1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "linux/spinlock.h" 4 #include <linux/minmax.h> 5 #include "misc.h" 6 #include "ctree.h" 7 #include "space-info.h" 8 #include "sysfs.h" 9 #include "volumes.h" 10 #include "free-space-cache.h" 11 #include "ordered-data.h" 12 #include "transaction.h" 13 #include "block-group.h" 14 #include "fs.h" 15 #include "accessors.h" 16 #include "extent-tree.h" 17 18 /* 19 * HOW DOES SPACE RESERVATION WORK 20 * 21 * If you want to know about delalloc specifically, there is a separate comment 22 * for that with the delalloc code. This comment is about how the whole system 23 * works generally. 24 * 25 * BASIC CONCEPTS 26 * 27 * 1) space_info. This is the ultimate arbiter of how much space we can use. 28 * There's a description of the bytes_ fields with the struct declaration, 29 * refer to that for specifics on each field. Suffice it to say that for 30 * reservations we care about total_bytes - SUM(space_info->bytes_) when 31 * determining if there is space to make an allocation. There is a space_info 32 * for METADATA, SYSTEM, and DATA areas. 33 * 34 * 2) block_rsv's. These are basically buckets for every different type of 35 * metadata reservation we have. You can see the comment in the block_rsv 36 * code on the rules for each type, but generally block_rsv->reserved is how 37 * much space is accounted for in space_info->bytes_may_use. 38 * 39 * 3) btrfs_calc*_size. These are the worst case calculations we used based 40 * on the number of items we will want to modify. We have one for changing 41 * items, and one for inserting new items. Generally we use these helpers to 42 * determine the size of the block reserves, and then use the actual bytes 43 * values to adjust the space_info counters. 44 * 45 * MAKING RESERVATIONS, THE NORMAL CASE 46 * 47 * We call into either btrfs_reserve_data_bytes() or 48 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 49 * num_bytes we want to reserve. 50 * 51 * ->reserve 52 * space_info->bytes_may_reserve += num_bytes 53 * 54 * ->extent allocation 55 * Call btrfs_add_reserved_bytes() which does 56 * space_info->bytes_may_reserve -= num_bytes 57 * space_info->bytes_reserved += extent_bytes 58 * 59 * ->insert reference 60 * Call btrfs_update_block_group() which does 61 * space_info->bytes_reserved -= extent_bytes 62 * space_info->bytes_used += extent_bytes 63 * 64 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 65 * 66 * Assume we are unable to simply make the reservation because we do not have 67 * enough space 68 * 69 * -> __reserve_bytes 70 * create a reserve_ticket with ->bytes set to our reservation, add it to 71 * the tail of space_info->tickets, kick async flush thread 72 * 73 * ->handle_reserve_ticket 74 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 75 * on the ticket. 76 * 77 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 78 * Flushes various things attempting to free up space. 79 * 80 * -> btrfs_try_granting_tickets() 81 * This is called by anything that either subtracts space from 82 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 83 * space_info->total_bytes. This loops through the ->priority_tickets and 84 * then the ->tickets list checking to see if the reservation can be 85 * completed. If it can the space is added to space_info->bytes_may_use and 86 * the ticket is woken up. 87 * 88 * -> ticket wakeup 89 * Check if ->bytes == 0, if it does we got our reservation and we can carry 90 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 91 * were interrupted.) 92 * 93 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 94 * 95 * Same as the above, except we add ourselves to the 96 * space_info->priority_tickets, and we do not use ticket->wait, we simply 97 * call flush_space() ourselves for the states that are safe for us to call 98 * without deadlocking and hope for the best. 99 * 100 * THE FLUSHING STATES 101 * 102 * Generally speaking we will have two cases for each state, a "nice" state 103 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 104 * reduce the locking over head on the various trees, and even to keep from 105 * doing any work at all in the case of delayed refs. Each of these delayed 106 * things however hold reservations, and so letting them run allows us to 107 * reclaim space so we can make new reservations. 108 * 109 * FLUSH_DELAYED_ITEMS 110 * Every inode has a delayed item to update the inode. Take a simple write 111 * for example, we would update the inode item at write time to update the 112 * mtime, and then again at finish_ordered_io() time in order to update the 113 * isize or bytes. We keep these delayed items to coalesce these operations 114 * into a single operation done on demand. These are an easy way to reclaim 115 * metadata space. 116 * 117 * FLUSH_DELALLOC 118 * Look at the delalloc comment to get an idea of how much space is reserved 119 * for delayed allocation. We can reclaim some of this space simply by 120 * running delalloc, but usually we need to wait for ordered extents to 121 * reclaim the bulk of this space. 122 * 123 * FLUSH_DELAYED_REFS 124 * We have a block reserve for the outstanding delayed refs space, and every 125 * delayed ref operation holds a reservation. Running these is a quick way 126 * to reclaim space, but we want to hold this until the end because COW can 127 * churn a lot and we can avoid making some extent tree modifications if we 128 * are able to delay for as long as possible. 129 * 130 * ALLOC_CHUNK 131 * We will skip this the first time through space reservation, because of 132 * overcommit and we don't want to have a lot of useless metadata space when 133 * our worst case reservations will likely never come true. 134 * 135 * RUN_DELAYED_IPUTS 136 * If we're freeing inodes we're likely freeing checksums, file extent 137 * items, and extent tree items. Loads of space could be freed up by these 138 * operations, however they won't be usable until the transaction commits. 139 * 140 * COMMIT_TRANS 141 * This will commit the transaction. Historically we had a lot of logic 142 * surrounding whether or not we'd commit the transaction, but this waits born 143 * out of a pre-tickets era where we could end up committing the transaction 144 * thousands of times in a row without making progress. Now thanks to our 145 * ticketing system we know if we're not making progress and can error 146 * everybody out after a few commits rather than burning the disk hoping for 147 * a different answer. 148 * 149 * OVERCOMMIT 150 * 151 * Because we hold so many reservations for metadata we will allow you to 152 * reserve more space than is currently free in the currently allocate 153 * metadata space. This only happens with metadata, data does not allow 154 * overcommitting. 155 * 156 * You can see the current logic for when we allow overcommit in 157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 158 * is no unallocated space to be had, all reservations are kept within the 159 * free space in the allocated metadata chunks. 160 * 161 * Because of overcommitting, you generally want to use the 162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 163 * thing with or without extra unallocated space. 164 */ 165 166 u64 __pure btrfs_space_info_used(const struct btrfs_space_info *s_info, 167 bool may_use_included) 168 { 169 ASSERT(s_info); 170 return s_info->bytes_used + s_info->bytes_reserved + 171 s_info->bytes_pinned + s_info->bytes_readonly + 172 s_info->bytes_zone_unusable + 173 (may_use_included ? s_info->bytes_may_use : 0); 174 } 175 176 /* 177 * after adding space to the filesystem, we need to clear the full flags 178 * on all the space infos. 179 */ 180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 181 { 182 struct list_head *head = &info->space_info; 183 struct btrfs_space_info *found; 184 185 list_for_each_entry(found, head, list) 186 found->full = 0; 187 } 188 189 /* 190 * Block groups with more than this value (percents) of unusable space will be 191 * scheduled for background reclaim. 192 */ 193 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 194 195 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL) 196 197 /* 198 * Calculate chunk size depending on volume type (regular or zoned). 