1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 #include "zoned.h" 13 #include "fs.h" 14 #include "accessors.h" 15 #include "extent-tree.h" 16 17 /* 18 * HOW DOES SPACE RESERVATION WORK 19 * 20 * If you want to know about delalloc specifically, there is a separate comment 21 * for that with the delalloc code. This comment is about how the whole system 22 * works generally. 23 * 24 * BASIC CONCEPTS 25 * 26 * 1) space_info. This is the ultimate arbiter of how much space we can use. 27 * There's a description of the bytes_ fields with the struct declaration, 28 * refer to that for specifics on each field. Suffice it to say that for 29 * reservations we care about total_bytes - SUM(space_info->bytes_) when 30 * determining if there is space to make an allocation. There is a space_info 31 * for METADATA, SYSTEM, and DATA areas. 32 * 33 * 2) block_rsv's. These are basically buckets for every different type of 34 * metadata reservation we have. You can see the comment in the block_rsv 35 * code on the rules for each type, but generally block_rsv->reserved is how 36 * much space is accounted for in space_info->bytes_may_use. 37 * 38 * 3) btrfs_calc*_size. These are the worst case calculations we used based 39 * on the number of items we will want to modify. We have one for changing 40 * items, and one for inserting new items. Generally we use these helpers to 41 * determine the size of the block reserves, and then use the actual bytes 42 * values to adjust the space_info counters. 43 * 44 * MAKING RESERVATIONS, THE NORMAL CASE 45 * 46 * We call into either btrfs_reserve_data_bytes() or 47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 48 * num_bytes we want to reserve. 49 * 50 * ->reserve 51 * space_info->bytes_may_reserve += num_bytes 52 * 53 * ->extent allocation 54 * Call btrfs_add_reserved_bytes() which does 55 * space_info->bytes_may_reserve -= num_bytes 56 * space_info->bytes_reserved += extent_bytes 57 * 58 * ->insert reference 59 * Call btrfs_update_block_group() which does 60 * space_info->bytes_reserved -= extent_bytes 61 * space_info->bytes_used += extent_bytes 62 * 63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 64 * 65 * Assume we are unable to simply make the reservation because we do not have 66 * enough space 67 * 68 * -> __reserve_bytes 69 * create a reserve_ticket with ->bytes set to our reservation, add it to 70 * the tail of space_info->tickets, kick async flush thread 71 * 72 * ->handle_reserve_ticket 73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 74 * on the ticket. 75 * 76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 77 * Flushes various things attempting to free up space. 78 * 79 * -> btrfs_try_granting_tickets() 80 * This is called by anything that either subtracts space from 81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 82 * space_info->total_bytes. This loops through the ->priority_tickets and 83 * then the ->tickets list checking to see if the reservation can be 84 * completed. If it can the space is added to space_info->bytes_may_use and 85 * the ticket is woken up. 86 * 87 * -> ticket wakeup 88 * Check if ->bytes == 0, if it does we got our reservation and we can carry 89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 90 * were interrupted.) 91 * 92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 93 * 94 * Same as the above, except we add ourselves to the 95 * space_info->priority_tickets, and we do not use ticket->wait, we simply 96 * call flush_space() ourselves for the states that are safe for us to call 97 * without deadlocking and hope for the best. 98 * 99 * THE FLUSHING STATES 100 * 101 * Generally speaking we will have two cases for each state, a "nice" state 102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 103 * reduce the locking over head on the various trees, and even to keep from 104 * doing any work at all in the case of delayed refs. Each of these delayed 105 * things however hold reservations, and so letting them run allows us to 106 * reclaim space so we can make new reservations. 107 * 108 * FLUSH_DELAYED_ITEMS 109 * Every inode has a delayed item to update the inode. Take a simple write 110 * for example, we would update the inode item at write time to update the 111 * mtime, and then again at finish_ordered_io() time in order to update the 112 * isize or bytes. We keep these delayed items to coalesce these operations 113 * into a single operation done on demand. These are an easy way to reclaim 114 * metadata space. 115 * 116 * FLUSH_DELALLOC 117 * Look at the delalloc comment to get an idea of how much space is reserved 118 * for delayed allocation. We can reclaim some of this space simply by 119 * running delalloc, but usually we need to wait for ordered extents to 120 * reclaim the bulk of this space. 121 * 122 * FLUSH_DELAYED_REFS 123 * We have a block reserve for the outstanding delayed refs space, and every 124 * delayed ref operation holds a reservation. Running these is a quick way 125 * to reclaim space, but we want to hold this until the end because COW can 126 * churn a lot and we can avoid making some extent tree modifications if we 127 * are able to delay for as long as possible. 128 * 129 * ALLOC_CHUNK 130 * We will skip this the first time through space reservation, because of 131 * overcommit and we don't want to have a lot of useless metadata space when 132 * our worst case reservations will likely never come true. 133 * 134 * RUN_DELAYED_IPUTS 135 * If we're freeing inodes we're likely freeing checksums, file extent 136 * items, and extent tree items. Loads of space could be freed up by these 137 * operations, however they won't be usable until the transaction commits. 138 * 139 * COMMIT_TRANS 140 * This will commit the transaction. Historically we had a lot of logic 141 * surrounding whether or not we'd commit the transaction, but this waits born 142 * out of a pre-tickets era where we could end up committing the transaction 143 * thousands of times in a row without making progress. Now thanks to our 144 * ticketing system we know if we're not making progress and can error 145 * everybody out after a few commits rather than burning the disk hoping for 146 * a different answer. 147 * 148 * OVERCOMMIT 149 * 150 * Because we hold so many reservations for metadata we will allow you to 151 * reserve more space than is currently free in the currently allocate 152 * metadata space. This only happens with metadata, data does not allow 153 * overcommitting. 154 * 155 * You can see the current logic for when we allow overcommit in 156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 157 * is no unallocated space to be had, all reservations are kept within the 158 * free space in the allocated metadata chunks. 159 * 160 * Because of overcommitting, you generally want to use the 161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 162 * thing with or without extra unallocated space. 163 */ 164 165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 166 bool may_use_included) 167 { 168 ASSERT(s_info); 169 return s_info->bytes_used + s_info->bytes_reserved + 170 s_info->bytes_pinned + s_info->bytes_readonly + 171 s_info->bytes_zone_unusable + 172 (may_use_included ? s_info->bytes_may_use : 0); 173 } 174 175 /* 176 * after adding space to the filesystem, we need to clear the full flags 177 * on all the space infos. 178 */ 179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 180 { 181 struct list_head *head = &info->space_info; 182 struct btrfs_space_info *found; 183 184 list_for_each_entry(found, head, list) 185 found->full = 0; 186 } 187 188 /* 189 * Block groups with more than this value (percents) of unusable space will be 190 * scheduled for background reclaim. 191 */ 192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75) 193 194 /* 195 * Calculate chunk size depending on volume type (regular or zoned). 