xref: /linux/fs/btrfs/space-info.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16 
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164 
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 			  bool may_use_included)
167 {
168 	ASSERT(s_info);
169 	return s_info->bytes_used + s_info->bytes_reserved +
170 		s_info->bytes_pinned + s_info->bytes_readonly +
171 		s_info->bytes_zone_unusable +
172 		(may_use_included ? s_info->bytes_may_use : 0);
173 }
174 
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 	struct list_head *head = &info->space_info;
182 	struct btrfs_space_info *found;
183 
184 	list_for_each_entry(found, head, list)
185 		found->full = 0;
186 }
187 
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
193 
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 	if (btrfs_is_zoned(fs_info))
200 		return fs_info->zone_size;
201 
202 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203 
204 	if (flags & BTRFS_BLOCK_GROUP_DATA)
205 		return BTRFS_MAX_DATA_CHUNK_SIZE;
206 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 		return SZ_32M;
208 
209 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
210 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 		return SZ_1G;
212 
213 	return SZ_256M;
214 }
215 
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 					u64 chunk_size)
221 {
222 	WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224 
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227 
228 	struct btrfs_space_info *space_info;
229 	int i;
230 	int ret;
231 
232 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 	if (!space_info)
234 		return -ENOMEM;
235 
236 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 		INIT_LIST_HEAD(&space_info->block_groups[i]);
238 	init_rwsem(&space_info->groups_sem);
239 	spin_lock_init(&space_info->lock);
240 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 	INIT_LIST_HEAD(&space_info->ro_bgs);
243 	INIT_LIST_HEAD(&space_info->tickets);
244 	INIT_LIST_HEAD(&space_info->priority_tickets);
245 	space_info->clamp = 1;
246 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247 
248 	if (btrfs_is_zoned(info))
249 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250 
251 	ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 	if (ret)
253 		return ret;
254 
255 	list_add(&space_info->list, &info->space_info);
256 	if (flags & BTRFS_BLOCK_GROUP_DATA)
257 		info->data_sinfo = space_info;
258 
259 	return ret;
260 }
261 
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 	struct btrfs_super_block *disk_super;
265 	u64 features;
266 	u64 flags;
267 	int mixed = 0;
268 	int ret;
269 
270 	disk_super = fs_info->super_copy;
271 	if (!btrfs_super_root(disk_super))
272 		return -EINVAL;
273 
274 	features = btrfs_super_incompat_flags(disk_super);
275 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 		mixed = 1;
277 
278 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 	ret = create_space_info(fs_info, flags);
280 	if (ret)
281 		goto out;
282 
283 	if (mixed) {
284 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 		ret = create_space_info(fs_info, flags);
286 	} else {
287 		flags = BTRFS_BLOCK_GROUP_METADATA;
288 		ret = create_space_info(fs_info, flags);
289 		if (ret)
290 			goto out;
291 
292 		flags = BTRFS_BLOCK_GROUP_DATA;
293 		ret = create_space_info(fs_info, flags);
294 	}
295 out:
296 	return ret;
297 }
298 
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 				struct btrfs_block_group *block_group)
301 {
302 	struct btrfs_space_info *found;
303 	int factor, index;
304 
305 	factor = btrfs_bg_type_to_factor(block_group->flags);
306 
307 	found = btrfs_find_space_info(info, block_group->flags);
308 	ASSERT(found);
309 	spin_lock(&found->lock);
310 	found->total_bytes += block_group->length;
311 	found->disk_total += block_group->length * factor;
312 	found->bytes_used += block_group->used;
313 	found->disk_used += block_group->used * factor;
314 	found->bytes_readonly += block_group->bytes_super;
315 	found->bytes_zone_unusable += block_group->zone_unusable;
316 	if (block_group->length > 0)
317 		found->full = 0;
318 	btrfs_try_granting_tickets(info, found);
319 	spin_unlock(&found->lock);
320 
321 	block_group->space_info = found;
322 
323 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 	down_write(&found->groups_sem);
325 	list_add_tail(&block_group->list, &found->block_groups[index]);
326 	up_write(&found->groups_sem);
327 }
328 
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 					       u64 flags)
331 {
332 	struct list_head *head = &info->space_info;
333 	struct btrfs_space_info *found;
334 
335 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336 
337 	list_for_each_entry(found, head, list) {
338 		if (found->flags & flags)
339 			return found;
340 	}
341 	return NULL;
342 }
343 
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 			  struct btrfs_space_info *space_info,
346 			  enum btrfs_reserve_flush_enum flush)
347 {
348 	struct btrfs_space_info *data_sinfo;
349 	u64 profile;
350 	u64 avail;
351 	u64 data_chunk_size;
352 	int factor;
353 
354 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
355 		profile = btrfs_system_alloc_profile(fs_info);
356 	else
357 		profile = btrfs_metadata_alloc_profile(fs_info);
358 
359 	avail = atomic64_read(&fs_info->free_chunk_space);
360 
361 	/*
362 	 * If we have dup, raid1 or raid10 then only half of the free
363 	 * space is actually usable.  For raid56, the space info used
364 	 * doesn't include the parity drive, so we don't have to
365 	 * change the math
366 	 */
367 	factor = btrfs_bg_type_to_factor(profile);
368 	avail = div_u64(avail, factor);
369 	if (avail == 0)
370 		return 0;
371 
372 	/*
373 	 * Calculate the data_chunk_size, space_info->chunk_size is the
374 	 * "optimal" chunk size based on the fs size.  However when we actually
375 	 * allocate the chunk we will strip this down further, making it no more
376 	 * than 10% of the disk or 1G, whichever is smaller.
377 	 */
378 	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
379 	data_chunk_size = min(data_sinfo->chunk_size,
380 			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
381 	data_chunk_size = min_t(u64, data_chunk_size, SZ_1G);
382 
383 	/*
384 	 * Since data allocations immediately use block groups as part of the
385 	 * reservation, because we assume that data reservations will == actual
386 	 * usage, we could potentially overcommit and then immediately have that
387 	 * available space used by a data allocation, which could put us in a
388 	 * bind when we get close to filling the file system.
389 	 *
390 	 * To handle this simply remove the data_chunk_size from the available
391 	 * space.  If we are relatively empty this won't affect our ability to
392 	 * overcommit much, and if we're very close to full it'll keep us from
393 	 * getting into a position where we've given ourselves very little
394 	 * metadata wiggle room.
395 	 */
396 	if (avail <= data_chunk_size)
397 		return 0;
398 	avail -= data_chunk_size;
399 
400 	/*
401 	 * If we aren't flushing all things, let us overcommit up to
402 	 * 1/2th of the space. If we can flush, don't let us overcommit
403 	 * too much, let it overcommit up to 1/8 of the space.
