1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 #include "fs.h" 14 #include "accessors.h" 15 #include "extent-tree.h" 16 17 /* 18 * HOW DOES SPACE RESERVATION WORK 19 * 20 * If you want to know about delalloc specifically, there is a separate comment 21 * for that with the delalloc code. This comment is about how the whole system 22 * works generally. 23 * 24 * BASIC CONCEPTS 25 * 26 * 1) space_info. This is the ultimate arbiter of how much space we can use. 27 * There's a description of the bytes_ fields with the struct declaration, 28 * refer to that for specifics on each field. Suffice it to say that for 29 * reservations we care about total_bytes - SUM(space_info->bytes_) when 30 * determining if there is space to make an allocation. There is a space_info 31 * for METADATA, SYSTEM, and DATA areas. 32 * 33 * 2) block_rsv's. These are basically buckets for every different type of 34 * metadata reservation we have. You can see the comment in the block_rsv 35 * code on the rules for each type, but generally block_rsv->reserved is how 36 * much space is accounted for in space_info->bytes_may_use. 37 * 38 * 3) btrfs_calc*_size. These are the worst case calculations we used based 39 * on the number of items we will want to modify. We have one for changing 40 * items, and one for inserting new items. Generally we use these helpers to 41 * determine the size of the block reserves, and then use the actual bytes 42 * values to adjust the space_info counters. 43 * 44 * MAKING RESERVATIONS, THE NORMAL CASE 45 * 46 * We call into either btrfs_reserve_data_bytes() or 47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 48 * num_bytes we want to reserve. 49 * 50 * ->reserve 51 * space_info->bytes_may_reserve += num_bytes 52 * 53 * ->extent allocation 54 * Call btrfs_add_reserved_bytes() which does 55 * space_info->bytes_may_reserve -= num_bytes 56 * space_info->bytes_reserved += extent_bytes 57 * 58 * ->insert reference 59 * Call btrfs_update_block_group() which does 60 * space_info->bytes_reserved -= extent_bytes 61 * space_info->bytes_used += extent_bytes 62 * 63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 64 * 65 * Assume we are unable to simply make the reservation because we do not have 66 * enough space 67 * 68 * -> __reserve_bytes 69 * create a reserve_ticket with ->bytes set to our reservation, add it to 70 * the tail of space_info->tickets, kick async flush thread 71 * 72 * ->handle_reserve_ticket 73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 74 * on the ticket. 75 * 76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 77 * Flushes various things attempting to free up space. 78 * 79 * -> btrfs_try_granting_tickets() 80 * This is called by anything that either subtracts space from 81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 82 * space_info->total_bytes. This loops through the ->priority_tickets and 83 * then the ->tickets list checking to see if the reservation can be 84 * completed. If it can the space is added to space_info->bytes_may_use and 85 * the ticket is woken up. 86 * 87 * -> ticket wakeup 88 * Check if ->bytes == 0, if it does we got our reservation and we can carry 89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 90 * were interrupted.) 91 * 92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 93 * 94 * Same as the above, except we add ourselves to the 95 * space_info->priority_tickets, and we do not use ticket->wait, we simply 96 * call flush_space() ourselves for the states that are safe for us to call 97 * without deadlocking and hope for the best. 98 * 99 * THE FLUSHING STATES 100 * 101 * Generally speaking we will have two cases for each state, a "nice" state 102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 103 * reduce the locking over head on the various trees, and even to keep from 104 * doing any work at all in the case of delayed refs. Each of these delayed 105 * things however hold reservations, and so letting them run allows us to 106 * reclaim space so we can make new reservations. 107 * 108 * FLUSH_DELAYED_ITEMS 109 * Every inode has a delayed item to update the inode. Take a simple write 110 * for example, we would update the inode item at write time to update the 111 * mtime, and then again at finish_ordered_io() time in order to update the 112 * isize or bytes. We keep these delayed items to coalesce these operations 113 * into a single operation done on demand. These are an easy way to reclaim 114 * metadata space. 115 * 116 * FLUSH_DELALLOC 117 * Look at the delalloc comment to get an idea of how much space is reserved 118 * for delayed allocation. We can reclaim some of this space simply by 119 * running delalloc, but usually we need to wait for ordered extents to 120 * reclaim the bulk of this space. 121 * 122 * FLUSH_DELAYED_REFS 123 * We have a block reserve for the outstanding delayed refs space, and every 124 * delayed ref operation holds a reservation. Running these is a quick way 125 * to reclaim space, but we want to hold this until the end because COW can 126 * churn a lot and we can avoid making some extent tree modifications if we 127 * are able to delay for as long as possible. 128 * 129 * ALLOC_CHUNK 130 * We will skip this the first time through space reservation, because of 131 * overcommit and we don't want to have a lot of useless metadata space when 132 * our worst case reservations will likely never come true. 133 * 134 * RUN_DELAYED_IPUTS 135 * If we're freeing inodes we're likely freeing checksums, file extent 136 * items, and extent tree items. Loads of space could be freed up by these 137 * operations, however they won't be usable until the transaction commits. 138 * 139 * COMMIT_TRANS 140 * This will commit the transaction. Historically we had a lot of logic 141 * surrounding whether or not we'd commit the transaction, but this waits born 142 * out of a pre-tickets era where we could end up committing the transaction 143 * thousands of times in a row without making progress. Now thanks to our 144 * ticketing system we know if we're not making progress and can error 145 * everybody out after a few commits rather than burning the disk hoping for 146 * a different answer. 147 * 148 * OVERCOMMIT 149 * 150 * Because we hold so many reservations for metadata we will allow you to 151 * reserve more space than is currently free in the currently allocate 152 * metadata space. This only happens with metadata, data does not allow 153 * overcommitting. 154 * 155 * You can see the current logic for when we allow overcommit in 156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 157 * is no unallocated space to be had, all reservations are kept within the 158 * free space in the allocated metadata chunks. 159 * 160 * Because of overcommitting, you generally want to use the 161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 162 * thing with or without extra unallocated space. 163 */ 164 165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 166 bool may_use_included) 167 { 168 ASSERT(s_info); 169 return s_info->bytes_used + s_info->bytes_reserved + 170 s_info->bytes_pinned + s_info->bytes_readonly + 171 s_info->bytes_zone_unusable + 172 (may_use_included ? s_info->bytes_may_use : 0); 173 } 174 175 /* 176 * after adding space to the filesystem, we need to clear the full flags 177 * on all the space infos. 178 */ 179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 180 { 181 struct list_head *head = &info->space_info; 182 struct btrfs_space_info *found; 183 184 list_for_each_entry(found, head, list) 185 found->full = 0; 186 } 187 188 /* 189 * Block groups with more than this value (percents) of unusable space will be 190 * scheduled for background reclaim. 