xref: /linux/fs/btrfs/space-info.c (revision 1b0975ee3bdd3eb19a47371c26fd7ef8f7f6b599)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	found->disk_total += block_group->length * factor;
312 	found->bytes_used += block_group->used;
313 	found->disk_used += block_group->used * factor;
314 	found->bytes_readonly += block_group->bytes_super;
315 	found->bytes_zone_unusable += block_group->zone_unusable;
316 	if (block_group->length > 0)
317 		found->full = 0;
318 	btrfs_try_granting_tickets(info, found);
319 	spin_unlock(&found->lock);
320 
321 	block_group->space_info = found;
322 
323 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 	down_write(&found->groups_sem);
325 	list_add_tail(&block_group->list, &found->block_groups[index]);
326 	up_write(&found->groups_sem);
327 }
328 
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 					       u64 flags)
331 {
332 	struct list_head *head = &info->space_info;
333 	struct btrfs_space_info *found;
334 
335 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336 
337 	list_for_each_entry(found, head, list) {
338 		if (found->flags & flags)
339 			return found;
340 	}
341 	return NULL;
342 }
343 
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 			  struct btrfs_space_info *space_info,
346 			  enum btrfs_reserve_flush_enum flush)
347 {
348 	u64 profile;
349 	u64 avail;
350 	int factor;
351 
352 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 		profile = btrfs_system_alloc_profile(fs_info);
354 	else
355 		profile = btrfs_metadata_alloc_profile(fs_info);
356 
357 	avail = atomic64_read(&fs_info->free_chunk_space);
358 
359 	/*
360 	 * If we have dup, raid1 or raid10 then only half of the free
361 	 * space is actually usable.  For raid56, the space info used
362 	 * doesn't include the parity drive, so we don't have to
363 	 * change the math
364 	 */
365 	factor = btrfs_bg_type_to_factor(profile);
366 	avail = div_u64(avail, factor);
367 
368 	/*
369 	 * If we aren't flushing all things, let us overcommit up to
370 	 * 1/2th of the space. If we can flush, don't let us overcommit
371 	 * too much, let it overcommit up to 1/8 of the space.
372 	 */
373 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 		avail >>= 3;
375 	else
376 		avail >>= 1;
377 	return avail;
378 }
379 
380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 			 struct btrfs_space_info *space_info, u64 bytes,
382 			 enum btrfs_reserve_flush_enum flush)
383 {
384 	u64 avail;
385 	u64 used;
386 
387 	/* Don't overcommit when in mixed mode */
388 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 		return 0;
390 
391 	used = btrfs_space_info_used(space_info, true);
392 	if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) &&
393 	    (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
394 		avail = 0;
395 	else
396 		avail = calc_available_free_space(fs_info, space_info, flush);
397 
398 	if (used + bytes < space_info->total_bytes + avail)
399 		return 1;
400 	return 0;
401 }
402 
403 static void remove_ticket(struct btrfs_space_info *space_info,
404 			  struct reserve_ticket *ticket)
405 {
406 	if (!list_empty(&ticket->list)) {
407 		list_del_init(&ticket->list);
408 		ASSERT(space_info->reclaim_size >= ticket->bytes);
409 		space_info->reclaim_size -= ticket->bytes;
410 	}
411 }
412 
413 /*
414  * This is for space we already have accounted in space_info->bytes_may_use, so
415  * basically when we're returning space from block_rsv's.
416  */
417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
418 				struct btrfs_space_info *space_info)
419 {
420 	struct list_head *head;
421 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
422 
423 	lockdep_assert_held(&space_info->lock);
424 
425 	head = &space_info->priority_tickets;
426 again:
427 	while (!list_empty(head)) {
428 		struct reserve_ticket *ticket;
429 		u64 used = btrfs_space_info_used(space_info, true);
430 
431 		ticket = list_first_entry(head, struct reserve_ticket, list);
432 
433 		/* Check and see if our ticket can be satisfied now. */
434 		if ((used + ticket->bytes <= space_info->total_bytes) ||
435 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
436 					 flush)) {
437 			btrfs_space_info_update_bytes_may_use(fs_info,
438 							      space_info,
439 							      ticket->bytes);
440 			remove_ticket(space_info, ticket);
441 			ticket->bytes = 0;
442 			space_info->tickets_id++;
443 			wake_up(&ticket->wait);
444 		} else {
445 			break;
446 		}
447 	}
448 
449 	if (head == &space_info->priority_tickets) {
450 		head = &space_info->tickets;
451 		flush = BTRFS_RESERVE_FLUSH_ALL;
452 		goto again;
453 	}
454 }
455 
456 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
457 do {									\
458 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
459 	spin_lock(&__rsv->lock);					\
460 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
461 		   __rsv->size, __rsv->reserved);			\
462 	spin_unlock(&__rsv->lock);					\
463 } while (0)
464 
465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
466 {
467 	switch (space_info->flags) {
468 	case BTRFS_BLOCK_GROUP_SYSTEM:
469 		return "SYSTEM";
470 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
471 		return "DATA+METADATA";
472 	case BTRFS_BLOCK_GROUP_DATA:
473 		return "DATA";
474 	case BTRFS_BLOCK_GROUP_METADATA:
475 		return "METADATA";
476 	default:
477 		return "UNKNOWN";
478 	}
479 }
480 
481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
482 {
483 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
484 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
485 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
486 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
487 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
488 }
489 
490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
491 				    struct btrfs_space_info *info)
492 {
493 	const char *flag_str = space_info_flag_to_str(info);
494 	lockdep_assert_held(&info->lock);
495 
496 	/* The free space could be negative in case of overcommit */
497 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
498 		   flag_str,
499 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
500 		   info->full ? "" : "not ");
501 	btrfs_info(fs_info,
502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
503 		info->total_bytes, info->bytes_used, info->bytes_pinned,
504 		info->bytes_reserved, info->bytes_may_use,
505 		info->bytes_readonly, info->bytes_zone_unusable);
506 }
507 