199 */ 200 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 201 { 202 if (btrfs_is_zoned(fs_info)) 203 return fs_info->zone_size; 204 205 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 206 207 if (flags & BTRFS_BLOCK_GROUP_DATA) 208 return BTRFS_MAX_DATA_CHUNK_SIZE; 209 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 210 return SZ_32M; 211 212 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 213 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 214 return SZ_1G; 215 216 return SZ_256M; 217 } 218 219 /* 220 * Update default chunk size. 221 */ 222 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 223 u64 chunk_size) 224 { 225 WRITE_ONCE(space_info->chunk_size, chunk_size); 226 } 227 228 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 229 { 230 231 struct btrfs_space_info *space_info; 232 int i; 233 int ret; 234 235 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 236 if (!space_info) 237 return -ENOMEM; 238 239 space_info->fs_info = info; 240 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 241 INIT_LIST_HEAD(&space_info->block_groups[i]); 242 init_rwsem(&space_info->groups_sem); 243 spin_lock_init(&space_info->lock); 244 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 245 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 246 INIT_LIST_HEAD(&space_info->ro_bgs); 247 INIT_LIST_HEAD(&space_info->tickets); 248 INIT_LIST_HEAD(&space_info->priority_tickets); 249 space_info->clamp = 1; 250 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 251 252 if (btrfs_is_zoned(info)) 253 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 254 255 ret = btrfs_sysfs_add_space_info_type(info, space_info); 256 if (ret) 257 return ret; 258 259 list_add(&space_info->list, &info->space_info); 260 if (flags & BTRFS_BLOCK_GROUP_DATA) 261 info->data_sinfo = space_info; 262 263 return ret; 264 } 265 266 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 267 { 268 struct btrfs_super_block *disk_super; 269 u64 features; 270 u64 flags; 271 int mixed = 0; 272 int ret; 273 274 disk_super = fs_info->super_copy; 275 if (!btrfs_super_root(disk_super)) 276 return -EINVAL; 277 278 features = btrfs_super_incompat_flags(disk_super); 279 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 280 mixed = 1; 281 282 flags = BTRFS_BLOCK_GROUP_SYSTEM; 283 ret = create_space_info(fs_info, flags); 284 if (ret) 285 goto out; 286 287 if (mixed) { 288 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 289 ret = create_space_info(fs_info, flags); 290 } else { 291 flags = BTRFS_BLOCK_GROUP_METADATA; 292 ret = create_space_info(fs_info, flags); 293 if (ret) 294 goto out; 295 296 flags = BTRFS_BLOCK_GROUP_DATA; 297 ret = create_space_info(fs_info, flags); 298 } 299 out: 300 return ret; 301 } 302 303 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 304 struct btrfs_block_group *block_group) 305 { 306 struct btrfs_space_info *found; 307 int factor, index; 308 309 factor = btrfs_bg_type_to_factor(block_group->flags); 310 311 found = btrfs_find_space_info(info, block_group->flags); 312 ASSERT(found); 313 spin_lock(&found->lock); 314 found->total_bytes += block_group->length; 315 found->disk_total += block_group->length * factor; 316 found->bytes_used += block_group->used; 317 found->disk_used += block_group->used * factor; 318 found->bytes_readonly += block_group->bytes_super; 319 btrfs_space_info_update_bytes_zone_unusable(info, found, block_group->zone_unusable); 320 if (block_group->length > 0) 321 found->full = 0; 322 btrfs_try_granting_tickets(info, found); 323 spin_unlock(&found->lock); 324 325 block_group->space_info = found; 326 327 index = btrfs_bg_flags_to_raid_index(block_group->flags); 328 down_write(&found->groups_sem); 329 list_add_tail(&block_group->list, &found->block_groups[index]); 330 up_write(&found->groups_sem); 331 } 332 333 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 334 u64 flags) 335 { 336 struct list_head *head = &info->space_info; 337 struct btrfs_space_info *found; 338 339 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 340 341 list_for_each_entry(found, head, list) { 342 if (found->flags & flags) 343 return found; 344 } 345 return NULL; 346 } 347 348 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info) 349 { 350 struct btrfs_space_info *data_sinfo; 351 u64 data_chunk_size; 352 353 /* 354 * Calculate the data_chunk_size, space_info->chunk_size is the 355 * "optimal" chunk size based on the fs size. However when we actually 356 * allocate the chunk we will strip this down further, making it no 357 * more than 10% of the disk or 1G, whichever is smaller. 358 * 359 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size) 360 * as it is. 361 */ 362 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 363 if (btrfs_is_zoned(fs_info)) 364 return data_sinfo->chunk_size; 365 data_chunk_size = min(data_sinfo->chunk_size, 366 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 367 return min_t(u64, data_chunk_size, SZ_1G); 368 } 369 370 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 371 const struct btrfs_space_info *space_info, 372 enum btrfs_reserve_flush_enum flush) 373 { 374 u64 profile; 375 u64 avail; 376 u64 data_chunk_size; 377 int factor; 378 379 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 380 profile = btrfs_system_alloc_profile(fs_info); 381 else 382 profile = btrfs_metadata_alloc_profile(fs_info); 383 384 avail = atomic64_read(&fs_info->free_chunk_space); 385 386 /* 387 * If we have dup, raid1 or raid10 then only half of the free 388 * space is actually usable. For raid56, the space info used 389 * doesn't include the parity drive, so we don't have to 390 * change the math 391 */ 392 factor = btrfs_bg_type_to_factor(profile); 393 avail = div_u64(avail, factor); 394 if (avail == 0) 395 return 0; 396 397 data_chunk_size = calc_effective_data_chunk_size(fs_info); 398 399 /* 400 * Since data allocations immediately use block groups as part of the 401 * reservation, because we assume that data reservations will == actual 402 * usage, we could potentially overcommit and then immediately have that 403 * available space used by a data allocation, which could put us in a 404 * bind when we get close to filling the file system. 405 * 406 * To handle this simply remove the data_chunk_size from the available 407 * space. If we are relatively empty this won't affect our ability to 408 * overcommit much, and if we're very close to full it'll keep us from 409 * getting into a position where we've given ourselves very little 410 * metadata wiggle room. 411 */ 412 if (avail <= data_chunk_size) 413 return 0; 414 avail -= data_chunk_size; 415 416 /* 417 * If we aren't flushing all things, let us overcommit up to 418 * 1/2th of the space. If we can flush, don't let us overcommit 419 * too much, let it overcommit up to 1/8 of the space. 420 */ 421 if (flush == BTRFS_RESERVE_FLUSH_ALL) 422 avail >>= 3; 423 else 424 avail >>= 1; 425 426 /* 427 * On the zoned mode, we always allocate one zone as one chunk. 428 * Returning non-zone size alingned bytes here will result in 429 * less pressure for the async metadata reclaim process, and it 430 * will over-commit too much leading to ENOSPC. Align down to the 431 * zone size to avoid that. 432 */ 433 if (btrfs_is_zoned(fs_info)) 434 avail = ALIGN_DOWN(avail, fs_info->zone_size); 435 436 return avail; 437 } 438 439 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 440 const struct btrfs_space_info *space_info, u64 bytes, 441 enum btrfs_reserve_flush_enum flush) 442 { 443 u64 avail; 444 u64 used; 445 446 /* Don't overcommit when in mixed mode */ 447 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 448 return 0; 449 450 used = btrfs_space_info_used(space_info, true); 451 avail = calc_available_free_space(fs_info, space_info, flush); 452 453 if (used + bytes < space_info->total_bytes + avail) 454 return 1; 455 return 0; 456 } 457 458 static void remove_ticket(struct btrfs_space_info *space_info, 459 struct reserve_ticket *ticket) 460 { 461 if (!list_empty(&ticket->list)) { 462 list_del_init(&ticket->list); 463 ASSERT(space_info->reclaim_size >= ticket->bytes); 464 space_info->reclaim_size -= ticket->bytes; 465 } 466 } 467 468 /* 469 * This is for space we already have accounted in space_info->bytes_may_use, so 470 * basically when we're returning space from block_rsv's. 471 */ 472 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 473 struct btrfs_space_info *space_info) 474 { 475 struct list_head *head; 476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 477 478 lockdep_assert_held(&space_info->lock); 479 480 head = &space_info->priority_tickets; 481 again: 482 while (!list_empty(head)) { 483 struct reserve_ticket *ticket; 484 u64 used = btrfs_space_info_used(space_info, true); 485 486 ticket = list_first_entry(head, struct reserve_ticket, list); 487 488 /* Check and see if our ticket can be satisfied now. */ 489 if ((used + ticket->bytes <= space_info->total_bytes) || 490 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 491 flush)) { 492 btrfs_space_info_update_bytes_may_use(fs_info, 493 space_info, 494 ticket->bytes); 495 remove_ticket(space_info, ticket); 496 ticket->bytes = 0; 497 space_info->tickets_id++; 498 wake_up(&ticket->wait); 499 } else { 500 break; 501 } 502 } 503 504 if (head == &space_info->priority_tickets) { 505 head = &space_info->tickets; 506 flush = BTRFS_RESERVE_FLUSH_ALL; 507 goto again; 508 } 509 } 510 511 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 512 do { \ 