xref: /linux/fs/btrfs/space-info.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
14 			  bool may_use_included)
15 {
16 	ASSERT(s_info);
17 	return s_info->bytes_used + s_info->bytes_reserved +
18 		s_info->bytes_pinned + s_info->bytes_readonly +
19 		(may_use_included ? s_info->bytes_may_use : 0);
20 }
21 
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28 	struct list_head *head = &info->space_info;
29 	struct btrfs_space_info *found;
30 
31 	rcu_read_lock();
32 	list_for_each_entry_rcu(found, head, list)
33 		found->full = 0;
34 	rcu_read_unlock();
35 }
36 
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39 
40 	struct btrfs_space_info *space_info;
41 	int i;
42 	int ret;
43 
44 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45 	if (!space_info)
46 		return -ENOMEM;
47 
48 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49 				 GFP_KERNEL);
50 	if (ret) {
51 		kfree(space_info);
52 		return ret;
53 	}
54 
55 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56 		INIT_LIST_HEAD(&space_info->block_groups[i]);
57 	init_rwsem(&space_info->groups_sem);
58 	spin_lock_init(&space_info->lock);
59 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61 	INIT_LIST_HEAD(&space_info->ro_bgs);
62 	INIT_LIST_HEAD(&space_info->tickets);
63 	INIT_LIST_HEAD(&space_info->priority_tickets);
64 
65 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
66 	if (ret)
67 		return ret;
68 
69 	list_add_rcu(&space_info->list, &info->space_info);
70 	if (flags & BTRFS_BLOCK_GROUP_DATA)
71 		info->data_sinfo = space_info;
72 
73 	return ret;
74 }
75 
76 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
77 {
78 	struct btrfs_super_block *disk_super;
79 	u64 features;
80 	u64 flags;
81 	int mixed = 0;
82 	int ret;
83 
84 	disk_super = fs_info->super_copy;
85 	if (!btrfs_super_root(disk_super))
86 		return -EINVAL;
87 
88 	features = btrfs_super_incompat_flags(disk_super);
89 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
90 		mixed = 1;
91 
92 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
93 	ret = create_space_info(fs_info, flags);
94 	if (ret)
95 		goto out;
96 
97 	if (mixed) {
98 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
99 		ret = create_space_info(fs_info, flags);
100 	} else {
101 		flags = BTRFS_BLOCK_GROUP_METADATA;
102 		ret = create_space_info(fs_info, flags);
103 		if (ret)
104 			goto out;
105 
106 		flags = BTRFS_BLOCK_GROUP_DATA;
107 		ret = create_space_info(fs_info, flags);
108 	}
109 out:
110 	return ret;
111 }
112 
113 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
114 			     u64 total_bytes, u64 bytes_used,
115 			     u64 bytes_readonly,
116 			     struct btrfs_space_info **space_info)
117 {
118 	struct btrfs_space_info *found;
119 	int factor;
120 
121 	factor = btrfs_bg_type_to_factor(flags);
122 
123 	found = btrfs_find_space_info(info, flags);
124 	ASSERT(found);
125 	spin_lock(&found->lock);
126 	found->total_bytes += total_bytes;
127 	found->disk_total += total_bytes * factor;
128 	found->bytes_used += bytes_used;
129 	found->disk_used += bytes_used * factor;
130 	found->bytes_readonly += bytes_readonly;
131 	if (total_bytes > 0)
132 		found->full = 0;
133 	btrfs_try_granting_tickets(info, found);
134 	spin_unlock(&found->lock);
135 	*space_info = found;
136 }
137 
138 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
139 					       u64 flags)
140 {
141 	struct list_head *head = &info->space_info;
142 	struct btrfs_space_info *found;
143 
144 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
145 
146 	rcu_read_lock();
147 	list_for_each_entry_rcu(found, head, list) {
148 		if (found->flags & flags) {
149 			rcu_read_unlock();
150 			return found;
151 		}
152 	}
153 	rcu_read_unlock();
154 	return NULL;
155 }
156 
157 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
158 {
159 	return (global->size << 1);
160 }
161 
162 static int can_overcommit(struct btrfs_fs_info *fs_info,
163 			  struct btrfs_space_info *space_info, u64 bytes,
164 			  enum btrfs_reserve_flush_enum flush,
165 			  bool system_chunk)
166 {
167 	u64 profile;
168 	u64 avail;
169 	u64 used;
170 	int factor;
171 
172 	/* Don't overcommit when in mixed mode. */
173 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
174 		return 0;
175 
176 	if (system_chunk)
177 		profile = btrfs_system_alloc_profile(fs_info);
178 	else
179 		profile = btrfs_metadata_alloc_profile(fs_info);
180 
181 	used = btrfs_space_info_used(space_info, true);
182 	avail = atomic64_read(&fs_info->free_chunk_space);
183 
184 	/*
185 	 * If we have dup, raid1 or raid10 then only half of the free
186 	 * space is actually usable.  For raid56, the space info used
187 	 * doesn't include the parity drive, so we don't have to
188 	 * change the math
189 	 */
190 	factor = btrfs_bg_type_to_factor(profile);
191 	avail = div_u64(avail, factor);
192 
193 	/*
194 	 * If we aren't flushing all things, let us overcommit up to
195 	 * 1/2th of the space. If we can flush, don't let us overcommit
196 	 * too much, let it overcommit up to 1/8 of the space.