196 */ 197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags) 198 { 199 if (btrfs_is_zoned(fs_info)) 200 return fs_info->zone_size; 201 202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK); 203 204 if (flags & BTRFS_BLOCK_GROUP_DATA) 205 return BTRFS_MAX_DATA_CHUNK_SIZE; 206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 207 return SZ_32M; 208 209 /* Handle BTRFS_BLOCK_GROUP_METADATA */ 210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G) 211 return SZ_1G; 212 213 return SZ_256M; 214 } 215 216 /* 217 * Update default chunk size. 218 */ 219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info, 220 u64 chunk_size) 221 { 222 WRITE_ONCE(space_info->chunk_size, chunk_size); 223 } 224 225 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 226 { 227 228 struct btrfs_space_info *space_info; 229 int i; 230 int ret; 231 232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 233 if (!space_info) 234 return -ENOMEM; 235 236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 237 INIT_LIST_HEAD(&space_info->block_groups[i]); 238 init_rwsem(&space_info->groups_sem); 239 spin_lock_init(&space_info->lock); 240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 242 INIT_LIST_HEAD(&space_info->ro_bgs); 243 INIT_LIST_HEAD(&space_info->tickets); 244 INIT_LIST_HEAD(&space_info->priority_tickets); 245 space_info->clamp = 1; 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags)); 247 248 if (btrfs_is_zoned(info)) 249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH; 250 251 ret = btrfs_sysfs_add_space_info_type(info, space_info); 252 if (ret) 253 return ret; 254 255 list_add(&space_info->list, &info->space_info); 256 if (flags & BTRFS_BLOCK_GROUP_DATA) 257 info->data_sinfo = space_info; 258 259 return ret; 260 } 261 262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 263 { 264 struct btrfs_super_block *disk_super; 265 u64 features; 266 u64 flags; 267 int mixed = 0; 268 int ret; 269 270 disk_super = fs_info->super_copy; 271 if (!btrfs_super_root(disk_super)) 272 return -EINVAL; 273 274 features = btrfs_super_incompat_flags(disk_super); 275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 276 mixed = 1; 277 278 flags = BTRFS_BLOCK_GROUP_SYSTEM; 279 ret = create_space_info(fs_info, flags); 280 if (ret) 281 goto out; 282 283 if (mixed) { 284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 285 ret = create_space_info(fs_info, flags); 286 } else { 287 flags = BTRFS_BLOCK_GROUP_METADATA; 288 ret = create_space_info(fs_info, flags); 289 if (ret) 290 goto out; 291 292 flags = BTRFS_BLOCK_GROUP_DATA; 293 ret = create_space_info(fs_info, flags); 294 } 295 out: 296 return ret; 297 } 298 299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info, 300 struct btrfs_block_group *block_group) 301 { 302 struct btrfs_space_info *found; 303 int factor, index; 304 305 factor = btrfs_bg_type_to_factor(block_group->flags); 306 307 found = btrfs_find_space_info(info, block_group->flags); 308 ASSERT(found); 309 spin_lock(&found->lock); 310 found->total_bytes += block_group->length; 311 found->disk_total += block_group->length * factor; 312 found->bytes_used += block_group->used; 313 found->disk_used += block_group->used * factor; 314 found->bytes_readonly += block_group->bytes_super; 315 found->bytes_zone_unusable += block_group->zone_unusable; 316 if (block_group->length > 0) 317 found->full = 0; 318 btrfs_try_granting_tickets(info, found); 319 spin_unlock(&found->lock); 320 321 block_group->space_info = found; 322 323 index = btrfs_bg_flags_to_raid_index(block_group->flags); 324 down_write(&found->groups_sem); 325 list_add_tail(&block_group->list, &found->block_groups[index]); 326 up_write(&found->groups_sem); 327 } 328 329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 330 u64 flags) 331 { 332 struct list_head *head = &info->space_info; 333 struct btrfs_space_info *found; 334 335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 336 337 list_for_each_entry(found, head, list) { 338 if (found->flags & flags) 339 return found; 340 } 341 return NULL; 342 } 343 344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 345 struct btrfs_space_info *space_info, 346 enum btrfs_reserve_flush_enum flush) 347 { 348 struct btrfs_space_info *data_sinfo; 349 u64 profile; 350 u64 avail; 351 u64 data_chunk_size; 352 int factor; 353 354 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 355 profile = btrfs_system_alloc_profile(fs_info); 356 else 357 profile = btrfs_metadata_alloc_profile(fs_info); 358 359 avail = atomic64_read(&fs_info->free_chunk_space); 360 361 /* 362 * If we have dup, raid1 or raid10 then only half of the free 363 * space is actually usable. For raid56, the space info used 364 * doesn't include the parity drive, so we don't have to 365 * change the math 366 */ 367 factor = btrfs_bg_type_to_factor(profile); 368 avail = div_u64(avail, factor); 369 if (avail == 0) 370 return 0; 371 372 /* 373 * Calculate the data_chunk_size, space_info->chunk_size is the 374 * "optimal" chunk size based on the fs size. However when we actually 375 * allocate the chunk we will strip this down further, making it no more 376 * than 10% of the disk or 1G, whichever is smaller. 377 */ 378 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 379 data_chunk_size = min(data_sinfo->chunk_size, 380 mult_perc(fs_info->fs_devices->total_rw_bytes, 10)); 381 data_chunk_size = min_t(u64, data_chunk_size, SZ_1G); 382 383 /* 384 * Since data allocations immediately use block groups as part of the 385 * reservation, because we assume that data reservations will == actual 386 * usage, we could potentially overcommit and then immediately have that 387 * available space used by a data allocation, which could put us in a 388 * bind when we get close to filling the file system. 389 * 390 * To handle this simply remove the data_chunk_size from the available 391 * space. If we are relatively empty this won't affect our ability to 392 * overcommit much, and if we're very close to full it'll keep us from 393 * getting into a position where we've given ourselves very little 394 * metadata wiggle room. 395 */ 396 if (avail <= data_chunk_size) 397 return 0; 398 avail -= data_chunk_size; 399 400 /* 401 * If we aren't flushing all things, let us overcommit up to 402 * 1/2th of the space. If we can flush, don't let us overcommit 403 * too much, let it overcommit up to 1/8 of the space. 404 */ 405 if (flush == BTRFS_RESERVE_FLUSH_ALL) 406 avail >>= 3; 407 else 408 avail >>= 1; 409 return avail; 410 } 411 412 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 413 struct btrfs_space_info *space_info, u64 bytes, 414 enum btrfs_reserve_flush_enum flush) 415 { 416 u64 avail; 417 u64 used; 418 419 /* Don't overcommit when in mixed mode */ 420 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 421 return 0; 422 423 used = btrfs_space_info_used(space_info, true); 424 avail = calc_available_free_space(fs_info, space_info, flush); 425 426 if (used + bytes < space_info->total_bytes + avail) 427 return 1; 428 return 0; 429 } 430 431 static void remove_ticket(struct btrfs_space_info *space_info, 432 struct reserve_ticket *ticket) 433 { 434 if (!list_empty(&ticket->list)) { 435 list_del_init(&ticket->list); 436 ASSERT(space_info->reclaim_size >= ticket->bytes); 437 space_info->reclaim_size -= ticket->bytes; 438 } 439 } 440 441 /* 442 * This is for space we already have accounted in space_info->bytes_may_use, so 443 * basically when we're returning space from block_rsv's. 444 */ 445 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 446 struct btrfs_space_info *space_info) 447 { 448 struct list_head *head; 449 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 450 451 lockdep_assert_held(&space_info->lock); 452 453 head = &space_info->priority_tickets; 454 again: 455 while (!list_empty(head)) { 456 struct reserve_ticket *ticket; 457 u64 used = btrfs_space_info_used(space_info, true); 458 459 ticket = list_first_entry(head, struct