508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 			   struct btrfs_space_info *info, u64 bytes,
510 			   int dump_block_groups)
511 {
512 	struct btrfs_block_group *cache;
513 	int index = 0;
514 
515 	spin_lock(&info->lock);
516 	__btrfs_dump_space_info(fs_info, info);
517 	dump_global_block_rsv(fs_info);
518 	spin_unlock(&info->lock);
519 
520 	if (!dump_block_groups)
521 		return;
522 
523 	down_read(&info->groups_sem);
524 again:
525 	list_for_each_entry(cache, &info->block_groups[index], list) {
526 		spin_lock(&cache->lock);
527 		btrfs_info(fs_info,
528 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
529 			cache->start, cache->length, cache->used, cache->pinned,
530 			cache->reserved, cache->zone_unusable,
531 			cache->ro ? "[readonly]" : "");
532 		spin_unlock(&cache->lock);
533 		btrfs_dump_free_space(cache, bytes);
534 	}
535 	if (++index < BTRFS_NR_RAID_TYPES)
536 		goto again;
537 	up_read(&info->groups_sem);
538 }
539 
540 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
541 					u64 to_reclaim)
542 {
543 	u64 bytes;
544 	u64 nr;
545 
546 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
547 	nr = div64_u64(to_reclaim, bytes);
548 	if (!nr)
549 		nr = 1;
550 	return nr;
551 }
552 
553 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info,
554 				       u64 to_reclaim)
555 {
556 	const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1);
557 	u64 nr;
558 
559 	nr = div64_u64(to_reclaim, bytes);
560 	if (!nr)
561 		nr = 1;
562 	return nr;
563 }
564 
565 #define EXTENT_SIZE_PER_ITEM	SZ_256K
566 
567 /*
568  * shrink metadata reservation for delalloc
569  */
570 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
571 			    struct btrfs_space_info *space_info,
572 			    u64 to_reclaim, bool wait_ordered,
573 			    bool for_preempt)
574 {
575 	struct btrfs_trans_handle *trans;
576 	u64 delalloc_bytes;
577 	u64 ordered_bytes;
578 	u64 items;
579 	long time_left;
580 	int loops;
581 
582 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
583 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
584 	if (delalloc_bytes == 0 && ordered_bytes == 0)
585 		return;
586 
587 	/* Calc the number of the pages we need flush for space reservation */
588 	if (to_reclaim == U64_MAX) {
589 		items = U64_MAX;
590 	} else {
591 		/*
592 		 * to_reclaim is set to however much metadata we need to
593 		 * reclaim, but reclaiming that much data doesn't really track
594 		 * exactly.  What we really want to do is reclaim full inode's
595 		 * worth of reservations, however that's not available to us
596 		 * here.  We will take a fraction of the delalloc bytes for our
597 		 * flushing loops and hope for the best.  Delalloc will expand
598 		 * the amount we write to cover an entire dirty extent, which
599 		 * will reclaim the metadata reservation for that range.  If
600 		 * it's not enough subsequent flush stages will be more
601 		 * aggressive.
602 		 */
603 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
604 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
605 	}
606 
607 	trans = current->journal_info;
608 
609 	/*
610 	 * If we are doing more ordered than delalloc we need to just wait on
611 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
612 	 * that likely won't give us the space back we need.
613 	 */
614 	if (ordered_bytes > delalloc_bytes && !for_preempt)
615 		wait_ordered = true;
616 
617 	loops = 0;
618 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
619 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
620 		long nr_pages = min_t(u64, temp, LONG_MAX);
621 		int async_pages;
622 
623 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
624 
625 		/*
626 		 * We need to make sure any outstanding async pages are now
627 		 * processed before we continue.  This is because things like
628 		 * sync_inode() try to be smart and skip writing if the inode is
629 		 * marked clean.  We don't use filemap_fwrite for flushing
630 		 * because we want to control how many pages we write out at a
631 		 * time, thus this is the only safe way to make sure we've
632 		 * waited for outstanding compressed workers to have started
633 		 * their jobs and thus have ordered extents set up properly.
634 		 *
635 		 * This exists because we do not want to wait for each
636 		 * individual inode to finish its async work, we simply want to
637 		 * start the IO on everybody, and then come back here and wait
638 		 * for all of the async work to catch up.  Once we're done with
639 		 * that we know we'll have ordered extents for everything and we
640 		 * can decide if we wait for that or not.
641 		 *
642 		 * If we choose to replace this in the future, make absolutely
643 		 * sure that the proper waiting is being done in the async case,
644 		 * as there have been bugs in that area before.
645 		 */
646 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
647 		if (!async_pages)
648 			goto skip_async;
649 
650 		/*
651 		 * We don't want to wait forever, if we wrote less pages in this
652 		 * loop than we have outstanding, only wait for that number of
653 		 * pages, otherwise we can wait for all async pages to finish
654 		 * before continuing.
655 		 */
656 		if (async_pages > nr_pages)
657 			async_pages -= nr_pages;
658 		else
659 			async_pages = 0;
660 		wait_event(fs_info->async_submit_wait,
661 			   atomic_read(&fs_info->async_delalloc_pages) <=
662 			   async_pages);
663 skip_async:
664 		loops++;
665 		if (wait_ordered && !trans) {
666 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
667 		} else {
668 			time_left = schedule_timeout_killable(1);
669 			if (time_left)
670 				break;
671 		}
672 
673 		/*
674 		 * If we are for preemption we just want a one-shot of delalloc
675 		 * flushing so we can stop flushing if we decide we don't need
676 		 * to anymore.
677 		 */
678 		if (for_preempt)
679 			break;
680 
681 		spin_lock(&space_info->lock);
682 		if (list_empty(&space_info->tickets) &&
683 		    list_empty(&space_info->priority_tickets)) {
684 			spin_unlock(&space_info->lock);
685 			break;
686 		}
687 		spin_unlock(&space_info->lock);
688 
689 		delalloc_bytes = percpu_counter_sum_positive(
690 						&fs_info->delalloc_bytes);
691 		ordered_bytes = percpu_counter_sum_positive(
692 						&fs_info->ordered_bytes);
693 	}
694 }
695 
696 /*
697  * Try to flush some data based on policy set by @state. This is only advisory
698  * and may fail for various reasons. The caller is supposed to examine the
699  * state of @space_info to detect the outcome.
