xref: /linux/fs/btrfs/space-info.c (revision 497e6b37b0099dc415578488287fd84fb74433eb)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
312 		found->active_total_bytes += block_group->length;
313 	found->disk_total += block_group->length * factor;
314 	found->bytes_used += block_group->used;
315 	found->disk_used += block_group->used * factor;
316 	found->bytes_readonly += block_group->bytes_super;
317 	found->bytes_zone_unusable += block_group->zone_unusable;
318 	if (block_group->length > 0)
319 		found->full = 0;
320 	btrfs_try_granting_tickets(info, found);
321 	spin_unlock(&found->lock);
322 
323 	block_group->space_info = found;
324 
325 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
326 	down_write(&found->groups_sem);
327 	list_add_tail(&block_group->list, &found->block_groups[index]);
328 	up_write(&found->groups_sem);
329 }
330 
331 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
332 					       u64 flags)
333 {
334 	struct list_head *head = &info->space_info;
335 	struct btrfs_space_info *found;
336 
337 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
338 
339 	list_for_each_entry(found, head, list) {
340 		if (found->flags & flags)
341 			return found;
342 	}
343 	return NULL;
344 }
345 
346 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
347 			  struct btrfs_space_info *space_info,
348 			  enum btrfs_reserve_flush_enum flush)
349 {
350 	u64 profile;
351 	u64 avail;
352 	int factor;
353 
354 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
355 		profile = btrfs_system_alloc_profile(fs_info);
356 	else
357 		profile = btrfs_metadata_alloc_profile(fs_info);
358 
359 	avail = atomic64_read(&fs_info->free_chunk_space);
360 
361 	/*
362 	 * If we have dup, raid1 or raid10 then only half of the free
363 	 * space is actually usable.  For raid56, the space info used
364 	 * doesn't include the parity drive, so we don't have to
365 	 * change the math
366 	 */
367 	factor = btrfs_bg_type_to_factor(profile);
368 	avail = div_u64(avail, factor);
369 
370 	/*
371 	 * If we aren't flushing all things, let us overcommit up to
372 	 * 1/2th of the space. If we can flush, don't let us overcommit
373 	 * too much, let it overcommit up to 1/8 of the space.
374 	 */
375 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
376 		avail >>= 3;
377 	else
378 		avail >>= 1;
379 	return avail;
380 }
381 
382 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
383 				       struct btrfs_space_info *space_info)
384 {
385 	/*
386 	 * On regular filesystem, all total_bytes are always writable. On zoned
387 	 * filesystem, there may be a limitation imposed by max_active_zones.
388 	 * For metadata allocation, we cannot finish an existing active block
389 	 * group to avoid a deadlock. Thus, we need to consider only the active
390 	 * groups to be writable for metadata space.
391 	 */
392 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
393 		return space_info->total_bytes;
394 
395 	return space_info->active_total_bytes;
396 }
397 
398 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
399 			 struct btrfs_space_info *space_info, u64 bytes,
400 			 enum btrfs_reserve_flush_enum flush)
401 {
402 	u64 avail;
403 	u64 used;
404 
405 	/* Don't overcommit when in mixed mode */
406 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
407 		return 0;
408 
409 	used = btrfs_space_info_used(space_info, true);
410 	if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
411 		avail = 0;
412 	else
413 		avail = calc_available_free_space(fs_info, space_info, flush);
414 
415 	if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
416 		return 1;
417 	return 0;
418 }
419 
420 static void remove_ticket(struct btrfs_space_info *space_info,
421 			  struct reserve_ticket *ticket)
422 {
423 	if (!list_empty(&ticket->list)) {
424 		list_del_init(&ticket->list);
425 		ASSERT(space_info->reclaim_size >= ticket->bytes);
426 		space_info->reclaim_size -= ticket->bytes;
427 	}
428 }
429 
430 /*
431  * This is for space we already have accounted in space_info->bytes_may_use, so
432  * basically when we're returning space from block_rsv's.
433  */
434 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
435 				struct btrfs_space_info *space_info)
436 {
437 	struct list_head *head;
438 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
439 
440 	lockdep_assert_held(&space_info->lock);
441 
442 	head = &space_info->priority_tickets;
443 again:
444 	while (!list_empty(head)) {
445 		struct reserve_ticket *ticket;
446 		u64 used = btrfs_space_info_used(space_info, true);
447 
448 		ticket = list_first_entry(head, struct reserve_ticket, list);
449 
450 		/* Check and see if our ticket can be satisfied now. */
451 		if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
452 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
453 					 flush)) {
454 			btrfs_space_info_update_bytes_may_use(fs_info,
455 							      space_info,
456 							      ticket->bytes);
457 			remove_ticket(space_info, ticket);
458 			ticket->bytes = 0;
459 			space_info->tickets_id++;
460 			wake_up(&ticket->wait);
461 		} else {
462 			break;
463 		}
464 	}
465 
466 	if (head == &space_info->priority_tickets) {
467 		head = &space_info->tickets;
468 		flush = BTRFS_RESERVE_FLUSH_ALL;
469 		goto again;
470 	}
471 }
472 
473 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
474 do {									\
475 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
476 	spin_lock(&__rsv->lock);					\
477 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
478 		   __rsv->size, __rsv->reserved);			\
479 	spin_unlock(&__rsv->lock);					\
480 } while (0)
481 
482 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
483 {
484 	switch (space_info->flags) {
485 	case BTRFS_BLOCK_GROUP_SYSTEM:
486 		return "SYSTEM";
487 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
488 		return "DATA+METADATA";
489 	case BTRFS_BLOCK_GROUP_DATA:
490 		return "DATA";
491 	case BTRFS_BLOCK_GROUP_METADATA:
492 		return "METADATA";
493 	default:
494 		return "UNKNOWN";
495 	}
496 }
497 
498 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
499 {
500 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
501 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
502 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
503 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
504 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
505 }
506 
507 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
508 				    struct btrfs_space_info *info)
509 {
510 	const char *flag_str = space_info_flag_to_str(info);
511 	lockdep_assert_held(&info->lock);
512 
513 	/* The free space could be negative in case of overcommit */