reserve_ticket, list); 460 461 /* Check and see if our ticket can be satisfied now. */ 462 if ((used + ticket->bytes <= space_info->total_bytes) || 463 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 464 flush)) { 465 btrfs_space_info_update_bytes_may_use(fs_info, 466 space_info, 467 ticket->bytes); 468 remove_ticket(space_info, ticket); 469 ticket->bytes = 0; 470 space_info->tickets_id++; 471 wake_up(&ticket->wait); 472 } else { 473 break; 474 } 475 } 476 477 if (head == &space_info->priority_tickets) { 478 head = &space_info->tickets; 479 flush = BTRFS_RESERVE_FLUSH_ALL; 480 goto again; 481 } 482 } 483 484 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 485 do { \ 486 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 487 spin_lock(&__rsv->lock); \ 488 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 489 __rsv->size, __rsv->reserved); \ 490 spin_unlock(&__rsv->lock); \ 491 } while (0) 492 493 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info) 494 { 495 switch (space_info->flags) { 496 case BTRFS_BLOCK_GROUP_SYSTEM: 497 return "SYSTEM"; 498 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA: 499 return "DATA+METADATA"; 500 case BTRFS_BLOCK_GROUP_DATA: 501 return "DATA"; 502 case BTRFS_BLOCK_GROUP_METADATA: 503 return "METADATA"; 504 default: 505 return "UNKNOWN"; 506 } 507 } 508 509 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info) 510 { 511 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 512 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 513 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 514 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 515 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 516 } 517 518 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 519 struct btrfs_space_info *info) 520 { 521 const char *flag_str = space_info_flag_to_str(info); 522 lockdep_assert_held(&info->lock); 523 524 /* The free space could be negative in case of overcommit */ 525 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull", 526 flag_str, 527 (s64)(info->total_bytes - btrfs_space_info_used(info, true)), 528 info->full ? "" : "not "); 529 btrfs_info(fs_info, 530 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu", 531 info->total_bytes, info->bytes_used, info->bytes_pinned, 532 info->bytes_reserved, info->bytes_may_use, 533 info->bytes_readonly, info->bytes_zone_unusable); 534 } 535 536 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 537 struct btrfs_space_info *info, u64 bytes, 538 int dump_block_groups) 539 { 540 struct btrfs_block_group *cache; 541 u64 total_avail = 0; 542 int index = 0; 543 544 spin_lock(&info->lock); 545 __btrfs_dump_space_info(fs_info, info); 546 dump_global_block_rsv(fs_info); 547 spin_unlock(&info->lock); 548 549 if (!dump_block_groups) 550 return; 551 552 down_read(&info->groups_sem); 553 again: 554 list_for_each_entry(cache, &info->block_groups[index], list) { 555 u64 avail; 556 557 spin_lock(&cache->lock); 558 avail = cache->length - cache->used - cache->pinned - 559 cache->reserved - cache->delalloc_bytes - 560 cache->bytes_super - cache->zone_unusable; 561 btrfs_info(fs_info, 562 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s", 563 cache->start, cache->length, cache->used, cache->pinned, 564 cache->reserved, cache->delalloc_bytes, 565 cache->bytes_super, cache->zone_unusable, 566 avail, cache->ro ? "[readonly]" : ""); 567 spin_unlock(&cache->lock); 568 btrfs_dump_free_space(cache, bytes); 569 total_avail += avail; 570 } 571 if (++index < BTRFS_NR_RAID_TYPES) 572 goto again; 573 up_read(&info->groups_sem); 574 575 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail); 576 } 577 578 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info, 579 u64 to_reclaim) 580 { 581 u64 bytes; 582 u64 nr; 583 584 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 585 nr = div64_u64(to_reclaim, bytes); 586 if (!nr) 587 nr = 1; 588 return nr; 589 } 590 591 #define EXTENT_SIZE_PER_ITEM SZ_256K 592 593 /* 594 * shrink metadata reservation for delalloc 595 */ 596 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 597 struct btrfs_space_info *space_info, 598 u64 to_reclaim, bool wait_ordered, 599 bool for_preempt) 600 { 601 struct btrfs_trans_handle *trans; 602 u64 delalloc_bytes; 603 u64 ordered_bytes; 604 u64 items; 605 long time_left; 606 int loops; 607 608 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 609 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes); 610 if (delalloc_bytes == 0 && ordered_bytes == 0) 611 return; 612 613 /* Calc the number of the pages we need flush for space reservation */ 614 if (to_reclaim == U64_MAX) { 615 items = U64_MAX; 616 } else { 617 /* 618 * to_reclaim is set to however much metadata we need to 619 * reclaim, but reclaiming that much data doesn't really track 620 * exactly. What we really want to do is reclaim full inode's 621 * worth of reservations, however that's not available to us 622 * here. We will take a fraction of the delalloc bytes for our 623 * flushing loops and hope for the best. Delalloc will expand 624 * the amount we write to cover an entire dirty extent, which 625 * will reclaim the metadata reservation for that range. If 626 * it's not enough subsequent flush stages will be more 627 * aggressive. 628 */ 629 to_reclaim = max(to_reclaim, delalloc_bytes >> 3); 630 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 631 } 632 633 trans = current->journal_info; 634 635 /* 636 * If we are doing more ordered than delalloc we need to just wait on 637 * ordered extents, otherwise we'll waste time trying to flush delalloc 638 * that likely won't give us the space back we need. 639 */ 640 if (ordered_bytes > delalloc_bytes && !for_preempt) 641 wait_ordered = true; 642 643 loops = 0; 644 while ((delalloc_bytes || ordered_bytes) && loops < 3) { 645 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 646 long nr_pages = min_t(u64, temp, LONG_MAX); 647 int async_pages; 648 649 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 650 651 /* 652 * We need to make sure any outstanding async pages are now 653 * processed before we continue. This is because things like 654 * sync_inode() try to be smart and skip writing if the inode is 655 * marked clean. We don't use filemap_fwrite for flushing 656 * because we want to control how many pages we write out at a 657 * time, thus this is the only safe way to make sure we've 658 * waited for outstanding compressed workers to have started 659 * their jobs and thus have ordered extents set up properly. 660 * 661 * This exists because we do not want to wait for each 662 * individual inode to finish its async work, we simply want to 663 * start the IO on everybody, and then come back here and wait 664 * for all of the async work to catch up. Once we're done with 665 * that we know we'll have ordered extents for everything and we 666 * can decide if we wait for that or not. 667 * 668 * If we choose to replace this in the future, make absolutely 669 * sure that the proper waiting is being done in the async case, 670 * as there have been bugs in that area before. 671 */ 672 async_pages = atomic_read(&fs_info->async_delalloc_pages); 673 if (!async_pages) 674 goto skip_async; 675 676 /* 677 * We don't want to wait forever, if we wrote less pages in this 678 * loop than we have outstanding, only wait for that number of 679 * pages, otherwise we can wait for all async pages to finish 680 * before continuing. 681 */ 682 if (async_pages > nr_pages) 683 async_pages -= nr_pages; 684 else 685 async_pages = 0; 686 wait_event(fs_info->async_submit_wait, 687 atomic_read(&fs_info->async_delalloc_pages) <= 688 async_pages); 689 skip_async: 690 loops++; 691 if (wait_ordered && !trans) { 692 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 693 } else { 694 time_left = schedule_timeout_killable(1); 695 if (time_left) 696 break; 697 } 698 699 /* 700 * If we are for preemption we just want a one-shot of delalloc 701 * flushing so we can stop flushing if we decide we don't need 702 * to anymore. 