191 */ 192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 193 194 /* 195 * Calculate chunk size depending on volume type (regular or zoned). 196 */ 197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 198 { 199 if (btrfs_is_zoned(fs_info)) 200 return fs_info->zone_size; 201 202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 203 204 if (flags & BTRFS_BLOCK_GROUP_DATA) 205 return BTRFS_MAX_DATA_CHUNK_SIZE; 206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 207 return SZ_32M; 208 209 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 211 return SZ_1G; 212 213 return SZ_256M; 214 } 215 216 /* 217 * Update default chunk size. 218 */ 219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 220 u64 chunk_size) 221 { 222 WRITE_ONCE(space_info->chunk_size, chunk_size); 223 } 224 225 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 226 { 227 228 struct btrfs_space_info *space_info; 229 int i; 230 int ret; 231 232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 233 if (!space_info) 234 return -ENOMEM; 235 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 INIT_LIST_HEAD(&space_info->block_groups[i]); 238 init_rwsem(&space_info->groups_sem); 239 spin_lock_init(&space_info->lock); 240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 242 INIT_LIST_HEAD(&space_info->ro_bgs); 243 INIT_LIST_HEAD(&space_info->tickets); 244 INIT_LIST_HEAD(&space_info->priority_tickets); 245 space_info->clamp = 1; 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 247 248 if (btrfs_is_zoned(info)) 249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 250 251 ret = btrfs_sysfs_add_space_info_type(info, space_info); 252 if (ret) 253 return ret; 254 255 list_add(&space_info->list, &info->space_info); 256 if (flags & BTRFS_BLOCK_GROUP_DATA) 257 info->data_sinfo = space_info; 258 259 return ret; 260 } 261 262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 263 { 264 struct btrfs_super_block *disk_super; 265 u64 features; 266 u64 flags; 267 int mixed = 0; 268 int ret; 269 270 disk_super = fs_info->super_copy; 271 if (!btrfs_super_root(disk_super)) 272 return -EINVAL; 273 274 features = btrfs_super_incompat_flags(disk_super); 275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 276 mixed = 1; 277 278 flags = BTRFS_BLOCK_GROUP_SYSTEM; 279 ret = create_space_info(fs_info, flags); 280 if (ret) 281 goto out; 282 283 if (mixed) { 284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 285 ret = create_space_info(fs_info, flags); 286 } else { 287 flags = BTRFS_BLOCK_GROUP_METADATA; 288 ret = create_space_info(fs_info, flags); 289 if (ret) 290 goto out; 291 292 flags = BTRFS_BLOCK_GROUP_DATA; 293 ret = create_space_info(fs_info, flags); 294 } 295 out: 296 return ret; 297 } 298 299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 300 struct btrfs_block_group *block_group) 301 { 302 struct btrfs_space_info *found; 303 int factor, index; 304 305 factor = btrfs_bg_type_to_factor(block_group->flags); 306 307 found = btrfs_find_space_info(info, block_group->flags); 308 ASSERT(found); 309 spin_lock(&found->lock); 310 found->total_bytes += block_group->length; 311 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 312 found->active_total_bytes += block_group->length; 313 found->disk_total += block_group->length * factor; 314 found->bytes_used += block_group->used; 315 found->disk_used += block_group->used * factor; 316 found->bytes_readonly += block_group->bytes_super; 317 found->bytes_zone_unusable += block_group->zone_unusable; 318 if (block_group->length > 0) 319 found->full = 0; 320 btrfs_try_granting_tickets(info, found); 321 spin_unlock(&found->lock); 322 323 block_group->space_info = found; 324 325 index = btrfs_bg_flags_to_raid_index(block_group->flags); 326 down_write(&found->groups_sem); 327 list_add_tail(&block_group->list, &found->block_groups[index]); 328 up_write(&found->groups_sem); 329 } 330 331 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 332 u64 flags) 333 { 334 struct list_head *head = &info->space_info; 335 struct btrfs_space_info *found; 336 337 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 338 339 list_for_each_entry(found, head, list) { 340 if (found->flags & flags) 341 return found; 342 } 343 return NULL; 344 } 345 346 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 347 struct btrfs_space_info *space_info, 348 enum btrfs_reserve_flush_enum flush) 349 { 350 u64 profile; 351 u64 avail; 352 int factor; 353 354 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 355 profile = btrfs_system_alloc_profile(fs_info); 356 else 357 profile = btrfs_metadata_alloc_profile(fs_info); 358 359 avail = atomic64_read(&fs_info->free_chunk_space); 360 361 /* 362 * If we have dup, raid1 or raid10 then only half of the free 363 * space is actually usable. For raid56, the space info used 364 * doesn't include the parity drive, so we don't have to 365 * change the math 366 */ 367 factor = btrfs_bg_type_to_factor(profile); 368 avail = div_u64(avail, factor); 369 370 /* 371 * If we aren't flushing all things, let us overcommit up to 372 * 1/2th of the space. If we can flush, don't let us overcommit 373 * too much, let it overcommit up to 1/8 of the space. 374 */ 375 if (flush == BTRFS_RESERVE_FLUSH_ALL) 376 avail >>= 3; 377 else 378 avail >>= 1; 379 return avail; 380 } 381 382 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info, 383 struct btrfs_space_info *space_info) 384 { 385 /* 386 * On regular filesystem, all total_bytes are always writable. On zoned 387 * filesystem, there may be a limitation imposed by max_active_zones. 388 * For metadata allocation, we cannot finish an existing active block 389 * group to avoid a deadlock. Thus, we need to consider only the active 390 * groups to be writable for metadata space. 391 */ 392 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 393 return space_info->total_bytes; 394 395 return space_info->active_total_bytes; 396 } 397 398 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 399 struct btrfs_space_info *space_info, u64 bytes, 400 enum btrfs_reserve_flush_enum flush) 401 { 402 u64 avail; 403 u64 used; 404 405 /* Don't overcommit when in mixed mode */ 406 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 407 return 0; 408 409 used = btrfs_space_info_used(space_info, true); 410 if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA)) 411 avail = 0; 412 else 413 avail = calc_available_free_space(fs_info, space_info, flush); 414 415 if (used + bytes < writable_total_bytes(fs_info, space_info) + avail) 416 return 1; 417 return 0; 418 } 419 420 static void remove_ticket(struct btrfs_space_info *space_info, 421 struct reserve_ticket *ticket) 422 { 423 if (!list_empty(&ticket->list)) { 424 list_del_init(&ticket->list); 425 ASSERT(space_info->reclaim_size >= ticket->bytes); 426 space_info->reclaim_size -= ticket->bytes; 427 } 428 } 429 430 /* 431 * This is for space we already have accounted in space_info->bytes_may_use, so 432 * basically when we're returning space from block_rsv's. 433 */ 434 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 435 struct btrfs_space_info *space_info) 436 { 437 struct list_head *head; 438 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 439 440 lockdep_assert_held(&space_info->lock); 441 442 head = &space_info->priority_tickets; 443 again: 444 while (!list_empty(head)) { 445 struct reserve_ticket *ticket; 446 u64 used = btrfs_space_info_used(space_info, true); 447 448 ticket = list_first_entry(head, struct reserve_ticket, list); 449 450 /* Check and see if our ticket can be satisfied now. */ 451 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) || 452 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 