514 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
515 		   flag_str,
516 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
517 		   info->full ? "" : "not ");
518 	btrfs_info(fs_info,
519 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
520 		info->total_bytes, info->bytes_used, info->bytes_pinned,
521 		info->bytes_reserved, info->bytes_may_use,
522 		info->bytes_readonly, info->bytes_zone_unusable);
523 }
524 
525 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
526 			   struct btrfs_space_info *info, u64 bytes,
527 			   int dump_block_groups)
528 {
529 	struct btrfs_block_group *cache;
530 	int index = 0;
531 
532 	spin_lock(&info->lock);
533 	__btrfs_dump_space_info(fs_info, info);
534 	dump_global_block_rsv(fs_info);
535 	spin_unlock(&info->lock);
536 
537 	if (!dump_block_groups)
538 		return;
539 
540 	down_read(&info->groups_sem);
541 again:
542 	list_for_each_entry(cache, &info->block_groups[index], list) {
543 		spin_lock(&cache->lock);
544 		btrfs_info(fs_info,
545 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
546 			cache->start, cache->length, cache->used, cache->pinned,
547 			cache->reserved, cache->zone_unusable,
548 			cache->ro ? "[readonly]" : "");
549 		spin_unlock(&cache->lock);
550 		btrfs_dump_free_space(cache, bytes);
551 	}
552 	if (++index < BTRFS_NR_RAID_TYPES)
553 		goto again;
554 	up_read(&info->groups_sem);
555 }
556 
557 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
558 					u64 to_reclaim)
559 {
560 	u64 bytes;
561 	u64 nr;
562 
563 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564 	nr = div64_u64(to_reclaim, bytes);
565 	if (!nr)
566 		nr = 1;
567 	return nr;
568 }
569 
570 #define EXTENT_SIZE_PER_ITEM	SZ_256K
571 
572 /*
573  * shrink metadata reservation for delalloc
574  */
575 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
576 			    struct btrfs_space_info *space_info,
577 			    u64 to_reclaim, bool wait_ordered,
578 			    bool for_preempt)
579 {
580 	struct btrfs_trans_handle *trans;
581 	u64 delalloc_bytes;
582 	u64 ordered_bytes;
583 	u64 items;
584 	long time_left;
585 	int loops;
586 
587 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
588 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
589 	if (delalloc_bytes == 0 && ordered_bytes == 0)
590 		return;
591 
592 	/* Calc the number of the pages we need flush for space reservation */
593 	if (to_reclaim == U64_MAX) {
594 		items = U64_MAX;
595 	} else {
596 		/*
597 		 * to_reclaim is set to however much metadata we need to
598 		 * reclaim, but reclaiming that much data doesn't really track
599 		 * exactly.  What we really want to do is reclaim full inode's
600 		 * worth of reservations, however that's not available to us
601 		 * here.  We will take a fraction of the delalloc bytes for our
602 		 * flushing loops and hope for the best.  Delalloc will expand
603 		 * the amount we write to cover an entire dirty extent, which
604 		 * will reclaim the metadata reservation for that range.  If
605 		 * it's not enough subsequent flush stages will be more
606 		 * aggressive.
607 		 */
608 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
609 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
610 	}
611 
612 	trans = current->journal_info;
613 
614 	/*
615 	 * If we are doing more ordered than delalloc we need to just wait on
616 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
617 	 * that likely won't give us the space back we need.
618 	 */
619 	if (ordered_bytes > delalloc_bytes && !for_preempt)
620 		wait_ordered = true;
621 
622 	loops = 0;
623 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
624 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
625 		long nr_pages = min_t(u64, temp, LONG_MAX);
626 		int async_pages;
627 
628 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
629 
630 		/*
631 		 * We need to make sure any outstanding async pages are now
632 		 * processed before we continue.  This is because things like
633 		 * sync_inode() try to be smart and skip writing if the inode is
634 		 * marked clean.  We don't use filemap_fwrite for flushing
635 		 * because we want to control how many pages we write out at a
636 		 * time, thus this is the only safe way to make sure we've
637 		 * waited for outstanding compressed workers to have started
638 		 * their jobs and thus have ordered extents set up properly.
639 		 *
640 		 * This exists because we do not want to wait for each
641 		 * individual inode to finish its async work, we simply want to
642 		 * start the IO on everybody, and then come back here and wait
643 		 * for all of the async work to catch up.  Once we're done with
644 		 * that we know we'll have ordered extents for everything and we
645 		 * can decide if we wait for that or not.
646 		 *
647 		 * If we choose to replace this in the future, make absolutely
648 		 * sure that the proper waiting is being done in the async case,
649 		 * as there have been bugs in that area before.
650 		 */
651 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
652 		if (!async_pages)
653 			goto skip_async;
654 
655 		/*
656 		 * We don't want to wait forever, if we wrote less pages in this
657 		 * loop than we have outstanding, only wait for that number of
658 		 * pages, otherwise we can wait for all async pages to finish
659 		 * before continuing.
660 		 */
661 		if (async_pages > nr_pages)
662 			async_pages -= nr_pages;
663 		else
664 			async_pages = 0;
665 		wait_event(fs_info->async_submit_wait,
666 			   atomic_read(&fs_info->async_delalloc_pages) <=
667 			   async_pages);
668 skip_async:
669 		loops++;
670 		if (wait_ordered && !trans) {
671 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
672 		} else {
673 			time_left = schedule_timeout_killable(1);
674 			if (time_left)
675 				break;
676 		}
677 
678 		/*
679 		 * If we are for preemption we just want a one-shot of delalloc
680 		 * flushing so we can stop flushing if we decide we don't need
681 		 * to anymore.
682 		 */
683 		if (for_preempt)
684 			break;
685 
686 		spin_lock(&space_info->lock);
687 		if (list_empty(&space_info->tickets) &&
688 		    list_empty(&space_info->priority_tickets)) {
689 			spin_unlock(&space_info->lock);
690 			break;
691 		}
692 		spin_unlock(&space_info->lock);
693 
694 		delalloc_bytes = percpu_counter_sum_positive(
695 						&fs_info->delalloc_bytes);
696 		ordered_bytes = percpu_counter_sum_positive(
697 						&fs_info->ordered_bytes);
698 	}
699 }
700 
701 /*
702  * Try to flush some data based on policy set by @state. This is only advisory
703  * and may fail for various reasons. The caller is supposed to examine the
704  * state of @space_info to detect the outcome.
