1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 14 /* 15 * HOW DOES SPACE RESERVATION WORK 16 * 17 * If you want to know about delalloc specifically, there is a separate comment 18 * for that with the delalloc code. This comment is about how the whole system 19 * works generally. 20 * 21 * BASIC CONCEPTS 22 * 23 * 1) space_info. This is the ultimate arbiter of how much space we can use. 24 * There's a description of the bytes_ fields with the struct declaration, 25 * refer to that for specifics on each field. Suffice it to say that for 26 * reservations we care about total_bytes - SUM(space_info->bytes_) when 27 * determining if there is space to make an allocation. There is a space_info 28 * for METADATA, SYSTEM, and DATA areas. 29 * 30 * 2) block_rsv's. These are basically buckets for every different type of 31 * metadata reservation we have. You can see the comment in the block_rsv 32 * code on the rules for each type, but generally block_rsv->reserved is how 33 * much space is accounted for in space_info->bytes_may_use. 34 * 35 * 3) btrfs_calc*_size. These are the worst case calculations we used based 36 * on the number of items we will want to modify. We have one for changing 37 * items, and one for inserting new items. Generally we use these helpers to 38 * determine the size of the block reserves, and then use the actual bytes 39 * values to adjust the space_info counters. 40 * 41 * MAKING RESERVATIONS, THE NORMAL CASE 42 * 43 * We call into either btrfs_reserve_data_bytes() or 44 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 45 * num_bytes we want to reserve. 46 * 47 * ->reserve 48 * space_info->bytes_may_reserve += num_bytes 49 * 50 * ->extent allocation 51 * Call btrfs_add_reserved_bytes() which does 52 * space_info->bytes_may_reserve -= num_bytes 53 * space_info->bytes_reserved += extent_bytes 54 * 55 * ->insert reference 56 * Call btrfs_update_block_group() which does 57 * space_info->bytes_reserved -= extent_bytes 58 * space_info->bytes_used += extent_bytes 59 * 60 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 61 * 62 * Assume we are unable to simply make the reservation because we do not have 63 * enough space 64 * 65 * -> __reserve_bytes 66 * create a reserve_ticket with ->bytes set to our reservation, add it to 67 * the tail of space_info->tickets, kick async flush thread 68 * 69 * ->handle_reserve_ticket 70 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 71 * on the ticket. 72 * 73 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 74 * Flushes various things attempting to free up space. 75 * 76 * -> btrfs_try_granting_tickets() 77 * This is called by anything that either subtracts space from 78 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 79 * space_info->total_bytes. This loops through the ->priority_tickets and 80 * then the ->tickets list checking to see if the reservation can be 81 * completed. If it can the space is added to space_info->bytes_may_use and 82 * the ticket is woken up. 83 * 84 * -> ticket wakeup 85 * Check if ->bytes == 0, if it does we got our reservation and we can carry 86 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 87 * were interrupted.) 88 * 89 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 90 * 91 * Same as the above, except we add ourselves to the 92 * space_info->priority_tickets, and we do not use ticket->wait, we simply 93 * call flush_space() ourselves for the states that are safe for us to call 94 * without deadlocking and hope for the best. 95 * 96 * THE FLUSHING STATES 97 * 98 * Generally speaking we will have two cases for each state, a "nice" state 99 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 100 * reduce the locking over head on the various trees, and even to keep from 101 * doing any work at all in the case of delayed refs. Each of these delayed 102 * things however hold reservations, and so letting them run allows us to 103 * reclaim space so we can make new reservations. 104 * 105 * FLUSH_DELAYED_ITEMS 106 * Every inode has a delayed item to update the inode. Take a simple write 107 * for example, we would update the inode item at write time to update the 108 * mtime, and then again at finish_ordered_io() time in order to update the 109 * isize or bytes. We keep these delayed items to coalesce these operations 110 * into a single operation done on demand. These are an easy way to reclaim 111 * metadata space. 112 * 113 * FLUSH_DELALLOC 114 * Look at the delalloc comment to get an idea of how much space is reserved 115 * for delayed allocation. We can reclaim some of this space simply by 116 * running delalloc, but usually we need to wait for ordered extents to 117 * reclaim the bulk of this space. 118 * 119 * FLUSH_DELAYED_REFS 120 * We have a block reserve for the outstanding delayed refs space, and every 121 * delayed ref operation holds a reservation. Running these is a quick way 122 * to reclaim space, but we want to hold this until the end because COW can 123 * churn a lot and we can avoid making some extent tree modifications if we 124 * are able to delay for as long as possible. 125 * 126 * ALLOC_CHUNK 127 * We will skip this the first time through space reservation, because of 128 * overcommit and we don't want to have a lot of useless metadata space when 129 * our worst case reservations will likely never come true. 130 * 131 * RUN_DELAYED_IPUTS 132 * If we're freeing inodes we're likely freeing checksums, file extent 133 * items, and extent tree items. Loads of space could be freed up by these 134 * operations, however they won't be usable until the transaction commits. 135 * 136 * COMMIT_TRANS 137 * This will commit the transaction. Historically we had a lot of logic 138 * surrounding whether or not we'd commit the transaction, but this waits born 139 * out of a pre-tickets era where we could end up committing the transaction 140 * thousands of times in a row without making progress. Now thanks to our 141 * ticketing system we know if we're not making progress and can error 142 * everybody out after a few commits rather than burning the disk hoping for 143 * a different answer. 144 * 145 * OVERCOMMIT 146 * 147 * Because we hold so many reservations for metadata we will allow you to 148 * reserve more space than is currently free in the currently allocate 149 * metadata space. This only happens with metadata, data does not allow 150 * overcommitting. 151 * 152 * You can see the current logic for when we allow overcommit in 153 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 154 * is no unallocated space to be had, all reservations are kept within the 155 * free space in the allocated metadata chunks. 156 * 157 * Because of overcommitting, you generally want to use the 158 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 159 * thing with or without extra unallocated space. 160 */ 161 162 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 163 bool may_use_included) 164 { 165 ASSERT(s_info); 166 return s_info->bytes_used + s_info->bytes_reserved + 167 s_info->bytes_pinned + s_info->bytes_readonly + 168 s_info->bytes_zone_unusable + 169 (may_use_included ? s_info->bytes_may_use : 0); 170 } 171 172 /* 173 * after adding space to the filesystem, we need to clear the full flags 174 * on all the space infos. 175 */ 176 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 177 { 178 struct list_head *head = &info->space_info; 179 struct btrfs_space_info *found; 180 181 list_for_each_entry(found, head, list) 182 found->full = 0; 183 } 184 185 /* 186 * Block groups with more than this value (percents) of unusable space will be 187 * scheduled for background reclaim. 