xref: /linux/fs/btrfs/space-info.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "fs.h"
13 #include "accessors.h"
14 #include "extent-tree.h"
15 
16 /*
17  * HOW DOES SPACE RESERVATION WORK
18  *
19  * If you want to know about delalloc specifically, there is a separate comment
20  * for that with the delalloc code.  This comment is about how the whole system
21  * works generally.
22  *
23  * BASIC CONCEPTS
24  *
25  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
26  *   There's a description of the bytes_ fields with the struct declaration,
27  *   refer to that for specifics on each field.  Suffice it to say that for
28  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
29  *   determining if there is space to make an allocation.  There is a space_info
30  *   for METADATA, SYSTEM, and DATA areas.
31  *
32  *   2) block_rsv's.  These are basically buckets for every different type of
33  *   metadata reservation we have.  You can see the comment in the block_rsv
34  *   code on the rules for each type, but generally block_rsv->reserved is how
35  *   much space is accounted for in space_info->bytes_may_use.
36  *
37  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
38  *   on the number of items we will want to modify.  We have one for changing
39  *   items, and one for inserting new items.  Generally we use these helpers to
40  *   determine the size of the block reserves, and then use the actual bytes
41  *   values to adjust the space_info counters.
42  *
43  * MAKING RESERVATIONS, THE NORMAL CASE
44  *
45  *   We call into either btrfs_reserve_data_bytes() or
46  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
47  *   num_bytes we want to reserve.
48  *
49  *   ->reserve
50  *     space_info->bytes_may_reserve += num_bytes
51  *
52  *   ->extent allocation
53  *     Call btrfs_add_reserved_bytes() which does
54  *     space_info->bytes_may_reserve -= num_bytes
55  *     space_info->bytes_reserved += extent_bytes
56  *
57  *   ->insert reference
58  *     Call btrfs_update_block_group() which does
59  *     space_info->bytes_reserved -= extent_bytes
60  *     space_info->bytes_used += extent_bytes
61  *
62  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
63  *
64  *   Assume we are unable to simply make the reservation because we do not have
65  *   enough space
66  *
67  *   -> __reserve_bytes
68  *     create a reserve_ticket with ->bytes set to our reservation, add it to
69  *     the tail of space_info->tickets, kick async flush thread
70  *
71  *   ->handle_reserve_ticket
72  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
73  *     on the ticket.
74  *
75  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
76  *     Flushes various things attempting to free up space.
77  *
78  *   -> btrfs_try_granting_tickets()
79  *     This is called by anything that either subtracts space from
80  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
81  *     space_info->total_bytes.  This loops through the ->priority_tickets and
82  *     then the ->tickets list checking to see if the reservation can be
83  *     completed.  If it can the space is added to space_info->bytes_may_use and
84  *     the ticket is woken up.
85  *
86  *   -> ticket wakeup
87  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
88  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
89  *     were interrupted.)
90  *
91  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
92  *
93  *   Same as the above, except we add ourselves to the
94  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
95  *   call flush_space() ourselves for the states that are safe for us to call
96  *   without deadlocking and hope for the best.
97  *
98  * THE FLUSHING STATES
99  *
100  *   Generally speaking we will have two cases for each state, a "nice" state
101  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
102  *   reduce the locking over head on the various trees, and even to keep from
103  *   doing any work at all in the case of delayed refs.  Each of these delayed
104  *   things however hold reservations, and so letting them run allows us to
105  *   reclaim space so we can make new reservations.
106  *
107  *   FLUSH_DELAYED_ITEMS
108  *     Every inode has a delayed item to update the inode.  Take a simple write
109  *     for example, we would update the inode item at write time to update the
110  *     mtime, and then again at finish_ordered_io() time in order to update the
111  *     isize or bytes.  We keep these delayed items to coalesce these operations
112  *     into a single operation done on demand.  These are an easy way to reclaim
113  *     metadata space.
114  *
115  *   FLUSH_DELALLOC
116  *     Look at the delalloc comment to get an idea of how much space is reserved
117  *     for delayed allocation.  We can reclaim some of this space simply by
118  *     running delalloc, but usually we need to wait for ordered extents to
119  *     reclaim the bulk of this space.
120  *
121  *   FLUSH_DELAYED_REFS
122  *     We have a block reserve for the outstanding delayed refs space, and every
123  *     delayed ref operation holds a reservation.  Running these is a quick way
124  *     to reclaim space, but we want to hold this until the end because COW can
125  *     churn a lot and we can avoid making some extent tree modifications if we
126  *     are able to delay for as long as possible.
127  *
128  *   ALLOC_CHUNK
129  *     We will skip this the first time through space reservation, because of
130  *     overcommit and we don't want to have a lot of useless metadata space when
131  *     our worst case reservations will likely never come true.
132  *
133  *   RUN_DELAYED_IPUTS
134  *     If we're freeing inodes we're likely freeing checksums, file extent
135  *     items, and extent tree items.  Loads of space could be freed up by these
136  *     operations, however they won't be usable until the transaction commits.
137  *
138  *   COMMIT_TRANS
139  *     This will commit the transaction.  Historically we had a lot of logic
140  *     surrounding whether or not we'd commit the transaction, but this waits born
141  *     out of a pre-tickets era where we could end up committing the transaction
142  *     thousands of times in a row without making progress.  Now thanks to our
143  *     ticketing system we know if we're not making progress and can error
144  *     everybody out after a few commits rather than burning the disk hoping for
145  *     a different answer.
146  *
147  * OVERCOMMIT
148  *
149  *   Because we hold so many reservations for metadata we will allow you to
150  *   reserve more space than is currently free in the currently allocate
151  *   metadata space.  This only happens with metadata, data does not allow
152  *   overcommitting.
153  *
154  *   You can see the current logic for when we allow overcommit in
155  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
156  *   is no unallocated space to be had, all reservations are kept within the
157  *   free space in the allocated metadata chunks.
158  *
159  *   Because of overcommitting, you generally want to use the
160  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
161  *   thing with or without extra unallocated space.
162  */
163 
164 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
165 			  bool may_use_included)
166 {
167 	ASSERT(s_info);
168 	return s_info->bytes_used + s_info->bytes_reserved +
169 		s_info->bytes_pinned + s_info->bytes_readonly +
170 		s_info->bytes_zone_unusable +
171 		(may_use_included ? s_info->bytes_may_use : 0);
172 }
173 
174 /*
175  * after adding space to the filesystem, we need to clear the full flags
176  * on all the space infos.
177  */
178 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
179 {
180 	struct list_head *head = &info->space_info;
181 	struct btrfs_space_info *found;
182 
183 	list_for_each_entry(found, head, list)
184 		found->full = 0;
185 }
186 
187 /*
188  * Block groups with more than this value (percents) of unusable space will be
189  * scheduled for background reclaim.
190  */
191 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
192 
193 /*
194  * Calculate chunk size depending on volume type (regular or zoned).
195  */
196 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
197 {
198 	if (btrfs_is_zoned(fs_info))
199 		return fs_info->zone_size;
200 
201 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
202 
203 	if (flags & BTRFS_BLOCK_GROUP_DATA)
204 		return BTRFS_MAX_DATA_CHUNK_SIZE;
205 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
206 		return SZ_32M;
207 
208 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
209 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
210 		return SZ_1G;
211 
212 	return SZ_256M;
213 }
214 
215 /*
216  * Update default chunk size.