197 	 */
198 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
199 		avail >>= 3;
200 	else
201 		avail >>= 1;
202 
203 	if (used + bytes < space_info->total_bytes + avail)
204 		return 1;
205 	return 0;
206 }
207 
208 /*
209  * This is for space we already have accounted in space_info->bytes_may_use, so
210  * basically when we're returning space from block_rsv's.
211  */
212 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
213 				struct btrfs_space_info *space_info)
214 {
215 	struct list_head *head;
216 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
217 
218 	lockdep_assert_held(&space_info->lock);
219 
220 	head = &space_info->priority_tickets;
221 again:
222 	while (!list_empty(head)) {
223 		struct reserve_ticket *ticket;
224 		u64 used = btrfs_space_info_used(space_info, true);
225 
226 		ticket = list_first_entry(head, struct reserve_ticket, list);
227 
228 		/* Check and see if our ticket can be satisified now. */
229 		if ((used + ticket->bytes <= space_info->total_bytes) ||
230 		    can_overcommit(fs_info, space_info, ticket->bytes, flush,
231 				   false)) {
232 			btrfs_space_info_update_bytes_may_use(fs_info,
233 							      space_info,
234 							      ticket->bytes);
235 			list_del_init(&ticket->list);
236 			ticket->bytes = 0;
237 			space_info->tickets_id++;
238 			wake_up(&ticket->wait);
239 		} else {
240 			break;
241 		}
242 	}
243 
244 	if (head == &space_info->priority_tickets) {
245 		head = &space_info->tickets;
246 		flush = BTRFS_RESERVE_FLUSH_ALL;
247 		goto again;
248 	}
249 }
250 
251 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
252 do {									\
253 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
254 	spin_lock(&__rsv->lock);					\
255 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
256 		   __rsv->size, __rsv->reserved);			\
257 	spin_unlock(&__rsv->lock);					\
258 } while (0)
259 
260 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
261 				    struct btrfs_space_info *info)
262 {
263 	lockdep_assert_held(&info->lock);
264 
265 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
266 		   info->flags,
267 		   info->total_bytes - btrfs_space_info_used(info, true),
268 		   info->full ? "" : "not ");
269 	btrfs_info(fs_info,
270 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
271 		info->total_bytes, info->bytes_used, info->bytes_pinned,
272 		info->bytes_reserved, info->bytes_may_use,
273 		info->bytes_readonly);
274 
275 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
276 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
277 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
278 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
279 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
280 
281 }
282 
283 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
284 			   struct btrfs_space_info *info, u64 bytes,
285 			   int dump_block_groups)
286 {
287 	struct btrfs_block_group *cache;
288 	int index = 0;
289 
290 	spin_lock(&info->lock);
291 	__btrfs_dump_space_info(fs_info, info);
292 	spin_unlock(&info->lock);
293 
294 	if (!dump_block_groups)
295 		return;
296 
297 	down_read(&info->groups_sem);
298 again:
299 	list_for_each_entry(cache, &info->block_groups[index], list) {
300 		spin_lock(&cache->lock);
301 		btrfs_info(fs_info,
302 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
303 			cache->start, cache->length, cache->used, cache->pinned,
304 			cache->reserved, cache->ro ? "[readonly]" : "");
305 		btrfs_dump_free_space(cache, bytes);
306 		spin_unlock(&cache->lock);
307 	}
308 	if (++index < BTRFS_NR_RAID_TYPES)
309 		goto again;
310 	up_read(&info->groups_sem);
311 }
312 
313 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
314 					 unsigned long nr_pages, int nr_items)
315 {
316 	struct super_block *sb = fs_info->sb;
317 
318 	if (down_read_trylock(&sb->s_umount)) {
319 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
320 		up_read(&sb->s_umount);
321 	} else {
322 		/*
323 		 * We needn't worry the filesystem going from r/w to r/o though
324 		 * we don't acquire ->s_umount mutex, because the filesystem
325 		 * should guarantee the delalloc inodes list be empty after
326 		 * the filesystem is readonly(all dirty pages are written to
327 		 * the disk).
