1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "fs.h" 13 #include "accessors.h" 14 #include "extent-tree.h" 15 16 /* 17 * HOW DOES SPACE RESERVATION WORK 18 * 19 * If you want to know about delalloc specifically, there is a separate comment 20 * for that with the delalloc code. This comment is about how the whole system 21 * works generally. 22 * 23 * BASIC CONCEPTS 24 * 25 * 1) space_info. This is the ultimate arbiter of how much space we can use. 26 * There's a description of the bytes_ fields with the struct declaration, 27 * refer to that for specifics on each field. Suffice it to say that for 28 * reservations we care about total_bytes - SUM(space_info->bytes_) when 29 * determining if there is space to make an allocation. There is a space_info 30 * for METADATA, SYSTEM, and DATA areas. 31 * 32 * 2) block_rsv's. These are basically buckets for every different type of 33 * metadata reservation we have. You can see the comment in the block_rsv 34 * code on the rules for each type, but generally block_rsv->reserved is how 35 * much space is accounted for in space_info->bytes_may_use. 36 * 37 * 3) btrfs_calc*_size. These are the worst case calculations we used based 38 * on the number of items we will want to modify. We have one for changing 39 * items, and one for inserting new items. Generally we use these helpers to 40 * determine the size of the block reserves, and then use the actual bytes 41 * values to adjust the space_info counters. 42 * 43 * MAKING RESERVATIONS, THE NORMAL CASE 44 * 45 * We call into either btrfs_reserve_data_bytes() or 46 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 47 * num_bytes we want to reserve. 48 * 49 * ->reserve 50 * space_info->bytes_may_reserve += num_bytes 51 * 52 * ->extent allocation 53 * Call btrfs_add_reserved_bytes() which does 54 * space_info->bytes_may_reserve -= num_bytes 55 * space_info->bytes_reserved += extent_bytes 56 * 57 * ->insert reference 58 * Call btrfs_update_block_group() which does 59 * space_info->bytes_reserved -= extent_bytes 60 * space_info->bytes_used += extent_bytes 61 * 62 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 63 * 64 * Assume we are unable to simply make the reservation because we do not have 65 * enough space 66 * 67 * -> __reserve_bytes 68 * create a reserve_ticket with ->bytes set to our reservation, add it to 69 * the tail of space_info->tickets, kick async flush thread 70 * 71 * ->handle_reserve_ticket 72 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 73 * on the ticket. 74 * 75 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 76 * Flushes various things attempting to free up space. 77 * 78 * -> btrfs_try_granting_tickets() 79 * This is called by anything that either subtracts space from 80 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 81 * space_info->total_bytes. This loops through the ->priority_tickets and 82 * then the ->tickets list checking to see if the reservation can be 83 * completed. If it can the space is added to space_info->bytes_may_use and 84 * the ticket is woken up. 85 * 86 * -> ticket wakeup 87 * Check if ->bytes == 0, if it does we got our reservation and we can carry 88 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 89 * were interrupted.) 90 * 91 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 92 * 93 * Same as the above, except we add ourselves to the 94 * space_info->priority_tickets, and we do not use ticket->wait, we simply 95 * call flush_space() ourselves for the states that are safe for us to call 96 * without deadlocking and hope for the best. 97 * 98 * THE FLUSHING STATES 99 * 100 * Generally speaking we will have two cases for each state, a "nice" state 101 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 102 * reduce the locking over head on the various trees, and even to keep from 103 * doing any work at all in the case of delayed refs. Each of these delayed 104 * things however hold reservations, and so letting them run allows us to 105 * reclaim space so we can make new reservations. 106 * 107 * FLUSH_DELAYED_ITEMS 108 * Every inode has a delayed item to update the inode. Take a simple write 109 * for example, we would update the inode item at write time to update the 110 * mtime, and then again at finish_ordered_io() time in order to update the 111 * isize or bytes. We keep these delayed items to coalesce these operations 112 * into a single operation done on demand. These are an easy way to reclaim 113 * metadata space. 114 * 115 * FLUSH_DELALLOC 116 * Look at the delalloc comment to get an idea of how much space is reserved 117 * for delayed allocation. We can reclaim some of this space simply by 118 * running delalloc, but usually we need to wait for ordered extents to 119 * reclaim the bulk of this space. 120 * 121 * FLUSH_DELAYED_REFS 122 * We have a block reserve for the outstanding delayed refs space, and every 123 * delayed ref operation holds a reservation. Running these is a quick way 124 * to reclaim space, but we want to hold this until the end because COW can 125 * churn a lot and we can avoid making some extent tree modifications if we 126 * are able to delay for as long as possible. 127 * 128 * ALLOC_CHUNK 129 * We will skip this the first time through space reservation, because of 130 * overcommit and we don't want to have a lot of useless metadata space when 131 * our worst case reservations will likely never come true. 132 * 133 * RUN_DELAYED_IPUTS 134 * If we're freeing inodes we're likely freeing checksums, file extent 135 * items, and extent tree items. Loads of space could be freed up by these 136 * operations, however they won't be usable until the transaction commits. 137 * 138 * COMMIT_TRANS 139 * This will commit the transaction. Historically we had a lot of logic 140 * surrounding whether or not we'd commit the transaction, but this waits born 141 * out of a pre-tickets era where we could end up committing the transaction 142 * thousands of times in a row without making progress. Now thanks to our 143 * ticketing system we know if we're not making progress and can error 144 * everybody out after a few commits rather than burning the disk hoping for 145 * a different answer. 146 * 147 * OVERCOMMIT 148 * 149 * Because we hold so many reservations for metadata we will allow you to 150 * reserve more space than is currently free in the currently allocate 151 * metadata space. This only happens with metadata, data does not allow 152 * overcommitting. 153 * 154 * You can see the current logic for when we allow overcommit in 155 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 156 * is no unallocated space to be had, all reservations are kept within the 157 * free space in the allocated metadata chunks. 158 * 159 * Because of overcommitting, you generally want to use the 160 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 161 * thing with or without extra unallocated space. 162 */ 163 164 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 165 bool may_use_included) 166 { 167 ASSERT(s_info); 168 return s_info->bytes_used + s_info->bytes_reserved + 169 s_info->bytes_pinned + s_info->bytes_readonly + 170 s_info->bytes_zone_unusable + 171 (may_use_included ? s_info->bytes_may_use : 0); 172 } 173 174 /* 175 * after adding space to the filesystem, we need to clear the full flags 176 * on all the space infos. 177 */ 178 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 179 { 180 struct list_head *head = &info->space_info; 181 struct btrfs_space_info *found; 182 183 list_for_each_entry(found, head, list) 184 found->full = 0; 185 } 186 187 /* 188 * Block groups with more than this value (percents) of unusable space will be 189 * scheduled for background reclaim. 190 */ 191 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 192 193 /* 194 * Calculate chunk size depending on volume type (regular or zoned). 