188 */ 189 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 190 191 /* 192 * Calculate chunk size depending on volume type (regular or zoned). 193 */ 194 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 195 { 196 if (btrfs_is_zoned(fs_info)) 197 return fs_info->zone_size; 198 199 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 200 201 if (flags & BTRFS_BLOCK_GROUP_DATA) 202 return BTRFS_MAX_DATA_CHUNK_SIZE; 203 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 204 return SZ_32M; 205 206 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 207 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 208 return SZ_1G; 209 210 return SZ_256M; 211 } 212 213 /* 214 * Update default chunk size. 215 */ 216 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 217 u64 chunk_size) 218 { 219 WRITE_ONCE(space_info->chunk_size, chunk_size); 220 } 221 222 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 223 { 224 225 struct btrfs_space_info *space_info; 226 int i; 227 int ret; 228 229 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 230 if (!space_info) 231 return -ENOMEM; 232 233 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 234 INIT_LIST_HEAD(&space_info->block_groups[i]); 235 init_rwsem(&space_info->groups_sem); 236 spin_lock_init(&space_info->lock); 237 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 238 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 239 INIT_LIST_HEAD(&space_info->ro_bgs); 240 INIT_LIST_HEAD(&space_info->tickets); 241 INIT_LIST_HEAD(&space_info->priority_tickets); 242 space_info->clamp = 1; 243 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 244 245 if (btrfs_is_zoned(info)) 246 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 247 248 ret = btrfs_sysfs_add_space_info_type(info, space_info); 249 if (ret) 250 return ret; 251 252 list_add(&space_info->list, &info->space_info); 253 if (flags & BTRFS_BLOCK_GROUP_DATA) 254 info->data_sinfo = space_info; 255 256 return ret; 257 } 258 259 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 260 { 261 struct btrfs_super_block *disk_super; 262 u64 features; 263 u64 flags; 264 int mixed = 0; 265 int ret; 266 267 disk_super = fs_info->super_copy; 268 if (!btrfs_super_root(disk_super)) 269 return -EINVAL; 270 271 features = btrfs_super_incompat_flags(disk_super); 272 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 273 mixed = 1; 274 275 flags = BTRFS_BLOCK_GROUP_SYSTEM; 276 ret = create_space_info(fs_info, flags); 277 if (ret) 278 goto out; 279 280 if (mixed) { 281 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 282 ret = create_space_info(fs_info, flags); 283 } else { 284 flags = BTRFS_BLOCK_GROUP_METADATA; 285 ret = create_space_info(fs_info, flags); 286 if (ret) 287 goto out; 288 289 flags = BTRFS_BLOCK_GROUP_DATA; 290 ret = create_space_info(fs_info, flags); 291 } 292 out: 293 return ret; 294 } 295 296 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 297 struct btrfs_block_group *block_group) 298 { 299 struct btrfs_space_info *found; 300 int factor, index; 301 302 factor = btrfs_bg_type_to_factor(block_group->flags); 303 304 found = btrfs_find_space_info(info, block_group->flags); 305 ASSERT(found); 306 spin_lock(&found->lock); 307 found->total_bytes += block_group->length; 308 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 309 found->active_total_bytes += block_group->length; 310 found->disk_total += block_group->length * factor; 311 found->bytes_used += block_group->used; 312 found->disk_used += block_group->used * factor; 313 found->bytes_readonly += block_group->bytes_super; 314 found->bytes_zone_unusable += block_group->zone_unusable; 315 if (block_group->length > 0) 316 found->full = 0; 317 btrfs_try_granting_tickets(info, found); 318 spin_unlock(&found->lock); 319 320 block_group->space_info = found; 321 322 index = btrfs_bg_flags_to_raid_index(block_group->flags); 323 down_write(&found->groups_sem); 324 list_add_tail(&block_group->list, &found->block_groups[index]); 325 up_write(&found->groups_sem); 326 } 327 328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 329 u64 flags) 330 { 331 struct list_head *head = &info->space_info; 332 struct btrfs_space_info *found; 333 334 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 335 336 list_for_each_entry(found, head, list) { 337 if (found->flags & flags) 338 return found; 339 } 340 return NULL; 341 } 342 343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 344 struct btrfs_space_info *space_info, 345 enum btrfs_reserve_flush_enum flush) 346 { 347 u64 profile; 348 u64 avail; 349 int factor; 350 351 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 352 profile = btrfs_system_alloc_profile(fs_info); 353 else 354 profile = btrfs_metadata_alloc_profile(fs_info); 355 356 avail = atomic64_read(&fs_info->free_chunk_space); 357 358 /* 359 * If we have dup, raid1 or raid10 then only half of the free 360 * space is actually usable. For raid56, the space info used 361 * doesn't include the parity drive, so we don't have to 362 * change the math 363 */ 364 factor = btrfs_bg_type_to_factor(profile); 365 avail = div_u64(avail, factor); 366 367 /* 368 * If we aren't flushing all things, let us overcommit up to 369 * 1/2th of the space. If we can flush, don't let us overcommit 370 * too much, let it overcommit up to 1/8 of the space. 371 */ 372 if (flush == BTRFS_RESERVE_FLUSH_ALL) 373 avail >>= 3; 374 else 375 avail >>= 1; 376 return avail; 377 } 378 379 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info, 380 struct btrfs_space_info *space_info) 381 { 382 /* 383 * On regular filesystem, all total_bytes are always writable. On zoned 384 * filesystem, there may be a limitation imposed by max_active_zones. 385 * For metadata allocation, we cannot finish an existing active block 386 * group to avoid a deadlock. Thus, we need to consider only the active 387 * groups to be writable for metadata space. 388 */ 389 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 390 return space_info->total_bytes; 391 392 return space_info->active_total_bytes; 393 } 394 395 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 396 struct btrfs_space_info *space_info, u64 bytes, 397 enum btrfs_reserve_flush_enum flush) 398 { 399 u64 avail; 400 u64 used; 401 402 /* Don't overcommit when in mixed mode */ 403 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 404 return 0; 405 406 used = btrfs_space_info_used(space_info, true); 407 if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA)) 408 avail = 0; 409 else 410 avail = calc_available_free_space(fs_info, space_info, flush); 411 412 if (used + bytes < writable_total_bytes(fs_info, space_info) + avail) 413 return 1; 414 return 0; 415 } 416 417 static void remove_ticket(struct btrfs_space_info *space_info, 418 struct reserve_ticket *ticket) 419 { 420 if (!list_empty(&ticket->list)) { 421 list_del_init(&ticket->list); 422 ASSERT(space_info->reclaim_size >= ticket->bytes); 423 space_info->reclaim_size -= ticket->bytes; 424 } 425 } 426 427 /* 428 * This is for space we already have accounted in space_info->bytes_may_use, so 429 * basically when we're returning space from block_rsv's. 430 */ 431 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 432 struct btrfs_space_info *space_info) 433 { 434 struct list_head *head; 435 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 436 437 