217  */
218 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
219 					u64 chunk_size)
220 {
221 	WRITE_ONCE(space_info->chunk_size, chunk_size);
222 }
223 
224 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
225 {
226 
227 	struct btrfs_space_info *space_info;
228 	int i;
229 	int ret;
230 
231 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
232 	if (!space_info)
233 		return -ENOMEM;
234 
235 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
236 		INIT_LIST_HEAD(&space_info->block_groups[i]);
237 	init_rwsem(&space_info->groups_sem);
238 	spin_lock_init(&space_info->lock);
239 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
240 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
241 	INIT_LIST_HEAD(&space_info->ro_bgs);
242 	INIT_LIST_HEAD(&space_info->tickets);
243 	INIT_LIST_HEAD(&space_info->priority_tickets);
244 	space_info->clamp = 1;
245 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
246 
247 	if (btrfs_is_zoned(info))
248 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
249 
250 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
251 	if (ret)
252 		return ret;
253 
254 	list_add(&space_info->list, &info->space_info);
255 	if (flags & BTRFS_BLOCK_GROUP_DATA)
256 		info->data_sinfo = space_info;
257 
258 	return ret;
259 }
260 
261 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
262 {
263 	struct btrfs_super_block *disk_super;
264 	u64 features;
265 	u64 flags;
266 	int mixed = 0;
267 	int ret;
268 
269 	disk_super = fs_info->super_copy;
270 	if (!btrfs_super_root(disk_super))
271 		return -EINVAL;
272 
273 	features = btrfs_super_incompat_flags(disk_super);
274 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
275 		mixed = 1;
276 
277 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
278 	ret = create_space_info(fs_info, flags);
279 	if (ret)
280 		goto out;
281 
282 	if (mixed) {
283 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
284 		ret = create_space_info(fs_info, flags);
285 	} else {
286 		flags = BTRFS_BLOCK_GROUP_METADATA;
287 		ret = create_space_info(fs_info, flags);
288 		if (ret)
289 			goto out;
290 
291 		flags = BTRFS_BLOCK_GROUP_DATA;
292 		ret = create_space_info(fs_info, flags);
293 	}
294 out:
295 	return ret;
296 }
297 
298 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
299 				struct btrfs_block_group *block_group)
300 {
301 	struct btrfs_space_info *found;
302 	int factor, index;
303 
304 	factor = btrfs_bg_type_to_factor(block_group->flags);
305 
306 	found = btrfs_find_space_info(info, block_group->flags);
307 	ASSERT(found);
308 	spin_lock(&found->lock);
309 	found->total_bytes += block_group->length;
310 	found->disk_total += block_group->length * factor;
311 	found->bytes_used += block_group->used;
312 	found->disk_used += block_group->used * factor;
313 	found->bytes_readonly += block_group->bytes_super;
314 	found->bytes_zone_unusable += block_group->zone_unusable;
315 	if (block_group->length > 0)
316 		found->full = 0;
317 	btrfs_try_granting_tickets(info, found);
318 	spin_unlock(&found->lock);
319 
320 	block_group->space_info = found;
321 
322 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
323 	down_write(&found->groups_sem);
324 	list_add_tail(&block_group->list, &found->block_groups[index]);
325 	up_write(&found->groups_sem);
326 }
327 
328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
329 					       u64 flags)
330 {
331 	struct list_head *head = &info->space_info;
332 	struct btrfs_space_info *found;
333 
334 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
335 
336 	list_for_each_entry(found, head, list) {
337 		if (found->flags & flags)
338 			return found;
339 	}
340 	return NULL;
341 }
342 
343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
344 			  struct btrfs_space_info *space_info,
345 			  enum btrfs_reserve_flush_enum flush)
346 {
347 	struct btrfs_space_info *data_sinfo;
348 	u64 profile;
349 	u64 avail;
350 	u64 data_chunk_size;
351 	int factor;
352 
353 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
354 		profile = btrfs_system_alloc_profile(fs_info);
355 	else
356 		profile = btrfs_metadata_alloc_profile(fs_info);
357 
358 	avail = atomic64_read(&fs_info->free_chunk_space);
359 
360 	/*
361 	 * If we have dup, raid1 or raid10 then only half of the free
362 	 * space is actually usable.  For raid56, the space info used
363 	 * doesn't include the parity drive, so we don't have to
364 	 * change the math
365 	 */
366 	factor = btrfs_bg_type_to_factor(profile);
367 	avail = div_u64(avail, factor);
368 	if (avail == 0)
369 		return 0;
370 
371 	/*
372 	 * Calculate the data_chunk_size, space_info->chunk_size is the
373 	 * "optimal" chunk size based on the fs size.  However when we actually
374 	 * allocate the chunk we will strip this down further, making it no more
375 	 * than 10% of the disk or 1G, whichever is smaller.
376 	 */
377 	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
378 	data_chunk_size = min(data_sinfo->chunk_size,
379 			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
380 	data_chunk_size = min_t(u64, data_chunk_size, SZ_1G);
381 
382 	/*
383 	 * Since data allocations immediately use block groups as part of the
384 	 * reservation, because we assume that data reservations will == actual
385 	 * usage, we could potentially overcommit and then immediately have that
386 	 * available space used by a data allocation, which could put us in a
387 	 * bind when we get close to filling the file system.
388 	 *
389 	 * To handle this simply remove the data_chunk_size from the available
390 	 * space.  If we are relatively empty this won't affect our ability to
391 	 * overcommit much, and if we're very close to full it'll keep us from
392 	 * getting into a position where we've given ourselves very little
393 	 * metadata wiggle room.
394 	 */
395 	if (avail <= data_chunk_size)
396 		return 0;
397 	avail -= data_chunk_size;
398 
399 	/*
400 	 * If we aren't flushing all things, let us overcommit up to
401 	 * 1/2th of the space. If we can flush, don't let us overcommit
402 	 * too much, let it overcommit up to 1/8 of the space.
403 	 */
404 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
405 		avail >>= 3;
406 	else
407 		avail >>= 1;
408 	return avail;
409 }
410 
411 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
412 			 struct btrfs_space_info *space_info, u64 bytes,
413 			 enum btrfs_reserve_flush_enum flush)
414 {
415 	u64 avail;
416 	u64 used;
417 
418 	/* Don't overcommit when in mixed mode */
419 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
420 		return 0;
421 
422 	used = btrfs_space_info_used(space_info, true);
423 	avail = calc_available_free_space(fs_info, space_info, flush);
424 
425 	if (used + bytes < space_info->total_bytes + avail)
426 		return 1;
427 	return 0;
428 }
429 
430 static void remove_ticket(struct btrfs_space_info *space_info,
431 			  struct reserve_ticket *ticket)
432 {
433 	if (!list_empty(&ticket->list)) {
434 		list_del_init(&ticket->list);
435 		ASSERT(space_info->reclaim_size >= ticket->bytes);
436 		space_info->reclaim_size -= ticket->bytes;
437 	}
438 }
439 
440 /*
441  * This is for space we already have accounted in space_info->bytes_may_use, so
442  * basically when we're returning space from block_rsv's.
