1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 13 /* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * may_commit_transaction() is the ultimate arbiter on whether we commit the 137 * transaction or not. In order to avoid constantly churning we do all the 138 * above flushing first and then commit the transaction as the last resort. 139 * However we need to take into account things like pinned space that would 140 * be freed, plus any delayed work we may not have gotten rid of in the case 141 * of metadata. 142 * 143 * FORCE_COMMIT_TRANS 144 * For use by the preemptive flusher. We use this to bypass the ticketing 145 * checks in may_commit_transaction, as we have more information about the 146 * overall state of the system and may want to commit the transaction ahead 147 * of actual ENOSPC conditions. 148 * 149 * OVERCOMMIT 150 * 151 * Because we hold so many reservations for metadata we will allow you to 152 * reserve more space than is currently free in the currently allocate 153 * metadata space. This only happens with metadata, data does not allow 154 * overcommitting. 155 * 156 * You can see the current logic for when we allow overcommit in 157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 158 * is no unallocated space to be had, all reservations are kept within the 159 * free space in the allocated metadata chunks. 160 * 161 * Because of overcommitting, you generally want to use the 162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 163 * thing with or without extra unallocated space. 164 */ 165 166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 167 bool may_use_included) 168 { 169 ASSERT(s_info); 170 return s_info->bytes_used + s_info->bytes_reserved + 171 s_info->bytes_pinned + s_info->bytes_readonly + 172 s_info->bytes_zone_unusable + 173 (may_use_included ? s_info->bytes_may_use : 0); 174 } 175 176 /* 177 * after adding space to the filesystem, we need to clear the full flags 178 * on all the space infos. 179 */ 180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 181 { 182 struct list_head *head = &info->space_info; 183 struct btrfs_space_info *found; 184 185 list_for_each_entry(found, head, list) 186 found->full = 0; 187 } 188 189 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 190 { 191 192 struct btrfs_space_info *space_info; 193 int i; 194 int ret; 195 196 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 197 if (!space_info) 198 return -ENOMEM; 199 200 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 201 GFP_KERNEL); 202 if (ret) { 203 kfree(space_info); 204 return ret; 205 } 206 207 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 208 INIT_LIST_HEAD(&space_info->block_groups[i]); 209 init_rwsem(&space_info->groups_sem); 210 spin_lock_init(&space_info->lock); 211 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 212 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 213 INIT_LIST_HEAD(&space_info->ro_bgs); 214 INIT_LIST_HEAD(&space_info->tickets); 215 INIT_LIST_HEAD(&space_info->priority_tickets); 216 space_info->clamp = 1; 217 218 ret = btrfs_sysfs_add_space_info_type(info, space_info); 219 if (ret) 220 return ret; 221 222 list_add(&space_info->list, &info->space_info); 223 if (flags & BTRFS_BLOCK_GROUP_DATA) 224 info->data_sinfo = space_info; 225 226 return ret; 227 } 228 229 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 230 { 231 struct btrfs_super_block *disk_super; 232 u64 features; 233 u64 flags; 234 int mixed = 0; 235 int ret; 236 237 disk_super = fs_info->super_copy; 238 if (!btrfs_super_root(disk_super)) 239 return -EINVAL; 240 241 features = btrfs_super_incompat_flags(disk_super); 242 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 243 mixed = 1; 244 245 flags = BTRFS_BLOCK_GROUP_SYSTEM; 246 ret = create_space_info(fs_info, flags); 247 if (ret) 248 goto out; 249 250 if (mixed) { 251 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 252 ret = create_space_info(fs_info, flags); 253 } else { 254 flags = BTRFS_BLOCK_GROUP_METADATA; 255 ret = create_space_info(fs_info, flags); 256 if (ret) 257 goto out; 258 259 flags = BTRFS_BLOCK_GROUP_DATA; 260 ret = create_space_info(fs_info, flags); 261 } 262 out: 263 return ret; 264 } 265 266 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 267 u64 total_bytes, u64 bytes_used, 268 u64 bytes_readonly, u64 bytes_zone_unusable, 269 struct btrfs_space_info **space_info) 270 { 271 struct btrfs_space_info *found; 272 int factor; 273 274 factor = btrfs_bg_type_to_factor(flags); 275 276 found = btrfs_find_space_info(info, flags); 277 ASSERT(found); 278 spin_lock(&found->lock); 279 found->total_bytes += total_bytes; 280 found->disk_total += total_bytes * factor; 281 found->bytes_used += bytes_used; 282 found->disk_used += bytes_used * factor; 283 found->bytes_readonly += bytes_readonly; 284 found->bytes_zone_unusable += bytes_zone_unusable; 285 if (total_bytes > 0) 286 found->full = 0; 287 btrfs_try_granting_tickets(info, found); 288 spin_unlock(&found->lock); 289 *space_info = found; 290 } 291 292 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 293 u64 flags) 294 { 295 struct list_head *head = &info->space_info; 296 struct btrfs_space_info *found; 297 298 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 299 300 list_for_each_entry(found, head, list) { 301 if (found->flags & flags) 302 return found; 303 } 304 return NULL; 305 } 306 307 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 308 struct btrfs_space_info *space_info, 309 enum btrfs_reserve_flush_enum flush) 310 { 311 u64 profile; 312 u64 avail; 313 int factor; 314 315 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 316 profile = btrfs_system_alloc_profile(fs_info); 317 else 318 profile = btrfs_metadata_alloc_profile(fs_info); 319 320 avail = atomic64_read(&fs_info->free_chunk_space); 321 322 /* 323 * If we have dup, raid1 or raid10 then only half of the free 324 * space is actually usable. For raid56, the space info used 325 * doesn't include the parity drive, so we don't have to 326 * change the math 327 */ 328 factor = btrfs_bg_type_to_factor(profile); 329 avail = div_u64(avail, factor); 330 331 /* 332 * If we aren't flushing all things, let us overcommit up to 333 * 1/2th of the space. If we can flush, don't let us overcommit 334 * too much, let it overcommit up to 1/8 of the space. 