xref: /linux/fs/btrfs/space-info.c (revision 288440de9e5fdb4a3ff73864850f080c1250fc81)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 
14 /*
15  * HOW DOES SPACE RESERVATION WORK
16  *
17  * If you want to know about delalloc specifically, there is a separate comment
18  * for that with the delalloc code.  This comment is about how the whole system
19  * works generally.
20  *
21  * BASIC CONCEPTS
22  *
23  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
24  *   There's a description of the bytes_ fields with the struct declaration,
25  *   refer to that for specifics on each field.  Suffice it to say that for
26  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
27  *   determining if there is space to make an allocation.  There is a space_info
28  *   for METADATA, SYSTEM, and DATA areas.
29  *
30  *   2) block_rsv's.  These are basically buckets for every different type of
31  *   metadata reservation we have.  You can see the comment in the block_rsv
32  *   code on the rules for each type, but generally block_rsv->reserved is how
33  *   much space is accounted for in space_info->bytes_may_use.
34  *
35  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
36  *   on the number of items we will want to modify.  We have one for changing
37  *   items, and one for inserting new items.  Generally we use these helpers to
38  *   determine the size of the block reserves, and then use the actual bytes
39  *   values to adjust the space_info counters.
40  *
41  * MAKING RESERVATIONS, THE NORMAL CASE
42  *
43  *   We call into either btrfs_reserve_data_bytes() or
44  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
45  *   num_bytes we want to reserve.
46  *
47  *   ->reserve
48  *     space_info->bytes_may_reserve += num_bytes
49  *
50  *   ->extent allocation
51  *     Call btrfs_add_reserved_bytes() which does
52  *     space_info->bytes_may_reserve -= num_bytes
53  *     space_info->bytes_reserved += extent_bytes
54  *
55  *   ->insert reference
56  *     Call btrfs_update_block_group() which does
57  *     space_info->bytes_reserved -= extent_bytes
58  *     space_info->bytes_used += extent_bytes
59  *
60  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
61  *
62  *   Assume we are unable to simply make the reservation because we do not have
63  *   enough space
64  *
65  *   -> __reserve_bytes
66  *     create a reserve_ticket with ->bytes set to our reservation, add it to
67  *     the tail of space_info->tickets, kick async flush thread
68  *
69  *   ->handle_reserve_ticket
70  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
71  *     on the ticket.
72  *
73  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
74  *     Flushes various things attempting to free up space.
75  *
76  *   -> btrfs_try_granting_tickets()
77  *     This is called by anything that either subtracts space from
78  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
79  *     space_info->total_bytes.  This loops through the ->priority_tickets and
80  *     then the ->tickets list checking to see if the reservation can be
81  *     completed.  If it can the space is added to space_info->bytes_may_use and
82  *     the ticket is woken up.
83  *
84  *   -> ticket wakeup
85  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
86  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
87  *     were interrupted.)
88  *
89  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
90  *
91  *   Same as the above, except we add ourselves to the
92  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
93  *   call flush_space() ourselves for the states that are safe for us to call
94  *   without deadlocking and hope for the best.
95  *
96  * THE FLUSHING STATES
97  *
98  *   Generally speaking we will have two cases for each state, a "nice" state
99  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
100  *   reduce the locking over head on the various trees, and even to keep from
101  *   doing any work at all in the case of delayed refs.  Each of these delayed
102  *   things however hold reservations, and so letting them run allows us to
103  *   reclaim space so we can make new reservations.
104  *
105  *   FLUSH_DELAYED_ITEMS
106  *     Every inode has a delayed item to update the inode.  Take a simple write
107  *     for example, we would update the inode item at write time to update the
108  *     mtime, and then again at finish_ordered_io() time in order to update the
109  *     isize or bytes.  We keep these delayed items to coalesce these operations
110  *     into a single operation done on demand.  These are an easy way to reclaim
111  *     metadata space.
112  *
113  *   FLUSH_DELALLOC
114  *     Look at the delalloc comment to get an idea of how much space is reserved
115  *     for delayed allocation.  We can reclaim some of this space simply by
116  *     running delalloc, but usually we need to wait for ordered extents to
117  *     reclaim the bulk of this space.
118  *
119  *   FLUSH_DELAYED_REFS
120  *     We have a block reserve for the outstanding delayed refs space, and every
121  *     delayed ref operation holds a reservation.  Running these is a quick way
122  *     to reclaim space, but we want to hold this until the end because COW can
123  *     churn a lot and we can avoid making some extent tree modifications if we
124  *     are able to delay for as long as possible.
125  *
126  *   ALLOC_CHUNK
127  *     We will skip this the first time through space reservation, because of
128  *     overcommit and we don't want to have a lot of useless metadata space when
129  *     our worst case reservations will likely never come true.
130  *
131  *   RUN_DELAYED_IPUTS
132  *     If we're freeing inodes we're likely freeing checksums, file extent
133  *     items, and extent tree items.  Loads of space could be freed up by these
134  *     operations, however they won't be usable until the transaction commits.
135  *
136  *   COMMIT_TRANS
137  *     This will commit the transaction.  Historically we had a lot of logic
138  *     surrounding whether or not we'd commit the transaction, but this waits born
139  *     out of a pre-tickets era where we could end up committing the transaction
140  *     thousands of times in a row without making progress.  Now thanks to our
141  *     ticketing system we know if we're not making progress and can error
142  *     everybody out after a few commits rather than burning the disk hoping for
143  *     a different answer.
144  *
145  * OVERCOMMIT
146  *
147  *   Because we hold so many reservations for metadata we will allow you to
148  *   reserve more space than is currently free in the currently allocate
149  *   metadata space.  This only happens with metadata, data does not allow
150  *   overcommitting.
151  *
152  *   You can see the current logic for when we allow overcommit in
153  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
154  *   is no unallocated space to be had, all reservations are kept within the
155  *   free space in the allocated metadata chunks.
156  *
157  *   Because of overcommitting, you generally want to use the
158  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
159  *   thing with or without extra unallocated space.
160  */
161 
162 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
163 			  bool may_use_included)
164 {
165 	ASSERT(s_info);
166 	return s_info->bytes_used + s_info->bytes_reserved +
167 		s_info->bytes_pinned + s_info->bytes_readonly +
168 		s_info->bytes_zone_unusable +
169 		(may_use_included ? s_info->bytes_may_use : 0);
170 }
171 
172 /*
173  * after adding space to the filesystem, we need to clear the full flags
174  * on all the space infos.
175  */
176 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
177 {
178 	struct list_head *head = &info->space_info;
179 	struct btrfs_space_info *found;
180 
181 	list_for_each_entry(found, head, list)
182 		found->full = 0;
183 }
184 
185 /*
186  * Block groups with more than this value (percents) of unusable space will be
187  * scheduled for background reclaim.
188  */
189 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
190 
191 /*
192  * Calculate chunk size depending on volume type (regular or zoned).
193  */
194 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
195 {
196 	if (btrfs_is_zoned(fs_info))
197 		return fs_info->zone_size;
198 
199 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
200 
201 	if (flags & BTRFS_BLOCK_GROUP_DATA)
202 		return SZ_1G;
203 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
204 		return SZ_32M;
205 
206 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
207 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
208 		return SZ_1G;
209 
210 	return SZ_256M;
211 }
212 
213 /*
214  * Update default chunk size.