328 		 */
329 		btrfs_start_delalloc_roots(fs_info, nr_items);
330 		if (!current->journal_info)
331 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
332 	}
333 }
334 
335 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
336 					u64 to_reclaim)
337 {
338 	u64 bytes;
339 	u64 nr;
340 
341 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
342 	nr = div64_u64(to_reclaim, bytes);
343 	if (!nr)
344 		nr = 1;
345 	return nr;
346 }
347 
348 #define EXTENT_SIZE_PER_ITEM	SZ_256K
349 
350 /*
351  * shrink metadata reservation for delalloc
352  */
353 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
354 			    u64 orig, bool wait_ordered)
355 {
356 	struct btrfs_space_info *space_info;
357 	struct btrfs_trans_handle *trans;
358 	u64 delalloc_bytes;
359 	u64 dio_bytes;
360 	u64 async_pages;
361 	u64 items;
362 	long time_left;
363 	unsigned long nr_pages;
364 	int loops;
365 
366 	/* Calc the number of the pages we need flush for space reservation */
367 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
368 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
369 
370 	trans = (struct btrfs_trans_handle *)current->journal_info;
371 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
372 
373 	delalloc_bytes = percpu_counter_sum_positive(
374 						&fs_info->delalloc_bytes);
375 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
376 	if (delalloc_bytes == 0 && dio_bytes == 0) {
377 		if (trans)
378 			return;
379 		if (wait_ordered)
380 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
381 		return;
382 	}
383 
384 	/*
385 	 * If we are doing more ordered than delalloc we need to just wait on
386 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
387 	 * that likely won't give us the space back we need.
388 	 */
389 	if (dio_bytes > delalloc_bytes)
390 		wait_ordered = true;
391 
392 	loops = 0;
393 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
394 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
395 
396 		/*
397 		 * Triggers inode writeback for up to nr_pages. This will invoke
398 		 * ->writepages callback and trigger delalloc filling
399 		 *  (btrfs_run_delalloc_range()).
400 		 */
401 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
402 
403 		/*
404 		 * We need to wait for the compressed pages to start before
405 		 * we continue.
406 		 */
407 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
408 		if (!async_pages)
409 			goto skip_async;
410 
411 		/*
412 		 * Calculate how many compressed pages we want to be written
413 		 * before we continue. I.e if there are more async pages than we
414 		 * require wait_event will wait until nr_pages are written.
415 		 */
416 		if (async_pages <= nr_pages)
417 			async_pages = 0;
418 		else
419 			async_pages -= nr_pages;
420 
421 		wait_event(fs_info->async_submit_wait,
422 			   atomic_read(&fs_info->async_delalloc_pages) <=
423 			   (int)async_pages);
424 skip_async:
425 		spin_lock(&space_info->lock);
426 		if (list_empty(&space_info->tickets) &&
427 		    list_empty(&space_info->priority_tickets)) {
428 			spin_unlock(&space_info->lock);
429 			break;
430 		}
431 		spin_unlock(&space_info->lock);
432 
433 		loops++;
434 		if (wait_ordered && !trans) {
435 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
436 		} else {
437 			time_left = schedule_timeout_killable(1);
438 			if (time_left)
439 				break;
440 		}
441 		delalloc_bytes = percpu_counter_sum_positive(
442 						&fs_info->delalloc_bytes);
443 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
444 	}
445 }
446 
447 /**
448  * maybe_commit_transaction - possibly commit the transaction if its ok to
449  * @root - the root we're allocating for
450  * @bytes - the number of bytes we want to reserve
451  * @force - force the commit
452  *
453  * This will check to make sure that committing the transaction will actually
454  * get us somewhere and then commit the transaction if it does.  Otherwise it
455  * will return -ENOSPC.