453 flush)) { 454 btrfs_space_info_update_bytes_may_use(fs_info, 455 space_info, 456 ticket->bytes); 457 remove_ticket(space_info, ticket); 458 ticket->bytes = 0; 459 space_info->tickets_id++; 460 wake_up(&ticket->wait); 461 } else { 462 break; 463 } 464 } 465 466 if (head == &space_info->priority_tickets) { 467 head = &space_info->tickets; 468 flush = BTRFS_RESERVE_FLUSH_ALL; 469 goto again; 470 } 471 } 472 473 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 474 do { \ 475 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 476 spin_lock(&__rsv->lock); \ 477 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 478 __rsv->size, __rsv->reserved); \ 479 spin_unlock(&__rsv->lock); \ 480 } while (0) 481 482 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 483 { 484 switch (space_info->flags) { 485 case BTRFS_BLOCK_GROUP_SYSTEM: 486 return "SYSTEM"; 487 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 488 return "DATA+METADATA"; 489 case BTRFS_BLOCK_GROUP_DATA: 490 return "DATA"; 491 case BTRFS_BLOCK_GROUP_METADATA: 492 return "METADATA"; 493 default: 494 return "UNKNOWN"; 495 } 496 } 497 498 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 499 { 500 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 501 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 502 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 503 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 504 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 505 } 506 507 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 508 struct btrfs_space_info *info) 509 { 510 const char *flag_str = space_info_flag_to_str(info); 511 lockdep_assert_held(&info->lock); 512 513 /* The free space could be negative in case of overcommit */ 514 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 515 flag_str, 516 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 517 info->full ? "" : "not "); 518 btrfs_info(fs_info, 519 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 520 info->total_bytes, info->bytes_used, info->bytes_pinned, 521 info->bytes_reserved, info->bytes_may_use, 522 info->bytes_readonly, info->bytes_zone_unusable); 523 } 524 525 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 526 struct btrfs_space_info *info, u64 bytes, 527 int dump_block_groups) 528 { 529 struct btrfs_block_group *cache; 530 int index = 0; 531 532 spin_lock(&info->lock); 533 __btrfs_dump_space_info(fs_info, info); 534 dump_global_block_rsv(fs_info); 535 spin_unlock(&info->lock); 536 537 if (!dump_block_groups) 538 return; 539 540 down_read(&info->groups_sem); 541 again: 542 list_for_each_entry(cache, &info->block_groups[index], list) { 543 spin_lock(&cache->lock); 544 btrfs_info(fs_info, 545 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 546 cache->start, cache->length, cache->used, cache->pinned, 547 cache->reserved, cache->zone_unusable, 548 cache->ro ? "[readonly]" : ""); 549 spin_unlock(&cache->lock); 550 btrfs_dump_free_space(cache, bytes); 551 } 552 if (++index < BTRFS_NR_RAID_TYPES) 553 goto again; 554 up_read(&info->groups_sem); 555 } 556 557 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 558 u64 to_reclaim) 559 { 560 u64 bytes; 561 u64 nr; 562 563 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 564 nr = div64_u64(to_reclaim, bytes); 565 if (!nr) 566 nr = 1; 567 return nr; 568 } 569 570 #define EXTENT_SIZE_PER_ITEM SZ_256K 571 572 /* 573 * shrink metadata reservation for delalloc 574 */ 575 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 576 struct btrfs_space_info *space_info, 577 u64 to_reclaim, bool wait_ordered, 578 bool for_preempt) 579 { 580 struct btrfs_trans_handle *trans; 581 u64 delalloc_bytes; 582 u64 ordered_bytes; 583 u64 items; 584 long time_left; 585 int loops; 586 587 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 588 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 589 if (delalloc_bytes == 0 && ordered_bytes == 0) 590 return; 591 592 /* Calc the number of the pages we need flush for space reservation */ 593 if (to_reclaim == U64_MAX) { 594 items = U64_MAX; 595 } else { 596 /* 597 * to_reclaim is set to however much metadata we need to 598 * reclaim, but reclaiming that much data doesn't really track 599 * exactly. What we really want to do is reclaim full inode's 600 * worth of reservations, however that's not available to us 601 * here. We will take a fraction of the delalloc bytes for our 602 * flushing loops and hope for the best. Delalloc will expand 603 * the amount we write to cover an entire dirty extent, which 604 * will reclaim the metadata reservation for that range. If 605 * it's not enough subsequent flush stages will be more 606 * aggressive. 607 */ 608 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 609 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 610 } 611 612 trans = current->journal_info; 613 614 /* 615 * If we are doing more ordered than delalloc we need to just wait on 616 * ordered extents, otherwise we'll waste time trying to flush delalloc 617 * that likely won't give us the space back we need. 618 */ 619 if (ordered_bytes > delalloc_bytes && !for_preempt) 620 wait_ordered = true; 621 622 loops = 0; 623 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 624 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 625 long nr_pages = min_t(u64, temp, LONG_MAX); 626 int async_pages; 627 628 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 629 630 /* 631 * We need to make sure any outstanding async pages are now 632 * processed before we continue. This is because things like 633 * sync_inode() try to be smart and skip writing if the inode is 634 * marked clean. We don't use filemap_fwrite for flushing 635 * because we want to control how many pages we write out at a 636 * time, thus this is the only safe way to make sure we've 637 * waited for outstanding compressed workers to have started 638 * their jobs and thus have ordered extents set up properly. 639 * 640 * This exists because we do not want to wait for each 641 * individual inode to finish its async work, we simply want to 642 * start the IO on everybody, and then come back here and wait 643 * for all of the async work to catch up. Once we're done with 644 * that we know we'll have ordered extents for everything and we 645 * can decide if we wait for that or not. 646 * 647 * If we choose to replace this in the future, make absolutely 648 * sure that the proper waiting is being done in the async case, 649 * as there have been bugs in that area before. 650 */ 651 async_pages = atomic_read(&fs_info->async_delalloc_pages); 652 if (!async_pages) 653 goto skip_async; 654 655 /* 656 * We don't want to wait forever, if we wrote less pages in this 657 * loop than we have outstanding, only wait for that number of 658 * pages, otherwise we can wait for all async pages to finish 659 * before continuing. 660 */ 661 if (async_pages > nr_pages) 662 async_pages -= nr_pages; 663 else 664 async_pages = 0; 665 wait_event(fs_info->async_submit_wait, 666 atomic_read(&fs_info->async_delalloc_pages) <= 667 async_pages); 668 skip_async: 669 loops++; 670 if (wait_ordered && !trans) { 671 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 672 } else { 673 time_left = schedule_timeout_killable(1); 674 if (time_left) 675 break; 676 } 677 678 /* 679 * If we are for preemption we just want a one-shot of delalloc 680 * flushing so we can stop flushing if we decide we don't need 681 * to anymore. 