195 */ 196 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 197 { 198 if (btrfs_is_zoned(fs_info)) 199 return fs_info->zone_size; 200 201 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 202 203 if (flags & BTRFS_BLOCK_GROUP_DATA) 204 return BTRFS_MAX_DATA_CHUNK_SIZE; 205 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 206 return SZ_32M; 207 208 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 209 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 210 return SZ_1G; 211 212 return SZ_256M; 213 } 214 215 /* 216 * Update default chunk size. 217 */ 218 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 219 u64 chunk_size) 220 { 221 WRITE_ONCE(space_info->chunk_size, chunk_size); 222 } 223 224 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 225 { 226 227 struct btrfs_space_info *space_info; 228 int i; 229 int ret; 230 231 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 232 if (!space_info) 233 return -ENOMEM; 234 235 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 236 INIT_LIST_HEAD(&space_info->block_groups[i]); 237 init_rwsem(&space_info->groups_sem); 238 spin_lock_init(&space_info->lock); 239 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 240 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 241 INIT_LIST_HEAD(&space_info->ro_bgs); 242 INIT_LIST_HEAD(&space_info->tickets); 243 INIT_LIST_HEAD(&space_info->priority_tickets); 244 space_info->clamp = 1; 245 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 246 247 if (btrfs_is_zoned(info)) 248 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 249 250 ret = btrfs_sysfs_add_space_info_type(info, space_info); 251 if (ret) 252 return ret; 253 254 list_add(&space_info->list, &info->space_info); 255 if (flags & BTRFS_BLOCK_GROUP_DATA) 256 info->data_sinfo = space_info; 257 258 return ret; 259 } 260 261 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 262 { 263 struct btrfs_super_block *disk_super; 264 u64 features; 265 u64 flags; 266 int mixed = 0; 267 int ret; 268 269 disk_super = fs_info->super_copy; 270 if (!btrfs_super_root(disk_super)) 271 return -EINVAL; 272 273 features = btrfs_super_incompat_flags(disk_super); 274 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 275 mixed = 1; 276 277 flags = BTRFS_BLOCK_GROUP_SYSTEM; 278 ret = create_space_info(fs_info, flags); 279 if (ret) 280 goto out; 281 282 if (mixed) { 283 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 284 ret = create_space_info(fs_info, flags); 285 } else { 286 flags = BTRFS_BLOCK_GROUP_METADATA; 287 ret = create_space_info(fs_info, flags); 288 if (ret) 289 goto out; 290 291 flags = BTRFS_BLOCK_GROUP_DATA; 292 ret = create_space_info(fs_info, flags); 293 } 294 out: 295 return ret; 296 } 297 298 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 299 struct btrfs_block_group *block_group) 300 { 301 struct btrfs_space_info *found; 302 int factor, index; 303 304 factor = btrfs_bg_type_to_factor(block_group->flags); 305 306 found = btrfs_find_space_info(info, block_group->flags); 307 ASSERT(found); 308 spin_lock(&found->lock); 309 found->total_bytes += block_group->length; 310 found->disk_total += block_group->length * factor; 311 found->bytes_used += block_group->used; 312 found->disk_used += block_group->used * factor; 313 found->bytes_readonly += block_group->bytes_super; 314 found->bytes_zone_unusable += block_group->zone_unusable; 315 if (block_group->length > 0) 316 found->full = 0; 317 btrfs_try_granting_tickets(info, found); 318 spin_unlock(&found->lock); 319 320 block_group->space_info = found; 321 322 index = btrfs_bg_flags_to_raid_index(block_group->flags); 323 down_write(&found->groups_sem); 324 list_add_tail(&block_group->list, &found->block_groups[index]); 325 up_write(&found->groups_sem); 326 } 327 328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 329 u64 flags) 330 { 331 struct list_head *head = &info->space_info; 332 struct btrfs_space_info *found; 333 334 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 335 336 list_for_each_entry(found, head, list) { 337 if (found->flags & flags) 338 return found; 339 } 340 return NULL; 341 } 342 343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 344 struct btrfs_space_info *space_info, 345 enum btrfs_reserve_flush_enum flush) 346 { 347 struct btrfs_space_info *data_sinfo; 348 u64 profile; 349 u64 avail; 350 u64 data_chunk_size; 351 int factor; 352 353 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 354 profile = btrfs_system_alloc_profile(fs_info); 355 else 356 profile = btrfs_metadata_alloc_profile(fs_info); 357 358 avail = atomic64_read(&fs_info->free_chunk_space); 359 360 /* 361 * If we have dup, raid1 or raid10 then only half of the free 362 * space is actually usable. For raid56, the space info used 363 * doesn't include the parity drive, so we don't have to 364 * change the math 365 */ 366 factor = btrfs_bg_type_to_factor(profile); 367 avail = div_u64(avail, factor); 368 if (avail == 0) 369 return 0; 370 371 /* 372 * Calculate the data_chunk_size, space_info->chunk_size is the 373 * "optimal" chunk size based on the fs size. However when we actually 374 * allocate the chunk we will strip this down further, making it no more 375 * than 10% of the disk or 1G, whichever is smaller. 376 * 377 * On the zoned mode, we need to use zone_size (= 378 * data_sinfo->chunk_size) as it is. 379 */ 380 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 381 if (!btrfs_is_zoned(fs_info)) { 382 data_chunk_size = min(data_sinfo->chunk_size, 383 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 384 data_chunk_size = min_t(u64, data_chunk_size, SZ_1G); 385 } else { 386 data_chunk_size = data_sinfo->chunk_size; 387 } 388 389 /* 390 * Since data allocations immediately use block groups as part of the 391 * reservation, because we assume that data reservations will == actual 392 * usage, we could potentially overcommit and then immediately have that 393 * available space used by a data allocation, which could put us in a 394 * bind when we get close to filling the file system. 395 * 396 * To handle this simply remove the data_chunk_size from the available 397 * space. If we are relatively empty this won't affect our ability to 398 * overcommit much, and if we're very close to full it'll keep us from 399 * getting into a position where we've given ourselves very little 400 * metadata wiggle room. 401 */ 402 if (avail <= data_chunk_size) 403 return 0; 404 avail -= data_chunk_size; 405 406 /* 407 * If we aren't flushing all things, let us overcommit up to 408 * 1/2th of the space. If we can flush, don't let us overcommit 409 * too much, let it overcommit up to 1/8 of the space. 410 */ 411 if (flush == BTRFS_RESERVE_FLUSH_ALL) 412 avail >>= 3; 413 else 414 avail >>= 1; 415 416 /* 417 * On the zoned mode, we always allocate one zone as one chunk. 418 * Returning non-zone size alingned bytes here will result in 419 * less pressure for the async metadata reclaim process, and it 420 * will over-commit too much leading to ENOSPC. Align down to the 421 * zone size to avoid that. 422 */ 423 if (btrfs_is_zoned(fs_info)) 424 avail = ALIGN_DOWN(avail, fs_info->zone_size); 425 426 return avail; 427 } 428 429 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 430 struct btrfs_space_info *space_info, u64 bytes, 431 enum btrfs_reserve_flush_enum flush) 432 { 433 u64 avail; 434 u64 used; 435 436 /* Don't overcommit when in mixed mode */ 437 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 438 return 0; 439 440 used = btrfs_space_info_used(space_info, true); 441 avail = calc_available_free_space(fs_info, space_info, flush); 442 443 if (used + bytes < space_info->total_bytes + avail) 444 return 1; 445 return 0; 446 } 447 448 static void remove_ticket(struct btrfs_space_info *space_info, 449 struct reserve_ticket *ticket) 450 { 451 if (!list_empty(&ticket->list)) { 452 list_del_init(&ticket->list); 453 ASSERT(space_info->reclaim_size >= ticket->bytes); 454 space_info->reclaim_size -= ticket->bytes; 455 } 456 } 457 458 /* 459 * This is for space we already have accounted in space_info->bytes_may_use, so 460 * basically when we're