513 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 514 spin_lock(&__rsv->lock); \ 515 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 516 __rsv->size, __rsv->reserved); \ 517 spin_unlock(&__rsv->lock); \ 518 } while (0) 519 520 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 521 { 522 switch (space_info->flags) { 523 case BTRFS_BLOCK_GROUP_SYSTEM: 524 return "SYSTEM"; 525 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 526 return "DATA+METADATA"; 527 case BTRFS_BLOCK_GROUP_DATA: 528 return "DATA"; 529 case BTRFS_BLOCK_GROUP_METADATA: 530 return "METADATA"; 531 default: 532 return "UNKNOWN"; 533 } 534 } 535 536 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 537 { 538 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 539 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 540 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 541 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 542 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 543 } 544 545 static void __btrfs_dump_space_info(const struct btrfs_fs_info *fs_info, 546 const struct btrfs_space_info *info) 547 { 548 const char *flag_str = space_info_flag_to_str(info); 549 lockdep_assert_held(&info->lock); 550 551 /* The free space could be negative in case of overcommit */ 552 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 553 flag_str, 554 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 555 info->full ? "" : "not "); 556 btrfs_info(fs_info, 557 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 558 info->total_bytes, info->bytes_used, info->bytes_pinned, 559 info->bytes_reserved, info->bytes_may_use, 560 info->bytes_readonly, info->bytes_zone_unusable); 561 } 562 563 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 564 struct btrfs_space_info *info, u64 bytes, 565 int dump_block_groups) 566 { 567 struct btrfs_block_group *cache; 568 u64 total_avail = 0; 569 int index = 0; 570 571 spin_lock(&info->lock); 572 __btrfs_dump_space_info(fs_info, info); 573 dump_global_block_rsv(fs_info); 574 spin_unlock(&info->lock); 575 576 if (!dump_block_groups) 577 return; 578 579 down_read(&info->groups_sem); 580 again: 581 list_for_each_entry(cache, &info->block_groups[index], list) { 582 u64 avail; 583 584 spin_lock(&cache->lock); 585 avail = cache->length - cache->used - cache->pinned - 586 cache->reserved - cache->bytes_super - cache->zone_unusable; 587 btrfs_info(fs_info, 588 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 589 cache->start, cache->length, cache->used, cache->pinned, 590 cache->reserved, cache->delalloc_bytes, 591 cache->bytes_super, cache->zone_unusable, 592 avail, cache->ro ? "[readonly]" : ""); 593 spin_unlock(&cache->lock); 594 btrfs_dump_free_space(cache, bytes); 595 total_avail += avail; 596 } 597 if (++index < BTRFS_NR_RAID_TYPES) 598 goto again; 599 up_read(&info->groups_sem); 600 601 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 602 } 603 604 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 605 u64 to_reclaim) 606 { 607 u64 bytes; 608 u64 nr; 609 610 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 611 nr = div64_u64(to_reclaim, bytes); 612 if (!nr) 613 nr = 1; 614 return nr; 615 } 616 617 /* 618 * shrink metadata reservation for delalloc 619 */ 620 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 621 struct btrfs_space_info *space_info, 622 u64 to_reclaim, bool wait_ordered, 623 bool for_preempt) 624 { 625 struct btrfs_trans_handle *trans; 626 u64 delalloc_bytes; 627 u64 ordered_bytes; 628 u64 items; 629 long time_left; 630 int loops; 631 632 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 633 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 634 if (delalloc_bytes == 0 && ordered_bytes == 0) 635 return; 636 637 /* Calc the number of the pages we need flush for space reservation */ 638 if (to_reclaim == U64_MAX) { 639 items = U64_MAX; 640 } else { 641 /* 642 * to_reclaim is set to however much metadata we need to 643 * reclaim, but reclaiming that much data doesn't really track 644 * exactly. What we really want to do is reclaim full inode's 645 * worth of reservations, however that's not available to us 646 * here. We will take a fraction of the delalloc bytes for our 647 * flushing loops and hope for the best. Delalloc will expand 648 * the amount we write to cover an entire dirty extent, which 649 * will reclaim the metadata reservation for that range. If 650 * it's not enough subsequent flush stages will be more 651 * aggressive. 652 */ 653 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 654 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 655 } 656 657 trans = current->journal_info; 658 659 /* 660 * If we are doing more ordered than delalloc we need to just wait on 661 * ordered extents, otherwise we'll waste time trying to flush delalloc 662 * that likely won't give us the space back we need. 663 */ 664 if (ordered_bytes > delalloc_bytes && !for_preempt) 665 wait_ordered = true; 666 667 loops = 0; 668 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 669 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 670 long nr_pages = min_t(u64, temp, LONG_MAX); 671 int async_pages; 672 673 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 674 675 /* 676 * We need to make sure any outstanding async pages are now 677 * processed before we continue. This is because things like 678 * sync_inode() try to be smart and skip writing if the inode is 679 * marked clean. We don't use filemap_fwrite for flushing 680 * because we want to control how many pages we write out at a 681 * time, thus this is the only safe way to make sure we've 682 * waited for outstanding compressed workers to have started 683 * their jobs and thus have ordered extents set up properly. 684 * 685 * This exists because we do not want to wait for each 686 * individual inode to finish its async work, we simply want to 687 * start the IO on everybody, and then come back here and wait 688 * for all of the async work to catch up. Once we're done with 689 * that we know we'll have ordered extents for everything and we 690 * can decide if we wait for that or not. 691 * 692 * If we choose to replace this in the future, make absolutely 693 * sure that the proper waiting is being done in the async case, 694 * as there have been bugs in that area before. 695 */ 696 async_pages = atomic_read(&fs_info->async_delalloc_pages); 697 if (!async_pages) 698 goto skip_async; 699 700 /* 701 * We don't want to wait forever, if we wrote less pages in this 702 * loop than we have outstanding, only wait for that number of 703 * pages, otherwise we can wait for all async pages to finish 704 * before continuing. 705 */ 706 if (async_pages > nr_pages) 707 async_pages -= nr_pages; 708 else 709 async_pages = 0; 710 wait_event(fs_info->async_submit_wait, 711 atomic_read(&fs_info->async_delalloc_pages) <= 712 async_pages); 713 skip_async: 714 loops++; 715 if (wait_ordered && !trans) { 716 btrfs_wait_ordered_roots(fs_info, items, NULL); 717 } else { 718 time_left = schedule_timeout_killable(1); 719 if (time_left) 720 break; 721 } 722 723 /* 724 * If we are for preemption we just want a one-shot of delalloc 725 * flushing so we can stop flushing if we decide we don't need 726 * to anymore. 727 */ 728 if (for_preempt) 729 break; 730 731 spin_lock(&space_info->lock); 732 if (list_empty(&space_info->tickets) && 733 list_empty(&space_info->priority_tickets)) { 734 spin_unlock(&space_info->lock); 735 break; 736 } 737 spin_unlock(&space_info->lock); 738 739 delalloc_bytes = percpu_counter_sum_positive( 740 &fs_info->delalloc_bytes); 741 ordered_bytes = percpu_counter_sum_positive( 742 &fs_info->ordered_bytes); 743 } 744 } 745 746 /* 747 * Try to flush some data based on policy set by @state. This is only advisory 748 * and may fail for various reasons. The caller is supposed to examine the 749 * state of @space_info to detect the outcome. 