xref: /linux/fs/btrfs/space-info.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 
13 u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
14 			  bool may_use_included)
15 {
16 	ASSERT(s_info);
17 	return s_info->bytes_used + s_info->bytes_reserved +
18 		s_info->bytes_pinned + s_info->bytes_readonly +
19 		(may_use_included ? s_info->bytes_may_use : 0);
20 }
21 
22 /*
23  * after adding space to the filesystem, we need to clear the full flags
24  * on all the space infos.
25  */
26 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
27 {
28 	struct list_head *head = &info->space_info;
29 	struct btrfs_space_info *found;
30 
31 	rcu_read_lock();
32 	list_for_each_entry_rcu(found, head, list)
33 		found->full = 0;
34 	rcu_read_unlock();
35 }
36 
37 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
38 {
39 
40 	struct btrfs_space_info *space_info;
41 	int i;
42 	int ret;
43 
44 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
45 	if (!space_info)
46 		return -ENOMEM;
47 
48 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
49 				 GFP_KERNEL);
50 	if (ret) {
51 		kfree(space_info);
52 		return ret;
53 	}
54 
55 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
56 		INIT_LIST_HEAD(&space_info->block_groups[i]);
57 	init_rwsem(&space_info->groups_sem);
58 	spin_lock_init(&space_info->lock);
59 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
60 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
61 	init_waitqueue_head(&space_info->wait);
62 	INIT_LIST_HEAD(&space_info->ro_bgs);
63 	INIT_LIST_HEAD(&space_info->tickets);
64 	INIT_LIST_HEAD(&space_info->priority_tickets);
65 
66 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
67 	if (ret)
68 		return ret;
69 
70 	list_add_rcu(&space_info->list, &info->space_info);
71 	if (flags & BTRFS_BLOCK_GROUP_DATA)
72 		info->data_sinfo = space_info;
73 
74 	return ret;
75 }
76 
77 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
78 {
79 	struct btrfs_super_block *disk_super;
80 	u64 features;
81 	u64 flags;
82 	int mixed = 0;
83 	int ret;
84 
85 	disk_super = fs_info->super_copy;
86 	if (!btrfs_super_root(disk_super))
87 		return -EINVAL;
88 
89 	features = btrfs_super_incompat_flags(disk_super);
90 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
91 		mixed = 1;
92 
93 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
94 	ret = create_space_info(fs_info, flags);
95 	if (ret)
96 		goto out;
97 
98 	if (mixed) {
99 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
100 		ret = create_space_info(fs_info, flags);
101 	} else {
102 		flags = BTRFS_BLOCK_GROUP_METADATA;
103 		ret = create_space_info(fs_info, flags);
104 		if (ret)
105 			goto out;
106 
107 		flags = BTRFS_BLOCK_GROUP_DATA;
108 		ret = create_space_info(fs_info, flags);
109 	}
110 out:
111 	return ret;
112 }
113 
114 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
115 			     u64 total_bytes, u64 bytes_used,
116 			     u64 bytes_readonly,
117 			     struct btrfs_space_info **space_info)
118 {
119 	struct btrfs_space_info *found;
120 	int factor;
121 
122 	factor = btrfs_bg_type_to_factor(flags);
123 
124 	found = btrfs_find_space_info(info, flags);
125 	ASSERT(found);
126 	spin_lock(&found->lock);
127 	found->total_bytes += total_bytes;
128 	found->disk_total += total_bytes * factor;
129 	found->bytes_used += bytes_used;
130 	found->disk_used += bytes_used * factor;
131 	found->bytes_readonly += bytes_readonly;
132 	if (total_bytes > 0)
133 		found->full = 0;
134 	btrfs_try_granting_tickets(info, found);
135 	spin_unlock(&found->lock);
136 	*space_info = found;
137 }
138 
139 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
140 					       u64 flags)
141 {
142 	struct list_head *head = &info->space_info;
143 	struct btrfs_space_info *found;
144 
145 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
146 
147 	rcu_read_lock();
148 	list_for_each_entry_rcu(found, head, list) {
149 		if (found->flags & flags) {
150 			rcu_read_unlock();
151 			return found;
152 		}
153 	}
154 	rcu_read_unlock();
155 	return NULL;
156 }
157 
158 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
159 {
160 	return (global->size << 1);
161 }
162 
163 static int can_overcommit(struct btrfs_fs_info *fs_info,
164 			  struct btrfs_space_info *space_info, u64 bytes,
165 			  enum btrfs_reserve_flush_enum flush,
166 			  bool system_chunk)
167 {
168 	u64 profile;
169 	u64 avail;
170 	u64 used;
171 	int factor;
172 
173 	/* Don't overcommit when in mixed mode. */
174 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
175 		return 0;
176 
177 	if (system_chunk)
178 		profile = btrfs_system_alloc_profile(fs_info);
179 	else
180 		profile = btrfs_metadata_alloc_profile(fs_info);
181 
182 	used = btrfs_space_info_used(space_info, true);
183 	avail = atomic64_read(&fs_info->free_chunk_space);
184 
185 	/*
186 	 * If we have dup, raid1 or raid10 then only half of the free
187 	 * space is actually usable.  For raid56, the space info used
188 	 * doesn't include the parity drive, so we don't have to
189 	 * change the math
190 	 */
191 	factor = btrfs_bg_type_to_factor(profile);
192 	avail = div_u64(avail, factor);
193 
194 	/*
195 	 * If we aren't flushing all things, let us overcommit up to
196 	 * 1/2th of the space. If we can flush, don't let us overcommit
197 	 * too much, let it overcommit up to 1/8 of the space.