335 */ 336 if (flush == BTRFS_RESERVE_FLUSH_ALL) 337 avail >>= 3; 338 else 339 avail >>= 1; 340 return avail; 341 } 342 343 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 344 struct btrfs_space_info *space_info, u64 bytes, 345 enum btrfs_reserve_flush_enum flush) 346 { 347 u64 avail; 348 u64 used; 349 350 /* Don't overcommit when in mixed mode */ 351 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 352 return 0; 353 354 used = btrfs_space_info_used(space_info, true); 355 avail = calc_available_free_space(fs_info, space_info, flush); 356 357 if (used + bytes < space_info->total_bytes + avail) 358 return 1; 359 return 0; 360 } 361 362 static void remove_ticket(struct btrfs_space_info *space_info, 363 struct reserve_ticket *ticket) 364 { 365 if (!list_empty(&ticket->list)) { 366 list_del_init(&ticket->list); 367 ASSERT(space_info->reclaim_size >= ticket->bytes); 368 space_info->reclaim_size -= ticket->bytes; 369 } 370 } 371 372 /* 373 * This is for space we already have accounted in space_info->bytes_may_use, so 374 * basically when we're returning space from block_rsv's. 375 */ 376 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 377 struct btrfs_space_info *space_info) 378 { 379 struct list_head *head; 380 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 381 382 lockdep_assert_held(&space_info->lock); 383 384 head = &space_info->priority_tickets; 385 again: 386 while (!list_empty(head)) { 387 struct reserve_ticket *ticket; 388 u64 used = btrfs_space_info_used(space_info, true); 389 390 ticket = list_first_entry(head, struct reserve_ticket, list); 391 392 /* Check and see if our ticket can be satisified now. */ 393 if ((used + ticket->bytes <= space_info->total_bytes) || 394 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 395 flush)) { 396 btrfs_space_info_update_bytes_may_use(fs_info, 397 space_info, 398 ticket->bytes); 399 remove_ticket(space_info, ticket); 400 ticket->bytes = 0; 401 space_info->tickets_id++; 402 wake_up(&ticket->wait); 403 } else { 404 break; 405 } 406 } 407 408 if (head == &space_info->priority_tickets) { 409 head = &space_info->tickets; 410 flush = BTRFS_RESERVE_FLUSH_ALL; 411 goto again; 412 } 413 } 414 415 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 416 do { \ 417 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 418 spin_lock(&__rsv->lock); \ 419 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 420 __rsv->size, __rsv->reserved); \ 421 spin_unlock(&__rsv->lock); \ 422 } while (0) 423 424 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 425 struct btrfs_space_info *info) 426 { 427 lockdep_assert_held(&info->lock); 428 429 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 430 info->flags, 431 info->total_bytes - btrfs_space_info_used(info, true), 432 info->full ? "" : "not "); 433 btrfs_info(fs_info, 434 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 435 info->total_bytes, info->bytes_used, info->bytes_pinned, 436 info->bytes_reserved, info->bytes_may_use, 437 info->bytes_readonly, info->bytes_zone_unusable); 438 439 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 440 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 441 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 442 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 443 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 444 445 } 446 447 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 448 struct btrfs_space_info *info, u64 bytes, 449 int dump_block_groups) 450 { 451 struct btrfs_block_group *cache; 452 int index = 0; 453 454 spin_lock(&info->lock); 455 __btrfs_dump_space_info(fs_info, info); 456 spin_unlock(&info->lock); 457 458 if (!dump_block_groups) 459 return; 460 461 down_read(&info->groups_sem); 462 again: 463 list_for_each_entry(cache, &info->block_groups[index], list) { 464 spin_lock(&cache->lock); 465 btrfs_info(fs_info, 466 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 467 cache->start, cache->length, cache->used, cache->pinned, 468 cache->reserved, cache->zone_unusable, 469 cache->ro ? "[readonly]" : ""); 470 spin_unlock(&cache->lock); 471 btrfs_dump_free_space(cache, bytes); 472 } 473 if (++index < BTRFS_NR_RAID_TYPES) 474 goto again; 475 up_read(&info->groups_sem); 476 } 477 478 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 479 u64 to_reclaim) 480 { 481 u64 bytes; 482 u64 nr; 483 484 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 485 nr = div64_u64(to_reclaim, bytes); 486 if (!nr) 487 nr = 1; 488 return nr; 489 } 490 491 #define EXTENT_SIZE_PER_ITEM SZ_256K 492 493 /* 494 * shrink metadata reservation for delalloc 495 */ 496 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 497 struct btrfs_space_info *space_info, 498 u64 to_reclaim, bool wait_ordered) 499 { 500 struct btrfs_trans_handle *trans; 501 u64 delalloc_bytes; 502 u64 ordered_bytes; 503 u64 items; 504 long time_left; 505 int loops; 506 507 /* Calc the number of the pages we need flush for space reservation */ 508 if (to_reclaim == U64_MAX) { 509 items = U64_MAX; 510 } else { 511 /* 512 * to_reclaim is set to however much metadata we need to 513 * reclaim, but reclaiming that much data doesn't really track 514 * exactly, so increase the amount to reclaim by 2x in order to 515 * make sure we're flushing enough delalloc to hopefully reclaim 516 * some metadata reservations. 517 */ 518 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 519 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 520 } 521 522 trans = (struct btrfs_trans_handle *)current->journal_info; 523 524 delalloc_bytes = percpu_counter_sum_positive( 525 &fs_info->delalloc_bytes); 526 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 527 if (delalloc_bytes == 0 && ordered_bytes == 0) 528 return; 529 530 /* 531 * If we are doing more ordered than delalloc we need to just wait on 532 * ordered extents, otherwise we'll waste time trying to flush delalloc 533 * that likely won't give us the space back we need. 534 */ 535 if (ordered_bytes > delalloc_bytes) 536 wait_ordered = true; 537 538 loops = 0; 539 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 540 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 541 long nr_pages = min_t(u64, temp, LONG_MAX); 542 543 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 544 545 loops++; 546 if (wait_ordered && !trans) { 547 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 548 } else { 549 time_left = schedule_timeout_killable(1); 550 if (time_left) 551 break; 552 } 553 554 spin_lock(&space_info->lock); 555 if (list_empty(&space_info->tickets) && 556 list_empty(&space_info->priority_tickets)) { 557 spin_unlock(&space_info->lock); 558 break; 559 } 560 spin_unlock(&space_info->lock); 561 562 delalloc_bytes = percpu_counter_sum_positive( 563 &fs_info->delalloc_bytes); 564 ordered_bytes = percpu_counter_sum_positive( 565 &fs_info->ordered_bytes); 566 } 567 } 568 569 /** 570 * Possibly commit the transaction if its ok to 571 * 572 * @fs_info: the filesystem 573 * @space_info: space_info we are checking for commit, either data or metadata 574 * 575 * This will check to make sure that committing the transaction will actually 576 * get us somewhere and then commit the transaction if it does. Otherwise it 577 * will return -ENOSPC. 