215  */
216 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
217 					u64 chunk_size)
218 {
219 	WRITE_ONCE(space_info->chunk_size, chunk_size);
220 }
221 
222 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
223 {
224 
225 	struct btrfs_space_info *space_info;
226 	int i;
227 	int ret;
228 
229 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
230 	if (!space_info)
231 		return -ENOMEM;
232 
233 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
234 		INIT_LIST_HEAD(&space_info->block_groups[i]);
235 	init_rwsem(&space_info->groups_sem);
236 	spin_lock_init(&space_info->lock);
237 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
238 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
239 	INIT_LIST_HEAD(&space_info->ro_bgs);
240 	INIT_LIST_HEAD(&space_info->tickets);
241 	INIT_LIST_HEAD(&space_info->priority_tickets);
242 	space_info->clamp = 1;
243 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
244 
245 	if (btrfs_is_zoned(info))
246 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
247 
248 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
249 	if (ret)
250 		return ret;
251 
252 	list_add(&space_info->list, &info->space_info);
253 	if (flags & BTRFS_BLOCK_GROUP_DATA)
254 		info->data_sinfo = space_info;
255 
256 	return ret;
257 }
258 
259 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
260 {
261 	struct btrfs_super_block *disk_super;
262 	u64 features;
263 	u64 flags;
264 	int mixed = 0;
265 	int ret;
266 
267 	disk_super = fs_info->super_copy;
268 	if (!btrfs_super_root(disk_super))
269 		return -EINVAL;
270 
271 	features = btrfs_super_incompat_flags(disk_super);
272 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
273 		mixed = 1;
274 
275 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
276 	ret = create_space_info(fs_info, flags);
277 	if (ret)
278 		goto out;
279 
280 	if (mixed) {
281 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
282 		ret = create_space_info(fs_info, flags);
283 	} else {
284 		flags = BTRFS_BLOCK_GROUP_METADATA;
285 		ret = create_space_info(fs_info, flags);
286 		if (ret)
287 			goto out;
288 
289 		flags = BTRFS_BLOCK_GROUP_DATA;
290 		ret = create_space_info(fs_info, flags);
291 	}
292 out:
293 	return ret;
294 }
295 
296 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
297 			     u64 total_bytes, u64 bytes_used,
298 			     u64 bytes_readonly, u64 bytes_zone_unusable,
299 			     bool active, struct btrfs_space_info **space_info)
300 {
301 	struct btrfs_space_info *found;
302 	int factor;
303 
304 	factor = btrfs_bg_type_to_factor(flags);
305 
306 	found = btrfs_find_space_info(info, flags);
307 	ASSERT(found);
308 	spin_lock(&found->lock);
309 	found->total_bytes += total_bytes;
310 	if (active)
311 		found->active_total_bytes += total_bytes;
312 	found->disk_total += total_bytes * factor;
313 	found->bytes_used += bytes_used;
314 	found->disk_used += bytes_used * factor;
315 	found->bytes_readonly += bytes_readonly;
316 	found->bytes_zone_unusable += bytes_zone_unusable;
317 	if (total_bytes > 0)
318 		found->full = 0;
319 	btrfs_try_granting_tickets(info, found);
320 	spin_unlock(&found->lock);
321 	*space_info = found;
322 }
323 
324 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
325 					       u64 flags)
326 {
327 	struct list_head *head = &info->space_info;
328 	struct btrfs_space_info *found;
329 
330 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
331 
332 	list_for_each_entry(found, head, list) {
333 		if (found->flags & flags)
334 			return found;
335 	}
336 	return NULL;
337 }
338 
339 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
340 			  struct btrfs_space_info *space_info,
341 			  enum btrfs_reserve_flush_enum flush)
342 {
343 	u64 profile;
344 	u64 avail;
345 	int factor;
346 
347 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
348 		profile = btrfs_system_alloc_profile(fs_info);
349 	else
350 		profile = btrfs_metadata_alloc_profile(fs_info);
351 
352 	avail = atomic64_read(&fs_info->free_chunk_space);
353 
354 	/*
355 	 * If we have dup, raid1 or raid10 then only half of the free
356 	 * space is actually usable.  For raid56, the space info used
357 	 * doesn't include the parity drive, so we don't have to
358 	 * change the math
359 	 */
360 	factor = btrfs_bg_type_to_factor(profile);
361 	avail = div_u64(avail, factor);
362 
363 	/*
364 	 * If we aren't flushing all things, let us overcommit up to
365 	 * 1/2th of the space. If we can flush, don't let us overcommit
366 	 * too much, let it overcommit up to 1/8 of the space.
367 	 */
368 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
369 		avail >>= 3;
370 	else
371 		avail >>= 1;
372 	return avail;
373 }
374 
375 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
376 				       struct btrfs_space_info *space_info)
377 {
378 	/*
379 	 * On regular filesystem, all total_bytes are always writable. On zoned
380 	 * filesystem, there may be a limitation imposed by max_active_zones.
381 	 * For metadata allocation, we cannot finish an existing active block
382 	 * group to avoid a deadlock. Thus, we need to consider only the active
383 	 * groups to be writable for metadata space.
384 	 */
385 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
386 		return space_info->total_bytes;
387 
388 	return space_info->active_total_bytes;
389 }
390 
391 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
392 			 struct btrfs_space_info *space_info, u64 bytes,
393 			 enum btrfs_reserve_flush_enum flush)
394 {
395 	u64 avail;
396 	u64 used;
397 
398 	/* Don't overcommit when in mixed mode */
399 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
400 		return 0;
401 
402 	used = btrfs_space_info_used(space_info, true);
403 	if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
404 		avail = 0;
405 	else
406 		avail = calc_available_free_space(fs_info, space_info, flush);
407 
408 	if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
409 		return 1;
410 	return 0;
411 }
412 
413 static void remove_ticket(struct btrfs_space_info *space_info,
414 			  struct reserve_ticket *ticket)
415 {
416 	if (!list_empty(&ticket->list)) {
417 		list_del_init(&ticket->list);
418 		ASSERT(space_info->reclaim_size >= ticket->bytes);
419 		space_info->reclaim_size -= ticket->bytes;
420 	}
421 }
422 
423 /*
424  * This is for space we already have accounted in space_info->bytes_may_use, so
425  * basically when we're returning space from block_rsv's.