198 	 */
199 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
200 		avail >>= 3;
201 	else
202 		avail >>= 1;
203 
204 	if (used + bytes < space_info->total_bytes + avail)
205 		return 1;
206 	return 0;
207 }
208 
209 /*
210  * This is for space we already have accounted in space_info->bytes_may_use, so
211  * basically when we're returning space from block_rsv's.
212  */
213 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
214 				struct btrfs_space_info *space_info)
215 {
216 	struct list_head *head;
217 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
218 
219 	lockdep_assert_held(&space_info->lock);
220 
221 	head = &space_info->priority_tickets;
222 again:
223 	while (!list_empty(head)) {
224 		struct reserve_ticket *ticket;
225 		u64 used = btrfs_space_info_used(space_info, true);
226 
227 		ticket = list_first_entry(head, struct reserve_ticket, list);
228 
229 		/* Check and see if our ticket can be satisified now. */
230 		if ((used + ticket->bytes <= space_info->total_bytes) ||
231 		    can_overcommit(fs_info, space_info, ticket->bytes, flush,
232 				   false)) {
233 			btrfs_space_info_update_bytes_may_use(fs_info,
234 							      space_info,
235 							      ticket->bytes);
236 			list_del_init(&ticket->list);
237 			ticket->bytes = 0;
238 			space_info->tickets_id++;
239 			wake_up(&ticket->wait);
240 		} else {
241 			break;
242 		}
243 	}
244 
245 	if (head == &space_info->priority_tickets) {
246 		head = &space_info->tickets;
247 		flush = BTRFS_RESERVE_FLUSH_ALL;
248 		goto again;
249 	}
250 }
251 
252 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
253 do {									\
254 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
255 	spin_lock(&__rsv->lock);					\
256 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
257 		   __rsv->size, __rsv->reserved);			\
258 	spin_unlock(&__rsv->lock);					\
259 } while (0)
260 
261 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
262 				    struct btrfs_space_info *info)
263 {
264 	lockdep_assert_held(&info->lock);
265 
266 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
267 		   info->flags,
268 		   info->total_bytes - btrfs_space_info_used(info, true),
269 		   info->full ? "" : "not ");
270 	btrfs_info(fs_info,
271 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
272 		info->total_bytes, info->bytes_used, info->bytes_pinned,
273 		info->bytes_reserved, info->bytes_may_use,
274 		info->bytes_readonly);
275 
276 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
277 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
278 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
279 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
280 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
281 
282 }
283 
284 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
285 			   struct btrfs_space_info *info, u64 bytes,
286 			   int dump_block_groups)
287 {
288 	struct btrfs_block_group_cache *cache;
289 	int index = 0;
290 
291 	spin_lock(&info->lock);
292 	__btrfs_dump_space_info(fs_info, info);
293 	spin_unlock(&info->lock);
294 
295 	if (!dump_block_groups)
296 		return;
297 
298 	down_read(&info->groups_sem);
299 again:
300 	list_for_each_entry(cache, &info->block_groups[index], list) {
301 		spin_lock(&cache->lock);
302 		btrfs_info(fs_info,
303 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
304 			cache->key.objectid, cache->key.offset,
305 			btrfs_block_group_used(&cache->item), cache->pinned,
306 			cache->reserved, cache->ro ? "[readonly]" : "");
307 		btrfs_dump_free_space(cache, bytes);
308 		spin_unlock(&cache->lock);
309 	}
310 	if (++index < BTRFS_NR_RAID_TYPES)
311 		goto again;
312 	up_read(&info->groups_sem);
313 }
314 
315 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
316 					 unsigned long nr_pages, int nr_items)
317 {
318 	struct super_block *sb = fs_info->sb;
319 
320 	if (down_read_trylock(&sb->s_umount)) {
321 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
322 		up_read(&sb->s_umount);
323 	} else {
324 		/*
325 		 * We needn't worry the filesystem going from r/w to r/o though
326 		 * we don't acquire ->s_umount mutex, because the filesystem
327 		 * should guarantee the delalloc inodes list be empty after
328 		 * the filesystem is readonly(all dirty pages are written to
329 		 * the disk).