682 */ 683 if (for_preempt) 684 break; 685 686 spin_lock(&space_info->lock); 687 if (list_empty(&space_info->tickets) && 688 list_empty(&space_info->priority_tickets)) { 689 spin_unlock(&space_info->lock); 690 break; 691 } 692 spin_unlock(&space_info->lock); 693 694 delalloc_bytes = percpu_counter_sum_positive( 695 &fs_info->delalloc_bytes); 696 ordered_bytes = percpu_counter_sum_positive( 697 &fs_info->ordered_bytes); 698 } 699 } 700 701 /* 702 * Try to flush some data based on policy set by @state. This is only advisory 703 * and may fail for various reasons. The caller is supposed to examine the 704 * state of @space_info to detect the outcome. 705 */ 706 static void flush_space(struct btrfs_fs_info *fs_info, 707 struct btrfs_space_info *space_info, u64 num_bytes, 708 enum btrfs_flush_state state, bool for_preempt) 709 { 710 struct btrfs_root *root = fs_info->tree_root; 711 struct btrfs_trans_handle *trans; 712 int nr; 713 int ret = 0; 714 715 switch (state) { 716 case FLUSH_DELAYED_ITEMS_NR: 717 case FLUSH_DELAYED_ITEMS: 718 if (state == FLUSH_DELAYED_ITEMS_NR) 719 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 720 else 721 nr = -1; 722 723 trans = btrfs_join_transaction(root); 724 if (IS_ERR(trans)) { 725 ret = PTR_ERR(trans); 726 break; 727 } 728 ret = btrfs_run_delayed_items_nr(trans, nr); 729 btrfs_end_transaction(trans); 730 break; 731 case FLUSH_DELALLOC: 732 case FLUSH_DELALLOC_WAIT: 733 case FLUSH_DELALLOC_FULL: 734 if (state == FLUSH_DELALLOC_FULL) 735 num_bytes = U64_MAX; 736 shrink_delalloc(fs_info, space_info, num_bytes, 737 state != FLUSH_DELALLOC, for_preempt); 738 break; 739 case FLUSH_DELAYED_REFS_NR: 740 case FLUSH_DELAYED_REFS: 741 trans = btrfs_join_transaction(root); 742 if (IS_ERR(trans)) { 743 ret = PTR_ERR(trans); 744 break; 745 } 746 if (state == FLUSH_DELAYED_REFS_NR) 747 nr = calc_reclaim_items_nr(fs_info, num_bytes); 748 else 749 nr = 0; 750 btrfs_run_delayed_refs(trans, nr); 751 btrfs_end_transaction(trans); 752 break; 753 case ALLOC_CHUNK: 754 case ALLOC_CHUNK_FORCE: 755 /* 756 * For metadata space on zoned filesystem, reaching here means we 757 * don't have enough space left in active_total_bytes. Try to 758 * activate a block group first, because we may have inactive 759 * block group already allocated. 760 */ 761 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false); 762 if (ret < 0) 763 break; 764 else if (ret == 1) 765 break; 766 767 trans = btrfs_join_transaction(root); 768 if (IS_ERR(trans)) { 769 ret = PTR_ERR(trans); 770 break; 771 } 772 ret = btrfs_chunk_alloc(trans, 773 btrfs_get_alloc_profile(fs_info, space_info->flags), 774 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 775 CHUNK_ALLOC_FORCE); 776 btrfs_end_transaction(trans); 777 778 /* 779 * For metadata space on zoned filesystem, allocating a new chunk 780 * is not enough. We still need to activate the block * group. 781 * Active the newly allocated block group by (maybe) finishing 782 * a block group. 783 */ 784 if (ret == 1) { 785 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 786 /* 787 * Revert to the original ret regardless we could finish 788 * one block group or not. 789 */ 790 if (ret >= 0) 791 ret = 1; 792 } 793 794 if (ret > 0 || ret == -ENOSPC) 795 ret = 0; 796 break; 797 case RUN_DELAYED_IPUTS: 798 /* 799 * If we have pending delayed iputs then we could free up a 800 * bunch of pinned space, so make sure we run the iputs before 801 * we do our pinned bytes check below. 802 */ 803 btrfs_run_delayed_iputs(fs_info); 804 btrfs_wait_on_delayed_iputs(fs_info); 805 break; 806 case COMMIT_TRANS: 807 ASSERT(current->journal_info == NULL); 808 trans = btrfs_join_transaction(root); 809 if (IS_ERR(trans)) { 810 ret = PTR_ERR(trans); 811 break; 812 } 813 ret = btrfs_commit_transaction(trans); 814 break; 815 default: 816 ret = -ENOSPC; 817 break; 818 } 819 820 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 821 ret, for_preempt); 822 return; 823 } 824 825 static inline u64 826 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 827 struct btrfs_space_info *space_info) 828 { 829 u64 used; 830 u64 avail; 831 u64 total; 832 u64 to_reclaim = space_info->reclaim_size; 833 834 lockdep_assert_held(&space_info->lock); 835 836 avail = calc_available_free_space(fs_info, space_info, 837 BTRFS_RESERVE_FLUSH_ALL); 838 used = btrfs_space_info_used(space_info, true); 839 840 /* 841 * We may be flushing because suddenly we have less space than we had 842 * before, and now we're well over-committed based on our current free 843 * space. If that's the case add in our overage so we make sure to put 844 * appropriate pressure on the flushing state machine. 845 */ 846 total = writable_total_bytes(fs_info, space_info); 847 if (total + avail < used) 848 to_reclaim += used - (total + avail); 849 850 return to_reclaim; 851 } 852 853 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 854 struct btrfs_space_info *space_info) 855 { 856 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 857 u64 ordered, delalloc; 858 u64 total = writable_total_bytes(fs_info, space_info); 859 u64 thresh; 860 u64 used; 861 862 thresh = mult_perc(total, 90); 863 864 lockdep_assert_held(&space_info->lock); 865 866 /* If we're just plain full then async reclaim just slows us down. */ 867 if ((space_info->bytes_used + space_info->bytes_reserved + 868 global_rsv_size) >= thresh) 869 return false; 870 871 used = space_info->bytes_may_use + space_info->bytes_pinned; 872 873 /* The total flushable belongs to the global rsv, don't flush. */ 874 if (global_rsv_size >= used) 875 return false; 876 877 /* 878 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 879 * that devoted to other reservations then there's no sense in flushing, 880 * we don't have a lot of things that need flushing. 881 */ 882 if (used - global_rsv_size <= SZ_128M) 883 return false; 884 885 /* 886 * We have tickets queued, bail so we don't compete with the async 887 * flushers. 888 */ 889 if (space_info->reclaim_size) 890 return false; 891 892 /* 893 * If we have over half of the free space occupied by reservations or 894 * pinned then we want to start flushing. 895 * 896 * We do not do the traditional thing here, which is to say 897 * 898 * if (used >= ((total_bytes + avail) / 2)) 899 * return 1; 900 * 901 * because this doesn't quite work how we want. If we had more than 50% 902 * of the space_info used by bytes_used and we had 0 available we'd just 903 * constantly run the background flusher. Instead we want it to kick in 904 * if our reclaimable space exceeds our clamped free space. 905 * 906 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 907 * the following: 908 * 909 * Amount of RAM Minimum threshold Maximum threshold 910 * 911 * 256GiB 1GiB 128GiB 912 * 128GiB 512MiB 64GiB 913 * 64GiB 256MiB 32GiB 914 * 32GiB 128MiB 16GiB 915 * 16GiB 64MiB 8GiB 916 * 917 * These are the range our thresholds will fall in, corresponding to how 918 * much delalloc we need for the background flusher to kick in. 919 */ 920 921 thresh = calc_available_free_space(fs_info, space_info, 922 BTRFS_RESERVE_FLUSH_ALL); 923 used = space_info->bytes_used + space_info->bytes_reserved + 924 space_info->bytes_readonly + global_rsv_size; 925 if (used < total) 926 thresh += total - used; 927 thresh >>= space_info->clamp; 928 929 used = space_info->bytes_pinned; 930 931 /* 932 * If we have more ordered bytes than delalloc bytes then we're either 933 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 934 * around. Preemptive flushing is only useful in that it can free up 935 * space before tickets need to wait for things to finish. In the case 936 * of ordered extents, preemptively waiting on ordered extents gets us 937 * nothing, if our reservations are tied up in ordered extents we'll 938 * simply have to slow down writers by forcing them to wait on ordered 939 * extents. 