lockdep_assert_held(&space_info->lock); 438 439 head = &space_info->priority_tickets; 440 again: 441 while (!list_empty(head)) { 442 struct reserve_ticket *ticket; 443 u64 used = btrfs_space_info_used(space_info, true); 444 445 ticket = list_first_entry(head, struct reserve_ticket, list); 446 447 /* Check and see if our ticket can be satisfied now. */ 448 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) || 449 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 450 flush)) { 451 btrfs_space_info_update_bytes_may_use(fs_info, 452 space_info, 453 ticket->bytes); 454 remove_ticket(space_info, ticket); 455 ticket->bytes = 0; 456 space_info->tickets_id++; 457 wake_up(&ticket->wait); 458 } else { 459 break; 460 } 461 } 462 463 if (head == &space_info->priority_tickets) { 464 head = &space_info->tickets; 465 flush = BTRFS_RESERVE_FLUSH_ALL; 466 goto again; 467 } 468 } 469 470 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 471 do { \ 472 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 473 spin_lock(&__rsv->lock); \ 474 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 475 __rsv->size, __rsv->reserved); \ 476 spin_unlock(&__rsv->lock); \ 477 } while (0) 478 479 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 480 { 481 switch (space_info->flags) { 482 case BTRFS_BLOCK_GROUP_SYSTEM: 483 return "SYSTEM"; 484 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 485 return "DATA+METADATA"; 486 case BTRFS_BLOCK_GROUP_DATA: 487 return "DATA"; 488 case BTRFS_BLOCK_GROUP_METADATA: 489 return "METADATA"; 490 default: 491 return "UNKNOWN"; 492 } 493 } 494 495 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 496 { 497 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 498 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 499 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 500 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 501 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 502 } 503 504 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 505 struct btrfs_space_info *info) 506 { 507 const char *flag_str = space_info_flag_to_str(info); 508 lockdep_assert_held(&info->lock); 509 510 /* The free space could be negative in case of overcommit */ 511 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 512 flag_str, 513 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 514 info->full ? "" : "not "); 515 btrfs_info(fs_info, 516 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 517 info->total_bytes, info->bytes_used, info->bytes_pinned, 518 info->bytes_reserved, info->bytes_may_use, 519 info->bytes_readonly, info->bytes_zone_unusable); 520 } 521 522 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 523 struct btrfs_space_info *info, u64 bytes, 524 int dump_block_groups) 525 { 526 struct btrfs_block_group *cache; 527 int index = 0; 528 529 spin_lock(&info->lock); 530 __btrfs_dump_space_info(fs_info, info); 531 dump_global_block_rsv(fs_info); 532 spin_unlock(&info->lock); 533 534 if (!dump_block_groups) 535 return; 536 537 down_read(&info->groups_sem); 538 again: 539 list_for_each_entry(cache, &info->block_groups[index], list) { 540 spin_lock(&cache->lock); 541 btrfs_info(fs_info, 542 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s", 543 cache->start, cache->length, cache->used, cache->pinned, 544 cache->reserved, cache->zone_unusable, 545 cache->ro ? "[readonly]" : ""); 546 spin_unlock(&cache->lock); 547 btrfs_dump_free_space(cache, bytes); 548 } 549 if (++index < BTRFS_NR_RAID_TYPES) 550 goto again; 551 up_read(&info->groups_sem); 552 } 553 554 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 555 u64 to_reclaim) 556 { 557 u64 bytes; 558 u64 nr; 559 560 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 561 nr = div64_u64(to_reclaim, bytes); 562 if (!nr) 563 nr = 1; 564 return nr; 565 } 566 567 #define EXTENT_SIZE_PER_ITEM SZ_256K 568 569 /* 570 * shrink metadata reservation for delalloc 571 */ 572 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 573 struct btrfs_space_info *space_info, 574 u64 to_reclaim, bool wait_ordered, 575 bool for_preempt) 576 { 577 struct btrfs_trans_handle *trans; 578 u64 delalloc_bytes; 579 u64 ordered_bytes; 580 u64 items; 581 long time_left; 582 int loops; 583 584 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 585 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 586 if (delalloc_bytes == 0 && ordered_bytes == 0) 587 return; 588 589 /* Calc the number of the pages we need flush for space reservation */ 590 if (to_reclaim == U64_MAX) { 591 items = U64_MAX; 592 } else { 593 /* 594 * to_reclaim is set to however much metadata we need to 595 * reclaim, but reclaiming that much data doesn't really track 596 * exactly. What we really want to do is reclaim full inode's 597 * worth of reservations, however that's not available to us 598 * here. We will take a fraction of the delalloc bytes for our 599 * flushing loops and hope for the best. Delalloc will expand 600 * the amount we write to cover an entire dirty extent, which 601 * will reclaim the metadata reservation for that range. If 602 * it's not enough subsequent flush stages will be more 603 * aggressive. 604 */ 605 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 606 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 607 } 608 609 trans = current->journal_info; 610 611 /* 612 * If we are doing more ordered than delalloc we need to just wait on 613 * ordered extents, otherwise we'll waste time trying to flush delalloc 614 * that likely won't give us the space back we need. 615 */ 616 if (ordered_bytes > delalloc_bytes && !for_preempt) 617 wait_ordered = true; 618 619 loops = 0; 620 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 621 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 622 long nr_pages = min_t(u64, temp, LONG_MAX); 623 int async_pages; 624 625 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 626 627 /* 628 * We need to make sure any outstanding async pages are now 629 * processed before we continue. This is because things like 630 * sync_inode() try to be smart and skip writing if the inode is 631 * marked clean. We don't use filemap_fwrite for flushing 632 * because we want to control how many pages we write out at a 633 * time, thus this is the only safe way to make sure we've 634 * waited for outstanding compressed workers to have started 635 * their jobs and thus have ordered extents set up properly. 636 * 637 * This exists because we do not want to wait for each 638 * individual inode to finish its async work, we simply want to 639 * start the IO on everybody, and then come back here and wait 640 * for all of the async work to catch up. Once we're done with 641 * that we know we'll have ordered extents for everything and we 642 * can decide if we wait for that or not. 643 * 644 * If we choose to replace this in the future, make absolutely 645 * sure that the proper waiting is being done in the async case, 646 * as there have been bugs in that area before. 647 */ 648 async_pages = atomic_read(&fs_info->async_delalloc_pages); 649 if (!async_pages) 650 goto skip_async; 651 652 /* 653 * We don't want to wait forever, if we wrote less pages in this 654 * loop than we have outstanding, only wait for that number of 655 * pages, otherwise we can wait for all async pages to finish 656 * before continuing. 