1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "space-info.h" 6 #include "sysfs.h" 7 #include "volumes.h" 8 #include "free-space-cache.h" 9 #include "ordered-data.h" 10 #include "transaction.h" 11 #include "block-group.h" 12 13 /* 14 * HOW DOES SPACE RESERVATION WORK 15 * 16 * If you want to know about delalloc specifically, there is a separate comment 17 * for that with the delalloc code. This comment is about how the whole system 18 * works generally. 19 * 20 * BASIC CONCEPTS 21 * 22 * 1) space_info. This is the ultimate arbiter of how much space we can use. 23 * There's a description of the bytes_ fields with the struct declaration, 24 * refer to that for specifics on each field. Suffice it to say that for 25 * reservations we care about total_bytes - SUM(space_info->bytes_) when 26 * determining if there is space to make an allocation. There is a space_info 27 * for METADATA, SYSTEM, and DATA areas. 28 * 29 * 2) block_rsv's. These are basically buckets for every different type of 30 * metadata reservation we have. You can see the comment in the block_rsv 31 * code on the rules for each type, but generally block_rsv->reserved is how 32 * much space is accounted for in space_info->bytes_may_use. 33 * 34 * 3) btrfs_calc*_size. These are the worst case calculations we used based 35 * on the number of items we will want to modify. We have one for changing 36 * items, and one for inserting new items. Generally we use these helpers to 37 * determine the size of the block reserves, and then use the actual bytes 38 * values to adjust the space_info counters. 39 * 40 * MAKING RESERVATIONS, THE NORMAL CASE 41 * 42 * We call into either btrfs_reserve_data_bytes() or 43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with 44 * num_bytes we want to reserve. 45 * 46 * ->reserve 47 * space_info->bytes_may_reserve += num_bytes 48 * 49 * ->extent allocation 50 * Call btrfs_add_reserved_bytes() which does 51 * space_info->bytes_may_reserve -= num_bytes 52 * space_info->bytes_reserved += extent_bytes 53 * 54 * ->insert reference 55 * Call btrfs_update_block_group() which does 56 * space_info->bytes_reserved -= extent_bytes 57 * space_info->bytes_used += extent_bytes 58 * 59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority) 60 * 61 * Assume we are unable to simply make the reservation because we do not have 62 * enough space 63 * 64 * -> __reserve_bytes 65 * create a reserve_ticket with ->bytes set to our reservation, add it to 66 * the tail of space_info->tickets, kick async flush thread 67 * 68 * ->handle_reserve_ticket 69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set 70 * on the ticket. 71 * 72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space 73 * Flushes various things attempting to free up space. 74 * 75 * -> btrfs_try_granting_tickets() 76 * This is called by anything that either subtracts space from 77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the 78 * space_info->total_bytes. This loops through the ->priority_tickets and 79 * then the ->tickets list checking to see if the reservation can be 80 * completed. If it can the space is added to space_info->bytes_may_use and 81 * the ticket is woken up. 82 * 83 * -> ticket wakeup 84 * Check if ->bytes == 0, if it does we got our reservation and we can carry 85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we 86 * were interrupted.) 87 * 88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY 89 * 90 * Same as the above, except we add ourselves to the 91 * space_info->priority_tickets, and we do not use ticket->wait, we simply 92 * call flush_space() ourselves for the states that are safe for us to call 93 * without deadlocking and hope for the best. 94 * 95 * THE FLUSHING STATES 96 * 97 * Generally speaking we will have two cases for each state, a "nice" state 98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to 99 * reduce the locking over head on the various trees, and even to keep from 100 * doing any work at all in the case of delayed refs. Each of these delayed 101 * things however hold reservations, and so letting them run allows us to 102 * reclaim space so we can make new reservations. 103 * 104 * FLUSH_DELAYED_ITEMS 105 * Every inode has a delayed item to update the inode. Take a simple write 106 * for example, we would update the inode item at write time to update the 107 * mtime, and then again at finish_ordered_io() time in order to update the 108 * isize or bytes. We keep these delayed items to coalesce these operations 109 * into a single operation done on demand. These are an easy way to reclaim 110 * metadata space. 111 * 112 * FLUSH_DELALLOC 113 * Look at the delalloc comment to get an idea of how much space is reserved 114 * for delayed allocation. We can reclaim some of this space simply by 115 * running delalloc, but usually we need to wait for ordered extents to 116 * reclaim the bulk of this space. 117 * 118 * FLUSH_DELAYED_REFS 119 * We have a block reserve for the outstanding delayed refs space, and every 120 * delayed ref operation holds a reservation. Running these is a quick way 121 * to reclaim space, but we want to hold this until the end because COW can 122 * churn a lot and we can avoid making some extent tree modifications if we 123 * are able to delay for as long as possible. 124 * 125 * ALLOC_CHUNK 126 * We will skip this the first time through space reservation, because of 127 * overcommit and we don't want to have a lot of useless metadata space when 128 * our worst case reservations will likely never come true. 129 * 130 * RUN_DELAYED_IPUTS 131 * If we're freeing inodes we're likely freeing checksums, file extent 132 * items, and extent tree items. Loads of space could be freed up by these 133 * operations, however they won't be usable until the transaction commits. 134 * 135 * COMMIT_TRANS 136 * may_commit_transaction() is the ultimate arbiter on whether we commit the 137 * transaction or not. In order to avoid constantly churning we do all the 138 * above flushing first and then commit the transaction as the last resort. 139 * However we need to take into account things like pinned space that would 140 * be freed, plus any delayed work we may not have gotten rid of in the case 141 * of metadata. 