750 */ 751 static void flush_space(struct btrfs_fs_info *fs_info, 752 struct btrfs_space_info *space_info, u64 num_bytes, 753 enum btrfs_flush_state state, bool for_preempt) 754 { 755 struct btrfs_root *root = fs_info->tree_root; 756 struct btrfs_trans_handle *trans; 757 int nr; 758 int ret = 0; 759 760 switch (state) { 761 case FLUSH_DELAYED_ITEMS_NR: 762 case FLUSH_DELAYED_ITEMS: 763 if (state == FLUSH_DELAYED_ITEMS_NR) 764 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 765 else 766 nr = -1; 767 768 trans = btrfs_join_transaction_nostart(root); 769 if (IS_ERR(trans)) { 770 ret = PTR_ERR(trans); 771 if (ret == -ENOENT) 772 ret = 0; 773 break; 774 } 775 ret = btrfs_run_delayed_items_nr(trans, nr); 776 btrfs_end_transaction(trans); 777 break; 778 case FLUSH_DELALLOC: 779 case FLUSH_DELALLOC_WAIT: 780 case FLUSH_DELALLOC_FULL: 781 if (state == FLUSH_DELALLOC_FULL) 782 num_bytes = U64_MAX; 783 shrink_delalloc(fs_info, space_info, num_bytes, 784 state != FLUSH_DELALLOC, for_preempt); 785 break; 786 case FLUSH_DELAYED_REFS_NR: 787 case FLUSH_DELAYED_REFS: 788 trans = btrfs_join_transaction_nostart(root); 789 if (IS_ERR(trans)) { 790 ret = PTR_ERR(trans); 791 if (ret == -ENOENT) 792 ret = 0; 793 break; 794 } 795 if (state == FLUSH_DELAYED_REFS_NR) 796 btrfs_run_delayed_refs(trans, num_bytes); 797 else 798 btrfs_run_delayed_refs(trans, 0); 799 btrfs_end_transaction(trans); 800 break; 801 case ALLOC_CHUNK: 802 case ALLOC_CHUNK_FORCE: 803 trans = btrfs_join_transaction(root); 804 if (IS_ERR(trans)) { 805 ret = PTR_ERR(trans); 806 break; 807 } 808 ret = btrfs_chunk_alloc(trans, 809 btrfs_get_alloc_profile(fs_info, space_info->flags), 810 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 811 CHUNK_ALLOC_FORCE); 812 btrfs_end_transaction(trans); 813 814 if (ret > 0 || ret == -ENOSPC) 815 ret = 0; 816 break; 817 case RUN_DELAYED_IPUTS: 818 /* 819 * If we have pending delayed iputs then we could free up a 820 * bunch of pinned space, so make sure we run the iputs before 821 * we do our pinned bytes check below. 822 */ 823 btrfs_run_delayed_iputs(fs_info); 824 btrfs_wait_on_delayed_iputs(fs_info); 825 break; 826 case COMMIT_TRANS: 827 ASSERT(current->journal_info == NULL); 828 /* 829 * We don't want to start a new transaction, just attach to the 830 * current one or wait it fully commits in case its commit is 831 * happening at the moment. Note: we don't use a nostart join 832 * because that does not wait for a transaction to fully commit 833 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 834 */ 835 ret = btrfs_commit_current_transaction(root); 836 break; 837 default: 838 ret = -ENOSPC; 839 break; 840 } 841 842 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 843 ret, for_preempt); 844 return; 845 } 846 847 static u64 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 848 const struct btrfs_space_info *space_info) 849 { 850 u64 used; 851 u64 avail; 852 u64 to_reclaim = space_info->reclaim_size; 853 854 lockdep_assert_held(&space_info->lock); 855 856 avail = calc_available_free_space(fs_info, space_info, 857 BTRFS_RESERVE_FLUSH_ALL); 858 used = btrfs_space_info_used(space_info, true); 859 860 /* 861 * We may be flushing because suddenly we have less space than we had 862 * before, and now we're well over-committed based on our current free 863 * space. If that's the case add in our overage so we make sure to put 864 * appropriate pressure on the flushing state machine. 865 */ 866 if (space_info->total_bytes + avail < used) 867 to_reclaim += used - (space_info->total_bytes + avail); 868 869 return to_reclaim; 870 } 871 872 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 873 const struct btrfs_space_info *space_info) 874 { 875 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 876 u64 ordered, delalloc; 877 u64 thresh; 878 u64 used; 879 880 thresh = mult_perc(space_info->total_bytes, 90); 881 882 lockdep_assert_held(&space_info->lock); 883 884 /* If we're just plain full then async reclaim just slows us down. */ 885 if ((space_info->bytes_used + space_info->bytes_reserved + 886 global_rsv_size) >= thresh) 887 return false; 888 889 used = space_info->bytes_may_use + space_info->bytes_pinned; 890 891 /* The total flushable belongs to the global rsv, don't flush. */ 892 if (global_rsv_size >= used) 893 return false; 894 895 /* 896 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 897 * that devoted to other reservations then there's no sense in flushing, 898 * we don't have a lot of things that need flushing. 899 */ 900 if (used - global_rsv_size <= SZ_128M) 901 return false; 902 903 /* 904 * We have tickets queued, bail so we don't compete with the async 905 * flushers. 906 */ 907 if (space_info->reclaim_size) 908 return false; 909 910 /* 911 * If we have over half of the free space occupied by reservations or 912 * pinned then we want to start flushing. 913 * 914 * We do not do the traditional thing here, which is to say 915 * 916 * if (used >= ((total_bytes + avail) / 2)) 917 * return 1; 918 * 919 * because this doesn't quite work how we want. If we had more than 50% 920 * of the space_info used by bytes_used and we had 0 available we'd just 921 * constantly run the background flusher. Instead we want it to kick in 922 * if our reclaimable space exceeds our clamped free space. 923 * 924 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 925 * the following: 926 * 927 * Amount of RAM Minimum threshold Maximum threshold 928 * 929 * 256GiB 1GiB 128GiB 930 * 128GiB 512MiB 64GiB 931 * 64GiB 256MiB 32GiB 932 * 32GiB 128MiB 16GiB 933 * 16GiB 64MiB 8GiB 934 * 935 * These are the range our thresholds will fall in, corresponding to how 936 * much delalloc we need for the background flusher to kick in. 937 */ 938 939 thresh = calc_available_free_space(fs_info, space_info, 940 BTRFS_RESERVE_FLUSH_ALL); 941 used = space_info->bytes_used + space_info->bytes_reserved + 942 space_info->bytes_readonly + global_rsv_size; 943 if (used < space_info->total_bytes) 944 thresh += space_info->total_bytes - used; 945 thresh >>= space_info->clamp; 946 947 used = space_info->bytes_pinned; 948 949 /* 950 * If we have more ordered bytes than delalloc bytes then we're either 951 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 952 * around. Preemptive flushing is only useful in that it can free up 953 * space before tickets need to wait for things to finish. In the case 954 * of ordered extents, preemptively waiting on ordered extents gets us 955 * nothing, if our reservations are tied up in ordered extents we'll 956 * simply have to slow down writers by forcing them to wait on ordered 957 * extents. 958 * 959 * In the case that ordered is larger than delalloc, only include the 960 * block reserves that we would actually be able to directly reclaim 961 * from. In this case if we're heavy on metadata operations this will 962 * clearly be heavy enough to warrant preemptive flushing. In the case 963 * of heavy DIO or ordered reservations, preemptive flushing will just 964 * waste time and cause us to slow down. 965 * 966 * We want to make sure we truly are maxed out on ordered however, so 967 * cut ordered in half, and if it's still higher than delalloc then we 968 * can keep flushing. This is to avoid the case where we start 969 * flushing, and now delalloc == ordered and we stop preemptively 970 * flushing when we could still have several gigs of delalloc to flush. 971 */ 972 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 973 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 974 if (ordered >= delalloc) 975 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 976 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 977 else 978 used += space_info->bytes_may_use - global_rsv_size; 979 980 return (used >= thresh && !btrfs_fs_closing(fs_info) && 981 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 982 } 983 984 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 985 struct btrfs_space_info *space_info, 986 struct reserve_ticket *ticket) 987 { 988 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 989 u64 min_bytes; 990 991 if (!ticket->steal) 992 return false; 993 994 if (global_rsv->space_info != space_info) 995 return false; 996 997 spin_lock(&global_rsv->lock); 998 min_bytes = mult_perc(global_rsv->size, 10); 999 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1000 spin_unlock(&global_rsv->lock); 1001 return false; 1002 } 1003 global_rsv->reserved -= ticket->bytes; 1004 remove_ticket(space_info, ticket); 1005 ticket->bytes = 0; 1006 wake_up(&ticket->wait); 1007 space_info->tickets_id++; 1008 if (global_rsv->reserved < global_rsv->size) 1009 global_rsv->full = 0; 1010 spin_unlock(&global_rsv->lock); 1011 1012 return true; 1013 } 1014 1015 /* 1016 * We've exhausted our flushing, start failing tickets. 1017 * 1018 * @fs_info - fs_info for this fs 1019 * @space_info - the space info we were flushing 1020 * 1021 * We call this when we've exhausted our flushing ability and haven't made 1022 * progress in satisfying tickets. The reservation code handles tickets in 1023 * order, so if there is a large ticket first and then smaller ones we could 1024 * very well satisfy the smaller tickets. This will attempt to wake up any 1025 * tickets in the list to catch this case. 1026 * 1027 * This function returns true if it was able to make progress by clearing out 1028 * other tickets, or if it stumbles across a ticket that was smaller than the 1029 * first ticket. 