657 */ 658 if (async_pages > nr_pages) 659 async_pages -= nr_pages; 660 else 661 async_pages = 0; 662 wait_event(fs_info->async_submit_wait, 663 atomic_read(&fs_info->async_delalloc_pages) <= 664 async_pages); 665 skip_async: 666 loops++; 667 if (wait_ordered && !trans) { 668 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 669 } else { 670 time_left = schedule_timeout_killable(1); 671 if (time_left) 672 break; 673 } 674 675 /* 676 * If we are for preemption we just want a one-shot of delalloc 677 * flushing so we can stop flushing if we decide we don't need 678 * to anymore. 679 */ 680 if (for_preempt) 681 break; 682 683 spin_lock(&space_info->lock); 684 if (list_empty(&space_info->tickets) && 685 list_empty(&space_info->priority_tickets)) { 686 spin_unlock(&space_info->lock); 687 break; 688 } 689 spin_unlock(&space_info->lock); 690 691 delalloc_bytes = percpu_counter_sum_positive( 692 &fs_info->delalloc_bytes); 693 ordered_bytes = percpu_counter_sum_positive( 694 &fs_info->ordered_bytes); 695 } 696 } 697 698 /* 699 * Try to flush some data based on policy set by @state. This is only advisory 700 * and may fail for various reasons. The caller is supposed to examine the 701 * state of @space_info to detect the outcome. 702 */ 703 static void flush_space(struct btrfs_fs_info *fs_info, 704 struct btrfs_space_info *space_info, u64 num_bytes, 705 enum btrfs_flush_state state, bool for_preempt) 706 { 707 struct btrfs_root *root = fs_info->tree_root; 708 struct btrfs_trans_handle *trans; 709 int nr; 710 int ret = 0; 711 712 switch (state) { 713 case FLUSH_DELAYED_ITEMS_NR: 714 case FLUSH_DELAYED_ITEMS: 715 if (state == FLUSH_DELAYED_ITEMS_NR) 716 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 717 else 718 nr = -1; 719 720 trans = btrfs_join_transaction(root); 721 if (IS_ERR(trans)) { 722 ret = PTR_ERR(trans); 723 break; 724 } 725 ret = btrfs_run_delayed_items_nr(trans, nr); 726 btrfs_end_transaction(trans); 727 break; 728 case FLUSH_DELALLOC: 729 case FLUSH_DELALLOC_WAIT: 730 case FLUSH_DELALLOC_FULL: 731 if (state == FLUSH_DELALLOC_FULL) 732 num_bytes = U64_MAX; 733 shrink_delalloc(fs_info, space_info, num_bytes, 734 state != FLUSH_DELALLOC, for_preempt); 735 break; 736 case FLUSH_DELAYED_REFS_NR: 737 case FLUSH_DELAYED_REFS: 738 trans = btrfs_join_transaction(root); 739 if (IS_ERR(trans)) { 740 ret = PTR_ERR(trans); 741 break; 742 } 743 if (state == FLUSH_DELAYED_REFS_NR) 744 nr = calc_reclaim_items_nr(fs_info, num_bytes); 745 else 746 nr = 0; 747 btrfs_run_delayed_refs(trans, nr); 748 btrfs_end_transaction(trans); 749 break; 750 case ALLOC_CHUNK: 751 case ALLOC_CHUNK_FORCE: 752 /* 753 * For metadata space on zoned filesystem, reaching here means we 754 * don't have enough space left in active_total_bytes. Try to 755 * activate a block group first, because we may have inactive 756 * block group already allocated. 757 */ 758 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false); 759 if (ret < 0) 760 break; 761 else if (ret == 1) 762 break; 763 764 trans = btrfs_join_transaction(root); 765 if (IS_ERR(trans)) { 766 ret = PTR_ERR(trans); 767 break; 768 } 769 ret = btrfs_chunk_alloc(trans, 770 btrfs_get_alloc_profile(fs_info, space_info->flags), 771 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 772 CHUNK_ALLOC_FORCE); 773 btrfs_end_transaction(trans); 774 775 /* 776 * For metadata space on zoned filesystem, allocating a new chunk 777 * is not enough. We still need to activate the block * group. 778 * Active the newly allocated block group by (maybe) finishing 779 * a block group. 780 */ 781 if (ret == 1) { 782 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true); 783 /* 784 * Revert to the original ret regardless we could finish 785 * one block group or not. 786 */ 787 if (ret >= 0) 788 ret = 1; 789 } 790 791 if (ret > 0 || ret == -ENOSPC) 792 ret = 0; 793 break; 794 case RUN_DELAYED_IPUTS: 795 /* 796 * If we have pending delayed iputs then we could free up a 797 * bunch of pinned space, so make sure we run the iputs before 798 * we do our pinned bytes check below. 799 */ 800 btrfs_run_delayed_iputs(fs_info); 801 btrfs_wait_on_delayed_iputs(fs_info); 802 break; 803 case COMMIT_TRANS: 804 ASSERT(current->journal_info == NULL); 805 trans = btrfs_join_transaction(root); 806 if (IS_ERR(trans)) { 807 ret = PTR_ERR(trans); 808 break; 809 } 810 ret = btrfs_commit_transaction(trans); 811 break; 812 default: 813 ret = -ENOSPC; 814 break; 815 } 816 817 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 818 ret, for_preempt); 819 return; 820 } 821 822 static inline u64 823 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 824 struct btrfs_space_info *space_info) 825 { 826 u64 used; 827 u64 avail; 828 u64 total; 829 u64 to_reclaim = space_info->reclaim_size; 830 831 lockdep_assert_held(&space_info->lock); 832 833 avail = calc_available_free_space(fs_info, space_info, 834 BTRFS_RESERVE_FLUSH_ALL); 835 used = btrfs_space_info_used(space_info, true); 836 837 /* 838 * We may be flushing because suddenly we have less space than we had 839 * before, and now we're well over-committed based on our current free 840 * space. If that's the case add in our overage so we make sure to put 841 * appropriate pressure on the flushing state machine. 842 */ 843 total = writable_total_bytes(fs_info, space_info); 844 if (total + avail < used) 845 to_reclaim += used - (total + avail); 846 847 return to_reclaim; 848 } 849 850 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 851 struct btrfs_space_info *space_info) 852 { 853 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 854 u64 ordered, delalloc; 855 u64 total = writable_total_bytes(fs_info, space_info); 856 u64 thresh; 857 u64 used; 858 859 thresh = div_factor_fine(total, 90); 860 861 lockdep_assert_held(&space_info->lock); 862 863 /* If we're just plain full then async reclaim just slows us down. */ 864 if ((space_info->bytes_used + space_info->bytes_reserved + 865 global_rsv_size) >= thresh) 866 return false; 867 868 used = space_info->bytes_may_use + space_info->bytes_pinned; 869 870 /* The total flushable belongs to the global rsv, don't flush. */ 871 if (global_rsv_size >= used) 872 return false; 873 874 /* 875 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 876 * that devoted to other reservations then there's no sense in flushing, 877 * we don't have a lot of things that need flushing. 878 */ 879 if (used - global_rsv_size <= SZ_128M) 880 return false; 881 882 /* 883 * We have tickets queued, bail so we don't compete with the async 884 * flushers. 885 */ 886 if (space_info->reclaim_size) 887 return false; 888 889 /* 890 * If we have over half of the free space occupied by reservations or 891 * pinned then we want to start flushing. 892 * 893 * We do not do the traditional thing here, which is to say 894 * 895 * if (used >= ((total_bytes + avail) / 2)) 896 * return 1; 897 * 898 * because this doesn't quite work how we want. If we had more than 50% 899 * of the space_info used by bytes_used and we had 0 available we'd just 900 * constantly run the background flusher. Instead we want it to kick in 901 * if our reclaimable space exceeds our clamped free space. 