not known that space was reserved 1625 * despite getting an error, resulting in a space leak 1626 * (bytes_may_use counter of our space_info). 1627 */ 1628 spin_lock(&space_info->lock); 1629 remove_ticket(space_info, ticket, -EINTR); 1630 spin_unlock(&space_info->lock); 1631 return; 1632 } 1633 1634 schedule(); 1635 1636 finish_wait(&ticket->wait, &wait); 1637 spin_lock(&ticket->lock); 1638 } 1639 spin_unlock(&ticket->lock); 1640 } 1641 1642 /* 1643 * Do the appropriate flushing and waiting for a ticket. 1644 * 1645 * @space_info: space info for the reservation 1646 * @ticket: ticket for the reservation 1647 * @start_ns: timestamp when the reservation started 1648 * @orig_bytes: amount of bytes originally reserved 1649 * @flush: how much we can flush 1650 * 1651 * This does the work of figuring out how to flush for the ticket, waiting for 1652 * the reservation, and returning the appropriate error if there is one. 1653 */ 1654 static int handle_reserve_ticket(struct btrfs_space_info *space_info, 1655 struct reserve_ticket *ticket, 1656 u64 start_ns, u64 orig_bytes, 1657 enum btrfs_reserve_flush_enum flush) 1658 { 1659 int ret; 1660 1661 switch (flush) { 1662 case BTRFS_RESERVE_FLUSH_DATA: 1663 case BTRFS_RESERVE_FLUSH_ALL: 1664 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1665 wait_reserve_ticket(space_info, ticket); 1666 break; 1667 case BTRFS_RESERVE_FLUSH_LIMIT: 1668 priority_reclaim_metadata_space(space_info, ticket, 1669 priority_flush_states, 1670 ARRAY_SIZE(priority_flush_states)); 1671 break; 1672 case BTRFS_RESERVE_FLUSH_EVICT: 1673 priority_reclaim_metadata_space(space_info, ticket, 1674 evict_flush_states, 1675 ARRAY_SIZE(evict_flush_states)); 1676 break; 1677 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1678 priority_reclaim_data_space(space_info, ticket); 1679 break; 1680 default: 1681 ASSERT(0, "flush=%d", flush); 1682 break; 1683 } 1684 1685 ret = ticket->error; 1686 ASSERT(list_empty(&ticket->list)); 1687 /* 1688 * Check that we can't have an error set if the reservation succeeded, 1689 * as that would confuse tasks and lead them to error out without 1690 * releasing reserved space (if an error happens the expectation is that 1691 * space wasn't reserved at all). 1692 */ 1693 ASSERT(!(ticket->bytes == 0 && ticket->error), 1694 "ticket->bytes=%llu ticket->error=%d", ticket->bytes, ticket->error); 1695 trace_btrfs_reserve_ticket(space_info->fs_info, space_info->flags, 1696 orig_bytes, start_ns, flush, ticket->error); 1697 return ret; 1698 } 1699 1700 /* 1701 * This returns true if this flush state will go through the ordinary flushing 1702 * code. 1703 */ 1704 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1705 { 1706 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1707 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1708 } 1709 1710 static inline void maybe_clamp_preempt(struct btrfs_space_info *space_info) 1711 { 1712 struct btrfs_fs_info *fs_info = space_info->fs_info; 1713 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1714 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1715 1716 /* 1717 * If we're heavy on ordered operations then clamping won't help us. We 1718 * need to clamp specifically to keep up with dirty'ing buffered 1719 * writers, because there's not a 1:1 correlation of writing delalloc 1720 * and freeing space, like there is with flushing delayed refs or 1721 * delayed nodes. If we're already more ordered than delalloc then 1722 * we're keeping up, otherwise we aren't and should probably clamp. 1723 */ 1724 if (ordered < delalloc) 1725 space_info->clamp = min(space_info->clamp + 1, 8); 1726 } 1727 1728 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1729 { 1730 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1731 flush == BTRFS_RESERVE_FLUSH_EVICT); 1732 } 1733 1734 /* 1735 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1736 * fail as quickly as possible. 1737 */ 1738 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1739 { 1740 return (flush != BTRFS_RESERVE_NO_FLUSH && 1741 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1742 } 1743 1744 /* 1745 * Try to reserve bytes from the block_rsv's space. 