1030 */ 1031 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1032 struct btrfs_space_info *space_info) 1033 { 1034 struct reserve_ticket *ticket; 1035 u64 tickets_id = space_info->tickets_id; 1036 const bool aborted = BTRFS_FS_ERROR(fs_info); 1037 1038 trace_btrfs_fail_all_tickets(fs_info, space_info); 1039 1040 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1041 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1042 __btrfs_dump_space_info(fs_info, space_info); 1043 } 1044 1045 while (!list_empty(&space_info->tickets) && 1046 tickets_id == space_info->tickets_id) { 1047 ticket = list_first_entry(&space_info->tickets, 1048 struct reserve_ticket, list); 1049 1050 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1051 return true; 1052 1053 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1054 btrfs_info(fs_info, "failing ticket with %llu bytes", 1055 ticket->bytes); 1056 1057 remove_ticket(space_info, ticket); 1058 if (aborted) 1059 ticket->error = -EIO; 1060 else 1061 ticket->error = -ENOSPC; 1062 wake_up(&ticket->wait); 1063 1064 /* 1065 * We're just throwing tickets away, so more flushing may not 1066 * trip over btrfs_try_granting_tickets, so we need to call it 1067 * here to see if we can make progress with the next ticket in 1068 * the list. 1069 */ 1070 if (!aborted) 1071 btrfs_try_granting_tickets(fs_info, space_info); 1072 } 1073 return (tickets_id != space_info->tickets_id); 1074 } 1075 1076 /* 1077 * This is for normal flushers, we can wait all goddamned day if we want to. We 1078 * will loop and continuously try to flush as long as we are making progress. 1079 * We count progress as clearing off tickets each time we have to loop. 1080 */ 1081 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1082 { 1083 struct btrfs_fs_info *fs_info; 1084 struct btrfs_space_info *space_info; 1085 u64 to_reclaim; 1086 enum btrfs_flush_state flush_state; 1087 int commit_cycles = 0; 1088 u64 last_tickets_id; 1089 1090 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1091 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1092 1093 spin_lock(&space_info->lock); 1094 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1095 if (!to_reclaim) { 1096 space_info->flush = 0; 1097 spin_unlock(&space_info->lock); 1098 return; 1099 } 1100 last_tickets_id = space_info->tickets_id; 1101 spin_unlock(&space_info->lock); 1102 1103 flush_state = FLUSH_DELAYED_ITEMS_NR; 1104 do { 1105 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1106 spin_lock(&space_info->lock); 1107 if (list_empty(&space_info->tickets)) { 1108 space_info->flush = 0; 1109 spin_unlock(&space_info->lock); 1110 return; 1111 } 1112 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1113 space_info); 1114 if (last_tickets_id == space_info->tickets_id) { 1115 flush_state++; 1116 } else { 1117 last_tickets_id = space_info->tickets_id; 1118 flush_state = FLUSH_DELAYED_ITEMS_NR; 1119 if (commit_cycles) 1120 commit_cycles--; 1121 } 1122 1123 /* 1124 * We do not want to empty the system of delalloc unless we're 1125 * under heavy pressure, so allow one trip through the flushing 1126 * logic before we start doing a FLUSH_DELALLOC_FULL. 1127 */ 1128 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1129 flush_state++; 1130 1131 /* 1132 * We don't want to force a chunk allocation until we've tried 1133 * pretty hard to reclaim space. Think of the case where we 1134 * freed up a bunch of space and so have a lot of pinned space 1135 * to reclaim. We would rather use that than possibly create a 1136 * underutilized metadata chunk. So if this is our first run 1137 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1138 * commit the transaction. If nothing has changed the next go 1139 * around then we can force a chunk allocation. 1140 */ 1141 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1142 flush_state++; 1143 1144 if (flush_state > COMMIT_TRANS) { 1145 commit_cycles++; 1146 if (commit_cycles > 2) { 1147 if (maybe_fail_all_tickets(fs_info, space_info)) { 1148 flush_state = FLUSH_DELAYED_ITEMS_NR; 1149 commit_cycles--; 1150 } else { 1151 space_info->flush = 0; 1152 } 1153 } else { 1154 flush_state = FLUSH_DELAYED_ITEMS_NR; 1155 } 1156 } 1157 spin_unlock(&space_info->lock); 1158 } while (flush_state <= COMMIT_TRANS); 1159 } 1160 1161 /* 1162 * This handles pre-flushing of metadata space before we get to the point that 1163 * we need to start blocking threads on tickets. The logic here is different 1164 * from the other flush paths because it doesn't rely on tickets to tell us how 1165 * much we need to flush, instead it attempts to keep us below the 80% full 1166 * watermark of space by flushing whichever reservation pool is currently the 1167 * largest. 1168 */ 1169 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1170 { 1171 struct btrfs_fs_info *fs_info; 1172 struct btrfs_space_info *space_info; 1173 struct btrfs_block_rsv *delayed_block_rsv; 1174 struct btrfs_block_rsv *delayed_refs_rsv; 1175 struct btrfs_block_rsv *global_rsv; 1176 struct btrfs_block_rsv *trans_rsv; 1177 int loops = 0; 1178 1179 fs_info = container_of(work, struct btrfs_fs_info, 1180 preempt_reclaim_work); 1181 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1182 delayed_block_rsv = &fs_info->delayed_block_rsv; 1183 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1184 global_rsv = &fs_info->global_block_rsv; 1185 trans_rsv = &fs_info->trans_block_rsv; 1186 1187 spin_lock(&space_info->lock); 1188 while (need_preemptive_reclaim(fs_info, space_info)) { 1189 enum btrfs_flush_state flush; 1190 u64 delalloc_size = 0; 1191 u64 to_reclaim, block_rsv_size; 1192 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1193 1194 loops++; 1195 1196 /* 1197 * We don't have a precise counter for the metadata being 1198 * reserved for delalloc, so we'll approximate it by subtracting 1199 * out the block rsv's space from the bytes_may_use. If that 1200 * amount is higher than the individual reserves, then we can 1201 * assume it's tied up in delalloc reservations. 1202 */ 1203 block_rsv_size = global_rsv_size + 1204 btrfs_block_rsv_reserved(delayed_block_rsv) + 1205 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1206 btrfs_block_rsv_reserved(trans_rsv); 1207 if (block_rsv_size < space_info->bytes_may_use) 1208 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1209 1210 /* 1211 * We don't want to include the global_rsv in our calculation, 1212 * because that's space we can't touch. Subtract it from the 1213 * block_rsv_size for the next checks. 1214 */ 1215 block_rsv_size -= global_rsv_size; 1216 1217 /* 1218 * We really want to avoid flushing delalloc too much, as it 1219 * could result in poor allocation patterns, so only flush it if 1220 * it's larger than the rest of the pools combined. 1221 */ 1222 if (delalloc_size > block_rsv_size) { 1223 to_reclaim = delalloc_size; 1224 flush = FLUSH_DELALLOC; 1225 } else if (space_info->bytes_pinned > 1226 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1227 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1228 to_reclaim = space_info->bytes_pinned; 1229 flush = COMMIT_TRANS; 1230 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1231 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1232 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1233 flush = FLUSH_DELAYED_ITEMS_NR; 1234 } else { 1235 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1236 flush = FLUSH_DELAYED_REFS_NR; 1237 } 1238 1239 spin_unlock(&space_info->lock); 1240 1241 /* 1242 * We don't want to reclaim everything, just a portion, so scale 1243 * down the to_reclaim by 1/4. If it takes us down to 0, 1244 * reclaim 1 items worth. 1245 */ 1246 to_reclaim >>= 2; 1247 if (!to_reclaim) 1248 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1249 flush_space(fs_info, space_info, to_reclaim, flush, true); 1250 cond_resched(); 1251 spin_lock(&space_info->lock); 1252 } 1253 1254 /* We only went through once, back off our clamping. */ 1255 if (loops == 1 && !space_info->reclaim_size) 1256 space_info->clamp = max(1, space_info->clamp - 1); 1257 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1258 spin_unlock(&space_info->lock); 1259 } 1260 1261 /* 1262 * FLUSH_DELALLOC_WAIT: 1263 * Space is freed from flushing delalloc in one of two ways. 1264 * 1265 * 1) compression is on and we allocate less space than we reserved 1266 * 2) we are overwriting existing space 1267 * 1268 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1269 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1270 * length to ->bytes_reserved, and subtracts the reserved space from 1271 * ->bytes_may_use. 1272 * 1273 * For #2 this is trickier. Once the ordered extent runs we will drop the 1274 * extent in the range we are overwriting, which creates a delayed ref for 1275 * that freed extent. This however is not reclaimed until the transaction 1276 * commits, thus the next stages. 1277 * 1278 * RUN_DELAYED_IPUTS 1279 * If we are freeing inodes, we want to make sure all delayed iputs have 1280 * completed, because they could have been on an inode with i_nlink == 0, and 1281 * thus have been truncated and freed up space. But again this space is not 1282 * immediately reusable, it comes in the form of a delayed ref, which must be 1283 * run and then the transaction must be committed. 