xref: /linux/fs/btrfs/send.c (revision f1bc423f56306b24fb15bc4a1612ef6c6ee24603)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 #include "print-tree.h"
28 
29 /*
30  * Maximum number of references an extent can have in order for us to attempt to
31  * issue clone operations instead of write operations. This currently exists to
32  * avoid hitting limitations of the backreference walking code (taking a lot of
33  * time and using too much memory for extents with large number of references).
34  */
35 #define SEND_MAX_EXTENT_REFS	64
36 
37 /*
38  * A fs_path is a helper to dynamically build path names with unknown size.
39  * It reallocates the internal buffer on demand.
40  * It allows fast adding of path elements on the right side (normal path) and
41  * fast adding to the left side (reversed path). A reversed path can also be
42  * unreversed if needed.
43  */
44 struct fs_path {
45 	union {
46 		struct {
47 			char *start;
48 			char *end;
49 
50 			char *buf;
51 			unsigned short buf_len:15;
52 			unsigned short reversed:1;
53 			char inline_buf[];
54 		};
55 		/*
56 		 * Average path length does not exceed 200 bytes, we'll have
57 		 * better packing in the slab and higher chance to satisfy
58 		 * a allocation later during send.
59 		 */
60 		char pad[256];
61 	};
62 };
63 #define FS_PATH_INLINE_SIZE \
64 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
65 
66 
67 /* reused for each extent */
68 struct clone_root {
69 	struct btrfs_root *root;
70 	u64 ino;
71 	u64 offset;
72 
73 	u64 found_refs;
74 };
75 
76 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
77 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
78 
79 struct send_ctx {
80 	struct file *send_filp;
81 	loff_t send_off;
82 	char *send_buf;
83 	u32 send_size;
84 	u32 send_max_size;
85 	u64 total_send_size;
86 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
87 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
88 	/* Protocol version compatibility requested */
89 	u32 proto;
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * Keep track of the generation of the last transaction that was used
103 	 * for relocating a block group. This is periodically checked in order
104 	 * to detect if a relocation happened since the last check, so that we
105 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
106 	 * stale disk_bytenr values of file extent items.
107 	 */
108 	u64 last_reloc_trans;
109 
110 	/*
111 	 * infos of the currently processed inode. In case of deleted inodes,
112 	 * these are the values from the deleted inode.
113 	 */
114 	u64 cur_ino;
115 	u64 cur_inode_gen;
116 	int cur_inode_new;
117 	int cur_inode_new_gen;
118 	int cur_inode_deleted;
119 	u64 cur_inode_size;
120 	u64 cur_inode_mode;
121 	u64 cur_inode_rdev;
122 	u64 cur_inode_last_extent;
123 	u64 cur_inode_next_write_offset;
124 	bool ignore_cur_inode;
125 
126 	u64 send_progress;
127 
128 	struct list_head new_refs;
129 	struct list_head deleted_refs;
130 
131 	struct radix_tree_root name_cache;
132 	struct list_head name_cache_list;
133 	int name_cache_size;
134 
135 	struct file_ra_state ra;
136 
137 	/*
138 	 * We process inodes by their increasing order, so if before an
139 	 * incremental send we reverse the parent/child relationship of
140 	 * directories such that a directory with a lower inode number was
141 	 * the parent of a directory with a higher inode number, and the one
142 	 * becoming the new parent got renamed too, we can't rename/move the
143 	 * directory with lower inode number when we finish processing it - we
144 	 * must process the directory with higher inode number first, then
145 	 * rename/move it and then rename/move the directory with lower inode
146 	 * number. Example follows.
147 	 *
148 	 * Tree state when the first send was performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |
154 	 *         |
155 	 *         |-- c           (ino 259)
156 	 *         |   |-- d       (ino 260)
157 	 *         |
158 	 *         |-- c2          (ino 261)
159 	 *
160 	 * Tree state when the second (incremental) send is performed:
161 	 *
162 	 * .
163 	 * |-- a                   (ino 257)
164 	 *     |-- b               (ino 258)
165 	 *         |-- c2          (ino 261)
166 	 *             |-- d2      (ino 260)
167 	 *                 |-- cc  (ino 259)
168 	 *
169 	 * The sequence of steps that lead to the second state was:
170 	 *
171 	 * mv /a/b/c/d /a/b/c2/d2
172 	 * mv /a/b/c /a/b/c2/d2/cc
173 	 *
174 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
175 	 * before we move "d", which has higher inode number.