902 * 903 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 904 * the following: 905 * 906 * Amount of RAM Minimum threshold Maximum threshold 907 * 908 * 256GiB 1GiB 128GiB 909 * 128GiB 512MiB 64GiB 910 * 64GiB 256MiB 32GiB 911 * 32GiB 128MiB 16GiB 912 * 16GiB 64MiB 8GiB 913 * 914 * These are the range our thresholds will fall in, corresponding to how 915 * much delalloc we need for the background flusher to kick in. 916 */ 917 918 thresh = calc_available_free_space(fs_info, space_info, 919 BTRFS_RESERVE_FLUSH_ALL); 920 used = space_info->bytes_used + space_info->bytes_reserved + 921 space_info->bytes_readonly + global_rsv_size; 922 if (used < total) 923 thresh += total - used; 924 thresh >>= space_info->clamp; 925 926 used = space_info->bytes_pinned; 927 928 /* 929 * If we have more ordered bytes than delalloc bytes then we're either 930 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 931 * around. Preemptive flushing is only useful in that it can free up 932 * space before tickets need to wait for things to finish. In the case 933 * of ordered extents, preemptively waiting on ordered extents gets us 934 * nothing, if our reservations are tied up in ordered extents we'll 935 * simply have to slow down writers by forcing them to wait on ordered 936 * extents. 937 * 938 * In the case that ordered is larger than delalloc, only include the 939 * block reserves that we would actually be able to directly reclaim 940 * from. In this case if we're heavy on metadata operations this will 941 * clearly be heavy enough to warrant preemptive flushing. In the case 942 * of heavy DIO or ordered reservations, preemptive flushing will just 943 * waste time and cause us to slow down. 944 * 945 * We want to make sure we truly are maxed out on ordered however, so 946 * cut ordered in half, and if it's still higher than delalloc then we 947 * can keep flushing. This is to avoid the case where we start 948 * flushing, and now delalloc == ordered and we stop preemptively 949 * flushing when we could still have several gigs of delalloc to flush. 950 */ 951 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 952 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 953 if (ordered >= delalloc) 954 used += fs_info->delayed_refs_rsv.reserved + 955 fs_info->delayed_block_rsv.reserved; 956 else 957 used += space_info->bytes_may_use - global_rsv_size; 958 959 return (used >= thresh && !btrfs_fs_closing(fs_info) && 960 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 961 } 962 963 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 964 struct btrfs_space_info *space_info, 965 struct reserve_ticket *ticket) 966 { 967 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 968 u64 min_bytes; 969 970 if (!ticket->steal) 971 return false; 972 973 if (global_rsv->space_info != space_info) 974 return false; 975 976 spin_lock(&global_rsv->lock); 977 min_bytes = div_factor(global_rsv->size, 1); 978 if (global_rsv->reserved < min_bytes + ticket->bytes) { 979 spin_unlock(&global_rsv->lock); 980 return false; 981 } 982 global_rsv->reserved -= ticket->bytes; 983 remove_ticket(space_info, ticket); 984 ticket->bytes = 0; 985 wake_up(&ticket->wait); 986 space_info->tickets_id++; 987 if (global_rsv->reserved < global_rsv->size) 988 global_rsv->full = 0; 989 spin_unlock(&global_rsv->lock); 990 991 return true; 992 } 993 994 /* 995 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 996 * @fs_info - fs_info for this fs 997 * @space_info - the space info we were flushing 998 * 999 * We call this when we've exhausted our flushing ability and haven't made 1000 * progress in satisfying tickets. The reservation code handles tickets in 1001 * order, so if there is a large ticket first and then smaller ones we could 1002 * very well satisfy the smaller tickets. This will attempt to wake up any 1003 * tickets in the list to catch this case. 1004 * 1005 * This function returns true if it was able to make progress by clearing out 1006 * other tickets, or if it stumbles across a ticket that was smaller than the 1007 * first ticket. 1008 */ 1009 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1010 struct btrfs_space_info *space_info) 1011 { 1012 struct reserve_ticket *ticket; 1013 u64 tickets_id = space_info->tickets_id; 1014 const bool aborted = BTRFS_FS_ERROR(fs_info); 1015 1016 trace_btrfs_fail_all_tickets(fs_info, space_info); 1017 1018 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1019 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1020 __btrfs_dump_space_info(fs_info, space_info); 1021 } 1022 1023 while (!list_empty(&space_info->tickets) && 1024 tickets_id == space_info->tickets_id) { 1025 ticket = list_first_entry(&space_info->tickets, 1026 struct reserve_ticket, list); 1027 1028 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1029 return true; 1030 1031 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1032 btrfs_info(fs_info, "failing ticket with %llu bytes", 1033 ticket->bytes); 1034 1035 remove_ticket(space_info, ticket); 1036 if (aborted) 1037 ticket->error = -EIO; 1038 else 1039 ticket->error = -ENOSPC; 1040 wake_up(&ticket->wait); 1041 1042 /* 1043 * We're just throwing tickets away, so more flushing may not 1044 * trip over btrfs_try_granting_tickets, so we need to call it 1045 * here to see if we can make progress with the next ticket in 1046 * the list. 1047 */ 1048 if (!aborted) 1049 btrfs_try_granting_tickets(fs_info, space_info); 1050 } 1051 return (tickets_id != space_info->tickets_id); 1052 } 1053 1054 /* 1055 * This is for normal flushers, we can wait all goddamned day if we want to. We 1056 * will loop and continuously try to flush as long as we are making progress. 1057 * We count progress as clearing off tickets each time we have to loop. 1058 */ 1059 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1060 { 1061 struct btrfs_fs_info *fs_info; 1062 struct btrfs_space_info *space_info; 1063 u64 to_reclaim; 1064 enum btrfs_flush_state flush_state; 1065 int commit_cycles = 0; 1066 u64 last_tickets_id; 1067 1068 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1069 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1070 1071 spin_lock(&space_info->lock); 1072 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1073 if (!to_reclaim) { 1074 space_info->flush = 0; 1075 spin_unlock(&space_info->lock); 1076 return; 1077 } 1078 last_tickets_id = space_info->tickets_id; 1079 spin_unlock(&space_info->lock); 1080 1081 flush_state = FLUSH_DELAYED_ITEMS_NR; 1082 do { 1083 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1084 spin_lock(&space_info->lock); 1085 if (list_empty(&space_info->tickets)) { 1086 space_info->flush = 0; 1087 spin_unlock(&space_info->lock); 1088 return; 1089 } 1090 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1091 space_info); 1092 if (last_tickets_id == space_info->tickets_id) { 1093 flush_state++; 1094 } else { 1095 last_tickets_id = space_info->tickets_id; 1096 flush_state = FLUSH_DELAYED_ITEMS_NR; 1097 if (commit_cycles) 1098 commit_cycles--; 1099 } 1100 1101 /* 1102 * We do not want to empty the system of delalloc unless we're 1103 * under heavy pressure, so allow one trip through the flushing 1104 * logic before we start doing a FLUSH_DELALLOC_FULL. 1105 */ 1106 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1107 flush_state++; 1108 1109 /* 1110 * We don't want to force a chunk allocation until we've tried 1111 * pretty hard to reclaim space. Think of the case where we 1112 * freed up a bunch of space and so have a lot of pinned space 1113 * to reclaim. We would rather use that than possibly create a 1114 * underutilized metadata chunk. So if this is our first run 1115 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1116 * commit the transaction. If nothing has changed the next go 1117 * around then we can force a chunk allocation. 