404 	 */
405 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
406 		avail >>= 3;
407 	else
408 		avail >>= 1;
409 	return avail;
410 }
411 
412 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
413 			 struct btrfs_space_info *space_info, u64 bytes,
414 			 enum btrfs_reserve_flush_enum flush)
415 {
416 	u64 avail;
417 	u64 used;
418 
419 	/* Don't overcommit when in mixed mode */
420 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
421 		return 0;
422 
423 	used = btrfs_space_info_used(space_info, true);
424 	avail = calc_available_free_space(fs_info, space_info, flush);
425 
426 	if (used + bytes < space_info->total_bytes + avail)
427 		return 1;
428 	return 0;
429 }
430 
431 static void remove_ticket(struct btrfs_space_info *space_info,
432 			  struct reserve_ticket *ticket)
433 {
434 	if (!list_empty(&ticket->list)) {
435 		list_del_init(&ticket->list);
436 		ASSERT(space_info->reclaim_size >= ticket->bytes);
437 		space_info->reclaim_size -= ticket->bytes;
438 	}
439 }
440 
441 /*
442  * This is for space we already have accounted in space_info->bytes_may_use, so
443  * basically when we're returning space from block_rsv's.
444  */
445 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
446 				struct btrfs_space_info *space_info)
447 {
448 	struct list_head *head;
449 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
450 
451 	lockdep_assert_held(&space_info->lock);
452 
453 	head = &space_info->priority_tickets;
454 again:
455 	while (!list_empty(head)) {
456 		struct reserve_ticket *ticket;
457 		u64 used = btrfs_space_info_used(space_info, true);
458 
459 		ticket = list_first_entry(head, struct reserve_ticket, list);
460 
461 		/* Check and see if our ticket can be satisfied now. */
462 		if ((used + ticket->bytes <= space_info->total_bytes) ||
463 		    btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
464 					 flush)) {
465 			btrfs_space_info_update_bytes_may_use(fs_info,
466 							      space_info,
467 							      ticket->bytes);
468 			remove_ticket(space_info, ticket);
469 			ticket->bytes = 0;
470 			space_info->tickets_id++;
471 			wake_up(&ticket->wait);
472 		} else {
473 			break;
474 		}
475 	}
476 
477 	if (head == &space_info->priority_tickets) {
478 		head = &space_info->tickets;
479 		flush = BTRFS_RESERVE_FLUSH_ALL;
480 		goto again;
481 	}
482 }
483 
484 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
485 do {									\
486 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
487 	spin_lock(&__rsv->lock);					\
488 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
489 		   __rsv->size, __rsv->reserved);			\
490 	spin_unlock(&__rsv->lock);					\
491 } while (0)
492 
493 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
494 {
495 	switch (space_info->flags) {
496 	case BTRFS_BLOCK_GROUP_SYSTEM:
497 		return "SYSTEM";
498 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
499 		return "DATA+METADATA";
500 	case BTRFS_BLOCK_GROUP_DATA:
501 		return "DATA";
502 	case BTRFS_BLOCK_GROUP_METADATA:
503 		return "METADATA";
504 	default:
505 		return "UNKNOWN";
506 	}
507 }
508 
509 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
510 {
511 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
512 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
513 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
514 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
515 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
516 }
517 
518 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
519 				    struct btrfs_space_info *info)
520 {
521 	const char *flag_str = space_info_flag_to_str(info);
522 	lockdep_assert_held(&info->lock);
523 
524 	/* The free space could be negative in case of overcommit */
525 	btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
526 		   flag_str,
527 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
528 		   info->full ? "" : "not ");
529 	btrfs_info(fs_info,
530 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
531 		info->total_bytes, info->bytes_used, info->bytes_pinned,
532 		info->bytes_reserved, info->bytes_may_use,
533 		info->bytes_readonly, info->bytes_zone_unusable);
534 }
535 
536 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
537 			   struct btrfs_space_info *info, u64 bytes,
538 			   int dump_block_groups)
539 {
540 	struct btrfs_block_group *cache;
541 	u64 total_avail = 0;
542 	int index = 0;
543 
544 	spin_lock(&info->lock);
545 	__btrfs_dump_space_info(fs_info, info);
546 	dump_global_block_rsv(fs_info);
547 	spin_unlock(&info->lock);
548 
549 	if (!dump_block_groups)
550 		return;
551 
552 	down_read(&info->groups_sem);
553 again:
554 	list_for_each_entry(cache, &info->block_groups[index], list) {
555 		u64 avail;
556 
557 		spin_lock(&cache->lock);
558 		avail = cache->length - cache->used - cache->pinned -
559 			cache->reserved - cache->delalloc_bytes -
560 			cache->bytes_super - cache->zone_unusable;
561 		btrfs_info(fs_info,
562 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
563 			   cache->start, cache->length, cache->used, cache->pinned,
564 			   cache->reserved, cache->delalloc_bytes,
565 			   cache->bytes_super, cache->zone_unusable,
566 			   avail, cache->ro ? "[readonly]" : "");
567 		spin_unlock(&cache->lock);
568 		btrfs_dump_free_space(cache, bytes);
569 		total_avail += avail;
570 	}
571 	if (++index < BTRFS_NR_RAID_TYPES)
572 		goto again;
573 	up_read(&info->groups_sem);
574 
575 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
576 }
577 
578 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
579 					u64 to_reclaim)
580 {
581 	u64 bytes;
582 	u64 nr;
583 
584 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
585 	nr = div64_u64(to_reclaim, bytes);
586 	if (!nr)
587 		nr = 1;
588 	return nr;
589 }
590 
591 #define EXTENT_SIZE_PER_ITEM	SZ_256K
592 
593 /*
594  * shrink metadata reservation for delalloc
595  */
596 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
597 			    struct btrfs_space_info *space_info,
598 			    u64 to_reclaim, bool wait_ordered,
599 			    bool for_preempt)
600 {
601 	struct btrfs_trans_handle *trans;
602 	u64 delalloc_bytes;
603 	u64 ordered_bytes;
604 	u64 items;
605 	long time_left;
606 	int loops;
607 
608 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
609 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
610 	if (delalloc_bytes == 0 && ordered_bytes == 0)
611 		return;
612 
613 	/* Calc the number of the pages we need flush for space reservation */
614 	if (to_reclaim == U64_MAX) {
615 		items = U64_MAX;
616 	} else {
617 		/*
618 		 * to_reclaim is set to however much metadata we need to
619 		 * reclaim, but reclaiming that much data doesn't really track
620 		 * exactly.  What we really want to do is reclaim full inode's
621 		 * worth of reservations, however that's not available to us
622 		 * here.  We will take a fraction of the delalloc bytes for our
623 		 * flushing loops and hope for the best.  Delalloc will expand
624 		 * the amount we write to cover an entire dirty extent, which
625 		 * will reclaim the metadata reservation for that range.  If
626 		 * it's not enough subsequent flush stages will be more
627 		 * aggressive.
628 		 */
629 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
630 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
631 	}
632 
633 	trans = current->journal_info;
634 
635 	/*
636 	 * If we are doing more ordered than delalloc we need to just wait on
637 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
638 	 * that likely won't give us the space back we need.
639 	 */
640 	if (ordered_bytes > delalloc_bytes && !for_preempt)
641 		wait_ordered = true;
642 
643 	loops = 0;
644 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
645 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
646 		long nr_pages = min_t(u64, temp, LONG_MAX);
647 		int async_pages;
648 
649 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
650 
651 		/*
652 		 * We need to make sure any outstanding async pages are now
653 		 * processed before we continue.  This is because things like
654 		 * sync_inode() try to be smart and skip writing if the inode is
655 		 * marked clean.  We don't use filemap_fwrite for flushing
656 		 * because we want to control how many pages we write out at a
657 		 * time, thus this is the only safe way to make sure we've
658 		 * waited for outstanding compressed workers to have started
659 		 * their jobs and thus have ordered extents set up properly.
