1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 13 /* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * may_commit_transaction() is the ultimate arbiter on whether we commit the 137 * transaction or not. In order to avoid constantly churning we do all the 138 * above flushing first and then commit the transaction as the last resort. 139 * However we need to take into account things like pinned space that would 140 * be freed, plus any delayed work we may not have gotten rid of in the case 141 * of metadata. 142 * 143 * OVERCOMMIT 144 * 145 * Because we hold so many reservations for metadata we will allow you to 146 * reserve more space than is currently free in the currently allocate 147 * metadata space. This only happens with metadata, data does not allow 148 * overcommitting. 149 * 150 * You can see the current logic for when we allow overcommit in 151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 152 * is no unallocated space to be had, all reservations are kept within the 153 * free space in the allocated metadata chunks. 154 * 155 * Because of overcommitting, you generally want to use the 156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 157 * thing with or without extra unallocated space. 158 */ 159 160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 161 bool may_use_included) 162 { 163 ASSERT(s_info); 164 return s_info->bytes_used + s_info->bytes_reserved + 165 s_info->bytes_pinned + s_info->bytes_readonly + 166 (may_use_included ? s_info->bytes_may_use : 0); 167 } 168 169 /* 170 * after adding space to the filesystem, we need to clear the full flags 171 * on all the space infos. 172 */ 173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 174 { 175 struct list_head *head = &info->space_info; 176 struct btrfs_space_info *found; 177 178 rcu_read_lock(); 179 list_for_each_entry_rcu(found, head, list) 180 found->full = 0; 181 rcu_read_unlock(); 182 } 183 184 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 185 { 186 187 struct btrfs_space_info *space_info; 188 int i; 189 int ret; 190 191 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 192 if (!space_info) 193 return -ENOMEM; 194 195 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 196 GFP_KERNEL); 197 if (ret) { 198 kfree(space_info); 199 return ret; 200 } 201 202 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 203 INIT_LIST_HEAD(&space_info->block_groups[i]); 204 init_rwsem(&space_info->groups_sem); 205 spin_lock_init(&space_info->lock); 206 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 207 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 208 INIT_LIST_HEAD(&space_info->ro_bgs); 209 INIT_LIST_HEAD(&space_info->tickets); 210 INIT_LIST_HEAD(&space_info->priority_tickets); 211 212 ret = btrfs_sysfs_add_space_info_type(info, space_info); 213 if (ret) 214 return ret; 215 216 list_add_rcu(&space_info->list, &info->space_info); 217 if (flags & BTRFS_BLOCK_GROUP_DATA) 218 info->data_sinfo = space_info; 219 220 return ret; 221 } 222 223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 224 { 225 struct btrfs_super_block *disk_super; 226 u64 features; 227 u64 flags; 228 int mixed = 0; 229 int ret; 230 231 disk_super = fs_info->super_copy; 232 if (!btrfs_super_root(disk_super)) 233 return -EINVAL; 234 235 features = btrfs_super_incompat_flags(disk_super); 236 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 237 mixed = 1; 238 239 flags = BTRFS_BLOCK_GROUP_SYSTEM; 240 ret = create_space_info(fs_info, flags); 241 if (ret) 242 goto out; 243 244 if (mixed) { 245 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 246 ret = create_space_info(fs_info, flags); 247 } else { 248 flags = BTRFS_BLOCK_GROUP_METADATA; 249 ret = create_space_info(fs_info, flags); 250 if (ret) 251 goto out; 252 253 flags = BTRFS_BLOCK_GROUP_DATA; 254 ret = create_space_info(fs_info, flags); 255 } 256 out: 257 return ret; 258 } 259 260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 261 u64 total_bytes, u64 bytes_used, 262 u64 bytes_readonly, 263 struct btrfs_space_info **space_info) 264 { 265 struct btrfs_space_info *found; 266 int factor; 267 268 factor = btrfs_bg_type_to_factor(flags); 269 270 found = btrfs_find_space_info(info, flags); 271 ASSERT(found); 272 spin_lock(&found->lock); 273 found->total_bytes += total_bytes; 274 found->disk_total += total_bytes * factor; 275 found->bytes_used += bytes_used; 276 found->disk_used += bytes_used * factor; 277 found->bytes_readonly += bytes_readonly; 278 if (total_bytes > 0) 279 found->full = 0; 280 btrfs_try_granting_tickets(info, found); 281 spin_unlock(&found->lock); 282 *space_info = found; 283 } 284 285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 286 u64 flags) 287 { 288 struct list_head *head = &info->space_info; 289 struct btrfs_space_info *found; 290 291 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 292 293 rcu_read_lock(); 294 list_for_each_entry_rcu(found, head, list) { 295 if (found->flags & flags) { 296 rcu_read_unlock(); 297 return found; 298 } 299 } 300 rcu_read_unlock(); 301 return NULL; 302 } 303 304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 305 { 306 return (global->size << 1); 307 } 308 309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 310 struct btrfs_space_info *space_info, 311 enum btrfs_reserve_flush_enum flush) 312 { 313 u64 profile; 314 u64 avail; 315 int factor; 316 317 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 318 profile = btrfs_system_alloc_profile(fs_info); 319 else 320 profile = btrfs_metadata_alloc_profile(fs_info); 321 322 avail = atomic64_read(&fs_info->free_chunk_space); 323 324 /* 325 * If we have dup, raid1 or raid10 then only half of the free 326 * space is actually usable. For raid56, the space info used 327 * doesn't include the parity drive, so we don't have to 328 * change the math 329 */ 330 factor = btrfs_bg_type_to_factor(profile); 331 avail = div_u64(avail, factor); 332 333 /* 334 * If we aren't flushing all things, let us overcommit up to 335 * 1/2th of the space. If we can flush, don't let us overcommit 336 * too much, let it overcommit up to 1/8 of the space. 337 */ 338 if (flush == BTRFS_RESERVE_FLUSH_ALL) 339 avail >>= 3; 340 else 341 avail >>= 1; 342 return avail; 343 } 344 345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 346 struct btrfs_space_info *space_info, u64 bytes, 347 enum btrfs_reserve_flush_enum flush) 348 { 349 u64 avail; 350 u64 used; 351 352 /* Don't overcommit when in mixed mode */ 353 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 354 return 0; 355 356 used = btrfs_space_info_used(space_info, true); 357 avail = calc_available_free_space(fs_info, space_info, flush); 358 359 if (used + bytes < space_info->total_bytes + avail) 360 return 1; 361 return 0; 362 } 363 364 static void remove_ticket(struct btrfs_space_info *space_info, 365 struct reserve_ticket *ticket) 366 { 367 if (!list_empty(&ticket->list)) { 368 list_del_init(&ticket->list); 369 ASSERT(space_info->reclaim_size >= ticket->bytes); 370 space_info->reclaim_size -= ticket->bytes; 371 } 372 } 373 374 /* 375 * This is for space we already have accounted in space_info->bytes_may_use, so 376 * basically when we're returning space from block_rsv's. 377 */ 378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 379 struct btrfs_space_info *space_info) 380 { 381 struct list_head *head; 382 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 383 384 lockdep_assert_held(&space_info->lock); 385 386 head = &space_info->priority_tickets; 387 again: 388 while (!list_empty(head)) { 389 struct reserve_ticket *ticket; 390 u64 used = btrfs_space_info_used(space_info, true); 391 392 ticket = list_first_entry(head, struct reserve_ticket, list); 393 394 /* Check and see if our ticket can be satisified now. */ 395 if ((used + ticket->bytes <= space_info->total_bytes) || 396 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 397 flush)) { 398 btrfs_space_info_update_bytes_may_use(fs_info, 399 space_info, 400 ticket->bytes); 401 remove_ticket(space_info, ticket); 402 ticket->bytes = 0; 403 space_info->tickets_id++; 404 wake_up(&ticket->wait); 405 } else { 406 break; 407 } 408 } 409 410 if (head == &space_info->priority_tickets) { 411 head = &space_info->tickets; 412 flush = BTRFS_RESERVE_FLUSH_ALL; 413 goto again; 414 } 415 } 416 417 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 418 do { \ 419 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 420 spin_lock(&__rsv->lock); \ 421 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 422 __rsv->size, __rsv->reserved); \ 423 spin_unlock(&__rsv->lock); \ 424 } while (0) 425 426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 427 struct btrfs_space_info *info) 428 { 429 lockdep_assert_held(&info->lock); 430 431 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 432 info->flags, 433 info->total_bytes - btrfs_space_info_used(info, true), 434 info->full ? "" : "not "); 435 btrfs_info(fs_info, 436 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 437 info->total_bytes, info->bytes_used, info->bytes_pinned, 438 info->bytes_reserved, info->bytes_may_use, 439 info->bytes_readonly); 440 441 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 442 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 443 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 444 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 445 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 446 447 } 448 449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 450 struct btrfs_space_info *info, u64 bytes, 451 int dump_block_groups) 452 { 