1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "fs.h" 13 #include "accessors.h" 14 #include "extent-tree.h" 15 16 /* 17 * HOW DOES SPACE RESERVATION WORK 18 * 19 * If you want to know about delalloc specifically, there is a separate comment 20 * for that with the delalloc code. This comment is about how the whole system 21 * works generally. 22 * 23 * BASIC CONCEPTS 24 * 25 * 1) space_info. This is the ultimate arbiter of how much space we can use. 26 * There's a description of the bytes_ fields with the struct declaration, 27 * refer to that for specifics on each field. Suffice it to say that for 28 * reservations we care about total_bytes - SUM(space_info->bytes_) when 29 * determining if there is space to make an allocation. There is a space_info 30 * for METADATA, SYSTEM, and DATA areas. 31 * 32 * 2) block_rsv's. These are basically buckets for every different type of 33 * metadata reservation we have. You can see the comment in the block_rsv 34 * code on the rules for each type, but generally block_rsv->reserved is how 35 * much space is accounted for in space_info->bytes_may_use. 36 * 37 * 3) btrfs_calc*_size. These are the worst case calculations we used based 38 * on the number of items we will want to modify. We have one for changing 39 * items, and one for inserting new items. Generally we use these helpers to 40 * determine the size of the block reserves, and then use the actual bytes 41 * values to adjust the space_info counters. 42 * 43 * MAKING RESERVATIONS, THE NORMAL CASE 44 * 45 * We call into either btrfs_reserve_data_bytes() or 46 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 47 * num_bytes we want to reserve. 48 * 49 * ->reserve 50 * space_info->bytes_may_reserve += num_bytes 51 * 52 * ->extent allocation 53 * Call btrfs_add_reserved_bytes() which does 54 * space_info->bytes_may_reserve -= num_bytes 55 * space_info->bytes_reserved += extent_bytes 56 * 57 * ->insert reference 58 * Call btrfs_update_block_group() which does 59 * space_info->bytes_reserved -= extent_bytes 60 * space_info->bytes_used += extent_bytes 61 * 62 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 63 * 64 * Assume we are unable to simply make the reservation because we do not have 65 * enough space 66 * 67 * -> __reserve_bytes 68 * create a reserve_ticket with ->bytes set to our reservation, add it to 69 * the tail of space_info->tickets, kick async flush thread 70 * 71 * ->handle_reserve_ticket 72 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 73 * on the ticket. 74 * 75 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 76 * Flushes various things attempting to free up space. 77 * 78 * -> btrfs_try_granting_tickets() 79 * This is called by anything that either subtracts space from 80 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 81 * space_info->total_bytes. This loops through the ->priority_tickets and 82 * then the ->tickets list checking to see if the reservation can be 83 * completed. If it can the space is added to space_info->bytes_may_use and 84 * the ticket is woken up. 85 * 86 * -> ticket wakeup 87 * Check if ->bytes == 0, if it does we got our reservation and we can carry 88 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 89 * were interrupted.) 90 * 91 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 92 * 93 * Same as the above, except we add ourselves to the 94 * space_info->priority_tickets, and we do not use ticket->wait, we simply 95 * call flush_space() ourselves for the states that are safe for us to call 96 * without deadlocking and hope for the best. 97 * 98 * THE FLUSHING STATES 99 * 100 * Generally speaking we will have two cases for each state, a "nice" state 101 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 102 * reduce the locking over head on the various trees, and even to keep from 103 * doing any work at all in the case of delayed refs. Each of these delayed 104 * things however hold reservations, and so letting them run allows us to 105 * reclaim space so we can make new reservations. 106 * 107 * FLUSH_DELAYED_ITEMS 108 * Every inode has a delayed item to update the inode. Take a simple write 109 * for example, we would update the inode item at write time to update the 110 * mtime, and then again at finish_ordered_io() time in order to update the 111 * isize or bytes. We keep these delayed items to coalesce these operations 112 * into a single operation done on demand. These are an easy way to reclaim 113 * metadata space. 114 * 115 * FLUSH_DELALLOC 116 * Look at the delalloc comment to get an idea of how much space is reserved 117 * for delayed allocation. We can reclaim some of this space simply by 118 * running delalloc, but usually we need to wait for ordered extents to 119 * reclaim the bulk of this space. 120 * 121 * FLUSH_DELAYED_REFS 122 * We have a block reserve for the outstanding delayed refs space, and every 123 * delayed ref operation holds a reservation. Running these is a quick way 124 * to reclaim space, but we want to hold this until the end because COW can 125 * churn a lot and we can avoid making some extent tree modifications if we 126 * are able to delay for as long as possible. 127 * 128 * ALLOC_CHUNK 129 * We will skip this the first time through space reservation, because of 130 * overcommit and we don't want to have a lot of useless metadata space when 131 * our worst case reservations will likely never come true. 132 * 133 * RUN_DELAYED_IPUTS 134 * If we're freeing inodes we're likely freeing checksums, file extent 135 * items, and extent tree items. Loads of space could be freed up by these 136 * operations, however they won't be usable until the transaction commits. 137 * 138 * COMMIT_TRANS 139 * This will commit the transaction. Historically we had a lot of logic 140 * surrounding whether or not we'd commit the transaction, but this waits born 141 * out of a pre-tickets era where we could end up committing the transaction 142 * thousands of times in a row without making progress. Now thanks to our 143 * ticketing system we know if we're not making progress and can error 144 * everybody out after a few commits rather than burning the disk hoping for 145 * a different answer. 146 * 147 * OVERCOMMIT 148 * 149 * Because we hold so many reservations for metadata we will allow you to 150 * reserve more space than is currently free in the currently allocate 151 * metadata space. This only happens with metadata, data does not allow 152 * overcommitting. 153 * 154 * You can see the current logic for when we allow overcommit in 155 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 156 * is no unallocated space to be had, all reservations are kept within the 157 * free space in the allocated metadata chunks. 158 * 159 * Because of overcommitting, you generally want to use the 160 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 161 * thing with or without extra unallocated space. 162 */ 163 164 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 165 bool may_use_included) 166 { 167 ASSERT(s_info); 168 return s_info->bytes_used + s_info->bytes_reserved + 169 s_info->bytes_pinned + s_info->bytes_readonly + 170 s_info->bytes_zone_unusable + 171 (may_use_included ? s_info->bytes_may_use : 0); 172 } 173 174 /* 175 * after adding space to the filesystem, we need to clear the full flags 176 * on all the space infos. 177 */ 178 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 179 { 180 struct list_head *head = &info->space_info; 181 struct btrfs_space_info *found; 182 183 list_for_each_entry(found, head, list) 184 found->full = 0; 185 } 186 187 /* 188 * Block groups with more than this value (percents) of unusable space will be 189 * scheduled for background reclaim. 190 */ 191 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 192 193 /* 194 * Calculate chunk size depending on volume type (regular or zoned). 