700  */
701 static void flush_space(struct btrfs_fs_info *fs_info,
702 		       struct btrfs_space_info *space_info, u64 num_bytes,
703 		       enum btrfs_flush_state state, bool for_preempt)
704 {
705 	struct btrfs_root *root = fs_info->tree_root;
706 	struct btrfs_trans_handle *trans;
707 	int nr;
708 	int ret = 0;
709 
710 	switch (state) {
711 	case FLUSH_DELAYED_ITEMS_NR:
712 	case FLUSH_DELAYED_ITEMS:
713 		if (state == FLUSH_DELAYED_ITEMS_NR)
714 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
715 		else
716 			nr = -1;
717 
718 		trans = btrfs_join_transaction(root);
719 		if (IS_ERR(trans)) {
720 			ret = PTR_ERR(trans);
721 			break;
722 		}
723 		ret = btrfs_run_delayed_items_nr(trans, nr);
724 		btrfs_end_transaction(trans);
725 		break;
726 	case FLUSH_DELALLOC:
727 	case FLUSH_DELALLOC_WAIT:
728 	case FLUSH_DELALLOC_FULL:
729 		if (state == FLUSH_DELALLOC_FULL)
730 			num_bytes = U64_MAX;
731 		shrink_delalloc(fs_info, space_info, num_bytes,
732 				state != FLUSH_DELALLOC, for_preempt);
733 		break;
734 	case FLUSH_DELAYED_REFS_NR:
735 	case FLUSH_DELAYED_REFS:
736 		trans = btrfs_join_transaction(root);
737 		if (IS_ERR(trans)) {
738 			ret = PTR_ERR(trans);
739 			break;
740 		}
741 		if (state == FLUSH_DELAYED_REFS_NR)
742 			nr = calc_delayed_refs_nr(fs_info, num_bytes);
743 		else
744 			nr = 0;
745 		btrfs_run_delayed_refs(trans, nr);
746 		btrfs_end_transaction(trans);
747 		break;
748 	case ALLOC_CHUNK:
749 	case ALLOC_CHUNK_FORCE:
750 		/*
751 		 * For metadata space on zoned filesystem, reaching here means we
752 		 * don't have enough space left in active_total_bytes. Try to
753 		 * activate a block group first, because we may have inactive
754 		 * block group already allocated.
755 		 */
756 		ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
757 		if (ret < 0)
758 			break;
759 		else if (ret == 1)
760 			break;
761 
762 		trans = btrfs_join_transaction(root);
763 		if (IS_ERR(trans)) {
764 			ret = PTR_ERR(trans);
765 			break;
766 		}
767 		ret = btrfs_chunk_alloc(trans,
768 				btrfs_get_alloc_profile(fs_info, space_info->flags),
769 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
770 					CHUNK_ALLOC_FORCE);
771 		btrfs_end_transaction(trans);
772 
773 		/*
774 		 * For metadata space on zoned filesystem, allocating a new chunk
775 		 * is not enough. We still need to activate the block * group.
776 		 * Active the newly allocated block group by (maybe) finishing
777 		 * a block group.
778 		 */
779 		if (ret == 1) {
780 			ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
781 			/*
782 			 * Revert to the original ret regardless we could finish
783 			 * one block group or not.
784 			 */
785 			if (ret >= 0)
786 				ret = 1;
787 		}
788 
789 		if (ret > 0 || ret == -ENOSPC)
790 			ret = 0;
791 		break;
792 	case RUN_DELAYED_IPUTS:
793 		/*
794 		 * If we have pending delayed iputs then we could free up a
795 		 * bunch of pinned space, so make sure we run the iputs before
796 		 * we do our pinned bytes check below.
797 		 */
798 		btrfs_run_delayed_iputs(fs_info);
799 		btrfs_wait_on_delayed_iputs(fs_info);
800 		break;
801 	case COMMIT_TRANS:
802 		ASSERT(current->journal_info == NULL);
803 		trans = btrfs_join_transaction(root);
804 		if (IS_ERR(trans)) {
805 			ret = PTR_ERR(trans);
806 			break;
807 		}
808 		ret = btrfs_commit_transaction(trans);
809 		break;
810 	default:
811 		ret = -ENOSPC;
812 		break;
813 	}
814 
815 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
816 				ret, for_preempt);
817 	return;
818 }
819 
820 static inline u64
821 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
822 				 struct btrfs_space_info *space_info)
823 {
824 	u64 used;
825 	u64 avail;
826 	u64 to_reclaim = space_info->reclaim_size;
827 
828 	lockdep_assert_held(&space_info->lock);
829 
830 	avail = calc_available_free_space(fs_info, space_info,
831 					  BTRFS_RESERVE_FLUSH_ALL);
832 	used = btrfs_space_info_used(space_info, true);
833 
834 	/*
835 	 * We may be flushing because suddenly we have less space than we had
836 	 * before, and now we're well over-committed based on our current free
837 	 * space.  If that's the case add in our overage so we make sure to put
838 	 * appropriate pressure on the flushing state machine.
839 	 */
840 	if (space_info->total_bytes + avail < used)
841 		to_reclaim += used - (space_info->total_bytes + avail);
842 
843 	return to_reclaim;
844 }
845 
846 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
847 				    struct btrfs_space_info *space_info)
848 {
849 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
850 	u64 ordered, delalloc;
851 	u64 thresh;
852 	u64 used;
853 
854 	thresh = mult_perc(space_info->total_bytes, 90);
855 
856 	lockdep_assert_held(&space_info->lock);
857 
858 	/* If we're just plain full then async reclaim just slows us down. */
859 	if ((space_info->bytes_used + space_info->bytes_reserved +
860 	     global_rsv_size) >= thresh)
861 		return false;
862 
863 	used = space_info->bytes_may_use + space_info->bytes_pinned;
864 
865 	/* The total flushable belongs to the global rsv, don't flush. */
866 	if (global_rsv_size >= used)
867 		return false;
868 
869 	/*
870 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
871 	 * that devoted to other reservations then there's no sense in flushing,
872 	 * we don't have a lot of things that need flushing.
873 	 */
874 	if (used - global_rsv_size <= SZ_128M)
875 		return false;
876 
877 	/*
878 	 * We have tickets queued, bail so we don't compete with the async
879 	 * flushers.
880 	 */
881 	if (space_info->reclaim_size)
882 		return false;
883 
884 	/*
885 	 * If we have over half of the free space occupied by reservations or
886 	 * pinned then we want to start flushing.
887 	 *
888 	 * We do not do the traditional thing here, which is to say
889 	 *
890 	 *   if (used >= ((total_bytes + avail) / 2))
891 	 *     return 1;
892 	 *
893 	 * because this doesn't quite work how we want.  If we had more than 50%
894 	 * of the space_info used by bytes_used and we had 0 available we'd just
895 	 * constantly run the background flusher.  Instead we want it to kick in
896 	 * if our reclaimable space exceeds our clamped free space.
897 	 *
898 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
899 	 * the following:
900 	 *
901 	 * Amount of RAM        Minimum threshold       Maximum threshold
902 	 *
903 	 *        256GiB                     1GiB                  128GiB
904 	 *        128GiB                   512MiB                   64GiB
905 	 *         64GiB                   256MiB                   32GiB
906 	 *         32GiB                   128MiB                   16GiB
907 	 *         16GiB                    64MiB                    8GiB
908 	 *
909 	 * These are the range our thresholds will fall in, corresponding to how
910 	 * much delalloc we need for the background flusher to kick in.