142 * 143 * OVERCOMMIT 144 * 145 * Because we hold so many reservations for metadata we will allow you to 146 * reserve more space than is currently free in the currently allocate 147 * metadata space. This only happens with metadata, data does not allow 148 * overcommitting. 149 * 150 * You can see the current logic for when we allow overcommit in 151 * btrfs_can_overcommit(), but it only applies to unallocated space. If there 152 * is no unallocated space to be had, all reservations are kept within the 153 * free space in the allocated metadata chunks. 154 * 155 * Because of overcommitting, you generally want to use the 156 * btrfs_can_overcommit() logic for metadata allocations, as it does the right 157 * thing with or without extra unallocated space. 158 */ 159 160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info, 161 bool may_use_included) 162 { 163 ASSERT(s_info); 164 return s_info->bytes_used + s_info->bytes_reserved + 165 s_info->bytes_pinned + s_info->bytes_readonly + 166 (may_use_included ? s_info->bytes_may_use : 0); 167 } 168 169 /* 170 * after adding space to the filesystem, we need to clear the full flags 171 * on all the space infos. 172 */ 173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 174 { 175 struct list_head *head = &info->space_info; 176 struct btrfs_space_info *found; 177 178 list_for_each_entry(found, head, list) 179 found->full = 0; 180 } 181 182 static int create_space_info(struct btrfs_fs_info *info, u64 flags) 183 { 184 185 struct btrfs_space_info *space_info; 186 int i; 187 int ret; 188 189 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 190 if (!space_info) 191 return -ENOMEM; 192 193 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 194 GFP_KERNEL); 195 if (ret) { 196 kfree(space_info); 197 return ret; 198 } 199 200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 201 INIT_LIST_HEAD(&space_info->block_groups[i]); 202 init_rwsem(&space_info->groups_sem); 203 spin_lock_init(&space_info->lock); 204 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 205 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 206 INIT_LIST_HEAD(&space_info->ro_bgs); 207 INIT_LIST_HEAD(&space_info->tickets); 208 INIT_LIST_HEAD(&space_info->priority_tickets); 209 210 ret = btrfs_sysfs_add_space_info_type(info, space_info); 211 if (ret) 212 return ret; 213 214 list_add(&space_info->list, &info->space_info); 215 if (flags & BTRFS_BLOCK_GROUP_DATA) 216 info->data_sinfo = space_info; 217 218 return ret; 219 } 220 221 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 222 { 223 struct btrfs_super_block *disk_super; 224 u64 features; 225 u64 flags; 226 int mixed = 0; 227 int ret; 228 229 disk_super = fs_info->super_copy; 230 if (!btrfs_super_root(disk_super)) 231 return -EINVAL; 232 233 features = btrfs_super_incompat_flags(disk_super); 234 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 235 mixed = 1; 236 237 flags = BTRFS_BLOCK_GROUP_SYSTEM; 238 ret = create_space_info(fs_info, flags); 239 if (ret) 240 goto out; 241 242 if (mixed) { 243 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 244 ret = create_space_info(fs_info, flags); 245 } else { 246 flags = BTRFS_BLOCK_GROUP_METADATA; 247 ret = create_space_info(fs_info, flags); 248 if (ret) 249 goto out; 250 251 flags = BTRFS_BLOCK_GROUP_DATA; 252 ret = create_space_info(fs_info, flags); 253 } 254 out: 255 return ret; 256 } 257 258 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags, 259 u64 total_bytes, u64 bytes_used, 260 u64 bytes_readonly, 261 struct btrfs_space_info **space_info) 262 { 263 struct btrfs_space_info *found; 264 int factor; 265 266 factor = btrfs_bg_type_to_factor(flags); 267 268 found = btrfs_find_space_info(info, flags); 269 ASSERT(found); 270 spin_lock(&found->lock); 271 found->total_bytes += total_bytes; 272 found->disk_total += total_bytes * factor; 273 found->bytes_used += bytes_used; 274 found->disk_used += bytes_used * factor; 275 found->bytes_readonly += bytes_readonly; 276 if (total_bytes > 0) 277 found->full = 0; 278 btrfs_try_granting_tickets(info, found); 279 spin_unlock(&found->lock); 280 *space_info = found; 281 } 282 283 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info, 284 u64 flags) 285 { 286 struct list_head *head = &info->space_info; 287 struct btrfs_space_info *found; 288 289 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 290 291 list_for_each_entry(found, head, list) { 292 if (found->flags & flags) 293 return found; 294 } 295 return NULL; 296 } 297 298 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info, 299 struct btrfs_space_info *space_info, 300 enum btrfs_reserve_flush_enum flush) 301 { 302 u64 profile; 303 u64 avail; 304 int factor; 305 306 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM) 307 profile = btrfs_system_alloc_profile(fs_info); 308 else 309 profile = btrfs_metadata_alloc_profile(fs_info); 310 311 avail = atomic64_read(&fs_info->free_chunk_space); 312 313 /* 314 * If we have dup, raid1 or raid10 then only half of the free 315 * space is actually usable. For raid56, the space info used 316 * doesn't include the parity drive, so we don't have to 317 * change the math 318 */ 319 factor = btrfs_bg_type_to_factor(profile); 320 avail = div_u64(avail, factor); 321 322 /* 323 * If we aren't flushing all things, let us overcommit up to 324 * 1/2th of the space. If we can flush, don't let us overcommit 325 * too much, let it overcommit up to 1/8 of the space. 