195 */ 196 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 197 { 198 if (btrfs_is_zoned(fs_info)) 199 return fs_info->zone_size; 200 201 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 202 203 if (flags & BTRFS_BLOCK_GROUP_DATA) 204 return BTRFS_MAX_DATA_CHUNK_SIZE; 205 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 206 return SZ_32M; 207 208 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 209 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 210 return SZ_1G; 211 212 return SZ_256M; 213 } 214 215 /* 216 * Update default chunk size. 217 */ 218 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 219 u64 chunk_size) 220 { 221 WRITE_ONCE(space_info->chunk_size, chunk_size); 222 } 223 224 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 225 { 226 227 struct btrfs_space_info *space_info; 228 int i; 229 int ret; 230 231 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 232 if (!space_info) 233 return -ENOMEM; 234 235 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 236 INIT_LIST_HEAD(&space_info->block_groups[i]); 237 init_rwsem(&space_info->groups_sem); 238 spin_lock_init(&space_info->lock); 239 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 240 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 241 INIT_LIST_HEAD(&space_info->ro_bgs); 242 INIT_LIST_HEAD(&space_info->tickets); 243 INIT_LIST_HEAD(&space_info->priority_tickets); 244 space_info->clamp = 1; 245 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 246 247 if (btrfs_is_zoned(info)) 248 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 249 250 ret = btrfs_sysfs_add_space_info_type(info, space_info); 251 if (ret) 252 return ret; 253 254 list_add(&space_info->list, &info->space_info); 255 if (flags & BTRFS_BLOCK_GROUP_DATA) 256 info->data_sinfo = space_info; 257 258 return ret; 259 } 260 261 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 262 { 263 struct btrfs_super_block *disk_super; 264 u64 features; 265 u64 flags; 266 int mixed = 0; 267 int ret; 268 269 disk_super = fs_info->super_copy; 270 if (!btrfs_super_root(disk_super)) 271 return -EINVAL; 272 273 features = btrfs_super_incompat_flags(disk_super); 274 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 275 mixed = 1; 276 277 flags = BTRFS_BLOCK_GROUP_SYSTEM; 278 ret = create_space_info(fs_info, flags); 279 if (ret) 280 goto out; 281 282 if (mixed) { 283 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 284 ret = create_space_info(fs_info, flags); 285 } else { 286 flags = BTRFS_BLOCK_GROUP_METADATA; 287 ret = create_space_info(fs_info, flags); 288 if (ret) 289 goto out; 290 291 flags = BTRFS_BLOCK_GROUP_DATA; 292 ret = create_space_info(fs_info, flags); 293 } 294 out: 295 return ret; 296 } 297 298 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 299 struct btrfs_block_group *block_group) 300 { 301 struct btrfs_space_info *found; 302 int factor, index; 303 304 factor = btrfs_bg_type_to_factor(block_group->flags); 305 306 found = btrfs_find_space_info(info, block_group->flags); 307 ASSERT(found); 308 spin_lock(&found->lock); 309 found->total_bytes += block_group->length; 310 found->disk_total += block_group->length * factor; 311 found->bytes_used += block_group->used; 312 found->disk_used += block_group->used * factor; 313 found->bytes_readonly += block_group->bytes_super; 314 found->bytes_zone_unusable += block_group->zone_unusable; 315 if (block_group->length > 0) 316 found->full = 0; 317 btrfs_try_granting_tickets(info, found); 318 spin_unlock(&found->lock); 319 320 block_group->space_info = found; 321 322 index = btrfs_bg_flags_to_raid_index(block_group->flags); 323 down_write(&found->groups_sem); 324 list_add_tail(&block_group->list, &found->block_groups[index]); 325 up_write(&found->groups_sem); 326 } 327 328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 329 u64 flags) 330 { 331 struct list_head *head = &info->space_info; 332 struct btrfs_space_info *found; 333 334 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 335 336 list_for_each_entry(found, head, list) { 337 if (found->flags & flags) 338 return found; 339 } 340 return NULL; 341 } 342 343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 344 struct btrfs_space_info *space_info, 345 enum btrfs_reserve_flush_enum flush) 346 { 347 struct btrfs_space_info *data_sinfo; 348 u64 profile; 349 u64 avail; 350 u64 data_chunk_size; 351 int factor; 352 353 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 354 profile = btrfs_system_alloc_profile(fs_info); 355 else 356 profile = btrfs_metadata_alloc_profile(fs_info); 357 358 avail = atomic64_read(&fs_info->free_chunk_space); 359 360 /* 361 * If we have dup, raid1 or raid10 then only half of the free 362 * space is actually usable. For raid56, the space info used 363 * doesn't include the parity drive, so we don't have to 364 * change the math 365 */ 366 factor = btrfs_bg_type_to_factor(profile); 367 avail = div_u64(avail, factor); 368 if (avail == 0) 369 return 0; 370 371 /* 372 * Calculate the data_chunk_size, space_info->chunk_size is the 373 * "optimal" chunk size based on the fs size. However when we actually 374 * allocate the chunk we will strip this down further, making it no more 375 * than 10% of the disk or 1G, whichever is smaller. 376 */ 377 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 378 data_chunk_size = min(data_sinfo->chunk_size, 379 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 380 data_chunk_size = min_t(u64, data_chunk_size, SZ_1G); 381 382 /* 383 * Since data allocations immediately use block groups as part of the 384 * reservation, because we assume that data reservations will == actual 385 * usage, we could potentially overcommit and then immediately have that 386 * available space used by a data allocation, which could put us in a 387 * bind when we get close to filling the file system. 388 * 389 * To handle this simply remove the data_chunk_size from the available 390 * space. If we are relatively empty this won't affect our ability to 391 * overcommit much, and if we're very close to full it'll keep us from 392 * getting into a position where we've given ourselves very little 393 * metadata wiggle room. 394 */ 395 if (avail <= data_chunk_size) 396 return 0; 397 avail -= data_chunk_size; 398 399 /* 400 * If we aren't flushing all things, let us overcommit up to 401 * 1/2th of the space. If we can flush, don't let us overcommit 402 * too much, let it overcommit up to 1/8 of the space. 403 */ 404 if (flush == BTRFS_RESERVE_FLUSH_ALL) 405 avail >>= 3; 406 else 407 avail >>= 1; 408 return avail; 409 } 410 411 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 412 struct btrfs_space_info *space_info, u64 bytes, 413 enum btrfs_reserve_flush_enum flush) 414 { 415 u64 avail; 416 u64 used; 417 418 /* Don't overcommit when in mixed mode */ 419 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 420 return 0; 421 422 used = btrfs_space_info_used(space_info, true); 423 avail = calc_available_free_space(fs_info, space_info, flush); 424 425 if (used + bytes < space_info->total_bytes + avail) 426 return 1; 427 return 0; 428 } 429 430 static void remove_ticket(struct btrfs_space_info *space_info, 431 struct reserve_ticket *ticket) 432 { 433 if (!list_empty(&ticket->list)) { 434 list_del_init(&ticket->list); 435 ASSERT(space_info->reclaim_size >= ticket->bytes); 436 space_info->reclaim_size -= ticket->bytes; 437 } 438 } 439 440 /* 441 * This is for space we already have accounted in space_info->bytes_may_use, so 442 * basically when we're returning space from block_rsv's. 443 */ 444 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 445 struct btrfs_space_info *space_info) 446 { 447 struct list_head *head; 448 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 449 450 lockdep_assert_held(&space_info->lock); 451 452 head = &space_info->priority_tickets; 453 again: 454 while (!list_empty(head)) { 455 struct reserve_ticket *ticket; 456 u64 used = btrfs_space_info_used(space_info, true); 