returning space from block_rsv's. 461 */ 462 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 463 struct btrfs_space_info *space_info) 464 { 465 struct list_head *head; 466 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 467 468 lockdep_assert_held(&space_info->lock); 469 470 head = &space_info->priority_tickets; 471 again: 472 while (!list_empty(head)) { 473 struct reserve_ticket *ticket; 474 u64 used = btrfs_space_info_used(space_info, true); 475 476 ticket = list_first_entry(head, struct reserve_ticket, list); 477 478 /* Check and see if our ticket can be satisfied now. */ 479 if ((used + ticket->bytes <= space_info->total_bytes) || 480 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 481 flush)) { 482 btrfs_space_info_update_bytes_may_use(fs_info, 483 space_info, 484 ticket->bytes); 485 remove_ticket(space_info, ticket); 486 ticket->bytes = 0; 487 space_info->tickets_id++; 488 wake_up(&ticket->wait); 489 } else { 490 break; 491 } 492 } 493 494 if (head == &space_info->priority_tickets) { 495 head = &space_info->tickets; 496 flush = BTRFS_RESERVE_FLUSH_ALL; 497 goto again; 498 } 499 } 500 501 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 502 do { \ 503 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 504 spin_lock(&__rsv->lock); \ 505 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 506 __rsv->size, __rsv->reserved); \ 507 spin_unlock(&__rsv->lock); \ 508 } while (0) 509 510 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 511 { 512 switch (space_info->flags) { 513 case BTRFS_BLOCK_GROUP_SYSTEM: 514 return "SYSTEM"; 515 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 516 return "DATA+METADATA"; 517 case BTRFS_BLOCK_GROUP_DATA: 518 return "DATA"; 519 case BTRFS_BLOCK_GROUP_METADATA: 520 return "METADATA"; 521 default: 522 return "UNKNOWN"; 523 } 524 } 525 526 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 527 { 528 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 529 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 530 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 531 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 532 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 533 } 534 535 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 536 struct btrfs_space_info *info) 537 { 538 const char *flag_str = space_info_flag_to_str(info); 539 lockdep_assert_held(&info->lock); 540 541 /* The free space could be negative in case of overcommit */ 542 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 543 flag_str, 544 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 545 info->full ? "" : "not "); 546 btrfs_info(fs_info, 547 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 548 info->total_bytes, info->bytes_used, info->bytes_pinned, 549 info->bytes_reserved, info->bytes_may_use, 550 info->bytes_readonly, info->bytes_zone_unusable); 551 } 552 553 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 554 struct btrfs_space_info *info, u64 bytes, 555 int dump_block_groups) 556 { 557 struct btrfs_block_group *cache; 558 u64 total_avail = 0; 559 int index = 0; 560 561 spin_lock(&info->lock); 562 __btrfs_dump_space_info(fs_info, info); 563 dump_global_block_rsv(fs_info); 564 spin_unlock(&info->lock); 565 566 if (!dump_block_groups) 567 return; 568 569 down_read(&info->groups_sem); 570 again: 571 list_for_each_entry(cache, &info->block_groups[index], list) { 572 u64 avail; 573 574 spin_lock(&cache->lock); 575 avail = cache->length - cache->used - cache->pinned - 576 cache->reserved - cache->delalloc_bytes - 577 cache->bytes_super - cache->zone_unusable; 578 btrfs_info(fs_info, 579 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 580 cache->start, cache->length, cache->used, cache->pinned, 581 cache->reserved, cache->delalloc_bytes, 582 cache->bytes_super, cache->zone_unusable, 583 avail, cache->ro ? "[readonly]" : ""); 584 spin_unlock(&cache->lock); 585 btrfs_dump_free_space(cache, bytes); 586 total_avail += avail; 587 } 588 if (++index < BTRFS_NR_RAID_TYPES) 589 goto again; 590 up_read(&info->groups_sem); 591 592 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 593 } 594 595 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 596 u64 to_reclaim) 597 { 598 u64 bytes; 599 u64 nr; 600 601 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 602 nr = div64_u64(to_reclaim, bytes); 603 if (!nr) 604 nr = 1; 605 return nr; 606 } 607 608 #define EXTENT_SIZE_PER_ITEM SZ_256K 609 610 /* 611 * shrink metadata reservation for delalloc 612 */ 613 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 614 struct btrfs_space_info *space_info, 615 u64 to_reclaim, bool wait_ordered, 616 bool for_preempt) 617 { 618 struct btrfs_trans_handle *trans; 619 u64 delalloc_bytes; 620 u64 ordered_bytes; 621 u64 items; 622 long time_left; 623 int loops; 624 625 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 626 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 627 if (delalloc_bytes == 0 && ordered_bytes == 0) 628 return; 629 630 /* Calc the number of the pages we need flush for space reservation */ 631 if (to_reclaim == U64_MAX) { 632 items = U64_MAX; 633 } else { 634 /* 635 * to_reclaim is set to however much metadata we need to 636 * reclaim, but reclaiming that much data doesn't really track 637 * exactly. What we really want to do is reclaim full inode's 638 * worth of reservations, however that's not available to us 639 * here. We will take a fraction of the delalloc bytes for our 640 * flushing loops and hope for the best. Delalloc will expand 641 * the amount we write to cover an entire dirty extent, which 642 * will reclaim the metadata reservation for that range. If 643 * it's not enough subsequent flush stages will be more 644 * aggressive. 645 */ 646 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 647 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 648 } 649 650 trans = current->journal_info; 651 652 /* 653 * If we are doing more ordered than delalloc we need to just wait on 654 * ordered extents, otherwise we'll waste time trying to flush delalloc 655 * that likely won't give us the space back we need. 656 */ 657 if (ordered_bytes > delalloc_bytes && !for_preempt) 658 wait_ordered = true; 659 660 loops = 0; 661 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 662 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 663 long nr_pages = min_t(u64, temp, LONG_MAX); 664 int async_pages; 665 666 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 667 668 /* 669 * We need to make sure any outstanding async pages are now 670 * processed before we continue. This is because things like 671 * sync_inode() try to be smart and skip writing if the inode is 672 * marked clean. We don't use filemap_fwrite for flushing 673 * because we want to control how many pages we write out at a 674 * time, thus this is the only safe way to make sure we've 675 * waited for outstanding compressed workers to have started 676 * their jobs and thus have ordered extents set up properly. 677 * 678 * This exists because we do not want to wait for each 679 * individual inode to finish its async work, we simply want to 680 * start the IO on everybody, and then come back here and wait 681 * for all of the async work to catch up. Once we're done with 682 * that we know we'll have ordered extents for everything and we 683 * can decide if we wait for that or not. 684 * 685 * If we choose to replace this in the future, make absolutely 686 * sure that the proper waiting is being done in the async case, 687 * as there have been bugs in that area before. 688 */ 689 async_pages = atomic_read(&fs_info->async_delalloc_pages); 690 if (!async_pages) 691 goto skip_async; 692 693 /* 694 * We don't want to wait forever, if we wrote less pages in this 695 * loop than we have outstanding, only wait for that number of 696 * pages, otherwise we can wait for all async pages to finish 697 * before continuing. 