1118 */ 1119 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1120 flush_state++; 1121 1122 if (flush_state > COMMIT_TRANS) { 1123 commit_cycles++; 1124 if (commit_cycles > 2) { 1125 if (maybe_fail_all_tickets(fs_info, space_info)) { 1126 flush_state = FLUSH_DELAYED_ITEMS_NR; 1127 commit_cycles--; 1128 } else { 1129 space_info->flush = 0; 1130 } 1131 } else { 1132 flush_state = FLUSH_DELAYED_ITEMS_NR; 1133 } 1134 } 1135 spin_unlock(&space_info->lock); 1136 } while (flush_state <= COMMIT_TRANS); 1137 } 1138 1139 /* 1140 * This handles pre-flushing of metadata space before we get to the point that 1141 * we need to start blocking threads on tickets. The logic here is different 1142 * from the other flush paths because it doesn't rely on tickets to tell us how 1143 * much we need to flush, instead it attempts to keep us below the 80% full 1144 * watermark of space by flushing whichever reservation pool is currently the 1145 * largest. 1146 */ 1147 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1148 { 1149 struct btrfs_fs_info *fs_info; 1150 struct btrfs_space_info *space_info; 1151 struct btrfs_block_rsv *delayed_block_rsv; 1152 struct btrfs_block_rsv *delayed_refs_rsv; 1153 struct btrfs_block_rsv *global_rsv; 1154 struct btrfs_block_rsv *trans_rsv; 1155 int loops = 0; 1156 1157 fs_info = container_of(work, struct btrfs_fs_info, 1158 preempt_reclaim_work); 1159 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1160 delayed_block_rsv = &fs_info->delayed_block_rsv; 1161 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1162 global_rsv = &fs_info->global_block_rsv; 1163 trans_rsv = &fs_info->trans_block_rsv; 1164 1165 spin_lock(&space_info->lock); 1166 while (need_preemptive_reclaim(fs_info, space_info)) { 1167 enum btrfs_flush_state flush; 1168 u64 delalloc_size = 0; 1169 u64 to_reclaim, block_rsv_size; 1170 u64 global_rsv_size = global_rsv->reserved; 1171 1172 loops++; 1173 1174 /* 1175 * We don't have a precise counter for the metadata being 1176 * reserved for delalloc, so we'll approximate it by subtracting 1177 * out the block rsv's space from the bytes_may_use. If that 1178 * amount is higher than the individual reserves, then we can 1179 * assume it's tied up in delalloc reservations. 1180 */ 1181 block_rsv_size = global_rsv_size + 1182 delayed_block_rsv->reserved + 1183 delayed_refs_rsv->reserved + 1184 trans_rsv->reserved; 1185 if (block_rsv_size < space_info->bytes_may_use) 1186 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1187 1188 /* 1189 * We don't want to include the global_rsv in our calculation, 1190 * because that's space we can't touch. Subtract it from the 1191 * block_rsv_size for the next checks. 1192 */ 1193 block_rsv_size -= global_rsv_size; 1194 1195 /* 1196 * We really want to avoid flushing delalloc too much, as it 1197 * could result in poor allocation patterns, so only flush it if 1198 * it's larger than the rest of the pools combined. 1199 */ 1200 if (delalloc_size > block_rsv_size) { 1201 to_reclaim = delalloc_size; 1202 flush = FLUSH_DELALLOC; 1203 } else if (space_info->bytes_pinned > 1204 (delayed_block_rsv->reserved + 1205 delayed_refs_rsv->reserved)) { 1206 to_reclaim = space_info->bytes_pinned; 1207 flush = COMMIT_TRANS; 1208 } else if (delayed_block_rsv->reserved > 1209 delayed_refs_rsv->reserved) { 1210 to_reclaim = delayed_block_rsv->reserved; 1211 flush = FLUSH_DELAYED_ITEMS_NR; 1212 } else { 1213 to_reclaim = delayed_refs_rsv->reserved; 1214 flush = FLUSH_DELAYED_REFS_NR; 1215 } 1216 1217 spin_unlock(&space_info->lock); 1218 1219 /* 1220 * We don't want to reclaim everything, just a portion, so scale 1221 * down the to_reclaim by 1/4. If it takes us down to 0, 1222 * reclaim 1 items worth. 1223 */ 1224 to_reclaim >>= 2; 1225 if (!to_reclaim) 1226 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1227 flush_space(fs_info, space_info, to_reclaim, flush, true); 1228 cond_resched(); 1229 spin_lock(&space_info->lock); 1230 } 1231 1232 /* We only went through once, back off our clamping. */ 1233 if (loops == 1 && !space_info->reclaim_size) 1234 space_info->clamp = max(1, space_info->clamp - 1); 1235 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1236 spin_unlock(&space_info->lock); 1237 } 1238 1239 /* 1240 * FLUSH_DELALLOC_WAIT: 1241 * Space is freed from flushing delalloc in one of two ways. 1242 * 1243 * 1) compression is on and we allocate less space than we reserved 1244 * 2) we are overwriting existing space 1245 * 1246 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1247 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1248 * length to ->bytes_reserved, and subtracts the reserved space from 1249 * ->bytes_may_use. 1250 * 1251 * For #2 this is trickier. Once the ordered extent runs we will drop the 1252 * extent in the range we are overwriting, which creates a delayed ref for 1253 * that freed extent. This however is not reclaimed until the transaction 1254 * commits, thus the next stages. 1255 * 1256 * RUN_DELAYED_IPUTS 1257 * If we are freeing inodes, we want to make sure all delayed iputs have 1258 * completed, because they could have been on an inode with i_nlink == 0, and 1259 * thus have been truncated and freed up space. But again this space is not 1260 * immediately re-usable, it comes in the form of a delayed ref, which must be 1261 * run and then the transaction must be committed. 1262 * 1263 * COMMIT_TRANS 1264 * This is where we reclaim all of the pinned space generated by running the 1265 * iputs 1266 * 1267 * ALLOC_CHUNK_FORCE 1268 * For data we start with alloc chunk force, however we could have been full 1269 * before, and then the transaction commit could have freed new block groups, 1270 * so if we now have space to allocate do the force chunk allocation. 1271 */ 1272 static const enum btrfs_flush_state data_flush_states[] = { 1273 FLUSH_DELALLOC_FULL, 1274 RUN_DELAYED_IPUTS, 1275 COMMIT_TRANS, 1276 ALLOC_CHUNK_FORCE, 1277 }; 1278 1279 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1280 { 1281 struct btrfs_fs_info *fs_info; 1282 struct btrfs_space_info *space_info; 1283 u64 last_tickets_id; 1284 enum btrfs_flush_state flush_state = 0; 1285 1286 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1287 space_info = fs_info->data_sinfo; 1288 1289 spin_lock(&space_info->lock); 1290 if (list_empty(&space_info->tickets)) { 1291 space_info->flush = 0; 1292 spin_unlock(&space_info->lock); 1293 return; 1294 } 1295 last_tickets_id = space_info->tickets_id; 1296 spin_unlock(&space_info->lock); 1297 1298 while (!space_info->full) { 1299 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1300 spin_lock(&space_info->lock); 1301 if (list_empty(&space_info->tickets)) { 1302 space_info->flush = 0; 1303 spin_unlock(&space_info->lock); 1304 return; 1305 } 1306 1307 /* Something happened, fail everything and bail. */ 1308 if (BTRFS_FS_ERROR(fs_info)) 1309 goto aborted_fs; 1310 last_tickets_id = space_info->tickets_id; 1311 spin_unlock(&space_info->lock); 1312 } 1313 1314 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1315 flush_space(fs_info, space_info, U64_MAX, 1316 data_flush_states[flush_state], false); 1317 spin_lock(&space_info->lock); 1318 if (list_empty(&space_info->tickets)) { 1319 space_info->flush = 0; 1320 spin_unlock(&space_info->lock); 1321 return; 1322 } 1323 1324 if (last_tickets_id == space_info->tickets_id) { 1325 flush_state++; 1326 } else { 1327 last_tickets_id = space_info->tickets_id; 1328 flush_state = 0; 1329 } 1330 1331 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1332 if (space_info->full) { 1333 if (maybe_fail_all_tickets(fs_info, space_info)) 1334 flush_state = 0; 1335 else 1336 space_info->flush = 0; 1337 } else { 1338 flush_state = 0; 1339 } 1340 1341 /* Something happened, fail everything and bail. */ 1342 if (BTRFS_FS_ERROR(fs_info)) 1343 goto aborted_fs; 1344 1345 } 1346 spin_unlock(&space_info->lock); 1347 } 1348 return; 1349 1350 aborted_fs: 1351 maybe_fail_all_tickets(fs_info, space_info); 1352 space_info->flush = 0; 1353 spin_unlock(&space_info->lock); 1354 } 1355 1356 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1357 { 1358 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1359 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1360 INIT_WORK(&fs_info->preempt_reclaim_work, 1361 btrfs_preempt_reclaim_metadata_space); 1362 } 1363 1364 static const enum btrfs_flush_state priority_flush_states[] = { 1365 FLUSH_DELAYED_ITEMS_NR, 1366 FLUSH_DELAYED_ITEMS, 1367 ALLOC_CHUNK, 1368 }; 1369 1370 static const enum btrfs_flush_state evict_flush_states[] = { 1371 FLUSH_DELAYED_ITEMS_NR, 1372 FLUSH_DELAYED_ITEMS, 1373 FLUSH_DELAYED_REFS_NR, 1374 FLUSH_DELAYED_REFS, 1375 FLUSH_DELALLOC, 1376 FLUSH_DELALLOC_WAIT, 1377 FLUSH_DELALLOC_FULL, 1378 ALLOC_CHUNK, 1379 COMMIT_TRANS, 1380 }; 1381 1382 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1383 struct btrfs_space_info *space_info, 1384 struct reserve_ticket *ticket, 1385 const enum btrfs_flush_state *states, 1386 int states_nr) 1387 { 1388 u64 to_reclaim; 1389 int flush_state = 0; 1390 1391 spin_lock(&space_info->lock); 1392 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1393 /* 1394 * This is the priority reclaim path, so to_reclaim could be >0 still 1395 * because we may have only satisfied the priority tickets and still 1396 * left non priority tickets on the list. We would then have 1397 * to_reclaim but ->bytes == 0. 1398 */ 1399 if (ticket->bytes == 0) { 1400 spin_unlock(&space_info->lock); 1401 return; 1402 } 1403 1404 while (flush_state < states_nr) { 1405 spin_unlock(&space_info->lock); 1406 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1407 false); 1408 flush_state++; 1409 spin_lock(&space_info->lock); 1410 if (ticket->bytes == 0) { 1411 spin_unlock(&space_info->lock); 1412 return; 1413 } 1414 } 1415 1416 /* Attempt to steal from the global rsv if we can. */ 1417 if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1418 ticket->error = -ENOSPC; 1419 remove_ticket(space_info, ticket); 1420 } 1421 1422 /* 1423 * We must run try_granting_tickets here because we could be a large 1424 * ticket in front of a smaller ticket that can now be satisfied with 1425 * the available space. 1426 */ 1427 btrfs_try_granting_tickets(fs_info, space_info); 1428 spin_unlock(&space_info->lock); 1429 } 1430 1431 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1432 struct btrfs_space_info *space_info, 1433 struct reserve_ticket *ticket) 1434 { 1435 spin_lock(&space_info->lock); 1436 1437 /* We could have been granted before we got here. */ 1438 if (ticket->bytes == 0) { 1439 spin_unlock(&space_info->lock); 1440 return; 1441 } 1442 1443 while (!space_info->full) { 1444 spin_unlock(&space_info->lock); 1445 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1446 spin_lock(&space_info->lock); 1447 if (ticket->bytes == 0) { 1448 spin_unlock(&space_info->lock); 1449 return; 1450 } 1451 } 1452 1453 ticket->error = -ENOSPC; 1454 remove_ticket(space_info, ticket); 1455 btrfs_try_granting_tickets(fs_info, space_info); 1456 spin_unlock(&space_info->lock); 1457 } 1458 1459 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1460 struct btrfs_space_info *space_info, 1461 struct reserve_ticket *ticket) 1462 1463 { 1464 DEFINE_WAIT(wait); 1465 int ret = 0; 1466 1467 spin_lock(&space_info->lock); 1468 while (ticket->bytes > 0 && ticket->error == 0) { 1469 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1470 if (ret) { 1471 /* 1472 * Delete us from the list. After we unlock the space 1473 * info, we don't want the async reclaim job to reserve 1474 * space for this ticket. If that would happen, then the 1475 * ticket's task would not known that space was reserved 1476 * despite getting an error, resulting in a space leak 1477 * (bytes_may_use counter of our space_info). 1478 */ 1479 remove_ticket(space_info, ticket); 1480 ticket->error = -EINTR; 1481 break; 1482 } 1483 spin_unlock(&space_info->lock); 1484 1485 schedule(); 1486 1487 finish_wait(&ticket->wait, &wait); 1488 spin_lock(&space_info->lock); 1489 } 1490 spin_unlock(&space_info->lock); 1491 } 1492 1493 /** 1494 * Do the appropriate flushing and waiting for a ticket 1495 * 1496 * @fs_info: the filesystem 1497 * @space_info: space info for the reservation 1498 * @ticket: ticket for the reservation 1499 * @start_ns: timestamp when the reservation started 1500 * @orig_bytes: amount of bytes originally reserved 1501 * @flush: how much we can flush 1502 * 1503 * This does the work of figuring out how to flush for the ticket, waiting for 1504 * the reservation, and returning the appropriate error if there is one. 1505 */ 1506 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1507 struct btrfs_space_info *space_info, 1508 struct reserve_ticket *ticket, 1509 u64 start_ns, u64 orig_bytes, 1510 enum btrfs_reserve_flush_enum flush) 1511 { 1512 int ret; 1513 1514 switch (flush) { 1515 case BTRFS_RESERVE_FLUSH_DATA: 1516 case BTRFS_RESERVE_FLUSH_ALL: 1517 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1518 wait_reserve_ticket(fs_info, space_info, ticket); 1519 break; 1520 case BTRFS_RESERVE_FLUSH_LIMIT: 1521 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1522 priority_flush_states, 1523 ARRAY_SIZE(priority_flush_states)); 1524 break; 1525 case BTRFS_RESERVE_FLUSH_EVICT: 1526 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1527 evict_flush_states, 1528 ARRAY_SIZE(evict_flush_states)); 1529 break; 1530 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1531 priority_reclaim_data_space(fs_info, space_info, ticket); 1532 break; 1533 default: 1534 ASSERT(0); 1535 break; 1536 } 1537 1538 ret = ticket->error; 1539 ASSERT(list_empty(&ticket->list)); 1540 /* 1541 * Check that we can't have an error set if the reservation succeeded, 1542 * as that would confuse tasks and lead them to error out without 1543 * releasing reserved space (if an error happens the expectation is that 1544 * space wasn't reserved at all). 1545 */ 1546 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1547 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1548 start_ns, flush, ticket->error); 1549 return ret; 1550 } 1551 1552 /* 1553 * This returns true if this flush state will go through the ordinary flushing 1554 * code. 1555 */ 1556 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1557 { 1558 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1559 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1560 } 1561 1562 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1563 struct btrfs_space_info *space_info) 1564 { 1565 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1566 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1567 1568 /* 1569 * If we're heavy on ordered operations then clamping won't help us. We 1570 * need to clamp specifically to keep up with dirty'ing buffered 1571 * writers, because there's not a 1:1 correlation of writing delalloc 1572 * and freeing space, like there is with flushing delayed refs or 1573 * delayed nodes. If we're already more ordered than delalloc then 1574 * we're keeping up, otherwise we aren't and should probably clamp. 