330 		 */
331 		btrfs_start_delalloc_roots(fs_info, nr_items);
332 		if (!current->journal_info)
333 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
334 	}
335 }
336 
337 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
338 					u64 to_reclaim)
339 {
340 	u64 bytes;
341 	u64 nr;
342 
343 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
344 	nr = div64_u64(to_reclaim, bytes);
345 	if (!nr)
346 		nr = 1;
347 	return nr;
348 }
349 
350 #define EXTENT_SIZE_PER_ITEM	SZ_256K
351 
352 /*
353  * shrink metadata reservation for delalloc
354  */
355 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
356 			    u64 orig, bool wait_ordered)
357 {
358 	struct btrfs_space_info *space_info;
359 	struct btrfs_trans_handle *trans;
360 	u64 delalloc_bytes;
361 	u64 dio_bytes;
362 	u64 async_pages;
363 	u64 items;
364 	long time_left;
365 	unsigned long nr_pages;
366 	int loops;
367 
368 	/* Calc the number of the pages we need flush for space reservation */
369 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
370 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
371 
372 	trans = (struct btrfs_trans_handle *)current->journal_info;
373 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
374 
375 	delalloc_bytes = percpu_counter_sum_positive(
376 						&fs_info->delalloc_bytes);
377 	dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
378 	if (delalloc_bytes == 0 && dio_bytes == 0) {
379 		if (trans)
380 			return;
381 		if (wait_ordered)
382 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
383 		return;
384 	}
385 
386 	/*
387 	 * If we are doing more ordered than delalloc we need to just wait on
388 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
389 	 * that likely won't give us the space back we need.
390 	 */
391 	if (dio_bytes > delalloc_bytes)
392 		wait_ordered = true;
393 
394 	loops = 0;
395 	while ((delalloc_bytes || dio_bytes) && loops < 3) {
396 		nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
397 
398 		/*
399 		 * Triggers inode writeback for up to nr_pages. This will invoke
400 		 * ->writepages callback and trigger delalloc filling
401 		 *  (btrfs_run_delalloc_range()).
402 		 */
403 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
404 
405 		/*
406 		 * We need to wait for the compressed pages to start before
407 		 * we continue.
408 		 */
409 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
410 		if (!async_pages)
411 			goto skip_async;
412 
413 		/*
414 		 * Calculate how many compressed pages we want to be written
415 		 * before we continue. I.e if there are more async pages than we
416 		 * require wait_event will wait until nr_pages are written.
417 		 */
418 		if (async_pages <= nr_pages)
419 			async_pages = 0;
420 		else
421 			async_pages -= nr_pages;
422 
423 		wait_event(fs_info->async_submit_wait,
424 			   atomic_read(&fs_info->async_delalloc_pages) <=
425 			   (int)async_pages);
426 skip_async:
427 		spin_lock(&space_info->lock);
428 		if (list_empty(&space_info->tickets) &&
429 		    list_empty(&space_info->priority_tickets)) {
430 			spin_unlock(&space_info->lock);
431 			break;
432 		}
433 		spin_unlock(&space_info->lock);
434 
435 		loops++;
436 		if (wait_ordered && !trans) {
437 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
438 		} else {
439 			time_left = schedule_timeout_killable(1);
440 			if (time_left)
441 				break;
442 		}
443 		delalloc_bytes = percpu_counter_sum_positive(
444 						&fs_info->delalloc_bytes);
445 		dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
446 	}
447 }
448 
449 /**
450  * maybe_commit_transaction - possibly commit the transaction if its ok to
451  * @root - the root we're allocating for
452  * @bytes - the number of bytes we want to reserve
453  * @force - force the commit
454  *
455  * This will check to make sure that committing the transaction will actually
456  * get us somewhere and then commit the transaction if it does.  Otherwise it
457  * will return -ENOSPC.