1746 * 1747 * @space_info: space info we want to allocate from 1748 * @orig_bytes: number of bytes we want 1749 * @flush: whether or not we can flush to make our reservation 1750 * 1751 * This will reserve orig_bytes number of bytes from the space info associated 1752 * with the block_rsv. If there is not enough space it will make an attempt to 1753 * flush out space to make room. It will do this by flushing delalloc if 1754 * possible or committing the transaction. If flush is 0 then no attempts to 1755 * regain reservations will be made and this will fail if there is not enough 1756 * space already. 1757 */ 1758 static int reserve_bytes(struct btrfs_space_info *space_info, u64 orig_bytes, 1759 enum btrfs_reserve_flush_enum flush) 1760 { 1761 struct btrfs_fs_info *fs_info = space_info->fs_info; 1762 struct work_struct *async_work; 1763 struct reserve_ticket ticket; 1764 u64 start_ns = 0; 1765 u64 used; 1766 int ret = -ENOSPC; 1767 bool pending_tickets; 1768 1769 ASSERT(orig_bytes, "orig_bytes=%llu", orig_bytes); 1770 /* 1771 * If have a transaction handle (current->journal_info != NULL), then 1772 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1773 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1774 * flushing methods can trigger transaction commits. 1775 */ 1776 if (current->journal_info) { 1777 /* One assert per line for easier debugging. */ 1778 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL, "flush=%d", flush); 1779 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL, "flush=%d", flush); 1780 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT, "flush=%d", flush); 1781 } 1782 1783 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1784 async_work = &fs_info->async_data_reclaim_work; 1785 else 1786 async_work = &fs_info->async_reclaim_work; 1787 1788 spin_lock(&space_info->lock); 1789 used = btrfs_space_info_used(space_info, true); 1790 1791 /* 1792 * We don't want NO_FLUSH allocations to jump everybody, they can 1793 * generally handle ENOSPC in a different way, so treat them the same as 1794 * normal flushers when it comes to skipping pending tickets. 1795 */ 1796 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1797 pending_tickets = !list_empty(&space_info->tickets) || 1798 !list_empty(&space_info->priority_tickets); 1799 else 1800 pending_tickets = !list_empty(&space_info->priority_tickets); 1801 1802 /* 1803 * Carry on if we have enough space (short-circuit) OR call 1804 * can_overcommit() to ensure we can overcommit to continue. 1805 */ 1806 if (!pending_tickets && 1807 ((used + orig_bytes <= space_info->total_bytes) || 1808 can_overcommit(space_info, used, orig_bytes, flush))) { 1809 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1810 ret = 0; 1811 } 1812 1813 /* 1814 * Things are dire, we need to make a reservation so we don't abort. We 1815 * will let this reservation go through as long as we have actual space 1816 * left to allocate for the block. 1817 */ 1818 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1819 used -= space_info->bytes_may_use; 1820 if (used + orig_bytes <= space_info->total_bytes) { 1821 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes); 1822 ret = 0; 1823 } 1824 } 1825 1826 /* 1827 * If we couldn't make a reservation then setup our reservation ticket 1828 * and kick the async worker if it's not already running. 1829 * 1830 * If we are a priority flusher then we just need to add our ticket to 1831 * the list and we will do our own flushing further down. 1832 */ 1833 if (ret && can_ticket(flush)) { 1834 ticket.bytes = orig_bytes; 1835 ticket.error = 0; 1836 space_info->reclaim_size += ticket.bytes; 1837 init_waitqueue_head(&ticket.wait); 1838 spin_lock_init(&ticket.lock); 1839 ticket.steal = can_steal(flush); 1840 if (trace_btrfs_reserve_ticket_enabled()) 1841 start_ns = ktime_get_ns(); 1842 1843 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1844 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1845 flush == BTRFS_RESERVE_FLUSH_DATA) { 1846 list_add_tail(&ticket.list, &space_info->tickets); 1847 if (!space_info->flush) { 1848 /* 1849 * We were forced to add a reserve ticket, so 1850 * our preemptive flushing is unable to keep 1851 * up. Clamp down on the threshold for the 1852 * preemptive flushing in order to keep up with 1853 * the workload. 