1284 * 1285 * COMMIT_TRANS 1286 * This is where we reclaim all of the pinned space generated by running the 1287 * iputs 1288 * 1289 * ALLOC_CHUNK_FORCE 1290 * For data we start with alloc chunk force, however we could have been full 1291 * before, and then the transaction commit could have freed new block groups, 1292 * so if we now have space to allocate do the force chunk allocation. 1293 */ 1294 static const enum btrfs_flush_state data_flush_states[] = { 1295 FLUSH_DELALLOC_FULL, 1296 RUN_DELAYED_IPUTS, 1297 COMMIT_TRANS, 1298 ALLOC_CHUNK_FORCE, 1299 }; 1300 1301 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1302 { 1303 struct btrfs_fs_info *fs_info; 1304 struct btrfs_space_info *space_info; 1305 u64 last_tickets_id; 1306 enum btrfs_flush_state flush_state = 0; 1307 1308 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1309 space_info = fs_info->data_sinfo; 1310 1311 spin_lock(&space_info->lock); 1312 if (list_empty(&space_info->tickets)) { 1313 space_info->flush = 0; 1314 spin_unlock(&space_info->lock); 1315 return; 1316 } 1317 last_tickets_id = space_info->tickets_id; 1318 spin_unlock(&space_info->lock); 1319 1320 while (!space_info->full) { 1321 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1322 spin_lock(&space_info->lock); 1323 if (list_empty(&space_info->tickets)) { 1324 space_info->flush = 0; 1325 spin_unlock(&space_info->lock); 1326 return; 1327 } 1328 1329 /* Something happened, fail everything and bail. */ 1330 if (BTRFS_FS_ERROR(fs_info)) 1331 goto aborted_fs; 1332 last_tickets_id = space_info->tickets_id; 1333 spin_unlock(&space_info->lock); 1334 } 1335 1336 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1337 flush_space(fs_info, space_info, U64_MAX, 1338 data_flush_states[flush_state], false); 1339 spin_lock(&space_info->lock); 1340 if (list_empty(&space_info->tickets)) { 1341 space_info->flush = 0; 1342 spin_unlock(&space_info->lock); 1343 return; 1344 } 1345 1346 if (last_tickets_id == space_info->tickets_id) { 1347 flush_state++; 1348 } else { 1349 last_tickets_id = space_info->tickets_id; 1350 flush_state = 0; 1351 } 1352 1353 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1354 if (space_info->full) { 1355 if (maybe_fail_all_tickets(fs_info, space_info)) 1356 flush_state = 0; 1357 else 1358 space_info->flush = 0; 1359 } else { 1360 flush_state = 0; 1361 } 1362 1363 /* Something happened, fail everything and bail. */ 1364 if (BTRFS_FS_ERROR(fs_info)) 1365 goto aborted_fs; 1366 1367 } 1368 spin_unlock(&space_info->lock); 1369 } 1370 return; 1371 1372 aborted_fs: 1373 maybe_fail_all_tickets(fs_info, space_info); 1374 space_info->flush = 0; 1375 spin_unlock(&space_info->lock); 1376 } 1377 1378 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1379 { 1380 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1381 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1382 INIT_WORK(&fs_info->preempt_reclaim_work, 1383 btrfs_preempt_reclaim_metadata_space); 1384 } 1385 1386 static const enum btrfs_flush_state priority_flush_states[] = { 1387 FLUSH_DELAYED_ITEMS_NR, 1388 FLUSH_DELAYED_ITEMS, 1389 ALLOC_CHUNK, 1390 }; 1391 1392 static const enum btrfs_flush_state evict_flush_states[] = { 1393 FLUSH_DELAYED_ITEMS_NR, 1394 FLUSH_DELAYED_ITEMS, 1395 FLUSH_DELAYED_REFS_NR, 1396 FLUSH_DELAYED_REFS, 1397 FLUSH_DELALLOC, 1398 FLUSH_DELALLOC_WAIT, 1399 FLUSH_DELALLOC_FULL, 1400 ALLOC_CHUNK, 1401 COMMIT_TRANS, 1402 }; 1403 1404 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1405 struct btrfs_space_info *space_info, 1406 struct reserve_ticket *ticket, 1407 const enum btrfs_flush_state *states, 1408 int states_nr) 1409 { 1410 u64 to_reclaim; 1411 int flush_state = 0; 1412 1413 spin_lock(&space_info->lock); 1414 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1415 /* 1416 * This is the priority reclaim path, so to_reclaim could be >0 still 1417 * because we may have only satisfied the priority tickets and still 1418 * left non priority tickets on the list. We would then have 1419 * to_reclaim but ->bytes == 0. 1420 */ 1421 if (ticket->bytes == 0) { 1422 spin_unlock(&space_info->lock); 1423 return; 1424 } 1425 1426 while (flush_state < states_nr) { 1427 spin_unlock(&space_info->lock); 1428 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1429 false); 1430 flush_state++; 1431 spin_lock(&space_info->lock); 1432 if (ticket->bytes == 0) { 1433 spin_unlock(&space_info->lock); 1434 return; 1435 } 1436 } 1437 1438 /* 1439 * Attempt to steal from the global rsv if we can, except if the fs was 1440 * turned into error mode due to a transaction abort when flushing space 1441 * above, in that case fail with the abort error instead of returning 1442 * success to the caller if we can steal from the global rsv - this is 1443 * just to have caller fail immeditelly instead of later when trying to 1444 * modify the fs, making it easier to debug -ENOSPC problems. 1445 */ 1446 if (BTRFS_FS_ERROR(fs_info)) { 1447 ticket->error = BTRFS_FS_ERROR(fs_info); 1448 remove_ticket(space_info, ticket); 1449 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1450 ticket->error = -ENOSPC; 1451 remove_ticket(space_info, ticket); 1452 } 1453 1454 /* 1455 * We must run try_granting_tickets here because we could be a large 1456 * ticket in front of a smaller ticket that can now be satisfied with 1457 * the available space. 1458 */ 1459 btrfs_try_granting_tickets(fs_info, space_info); 1460 spin_unlock(&space_info->lock); 1461 } 1462 1463 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1464 struct btrfs_space_info *space_info, 1465 struct reserve_ticket *ticket) 1466 { 1467 spin_lock(&space_info->lock); 1468 1469 /* We could have been granted before we got here. */ 1470 if (ticket->bytes == 0) { 1471 spin_unlock(&space_info->lock); 1472 return; 1473 } 1474 1475 while (!space_info->full) { 1476 spin_unlock(&space_info->lock); 1477 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1478 spin_lock(&space_info->lock); 1479 if (ticket->bytes == 0) { 1480 spin_unlock(&space_info->lock); 1481 return; 1482 } 1483 } 1484 1485 ticket->error = -ENOSPC; 1486 remove_ticket(space_info, ticket); 1487 btrfs_try_granting_tickets(fs_info, space_info); 1488 spin_unlock(&space_info->lock); 1489 } 1490 1491 static void wait_reserve_ticket(struct btrfs_space_info *space_info, 1492 struct reserve_ticket *ticket) 1493 1494 { 1495 DEFINE_WAIT(wait); 1496 int ret = 0; 1497 1498 spin_lock(&space_info->lock); 1499 while (ticket->bytes > 0 && ticket->error == 0) { 1500 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1501 if (ret) { 1502 /* 1503 * Delete us from the list. After we unlock the space 1504 * info, we don't want the async reclaim job to reserve 1505 * space for this ticket. If that would happen, then the 1506 * ticket's task would not known that space was reserved 1507 * despite getting an error, resulting in a space leak 1508 * (bytes_may_use counter of our space_info). 1509 */ 1510 remove_ticket(space_info, ticket); 1511 ticket->error = -EINTR; 1512 break; 1513 } 1514 spin_unlock(&space_info->lock); 1515 1516 schedule(); 1517 1518 finish_wait(&ticket->wait, &wait); 1519 spin_lock(&space_info->lock); 1520 } 1521 spin_unlock(&space_info->lock); 1522 } 1523 1524 /* 1525 * Do the appropriate flushing and waiting for a ticket. 1526 * 1527 * @fs_info: the filesystem 1528 * @space_info: space info for the reservation 1529 * @ticket: ticket for the reservation 1530 * @start_ns: timestamp when the reservation started 1531 * @orig_bytes: amount of bytes originally reserved 1532 * @flush: how much we can flush 1533 * 1534 * This does the work of figuring out how to flush for the ticket, waiting for 1535 * the reservation, and returning the appropriate error if there is one. 1536 */ 1537 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1538 struct btrfs_space_info *space_info, 1539 struct reserve_ticket *ticket, 1540 u64 start_ns, u64 orig_bytes, 1541 enum btrfs_reserve_flush_enum flush) 1542 { 1543 int ret; 1544 1545 switch (flush) { 1546 case BTRFS_RESERVE_FLUSH_DATA: 1547 case BTRFS_RESERVE_FLUSH_ALL: 1548 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1549 wait_reserve_ticket(space_info, ticket); 1550 break; 1551 case BTRFS_RESERVE_FLUSH_LIMIT: 1552 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1553 priority_flush_states, 1554 ARRAY_SIZE(priority_flush_states)); 1555 break; 1556 case BTRFS_RESERVE_FLUSH_EVICT: 1557 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1558 evict_flush_states, 1559 ARRAY_SIZE(evict_flush_states)); 1560 break; 1561 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1562 priority_reclaim_data_space(fs_info, space_info, ticket); 1563 break; 1564 default: 1565 ASSERT(0); 1566 break; 1567 } 1568 1569 ret = ticket->error; 1570 ASSERT(list_empty(&ticket->list)); 1571 /* 1572 * Check that we can't have an error set if the reservation succeeded, 1573 * as that would confuse tasks and lead them to error out without 1574 * releasing reserved space (if an error happens the expectation is that 1575 * space wasn't reserved at all). 