578 */ 579 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 580 struct btrfs_space_info *space_info) 581 { 582 struct reserve_ticket *ticket = NULL; 583 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 584 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 585 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 586 struct btrfs_trans_handle *trans; 587 u64 reclaim_bytes = 0; 588 u64 bytes_needed = 0; 589 u64 cur_free_bytes = 0; 590 591 trans = (struct btrfs_trans_handle *)current->journal_info; 592 if (trans) 593 return -EAGAIN; 594 595 spin_lock(&space_info->lock); 596 cur_free_bytes = btrfs_space_info_used(space_info, true); 597 if (cur_free_bytes < space_info->total_bytes) 598 cur_free_bytes = space_info->total_bytes - cur_free_bytes; 599 else 600 cur_free_bytes = 0; 601 602 if (!list_empty(&space_info->priority_tickets)) 603 ticket = list_first_entry(&space_info->priority_tickets, 604 struct reserve_ticket, list); 605 else if (!list_empty(&space_info->tickets)) 606 ticket = list_first_entry(&space_info->tickets, 607 struct reserve_ticket, list); 608 if (ticket) 609 bytes_needed = ticket->bytes; 610 611 if (bytes_needed > cur_free_bytes) 612 bytes_needed -= cur_free_bytes; 613 else 614 bytes_needed = 0; 615 spin_unlock(&space_info->lock); 616 617 if (!bytes_needed) 618 return 0; 619 620 trans = btrfs_join_transaction(fs_info->extent_root); 621 if (IS_ERR(trans)) 622 return PTR_ERR(trans); 623 624 /* 625 * See if there is enough pinned space to make this reservation, or if 626 * we have block groups that are going to be freed, allowing us to 627 * possibly do a chunk allocation the next loop through. 628 */ 629 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || 630 __percpu_counter_compare(&space_info->total_bytes_pinned, 631 bytes_needed, 632 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 633 goto commit; 634 635 /* 636 * See if there is some space in the delayed insertion reserve for this 637 * reservation. If the space_info's don't match (like for DATA or 638 * SYSTEM) then just go enospc, reclaiming this space won't recover any 639 * space to satisfy those reservations. 640 */ 641 if (space_info != delayed_rsv->space_info) 642 goto enospc; 643 644 spin_lock(&delayed_rsv->lock); 645 reclaim_bytes += delayed_rsv->reserved; 646 spin_unlock(&delayed_rsv->lock); 647 648 spin_lock(&delayed_refs_rsv->lock); 649 reclaim_bytes += delayed_refs_rsv->reserved; 650 spin_unlock(&delayed_refs_rsv->lock); 651 652 spin_lock(&trans_rsv->lock); 653 reclaim_bytes += trans_rsv->reserved; 654 spin_unlock(&trans_rsv->lock); 655 656 if (reclaim_bytes >= bytes_needed) 657 goto commit; 658 bytes_needed -= reclaim_bytes; 659 660 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 661 bytes_needed, 662 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) 663 goto enospc; 664 665 commit: 666 return btrfs_commit_transaction(trans); 667 enospc: 668 btrfs_end_transaction(trans); 669 return -ENOSPC; 670 } 671 672 /* 673 * Try to flush some data based on policy set by @state. This is only advisory 674 * and may fail for various reasons. The caller is supposed to examine the 675 * state of @space_info to detect the outcome. 676 */ 677 static void flush_space(struct btrfs_fs_info *fs_info, 678 struct btrfs_space_info *space_info, u64 num_bytes, 679 enum btrfs_flush_state state, bool for_preempt) 680 { 681 struct btrfs_root *root = fs_info->extent_root; 682 struct btrfs_trans_handle *trans; 683 int nr; 684 int ret = 0; 685 686 switch (state) { 687 case FLUSH_DELAYED_ITEMS_NR: 688 case FLUSH_DELAYED_ITEMS: 689 if (state == FLUSH_DELAYED_ITEMS_NR) 690 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 691 else 692 nr = -1; 693 694 trans = btrfs_join_transaction(root); 695 if (IS_ERR(trans)) { 696 ret = PTR_ERR(trans); 697 break; 698 } 699 ret = btrfs_run_delayed_items_nr(trans, nr); 700 btrfs_end_transaction(trans); 701 break; 702 case FLUSH_DELALLOC: 703 case FLUSH_DELALLOC_WAIT: 704 shrink_delalloc(fs_info, space_info, num_bytes, 705 state == FLUSH_DELALLOC_WAIT); 706 break; 707 case FLUSH_DELAYED_REFS_NR: 708 case FLUSH_DELAYED_REFS: 709 trans = btrfs_join_transaction(root); 710 if (IS_ERR(trans)) { 711 ret = PTR_ERR(trans); 712 break; 713 } 714 if (state == FLUSH_DELAYED_REFS_NR) 715 nr = calc_reclaim_items_nr(fs_info, num_bytes); 716 else 717 nr = 0; 718 btrfs_run_delayed_refs(trans, nr); 719 btrfs_end_transaction(trans); 720 break; 721 case ALLOC_CHUNK: 722 case ALLOC_CHUNK_FORCE: 723 trans = btrfs_join_transaction(root); 724 if (IS_ERR(trans)) { 725 ret = PTR_ERR(trans); 726 break; 727 } 728 ret = btrfs_chunk_alloc(trans, 729 btrfs_get_alloc_profile(fs_info, space_info->flags), 730 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 731 CHUNK_ALLOC_FORCE); 732 btrfs_end_transaction(trans); 733 if (ret > 0 || ret == -ENOSPC) 734 ret = 0; 735 break; 736 case RUN_DELAYED_IPUTS: 737 /* 738 * If we have pending delayed iputs then we could free up a 739 * bunch of pinned space, so make sure we run the iputs before 740 * we do our pinned bytes check below. 741 */ 742 btrfs_run_delayed_iputs(fs_info); 743 btrfs_wait_on_delayed_iputs(fs_info); 744 break; 745 case COMMIT_TRANS: 746 ret = may_commit_transaction(fs_info, space_info); 747 break; 748 case FORCE_COMMIT_TRANS: 749 trans = btrfs_join_transaction(root); 750 if (IS_ERR(trans)) { 751 ret = PTR_ERR(trans); 752 break; 753 } 754 ret = btrfs_commit_transaction(trans); 755 break; 756 default: 757 ret = -ENOSPC; 758 break; 759 } 760 761 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 762 ret, for_preempt); 763 return; 764 } 765 766 static inline u64 767 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 768 struct btrfs_space_info *space_info) 769 { 770 u64 used; 771 u64 avail; 772 u64 to_reclaim = space_info->reclaim_size; 773 774 lockdep_assert_held(&space_info->lock); 775 776 avail = calc_available_free_space(fs_info, space_info, 777 BTRFS_RESERVE_FLUSH_ALL); 778 used = btrfs_space_info_used(space_info, true); 779 780 /* 781 * We may be flushing because suddenly we have less space than we had 782 * before, and now we're well over-committed based on our current free 783 * space. If that's the case add in our overage so we make sure to put 784 * appropriate pressure on the flushing state machine. 