705  */
706 static void flush_space(struct btrfs_fs_info *fs_info,
707 		       struct btrfs_space_info *space_info, u64 num_bytes,
708 		       enum btrfs_flush_state state, bool for_preempt)
709 {
710 	struct btrfs_root *root = fs_info->tree_root;
711 	struct btrfs_trans_handle *trans;
712 	int nr;
713 	int ret = 0;
714 
715 	switch (state) {
716 	case FLUSH_DELAYED_ITEMS_NR:
717 	case FLUSH_DELAYED_ITEMS:
718 		if (state == FLUSH_DELAYED_ITEMS_NR)
719 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
720 		else
721 			nr = -1;
722 
723 		trans = btrfs_join_transaction(root);
724 		if (IS_ERR(trans)) {
725 			ret = PTR_ERR(trans);
726 			break;
727 		}
728 		ret = btrfs_run_delayed_items_nr(trans, nr);
729 		btrfs_end_transaction(trans);
730 		break;
731 	case FLUSH_DELALLOC:
732 	case FLUSH_DELALLOC_WAIT:
733 	case FLUSH_DELALLOC_FULL:
734 		if (state == FLUSH_DELALLOC_FULL)
735 			num_bytes = U64_MAX;
736 		shrink_delalloc(fs_info, space_info, num_bytes,
737 				state != FLUSH_DELALLOC, for_preempt);
738 		break;
739 	case FLUSH_DELAYED_REFS_NR:
740 	case FLUSH_DELAYED_REFS:
741 		trans = btrfs_join_transaction(root);
742 		if (IS_ERR(trans)) {
743 			ret = PTR_ERR(trans);
744 			break;
745 		}
746 		if (state == FLUSH_DELAYED_REFS_NR)
747 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
748 		else
749 			nr = 0;
750 		btrfs_run_delayed_refs(trans, nr);
751 		btrfs_end_transaction(trans);
752 		break;
753 	case ALLOC_CHUNK:
754 	case ALLOC_CHUNK_FORCE:
755 		/*
756 		 * For metadata space on zoned filesystem, reaching here means we
757 		 * don't have enough space left in active_total_bytes. Try to
758 		 * activate a block group first, because we may have inactive
759 		 * block group already allocated.
760 		 */
761 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
762 		if (ret < 0)
763 			break;
764 		else if (ret == 1)
765 			break;
766 
767 		trans = btrfs_join_transaction(root);
768 		if (IS_ERR(trans)) {
769 			ret = PTR_ERR(trans);
770 			break;
771 		}
772 		ret = btrfs_chunk_alloc(trans,
773 				btrfs_get_alloc_profile(fs_info, space_info->flags),
774 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
775 					CHUNK_ALLOC_FORCE);
776 		btrfs_end_transaction(trans);
777 
778 		/*
779 		 * For metadata space on zoned filesystem, allocating a new chunk
780 		 * is not enough. We still need to activate the block * group.
781 		 * Active the newly allocated block group by (maybe) finishing
782 		 * a block group.
783 		 */
784 		if (ret == 1) {
785 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
786 			/*
787 			 * Revert to the original ret regardless we could finish
788 			 * one block group or not.
789 			 */
790 			if (ret >= 0)
791 				ret = 1;
792 		}
793 
794 		if (ret > 0 || ret == -ENOSPC)
795 			ret = 0;
796 		break;
797 	case RUN_DELAYED_IPUTS:
798 		/*
799 		 * If we have pending delayed iputs then we could free up a
800 		 * bunch of pinned space, so make sure we run the iputs before
801 		 * we do our pinned bytes check below.
802 		 */
803 		btrfs_run_delayed_iputs(fs_info);
804 		btrfs_wait_on_delayed_iputs(fs_info);
805 		break;
806 	case COMMIT_TRANS:
807 		ASSERT(current->journal_info == NULL);
808 		trans = btrfs_join_transaction(root);
809 		if (IS_ERR(trans)) {
810 			ret = PTR_ERR(trans);
811 			break;
812 		}
813 		ret = btrfs_commit_transaction(trans);
814 		break;
815 	default:
816 		ret = -ENOSPC;
817 		break;
818 	}
819 
820 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
821 				ret, for_preempt);
822 	return;
823 }
824 
825 static inline u64
826 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
827 				 struct btrfs_space_info *space_info)
828 {
829 	u64 used;
830 	u64 avail;
831 	u64 total;
832 	u64 to_reclaim = space_info->reclaim_size;
833 
834 	lockdep_assert_held(&space_info->lock);
835 
836 	avail = calc_available_free_space(fs_info, space_info,
837 					  BTRFS_RESERVE_FLUSH_ALL);
838 	used = btrfs_space_info_used(space_info, true);
839 
840 	/*
841 	 * We may be flushing because suddenly we have less space than we had
842 	 * before, and now we're well over-committed based on our current free
843 	 * space.  If that's the case add in our overage so we make sure to put
844 	 * appropriate pressure on the flushing state machine.
845 	 */
846 	total = writable_total_bytes(fs_info, space_info);
847 	if (total + avail < used)
848 		to_reclaim += used - (total + avail);
849 
850 	return to_reclaim;
851 }
852 
853 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
854 				    struct btrfs_space_info *space_info)
855 {
856 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
857 	u64 ordered, delalloc;
858 	u64 total = writable_total_bytes(fs_info, space_info);
859 	u64 thresh;
860 	u64 used;
861 
862 	thresh = mult_perc(total, 90);
863 
864 	lockdep_assert_held(&space_info->lock);
865 
866 	/* If we're just plain full then async reclaim just slows us down. */
867 	if ((space_info->bytes_used + space_info->bytes_reserved +
868 	     global_rsv_size) >= thresh)
869 		return false;
870 
871 	used = space_info->bytes_may_use + space_info->bytes_pinned;
872 
873 	/* The total flushable belongs to the global rsv, don't flush. */
874 	if (global_rsv_size >= used)
875 		return false;
876 
877 	/*
878 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
879 	 * that devoted to other reservations then there's no sense in flushing,
880 	 * we don't have a lot of things that need flushing.
881 	 */
882 	if (used - global_rsv_size <= SZ_128M)
883 		return false;
884 
885 	/*
886 	 * We have tickets queued, bail so we don't compete with the async
887 	 * flushers.
888 	 */
889 	if (space_info->reclaim_size)
890 		return false;
891 
892 	/*
893 	 * If we have over half of the free space occupied by reservations or
894 	 * pinned then we want to start flushing.
895 	 *
896 	 * We do not do the traditional thing here, which is to say
897 	 *
898 	 *   if (used >= ((total_bytes + avail) / 2))
899 	 *     return 1;
900 	 *
901 	 * because this doesn't quite work how we want.  If we had more than 50%
902 	 * of the space_info used by bytes_used and we had 0 available we'd just
903 	 * constantly run the background flusher.  Instead we want it to kick in
904 	 * if our reclaimable space exceeds our clamped free space.