911 	 */
912 
913 	thresh = calc_available_free_space(fs_info, space_info,
914 					   BTRFS_RESERVE_FLUSH_ALL);
915 	used = space_info->bytes_used + space_info->bytes_reserved +
916 	       space_info->bytes_readonly + global_rsv_size;
917 	if (used < space_info->total_bytes)
918 		thresh += space_info->total_bytes - used;
919 	thresh >>= space_info->clamp;
920 
921 	used = space_info->bytes_pinned;
922 
923 	/*
924 	 * If we have more ordered bytes than delalloc bytes then we're either
925 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
926 	 * around.  Preemptive flushing is only useful in that it can free up
927 	 * space before tickets need to wait for things to finish.  In the case
928 	 * of ordered extents, preemptively waiting on ordered extents gets us
929 	 * nothing, if our reservations are tied up in ordered extents we'll
930 	 * simply have to slow down writers by forcing them to wait on ordered
931 	 * extents.
932 	 *
933 	 * In the case that ordered is larger than delalloc, only include the
934 	 * block reserves that we would actually be able to directly reclaim
935 	 * from.  In this case if we're heavy on metadata operations this will
936 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
937 	 * of heavy DIO or ordered reservations, preemptive flushing will just
938 	 * waste time and cause us to slow down.
939 	 *
940 	 * We want to make sure we truly are maxed out on ordered however, so
941 	 * cut ordered in half, and if it's still higher than delalloc then we
942 	 * can keep flushing.  This is to avoid the case where we start
943 	 * flushing, and now delalloc == ordered and we stop preemptively
944 	 * flushing when we could still have several gigs of delalloc to flush.
945 	 */
946 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
947 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
948 	if (ordered >= delalloc)
949 		used += fs_info->delayed_refs_rsv.reserved +
950 			fs_info->delayed_block_rsv.reserved;
951 	else
952 		used += space_info->bytes_may_use - global_rsv_size;
953 
954 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
955 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
956 }
957 
958 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
959 				  struct btrfs_space_info *space_info,
960 				  struct reserve_ticket *ticket)
961 {
962 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
963 	u64 min_bytes;
964 
965 	if (!ticket->steal)
966 		return false;
967 
968 	if (global_rsv->space_info != space_info)
969 		return false;
970 
971 	spin_lock(&global_rsv->lock);
972 	min_bytes = mult_perc(global_rsv->size, 10);
973 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
974 		spin_unlock(&global_rsv->lock);
975 		return false;
976 	}
977 	global_rsv->reserved -= ticket->bytes;
978 	remove_ticket(space_info, ticket);
979 	ticket->bytes = 0;
980 	wake_up(&ticket->wait);
981 	space_info->tickets_id++;
982 	if (global_rsv->reserved < global_rsv->size)
983 		global_rsv->full = 0;
984 	spin_unlock(&global_rsv->lock);
985 
986 	return true;
987 }
988 
989 /*
990  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
991  * @fs_info - fs_info for this fs
992  * @space_info - the space info we were flushing
993  *
994  * We call this when we've exhausted our flushing ability and haven't made
995  * progress in satisfying tickets.  The reservation code handles tickets in
996  * order, so if there is a large ticket first and then smaller ones we could
997  * very well satisfy the smaller tickets.  This will attempt to wake up any
998  * tickets in the list to catch this case.
999  *
1000  * This function returns true if it was able to make progress by clearing out
1001  * other tickets, or if it stumbles across a ticket that was smaller than the
1002  * first ticket.
1003  */
1004 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1005 				   struct btrfs_space_info *space_info)
1006 {
1007 	struct reserve_ticket *ticket;
1008 	u64 tickets_id = space_info->tickets_id;
1009 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1010 
1011 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1012 
1013 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1014 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1015 		__btrfs_dump_space_info(fs_info, space_info);
1016 	}
1017 
1018 	while (!list_empty(&space_info->tickets) &&
1019 	       tickets_id == space_info->tickets_id) {
1020 		ticket = list_first_entry(&space_info->tickets,
1021 					  struct reserve_ticket, list);
1022 
1023 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1024 			return true;
1025 
1026 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1027 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1028 				   ticket->bytes);
1029 
1030 		remove_ticket(space_info, ticket);
1031 		if (aborted)
1032 			ticket->error = -EIO;
1033 		else
1034 			ticket->error = -ENOSPC;
1035 		wake_up(&ticket->wait);
1036 
1037 		/*
1038 		 * We're just throwing tickets away, so more flushing may not
1039 		 * trip over btrfs_try_granting_tickets, so we need to call it
1040 		 * here to see if we can make progress with the next ticket in
1041 		 * the list.
1042 		 */
1043 		if (!aborted)
1044 			btrfs_try_granting_tickets(fs_info, space_info);
1045 	}
1046 	return (tickets_id != space_info->tickets_id);
1047 }
1048 
1049 /*
1050  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1051  * will loop and continuously try to flush as long as we are making progress.
1052  * We count progress as clearing off tickets each time we have to loop.
1053  */
1054 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1055 {
1056 	struct btrfs_fs_info *fs_info;
1057 	struct btrfs_space_info *space_info;
1058 	u64 to_reclaim;
1059 	enum btrfs_flush_state flush_state;
1060 	int commit_cycles = 0;
1061 	u64 last_tickets_id;
1062 
1063 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1064 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1065 
1066 	spin_lock(&space_info->lock);
1067 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1068 	if (!to_reclaim) {
1069 		space_info->flush = 0;
1070 		spin_unlock(&space_info->lock);
1071 		return;
1072 	}
1073 	last_tickets_id = space_info->tickets_id;
1074 	spin_unlock(&space_info->lock);
1075 
1076 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1077 	do {
1078 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1079 		spin_lock(&space_info->lock);
1080 		if (list_empty(&space_info->tickets)) {
1081 			space_info->flush = 0;
1082 			spin_unlock(&space_info->lock);
1083 			return;
1084 		}
1085 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1086 							      space_info);
1087 		if (last_tickets_id == space_info->tickets_id) {
1088 			flush_state++;
1089 		} else {
1090 			last_tickets_id = space_info->tickets_id;
1091 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1092 			if (commit_cycles)
1093 				commit_cycles--;
1094 		}
1095 
1096 		/*
1097 		 * We do not want to empty the system of delalloc unless we're
1098 		 * under heavy pressure, so allow one trip through the flushing
1099 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1100 		 */
1101 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1102 			flush_state++;
1103 
1104 		/*
1105 		 * We don't want to force a chunk allocation until we've tried
1106 		 * pretty hard to reclaim space.  Think of the case where we
1107 		 * freed up a bunch of space and so have a lot of pinned space
1108 		 * to reclaim.  We would rather use that than possibly create a
1109 		 * underutilized metadata chunk.  So if this is our first run
1110 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1111 		 * commit the transaction.  If nothing has changed the next go
1112 		 * around then we can force a chunk allocation.