443  */
444 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
445 				struct btrfs_space_info *space_info)
446 {
447 	struct list_head *head;
448 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
449 
450 	lockdep_assert_held(&space_info->lock);
451 
452 	head = &space_info->priority_tickets;
453 again:
454 	while (!list_empty(head)) {
455 		struct reserve_ticket *ticket;
456 		u64 used = btrfs_space_info_used(space_info, true);
457 
458 		ticket = list_first_entry(head, struct reserve_ticket, list);
459 
460 		/* Check and see if our ticket can be satisfied now. */
461 		if ((used + ticket->bytes <= space_info->total_bytes) ||
462 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
463 					 flush)) {
464 			btrfs_space_info_update_bytes_may_use(fs_info,
465 							      space_info,
466 							      ticket->bytes);
467 			remove_ticket(space_info, ticket);
468 			ticket->bytes = 0;
469 			space_info->tickets_id++;
470 			wake_up(&ticket->wait);
471 		} else {
472 			break;
473 		}
474 	}
475 
476 	if (head == &space_info->priority_tickets) {
477 		head = &space_info->tickets;
478 		flush = BTRFS_RESERVE_FLUSH_ALL;
479 		goto again;
480 	}
481 }
482 
483 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
484 do {									\
485 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
486 	spin_lock(&__rsv->lock);					\
487 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
488 		   __rsv->size, __rsv->reserved);			\
489 	spin_unlock(&__rsv->lock);					\
490 } while (0)
491 
492 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
493 {
494 	switch (space_info->flags) {
495 	case BTRFS_BLOCK_GROUP_SYSTEM:
496 		return "SYSTEM";
497 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
498 		return "DATA+METADATA";
499 	case BTRFS_BLOCK_GROUP_DATA:
500 		return "DATA";
501 	case BTRFS_BLOCK_GROUP_METADATA:
502 		return "METADATA";
503 	default:
504 		return "UNKNOWN";
505 	}
506 }
507 
508 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
509 {
510 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
511 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
512 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
513 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
514 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
515 }
516 
517 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
518 				    struct btrfs_space_info *info)
519 {
520 	const char *flag_str = space_info_flag_to_str(info);
521 	lockdep_assert_held(&info->lock);
522 
523 	/* The free space could be negative in case of overcommit */
524 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
525 		   flag_str,
526 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
527 		   info->full ? "" : "not ");
528 	btrfs_info(fs_info,
529 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
530 		info->total_bytes, info->bytes_used, info->bytes_pinned,
531 		info->bytes_reserved, info->bytes_may_use,
532 		info->bytes_readonly, info->bytes_zone_unusable);
533 }
534 
535 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
536 			   struct btrfs_space_info *info, u64 bytes,
537 			   int dump_block_groups)
538 {
539 	struct btrfs_block_group *cache;
540 	u64 total_avail = 0;
541 	int index = 0;
542 
543 	spin_lock(&info->lock);
544 	__btrfs_dump_space_info(fs_info, info);
545 	dump_global_block_rsv(fs_info);
546 	spin_unlock(&info->lock);
547 
548 	if (!dump_block_groups)
549 		return;
550 
551 	down_read(&info->groups_sem);
552 again:
553 	list_for_each_entry(cache, &info->block_groups[index], list) {
554 		u64 avail;
555 
556 		spin_lock(&cache->lock);
557 		avail = cache->length - cache->used - cache->pinned -
558 			cache->reserved - cache->delalloc_bytes -
559 			cache->bytes_super - cache->zone_unusable;
560 		btrfs_info(fs_info,
561 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
562 			   cache->start, cache->length, cache->used, cache->pinned,
563 			   cache->reserved, cache->delalloc_bytes,
564 			   cache->bytes_super, cache->zone_unusable,
565 			   avail, cache->ro ? "[readonly]" : "");
566 		spin_unlock(&cache->lock);
567 		btrfs_dump_free_space(cache, bytes);
568 		total_avail += avail;
569 	}
570 	if (++index < BTRFS_NR_RAID_TYPES)
571 		goto again;
572 	up_read(&info->groups_sem);
573 
574 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
575 }
576 
577 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
578 					u64 to_reclaim)
579 {
580 	u64 bytes;
581 	u64 nr;
582 
583 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
584 	nr = div64_u64(to_reclaim, bytes);
585 	if (!nr)
586 		nr = 1;
587 	return nr;
588 }
589 
590 #define EXTENT_SIZE_PER_ITEM	SZ_256K
591 
592 /*
593  * shrink metadata reservation for delalloc
594  */
595 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
596 			    struct btrfs_space_info *space_info,
597 			    u64 to_reclaim, bool wait_ordered,
598 			    bool for_preempt)
599 {
600 	struct btrfs_trans_handle *trans;
601 	u64 delalloc_bytes;
602 	u64 ordered_bytes;
603 	u64 items;
604 	long time_left;
605 	int loops;
606 
607 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
608 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
609 	if (delalloc_bytes == 0 && ordered_bytes == 0)
610 		return;
611 
612 	/* Calc the number of the pages we need flush for space reservation */
613 	if (to_reclaim == U64_MAX) {
614 		items = U64_MAX;
615 	} else {
616 		/*
617 		 * to_reclaim is set to however much metadata we need to
618 		 * reclaim, but reclaiming that much data doesn't really track
619 		 * exactly.  What we really want to do is reclaim full inode's
620 		 * worth of reservations, however that's not available to us
621 		 * here.  We will take a fraction of the delalloc bytes for our
622 		 * flushing loops and hope for the best.  Delalloc will expand
623 		 * the amount we write to cover an entire dirty extent, which
624 		 * will reclaim the metadata reservation for that range.  If
625 		 * it's not enough subsequent flush stages will be more
626 		 * aggressive.
627 		 */
628 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
629 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
630 	}
631 
632 	trans = current->journal_info;
633 
634 	/*
635 	 * If we are doing more ordered than delalloc we need to just wait on
636 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
637 	 * that likely won't give us the space back we need.
638 	 */
639 	if (ordered_bytes > delalloc_bytes && !for_preempt)
640 		wait_ordered = true;
641 
642 	loops = 0;
643 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
644 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
645 		long nr_pages = min_t(u64, temp, LONG_MAX);
646 		int async_pages;
647 
648 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
649 
650 		/*
651 		 * We need to make sure any outstanding async pages are now
652 		 * processed before we continue.  This is because things like
653 		 * sync_inode() try to be smart and skip writing if the inode is
654 		 * marked clean.  We don't use filemap_fwrite for flushing
655 		 * because we want to control how many pages we write out at a
656 		 * time, thus this is the only safe way to make sure we've
657 		 * waited for outstanding compressed workers to have started
658 		 * their jobs and thus have ordered extents set up properly.
659 		 *
660 		 * This exists because we do not want to wait for each
661 		 * individual inode to finish its async work, we simply want to
662 		 * start the IO on everybody, and then come back here and wait
663 		 * for all of the async work to catch up.  Once we're done with
664 		 * that we know we'll have ordered extents for everything and we
665 		 * can decide if we wait for that or not.
666 		 *
667 		 * If we choose to replace this in the future, make absolutely
668 		 * sure that the proper waiting is being done in the async case,
669 		 * as there have been bugs in that area before.
670 		 */
671 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
672 		if (!async_pages)
673 			goto skip_async;
674 
675 		/*
676 		 * We don't want to wait forever, if we wrote less pages in this
677 		 * loop than we have outstanding, only wait for that number of
678 		 * pages, otherwise we can wait for all async pages to finish
679 		 * before continuing.
680 		 */
681 		if (async_pages > nr_pages)
682 			async_pages -= nr_pages;
683 		else
684 			async_pages = 0;
685 		wait_event(fs_info->async_submit_wait,
686 			   atomic_read(&fs_info->async_delalloc_pages) <=
687 			   async_pages);
688 skip_async:
689 		loops++;
690 		if (wait_ordered && !trans) {
691 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
692 		} else {
693 			time_left = schedule_timeout_killable(1);
694 			if (time_left)
695 				break;
696 		}
697 
698 		/*
699 		 * If we are for preemption we just want a one-shot of delalloc
700 		 * flushing so we can stop flushing if we decide we don't need
701 		 * to anymore.
702 		 */
703 		if (for_preempt)
704 			break;
705 
706 		spin_lock(&space_info->lock);
707 		if (list_empty(&space_info->tickets) &&
708 		    list_empty(&space_info->priority_tickets)) {
709 			spin_unlock(&space_info->lock);
710 			break;
711 		}
712 		spin_unlock(&space_info->lock);
713 
714 		delalloc_bytes = percpu_counter_sum_positive(
715 						&fs_info->delalloc_bytes);
716 		ordered_bytes = percpu_counter_sum_positive(
717 						&fs_info->ordered_bytes);
718 	}
719 }
720 
721 /*
722  * Try to flush some data based on policy set by @state. This is only advisory
723  * and may fail for various reasons. The caller is supposed to examine the
724  * state of @space_info to detect the outcome.