660 		 *
661 		 * This exists because we do not want to wait for each
662 		 * individual inode to finish its async work, we simply want to
663 		 * start the IO on everybody, and then come back here and wait
664 		 * for all of the async work to catch up.  Once we're done with
665 		 * that we know we'll have ordered extents for everything and we
666 		 * can decide if we wait for that or not.
667 		 *
668 		 * If we choose to replace this in the future, make absolutely
669 		 * sure that the proper waiting is being done in the async case,
670 		 * as there have been bugs in that area before.
671 		 */
672 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
673 		if (!async_pages)
674 			goto skip_async;
675 
676 		/*
677 		 * We don't want to wait forever, if we wrote less pages in this
678 		 * loop than we have outstanding, only wait for that number of
679 		 * pages, otherwise we can wait for all async pages to finish
680 		 * before continuing.
681 		 */
682 		if (async_pages > nr_pages)
683 			async_pages -= nr_pages;
684 		else
685 			async_pages = 0;
686 		wait_event(fs_info->async_submit_wait,
687 			   atomic_read(&fs_info->async_delalloc_pages) <=
688 			   async_pages);
689 skip_async:
690 		loops++;
691 		if (wait_ordered && !trans) {
692 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
693 		} else {
694 			time_left = schedule_timeout_killable(1);
695 			if (time_left)
696 				break;
697 		}
698 
699 		/*
700 		 * If we are for preemption we just want a one-shot of delalloc
701 		 * flushing so we can stop flushing if we decide we don't need
702 		 * to anymore.
703 		 */
704 		if (for_preempt)
705 			break;
706 
707 		spin_lock(&space_info->lock);
708 		if (list_empty(&space_info->tickets) &&
709 		    list_empty(&space_info->priority_tickets)) {
710 			spin_unlock(&space_info->lock);
711 			break;
712 		}
713 		spin_unlock(&space_info->lock);
714 
715 		delalloc_bytes = percpu_counter_sum_positive(
716 						&fs_info->delalloc_bytes);
717 		ordered_bytes = percpu_counter_sum_positive(
718 						&fs_info->ordered_bytes);
719 	}
720 }
721 
722 /*
723  * Try to flush some data based on policy set by @state. This is only advisory
724  * and may fail for various reasons. The caller is supposed to examine the
725  * state of @space_info to detect the outcome.
726  */
727 static void flush_space(struct btrfs_fs_info *fs_info,
728 		       struct btrfs_space_info *space_info, u64 num_bytes,
729 		       enum btrfs_flush_state state, bool for_preempt)
730 {
731 	struct btrfs_root *root = fs_info->tree_root;
732 	struct btrfs_trans_handle *trans;
733 	int nr;
734 	int ret = 0;
735 
736 	switch (state) {
737 	case FLUSH_DELAYED_ITEMS_NR:
738 	case FLUSH_DELAYED_ITEMS:
739 		if (state == FLUSH_DELAYED_ITEMS_NR)
740 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
741 		else
742 			nr = -1;
743 
744 		trans = btrfs_join_transaction_nostart(root);
745 		if (IS_ERR(trans)) {
746 			ret = PTR_ERR(trans);
747 			if (ret == -ENOENT)
748 				ret = 0;
749 			break;
750 		}
751 		ret = btrfs_run_delayed_items_nr(trans, nr);
752 		btrfs_end_transaction(trans);
753 		break;
754 	case FLUSH_DELALLOC:
755 	case FLUSH_DELALLOC_WAIT:
756 	case FLUSH_DELALLOC_FULL:
757 		if (state == FLUSH_DELALLOC_FULL)
758 			num_bytes = U64_MAX;
759 		shrink_delalloc(fs_info, space_info, num_bytes,
760 				state != FLUSH_DELALLOC, for_preempt);
761 		break;
762 	case FLUSH_DELAYED_REFS_NR:
763 	case FLUSH_DELAYED_REFS:
764 		trans = btrfs_join_transaction_nostart(root);
765 		if (IS_ERR(trans)) {
766 			ret = PTR_ERR(trans);
767 			if (ret == -ENOENT)
768 				ret = 0;
769 			break;
770 		}
771 		if (state == FLUSH_DELAYED_REFS_NR)
772 			btrfs_run_delayed_refs(trans, num_bytes);
773 		else
774 			btrfs_run_delayed_refs(trans, 0);
775 		btrfs_end_transaction(trans);
776 		break;
777 	case ALLOC_CHUNK:
778 	case ALLOC_CHUNK_FORCE:
779 		trans = btrfs_join_transaction(root);
780 		if (IS_ERR(trans)) {
781 			ret = PTR_ERR(trans);
782 			break;
783 		}
784 		ret = btrfs_chunk_alloc(trans,
785 				btrfs_get_alloc_profile(fs_info, space_info->flags),
786 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
787 					CHUNK_ALLOC_FORCE);
788 		btrfs_end_transaction(trans);
789 
790 		if (ret > 0 || ret == -ENOSPC)
791 			ret = 0;
792 		break;
793 	case RUN_DELAYED_IPUTS:
794 		/*
795 		 * If we have pending delayed iputs then we could free up a
796 		 * bunch of pinned space, so make sure we run the iputs before
797 		 * we do our pinned bytes check below.
798 		 */
799 		btrfs_run_delayed_iputs(fs_info);
800 		btrfs_wait_on_delayed_iputs(fs_info);
801 		break;
802 	case COMMIT_TRANS:
803 		ASSERT(current->journal_info == NULL);
804 		/*
805 		 * We don't want to start a new transaction, just attach to the
806 		 * current one or wait it fully commits in case its commit is
807 		 * happening at the moment. Note: we don't use a nostart join
808 		 * because that does not wait for a transaction to fully commit
809 		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
810 		 */
811 		trans = btrfs_attach_transaction_barrier(root);
812 		if (IS_ERR(trans)) {
813 			ret = PTR_ERR(trans);
814 			if (ret == -ENOENT)
815 				ret = 0;
816 			break;
817 		}
818 		ret = btrfs_commit_transaction(trans);
819 		break;
820 	default:
821 		ret = -ENOSPC;
822 		break;
823 	}
824 
825 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
826 				ret, for_preempt);
827 	return;
828 }
829 
830 static inline u64
831 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
832 				 struct btrfs_space_info *space_info)
833 {
834 	u64 used;
835 	u64 avail;
836 	u64 to_reclaim = space_info->reclaim_size;
837 
838 	lockdep_assert_held(&space_info->lock);
839 
840 	avail = calc_available_free_space(fs_info, space_info,
841 					  BTRFS_RESERVE_FLUSH_ALL);
842 	used = btrfs_space_info_used(space_info, true);
843 
844 	/*
845 	 * We may be flushing because suddenly we have less space than we had
846 	 * before, and now we're well over-committed based on our current free
847 	 * space.  If that's the case add in our overage so we make sure to put
848 	 * appropriate pressure on the flushing state machine.