426  */
427 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
428 				struct btrfs_space_info *space_info)
429 {
430 	struct list_head *head;
431 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
432 
433 	lockdep_assert_held(&space_info->lock);
434 
435 	head = &space_info->priority_tickets;
436 again:
437 	while (!list_empty(head)) {
438 		struct reserve_ticket *ticket;
439 		u64 used = btrfs_space_info_used(space_info, true);
440 
441 		ticket = list_first_entry(head, struct reserve_ticket, list);
442 
443 		/* Check and see if our ticket can be satisfied now. */
444 		if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
445 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
446 					 flush)) {
447 			btrfs_space_info_update_bytes_may_use(fs_info,
448 							      space_info,
449 							      ticket->bytes);
450 			remove_ticket(space_info, ticket);
451 			ticket->bytes = 0;
452 			space_info->tickets_id++;
453 			wake_up(&ticket->wait);
454 		} else {
455 			break;
456 		}
457 	}
458 
459 	if (head == &space_info->priority_tickets) {
460 		head = &space_info->tickets;
461 		flush = BTRFS_RESERVE_FLUSH_ALL;
462 		goto again;
463 	}
464 }
465 
466 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
467 do {									\
468 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
469 	spin_lock(&__rsv->lock);					\
470 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
471 		   __rsv->size, __rsv->reserved);			\
472 	spin_unlock(&__rsv->lock);					\
473 } while (0)
474 
475 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
476 				    struct btrfs_space_info *info)
477 {
478 	lockdep_assert_held(&info->lock);
479 
480 	/* The free space could be negative in case of overcommit */
481 	btrfs_info(fs_info, "space_info %llu has %lld free, is %sfull",
482 		   info->flags,
483 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
484 		   info->full ? "" : "not ");
485 	btrfs_info(fs_info,
486 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
487 		info->total_bytes, info->bytes_used, info->bytes_pinned,
488 		info->bytes_reserved, info->bytes_may_use,
489 		info->bytes_readonly, info->bytes_zone_unusable);
490 
491 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
492 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
493 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
494 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
495 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
496 
497 }
498 
499 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
500 			   struct btrfs_space_info *info, u64 bytes,
501 			   int dump_block_groups)
502 {
503 	struct btrfs_block_group *cache;
504 	int index = 0;
505 
506 	spin_lock(&info->lock);
507 	__btrfs_dump_space_info(fs_info, info);
508 	spin_unlock(&info->lock);
509 
510 	if (!dump_block_groups)
511 		return;
512 
513 	down_read(&info->groups_sem);
514 again:
515 	list_for_each_entry(cache, &info->block_groups[index], list) {
516 		spin_lock(&cache->lock);
517 		btrfs_info(fs_info,
518 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
519 			cache->start, cache->length, cache->used, cache->pinned,
520 			cache->reserved, cache->zone_unusable,
521 			cache->ro ? "[readonly]" : "");
522 		spin_unlock(&cache->lock);
523 		btrfs_dump_free_space(cache, bytes);
524 	}
525 	if (++index < BTRFS_NR_RAID_TYPES)
526 		goto again;
527 	up_read(&info->groups_sem);
528 }
529 
530 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
531 					u64 to_reclaim)
532 {
533 	u64 bytes;
534 	u64 nr;
535 
536 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
537 	nr = div64_u64(to_reclaim, bytes);
538 	if (!nr)
539 		nr = 1;
540 	return nr;
541 }
542 
543 #define EXTENT_SIZE_PER_ITEM	SZ_256K
544 
545 /*
546  * shrink metadata reservation for delalloc
547  */
548 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
549 			    struct btrfs_space_info *space_info,
550 			    u64 to_reclaim, bool wait_ordered,
551 			    bool for_preempt)
552 {
553 	struct btrfs_trans_handle *trans;
554 	u64 delalloc_bytes;
555 	u64 ordered_bytes;
556 	u64 items;
557 	long time_left;
558 	int loops;
559 
560 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
561 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
562 	if (delalloc_bytes == 0 && ordered_bytes == 0)
563 		return;
564 
565 	/* Calc the number of the pages we need flush for space reservation */
566 	if (to_reclaim == U64_MAX) {
567 		items = U64_MAX;
568 	} else {
569 		/*
570 		 * to_reclaim is set to however much metadata we need to
571 		 * reclaim, but reclaiming that much data doesn't really track
572 		 * exactly.  What we really want to do is reclaim full inode's
573 		 * worth of reservations, however that's not available to us
574 		 * here.  We will take a fraction of the delalloc bytes for our
575 		 * flushing loops and hope for the best.  Delalloc will expand
576 		 * the amount we write to cover an entire dirty extent, which
577 		 * will reclaim the metadata reservation for that range.  If
578 		 * it's not enough subsequent flush stages will be more
579 		 * aggressive.
580 		 */
581 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
582 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
583 	}
584 
585 	trans = current->journal_info;
586 
587 	/*
588 	 * If we are doing more ordered than delalloc we need to just wait on
589 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
590 	 * that likely won't give us the space back we need.
591 	 */
592 	if (ordered_bytes > delalloc_bytes && !for_preempt)
593 		wait_ordered = true;
594 
595 	loops = 0;
596 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
597 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
598 		long nr_pages = min_t(u64, temp, LONG_MAX);
599 		int async_pages;
600 
601 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
602 
603 		/*
604 		 * We need to make sure any outstanding async pages are now
605 		 * processed before we continue.  This is because things like
606 		 * sync_inode() try to be smart and skip writing if the inode is
607 		 * marked clean.  We don't use filemap_fwrite for flushing
608 		 * because we want to control how many pages we write out at a
609 		 * time, thus this is the only safe way to make sure we've
610 		 * waited for outstanding compressed workers to have started
611 		 * their jobs and thus have ordered extents set up properly.
612 		 *
613 		 * This exists because we do not want to wait for each
614 		 * individual inode to finish its async work, we simply want to
615 		 * start the IO on everybody, and then come back here and wait
616 		 * for all of the async work to catch up.  Once we're done with
617 		 * that we know we'll have ordered extents for everything and we
618 		 * can decide if we wait for that or not.
619 		 *
620 		 * If we choose to replace this in the future, make absolutely
621 		 * sure that the proper waiting is being done in the async case,
622 		 * as there have been bugs in that area before.
623 		 */
624 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
625 		if (!async_pages)
626 			goto skip_async;
627 
628 		/*
629 		 * We don't want to wait forever, if we wrote less pages in this
630 		 * loop than we have outstanding, only wait for that number of
631 		 * pages, otherwise we can wait for all async pages to finish
632 		 * before continuing.
633 		 */
634 		if (async_pages > nr_pages)
635 			async_pages -= nr_pages;
636 		else
637 			async_pages = 0;
638 		wait_event(fs_info->async_submit_wait,
639 			   atomic_read(&fs_info->async_delalloc_pages) <=
640 			   async_pages);
641 skip_async:
642 		loops++;
643 		if (wait_ordered && !trans) {
644 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
645 		} else {
646 			time_left = schedule_timeout_killable(1);
647 			if (time_left)
648 				break;
649 		}
650 
651 		/*
652 		 * If we are for preemption we just want a one-shot of delalloc
653 		 * flushing so we can stop flushing if we decide we don't need
654 		 * to anymore.
655 		 */
656 		if (for_preempt)
657 			break;
658 
659 		spin_lock(&space_info->lock);
660 		if (list_empty(&space_info->tickets) &&
661 		    list_empty(&space_info->priority_tickets)) {
662 			spin_unlock(&space_info->lock);
663 			break;
664 		}
665 		spin_unlock(&space_info->lock);
666 
667 		delalloc_bytes = percpu_counter_sum_positive(
668 						&fs_info->delalloc_bytes);
669 		ordered_bytes = percpu_counter_sum_positive(
670 						&fs_info->ordered_bytes);
671 	}
672 }
673 
674 /*
675  * Try to flush some data based on policy set by @state. This is only advisory
676  * and may fail for various reasons. The caller is supposed to examine the
677  * state of @space_info to detect the outcome.