725  */
726 static void flush_space(struct btrfs_fs_info *fs_info,
727 		       struct btrfs_space_info *space_info, u64 num_bytes,
728 		       enum btrfs_flush_state state, bool for_preempt)
729 {
730 	struct btrfs_root *root = fs_info->tree_root;
731 	struct btrfs_trans_handle *trans;
732 	int nr;
733 	int ret = 0;
734 
735 	switch (state) {
736 	case FLUSH_DELAYED_ITEMS_NR:
737 	case FLUSH_DELAYED_ITEMS:
738 		if (state == FLUSH_DELAYED_ITEMS_NR)
739 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
740 		else
741 			nr = -1;
742 
743 		trans = btrfs_join_transaction_nostart(root);
744 		if (IS_ERR(trans)) {
745 			ret = PTR_ERR(trans);
746 			if (ret == -ENOENT)
747 				ret = 0;
748 			break;
749 		}
750 		ret = btrfs_run_delayed_items_nr(trans, nr);
751 		btrfs_end_transaction(trans);
752 		break;
753 	case FLUSH_DELALLOC:
754 	case FLUSH_DELALLOC_WAIT:
755 	case FLUSH_DELALLOC_FULL:
756 		if (state == FLUSH_DELALLOC_FULL)
757 			num_bytes = U64_MAX;
758 		shrink_delalloc(fs_info, space_info, num_bytes,
759 				state != FLUSH_DELALLOC, for_preempt);
760 		break;
761 	case FLUSH_DELAYED_REFS_NR:
762 	case FLUSH_DELAYED_REFS:
763 		trans = btrfs_join_transaction_nostart(root);
764 		if (IS_ERR(trans)) {
765 			ret = PTR_ERR(trans);
766 			if (ret == -ENOENT)
767 				ret = 0;
768 			break;
769 		}
770 		if (state == FLUSH_DELAYED_REFS_NR)
771 			btrfs_run_delayed_refs(trans, num_bytes);
772 		else
773 			btrfs_run_delayed_refs(trans, 0);
774 		btrfs_end_transaction(trans);
775 		break;
776 	case ALLOC_CHUNK:
777 	case ALLOC_CHUNK_FORCE:
778 		trans = btrfs_join_transaction(root);
779 		if (IS_ERR(trans)) {
780 			ret = PTR_ERR(trans);
781 			break;
782 		}
783 		ret = btrfs_chunk_alloc(trans,
784 				btrfs_get_alloc_profile(fs_info, space_info->flags),
785 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
786 					CHUNK_ALLOC_FORCE);
787 		btrfs_end_transaction(trans);
788 
789 		if (ret > 0 || ret == -ENOSPC)
790 			ret = 0;
791 		break;
792 	case RUN_DELAYED_IPUTS:
793 		/*
794 		 * If we have pending delayed iputs then we could free up a
795 		 * bunch of pinned space, so make sure we run the iputs before
796 		 * we do our pinned bytes check below.
797 		 */
798 		btrfs_run_delayed_iputs(fs_info);
799 		btrfs_wait_on_delayed_iputs(fs_info);
800 		break;
801 	case COMMIT_TRANS:
802 		ASSERT(current->journal_info == NULL);
803 		/*
804 		 * We don't want to start a new transaction, just attach to the
805 		 * current one or wait it fully commits in case its commit is
806 		 * happening at the moment. Note: we don't use a nostart join
807 		 * because that does not wait for a transaction to fully commit
808 		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
809 		 */
810 		trans = btrfs_attach_transaction_barrier(root);
811 		if (IS_ERR(trans)) {
812 			ret = PTR_ERR(trans);
813 			if (ret == -ENOENT)
814 				ret = 0;
815 			break;
816 		}
817 		ret = btrfs_commit_transaction(trans);
818 		break;
819 	default:
820 		ret = -ENOSPC;
821 		break;
822 	}
823 
824 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
825 				ret, for_preempt);
826 	return;
827 }
828 
829 static inline u64
830 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
831 				 struct btrfs_space_info *space_info)
832 {
833 	u64 used;
834 	u64 avail;
835 	u64 to_reclaim = space_info->reclaim_size;
836 
837 	lockdep_assert_held(&space_info->lock);
838 
839 	avail = calc_available_free_space(fs_info, space_info,
840 					  BTRFS_RESERVE_FLUSH_ALL);
841 	used = btrfs_space_info_used(space_info, true);
842 
843 	/*
844 	 * We may be flushing because suddenly we have less space than we had
845 	 * before, and now we're well over-committed based on our current free
846 	 * space.  If that's the case add in our overage so we make sure to put
847 	 * appropriate pressure on the flushing state machine.
848 	 */
849 	if (space_info->total_bytes + avail < used)
850 		to_reclaim += used - (space_info->total_bytes + avail);
851 
852 	return to_reclaim;
853 }
854 
855 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
856 				    struct btrfs_space_info *space_info)
857 {
858 	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
859 	u64 ordered, delalloc;
860 	u64 thresh;
861 	u64 used;
862 
863 	thresh = mult_perc(space_info->total_bytes, 90);
864 
865 	lockdep_assert_held(&space_info->lock);
866 
867 	/* If we're just plain full then async reclaim just slows us down. */
868 	if ((space_info->bytes_used + space_info->bytes_reserved +
869 	     global_rsv_size) >= thresh)
870 		return false;
871 
872 	used = space_info->bytes_may_use + space_info->bytes_pinned;
873 
874 	/* The total flushable belongs to the global rsv, don't flush. */
875 	if (global_rsv_size >= used)
876 		return false;
877 
878 	/*
879 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
880 	 * that devoted to other reservations then there's no sense in flushing,
881 	 * we don't have a lot of things that need flushing.
882 	 */
883 	if (used - global_rsv_size <= SZ_128M)
884 		return false;
885 
886 	/*
887 	 * We have tickets queued, bail so we don't compete with the async
888 	 * flushers.
889 	 */
890 	if (space_info->reclaim_size)
891 		return false;
892 
893 	/*
894 	 * If we have over half of the free space occupied by reservations or
895 	 * pinned then we want to start flushing.
896 	 *
897 	 * We do not do the traditional thing here, which is to say
898 	 *
899 	 *   if (used >= ((total_bytes + avail) / 2))
900 	 *     return 1;
901 	 *
902 	 * because this doesn't quite work how we want.  If we had more than 50%
903 	 * of the space_info used by bytes_used and we had 0 available we'd just
904 	 * constantly run the background flusher.  Instead we want it to kick in
905 	 * if our reclaimable space exceeds our clamped free space.
906 	 *
907 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
908 	 * the following:
909 	 *
910 	 * Amount of RAM        Minimum threshold       Maximum threshold
911 	 *
912 	 *        256GiB                     1GiB                  128GiB
913 	 *        128GiB                   512MiB                   64GiB
914 	 *         64GiB                   256MiB                   32GiB
915 	 *         32GiB                   128MiB                   16GiB
916 	 *         16GiB                    64MiB                    8GiB
917 	 *
918 	 * These are the range our thresholds will fall in, corresponding to how
919 	 * much delalloc we need for the background flusher to kick in.
920 	 */
921 
922 	thresh = calc_available_free_space(fs_info, space_info,
923 					   BTRFS_RESERVE_FLUSH_ALL);
924 	used = space_info->bytes_used + space_info->bytes_reserved +
925 	       space_info->bytes_readonly + global_rsv_size;
926 	if (used < space_info->total_bytes)
927 		thresh += space_info->total_bytes - used;
928 	thresh >>= space_info->clamp;
929 
930 	used = space_info->bytes_pinned;
931 
932 	/*
933 	 * If we have more ordered bytes than delalloc bytes then we're either
934 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
935 	 * around.  Preemptive flushing is only useful in that it can free up
936 	 * space before tickets need to wait for things to finish.  In the case
937 	 * of ordered extents, preemptively waiting on ordered extents gets us
938 	 * nothing, if our reservations are tied up in ordered extents we'll
939 	 * simply have to slow down writers by forcing them to wait on ordered
940 	 * extents.