1113 		 */
1114 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1115 			flush_state++;
1116 
1117 		if (flush_state > COMMIT_TRANS) {
1118 			commit_cycles++;
1119 			if (commit_cycles > 2) {
1120 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1121 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1122 					commit_cycles--;
1123 				} else {
1124 					space_info->flush = 0;
1125 				}
1126 			} else {
1127 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1128 			}
1129 		}
1130 		spin_unlock(&space_info->lock);
1131 	} while (flush_state <= COMMIT_TRANS);
1132 }
1133 
1134 /*
1135  * This handles pre-flushing of metadata space before we get to the point that
1136  * we need to start blocking threads on tickets.  The logic here is different
1137  * from the other flush paths because it doesn't rely on tickets to tell us how
1138  * much we need to flush, instead it attempts to keep us below the 80% full
1139  * watermark of space by flushing whichever reservation pool is currently the
1140  * largest.
1141  */
1142 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1143 {
1144 	struct btrfs_fs_info *fs_info;
1145 	struct btrfs_space_info *space_info;
1146 	struct btrfs_block_rsv *delayed_block_rsv;
1147 	struct btrfs_block_rsv *delayed_refs_rsv;
1148 	struct btrfs_block_rsv *global_rsv;
1149 	struct btrfs_block_rsv *trans_rsv;
1150 	int loops = 0;
1151 
1152 	fs_info = container_of(work, struct btrfs_fs_info,
1153 			       preempt_reclaim_work);
1154 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1155 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1156 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1157 	global_rsv = &fs_info->global_block_rsv;
1158 	trans_rsv = &fs_info->trans_block_rsv;
1159 
1160 	spin_lock(&space_info->lock);
1161 	while (need_preemptive_reclaim(fs_info, space_info)) {
1162 		enum btrfs_flush_state flush;
1163 		u64 delalloc_size = 0;
1164 		u64 to_reclaim, block_rsv_size;
1165 		u64 global_rsv_size = global_rsv->reserved;
1166 
1167 		loops++;
1168 
1169 		/*
1170 		 * We don't have a precise counter for the metadata being
1171 		 * reserved for delalloc, so we'll approximate it by subtracting
1172 		 * out the block rsv's space from the bytes_may_use.  If that
1173 		 * amount is higher than the individual reserves, then we can
1174 		 * assume it's tied up in delalloc reservations.
1175 		 */
1176 		block_rsv_size = global_rsv_size +
1177 			delayed_block_rsv->reserved +
1178 			delayed_refs_rsv->reserved +
1179 			trans_rsv->reserved;
1180 		if (block_rsv_size < space_info->bytes_may_use)
1181 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1182 
1183 		/*
1184 		 * We don't want to include the global_rsv in our calculation,
1185 		 * because that's space we can't touch.  Subtract it from the
1186 		 * block_rsv_size for the next checks.
1187 		 */
1188 		block_rsv_size -= global_rsv_size;
1189 
1190 		/*
1191 		 * We really want to avoid flushing delalloc too much, as it
1192 		 * could result in poor allocation patterns, so only flush it if
1193 		 * it's larger than the rest of the pools combined.
1194 		 */
1195 		if (delalloc_size > block_rsv_size) {
1196 			to_reclaim = delalloc_size;
1197 			flush = FLUSH_DELALLOC;
1198 		} else if (space_info->bytes_pinned >
1199 			   (delayed_block_rsv->reserved +
1200 			    delayed_refs_rsv->reserved)) {
1201 			to_reclaim = space_info->bytes_pinned;
1202 			flush = COMMIT_TRANS;
1203 		} else if (delayed_block_rsv->reserved >
1204 			   delayed_refs_rsv->reserved) {
1205 			to_reclaim = delayed_block_rsv->reserved;
1206 			flush = FLUSH_DELAYED_ITEMS_NR;
1207 		} else {
1208 			to_reclaim = delayed_refs_rsv->reserved;
1209 			flush = FLUSH_DELAYED_REFS_NR;
1210 		}
1211 
1212 		spin_unlock(&space_info->lock);
1213 
1214 		/*
1215 		 * We don't want to reclaim everything, just a portion, so scale
1216 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1217 		 * reclaim 1 items worth.
1218 		 */
1219 		to_reclaim >>= 2;
1220 		if (!to_reclaim)
1221 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1222 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1223 		cond_resched();
1224 		spin_lock(&space_info->lock);
1225 	}
1226 
1227 	/* We only went through once, back off our clamping. */
1228 	if (loops == 1 && !space_info->reclaim_size)
1229 		space_info->clamp = max(1, space_info->clamp - 1);
1230 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1231 	spin_unlock(&space_info->lock);
1232 }
1233 
1234 /*
1235  * FLUSH_DELALLOC_WAIT:
1236  *   Space is freed from flushing delalloc in one of two ways.
1237  *
1238  *   1) compression is on and we allocate less space than we reserved
1239  *   2) we are overwriting existing space
1240  *
1241  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1242  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1243  *   length to ->bytes_reserved, and subtracts the reserved space from
1244  *   ->bytes_may_use.
1245  *
1246  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1247  *   extent in the range we are overwriting, which creates a delayed ref for
1248  *   that freed extent.  This however is not reclaimed until the transaction
1249  *   commits, thus the next stages.
1250  *
1251  * RUN_DELAYED_IPUTS
1252  *   If we are freeing inodes, we want to make sure all delayed iputs have
1253  *   completed, because they could have been on an inode with i_nlink == 0, and
1254  *   thus have been truncated and freed up space.  But again this space is not
1255  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1256  *   run and then the transaction must be committed.
1257  *
1258  * COMMIT_TRANS
1259  *   This is where we reclaim all of the pinned space generated by running the
1260  *   iputs
1261  *
1262  * ALLOC_CHUNK_FORCE
1263  *   For data we start with alloc chunk force, however we could have been full
1264  *   before, and then the transaction commit could have freed new block groups,
1265  *   so if we now have space to allocate do the force chunk allocation.