905 	 *
906 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
907 	 * the following:
908 	 *
909 	 * Amount of RAM        Minimum threshold       Maximum threshold
910 	 *
911 	 *        256GiB                     1GiB                  128GiB
912 	 *        128GiB                   512MiB                   64GiB
913 	 *         64GiB                   256MiB                   32GiB
914 	 *         32GiB                   128MiB                   16GiB
915 	 *         16GiB                    64MiB                    8GiB
916 	 *
917 	 * These are the range our thresholds will fall in, corresponding to how
918 	 * much delalloc we need for the background flusher to kick in.
919 	 */
920 
921 	thresh = calc_available_free_space(fs_info, space_info,
922 					   BTRFS_RESERVE_FLUSH_ALL);
923 	used = space_info->bytes_used + space_info->bytes_reserved +
924 	       space_info->bytes_readonly + global_rsv_size;
925 	if (used < total)
926 		thresh += total - used;
927 	thresh >>= space_info->clamp;
928 
929 	used = space_info->bytes_pinned;
930 
931 	/*
932 	 * If we have more ordered bytes than delalloc bytes then we're either
933 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
934 	 * around.  Preemptive flushing is only useful in that it can free up
935 	 * space before tickets need to wait for things to finish.  In the case
936 	 * of ordered extents, preemptively waiting on ordered extents gets us
937 	 * nothing, if our reservations are tied up in ordered extents we'll
938 	 * simply have to slow down writers by forcing them to wait on ordered
939 	 * extents.
940 	 *
941 	 * In the case that ordered is larger than delalloc, only include the
942 	 * block reserves that we would actually be able to directly reclaim
943 	 * from.  In this case if we're heavy on metadata operations this will
944 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
945 	 * of heavy DIO or ordered reservations, preemptive flushing will just
946 	 * waste time and cause us to slow down.
947 	 *
948 	 * We want to make sure we truly are maxed out on ordered however, so
949 	 * cut ordered in half, and if it's still higher than delalloc then we
950 	 * can keep flushing.  This is to avoid the case where we start
951 	 * flushing, and now delalloc == ordered and we stop preemptively
952 	 * flushing when we could still have several gigs of delalloc to flush.
953 	 */
954 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
955 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
956 	if (ordered >= delalloc)
957 		used += fs_info->delayed_refs_rsv.reserved +
958 			fs_info->delayed_block_rsv.reserved;
959 	else
960 		used += space_info->bytes_may_use - global_rsv_size;
961 
962 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
963 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
964 }
965 
966 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
967 				  struct btrfs_space_info *space_info,
968 				  struct reserve_ticket *ticket)
969 {
970 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
971 	u64 min_bytes;
972 
973 	if (!ticket->steal)
974 		return false;
975 
976 	if (global_rsv->space_info != space_info)
977 		return false;
978 
979 	spin_lock(&global_rsv->lock);
980 	min_bytes = mult_perc(global_rsv->size, 10);
981 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
982 		spin_unlock(&global_rsv->lock);
983 		return false;
984 	}
985 	global_rsv->reserved -= ticket->bytes;
986 	remove_ticket(space_info, ticket);
987 	ticket->bytes = 0;
988 	wake_up(&ticket->wait);
989 	space_info->tickets_id++;
990 	if (global_rsv->reserved < global_rsv->size)
991 		global_rsv->full = 0;
992 	spin_unlock(&global_rsv->lock);
993 
994 	return true;
995 }
996 
997 /*
998  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
999  * @fs_info - fs_info for this fs
1000  * @space_info - the space info we were flushing
1001  *
1002  * We call this when we've exhausted our flushing ability and haven't made
1003  * progress in satisfying tickets.  The reservation code handles tickets in
1004  * order, so if there is a large ticket first and then smaller ones we could
1005  * very well satisfy the smaller tickets.  This will attempt to wake up any
1006  * tickets in the list to catch this case.
1007  *
1008  * This function returns true if it was able to make progress by clearing out
1009  * other tickets, or if it stumbles across a ticket that was smaller than the
1010  * first ticket.
1011  */
1012 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1013 				   struct btrfs_space_info *space_info)
1014 {
1015 	struct reserve_ticket *ticket;
1016 	u64 tickets_id = space_info->tickets_id;
1017 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1018 
1019 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1020 
1021 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1022 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1023 		__btrfs_dump_space_info(fs_info, space_info);
1024 	}
1025 
1026 	while (!list_empty(&space_info->tickets) &&
1027 	       tickets_id == space_info->tickets_id) {
1028 		ticket = list_first_entry(&space_info->tickets,
1029 					  struct reserve_ticket, list);
1030 
1031 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1032 			return true;
1033 
1034 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1035 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1036 				   ticket->bytes);
1037 
1038 		remove_ticket(space_info, ticket);
1039 		if (aborted)
1040 			ticket->error = -EIO;
1041 		else
1042 			ticket->error = -ENOSPC;
1043 		wake_up(&ticket->wait);
1044 
1045 		/*
1046 		 * We're just throwing tickets away, so more flushing may not
1047 		 * trip over btrfs_try_granting_tickets, so we need to call it
1048 		 * here to see if we can make progress with the next ticket in
1049 		 * the list.
1050 		 */
1051 		if (!aborted)
1052 			btrfs_try_granting_tickets(fs_info, space_info);
1053 	}
1054 	return (tickets_id != space_info->tickets_id);
1055 }
1056 
1057 /*
1058  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1059  * will loop and continuously try to flush as long as we are making progress.
1060  * We count progress as clearing off tickets each time we have to loop.
1061  */
1062 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1063 {
1064 	struct btrfs_fs_info *fs_info;
1065 	struct btrfs_space_info *space_info;
1066 	u64 to_reclaim;
1067 	enum btrfs_flush_state flush_state;
1068 	int commit_cycles = 0;
1069 	u64 last_tickets_id;
1070 
1071 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1072 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1073 
1074 	spin_lock(&space_info->lock);
1075 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1076 	if (!to_reclaim) {
1077 		space_info->flush = 0;
1078 		spin_unlock(&space_info->lock);
1079 		return;
1080 	}
1081 	last_tickets_id = space_info->tickets_id;
1082 	spin_unlock(&space_info->lock);
1083 
1084 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1085 	do {
1086 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1087 		spin_lock(&space_info->lock);
1088 		if (list_empty(&space_info->tickets)) {
1089 			space_info->flush = 0;
1090 			spin_unlock(&space_info->lock);
1091 			return;
1092 		}
1093 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1094 							      space_info);
1095 		if (last_tickets_id == space_info->tickets_id) {
1096 			flush_state++;
1097 		} else {
1098 			last_tickets_id = space_info->tickets_id;
1099 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1100 			if (commit_cycles)
1101 				commit_cycles--;
1102 		}
1103 
1104 		/*
1105 		 * We do not want to empty the system of delalloc unless we're
1106 		 * under heavy pressure, so allow one trip through the flushing
1107 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1108 		 */
1109 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1110 			flush_state++;
1111 
1112 		/*
1113 		 * We don't want to force a chunk allocation until we've tried
1114 		 * pretty hard to reclaim space.  Think of the case where we
1115 		 * freed up a bunch of space and so have a lot of pinned space
1116 		 * to reclaim.  We would rather use that than possibly create a
1117 		 * underutilized metadata chunk.  So if this is our first run
1118 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1119 		 * commit the transaction.  If nothing has changed the next go
1120 		 * around then we can force a chunk allocation.