456  */
457 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
458 				  struct btrfs_space_info *space_info)
459 {
460 	struct reserve_ticket *ticket = NULL;
461 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
462 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
463 	struct btrfs_trans_handle *trans;
464 	u64 bytes_needed;
465 	u64 reclaim_bytes = 0;
466 	u64 cur_free_bytes = 0;
467 
468 	trans = (struct btrfs_trans_handle *)current->journal_info;
469 	if (trans)
470 		return -EAGAIN;
471 
472 	spin_lock(&space_info->lock);
473 	cur_free_bytes = btrfs_space_info_used(space_info, true);
474 	if (cur_free_bytes < space_info->total_bytes)
475 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
476 	else
477 		cur_free_bytes = 0;
478 
479 	if (!list_empty(&space_info->priority_tickets))
480 		ticket = list_first_entry(&space_info->priority_tickets,
481 					  struct reserve_ticket, list);
482 	else if (!list_empty(&space_info->tickets))
483 		ticket = list_first_entry(&space_info->tickets,
484 					  struct reserve_ticket, list);
485 	bytes_needed = (ticket) ? ticket->bytes : 0;
486 
487 	if (bytes_needed > cur_free_bytes)
488 		bytes_needed -= cur_free_bytes;
489 	else
490 		bytes_needed = 0;
491 	spin_unlock(&space_info->lock);
492 
493 	if (!bytes_needed)
494 		return 0;
495 
496 	trans = btrfs_join_transaction(fs_info->extent_root);
497 	if (IS_ERR(trans))
498 		return PTR_ERR(trans);
499 
500 	/*
501 	 * See if there is enough pinned space to make this reservation, or if
502 	 * we have block groups that are going to be freed, allowing us to
503 	 * possibly do a chunk allocation the next loop through.
504 	 */
505 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
506 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
507 				     bytes_needed,
508 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
509 		goto commit;
510 
511 	/*
512 	 * See if there is some space in the delayed insertion reservation for
513 	 * this reservation.
514 	 */
515 	if (space_info != delayed_rsv->space_info)
516 		goto enospc;
517 
518 	spin_lock(&delayed_rsv->lock);
519 	reclaim_bytes += delayed_rsv->reserved;
520 	spin_unlock(&delayed_rsv->lock);
521 
522 	spin_lock(&delayed_refs_rsv->lock);
523 	reclaim_bytes += delayed_refs_rsv->reserved;
524 	spin_unlock(&delayed_refs_rsv->lock);
525 	if (reclaim_bytes >= bytes_needed)
526 		goto commit;
527 	bytes_needed -= reclaim_bytes;
528 
529 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
530 				   bytes_needed,
531 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
532 		goto enospc;
533 
534 commit:
535 	return btrfs_commit_transaction(trans);
536 enospc:
537 	btrfs_end_transaction(trans);
538 	return -ENOSPC;
539 }
540 
541 /*
542  * Try to flush some data based on policy set by @state. This is only advisory
543  * and may fail for various reasons. The caller is supposed to examine the
544  * state of @space_info to detect the outcome.
545  */
546 static void flush_space(struct btrfs_fs_info *fs_info,
547 		       struct btrfs_space_info *space_info, u64 num_bytes,
548 		       int state)
549 {
550 	struct btrfs_root *root = fs_info->extent_root;
551 	struct btrfs_trans_handle *trans;
552 	int nr;
553 	int ret = 0;
554 
555 	switch (state) {
556 	case FLUSH_DELAYED_ITEMS_NR:
557 	case FLUSH_DELAYED_ITEMS:
558 		if (state == FLUSH_DELAYED_ITEMS_NR)
559 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
560 		else
561 			nr = -1;
562 
563 		trans = btrfs_join_transaction(root);
564 		if (IS_ERR(trans)) {
565 			ret = PTR_ERR(trans);
566 			break;
567 		}
568 		ret = btrfs_run_delayed_items_nr(trans, nr);
569 		btrfs_end_transaction(trans);
570 		break;
571 	case FLUSH_DELALLOC:
572 	case FLUSH_DELALLOC_WAIT:
573 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
574 				state == FLUSH_DELALLOC_WAIT);
575 		break;
576 	case FLUSH_DELAYED_REFS_NR:
577 	case FLUSH_DELAYED_REFS:
578 		trans = btrfs_join_transaction(root);
579 		if (IS_ERR(trans)) {
580 			ret = PTR_ERR(trans);
581 			break;
582 		}
583 		if (state == FLUSH_DELAYED_REFS_NR)
584 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
585 		else
586 			nr = 0;
587 		btrfs_run_delayed_refs(trans, nr);
588 		btrfs_end_transaction(trans);
589 		break;
590 	case ALLOC_CHUNK:
591 	case ALLOC_CHUNK_FORCE:
592 		trans = btrfs_join_transaction(root);
593 		if (IS_ERR(trans)) {
594 			ret = PTR_ERR(trans);
595 			break;
596 		}
597 		ret = btrfs_chunk_alloc(trans,
598 				btrfs_metadata_alloc_profile(fs_info),
599 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
600 					CHUNK_ALLOC_FORCE);
601 		btrfs_end_transaction(trans);
602 		if (ret > 0 || ret == -ENOSPC)
603 			ret = 0;
604 		break;
605 	case RUN_DELAYED_IPUTS:
606 		/*
607 		 * If we have pending delayed iputs then we could free up a
608 		 * bunch of pinned space, so make sure we run the iputs before
609 		 * we do our pinned bytes check below.