1575 */ 1576 if (ordered < delalloc) 1577 space_info->clamp = min(space_info->clamp + 1, 8); 1578 } 1579 1580 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1581 { 1582 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1583 flush == BTRFS_RESERVE_FLUSH_EVICT); 1584 } 1585 1586 /** 1587 * Try to reserve bytes from the block_rsv's space 1588 * 1589 * @fs_info: the filesystem 1590 * @space_info: space info we want to allocate from 1591 * @orig_bytes: number of bytes we want 1592 * @flush: whether or not we can flush to make our reservation 1593 * 1594 * This will reserve orig_bytes number of bytes from the space info associated 1595 * with the block_rsv. If there is not enough space it will make an attempt to 1596 * flush out space to make room. It will do this by flushing delalloc if 1597 * possible or committing the transaction. If flush is 0 then no attempts to 1598 * regain reservations will be made and this will fail if there is not enough 1599 * space already. 1600 */ 1601 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1602 struct btrfs_space_info *space_info, u64 orig_bytes, 1603 enum btrfs_reserve_flush_enum flush) 1604 { 1605 struct work_struct *async_work; 1606 struct reserve_ticket ticket; 1607 u64 start_ns = 0; 1608 u64 used; 1609 int ret = 0; 1610 bool pending_tickets; 1611 1612 ASSERT(orig_bytes); 1613 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1614 1615 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1616 async_work = &fs_info->async_data_reclaim_work; 1617 else 1618 async_work = &fs_info->async_reclaim_work; 1619 1620 spin_lock(&space_info->lock); 1621 ret = -ENOSPC; 1622 used = btrfs_space_info_used(space_info, true); 1623 1624 /* 1625 * We don't want NO_FLUSH allocations to jump everybody, they can 1626 * generally handle ENOSPC in a different way, so treat them the same as 1627 * normal flushers when it comes to skipping pending tickets. 1628 */ 1629 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1630 pending_tickets = !list_empty(&space_info->tickets) || 1631 !list_empty(&space_info->priority_tickets); 1632 else 1633 pending_tickets = !list_empty(&space_info->priority_tickets); 1634 1635 /* 1636 * Carry on if we have enough space (short-circuit) OR call 1637 * can_overcommit() to ensure we can overcommit to continue. 1638 */ 1639 if (!pending_tickets && 1640 ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) || 1641 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1642 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1643 orig_bytes); 1644 ret = 0; 1645 } 1646 1647 /* 1648 * If we couldn't make a reservation then setup our reservation ticket 1649 * and kick the async worker if it's not already running. 1650 * 1651 * If we are a priority flusher then we just need to add our ticket to 1652 * the list and we will do our own flushing further down. 1653 */ 1654 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1655 ticket.bytes = orig_bytes; 1656 ticket.error = 0; 1657 space_info->reclaim_size += ticket.bytes; 1658 init_waitqueue_head(&ticket.wait); 1659 ticket.steal = can_steal(flush); 1660 if (trace_btrfs_reserve_ticket_enabled()) 1661 start_ns = ktime_get_ns(); 1662 1663 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1664 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1665 flush == BTRFS_RESERVE_FLUSH_DATA) { 1666 list_add_tail(&ticket.list, &space_info->tickets); 1667 if (!space_info->flush) { 1668 /* 1669 * We were forced to add a reserve ticket, so 1670 * our preemptive flushing is unable to keep 1671 * up. Clamp down on the threshold for the 1672 * preemptive flushing in order to keep up with 1673 * the workload. 1674 */ 1675 maybe_clamp_preempt(fs_info, space_info); 1676 1677 space_info->flush = 1; 1678 trace_btrfs_trigger_flush(fs_info, 1679 space_info->flags, 1680 orig_bytes, flush, 1681 "enospc"); 1682 queue_work(system_unbound_wq, async_work); 1683 } 1684 } else { 1685 list_add_tail(&ticket.list, 1686 &space_info->priority_tickets); 1687 } 1688 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1689 /* 1690 * We will do the space reservation dance during log replay, 1691 * which means we won't have fs_info->fs_root set, so don't do 1692 * the async reclaim as we will panic. 1693 */ 1694 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1695 !work_busy(&fs_info->preempt_reclaim_work) && 1696 need_preemptive_reclaim(fs_info, space_info)) { 1697 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1698 orig_bytes, flush, "preempt"); 1699 queue_work(system_unbound_wq, 1700 &fs_info->preempt_reclaim_work); 1701 } 1702 } 1703 spin_unlock(&space_info->lock); 1704 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1705 return ret; 1706 1707 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1708 orig_bytes, flush); 1709 } 1710 1711 /** 1712 * Trye to reserve metadata bytes from the block_rsv's space 1713 * 1714 * @fs_info: the filesystem 1715 * @block_rsv: block_rsv we're allocating for 1716 * @orig_bytes: number of bytes we want 1717 * @flush: whether or not we can flush to make our reservation 1718 * 1719 * This will reserve orig_bytes number of bytes from the space info associated 1720 * with the block_rsv. If there is not enough space it will make an attempt to 1721 * flush out space to make room. It will do this by flushing delalloc if 1722 * possible or committing the transaction. If flush is 0 then no attempts to 1723 * regain reservations will be made and this will fail if there is not enough 1724 * space already. 1725 */ 1726 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1727 struct btrfs_block_rsv *block_rsv, 1728 u64 orig_bytes, 1729 enum btrfs_reserve_flush_enum flush) 1730 { 1731 int ret; 1732 1733 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1734 if (ret == -ENOSPC) { 1735 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1736 block_rsv->space_info->flags, 1737 orig_bytes, 1); 1738 1739 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1740 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1741 orig_bytes, 0); 1742 } 1743 return ret; 1744 } 1745 1746 /** 1747 * Try to reserve data bytes for an allocation 1748 * 1749 * @fs_info: the filesystem 1750 * @bytes: number of bytes we need 1751 * @flush: how we are allowed to flush 1752 * 1753 * This will reserve bytes from the data space info. If there is not enough 1754 * space then we will attempt to flush space as specified by flush. 1755 */ 1756 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1757 enum btrfs_reserve_flush_enum flush) 1758 { 1759 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1760 int ret; 1761 1762 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1763 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1764 flush == BTRFS_RESERVE_NO_FLUSH); 1765 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1766 1767 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1768 if (ret == -ENOSPC) { 1769 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1770 data_sinfo->flags, bytes, 1); 1771 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1772 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1773 } 1774 return ret; 1775 } 1776 1777 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1778 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1779 { 1780 struct btrfs_space_info *space_info; 1781 1782 btrfs_info(fs_info, "dumping space info:"); 1783 list_for_each_entry(space_info, &fs_info->space_info, list) { 1784 spin_lock(&space_info->lock); 1785 __btrfs_dump_space_info(fs_info, space_info); 1786 spin_unlock(&space_info->lock); 1787 } 1788 dump_global_block_rsv(fs_info); 1789 } 1790