1121 		 */
1122 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1123 			flush_state++;
1124 
1125 		if (flush_state > COMMIT_TRANS) {
1126 			commit_cycles++;
1127 			if (commit_cycles > 2) {
1128 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1129 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1130 					commit_cycles--;
1131 				} else {
1132 					space_info->flush = 0;
1133 				}
1134 			} else {
1135 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1136 			}
1137 		}
1138 		spin_unlock(&space_info->lock);
1139 	} while (flush_state <= COMMIT_TRANS);
1140 }
1141 
1142 /*
1143  * This handles pre-flushing of metadata space before we get to the point that
1144  * we need to start blocking threads on tickets.  The logic here is different
1145  * from the other flush paths because it doesn't rely on tickets to tell us how
1146  * much we need to flush, instead it attempts to keep us below the 80% full
1147  * watermark of space by flushing whichever reservation pool is currently the
1148  * largest.
1149  */
1150 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1151 {
1152 	struct btrfs_fs_info *fs_info;
1153 	struct btrfs_space_info *space_info;
1154 	struct btrfs_block_rsv *delayed_block_rsv;
1155 	struct btrfs_block_rsv *delayed_refs_rsv;
1156 	struct btrfs_block_rsv *global_rsv;
1157 	struct btrfs_block_rsv *trans_rsv;
1158 	int loops = 0;
1159 
1160 	fs_info = container_of(work, struct btrfs_fs_info,
1161 			       preempt_reclaim_work);
1162 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1163 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1164 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1165 	global_rsv = &fs_info->global_block_rsv;
1166 	trans_rsv = &fs_info->trans_block_rsv;
1167 
1168 	spin_lock(&space_info->lock);
1169 	while (need_preemptive_reclaim(fs_info, space_info)) {
1170 		enum btrfs_flush_state flush;
1171 		u64 delalloc_size = 0;
1172 		u64 to_reclaim, block_rsv_size;
1173 		u64 global_rsv_size = global_rsv->reserved;
1174 
1175 		loops++;
1176 
1177 		/*
1178 		 * We don't have a precise counter for the metadata being
1179 		 * reserved for delalloc, so we'll approximate it by subtracting
1180 		 * out the block rsv's space from the bytes_may_use.  If that
1181 		 * amount is higher than the individual reserves, then we can
1182 		 * assume it's tied up in delalloc reservations.
1183 		 */
1184 		block_rsv_size = global_rsv_size +
1185 			delayed_block_rsv->reserved +
1186 			delayed_refs_rsv->reserved +
1187 			trans_rsv->reserved;
1188 		if (block_rsv_size < space_info->bytes_may_use)
1189 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1190 
1191 		/*
1192 		 * We don't want to include the global_rsv in our calculation,
1193 		 * because that's space we can't touch.  Subtract it from the
1194 		 * block_rsv_size for the next checks.
1195 		 */
1196 		block_rsv_size -= global_rsv_size;
1197 
1198 		/*
1199 		 * We really want to avoid flushing delalloc too much, as it
1200 		 * could result in poor allocation patterns, so only flush it if
1201 		 * it's larger than the rest of the pools combined.
1202 		 */
1203 		if (delalloc_size > block_rsv_size) {
1204 			to_reclaim = delalloc_size;
1205 			flush = FLUSH_DELALLOC;
1206 		} else if (space_info->bytes_pinned >
1207 			   (delayed_block_rsv->reserved +
1208 			    delayed_refs_rsv->reserved)) {
1209 			to_reclaim = space_info->bytes_pinned;
1210 			flush = COMMIT_TRANS;
1211 		} else if (delayed_block_rsv->reserved >
1212 			   delayed_refs_rsv->reserved) {
1213 			to_reclaim = delayed_block_rsv->reserved;
1214 			flush = FLUSH_DELAYED_ITEMS_NR;
1215 		} else {
1216 			to_reclaim = delayed_refs_rsv->reserved;
1217 			flush = FLUSH_DELAYED_REFS_NR;
1218 		}
1219 
1220 		spin_unlock(&space_info->lock);
1221 
1222 		/*
1223 		 * We don't want to reclaim everything, just a portion, so scale
1224 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1225 		 * reclaim 1 items worth.
1226 		 */
1227 		to_reclaim >>= 2;
1228 		if (!to_reclaim)
1229 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1230 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1231 		cond_resched();
1232 		spin_lock(&space_info->lock);
1233 	}
1234 
1235 	/* We only went through once, back off our clamping. */
1236 	if (loops == 1 && !space_info->reclaim_size)
1237 		space_info->clamp = max(1, space_info->clamp - 1);
1238 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1239 	spin_unlock(&space_info->lock);
1240 }
1241 
1242 /*
1243  * FLUSH_DELALLOC_WAIT:
1244  *   Space is freed from flushing delalloc in one of two ways.
1245  *
1246  *   1) compression is on and we allocate less space than we reserved
1247  *   2) we are overwriting existing space
1248  *
1249  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1250  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1251  *   length to ->bytes_reserved, and subtracts the reserved space from
1252  *   ->bytes_may_use.
1253  *
1254  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1255  *   extent in the range we are overwriting, which creates a delayed ref for
1256  *   that freed extent.  This however is not reclaimed until the transaction
1257  *   commits, thus the next stages.
1258  *
1259  * RUN_DELAYED_IPUTS
1260  *   If we are freeing inodes, we want to make sure all delayed iputs have
1261  *   completed, because they could have been on an inode with i_nlink == 0, and
1262  *   thus have been truncated and freed up space.  But again this space is not
1263  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1264  *   run and then the transaction must be committed.