610 		 */
611 		btrfs_run_delayed_iputs(fs_info);
612 		btrfs_wait_on_delayed_iputs(fs_info);
613 		break;
614 	case COMMIT_TRANS:
615 		ret = may_commit_transaction(fs_info, space_info);
616 		break;
617 	default:
618 		ret = -ENOSPC;
619 		break;
620 	}
621 
622 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
623 				ret);
624 	return;
625 }
626 
627 static inline u64
628 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
629 				 struct btrfs_space_info *space_info,
630 				 bool system_chunk)
631 {
632 	struct reserve_ticket *ticket;
633 	u64 used;
634 	u64 expected;
635 	u64 to_reclaim = 0;
636 
637 	list_for_each_entry(ticket, &space_info->tickets, list)
638 		to_reclaim += ticket->bytes;
639 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
640 		to_reclaim += ticket->bytes;
641 	if (to_reclaim)
642 		return to_reclaim;
643 
644 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
645 	if (can_overcommit(fs_info, space_info, to_reclaim,
646 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
647 		return 0;
648 
649 	used = btrfs_space_info_used(space_info, true);
650 
651 	if (can_overcommit(fs_info, space_info, SZ_1M,
652 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
653 		expected = div_factor_fine(space_info->total_bytes, 95);
654 	else
655 		expected = div_factor_fine(space_info->total_bytes, 90);
656 
657 	if (used > expected)
658 		to_reclaim = used - expected;
659 	else
660 		to_reclaim = 0;
661 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
662 				     space_info->bytes_reserved);
663 	return to_reclaim;
664 }
665 
666 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
667 					struct btrfs_space_info *space_info,
668 					u64 used, bool system_chunk)
669 {
670 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
671 
672 	/* If we're just plain full then async reclaim just slows us down. */
673 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
674 		return 0;
675 
676 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
677 					      system_chunk))
678 		return 0;
679 
680 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
681 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
682 }
683 
684 /*
685  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
686  * @fs_info - fs_info for this fs
687  * @space_info - the space info we were flushing
688  *
689  * We call this when we've exhausted our flushing ability and haven't made
690  * progress in satisfying tickets.  The reservation code handles tickets in
691  * order, so if there is a large ticket first and then smaller ones we could
692  * very well satisfy the smaller tickets.  This will attempt to wake up any
693  * tickets in the list to catch this case.
694  *
695  * This function returns true if it was able to make progress by clearing out
696  * other tickets, or if it stumbles across a ticket that was smaller than the
697  * first ticket.
698  */
699 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
700 				   struct btrfs_space_info *space_info)
701 {
702 	struct reserve_ticket *ticket;
703 	u64 tickets_id = space_info->tickets_id;
704 	u64 first_ticket_bytes = 0;
705 
706 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
707 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
708 		__btrfs_dump_space_info(fs_info, space_info);
709 	}
710 
711 	while (!list_empty(&space_info->tickets) &&
712 	       tickets_id == space_info->tickets_id) {
713 		ticket = list_first_entry(&space_info->tickets,
714 					  struct reserve_ticket, list);
715 
716 		/*
717 		 * may_commit_transaction will avoid committing the transaction
718 		 * if it doesn't feel like the space reclaimed by the commit
719 		 * would result in the ticket succeeding.  However if we have a
720 		 * smaller ticket in the queue it may be small enough to be
721 		 * satisified by committing the transaction, so if any
722 		 * subsequent ticket is smaller than the first ticket go ahead
723 		 * and send us back for another loop through the enospc flushing
724 		 * code.