453 struct btrfs_block_group *cache; 454 int index = 0; 455 456 spin_lock(&info->lock); 457 __btrfs_dump_space_info(fs_info, info); 458 spin_unlock(&info->lock); 459 460 if (!dump_block_groups) 461 return; 462 463 down_read(&info->groups_sem); 464 again: 465 list_for_each_entry(cache, &info->block_groups[index], list) { 466 spin_lock(&cache->lock); 467 btrfs_info(fs_info, 468 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 469 cache->start, cache->length, cache->used, cache->pinned, 470 cache->reserved, cache->ro ? "[readonly]" : ""); 471 btrfs_dump_free_space(cache, bytes); 472 spin_unlock(&cache->lock); 473 } 474 if (++index < BTRFS_NR_RAID_TYPES) 475 goto again; 476 up_read(&info->groups_sem); 477 } 478 479 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 480 unsigned long nr_pages, int nr_items) 481 { 482 struct super_block *sb = fs_info->sb; 483 484 if (down_read_trylock(&sb->s_umount)) { 485 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 486 up_read(&sb->s_umount); 487 } else { 488 /* 489 * We needn't worry the filesystem going from r/w to r/o though 490 * we don't acquire ->s_umount mutex, because the filesystem 491 * should guarantee the delalloc inodes list be empty after 492 * the filesystem is readonly(all dirty pages are written to 493 * the disk). 494 */ 495 btrfs_start_delalloc_roots(fs_info, nr_items); 496 if (!current->journal_info) 497 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 498 } 499 } 500 501 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 502 u64 to_reclaim) 503 { 504 u64 bytes; 505 u64 nr; 506 507 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 508 nr = div64_u64(to_reclaim, bytes); 509 if (!nr) 510 nr = 1; 511 return nr; 512 } 513 514 #define EXTENT_SIZE_PER_ITEM SZ_256K 515 516 /* 517 * shrink metadata reservation for delalloc 518 */ 519 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 520 u64 orig, bool wait_ordered) 521 { 522 struct btrfs_space_info *space_info; 523 struct btrfs_trans_handle *trans; 524 u64 delalloc_bytes; 525 u64 dio_bytes; 526 u64 async_pages; 527 u64 items; 528 long time_left; 529 unsigned long nr_pages; 530 int loops; 531 532 /* Calc the number of the pages we need flush for space reservation */ 533 items = calc_reclaim_items_nr(fs_info, to_reclaim); 534 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 535 536 trans = (struct btrfs_trans_handle *)current->journal_info; 537 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 538 539 delalloc_bytes = percpu_counter_sum_positive( 540 &fs_info->delalloc_bytes); 541 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 542 if (delalloc_bytes == 0 && dio_bytes == 0) { 543 if (trans) 544 return; 545 if (wait_ordered) 546 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 547 return; 548 } 549 550 /* 551 * If we are doing more ordered than delalloc we need to just wait on 552 * ordered extents, otherwise we'll waste time trying to flush delalloc 553 * that likely won't give us the space back we need. 554 */ 555 if (dio_bytes > delalloc_bytes) 556 wait_ordered = true; 557 558 loops = 0; 559 while ((delalloc_bytes || dio_bytes) && loops < 3) { 560 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 561 562 /* 563 * Triggers inode writeback for up to nr_pages. This will invoke 564 * ->writepages callback and trigger delalloc filling 565 * (btrfs_run_delalloc_range()). 566 */ 567 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 568 569 /* 570 * We need to wait for the compressed pages to start before 571 * we continue. 572 */ 573 async_pages = atomic_read(&fs_info->async_delalloc_pages); 574 if (!async_pages) 575 goto skip_async; 576 577 /* 578 * Calculate how many compressed pages we want to be written 579 * before we continue. I.e if there are more async pages than we 580 * require wait_event will wait until nr_pages are written. 581 */ 582 if (async_pages <= nr_pages) 583 async_pages = 0; 584 else 585 async_pages -= nr_pages; 586 587 wait_event(fs_info->async_submit_wait, 588 atomic_read(&fs_info->async_delalloc_pages) <= 589 (int)async_pages); 590 skip_async: 591 spin_lock(&space_info->lock); 592 if (list_empty(&space_info->tickets) && 593 list_empty(&space_info->priority_tickets)) { 594 spin_unlock(&space_info->lock); 595 break; 596 } 597 spin_unlock(&space_info->lock); 598 599 loops++; 600 if (wait_ordered && !trans) { 601 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 602 } else { 603 time_left = schedule_timeout_killable(1); 604 if (time_left) 605 break; 606 } 607 delalloc_bytes = percpu_counter_sum_positive( 608 &fs_info->delalloc_bytes); 609 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 610 } 611 } 612 613 /** 614 * maybe_commit_transaction - possibly commit the transaction if its ok to 615 * @root - the root we're allocating for 616 * @bytes - the number of bytes we want to reserve 617 * @force - force the commit 618 * 619 * This will check to make sure that committing the transaction will actually 620 * get us somewhere and then commit the transaction if it does. Otherwise it 621 * will return -ENOSPC. 