703 */ 704 if (for_preempt) 705 break; 706 707 spin_lock(&space_info->lock); 708 if (list_empty(&space_info->tickets) && 709 list_empty(&space_info->priority_tickets)) { 710 spin_unlock(&space_info->lock); 711 break; 712 } 713 spin_unlock(&space_info->lock); 714 715 delalloc_bytes = percpu_counter_sum_positive( 716 &fs_info->delalloc_bytes); 717 ordered_bytes = percpu_counter_sum_positive( 718 &fs_info->ordered_bytes); 719 } 720 } 721 722 /* 723 * Try to flush some data based on policy set by @state. This is only advisory 724 * and may fail for various reasons. The caller is supposed to examine the 725 * state of @space_info to detect the outcome. 726 */ 727 static void flush_space(struct btrfs_fs_info *fs_info, 728 struct btrfs_space_info *space_info, u64 num_bytes, 729 enum btrfs_flush_state state, bool for_preempt) 730 { 731 struct btrfs_root *root = fs_info->tree_root; 732 struct btrfs_trans_handle *trans; 733 int nr; 734 int ret = 0; 735 736 switch (state) { 737 case FLUSH_DELAYED_ITEMS_NR: 738 case FLUSH_DELAYED_ITEMS: 739 if (state == FLUSH_DELAYED_ITEMS_NR) 740 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 741 else 742 nr = -1; 743 744 trans = btrfs_join_transaction_nostart(root); 745 if (IS_ERR(trans)) { 746 ret = PTR_ERR(trans); 747 if (ret == -ENOENT) 748 ret = 0; 749 break; 750 } 751 ret = btrfs_run_delayed_items_nr(trans, nr); 752 btrfs_end_transaction(trans); 753 break; 754 case FLUSH_DELALLOC: 755 case FLUSH_DELALLOC_WAIT: 756 case FLUSH_DELALLOC_FULL: 757 if (state == FLUSH_DELALLOC_FULL) 758 num_bytes = U64_MAX; 759 shrink_delalloc(fs_info, space_info, num_bytes, 760 state != FLUSH_DELALLOC, for_preempt); 761 break; 762 case FLUSH_DELAYED_REFS_NR: 763 case FLUSH_DELAYED_REFS: 764 trans = btrfs_join_transaction_nostart(root); 765 if (IS_ERR(trans)) { 766 ret = PTR_ERR(trans); 767 if (ret == -ENOENT) 768 ret = 0; 769 break; 770 } 771 if (state == FLUSH_DELAYED_REFS_NR) 772 btrfs_run_delayed_refs(trans, num_bytes); 773 else 774 btrfs_run_delayed_refs(trans, 0); 775 btrfs_end_transaction(trans); 776 break; 777 case ALLOC_CHUNK: 778 case ALLOC_CHUNK_FORCE: 779 trans = btrfs_join_transaction(root); 780 if (IS_ERR(trans)) { 781 ret = PTR_ERR(trans); 782 break; 783 } 784 ret = btrfs_chunk_alloc(trans, 785 btrfs_get_alloc_profile(fs_info, space_info->flags), 786 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 787 CHUNK_ALLOC_FORCE); 788 btrfs_end_transaction(trans); 789 790 if (ret > 0 || ret == -ENOSPC) 791 ret = 0; 792 break; 793 case RUN_DELAYED_IPUTS: 794 /* 795 * If we have pending delayed iputs then we could free up a 796 * bunch of pinned space, so make sure we run the iputs before 797 * we do our pinned bytes check below. 798 */ 799 btrfs_run_delayed_iputs(fs_info); 800 btrfs_wait_on_delayed_iputs(fs_info); 801 break; 802 case COMMIT_TRANS: 803 ASSERT(current->journal_info == NULL); 804 /* 805 * We don't want to start a new transaction, just attach to the 806 * current one or wait it fully commits in case its commit is 807 * happening at the moment. Note: we don't use a nostart join 808 * because that does not wait for a transaction to fully commit 809 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED). 810 */ 811 trans = btrfs_attach_transaction_barrier(root); 812 if (IS_ERR(trans)) { 813 ret = PTR_ERR(trans); 814 if (ret == -ENOENT) 815 ret = 0; 816 break; 817 } 818 ret = btrfs_commit_transaction(trans); 819 break; 820 default: 821 ret = -ENOSPC; 822 break; 823 } 824 825 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 826 ret, for_preempt); 827 return; 828 } 829 830 static inline u64 831 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 832 struct btrfs_space_info *space_info) 833 { 834 u64 used; 835 u64 avail; 836 u64 to_reclaim = space_info->reclaim_size; 837 838 lockdep_assert_held(&space_info->lock); 839 840 avail = calc_available_free_space(fs_info, space_info, 841 BTRFS_RESERVE_FLUSH_ALL); 842 used = btrfs_space_info_used(space_info, true); 843 844 /* 845 * We may be flushing because suddenly we have less space than we had 846 * before, and now we're well over-committed based on our current free 847 * space. If that's the case add in our overage so we make sure to put 848 * appropriate pressure on the flushing state machine. 849 */ 850 if (space_info->total_bytes + avail < used) 851 to_reclaim += used - (space_info->total_bytes + avail); 852 853 return to_reclaim; 854 } 855 856 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info, 857 struct btrfs_space_info *space_info) 858 { 859 u64 global_rsv_size = fs_info->global_block_rsv.reserved; 860 u64 ordered, delalloc; 861 u64 thresh; 862 u64 used; 863 864 thresh = mult_perc(space_info->total_bytes, 90); 865 866 lockdep_assert_held(&space_info->lock); 867 868 /* If we're just plain full then async reclaim just slows us down. */ 869 if ((space_info->bytes_used + space_info->bytes_reserved + 870 global_rsv_size) >= thresh) 871 return false; 872 873 used = space_info->bytes_may_use + space_info->bytes_pinned; 874 875 /* The total flushable belongs to the global rsv, don't flush. */ 876 if (global_rsv_size >= used) 877 return false; 878 879 /* 880 * 128MiB is 1/4 of the maximum global rsv size. If we have less than 881 * that devoted to other reservations then there's no sense in flushing, 882 * we don't have a lot of things that need flushing. 883 */ 884 if (used - global_rsv_size <= SZ_128M) 885 return false; 886 887 /* 888 * We have tickets queued, bail so we don't compete with the async 889 * flushers. 890 */ 891 if (space_info->reclaim_size) 892 return false; 893 894 /* 895 * If we have over half of the free space occupied by reservations or 896 * pinned then we want to start flushing. 897 * 898 * We do not do the traditional thing here, which is to say 899 * 900 * if (used >= ((total_bytes + avail) / 2)) 901 * return 1; 902 * 903 * because this doesn't quite work how we want. If we had more than 50% 904 * of the space_info used by bytes_used and we had 0 available we'd just 905 * constantly run the background flusher. Instead we want it to kick in 906 * if our reclaimable space exceeds our clamped free space. 907 * 908 * Our clamping range is 2^1 -> 2^8. Practically speaking that means 909 * the following: 910 * 911 * Amount of RAM Minimum threshold Maximum threshold 912 * 913 * 256GiB 1GiB 128GiB 914 * 128GiB 512MiB 64GiB 915 * 64GiB 256MiB 32GiB 916 * 32GiB 128MiB 16GiB 917 * 16GiB 64MiB 8GiB 918 * 919 * These are the range our thresholds will fall in, corresponding to how 920 * much delalloc we need for the background flusher to kick in. 921 */ 922 923 thresh = calc_available_free_space(fs_info, space_info, 924 BTRFS_RESERVE_FLUSH_ALL); 925 used = space_info->bytes_used + space_info->bytes_reserved + 926 space_info->bytes_readonly + global_rsv_size; 927 if (used < space_info->total_bytes) 928 thresh += space_info->total_bytes - used; 929 thresh >>= space_info->clamp; 930 931 used = space_info->bytes_pinned; 932 933 /* 934 * If we have more ordered bytes than delalloc bytes then we're either 935 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting 936 * around. Preemptive flushing is only useful in that it can free up 937 * space before tickets need to wait for things to finish. In the case 938 * of ordered extents, preemptively waiting on ordered extents gets us 939 * nothing, if our reservations are tied up in ordered extents we'll 940 * simply have to slow down writers by forcing them to wait on ordered 941 * extents. 