326 */ 327 if (flush == BTRFS_RESERVE_FLUSH_ALL) 328 avail >>= 3; 329 else 330 avail >>= 1; 331 return avail; 332 } 333 334 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info, 335 struct btrfs_space_info *space_info, u64 bytes, 336 enum btrfs_reserve_flush_enum flush) 337 { 338 u64 avail; 339 u64 used; 340 341 /* Don't overcommit when in mixed mode */ 342 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 343 return 0; 344 345 used = btrfs_space_info_used(space_info, true); 346 avail = calc_available_free_space(fs_info, space_info, flush); 347 348 if (used + bytes < space_info->total_bytes + avail) 349 return 1; 350 return 0; 351 } 352 353 static void remove_ticket(struct btrfs_space_info *space_info, 354 struct reserve_ticket *ticket) 355 { 356 if (!list_empty(&ticket->list)) { 357 list_del_init(&ticket->list); 358 ASSERT(space_info->reclaim_size >= ticket->bytes); 359 space_info->reclaim_size -= ticket->bytes; 360 } 361 } 362 363 /* 364 * This is for space we already have accounted in space_info->bytes_may_use, so 365 * basically when we're returning space from block_rsv's. 366 */ 367 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info, 368 struct btrfs_space_info *space_info) 369 { 370 struct list_head *head; 371 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 372 373 lockdep_assert_held(&space_info->lock); 374 375 head = &space_info->priority_tickets; 376 again: 377 while (!list_empty(head)) { 378 struct reserve_ticket *ticket; 379 u64 used = btrfs_space_info_used(space_info, true); 380 381 ticket = list_first_entry(head, struct reserve_ticket, list); 382 383 /* Check and see if our ticket can be satisified now. */ 384 if ((used + ticket->bytes <= space_info->total_bytes) || 385 btrfs_can_overcommit(fs_info, space_info, ticket->bytes, 386 flush)) { 387 btrfs_space_info_update_bytes_may_use(fs_info, 388 space_info, 389 ticket->bytes); 390 remove_ticket(space_info, ticket); 391 ticket->bytes = 0; 392 space_info->tickets_id++; 393 wake_up(&ticket->wait); 394 } else { 395 break; 396 } 397 } 398 399 if (head == &space_info->priority_tickets) { 400 head = &space_info->tickets; 401 flush = BTRFS_RESERVE_FLUSH_ALL; 402 goto again; 403 } 404 } 405 406 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \ 407 do { \ 408 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \ 409 spin_lock(&__rsv->lock); \ 410 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \ 411 __rsv->size, __rsv->reserved); \ 412 spin_unlock(&__rsv->lock); \ 413 } while (0) 414 415 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 416 struct btrfs_space_info *info) 417 { 418 lockdep_assert_held(&info->lock); 419 420 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 421 info->flags, 422 info->total_bytes - btrfs_space_info_used(info, true), 423 info->full ? "" : "not "); 424 btrfs_info(fs_info, 425 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 426 info->total_bytes, info->bytes_used, info->bytes_pinned, 427 info->bytes_reserved, info->bytes_may_use, 428 info->bytes_readonly); 429 430 DUMP_BLOCK_RSV(fs_info, global_block_rsv); 431 DUMP_BLOCK_RSV(fs_info, trans_block_rsv); 432 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv); 433 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv); 434 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv); 435 436 } 437 438 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info, 439 struct btrfs_space_info *info, u64 bytes, 440 int dump_block_groups) 441 { 442 struct btrfs_block_group *cache; 443 int index = 0; 444 445 spin_lock(&info->lock); 446 __btrfs_dump_space_info(fs_info, info); 447 spin_unlock(&info->lock); 448 449 if (!dump_block_groups) 450 return; 451 452 down_read(&info->groups_sem); 453 again: 454 list_for_each_entry(cache, &info->block_groups[index], list) { 455 spin_lock(&cache->lock); 456 btrfs_info(fs_info, 457 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 458 cache->start, cache->length, cache->used, cache->pinned, 459 cache->reserved, cache->ro ? "[readonly]" : ""); 460 spin_unlock(&cache->lock); 461 btrfs_dump_free_space(cache, bytes); 462 } 463 if (++index < BTRFS_NR_RAID_TYPES) 464 goto again; 465 up_read(&info->groups_sem); 466 } 467 468 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 469 u64 to_reclaim) 470 { 471 u64 bytes; 472 u64 nr; 473 474 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 475 nr = div64_u64(to_reclaim, bytes); 476 if (!nr) 477 nr = 1; 478 return nr; 479 } 480 481 #define EXTENT_SIZE_PER_ITEM SZ_256K 482 483 /* 484 * shrink metadata reservation for delalloc 485 */ 486 static void shrink_delalloc(struct btrfs_fs_info *fs_info, 487 struct btrfs_space_info *space_info, 488 u64 to_reclaim, bool wait_ordered) 489 { 490 struct btrfs_trans_handle *trans; 491 u64 delalloc_bytes; 492 u64 dio_bytes; 493 u64 items; 494 long time_left; 495 int loops; 496 497 /* Calc the number of the pages we need flush for space reservation */ 498 if (to_reclaim == U64_MAX) { 499 items = U64_MAX; 500 } else { 501 /* 502 * to_reclaim is set to however much metadata we need to 503 * reclaim, but reclaiming that much data doesn't really track 504 * exactly, so increase the amount to reclaim by 2x in order to 505 * make sure we're flushing enough delalloc to hopefully reclaim 506 * some metadata reservations. 507 */ 508 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2; 509 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 510 } 511 512 trans = (struct btrfs_trans_handle *)current->journal_info; 513 514 delalloc_bytes = percpu_counter_sum_positive( 515 &fs_info->delalloc_bytes); 516 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 517 if (delalloc_bytes == 0 && dio_bytes == 0) { 518 if (trans) 519 return; 520 if (wait_ordered) 521 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 522 return; 523 } 524 525 /* 526 * If we are doing more ordered than delalloc we need to just wait on 527 * ordered extents, otherwise we'll waste time trying to flush delalloc 528 * that likely won't give us the space back we need. 529 */ 530 if (dio_bytes > delalloc_bytes) 531 wait_ordered = true; 532 533 loops = 0; 534 while ((delalloc_bytes || dio_bytes) && loops < 3) { 535 u64 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT; 536 537 btrfs_start_delalloc_roots(fs_info, nr_pages, true); 538 539 loops++; 540 if (wait_ordered && !trans) { 541 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 542 } else { 543 time_left = schedule_timeout_killable(1); 544 if (time_left) 545 break; 546 } 547 548 spin_lock(&space_info->lock); 549 if (list_empty(&space_info->tickets) && 550 list_empty(&space_info->priority_tickets)) { 551 spin_unlock(&space_info->lock); 552 break; 553 } 554 spin_unlock(&space_info->lock); 555 556 delalloc_bytes = percpu_counter_sum_positive( 557 &fs_info->delalloc_bytes); 558 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes); 559 } 560 } 561 562 /** 563 * maybe_commit_transaction - possibly commit the transaction if its ok to 564 * @root - the root we're allocating for 565 * @bytes - the number of bytes we want to reserve 566 * @force - force the commit 567 * 568 * This will check to make sure that committing the transaction will actually 569 * get us somewhere and then commit the transaction if it does. Otherwise it 570 * will return -ENOSPC. 