849 	 */
850 	if (space_info->total_bytes + avail < used)
851 		to_reclaim += used - (space_info->total_bytes + avail);
852 
853 	return to_reclaim;
854 }
855 
856 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
857 				    struct btrfs_space_info *space_info)
858 {
859 	u64 global_rsv_size = fs_info->global_block_rsv.reserved;
860 	u64 ordered, delalloc;
861 	u64 thresh;
862 	u64 used;
863 
864 	thresh = mult_perc(space_info->total_bytes, 90);
865 
866 	lockdep_assert_held(&space_info->lock);
867 
868 	/* If we're just plain full then async reclaim just slows us down. */
869 	if ((space_info->bytes_used + space_info->bytes_reserved +
870 	     global_rsv_size) >= thresh)
871 		return false;
872 
873 	used = space_info->bytes_may_use + space_info->bytes_pinned;
874 
875 	/* The total flushable belongs to the global rsv, don't flush. */
876 	if (global_rsv_size >= used)
877 		return false;
878 
879 	/*
880 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
881 	 * that devoted to other reservations then there's no sense in flushing,
882 	 * we don't have a lot of things that need flushing.
883 	 */
884 	if (used - global_rsv_size <= SZ_128M)
885 		return false;
886 
887 	/*
888 	 * We have tickets queued, bail so we don't compete with the async
889 	 * flushers.
890 	 */
891 	if (space_info->reclaim_size)
892 		return false;
893 
894 	/*
895 	 * If we have over half of the free space occupied by reservations or
896 	 * pinned then we want to start flushing.
897 	 *
898 	 * We do not do the traditional thing here, which is to say
899 	 *
900 	 *   if (used >= ((total_bytes + avail) / 2))
901 	 *     return 1;
902 	 *
903 	 * because this doesn't quite work how we want.  If we had more than 50%
904 	 * of the space_info used by bytes_used and we had 0 available we'd just
905 	 * constantly run the background flusher.  Instead we want it to kick in
906 	 * if our reclaimable space exceeds our clamped free space.
907 	 *
908 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
909 	 * the following:
910 	 *
911 	 * Amount of RAM        Minimum threshold       Maximum threshold
912 	 *
913 	 *        256GiB                     1GiB                  128GiB
914 	 *        128GiB                   512MiB                   64GiB
915 	 *         64GiB                   256MiB                   32GiB
916 	 *         32GiB                   128MiB                   16GiB
917 	 *         16GiB                    64MiB                    8GiB
918 	 *
919 	 * These are the range our thresholds will fall in, corresponding to how
920 	 * much delalloc we need for the background flusher to kick in.
921 	 */
922 
923 	thresh = calc_available_free_space(fs_info, space_info,
924 					   BTRFS_RESERVE_FLUSH_ALL);
925 	used = space_info->bytes_used + space_info->bytes_reserved +
926 	       space_info->bytes_readonly + global_rsv_size;
927 	if (used < space_info->total_bytes)
928 		thresh += space_info->total_bytes - used;
929 	thresh >>= space_info->clamp;
930 
931 	used = space_info->bytes_pinned;
932 
933 	/*
934 	 * If we have more ordered bytes than delalloc bytes then we're either
935 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
936 	 * around.  Preemptive flushing is only useful in that it can free up
937 	 * space before tickets need to wait for things to finish.  In the case
938 	 * of ordered extents, preemptively waiting on ordered extents gets us
939 	 * nothing, if our reservations are tied up in ordered extents we'll
940 	 * simply have to slow down writers by forcing them to wait on ordered
941 	 * extents.
942 	 *
943 	 * In the case that ordered is larger than delalloc, only include the
944 	 * block reserves that we would actually be able to directly reclaim
945 	 * from.  In this case if we're heavy on metadata operations this will
946 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
947 	 * of heavy DIO or ordered reservations, preemptive flushing will just
948 	 * waste time and cause us to slow down.
949 	 *
950 	 * We want to make sure we truly are maxed out on ordered however, so
951 	 * cut ordered in half, and if it's still higher than delalloc then we
952 	 * can keep flushing.  This is to avoid the case where we start
953 	 * flushing, and now delalloc == ordered and we stop preemptively
954 	 * flushing when we could still have several gigs of delalloc to flush.
955 	 */
956 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
957 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
958 	if (ordered >= delalloc)
959 		used += fs_info->delayed_refs_rsv.reserved +
960 			fs_info->delayed_block_rsv.reserved;
961 	else
962 		used += space_info->bytes_may_use - global_rsv_size;
963 
964 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
965 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
966 }
967 
968 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
969 				  struct btrfs_space_info *space_info,
970 				  struct reserve_ticket *ticket)
971 {
972 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
973 	u64 min_bytes;
974 
975 	if (!ticket->steal)
976 		return false;
977 
978 	if (global_rsv->space_info != space_info)
979 		return false;
980 
981 	spin_lock(&global_rsv->lock);
982 	min_bytes = mult_perc(global_rsv->size, 10);
983 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
984 		spin_unlock(&global_rsv->lock);
985 		return false;
986 	}
987 	global_rsv->reserved -= ticket->bytes;
988 	remove_ticket(space_info, ticket);
989 	ticket->bytes = 0;
990 	wake_up(&ticket->wait);
991 	space_info->tickets_id++;
992 	if (global_rsv->reserved < global_rsv->size)
993 		global_rsv->full = 0;
994 	spin_unlock(&global_rsv->lock);
995 
996 	return true;
997 }
998 
999 /*
1000  * We've exhausted our flushing, start failing tickets.
1001  *
1002  * @fs_info - fs_info for this fs
1003  * @space_info - the space info we were flushing
1004  *
1005  * We call this when we've exhausted our flushing ability and haven't made
1006  * progress in satisfying tickets.  The reservation code handles tickets in
1007  * order, so if there is a large ticket first and then smaller ones we could
1008  * very well satisfy the smaller tickets.  This will attempt to wake up any
1009  * tickets in the list to catch this case.
1010  *
1011  * This function returns true if it was able to make progress by clearing out
1012  * other tickets, or if it stumbles across a ticket that was smaller than the
1013  * first ticket.
1014  */
1015 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1016 				   struct btrfs_space_info *space_info)
1017 {
1018 	struct reserve_ticket *ticket;
1019 	u64 tickets_id = space_info->tickets_id;
1020 	const bool aborted = BTRFS_FS_ERROR(fs_info);
1021 
1022 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1023 
1024 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1025 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1026 		__btrfs_dump_space_info(fs_info, space_info);
1027 	}
1028 
1029 	while (!list_empty(&space_info->tickets) &&
1030 	       tickets_id == space_info->tickets_id) {
1031 		ticket = list_first_entry(&space_info->tickets,
1032 					  struct reserve_ticket, list);
1033 
1034 		if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1035 			return true;
1036 
1037 		if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1038 			btrfs_info(fs_info, "failing ticket with %llu bytes",
1039 				   ticket->bytes);
1040 
1041 		remove_ticket(space_info, ticket);
1042 		if (aborted)
1043 			ticket->error = -EIO;
1044 		else
1045 			ticket->error = -ENOSPC;
1046 		wake_up(&ticket->wait);
1047 
1048 		/*
1049 		 * We're just throwing tickets away, so more flushing may not
1050 		 * trip over btrfs_try_granting_tickets, so we need to call it
1051 		 * here to see if we can make progress with the next ticket in
1052 		 * the list.