1265  *
1266  * COMMIT_TRANS
1267  *   This is where we reclaim all of the pinned space generated by running the
1268  *   iputs
1269  *
1270  * ALLOC_CHUNK_FORCE
1271  *   For data we start with alloc chunk force, however we could have been full
1272  *   before, and then the transaction commit could have freed new block groups,
1273  *   so if we now have space to allocate do the force chunk allocation.
1274  */
1275 static const enum btrfs_flush_state data_flush_states[] = {
1276 	FLUSH_DELALLOC_FULL,
1277 	RUN_DELAYED_IPUTS,
1278 	COMMIT_TRANS,
1279 	ALLOC_CHUNK_FORCE,
1280 };
1281 
1282 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1283 {
1284 	struct btrfs_fs_info *fs_info;
1285 	struct btrfs_space_info *space_info;
1286 	u64 last_tickets_id;
1287 	enum btrfs_flush_state flush_state = 0;
1288 
1289 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1290 	space_info = fs_info->data_sinfo;
1291 
1292 	spin_lock(&space_info->lock);
1293 	if (list_empty(&space_info->tickets)) {
1294 		space_info->flush = 0;
1295 		spin_unlock(&space_info->lock);
1296 		return;
1297 	}
1298 	last_tickets_id = space_info->tickets_id;
1299 	spin_unlock(&space_info->lock);
1300 
1301 	while (!space_info->full) {
1302 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1303 		spin_lock(&space_info->lock);
1304 		if (list_empty(&space_info->tickets)) {
1305 			space_info->flush = 0;
1306 			spin_unlock(&space_info->lock);
1307 			return;
1308 		}
1309 
1310 		/* Something happened, fail everything and bail. */
1311 		if (BTRFS_FS_ERROR(fs_info))
1312 			goto aborted_fs;
1313 		last_tickets_id = space_info->tickets_id;
1314 		spin_unlock(&space_info->lock);
1315 	}
1316 
1317 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1318 		flush_space(fs_info, space_info, U64_MAX,
1319 			    data_flush_states[flush_state], false);
1320 		spin_lock(&space_info->lock);
1321 		if (list_empty(&space_info->tickets)) {
1322 			space_info->flush = 0;
1323 			spin_unlock(&space_info->lock);
1324 			return;
1325 		}
1326 
1327 		if (last_tickets_id == space_info->tickets_id) {
1328 			flush_state++;
1329 		} else {
1330 			last_tickets_id = space_info->tickets_id;
1331 			flush_state = 0;
1332 		}
1333 
1334 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1335 			if (space_info->full) {
1336 				if (maybe_fail_all_tickets(fs_info, space_info))
1337 					flush_state = 0;
1338 				else
1339 					space_info->flush = 0;
1340 			} else {
1341 				flush_state = 0;
1342 			}
1343 
1344 			/* Something happened, fail everything and bail. */
1345 			if (BTRFS_FS_ERROR(fs_info))
1346 				goto aborted_fs;
1347 
1348 		}
1349 		spin_unlock(&space_info->lock);
1350 	}
1351 	return;
1352 
1353 aborted_fs:
1354 	maybe_fail_all_tickets(fs_info, space_info);
1355 	space_info->flush = 0;
1356 	spin_unlock(&space_info->lock);
1357 }
1358 
1359 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1360 {
1361 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1362 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1363 	INIT_WORK(&fs_info->preempt_reclaim_work,
1364 		  btrfs_preempt_reclaim_metadata_space);
1365 }
1366 
1367 static const enum btrfs_flush_state priority_flush_states[] = {
1368 	FLUSH_DELAYED_ITEMS_NR,
1369 	FLUSH_DELAYED_ITEMS,
1370 	ALLOC_CHUNK,
1371 };
1372 
1373 static const enum btrfs_flush_state evict_flush_states[] = {
1374 	FLUSH_DELAYED_ITEMS_NR,
1375 	FLUSH_DELAYED_ITEMS,
1376 	FLUSH_DELAYED_REFS_NR,
1377 	FLUSH_DELAYED_REFS,
1378 	FLUSH_DELALLOC,
1379 	FLUSH_DELALLOC_WAIT,
1380 	FLUSH_DELALLOC_FULL,
1381 	ALLOC_CHUNK,
1382 	COMMIT_TRANS,
1383 };
1384 
1385 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1386 				struct btrfs_space_info *space_info,
1387 				struct reserve_ticket *ticket,
1388 				const enum btrfs_flush_state *states,
1389 				int states_nr)
1390 {
1391 	u64 to_reclaim;
1392 	int flush_state = 0;
1393 
1394 	spin_lock(&space_info->lock);
1395 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1396 	/*
1397 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1398 	 * because we may have only satisfied the priority tickets and still
1399 	 * left non priority tickets on the list.  We would then have
1400 	 * to_reclaim but ->bytes == 0.
1401 	 */
1402 	if (ticket->bytes == 0) {
1403 		spin_unlock(&space_info->lock);
1404 		return;
1405 	}
1406 
1407 	while (flush_state < states_nr) {
1408 		spin_unlock(&space_info->lock);
1409 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1410 			    false);
1411 		flush_state++;
1412 		spin_lock(&space_info->lock);
1413 		if (ticket->bytes == 0) {
1414 			spin_unlock(&space_info->lock);
1415 			return;
1416 		}
1417 	}
1418 
1419 	/* Attempt to steal from the global rsv if we can. */
1420 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1421 		ticket->error = -ENOSPC;
1422 		remove_ticket(space_info, ticket);
1423 	}
1424 
1425 	/*
1426 	 * We must run try_granting_tickets here because we could be a large
1427 	 * ticket in front of a smaller ticket that can now be satisfied with
1428 	 * the available space.