571 */ 572 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 573 struct btrfs_space_info *space_info) 574 { 575 struct reserve_ticket *ticket = NULL; 576 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 577 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 578 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv; 579 struct btrfs_trans_handle *trans; 580 u64 reclaim_bytes = 0; 581 u64 bytes_needed = 0; 582 u64 cur_free_bytes = 0; 583 584 trans = (struct btrfs_trans_handle *)current->journal_info; 585 if (trans) 586 return -EAGAIN; 587 588 spin_lock(&space_info->lock); 589 cur_free_bytes = btrfs_space_info_used(space_info, true); 590 if (cur_free_bytes < space_info->total_bytes) 591 cur_free_bytes = space_info->total_bytes - cur_free_bytes; 592 else 593 cur_free_bytes = 0; 594 595 if (!list_empty(&space_info->priority_tickets)) 596 ticket = list_first_entry(&space_info->priority_tickets, 597 struct reserve_ticket, list); 598 else if (!list_empty(&space_info->tickets)) 599 ticket = list_first_entry(&space_info->tickets, 600 struct reserve_ticket, list); 601 if (ticket) 602 bytes_needed = ticket->bytes; 603 604 if (bytes_needed > cur_free_bytes) 605 bytes_needed -= cur_free_bytes; 606 else 607 bytes_needed = 0; 608 spin_unlock(&space_info->lock); 609 610 if (!bytes_needed) 611 return 0; 612 613 trans = btrfs_join_transaction(fs_info->extent_root); 614 if (IS_ERR(trans)) 615 return PTR_ERR(trans); 616 617 /* 618 * See if there is enough pinned space to make this reservation, or if 619 * we have block groups that are going to be freed, allowing us to 620 * possibly do a chunk allocation the next loop through. 621 */ 622 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) || 623 __percpu_counter_compare(&space_info->total_bytes_pinned, 624 bytes_needed, 625 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) 626 goto commit; 627 628 /* 629 * See if there is some space in the delayed insertion reserve for this 630 * reservation. If the space_info's don't match (like for DATA or 631 * SYSTEM) then just go enospc, reclaiming this space won't recover any 632 * space to satisfy those reservations. 633 */ 634 if (space_info != delayed_rsv->space_info) 635 goto enospc; 636 637 spin_lock(&delayed_rsv->lock); 638 reclaim_bytes += delayed_rsv->reserved; 639 spin_unlock(&delayed_rsv->lock); 640 641 spin_lock(&delayed_refs_rsv->lock); 642 reclaim_bytes += delayed_refs_rsv->reserved; 643 spin_unlock(&delayed_refs_rsv->lock); 644 645 spin_lock(&trans_rsv->lock); 646 reclaim_bytes += trans_rsv->reserved; 647 spin_unlock(&trans_rsv->lock); 648 649 if (reclaim_bytes >= bytes_needed) 650 goto commit; 651 bytes_needed -= reclaim_bytes; 652 653 if (__percpu_counter_compare(&space_info->total_bytes_pinned, 654 bytes_needed, 655 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) 656 goto enospc; 657 658 commit: 659 return btrfs_commit_transaction(trans); 660 enospc: 661 btrfs_end_transaction(trans); 662 return -ENOSPC; 663 } 664 665 /* 666 * Try to flush some data based on policy set by @state. This is only advisory 667 * and may fail for various reasons. The caller is supposed to examine the 668 * state of @space_info to detect the outcome. 669 */ 670 static void flush_space(struct btrfs_fs_info *fs_info, 671 struct btrfs_space_info *space_info, u64 num_bytes, 672 int state) 673 { 674 struct btrfs_root *root = fs_info->extent_root; 675 struct btrfs_trans_handle *trans; 676 int nr; 677 int ret = 0; 678 679 switch (state) { 680 case FLUSH_DELAYED_ITEMS_NR: 681 case FLUSH_DELAYED_ITEMS: 682 if (state == FLUSH_DELAYED_ITEMS_NR) 683 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 684 else 685 nr = -1; 686 687 trans = btrfs_join_transaction(root); 688 if (IS_ERR(trans)) { 689 ret = PTR_ERR(trans); 690 break; 691 } 692 ret = btrfs_run_delayed_items_nr(trans, nr); 693 btrfs_end_transaction(trans); 694 break; 695 case FLUSH_DELALLOC: 696 case FLUSH_DELALLOC_WAIT: 697 shrink_delalloc(fs_info, space_info, num_bytes, 698 state == FLUSH_DELALLOC_WAIT); 699 break; 700 case FLUSH_DELAYED_REFS_NR: 701 case FLUSH_DELAYED_REFS: 702 trans = btrfs_join_transaction(root); 703 if (IS_ERR(trans)) { 704 ret = PTR_ERR(trans); 705 break; 706 } 707 if (state == FLUSH_DELAYED_REFS_NR) 708 nr = calc_reclaim_items_nr(fs_info, num_bytes); 709 else 710 nr = 0; 711 btrfs_run_delayed_refs(trans, nr); 712 btrfs_end_transaction(trans); 713 break; 714 case ALLOC_CHUNK: 715 case ALLOC_CHUNK_FORCE: 716 trans = btrfs_join_transaction(root); 717 if (IS_ERR(trans)) { 718 ret = PTR_ERR(trans); 719 break; 720 } 721 ret = btrfs_chunk_alloc(trans, 722 btrfs_get_alloc_profile(fs_info, space_info->flags), 723 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE : 724 CHUNK_ALLOC_FORCE); 725 btrfs_end_transaction(trans); 726 if (ret > 0 || ret == -ENOSPC) 727 ret = 0; 728 break; 729 case RUN_DELAYED_IPUTS: 730 /* 731 * If we have pending delayed iputs then we could free up a 732 * bunch of pinned space, so make sure we run the iputs before 733 * we do our pinned bytes check below. 734 */ 735 btrfs_run_delayed_iputs(fs_info); 736 btrfs_wait_on_delayed_iputs(fs_info); 737 break; 738 case COMMIT_TRANS: 739 ret = may_commit_transaction(fs_info, space_info); 740 break; 741 default: 742 ret = -ENOSPC; 743 break; 744 } 745 746 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 747 ret); 748 return; 749 } 750 751 static inline u64 752 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 753 struct btrfs_space_info *space_info) 754 { 755 u64 used; 756 u64 avail; 757 u64 expected; 758 u64 to_reclaim = space_info->reclaim_size; 759 760 lockdep_assert_held(&space_info->lock); 761 762 avail = calc_available_free_space(fs_info, space_info, 763 BTRFS_RESERVE_FLUSH_ALL); 764 used = btrfs_space_info_used(space_info, true); 765 766 /* 767 * We may be flushing because suddenly we have less space than we had 768 * before, and now we're well over-committed based on our current free 769 * space. If that's the case add in our overage so we make sure to put 770 * appropriate pressure on the flushing state machine. 