457 458 ticket = list_first_entry(head, struct reserve_ticket, list); 459 460 /* Check and see if our ticket can be satisfied now. */ 461 if ((used + ticket->bytes <= space_info->total_bytes) || 462 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 463 flush)) { 464 btrfs_space_info_update_bytes_may_use(fs_info, 465 space_info, 466 ticket->bytes); 467 remove_ticket(space_info, ticket); 468 ticket->bytes = 0; 469 space_info->tickets_id++; 470 wake_up(&ticket->wait); 471 } else { 472 break; 473 } 474 } 475 476 if (head == &space_info->priority_tickets) { 477 head = &space_info->tickets; 478 flush = BTRFS_RESERVE_FLUSH_ALL; 479 goto again; 480 } 481 } 482 483 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 484 do { \ 485 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 486 spin_lock(&__rsv->lock); \ 487 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 488 __rsv->size, __rsv->reserved); \ 489 spin_unlock(&__rsv->lock); \ 490 } while (0) 491 492 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 493 { 494 switch (space_info->flags) { 495 case BTRFS_BLOCK_GROUP_SYSTEM: 496 return "SYSTEM"; 497 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 498 return "DATA+METADATA"; 499 case BTRFS_BLOCK_GROUP_DATA: 500 return "DATA"; 501 case BTRFS_BLOCK_GROUP_METADATA: 502 return "METADATA"; 503 default: 504 return "UNKNOWN"; 505 } 506 } 507 508 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 509 { 510 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 511 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 512 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 513 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 514 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 515 } 516 517 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 518 struct btrfs_space_info *info) 519 { 520 const char *flag_str = space_info_flag_to_str(info); 521 lockdep_assert_held(&info->lock); 522 523 /* The free space could be negative in case of overcommit */ 524 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 525 flag_str, 526 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 527 info->full ? "" : "not "); 528 btrfs_info(fs_info, 529 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 530 info->total_bytes, info->bytes_used, info->bytes_pinned, 531 info->bytes_reserved, info->bytes_may_use, 532 info->bytes_readonly, info->bytes_zone_unusable); 533 } 534 535 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 536 struct btrfs_space_info *info, u64 bytes, 537 int dump_block_groups) 538 { 539 struct btrfs_block_group *cache; 540 u64 total_avail = 0; 541 int index = 0; 542 543 spin_lock(&info->lock); 544 __btrfs_dump_space_info(fs_info, info); 545 dump_global_block_rsv(fs_info); 546 spin_unlock(&info->lock); 547 548 if (!dump_block_groups) 549 return; 550 551 down_read(&info->groups_sem); 552 again: 553 list_for_each_entry(cache, &info->block_groups[index], list) { 554 u64 avail; 555 556 spin_lock(&cache->lock); 557 avail = cache->length - cache->used - cache->pinned - 558 cache->reserved - cache->delalloc_bytes - 559 cache->bytes_super - cache->zone_unusable; 560 btrfs_info(fs_info, 561 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 562 cache->start, cache->length, cache->used, cache->pinned, 563 cache->reserved, cache->delalloc_bytes, 564 cache->bytes_super, cache->zone_unusable, 565 avail, cache->ro ? "[readonly]" : ""); 566 spin_unlock(&cache->lock); 567 btrfs_dump_free_space(cache, bytes); 568 total_avail += avail; 569 } 570 if (++index < BTRFS_NR_RAID_TYPES) 571 goto again; 572 up_read(&info->groups_sem); 573 574 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 575 } 576 577 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 578 u64 to_reclaim) 579 { 580 u64 bytes; 581 u64 nr; 582 583 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 584 nr = div64_u64(to_reclaim, bytes); 585 if (!nr) 586 nr = 1; 587 return nr; 588 } 589 590 #define EXTENT_SIZE_PER_ITEM SZ_256K 591 592 /* 593 * shrink metadata reservation for delalloc 594 */ 595 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 596 struct btrfs_space_info *space_info, 597 u64 to_reclaim, bool wait_ordered, 598 bool for_preempt) 599 { 600 struct btrfs_trans_handle *trans; 601 u64 delalloc_bytes; 602 u64 ordered_bytes; 603 u64 items; 604 long time_left; 605 int loops; 606 607 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 608 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 609 if (delalloc_bytes == 0 && ordered_bytes == 0) 610 return; 611 612 /* Calc the number of the pages we need flush for space reservation */ 613 if (to_reclaim == U64_MAX) { 614 items = U64_MAX; 615 } else { 616 /* 617 * to_reclaim is set to however much metadata we need to 618 * reclaim, but reclaiming that much data doesn't really track 619 * exactly. What we really want to do is reclaim full inode's 620 * worth of reservations, however that's not available to us 621 * here. We will take a fraction of the delalloc bytes for our 622 * flushing loops and hope for the best. Delalloc will expand 623 * the amount we write to cover an entire dirty extent, which 624 * will reclaim the metadata reservation for that range. If 625 * it's not enough subsequent flush stages will be more 626 * aggressive. 627 */ 628 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 629 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 630 } 631 632 trans = current->journal_info; 633 634 /* 635 * If we are doing more ordered than delalloc we need to just wait on 636 * ordered extents, otherwise we'll waste time trying to flush delalloc 637 * that likely won't give us the space back we need. 638 */ 639 if (ordered_bytes > delalloc_bytes && !for_preempt) 640 wait_ordered = true; 641 642 loops = 0; 643 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 644 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 645 long nr_pages = min_t(u64, temp, LONG_MAX); 646 int async_pages; 647 648 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 649 650 /* 651 * We need to make sure any outstanding async pages are now 652 * processed before we continue. This is because things like 653 * sync_inode() try to be smart and skip writing if the inode is 654 * marked clean. We don't use filemap_fwrite for flushing 655 * because we want to control how many pages we write out at a 656 * time, thus this is the only safe way to make sure we've 657 * waited for outstanding compressed workers to have started 658 * their jobs and thus have ordered extents set up properly. 659 * 660 * This exists because we do not want to wait for each 661 * individual inode to finish its async work, we simply want to 662 * start the IO on everybody, and then come back here and wait 663 * for all of the async work to catch up. Once we're done with 664 * that we know we'll have ordered extents for everything and we 665 * can decide if we wait for that or not. 666 * 667 * If we choose to replace this in the future, make absolutely 668 * sure that the proper waiting is being done in the async case, 669 * as there have been bugs in that area before. 670 */ 671 async_pages = atomic_read(&fs_info->async_delalloc_pages); 672 if (!async_pages) 673 goto skip_async; 674 675 /* 676 * We don't want to wait forever, if we wrote less pages in this 677 * loop than we have outstanding, only wait for that number of 678 * pages, otherwise we can wait for all async pages to finish 679 * before continuing. 680 */ 681 if (async_pages > nr_pages) 682 async_pages -= nr_pages; 683 else 684 async_pages = 0; 685 wait_event(fs_info->async_submit_wait, 686 atomic_read(&fs_info->async_delalloc_pages) <= 687 async_pages); 688 skip_async: 689 loops++; 690 if (wait_ordered && !trans) { 691 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 692 } else { 693 time_left = schedule_timeout_killable(1); 694 if (time_left) 695 break; 696 } 697 698 /* 699 * If we are for preemption we just want a one-shot of delalloc 700 * flushing so we can stop flushing if we decide we don't need 701 * to anymore. 