942 * 943 * In the case that ordered is larger than delalloc, only include the 944 * block reserves that we would actually be able to directly reclaim 945 * from. In this case if we're heavy on metadata operations this will 946 * clearly be heavy enough to warrant preemptive flushing. In the case 947 * of heavy DIO or ordered reservations, preemptive flushing will just 948 * waste time and cause us to slow down. 949 * 950 * We want to make sure we truly are maxed out on ordered however, so 951 * cut ordered in half, and if it's still higher than delalloc then we 952 * can keep flushing. This is to avoid the case where we start 953 * flushing, and now delalloc == ordered and we stop preemptively 954 * flushing when we could still have several gigs of delalloc to flush. 955 */ 956 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1; 957 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes); 958 if (ordered >= delalloc) 959 used += fs_info->delayed_refs_rsv.reserved + 960 fs_info->delayed_block_rsv.reserved; 961 else 962 used += space_info->bytes_may_use - global_rsv_size; 963 964 return (used >= thresh && !btrfs_fs_closing(fs_info) && 965 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 966 } 967 968 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 969 struct btrfs_space_info *space_info, 970 struct reserve_ticket *ticket) 971 { 972 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 973 u64 min_bytes; 974 975 if (!ticket->steal) 976 return false; 977 978 if (global_rsv->space_info != space_info) 979 return false; 980 981 spin_lock(&global_rsv->lock); 982 min_bytes = mult_perc(global_rsv->size, 10); 983 if (global_rsv->reserved < min_bytes + ticket->bytes) { 984 spin_unlock(&global_rsv->lock); 985 return false; 986 } 987 global_rsv->reserved -= ticket->bytes; 988 remove_ticket(space_info, ticket); 989 ticket->bytes = 0; 990 wake_up(&ticket->wait); 991 space_info->tickets_id++; 992 if (global_rsv->reserved < global_rsv->size) 993 global_rsv->full = 0; 994 spin_unlock(&global_rsv->lock); 995 996 return true; 997 } 998 999 /* 1000 * We've exhausted our flushing, start failing tickets. 1001 * 1002 * @fs_info - fs_info for this fs 1003 * @space_info - the space info we were flushing 1004 * 1005 * We call this when we've exhausted our flushing ability and haven't made 1006 * progress in satisfying tickets. The reservation code handles tickets in 1007 * order, so if there is a large ticket first and then smaller ones we could 1008 * very well satisfy the smaller tickets. This will attempt to wake up any 1009 * tickets in the list to catch this case. 1010 * 1011 * This function returns true if it was able to make progress by clearing out 1012 * other tickets, or if it stumbles across a ticket that was smaller than the 1013 * first ticket. 1014 */ 1015 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 1016 struct btrfs_space_info *space_info) 1017 { 1018 struct reserve_ticket *ticket; 1019 u64 tickets_id = space_info->tickets_id; 1020 const bool aborted = BTRFS_FS_ERROR(fs_info); 1021 1022 trace_btrfs_fail_all_tickets(fs_info, space_info); 1023 1024 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 1025 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 1026 __btrfs_dump_space_info(fs_info, space_info); 1027 } 1028 1029 while (!list_empty(&space_info->tickets) && 1030 tickets_id == space_info->tickets_id) { 1031 ticket = list_first_entry(&space_info->tickets, 1032 struct reserve_ticket, list); 1033 1034 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket)) 1035 return true; 1036 1037 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1038 btrfs_info(fs_info, "failing ticket with %llu bytes", 1039 ticket->bytes); 1040 1041 remove_ticket(space_info, ticket); 1042 if (aborted) 1043 ticket->error = -EIO; 1044 else 1045 ticket->error = -ENOSPC; 1046 wake_up(&ticket->wait); 1047 1048 /* 1049 * We're just throwing tickets away, so more flushing may not 1050 * trip over btrfs_try_granting_tickets, so we need to call it 1051 * here to see if we can make progress with the next ticket in 1052 * the list. 1053 */ 1054 if (!aborted) 1055 btrfs_try_granting_tickets(fs_info, space_info); 1056 } 1057 return (tickets_id != space_info->tickets_id); 1058 } 1059 1060 /* 1061 * This is for normal flushers, we can wait all goddamned day if we want to. We 1062 * will loop and continuously try to flush as long as we are making progress. 1063 * We count progress as clearing off tickets each time we have to loop. 1064 */ 1065 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 1066 { 1067 struct btrfs_fs_info *fs_info; 1068 struct btrfs_space_info *space_info; 1069 u64 to_reclaim; 1070 enum btrfs_flush_state flush_state; 1071 int commit_cycles = 0; 1072 u64 last_tickets_id; 1073 1074 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 1075 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1076 1077 spin_lock(&space_info->lock); 1078 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1079 if (!to_reclaim) { 1080 space_info->flush = 0; 1081 spin_unlock(&space_info->lock); 1082 return; 1083 } 1084 last_tickets_id = space_info->tickets_id; 1085 spin_unlock(&space_info->lock); 1086 1087 flush_state = FLUSH_DELAYED_ITEMS_NR; 1088 do { 1089 flush_space(fs_info, space_info, to_reclaim, flush_state, false); 1090 spin_lock(&space_info->lock); 1091 if (list_empty(&space_info->tickets)) { 1092 space_info->flush = 0; 1093 spin_unlock(&space_info->lock); 1094 return; 1095 } 1096 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 1097 space_info); 1098 if (last_tickets_id == space_info->tickets_id) { 1099 flush_state++; 1100 } else { 1101 last_tickets_id = space_info->tickets_id; 1102 flush_state = FLUSH_DELAYED_ITEMS_NR; 1103 if (commit_cycles) 1104 commit_cycles--; 1105 } 1106 1107 /* 1108 * We do not want to empty the system of delalloc unless we're 1109 * under heavy pressure, so allow one trip through the flushing 1110 * logic before we start doing a FLUSH_DELALLOC_FULL. 1111 */ 1112 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles) 1113 flush_state++; 1114 1115 /* 1116 * We don't want to force a chunk allocation until we've tried 1117 * pretty hard to reclaim space. Think of the case where we 1118 * freed up a bunch of space and so have a lot of pinned space 1119 * to reclaim. We would rather use that than possibly create a 1120 * underutilized metadata chunk. So if this is our first run 1121 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 1122 * commit the transaction. If nothing has changed the next go 1123 * around then we can force a chunk allocation. 1124 */ 1125 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 1126 flush_state++; 1127 1128 if (flush_state > COMMIT_TRANS) { 1129 commit_cycles++; 1130 if (commit_cycles > 2) { 1131 if (maybe_fail_all_tickets(fs_info, space_info)) { 1132 flush_state = FLUSH_DELAYED_ITEMS_NR; 1133 commit_cycles--; 1134 } else { 1135 space_info->flush = 0; 1136 } 1137 } else { 1138 flush_state = FLUSH_DELAYED_ITEMS_NR; 1139 } 1140 } 1141 spin_unlock(&space_info->lock); 1142 } while (flush_state <= COMMIT_TRANS); 1143 } 1144 1145 /* 1146 * This handles pre-flushing of metadata space before we get to the point that 1147 * we need to start blocking threads on tickets. The logic here is different 1148 * from the other flush paths because it doesn't rely on tickets to tell us how 1149 * much we need to flush, instead it attempts to keep us below the 80% full 1150 * watermark of space by flushing whichever reservation pool is currently the 1151 * largest. 1152 */ 1153 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work) 1154 { 1155 struct btrfs_fs_info *fs_info; 1156 struct btrfs_space_info *space_info; 1157 struct btrfs_block_rsv *delayed_block_rsv; 1158 struct btrfs_block_rsv *delayed_refs_rsv; 1159 struct btrfs_block_rsv *global_rsv; 1160 struct btrfs_block_rsv *trans_rsv; 1161 int loops = 0; 1162 1163 fs_info = container_of(work, struct btrfs_fs_info, 1164 preempt_reclaim_work); 1165 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 1166 delayed_block_rsv = &fs_info->delayed_block_rsv; 1167 delayed_refs_rsv = &fs_info->delayed_refs_rsv; 1168 global_rsv = &fs_info->global_block_rsv; 1169 trans_rsv = &fs_info->trans_block_rsv; 1170 1171 spin_lock(&space_info->lock); 1172 while (need_preemptive_reclaim(fs_info, space_info)) { 1173 enum btrfs_flush_state flush; 1174 u64 delalloc_size = 0; 1175 u64 to_reclaim, block_rsv_size; 1176 u64 global_rsv_size = global_rsv->reserved; 1177 1178 loops++; 1179 1180 /* 1181 * We don't have a precise counter for the metadata being 1182 * reserved for delalloc, so we'll approximate it by subtracting 1183 * out the block rsv's space from the bytes_may_use. If that 1184 * amount is higher than the individual reserves, then we can 1185 * assume it's tied up in delalloc reservations. 