458  */
459 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
460 				  struct btrfs_space_info *space_info)
461 {
462 	struct reserve_ticket *ticket = NULL;
463 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
464 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
465 	struct btrfs_trans_handle *trans;
466 	u64 bytes_needed;
467 	u64 reclaim_bytes = 0;
468 	u64 cur_free_bytes = 0;
469 
470 	trans = (struct btrfs_trans_handle *)current->journal_info;
471 	if (trans)
472 		return -EAGAIN;
473 
474 	spin_lock(&space_info->lock);
475 	cur_free_bytes = btrfs_space_info_used(space_info, true);
476 	if (cur_free_bytes < space_info->total_bytes)
477 		cur_free_bytes = space_info->total_bytes - cur_free_bytes;
478 	else
479 		cur_free_bytes = 0;
480 
481 	if (!list_empty(&space_info->priority_tickets))
482 		ticket = list_first_entry(&space_info->priority_tickets,
483 					  struct reserve_ticket, list);
484 	else if (!list_empty(&space_info->tickets))
485 		ticket = list_first_entry(&space_info->tickets,
486 					  struct reserve_ticket, list);
487 	bytes_needed = (ticket) ? ticket->bytes : 0;
488 
489 	if (bytes_needed > cur_free_bytes)
490 		bytes_needed -= cur_free_bytes;
491 	else
492 		bytes_needed = 0;
493 	spin_unlock(&space_info->lock);
494 
495 	if (!bytes_needed)
496 		return 0;
497 
498 	trans = btrfs_join_transaction(fs_info->extent_root);
499 	if (IS_ERR(trans))
500 		return PTR_ERR(trans);
501 
502 	/*
503 	 * See if there is enough pinned space to make this reservation, or if
504 	 * we have block groups that are going to be freed, allowing us to
505 	 * possibly do a chunk allocation the next loop through.
506 	 */
507 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
508 	    __percpu_counter_compare(&space_info->total_bytes_pinned,
509 				     bytes_needed,
510 				     BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
511 		goto commit;
512 
513 	/*
514 	 * See if there is some space in the delayed insertion reservation for
515 	 * this reservation.
516 	 */
517 	if (space_info != delayed_rsv->space_info)
518 		goto enospc;
519 
520 	spin_lock(&delayed_rsv->lock);
521 	reclaim_bytes += delayed_rsv->reserved;
522 	spin_unlock(&delayed_rsv->lock);
523 
524 	spin_lock(&delayed_refs_rsv->lock);
525 	reclaim_bytes += delayed_refs_rsv->reserved;
526 	spin_unlock(&delayed_refs_rsv->lock);
527 	if (reclaim_bytes >= bytes_needed)
528 		goto commit;
529 	bytes_needed -= reclaim_bytes;
530 
531 	if (__percpu_counter_compare(&space_info->total_bytes_pinned,
532 				   bytes_needed,
533 				   BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
534 		goto enospc;
535 
536 commit:
537 	return btrfs_commit_transaction(trans);
538 enospc:
539 	btrfs_end_transaction(trans);
540 	return -ENOSPC;
541 }
542 
543 /*
544  * Try to flush some data based on policy set by @state. This is only advisory
545  * and may fail for various reasons. The caller is supposed to examine the
546  * state of @space_info to detect the outcome.