702 */ 703 if (for_preempt) 704 break; 705 706 spin_lock(&space_info->lock); 707 if (list_empty(&space_info->tickets) && 708 list_empty(&space_info->priority_tickets)) { 709 spin_unlock(&space_info->lock); 710 break; 711 } 712 spin_unlock(&space_info->lock); 713 714 delalloc_bytes = percpu_counter_sum_positive( 715 &fs_info->delalloc_bytes); 716 ordered_bytes = percpu_counter_sum_positive( 717 &fs_info->ordered_bytes); 718 } 719 } 720 721 /* 722 * Try to flush some data based on policy set by @state. This is only advisory 723 * and may fail for various reasons. The caller is supposed to examine the 724 * state of @space_info to detect the outcome. 725 */ 726 static void flush_space(struct btrfs_fs_info *fs_info, 727 struct btrfs_space_info *space_info, u64 num_bytes, 728 enum btrfs_flush_state state, bool for_preempt) 729 { 730 struct btrfs_root *root = fs_info->tree_root; 731 struct btrfs_trans_handle *trans; 732 int nr; 733 int ret = 0; 734 735 switch (state) { 736 case FLUSH_DELAYED_ITEMS_NR: 737 case FLUSH_DELAYED_ITEMS: 738 if (state == FLUSH_DELAYED_ITEMS_NR) 739 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 740 else 741 nr = -1; 742 743 trans = btrfs_join_transaction_nostart(root); 744 if (IS_ERR(trans)) { 745 ret = PTR_ERR(trans); 746 if (ret == -ENOENT) 747 ret = 0; 748 break; 749 } 750 ret = btrfs_run_delayed_items_nr(trans, nr); 751 btrfs_end_transaction(trans); 752 break; 753 case FLUSH_DELALLOC: 754 case FLUSH_DELALLOC_WAIT: 755 case FLUSH_DELALLOC_FULL: 756 if (state == FLUSH_DELALLOC_FULL) 757 num_bytes = U64_MAX; 758 shrink_delalloc(fs_info, space_info, num_bytes, 759 state != FLUSH_DELALLOC, for_preempt); 760 break; 761 case FLUSH_DELAYED_REFS_NR: 762 case FLUSH_DELAYED_REFS: 763 trans = btrfs_join_transaction_nostart(root); 764 if (IS_ERR(trans)) { 765 ret = PTR_ERR(trans); 766 if (ret == -ENOENT) 767 ret = 0; 768 break; 769 } 770 if (state == FLUSH_DELAYED_REFS_NR) 771 btrfs_run_delayed_refs(trans, num_bytes); 772 else 773 btrfs_run_delayed_refs(trans, 0); 774 btrfs_end_transaction(trans); 775 break; 776 case ALLOC_CHUNK: 777 case ALLOC_CHUNK_FORCE: 778 trans = btrfs_join_transaction(root); 779 if (IS_ERR(trans)) { 780 ret = PTR_ERR(trans); 781 break; 782 } 783 ret = btrfs_chunk_alloc(trans, 784 btrfs_get_alloc_profile(fs_info, space_info->flags), 785 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 786 CHUNK_ALLOC_FORCE); 787 btrfs_end_transaction(trans); 788 789 if (ret > 0 || ret == -ENOSPC) 790 ret = 0; 791 break; 792 case RUN_DELAYED_IPUTS: 793 /* 794 * If we have pending delayed iputs then we could free up a 795 * bunch of pinned space, so make sure we run the iputs before 796 * we do our pinned bytes check below. 797 */ 798 btrfs_run_delayed_iputs(fs_info); 799 btrfs_wait_on_delayed_iputs(fs_info); 800 break; 801 case COMMIT_TRANS: 802 ASSERT(current->journal_info == NULL); 803 /* 804 * We don't want to start a new transaction, just attach to the 805 * current one or wait it fully commits in case its commit is 806 * happening at the moment. Note: we don't use a nostart join 807 * because that does not wait for a transaction to fully commit 808 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 809 */ 810 trans = btrfs_attach_transaction_barrier(root); 811 if (IS_ERR(trans)) { 812 ret = PTR_ERR(trans); 813 if (ret == -ENOENT) 814 ret = 0; 815 break; 816 } 817 ret = btrfs_commit_transaction(trans); 818 break; 819 default: 820 ret = -ENOSPC; 821 break; 822 } 823 824 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 825 ret, for_preempt); 826 return; 827 } 828 829 static inline u64 830 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 831 struct btrfs_space_info *space_info) 832 { 833 u64 used; 834 u64 avail; 835 u64 to_reclaim = space_info->reclaim_size; 836 837 lockdep_assert_held(&space_info->lock); 838 839 avail = calc_available_free_space(fs_info, space_info, 840 BTRFS_RESERVE_FLUSH_ALL); 841 used = btrfs_space_info_used(space_info, true); 842 843 /* 844 * We may be flushing because suddenly we have less space than we had 845 * before, and now we're well over-committed based on our current free 846 * space. If that's the case add in our overage so we make sure to put 847 * appropriate pressure on the flushing state machine. 848 */ 849 if (space_info->total_bytes + avail < used) 850 to_reclaim += used - (space_info->total_bytes + avail); 851 852 return to_reclaim; 853 } 854 855 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 856 struct btrfs_space_info *space_info) 857 { 858 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv); 859 u64 ordered, delalloc; 860 u64 thresh; 861 u64 used; 862 863 thresh = mult_perc(space_info->total_bytes, 90); 864 865 lockdep_assert_held(&space_info->lock); 866 867 /* If we're just plain full then async reclaim just slows us down. */ 868 if ((space_info->bytes_used + space_info->bytes_reserved + 869 global_rsv_size) >= thresh) 870 return false; 871 872 used = space_info->bytes_may_use + space_info->bytes_pinned; 873 874 /* The total flushable belongs to the global rsv, don't flush. */ 875 if (global_rsv_size >= used) 876 return false; 877 878 /* 879 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 880 * that devoted to other reservations then there's no sense in flushing, 881 * we don't have a lot of things that need flushing. 882 */ 883 if (used - global_rsv_size <= SZ_128M) 884 return false; 885 886 /* 887 * We have tickets queued, bail so we don't compete with the async 888 * flushers. 889 */ 890 if (space_info->reclaim_size) 891 return false; 892 893 /* 894 * If we have over half of the free space occupied by reservations or 895 * pinned then we want to start flushing. 896 * 897 * We do not do the traditional thing here, which is to say 898 * 899 * if (used >= ((total_bytes + avail) / 2)) 900 * return 1; 901 * 902 * because this doesn't quite work how we want. If we had more than 50% 903 * of the space_info used by bytes_used and we had 0 available we'd just 904 * constantly run the background flusher. Instead we want it to kick in 905 * if our reclaimable space exceeds our clamped free space. 906 * 907 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 908 * the following: 909 * 910 * Amount of RAM Minimum threshold Maximum threshold 911 * 912 * 256GiB 1GiB 128GiB 913 * 128GiB 512MiB 64GiB 914 * 64GiB 256MiB 32GiB 915 * 32GiB 128MiB 16GiB 916 * 16GiB 64MiB 8GiB 917 * 918 * These are the range our thresholds will fall in, corresponding to how 919 * much delalloc we need for the background flusher to kick in. 920 */ 921 922 thresh = calc_available_free_space(fs_info, space_info, 923 BTRFS_RESERVE_FLUSH_ALL); 924 used = space_info->bytes_used + space_info->bytes_reserved + 925 space_info->bytes_readonly + global_rsv_size; 926 if (used < space_info->total_bytes) 927 thresh += space_info->total_bytes - used; 928 thresh >>= space_info->clamp; 929 930 used = space_info->bytes_pinned; 931 932 /* 933 * If we have more ordered bytes than delalloc bytes then we're either 934 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 935 * around. Preemptive flushing is only useful in that it can free up 936 * space before tickets need to wait for things to finish. In the case 937 * of ordered extents, preemptively waiting on ordered extents gets us 938 * nothing, if our reservations are tied up in ordered extents we'll 939 * simply have to slow down writers by forcing them to wait on ordered 940 * extents. 