678  */
679 static void flush_space(struct btrfs_fs_info *fs_info,
680 		       struct btrfs_space_info *space_info, u64 num_bytes,
681 		       enum btrfs_flush_state state, bool for_preempt)
682 {
683 	struct btrfs_root *root = fs_info->tree_root;
684 	struct btrfs_trans_handle *trans;
685 	int nr;
686 	int ret = 0;
687 
688 	switch (state) {
689 	case FLUSH_DELAYED_ITEMS_NR:
690 	case FLUSH_DELAYED_ITEMS:
691 		if (state == FLUSH_DELAYED_ITEMS_NR)
692 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
693 		else
694 			nr = -1;
695 
696 		trans = btrfs_join_transaction(root);
697 		if (IS_ERR(trans)) {
698 			ret = PTR_ERR(trans);
699 			break;
700 		}
701 		ret = btrfs_run_delayed_items_nr(trans, nr);
702 		btrfs_end_transaction(trans);
703 		break;
704 	case FLUSH_DELALLOC:
705 	case FLUSH_DELALLOC_WAIT:
706 	case FLUSH_DELALLOC_FULL:
707 		if (state == FLUSH_DELALLOC_FULL)
708 			num_bytes = U64_MAX;
709 		shrink_delalloc(fs_info, space_info, num_bytes,
710 				state != FLUSH_DELALLOC, for_preempt);
711 		break;
712 	case FLUSH_DELAYED_REFS_NR:
713 	case FLUSH_DELAYED_REFS:
714 		trans = btrfs_join_transaction(root);
715 		if (IS_ERR(trans)) {
716 			ret = PTR_ERR(trans);
717 			break;
718 		}
719 		if (state == FLUSH_DELAYED_REFS_NR)
720 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
721 		else
722 			nr = 0;
723 		btrfs_run_delayed_refs(trans, nr);
724 		btrfs_end_transaction(trans);
725 		break;
726 	case ALLOC_CHUNK:
727 	case ALLOC_CHUNK_FORCE:
728 		/*
729 		 * For metadata space on zoned filesystem, reaching here means we
730 		 * don't have enough space left in active_total_bytes. Try to
731 		 * activate a block group first, because we may have inactive
732 		 * block group already allocated.
733 		 */
734 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
735 		if (ret < 0)
736 			break;
737 		else if (ret == 1)
738 			break;
739 
740 		trans = btrfs_join_transaction(root);
741 		if (IS_ERR(trans)) {
742 			ret = PTR_ERR(trans);
743 			break;
744 		}
745 		ret = btrfs_chunk_alloc(trans,
746 				btrfs_get_alloc_profile(fs_info, space_info->flags),
747 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
748 					CHUNK_ALLOC_FORCE);
749 		btrfs_end_transaction(trans);
750 
751 		/*
752 		 * For metadata space on zoned filesystem, allocating a new chunk
753 		 * is not enough. We still need to activate the block * group.
754 		 * Active the newly allocated block group by (maybe) finishing
755 		 * a block group.
756 		 */
757 		if (ret == 1) {
758 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
759 			/*
760 			 * Revert to the original ret regardless we could finish
761 			 * one block group or not.
762 			 */
763 			if (ret >= 0)
764 				ret = 1;
765 		}
766 
767 		if (ret > 0 || ret == -ENOSPC)
768 			ret = 0;
769 		break;
770 	case RUN_DELAYED_IPUTS:
771 		/*
772 		 * If we have pending delayed iputs then we could free up a
773 		 * bunch of pinned space, so make sure we run the iputs before
774 		 * we do our pinned bytes check below.
775 		 */
776 		btrfs_run_delayed_iputs(fs_info);
777 		btrfs_wait_on_delayed_iputs(fs_info);
778 		break;
779 	case COMMIT_TRANS:
780 		ASSERT(current->journal_info == NULL);
781 		trans = btrfs_join_transaction(root);
782 		if (IS_ERR(trans)) {
783 			ret = PTR_ERR(trans);
784 			break;
785 		}
786 		ret = btrfs_commit_transaction(trans);
787 		break;
788 	default:
789 		ret = -ENOSPC;
790 		break;
791 	}
792 
793 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
794 				ret, for_preempt);
795 	return;
796 }
797 
798 static inline u64
799 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
800 				 struct btrfs_space_info *space_info)
801 {
802 	u64 used;
803 	u64 avail;
804 	u64 total;
805 	u64 to_reclaim = space_info->reclaim_size;
806 
807 	lockdep_assert_held(&space_info->lock);
808 
809 	avail = calc_available_free_space(fs_info, space_info,
810 					  BTRFS_RESERVE_FLUSH_ALL);
811 	used = btrfs_space_info_used(space_info, true);
812 
813 	/*
814 	 * We may be flushing because suddenly we have less space than we had
815 	 * before, and now we're well over-committed based on our current free
816 	 * space.  If that's the case add in our overage so we make sure to put
817 	 * appropriate pressure on the flushing state machine.
818 	 */
819 	total = writable_total_bytes(fs_info, space_info);
820 	if (total + avail < used)
821 		to_reclaim += used - (total + avail);
822 
823 	return to_reclaim;
824 }
825 
826 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
827 				    struct btrfs_space_info *space_info)
828 {
829 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
830 	u64 ordered, delalloc;
831 	u64 total = writable_total_bytes(fs_info, space_info);
832 	u64 thresh;
833 	u64 used;
834 
835 	thresh = div_factor_fine(total, 90);
836 
837 	lockdep_assert_held(&space_info->lock);
838 
839 	/* If we're just plain full then async reclaim just slows us down. */
840 	if ((space_info->bytes_used + space_info->bytes_reserved +
841 	     global_rsv_size) >= thresh)
842 		return false;
843 
844 	used = space_info->bytes_may_use + space_info->bytes_pinned;
845 
846 	/* The total flushable belongs to the global rsv, don't flush. */
847 	if (global_rsv_size >= used)
848 		return false;
849 
850 	/*
851 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
852 	 * that devoted to other reservations then there's no sense in flushing,
853 	 * we don't have a lot of things that need flushing.
854 	 */
855 	if (used - global_rsv_size <= SZ_128M)
856 		return false;
857 
858 	/*
859 	 * We have tickets queued, bail so we don't compete with the async
860 	 * flushers.
861 	 */
862 	if (space_info->reclaim_size)
863 		return false;
864 
865 	/*
866 	 * If we have over half of the free space occupied by reservations or
867 	 * pinned then we want to start flushing.
868 	 *
869 	 * We do not do the traditional thing here, which is to say
870 	 *
871 	 *   if (used >= ((total_bytes + avail) / 2))
872 	 *     return 1;
873 	 *
874 	 * because this doesn't quite work how we want.  If we had more than 50%
875 	 * of the space_info used by bytes_used and we had 0 available we'd just
876 	 * constantly run the background flusher.  Instead we want it to kick in
877 	 * if our reclaimable space exceeds our clamped free space.
878 	 *
879 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
880 	 * the following:
881 	 *
882 	 * Amount of RAM        Minimum threshold       Maximum threshold
883 	 *
884 	 *        256GiB                     1GiB                  128GiB
885 	 *        128GiB                   512MiB                   64GiB
886 	 *         64GiB                   256MiB                   32GiB
887 	 *         32GiB                   128MiB                   16GiB
888 	 *         16GiB                    64MiB                    8GiB
889 	 *
890 	 * These are the range our thresholds will fall in, corresponding to how
891 	 * much delalloc we need for the background flusher to kick in.