622 */ 623 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 624 struct btrfs_space_info *space_info) 625 { 626 struct reserve_ticket *ticket = NULL; 627 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 628 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 629 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 630 struct btrfs_trans_handle *trans; 631 u64 bytes_needed; 632 u64 reclaim_bytes = 0; 633 u64 cur_free_bytes = 0; 634 635 trans = (struct btrfs_trans_handle *)current->journal_info; 636 if (trans) 637 return -EAGAIN; 638 639 spin_lock(&space_info->lock); 640 cur_free_bytes = btrfs_space_info_used(space_info, true); 641 if (cur_free_bytes < space_info->total_bytes) 642 cur_free_bytes = space_info->total_bytes - cur_free_bytes; 643 else 644 cur_free_bytes = 0; 645 646 if (!list_empty(&space_info->priority_tickets)) 647 ticket = list_first_entry(&space_info->priority_tickets, 648 struct reserve_ticket, list); 649 else if (!list_empty(&space_info->tickets)) 650 ticket = list_first_entry(&space_info->tickets, 651 struct reserve_ticket, list); 652 bytes_needed = (ticket) ? ticket->bytes : 0; 653 654 if (bytes_needed > cur_free_bytes) 655 bytes_needed -= cur_free_bytes; 656 else 657 bytes_needed = 0; 658 spin_unlock(&space_info->lock); 659 660 if (!bytes_needed) 661 return 0; 662 663 trans = btrfs_join_transaction(fs_info->extent_root); 664 if (IS_ERR(trans)) 665 return PTR_ERR(trans); 666 667 /* 668 * See if there is enough pinned space to make this reservation, or if 669 * we have block groups that are going to be freed, allowing us to 670 * possibly do a chunk allocation the next loop through. 671 */ 672 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || 673 __percpu_counter_compare(&space_info->total_bytes_pinned, 674 bytes_needed, 675 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 676 goto commit; 677 678 /* 679 * See if there is some space in the delayed insertion reservation for 680 * this reservation. 681 */ 682 if (space_info != delayed_rsv->space_info) 683 goto enospc; 684 685 spin_lock(&delayed_rsv->lock); 686 reclaim_bytes += delayed_rsv->reserved; 687 spin_unlock(&delayed_rsv->lock); 688 689 spin_lock(&delayed_refs_rsv->lock); 690 reclaim_bytes += delayed_refs_rsv->reserved; 691 spin_unlock(&delayed_refs_rsv->lock); 692 693 spin_lock(&trans_rsv->lock); 694 reclaim_bytes += trans_rsv->reserved; 695 spin_unlock(&trans_rsv->lock); 696 697 if (reclaim_bytes >= bytes_needed) 698 goto commit; 699 bytes_needed -= reclaim_bytes; 700 701 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 702 bytes_needed, 703 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) 704 goto enospc; 705 706 commit: 707 return btrfs_commit_transaction(trans); 708 enospc: 709 btrfs_end_transaction(trans); 710 return -ENOSPC; 711 } 712 713 /* 714 * Try to flush some data based on policy set by @state. This is only advisory 715 * and may fail for various reasons. The caller is supposed to examine the 716 * state of @space_info to detect the outcome. 717 */ 718 static void flush_space(struct btrfs_fs_info *fs_info, 719 struct btrfs_space_info *space_info, u64 num_bytes, 720 int state) 721 { 722 struct btrfs_root *root = fs_info->extent_root; 723 struct btrfs_trans_handle *trans; 724 int nr; 725 int ret = 0; 726 727 switch (state) { 728 case FLUSH_DELAYED_ITEMS_NR: 729 case FLUSH_DELAYED_ITEMS: 730 if (state == FLUSH_DELAYED_ITEMS_NR) 731 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 732 else 733 nr = -1; 734 735 trans = btrfs_join_transaction(root); 736 if (IS_ERR(trans)) { 737 ret = PTR_ERR(trans); 738 break; 739 } 740 ret = btrfs_run_delayed_items_nr(trans, nr); 741 btrfs_end_transaction(trans); 742 break; 743 case FLUSH_DELALLOC: 744 case FLUSH_DELALLOC_WAIT: 745 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 746 state == FLUSH_DELALLOC_WAIT); 747 break; 748 case FLUSH_DELAYED_REFS_NR: 749 case FLUSH_DELAYED_REFS: 750 trans = btrfs_join_transaction(root); 751 if (IS_ERR(trans)) { 752 ret = PTR_ERR(trans); 753 break; 754 } 755 if (state == FLUSH_DELAYED_REFS_NR) 756 nr = calc_reclaim_items_nr(fs_info, num_bytes); 757 else 758 nr = 0; 759 btrfs_run_delayed_refs(trans, nr); 760 btrfs_end_transaction(trans); 761 break; 762 case ALLOC_CHUNK: 763 case ALLOC_CHUNK_FORCE: 764 trans = btrfs_join_transaction(root); 765 if (IS_ERR(trans)) { 766 ret = PTR_ERR(trans); 767 break; 768 } 769 ret = btrfs_chunk_alloc(trans, 770 btrfs_metadata_alloc_profile(fs_info), 771 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 772 CHUNK_ALLOC_FORCE); 773 btrfs_end_transaction(trans); 774 if (ret > 0 || ret == -ENOSPC) 775 ret = 0; 776 break; 777 case RUN_DELAYED_IPUTS: 778 /* 779 * If we have pending delayed iputs then we could free up a 780 * bunch of pinned space, so make sure we run the iputs before 781 * we do our pinned bytes check below. 