1429 	 */
1430 	btrfs_try_granting_tickets(fs_info, space_info);
1431 	spin_unlock(&space_info->lock);
1432 }
1433 
1434 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1435 					struct btrfs_space_info *space_info,
1436 					struct reserve_ticket *ticket)
1437 {
1438 	spin_lock(&space_info->lock);
1439 
1440 	/* We could have been granted before we got here. */
1441 	if (ticket->bytes == 0) {
1442 		spin_unlock(&space_info->lock);
1443 		return;
1444 	}
1445 
1446 	while (!space_info->full) {
1447 		spin_unlock(&space_info->lock);
1448 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1449 		spin_lock(&space_info->lock);
1450 		if (ticket->bytes == 0) {
1451 			spin_unlock(&space_info->lock);
1452 			return;
1453 		}
1454 	}
1455 
1456 	ticket->error = -ENOSPC;
1457 	remove_ticket(space_info, ticket);
1458 	btrfs_try_granting_tickets(fs_info, space_info);
1459 	spin_unlock(&space_info->lock);
1460 }
1461 
1462 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1463 				struct btrfs_space_info *space_info,
1464 				struct reserve_ticket *ticket)
1465 
1466 {
1467 	DEFINE_WAIT(wait);
1468 	int ret = 0;
1469 
1470 	spin_lock(&space_info->lock);
1471 	while (ticket->bytes > 0 && ticket->error == 0) {
1472 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1473 		if (ret) {
1474 			/*
1475 			 * Delete us from the list. After we unlock the space
1476 			 * info, we don't want the async reclaim job to reserve
1477 			 * space for this ticket. If that would happen, then the
1478 			 * ticket's task would not known that space was reserved
1479 			 * despite getting an error, resulting in a space leak
1480 			 * (bytes_may_use counter of our space_info).
1481 			 */
1482 			remove_ticket(space_info, ticket);
1483 			ticket->error = -EINTR;
1484 			break;
1485 		}
1486 		spin_unlock(&space_info->lock);
1487 
1488 		schedule();
1489 
1490 		finish_wait(&ticket->wait, &wait);
1491 		spin_lock(&space_info->lock);
1492 	}
1493 	spin_unlock(&space_info->lock);
1494 }
1495 
1496 /*
1497  * Do the appropriate flushing and waiting for a ticket.
1498  *
1499  * @fs_info:    the filesystem
1500  * @space_info: space info for the reservation
1501  * @ticket:     ticket for the reservation
1502  * @start_ns:   timestamp when the reservation started
1503  * @orig_bytes: amount of bytes originally reserved
1504  * @flush:      how much we can flush
1505  *
1506  * This does the work of figuring out how to flush for the ticket, waiting for
1507  * the reservation, and returning the appropriate error if there is one.
1508  */
1509 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1510 				 struct btrfs_space_info *space_info,
1511 				 struct reserve_ticket *ticket,
1512 				 u64 start_ns, u64 orig_bytes,
1513 				 enum btrfs_reserve_flush_enum flush)
1514 {
1515 	int ret;
1516 
1517 	switch (flush) {
1518 	case BTRFS_RESERVE_FLUSH_DATA:
1519 	case BTRFS_RESERVE_FLUSH_ALL:
1520 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1521 		wait_reserve_ticket(fs_info, space_info, ticket);
1522 		break;
1523 	case BTRFS_RESERVE_FLUSH_LIMIT:
1524 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1525 						priority_flush_states,
1526 						ARRAY_SIZE(priority_flush_states));
1527 		break;
1528 	case BTRFS_RESERVE_FLUSH_EVICT:
1529 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1530 						evict_flush_states,
1531 						ARRAY_SIZE(evict_flush_states));
1532 		break;
1533 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1534 		priority_reclaim_data_space(fs_info, space_info, ticket);
1535 		break;
1536 	default:
1537 		ASSERT(0);
1538 		break;
1539 	}
1540 
1541 	ret = ticket->error;
1542 	ASSERT(list_empty(&ticket->list));
1543 	/*
1544 	 * Check that we can't have an error set if the reservation succeeded,
1545 	 * as that would confuse tasks and lead them to error out without
1546 	 * releasing reserved space (if an error happens the expectation is that
1547 	 * space wasn't reserved at all).
1548 	 */
1549 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1550 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1551 				   start_ns, flush, ticket->error);
1552 	return ret;
1553 }
1554 
1555 /*
1556  * This returns true if this flush state will go through the ordinary flushing
1557  * code.
1558  */
1559 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1560 {
1561 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1562 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1563 }
1564 
1565 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1566 				       struct btrfs_space_info *space_info)
1567 {
1568 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1569 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1570 
1571 	/*
1572 	 * If we're heavy on ordered operations then clamping won't help us.  We
1573 	 * need to clamp specifically to keep up with dirty'ing buffered
1574 	 * writers, because there's not a 1:1 correlation of writing delalloc
1575 	 * and freeing space, like there is with flushing delayed refs or
1576 	 * delayed nodes.  If we're already more ordered than delalloc then
1577 	 * we're keeping up, otherwise we aren't and should probably clamp.
1578 	 */
1579 	if (ordered < delalloc)
1580 		space_info->clamp = min(space_info->clamp + 1, 8);
1581 }
1582 
1583 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1584 {
1585 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1586 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1587 }
1588 
1589 /*
1590  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1591  * fail as quickly as possible.
1592  */
1593 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1594 {
1595 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1596 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1597 }
1598 
1599 /*
1600  * Try to reserve bytes from the block_rsv's space.
1601  *
1602  * @fs_info:    the filesystem
1603  * @space_info: space info we want to allocate from
1604  * @orig_bytes: number of bytes we want
1605  * @flush:      whether or not we can flush to make our reservation
1606  *
1607  * This will reserve orig_bytes number of bytes from the space info associated
1608  * with the block_rsv.  If there is not enough space it will make an attempt to
1609  * flush out space to make room.  It will do this by flushing delalloc if
1610  * possible or committing the transaction.  If flush is 0 then no attempts to
1611  * regain reservations will be made and this will fail if there is not enough
1612  * space already.
1613  */
1614 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1615 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1616 			   enum btrfs_reserve_flush_enum flush)
1617 {
1618 	struct work_struct *async_work;
1619 	struct reserve_ticket ticket;
1620 	u64 start_ns = 0;
1621 	u64 used;
1622 	int ret = 0;
1623 	bool pending_tickets;
1624 
1625 	ASSERT(orig_bytes);
1626 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1627 
1628 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1629 		async_work = &fs_info->async_data_reclaim_work;
1630 	else
1631 		async_work = &fs_info->async_reclaim_work;
1632 
1633 	spin_lock(&space_info->lock);
1634 	ret = -ENOSPC;
1635 	used = btrfs_space_info_used(space_info, true);
1636 
1637 	/*
1638 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1639 	 * generally handle ENOSPC in a different way, so treat them the same as
1640 	 * normal flushers when it comes to skipping pending tickets.
1641 	 */
1642 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1643 		pending_tickets = !list_empty(&space_info->tickets) ||
1644 			!list_empty(&space_info->priority_tickets);
1645 	else
1646 		pending_tickets = !list_empty(&space_info->priority_tickets);
1647 
1648 	/*
1649 	 * Carry on if we have enough space (short-circuit) OR call
1650 	 * can_overcommit() to ensure we can overcommit to continue.