1576 */ 1577 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1578 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1579 start_ns, flush, ticket->error); 1580 return ret; 1581 } 1582 1583 /* 1584 * This returns true if this flush state will go through the ordinary flushing 1585 * code. 1586 */ 1587 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1588 { 1589 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1590 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1591 } 1592 1593 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1594 struct btrfs_space_info *space_info) 1595 { 1596 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1597 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1598 1599 /* 1600 * If we're heavy on ordered operations then clamping won't help us. We 1601 * need to clamp specifically to keep up with dirty'ing buffered 1602 * writers, because there's not a 1:1 correlation of writing delalloc 1603 * and freeing space, like there is with flushing delayed refs or 1604 * delayed nodes. If we're already more ordered than delalloc then 1605 * we're keeping up, otherwise we aren't and should probably clamp. 1606 */ 1607 if (ordered < delalloc) 1608 space_info->clamp = min(space_info->clamp + 1, 8); 1609 } 1610 1611 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1612 { 1613 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1614 flush == BTRFS_RESERVE_FLUSH_EVICT); 1615 } 1616 1617 /* 1618 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1619 * fail as quickly as possible. 1620 */ 1621 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1622 { 1623 return (flush != BTRFS_RESERVE_NO_FLUSH && 1624 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1625 } 1626 1627 /* 1628 * Try to reserve bytes from the block_rsv's space. 1629 * 1630 * @fs_info: the filesystem 1631 * @space_info: space info we want to allocate from 1632 * @orig_bytes: number of bytes we want 1633 * @flush: whether or not we can flush to make our reservation 1634 * 1635 * This will reserve orig_bytes number of bytes from the space info associated 1636 * with the block_rsv. If there is not enough space it will make an attempt to 1637 * flush out space to make room. It will do this by flushing delalloc if 1638 * possible or committing the transaction. If flush is 0 then no attempts to 1639 * regain reservations will be made and this will fail if there is not enough 1640 * space already. 1641 */ 1642 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1643 struct btrfs_space_info *space_info, u64 orig_bytes, 1644 enum btrfs_reserve_flush_enum flush) 1645 { 1646 struct work_struct *async_work; 1647 struct reserve_ticket ticket; 1648 u64 start_ns = 0; 1649 u64 used; 1650 int ret = -ENOSPC; 1651 bool pending_tickets; 1652 1653 ASSERT(orig_bytes); 1654 /* 1655 * If have a transaction handle (current->journal_info != NULL), then 1656 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1657 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1658 * flushing methods can trigger transaction commits. 1659 */ 1660 if (current->journal_info) { 1661 /* One assert per line for easier debugging. */ 1662 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1663 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1664 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1665 } 1666 1667 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1668 async_work = &fs_info->async_data_reclaim_work; 1669 else 1670 async_work = &fs_info->async_reclaim_work; 1671 1672 spin_lock(&space_info->lock); 1673 used = btrfs_space_info_used(space_info, true); 1674 1675 /* 1676 * We don't want NO_FLUSH allocations to jump everybody, they can 1677 * generally handle ENOSPC in a different way, so treat them the same as 1678 * normal flushers when it comes to skipping pending tickets. 1679 */ 1680 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1681 pending_tickets = !list_empty(&space_info->tickets) || 1682 !list_empty(&space_info->priority_tickets); 1683 else 1684 pending_tickets = !list_empty(&space_info->priority_tickets); 1685 1686 /* 1687 * Carry on if we have enough space (short-circuit) OR call 1688 * can_overcommit() to ensure we can overcommit to continue. 1689 */ 1690 if (!pending_tickets && 1691 ((used + orig_bytes <= space_info->total_bytes) || 1692 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1693 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1694 orig_bytes); 1695 ret = 0; 1696 } 1697 1698 /* 1699 * Things are dire, we need to make a reservation so we don't abort. We 1700 * will let this reservation go through as long as we have actual space 1701 * left to allocate for the block. 1702 */ 1703 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1704 used = btrfs_space_info_used(space_info, false); 1705 if (used + orig_bytes <= space_info->total_bytes) { 1706 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1707 orig_bytes); 1708 ret = 0; 1709 } 1710 } 1711 1712 /* 1713 * If we couldn't make a reservation then setup our reservation ticket 1714 * and kick the async worker if it's not already running. 1715 * 1716 * If we are a priority flusher then we just need to add our ticket to 1717 * the list and we will do our own flushing further down. 1718 */ 1719 if (ret && can_ticket(flush)) { 1720 ticket.bytes = orig_bytes; 1721 ticket.error = 0; 1722 space_info->reclaim_size += ticket.bytes; 1723 init_waitqueue_head(&ticket.wait); 1724 ticket.steal = can_steal(flush); 1725 if (trace_btrfs_reserve_ticket_enabled()) 1726 start_ns = ktime_get_ns(); 1727 1728 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1729 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1730 flush == BTRFS_RESERVE_FLUSH_DATA) { 1731 list_add_tail(&ticket.list, &space_info->tickets); 1732 if (!space_info->flush) { 1733 /* 1734 * We were forced to add a reserve ticket, so 1735 * our preemptive flushing is unable to keep 1736 * up. Clamp down on the threshold for the 1737 * preemptive flushing in order to keep up with 1738 * the workload. 1739 */ 1740 maybe_clamp_preempt(fs_info, space_info); 1741 1742 space_info->flush = 1; 1743 trace_btrfs_trigger_flush(fs_info, 1744 space_info->flags, 1745 orig_bytes, flush, 1746 "enospc"); 1747 queue_work(system_unbound_wq, async_work); 1748 } 1749 } else { 1750 list_add_tail(&ticket.list, 1751 &space_info->priority_tickets); 1752 } 1753 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1754 /* 1755 * We will do the space reservation dance during log replay, 1756 * which means we won't have fs_info->fs_root set, so don't do 1757 * the async reclaim as we will panic. 1758 */ 1759 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1760 !work_busy(&fs_info->preempt_reclaim_work) && 1761 need_preemptive_reclaim(fs_info, space_info)) { 1762 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1763 orig_bytes, flush, "preempt"); 1764 queue_work(system_unbound_wq, 1765 &fs_info->preempt_reclaim_work); 1766 } 1767 } 1768 spin_unlock(&space_info->lock); 1769 if (!ret || !can_ticket(flush)) 1770 return ret; 1771 1772 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1773 orig_bytes, flush); 1774 } 1775 1776 /* 1777 * Try to reserve metadata bytes from the block_rsv's space. 1778 * 1779 * @fs_info: the filesystem 1780 * @space_info: the space_info we're allocating for 1781 * @orig_bytes: number of bytes we want 1782 * @flush: whether or not we can flush to make our reservation 1783 * 1784 * This will reserve orig_bytes number of bytes from the space info associated 1785 * with the block_rsv. If there is not enough space it will make an attempt to 1786 * flush out space to make room. It will do this by flushing delalloc if 1787 * possible or committing the transaction. If flush is 0 then no attempts to 1788 * regain reservations will be made and this will fail if there is not enough 1789 * space already. 1790 */ 1791 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1792 struct btrfs_space_info *space_info, 1793 u64 orig_bytes, 1794 enum btrfs_reserve_flush_enum flush) 1795 { 1796 int ret; 1797 1798 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1799 if (ret == -ENOSPC) { 1800 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1801 space_info->flags, orig_bytes, 1); 1802 1803 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1804 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1805 } 1806 return ret; 1807 } 1808 1809 /* 1810 * Try to reserve data bytes for an allocation. 1811 * 1812 * @fs_info: the filesystem 1813 * @bytes: number of bytes we need 1814 * @flush: how we are allowed to flush 1815 * 1816 * This will reserve bytes from the data space info. If there is not enough 1817 * space then we will attempt to flush space as specified by flush. 