782 */ 783 btrfs_run_delayed_iputs(fs_info); 784 btrfs_wait_on_delayed_iputs(fs_info); 785 break; 786 case COMMIT_TRANS: 787 ret = may_commit_transaction(fs_info, space_info); 788 break; 789 default: 790 ret = -ENOSPC; 791 break; 792 } 793 794 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 795 ret); 796 return; 797 } 798 799 static inline u64 800 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 801 struct btrfs_space_info *space_info) 802 { 803 u64 used; 804 u64 avail; 805 u64 expected; 806 u64 to_reclaim = space_info->reclaim_size; 807 808 lockdep_assert_held(&space_info->lock); 809 810 avail = calc_available_free_space(fs_info, space_info, 811 BTRFS_RESERVE_FLUSH_ALL); 812 used = btrfs_space_info_used(space_info, true); 813 814 /* 815 * We may be flushing because suddenly we have less space than we had 816 * before, and now we're well over-committed based on our current free 817 * space. If that's the case add in our overage so we make sure to put 818 * appropriate pressure on the flushing state machine. 819 */ 820 if (space_info->total_bytes + avail < used) 821 to_reclaim += used - (space_info->total_bytes + avail); 822 823 if (to_reclaim) 824 return to_reclaim; 825 826 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 827 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim, 828 BTRFS_RESERVE_FLUSH_ALL)) 829 return 0; 830 831 used = btrfs_space_info_used(space_info, true); 832 833 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M, 834 BTRFS_RESERVE_FLUSH_ALL)) 835 expected = div_factor_fine(space_info->total_bytes, 95); 836 else 837 expected = div_factor_fine(space_info->total_bytes, 90); 838 839 if (used > expected) 840 to_reclaim = used - expected; 841 else 842 to_reclaim = 0; 843 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 844 space_info->bytes_reserved); 845 return to_reclaim; 846 } 847 848 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 849 struct btrfs_space_info *space_info, 850 u64 used) 851 { 852 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 853 854 /* If we're just plain full then async reclaim just slows us down. */ 855 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 856 return 0; 857 858 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info)) 859 return 0; 860 861 return (used >= thresh && !btrfs_fs_closing(fs_info) && 862 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 863 } 864 865 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 866 struct btrfs_space_info *space_info, 867 struct reserve_ticket *ticket) 868 { 869 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 870 u64 min_bytes; 871 872 if (global_rsv->space_info != space_info) 873 return false; 874 875 spin_lock(&global_rsv->lock); 876 min_bytes = div_factor(global_rsv->size, 1); 877 if (global_rsv->reserved < min_bytes + ticket->bytes) { 878 spin_unlock(&global_rsv->lock); 879 return false; 880 } 881 global_rsv->reserved -= ticket->bytes; 882 ticket->bytes = 0; 883 list_del_init(&ticket->list); 884 wake_up(&ticket->wait); 885 space_info->tickets_id++; 886 if (global_rsv->reserved < global_rsv->size) 887 global_rsv->full = 0; 888 spin_unlock(&global_rsv->lock); 889 890 return true; 891 } 892 893 /* 894 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 895 * @fs_info - fs_info for this fs 896 * @space_info - the space info we were flushing 897 * 898 * We call this when we've exhausted our flushing ability and haven't made 899 * progress in satisfying tickets. The reservation code handles tickets in 900 * order, so if there is a large ticket first and then smaller ones we could 901 * very well satisfy the smaller tickets. This will attempt to wake up any 902 * tickets in the list to catch this case. 903 * 904 * This function returns true if it was able to make progress by clearing out 905 * other tickets, or if it stumbles across a ticket that was smaller than the 906 * first ticket. 