1854 */ 1855 maybe_clamp_preempt(space_info); 1856 1857 space_info->flush = true; 1858 trace_btrfs_trigger_flush(fs_info, 1859 space_info->flags, 1860 orig_bytes, flush, 1861 "enospc"); 1862 queue_work(system_dfl_wq, async_work); 1863 } 1864 } else { 1865 list_add_tail(&ticket.list, 1866 &space_info->priority_tickets); 1867 } 1868 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1869 /* 1870 * We will do the space reservation dance during log replay, 1871 * which means we won't have fs_info->fs_root set, so don't do 1872 * the async reclaim as we will panic. 1873 */ 1874 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1875 !work_busy(&fs_info->preempt_reclaim_work) && 1876 need_preemptive_reclaim(space_info)) { 1877 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1878 orig_bytes, flush, "preempt"); 1879 queue_work(system_dfl_wq, 1880 &fs_info->preempt_reclaim_work); 1881 } 1882 } 1883 spin_unlock(&space_info->lock); 1884 if (!ret || !can_ticket(flush)) 1885 return ret; 1886 1887 return handle_reserve_ticket(space_info, &ticket, start_ns, orig_bytes, flush); 1888 } 1889 1890 /* 1891 * Try to reserve metadata bytes from the block_rsv's space. 1892 * 1893 * @space_info: the space_info we're allocating for 1894 * @orig_bytes: number of bytes we want 1895 * @flush: whether or not we can flush to make our reservation 1896 * 1897 * This will reserve orig_bytes number of bytes from the space info associated 1898 * with the block_rsv. If there is not enough space it will make an attempt to 1899 * flush out space to make room. It will do this by flushing delalloc if 1900 * possible or committing the transaction. If flush is 0 then no attempts to 1901 * regain reservations will be made and this will fail if there is not enough 1902 * space already. 1903 */ 1904 int btrfs_reserve_metadata_bytes(struct btrfs_space_info *space_info, 1905 u64 orig_bytes, 1906 enum btrfs_reserve_flush_enum flush) 1907 { 1908 int ret; 1909 1910 ret = reserve_bytes(space_info, orig_bytes, flush); 1911 if (ret == -ENOSPC) { 1912 struct btrfs_fs_info *fs_info = space_info->fs_info; 1913 1914 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1915 space_info->flags, orig_bytes, 1); 1916 1917 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1918 btrfs_dump_space_info(space_info, orig_bytes, false); 1919 } 1920 return ret; 1921 } 1922 1923 /* 1924 * Try to reserve data bytes for an allocation. 1925 * 1926 * @space_info: the space_info we're allocating for 1927 * @bytes: number of bytes we need 1928 * @flush: how we are allowed to flush 1929 * 1930 * This will reserve bytes from the data space info. If there is not enough 1931 * space then we will attempt to flush space as specified by flush. 1932 */ 1933 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes, 1934 enum btrfs_reserve_flush_enum flush) 1935 { 1936 struct btrfs_fs_info *fs_info = space_info->fs_info; 1937 int ret; 1938 1939 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1940 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1941 flush == BTRFS_RESERVE_NO_FLUSH, "flush=%d", flush); 1942 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA, 1943 "current->journal_info=0x%lx flush=%d", 1944 (unsigned long)current->journal_info, flush); 1945 1946 ret = reserve_bytes(space_info, bytes, flush); 1947 if (ret == -ENOSPC) { 1948 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1949 space_info->flags, bytes, 1); 1950 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1951 btrfs_dump_space_info(space_info, bytes, false); 1952 } 1953 return ret; 1954 } 1955 1956 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1957 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1958 { 1959 struct btrfs_space_info *space_info; 1960 1961 btrfs_info(fs_info, "dumping space info:"); 1962 list_for_each_entry(space_info, &fs_info->space_info, list) { 1963 spin_lock(&space_info->lock); 1964 __btrfs_dump_space_info(space_info); 1965 spin_unlock(&space_info->lock); 1966 } 1967 dump_global_block_rsv(fs_info); 1968 } 1969 1970 /* 1971 * Account the unused space of all the readonly block group in the space_info. 1972 * takes mirrors into account. 