771 */ 772 if (space_info->total_bytes + avail < used) 773 to_reclaim += used - (space_info->total_bytes + avail); 774 775 if (to_reclaim) 776 return to_reclaim; 777 778 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 779 if (btrfs_can_overcommit(fs_info, space_info, to_reclaim, 780 BTRFS_RESERVE_FLUSH_ALL)) 781 return 0; 782 783 used = btrfs_space_info_used(space_info, true); 784 785 if (btrfs_can_overcommit(fs_info, space_info, SZ_1M, 786 BTRFS_RESERVE_FLUSH_ALL)) 787 expected = div_factor_fine(space_info->total_bytes, 95); 788 else 789 expected = div_factor_fine(space_info->total_bytes, 90); 790 791 if (used > expected) 792 to_reclaim = used - expected; 793 else 794 to_reclaim = 0; 795 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 796 space_info->bytes_reserved); 797 return to_reclaim; 798 } 799 800 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 801 struct btrfs_space_info *space_info, 802 u64 used) 803 { 804 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 805 806 /* If we're just plain full then async reclaim just slows us down. */ 807 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 808 return 0; 809 810 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info)) 811 return 0; 812 813 return (used >= thresh && !btrfs_fs_closing(fs_info) && 814 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 815 } 816 817 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info, 818 struct btrfs_space_info *space_info, 819 struct reserve_ticket *ticket) 820 { 821 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 822 u64 min_bytes; 823 824 if (global_rsv->space_info != space_info) 825 return false; 826 827 spin_lock(&global_rsv->lock); 828 min_bytes = div_factor(global_rsv->size, 1); 829 if (global_rsv->reserved < min_bytes + ticket->bytes) { 830 spin_unlock(&global_rsv->lock); 831 return false; 832 } 833 global_rsv->reserved -= ticket->bytes; 834 remove_ticket(space_info, ticket); 835 ticket->bytes = 0; 836 wake_up(&ticket->wait); 837 space_info->tickets_id++; 838 if (global_rsv->reserved < global_rsv->size) 839 global_rsv->full = 0; 840 spin_unlock(&global_rsv->lock); 841 842 return true; 843 } 844 845 /* 846 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets 847 * @fs_info - fs_info for this fs 848 * @space_info - the space info we were flushing 849 * 850 * We call this when we've exhausted our flushing ability and haven't made 851 * progress in satisfying tickets. The reservation code handles tickets in 852 * order, so if there is a large ticket first and then smaller ones we could 853 * very well satisfy the smaller tickets. This will attempt to wake up any 854 * tickets in the list to catch this case. 855 * 856 * This function returns true if it was able to make progress by clearing out 857 * other tickets, or if it stumbles across a ticket that was smaller than the 858 * first ticket. 859 */ 860 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info, 861 struct btrfs_space_info *space_info) 862 { 863 struct reserve_ticket *ticket; 864 u64 tickets_id = space_info->tickets_id; 865 u64 first_ticket_bytes = 0; 866 867 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 868 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info"); 869 __btrfs_dump_space_info(fs_info, space_info); 870 } 871 872 while (!list_empty(&space_info->tickets) && 873 tickets_id == space_info->tickets_id) { 874 ticket = list_first_entry(&space_info->tickets, 875 struct reserve_ticket, list); 876 877 if (ticket->steal && 878 steal_from_global_rsv(fs_info, space_info, ticket)) 879 return true; 880 881 /* 882 * may_commit_transaction will avoid committing the transaction 883 * if it doesn't feel like the space reclaimed by the commit 884 * would result in the ticket succeeding. However if we have a 885 * smaller ticket in the queue it may be small enough to be 886 * satisified by committing the transaction, so if any 887 * subsequent ticket is smaller than the first ticket go ahead 888 * and send us back for another loop through the enospc flushing 889 * code. 890 */ 891 if (first_ticket_bytes == 0) 892 first_ticket_bytes = ticket->bytes; 893 else if (first_ticket_bytes > ticket->bytes) 894 return true; 895 896 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 897 btrfs_info(fs_info, "failing ticket with %llu bytes", 898 ticket->bytes); 899 900 remove_ticket(space_info, ticket); 901 ticket->error = -ENOSPC; 902 wake_up(&ticket->wait); 903 904 /* 905 * We're just throwing tickets away, so more flushing may not 906 * trip over btrfs_try_granting_tickets, so we need to call it 907 * here to see if we can make progress with the next ticket in 908 * the list. 909 */ 910 btrfs_try_granting_tickets(fs_info, space_info); 911 } 912 return (tickets_id != space_info->tickets_id); 913 } 914 915 /* 916 * This is for normal flushers, we can wait all goddamned day if we want to. We 917 * will loop and continuously try to flush as long as we are making progress. 918 * We count progress as clearing off tickets each time we have to loop. 919 */ 920 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 921 { 922 struct btrfs_fs_info *fs_info; 923 struct btrfs_space_info *space_info; 924 u64 to_reclaim; 925 int flush_state; 926 int commit_cycles = 0; 927 u64 last_tickets_id; 928 929 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 930 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 931 932 spin_lock(&space_info->lock); 933 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 934 if (!to_reclaim) { 935 space_info->flush = 0; 936 spin_unlock(&space_info->lock); 937 return; 938 } 939 last_tickets_id = space_info->tickets_id; 940 spin_unlock(&space_info->lock); 941 942 flush_state = FLUSH_DELAYED_ITEMS_NR; 943 do { 944 flush_space(fs_info, space_info, to_reclaim, flush_state); 945 spin_lock(&space_info->lock); 946 if (list_empty(&space_info->tickets)) { 947 space_info->flush = 0; 948 spin_unlock(&space_info->lock); 949 return; 950 } 951 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 952 space_info); 953 if (last_tickets_id == space_info->tickets_id) { 954 flush_state++; 955 } else { 956 last_tickets_id = space_info->tickets_id; 957 flush_state = FLUSH_DELAYED_ITEMS_NR; 958 if (commit_cycles) 959 commit_cycles--; 960 } 961 962 /* 963 * We don't want to force a chunk allocation until we've tried 964 * pretty hard to reclaim space. Think of the case where we 965 * freed up a bunch of space and so have a lot of pinned space 966 * to reclaim. We would rather use that than possibly create a 967 * underutilized metadata chunk. So if this is our first run 968 * through the flushing state machine skip ALLOC_CHUNK_FORCE and 969 * commit the transaction. If nothing has changed the next go 970 * around then we can force a chunk allocation. 