176 	 *
177 	 * So we just memorize which move/rename operations must be performed
178 	 * later when their respective parent is processed and moved/renamed.
179 	 */
180 
181 	/* Indexed by parent directory inode number. */
182 	struct rb_root pending_dir_moves;
183 
184 	/*
185 	 * Reverse index, indexed by the inode number of a directory that
186 	 * is waiting for the move/rename of its immediate parent before its
187 	 * own move/rename can be performed.
188 	 */
189 	struct rb_root waiting_dir_moves;
190 
191 	/*
192 	 * A directory that is going to be rm'ed might have a child directory
193 	 * which is in the pending directory moves index above. In this case,
194 	 * the directory can only be removed after the move/rename of its child
195 	 * is performed. Example:
196 	 *
197 	 * Parent snapshot:
198 	 *
199 	 * .                        (ino 256)
200 	 * |-- a/                   (ino 257)
201 	 *     |-- b/               (ino 258)
202 	 *         |-- c/           (ino 259)
203 	 *         |   |-- x/       (ino 260)
204 	 *         |
205 	 *         |-- y/           (ino 261)
206 	 *
207 	 * Send snapshot:
208 	 *
209 	 * .                        (ino 256)
210 	 * |-- a/                   (ino 257)
211 	 *     |-- b/               (ino 258)
212 	 *         |-- YY/          (ino 261)
213 	 *              |-- x/      (ino 260)
214 	 *
215 	 * Sequence of steps that lead to the send snapshot:
216 	 * rm -f /a/b/c/foo.txt
217 	 * mv /a/b/y /a/b/YY
218 	 * mv /a/b/c/x /a/b/YY
219 	 * rmdir /a/b/c
220 	 *
221 	 * When the child is processed, its move/rename is delayed until its
222 	 * parent is processed (as explained above), but all other operations
223 	 * like update utimes, chown, chgrp, etc, are performed and the paths
224 	 * that it uses for those operations must use the orphanized name of
225 	 * its parent (the directory we're going to rm later), so we need to
226 	 * memorize that name.
227 	 *
228 	 * Indexed by the inode number of the directory to be deleted.
229 	 */
230 	struct rb_root orphan_dirs;
231 };
232 
233 struct pending_dir_move {
234 	struct rb_node node;
235 	struct list_head list;
236 	u64 parent_ino;
237 	u64 ino;
238 	u64 gen;
239 	struct list_head update_refs;
240 };
241 
242 struct waiting_dir_move {
243 	struct rb_node node;
244 	u64 ino;
245 	/*
246 	 * There might be some directory that could not be removed because it
247 	 * was waiting for this directory inode to be moved first. Therefore
248 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
249 	 */
250 	u64 rmdir_ino;
251 	u64 rmdir_gen;
252 	bool orphanized;
253 };
254 
255 struct orphan_dir_info {
256 	struct rb_node node;
257 	u64 ino;
258 	u64 gen;
259 	u64 last_dir_index_offset;
260 };
261 
262 struct name_cache_entry {
263 	struct list_head list;
264 	/*
265 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
266 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
267 	 * more then one inum would fall into the same entry, we use radix_list
268 	 * to store the additional entries. radix_list is also used to store
269 	 * entries where two entries have the same inum but different
270 	 * generations.