1053 		 */
1054 		if (!aborted)
1055 			btrfs_try_granting_tickets(fs_info, space_info);
1056 	}
1057 	return (tickets_id != space_info->tickets_id);
1058 }
1059 
1060 /*
1061  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1062  * will loop and continuously try to flush as long as we are making progress.
1063  * We count progress as clearing off tickets each time we have to loop.
1064  */
1065 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1066 {
1067 	struct btrfs_fs_info *fs_info;
1068 	struct btrfs_space_info *space_info;
1069 	u64 to_reclaim;
1070 	enum btrfs_flush_state flush_state;
1071 	int commit_cycles = 0;
1072 	u64 last_tickets_id;
1073 
1074 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1075 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1076 
1077 	spin_lock(&space_info->lock);
1078 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1079 	if (!to_reclaim) {
1080 		space_info->flush = 0;
1081 		spin_unlock(&space_info->lock);
1082 		return;
1083 	}
1084 	last_tickets_id = space_info->tickets_id;
1085 	spin_unlock(&space_info->lock);
1086 
1087 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1088 	do {
1089 		flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1090 		spin_lock(&space_info->lock);
1091 		if (list_empty(&space_info->tickets)) {
1092 			space_info->flush = 0;
1093 			spin_unlock(&space_info->lock);
1094 			return;
1095 		}
1096 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1097 							      space_info);
1098 		if (last_tickets_id == space_info->tickets_id) {
1099 			flush_state++;
1100 		} else {
1101 			last_tickets_id = space_info->tickets_id;
1102 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1103 			if (commit_cycles)
1104 				commit_cycles--;
1105 		}
1106 
1107 		/*
1108 		 * We do not want to empty the system of delalloc unless we're
1109 		 * under heavy pressure, so allow one trip through the flushing
1110 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1111 		 */
1112 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1113 			flush_state++;
1114 
1115 		/*
1116 		 * We don't want to force a chunk allocation until we've tried
1117 		 * pretty hard to reclaim space.  Think of the case where we
1118 		 * freed up a bunch of space and so have a lot of pinned space
1119 		 * to reclaim.  We would rather use that than possibly create a
1120 		 * underutilized metadata chunk.  So if this is our first run
1121 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1122 		 * commit the transaction.  If nothing has changed the next go
1123 		 * around then we can force a chunk allocation.
1124 		 */
1125 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1126 			flush_state++;
1127 
1128 		if (flush_state > COMMIT_TRANS) {
1129 			commit_cycles++;
1130 			if (commit_cycles > 2) {
1131 				if (maybe_fail_all_tickets(fs_info, space_info)) {
1132 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1133 					commit_cycles--;
1134 				} else {
1135 					space_info->flush = 0;
1136 				}
1137 			} else {
1138 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1139 			}
1140 		}
1141 		spin_unlock(&space_info->lock);
1142 	} while (flush_state <= COMMIT_TRANS);
1143 }
1144 
1145 /*
1146  * This handles pre-flushing of metadata space before we get to the point that
1147  * we need to start blocking threads on tickets.  The logic here is different
1148  * from the other flush paths because it doesn't rely on tickets to tell us how
1149  * much we need to flush, instead it attempts to keep us below the 80% full
1150  * watermark of space by flushing whichever reservation pool is currently the
1151  * largest.
1152  */
1153 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1154 {
1155 	struct btrfs_fs_info *fs_info;
1156 	struct btrfs_space_info *space_info;
1157 	struct btrfs_block_rsv *delayed_block_rsv;
1158 	struct btrfs_block_rsv *delayed_refs_rsv;
1159 	struct btrfs_block_rsv *global_rsv;
1160 	struct btrfs_block_rsv *trans_rsv;
1161 	int loops = 0;
1162 
1163 	fs_info = container_of(work, struct btrfs_fs_info,
1164 			       preempt_reclaim_work);
1165 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1166 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1167 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1168 	global_rsv = &fs_info->global_block_rsv;
1169 	trans_rsv = &fs_info->trans_block_rsv;
1170 
1171 	spin_lock(&space_info->lock);
1172 	while (need_preemptive_reclaim(fs_info, space_info)) {
1173 		enum btrfs_flush_state flush;
1174 		u64 delalloc_size = 0;
1175 		u64 to_reclaim, block_rsv_size;
1176 		u64 global_rsv_size = global_rsv->reserved;
1177 
1178 		loops++;
1179 
1180 		/*
1181 		 * We don't have a precise counter for the metadata being
1182 		 * reserved for delalloc, so we'll approximate it by subtracting
1183 		 * out the block rsv's space from the bytes_may_use.  If that
1184 		 * amount is higher than the individual reserves, then we can
1185 		 * assume it's tied up in delalloc reservations.
1186 		 */
1187 		block_rsv_size = global_rsv_size +
1188 			delayed_block_rsv->reserved +
1189 			delayed_refs_rsv->reserved +
1190 			trans_rsv->reserved;
1191 		if (block_rsv_size < space_info->bytes_may_use)
1192 			delalloc_size = space_info->bytes_may_use - block_rsv_size;
1193 
1194 		/*
1195 		 * We don't want to include the global_rsv in our calculation,
1196 		 * because that's space we can't touch.  Subtract it from the
1197 		 * block_rsv_size for the next checks.
1198 		 */
1199 		block_rsv_size -= global_rsv_size;
1200 
1201 		/*
1202 		 * We really want to avoid flushing delalloc too much, as it
1203 		 * could result in poor allocation patterns, so only flush it if
1204 		 * it's larger than the rest of the pools combined.
1205 		 */
1206 		if (delalloc_size > block_rsv_size) {
1207 			to_reclaim = delalloc_size;
1208 			flush = FLUSH_DELALLOC;
1209 		} else if (space_info->bytes_pinned >
1210 			   (delayed_block_rsv->reserved +
1211 			    delayed_refs_rsv->reserved)) {
1212 			to_reclaim = space_info->bytes_pinned;
1213 			flush = COMMIT_TRANS;
1214 		} else if (delayed_block_rsv->reserved >
1215 			   delayed_refs_rsv->reserved) {
1216 			to_reclaim = delayed_block_rsv->reserved;
1217 			flush = FLUSH_DELAYED_ITEMS_NR;
1218 		} else {
1219 			to_reclaim = delayed_refs_rsv->reserved;
1220 			flush = FLUSH_DELAYED_REFS_NR;
1221 		}
1222 
1223 		spin_unlock(&space_info->lock);
1224 
1225 		/*
1226 		 * We don't want to reclaim everything, just a portion, so scale
1227 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1228 		 * reclaim 1 items worth.