698 */ 699 if (async_pages > nr_pages) 700 async_pages -= nr_pages; 701 else 702 async_pages = 0; 703 wait_event(fs_info->async_submit_wait, 704 atomic_read(&fs_info->async_delalloc_pages) <= 705 async_pages); 706 skip_async: 707 loops++; 708 if (wait_ordered && !trans) { 709 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 710 } else { 711 time_left = schedule_timeout_killable(1); 712 if (time_left) 713 break; 714 } 715 716 /* 717 * If we are for preemption we just want a one-shot of delalloc 718 * flushing so we can stop flushing if we decide we don't need 719 * to anymore. 720 */ 721 if (for_preempt) 722 break; 723 724 spin_lock(&space_info->lock); 725 if (list_empty(&space_info->tickets) && 726 list_empty(&space_info->priority_tickets)) { 727 spin_unlock(&space_info->lock); 728 break; 729 } 730 spin_unlock(&space_info->lock); 731 732 delalloc_bytes = percpu_counter_sum_positive( 733 &fs_info->delalloc_bytes); 734 ordered_bytes = percpu_counter_sum_positive( 735 &fs_info->ordered_bytes); 736 } 737 } 738 739 /* 740 * Try to flush some data based on policy set by @state. This is only advisory 741 * and may fail for various reasons. The caller is supposed to examine the 742 * state of @space_info to detect the outcome. 743 */ 744 static void flush_space(struct btrfs_fs_info *fs_info, 745 struct btrfs_space_info *space_info, u64 num_bytes, 746 enum btrfs_flush_state state, bool for_preempt) 747 { 748 struct btrfs_root *root = fs_info->tree_root; 749 struct btrfs_trans_handle *trans; 750 int nr; 751 int ret = 0; 752 753 switch (state) { 754 case FLUSH_DELAYED_ITEMS_NR: 755 case FLUSH_DELAYED_ITEMS: 756 if (state == FLUSH_DELAYED_ITEMS_NR) 757 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 758 else 759 nr = -1; 760 761 trans = btrfs_join_transaction_nostart(root); 762 if (IS_ERR(trans)) { 763 ret = PTR_ERR(trans); 764 if (ret == -ENOENT) 765 ret = 0; 766 break; 767 } 768 ret = btrfs_run_delayed_items_nr(trans, nr); 769 btrfs_end_transaction(trans); 770 break; 771 case FLUSH_DELALLOC: 772 case FLUSH_DELALLOC_WAIT: 773 case FLUSH_DELALLOC_FULL: 774 if (state == FLUSH_DELALLOC_FULL) 775 num_bytes = U64_MAX; 776 shrink_delalloc(fs_info, space_info, num_bytes, 777 state != FLUSH_DELALLOC, for_preempt); 778 break; 779 case FLUSH_DELAYED_REFS_NR: 780 case FLUSH_DELAYED_REFS: 781 trans = btrfs_join_transaction_nostart(root); 782 if (IS_ERR(trans)) { 783 ret = PTR_ERR(trans); 784 if (ret == -ENOENT) 785 ret = 0; 786 break; 787 } 788 if (state == FLUSH_DELAYED_REFS_NR) 789 btrfs_run_delayed_refs(trans, num_bytes); 790 else 791 btrfs_run_delayed_refs(trans, 0); 792 btrfs_end_transaction(trans); 793 break; 794 case ALLOC_CHUNK: 795 case ALLOC_CHUNK_FORCE: 796 trans = btrfs_join_transaction(root); 797 if (IS_ERR(trans)) { 798 ret = PTR_ERR(trans); 799 break; 800 } 801 ret = btrfs_chunk_alloc(trans, 802 btrfs_get_alloc_profile(fs_info, space_info->flags), 803 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 804 CHUNK_ALLOC_FORCE); 805 btrfs_end_transaction(trans); 806 807 if (ret > 0 || ret == -ENOSPC) 808 ret = 0; 809 break; 810 case RUN_DELAYED_IPUTS: 811 /* 812 * If we have pending delayed iputs then we could free up a 813 * bunch of pinned space, so make sure we run the iputs before 814 * we do our pinned bytes check below. 815 */ 816 btrfs_run_delayed_iputs(fs_info); 817 btrfs_wait_on_delayed_iputs(fs_info); 818 break; 819 case COMMIT_TRANS: 820 ASSERT(current->journal_info == NULL); 821 /* 822 * We don't want to start a new transaction, just attach to the 823 * current one or wait it fully commits in case its commit is 824 * happening at the moment. Note: we don't use a nostart join 825 * because that does not wait for a transaction to fully commit 826 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 827 */ 828 trans = btrfs_attach_transaction_barrier(root); 829 if (IS_ERR(trans)) { 830 ret = PTR_ERR(trans); 831 if (ret == -ENOENT) 832 ret = 0; 833 break; 834 } 835 ret = btrfs_commit_transaction(trans); 836 break; 837 default: 838 ret = -ENOSPC; 839 break; 840 } 841 842 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 843 ret, for_preempt); 844 return; 845 } 846 847 static inline u64 848 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 849 struct btrfs_space_info *space_info) 850 { 851 u64 used; 852 u64 avail; 853 u64 to_reclaim = space_info->reclaim_size; 854 855 lockdep_assert_held(&space_info->lock); 856 857 avail = calc_available_free_space(fs_info, space_info, 858 BTRFS_RESERVE_FLUSH_ALL); 859 used = btrfs_space_info_used(space_info, true); 860 861 /* 862 * We may be flushing because suddenly we have less space than we had 863 * before, and now we're well over-committed based on our current free 864 * space. If that's the case add in our overage so we make sure to put 865 * appropriate pressure on the flushing state machine. 866 */ 867 if (space_info->total_bytes + avail < used) 868 to_reclaim += used - (space_info->total_bytes + avail); 869 870 return to_reclaim; 871 } 872 873 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 874 struct btrfs_space_info *space_info) 875 { 876 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 877 u64 ordered, delalloc; 878 u64 thresh; 879 u64 used; 880 881 thresh = mult_perc(space_info->total_bytes, 90); 882 883 lockdep_assert_held(&space_info->lock); 884 885 /* If we're just plain full then async reclaim just slows us down. */ 886 if ((space_info->bytes_used + space_info->bytes_reserved + 887 global_rsv_size) >= thresh) 888 return false; 889 890 used = space_info->bytes_may_use + space_info->bytes_pinned; 891 892 /* The total flushable belongs to the global rsv, don't flush. */ 893 if (global_rsv_size >= used) 894 return false; 895 896 /* 897 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 898 * that devoted to other reservations then there's no sense in flushing, 899 * we don't have a lot of things that need flushing. 900 */ 901 if (used - global_rsv_size <= SZ_128M) 902 return false; 903 904 /* 905 * We have tickets queued, bail so we don't compete with the async 906 * flushers. 907 */ 908 if (space_info->reclaim_size) 909 return false; 910 911 /* 912 * If we have over half of the free space occupied by reservations or 913 * pinned then we want to start flushing. 914 * 915 * We do not do the traditional thing here, which is to say 916 * 917 * if (used >= ((total_bytes + avail) / 2)) 918 * return 1; 919 * 920 * because this doesn't quite work how we want. If we had more than 50% 921 * of the space_info used by bytes_used and we had 0 available we'd just 922 * constantly run the background flusher. Instead we want it to kick in 923 * if our reclaimable space exceeds our clamped free space. 924 * 925 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 926 * the following: 927 * 928 * Amount of RAM Minimum threshold Maximum threshold 929 * 930 * 256GiB 1GiB 128GiB 931 * 128GiB 512MiB 64GiB 932 * 64GiB 256MiB 32GiB 933 * 32GiB 128MiB 16GiB 934 * 16GiB 64MiB 8GiB 935 * 936 * These are the range our thresholds will fall in, corresponding to how 937 * much delalloc we need for the background flusher to kick in. 938 */ 939 940 thresh = calc_available_free_space(fs_info, space_info, 941 BTRFS_RESERVE_FLUSH_ALL); 942 used = space_info->bytes_used + space_info->bytes_reserved + 943 space_info->bytes_readonly + global_rsv_size; 944 if (used < space_info->total_bytes) 945 thresh += space_info->total_bytes - used; 946 thresh >>= space_info->clamp; 947 948 used = space_info->bytes_pinned; 949 950 /* 951 * If we have more ordered bytes than delalloc bytes then we're either 952 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 953 * around. Preemptive flushing is only useful in that it can free up 954 * space before tickets need to wait for things to finish. In the case 955 * of ordered extents, preemptively waiting on ordered extents gets us 956 * nothing, if our reservations are tied up in ordered extents we'll 957 * simply have to slow down writers by forcing them to wait on ordered 958 * extents. 