907 */ 908 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 909 struct btrfs_space_info *space_info) 910 { 911 struct reserve_ticket *ticket; 912 u64 tickets_id = space_info->tickets_id; 913 u64 first_ticket_bytes = 0; 914 915 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 916 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 917 __btrfs_dump_space_info(fs_info, space_info); 918 } 919 920 while (!list_empty(&space_info->tickets) && 921 tickets_id == space_info->tickets_id) { 922 ticket = list_first_entry(&space_info->tickets, 923 struct reserve_ticket, list); 924 925 if (ticket->steal && 926 steal_from_global_rsv(fs_info, space_info, ticket)) 927 return true; 928 929 /* 930 * may_commit_transaction will avoid committing the transaction 931 * if it doesn't feel like the space reclaimed by the commit 932 * would result in the ticket succeeding. However if we have a 933 * smaller ticket in the queue it may be small enough to be 934 * satisified by committing the transaction, so if any 935 * subsequent ticket is smaller than the first ticket go ahead 936 * and send us back for another loop through the enospc flushing 937 * code. 938 */ 939 if (first_ticket_bytes == 0) 940 first_ticket_bytes = ticket->bytes; 941 else if (first_ticket_bytes > ticket->bytes) 942 return true; 943 944 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 945 btrfs_info(fs_info, "failing ticket with %llu bytes", 946 ticket->bytes); 947 948 remove_ticket(space_info, ticket); 949 ticket->error = -ENOSPC; 950 wake_up(&ticket->wait); 951 952 /* 953 * We're just throwing tickets away, so more flushing may not 954 * trip over btrfs_try_granting_tickets, so we need to call it 955 * here to see if we can make progress with the next ticket in 956 * the list. 957 */ 958 btrfs_try_granting_tickets(fs_info, space_info); 959 } 960 return (tickets_id != space_info->tickets_id); 961 } 962 963 /* 964 * This is for normal flushers, we can wait all goddamned day if we want to. We 965 * will loop and continuously try to flush as long as we are making progress. 966 * We count progress as clearing off tickets each time we have to loop. 967 */ 968 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 969 { 970 struct btrfs_fs_info *fs_info; 971 struct btrfs_space_info *space_info; 972 u64 to_reclaim; 973 int flush_state; 974 int commit_cycles = 0; 975 u64 last_tickets_id; 976 977 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 978 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 979 980 spin_lock(&space_info->lock); 981 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 982 if (!to_reclaim) { 983 space_info->flush = 0; 984 spin_unlock(&space_info->lock); 985 return; 986 } 987 last_tickets_id = space_info->tickets_id; 988 spin_unlock(&space_info->lock); 989 990 flush_state = FLUSH_DELAYED_ITEMS_NR; 991 do { 992 flush_space(fs_info, space_info, to_reclaim, flush_state); 993 spin_lock(&space_info->lock); 994 if (list_empty(&space_info->tickets)) { 995 space_info->flush = 0; 996 spin_unlock(&space_info->lock); 997 return; 998 } 999 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1000 space_info); 1001 if (last_tickets_id == space_info->tickets_id) { 1002 flush_state++; 1003 } else { 1004 last_tickets_id = space_info->tickets_id; 1005 flush_state = FLUSH_DELAYED_ITEMS_NR; 1006 if (commit_cycles) 1007 commit_cycles--; 1008 } 1009 1010 /* 1011 * We don't want to force a chunk allocation until we've tried 1012 * pretty hard to reclaim space. Think of the case where we 1013 * freed up a bunch of space and so have a lot of pinned space 1014 * to reclaim. We would rather use that than possibly create a 1015 * underutilized metadata chunk. So if this is our first run 1016 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1017 * commit the transaction. If nothing has changed the next go 1018 * around then we can force a chunk allocation. 1019 */ 1020 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1021 flush_state++; 1022 1023 if (flush_state > COMMIT_TRANS) { 1024 commit_cycles++; 1025 if (commit_cycles > 2) { 1026 if (maybe_fail_all_tickets(fs_info, space_info)) { 1027 flush_state = FLUSH_DELAYED_ITEMS_NR; 1028 commit_cycles--; 1029 } else { 1030 space_info->flush = 0; 1031 } 1032 } else { 1033 flush_state = FLUSH_DELAYED_ITEMS_NR; 1034 } 1035 } 1036 spin_unlock(&space_info->lock); 1037 } while (flush_state <= COMMIT_TRANS); 1038 } 1039 1040 void btrfs_init_async_reclaim_work(struct work_struct *work) 1041 { 1042 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 1043 } 1044 1045 static const enum btrfs_flush_state priority_flush_states[] = { 1046 FLUSH_DELAYED_ITEMS_NR, 1047 FLUSH_DELAYED_ITEMS, 1048 ALLOC_CHUNK, 1049 }; 1050 1051 static const enum btrfs_flush_state evict_flush_states[] = { 1052 FLUSH_DELAYED_ITEMS_NR, 1053 FLUSH_DELAYED_ITEMS, 1054 FLUSH_DELAYED_REFS_NR, 1055 FLUSH_DELAYED_REFS, 1056 FLUSH_DELALLOC, 1057 FLUSH_DELALLOC_WAIT, 1058 ALLOC_CHUNK, 1059 COMMIT_TRANS, 1060 }; 1061 1062 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1063 struct btrfs_space_info *space_info, 1064 struct reserve_ticket *ticket, 1065 const enum btrfs_flush_state *states, 1066 int states_nr) 1067 { 1068 u64 to_reclaim; 1069 int flush_state; 1070 1071 spin_lock(&space_info->lock); 1072 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1073 