785 */ 786 if (space_info->total_bytes + avail < used) 787 to_reclaim += used - (space_info->total_bytes + avail); 788 789 return to_reclaim; 790 } 791 792 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 793 struct btrfs_space_info *space_info) 794 { 795 u64 ordered, delalloc; 796 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 797 u64 used; 798 799 /* If we're just plain full then async reclaim just slows us down. */ 800 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 801 return false; 802 803 /* 804 * We have tickets queued, bail so we don't compete with the async 805 * flushers. 806 */ 807 if (space_info->reclaim_size) 808 return false; 809 810 /* 811 * If we have over half of the free space occupied by reservations or 812 * pinned then we want to start flushing. 813 * 814 * We do not do the traditional thing here, which is to say 815 * 816 * if (used >= ((total_bytes + avail) / 2)) 817 * return 1; 818 * 819 * because this doesn't quite work how we want. If we had more than 50% 820 * of the space_info used by bytes_used and we had 0 available we'd just 821 * constantly run the background flusher. Instead we want it to kick in 822 * if our reclaimable space exceeds our clamped free space. 823 * 824 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 825 * the following: 826 * 827 * Amount of RAM Minimum threshold Maximum threshold 828 * 829 * 256GiB 1GiB 128GiB 830 * 128GiB 512MiB 64GiB 831 * 64GiB 256MiB 32GiB 832 * 32GiB 128MiB 16GiB 833 * 16GiB 64MiB 8GiB 834 * 835 * These are the range our thresholds will fall in, corresponding to how 836 * much delalloc we need for the background flusher to kick in. 837 */ 838 839 thresh = calc_available_free_space(fs_info, space_info, 840 BTRFS_RESERVE_FLUSH_ALL); 841 thresh += (space_info->total_bytes - space_info->bytes_used - 842 space_info->bytes_reserved - space_info->bytes_readonly); 843 thresh >>= space_info->clamp; 844 845 used = space_info->bytes_pinned; 846 847 /* 848 * If we have more ordered bytes than delalloc bytes then we're either 849 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 850 * around. Preemptive flushing is only useful in that it can free up 851 * space before tickets need to wait for things to finish. In the case 852 * of ordered extents, preemptively waiting on ordered extents gets us 853 * nothing, if our reservations are tied up in ordered extents we'll 854 * simply have to slow down writers by forcing them to wait on ordered 855 * extents. 856 * 857 * In the case that ordered is larger than delalloc, only include the 858 * block reserves that we would actually be able to directly reclaim 859 * from. In this case if we're heavy on metadata operations this will 860 * clearly be heavy enough to warrant preemptive flushing. In the case 861 * of heavy DIO or ordered reservations, preemptive flushing will just 862 * waste time and cause us to slow down. 863 */ 864 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes); 865 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 866 if (ordered >= delalloc) 867 used += fs_info->delayed_refs_rsv.reserved + 868 fs_info->delayed_block_rsv.reserved; 869 else 870 used += space_info->bytes_may_use; 871 872 return (used >= thresh && !btrfs_fs_closing(fs_info) && 873 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 874 } 875 876 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 877 struct btrfs_space_info *space_info, 878 struct reserve_ticket *ticket) 879 { 880 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 881 u64 min_bytes; 882 883 if (global_rsv->space_info != space_info) 884 return false; 885 886 spin_lock(&global_rsv->lock); 887 min_bytes = div_factor(global_rsv->size, 1); 888 if (global_rsv->reserved < min_bytes + ticket->bytes) { 889 spin_unlock(&global_rsv->lock); 890 return false; 891 } 892 global_rsv->reserved -= ticket->bytes; 893 remove_ticket(space_info, ticket); 894 ticket->bytes = 0; 895 wake_up(&ticket->wait); 896 space_info->tickets_id++; 897 if (global_rsv->reserved < global_rsv->size) 898 global_rsv->full = 0; 899 spin_unlock(&global_rsv->lock); 900 901 return true; 902 } 903 904 /* 905 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 906 * @fs_info - fs_info for this fs 907 * @space_info - the space info we were flushing 908 * 909 * We call this when we've exhausted our flushing ability and haven't made 910 * progress in satisfying tickets. The reservation code handles tickets in 911 * order, so if there is a large ticket first and then smaller ones we could 912 * very well satisfy the smaller tickets. This will attempt to wake up any 913 * tickets in the list to catch this case. 914 * 915 * This function returns true if it was able to make progress by clearing out 916 * other tickets, or if it stumbles across a ticket that was smaller than the 917 * first ticket. 918 */ 919 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 920 struct btrfs_space_info *space_info) 921 { 922 struct reserve_ticket *ticket; 923 u64 tickets_id = space_info->tickets_id; 924 u64 first_ticket_bytes = 0; 925 926 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 927 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 928 __btrfs_dump_space_info(fs_info, space_info); 929 } 930 931 while (!list_empty(&space_info->tickets) && 932 tickets_id == space_info->tickets_id) { 933 ticket = list_first_entry(&space_info->tickets, 934 struct reserve_ticket, list); 935 936 if (ticket->steal && 937 steal_from_global_rsv(fs_info, space_info, ticket)) 938 return true; 939 940 /* 941 * may_commit_transaction will avoid committing the transaction 942 * if it doesn't feel like the space reclaimed by the commit 943 * would result in the ticket succeeding. However if we have a 944 * smaller ticket in the queue it may be small enough to be 945 * satisified by committing the transaction, so if any 946 * subsequent ticket is smaller