892 	 */
893 
894 	thresh = calc_available_free_space(fs_info, space_info,
895 					   BTRFS_RESERVE_FLUSH_ALL);
896 	used = space_info->bytes_used + space_info->bytes_reserved +
897 	       space_info->bytes_readonly + global_rsv_size;
898 	if (used < total)
899 		thresh += total - used;
900 	thresh >>= space_info->clamp;
901 
902 	used = space_info->bytes_pinned;
903 
904 	/*
905 	 * If we have more ordered bytes than delalloc bytes then we're either
906 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
907 	 * around.  Preemptive flushing is only useful in that it can free up
908 	 * space before tickets need to wait for things to finish.  In the case
909 	 * of ordered extents, preemptively waiting on ordered extents gets us
910 	 * nothing, if our reservations are tied up in ordered extents we'll
911 	 * simply have to slow down writers by forcing them to wait on ordered
912 	 * extents.
913 	 *
914 	 * In the case that ordered is larger than delalloc, only include the
915 	 * block reserves that we would actually be able to directly reclaim
916 	 * from.  In this case if we're heavy on metadata operations this will
917 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
918 	 * of heavy DIO or ordered reservations, preemptive flushing will just
919 	 * waste time and cause us to slow down.
920 	 *
921 	 * We want to make sure we truly are maxed out on ordered however, so
922 	 * cut ordered in half, and if it's still higher than delalloc then we
923 	 * can keep flushing.  This is to avoid the case where we start
924 	 * flushing, and now delalloc == ordered and we stop preemptively
925 	 * flushing when we could still have several gigs of delalloc to flush.
926 	 */
927 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
928 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
929 	if (ordered >= delalloc)
930 		used += fs_info->delayed_refs_rsv.reserved +
931 			fs_info->delayed_block_rsv.reserved;
932 	else
933 		used += space_info->bytes_may_use - global_rsv_size;
934 
935 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
936 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
937 }
938 
939 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
940 				  struct btrfs_space_info *space_info,
941 				  struct reserve_ticket *ticket)
942 {
943 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
944 	u64 min_bytes;
945 
946 	if (!ticket->steal)
947 		return false;
948 
949 	if (global_rsv->space_info != space_info)
950 		return false;
951 
952 	spin_lock(&global_rsv->lock);
953 	min_bytes = div_factor(global_rsv->size, 1);
954 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
955 		spin_unlock(&global_rsv->lock);
956 		return false;
957 	}
958 	global_rsv->reserved -= ticket->bytes;
959 	remove_ticket(space_info, ticket);
960 	ticket->bytes = 0;
961 	wake_up(&ticket->wait);
962 	space_info->tickets_id++;
963 	if (global_rsv->reserved < global_rsv->size)
964 		global_rsv->full = 0;
965 	spin_unlock(&global_rsv->lock);
966 
967 	return true;
968 }
969 
970 /*
971  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
972  * @fs_info - fs_info for this fs
973  * @space_info - the space info we were flushing
974  *
975  * We call this when we've exhausted our flushing ability and haven't made
976  * progress in satisfying tickets.  The reservation code handles tickets in
977  * order, so if there is a large ticket first and then smaller ones we could
978  * very well satisfy the smaller tickets.  This will attempt to wake up any
979  * tickets in the list to catch this case.
980  *
981  * This function returns true if it was able to make progress by clearing out
982  * other tickets, or if it stumbles across a ticket that was smaller than the
983  * first ticket.
984  */
985 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
986 				   struct btrfs_space_info *space_info)
987 {
988 	struct reserve_ticket *ticket;
989 	u64 tickets_id = space_info->tickets_id;
990 	const bool aborted = BTRFS_FS_ERROR(fs_info);
991 
992 	trace_btrfs_fail_all_tickets(fs_info, space_info);
993 
994 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
995 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
996 		__btrfs_dump_space_info(fs_info, space_info);
997 	}
998 
999 	while (!list_empty(&space_info->tickets) &&
1000 	       tickets_id == space_info->tickets_id) {
1001 		ticket = list_first_entry(&space_info->tickets,
1002 					  struct reserve_ticket, list);
1003 
1004 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1005 			return true;
1006 
1007 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1008 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1009 				   ticket->bytes);
1010 
1011 		remove_ticket(space_info, ticket);
1012 		if (aborted)
1013 			ticket->error = -EIO;
1014 		else
1015 			ticket->error = -ENOSPC;
1016 		wake_up(&ticket->wait);
1017 
1018 		/*
1019 		 * We're just throwing tickets away, so more flushing may not
1020 		 * trip over btrfs_try_granting_tickets, so we need to call it
1021 		 * here to see if we can make progress with the next ticket in
1022 		 * the list.
1023 		 */
1024 		if (!aborted)
1025 			btrfs_try_granting_tickets(fs_info, space_info);
1026 	}
1027 	return (tickets_id != space_info->tickets_id);
1028 }
1029 
1030 /*
1031  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1032  * will loop and continuously try to flush as long as we are making progress.
1033  * We count progress as clearing off tickets each time we have to loop.
1034  */
1035 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1036 {
1037 	struct btrfs_fs_info *fs_info;
1038 	struct btrfs_space_info *space_info;
1039 	u64 to_reclaim;
1040 	enum btrfs_flush_state flush_state;
1041 	int commit_cycles = 0;
1042 	u64 last_tickets_id;
1043 
1044 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1045 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1046 
1047 	spin_lock(&space_info->lock);
1048 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1049 	if (!to_reclaim) {
1050 		space_info->flush = 0;
1051 		spin_unlock(&space_info->lock);
1052 		return;
1053 	}
1054 	last_tickets_id = space_info->tickets_id;
1055 	spin_unlock(&space_info->lock);
1056 
1057 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1058 	do {
1059 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1060 		spin_lock(&space_info->lock);
1061 		if (list_empty(&space_info->tickets)) {
1062 			space_info->flush = 0;
1063 			spin_unlock(&space_info->lock);
1064 			return;
1065 		}
1066 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1067 							      space_info);
1068 		if (last_tickets_id == space_info->tickets_id) {
1069 			flush_state++;
1070 		} else {
1071 			last_tickets_id = space_info->tickets_id;
1072 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1073 			if (commit_cycles)
1074 				commit_cycles--;
1075 		}
1076 
1077 		/*
1078 		 * We do not want to empty the system of delalloc unless we're
1079 		 * under heavy pressure, so allow one trip through the flushing
1080 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1081 		 */
1082 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1083 			flush_state++;
1084 
1085 		/*
1086 		 * We don't want to force a chunk allocation until we've tried
1087 		 * pretty hard to reclaim space.  Think of the case where we
1088 		 * freed up a bunch of space and so have a lot of pinned space
1089 		 * to reclaim.  We would rather use that than possibly create a
1090 		 * underutilized metadata chunk.  So if this is our first run
1091 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1092 		 * commit the transaction.  If nothing has changed the next go
1093 		 * around then we can force a chunk allocation.
1094 		 */
1095 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1096 			flush_state++;
1097 
1098 		if (flush_state > COMMIT_TRANS) {
1099 			commit_cycles++;
1100 			if (commit_cycles > 2) {
1101 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1102 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1103 					commit_cycles--;
1104 				} else {
1105 					space_info->flush = 0;
1106 				}
1107 			} else {
1108 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1109 			}
1110 		}
1111 		spin_unlock(&space_info->lock);
1112 	} while (flush_state <= COMMIT_TRANS);
1113 }
1114 
1115 /*
1116  * This handles pre-flushing of metadata space before we get to the point that
1117  * we need to start blocking threads on tickets.  The logic here is different
1118  * from the other flush paths because it doesn't rely on tickets to tell us how
1119  * much we need to flush, instead it attempts to keep us below the 80% full
1120  * watermark of space by flushing whichever reservation pool is currently the
1121  * largest.