940 * 941 * In the case that ordered is larger than delalloc, only include the 942 * block reserves that we would actually be able to directly reclaim 943 * from. In this case if we're heavy on metadata operations this will 944 * clearly be heavy enough to warrant preemptive flushing. In the case 945 * of heavy DIO or ordered reservations, preemptive flushing will just 946 * waste time and cause us to slow down. 947 * 948 * We want to make sure we truly are maxed out on ordered however, so 949 * cut ordered in half, and if it's still higher than delalloc then we 950 * can keep flushing. This is to avoid the case where we start 951 * flushing, and now delalloc == ordered and we stop preemptively 952 * flushing when we could still have several gigs of delalloc to flush. 953 */ 954 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 955 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 956 if (ordered >= delalloc) 957 used += fs_info->delayed_refs_rsv.reserved + 958 fs_info->delayed_block_rsv.reserved; 959 else 960 used += space_info->bytes_may_use - global_rsv_size; 961 962 return (used >= thresh && !btrfs_fs_closing(fs_info) && 963 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 964 } 965 966 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 967 struct btrfs_space_info *space_info, 968 struct reserve_ticket *ticket) 969 { 970 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 971 u64 min_bytes; 972 973 if (!ticket->steal) 974 return false; 975 976 if (global_rsv->space_info != space_info) 977 return false; 978 979 spin_lock(&global_rsv->lock); 980 min_bytes = mult_perc(global_rsv->size, 10); 981 if (global_rsv->reserved < min_bytes + ticket->bytes) { 982 spin_unlock(&global_rsv->lock); 983 return false; 984 } 985 global_rsv->reserved -= ticket->bytes; 986 remove_ticket(space_info, ticket); 987 ticket->bytes = 0; 988 wake_up(&ticket->wait); 989 space_info->tickets_id++; 990 if (global_rsv->reserved < global_rsv->size) 991 global_rsv->full = 0; 992 spin_unlock(&global_rsv->lock); 993 994 return true; 995 } 996 997 /* 998 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 999 * @fs_info - fs_info for this fs 1000 * @space_info - the space info we were flushing 1001 * 1002 * We call this when we've exhausted our flushing ability and haven't made 1003 * progress in satisfying tickets. The reservation code handles tickets in 1004 * order, so if there is a large ticket first and then smaller ones we could 1005 * very well satisfy the smaller tickets. This will attempt to wake up any 1006 * tickets in the list to catch this case. 1007 * 1008 * This function returns true if it was able to make progress by clearing out 1009 * other tickets, or if it stumbles across a ticket that was smaller than the 1010 * first ticket. 1011 */ 1012 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1013 struct btrfs_space_info *space_info) 1014 { 1015 struct reserve_ticket *ticket; 1016 u64 tickets_id = space_info->tickets_id; 1017 const bool aborted = BTRFS_FS_ERROR(fs_info); 1018 1019 trace_btrfs_fail_all_tickets(fs_info, space_info); 1020 1021 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1022 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1023 __btrfs_dump_space_info(fs_info, space_info); 1024 } 1025 1026 while (!list_empty(&space_info->tickets) && 1027 tickets_id == space_info->tickets_id) { 1028 ticket = list_first_entry(&space_info->tickets, 1029 struct reserve_ticket, list); 1030 1031 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1032 return true; 1033 1034 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1035 btrfs_info(fs_info, "failing ticket with %llu bytes", 1036 ticket->bytes); 1037 1038 remove_ticket(space_info, ticket); 1039 if (aborted) 1040 ticket->error = -EIO; 1041 else 1042 ticket->error = -ENOSPC; 1043 wake_up(&ticket->wait); 1044 1045 /* 1046 * We're just throwing tickets away, so more flushing may not 1047 * trip over btrfs_try_granting_tickets, so we need to call it 1048 * here to see if we can make progress with the next ticket in 1049 * the list. 1050 */ 1051 if (!aborted) 1052 btrfs_try_granting_tickets(fs_info, space_info); 1053 } 1054 return (tickets_id != space_info->tickets_id); 1055 } 1056 1057 /* 1058 * This is for normal flushers, we can wait all goddamned day if we want to. We 1059 * will loop and continuously try to flush as long as we are making progress. 1060 * We count progress as clearing off tickets each time we have to loop. 1061 */ 1062 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1063 { 1064 struct btrfs_fs_info *fs_info; 1065 struct btrfs_space_info *space_info; 1066 u64 to_reclaim; 1067 enum btrfs_flush_state flush_state; 1068 int commit_cycles = 0; 1069 u64 last_tickets_id; 1070 1071 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1072 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1073 1074 spin_lock(&space_info->lock); 1075 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1076 if (!to_reclaim) { 1077 space_info->flush = 0; 1078 spin_unlock(&space_info->lock); 1079 return; 1080 } 1081 last_tickets_id = space_info->tickets_id; 1082 spin_unlock(&space_info->lock); 1083 1084 flush_state = FLUSH_DELAYED_ITEMS_NR; 1085 do { 1086 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1087 spin_lock(&space_info->lock); 1088 if (list_empty(&space_info->tickets)) { 1089 space_info->flush = 0; 1090 spin_unlock(&space_info->lock); 1091 return; 1092 } 1093 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1094 space_info); 1095 if (last_tickets_id == space_info->tickets_id) { 1096 flush_state++; 1097 } else { 1098 last_tickets_id = space_info->tickets_id; 1099 flush_state = FLUSH_DELAYED_ITEMS_NR; 1100 if (commit_cycles) 1101 commit_cycles--; 1102 } 1103 1104 /* 1105 * We do not want to empty the system of delalloc unless we're 1106 * under heavy pressure, so allow one trip through the flushing 1107 * logic before we start doing a FLUSH_DELALLOC_FULL. 1108 */ 1109 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1110 flush_state++; 1111 1112 /* 1113 * We don't want to force a chunk allocation until we've tried 1114 * pretty hard to reclaim space. Think of the case where we 1115 * freed up a bunch of space and so have a lot of pinned space 1116 * to reclaim. We would rather use that than possibly create a 1117 * underutilized metadata chunk. So if this is our first run 1118 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1119 * commit the transaction. If nothing has changed the next go 1120 * around then we can force a chunk allocation. 1121 */ 1122 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1123 flush_state++; 1124 1125 if (flush_state > COMMIT_TRANS) { 1126 commit_cycles++; 1127 if (commit_cycles > 2) { 1128 if (maybe_fail_all_tickets(fs_info, space_info)) { 1129 flush_state = FLUSH_DELAYED_ITEMS_NR; 1130 commit_cycles--; 1131 } else { 1132 space_info->flush = 0; 1133 } 1134 } else { 1135 flush_state = FLUSH_DELAYED_ITEMS_NR; 1136 } 1137 } 1138 spin_unlock(&space_info->lock); 1139 } while (flush_state <= COMMIT_TRANS); 1140 } 1141 1142 /* 1143 * This handles pre-flushing of metadata space before we get to the point that 1144 * we need to start blocking threads on tickets. The logic here is different 1145 * from the other flush paths because it doesn't rely on tickets to tell us how 1146 * much we need to flush, instead it attempts to keep us below the 80% full 1147 * watermark of space by flushing whichever reservation pool is currently the 1148 * largest. 