1818 */ 1819 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1820 enum btrfs_reserve_flush_enum flush) 1821 { 1822 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1823 int ret; 1824 1825 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1826 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1827 flush == BTRFS_RESERVE_NO_FLUSH); 1828 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1829 1830 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1831 if (ret == -ENOSPC) { 1832 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1833 data_sinfo->flags, bytes, 1); 1834 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1835 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1836 } 1837 return ret; 1838 } 1839 1840 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1841 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1842 { 1843 struct btrfs_space_info *space_info; 1844 1845 btrfs_info(fs_info, "dumping space info:"); 1846 list_for_each_entry(space_info, &fs_info->space_info, list) { 1847 spin_lock(&space_info->lock); 1848 __btrfs_dump_space_info(fs_info, space_info); 1849 spin_unlock(&space_info->lock); 1850 } 1851 dump_global_block_rsv(fs_info); 1852 } 1853 1854 /* 1855 * Account the unused space of all the readonly block group in the space_info. 1856 * takes mirrors into account. 1857 */ 1858 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1859 { 1860 struct btrfs_block_group *block_group; 1861 u64 free_bytes = 0; 1862 int factor; 1863 1864 /* It's df, we don't care if it's racy */ 1865 if (list_empty(&sinfo->ro_bgs)) 1866 return 0; 1867 1868 spin_lock(&sinfo->lock); 1869 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1870 spin_lock(&block_group->lock); 1871 1872 if (!block_group->ro) { 1873 spin_unlock(&block_group->lock); 1874 continue; 1875 } 1876 1877 factor = btrfs_bg_type_to_factor(block_group->flags); 1878 free_bytes += (block_group->length - 1879 block_group->used) * factor; 1880 1881 spin_unlock(&block_group->lock); 1882 } 1883 spin_unlock(&sinfo->lock); 1884 1885 return free_bytes; 1886 } 1887 1888 static u64 calc_pct_ratio(u64 x, u64 y) 1889 { 1890 int err; 1891 1892 if (!y) 1893 return 0; 1894 again: 1895 err = check_mul_overflow(100, x, &x); 1896 if (err) 1897 goto lose_precision; 1898 return div64_u64(x, y); 1899 lose_precision: 1900 x >>= 10; 1901 y >>= 10; 1902 if (!y) 1903 y = 1; 1904 goto again; 1905 } 1906 1907 /* 1908 * A reasonable buffer for unallocated space is 10 data block_groups. 1909 * If we claw this back repeatedly, we can still achieve efficient 1910 * utilization when near full, and not do too much reclaim while 1911 * always maintaining a solid buffer for workloads that quickly 1912 * allocate and pressure the unallocated space. 1913 */ 1914 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info) 1915 { 1916 u64 chunk_sz = calc_effective_data_chunk_size(fs_info); 1917 1918 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz; 1919 } 1920 1921 /* 1922 * The fundamental goal of automatic reclaim is to protect the filesystem's 1923 * unallocated space and thus minimize the probability of the filesystem going 1924 * read only when a metadata allocation failure causes a transaction abort. 1925 * 1926 * However, relocations happen into the space_info's unused space, therefore 1927 * automatic reclaim must also back off as that space runs low. There is no 1928 * value in doing trivial "relocations" of re-writing the same block group 1929 * into a fresh one. 1930 * 1931 * Furthermore, we want to avoid doing too much reclaim even if there are good 1932 * candidates. This is because the allocator is pretty good at filling up the 1933 * holes with writes. So we want to do just enough reclaim to try and stay 1934 * safe from running out of unallocated space but not be wasteful about it. 1935 * 1936 * Therefore, the dynamic reclaim threshold is calculated as follows: 1937 * - calculate a target unallocated amount of 5 block group sized chunks 1938 * - ratchet up the intensity of reclaim depending on how far we are from 1939 * that target by using a formula of unalloc / target to set the threshold. 1940 * 1941 * Typically with 10 block groups as the target, the discrete values this comes 1942 * out to are 0, 10, 20, ... , 80, 90, and 99. 1943 */ 1944 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info) 1945 { 1946 struct btrfs_fs_info *fs_info = space_info->fs_info; 1947 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 1948 u64 target = calc_unalloc_target(fs_info); 1949 u64 alloc = space_info->total_bytes; 1950 u64 used = btrfs_space_info_used(space_info, false); 1951 u64 unused = alloc - used; 1952 u64 want = target > unalloc ? target - unalloc : 0; 1953 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 1954 1955 /* If we have no unused space, don't bother, it won't work anyway. */ 1956 if (unused < data_chunk_size) 1957 return 0; 1958 1959 /* Cast to int is OK because want <= target. */ 1960 return calc_pct_ratio(want, target); 1961 } 1962 1963 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info) 1964 { 1965 lockdep_assert_held(&space_info->lock); 1966 1967 if (READ_ONCE(space_info->dynamic_reclaim)) 1968 return calc_dynamic_reclaim_threshold(space_info); 1969 return READ_ONCE(space_info->bg_reclaim_threshold); 1970 } 1971 1972 /* 1973 * Under "urgent" reclaim, we will reclaim even fresh block groups that have 1974 * recently seen successful allocations, as we are desperate to reclaim 1975 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs. 1976 */ 1977 static bool is_reclaim_urgent(struct btrfs_space_info *space_info) 1978 { 1979 struct btrfs_fs_info *fs_info = space_info->fs_info; 1980 u64 unalloc = atomic64_read(&fs_info->free_chunk_space); 1981 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info); 1982 1983 return unalloc < data_chunk_size; 1984 } 1985 1986 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid) 1987 { 1988 struct btrfs_block_group *bg; 1989 int thresh_pct; 1990 bool try_again = true; 1991 bool urgent; 1992 1993 spin_lock(&space_info->lock); 1994 urgent = is_reclaim_urgent(space_info); 1995 thresh_pct = btrfs_calc_reclaim_threshold(space_info); 1996 spin_unlock(&space_info->lock); 1997 1998 down_read(&space_info->groups_sem); 1999 again: 2000 list_for_each_entry(bg, &space_info->block_groups[raid], list) { 2001 u64 thresh; 2002 bool reclaim = false; 2003 2004 btrfs_get_block_group(bg); 2005 spin_lock(&bg->lock); 2006 thresh = mult_perc(bg->length, thresh_pct); 2007 if (bg->used < thresh && bg->reclaim_mark) { 2008 try_again = false; 2009 reclaim = true; 2010 } 2011 bg->reclaim_mark++; 2012 spin_unlock(&bg->lock); 2013 if (reclaim) 2014 btrfs_mark_bg_to_reclaim(bg); 2015 btrfs_put_block_group(bg); 2016 } 2017 2018 /* 2019 * In situations where we are very motivated to reclaim (low unalloc) 2020 * use two passes to make the reclaim mark check best effort. 2021 * 2022 * If we have any staler groups, we don't touch the fresher ones, but if we 2023 * really need a block group, do take a fresh one. 2024 */ 2025 if (try_again && urgent) { 2026 try_again = false; 2027 goto again; 2028 } 2029 2030 up_read(&space_info->groups_sem); 2031 } 2032 2033 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes) 2034 { 2035 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info); 2036 2037 lockdep_assert_held(&space_info->lock); 2038 space_info->reclaimable_bytes += bytes; 2039 2040 if (space_info->reclaimable_bytes >= chunk_sz) 2041 btrfs_set_periodic_reclaim_ready(space_info, true); 2042 } 2043 2044 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready) 2045 { 2046 lockdep_assert_held(&space_info->lock); 2047 if (!READ_ONCE(space_info->periodic_reclaim)) 2048 return; 2049 if (ready != space_info->periodic_reclaim_ready) { 2050 space_info->periodic_reclaim_ready = ready; 2051 if (!ready) 2052 space_info->reclaimable_bytes = 0; 2053 } 2054 } 2055 2056 bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info) 2057 { 2058 bool ret; 2059 2060 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 2061 return false; 2062 if (!READ_ONCE(space_info->periodic_reclaim)) 2063 return false; 2064 2065 spin_lock(&space_info->lock); 2066 ret = space_info->periodic_reclaim_ready; 2067 btrfs_set_periodic_reclaim_ready(space_info, false); 2068 spin_unlock(&space_info->lock); 2069 2070 return ret; 2071 } 2072 2073 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info) 2074 { 2075 int raid; 2076 struct btrfs_space_info *space_info; 2077 2078 list_for_each_entry(space_info, &fs_info->space_info, list) { 2079 if (!btrfs_should_periodic_reclaim(space_info)) 2080 continue; 2081 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++) 2082 do_reclaim_sweep(space_info, raid); 2083 } 2084 } 2085