than the first ticket go ahead 947 * and send us back for another loop through the enospc flushing 948 * code. 949 */ 950 if (first_ticket_bytes == 0) 951 first_ticket_bytes = ticket->bytes; 952 else if (first_ticket_bytes > ticket->bytes) 953 return true; 954 955 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 956 btrfs_info(fs_info, "failing ticket with %llu bytes", 957 ticket->bytes); 958 959 remove_ticket(space_info, ticket); 960 ticket->error = -ENOSPC; 961 wake_up(&ticket->wait); 962 963 /* 964 * We're just throwing tickets away, so more flushing may not 965 * trip over btrfs_try_granting_tickets, so we need to call it 966 * here to see if we can make progress with the next ticket in 967 * the list. 968 */ 969 btrfs_try_granting_tickets(fs_info, space_info); 970 } 971 return (tickets_id != space_info->tickets_id); 972 } 973 974 /* 975 * This is for normal flushers, we can wait all goddamned day if we want to. We 976 * will loop and continuously try to flush as long as we are making progress. 977 * We count progress as clearing off tickets each time we have to loop. 978 */ 979 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 980 { 981 struct btrfs_fs_info *fs_info; 982 struct btrfs_space_info *space_info; 983 u64 to_reclaim; 984 enum btrfs_flush_state flush_state; 985 int commit_cycles = 0; 986 u64 last_tickets_id; 987 988 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 989 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 990 991 spin_lock(&space_info->lock); 992 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 993 if (!to_reclaim) { 994 space_info->flush = 0; 995 spin_unlock(&space_info->lock); 996 return; 997 } 998 last_tickets_id = space_info->tickets_id; 999 spin_unlock(&space_info->lock); 1000 1001 flush_state = FLUSH_DELAYED_ITEMS_NR; 1002 do { 1003 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1004 spin_lock(&space_info->lock); 1005 if (list_empty(&space_info->tickets)) { 1006 space_info->flush = 0; 1007 spin_unlock(&space_info->lock); 1008 return; 1009 } 1010 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1011 space_info); 1012 if (last_tickets_id == space_info->tickets_id) { 1013 flush_state++; 1014 } else { 1015 last_tickets_id = space_info->tickets_id; 1016 flush_state = FLUSH_DELAYED_ITEMS_NR; 1017 if (commit_cycles) 1018 commit_cycles--; 1019 } 1020 1021 /* 1022 * We don't want to force a chunk allocation until we've tried 1023 * pretty hard to reclaim space. Think of the case where we 1024 * freed up a bunch of space and so have a lot of pinned space 1025 * to reclaim. We would rather use that than possibly create a 1026 * underutilized metadata chunk. So if this is our first run 1027 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1028 * commit the transaction. If nothing has changed the next go 1029 * around then we can force a chunk allocation. 1030 */ 1031 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1032 flush_state++; 1033 1034 if (flush_state > COMMIT_TRANS) { 1035 commit_cycles++; 1036 if (commit_cycles > 2) { 1037 if (maybe_fail_all_tickets(fs_info, space_info)) { 1038 flush_state = FLUSH_DELAYED_ITEMS_NR; 1039 commit_cycles--; 1040 } else { 1041 space_info->flush = 0; 1042 } 1043 } else { 1044 flush_state = FLUSH_DELAYED_ITEMS_NR; 1045 } 1046 } 1047 spin_unlock(&space_info->lock); 1048 } while (flush_state <= COMMIT_TRANS); 1049 } 1050 1051 /* 1052 * This handles pre-flushing of metadata space before we get to the point that 1053 * we need to start blocking threads on tickets. The logic here is different 1054 * from the other flush paths because it doesn't rely on tickets to tell us how 1055 * much we need to flush, instead it attempts to keep us below the 80% full 1056 * watermark of space by flushing whichever reservation pool is currently the 1057 * largest. 1058 */ 1059 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1060 { 1061 struct btrfs_fs_info *fs_info; 1062 struct btrfs_space_info *space_info; 1063 struct btrfs_block_rsv *delayed_block_rsv; 1064 struct btrfs_block_rsv *delayed_refs_rsv; 1065 struct btrfs_block_rsv *global_rsv; 1066 struct btrfs_block_rsv *trans_rsv; 1067 int loops = 0; 1068 1069 fs_info = container_of(work, struct btrfs_fs_info, 1070 preempt_reclaim_work); 1071 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1072 delayed_block_rsv = &fs_info->delayed_block_rsv; 1073 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1074 global_rsv = &fs_info->global_block_rsv; 1075 trans_rsv = &fs_info->trans_block_rsv; 1076 1077 spin_lock(&space_info->lock); 1078 while (need_preemptive_reclaim(fs_info, space_info)) { 1079 enum btrfs_flush_state flush; 1080 u64 delalloc_size = 0; 1081 u64 to_reclaim, block_rsv_size; 1082 u64 global_rsv_size = global_rsv->reserved; 1083 1084 loops++; 1085 1086 /* 1087 * We don't have a precise counter for the metadata being 1088 * reserved for delalloc, so we'll approximate it by subtracting 1089 * out the block rsv's space from the bytes_may_use. If that 1090 * amount is higher than the individual reserves, then we can 1091 * assume it's tied up in delalloc reservations. 1092 */ 1093 block_rsv_size = global_rsv_size + 1094 delayed_block_rsv->reserved + 1095 delayed_refs_rsv->reserved + 1096 trans_rsv->reserved; 1097 if (block_rsv_size < space_info->bytes_may_use) 1098 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1099 spin_unlock(&space_info->lock); 1100 1101 /* 1102 * We don't want to include the global_rsv in our calculation, 1103 * because that's space we can't touch. Subtract it from the 1104 * block_rsv_size for the next checks. 1105 */ 1106 block_rsv_size -= global_rsv_size; 1107 1108 /* 1109 * We really want to avoid flushing delalloc too much, as it 1110 * could result in poor allocation patterns, so only flush it if 1111 * it's larger than the rest of the pools combined. 1112 */ 1113 if (delalloc_size > block_rsv_size) { 1114 to_reclaim = delalloc_size; 1115 flush = FLUSH_DELALLOC; 1116 } else if (space_info->bytes_pinned > 1117 (delayed_block_rsv->reserved + 1118 delayed_refs_rsv->reserved)) { 1119 to_reclaim = space_info->bytes_pinned; 1120 flush = FORCE_COMMIT_TRANS; 1121 } else if (delayed_block_rsv->reserved > 1122 delayed_refs_rsv->reserved) { 1123 to_reclaim = delayed_block_rsv->reserved; 1124 flush = FLUSH_DELAYED_ITEMS_NR; 1125 } else { 1126 to_reclaim = delayed_refs_rsv->reserved; 1127 flush = FLUSH_DELAYED_REFS_NR; 1128 } 1129 1130 /* 1131 * We don't want to reclaim everything, just a portion, so scale 1132 * down the to_reclaim by 1/4. If it takes us down to 0, 1133 * reclaim 1 items worth. 