971 */ 972 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles) 973 flush_state++; 974 975 if (flush_state > COMMIT_TRANS) { 976 commit_cycles++; 977 if (commit_cycles > 2) { 978 if (maybe_fail_all_tickets(fs_info, space_info)) { 979 flush_state = FLUSH_DELAYED_ITEMS_NR; 980 commit_cycles--; 981 } else { 982 space_info->flush = 0; 983 } 984 } else { 985 flush_state = FLUSH_DELAYED_ITEMS_NR; 986 } 987 } 988 spin_unlock(&space_info->lock); 989 } while (flush_state <= COMMIT_TRANS); 990 } 991 992 /* 993 * FLUSH_DELALLOC_WAIT: 994 * Space is freed from flushing delalloc in one of two ways. 995 * 996 * 1) compression is on and we allocate less space than we reserved 997 * 2) we are overwriting existing space 998 * 999 * For #1 that extra space is reclaimed as soon as the delalloc pages are 1000 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent 1001 * length to ->bytes_reserved, and subtracts the reserved space from 1002 * ->bytes_may_use. 1003 * 1004 * For #2 this is trickier. Once the ordered extent runs we will drop the 1005 * extent in the range we are overwriting, which creates a delayed ref for 1006 * that freed extent. This however is not reclaimed until the transaction 1007 * commits, thus the next stages. 1008 * 1009 * RUN_DELAYED_IPUTS 1010 * If we are freeing inodes, we want to make sure all delayed iputs have 1011 * completed, because they could have been on an inode with i_nlink == 0, and 1012 * thus have been truncated and freed up space. But again this space is not 1013 * immediately re-usable, it comes in the form of a delayed ref, which must be 1014 * run and then the transaction must be committed. 1015 * 1016 * FLUSH_DELAYED_REFS 1017 * The above two cases generate delayed refs that will affect 1018 * ->total_bytes_pinned. However this counter can be inconsistent with 1019 * reality if there are outstanding delayed refs. This is because we adjust 1020 * the counter based solely on the current set of delayed refs and disregard 1021 * any on-disk state which might include more refs. So for example, if we 1022 * have an extent with 2 references, but we only drop 1, we'll see that there 1023 * is a negative delayed ref count for the extent and assume that the space 1024 * will be freed, and thus increase ->total_bytes_pinned. 1025 * 1026 * Running the delayed refs gives us the actual real view of what will be 1027 * freed at the transaction commit time. This stage will not actually free 1028 * space for us, it just makes sure that may_commit_transaction() has all of 1029 * the information it needs to make the right decision. 1030 * 1031 * COMMIT_TRANS 1032 * This is where we reclaim all of the pinned space generated by the previous 1033 * two stages. We will not commit the transaction if we don't think we're 1034 * likely to satisfy our request, which means if our current free space + 1035 * total_bytes_pinned < reservation we will not commit. This is why the 1036 * previous states are actually important, to make sure we know for sure 1037 * whether committing the transaction will allow us to make progress. 1038 * 1039 * ALLOC_CHUNK_FORCE 1040 * For data we start with alloc chunk force, however we could have been full 1041 * before, and then the transaction commit could have freed new block groups, 1042 * so if we now have space to allocate do the force chunk allocation. 1043 */ 1044 static const enum btrfs_flush_state data_flush_states[] = { 1045 FLUSH_DELALLOC_WAIT, 1046 RUN_DELAYED_IPUTS, 1047 FLUSH_DELAYED_REFS, 1048 COMMIT_TRANS, 1049 ALLOC_CHUNK_FORCE, 1050 }; 1051 1052 static void btrfs_async_reclaim_data_space(struct work_struct *work) 1053 { 1054 struct btrfs_fs_info *fs_info; 1055 struct btrfs_space_info *space_info; 1056 u64 last_tickets_id; 1057 int flush_state = 0; 1058 1059 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work); 1060 space_info = fs_info->data_sinfo; 1061 1062 spin_lock(&space_info->lock); 1063 if (list_empty(&space_info->tickets)) { 1064 space_info->flush = 0; 1065 spin_unlock(&space_info->lock); 1066 return; 1067 } 1068 last_tickets_id = space_info->tickets_id; 1069 spin_unlock(&space_info->lock); 1070 1071 while (!space_info->full) { 1072 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE); 1073 spin_lock(&space_info->lock); 1074 if (list_empty(&space_info->tickets)) { 1075 space_info->flush = 0; 1076 spin_unlock(&space_info->lock); 1077 return; 1078 } 1079 last_tickets_id = space_info->tickets_id; 1080 spin_unlock(&space_info->lock); 1081 } 1082 1083 while (flush_state < ARRAY_SIZE(data_flush_states)) { 1084 flush_space(fs_info, space_info, U64_MAX, 1085 data_flush_states[flush_state]); 1086 spin_lock(&space_info->lock); 1087 if (list_empty(&space_info->tickets)) { 1088 space_info->flush = 0; 1089 spin_unlock(&space_info->lock); 1090 return; 1091 } 1092 1093 if (last_tickets_id == space_info->tickets_id) { 1094 flush_state++; 1095 } else { 1096 last_tickets_id = space_info->tickets_id; 1097 flush_state = 0; 1098 } 1099 1100 if (flush_state >= ARRAY_SIZE(data_flush_states)) { 1101 if (space_info->full) { 1102 if (maybe_fail_all_tickets(fs_info, space_info)) 1103 flush_state = 0; 1104 else 1105 space_info->flush = 0; 1106 } else { 1107 flush_state = 0; 1108 } 1109 } 1110 spin_unlock(&space_info->lock); 1111 } 1112 } 1113 1114 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info) 1115 { 1116 