1973 */ 1974 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1975 { 1976 struct btrfs_block_group *block_group; 1977 u64 free_bytes = 0; 1978 int factor; 1979 1980 /* It's df, we don't care if it's racy */ 1981 if (data_race(list_empty(&sinfo->ro_bgs))) 1982 return 0; 1983 1984 spin_lock(&sinfo->lock); 1985 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1986 spin_lock(&block_group->lock); 1987 1988 if (!block_group->ro) { 1989 spin_unlock(&block_group->lock); 1990 continue; 1991 } 1992 1993 factor = btrfs_bg_type_to_factor(block_group->flags); 1994 free_bytes += (block_group->length - 1995 block_group->used) * factor; 1996 1997 spin_unlock(&block_group->lock); 1998 } 1999 spin_unlock(&sinfo->lock); 2000 2001 return free_bytes; 2002 } 2003 2004 static u64 calc_pct_ratio(u64 x, u64 y) 2005 { 2006 int ret; 2007 2008 if (!y) 2009 return 0; 2010 again: 2011 ret = check_mul_overflow(100, x, &x); 2012 if (ret) 2013 goto lose_precision; 2014 return div64_u64(x, y); 2015 lose_precision: 2016 x >>= 10; 2017 y >>= 10; 2018 if (!y) 2019 y = 1; 2020 goto again; 2021 } 2022 2023 /* 2024 * A reasonable buffer for unallocated space is 10 data block_groups. 2025 * If we claw this back repeatedly, we can still achieve efficient 2026 * utilization when near full, and not do too much reclaim while 2027 * always maintaining a solid buffer for workloads that quickly 2028 * allocate and pressure the unallocated space. 2029 */ 2030 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 2031 { 2032 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 2033 2034 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 2035 } 2036 2037 /* 2038 * The fundamental goal of automatic reclaim is to protect the filesystem's 2039 * unallocated space and thus minimize the probability of the filesystem going 2040 * read only when a metadata allocation failure causes a transaction abort. 2041 * 2042 * However, relocations happen into the space_info's unused space, therefore 2043 * automatic reclaim must also back off as that space runs low. There is no 2044 * value in doing trivial "relocations" of re-writing the same block group 2045 * into a fresh one. 2046 * 2047 * Furthermore, we want to avoid doing too much reclaim even if there are good 2048 * candidates. This is because the allocator is pretty good at filling up the 2049 * holes with writes. So we want to do just enough reclaim to try and stay 2050 * safe from running out of unallocated space but not be wasteful about it. 2051 * 2052 * Therefore, the dynamic reclaim threshold is calculated as follows: 2053 * - calculate a target unallocated amount of 5 block group sized chunks 2054 * - ratchet up the intensity of reclaim depending on how far we are from 2055 * that target by using a formula of unalloc / target to set the threshold. 2056 * 2057 * Typically with 10 block groups as the target, the discrete values this comes 2058 * out to are 0, 10, 20, ... , 80, 90, and 99. 2059 */ 2060 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info) 2061 { 2062 struct btrfs_fs_info *fs_info = space_info->fs_info; 2063 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2064 u64 target = calc_unalloc_target(fs_info); 2065 u64 alloc = space_info->total_bytes; 2066 u64 used = btrfs_space_info_used(space_info, false); 2067 u64 unused = alloc - used; 2068 u64 want = target > unalloc ? target - unalloc : 0; 2069 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2070 2071 /* If we have no unused space, don't bother, it won't work anyway. */ 2072 if (unused < data_chunk_size) 2073 return 0; 2074 2075 /* Cast to int is OK because want <= target. */ 2076 return calc_pct_ratio(want, target); 2077 } 2078 2079 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info) 2080 { 2081 lockdep_assert_held(&space_info->lock); 2082 2083 if (READ_ONCE(space_info->dynamic_reclaim)) 2084 return calc_dynamic_reclaim_threshold(space_info); 2085 return READ_ONCE(space_info->bg_reclaim_threshold); 2086 } 2087 2088 /* 2089 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 2090 * recently