1122  */
1123 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1124 {
1125 	struct btrfs_fs_info *fs_info;
1126 	struct btrfs_space_info *space_info;
1127 	struct btrfs_block_rsv *delayed_block_rsv;
1128 	struct btrfs_block_rsv *delayed_refs_rsv;
1129 	struct btrfs_block_rsv *global_rsv;
1130 	struct btrfs_block_rsv *trans_rsv;
1131 	int loops = 0;
1132 
1133 	fs_info = container_of(work, struct btrfs_fs_info,
1134 			       preempt_reclaim_work);
1135 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1136 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1137 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1138 	global_rsv = &fs_info->global_block_rsv;
1139 	trans_rsv = &fs_info->trans_block_rsv;
1140 
1141 	spin_lock(&space_info->lock);
1142 	while (need_preemptive_reclaim(fs_info, space_info)) {
1143 		enum btrfs_flush_state flush;
1144 		u64 delalloc_size = 0;
1145 		u64 to_reclaim, block_rsv_size;
1146 		u64 global_rsv_size = global_rsv->reserved;
1147 
1148 		loops++;
1149 
1150 		/*
1151 		 * We don't have a precise counter for the metadata being
1152 		 * reserved for delalloc, so we'll approximate it by subtracting
1153 		 * out the block rsv's space from the bytes_may_use.  If that
1154 		 * amount is higher than the individual reserves, then we can
1155 		 * assume it's tied up in delalloc reservations.
1156 		 */
1157 		block_rsv_size = global_rsv_size +
1158 			delayed_block_rsv->reserved +
1159 			delayed_refs_rsv->reserved +
1160 			trans_rsv->reserved;
1161 		if (block_rsv_size < space_info->bytes_may_use)
1162 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1163 
1164 		/*
1165 		 * We don't want to include the global_rsv in our calculation,
1166 		 * because that's space we can't touch.  Subtract it from the
1167 		 * block_rsv_size for the next checks.
1168 		 */
1169 		block_rsv_size -= global_rsv_size;
1170 
1171 		/*
1172 		 * We really want to avoid flushing delalloc too much, as it
1173 		 * could result in poor allocation patterns, so only flush it if
1174 		 * it's larger than the rest of the pools combined.
1175 		 */
1176 		if (delalloc_size > block_rsv_size) {
1177 			to_reclaim = delalloc_size;
1178 			flush = FLUSH_DELALLOC;
1179 		} else if (space_info->bytes_pinned >
1180 			   (delayed_block_rsv->reserved +
1181 			    delayed_refs_rsv->reserved)) {
1182 			to_reclaim = space_info->bytes_pinned;
1183 			flush = COMMIT_TRANS;
1184 		} else if (delayed_block_rsv->reserved >
1185 			   delayed_refs_rsv->reserved) {
1186 			to_reclaim = delayed_block_rsv->reserved;
1187 			flush = FLUSH_DELAYED_ITEMS_NR;
1188 		} else {
1189 			to_reclaim = delayed_refs_rsv->reserved;
1190 			flush = FLUSH_DELAYED_REFS_NR;
1191 		}
1192 
1193 		spin_unlock(&space_info->lock);
1194 
1195 		/*
1196 		 * We don't want to reclaim everything, just a portion, so scale
1197 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1198 		 * reclaim 1 items worth.
1199 		 */
1200 		to_reclaim >>= 2;
1201 		if (!to_reclaim)
1202 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1203 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1204 		cond_resched();
1205 		spin_lock(&space_info->lock);
1206 	}
1207 
1208 	/* We only went through once, back off our clamping. */
1209 	if (loops == 1 && !space_info->reclaim_size)
1210 		space_info->clamp = max(1, space_info->clamp - 1);
1211 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1212 	spin_unlock(&space_info->lock);
1213 }
1214 
1215 /*
1216  * FLUSH_DELALLOC_WAIT:
1217  *   Space is freed from flushing delalloc in one of two ways.
1218  *
1219  *   1) compression is on and we allocate less space than we reserved
1220  *   2) we are overwriting existing space
1221  *
1222  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1223  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1224  *   length to ->bytes_reserved, and subtracts the reserved space from
1225  *   ->bytes_may_use.
1226  *
1227  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1228  *   extent in the range we are overwriting, which creates a delayed ref for
1229  *   that freed extent.  This however is not reclaimed until the transaction
1230  *   commits, thus the next stages.
1231  *
1232  * RUN_DELAYED_IPUTS
1233  *   If we are freeing inodes, we want to make sure all delayed iputs have
1234  *   completed, because they could have been on an inode with i_nlink == 0, and
1235  *   thus have been truncated and freed up space.  But again this space is not
1236  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1237  *   run and then the transaction must be committed.
1238  *
1239  * COMMIT_TRANS
1240  *   This is where we reclaim all of the pinned space generated by running the
1241  *   iputs
1242  *
1243  * ALLOC_CHUNK_FORCE
1244  *   For data we start with alloc chunk force, however we could have been full
1245  *   before, and then the transaction commit could have freed new block groups,
1246  *   so if we now have space to allocate do the force chunk allocation.