941 * 942 * In the case that ordered is larger than delalloc, only include the 943 * block reserves that we would actually be able to directly reclaim 944 * from. In this case if we're heavy on metadata operations this will 945 * clearly be heavy enough to warrant preemptive flushing. In the case 946 * of heavy DIO or ordered reservations, preemptive flushing will just 947 * waste time and cause us to slow down. 948 * 949 * We want to make sure we truly are maxed out on ordered however, so 950 * cut ordered in half, and if it's still higher than delalloc then we 951 * can keep flushing. This is to avoid the case where we start 952 * flushing, and now delalloc == ordered and we stop preemptively 953 * flushing when we could still have several gigs of delalloc to flush. 954 */ 955 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 956 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 957 if (ordered >= delalloc) 958 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) + 959 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv); 960 else 961 used += space_info->bytes_may_use - global_rsv_size; 962 963 return (used >= thresh && !btrfs_fs_closing(fs_info) && 964 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 965 } 966 967 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 968 struct btrfs_space_info *space_info, 969 struct reserve_ticket *ticket) 970 { 971 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 972 u64 min_bytes; 973 974 if (!ticket->steal) 975 return false; 976 977 if (global_rsv->space_info != space_info) 978 return false; 979 980 spin_lock(&global_rsv->lock); 981 min_bytes = mult_perc(global_rsv->size, 10); 982 if (global_rsv->reserved < min_bytes + ticket->bytes) { 983 spin_unlock(&global_rsv->lock); 984 return false; 985 } 986 global_rsv->reserved -= ticket->bytes; 987 remove_ticket(space_info, ticket); 988 ticket->bytes = 0; 989 wake_up(&ticket->wait); 990 space_info->tickets_id++; 991 if (global_rsv->reserved < global_rsv->size) 992 global_rsv->full = 0; 993 spin_unlock(&global_rsv->lock); 994 995 return true; 996 } 997 998 /* 999 * We've exhausted our flushing, start failing tickets. 1000 * 1001 * @fs_info - fs_info for this fs 1002 * @space_info - the space info we were flushing 1003 * 1004 * We call this when we've exhausted our flushing ability and haven't made 1005 * progress in satisfying tickets. The reservation code handles tickets in 1006 * order, so if there is a large ticket first and then smaller ones we could 1007 * very well satisfy the smaller tickets. This will attempt to wake up any 1008 * tickets in the list to catch this case. 1009 * 1010 * This function returns true if it was able to make progress by clearing out 1011 * other tickets, or if it stumbles across a ticket that was smaller than the 1012 * first ticket. 1013 */ 1014 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1015 struct btrfs_space_info *space_info) 1016 { 1017 struct reserve_ticket *ticket; 1018 u64 tickets_id = space_info->tickets_id; 1019 const bool aborted = BTRFS_FS_ERROR(fs_info); 1020 1021 trace_btrfs_fail_all_tickets(fs_info, space_info); 1022 1023 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1024 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1025 __btrfs_dump_space_info(fs_info, space_info); 1026 } 1027 1028 while (!list_empty(&space_info->tickets) && 1029 tickets_id == space_info->tickets_id) { 1030 ticket = list_first_entry(&space_info->tickets, 1031 struct reserve_ticket, list); 1032 1033 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1034 return true; 1035 1036 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1037 btrfs_info(fs_info, "failing ticket with %llu bytes", 1038 ticket->bytes); 1039 1040 remove_ticket(space_info, ticket); 1041 if (aborted) 1042 ticket->error = -EIO; 1043 else 1044 ticket->error = -ENOSPC; 1045 wake_up(&ticket->wait); 1046 1047 /* 1048 * We're just throwing tickets away, so more flushing may not 1049 * trip over btrfs_try_granting_tickets, so we need to call it 1050 * here to see if we can make progress with the next ticket in 1051 * the list. 1052 */ 1053 if (!aborted) 1054 btrfs_try_granting_tickets(fs_info, space_info); 1055 } 1056 return (tickets_id != space_info->tickets_id); 1057 } 1058 1059 /* 1060 * This is for normal flushers, we can wait all goddamned day if we want to. We 1061 * will loop and continuously try to flush as long as we are making progress. 1062 * We count progress as clearing off tickets each time we have to loop. 1063 */ 1064 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1065 { 1066 struct btrfs_fs_info *fs_info; 1067 struct btrfs_space_info *space_info; 1068 u64 to_reclaim; 1069 enum btrfs_flush_state flush_state; 1070 int commit_cycles = 0; 1071 u64 last_tickets_id; 1072 1073 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1074 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1075 1076 spin_lock(&space_info->lock); 1077 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1078 if (!to_reclaim) { 1079 space_info->flush = 0; 1080 spin_unlock(&space_info->lock); 1081 return; 1082 } 1083 last_tickets_id = space_info->tickets_id; 1084 spin_unlock(&space_info->lock); 1085 1086 flush_state = FLUSH_DELAYED_ITEMS_NR; 1087 do { 1088 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1089 spin_lock(&space_info->lock); 1090 if (list_empty(&space_info->tickets)) { 1091 space_info->flush = 0; 1092 spin_unlock(&space_info->lock); 1093 return; 1094 } 1095 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1096 space_info); 1097 if (last_tickets_id == space_info->tickets_id) { 1098 flush_state++; 1099 } else { 1100 last_tickets_id = space_info->tickets_id; 1101 flush_state = FLUSH_DELAYED_ITEMS_NR; 1102 if (commit_cycles) 1103 commit_cycles--; 1104 } 1105 1106 /* 1107 * We do not want to empty the system of delalloc unless we're 1108 * under heavy pressure, so allow one trip through the flushing 1109 * logic before we start doing a FLUSH_DELALLOC_FULL. 1110 */ 1111 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1112 flush_state++; 1113 1114 /* 1115 * We don't want to force a chunk allocation until we've tried 1116 * pretty hard to reclaim space. Think of the case where we 1117 * freed up a bunch of space and so have a lot of pinned space 1118 * to reclaim. We would rather use that than possibly create a 1119 * underutilized metadata chunk. So if this is our first run 1120 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1121 * commit the transaction. If nothing has changed the next go 1122 * around then we can force a chunk allocation. 1123 */ 1124 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1125 flush_state++; 1126 1127 if (flush_state > COMMIT_TRANS) { 1128 commit_cycles++; 1129 if (commit_cycles > 2) { 1130 if (maybe_fail_all_tickets(fs_info, space_info)) { 1131 flush_state = FLUSH_DELAYED_ITEMS_NR; 1132 commit_cycles--; 1133 } else { 1134 space_info->flush = 0; 1135 } 1136 } else { 1137 flush_state = FLUSH_DELAYED_ITEMS_NR; 1138 } 1139 } 1140 spin_unlock(&space_info->lock); 1141 } while (flush_state <= COMMIT_TRANS); 1142 } 1143 1144 /* 1145 * This handles pre-flushing of metadata space before we get to the point that 1146 * we need to start blocking threads on tickets. The logic here is different 1147 * from the other flush paths because it doesn't rely on tickets to tell us how 1148 * much we need to flush, instead it attempts to keep us below the 80% full 1149 * watermark of space by flushing whichever reservation pool is currently the 1150 * largest. 1151 */ 1152 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1153 { 1154 struct btrfs_fs_info *fs_info; 1155 struct btrfs_space_info *space_info; 1156 struct btrfs_block_rsv *delayed_block_rsv; 1157 struct btrfs_block_rsv *delayed_refs_rsv; 1158 struct btrfs_block_rsv *global_rsv; 1159 struct btrfs_block_rsv *trans_rsv; 1160 int loops = 0; 1161 1162 fs_info = container_of(work, struct btrfs_fs_info, 1163 preempt_reclaim_work); 1164 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1165 delayed_block_rsv = &fs_info->delayed_block_rsv; 1166 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1167 global_rsv = &fs_info->global_block_rsv; 1168 trans_rsv = &fs_info->trans_block_rsv; 1169 1170 spin_lock(&space_info->lock); 1171 while (need_preemptive_reclaim(fs_info, space_info)) { 1172 enum btrfs_flush_state flush; 1173 u64 delalloc_size = 0; 1174 u64 to_reclaim, block_rsv_size; 1175 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv); 1176 1177 loops++; 1178 1179 /* 1180 * We don't have a precise counter for the metadata being 1181 * reserved for delalloc, so we'll approximate it by subtracting 1182 * out the block rsv's space from the bytes_may_use. If that 1183 * amount is higher than the individual reserves, then we can 1184 * assume it's tied up in delalloc reservations. 