1134 */ 1135 to_reclaim >>= 2; 1136 if (!to_reclaim) 1137 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1138 flush_space(fs_info, space_info, to_reclaim, flush, true); 1139 cond_resched(); 1140 spin_lock(&space_info->lock); 1141 } 1142 1143 /* We only went through once, back off our clamping. */ 1144 if (loops == 1 && !space_info->reclaim_size) 1145 space_info->clamp = max(1, space_info->clamp - 1); 1146 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1147 spin_unlock(&space_info->lock); 1148 } 1149 1150 /* 1151 * FLUSH_DELALLOC_WAIT: 1152 * Space is freed from flushing delalloc in one of two ways. 1153 * 1154 * 1) compression is on and we allocate less space than we reserved 1155 * 2) we are overwriting existing space 1156 * 1157 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1158 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1159 * length to ->bytes_reserved, and subtracts the reserved space from 1160 * ->bytes_may_use. 1161 * 1162 * For #2 this is trickier. Once the ordered extent runs we will drop the 1163 * extent in the range we are overwriting, which creates a delayed ref for 1164 * that freed extent. This however is not reclaimed until the transaction 1165 * commits, thus the next stages. 1166 * 1167 * RUN_DELAYED_IPUTS 1168 * If we are freeing inodes, we want to make sure all delayed iputs have 1169 * completed, because they could have been on an inode with i_nlink == 0, and 1170 * thus have been truncated and freed up space. But again this space is not 1171 * immediately re-usable, it comes in the form of a delayed ref, which must be 1172 * run and then the transaction must be committed. 1173 * 1174 * FLUSH_DELAYED_REFS 1175 * The above two cases generate delayed refs that will affect 1176 * ->total_bytes_pinned. However this counter can be inconsistent with 1177 * reality if there are outstanding delayed refs. This is because we adjust 1178 * the counter based solely on the current set of delayed refs and disregard 1179 * any on-disk state which might include more refs. So for example, if we 1180 * have an extent with 2 references, but we only drop 1, we'll see that there 1181 * is a negative delayed ref count for the extent and assume that the space 1182 * will be freed, and thus increase ->total_bytes_pinned. 1183 * 1184 * Running the delayed refs gives us the actual real view of what will be 1185 * freed at the transaction commit time. This stage will not actually free 1186 * space for us, it just makes sure that may_commit_transaction() has all of 1187 * the information it needs to make the right decision. 1188 * 1189 * COMMIT_TRANS 1190 * This is where we reclaim all of the pinned space generated by the previous 1191 * two stages. We will not commit the transaction if we don't think we're 1192 * likely to satisfy our request, which means if our current free space + 1193 * total_bytes_pinned < reservation we will not commit. This is why the 1194 * previous states are actually important, to make sure we know for sure 1195 * whether committing the transaction will allow us to make progress. 1196 * 1197 * ALLOC_CHUNK_FORCE 1198 * For data we start with alloc chunk force, however we could have been full 1199 * before, and then the transaction commit could have freed new block groups, 1200 * so if we now have space to allocate do the force chunk allocation. 1201 */ 1202 static const enum btrfs_flush_state data_flush_states[] = { 1203 FLUSH_DELALLOC_WAIT, 1204 RUN_DELAYED_IPUTS, 1205 FLUSH_DELAYED_REFS, 1206 COMMIT_TRANS, 1207 ALLOC_CHUNK_FORCE, 1208 }; 1209 1210 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1211 { 1212 struct btrfs_fs_info *fs_info; 1213 struct btrfs_space_info *space_info; 1214 u64 last_tickets_id; 1215 enum btrfs_flush_state flush_state = 0; 1216 1217 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1218 space_info = fs_info->data_sinfo; 1219 1220 spin_lock(&space_info->lock); 1221 if (list_empty(&space_info->tickets)) { 1222 space_info->flush = 0; 1223 spin_unlock(&space_info->lock); 1224 return; 1225 } 1226 last_tickets_id = space_info->tickets_id; 1227 spin_unlock(&space_info->lock); 1228 1229 while (!space_info->full) { 1230 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1231 spin_lock(&space_info->lock); 1232 if (list_empty(&space_info->tickets)) { 1233 space_info->flush = 0; 1234 spin_unlock(&space_info->lock); 1235 return; 1236 } 1237 last_tickets_id = space_info->tickets_id; 1238 spin_unlock(&space_info->lock); 1239 } 1240 1241 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1242 flush_space(fs_info, space_info, U64_MAX, 1243 data_flush_states[flush_state], false); 1244 spin_lock(&space_info->lock); 1245 if (list_empty(&space_info->tickets)) { 1246 space_info->flush = 0; 1247 spin_unlock(&space_info->lock); 1248 return; 1249 } 1250 1251 if (last_tickets_id == space_info->tickets_id) { 1252 flush_state++; 1253 } else { 1254 last_tickets_id = space_info->tickets_id; 1255 flush_state = 0; 1256 } 1257 1258 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1259 if (space_info->full) { 1260 if (maybe_fail_all_tickets(fs_info, space_info)) 1261 flush_state = 0; 1262 else 1263 space_info->flush = 0; 1264 } else { 1265 flush_state = 0; 1266 } 1267 } 1268 spin_unlock(&space_info->lock); 1269 } 1270 } 1271 1272 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1273 { 1274 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1275 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1276 INIT_WORK(&fs_info->preempt_reclaim_work, 1277 btrfs_preempt_reclaim_metadata_space); 1278 } 1279 1280 static const enum btrfs_flush_state priority_flush_states[] = { 1281 FLUSH_DELAYED_ITEMS_NR, 1282 FLUSH_DELAYED_ITEMS, 1283 ALLOC_CHUNK, 1284 }; 1285 1286 static const enum btrfs_flush_state evict_flush_states[] = { 1287 FLUSH_DELAYED_ITEMS_NR, 1288 FLUSH_DELAYED_ITEMS, 1289 FLUSH_DELAYED_REFS_NR, 1290 FLUSH_DELAYED_REFS, 1291 FLUSH_DELALLOC, 1292 FLUSH_DELALLOC_WAIT, 1293 ALLOC_CHUNK, 1294 COMMIT_TRANS, 1295 }; 1296 1297 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1298 struct btrfs_space_info *space_info, 1299 struct reserve_ticket *ticket, 1300 const enum btrfs_flush_state *states, 1301 int states_nr) 1302 { 1303 u64 to_reclaim; 1304 int flush_state; 1305 1306 spin_lock(&space_info->lock); 