941 	 *
942 	 * In the case that ordered is larger than delalloc, only include the
943 	 * block reserves that we would actually be able to directly reclaim
944 	 * from.  In this case if we're heavy on metadata operations this will
945 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
946 	 * of heavy DIO or ordered reservations, preemptive flushing will just
947 	 * waste time and cause us to slow down.
948 	 *
949 	 * We want to make sure we truly are maxed out on ordered however, so
950 	 * cut ordered in half, and if it's still higher than delalloc then we
951 	 * can keep flushing.  This is to avoid the case where we start
952 	 * flushing, and now delalloc == ordered and we stop preemptively
953 	 * flushing when we could still have several gigs of delalloc to flush.
954 	 */
955 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
956 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
957 	if (ordered >= delalloc)
958 		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
959 			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
960 	else
961 		used += space_info->bytes_may_use - global_rsv_size;
962 
963 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
964 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
965 }
966 
967 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
968 				  struct btrfs_space_info *space_info,
969 				  struct reserve_ticket *ticket)
970 {
971 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
972 	u64 min_bytes;
973 
974 	if (!ticket->steal)
975 		return false;
976 
977 	if (global_rsv->space_info != space_info)
978 		return false;
979 
980 	spin_lock(&global_rsv->lock);
981 	min_bytes = mult_perc(global_rsv->size, 10);
982 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
983 		spin_unlock(&global_rsv->lock);
984 		return false;
985 	}
986 	global_rsv->reserved -= ticket->bytes;
987 	remove_ticket(space_info, ticket);
988 	ticket->bytes = 0;
989 	wake_up(&ticket->wait);
990 	space_info->tickets_id++;
991 	if (global_rsv->reserved < global_rsv->size)
992 		global_rsv->full = 0;
993 	spin_unlock(&global_rsv->lock);
994 
995 	return true;
996 }
997 
998 /*
999  * We've exhausted our flushing, start failing tickets.
1000  *
1001  * @fs_info - fs_info for this fs
1002  * @space_info - the space info we were flushing
1003  *
1004  * We call this when we've exhausted our flushing ability and haven't made
1005  * progress in satisfying tickets.  The reservation code handles tickets in
1006  * order, so if there is a large ticket first and then smaller ones we could
1007  * very well satisfy the smaller tickets.  This will attempt to wake up any
1008  * tickets in the list to catch this case.
1009  *
1010  * This function returns true if it was able to make progress by clearing out
1011  * other tickets, or if it stumbles across a ticket that was smaller than the
1012  * first ticket.
1013  */
1014 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1015 				   struct btrfs_space_info *space_info)
1016 {
1017 	struct reserve_ticket *ticket;
1018 	u64 tickets_id = space_info->tickets_id;
1019 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1020 
1021 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1022 
1023 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1024 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1025 		__btrfs_dump_space_info(fs_info, space_info);
1026 	}
1027 
1028 	while (!list_empty(&space_info->tickets) &&
1029 	       tickets_id == space_info->tickets_id) {
1030 		ticket = list_first_entry(&space_info->tickets,
1031 					  struct reserve_ticket, list);
1032 
1033 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1034 			return true;
1035 
1036 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1037 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1038 				   ticket->bytes);
1039 
1040 		remove_ticket(space_info, ticket);
1041 		if (aborted)
1042 			ticket->error = -EIO;
1043 		else
1044 			ticket->error = -ENOSPC;
1045 		wake_up(&ticket->wait);
1046 
1047 		/*
1048 		 * We're just throwing tickets away, so more flushing may not
1049 		 * trip over btrfs_try_granting_tickets, so we need to call it
1050 		 * here to see if we can make progress with the next ticket in
1051 		 * the list.
1052 		 */
1053 		if (!aborted)
1054 			btrfs_try_granting_tickets(fs_info, space_info);
1055 	}
1056 	return (tickets_id != space_info->tickets_id);
1057 }
1058 
1059 /*
1060  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1061  * will loop and continuously try to flush as long as we are making progress.
1062  * We count progress as clearing off tickets each time we have to loop.
1063  */
1064 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1065 {
1066 	struct btrfs_fs_info *fs_info;
1067 	struct btrfs_space_info *space_info;
1068 	u64 to_reclaim;
1069 	enum btrfs_flush_state flush_state;
1070 	int commit_cycles = 0;
1071 	u64 last_tickets_id;
1072 
1073 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1074 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1075 
1076 	spin_lock(&space_info->lock);
1077 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1078 	if (!to_reclaim) {
1079 		space_info->flush = 0;
1080 		spin_unlock(&space_info->lock);
1081 		return;
1082 	}
1083 	last_tickets_id = space_info->tickets_id;
1084 	spin_unlock(&space_info->lock);
1085 
1086 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1087 	do {
1088 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1089 		spin_lock(&space_info->lock);
1090 		if (list_empty(&space_info->tickets)) {
1091 			space_info->flush = 0;
1092 			spin_unlock(&space_info->lock);
1093 			return;
1094 		}
1095 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1096 							      space_info);
1097 		if (last_tickets_id == space_info->tickets_id) {
1098 			flush_state++;
1099 		} else {
1100 			last_tickets_id = space_info->tickets_id;
1101 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1102 			if (commit_cycles)
1103 				commit_cycles--;
1104 		}
1105 
1106 		/*
1107 		 * We do not want to empty the system of delalloc unless we're
1108 		 * under heavy pressure, so allow one trip through the flushing
1109 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1110 		 */
1111 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1112 			flush_state++;
1113 
1114 		/*
1115 		 * We don't want to force a chunk allocation until we've tried
1116 		 * pretty hard to reclaim space.  Think of the case where we
1117 		 * freed up a bunch of space and so have a lot of pinned space
1118 		 * to reclaim.  We would rather use that than possibly create a
1119 		 * underutilized metadata chunk.  So if this is our first run
1120 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1121 		 * commit the transaction.  If nothing has changed the next go
1122 		 * around then we can force a chunk allocation.
1123 		 */
1124 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1125 			flush_state++;
1126 
1127 		if (flush_state > COMMIT_TRANS) {
1128 			commit_cycles++;
1129 			if (commit_cycles > 2) {
1130 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1131 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1132 					commit_cycles--;
1133 				} else {
1134 					space_info->flush = 0;
1135 				}
1136 			} else {
1137 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1138 			}
1139 		}
1140 		spin_unlock(&space_info->lock);
1141 	} while (flush_state <= COMMIT_TRANS);
1142 }
1143 
1144 /*
1145  * This handles pre-flushing of metadata space before we get to the point that
1146  * we need to start blocking threads on tickets.  The logic here is different
1147  * from the other flush paths because it doesn't rely on tickets to tell us how
1148  * much we need to flush, instead it attempts to keep us below the 80% full
1149  * watermark of space by flushing whichever reservation pool is currently the
1150  * largest.
1151  */
1152 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1153 {
1154 	struct btrfs_fs_info *fs_info;
1155 	struct btrfs_space_info *space_info;
1156 	struct btrfs_block_rsv *delayed_block_rsv;
1157 	struct btrfs_block_rsv *delayed_refs_rsv;
1158 	struct btrfs_block_rsv *global_rsv;
1159 	struct btrfs_block_rsv *trans_rsv;
1160 	int loops = 0;
1161 
1162 	fs_info = container_of(work, struct btrfs_fs_info,
1163 			       preempt_reclaim_work);
1164 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1165 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1166 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1167 	global_rsv = &fs_info->global_block_rsv;
1168 	trans_rsv = &fs_info->trans_block_rsv;
1169 
1170 	spin_lock(&space_info->lock);
1171 	while (need_preemptive_reclaim(fs_info, space_info)) {
1172 		enum btrfs_flush_state flush;
1173 		u64 delalloc_size = 0;
1174 		u64 to_reclaim, block_rsv_size;
1175 		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1176 
1177 		loops++;
1178 
1179 		/*
1180 		 * We don't have a precise counter for the metadata being
1181 		 * reserved for delalloc, so we'll approximate it by subtracting
1182 		 * out the block rsv's space from the bytes_may_use.  If that
1183 		 * amount is higher than the individual reserves, then we can
1184 		 * assume it's tied up in delalloc reservations.