if (!to_reclaim) { 1074 spin_unlock(&space_info->lock); 1075 return; 1076 } 1077 spin_unlock(&space_info->lock); 1078 1079 flush_state = 0; 1080 do { 1081 flush_space(fs_info, space_info, to_reclaim, states[flush_state]); 1082 flush_state++; 1083 spin_lock(&space_info->lock); 1084 if (ticket->bytes == 0) { 1085 spin_unlock(&space_info->lock); 1086 return; 1087 } 1088 spin_unlock(&space_info->lock); 1089 } while (flush_state < states_nr); 1090 } 1091 1092 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1093 struct btrfs_space_info *space_info, 1094 struct reserve_ticket *ticket) 1095 1096 { 1097 DEFINE_WAIT(wait); 1098 int ret = 0; 1099 1100 spin_lock(&space_info->lock); 1101 while (ticket->bytes > 0 && ticket->error == 0) { 1102 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1103 if (ret) { 1104 /* 1105 * Delete us from the list. After we unlock the space 1106 * info, we don't want the async reclaim job to reserve 1107 * space for this ticket. If that would happen, then the 1108 * ticket's task would not known that space was reserved 1109 * despite getting an error, resulting in a space leak 1110 * (bytes_may_use counter of our space_info). 1111 */ 1112 remove_ticket(space_info, ticket); 1113 ticket->error = -EINTR; 1114 break; 1115 } 1116 spin_unlock(&space_info->lock); 1117 1118 schedule(); 1119 1120 finish_wait(&ticket->wait, &wait); 1121 spin_lock(&space_info->lock); 1122 } 1123 spin_unlock(&space_info->lock); 1124 } 1125 1126 /** 1127 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket 1128 * @fs_info - the fs 1129 * @space_info - the space_info for the reservation 1130 * @ticket - the ticket for the reservation 1131 * @flush - how much we can flush 1132 * 1133 * This does the work of figuring out how to flush for the ticket, waiting for 1134 * the reservation, and returning the appropriate error if there is one. 1135 */ 1136 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1137 struct btrfs_space_info *space_info, 1138 struct reserve_ticket *ticket, 1139 enum btrfs_reserve_flush_enum flush) 1140 { 1141 int ret; 1142 1143 switch (flush) { 1144 case BTRFS_RESERVE_FLUSH_ALL: 1145 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1146 wait_reserve_ticket(fs_info, space_info, ticket); 1147 break; 1148 case BTRFS_RESERVE_FLUSH_LIMIT: 1149 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1150 priority_flush_states, 1151 ARRAY_SIZE(priority_flush_states)); 1152 break; 1153 case BTRFS_RESERVE_FLUSH_EVICT: 1154 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1155 evict_flush_states, 1156 ARRAY_SIZE(evict_flush_states)); 1157 break; 1158 default: 1159 ASSERT(0); 1160 break; 1161 } 1162 1163 spin_lock(&space_info->lock); 1164 ret = ticket->error; 1165 if (ticket->bytes || ticket->error) { 1166 /* 1167 * We were a priority ticket, so we need to delete ourselves 1168 * from the list. Because we could have other priority tickets 1169 * behind us that require less space, run 1170 * btrfs_try_granting_tickets() to see if their reservations can 1171 * now be made. 1172 */ 1173 if (!list_empty(&ticket->list)) { 1174 remove_ticket(space_info, ticket); 1175 btrfs_try_granting_tickets(fs_info, space_info); 1176 } 1177 1178 if (!ret) 1179 ret = -ENOSPC; 1180 } 1181 spin_unlock(&space_info->lock); 1182 ASSERT(list_empty(&ticket->list)); 1183 /* 1184 * Check that we can't have an error set if the reservation succeeded, 1185 * as that would confuse tasks and lead them to error out without 1186 * releasing reserved space (if an error happens the expectation is that 1187 * space wasn't reserved at all). 1188 */ 1189 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1190 return ret; 1191 } 1192 1193 /* 1194 * This returns true if this flush state will go through the ordinary flushing 1195 * code. 1196 */ 1197 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1198 { 1199 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1200 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1201 } 1202 1203 /** 1204 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1205 * @root - the root we're allocating for 1206 * @space_info - the space info we want to allocate from 1207 * @orig_bytes - the number of bytes we want 1208 * @flush - whether or not we can flush to make our reservation 1209 * 1210 * This will reserve orig_bytes number of bytes from the space info associated 1211 * with the block_rsv. If there is not enough space it will make an attempt to 1212 * flush out space to make room. It will do this by flushing delalloc if 1213 * possible or committing the transaction. If flush is 0 then no attempts to 1214 * regain reservations will be made and this will fail if there is not enough 1215 * space already. 