1307 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1308 if (!to_reclaim) { 1309 spin_unlock(&space_info->lock); 1310 return; 1311 } 1312 spin_unlock(&space_info->lock); 1313 1314 flush_state = 0; 1315 do { 1316 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1317 false); 1318 flush_state++; 1319 spin_lock(&space_info->lock); 1320 if (ticket->bytes == 0) { 1321 spin_unlock(&space_info->lock); 1322 return; 1323 } 1324 spin_unlock(&space_info->lock); 1325 } while (flush_state < states_nr); 1326 } 1327 1328 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1329 struct btrfs_space_info *space_info, 1330 struct reserve_ticket *ticket) 1331 { 1332 while (!space_info->full) { 1333 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1334 spin_lock(&space_info->lock); 1335 if (ticket->bytes == 0) { 1336 spin_unlock(&space_info->lock); 1337 return; 1338 } 1339 spin_unlock(&space_info->lock); 1340 } 1341 } 1342 1343 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1344 struct btrfs_space_info *space_info, 1345 struct reserve_ticket *ticket) 1346 1347 { 1348 DEFINE_WAIT(wait); 1349 int ret = 0; 1350 1351 spin_lock(&space_info->lock); 1352 while (ticket->bytes > 0 && ticket->error == 0) { 1353 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1354 if (ret) { 1355 /* 1356 * Delete us from the list. After we unlock the space 1357 * info, we don't want the async reclaim job to reserve 1358 * space for this ticket. If that would happen, then the 1359 * ticket's task would not known that space was reserved 1360 * despite getting an error, resulting in a space leak 1361 * (bytes_may_use counter of our space_info). 1362 */ 1363 remove_ticket(space_info, ticket); 1364 ticket->error = -EINTR; 1365 break; 1366 } 1367 spin_unlock(&space_info->lock); 1368 1369 schedule(); 1370 1371 finish_wait(&ticket->wait, &wait); 1372 spin_lock(&space_info->lock); 1373 } 1374 spin_unlock(&space_info->lock); 1375 } 1376 1377 /** 1378 * Do the appropriate flushing and waiting for a ticket 1379 * 1380 * @fs_info: the filesystem 1381 * @space_info: space info for the reservation 1382 * @ticket: ticket for the reservation 1383 * @start_ns: timestamp when the reservation started 1384 * @orig_bytes: amount of bytes originally reserved 1385 * @flush: how much we can flush 1386 * 1387 * This does the work of figuring out how to flush for the ticket, waiting for 1388 * the reservation, and returning the appropriate error if there is one. 1389 */ 1390 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1391 struct btrfs_space_info *space_info, 1392 struct reserve_ticket *ticket, 1393 u64 start_ns, u64 orig_bytes, 1394 enum btrfs_reserve_flush_enum flush) 1395 { 1396 int ret; 1397 1398 switch (flush) { 1399 case BTRFS_RESERVE_FLUSH_DATA: 1400 case BTRFS_RESERVE_FLUSH_ALL: 1401 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1402 wait_reserve_ticket(fs_info, space_info, ticket); 1403 break; 1404 case BTRFS_RESERVE_FLUSH_LIMIT: 1405 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1406 priority_flush_states, 1407 ARRAY_SIZE(priority_flush_states)); 1408 break; 1409 case BTRFS_RESERVE_FLUSH_EVICT: 1410 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1411 evict_flush_states, 1412 ARRAY_SIZE(evict_flush_states)); 1413 break; 1414 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1415 priority_reclaim_data_space(fs_info, space_info, ticket); 1416 break; 1417 default: 1418 ASSERT(0); 1419 break; 1420 } 1421 1422 spin_lock(&space_info->lock); 1423 ret = ticket->error; 1424 if (ticket->bytes || ticket->error) { 1425 /* 1426 * We were a priority ticket, so we need to delete ourselves 1427 * from the list. Because we could have other priority tickets 1428 * behind us that require less space, run 1429 * btrfs_try_granting_tickets() to see if their reservations can 1430 * now be made. 1431 */ 1432 if (!list_empty(&ticket->list)) { 1433 remove_ticket(space_info, ticket); 1434 btrfs_try_granting_tickets(fs_info, space_info); 1435 } 1436 1437 if (!ret) 1438 ret = -ENOSPC; 1439 } 1440 spin_unlock(&space_info->lock); 1441 ASSERT(list_empty(&ticket->list)); 1442 /* 1443 * Check that we can't have an error set if the reservation succeeded, 1444 * as that would confuse tasks and lead them to error out without 1445 * releasing reserved space (if an error happens the expectation is that 1446 * space wasn't reserved at all). 1447 */ 1448 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1449 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1450 start_ns, flush, ticket->error); 1451 return ret; 1452 } 1453 1454 /* 1455 * This returns true if this flush state will go through the ordinary flushing 1456 * code. 1457 */ 1458 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1459 { 1460 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1461 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1462 } 1463 1464 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1465 struct btrfs_space_info *space_info) 1466 { 1467 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1468 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1469 1470 /* 1471 * If we're heavy on ordered operations then clamping won't help us. We 1472 * need to clamp specifically to keep up with dirty'ing buffered 1473 * writers, because there's not a 1:1 correlation of writing delalloc 1474 * and freeing space, like there is with flushing delayed refs or 1475 * delayed nodes. If we're already more ordered than delalloc then 1476 * we're keeping up, otherwise we aren't and should probably clamp. 1477 */ 1478 if (ordered < delalloc) 1479 space_info->clamp = min(space_info->clamp + 1, 8); 1480 } 1481 1482 /** 1483 * Try to reserve bytes from the block_rsv's space 1484 * 1485 * @fs_info: the filesystem 1486 * @space_info: space info we want to allocate from 1487 * @orig_bytes: number of bytes we want 1488 * @flush: whether or not we can flush to make our reservation 1489 * 1490 * This will reserve orig_bytes number of bytes from the space info associated 1491 * with the block_rsv. If there is not enough space it will make an attempt to 1492 * flush out space to make room. It will do this by flushing delalloc if 1493 * possible or committing the transaction. If flush is 0 then no attempts to 1494 * regain reservations will be made and this will fail if there is not enough 1495 * space already. 