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space); 1117 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space); 1118 } 1119 1120 static const enum btrfs_flush_state priority_flush_states[] = { 1121 FLUSH_DELAYED_ITEMS_NR, 1122 FLUSH_DELAYED_ITEMS, 1123 ALLOC_CHUNK, 1124 }; 1125 1126 static const enum btrfs_flush_state evict_flush_states[] = { 1127 FLUSH_DELAYED_ITEMS_NR, 1128 FLUSH_DELAYED_ITEMS, 1129 FLUSH_DELAYED_REFS_NR, 1130 FLUSH_DELAYED_REFS, 1131 FLUSH_DELALLOC, 1132 FLUSH_DELALLOC_WAIT, 1133 ALLOC_CHUNK, 1134 COMMIT_TRANS, 1135 }; 1136 1137 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 1138 struct btrfs_space_info *space_info, 1139 struct reserve_ticket *ticket, 1140 const enum btrfs_flush_state *states, 1141 int states_nr) 1142 { 1143 u64 to_reclaim; 1144 int flush_state; 1145 1146 spin_lock(&space_info->lock); 1147 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info); 1148 if (!to_reclaim) { 1149 spin_unlock(&space_info->lock); 1150 return; 1151 } 1152 spin_unlock(&space_info->lock); 1153 1154 flush_state = 0; 1155 do { 1156 flush_space(fs_info, space_info, to_reclaim, states[flush_state]); 1157 flush_state++; 1158 spin_lock(&space_info->lock); 1159 if (ticket->bytes == 0) { 1160 spin_unlock(&space_info->lock); 1161 return; 1162 } 1163 spin_unlock(&space_info->lock); 1164 } while (flush_state < states_nr); 1165 } 1166 1167 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info, 1168 struct btrfs_space_info *space_info, 1169 struct reserve_ticket *ticket) 1170 { 1171 while (!space_info->full) { 1172 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE); 1173 spin_lock(&space_info->lock); 1174 if (ticket->bytes == 0) { 1175 spin_unlock(&space_info->lock); 1176 return; 1177 } 1178 spin_unlock(&space_info->lock); 1179 } 1180 } 1181 1182 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info, 1183 struct btrfs_space_info *space_info, 1184 struct reserve_ticket *ticket) 1185 1186 { 1187 DEFINE_WAIT(wait); 1188 int ret = 0; 1189 1190 spin_lock(&space_info->lock); 1191 while (ticket->bytes > 0 && ticket->error == 0) { 1192 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 1193 if (ret) { 1194 /* 1195 * Delete us from the list. After we unlock the space 1196 * info, we don't want the async reclaim job to reserve 1197 * space for this ticket. If that would happen, then the 1198 * ticket's task would not known that space was reserved 1199 * despite getting an error, resulting in a space leak 1200 * (bytes_may_use counter of our space_info). 1201 */ 1202 remove_ticket(space_info, ticket); 1203 ticket->error = -EINTR; 1204 break; 1205 } 1206 spin_unlock(&space_info->lock); 1207 1208 schedule(); 1209 1210 finish_wait(&ticket->wait, &wait); 1211 spin_lock(&space_info->lock); 1212 } 1213 spin_unlock(&space_info->lock); 1214 } 1215 1216 /** 1217 * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket 1218 * @fs_info - the fs 1219 * @space_info - the space_info for the reservation 1220 * @ticket - the ticket for the reservation 1221 * @flush - how much we can flush 1222 * 1223 * This does the work of figuring out how to flush for the ticket, waiting for 1224 * the reservation, and returning the appropriate error if there is one. 1225 */ 1226 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info, 1227 struct btrfs_space_info *space_info, 1228 struct reserve_ticket *ticket, 1229 enum btrfs_reserve_flush_enum flush) 1230 { 1231 int ret; 1232 1233 switch (flush) { 1234 case BTRFS_RESERVE_FLUSH_DATA: 1235 case BTRFS_RESERVE_FLUSH_ALL: 1236 case BTRFS_RESERVE_FLUSH_ALL_STEAL: 1237 wait_reserve_ticket(fs_info, space_info, ticket); 1238 break; 1239 case BTRFS_RESERVE_FLUSH_LIMIT: 1240 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1241 priority_flush_states, 1242 ARRAY_SIZE(priority_flush_states)); 1243 break; 1244 case BTRFS_RESERVE_FLUSH_EVICT: 1245 priority_reclaim_metadata_space(fs_info, space_info, ticket, 1246 evict_flush_states, 1247 ARRAY_SIZE(evict_flush_states)); 1248 break; 1249 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE: 1250 priority_reclaim_data_space(fs_info, space_info, ticket); 1251 break; 1252 default: 1253 ASSERT(0); 1254 break; 1255 } 1256 1257 spin_lock(&space_info->lock); 1258 ret = ticket->error; 1259 if (ticket->bytes || ticket->error) { 1260 /* 1261 * We were a priority ticket, so we need to delete ourselves 1262 * from the list. Because we could have other priority tickets 1263 * behind us that require less space, run 1264 * btrfs_try_granting_tickets() to see if their reservations can 1265 * now be made. 1266 */ 1267 if (!list_empty(&ticket->list)) { 1268 remove_ticket(space_info, ticket); 1269 btrfs_try_granting_tickets(fs_info, space_info); 1270 } 1271 1272 if (!ret) 1273 ret = -ENOSPC; 1274 } 1275 spin_unlock(&space_info->lock); 1276 ASSERT(list_empty(&ticket->list)); 1277 /* 1278 * Check that we can't have an error set if the reservation succeeded, 1279 * as that would confuse tasks and lead them to error out without 1280 * releasing reserved space (if an error happens the expectation is that 1281 * space wasn't reserved at all). 1282 */ 1283 ASSERT(!(ticket->bytes == 0 && ticket->error)); 1284 return ret; 1285 } 1286 1287 /* 1288 * This returns true if this flush state will go through the ordinary flushing 1289 * code. 1290 */ 1291 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush) 1292 { 1293 return (flush == BTRFS_RESERVE_FLUSH_ALL) || 1294 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1295 } 1296 1297 /** 1298 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1299 * @root - the root we're allocating for 1300 * @space_info - the space info we want to allocate from 1301 * @orig_bytes - the number of bytes we want 1302 * @flush - whether or not we can flush to make our reservation 1303 * 1304 * This will reserve orig_bytes number of bytes from the space info associated 1305 * with the block_rsv. If there is not enough space it will make an attempt to 1306 * flush out space to make room. It will do this by flushing delalloc if 1307 * possible or committing the transaction. If flush is 0 then no attempts to 1308 * regain reservations will be made and this will fail if there is not enough 1309 * space already. 