1651 	 */
1652 	if (!pending_tickets &&
1653 	    ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1654 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1655 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1656 						      orig_bytes);
1657 		ret = 0;
1658 	}
1659 
1660 	/*
1661 	 * Things are dire, we need to make a reservation so we don't abort.  We
1662 	 * will let this reservation go through as long as we have actual space
1663 	 * left to allocate for the block.
1664 	 */
1665 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1666 		used = btrfs_space_info_used(space_info, false);
1667 		if (used + orig_bytes <=
1668 		    writable_total_bytes(fs_info, space_info)) {
1669 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1670 							      orig_bytes);
1671 			ret = 0;
1672 		}
1673 	}
1674 
1675 	/*
1676 	 * If we couldn't make a reservation then setup our reservation ticket
1677 	 * and kick the async worker if it's not already running.
1678 	 *
1679 	 * If we are a priority flusher then we just need to add our ticket to
1680 	 * the list and we will do our own flushing further down.
1681 	 */
1682 	if (ret && can_ticket(flush)) {
1683 		ticket.bytes = orig_bytes;
1684 		ticket.error = 0;
1685 		space_info->reclaim_size += ticket.bytes;
1686 		init_waitqueue_head(&ticket.wait);
1687 		ticket.steal = can_steal(flush);
1688 		if (trace_btrfs_reserve_ticket_enabled())
1689 			start_ns = ktime_get_ns();
1690 
1691 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1692 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1693 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1694 			list_add_tail(&ticket.list, &space_info->tickets);
1695 			if (!space_info->flush) {
1696 				/*
1697 				 * We were forced to add a reserve ticket, so
1698 				 * our preemptive flushing is unable to keep
1699 				 * up.  Clamp down on the threshold for the
1700 				 * preemptive flushing in order to keep up with
1701 				 * the workload.
1702 				 */
1703 				maybe_clamp_preempt(fs_info, space_info);
1704 
1705 				space_info->flush = 1;
1706 				trace_btrfs_trigger_flush(fs_info,
1707 							  space_info->flags,
1708 							  orig_bytes, flush,
1709 							  "enospc");
1710 				queue_work(system_unbound_wq, async_work);
1711 			}
1712 		} else {
1713 			list_add_tail(&ticket.list,
1714 				      &space_info->priority_tickets);
1715 		}
1716 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1717 		/*
1718 		 * We will do the space reservation dance during log replay,
1719 		 * which means we won't have fs_info->fs_root set, so don't do
1720 		 * the async reclaim as we will panic.
1721 		 */
1722 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1723 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1724 		    need_preemptive_reclaim(fs_info, space_info)) {
1725 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1726 						  orig_bytes, flush, "preempt");
1727 			queue_work(system_unbound_wq,
1728 				   &fs_info->preempt_reclaim_work);
1729 		}
1730 	}
1731 	spin_unlock(&space_info->lock);
1732 	if (!ret || !can_ticket(flush))
1733 		return ret;
1734 
1735 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1736 				     orig_bytes, flush);
1737 }
1738 
1739 /*
1740  * Try to reserve metadata bytes from the block_rsv's space.
1741  *
1742  * @fs_info:    the filesystem
1743  * @block_rsv:  block_rsv we're allocating for
1744  * @orig_bytes: number of bytes we want
1745  * @flush:      whether or not we can flush to make our reservation
1746  *
1747  * This will reserve orig_bytes number of bytes from the space info associated
1748  * with the block_rsv.  If there is not enough space it will make an attempt to
1749  * flush out space to make room.  It will do this by flushing delalloc if
1750  * possible or committing the transaction.  If flush is 0 then no attempts to
1751  * regain reservations will be made and this will fail if there is not enough
1752  * space already.
1753  */
1754 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1755 				 struct btrfs_block_rsv *block_rsv,
1756 				 u64 orig_bytes,
1757 				 enum btrfs_reserve_flush_enum flush)
1758 {
1759 	int ret;
1760 
1761 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1762 	if (ret == -ENOSPC) {
1763 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1764 					      block_rsv->space_info->flags,
1765 					      orig_bytes, 1);
1766 
1767 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1768 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1769 					      orig_bytes, 0);
1770 	}
1771 	return ret;
1772 }
1773 
1774 /*
1775  * Try to reserve data bytes for an allocation.
1776  *
1777  * @fs_info: the filesystem
1778  * @bytes:   number of bytes we need
1779  * @flush:   how we are allowed to flush
1780  *
1781  * This will reserve bytes from the data space info.  If there is not enough
1782  * space then we will attempt to flush space as specified by flush.
1783  */
1784 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1785 			     enum btrfs_reserve_flush_enum flush)
1786 {
1787 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1788 	int ret;
1789 
1790 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1791 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1792 	       flush == BTRFS_RESERVE_NO_FLUSH);
1793 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1794 
1795 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1796 	if (ret == -ENOSPC) {
1797 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1798 					      data_sinfo->flags, bytes, 1);
1799 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1800 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1801 	}
1802 	return ret;
1803 }
1804 
1805 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1806 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1807 {
1808 	struct btrfs_space_info *space_info;
1809 
1810 	btrfs_info(fs_info, "dumping space info:");
1811 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1812 		spin_lock(&space_info->lock);
1813 		__btrfs_dump_space_info(fs_info, space_info);
1814 		spin_unlock(&space_info->lock);
1815 	}
1816 	dump_global_block_rsv(fs_info);
1817 }
1818 
1819 /*
1820  * Account the unused space of all the readonly block group in the space_info.
1821  * takes mirrors into account.
1822  */
1823 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1824 {
1825 	struct btrfs_block_group *block_group;
1826 	u64 free_bytes = 0;
1827 	int factor;
1828 
1829 	/* It's df, we don't care if it's racy */
1830 	if (list_empty(&sinfo->ro_bgs))
1831 		return 0;
1832 
1833 	spin_lock(&sinfo->lock);
1834 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1835 		spin_lock(&block_group->lock);
1836 
1837 		if (!block_group->ro) {
1838 			spin_unlock(&block_group->lock);
1839 			continue;
1840 		}
1841 
1842 		factor = btrfs_bg_type_to_factor(block_group->flags);
1843 		free_bytes += (block_group->length -
1844 			       block_group->used) * factor;
1845 
1846 		spin_unlock(&block_group->lock);
1847 	}
1848 	spin_unlock(&sinfo->lock);
1849 
1850 	return free_bytes;
1851 }
1852