1496 */ 1497 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1498 struct btrfs_space_info *space_info, u64 orig_bytes, 1499 enum btrfs_reserve_flush_enum flush) 1500 { 1501 struct work_struct *async_work; 1502 struct reserve_ticket ticket; 1503 u64 start_ns = 0; 1504 u64 used; 1505 int ret = 0; 1506 bool pending_tickets; 1507 1508 ASSERT(orig_bytes); 1509 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1510 1511 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1512 async_work = &fs_info->async_data_reclaim_work; 1513 else 1514 async_work = &fs_info->async_reclaim_work; 1515 1516 spin_lock(&space_info->lock); 1517 ret = -ENOSPC; 1518 used = btrfs_space_info_used(space_info, true); 1519 1520 /* 1521 * We don't want NO_FLUSH allocations to jump everybody, they can 1522 * generally handle ENOSPC in a different way, so treat them the same as 1523 * normal flushers when it comes to skipping pending tickets. 1524 */ 1525 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1526 pending_tickets = !list_empty(&space_info->tickets) || 1527 !list_empty(&space_info->priority_tickets); 1528 else 1529 pending_tickets = !list_empty(&space_info->priority_tickets); 1530 1531 /* 1532 * Carry on if we have enough space (short-circuit) OR call 1533 * can_overcommit() to ensure we can overcommit to continue. 1534 */ 1535 if (!pending_tickets && 1536 ((used + orig_bytes <= space_info->total_bytes) || 1537 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1538 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1539 orig_bytes); 1540 ret = 0; 1541 } 1542 1543 /* 1544 * If we couldn't make a reservation then setup our reservation ticket 1545 * and kick the async worker if it's not already running. 1546 * 1547 * If we are a priority flusher then we just need to add our ticket to 1548 * the list and we will do our own flushing further down. 1549 */ 1550 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1551 ticket.bytes = orig_bytes; 1552 ticket.error = 0; 1553 space_info->reclaim_size += ticket.bytes; 1554 init_waitqueue_head(&ticket.wait); 1555 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1556 if (trace_btrfs_reserve_ticket_enabled()) 1557 start_ns = ktime_get_ns(); 1558 1559 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1560 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1561 flush == BTRFS_RESERVE_FLUSH_DATA) { 1562 list_add_tail(&ticket.list, &space_info->tickets); 1563 if (!space_info->flush) { 1564 space_info->flush = 1; 1565 trace_btrfs_trigger_flush(fs_info, 1566 space_info->flags, 1567 orig_bytes, flush, 1568 "enospc"); 1569 queue_work(system_unbound_wq, async_work); 1570 } 1571 } else { 1572 list_add_tail(&ticket.list, 1573 &space_info->priority_tickets); 1574 } 1575 1576 /* 1577 * We were forced to add a reserve ticket, so our preemptive 1578 * flushing is unable to keep up. Clamp down on the threshold 1579 * for the preemptive flushing in order to keep up with the 1580 * workload. 1581 */ 1582 maybe_clamp_preempt(fs_info, space_info); 1583 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1584 used += orig_bytes; 1585 /* 1586 * We will do the space reservation dance during log replay, 1587 * which means we won't have fs_info->fs_root set, so don't do 1588 * the async reclaim as we will panic. 1589 */ 1590 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1591 need_preemptive_reclaim(fs_info, space_info) && 1592 !work_busy(&fs_info->preempt_reclaim_work)) { 1593 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1594 orig_bytes, flush, "preempt"); 1595 queue_work(system_unbound_wq, 1596 &fs_info->preempt_reclaim_work); 1597 } 1598 } 1599 spin_unlock(&space_info->lock); 1600 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1601 return ret; 1602 1603 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1604 orig_bytes, flush); 1605 } 1606 1607 /** 1608 * Trye to reserve metadata bytes from the block_rsv's space 1609 * 1610 * @root: the root we're allocating for 1611 * @block_rsv: block_rsv we're allocating for 1612 * @orig_bytes: number of bytes we want 1613 * @flush: whether or not we can flush to make our reservation 1614 * 1615 * This will reserve orig_bytes number of bytes from the space info associated 1616 * with the block_rsv. If there is not enough space it will make an attempt to 1617 * flush out space to make room. It will do this by flushing delalloc if 1618 * possible or committing the transaction. If flush is 0 then no attempts to 1619 * regain reservations will be made and this will fail if there is not enough 1620 * space already. 1621 */ 1622 int btrfs_reserve_metadata_bytes(struct btrfs_root *root, 1623 struct btrfs_block_rsv *block_rsv, 1624 u64 orig_bytes, 1625 enum btrfs_reserve_flush_enum flush) 1626 { 1627 struct btrfs_fs_info *fs_info = root->fs_info; 1628 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1629 int ret; 1630 1631 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1632 if (ret == -ENOSPC && 1633 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 1634 if (block_rsv != global_rsv && 1635 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) 1636 ret = 0; 1637 } 1638 if (ret == -ENOSPC) { 1639 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1640 block_rsv->space_info->flags, 1641 orig_bytes, 1); 1642 1643 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1644 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1645 orig_bytes, 0); 1646 } 1647 return ret; 1648 } 1649 1650 /** 1651 * Try to reserve data bytes for an allocation 1652 * 1653 * @fs_info: the filesystem 1654 * @bytes: number of bytes we need 1655 * @flush: how we are allowed to flush 1656 * 1657 * This will reserve bytes from the data space info. If there is not enough 1658 * space then we will attempt to flush space as specified by flush. 1659 */ 1660 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1661 enum btrfs_reserve_flush_enum flush) 1662 { 1663 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1664 int ret; 1665 1666 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1667 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE); 1668 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1669 1670 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1671 if (ret == -ENOSPC) { 1672 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1673 data_sinfo->flags, bytes, 1); 1674 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1675 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1676 } 1677 return ret; 1678 } 1679