1310 */ 1311 static int __reserve_bytes(struct btrfs_fs_info *fs_info, 1312 struct btrfs_space_info *space_info, u64 orig_bytes, 1313 enum btrfs_reserve_flush_enum flush) 1314 { 1315 struct work_struct *async_work; 1316 struct reserve_ticket ticket; 1317 u64 used; 1318 int ret = 0; 1319 bool pending_tickets; 1320 1321 ASSERT(orig_bytes); 1322 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 1323 1324 if (flush == BTRFS_RESERVE_FLUSH_DATA) 1325 async_work = &fs_info->async_data_reclaim_work; 1326 else 1327 async_work = &fs_info->async_reclaim_work; 1328 1329 spin_lock(&space_info->lock); 1330 ret = -ENOSPC; 1331 used = btrfs_space_info_used(space_info, true); 1332 1333 /* 1334 * We don't want NO_FLUSH allocations to jump everybody, they can 1335 * generally handle ENOSPC in a different way, so treat them the same as 1336 * normal flushers when it comes to skipping pending tickets. 1337 */ 1338 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH)) 1339 pending_tickets = !list_empty(&space_info->tickets) || 1340 !list_empty(&space_info->priority_tickets); 1341 else 1342 pending_tickets = !list_empty(&space_info->priority_tickets); 1343 1344 /* 1345 * Carry on if we have enough space (short-circuit) OR call 1346 * can_overcommit() to ensure we can overcommit to continue. 1347 */ 1348 if (!pending_tickets && 1349 ((used + orig_bytes <= space_info->total_bytes) || 1350 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) { 1351 btrfs_space_info_update_bytes_may_use(fs_info, space_info, 1352 orig_bytes); 1353 ret = 0; 1354 } 1355 1356 /* 1357 * If we couldn't make a reservation then setup our reservation ticket 1358 * and kick the async worker if it's not already running. 1359 * 1360 * If we are a priority flusher then we just need to add our ticket to 1361 * the list and we will do our own flushing further down. 1362 */ 1363 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 1364 ticket.bytes = orig_bytes; 1365 ticket.error = 0; 1366 space_info->reclaim_size += ticket.bytes; 1367 init_waitqueue_head(&ticket.wait); 1368 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL); 1369 if (flush == BTRFS_RESERVE_FLUSH_ALL || 1370 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL || 1371 flush == BTRFS_RESERVE_FLUSH_DATA) { 1372 list_add_tail(&ticket.list, &space_info->tickets); 1373 if (!space_info->flush) { 1374 space_info->flush = 1; 1375 trace_btrfs_trigger_flush(fs_info, 1376 space_info->flags, 1377 orig_bytes, flush, 1378 "enospc"); 1379 queue_work(system_unbound_wq, async_work); 1380 } 1381 } else { 1382 list_add_tail(&ticket.list, 1383 &space_info->priority_tickets); 1384 } 1385 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 1386 used += orig_bytes; 1387 /* 1388 * We will do the space reservation dance during log replay, 1389 * which means we won't have fs_info->fs_root set, so don't do 1390 * the async reclaim as we will panic. 1391 */ 1392 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 1393 need_do_async_reclaim(fs_info, space_info, used) && 1394 !work_busy(&fs_info->async_reclaim_work)) { 1395 trace_btrfs_trigger_flush(fs_info, space_info->flags, 1396 orig_bytes, flush, "preempt"); 1397 queue_work(system_unbound_wq, 1398 &fs_info->async_reclaim_work); 1399 } 1400 } 1401 spin_unlock(&space_info->lock); 1402 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 1403 return ret; 1404 1405 return handle_reserve_ticket(fs_info, space_info, &ticket, flush); 1406 } 1407 1408 /** 1409 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 1410 * @root - the root we're allocating for 1411 * @block_rsv - the block_rsv we're allocating for 1412 * @orig_bytes - the number of bytes we want 1413 * @flush - whether or not we can flush to make our reservation 1414 * 1415 * This will reserve orig_bytes number of bytes from the space info associated 1416 * with the block_rsv. If there is not enough space it will make an attempt to 1417 * flush out space to make room. It will do this by flushing delalloc if 1418 * possible or committing the transaction. If flush is 0 then no attempts to 1419 * regain reservations will be made and this will fail if there is not enough 1420 * space already. 1421 */ 1422 int btrfs_reserve_metadata_bytes(struct btrfs_root *root, 1423 struct btrfs_block_rsv *block_rsv, 1424 u64 orig_bytes, 1425 enum btrfs_reserve_flush_enum flush) 1426 { 1427 struct btrfs_fs_info *fs_info = root->fs_info; 1428 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 1429 int ret; 1430 1431 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush); 1432 if (ret == -ENOSPC && 1433 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 1434 if (block_rsv != global_rsv && 1435 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes)) 1436 ret = 0; 1437 } 1438 if (ret == -ENOSPC) { 1439 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1440 block_rsv->space_info->flags, 1441 orig_bytes, 1); 1442 1443 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1444 btrfs_dump_space_info(fs_info, block_rsv->space_info, 1445 orig_bytes, 0); 1446 } 1447 return ret; 1448 } 1449 1450 /** 1451 * btrfs_reserve_data_bytes - try to reserve data bytes for an allocation 1452 * @fs_info - the filesystem 1453 * @bytes - the number of bytes we need 1454 * @flush - how we are allowed to flush 1455 * 1456 * This will reserve bytes from the data space info. If there is not enough 1457 * space then we will attempt to flush space as specified by flush. 1458 */ 1459 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes, 1460 enum btrfs_reserve_flush_enum flush) 1461 { 1462 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 1463 int ret; 1464 1465 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA || 1466 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE); 1467 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA); 1468 1469 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush); 1470 if (ret == -ENOSPC) { 1471 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 1472 data_sinfo->flags, bytes, 1); 1473 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 1474 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0); 1475 } 1476 return ret; 1477 } 1478