1149 */ 1150 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1151 { 1152 struct btrfs_fs_info *fs_info; 1153 struct btrfs_space_info *space_info; 1154 struct btrfs_block_rsv *delayed_block_rsv; 1155 struct btrfs_block_rsv *delayed_refs_rsv; 1156 struct btrfs_block_rsv *global_rsv; 1157 struct btrfs_block_rsv *trans_rsv; 1158 int loops = 0; 1159 1160 fs_info = container_of(work, struct btrfs_fs_info, 1161 preempt_reclaim_work); 1162 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1163 delayed_block_rsv = &fs_info->delayed_block_rsv; 1164 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1165 global_rsv = &fs_info->global_block_rsv; 1166 trans_rsv = &fs_info->trans_block_rsv; 1167 1168 spin_lock(&space_info->lock); 1169 while (need_preemptive_reclaim(fs_info, space_info)) { 1170 enum btrfs_flush_state flush; 1171 u64 delalloc_size = 0; 1172 u64 to_reclaim, block_rsv_size; 1173 u64 global_rsv_size = global_rsv->reserved; 1174 1175 loops++; 1176 1177 /* 1178 * We don't have a precise counter for the metadata being 1179 * reserved for delalloc, so we'll approximate it by subtracting 1180 * out the block rsv's space from the bytes_may_use. If that 1181 * amount is higher than the individual reserves, then we can 1182 * assume it's tied up in delalloc reservations. 1183 */ 1184 block_rsv_size = global_rsv_size + 1185 delayed_block_rsv->reserved + 1186 delayed_refs_rsv->reserved + 1187 trans_rsv->reserved; 1188 if (block_rsv_size < space_info->bytes_may_use) 1189 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1190 1191 /* 1192 * We don't want to include the global_rsv in our calculation, 1193 * because that's space we can't touch. Subtract it from the 1194 * block_rsv_size for the next checks. 1195 */ 1196 block_rsv_size -= global_rsv_size; 1197 1198 /* 1199 * We really want to avoid flushing delalloc too much, as it 1200 * could result in poor allocation patterns, so only flush it if 1201 * it's larger than the rest of the pools combined. 1202 */ 1203 if (delalloc_size > block_rsv_size) { 1204 to_reclaim = delalloc_size; 1205 flush = FLUSH_DELALLOC; 1206 } else if (space_info->bytes_pinned > 1207 (delayed_block_rsv->reserved + 1208 delayed_refs_rsv->reserved)) { 1209 to_reclaim = space_info->bytes_pinned; 1210 flush = COMMIT_TRANS; 1211 } else if (delayed_block_rsv->reserved > 1212 delayed_refs_rsv->reserved) { 1213 to_reclaim = delayed_block_rsv->reserved; 1214 flush = FLUSH_DELAYED_ITEMS_NR; 1215 } else { 1216 to_reclaim = delayed_refs_rsv->reserved; 1217 flush = FLUSH_DELAYED_REFS_NR; 1218 } 1219 1220 spin_unlock(&space_info->lock); 1221 1222 /* 1223 * We don't want to reclaim everything, just a portion, so scale 1224 * down the to_reclaim by 1/4. If it takes us down to 0, 1225 * reclaim 1 items worth. 1226 */ 1227 to_reclaim >>= 2; 1228 if (!to_reclaim) 1229 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1230 flush_space(fs_info, space_info, to_reclaim, flush, true); 1231 cond_resched(); 1232 spin_lock(&space_info->lock); 1233 } 1234 1235 /* We only went through once, back off our clamping. */ 1236 if (loops == 1 && !space_info->reclaim_size) 1237 space_info->clamp = max(1, space_info->clamp - 1); 1238 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1239 spin_unlock(&space_info->lock); 1240 } 1241 1242 /* 1243 * FLUSH_DELALLOC_WAIT: 1244 * Space is freed from flushing delalloc in one of two ways. 1245 * 1246 * 1) compression is on and we allocate less space than we reserved 1247 * 2) we are overwriting existing space 1248 * 1249 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1250 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1251 * length to ->bytes_reserved, and subtracts the reserved space from 1252 * ->bytes_may_use. 1253 * 1254 * For #2 this is trickier. Once the ordered extent runs we will drop the 1255 * extent in the range we are overwriting, which creates a delayed ref for 1256 * that freed extent. This however is not reclaimed until the transaction 1257 * commits, thus the next stages. 1258 * 1259 * RUN_DELAYED_IPUTS 1260 * If we are freeing inodes, we want to make sure all delayed iputs have 1261 * completed, because they could have been on an inode with i_nlink == 0, and 1262 * thus have been truncated and freed up space. But again this space is not 1263 * immediately re-usable, it comes in the form of a delayed ref, which must be 1264 * run and then the transaction must be committed. 1265 * 1266 * COMMIT_TRANS 1267 * This is where we reclaim all of the pinned space generated by running the 1268 * iputs 1269 * 1270 * ALLOC_CHUNK_FORCE 1271 * For data we start with alloc chunk force, however we could have been full 1272 * before, and then the transaction commit could have freed new block groups, 1273 * so if we now have space to allocate do the force chunk allocation. 1274 */ 1275 static const enum btrfs_flush_state data_flush_states[] = { 1276 FLUSH_DELALLOC_FULL, 1277 RUN_DELAYED_IPUTS, 1278 COMMIT_TRANS, 1279 ALLOC_CHUNK_FORCE, 1280 }; 1281 1282 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1283 { 1284 struct btrfs_fs_info *fs_info; 1285 struct btrfs_space_info *space_info; 1286 u64 last_tickets_id; 1287 enum btrfs_flush_state flush_state = 0; 1288 1289 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1290 space_info = fs_info->data_sinfo; 1291 1292 spin_lock(&space_info->lock); 1293 if (list_empty(&space_info->tickets)) { 1294 space_info->flush = 0; 1295 spin_unlock(&space_info->lock); 1296 return; 1297 } 1298 last_tickets_id = space_info->tickets_id; 1299 spin_unlock(&space_info->lock); 1300 1301 while (!space_info->full) { 1302 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1303 spin_lock(&space_info->lock); 1304 if (list_empty(&space_info->tickets)) { 1305 space_info->flush = 0; 1306 spin_unlock(&space_info->lock); 1307 return; 1308 } 1309 1310 /* Something happened, fail everything and bail. */ 1311 if (BTRFS_FS_ERROR(fs_info)) 1312 goto aborted_fs; 1313 last_tickets_id = space_info->tickets_id; 1314 spin_unlock(&space_info->lock); 1315 } 1316 1317 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1318 flush_space(fs_info, space_info, U64_MAX, 1319 data_flush_states[flush_state], false); 1320 spin_lock(&space_info->lock); 1321 if (list_empty(&space_info->tickets)) { 1322 space_info->flush = 0; 1323 spin_unlock(&space_info->lock); 1324 return; 1325 } 1326 1327 if (last_tickets_id == space_info->tickets_id) { 1328 flush_state++; 1329 } else { 1330 last_tickets_id = space_info->tickets_id; 1331 flush_state = 0; 1332 } 1333 1334 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1335 if (space_info->full) { 1336 if (maybe_fail_all_tickets(fs_info, space_info)) 1337 flush_state = 0; 1338 else 1339 space_info->flush = 0; 1340 } else { 1341 flush_state = 0; 1342 } 1343 1344 /* Something happened, fail everything and bail. */ 1345 if (BTRFS_FS_ERROR(fs_info)) 1346 goto aborted_fs; 1347 1348 } 1349 spin_unlock(&space_info->lock); 1350 } 1351 return; 1352 1353 aborted_fs: 1354 maybe_fail_all_tickets(fs_info, space_info); 1355 space_info->flush = 0; 1356 spin_unlock(&space_info->lock); 1357 } 1358 1359 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1360 { 1361 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1362 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1363 INIT_WORK(&fs_info->preempt_reclaim_work, 1364 btrfs_preempt_reclaim_metadata_space); 1365 } 1366 1367 static const enum btrfs_flush_state priority_flush_states[] = { 1368 FLUSH_DELAYED_ITEMS_NR, 1369 FLUSH_DELAYED_ITEMS, 1370 ALLOC_CHUNK, 1371 }; 1372 1373 static const enum btrfs_flush_state evict_flush_states[] = { 1374 FLUSH_DELAYED_ITEMS_NR, 1375 FLUSH_DELAYED_ITEMS, 1376 FLUSH_DELAYED_REFS_NR, 1377 FLUSH_DELAYED_REFS, 1378 FLUSH_DELALLOC, 1379 FLUSH_DELALLOC_WAIT, 1380 FLUSH_DELALLOC_FULL, 1381 ALLOC_CHUNK, 1382 COMMIT_TRANS, 1383 }; 1384 1385 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1386 struct btrfs_space_info *space_info, 1387 struct reserve_ticket *ticket, 1388 const enum btrfs_flush_state *states, 1389 int states_nr) 1390 { 1391 u64 to_reclaim; 1392 int flush_state = 0; 1393 1394 spin_lock(&space_info->lock); 1395 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1396 /* 1397 * This is the priority reclaim path, so to_reclaim could be >0 still 1398 * because we may have only satisfied the priority tickets and still 1399 * left non priority tickets on the list. We would then have 1400 * to_reclaim but ->bytes == 0. 