959 * 960 * In the case that ordered is larger than delalloc, only include the 961 * block reserves that we would actually be able to directly reclaim 962 * from. In this case if we're heavy on metadata operations this will 963 * clearly be heavy enough to warrant preemptive flushing. In the case 964 * of heavy DIO or ordered reservations, preemptive flushing will just 965 * waste time and cause us to slow down. 966 * 967 * We want to make sure we truly are maxed out on ordered however, so 968 * cut ordered in half, and if it's still higher than delalloc then we 969 * can keep flushing. This is to avoid the case where we start 970 * flushing, and now delalloc == ordered and we stop preemptively 971 * flushing when we could still have several gigs of delalloc to flush. 972 */ 973 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 974 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 975 if (ordered >= delalloc) 976 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 977 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 978 else 979 used += space_info->bytes_may_use - global_rsv_size; 980 981 return (used >= thresh && !btrfs_fs_closing(fs_info) && 982 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 983 } 984 985 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 986 struct btrfs_space_info *space_info, 987 struct reserve_ticket *ticket) 988 { 989 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 990 u64 min_bytes; 991 992 if (!ticket->steal) 993 return false; 994 995 if (global_rsv->space_info != space_info) 996 return false; 997 998 spin_lock(&global_rsv->lock); 999 min_bytes = mult_perc(global_rsv->size, 10); 1000 if (global_rsv->reserved < min_bytes + ticket->bytes) { 1001 spin_unlock(&global_rsv->lock); 1002 return false; 1003 } 1004 global_rsv->reserved -= ticket->bytes; 1005 remove_ticket(space_info, ticket); 1006 ticket->bytes = 0; 1007 wake_up(&ticket->wait); 1008 space_info->tickets_id++; 1009 if (global_rsv->reserved < global_rsv->size) 1010 global_rsv->full = 0; 1011 spin_unlock(&global_rsv->lock); 1012 1013 return true; 1014 } 1015 1016 /* 1017 * We've exhausted our flushing, start failing tickets. 1018 * 1019 * @fs_info - fs_info for this fs 1020 * @space_info - the space info we were flushing 1021 * 1022 * We call this when we've exhausted our flushing ability and haven't made 1023 * progress in satisfying tickets. The reservation code handles tickets in 1024 * order, so if there is a large ticket first and then smaller ones we could 1025 * very well satisfy the smaller tickets. This will attempt to wake up any 1026 * tickets in the list to catch this case. 1027 * 1028 * This function returns true if it was able to make progress by clearing out 1029 * other tickets, or if it stumbles across a ticket that was smaller than the 1030 * first ticket. 1031 */ 1032 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1033 struct btrfs_space_info *space_info) 1034 { 1035 struct reserve_ticket *ticket; 1036 u64 tickets_id = space_info->tickets_id; 1037 const bool aborted = BTRFS_FS_ERROR(fs_info); 1038 1039 trace_btrfs_fail_all_tickets(fs_info, space_info); 1040 1041 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1042 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1043 __btrfs_dump_space_info(fs_info, space_info); 1044 } 1045 1046 while (!list_empty(&space_info->tickets) && 1047 tickets_id == space_info->tickets_id) { 1048 ticket = list_first_entry(&space_info->tickets, 1049 struct reserve_ticket, list); 1050 1051 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1052 return true; 1053 1054 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1055 btrfs_info(fs_info, "failing ticket with %llu bytes", 1056 ticket->bytes); 1057 1058 remove_ticket(space_info, ticket); 1059 if (aborted) 1060 ticket->error = -EIO; 1061 else 1062 ticket->error = -ENOSPC; 1063 wake_up(&ticket->wait); 1064 1065 /* 1066 * We're just throwing tickets away, so more flushing may not 1067 * trip over btrfs_try_granting_tickets, so we need to call it 1068 * here to see if we can make progress with the next ticket in 1069 * the list. 1070 */ 1071 if (!aborted) 1072 btrfs_try_granting_tickets(fs_info, space_info); 1073 } 1074 return (tickets_id != space_info->tickets_id); 1075 } 1076 1077 /* 1078 * This is for normal flushers, we can wait all goddamned day if we want to. We 1079 * will loop and continuously try to flush as long as we are making progress. 1080 * We count progress as clearing off tickets each time we have to loop. 1081 */ 1082 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1083 { 1084 struct btrfs_fs_info *fs_info; 1085 struct btrfs_space_info *space_info; 1086 u64 to_reclaim; 1087 enum btrfs_flush_state flush_state; 1088 int commit_cycles = 0; 1089 u64 last_tickets_id; 1090 1091 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1092 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1093 1094 spin_lock(&space_info->lock); 1095 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1096 if (!to_reclaim) { 1097 space_info->flush = 0; 1098 spin_unlock(&space_info->lock); 1099 return; 1100 } 1101 last_tickets_id = space_info->tickets_id; 1102 spin_unlock(&space_info->lock); 1103 1104 flush_state = FLUSH_DELAYED_ITEMS_NR; 1105 do { 1106 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1107 spin_lock(&space_info->lock); 1108 if (list_empty(&space_info->tickets)) { 1109 space_info->flush = 0; 1110 spin_unlock(&space_info->lock); 1111 return; 1112 } 1113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1114 space_info); 1115 if (last_tickets_id == space_info->tickets_id) { 1116 flush_state++; 1117 } else { 1118 last_tickets_id = space_info->tickets_id; 1119 flush_state = FLUSH_DELAYED_ITEMS_NR; 1120 if (commit_cycles) 1121 commit_cycles--; 1122 } 1123 1124 /* 1125 * We do not want to empty the system of delalloc unless we're 1126 * under heavy pressure, so allow one trip through the flushing 1127 * logic before we start doing a FLUSH_DELALLOC_FULL. 1128 */ 1129 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1130 flush_state++; 1131 1132 /* 1133 * We don't want to force a chunk allocation until we've tried 1134 * pretty hard to reclaim space. Think of the case where we 1135 * freed up a bunch of space and so have a lot of pinned space 1136 * to reclaim. We would rather use that than possibly create a 1137 * underutilized metadata chunk. So if this is our first run 1138 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1139 * commit the transaction. If nothing has changed the next go 1140 * around then we can force a chunk allocation. 1141 */ 1142 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1143 flush_state++; 1144 1145 if (flush_state > COMMIT_TRANS) { 1146 commit_cycles++; 1147 if (commit_cycles > 2) { 1148 if (maybe_fail_all_tickets(fs_info, space_info)) { 1149 flush_state = FLUSH_DELAYED_ITEMS_NR; 1150 commit_cycles--; 1151 } else { 1152 space_info->flush = 0; 1153 } 1154 } else { 1155 flush_state = FLUSH_DELAYED_ITEMS_NR; 1156 } 1157 } 1158 spin_unlock(&space_info->lock); 1159 } while (flush_state <= COMMIT_TRANS); 1160 } 1161 1162 /* 1163 * This handles pre-flushing of metadata space before we get to the point that 1164 * we need to start blocking threads on tickets. The logic here is different 1165 * from the other flush paths because it doesn't rely on tickets to tell us how 1166 * much we need to flush, instead it attempts to keep us below the 80% full 1167 * watermark of space by flushing whichever reservation pool is currently the 1168 * largest. 