547  */
548 static void flush_space(struct btrfs_fs_info *fs_info,
549 		       struct btrfs_space_info *space_info, u64 num_bytes,
550 		       int state)
551 {
552 	struct btrfs_root *root = fs_info->extent_root;
553 	struct btrfs_trans_handle *trans;
554 	int nr;
555 	int ret = 0;
556 
557 	switch (state) {
558 	case FLUSH_DELAYED_ITEMS_NR:
559 	case FLUSH_DELAYED_ITEMS:
560 		if (state == FLUSH_DELAYED_ITEMS_NR)
561 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
562 		else
563 			nr = -1;
564 
565 		trans = btrfs_join_transaction(root);
566 		if (IS_ERR(trans)) {
567 			ret = PTR_ERR(trans);
568 			break;
569 		}
570 		ret = btrfs_run_delayed_items_nr(trans, nr);
571 		btrfs_end_transaction(trans);
572 		break;
573 	case FLUSH_DELALLOC:
574 	case FLUSH_DELALLOC_WAIT:
575 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
576 				state == FLUSH_DELALLOC_WAIT);
577 		break;
578 	case FLUSH_DELAYED_REFS_NR:
579 	case FLUSH_DELAYED_REFS:
580 		trans = btrfs_join_transaction(root);
581 		if (IS_ERR(trans)) {
582 			ret = PTR_ERR(trans);
583 			break;
584 		}
585 		if (state == FLUSH_DELAYED_REFS_NR)
586 			nr = calc_reclaim_items_nr(fs_info, num_bytes);
587 		else
588 			nr = 0;
589 		btrfs_run_delayed_refs(trans, nr);
590 		btrfs_end_transaction(trans);
591 		break;
592 	case ALLOC_CHUNK:
593 	case ALLOC_CHUNK_FORCE:
594 		trans = btrfs_join_transaction(root);
595 		if (IS_ERR(trans)) {
596 			ret = PTR_ERR(trans);
597 			break;
598 		}
599 		ret = btrfs_chunk_alloc(trans,
600 				btrfs_metadata_alloc_profile(fs_info),
601 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
602 					CHUNK_ALLOC_FORCE);
603 		btrfs_end_transaction(trans);
604 		if (ret > 0 || ret == -ENOSPC)
605 			ret = 0;
606 		break;
607 	case RUN_DELAYED_IPUTS:
608 		/*
609 		 * If we have pending delayed iputs then we could free up a
610 		 * bunch of pinned space, so make sure we run the iputs before
611 		 * we do our pinned bytes check below.
612 		 */
613 		btrfs_run_delayed_iputs(fs_info);
614 		btrfs_wait_on_delayed_iputs(fs_info);
615 		break;
616 	case COMMIT_TRANS:
617 		ret = may_commit_transaction(fs_info, space_info);
618 		break;
619 	default:
620 		ret = -ENOSPC;
621 		break;
622 	}
623 
624 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
625 				ret);
626 	return;
627 }
628 
629 static inline u64
630 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
631 				 struct btrfs_space_info *space_info,
632 				 bool system_chunk)
633 {
634 	struct reserve_ticket *ticket;
635 	u64 used;
636 	u64 expected;
637 	u64 to_reclaim = 0;
638 
639 	list_for_each_entry(ticket, &space_info->tickets, list)
640 		to_reclaim += ticket->bytes;
641 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
642 		to_reclaim += ticket->bytes;
643 	if (to_reclaim)
644 		return to_reclaim;
645 
646 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
647 	if (can_overcommit(fs_info, space_info, to_reclaim,
648 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
649 		return 0;
650 
651 	used = btrfs_space_info_used(space_info, true);
652 
653 	if (can_overcommit(fs_info, space_info, SZ_1M,
654 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
655 		expected = div_factor_fine(space_info->total_bytes, 95);
656 	else
657 		expected = div_factor_fine(space_info->total_bytes, 90);
658 
659 	if (used > expected)
660 		to_reclaim = used - expected;
661 	else
662 		to_reclaim = 0;
663 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
664 				     space_info->bytes_reserved);
665 	return to_reclaim;
666 }
667 
668 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
669 					struct btrfs_space_info *space_info,
670 					u64 used, bool system_chunk)
671 {
672 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
673 
674 	/* If we're just plain full then async reclaim just slows us down. */
675 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
676 		return 0;
677 
678 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
679 					      system_chunk))
680 		return 0;
681 
682 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
683 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
684 }
685 
686 /*
687  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
688  * @fs_info - fs_info for this fs
689  * @space_info - the space info we were flushing
690  *
691  * We call this when we've exhausted our flushing ability and haven't made
692  * progress in satisfying tickets.  The reservation code handles tickets in
693  * order, so if there is a large ticket first and then smaller ones we could
694  * very well satisfy the smaller tickets.  This will attempt to wake up any
695  * tickets in the list to catch this case.
696  *
697  * This function returns true if it was able to make progress by clearing out
698  * other tickets, or if it stumbles across a ticket that was smaller than the
699  * first ticket.