1401 */ 1402 if (ticket->bytes == 0) { 1403 spin_unlock(&space_info->lock); 1404 return; 1405 } 1406 1407 while (flush_state < states_nr) { 1408 spin_unlock(&space_info->lock); 1409 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1410 false); 1411 flush_state++; 1412 spin_lock(&space_info->lock); 1413 if (ticket->bytes == 0) { 1414 spin_unlock(&space_info->lock); 1415 return; 1416 } 1417 } 1418 1419 /* Attempt to steal from the global rsv if we can. */ 1420 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1421 ticket->error = -ENOSPC; 1422 remove_ticket(space_info, ticket); 1423 } 1424 1425 /* 1426 * We must run try_granting_tickets here because we could be a large 1427 * ticket in front of a smaller ticket that can now be satisfied with 1428 * the available space. 1429 */ 1430 btrfs_try_granting_tickets(fs_info, space_info); 1431 spin_unlock(&space_info->lock); 1432 } 1433 1434 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1435 struct btrfs_space_info *space_info, 1436 struct reserve_ticket *ticket) 1437 { 1438 spin_lock(&space_info->lock); 1439 1440 /* We could have been granted before we got here. */ 1441 if (ticket->bytes == 0) { 1442 spin_unlock(&space_info->lock); 1443 return; 1444 } 1445 1446 while (!space_info->full) { 1447 spin_unlock(&space_info->lock); 1448 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1449 spin_lock(&space_info->lock); 1450 if (ticket->bytes == 0) { 1451 spin_unlock(&space_info->lock); 1452 return; 1453 } 1454 } 1455 1456 ticket->error = -ENOSPC; 1457 remove_ticket(space_info, ticket); 1458 btrfs_try_granting_tickets(fs_info, space_info); 1459 spin_unlock(&space_info->lock); 1460 } 1461 1462 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1463 struct btrfs_space_info *space_info, 1464 struct reserve_ticket *ticket) 1465 1466 { 1467 DEFINE_WAIT(wait); 1468 int ret = 0; 1469 1470 spin_lock(&space_info->lock); 1471 while (ticket->bytes > 0 && ticket->error == 0) { 1472 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1473 if (ret) { 1474 /* 1475 * Delete us from the list. After we unlock the space 1476 * info, we don't want the async reclaim job to reserve 1477 * space for this ticket. If that would happen, then the 1478 * ticket's task would not known that space was reserved 1479 * despite getting an error, resulting in a space leak 1480 * (bytes_may_use counter of our space_info). 1481 */ 1482 remove_ticket(space_info, ticket); 1483 ticket->error = -EINTR; 1484 break; 1485 } 1486 spin_unlock(&space_info->lock); 1487 1488 schedule(); 1489 1490 finish_wait(&ticket->wait, &wait); 1491 spin_lock(&space_info->lock); 1492 } 1493 spin_unlock(&space_info->lock); 1494 } 1495 1496 /* 1497 * Do the appropriate flushing and waiting for a ticket. 1498 * 1499 * @fs_info: the filesystem 1500 * @space_info: space info for the reservation 1501 * @ticket: ticket for the reservation 1502 * @start_ns: timestamp when the reservation started 1503 * @orig_bytes: amount of bytes originally reserved 1504 * @flush: how much we can flush 1505 * 1506 * This does the work of figuring out how to flush for the ticket, waiting for 1507 * the reservation, and returning the appropriate error if there is one. 1508 */ 1509 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1510 struct btrfs_space_info *space_info, 1511 struct reserve_ticket *ticket, 1512 u64 start_ns, u64 orig_bytes, 1513 enum btrfs_reserve_flush_enum flush) 1514 { 1515 int ret; 1516 1517 switch (flush) { 1518 case BTRFS_RESERVE_FLUSH_DATA: 1519 case BTRFS_RESERVE_FLUSH_ALL: 1520 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1521 wait_reserve_ticket(fs_info, space_info, ticket); 1522 break; 1523 case BTRFS_RESERVE_FLUSH_LIMIT: 1524 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1525 priority_flush_states, 1526 ARRAY_SIZE(priority_flush_states)); 1527 break; 1528 case BTRFS_RESERVE_FLUSH_EVICT: 1529 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1530 evict_flush_states, 1531 ARRAY_SIZE(evict_flush_states)); 1532 break; 1533 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1534 priority_reclaim_data_space(fs_info, space_info, ticket); 1535 break; 1536 default: 1537 ASSERT(0); 1538 break; 1539 } 1540 1541 ret = ticket->error; 1542 ASSERT(list_empty(&ticket->list)); 1543 /* 1544 * Check that we can't have an error set if the reservation succeeded, 1545 * as that would confuse tasks and lead them to error out without 1546 * releasing reserved space (if an error happens the expectation is that 1547 * space wasn't reserved at all). 1548 */ 1549 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1550 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1551 start_ns, flush, ticket->error); 1552 return ret; 1553 } 1554 1555 /* 1556 * This returns true if this flush state will go through the ordinary flushing 1557 * code. 1558 */ 1559 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1560 { 1561 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1562 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1563 } 1564 1565 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1566 struct btrfs_space_info *space_info) 1567 { 1568 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1569 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1570 1571 /* 1572 * If we're heavy on ordered operations then clamping won't help us. We 1573 * need to clamp specifically to keep up with dirty'ing buffered 1574 * writers, because there's not a 1:1 correlation of writing delalloc 1575 * and freeing space, like there is with flushing delayed refs or 1576 * delayed nodes. If we're already more ordered than delalloc then 1577 * we're keeping up, otherwise we aren't and should probably clamp. 1578 */ 1579 if (ordered < delalloc) 1580 space_info->clamp = min(space_info->clamp + 1, 8); 1581 } 1582 1583 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1584 { 1585 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1586 flush == BTRFS_RESERVE_FLUSH_EVICT); 1587 } 1588 1589 /* 1590 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1591 * fail as quickly as possible. 1592 */ 1593 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1594 { 1595 return (flush != BTRFS_RESERVE_NO_FLUSH && 1596 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1597 } 1598 1599 /* 1600 * Try to reserve bytes from the block_rsv's space. 1601 * 1602 * @fs_info: the filesystem 1603 * @space_info: space info we want to allocate from 1604 * @orig_bytes: number of bytes we want 1605 * @flush: whether or not we can flush to make our reservation 1606 * 1607 * This will reserve orig_bytes number of bytes from the space info associated 1608 * with the block_rsv. If there is not enough space it will make an attempt to 1609 * flush out space to make room. It will do this by flushing delalloc if 1610 * possible or committing the transaction. If flush is 0 then no attempts to 1611 * regain reservations will be made and this will fail if there is not enough 1612 * space already. 