1169 */ 1170 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1171 { 1172 struct btrfs_fs_info *fs_info; 1173 struct btrfs_space_info *space_info; 1174 struct btrfs_block_rsv *delayed_block_rsv; 1175 struct btrfs_block_rsv *delayed_refs_rsv; 1176 struct btrfs_block_rsv *global_rsv; 1177 struct btrfs_block_rsv *trans_rsv; 1178 int loops = 0; 1179 1180 fs_info = container_of(work, struct btrfs_fs_info, 1181 preempt_reclaim_work); 1182 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1183 delayed_block_rsv = &fs_info->delayed_block_rsv; 1184 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1185 global_rsv = &fs_info->global_block_rsv; 1186 trans_rsv = &fs_info->trans_block_rsv; 1187 1188 spin_lock(&space_info->lock); 1189 while (need_preemptive_reclaim(fs_info, space_info)) { 1190 enum btrfs_flush_state flush; 1191 u64 delalloc_size = 0; 1192 u64 to_reclaim, block_rsv_size; 1193 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1194 1195 loops++; 1196 1197 /* 1198 * We don't have a precise counter for the metadata being 1199 * reserved for delalloc, so we'll approximate it by subtracting 1200 * out the block rsv's space from the bytes_may_use. If that 1201 * amount is higher than the individual reserves, then we can 1202 * assume it's tied up in delalloc reservations. 1203 */ 1204 block_rsv_size = global_rsv_size + 1205 btrfs_block_rsv_reserved(delayed_block_rsv) + 1206 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1207 btrfs_block_rsv_reserved(trans_rsv); 1208 if (block_rsv_size < space_info->bytes_may_use) 1209 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1210 1211 /* 1212 * We don't want to include the global_rsv in our calculation, 1213 * because that's space we can't touch. Subtract it from the 1214 * block_rsv_size for the next checks. 1215 */ 1216 block_rsv_size -= global_rsv_size; 1217 1218 /* 1219 * We really want to avoid flushing delalloc too much, as it 1220 * could result in poor allocation patterns, so only flush it if 1221 * it's larger than the rest of the pools combined. 1222 */ 1223 if (delalloc_size > block_rsv_size) { 1224 to_reclaim = delalloc_size; 1225 flush = FLUSH_DELALLOC; 1226 } else if (space_info->bytes_pinned > 1227 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1228 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1229 to_reclaim = space_info->bytes_pinned; 1230 flush = COMMIT_TRANS; 1231 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1232 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1233 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1234 flush = FLUSH_DELAYED_ITEMS_NR; 1235 } else { 1236 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1237 flush = FLUSH_DELAYED_REFS_NR; 1238 } 1239 1240 spin_unlock(&space_info->lock); 1241 1242 /* 1243 * We don't want to reclaim everything, just a portion, so scale 1244 * down the to_reclaim by 1/4. If it takes us down to 0, 1245 * reclaim 1 items worth. 1246 */ 1247 to_reclaim >>= 2; 1248 if (!to_reclaim) 1249 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1250 flush_space(fs_info, space_info, to_reclaim, flush, true); 1251 cond_resched(); 1252 spin_lock(&space_info->lock); 1253 } 1254 1255 /* We only went through once, back off our clamping. */ 1256 if (loops == 1 && !space_info->reclaim_size) 1257 space_info->clamp = max(1, space_info->clamp - 1); 1258 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1259 spin_unlock(&space_info->lock); 1260 } 1261 1262 /* 1263 * FLUSH_DELALLOC_WAIT: 1264 * Space is freed from flushing delalloc in one of two ways. 1265 * 1266 * 1) compression is on and we allocate less space than we reserved 1267 * 2) we are overwriting existing space 1268 * 1269 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1270 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1271 * length to ->bytes_reserved, and subtracts the reserved space from 1272 * ->bytes_may_use. 1273 * 1274 * For #2 this is trickier. Once the ordered extent runs we will drop the 1275 * extent in the range we are overwriting, which creates a delayed ref for 1276 * that freed extent. This however is not reclaimed until the transaction 1277 * commits, thus the next stages. 1278 * 1279 * RUN_DELAYED_IPUTS 1280 * If we are freeing inodes, we want to make sure all delayed iputs have 1281 * completed, because they could have been on an inode with i_nlink == 0, and 1282 * thus have been truncated and freed up space. But again this space is not 1283 * immediately re-usable, it comes in the form of a delayed ref, which must be 1284 * run and then the transaction must be committed. 1285 * 1286 * COMMIT_TRANS 1287 * This is where we reclaim all of the pinned space generated by running the 1288 * iputs 1289 * 1290 * ALLOC_CHUNK_FORCE 1291 * For data we start with alloc chunk force, however we could have been full 1292 * before, and then the transaction commit could have freed new block groups, 1293 * so if we now have space to allocate do the force chunk allocation. 1294 */ 1295 static const enum btrfs_flush_state data_flush_states[] = { 1296 FLUSH_DELALLOC_FULL, 1297 RUN_DELAYED_IPUTS, 1298 COMMIT_TRANS, 1299 ALLOC_CHUNK_FORCE, 1300 }; 1301 1302 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1303 { 1304 struct btrfs_fs_info *fs_info; 1305 struct btrfs_space_info *space_info; 1306 u64 last_tickets_id; 1307 enum btrfs_flush_state flush_state = 0; 1308 1309 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1310 space_info = fs_info->data_sinfo; 1311 1312 spin_lock(&space_info->lock); 1313 if (list_empty(&space_info->tickets)) { 1314 space_info->flush = 0; 1315 spin_unlock(&space_info->lock); 1316 return; 1317 } 1318 last_tickets_id = space_info->tickets_id; 1319 spin_unlock(&space_info->lock); 1320 1321 while (!space_info->full) { 1322 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1323 spin_lock(&space_info->lock); 1324 if (list_empty(&space_info->tickets)) { 1325 space_info->flush = 0; 1326 spin_unlock(&space_info->lock); 1327 return; 1328 } 1329 1330 /* Something happened, fail everything and bail. */ 1331 if (BTRFS_FS_ERROR(fs_info)) 1332 goto aborted_fs; 1333 last_tickets_id = space_info->tickets_id; 1334 spin_unlock(&space_info->lock); 1335 } 1336 1337 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1338 flush_space(fs_info, space_info, U64_MAX, 1339 data_flush_states[flush_state], false); 1340 spin_lock(&space_info->lock); 1341 if (list_empty(&space_info->tickets)) { 1342 space_info->flush = 0; 1343 spin_unlock(&space_info->lock); 1344 return; 1345 } 1346 1347 if (last_tickets_id == space_info->tickets_id) { 1348 flush_state++; 1349 } else { 1350 last_tickets_id = space_info->tickets_id; 1351 flush_state = 0; 1352 } 1353 1354 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1355 if (space_info->full) { 1356 if (maybe_fail_all_tickets(fs_info, space_info)) 1357 flush_state = 0; 1358 else 1359 space_info->flush = 0; 1360 } else { 1361 flush_state = 0; 1362 } 1363 1364 /* Something happened, fail everything and bail. */ 1365 if (BTRFS_FS_ERROR(fs_info)) 1366 goto aborted_fs; 1367 1368 } 1369 spin_unlock(&space_info->lock); 1370 } 1371 return; 1372 1373 aborted_fs: 1374 maybe_fail_all_tickets(fs_info, space_info); 1375 space_info->flush = 0; 1376 spin_unlock(&space_info->lock); 1377 } 1378 1379 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1380 { 1381 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1382 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1383 INIT_WORK(&fs_info->preempt_reclaim_work, 1384 btrfs_preempt_reclaim_metadata_space); 1385 } 1386 1387 static const enum btrfs_flush_state priority_flush_states[] = { 1388 FLUSH_DELAYED_ITEMS_NR, 1389 FLUSH_DELAYED_ITEMS, 1390 ALLOC_CHUNK, 1391 }; 1392 1393 static const enum btrfs_flush_state evict_flush_states[] = { 1394 FLUSH_DELAYED_ITEMS_NR, 1395 FLUSH_DELAYED_ITEMS, 1396 FLUSH_DELAYED_REFS_NR, 1397 FLUSH_DELAYED_REFS, 1398 FLUSH_DELALLOC, 1399 FLUSH_DELALLOC_WAIT, 1400 FLUSH_DELALLOC_FULL, 1401 ALLOC_CHUNK, 1402 COMMIT_TRANS, 1403 }; 1404 1405 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1406 struct btrfs_space_info *space_info, 1407 struct reserve_ticket *ticket, 1408 const enum btrfs_flush_state *states, 1409 int states_nr) 1410 { 1411 u64 to_reclaim; 1412 int flush_state = 0; 1413 1414 spin_lock(&space_info->lock); 1415 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1416 /* 1417 * This is the priority reclaim path, so to_reclaim could be >0 still 1418 * because we may have only satisfied the priority tickets and still 1419 * left non priority tickets on the list. We would then have 1420 * to_reclaim but ->bytes == 0. 