1185 */ 1186 block_rsv_size = global_rsv_size + 1187 btrfs_block_rsv_reserved(delayed_block_rsv) + 1188 btrfs_block_rsv_reserved(delayed_refs_rsv) + 1189 btrfs_block_rsv_reserved(trans_rsv); 1190 if (block_rsv_size < space_info->bytes_may_use) 1191 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1192 1193 /* 1194 * We don't want to include the global_rsv in our calculation, 1195 * because that's space we can't touch. Subtract it from the 1196 * block_rsv_size for the next checks. 1197 */ 1198 block_rsv_size -= global_rsv_size; 1199 1200 /* 1201 * We really want to avoid flushing delalloc too much, as it 1202 * could result in poor allocation patterns, so only flush it if 1203 * it's larger than the rest of the pools combined. 1204 */ 1205 if (delalloc_size > block_rsv_size) { 1206 to_reclaim = delalloc_size; 1207 flush = FLUSH_DELALLOC; 1208 } else if (space_info->bytes_pinned > 1209 (btrfs_block_rsv_reserved(delayed_block_rsv) + 1210 btrfs_block_rsv_reserved(delayed_refs_rsv))) { 1211 to_reclaim = space_info->bytes_pinned; 1212 flush = COMMIT_TRANS; 1213 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) > 1214 btrfs_block_rsv_reserved(delayed_refs_rsv)) { 1215 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv); 1216 flush = FLUSH_DELAYED_ITEMS_NR; 1217 } else { 1218 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv); 1219 flush = FLUSH_DELAYED_REFS_NR; 1220 } 1221 1222 spin_unlock(&space_info->lock); 1223 1224 /* 1225 * We don't want to reclaim everything, just a portion, so scale 1226 * down the to_reclaim by 1/4. If it takes us down to 0, 1227 * reclaim 1 items worth. 1228 */ 1229 to_reclaim >>= 2; 1230 if (!to_reclaim) 1231 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1232 flush_space(fs_info, space_info, to_reclaim, flush, true); 1233 cond_resched(); 1234 spin_lock(&space_info->lock); 1235 } 1236 1237 /* We only went through once, back off our clamping. */ 1238 if (loops == 1 && !space_info->reclaim_size) 1239 space_info->clamp = max(1, space_info->clamp - 1); 1240 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1241 spin_unlock(&space_info->lock); 1242 } 1243 1244 /* 1245 * FLUSH_DELALLOC_WAIT: 1246 * Space is freed from flushing delalloc in one of two ways. 1247 * 1248 * 1) compression is on and we allocate less space than we reserved 1249 * 2) we are overwriting existing space 1250 * 1251 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1252 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1253 * length to ->bytes_reserved, and subtracts the reserved space from 1254 * ->bytes_may_use. 1255 * 1256 * For #2 this is trickier. Once the ordered extent runs we will drop the 1257 * extent in the range we are overwriting, which creates a delayed ref for 1258 * that freed extent. This however is not reclaimed until the transaction 1259 * commits, thus the next stages. 1260 * 1261 * RUN_DELAYED_IPUTS 1262 * If we are freeing inodes, we want to make sure all delayed iputs have 1263 * completed, because they could have been on an inode with i_nlink == 0, and 1264 * thus have been truncated and freed up space. But again this space is not 1265 * immediately re-usable, it comes in the form of a delayed ref, which must be 1266 * run and then the transaction must be committed. 1267 * 1268 * COMMIT_TRANS 1269 * This is where we reclaim all of the pinned space generated by running the 1270 * iputs 1271 * 1272 * ALLOC_CHUNK_FORCE 1273 * For data we start with alloc chunk force, however we could have been full 1274 * before, and then the transaction commit could have freed new block groups, 1275 * so if we now have space to allocate do the force chunk allocation. 1276 */ 1277 static const enum btrfs_flush_state data_flush_states[] = { 1278 FLUSH_DELALLOC_FULL, 1279 RUN_DELAYED_IPUTS, 1280 COMMIT_TRANS, 1281 ALLOC_CHUNK_FORCE, 1282 }; 1283 1284 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1285 { 1286 struct btrfs_fs_info *fs_info; 1287 struct btrfs_space_info *space_info; 1288 u64 last_tickets_id; 1289 enum btrfs_flush_state flush_state = 0; 1290 1291 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1292 space_info = fs_info->data_sinfo; 1293 1294 spin_lock(&space_info->lock); 1295 if (list_empty(&space_info->tickets)) { 1296 space_info->flush = 0; 1297 spin_unlock(&space_info->lock); 1298 return; 1299 } 1300 last_tickets_id = space_info->tickets_id; 1301 spin_unlock(&space_info->lock); 1302 1303 while (!space_info->full) { 1304 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1305 spin_lock(&space_info->lock); 1306 if (list_empty(&space_info->tickets)) { 1307 space_info->flush = 0; 1308 spin_unlock(&space_info->lock); 1309 return; 1310 } 1311 1312 /* Something happened, fail everything and bail. */ 1313 if (BTRFS_FS_ERROR(fs_info)) 1314 goto aborted_fs; 1315 last_tickets_id = space_info->tickets_id; 1316 spin_unlock(&space_info->lock); 1317 } 1318 1319 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1320 flush_space(fs_info, space_info, U64_MAX, 1321 data_flush_states[flush_state], false); 1322 spin_lock(&space_info->lock); 1323 if (list_empty(&space_info->tickets)) { 1324 space_info->flush = 0; 1325 spin_unlock(&space_info->lock); 1326 return; 1327 } 1328 1329 if (last_tickets_id == space_info->tickets_id) { 1330 flush_state++; 1331 } else { 1332 last_tickets_id = space_info->tickets_id; 1333 flush_state = 0; 1334 } 1335 1336 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1337 if (space_info->full) { 1338 if (maybe_fail_all_tickets(fs_info, space_info)) 1339 flush_state = 0; 1340 else 1341 space_info->flush = 0; 1342 } else { 1343 flush_state = 0; 1344 } 1345 1346 /* Something happened, fail everything and bail. */ 1347 if (BTRFS_FS_ERROR(fs_info)) 1348 goto aborted_fs; 1349 1350 } 1351 spin_unlock(&space_info->lock); 1352 } 1353 return; 1354 1355 aborted_fs: 1356 maybe_fail_all_tickets(fs_info, space_info); 1357 space_info->flush = 0; 1358 spin_unlock(&space_info->lock); 1359 } 1360 1361 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1362 { 1363 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1364 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1365 INIT_WORK(&fs_info->preempt_reclaim_work, 1366 btrfs_preempt_reclaim_metadata_space); 1367 } 1368 1369 static const enum btrfs_flush_state priority_flush_states[] = { 1370 FLUSH_DELAYED_ITEMS_NR, 1371 FLUSH_DELAYED_ITEMS, 1372 ALLOC_CHUNK, 1373 }; 1374 1375 static const enum btrfs_flush_state evict_flush_states[] = { 1376 FLUSH_DELAYED_ITEMS_NR, 1377 FLUSH_DELAYED_ITEMS, 1378 FLUSH_DELAYED_REFS_NR, 1379 FLUSH_DELAYED_REFS, 1380 FLUSH_DELALLOC, 1381 FLUSH_DELALLOC_WAIT, 1382 FLUSH_DELALLOC_FULL, 1383 ALLOC_CHUNK, 1384 COMMIT_TRANS, 1385 }; 1386 1387 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1388 struct btrfs_space_info *space_info, 1389 struct reserve_ticket *ticket, 1390 const enum btrfs_flush_state *states, 1391 int states_nr) 1392 { 1393 u64 to_reclaim; 1394 int flush_state = 0; 1395 1396 spin_lock(&space_info->lock); 1397 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1398 /* 1399 * This is the priority reclaim path, so to_reclaim could be >0 still 1400 * because we may have only satisfied the priority tickets and still 1401 * left non priority tickets on the list. We would then have 1402 * to_reclaim but ->bytes == 0. 