725 		 */
726 		if (first_ticket_bytes == 0)
727 			first_ticket_bytes = ticket->bytes;
728 		else if (first_ticket_bytes > ticket->bytes)
729 			return true;
730 
731 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
732 			btrfs_info(fs_info, "failing ticket with %llu bytes",
733 				   ticket->bytes);
734 
735 		list_del_init(&ticket->list);
736 		ticket->error = -ENOSPC;
737 		wake_up(&ticket->wait);
738 
739 		/*
740 		 * We're just throwing tickets away, so more flushing may not
741 		 * trip over btrfs_try_granting_tickets, so we need to call it
742 		 * here to see if we can make progress with the next ticket in
743 		 * the list.
744 		 */
745 		btrfs_try_granting_tickets(fs_info, space_info);
746 	}
747 	return (tickets_id != space_info->tickets_id);
748 }
749 
750 /*
751  * This is for normal flushers, we can wait all goddamned day if we want to.  We
752  * will loop and continuously try to flush as long as we are making progress.
753  * We count progress as clearing off tickets each time we have to loop.
754  */
755 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
756 {
757 	struct btrfs_fs_info *fs_info;
758 	struct btrfs_space_info *space_info;
759 	u64 to_reclaim;
760 	int flush_state;
761 	int commit_cycles = 0;
762 	u64 last_tickets_id;
763 
764 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
765 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
766 
767 	spin_lock(&space_info->lock);
768 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
769 						      false);
770 	if (!to_reclaim) {
771 		space_info->flush = 0;
772 		spin_unlock(&space_info->lock);
773 		return;
774 	}
775 	last_tickets_id = space_info->tickets_id;
776 	spin_unlock(&space_info->lock);
777 
778 	flush_state = FLUSH_DELAYED_ITEMS_NR;
779 	do {
780 		flush_space(fs_info, space_info, to_reclaim, flush_state);
781 		spin_lock(&space_info->lock);
782 		if (list_empty(&space_info->tickets)) {
783 			space_info->flush = 0;
784 			spin_unlock(&space_info->lock);
785 			return;
786 		}
787 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
788 							      space_info,
789 							      false);
790 		if (last_tickets_id == space_info->tickets_id) {
791 			flush_state++;
792 		} else {
793 			last_tickets_id = space_info->tickets_id;
794 			flush_state = FLUSH_DELAYED_ITEMS_NR;
795 			if (commit_cycles)
796 				commit_cycles--;
797 		}
798 
799 		/*
800 		 * We don't want to force a chunk allocation until we've tried
801 		 * pretty hard to reclaim space.  Think of the case where we
802 		 * freed up a bunch of space and so have a lot of pinned space
803 		 * to reclaim.  We would rather use that than possibly create a
804 		 * underutilized metadata chunk.  So if this is our first run
805 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
806 		 * commit the transaction.  If nothing has changed the next go
807 		 * around then we can force a chunk allocation.
808 		 */
809 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
810 			flush_state++;
811 
812 		if (flush_state > COMMIT_TRANS) {
813 			commit_cycles++;
814 			if (commit_cycles > 2) {
815 				if (maybe_fail_all_tickets(fs_info, space_info)) {
816 					flush_state = FLUSH_DELAYED_ITEMS_NR;
817 					commit_cycles--;
818 				} else {
819 					space_info->flush = 0;
820 				}
821 			} else {
822 				flush_state = FLUSH_DELAYED_ITEMS_NR;
823 			}
824 		}
825 		spin_unlock(&space_info->lock);
826 	} while (flush_state <= COMMIT_TRANS);
827 }
828 
829 void btrfs_init_async_reclaim_work(struct work_struct *work)
830 {
831 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
832 }
833 
834 static const enum btrfs_flush_state priority_flush_states[] = {
835 	FLUSH_DELAYED_ITEMS_NR,
836 	FLUSH_DELAYED_ITEMS,
837 	ALLOC_CHUNK,
838 };
839 
840 static const enum btrfs_flush_state evict_flush_states[] = {
841 	FLUSH_DELAYED_ITEMS_NR,
842 	FLUSH_DELAYED_ITEMS,
843 	FLUSH_DELAYED_REFS_NR,
844 	FLUSH_DELAYED_REFS,
845 	FLUSH_DELALLOC,
846 	FLUSH_DELALLOC_WAIT,
847 	ALLOC_CHUNK,
848 	COMMIT_TRANS,
849 };
850 
851 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
852 				struct btrfs_space_info *space_info,
853 				struct reserve_ticket *ticket,
854 				const enum btrfs_flush_state *states,
855 				int states_nr)
856 {
857 	u64 to_reclaim;
858 	int flush_state;
859 
860 	spin_lock(&space_info->lock);