1247  */
1248 static const enum btrfs_flush_state data_flush_states[] = {
1249 	FLUSH_DELALLOC_FULL,
1250 	RUN_DELAYED_IPUTS,
1251 	COMMIT_TRANS,
1252 	ALLOC_CHUNK_FORCE,
1253 };
1254 
1255 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1256 {
1257 	struct btrfs_fs_info *fs_info;
1258 	struct btrfs_space_info *space_info;
1259 	u64 last_tickets_id;
1260 	enum btrfs_flush_state flush_state = 0;
1261 
1262 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1263 	space_info = fs_info->data_sinfo;
1264 
1265 	spin_lock(&space_info->lock);
1266 	if (list_empty(&space_info->tickets)) {
1267 		space_info->flush = 0;
1268 		spin_unlock(&space_info->lock);
1269 		return;
1270 	}
1271 	last_tickets_id = space_info->tickets_id;
1272 	spin_unlock(&space_info->lock);
1273 
1274 	while (!space_info->full) {
1275 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1276 		spin_lock(&space_info->lock);
1277 		if (list_empty(&space_info->tickets)) {
1278 			space_info->flush = 0;
1279 			spin_unlock(&space_info->lock);
1280 			return;
1281 		}
1282 
1283 		/* Something happened, fail everything and bail. */
1284 		if (BTRFS_FS_ERROR(fs_info))
1285 			goto aborted_fs;
1286 		last_tickets_id = space_info->tickets_id;
1287 		spin_unlock(&space_info->lock);
1288 	}
1289 
1290 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1291 		flush_space(fs_info, space_info, U64_MAX,
1292 			    data_flush_states[flush_state], false);
1293 		spin_lock(&space_info->lock);
1294 		if (list_empty(&space_info->tickets)) {
1295 			space_info->flush = 0;
1296 			spin_unlock(&space_info->lock);
1297 			return;
1298 		}
1299 
1300 		if (last_tickets_id == space_info->tickets_id) {
1301 			flush_state++;
1302 		} else {
1303 			last_tickets_id = space_info->tickets_id;
1304 			flush_state = 0;
1305 		}
1306 
1307 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1308 			if (space_info->full) {
1309 				if (maybe_fail_all_tickets(fs_info, space_info))
1310 					flush_state = 0;
1311 				else
1312 					space_info->flush = 0;
1313 			} else {
1314 				flush_state = 0;
1315 			}
1316 
1317 			/* Something happened, fail everything and bail. */
1318 			if (BTRFS_FS_ERROR(fs_info))
1319 				goto aborted_fs;
1320 
1321 		}
1322 		spin_unlock(&space_info->lock);
1323 	}
1324 	return;
1325 
1326 aborted_fs:
1327 	maybe_fail_all_tickets(fs_info, space_info);
1328 	space_info->flush = 0;
1329 	spin_unlock(&space_info->lock);
1330 }
1331 
1332 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1333 {
1334 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1335 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1336 	INIT_WORK(&fs_info->preempt_reclaim_work,
1337 		  btrfs_preempt_reclaim_metadata_space);
1338 }
1339 
1340 static const enum btrfs_flush_state priority_flush_states[] = {
1341 	FLUSH_DELAYED_ITEMS_NR,
1342 	FLUSH_DELAYED_ITEMS,
1343 	ALLOC_CHUNK,
1344 };
1345 
1346 static const enum btrfs_flush_state evict_flush_states[] = {
1347 	FLUSH_DELAYED_ITEMS_NR,
1348 	FLUSH_DELAYED_ITEMS,
1349 	FLUSH_DELAYED_REFS_NR,
1350 	FLUSH_DELAYED_REFS,
1351 	FLUSH_DELALLOC,
1352 	FLUSH_DELALLOC_WAIT,
1353 	FLUSH_DELALLOC_FULL,
1354 	ALLOC_CHUNK,
1355 	COMMIT_TRANS,
1356 };
1357 
1358 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1359 				struct btrfs_space_info *space_info,
1360 				struct reserve_ticket *ticket,
1361 				const enum btrfs_flush_state *states,
1362 				int states_nr)
1363 {
1364 	u64 to_reclaim;
1365 	int flush_state = 0;
1366 
1367 	spin_lock(&space_info->lock);
1368 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1369 	/*
1370 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1371 	 * because we may have only satisfied the priority tickets and still
1372 	 * left non priority tickets on the list.  We would then have
1373 	 * to_reclaim but ->bytes == 0.
1374 	 */
1375 	if (ticket->bytes == 0) {
1376 		spin_unlock(&space_info->lock);
1377 		return;
1378 	}
1379 
1380 	while (flush_state < states_nr) {
1381 		spin_unlock(&space_info->lock);
1382 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1383 			    false);
1384 		flush_state++;
1385 		spin_lock(&space_info->lock);
1386 		if (ticket->bytes == 0) {
1387 			spin_unlock(&space_info->lock);
1388 			return;
1389 		}
1390 	}
1391 
1392 	/* Attempt to steal from the global rsv if we can. */
1393 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1394 		ticket->error = -ENOSPC;
1395 		remove_ticket(space_info, ticket);
1396 	}
1397 
1398 	/*
1399 	 * We must run try_granting_tickets here because we could be a large
1400 	 * ticket in front of a smaller ticket that can now be satisfied with
1401 	 * the available space.
1402 	 */
1403 	btrfs_try_granting_tickets(fs_info, space_info);
1404 	spin_unlock(&space_info->lock);
1405 }
1406 
1407 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1408 					struct btrfs_space_info *space_info,
1409 					struct reserve_ticket *ticket)
1410 {
1411 	spin_lock(&space_info->lock);
1412 
1413 	/* We could have been granted before we got here. */
1414 	if (ticket->bytes == 0) {
1415 		spin_unlock(&space_info->lock);
1416 		return;
1417 	}
1418 
1419 	while (!space_info->full) {
1420 		spin_unlock(&space_info->lock);
1421 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1422 		spin_lock(&space_info->lock);
1423 		if (ticket->bytes == 0) {
1424 			spin_unlock(&space_info->lock);
1425 			return;
1426 		}
1427 	}
1428 
1429 	ticket->error = -ENOSPC;
1430 	remove_ticket(space_info, ticket);
1431 	btrfs_try_granting_tickets(fs_info, space_info);
1432 	spin_unlock(&space_info->lock);
1433 }
1434 
1435 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1436 				struct btrfs_space_info *space_info,
1437 				struct reserve_ticket *ticket)
1438 
1439 {
1440 	DEFINE_WAIT(wait);
1441 	int ret = 0;
1442 
1443 	spin_lock(&space_info->lock);
1444 	while (ticket->bytes > 0 && ticket->error == 0) {
1445 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1446 		if (ret) {
1447 			/*
1448 			 * Delete us from the list. After we unlock the space
1449 			 * info, we don't want the async reclaim job to reserve
1450 			 * space for this ticket. If that would happen, then the
1451 			 * ticket's task would not known that space was reserved
1452 			 * despite getting an error, resulting in a space leak
1453 			 * (bytes_may_use counter of our space_info).
1454 			 */
1455 			remove_ticket(space_info, ticket);
1456 			ticket->error = -EINTR;
1457 			break;
1458 		}
1459 		spin_unlock(&space_info->lock);
1460 
1461 		schedule();
1462 
1463 		finish_wait(&ticket->wait, &wait);
1464 		spin_lock(&space_info->lock);
1465 	}
1466 	spin_unlock(&space_info->lock);
1467 }
1468 
1469 /**
1470  * Do the appropriate flushing and waiting for a ticket
1471  *
1472  * @fs_info:    the filesystem
1473  * @space_info: space info for the reservation
1474  * @ticket:     ticket for the reservation
1475  * @start_ns:   timestamp when the reservation started
1476  * @orig_bytes: amount of bytes originally reserved
1477  * @flush:      how much we can flush
1478  *
1479  * This does the work of figuring out how to flush for the ticket, waiting for
1480  * the reservation, and returning the appropriate error if there is one.
1481  */
1482 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1483 				 struct btrfs_space_info *space_info,
1484 				 struct reserve_ticket *ticket,
1485 				 u64 start_ns, u64 orig_bytes,
1486 				 enum btrfs_reserve_flush_enum flush)
1487 {
1488 	int ret;
1489 
1490 	switch (flush) {
1491 	case BTRFS_RESERVE_FLUSH_DATA:
1492 	case BTRFS_RESERVE_FLUSH_ALL:
1493 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1494 		wait_reserve_ticket(fs_info, space_info, ticket);
1495 		break;
1496 	case BTRFS_RESERVE_FLUSH_LIMIT:
1497 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1498 						priority_flush_states,
1499 						ARRAY_SIZE(priority_flush_states));
1500 		break;
1501 	case BTRFS_RESERVE_FLUSH_EVICT:
1502 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1503 						evict_flush_states,
1504 						ARRAY_SIZE(evict_flush_states));
1505 		break;
1506 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1507 		priority_reclaim_data_space(fs_info, space_info, ticket);
1508 		break;
1509 	default:
1510 		ASSERT(0);
1511 		break;
1512 	}
1513 
1514 	ret = ticket->error;
1515 	ASSERT(list_empty(&ticket->list));
1516 	/*
1517 	 * Check that we can't have an error set if the reservation succeeded,
1518 	 * as that would confuse tasks and lead them to error out without
1519 	 * releasing reserved space (if an error happens the expectation is that
1520 	 * space wasn't reserved at all).