seen successful allocations, as we are desperate to reclaim 2091 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 2092 */ 2093 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 2094 { 2095 struct btrfs_fs_info *fs_info = space_info->fs_info; 2096 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 2097 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 2098 2099 return unalloc < data_chunk_size; 2100 } 2101 2102 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid) 2103 { 2104 struct btrfs_block_group *bg; 2105 int thresh_pct; 2106 bool try_again = true; 2107 bool urgent; 2108 2109 spin_lock(&space_info->lock); 2110 urgent = is_reclaim_urgent(space_info); 2111 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 2112 spin_unlock(&space_info->lock); 2113 2114 down_read(&space_info->groups_sem); 2115 again: 2116 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2117 u64 thresh; 2118 bool reclaim = false; 2119 2120 btrfs_get_block_group(bg); 2121 spin_lock(&bg->lock); 2122 thresh = mult_perc(bg->length, thresh_pct); 2123 if (bg->used < thresh && bg->reclaim_mark) { 2124 try_again = false; 2125 reclaim = true; 2126 } 2127 bg->reclaim_mark++; 2128 spin_unlock(&bg->lock); 2129 if (reclaim) 2130 btrfs_mark_bg_to_reclaim(bg); 2131 btrfs_put_block_group(bg); 2132 } 2133 2134 /* 2135 * In situations where we are very motivated to reclaim (low unalloc) 2136 * use two passes to make the reclaim mark check best effort. 2137 * 2138 * If we have any staler groups, we don't touch the fresher ones, but if we 2139 * really need a block group, do take a fresh one. 2140 */ 2141 if (try_again && urgent) { 2142 try_again = false; 2143 goto again; 2144 } 2145 2146 up_read(&space_info->groups_sem); 2147 } 2148 2149 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2150 { 2151 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2152 2153 lockdep_assert_held(&space_info->lock); 2154 space_info->reclaimable_bytes += bytes; 2155 2156 if (space_info->reclaimable_bytes >= chunk_sz) 2157 btrfs_set_periodic_reclaim_ready(space_info, true); 2158 } 2159 2160 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2161 { 2162 lockdep_assert_held(&space_info->lock); 2163 if (!READ_ONCE(space_info->periodic_reclaim)) 2164 return; 2165 if (ready != space_info->periodic_reclaim_ready) { 2166 space_info->periodic_reclaim_ready = ready; 2167 if (!ready) 2168 space_info->reclaimable_bytes = 0; 2169 } 2170 } 2171 2172 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2173 { 2174 bool ret; 2175 2176 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2177 return false; 2178 if (!READ_ONCE(space_info->periodic_reclaim)) 2179 return false; 2180 2181 spin_lock(&space_info->lock); 2182 ret = space_info->periodic_reclaim_ready; 2183 btrfs_set_periodic_reclaim_ready(space_info, false); 2184 spin_unlock(&space_info->lock); 2185 2186 return ret; 2187 } 2188 2189 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info) 2190 { 2191 int raid; 2192 struct btrfs_space_info *space_info; 2193 2194 list_for_each_entry(space_info, &fs_info->space_info, list) { 2195 if (!btrfs_should_periodic_reclaim(space_info)) 2196 continue; 2197 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) 2198 do_reclaim_sweep(space_info, raid); 2199 } 2200 } 2201 2202 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len) 2203 { 2204 struct btrfs_fs_info *fs_info = space_info->fs_info; 2205 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2206 2207 lockdep_assert_held(&space_info->lock); 2208 2209 /* Prioritize the global reservation to receive the freed space. */ 2210 if (global_rsv->space_info != space_info) 2211 goto grant; 2212 2213 spin_lock(&global_rsv->lock); 2214 if (!global_rsv->full) { 2215 u64 to_add = min(len, global_rsv->size - global_rsv->reserved); 2216 2217 global_rsv->reserved += to_add; 2218 btrfs_space_info_update_bytes_may_use(space_info, to_add); 2219 if (global_rsv->reserved >= global_rsv->size) 2220 global_rsv->full = true; 2221 len -= to_add; 2222 } 2223 spin_unlock(&global_rsv->lock); 2224 2225 grant: 2226 /* Add to any tickets we may have. */ 2227 if (len) 2228 btrfs_try_granting_tickets(space_info); 2229 } 2230