861 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
862 						      false);
863 	if (!to_reclaim) {
864 		spin_unlock(&space_info->lock);
865 		return;
866 	}
867 	spin_unlock(&space_info->lock);
868 
869 	flush_state = 0;
870 	do {
871 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
872 		flush_state++;
873 		spin_lock(&space_info->lock);
874 		if (ticket->bytes == 0) {
875 			spin_unlock(&space_info->lock);
876 			return;
877 		}
878 		spin_unlock(&space_info->lock);
879 	} while (flush_state < states_nr);
880 }
881 
882 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
883 				struct btrfs_space_info *space_info,
884 				struct reserve_ticket *ticket)
885 
886 {
887 	DEFINE_WAIT(wait);
888 	int ret = 0;
889 
890 	spin_lock(&space_info->lock);
891 	while (ticket->bytes > 0 && ticket->error == 0) {
892 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
893 		if (ret) {
894 			/*
895 			 * Delete us from the list. After we unlock the space
896 			 * info, we don't want the async reclaim job to reserve
897 			 * space for this ticket. If that would happen, then the
898 			 * ticket's task would not known that space was reserved
899 			 * despite getting an error, resulting in a space leak
900 			 * (bytes_may_use counter of our space_info).
901 			 */
902 			list_del_init(&ticket->list);
903 			ticket->error = -EINTR;
904 			break;
905 		}
906 		spin_unlock(&space_info->lock);
907 
908 		schedule();
909 
910 		finish_wait(&ticket->wait, &wait);
911 		spin_lock(&space_info->lock);
912 	}
913 	spin_unlock(&space_info->lock);
914 }
915 
916 /**
917  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
918  * @fs_info - the fs
919  * @space_info - the space_info for the reservation
920  * @ticket - the ticket for the reservation
921  * @flush - how much we can flush
922  *
923  * This does the work of figuring out how to flush for the ticket, waiting for
924  * the reservation, and returning the appropriate error if there is one.
925  */
926 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
927 				 struct btrfs_space_info *space_info,
928 				 struct reserve_ticket *ticket,
929 				 enum btrfs_reserve_flush_enum flush)
930 {
931 	int ret;
932 
933 	switch (flush) {
934 	case BTRFS_RESERVE_FLUSH_ALL:
935 		wait_reserve_ticket(fs_info, space_info, ticket);
936 		break;
937 	case BTRFS_RESERVE_FLUSH_LIMIT:
938 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
939 						priority_flush_states,
940 						ARRAY_SIZE(priority_flush_states));
941 		break;
942 	case BTRFS_RESERVE_FLUSH_EVICT:
943 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
944 						evict_flush_states,
945 						ARRAY_SIZE(evict_flush_states));
946 		break;
947 	default:
948 		ASSERT(0);
949 		break;
950 	}
951 
952 	spin_lock(&space_info->lock);
953 	ret = ticket->error;
954 	if (ticket->bytes || ticket->error) {
955 		/*
956 		 * Need to delete here for priority tickets. For regular tickets
957 		 * either the async reclaim job deletes the ticket from the list
958 		 * or we delete it ourselves at wait_reserve_ticket().
959 		 */
960 		list_del_init(&ticket->list);
961 		if (!ret)
962 			ret = -ENOSPC;
963 	}
964 	spin_unlock(&space_info->lock);
965 	ASSERT(list_empty(&ticket->list));
966 	/*
967 	 * Check that we can't have an error set if the reservation succeeded,
968 	 * as that would confuse tasks and lead them to error out without
969 	 * releasing reserved space (if an error happens the expectation is that
970 	 * space wasn't reserved at all).
971 	 */
972 	ASSERT(!(ticket->bytes == 0 && ticket->error));
973 	return ret;
974 }
975 
976 /**
977  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
978  * @root - the root we're allocating for
979  * @space_info - the space info we want to allocate from
980  * @orig_bytes - the number of bytes we want
981  * @flush - whether or not we can flush to make our reservation
982  *
983  * This will reserve orig_bytes number of bytes from the space info associated
984  * with the block_rsv.  If there is not enough space it will make an attempt to
985  * flush out space to make room.  It will do this by flushing delalloc if
986  * possible or committing the transaction.  If flush is 0 then no attempts to
987  * regain reservations will be made and this will fail if there is not enough
988  * space already.