1421 */ 1422 if (ticket->bytes == 0) { 1423 spin_unlock(&space_info->lock); 1424 return; 1425 } 1426 1427 while (flush_state < states_nr) { 1428 spin_unlock(&space_info->lock); 1429 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1430 false); 1431 flush_state++; 1432 spin_lock(&space_info->lock); 1433 if (ticket->bytes == 0) { 1434 spin_unlock(&space_info->lock); 1435 return; 1436 } 1437 } 1438 1439 /* 1440 * Attempt to steal from the global rsv if we can, except if the fs was 1441 * turned into error mode due to a transaction abort when flushing space 1442 * above, in that case fail with the abort error instead of returning 1443 * success to the caller if we can steal from the global rsv - this is 1444 * just to have caller fail immeditelly instead of later when trying to 1445 * modify the fs, making it easier to debug -ENOSPC problems. 1446 */ 1447 if (BTRFS_FS_ERROR(fs_info)) { 1448 ticket->error = BTRFS_FS_ERROR(fs_info); 1449 remove_ticket(space_info, ticket); 1450 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1451 ticket->error = -ENOSPC; 1452 remove_ticket(space_info, ticket); 1453 } 1454 1455 /* 1456 * We must run try_granting_tickets here because we could be a large 1457 * ticket in front of a smaller ticket that can now be satisfied with 1458 * the available space. 1459 */ 1460 btrfs_try_granting_tickets(fs_info, space_info); 1461 spin_unlock(&space_info->lock); 1462 } 1463 1464 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1465 struct btrfs_space_info *space_info, 1466 struct reserve_ticket *ticket) 1467 { 1468 spin_lock(&space_info->lock); 1469 1470 /* We could have been granted before we got here. */ 1471 if (ticket->bytes == 0) { 1472 spin_unlock(&space_info->lock); 1473 return; 1474 } 1475 1476 while (!space_info->full) { 1477 spin_unlock(&space_info->lock); 1478 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1479 spin_lock(&space_info->lock); 1480 if (ticket->bytes == 0) { 1481 spin_unlock(&space_info->lock); 1482 return; 1483 } 1484 } 1485 1486 ticket->error = -ENOSPC; 1487 remove_ticket(space_info, ticket); 1488 btrfs_try_granting_tickets(fs_info, space_info); 1489 spin_unlock(&space_info->lock); 1490 } 1491 1492 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1493 struct btrfs_space_info *space_info, 1494 struct reserve_ticket *ticket) 1495 1496 { 1497 DEFINE_WAIT(wait); 1498 int ret = 0; 1499 1500 spin_lock(&space_info->lock); 1501 while (ticket->bytes > 0 && ticket->error == 0) { 1502 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1503 if (ret) { 1504 /* 1505 * Delete us from the list. After we unlock the space 1506 * info, we don't want the async reclaim job to reserve 1507 * space for this ticket. If that would happen, then the 1508 * ticket's task would not known that space was reserved 1509 * despite getting an error, resulting in a space leak 1510 * (bytes_may_use counter of our space_info). 1511 */ 1512 remove_ticket(space_info, ticket); 1513 ticket->error = -EINTR; 1514 break; 1515 } 1516 spin_unlock(&space_info->lock); 1517 1518 schedule(); 1519 1520 finish_wait(&ticket->wait, &wait); 1521 spin_lock(&space_info->lock); 1522 } 1523 spin_unlock(&space_info->lock); 1524 } 1525 1526 /* 1527 * Do the appropriate flushing and waiting for a ticket. 1528 * 1529 * @fs_info: the filesystem 1530 * @space_info: space info for the reservation 1531 * @ticket: ticket for the reservation 1532 * @start_ns: timestamp when the reservation started 1533 * @orig_bytes: amount of bytes originally reserved 1534 * @flush: how much we can flush 1535 * 1536 * This does the work of figuring out how to flush for the ticket, waiting for 1537 * the reservation, and returning the appropriate error if there is one. 1538 */ 1539 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1540 struct btrfs_space_info *space_info, 1541 struct reserve_ticket *ticket, 1542 u64 start_ns, u64 orig_bytes, 1543 enum btrfs_reserve_flush_enum flush) 1544 { 1545 int ret; 1546 1547 switch (flush) { 1548 case BTRFS_RESERVE_FLUSH_DATA: 1549 case BTRFS_RESERVE_FLUSH_ALL: 1550 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1551 wait_reserve_ticket(fs_info, space_info, ticket); 1552 break; 1553 case BTRFS_RESERVE_FLUSH_LIMIT: 1554 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1555 priority_flush_states, 1556 ARRAY_SIZE(priority_flush_states)); 1557 break; 1558 case BTRFS_RESERVE_FLUSH_EVICT: 1559 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1560 evict_flush_states, 1561 ARRAY_SIZE(evict_flush_states)); 1562 break; 1563 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1564 priority_reclaim_data_space(fs_info, space_info, ticket); 1565 break; 1566 default: 1567 ASSERT(0); 1568 break; 1569 } 1570 1571 ret = ticket->error; 1572 ASSERT(list_empty(&ticket->list)); 1573 /* 1574 * Check that we can't have an error set if the reservation succeeded, 1575 * as that would confuse tasks and lead them to error out without 1576 * releasing reserved space (if an error happens the expectation is that 1577 * space wasn't reserved at all). 1578 */ 1579 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1580 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1581 start_ns, flush, ticket->error); 1582 return ret; 1583 } 1584 1585 /* 1586 * This returns true if this flush state will go through the ordinary flushing 1587 * code. 1588 */ 1589 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1590 { 1591 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1592 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1593 } 1594 1595 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1596 struct btrfs_space_info *space_info) 1597 { 1598 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1599 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1600 1601 /* 1602 * If we're heavy on ordered operations then clamping won't help us. We 1603 * need to clamp specifically to keep up with dirty'ing buffered 1604 * writers, because there's not a 1:1 correlation of writing delalloc 1605 * and freeing space, like there is with flushing delayed refs or 1606 * delayed nodes. If we're already more ordered than delalloc then 1607 * we're keeping up, otherwise we aren't and should probably clamp. 1608 */ 1609 if (ordered < delalloc) 1610 space_info->clamp = min(space_info->clamp + 1, 8); 1611 } 1612 1613 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1614 { 1615 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1616 flush == BTRFS_RESERVE_FLUSH_EVICT); 1617 } 1618 1619 /* 1620 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1621 * fail as quickly as possible. 1622 */ 1623 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1624 { 1625 return (flush != BTRFS_RESERVE_NO_FLUSH && 1626 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1627 } 1628 1629 /* 1630 * Try to reserve bytes from the block_rsv's space. 1631 * 1632 * @fs_info: the filesystem 1633 * @space_info: space info we want to allocate from 1634 * @orig_bytes: number of bytes we want 1635 * @flush: whether or not we can flush to make our reservation 1636 * 1637 * This will reserve orig_bytes number of bytes from the space info associated 1638 * with the block_rsv. If there is not enough space it will make an attempt to 1639 * flush out space to make room. It will do this by flushing delalloc if 1640 * possible or committing the transaction. If flush is 0 then no attempts to 1641 * regain reservations will be made and this will fail if there is not enough 1642 * space already. 1643 */ 1644 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1645 struct btrfs_space_info *space_info, u64 orig_bytes, 1646 enum btrfs_reserve_flush_enum flush) 1647 { 1648 struct work_struct *async_work; 1649 struct reserve_ticket ticket; 1650 u64 start_ns = 0; 1651 u64 used; 1652 int ret = -ENOSPC; 1653 bool pending_tickets; 1654 1655 ASSERT(orig_bytes); 1656 /* 1657 * If have a transaction handle (current->journal_info != NULL), then 1658 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1659 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1660 * flushing methods can trigger transaction commits. 