700  */
701 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
702 				   struct btrfs_space_info *space_info)
703 {
704 	struct reserve_ticket *ticket;
705 	u64 tickets_id = space_info->tickets_id;
706 	u64 first_ticket_bytes = 0;
707 
708 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
709 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
710 		__btrfs_dump_space_info(fs_info, space_info);
711 	}
712 
713 	while (!list_empty(&space_info->tickets) &&
714 	       tickets_id == space_info->tickets_id) {
715 		ticket = list_first_entry(&space_info->tickets,
716 					  struct reserve_ticket, list);
717 
718 		/*
719 		 * may_commit_transaction will avoid committing the transaction
720 		 * if it doesn't feel like the space reclaimed by the commit
721 		 * would result in the ticket succeeding.  However if we have a
722 		 * smaller ticket in the queue it may be small enough to be
723 		 * satisified by committing the transaction, so if any
724 		 * subsequent ticket is smaller than the first ticket go ahead
725 		 * and send us back for another loop through the enospc flushing
726 		 * code.
727 		 */
728 		if (first_ticket_bytes == 0)
729 			first_ticket_bytes = ticket->bytes;
730 		else if (first_ticket_bytes > ticket->bytes)
731 			return true;
732 
733 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
734 			btrfs_info(fs_info, "failing ticket with %llu bytes",
735 				   ticket->bytes);
736 
737 		list_del_init(&ticket->list);
738 		ticket->error = -ENOSPC;
739 		wake_up(&ticket->wait);
740 
741 		/*
742 		 * We're just throwing tickets away, so more flushing may not
743 		 * trip over btrfs_try_granting_tickets, so we need to call it
744 		 * here to see if we can make progress with the next ticket in
745 		 * the list.
746 		 */
747 		btrfs_try_granting_tickets(fs_info, space_info);
748 	}
749 	return (tickets_id != space_info->tickets_id);
750 }
751 
752 /*
753  * This is for normal flushers, we can wait all goddamned day if we want to.  We
754  * will loop and continuously try to flush as long as we are making progress.
755  * We count progress as clearing off tickets each time we have to loop.
756  */
757 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
758 {
759 	struct btrfs_fs_info *fs_info;
760 	struct btrfs_space_info *space_info;
761 	u64 to_reclaim;
762 	int flush_state;
763 	int commit_cycles = 0;
764 	u64 last_tickets_id;
765 
766 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
767 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
768 
769 	spin_lock(&space_info->lock);
770 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
771 						      false);
772 	if (!to_reclaim) {
773 		space_info->flush = 0;
774 		spin_unlock(&space_info->lock);
775 		return;
776 	}
777 	last_tickets_id = space_info->tickets_id;
778 	spin_unlock(&space_info->lock);
779 
780 	flush_state = FLUSH_DELAYED_ITEMS_NR;
781 	do {
782 		flush_space(fs_info, space_info, to_reclaim, flush_state);
783 		spin_lock(&space_info->lock);
784 		if (list_empty(&space_info->tickets)) {
785 			space_info->flush = 0;
786 			spin_unlock(&space_info->lock);
787 			return;
788 		}
789 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
790 							      space_info,
791 							      false);
792 		if (last_tickets_id == space_info->tickets_id) {
793 			flush_state++;
794 		} else {
795 			last_tickets_id = space_info->tickets_id;
796 			flush_state = FLUSH_DELAYED_ITEMS_NR;
797 			if (commit_cycles)
798 				commit_cycles--;
799 		}
800 
801 		/*
802 		 * We don't want to force a chunk allocation until we've tried
803 		 * pretty hard to reclaim space.  Think of the case where we
804 		 * freed up a bunch of space and so have a lot of pinned space
805 		 * to reclaim.  We would rather use that than possibly create a
806 		 * underutilized metadata chunk.  So if this is our first run
807 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
808 		 * commit the transaction.  If nothing has changed the next go
809 		 * around then we can force a chunk allocation.