989  */
990 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
991 				    struct btrfs_space_info *space_info,
992 				    u64 orig_bytes,
993 				    enum btrfs_reserve_flush_enum flush,
994 				    bool system_chunk)
995 {
996 	struct reserve_ticket ticket;
997 	u64 used;
998 	int ret = 0;
999 	bool pending_tickets;
1000 
1001 	ASSERT(orig_bytes);
1002 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1003 
1004 	spin_lock(&space_info->lock);
1005 	ret = -ENOSPC;
1006 	used = btrfs_space_info_used(space_info, true);
1007 	pending_tickets = !list_empty(&space_info->tickets) ||
1008 		!list_empty(&space_info->priority_tickets);
1009 
1010 	/*
1011 	 * Carry on if we have enough space (short-circuit) OR call
1012 	 * can_overcommit() to ensure we can overcommit to continue.
1013 	 */
1014 	if (!pending_tickets &&
1015 	    ((used + orig_bytes <= space_info->total_bytes) ||
1016 	     can_overcommit(fs_info, space_info, orig_bytes, flush,
1017 			   system_chunk))) {
1018 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1019 						      orig_bytes);
1020 		ret = 0;
1021 	}
1022 
1023 	/*
1024 	 * If we couldn't make a reservation then setup our reservation ticket
1025 	 * and kick the async worker if it's not already running.
1026 	 *
1027 	 * If we are a priority flusher then we just need to add our ticket to
1028 	 * the list and we will do our own flushing further down.
1029 	 */
1030 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1031 		ticket.bytes = orig_bytes;
1032 		ticket.error = 0;
1033 		init_waitqueue_head(&ticket.wait);
1034 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1035 			list_add_tail(&ticket.list, &space_info->tickets);
1036 			if (!space_info->flush) {
1037 				space_info->flush = 1;
1038 				trace_btrfs_trigger_flush(fs_info,
1039 							  space_info->flags,
1040 							  orig_bytes, flush,
1041 							  "enospc");
1042 				queue_work(system_unbound_wq,
1043 					   &fs_info->async_reclaim_work);
1044 			}
1045 		} else {
1046 			list_add_tail(&ticket.list,
1047 				      &space_info->priority_tickets);
1048 		}
1049 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1050 		used += orig_bytes;
1051 		/*
1052 		 * We will do the space reservation dance during log replay,
1053 		 * which means we won't have fs_info->fs_root set, so don't do
1054 		 * the async reclaim as we will panic.
1055 		 */
1056 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1057 		    need_do_async_reclaim(fs_info, space_info,
1058 					  used, system_chunk) &&
1059 		    !work_busy(&fs_info->async_reclaim_work)) {
1060 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1061 						  orig_bytes, flush, "preempt");
1062 			queue_work(system_unbound_wq,
1063 				   &fs_info->async_reclaim_work);
1064 		}
1065 	}
1066 	spin_unlock(&space_info->lock);
1067 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1068 		return ret;
1069 
1070 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1071 }
1072 
1073 /**
1074  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1075  * @root - the root we're allocating for
1076  * @block_rsv - the block_rsv we're allocating for
1077  * @orig_bytes - the number of bytes we want
1078  * @flush - whether or not we can flush to make our reservation
1079  *
1080  * This will reserve orig_bytes number of bytes from the space info associated
1081  * with the block_rsv.  If there is not enough space it will make an attempt to
1082  * flush out space to make room.  It will do this by flushing delalloc if
1083  * possible or committing the transaction.  If flush is 0 then no attempts to
1084  * regain reservations will be made and this will fail if there is not enough
1085  * space already.
1086  */
1087 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1088 				 struct btrfs_block_rsv *block_rsv,
1089 				 u64 orig_bytes,
1090 				 enum btrfs_reserve_flush_enum flush)
1091 {
1092 	struct btrfs_fs_info *fs_info = root->fs_info;
1093 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1094 	int ret;
1095 	bool system_chunk = (root == fs_info->chunk_root);
1096 
1097 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1098 				       orig_bytes, flush, system_chunk);
1099 	if (ret == -ENOSPC &&
1100 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1101 		if (block_rsv != global_rsv &&
1102 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1103 			ret = 0;
1104 	}
1105 	if (ret == -ENOSPC) {
1106 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1107 					      block_rsv->space_info->flags,
1108 					      orig_bytes, 1);
1109 
1110 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1111 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1112 					      orig_bytes, 0);
1113 	}
1114 	return ret;
1115 }
1116