271 	 */
272 	struct list_head radix_list;
273 	u64 ino;
274 	u64 gen;
275 	u64 parent_ino;
276 	u64 parent_gen;
277 	int ret;
278 	int need_later_update;
279 	int name_len;
280 	char name[];
281 };
282 
283 #define ADVANCE							1
284 #define ADVANCE_ONLY_NEXT					-1
285 
286 enum btrfs_compare_tree_result {
287 	BTRFS_COMPARE_TREE_NEW,
288 	BTRFS_COMPARE_TREE_DELETED,
289 	BTRFS_COMPARE_TREE_CHANGED,
290 	BTRFS_COMPARE_TREE_SAME,
291 };
292 
293 __cold
294 static void inconsistent_snapshot_error(struct send_ctx *sctx,
295 					enum btrfs_compare_tree_result result,
296 					const char *what)
297 {
298 	const char *result_string;
299 
300 	switch (result) {
301 	case BTRFS_COMPARE_TREE_NEW:
302 		result_string = "new";
303 		break;
304 	case BTRFS_COMPARE_TREE_DELETED:
305 		result_string = "deleted";
306 		break;
307 	case BTRFS_COMPARE_TREE_CHANGED:
308 		result_string = "updated";
309 		break;
310 	case BTRFS_COMPARE_TREE_SAME:
311 		ASSERT(0);
312 		result_string = "unchanged";
313 		break;
314 	default:
315 		ASSERT(0);
316 		result_string = "unexpected";
317 	}
318 
319 	btrfs_err(sctx->send_root->fs_info,
320 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
321 		  result_string, what, sctx->cmp_key->objectid,
322 		  sctx->send_root->root_key.objectid,
323 		  (sctx->parent_root ?
324 		   sctx->parent_root->root_key.objectid : 0));
325 }
326 
327 __maybe_unused
328 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
329 {
330 	switch (sctx->proto) {
331 	case 1:	 return cmd < __BTRFS_SEND_C_MAX_V1;
332 	case 2:	 return cmd < __BTRFS_SEND_C_MAX_V2;
333 	default: return false;
334 	}
335 }
336 
337 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
338 
339 static struct waiting_dir_move *
340 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
341 
342 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
343 
344 static int need_send_hole(struct send_ctx *sctx)
345 {
346 	return (sctx->parent_root && !sctx->cur_inode_new &&
347 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
348 		S_ISREG(sctx->cur_inode_mode));
349 }
350 
351 static void fs_path_reset(struct fs_path *p)
352 {
353 	if (p->reversed) {
354 		p->start = p->buf + p->buf_len - 1;
355 		p->end = p->start;
356 		*p->start = 0;
357 	} else {
358 		p->start = p->buf;
359 		p->end = p->start;
360 		*p->start = 0;
361 	}
362 }
363 
364 static struct fs_path *fs_path_alloc(void)
365 {
366 	struct fs_path *p;
367 
368 	p = kmalloc(sizeof(*p), GFP_KERNEL);
369 	if (!p)
370 		return NULL;
371 	p->reversed = 0;
372 	p->buf = p->inline_buf;
373 	p->buf_len = FS_PATH_INLINE_SIZE;
374 	fs_path_reset(p);
375 	return p;
376 }
377 
378 static struct fs_path *fs_path_alloc_reversed(void)
379 {
380 	struct fs_path *p;
381 
382 	p = fs_path_alloc();
383 	if (!p)
384 		return NULL;
385 	p->reversed = 1;
386 	fs_path_reset(p);
387 	return p;
388 }
389 
390 static void fs_path_free(struct fs_path *p)
391 {
392 	if (!p)
393 		return;
394 	if (p->buf != p->inline_buf)
395 		kfree(p->buf);
396 	kfree(p);
397 }
398 
399 static int fs_path_len(struct fs_path *p)
400 {
401 	return p->end - p->start;
402 }
403 
404 static int fs_path_ensure_buf(struct fs_path *p, int len)
405 {
406 	char *tmp_buf;
407 	int path_len;
408 	int old_buf_len;
409 
410 	len++;
411 
412 	if (p->buf_len >= len)
413 		return 0;
414 
415 	if (len > PATH_MAX) {
416 		WARN_ON(1);
417 		return -ENOMEM;
418 	}
419 
420 	path_len = p->end - p->start;
421 	old_buf_len = p->buf_len;
422 
423 	/*
424 	 * First time the inline_buf does not suffice
425 	 */
426 	if (p->buf == p->inline_buf) {
427 		tmp_buf = kmalloc(len, GFP_KERNEL);
428 		if (tmp_buf)
429 			memcpy(tmp_buf, p->buf, old_buf_len);
430 	} else {
431 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
432 	}
433 	if (!tmp_buf)
434 		return -ENOMEM;