810 		 */
811 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
812 			flush_state++;
813 
814 		if (flush_state > COMMIT_TRANS) {
815 			commit_cycles++;
816 			if (commit_cycles > 2) {
817 				if (maybe_fail_all_tickets(fs_info, space_info)) {
818 					flush_state = FLUSH_DELAYED_ITEMS_NR;
819 					commit_cycles--;
820 				} else {
821 					space_info->flush = 0;
822 				}
823 			} else {
824 				flush_state = FLUSH_DELAYED_ITEMS_NR;
825 			}
826 		}
827 		spin_unlock(&space_info->lock);
828 	} while (flush_state <= COMMIT_TRANS);
829 }
830 
831 void btrfs_init_async_reclaim_work(struct work_struct *work)
832 {
833 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
834 }
835 
836 static const enum btrfs_flush_state priority_flush_states[] = {
837 	FLUSH_DELAYED_ITEMS_NR,
838 	FLUSH_DELAYED_ITEMS,
839 	ALLOC_CHUNK,
840 };
841 
842 static const enum btrfs_flush_state evict_flush_states[] = {
843 	FLUSH_DELAYED_ITEMS_NR,
844 	FLUSH_DELAYED_ITEMS,
845 	FLUSH_DELAYED_REFS_NR,
846 	FLUSH_DELAYED_REFS,
847 	FLUSH_DELALLOC,
848 	FLUSH_DELALLOC_WAIT,
849 	ALLOC_CHUNK,
850 	COMMIT_TRANS,
851 };
852 
853 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
854 				struct btrfs_space_info *space_info,
855 				struct reserve_ticket *ticket,
856 				const enum btrfs_flush_state *states,
857 				int states_nr)
858 {
859 	u64 to_reclaim;
860 	int flush_state;
861 
862 	spin_lock(&space_info->lock);
863 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
864 						      false);
865 	if (!to_reclaim) {
866 		spin_unlock(&space_info->lock);
867 		return;
868 	}
869 	spin_unlock(&space_info->lock);
870 
871 	flush_state = 0;
872 	do {
873 		flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
874 		flush_state++;
875 		spin_lock(&space_info->lock);
876 		if (ticket->bytes == 0) {
877 			spin_unlock(&space_info->lock);
878 			return;
879 		}
880 		spin_unlock(&space_info->lock);
881 	} while (flush_state < states_nr);
882 }
883 
884 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
885 				struct btrfs_space_info *space_info,
886 				struct reserve_ticket *ticket)
887 
888 {
889 	DEFINE_WAIT(wait);
890 	int ret = 0;
891 
892 	spin_lock(&space_info->lock);
893 	while (ticket->bytes > 0 && ticket->error == 0) {
894 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
895 		if (ret) {
896 			ticket->error = -EINTR;
897 			break;
898 		}
899 		spin_unlock(&space_info->lock);
900 
901 		schedule();
902 
903 		finish_wait(&ticket->wait, &wait);
904 		spin_lock(&space_info->lock);
905 	}
906 	spin_unlock(&space_info->lock);
907 }
908 
909 /**
910  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
911  * @fs_info - the fs
912  * @space_info - the space_info for the reservation
913  * @ticket - the ticket for the reservation
914  * @flush - how much we can flush
915  *
916  * This does the work of figuring out how to flush for the ticket, waiting for
917  * the reservation, and returning the appropriate error if there is one.
918  */
919 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
920 				 struct btrfs_space_info *space_info,
921 				 struct reserve_ticket *ticket,
922 				 enum btrfs_reserve_flush_enum flush)
923 {
924 	int ret;
925 
926 	switch (flush) {
927 	case BTRFS_RESERVE_FLUSH_ALL:
928 		wait_reserve_ticket(fs_info, space_info, ticket);
929 		break;
930 	case BTRFS_RESERVE_FLUSH_LIMIT:
931 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
932 						priority_flush_states,
933 						ARRAY_SIZE(priority_flush_states));
934 		break;
935 	case BTRFS_RESERVE_FLUSH_EVICT:
936 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
937 						evict_flush_states,
938 						ARRAY_SIZE(evict_flush_states));
939 		break;
940 	default:
941 		ASSERT(0);
942 		break;
943 	}
944 
945 	spin_lock(&space_info->lock);
946 	ret = ticket->error;
947 	if (ticket->bytes || ticket->error) {
948 		list_del_init(&ticket->list);
949 		if (!ret)
950 			ret = -ENOSPC;
951 	}
952 	spin_unlock(&space_info->lock);
953 	ASSERT(list_empty(&ticket->list));
954 	return ret;
955 }
956 
957 /**
958  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
959  * @root - the root we're allocating for
960  * @space_info - the space info we want to allocate from
961  * @orig_bytes - the number of bytes we want
962  * @flush - whether or not we can flush to make our reservation
963  *
964  * This will reserve orig_bytes number of bytes from the space info associated
965  * with the block_rsv.  If there is not enough space it will make an attempt to
966  * flush out space to make room.  It will do this by flushing delalloc if
967  * possible or committing the transaction.  If flush is 0 then no attempts to
968  * regain reservations will be made and this will fail if there is not enough
969  * space already.