1403 */ 1404 if (ticket->bytes == 0) { 1405 spin_unlock(&space_info->lock); 1406 return; 1407 } 1408 1409 while (flush_state < states_nr) { 1410 spin_unlock(&space_info->lock); 1411 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1412 false); 1413 flush_state++; 1414 spin_lock(&space_info->lock); 1415 if (ticket->bytes == 0) { 1416 spin_unlock(&space_info->lock); 1417 return; 1418 } 1419 } 1420 1421 /* 1422 * Attempt to steal from the global rsv if we can, except if the fs was 1423 * turned into error mode due to a transaction abort when flushing space 1424 * above, in that case fail with the abort error instead of returning 1425 * success to the caller if we can steal from the global rsv - this is 1426 * just to have caller fail immeditelly instead of later when trying to 1427 * modify the fs, making it easier to debug -ENOSPC problems. 1428 */ 1429 if (BTRFS_FS_ERROR(fs_info)) { 1430 ticket->error = BTRFS_FS_ERROR(fs_info); 1431 remove_ticket(space_info, ticket); 1432 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1433 ticket->error = -ENOSPC; 1434 remove_ticket(space_info, ticket); 1435 } 1436 1437 /* 1438 * We must run try_granting_tickets here because we could be a large 1439 * ticket in front of a smaller ticket that can now be satisfied with 1440 * the available space. 1441 */ 1442 btrfs_try_granting_tickets(fs_info, space_info); 1443 spin_unlock(&space_info->lock); 1444 } 1445 1446 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1447 struct btrfs_space_info *space_info, 1448 struct reserve_ticket *ticket) 1449 { 1450 spin_lock(&space_info->lock); 1451 1452 /* We could have been granted before we got here. */ 1453 if (ticket->bytes == 0) { 1454 spin_unlock(&space_info->lock); 1455 return; 1456 } 1457 1458 while (!space_info->full) { 1459 spin_unlock(&space_info->lock); 1460 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1461 spin_lock(&space_info->lock); 1462 if (ticket->bytes == 0) { 1463 spin_unlock(&space_info->lock); 1464 return; 1465 } 1466 } 1467 1468 ticket->error = -ENOSPC; 1469 remove_ticket(space_info, ticket); 1470 btrfs_try_granting_tickets(fs_info, space_info); 1471 spin_unlock(&space_info->lock); 1472 } 1473 1474 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1475 struct btrfs_space_info *space_info, 1476 struct reserve_ticket *ticket) 1477 1478 { 1479 DEFINE_WAIT(wait); 1480 int ret = 0; 1481 1482 spin_lock(&space_info->lock); 1483 while (ticket->bytes > 0 && ticket->error == 0) { 1484 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1485 if (ret) { 1486 /* 1487 * Delete us from the list. After we unlock the space 1488 * info, we don't want the async reclaim job to reserve 1489 * space for this ticket. If that would happen, then the 1490 * ticket's task would not known that space was reserved 1491 * despite getting an error, resulting in a space leak 1492 * (bytes_may_use counter of our space_info). 1493 */ 1494 remove_ticket(space_info, ticket); 1495 ticket->error = -EINTR; 1496 break; 1497 } 1498 spin_unlock(&space_info->lock); 1499 1500 schedule(); 1501 1502 finish_wait(&ticket->wait, &wait); 1503 spin_lock(&space_info->lock); 1504 } 1505 spin_unlock(&space_info->lock); 1506 } 1507 1508 /* 1509 * Do the appropriate flushing and waiting for a ticket. 1510 * 1511 * @fs_info: the filesystem 1512 * @space_info: space info for the reservation 1513 * @ticket: ticket for the reservation 1514 * @start_ns: timestamp when the reservation started 1515 * @orig_bytes: amount of bytes originally reserved 1516 * @flush: how much we can flush 1517 * 1518 * This does the work of figuring out how to flush for the ticket, waiting for 1519 * the reservation, and returning the appropriate error if there is one. 1520 */ 1521 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1522 struct btrfs_space_info *space_info, 1523 struct reserve_ticket *ticket, 1524 u64 start_ns, u64 orig_bytes, 1525 enum btrfs_reserve_flush_enum flush) 1526 { 1527 int ret; 1528 1529 switch (flush) { 1530 case BTRFS_RESERVE_FLUSH_DATA: 1531 case BTRFS_RESERVE_FLUSH_ALL: 1532 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1533 wait_reserve_ticket(fs_info, space_info, ticket); 1534 break; 1535 case BTRFS_RESERVE_FLUSH_LIMIT: 1536 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1537 priority_flush_states, 1538 ARRAY_SIZE(priority_flush_states)); 1539 break; 1540 case BTRFS_RESERVE_FLUSH_EVICT: 1541 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1542 evict_flush_states, 1543 ARRAY_SIZE(evict_flush_states)); 1544 break; 1545 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1546 priority_reclaim_data_space(fs_info, space_info, ticket); 1547 break; 1548 default: 1549 ASSERT(0); 1550 break; 1551 } 1552 1553 ret = ticket->error; 1554 ASSERT(list_empty(&ticket->list)); 1555 /* 1556 * Check that we can't have an error set if the reservation succeeded, 1557 * as that would confuse tasks and lead them to error out without 1558 * releasing reserved space (if an error happens the expectation is that 1559 * space wasn't reserved at all). 1560 */ 1561 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1562 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1563 start_ns, flush, ticket->error); 1564 return ret; 1565 } 1566 1567 /* 1568 * This returns true if this flush state will go through the ordinary flushing 1569 * code. 1570 */ 1571 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1572 { 1573 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1574 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1575 } 1576 1577 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1578 struct btrfs_space_info *space_info) 1579 { 1580 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1581 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1582 1583 /* 1584 * If we're heavy on ordered operations then clamping won't help us. We 1585 * need to clamp specifically to keep up with dirty'ing buffered 1586 * writers, because there's not a 1:1 correlation of writing delalloc 1587 * and freeing space, like there is with flushing delayed refs or 1588 * delayed nodes. If we're already more ordered than delalloc then 1589 * we're keeping up, otherwise we aren't and should probably clamp. 1590 */ 1591 if (ordered < delalloc) 1592 space_info->clamp = min(space_info->clamp + 1, 8); 1593 } 1594 1595 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1596 { 1597 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1598 flush == BTRFS_RESERVE_FLUSH_EVICT); 1599 } 1600 1601 /* 1602 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1603 * fail as quickly as possible. 1604 */ 1605 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1606 { 1607 return (flush != BTRFS_RESERVE_NO_FLUSH && 1608 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1609 } 1610 1611 /* 1612 * Try to reserve bytes from the block_rsv's space. 1613 * 1614 * @fs_info: the filesystem 1615 * @space_info: space info we want to allocate from 1616 * @orig_bytes: number of bytes we want 1617 * @flush: whether or not we can flush to make our reservation 1618 * 1619 * This will reserve orig_bytes number of bytes from the space info associated 1620 * with the block_rsv. If there is not enough space it will make an attempt to 1621 * flush out space to make room. It will do this by flushing delalloc if 1622 * possible or committing the transaction. If flush is 0 then no attempts to 1623 * regain reservations will be made and this will fail if there is not enough 1624 * space already. 1625 */ 1626 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1627 struct btrfs_space_info *space_info, u64 orig_bytes, 1628 enum btrfs_reserve_flush_enum flush) 1629 { 1630 struct work_struct *async_work; 1631 struct reserve_ticket ticket; 1632 u64 start_ns = 0; 1633 u64 used; 1634 int ret = -ENOSPC; 1635 bool pending_tickets; 1636 1637 ASSERT(orig_bytes); 1638 /* 1639 * If have a transaction handle (current->journal_info != NULL), then 1640 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1641 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1642 * flushing methods can trigger transaction commits. 