1185 		 */
1186 		block_rsv_size = global_rsv_size +
1187 			btrfs_block_rsv_reserved(delayed_block_rsv) +
1188 			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1189 			btrfs_block_rsv_reserved(trans_rsv);
1190 		if (block_rsv_size < space_info->bytes_may_use)
1191 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1192 
1193 		/*
1194 		 * We don't want to include the global_rsv in our calculation,
1195 		 * because that's space we can't touch.  Subtract it from the
1196 		 * block_rsv_size for the next checks.
1197 		 */
1198 		block_rsv_size -= global_rsv_size;
1199 
1200 		/*
1201 		 * We really want to avoid flushing delalloc too much, as it
1202 		 * could result in poor allocation patterns, so only flush it if
1203 		 * it's larger than the rest of the pools combined.
1204 		 */
1205 		if (delalloc_size > block_rsv_size) {
1206 			to_reclaim = delalloc_size;
1207 			flush = FLUSH_DELALLOC;
1208 		} else if (space_info->bytes_pinned >
1209 			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1210 			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1211 			to_reclaim = space_info->bytes_pinned;
1212 			flush = COMMIT_TRANS;
1213 		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1214 			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1215 			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1216 			flush = FLUSH_DELAYED_ITEMS_NR;
1217 		} else {
1218 			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1219 			flush = FLUSH_DELAYED_REFS_NR;
1220 		}
1221 
1222 		spin_unlock(&space_info->lock);
1223 
1224 		/*
1225 		 * We don't want to reclaim everything, just a portion, so scale
1226 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1227 		 * reclaim 1 items worth.
1228 		 */
1229 		to_reclaim >>= 2;
1230 		if (!to_reclaim)
1231 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1232 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1233 		cond_resched();
1234 		spin_lock(&space_info->lock);
1235 	}
1236 
1237 	/* We only went through once, back off our clamping. */
1238 	if (loops == 1 && !space_info->reclaim_size)
1239 		space_info->clamp = max(1, space_info->clamp - 1);
1240 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1241 	spin_unlock(&space_info->lock);
1242 }
1243 
1244 /*
1245  * FLUSH_DELALLOC_WAIT:
1246  *   Space is freed from flushing delalloc in one of two ways.
1247  *
1248  *   1) compression is on and we allocate less space than we reserved
1249  *   2) we are overwriting existing space
1250  *
1251  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1252  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1253  *   length to ->bytes_reserved, and subtracts the reserved space from
1254  *   ->bytes_may_use.
1255  *
1256  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1257  *   extent in the range we are overwriting, which creates a delayed ref for
1258  *   that freed extent.  This however is not reclaimed until the transaction
1259  *   commits, thus the next stages.
1260  *
1261  * RUN_DELAYED_IPUTS
1262  *   If we are freeing inodes, we want to make sure all delayed iputs have
1263  *   completed, because they could have been on an inode with i_nlink == 0, and
1264  *   thus have been truncated and freed up space.  But again this space is not
1265  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1266  *   run and then the transaction must be committed.
1267  *
1268  * COMMIT_TRANS
1269  *   This is where we reclaim all of the pinned space generated by running the
1270  *   iputs
1271  *
1272  * ALLOC_CHUNK_FORCE
1273  *   For data we start with alloc chunk force, however we could have been full
1274  *   before, and then the transaction commit could have freed new block groups,
1275  *   so if we now have space to allocate do the force chunk allocation.
1276  */
1277 static const enum btrfs_flush_state data_flush_states[] = {
1278 	FLUSH_DELALLOC_FULL,
1279 	RUN_DELAYED_IPUTS,
1280 	COMMIT_TRANS,
1281 	ALLOC_CHUNK_FORCE,
1282 };
1283 
1284 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1285 {
1286 	struct btrfs_fs_info *fs_info;
1287 	struct btrfs_space_info *space_info;
1288 	u64 last_tickets_id;
1289 	enum btrfs_flush_state flush_state = 0;
1290 
1291 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1292 	space_info = fs_info->data_sinfo;
1293 
1294 	spin_lock(&space_info->lock);
1295 	if (list_empty(&space_info->tickets)) {
1296 		space_info->flush = 0;
1297 		spin_unlock(&space_info->lock);
1298 		return;
1299 	}
1300 	last_tickets_id = space_info->tickets_id;
1301 	spin_unlock(&space_info->lock);
1302 
1303 	while (!space_info->full) {
1304 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1305 		spin_lock(&space_info->lock);
1306 		if (list_empty(&space_info->tickets)) {
1307 			space_info->flush = 0;
1308 			spin_unlock(&space_info->lock);
1309 			return;
1310 		}
1311 
1312 		/* Something happened, fail everything and bail. */
1313 		if (BTRFS_FS_ERROR(fs_info))
1314 			goto aborted_fs;
1315 		last_tickets_id = space_info->tickets_id;
1316 		spin_unlock(&space_info->lock);
1317 	}
1318 
1319 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1320 		flush_space(fs_info, space_info, U64_MAX,
1321 			    data_flush_states[flush_state], false);
1322 		spin_lock(&space_info->lock);
1323 		if (list_empty(&space_info->tickets)) {
1324 			space_info->flush = 0;
1325 			spin_unlock(&space_info->lock);
1326 			return;
1327 		}
1328 
1329 		if (last_tickets_id == space_info->tickets_id) {
1330 			flush_state++;
1331 		} else {
1332 			last_tickets_id = space_info->tickets_id;
1333 			flush_state = 0;
1334 		}
1335 
1336 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1337 			if (space_info->full) {
1338 				if (maybe_fail_all_tickets(fs_info, space_info))
1339 					flush_state = 0;
1340 				else
1341 					space_info->flush = 0;
1342 			} else {
1343 				flush_state = 0;
1344 			}
1345 
1346 			/* Something happened, fail everything and bail. */
1347 			if (BTRFS_FS_ERROR(fs_info))
1348 				goto aborted_fs;
1349 
1350 		}
1351 		spin_unlock(&space_info->lock);
1352 	}
1353 	return;
1354 
1355 aborted_fs:
1356 	maybe_fail_all_tickets(fs_info, space_info);
1357 	space_info->flush = 0;
1358 	spin_unlock(&space_info->lock);
1359 }
1360 
1361 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1362 {
1363 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1364 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1365 	INIT_WORK(&fs_info->preempt_reclaim_work,
1366 		  btrfs_preempt_reclaim_metadata_space);
1367 }
1368 
1369 static const enum btrfs_flush_state priority_flush_states[] = {
1370 	FLUSH_DELAYED_ITEMS_NR,
1371 	FLUSH_DELAYED_ITEMS,
1372 	ALLOC_CHUNK,
1373 };
1374 
1375 static const enum btrfs_flush_state evict_flush_states[] = {
1376 	FLUSH_DELAYED_ITEMS_NR,
1377 	FLUSH_DELAYED_ITEMS,
1378 	FLUSH_DELAYED_REFS_NR,
1379 	FLUSH_DELAYED_REFS,
1380 	FLUSH_DELALLOC,
1381 	FLUSH_DELALLOC_WAIT,
1382 	FLUSH_DELALLOC_FULL,
1383 	ALLOC_CHUNK,
1384 	COMMIT_TRANS,
1385 };
1386 
1387 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1388 				struct btrfs_space_info *space_info,
1389 				struct reserve_ticket *ticket,
1390 				const enum btrfs_flush_state *states,
1391 				int states_nr)
1392 {
1393 	u64 to_reclaim;
1394 	int flush_state = 0;
1395 
1396 	spin_lock(&space_info->lock);
1397 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1398 	/*
1399 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1400 	 * because we may have only satisfied the priority tickets and still
1401 	 * left non priority tickets on the list.  We would then have
1402 	 * to_reclaim but ->bytes == 0.