970  */
971 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
972 				    struct btrfs_space_info *space_info,
973 				    u64 orig_bytes,
974 				    enum btrfs_reserve_flush_enum flush,
975 				    bool system_chunk)
976 {
977 	struct reserve_ticket ticket;
978 	u64 used;
979 	int ret = 0;
980 	bool pending_tickets;
981 
982 	ASSERT(orig_bytes);
983 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
984 
985 	spin_lock(&space_info->lock);
986 	ret = -ENOSPC;
987 	used = btrfs_space_info_used(space_info, true);
988 	pending_tickets = !list_empty(&space_info->tickets) ||
989 		!list_empty(&space_info->priority_tickets);
990 
991 	/*
992 	 * Carry on if we have enough space (short-circuit) OR call
993 	 * can_overcommit() to ensure we can overcommit to continue.
994 	 */
995 	if (!pending_tickets &&
996 	    ((used + orig_bytes <= space_info->total_bytes) ||
997 	     can_overcommit(fs_info, space_info, orig_bytes, flush,
998 			   system_chunk))) {
999 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1000 						      orig_bytes);
1001 		ret = 0;
1002 	}
1003 
1004 	/*
1005 	 * If we couldn't make a reservation then setup our reservation ticket
1006 	 * and kick the async worker if it's not already running.
1007 	 *
1008 	 * If we are a priority flusher then we just need to add our ticket to
1009 	 * the list and we will do our own flushing further down.
1010 	 */
1011 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1012 		ticket.bytes = orig_bytes;
1013 		ticket.error = 0;
1014 		init_waitqueue_head(&ticket.wait);
1015 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
1016 			list_add_tail(&ticket.list, &space_info->tickets);
1017 			if (!space_info->flush) {
1018 				space_info->flush = 1;
1019 				trace_btrfs_trigger_flush(fs_info,
1020 							  space_info->flags,
1021 							  orig_bytes, flush,
1022 							  "enospc");
1023 				queue_work(system_unbound_wq,
1024 					   &fs_info->async_reclaim_work);
1025 			}
1026 		} else {
1027 			list_add_tail(&ticket.list,
1028 				      &space_info->priority_tickets);
1029 		}
1030 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1031 		used += orig_bytes;
1032 		/*
1033 		 * We will do the space reservation dance during log replay,
1034 		 * which means we won't have fs_info->fs_root set, so don't do
1035 		 * the async reclaim as we will panic.
1036 		 */
1037 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1038 		    need_do_async_reclaim(fs_info, space_info,
1039 					  used, system_chunk) &&
1040 		    !work_busy(&fs_info->async_reclaim_work)) {
1041 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1042 						  orig_bytes, flush, "preempt");
1043 			queue_work(system_unbound_wq,
1044 				   &fs_info->async_reclaim_work);
1045 		}
1046 	}
1047 	spin_unlock(&space_info->lock);
1048 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1049 		return ret;
1050 
1051 	return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1052 }
1053 
1054 /**
1055  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1056  * @root - the root we're allocating for
1057  * @block_rsv - the block_rsv we're allocating for
1058  * @orig_bytes - the number of bytes we want
1059  * @flush - whether or not we can flush to make our reservation
1060  *
1061  * This will reserve orig_bytes number of bytes from the space info associated
1062  * with the block_rsv.  If there is not enough space it will make an attempt to
1063  * flush out space to make room.  It will do this by flushing delalloc if
1064  * possible or committing the transaction.  If flush is 0 then no attempts to
1065  * regain reservations will be made and this will fail if there is not enough
1066  * space already.
1067  */
1068 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1069 				 struct btrfs_block_rsv *block_rsv,
1070 				 u64 orig_bytes,
1071 				 enum btrfs_reserve_flush_enum flush)
1072 {
1073 	struct btrfs_fs_info *fs_info = root->fs_info;
1074 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1075 	int ret;
1076 	bool system_chunk = (root == fs_info->chunk_root);
1077 
1078 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1079 				       orig_bytes, flush, system_chunk);
1080 	if (ret == -ENOSPC &&
1081 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1082 		if (block_rsv != global_rsv &&
1083 		    !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1084 			ret = 0;
1085 	}
1086 	if (ret == -ENOSPC) {
1087 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1088 					      block_rsv->space_info->flags,
1089 					      orig_bytes, 1);
1090 
1091 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1092 			btrfs_dump_space_info(fs_info, block_rsv->space_info,
1093 					      orig_bytes, 0);
1094 	}
1095 	return ret;
1096 }
1097