1266  */
1267 static const enum btrfs_flush_state data_flush_states[] = {
1268 	FLUSH_DELALLOC_FULL,
1269 	RUN_DELAYED_IPUTS,
1270 	COMMIT_TRANS,
1271 	ALLOC_CHUNK_FORCE,
1272 };
1273 
1274 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1275 {
1276 	struct btrfs_fs_info *fs_info;
1277 	struct btrfs_space_info *space_info;
1278 	u64 last_tickets_id;
1279 	enum btrfs_flush_state flush_state = 0;
1280 
1281 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1282 	space_info = fs_info->data_sinfo;
1283 
1284 	spin_lock(&space_info->lock);
1285 	if (list_empty(&space_info->tickets)) {
1286 		space_info->flush = 0;
1287 		spin_unlock(&space_info->lock);
1288 		return;
1289 	}
1290 	last_tickets_id = space_info->tickets_id;
1291 	spin_unlock(&space_info->lock);
1292 
1293 	while (!space_info->full) {
1294 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1295 		spin_lock(&space_info->lock);
1296 		if (list_empty(&space_info->tickets)) {
1297 			space_info->flush = 0;
1298 			spin_unlock(&space_info->lock);
1299 			return;
1300 		}
1301 
1302 		/* Something happened, fail everything and bail. */
1303 		if (BTRFS_FS_ERROR(fs_info))
1304 			goto aborted_fs;
1305 		last_tickets_id = space_info->tickets_id;
1306 		spin_unlock(&space_info->lock);
1307 	}
1308 
1309 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1310 		flush_space(fs_info, space_info, U64_MAX,
1311 			    data_flush_states[flush_state], false);
1312 		spin_lock(&space_info->lock);
1313 		if (list_empty(&space_info->tickets)) {
1314 			space_info->flush = 0;
1315 			spin_unlock(&space_info->lock);
1316 			return;
1317 		}
1318 
1319 		if (last_tickets_id == space_info->tickets_id) {
1320 			flush_state++;
1321 		} else {
1322 			last_tickets_id = space_info->tickets_id;
1323 			flush_state = 0;
1324 		}
1325 
1326 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1327 			if (space_info->full) {
1328 				if (maybe_fail_all_tickets(fs_info, space_info))
1329 					flush_state = 0;
1330 				else
1331 					space_info->flush = 0;
1332 			} else {
1333 				flush_state = 0;
1334 			}
1335 
1336 			/* Something happened, fail everything and bail. */
1337 			if (BTRFS_FS_ERROR(fs_info))
1338 				goto aborted_fs;
1339 
1340 		}
1341 		spin_unlock(&space_info->lock);
1342 	}
1343 	return;
1344 
1345 aborted_fs:
1346 	maybe_fail_all_tickets(fs_info, space_info);
1347 	space_info->flush = 0;
1348 	spin_unlock(&space_info->lock);
1349 }
1350 
1351 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1352 {
1353 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1354 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1355 	INIT_WORK(&fs_info->preempt_reclaim_work,
1356 		  btrfs_preempt_reclaim_metadata_space);
1357 }
1358 
1359 static const enum btrfs_flush_state priority_flush_states[] = {
1360 	FLUSH_DELAYED_ITEMS_NR,
1361 	FLUSH_DELAYED_ITEMS,
1362 	ALLOC_CHUNK,
1363 };
1364 
1365 static const enum btrfs_flush_state evict_flush_states[] = {
1366 	FLUSH_DELAYED_ITEMS_NR,
1367 	FLUSH_DELAYED_ITEMS,
1368 	FLUSH_DELAYED_REFS_NR,
1369 	FLUSH_DELAYED_REFS,
1370 	FLUSH_DELALLOC,
1371 	FLUSH_DELALLOC_WAIT,
1372 	FLUSH_DELALLOC_FULL,
1373 	ALLOC_CHUNK,
1374 	COMMIT_TRANS,
1375 };
1376 
1377 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1378 				struct btrfs_space_info *space_info,
1379 				struct reserve_ticket *ticket,
1380 				const enum btrfs_flush_state *states,
1381 				int states_nr)
1382 {
1383 	u64 to_reclaim;
1384 	int flush_state = 0;
1385 
1386 	spin_lock(&space_info->lock);
1387 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1388 	/*
1389 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1390 	 * because we may have only satisfied the priority tickets and still
1391 	 * left non priority tickets on the list.  We would then have
1392 	 * to_reclaim but ->bytes == 0.
1393 	 */
1394 	if (ticket->bytes == 0) {
1395 		spin_unlock(&space_info->lock);
1396 		return;
1397 	}
1398 
1399 	while (flush_state < states_nr) {
1400 		spin_unlock(&space_info->lock);
1401 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1402 			    false);
1403 		flush_state++;
1404 		spin_lock(&space_info->lock);
1405 		if (ticket->bytes == 0) {
1406 			spin_unlock(&space_info->lock);
1407 			return;
1408 		}
1409 	}
1410 
1411 	/* Attempt to steal from the global rsv if we can. */
1412 	if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1413 		ticket->error = -ENOSPC;
1414 		remove_ticket(space_info, ticket);
1415 	}
1416 
1417 	/*
1418 	 * We must run try_granting_tickets here because we could be a large
1419 	 * ticket in front of a smaller ticket that can now be satisfied with
1420 	 * the available space.
1421 	 */
1422 	btrfs_try_granting_tickets(fs_info, space_info);
1423 	spin_unlock(&space_info->lock);
1424 }
1425 
1426 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1427 					struct btrfs_space_info *space_info,
1428 					struct reserve_ticket *ticket)
1429 {
1430 	spin_lock(&space_info->lock);
1431 
1432 	/* We could have been granted before we got here. */
1433 	if (ticket->bytes == 0) {
1434 		spin_unlock(&space_info->lock);
1435 		return;
1436 	}
1437 
1438 	while (!space_info->full) {
1439 		spin_unlock(&space_info->lock);
1440 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1441 		spin_lock(&space_info->lock);
1442 		if (ticket->bytes == 0) {
1443 			spin_unlock(&space_info->lock);
1444 			return;
1445 		}
1446 	}
1447 
1448 	ticket->error = -ENOSPC;
1449 	remove_ticket(space_info, ticket);
1450 	btrfs_try_granting_tickets(fs_info, space_info);
1451 	spin_unlock(&space_info->lock);
1452 }
1453 
1454 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1455 				struct btrfs_space_info *space_info,
1456 				struct reserve_ticket *ticket)
1457 
1458 {
1459 	DEFINE_WAIT(wait);
1460 	int ret = 0;
1461 
1462 	spin_lock(&space_info->lock);
1463 	while (ticket->bytes > 0 && ticket->error == 0) {
1464 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1465 		if (ret) {
1466 			/*
1467 			 * Delete us from the list. After we unlock the space
1468 			 * info, we don't want the async reclaim job to reserve
1469 			 * space for this ticket. If that would happen, then the
1470 			 * ticket's task would not known that space was reserved
1471 			 * despite getting an error, resulting in a space leak
1472 			 * (bytes_may_use counter of our space_info).