1216 */ 1217 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1218 struct btrfs_space_info *space_info, 1219 u64 orig_bytes, 1220 enum btrfs_reserve_flush_enum flush) 1221 { 1222 struct reserve_ticket ticket; 1223 u64 used; 1224 int ret = 0; 1225 bool pending_tickets; 1226 1227 ASSERT(orig_bytes); 1228 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1229 1230 spin_lock(&space_info->lock); 1231 ret = -ENOSPC; 1232 used = btrfs_space_info_used(space_info, true); 1233 1234 /* 1235 * We don't want NO_FLUSH allocations to jump everybody, they can 1236 * generally handle ENOSPC in a different way, so treat them the same as 1237 * normal flushers when it comes to skipping pending tickets. 1238 */ 1239 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1240 pending_tickets = !list_empty(&space_info->tickets) || 1241 !list_empty(&space_info->priority_tickets); 1242 else 1243 pending_tickets = !list_empty(&space_info->priority_tickets); 1244 1245 /* 1246 * Carry on if we have enough space (short-circuit) OR call 1247 * can_overcommit() to ensure we can overcommit to continue. 1248 */ 1249 if (!pending_tickets && 1250 ((used + orig_bytes <= space_info->total_bytes) || 1251 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1252 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1253 orig_bytes); 1254 ret = 0; 1255 } 1256 1257 /* 1258 * If we couldn't make a reservation then setup our reservation ticket 1259 * and kick the async worker if it's not already running. 1260 * 1261 * If we are a priority flusher then we just need to add our ticket to 1262 * the list and we will do our own flushing further down. 1263 */ 1264 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1265 ticket.bytes = orig_bytes; 1266 ticket.error = 0; 1267 space_info->reclaim_size += ticket.bytes; 1268 init_waitqueue_head(&ticket.wait); 1269 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1270 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1271 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) { 1272 list_add_tail(&ticket.list, &space_info->tickets); 1273 if (!space_info->flush) { 1274 space_info->flush = 1; 1275 trace_btrfs_trigger_flush(fs_info, 1276 space_info->flags, 1277 orig_bytes, flush, 1278 "enospc"); 1279 queue_work(system_unbound_wq, 1280 &fs_info->async_reclaim_work); 1281 } 1282 } else { 1283 list_add_tail(&ticket.list, 1284 &space_info->priority_tickets); 1285 } 1286 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1287 used += orig_bytes; 1288 /* 1289 * We will do the space reservation dance during log replay, 1290 * which means we won't have fs_info->fs_root set, so don't do 1291 * the async reclaim as we will panic. 1292 */ 1293 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1294 need_do_async_reclaim(fs_info, space_info, used) && 1295 !work_busy(&fs_info->async_reclaim_work)) { 1296 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1297 orig_bytes, flush, "preempt"); 1298 queue_work(system_unbound_wq, 1299 &fs_info->async_reclaim_work); 1300 } 1301 } 1302 spin_unlock(&space_info->lock); 1303 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1304 return ret; 1305 1306 return handle_reserve_ticket(fs_info, space_info, &ticket, flush); 1307 } 1308 1309 /** 1310 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1311 * @root - the root we're allocating for 1312 * @block_rsv - the block_rsv we're allocating for 1313 * @orig_bytes - the number of bytes we want 1314 * @flush - whether or not we can flush to make our reservation 1315 * 1316 * This will reserve orig_bytes number of bytes from the space info associated 1317 * with the block_rsv. If there is not enough space it will make an attempt to 1318 * flush out space to make room. It will do this by flushing delalloc if 1319 * possible or committing the transaction. If flush is 0 then no attempts to 1320 * regain reservations will be made and this will fail if there is not enough 1321 * space already. 1322 */ 1323 int btrfs_reserve_metadata_bytes(struct btrfs_root *root, 1324 struct btrfs_block_rsv *block_rsv, 1325 u64 orig_bytes, 1326 enum btrfs_reserve_flush_enum flush) 1327 { 1328 struct btrfs_fs_info *fs_info = root->fs_info; 1329 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1330 int ret; 1331 1332 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 1333 orig_bytes, flush); 1334 if (ret == -ENOSPC && 1335 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 1336 if (block_rsv != global_rsv && 1337 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) 1338 ret = 0; 1339 } 1340 if (ret == -ENOSPC) { 1341 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1342 block_rsv->space_info->flags, 1343 orig_bytes, 1); 1344 1345 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1346 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1347 orig_bytes, 0); 1348 } 1349 return ret; 1350 } 1351