1403 	 */
1404 	if (ticket->bytes == 0) {
1405 		spin_unlock(&space_info->lock);
1406 		return;
1407 	}
1408 
1409 	while (flush_state < states_nr) {
1410 		spin_unlock(&space_info->lock);
1411 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1412 			    false);
1413 		flush_state++;
1414 		spin_lock(&space_info->lock);
1415 		if (ticket->bytes == 0) {
1416 			spin_unlock(&space_info->lock);
1417 			return;
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * Attempt to steal from the global rsv if we can, except if the fs was
1423 	 * turned into error mode due to a transaction abort when flushing space
1424 	 * above, in that case fail with the abort error instead of returning
1425 	 * success to the caller if we can steal from the global rsv - this is
1426 	 * just to have caller fail immeditelly instead of later when trying to
1427 	 * modify the fs, making it easier to debug -ENOSPC problems.
1428 	 */
1429 	if (BTRFS_FS_ERROR(fs_info)) {
1430 		ticket->error = BTRFS_FS_ERROR(fs_info);
1431 		remove_ticket(space_info, ticket);
1432 	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1433 		ticket->error = -ENOSPC;
1434 		remove_ticket(space_info, ticket);
1435 	}
1436 
1437 	/*
1438 	 * We must run try_granting_tickets here because we could be a large
1439 	 * ticket in front of a smaller ticket that can now be satisfied with
1440 	 * the available space.
1441 	 */
1442 	btrfs_try_granting_tickets(fs_info, space_info);
1443 	spin_unlock(&space_info->lock);
1444 }
1445 
1446 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1447 					struct btrfs_space_info *space_info,
1448 					struct reserve_ticket *ticket)
1449 {
1450 	spin_lock(&space_info->lock);
1451 
1452 	/* We could have been granted before we got here. */
1453 	if (ticket->bytes == 0) {
1454 		spin_unlock(&space_info->lock);
1455 		return;
1456 	}
1457 
1458 	while (!space_info->full) {
1459 		spin_unlock(&space_info->lock);
1460 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1461 		spin_lock(&space_info->lock);
1462 		if (ticket->bytes == 0) {
1463 			spin_unlock(&space_info->lock);
1464 			return;
1465 		}
1466 	}
1467 
1468 	ticket->error = -ENOSPC;
1469 	remove_ticket(space_info, ticket);
1470 	btrfs_try_granting_tickets(fs_info, space_info);
1471 	spin_unlock(&space_info->lock);
1472 }
1473 
1474 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1475 				struct btrfs_space_info *space_info,
1476 				struct reserve_ticket *ticket)
1477 
1478 {
1479 	DEFINE_WAIT(wait);
1480 	int ret = 0;
1481 
1482 	spin_lock(&space_info->lock);
1483 	while (ticket->bytes > 0 && ticket->error == 0) {
1484 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1485 		if (ret) {
1486 			/*
1487 			 * Delete us from the list. After we unlock the space
1488 			 * info, we don't want the async reclaim job to reserve
1489 			 * space for this ticket. If that would happen, then the
1490 			 * ticket's task would not known that space was reserved
1491 			 * despite getting an error, resulting in a space leak
1492 			 * (bytes_may_use counter of our space_info).
1493 			 */
1494 			remove_ticket(space_info, ticket);
1495 			ticket->error = -EINTR;
1496 			break;
1497 		}
1498 		spin_unlock(&space_info->lock);
1499 
1500 		schedule();
1501 
1502 		finish_wait(&ticket->wait, &wait);
1503 		spin_lock(&space_info->lock);
1504 	}
1505 	spin_unlock(&space_info->lock);
1506 }
1507 
1508 /*
1509  * Do the appropriate flushing and waiting for a ticket.
1510  *
1511  * @fs_info:    the filesystem
1512  * @space_info: space info for the reservation
1513  * @ticket:     ticket for the reservation
1514  * @start_ns:   timestamp when the reservation started
1515  * @orig_bytes: amount of bytes originally reserved
1516  * @flush:      how much we can flush
1517  *
1518  * This does the work of figuring out how to flush for the ticket, waiting for
1519  * the reservation, and returning the appropriate error if there is one.
1520  */
1521 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1522 				 struct btrfs_space_info *space_info,
1523 				 struct reserve_ticket *ticket,
1524 				 u64 start_ns, u64 orig_bytes,
1525 				 enum btrfs_reserve_flush_enum flush)
1526 {
1527 	int ret;
1528 
1529 	switch (flush) {
1530 	case BTRFS_RESERVE_FLUSH_DATA:
1531 	case BTRFS_RESERVE_FLUSH_ALL:
1532 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1533 		wait_reserve_ticket(fs_info, space_info, ticket);
1534 		break;
1535 	case BTRFS_RESERVE_FLUSH_LIMIT:
1536 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1537 						priority_flush_states,
1538 						ARRAY_SIZE(priority_flush_states));
1539 		break;
1540 	case BTRFS_RESERVE_FLUSH_EVICT:
1541 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1542 						evict_flush_states,
1543 						ARRAY_SIZE(evict_flush_states));
1544 		break;
1545 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1546 		priority_reclaim_data_space(fs_info, space_info, ticket);
1547 		break;
1548 	default:
1549 		ASSERT(0);
1550 		break;
1551 	}
1552 
1553 	ret = ticket->error;
1554 	ASSERT(list_empty(&ticket->list));
1555 	/*
1556 	 * Check that we can't have an error set if the reservation succeeded,
1557 	 * as that would confuse tasks and lead them to error out without
1558 	 * releasing reserved space (if an error happens the expectation is that
1559 	 * space wasn't reserved at all).
1560 	 */
1561 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1562 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1563 				   start_ns, flush, ticket->error);
1564 	return ret;
1565 }
1566 
1567 /*
1568  * This returns true if this flush state will go through the ordinary flushing
1569  * code.
1570  */
1571 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1572 {
1573 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1574 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1575 }
1576 
1577 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1578 				       struct btrfs_space_info *space_info)
1579 {
1580 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1581 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1582 
1583 	/*
1584 	 * If we're heavy on ordered operations then clamping won't help us.  We
1585 	 * need to clamp specifically to keep up with dirty'ing buffered
1586 	 * writers, because there's not a 1:1 correlation of writing delalloc
1587 	 * and freeing space, like there is with flushing delayed refs or
1588 	 * delayed nodes.  If we're already more ordered than delalloc then
1589 	 * we're keeping up, otherwise we aren't and should probably clamp.
1590 	 */
1591 	if (ordered < delalloc)
1592 		space_info->clamp = min(space_info->clamp + 1, 8);
1593 }
1594 
1595 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1596 {
1597 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1598 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1599 }
1600 
1601 /*
1602  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1603  * fail as quickly as possible.
1604  */
1605 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1606 {
1607 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1608 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1609 }
1610 
1611 /*
1612  * Try to reserve bytes from the block_rsv's space.
1613  *
1614  * @fs_info:    the filesystem
1615  * @space_info: space info we want to allocate from
1616  * @orig_bytes: number of bytes we want
1617  * @flush:      whether or not we can flush to make our reservation
1618  *
1619  * This will reserve orig_bytes number of bytes from the space info associated
1620  * with the block_rsv.  If there is not enough space it will make an attempt to
1621  * flush out space to make room.  It will do this by flushing delalloc if
1622  * possible or committing the transaction.  If flush is 0 then no attempts to
1623  * regain reservations will be made and this will fail if there is not enough
1624  * space already.