1613 */ 1614 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1615 struct btrfs_space_info *space_info, u64 orig_bytes, 1616 enum btrfs_reserve_flush_enum flush) 1617 { 1618 struct work_struct *async_work; 1619 struct reserve_ticket ticket; 1620 u64 start_ns = 0; 1621 u64 used; 1622 int ret = 0; 1623 bool pending_tickets; 1624 1625 ASSERT(orig_bytes); 1626 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1627 1628 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1629 async_work = &fs_info->async_data_reclaim_work; 1630 else 1631 async_work = &fs_info->async_reclaim_work; 1632 1633 spin_lock(&space_info->lock); 1634 ret = -ENOSPC; 1635 used = btrfs_space_info_used(space_info, true); 1636 1637 /* 1638 * We don't want NO_FLUSH allocations to jump everybody, they can 1639 * generally handle ENOSPC in a different way, so treat them the same as 1640 * normal flushers when it comes to skipping pending tickets. 1641 */ 1642 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1643 pending_tickets = !list_empty(&space_info->tickets) || 1644 !list_empty(&space_info->priority_tickets); 1645 else 1646 pending_tickets = !list_empty(&space_info->priority_tickets); 1647 1648 /* 1649 * Carry on if we have enough space (short-circuit) OR call 1650 * can_overcommit() to ensure we can overcommit to continue. 1651 */ 1652 if (!pending_tickets && 1653 ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) || 1654 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1655 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1656 orig_bytes); 1657 ret = 0; 1658 } 1659 1660 /* 1661 * Things are dire, we need to make a reservation so we don't abort. We 1662 * will let this reservation go through as long as we have actual space 1663 * left to allocate for the block. 1664 */ 1665 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1666 used = btrfs_space_info_used(space_info, false); 1667 if (used + orig_bytes <= 1668 writable_total_bytes(fs_info, space_info)) { 1669 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1670 orig_bytes); 1671 ret = 0; 1672 } 1673 } 1674 1675 /* 1676 * If we couldn't make a reservation then setup our reservation ticket 1677 * and kick the async worker if it's not already running. 1678 * 1679 * If we are a priority flusher then we just need to add our ticket to 1680 * the list and we will do our own flushing further down. 1681 */ 1682 if (ret && can_ticket(flush)) { 1683 ticket.bytes = orig_bytes; 1684 ticket.error = 0; 1685 space_info->reclaim_size += ticket.bytes; 1686 init_waitqueue_head(&ticket.wait); 1687 ticket.steal = can_steal(flush); 1688 if (trace_btrfs_reserve_ticket_enabled()) 1689 start_ns = ktime_get_ns(); 1690 1691 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1692 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1693 flush == BTRFS_RESERVE_FLUSH_DATA) { 1694 list_add_tail(&ticket.list, &space_info->tickets); 1695 if (!space_info->flush) { 1696 /* 1697 * We were forced to add a reserve ticket, so 1698 * our preemptive flushing is unable to keep 1699 * up. Clamp down on the threshold for the 1700 * preemptive flushing in order to keep up with 1701 * the workload. 1702 */ 1703 maybe_clamp_preempt(fs_info, space_info); 1704 1705 space_info->flush = 1; 1706 trace_btrfs_trigger_flush(fs_info, 1707 space_info->flags, 1708 orig_bytes, flush, 1709 "enospc"); 1710 queue_work(system_unbound_wq, async_work); 1711 } 1712 } else { 1713 list_add_tail(&ticket.list, 1714 &space_info->priority_tickets); 1715 } 1716 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1717 /* 1718 * We will do the space reservation dance during log replay, 1719 * which means we won't have fs_info->fs_root set, so don't do 1720 * the async reclaim as we will panic. 1721 */ 1722 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1723 !work_busy(&fs_info->preempt_reclaim_work) && 1724 need_preemptive_reclaim(fs_info, space_info)) { 1725 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1726 orig_bytes, flush, "preempt"); 1727 queue_work(system_unbound_wq, 1728 &fs_info->preempt_reclaim_work); 1729 } 1730 } 1731 spin_unlock(&space_info->lock); 1732 if (!ret || !can_ticket(flush)) 1733 return ret; 1734 1735 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1736 orig_bytes, flush); 1737 } 1738 1739 /* 1740 * Try to reserve metadata bytes from the block_rsv's space. 1741 * 1742 * @fs_info: the filesystem 1743 * @block_rsv: block_rsv we're allocating for 1744 * @orig_bytes: number of bytes we want 1745 * @flush: whether or not we can flush to make our reservation 1746 * 1747 * This will reserve orig_bytes number of bytes from the space info associated 1748 * with the block_rsv. If there is not enough space it will make an attempt to 1749 * flush out space to make room. It will do this by flushing delalloc if 1750 * possible or committing the transaction. If flush is 0 then no attempts to 1751 * regain reservations will be made and this will fail if there is not enough 1752 * space already. 1753 */ 1754 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1755 struct btrfs_block_rsv *block_rsv, 1756 u64 orig_bytes, 1757 enum btrfs_reserve_flush_enum flush) 1758 { 1759 int ret; 1760 1761 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1762 if (ret == -ENOSPC) { 1763 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1764 block_rsv->space_info->flags, 1765 orig_bytes, 1); 1766 1767 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1768 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1769 orig_bytes, 0); 1770 } 1771 return ret; 1772 } 1773 1774 /* 1775 * Try to reserve data bytes for an allocation. 1776 * 1777 * @fs_info: the filesystem 1778 * @bytes: number of bytes we need 1779 * @flush: how we are allowed to flush 1780 * 1781 * This will reserve bytes from the data space info. If there is not enough 1782 * space then we will attempt to flush space as specified by flush. 1783 */ 1784 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1785 enum btrfs_reserve_flush_enum flush) 1786 { 1787 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1788 int ret; 1789 1790 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1791 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1792 flush == BTRFS_RESERVE_NO_FLUSH); 1793 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1794 1795 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1796 if (ret == -ENOSPC) { 1797 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1798 data_sinfo->flags, bytes, 1); 1799 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1800 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1801 } 1802 return ret; 1803 } 1804 1805 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1806 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1807 { 1808 struct btrfs_space_info *space_info; 1809 1810 btrfs_info(fs_info, "dumping space info:"); 1811 list_for_each_entry(space_info, &fs_info->space_info, list) { 1812 spin_lock(&space_info->lock); 1813 __btrfs_dump_space_info(fs_info, space_info); 1814 spin_unlock(&space_info->lock); 1815 } 1816 dump_global_block_rsv(fs_info); 1817 } 1818 1819 /* 1820 * Account the unused space of all the readonly block group in the space_info. 1821 * takes mirrors into account. 1822 */ 1823 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1824 { 1825 struct btrfs_block_group *block_group; 1826 u64 free_bytes = 0; 1827 int factor; 1828 1829 /* It's df, we don't care if it's racy */ 1830 if (list_empty(&sinfo->ro_bgs)) 1831 return 0; 1832 1833 spin_lock(&sinfo->lock); 1834 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1835 spin_lock(&block_group->lock); 1836 1837 if (!block_group->ro) { 1838 spin_unlock(&block_group->lock); 1839 continue; 1840 } 1841 1842 factor = btrfs_bg_type_to_factor(block_group->flags); 1843 free_bytes += (block_group->length - 1844 block_group->used) * factor; 1845 1846 spin_unlock(&block_group->lock); 1847 } 1848 spin_unlock(&sinfo->lock); 1849 1850 return free_bytes; 1851 } 1852