1229 		 */
1230 		to_reclaim >>= 2;
1231 		if (!to_reclaim)
1232 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1233 		flush_space(fs_info, space_info, to_reclaim, flush, true);
1234 		cond_resched();
1235 		spin_lock(&space_info->lock);
1236 	}
1237 
1238 	/* We only went through once, back off our clamping. */
1239 	if (loops == 1 && !space_info->reclaim_size)
1240 		space_info->clamp = max(1, space_info->clamp - 1);
1241 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1242 	spin_unlock(&space_info->lock);
1243 }
1244 
1245 /*
1246  * FLUSH_DELALLOC_WAIT:
1247  *   Space is freed from flushing delalloc in one of two ways.
1248  *
1249  *   1) compression is on and we allocate less space than we reserved
1250  *   2) we are overwriting existing space
1251  *
1252  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1253  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1254  *   length to ->bytes_reserved, and subtracts the reserved space from
1255  *   ->bytes_may_use.
1256  *
1257  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1258  *   extent in the range we are overwriting, which creates a delayed ref for
1259  *   that freed extent.  This however is not reclaimed until the transaction
1260  *   commits, thus the next stages.
1261  *
1262  * RUN_DELAYED_IPUTS
1263  *   If we are freeing inodes, we want to make sure all delayed iputs have
1264  *   completed, because they could have been on an inode with i_nlink == 0, and
1265  *   thus have been truncated and freed up space.  But again this space is not
1266  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1267  *   run and then the transaction must be committed.
1268  *
1269  * COMMIT_TRANS
1270  *   This is where we reclaim all of the pinned space generated by running the
1271  *   iputs
1272  *
1273  * ALLOC_CHUNK_FORCE
1274  *   For data we start with alloc chunk force, however we could have been full
1275  *   before, and then the transaction commit could have freed new block groups,
1276  *   so if we now have space to allocate do the force chunk allocation.
1277  */
1278 static const enum btrfs_flush_state data_flush_states[] = {
1279 	FLUSH_DELALLOC_FULL,
1280 	RUN_DELAYED_IPUTS,
1281 	COMMIT_TRANS,
1282 	ALLOC_CHUNK_FORCE,
1283 };
1284 
1285 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1286 {
1287 	struct btrfs_fs_info *fs_info;
1288 	struct btrfs_space_info *space_info;
1289 	u64 last_tickets_id;
1290 	enum btrfs_flush_state flush_state = 0;
1291 
1292 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1293 	space_info = fs_info->data_sinfo;
1294 
1295 	spin_lock(&space_info->lock);
1296 	if (list_empty(&space_info->tickets)) {
1297 		space_info->flush = 0;
1298 		spin_unlock(&space_info->lock);
1299 		return;
1300 	}
1301 	last_tickets_id = space_info->tickets_id;
1302 	spin_unlock(&space_info->lock);
1303 
1304 	while (!space_info->full) {
1305 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1306 		spin_lock(&space_info->lock);
1307 		if (list_empty(&space_info->tickets)) {
1308 			space_info->flush = 0;
1309 			spin_unlock(&space_info->lock);
1310 			return;
1311 		}
1312 
1313 		/* Something happened, fail everything and bail. */
1314 		if (BTRFS_FS_ERROR(fs_info))
1315 			goto aborted_fs;
1316 		last_tickets_id = space_info->tickets_id;
1317 		spin_unlock(&space_info->lock);
1318 	}
1319 
1320 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1321 		flush_space(fs_info, space_info, U64_MAX,
1322 			    data_flush_states[flush_state], false);
1323 		spin_lock(&space_info->lock);
1324 		if (list_empty(&space_info->tickets)) {
1325 			space_info->flush = 0;
1326 			spin_unlock(&space_info->lock);
1327 			return;
1328 		}
1329 
1330 		if (last_tickets_id == space_info->tickets_id) {
1331 			flush_state++;
1332 		} else {
1333 			last_tickets_id = space_info->tickets_id;
1334 			flush_state = 0;
1335 		}
1336 
1337 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1338 			if (space_info->full) {
1339 				if (maybe_fail_all_tickets(fs_info, space_info))
1340 					flush_state = 0;
1341 				else
1342 					space_info->flush = 0;
1343 			} else {
1344 				flush_state = 0;
1345 			}
1346 
1347 			/* Something happened, fail everything and bail. */
1348 			if (BTRFS_FS_ERROR(fs_info))
1349 				goto aborted_fs;
1350 
1351 		}
1352 		spin_unlock(&space_info->lock);
1353 	}
1354 	return;
1355 
1356 aborted_fs:
1357 	maybe_fail_all_tickets(fs_info, space_info);
1358 	space_info->flush = 0;
1359 	spin_unlock(&space_info->lock);
1360 }
1361 
1362 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1363 {
1364 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1365 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1366 	INIT_WORK(&fs_info->preempt_reclaim_work,
1367 		  btrfs_preempt_reclaim_metadata_space);
1368 }
1369 
1370 static const enum btrfs_flush_state priority_flush_states[] = {
1371 	FLUSH_DELAYED_ITEMS_NR,
1372 	FLUSH_DELAYED_ITEMS,
1373 	ALLOC_CHUNK,
1374 };
1375 
1376 static const enum btrfs_flush_state evict_flush_states[] = {
1377 	FLUSH_DELAYED_ITEMS_NR,
1378 	FLUSH_DELAYED_ITEMS,
1379 	FLUSH_DELAYED_REFS_NR,
1380 	FLUSH_DELAYED_REFS,
1381 	FLUSH_DELALLOC,
1382 	FLUSH_DELALLOC_WAIT,
1383 	FLUSH_DELALLOC_FULL,
1384 	ALLOC_CHUNK,
1385 	COMMIT_TRANS,
1386 };
1387 
1388 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1389 				struct btrfs_space_info *space_info,
1390 				struct reserve_ticket *ticket,
1391 				const enum btrfs_flush_state *states,
1392 				int states_nr)
1393 {
1394 	u64 to_reclaim;
1395 	int flush_state = 0;
1396 
1397 	spin_lock(&space_info->lock);
1398 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1399 	/*
1400 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1401 	 * because we may have only satisfied the priority tickets and still
1402 	 * left non priority tickets on the list.  We would then have
1403 	 * to_reclaim but ->bytes == 0.
1404 	 */
1405 	if (ticket->bytes == 0) {
1406 		spin_unlock(&space_info->lock);
1407 		return;
1408 	}
1409 
1410 	while (flush_state < states_nr) {
1411 		spin_unlock(&space_info->lock);
1412 		flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1413 			    false);
1414 		flush_state++;
1415 		spin_lock(&space_info->lock);
1416 		if (ticket->bytes == 0) {
1417 			spin_unlock(&space_info->lock);
1418 			return;
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * Attempt to steal from the global rsv if we can, except if the fs was
1424 	 * turned into error mode due to a transaction abort when flushing space
1425 	 * above, in that case fail with the abort error instead of returning
1426 	 * success to the caller if we can steal from the global rsv - this is
1427 	 * just to have caller fail immeditelly instead of later when trying to
1428 	 * modify the fs, making it easier to debug -ENOSPC problems.
1429 	 */
1430 	if (BTRFS_FS_ERROR(fs_info)) {
1431 		ticket->error = BTRFS_FS_ERROR(fs_info);
1432 		remove_ticket(space_info, ticket);
1433 	} else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1434 		ticket->error = -ENOSPC;
1435 		remove_ticket(space_info, ticket);
1436 	}
1437 
1438 	/*
1439 	 * We must run try_granting_tickets here because we could be a large
1440 	 * ticket in front of a smaller ticket that can now be satisfied with
1441 	 * the available space.