1625  */
1626 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1627 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1628 			   enum btrfs_reserve_flush_enum flush)
1629 {
1630 	struct work_struct *async_work;
1631 	struct reserve_ticket ticket;
1632 	u64 start_ns = 0;
1633 	u64 used;
1634 	int ret = -ENOSPC;
1635 	bool pending_tickets;
1636 
1637 	ASSERT(orig_bytes);
1638 	/*
1639 	 * If have a transaction handle (current->journal_info != NULL), then
1640 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1641 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1642 	 * flushing methods can trigger transaction commits.
1643 	 */
1644 	if (current->journal_info) {
1645 		/* One assert per line for easier debugging. */
1646 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1647 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1648 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1649 	}
1650 
1651 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1652 		async_work = &fs_info->async_data_reclaim_work;
1653 	else
1654 		async_work = &fs_info->async_reclaim_work;
1655 
1656 	spin_lock(&space_info->lock);
1657 	used = btrfs_space_info_used(space_info, true);
1658 
1659 	/*
1660 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1661 	 * generally handle ENOSPC in a different way, so treat them the same as
1662 	 * normal flushers when it comes to skipping pending tickets.
1663 	 */
1664 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1665 		pending_tickets = !list_empty(&space_info->tickets) ||
1666 			!list_empty(&space_info->priority_tickets);
1667 	else
1668 		pending_tickets = !list_empty(&space_info->priority_tickets);
1669 
1670 	/*
1671 	 * Carry on if we have enough space (short-circuit) OR call
1672 	 * can_overcommit() to ensure we can overcommit to continue.
1673 	 */
1674 	if (!pending_tickets &&
1675 	    ((used + orig_bytes <= space_info->total_bytes) ||
1676 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1677 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1678 						      orig_bytes);
1679 		ret = 0;
1680 	}
1681 
1682 	/*
1683 	 * Things are dire, we need to make a reservation so we don't abort.  We
1684 	 * will let this reservation go through as long as we have actual space
1685 	 * left to allocate for the block.
1686 	 */
1687 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1688 		used = btrfs_space_info_used(space_info, false);
1689 		if (used + orig_bytes <= space_info->total_bytes) {
1690 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1691 							      orig_bytes);
1692 			ret = 0;
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * If we couldn't make a reservation then setup our reservation ticket
1698 	 * and kick the async worker if it's not already running.
1699 	 *
1700 	 * If we are a priority flusher then we just need to add our ticket to
1701 	 * the list and we will do our own flushing further down.
1702 	 */
1703 	if (ret && can_ticket(flush)) {
1704 		ticket.bytes = orig_bytes;
1705 		ticket.error = 0;
1706 		space_info->reclaim_size += ticket.bytes;
1707 		init_waitqueue_head(&ticket.wait);
1708 		ticket.steal = can_steal(flush);
1709 		if (trace_btrfs_reserve_ticket_enabled())
1710 			start_ns = ktime_get_ns();
1711 
1712 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1713 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1714 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1715 			list_add_tail(&ticket.list, &space_info->tickets);
1716 			if (!space_info->flush) {
1717 				/*
1718 				 * We were forced to add a reserve ticket, so
1719 				 * our preemptive flushing is unable to keep
1720 				 * up.  Clamp down on the threshold for the
1721 				 * preemptive flushing in order to keep up with
1722 				 * the workload.
1723 				 */
1724 				maybe_clamp_preempt(fs_info, space_info);
1725 
1726 				space_info->flush = 1;
1727 				trace_btrfs_trigger_flush(fs_info,
1728 							  space_info->flags,
1729 							  orig_bytes, flush,
1730 							  "enospc");
1731 				queue_work(system_unbound_wq, async_work);
1732 			}
1733 		} else {
1734 			list_add_tail(&ticket.list,
1735 				      &space_info->priority_tickets);
1736 		}
1737 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1738 		/*
1739 		 * We will do the space reservation dance during log replay,
1740 		 * which means we won't have fs_info->fs_root set, so don't do
1741 		 * the async reclaim as we will panic.
1742 		 */
1743 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1744 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1745 		    need_preemptive_reclaim(fs_info, space_info)) {
1746 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1747 						  orig_bytes, flush, "preempt");
1748 			queue_work(system_unbound_wq,
1749 				   &fs_info->preempt_reclaim_work);
1750 		}
1751 	}
1752 	spin_unlock(&space_info->lock);
1753 	if (!ret || !can_ticket(flush))
1754 		return ret;
1755 
1756 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1757 				     orig_bytes, flush);
1758 }
1759 
1760 /*
1761  * Try to reserve metadata bytes from the block_rsv's space.
1762  *
1763  * @fs_info:    the filesystem
1764  * @space_info: the space_info we're allocating for
1765  * @orig_bytes: number of bytes we want
1766  * @flush:      whether or not we can flush to make our reservation
1767  *
1768  * This will reserve orig_bytes number of bytes from the space info associated
1769  * with the block_rsv.  If there is not enough space it will make an attempt to
1770  * flush out space to make room.  It will do this by flushing delalloc if
1771  * possible or committing the transaction.  If flush is 0 then no attempts to
1772  * regain reservations will be made and this will fail if there is not enough
1773  * space already.
1774  */
1775 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1776 				 struct btrfs_space_info *space_info,
1777 				 u64 orig_bytes,
1778 				 enum btrfs_reserve_flush_enum flush)
1779 {
1780 	int ret;
1781 
1782 	ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1783 	if (ret == -ENOSPC) {
1784 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1785 					      space_info->flags, orig_bytes, 1);
1786 
1787 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1788 			btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1789 	}
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Try to reserve data bytes for an allocation.
1795  *
1796  * @fs_info: the filesystem
1797  * @bytes:   number of bytes we need
1798  * @flush:   how we are allowed to flush
1799  *
1800  * This will reserve bytes from the data space info.  If there is not enough
1801  * space then we will attempt to flush space as specified by flush.
1802  */
1803 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1804 			     enum btrfs_reserve_flush_enum flush)
1805 {
1806 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1807 	int ret;
1808 
1809 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1810 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1811 	       flush == BTRFS_RESERVE_NO_FLUSH);
1812 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1813 
1814 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1815 	if (ret == -ENOSPC) {
1816 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1817 					      data_sinfo->flags, bytes, 1);
1818 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1819 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1820 	}
1821 	return ret;
1822 }
1823 
1824 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1825 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1826 {
1827 	struct btrfs_space_info *space_info;
1828 
1829 	btrfs_info(fs_info, "dumping space info:");
1830 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1831 		spin_lock(&space_info->lock);
1832 		__btrfs_dump_space_info(fs_info, space_info);
1833 		spin_unlock(&space_info->lock);
1834 	}
1835 	dump_global_block_rsv(fs_info);
1836 }
1837 
1838 /*
1839  * Account the unused space of all the readonly block group in the space_info.
1840  * takes mirrors into account.
1841  */
1842 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1843 {
1844 	struct btrfs_block_group *block_group;
1845 	u64 free_bytes = 0;
1846 	int factor;
1847 
1848 	/* It's df, we don't care if it's racy */
1849 	if (list_empty(&sinfo->ro_bgs))
1850 		return 0;
1851 
1852 	spin_lock(&sinfo->lock);
1853 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1854 		spin_lock(&block_group->lock);
1855 
1856 		if (!block_group->ro) {
1857 			spin_unlock(&block_group->lock);
1858 			continue;
1859 		}
1860 
1861 		factor = btrfs_bg_type_to_factor(block_group->flags);
1862 		free_bytes += (block_group->length -
1863 			       block_group->used) * factor;
1864 
1865 		spin_unlock(&block_group->lock);
1866 	}
1867 	spin_unlock(&sinfo->lock);
1868 
1869 	return free_bytes;
1870 }
1871