1186 */ 1187 block_rsv_size = global_rsv_size + 1188 delayed_block_rsv->reserved + 1189 delayed_refs_rsv->reserved + 1190 trans_rsv->reserved; 1191 if (block_rsv_size < space_info->bytes_may_use) 1192 delalloc_size = space_info->bytes_may_use - block_rsv_size; 1193 1194 /* 1195 * We don't want to include the global_rsv in our calculation, 1196 * because that's space we can't touch. Subtract it from the 1197 * block_rsv_size for the next checks. 1198 */ 1199 block_rsv_size -= global_rsv_size; 1200 1201 /* 1202 * We really want to avoid flushing delalloc too much, as it 1203 * could result in poor allocation patterns, so only flush it if 1204 * it's larger than the rest of the pools combined. 1205 */ 1206 if (delalloc_size > block_rsv_size) { 1207 to_reclaim = delalloc_size; 1208 flush = FLUSH_DELALLOC; 1209 } else if (space_info->bytes_pinned > 1210 (delayed_block_rsv->reserved + 1211 delayed_refs_rsv->reserved)) { 1212 to_reclaim = space_info->bytes_pinned; 1213 flush = COMMIT_TRANS; 1214 } else if (delayed_block_rsv->reserved > 1215 delayed_refs_rsv->reserved) { 1216 to_reclaim = delayed_block_rsv->reserved; 1217 flush = FLUSH_DELAYED_ITEMS_NR; 1218 } else { 1219 to_reclaim = delayed_refs_rsv->reserved; 1220 flush = FLUSH_DELAYED_REFS_NR; 1221 } 1222 1223 spin_unlock(&space_info->lock); 1224 1225 /* 1226 * We don't want to reclaim everything, just a portion, so scale 1227 * down the to_reclaim by 1/4. If it takes us down to 0, 1228 * reclaim 1 items worth. 1229 */ 1230 to_reclaim >>= 2; 1231 if (!to_reclaim) 1232 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1); 1233 flush_space(fs_info, space_info, to_reclaim, flush, true); 1234 cond_resched(); 1235 spin_lock(&space_info->lock); 1236 } 1237 1238 /* We only went through once, back off our clamping. */ 1239 if (loops == 1 && !space_info->reclaim_size) 1240 space_info->clamp = max(1, space_info->clamp - 1); 1241 trace_btrfs_done_preemptive_reclaim(fs_info, space_info); 1242 spin_unlock(&space_info->lock); 1243 } 1244 1245 /* 1246 * FLUSH_DELALLOC_WAIT: 1247 * Space is freed from flushing delalloc in one of two ways. 1248 * 1249 * 1) compression is on and we allocate less space than we reserved 1250 * 2) we are overwriting existing space 1251 * 1252 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1253 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1254 * length to ->bytes_reserved, and subtracts the reserved space from 1255 * ->bytes_may_use. 1256 * 1257 * For #2 this is trickier. Once the ordered extent runs we will drop the 1258 * extent in the range we are overwriting, which creates a delayed ref for 1259 * that freed extent. This however is not reclaimed until the transaction 1260 * commits, thus the next stages. 1261 * 1262 * RUN_DELAYED_IPUTS 1263 * If we are freeing inodes, we want to make sure all delayed iputs have 1264 * completed, because they could have been on an inode with i_nlink == 0, and 1265 * thus have been truncated and freed up space. But again this space is not 1266 * immediately re-usable, it comes in the form of a delayed ref, which must be 1267 * run and then the transaction must be committed. 1268 * 1269 * COMMIT_TRANS 1270 * This is where we reclaim all of the pinned space generated by running the 1271 * iputs 1272 * 1273 * ALLOC_CHUNK_FORCE 1274 * For data we start with alloc chunk force, however we could have been full 1275 * before, and then the transaction commit could have freed new block groups, 1276 * so if we now have space to allocate do the force chunk allocation. 1277 */ 1278 static const enum btrfs_flush_state data_flush_states[] = { 1279 FLUSH_DELALLOC_FULL, 1280 RUN_DELAYED_IPUTS, 1281 COMMIT_TRANS, 1282 ALLOC_CHUNK_FORCE, 1283 }; 1284 1285 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1286 { 1287 struct btrfs_fs_info *fs_info; 1288 struct btrfs_space_info *space_info; 1289 u64 last_tickets_id; 1290 enum btrfs_flush_state flush_state = 0; 1291 1292 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1293 space_info = fs_info->data_sinfo; 1294 1295 spin_lock(&space_info->lock); 1296 if (list_empty(&space_info->tickets)) { 1297 space_info->flush = 0; 1298 spin_unlock(&space_info->lock); 1299 return; 1300 } 1301 last_tickets_id = space_info->tickets_id; 1302 spin_unlock(&space_info->lock); 1303 1304 while (!space_info->full) { 1305 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1306 spin_lock(&space_info->lock); 1307 if (list_empty(&space_info->tickets)) { 1308 space_info->flush = 0; 1309 spin_unlock(&space_info->lock); 1310 return; 1311 } 1312 1313 /* Something happened, fail everything and bail. */ 1314 if (BTRFS_FS_ERROR(fs_info)) 1315 goto aborted_fs; 1316 last_tickets_id = space_info->tickets_id; 1317 spin_unlock(&space_info->lock); 1318 } 1319 1320 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1321 flush_space(fs_info, space_info, U64_MAX, 1322 data_flush_states[flush_state], false); 1323 spin_lock(&space_info->lock); 1324 if (list_empty(&space_info->tickets)) { 1325 space_info->flush = 0; 1326 spin_unlock(&space_info->lock); 1327 return; 1328 } 1329 1330 if (last_tickets_id == space_info->tickets_id) { 1331 flush_state++; 1332 } else { 1333 last_tickets_id = space_info->tickets_id; 1334 flush_state = 0; 1335 } 1336 1337 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1338 if (space_info->full) { 1339 if (maybe_fail_all_tickets(fs_info, space_info)) 1340 flush_state = 0; 1341 else 1342 space_info->flush = 0; 1343 } else { 1344 flush_state = 0; 1345 } 1346 1347 /* Something happened, fail everything and bail. */ 1348 if (BTRFS_FS_ERROR(fs_info)) 1349 goto aborted_fs; 1350 1351 } 1352 spin_unlock(&space_info->lock); 1353 } 1354 return; 1355 1356 aborted_fs: 1357 maybe_fail_all_tickets(fs_info, space_info); 1358 space_info->flush = 0; 1359 spin_unlock(&space_info->lock); 1360 } 1361 1362 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1363 { 1364 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1365 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1366 INIT_WORK(&fs_info->preempt_reclaim_work, 1367 btrfs_preempt_reclaim_metadata_space); 1368 } 1369 1370 static const enum btrfs_flush_state priority_flush_states[] = { 1371 FLUSH_DELAYED_ITEMS_NR, 1372 FLUSH_DELAYED_ITEMS, 1373 ALLOC_CHUNK, 1374 }; 1375 1376 static const enum btrfs_flush_state evict_flush_states[] = { 1377 FLUSH_DELAYED_ITEMS_NR, 1378 FLUSH_DELAYED_ITEMS, 1379 FLUSH_DELAYED_REFS_NR, 1380 FLUSH_DELAYED_REFS, 1381 FLUSH_DELALLOC, 1382 FLUSH_DELALLOC_WAIT, 1383 FLUSH_DELALLOC_FULL, 1384 ALLOC_CHUNK, 1385 COMMIT_TRANS, 1386 }; 1387 1388 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1389 struct btrfs_space_info *space_info, 1390 struct reserve_ticket *ticket, 1391 const enum btrfs_flush_state *states, 1392 int states_nr) 1393 { 1394 u64 to_reclaim; 1395 int flush_state = 0; 1396 1397 spin_lock(&space_info->lock); 1398 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1399 /* 1400 * This is the priority reclaim path, so to_reclaim could be >0 still 1401 * because we may have only satisfied the priority tickets and still 1402 * left non priority tickets on the list. We would then have 1403 * to_reclaim but ->bytes == 0. 