1442 	 */
1443 	btrfs_try_granting_tickets(fs_info, space_info);
1444 	spin_unlock(&space_info->lock);
1445 }
1446 
1447 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1448 					struct btrfs_space_info *space_info,
1449 					struct reserve_ticket *ticket)
1450 {
1451 	spin_lock(&space_info->lock);
1452 
1453 	/* We could have been granted before we got here. */
1454 	if (ticket->bytes == 0) {
1455 		spin_unlock(&space_info->lock);
1456 		return;
1457 	}
1458 
1459 	while (!space_info->full) {
1460 		spin_unlock(&space_info->lock);
1461 		flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1462 		spin_lock(&space_info->lock);
1463 		if (ticket->bytes == 0) {
1464 			spin_unlock(&space_info->lock);
1465 			return;
1466 		}
1467 	}
1468 
1469 	ticket->error = -ENOSPC;
1470 	remove_ticket(space_info, ticket);
1471 	btrfs_try_granting_tickets(fs_info, space_info);
1472 	spin_unlock(&space_info->lock);
1473 }
1474 
1475 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1476 				struct btrfs_space_info *space_info,
1477 				struct reserve_ticket *ticket)
1478 
1479 {
1480 	DEFINE_WAIT(wait);
1481 	int ret = 0;
1482 
1483 	spin_lock(&space_info->lock);
1484 	while (ticket->bytes > 0 && ticket->error == 0) {
1485 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1486 		if (ret) {
1487 			/*
1488 			 * Delete us from the list. After we unlock the space
1489 			 * info, we don't want the async reclaim job to reserve
1490 			 * space for this ticket. If that would happen, then the
1491 			 * ticket's task would not known that space was reserved
1492 			 * despite getting an error, resulting in a space leak
1493 			 * (bytes_may_use counter of our space_info).
1494 			 */
1495 			remove_ticket(space_info, ticket);
1496 			ticket->error = -EINTR;
1497 			break;
1498 		}
1499 		spin_unlock(&space_info->lock);
1500 
1501 		schedule();
1502 
1503 		finish_wait(&ticket->wait, &wait);
1504 		spin_lock(&space_info->lock);
1505 	}
1506 	spin_unlock(&space_info->lock);
1507 }
1508 
1509 /*
1510  * Do the appropriate flushing and waiting for a ticket.
1511  *
1512  * @fs_info:    the filesystem
1513  * @space_info: space info for the reservation
1514  * @ticket:     ticket for the reservation
1515  * @start_ns:   timestamp when the reservation started
1516  * @orig_bytes: amount of bytes originally reserved
1517  * @flush:      how much we can flush
1518  *
1519  * This does the work of figuring out how to flush for the ticket, waiting for
1520  * the reservation, and returning the appropriate error if there is one.
1521  */
1522 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1523 				 struct btrfs_space_info *space_info,
1524 				 struct reserve_ticket *ticket,
1525 				 u64 start_ns, u64 orig_bytes,
1526 				 enum btrfs_reserve_flush_enum flush)
1527 {
1528 	int ret;
1529 
1530 	switch (flush) {
1531 	case BTRFS_RESERVE_FLUSH_DATA:
1532 	case BTRFS_RESERVE_FLUSH_ALL:
1533 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1534 		wait_reserve_ticket(fs_info, space_info, ticket);
1535 		break;
1536 	case BTRFS_RESERVE_FLUSH_LIMIT:
1537 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1538 						priority_flush_states,
1539 						ARRAY_SIZE(priority_flush_states));
1540 		break;
1541 	case BTRFS_RESERVE_FLUSH_EVICT:
1542 		priority_reclaim_metadata_space(fs_info, space_info, ticket,
1543 						evict_flush_states,
1544 						ARRAY_SIZE(evict_flush_states));
1545 		break;
1546 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1547 		priority_reclaim_data_space(fs_info, space_info, ticket);
1548 		break;
1549 	default:
1550 		ASSERT(0);
1551 		break;
1552 	}
1553 
1554 	ret = ticket->error;
1555 	ASSERT(list_empty(&ticket->list));
1556 	/*
1557 	 * Check that we can't have an error set if the reservation succeeded,
1558 	 * as that would confuse tasks and lead them to error out without
1559 	 * releasing reserved space (if an error happens the expectation is that
1560 	 * space wasn't reserved at all).
1561 	 */
1562 	ASSERT(!(ticket->bytes == 0 && ticket->error));
1563 	trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1564 				   start_ns, flush, ticket->error);
1565 	return ret;
1566 }
1567 
1568 /*
1569  * This returns true if this flush state will go through the ordinary flushing
1570  * code.
1571  */
1572 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1573 {
1574 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1575 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1576 }
1577 
1578 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1579 				       struct btrfs_space_info *space_info)
1580 {
1581 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1582 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1583 
1584 	/*
1585 	 * If we're heavy on ordered operations then clamping won't help us.  We
1586 	 * need to clamp specifically to keep up with dirty'ing buffered
1587 	 * writers, because there's not a 1:1 correlation of writing delalloc
1588 	 * and freeing space, like there is with flushing delayed refs or
1589 	 * delayed nodes.  If we're already more ordered than delalloc then
1590 	 * we're keeping up, otherwise we aren't and should probably clamp.
1591 	 */
1592 	if (ordered < delalloc)
1593 		space_info->clamp = min(space_info->clamp + 1, 8);
1594 }
1595 
1596 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1597 {
1598 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1599 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1600 }
1601 
1602 /*
1603  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1604  * fail as quickly as possible.
1605  */
1606 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1607 {
1608 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1609 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1610 }
1611 
1612 /*
1613  * Try to reserve bytes from the block_rsv's space.
1614  *
1615  * @fs_info:    the filesystem
1616  * @space_info: space info we want to allocate from
1617  * @orig_bytes: number of bytes we want
1618  * @flush:      whether or not we can flush to make our reservation
1619  *
1620  * This will reserve orig_bytes number of bytes from the space info associated
1621  * with the block_rsv.  If there is not enough space it will make an attempt to
1622  * flush out space to make room.  It will do this by flushing delalloc if
1623  * possible or committing the transaction.  If flush is 0 then no attempts to
1624  * regain reservations will be made and this will fail if there is not enough
1625  * space already.
1626  */
1627 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1628 			   struct btrfs_space_info *space_info, u64 orig_bytes,
1629 			   enum btrfs_reserve_flush_enum flush)
1630 {
1631 	struct work_struct *async_work;
1632 	struct reserve_ticket ticket;
1633 	u64 start_ns = 0;
1634 	u64 used;
1635 	int ret = -ENOSPC;
1636 	bool pending_tickets;
1637 
1638 	ASSERT(orig_bytes);
1639 	/*
1640 	 * If have a transaction handle (current->journal_info != NULL), then
1641 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1642 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1643 	 * flushing methods can trigger transaction commits.