1521 	 */
1522 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1523 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1524 				   start_ns, flush, ticket->error);
1525 	return ret;
1526 }
1527 
1528 /*
1529  * This returns true if this flush state will go through the ordinary flushing
1530  * code.
1531  */
1532 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1533 {
1534 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1535 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1536 }
1537 
1538 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1539 				       struct btrfs_space_info *space_info)
1540 {
1541 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1542 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1543 
1544 	/*
1545 	 * If we're heavy on ordered operations then clamping won't help us.  We
1546 	 * need to clamp specifically to keep up with dirty'ing buffered
1547 	 * writers, because there's not a 1:1 correlation of writing delalloc
1548 	 * and freeing space, like there is with flushing delayed refs or
1549 	 * delayed nodes.  If we're already more ordered than delalloc then
1550 	 * we're keeping up, otherwise we aren't and should probably clamp.
1551 	 */
1552 	if (ordered < delalloc)
1553 		space_info->clamp = min(space_info->clamp + 1, 8);
1554 }
1555 
1556 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1557 {
1558 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1559 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1560 }
1561 
1562 /**
1563  * Try to reserve bytes from the block_rsv's space
1564  *
1565  * @fs_info:    the filesystem
1566  * @space_info: space info we want to allocate from
1567  * @orig_bytes: number of bytes we want
1568  * @flush:      whether or not we can flush to make our reservation
1569  *
1570  * This will reserve orig_bytes number of bytes from the space info associated
1571  * with the block_rsv.  If there is not enough space it will make an attempt to
1572  * flush out space to make room.  It will do this by flushing delalloc if
1573  * possible or committing the transaction.  If flush is 0 then no attempts to
1574  * regain reservations will be made and this will fail if there is not enough
1575  * space already.
1576  */
1577 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1578 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1579 			   enum btrfs_reserve_flush_enum flush)
1580 {
1581 	struct work_struct *async_work;
1582 	struct reserve_ticket ticket;
1583 	u64 start_ns = 0;
1584 	u64 used;
1585 	int ret = 0;
1586 	bool pending_tickets;
1587 
1588 	ASSERT(orig_bytes);
1589 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1590 
1591 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1592 		async_work = &fs_info->async_data_reclaim_work;
1593 	else
1594 		async_work = &fs_info->async_reclaim_work;
1595 
1596 	spin_lock(&space_info->lock);
1597 	ret = -ENOSPC;
1598 	used = btrfs_space_info_used(space_info, true);
1599 
1600 	/*
1601 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1602 	 * generally handle ENOSPC in a different way, so treat them the same as
1603 	 * normal flushers when it comes to skipping pending tickets.
1604 	 */
1605 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1606 		pending_tickets = !list_empty(&space_info->tickets) ||
1607 			!list_empty(&space_info->priority_tickets);
1608 	else
1609 		pending_tickets = !list_empty(&space_info->priority_tickets);
1610 
1611 	/*
1612 	 * Carry on if we have enough space (short-circuit) OR call
1613 	 * can_overcommit() to ensure we can overcommit to continue.
1614 	 */
1615 	if (!pending_tickets &&
1616 	    ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1617 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1618 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1619 						      orig_bytes);
1620 		ret = 0;
1621 	}
1622 
1623 	/*
1624 	 * If we couldn't make a reservation then setup our reservation ticket
1625 	 * and kick the async worker if it's not already running.
1626 	 *
1627 	 * If we are a priority flusher then we just need to add our ticket to
1628 	 * the list and we will do our own flushing further down.
1629 	 */
1630 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1631 		ticket.bytes = orig_bytes;
1632 		ticket.error = 0;
1633 		space_info->reclaim_size += ticket.bytes;
1634 		init_waitqueue_head(&ticket.wait);
1635 		ticket.steal = can_steal(flush);
1636 		if (trace_btrfs_reserve_ticket_enabled())
1637 			start_ns = ktime_get_ns();
1638 
1639 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1640 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1641 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1642 			list_add_tail(&ticket.list, &space_info->tickets);
1643 			if (!space_info->flush) {
1644 				/*
1645 				 * We were forced to add a reserve ticket, so
1646 				 * our preemptive flushing is unable to keep
1647 				 * up.  Clamp down on the threshold for the
1648 				 * preemptive flushing in order to keep up with
1649 				 * the workload.
1650 				 */
1651 				maybe_clamp_preempt(fs_info, space_info);
1652 
1653 				space_info->flush = 1;
1654 				trace_btrfs_trigger_flush(fs_info,
1655 							  space_info->flags,
1656 							  orig_bytes, flush,
1657 							  "enospc");
1658 				queue_work(system_unbound_wq, async_work);
1659 			}
1660 		} else {
1661 			list_add_tail(&ticket.list,
1662 				      &space_info->priority_tickets);
1663 		}
1664 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1665 		used += orig_bytes;
1666 		/*
1667 		 * We will do the space reservation dance during log replay,
1668 		 * which means we won't have fs_info->fs_root set, so don't do
1669 		 * the async reclaim as we will panic.
1670 		 */
1671 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1672 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1673 		    need_preemptive_reclaim(fs_info, space_info)) {
1674 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1675 						  orig_bytes, flush, "preempt");
1676 			queue_work(system_unbound_wq,
1677 				   &fs_info->preempt_reclaim_work);
1678 		}
1679 	}
1680 	spin_unlock(&space_info->lock);
1681 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1682 		return ret;
1683 
1684 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1685 				     orig_bytes, flush);
1686 }
1687 
1688 /**
1689  * Trye to reserve metadata bytes from the block_rsv's space
1690  *
1691  * @fs_info:    the filesystem
1692  * @block_rsv:  block_rsv we're allocating for
1693  * @orig_bytes: number of bytes we want
1694  * @flush:      whether or not we can flush to make our reservation
1695  *
1696  * This will reserve orig_bytes number of bytes from the space info associated
1697  * with the block_rsv.  If there is not enough space it will make an attempt to
1698  * flush out space to make room.  It will do this by flushing delalloc if
1699  * possible or committing the transaction.  If flush is 0 then no attempts to
1700  * regain reservations will be made and this will fail if there is not enough
1701  * space already.
1702  */
1703 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1704 				 struct btrfs_block_rsv *block_rsv,
1705 				 u64 orig_bytes,
1706 				 enum btrfs_reserve_flush_enum flush)
1707 {
1708 	int ret;
1709 
1710 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1711 	if (ret == -ENOSPC) {
1712 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1713 					      block_rsv->space_info->flags,
1714 					      orig_bytes, 1);
1715 
1716 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1717 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1718 					      orig_bytes, 0);
1719 	}
1720 	return ret;
1721 }
1722 
1723 /**
1724  * Try to reserve data bytes for an allocation
1725  *
1726  * @fs_info: the filesystem
1727  * @bytes:   number of bytes we need
1728  * @flush:   how we are allowed to flush
1729  *
1730  * This will reserve bytes from the data space info.  If there is not enough
1731  * space then we will attempt to flush space as specified by flush.
1732  */
1733 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1734 			     enum btrfs_reserve_flush_enum flush)
1735 {
1736 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1737 	int ret;
1738 
1739 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1740 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1741 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1742 
1743 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1744 	if (ret == -ENOSPC) {
1745 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1746 					      data_sinfo->flags, bytes, 1);
1747 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1748 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1749 	}
1750 	return ret;
1751 }
1752