1404 */ 1405 if (ticket->bytes == 0) { 1406 spin_unlock(&space_info->lock); 1407 return; 1408 } 1409 1410 while (flush_state < states_nr) { 1411 spin_unlock(&space_info->lock); 1412 flush_space(fs_info, space_info, to_reclaim, states[flush_state], 1413 false); 1414 flush_state++; 1415 spin_lock(&space_info->lock); 1416 if (ticket->bytes == 0) { 1417 spin_unlock(&space_info->lock); 1418 return; 1419 } 1420 } 1421 1422 /* 1423 * Attempt to steal from the global rsv if we can, except if the fs was 1424 * turned into error mode due to a transaction abort when flushing space 1425 * above, in that case fail with the abort error instead of returning 1426 * success to the caller if we can steal from the global rsv - this is 1427 * just to have caller fail immeditelly instead of later when trying to 1428 * modify the fs, making it easier to debug -ENOSPC problems. 1429 */ 1430 if (BTRFS_FS_ERROR(fs_info)) { 1431 ticket->error = BTRFS_FS_ERROR(fs_info); 1432 remove_ticket(space_info, ticket); 1433 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) { 1434 ticket->error = -ENOSPC; 1435 remove_ticket(space_info, ticket); 1436 } 1437 1438 /* 1439 * We must run try_granting_tickets here because we could be a large 1440 * ticket in front of a smaller ticket that can now be satisfied with 1441 * the available space. 1442 */ 1443 btrfs_try_granting_tickets(fs_info, space_info); 1444 spin_unlock(&space_info->lock); 1445 } 1446 1447 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1448 struct btrfs_space_info *space_info, 1449 struct reserve_ticket *ticket) 1450 { 1451 spin_lock(&space_info->lock); 1452 1453 /* We could have been granted before we got here. */ 1454 if (ticket->bytes == 0) { 1455 spin_unlock(&space_info->lock); 1456 return; 1457 } 1458 1459 while (!space_info->full) { 1460 spin_unlock(&space_info->lock); 1461 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false); 1462 spin_lock(&space_info->lock); 1463 if (ticket->bytes == 0) { 1464 spin_unlock(&space_info->lock); 1465 return; 1466 } 1467 } 1468 1469 ticket->error = -ENOSPC; 1470 remove_ticket(space_info, ticket); 1471 btrfs_try_granting_tickets(fs_info, space_info); 1472 spin_unlock(&space_info->lock); 1473 } 1474 1475 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1476 struct btrfs_space_info *space_info, 1477 struct reserve_ticket *ticket) 1478 1479 { 1480 DEFINE_WAIT(wait); 1481 int ret = 0; 1482 1483 spin_lock(&space_info->lock); 1484 while (ticket->bytes > 0 && ticket->error == 0) { 1485 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1486 if (ret) { 1487 /* 1488 * Delete us from the list. After we unlock the space 1489 * info, we don't want the async reclaim job to reserve 1490 * space for this ticket. If that would happen, then the 1491 * ticket's task would not known that space was reserved 1492 * despite getting an error, resulting in a space leak 1493 * (bytes_may_use counter of our space_info). 1494 */ 1495 remove_ticket(space_info, ticket); 1496 ticket->error = -EINTR; 1497 break; 1498 } 1499 spin_unlock(&space_info->lock); 1500 1501 schedule(); 1502 1503 finish_wait(&ticket->wait, &wait); 1504 spin_lock(&space_info->lock); 1505 } 1506 spin_unlock(&space_info->lock); 1507 } 1508 1509 /* 1510 * Do the appropriate flushing and waiting for a ticket. 1511 * 1512 * @fs_info: the filesystem 1513 * @space_info: space info for the reservation 1514 * @ticket: ticket for the reservation 1515 * @start_ns: timestamp when the reservation started 1516 * @orig_bytes: amount of bytes originally reserved 1517 * @flush: how much we can flush 1518 * 1519 * This does the work of figuring out how to flush for the ticket, waiting for 1520 * the reservation, and returning the appropriate error if there is one. 1521 */ 1522 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1523 struct btrfs_space_info *space_info, 1524 struct reserve_ticket *ticket, 1525 u64 start_ns, u64 orig_bytes, 1526 enum btrfs_reserve_flush_enum flush) 1527 { 1528 int ret; 1529 1530 switch (flush) { 1531 case BTRFS_RESERVE_FLUSH_DATA: 1532 case BTRFS_RESERVE_FLUSH_ALL: 1533 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1534 wait_reserve_ticket(fs_info, space_info, ticket); 1535 break; 1536 case BTRFS_RESERVE_FLUSH_LIMIT: 1537 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1538 priority_flush_states, 1539 ARRAY_SIZE(priority_flush_states)); 1540 break; 1541 case BTRFS_RESERVE_FLUSH_EVICT: 1542 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1543 evict_flush_states, 1544 ARRAY_SIZE(evict_flush_states)); 1545 break; 1546 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1547 priority_reclaim_data_space(fs_info, space_info, ticket); 1548 break; 1549 default: 1550 ASSERT(0); 1551 break; 1552 } 1553 1554 ret = ticket->error; 1555 ASSERT(list_empty(&ticket->list)); 1556 /* 1557 * Check that we can't have an error set if the reservation succeeded, 1558 * as that would confuse tasks and lead them to error out without 1559 * releasing reserved space (if an error happens the expectation is that 1560 * space wasn't reserved at all). 1561 */ 1562 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1563 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes, 1564 start_ns, flush, ticket->error); 1565 return ret; 1566 } 1567 1568 /* 1569 * This returns true if this flush state will go through the ordinary flushing 1570 * code. 1571 */ 1572 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1573 { 1574 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1575 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1576 } 1577 1578 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info, 1579 struct btrfs_space_info *space_info) 1580 { 1581 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes); 1582 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes); 1583 1584 /* 1585 * If we're heavy on ordered operations then clamping won't help us. We 1586 * need to clamp specifically to keep up with dirty'ing buffered 1587 * writers, because there's not a 1:1 correlation of writing delalloc 1588 * and freeing space, like there is with flushing delayed refs or 1589 * delayed nodes. If we're already more ordered than delalloc then 1590 * we're keeping up, otherwise we aren't and should probably clamp. 1591 */ 1592 if (ordered < delalloc) 1593 space_info->clamp = min(space_info->clamp + 1, 8); 1594 } 1595 1596 static inline bool can_steal(enum btrfs_reserve_flush_enum flush) 1597 { 1598 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1599 flush == BTRFS_RESERVE_FLUSH_EVICT); 1600 } 1601 1602 /* 1603 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to 1604 * fail as quickly as possible. 1605 */ 1606 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush) 1607 { 1608 return (flush != BTRFS_RESERVE_NO_FLUSH && 1609 flush != BTRFS_RESERVE_FLUSH_EMERGENCY); 1610 } 1611 1612 /* 1613 * Try to reserve bytes from the block_rsv's space. 1614 * 1615 * @fs_info: the filesystem 1616 * @space_info: space info we want to allocate from 1617 * @orig_bytes: number of bytes we want 1618 * @flush: whether or not we can flush to make our reservation 1619 * 1620 * This will reserve orig_bytes number of bytes from the space info associated 1621 * with the block_rsv. If there is not enough space it will make an attempt to 1622 * flush out space to make room. It will do this by flushing delalloc if 1623 * possible or committing the transaction. If flush is 0 then no attempts to 1624 * regain reservations will be made and this will fail if there is not enough 1625 * space already. 1626 */ 1627 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1628 struct btrfs_space_info *space_info, u64 orig_bytes, 1629 enum btrfs_reserve_flush_enum flush) 1630 { 1631 struct work_struct *async_work; 1632 struct reserve_ticket ticket; 1633 u64 start_ns = 0; 1634 u64 used; 1635 int ret = -ENOSPC; 1636 bool pending_tickets; 1637 1638 ASSERT(orig_bytes); 1639 /* 1640 * If have a transaction handle (current->journal_info != NULL), then 1641 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor 1642 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those 1643 * flushing methods can trigger transaction commits. 