1644 	 */
1645 	if (current->journal_info) {
1646 		/* One assert per line for easier debugging. */
1647 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1648 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1649 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1650 	}
1651 
1652 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1653 		async_work = &fs_info->async_data_reclaim_work;
1654 	else
1655 		async_work = &fs_info->async_reclaim_work;
1656 
1657 	spin_lock(&space_info->lock);
1658 	used = btrfs_space_info_used(space_info, true);
1659 
1660 	/*
1661 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1662 	 * generally handle ENOSPC in a different way, so treat them the same as
1663 	 * normal flushers when it comes to skipping pending tickets.
1664 	 */
1665 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1666 		pending_tickets = !list_empty(&space_info->tickets) ||
1667 			!list_empty(&space_info->priority_tickets);
1668 	else
1669 		pending_tickets = !list_empty(&space_info->priority_tickets);
1670 
1671 	/*
1672 	 * Carry on if we have enough space (short-circuit) OR call
1673 	 * can_overcommit() to ensure we can overcommit to continue.
1674 	 */
1675 	if (!pending_tickets &&
1676 	    ((used + orig_bytes <= space_info->total_bytes) ||
1677 	     btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1678 		btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1679 						      orig_bytes);
1680 		ret = 0;
1681 	}
1682 
1683 	/*
1684 	 * Things are dire, we need to make a reservation so we don't abort.  We
1685 	 * will let this reservation go through as long as we have actual space
1686 	 * left to allocate for the block.
1687 	 */
1688 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1689 		used = btrfs_space_info_used(space_info, false);
1690 		if (used + orig_bytes <= space_info->total_bytes) {
1691 			btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1692 							      orig_bytes);
1693 			ret = 0;
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * If we couldn't make a reservation then setup our reservation ticket
1699 	 * and kick the async worker if it's not already running.
1700 	 *
1701 	 * If we are a priority flusher then we just need to add our ticket to
1702 	 * the list and we will do our own flushing further down.
1703 	 */
1704 	if (ret && can_ticket(flush)) {
1705 		ticket.bytes = orig_bytes;
1706 		ticket.error = 0;
1707 		space_info->reclaim_size += ticket.bytes;
1708 		init_waitqueue_head(&ticket.wait);
1709 		ticket.steal = can_steal(flush);
1710 		if (trace_btrfs_reserve_ticket_enabled())
1711 			start_ns = ktime_get_ns();
1712 
1713 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1714 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1715 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1716 			list_add_tail(&ticket.list, &space_info->tickets);
1717 			if (!space_info->flush) {
1718 				/*
1719 				 * We were forced to add a reserve ticket, so
1720 				 * our preemptive flushing is unable to keep
1721 				 * up.  Clamp down on the threshold for the
1722 				 * preemptive flushing in order to keep up with
1723 				 * the workload.
1724 				 */
1725 				maybe_clamp_preempt(fs_info, space_info);
1726 
1727 				space_info->flush = 1;
1728 				trace_btrfs_trigger_flush(fs_info,
1729 							  space_info->flags,
1730 							  orig_bytes, flush,
1731 							  "enospc");
1732 				queue_work(system_unbound_wq, async_work);
1733 			}
1734 		} else {
1735 			list_add_tail(&ticket.list,
1736 				      &space_info->priority_tickets);
1737 		}
1738 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1739 		/*
1740 		 * We will do the space reservation dance during log replay,
1741 		 * which means we won't have fs_info->fs_root set, so don't do
1742 		 * the async reclaim as we will panic.
1743 		 */
1744 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1745 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1746 		    need_preemptive_reclaim(fs_info, space_info)) {
1747 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1748 						  orig_bytes, flush, "preempt");
1749 			queue_work(system_unbound_wq,
1750 				   &fs_info->preempt_reclaim_work);
1751 		}
1752 	}
1753 	spin_unlock(&space_info->lock);
1754 	if (!ret || !can_ticket(flush))
1755 		return ret;
1756 
1757 	return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1758 				     orig_bytes, flush);
1759 }
1760 
1761 /*
1762  * Try to reserve metadata bytes from the block_rsv's space.
1763  *
1764  * @fs_info:    the filesystem
1765  * @space_info: the space_info we're allocating for
1766  * @orig_bytes: number of bytes we want
1767  * @flush:      whether or not we can flush to make our reservation
1768  *
1769  * This will reserve orig_bytes number of bytes from the space info associated
1770  * with the block_rsv.  If there is not enough space it will make an attempt to
1771  * flush out space to make room.  It will do this by flushing delalloc if
1772  * possible or committing the transaction.  If flush is 0 then no attempts to
1773  * regain reservations will be made and this will fail if there is not enough
1774  * space already.
1775  */
1776 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1777 				 struct btrfs_space_info *space_info,
1778 				 u64 orig_bytes,
1779 				 enum btrfs_reserve_flush_enum flush)
1780 {
1781 	int ret;
1782 
1783 	ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1784 	if (ret == -ENOSPC) {
1785 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1786 					      space_info->flags, orig_bytes, 1);
1787 
1788 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1789 			btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1790 	}
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Try to reserve data bytes for an allocation.
1796  *
1797  * @fs_info: the filesystem
1798  * @bytes:   number of bytes we need
1799  * @flush:   how we are allowed to flush
1800  *
1801  * This will reserve bytes from the data space info.  If there is not enough
1802  * space then we will attempt to flush space as specified by flush.
1803  */
1804 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1805 			     enum btrfs_reserve_flush_enum flush)
1806 {
1807 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1808 	int ret;
1809 
1810 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1811 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1812 	       flush == BTRFS_RESERVE_NO_FLUSH);
1813 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1814 
1815 	ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1816 	if (ret == -ENOSPC) {
1817 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1818 					      data_sinfo->flags, bytes, 1);
1819 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1820 			btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1821 	}
1822 	return ret;
1823 }
1824 
1825 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1826 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1827 {
1828 	struct btrfs_space_info *space_info;
1829 
1830 	btrfs_info(fs_info, "dumping space info:");
1831 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1832 		spin_lock(&space_info->lock);
1833 		__btrfs_dump_space_info(fs_info, space_info);
1834 		spin_unlock(&space_info->lock);
1835 	}
1836 	dump_global_block_rsv(fs_info);
1837 }
1838 
1839 /*
1840  * Account the unused space of all the readonly block group in the space_info.
1841  * takes mirrors into account.
1842  */
1843 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1844 {
1845 	struct btrfs_block_group *block_group;
1846 	u64 free_bytes = 0;
1847 	int factor;
1848 
1849 	/* It's df, we don't care if it's racy */
1850 	if (list_empty(&sinfo->ro_bgs))
1851 		return 0;
1852 
1853 	spin_lock(&sinfo->lock);
1854 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1855 		spin_lock(&block_group->lock);
1856 
1857 		if (!block_group->ro) {
1858 			spin_unlock(&block_group->lock);
1859 			continue;
1860 		}
1861 
1862 		factor = btrfs_bg_type_to_factor(block_group->flags);
1863 		free_bytes += (block_group->length -
1864 			       block_group->used) * factor;
1865 
1866 		spin_unlock(&block_group->lock);
1867 	}
1868 	spin_unlock(&sinfo->lock);
1869 
1870 	return free_bytes;
1871 }
1872