1661 */ 1662 if (current->journal_info) { 1663 /* One assert per line for easier debugging. */ 1664 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1665 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1666 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1667 } 1668 1669 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1670 async_work = &fs_info->async_data_reclaim_work; 1671 else 1672 async_work = &fs_info->async_reclaim_work; 1673 1674 spin_lock(&space_info->lock); 1675 used = btrfs_space_info_used(space_info, true); 1676 1677 /* 1678 * We don't want NO_FLUSH allocations to jump everybody, they can 1679 * generally handle ENOSPC in a different way, so treat them the same as 1680 * normal flushers when it comes to skipping pending tickets. 1681 */ 1682 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1683 pending_tickets = !list_empty(&space_info->tickets) || 1684 !list_empty(&space_info->priority_tickets); 1685 else 1686 pending_tickets = !list_empty(&space_info->priority_tickets); 1687 1688 /* 1689 * Carry on if we have enough space (short-circuit) OR call 1690 * can_overcommit() to ensure we can overcommit to continue. 1691 */ 1692 if (!pending_tickets && 1693 ((used + orig_bytes <= space_info->total_bytes) || 1694 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1695 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1696 orig_bytes); 1697 ret = 0; 1698 } 1699 1700 /* 1701 * Things are dire, we need to make a reservation so we don't abort. We 1702 * will let this reservation go through as long as we have actual space 1703 * left to allocate for the block. 1704 */ 1705 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1706 used = btrfs_space_info_used(space_info, false); 1707 if (used + orig_bytes <= space_info->total_bytes) { 1708 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1709 orig_bytes); 1710 ret = 0; 1711 } 1712 } 1713 1714 /* 1715 * If we couldn't make a reservation then setup our reservation ticket 1716 * and kick the async worker if it's not already running. 1717 * 1718 * If we are a priority flusher then we just need to add our ticket to 1719 * the list and we will do our own flushing further down. 1720 */ 1721 if (ret && can_ticket(flush)) { 1722 ticket.bytes = orig_bytes; 1723 ticket.error = 0; 1724 space_info->reclaim_size += ticket.bytes; 1725 init_waitqueue_head(&ticket.wait); 1726 ticket.steal = can_steal(flush); 1727 if (trace_btrfs_reserve_ticket_enabled()) 1728 start_ns = ktime_get_ns(); 1729 1730 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1731 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1732 flush == BTRFS_RESERVE_FLUSH_DATA) { 1733 list_add_tail(&ticket.list, &space_info->tickets); 1734 if (!space_info->flush) { 1735 /* 1736 * We were forced to add a reserve ticket, so 1737 * our preemptive flushing is unable to keep 1738 * up. Clamp down on the threshold for the 1739 * preemptive flushing in order to keep up with 1740 * the workload. 1741 */ 1742 maybe_clamp_preempt(fs_info, space_info); 1743 1744 space_info->flush = 1; 1745 trace_btrfs_trigger_flush(fs_info, 1746 space_info->flags, 1747 orig_bytes, flush, 1748 "enospc"); 1749 queue_work(system_unbound_wq, async_work); 1750 } 1751 } else { 1752 list_add_tail(&ticket.list, 1753 &space_info->priority_tickets); 1754 } 1755 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1756 /* 1757 * We will do the space reservation dance during log replay, 1758 * which means we won't have fs_info->fs_root set, so don't do 1759 * the async reclaim as we will panic. 1760 */ 1761 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1762 !work_busy(&fs_info->preempt_reclaim_work) && 1763 need_preemptive_reclaim(fs_info, space_info)) { 1764 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1765 orig_bytes, flush, "preempt"); 1766 queue_work(system_unbound_wq, 1767 &fs_info->preempt_reclaim_work); 1768 } 1769 } 1770 spin_unlock(&space_info->lock); 1771 if (!ret || !can_ticket(flush)) 1772 return ret; 1773 1774 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1775 orig_bytes, flush); 1776 } 1777 1778 /* 1779 * Try to reserve metadata bytes from the block_rsv's space. 1780 * 1781 * @fs_info: the filesystem 1782 * @space_info: the space_info we're allocating for 1783 * @orig_bytes: number of bytes we want 1784 * @flush: whether or not we can flush to make our reservation 1785 * 1786 * This will reserve orig_bytes number of bytes from the space info associated 1787 * with the block_rsv. If there is not enough space it will make an attempt to 1788 * flush out space to make room. It will do this by flushing delalloc if 1789 * possible or committing the transaction. If flush is 0 then no attempts to 1790 * regain reservations will be made and this will fail if there is not enough 1791 * space already. 1792 */ 1793 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1794 struct btrfs_space_info *space_info, 1795 u64 orig_bytes, 1796 enum btrfs_reserve_flush_enum flush) 1797 { 1798 int ret; 1799 1800 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1801 if (ret == -ENOSPC) { 1802 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1803 space_info->flags, orig_bytes, 1); 1804 1805 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1806 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1807 } 1808 return ret; 1809 } 1810 1811 /* 1812 * Try to reserve data bytes for an allocation. 1813 * 1814 * @fs_info: the filesystem 1815 * @bytes: number of bytes we need 1816 * @flush: how we are allowed to flush 1817 * 1818 * This will reserve bytes from the data space info. If there is not enough 1819 * space then we will attempt to flush space as specified by flush. 1820 */ 1821 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1822 enum btrfs_reserve_flush_enum flush) 1823 { 1824 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1825 int ret; 1826 1827 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1828 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1829 flush == BTRFS_RESERVE_NO_FLUSH); 1830 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1831 1832 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1833 if (ret == -ENOSPC) { 1834 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1835 data_sinfo->flags, bytes, 1); 1836 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1837 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1838 } 1839 return ret; 1840 } 1841 1842 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1843 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1844 { 1845 struct btrfs_space_info *space_info; 1846 1847 btrfs_info(fs_info, "dumping space info:"); 1848 list_for_each_entry(space_info, &fs_info->space_info, list) { 1849 spin_lock(&space_info->lock); 1850 __btrfs_dump_space_info(fs_info, space_info); 1851 spin_unlock(&space_info->lock); 1852 } 1853 dump_global_block_rsv(fs_info); 1854 } 1855 1856 /* 1857 * Account the unused space of all the readonly block group in the space_info. 1858 * takes mirrors into account. 1859 */ 1860 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1861 { 1862 struct btrfs_block_group *block_group; 1863 u64 free_bytes = 0; 1864 int factor; 1865 1866 /* It's df, we don't care if it's racy */ 1867 if (list_empty(&sinfo->ro_bgs)) 1868 return 0; 1869 1870 spin_lock(&sinfo->lock); 1871 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1872 spin_lock(&block_group->lock); 1873 1874 if (!block_group->ro) { 1875 spin_unlock(&block_group->lock); 1876 continue; 1877 } 1878 1879 factor = btrfs_bg_type_to_factor(block_group->flags); 1880 free_bytes += (block_group->length - 1881 block_group->used) * factor; 1882 1883 spin_unlock(&block_group->lock); 1884 } 1885 spin_unlock(&sinfo->lock); 1886 1887 return free_bytes; 1888 } 1889