1473 			 */
1474 			remove_ticket(space_info, ticket);
1475 			ticket->error = -EINTR;
1476 			break;
1477 		}
1478 		spin_unlock(&space_info->lock);
1479 
1480 		schedule();
1481 
1482 		finish_wait(&ticket->wait, &wait);
1483 		spin_lock(&space_info->lock);
1484 	}
1485 	spin_unlock(&space_info->lock);
1486 }
1487 
1488 /*
1489  * Do the appropriate flushing and waiting for a ticket.
1490  *
1491  * @fs_info:    the filesystem
1492  * @space_info: space info for the reservation
1493  * @ticket:     ticket for the reservation
1494  * @start_ns:   timestamp when the reservation started
1495  * @orig_bytes: amount of bytes originally reserved
1496  * @flush:      how much we can flush
1497  *
1498  * This does the work of figuring out how to flush for the ticket, waiting for
1499  * the reservation, and returning the appropriate error if there is one.
1500  */
1501 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1502 				 struct btrfs_space_info *space_info,
1503 				 struct reserve_ticket *ticket,
1504 				 u64 start_ns, u64 orig_bytes,
1505 				 enum btrfs_reserve_flush_enum flush)
1506 {
1507 	int ret;
1508 
1509 	switch (flush) {
1510 	case BTRFS_RESERVE_FLUSH_DATA:
1511 	case BTRFS_RESERVE_FLUSH_ALL:
1512 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1513 		wait_reserve_ticket(fs_info, space_info, ticket);
1514 		break;
1515 	case BTRFS_RESERVE_FLUSH_LIMIT:
1516 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1517 						priority_flush_states,
1518 						ARRAY_SIZE(priority_flush_states));
1519 		break;
1520 	case BTRFS_RESERVE_FLUSH_EVICT:
1521 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1522 						evict_flush_states,
1523 						ARRAY_SIZE(evict_flush_states));
1524 		break;
1525 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1526 		priority_reclaim_data_space(fs_info, space_info, ticket);
1527 		break;
1528 	default:
1529 		ASSERT(0);
1530 		break;
1531 	}
1532 
1533 	ret = ticket->error;
1534 	ASSERT(list_empty(&ticket->list));
1535 	/*
1536 	 * Check that we can't have an error set if the reservation succeeded,
1537 	 * as that would confuse tasks and lead them to error out without
1538 	 * releasing reserved space (if an error happens the expectation is that
1539 	 * space wasn't reserved at all).
1540 	 */
1541 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1542 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1543 				   start_ns, flush, ticket->error);
1544 	return ret;
1545 }
1546 
1547 /*
1548  * This returns true if this flush state will go through the ordinary flushing
1549  * code.
1550  */
1551 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1552 {
1553 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1554 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1555 }
1556 
1557 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1558 				       struct btrfs_space_info *space_info)
1559 {
1560 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1561 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1562 
1563 	/*
1564 	 * If we're heavy on ordered operations then clamping won't help us.  We
1565 	 * need to clamp specifically to keep up with dirty'ing buffered
1566 	 * writers, because there's not a 1:1 correlation of writing delalloc
1567 	 * and freeing space, like there is with flushing delayed refs or
1568 	 * delayed nodes.  If we're already more ordered than delalloc then
1569 	 * we're keeping up, otherwise we aren't and should probably clamp.
1570 	 */
1571 	if (ordered < delalloc)
1572 		space_info->clamp = min(space_info->clamp + 1, 8);
1573 }
1574 
1575 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1576 {
1577 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1578 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1579 }
1580 
1581 /*
1582  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1583  * fail as quickly as possible.
1584  */
1585 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1586 {
1587 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1588 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1589 }
1590 
1591 /*
1592  * Try to reserve bytes from the block_rsv's space.
1593  *
1594  * @fs_info:    the filesystem
1595  * @space_info: space info we want to allocate from
1596  * @orig_bytes: number of bytes we want
1597  * @flush:      whether or not we can flush to make our reservation
1598  *
1599  * This will reserve orig_bytes number of bytes from the space info associated
1600  * with the block_rsv.  If there is not enough space it will make an attempt to
1601  * flush out space to make room.  It will do this by flushing delalloc if
1602  * possible or committing the transaction.  If flush is 0 then no attempts to
1603  * regain reservations will be made and this will fail if there is not enough
1604  * space already.
1605  */
1606 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1607 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1608 			   enum btrfs_reserve_flush_enum flush)
1609 {
1610 	struct work_struct *async_work;
1611 	struct reserve_ticket ticket;
1612 	u64 start_ns = 0;
1613 	u64 used;
1614 	int ret = -ENOSPC;
1615 	bool pending_tickets;
1616 
1617 	ASSERT(orig_bytes);
1618 	/*
1619 	 * If have a transaction handle (current->journal_info != NULL), then
1620 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1621 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1622 	 * flushing methods can trigger transaction commits.
1623 	 */
1624 	if (current->journal_info) {
1625 		/* One assert per line for easier debugging. */
1626 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1627 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1628 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1629 	}
1630 
1631 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1632 		async_work = &fs_info->async_data_reclaim_work;
1633 	else
1634 		async_work = &fs_info->async_reclaim_work;
1635 
1636 	spin_lock(&space_info->lock);
1637 	used = btrfs_space_info_used(space_info, true);
1638 
1639 	/*
1640 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1641 	 * generally handle ENOSPC in a different way, so treat them the same as
1642 	 * normal flushers when it comes to skipping pending tickets.
1643 	 */
1644 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1645 		pending_tickets = !list_empty(&space_info->tickets) ||
1646 			!list_empty(&space_info->priority_tickets);
1647 	else
1648 		pending_tickets = !list_empty(&space_info->priority_tickets);
1649 
1650 	/*
1651 	 * Carry on if we have enough space (short-circuit) OR call
1652 	 * can_overcommit() to ensure we can overcommit to continue.