1643 */ 1644 if (current->journal_info) { 1645 /* One assert per line for easier debugging. */ 1646 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1647 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1648 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1649 } 1650 1651 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1652 async_work = &fs_info->async_data_reclaim_work; 1653 else 1654 async_work = &fs_info->async_reclaim_work; 1655 1656 spin_lock(&space_info->lock); 1657 used = btrfs_space_info_used(space_info, true); 1658 1659 /* 1660 * We don't want NO_FLUSH allocations to jump everybody, they can 1661 * generally handle ENOSPC in a different way, so treat them the same as 1662 * normal flushers when it comes to skipping pending tickets. 1663 */ 1664 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1665 pending_tickets = !list_empty(&space_info->tickets) || 1666 !list_empty(&space_info->priority_tickets); 1667 else 1668 pending_tickets = !list_empty(&space_info->priority_tickets); 1669 1670 /* 1671 * Carry on if we have enough space (short-circuit) OR call 1672 * can_overcommit() to ensure we can overcommit to continue. 1673 */ 1674 if (!pending_tickets && 1675 ((used + orig_bytes <= space_info->total_bytes) || 1676 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1677 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1678 orig_bytes); 1679 ret = 0; 1680 } 1681 1682 /* 1683 * Things are dire, we need to make a reservation so we don't abort. We 1684 * will let this reservation go through as long as we have actual space 1685 * left to allocate for the block. 1686 */ 1687 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1688 used = btrfs_space_info_used(space_info, false); 1689 if (used + orig_bytes <= space_info->total_bytes) { 1690 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1691 orig_bytes); 1692 ret = 0; 1693 } 1694 } 1695 1696 /* 1697 * If we couldn't make a reservation then setup our reservation ticket 1698 * and kick the async worker if it's not already running. 1699 * 1700 * If we are a priority flusher then we just need to add our ticket to 1701 * the list and we will do our own flushing further down. 1702 */ 1703 if (ret && can_ticket(flush)) { 1704 ticket.bytes = orig_bytes; 1705 ticket.error = 0; 1706 space_info->reclaim_size += ticket.bytes; 1707 init_waitqueue_head(&ticket.wait); 1708 ticket.steal = can_steal(flush); 1709 if (trace_btrfs_reserve_ticket_enabled()) 1710 start_ns = ktime_get_ns(); 1711 1712 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1713 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1714 flush == BTRFS_RESERVE_FLUSH_DATA) { 1715 list_add_tail(&ticket.list, &space_info->tickets); 1716 if (!space_info->flush) { 1717 /* 1718 * We were forced to add a reserve ticket, so 1719 * our preemptive flushing is unable to keep 1720 * up. Clamp down on the threshold for the 1721 * preemptive flushing in order to keep up with 1722 * the workload. 1723 */ 1724 maybe_clamp_preempt(fs_info, space_info); 1725 1726 space_info->flush = 1; 1727 trace_btrfs_trigger_flush(fs_info, 1728 space_info->flags, 1729 orig_bytes, flush, 1730 "enospc"); 1731 queue_work(system_unbound_wq, async_work); 1732 } 1733 } else { 1734 list_add_tail(&ticket.list, 1735 &space_info->priority_tickets); 1736 } 1737 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1738 /* 1739 * We will do the space reservation dance during log replay, 1740 * which means we won't have fs_info->fs_root set, so don't do 1741 * the async reclaim as we will panic. 1742 */ 1743 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1744 !work_busy(&fs_info->preempt_reclaim_work) && 1745 need_preemptive_reclaim(fs_info, space_info)) { 1746 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1747 orig_bytes, flush, "preempt"); 1748 queue_work(system_unbound_wq, 1749 &fs_info->preempt_reclaim_work); 1750 } 1751 } 1752 spin_unlock(&space_info->lock); 1753 if (!ret || !can_ticket(flush)) 1754 return ret; 1755 1756 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1757 orig_bytes, flush); 1758 } 1759 1760 /* 1761 * Try to reserve metadata bytes from the block_rsv's space. 1762 * 1763 * @fs_info: the filesystem 1764 * @space_info: the space_info we're allocating for 1765 * @orig_bytes: number of bytes we want 1766 * @flush: whether or not we can flush to make our reservation 1767 * 1768 * This will reserve orig_bytes number of bytes from the space info associated 1769 * with the block_rsv. If there is not enough space it will make an attempt to 1770 * flush out space to make room. It will do this by flushing delalloc if 1771 * possible or committing the transaction. If flush is 0 then no attempts to 1772 * regain reservations will be made and this will fail if there is not enough 1773 * space already. 1774 */ 1775 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1776 struct btrfs_space_info *space_info, 1777 u64 orig_bytes, 1778 enum btrfs_reserve_flush_enum flush) 1779 { 1780 int ret; 1781 1782 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1783 if (ret == -ENOSPC) { 1784 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1785 space_info->flags, orig_bytes, 1); 1786 1787 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1788 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1789 } 1790 return ret; 1791 } 1792 1793 /* 1794 * Try to reserve data bytes for an allocation. 1795 * 1796 * @fs_info: the filesystem 1797 * @bytes: number of bytes we need 1798 * @flush: how we are allowed to flush 1799 * 1800 * This will reserve bytes from the data space info. If there is not enough 1801 * space then we will attempt to flush space as specified by flush. 1802 */ 1803 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1804 enum btrfs_reserve_flush_enum flush) 1805 { 1806 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1807 int ret; 1808 1809 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1810 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1811 flush == BTRFS_RESERVE_NO_FLUSH); 1812 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1813 1814 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1815 if (ret == -ENOSPC) { 1816 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1817 data_sinfo->flags, bytes, 1); 1818 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1819 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1820 } 1821 return ret; 1822 } 1823 1824 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1825 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1826 { 1827 struct btrfs_space_info *space_info; 1828 1829 btrfs_info(fs_info, "dumping space info:"); 1830 list_for_each_entry(space_info, &fs_info->space_info, list) { 1831 spin_lock(&space_info->lock); 1832 __btrfs_dump_space_info(fs_info, space_info); 1833 spin_unlock(&space_info->lock); 1834 } 1835 dump_global_block_rsv(fs_info); 1836 } 1837 1838 /* 1839 * Account the unused space of all the readonly block group in the space_info. 1840 * takes mirrors into account. 1841 */ 1842 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1843 { 1844 struct btrfs_block_group *block_group; 1845 u64 free_bytes = 0; 1846 int factor; 1847 1848 /* It's df, we don't care if it's racy */ 1849 if (list_empty(&sinfo->ro_bgs)) 1850 return 0; 1851 1852 spin_lock(&sinfo->lock); 1853 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1854 spin_lock(&block_group->lock); 1855 1856 if (!block_group->ro) { 1857 spin_unlock(&block_group->lock); 1858 continue; 1859 } 1860 1861 factor = btrfs_bg_type_to_factor(block_group->flags); 1862 free_bytes += (block_group->length - 1863 block_group->used) * factor; 1864 1865 spin_unlock(&block_group->lock); 1866 } 1867 spin_unlock(&sinfo->lock); 1868 1869 return free_bytes; 1870 } 1871