1644 */ 1645 if (current->journal_info) { 1646 /* One assert per line for easier debugging. */ 1647 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL); 1648 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL); 1649 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT); 1650 } 1651 1652 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1653 async_work = &fs_info->async_data_reclaim_work; 1654 else 1655 async_work = &fs_info->async_reclaim_work; 1656 1657 spin_lock(&space_info->lock); 1658 used = btrfs_space_info_used(space_info, true); 1659 1660 /* 1661 * We don't want NO_FLUSH allocations to jump everybody, they can 1662 * generally handle ENOSPC in a different way, so treat them the same as 1663 * normal flushers when it comes to skipping pending tickets. 1664 */ 1665 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1666 pending_tickets = !list_empty(&space_info->tickets) || 1667 !list_empty(&space_info->priority_tickets); 1668 else 1669 pending_tickets = !list_empty(&space_info->priority_tickets); 1670 1671 /* 1672 * Carry on if we have enough space (short-circuit) OR call 1673 * can_overcommit() to ensure we can overcommit to continue. 1674 */ 1675 if (!pending_tickets && 1676 ((used + orig_bytes <= space_info->total_bytes) || 1677 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1678 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1679 orig_bytes); 1680 ret = 0; 1681 } 1682 1683 /* 1684 * Things are dire, we need to make a reservation so we don't abort. We 1685 * will let this reservation go through as long as we have actual space 1686 * left to allocate for the block. 1687 */ 1688 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) { 1689 used = btrfs_space_info_used(space_info, false); 1690 if (used + orig_bytes <= space_info->total_bytes) { 1691 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1692 orig_bytes); 1693 ret = 0; 1694 } 1695 } 1696 1697 /* 1698 * If we couldn't make a reservation then setup our reservation ticket 1699 * and kick the async worker if it's not already running. 1700 * 1701 * If we are a priority flusher then we just need to add our ticket to 1702 * the list and we will do our own flushing further down. 1703 */ 1704 if (ret && can_ticket(flush)) { 1705 ticket.bytes = orig_bytes; 1706 ticket.error = 0; 1707 space_info->reclaim_size += ticket.bytes; 1708 init_waitqueue_head(&ticket.wait); 1709 ticket.steal = can_steal(flush); 1710 if (trace_btrfs_reserve_ticket_enabled()) 1711 start_ns = ktime_get_ns(); 1712 1713 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1714 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1715 flush == BTRFS_RESERVE_FLUSH_DATA) { 1716 list_add_tail(&ticket.list, &space_info->tickets); 1717 if (!space_info->flush) { 1718 /* 1719 * We were forced to add a reserve ticket, so 1720 * our preemptive flushing is unable to keep 1721 * up. Clamp down on the threshold for the 1722 * preemptive flushing in order to keep up with 1723 * the workload. 1724 */ 1725 maybe_clamp_preempt(fs_info, space_info); 1726 1727 space_info->flush = 1; 1728 trace_btrfs_trigger_flush(fs_info, 1729 space_info->flags, 1730 orig_bytes, flush, 1731 "enospc"); 1732 queue_work(system_unbound_wq, async_work); 1733 } 1734 } else { 1735 list_add_tail(&ticket.list, 1736 &space_info->priority_tickets); 1737 } 1738 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1739 /* 1740 * We will do the space reservation dance during log replay, 1741 * which means we won't have fs_info->fs_root set, so don't do 1742 * the async reclaim as we will panic. 1743 */ 1744 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1745 !work_busy(&fs_info->preempt_reclaim_work) && 1746 need_preemptive_reclaim(fs_info, space_info)) { 1747 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1748 orig_bytes, flush, "preempt"); 1749 queue_work(system_unbound_wq, 1750 &fs_info->preempt_reclaim_work); 1751 } 1752 } 1753 spin_unlock(&space_info->lock); 1754 if (!ret || !can_ticket(flush)) 1755 return ret; 1756 1757 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns, 1758 orig_bytes, flush); 1759 } 1760 1761 /* 1762 * Try to reserve metadata bytes from the block_rsv's space. 1763 * 1764 * @fs_info: the filesystem 1765 * @space_info: the space_info we're allocating for 1766 * @orig_bytes: number of bytes we want 1767 * @flush: whether or not we can flush to make our reservation 1768 * 1769 * This will reserve orig_bytes number of bytes from the space info associated 1770 * with the block_rsv. If there is not enough space it will make an attempt to 1771 * flush out space to make room. It will do this by flushing delalloc if 1772 * possible or committing the transaction. If flush is 0 then no attempts to 1773 * regain reservations will be made and this will fail if there is not enough 1774 * space already. 1775 */ 1776 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 1777 struct btrfs_space_info *space_info, 1778 u64 orig_bytes, 1779 enum btrfs_reserve_flush_enum flush) 1780 { 1781 int ret; 1782 1783 ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush); 1784 if (ret == -ENOSPC) { 1785 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1786 space_info->flags, orig_bytes, 1); 1787 1788 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1789 btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0); 1790 } 1791 return ret; 1792 } 1793 1794 /* 1795 * Try to reserve data bytes for an allocation. 1796 * 1797 * @fs_info: the filesystem 1798 * @bytes: number of bytes we need 1799 * @flush: how we are allowed to flush 1800 * 1801 * This will reserve bytes from the data space info. If there is not enough 1802 * space then we will attempt to flush space as specified by flush. 1803 */ 1804 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1805 enum btrfs_reserve_flush_enum flush) 1806 { 1807 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1808 int ret; 1809 1810 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1811 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE || 1812 flush == BTRFS_RESERVE_NO_FLUSH); 1813 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1814 1815 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1816 if (ret == -ENOSPC) { 1817 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1818 data_sinfo->flags, bytes, 1); 1819 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1820 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1821 } 1822 return ret; 1823 } 1824 1825 /* Dump all the space infos when we abort a transaction due to ENOSPC. */ 1826 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info) 1827 { 1828 struct btrfs_space_info *space_info; 1829 1830 btrfs_info(fs_info, "dumping space info:"); 1831 list_for_each_entry(space_info, &fs_info->space_info, list) { 1832 spin_lock(&space_info->lock); 1833 __btrfs_dump_space_info(fs_info, space_info); 1834 spin_unlock(&space_info->lock); 1835 } 1836 dump_global_block_rsv(fs_info); 1837 } 1838 1839 /* 1840 * Account the unused space of all the readonly block group in the space_info. 1841 * takes mirrors into account. 1842 */ 1843 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 1844 { 1845 struct btrfs_block_group *block_group; 1846 u64 free_bytes = 0; 1847 int factor; 1848 1849 /* It's df, we don't care if it's racy */ 1850 if (list_empty(&sinfo->ro_bgs)) 1851 return 0; 1852 1853 spin_lock(&sinfo->lock); 1854 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 1855 spin_lock(&block_group->lock); 1856 1857 if (!block_group->ro) { 1858 spin_unlock(&block_group->lock); 1859 continue; 1860 } 1861 1862 factor = btrfs_bg_type_to_factor(block_group->flags); 1863 free_bytes += (block_group->length - 1864 block_group->used) * factor; 1865 1866 spin_unlock(&block_group->lock); 1867 } 1868 spin_unlock(&sinfo->lock); 1869 1870 return free_bytes; 1871 } 1872