1653 	 */
1654 	if (!pending_tickets &&
1655 	    ((used + orig_bytes <= space_info->total_bytes) ||
1656 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1657 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1658 						      orig_bytes);
1659 		ret = 0;
1660 	}
1661 
1662 	/*
1663 	 * Things are dire, we need to make a reservation so we don't abort.  We
1664 	 * will let this reservation go through as long as we have actual space
1665 	 * left to allocate for the block.
1666 	 */
1667 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1668 		used = btrfs_space_info_used(space_info, false);
1669 		if (used + orig_bytes <= space_info->total_bytes) {
1670 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1671 							      orig_bytes);
1672 			ret = 0;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * If we couldn't make a reservation then setup our reservation ticket
1678 	 * and kick the async worker if it's not already running.
1679 	 *
1680 	 * If we are a priority flusher then we just need to add our ticket to
1681 	 * the list and we will do our own flushing further down.
1682 	 */
1683 	if (ret && can_ticket(flush)) {
1684 		ticket.bytes = orig_bytes;
1685 		ticket.error = 0;
1686 		space_info->reclaim_size += ticket.bytes;
1687 		init_waitqueue_head(&ticket.wait);
1688 		ticket.steal = can_steal(flush);
1689 		if (trace_btrfs_reserve_ticket_enabled())
1690 			start_ns = ktime_get_ns();
1691 
1692 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1693 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1694 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1695 			list_add_tail(&ticket.list, &space_info->tickets);
1696 			if (!space_info->flush) {
1697 				/*
1698 				 * We were forced to add a reserve ticket, so
1699 				 * our preemptive flushing is unable to keep
1700 				 * up.  Clamp down on the threshold for the
1701 				 * preemptive flushing in order to keep up with
1702 				 * the workload.
1703 				 */
1704 				maybe_clamp_preempt(fs_info, space_info);
1705 
1706 				space_info->flush = 1;
1707 				trace_btrfs_trigger_flush(fs_info,
1708 							  space_info->flags,
1709 							  orig_bytes, flush,
1710 							  "enospc");
1711 				queue_work(system_unbound_wq, async_work);
1712 			}
1713 		} else {
1714 			list_add_tail(&ticket.list,
1715 				      &space_info->priority_tickets);
1716 		}
1717 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1718 		/*
1719 		 * We will do the space reservation dance during log replay,
1720 		 * which means we won't have fs_info->fs_root set, so don't do
1721 		 * the async reclaim as we will panic.
1722 		 */
1723 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1724 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1725 		    need_preemptive_reclaim(fs_info, space_info)) {
1726 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1727 						  orig_bytes, flush, "preempt");
1728 			queue_work(system_unbound_wq,
1729 				   &fs_info->preempt_reclaim_work);
1730 		}
1731 	}
1732 	spin_unlock(&space_info->lock);
1733 	if (!ret || !can_ticket(flush))
1734 		return ret;
1735 
1736 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1737 				     orig_bytes, flush);
1738 }
1739 
1740 /*
1741  * Try to reserve metadata bytes from the block_rsv's space.
1742  *
1743  * @fs_info:    the filesystem
1744  * @block_rsv:  block_rsv we're allocating for
1745  * @orig_bytes: number of bytes we want
1746  * @flush:      whether or not we can flush to make our reservation
1747  *
1748  * This will reserve orig_bytes number of bytes from the space info associated
1749  * with the block_rsv.  If there is not enough space it will make an attempt to
1750  * flush out space to make room.  It will do this by flushing delalloc if
1751  * possible or committing the transaction.  If flush is 0 then no attempts to
1752  * regain reservations will be made and this will fail if there is not enough
1753  * space already.
1754  */
1755 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1756 				 struct btrfs_block_rsv *block_rsv,
1757 				 u64 orig_bytes,
1758 				 enum btrfs_reserve_flush_enum flush)
1759 {
1760 	int ret;
1761 
1762 	ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1763 	if (ret == -ENOSPC) {
1764 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1765 					      block_rsv->space_info->flags,
1766 					      orig_bytes, 1);
1767 
1768 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1769 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1770 					      orig_bytes, 0);
1771 	}
1772 	return ret;
1773 }
1774 
1775 /*
1776  * Try to reserve data bytes for an allocation.
1777  *
1778  * @fs_info: the filesystem
1779  * @bytes:   number of bytes we need
1780  * @flush:   how we are allowed to flush
1781  *
1782  * This will reserve bytes from the data space info.  If there is not enough
1783  * space then we will attempt to flush space as specified by flush.
1784  */
1785 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1786 			     enum btrfs_reserve_flush_enum flush)
1787 {
1788 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1789 	int ret;
1790 
1791 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1792 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1793 	       flush == BTRFS_RESERVE_NO_FLUSH);
1794 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1795 
1796 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1797 	if (ret == -ENOSPC) {
1798 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1799 					      data_sinfo->flags, bytes, 1);
1800 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1801 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1802 	}
1803 	return ret;
1804 }
1805 
1806 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1807 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1808 {
1809 	struct btrfs_space_info *space_info;
1810 
1811 	btrfs_info(fs_info, "dumping space info:");
1812 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1813 		spin_lock(&space_info->lock);
1814 		__btrfs_dump_space_info(fs_info, space_info);
1815 		spin_unlock(&space_info->lock);
1816 	}
1817 	dump_global_block_rsv(fs_info);
1818 }
1819 
1820 /*
1821  * Account the unused space of all the readonly block group in the space_info.
1822  * takes mirrors into account.
1823  */
1824 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1825 {
1826 	struct btrfs_block_group *block_group;
1827 	u64 free_bytes = 0;
1828 	int factor;
1829 
1830 	/* It's df, we don't care if it's racy */
1831 	if (list_empty(&sinfo->ro_bgs))
1832 		return 0;
1833 
1834 	spin_lock(&sinfo->lock);
1835 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1836 		spin_lock(&block_group->lock);
1837 
1838 		if (!block_group->ro) {
1839 			spin_unlock(&block_group->lock);
1840 			continue;
1841 		}
1842 
1843 		factor = btrfs_bg_type_to_factor(block_group->flags);
1844 		free_bytes += (block_group->length -
1845 			       block_group->used) * factor;
1846 
1847 		spin_unlock(&block_group->lock);
1848 	}
1849 	spin_unlock(&sinfo->lock);
1850 
1851 	return free_bytes;
1852 }
1853