435 	p->buf = tmp_buf;
436 	/*
437 	 * The real size of the buffer is bigger, this will let the fast path
438 	 * happen most of the time
439 	 */
440 	p->buf_len = ksize(p->buf);
441 
442 	if (p->reversed) {
443 		tmp_buf = p->buf + old_buf_len - path_len - 1;
444 		p->end = p->buf + p->buf_len - 1;
445 		p->start = p->end - path_len;
446 		memmove(p->start, tmp_buf, path_len + 1);
447 	} else {
448 		p->start = p->buf;
449 		p->end = p->start + path_len;
450 	}
451 	return 0;
452 }
453 
454 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
455 				   char **prepared)
456 {
457 	int ret;
458 	int new_len;
459 
460 	new_len = p->end - p->start + name_len;
461 	if (p->start != p->end)
462 		new_len++;
463 	ret = fs_path_ensure_buf(p, new_len);
464 	if (ret < 0)
465 		goto out;
466 
467 	if (p->reversed) {
468 		if (p->start != p->end)
469 			*--p->start = '/';
470 		p->start -= name_len;
471 		*prepared = p->start;
472 	} else {
473 		if (p->start != p->end)
474 			*p->end++ = '/';
475 		*prepared = p->end;
476 		p->end += name_len;
477 		*p->end = 0;
478 	}
479 
480 out:
481 	return ret;
482 }
483 
484 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
485 {
486 	int ret;
487 	char *prepared;
488 
489 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
490 	if (ret < 0)
491 		goto out;
492 	memcpy(prepared, name, name_len);
493 
494 out:
495 	return ret;
496 }
497 
498 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
499 {
500 	int ret;
501 	char *prepared;
502 
503 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
504 	if (ret < 0)
505 		goto out;
506 	memcpy(prepared, p2->start, p2->end - p2->start);
507 
508 out:
509 	return ret;
510 }
511 
512 static int fs_path_add_from_extent_buffer(struct fs_path *p,
513 					  struct extent_buffer *eb,
514 					  unsigned long off, int len)
515 {
516 	int ret;
517 	char *prepared;
518 
519 	ret = fs_path_prepare_for_add(p, len, &prepared);
520 	if (ret < 0)
521 		goto out;
522 
523 	read_extent_buffer(eb, prepared, off, len);
524 
525 out:
526 	return ret;
527 }
528 
529 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
530 {
531 	int ret;
532 
533 	p->reversed = from->reversed;
534 	fs_path_reset(p);
535 
536 	ret = fs_path_add_path(p, from);
537 
538 	return ret;
539 }
540 
541 
542 static void fs_path_unreverse(struct fs_path *p)
543 {
544 	char *tmp;
545 	int len;
546 
547 	if (!p->reversed)
548 		return;
549 
550 	tmp = p->start;
551 	len = p->end - p->start;
552 	p->start = p->buf;
553 	p->end = p->start + len;
554 	memmove(p->start, tmp, len + 1);
555 	p->reversed = 0;
556 }
557 
558 static struct btrfs_path *alloc_path_for_send(void)
559 {
560 	struct btrfs_path *path;
561 
562 	path = btrfs_alloc_path();
563 	if (!path)
564 		return NULL;
565 	path->search_commit_root = 1;
566 	path->skip_locking = 1;
567 	path->need_commit_sem = 1;
568 	return path;
569 }
570 
571 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
572 {
573 	int ret;
574 	u32 pos = 0;
575 
576 	while (pos < len) {
577 		ret = kernel_write(filp, buf + pos, len - pos, off);
578 		/* TODO handle that correctly */
579 		/*if (ret == -ERESTARTSYS) {
580 			continue;
581 		}*/
582 		if (ret < 0)
583 			return ret;
584 		if (ret == 0) {
585 			return -EIO;
586 		}
587 		pos += ret;
588 	}
589 
590 	return 0;
591 }
592 
593 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
594 {
595 	struct btrfs_tlv_header *hdr;
596 	int total_len = sizeof(*hdr) + len;
597 	int left = sctx->send_max_size - sctx->send_size;
598 
599 	if (unlikely(left < total_len))
600 		return -EOVERFLOW;
601 
602 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
603 	put_unaligned_le16(attr, &hdr->tlv_type);
604 	put_unaligned_le16(len, &hdr->tlv_len);
605 	memcpy(hdr + 1, data, len);
606 	sctx->send_size += total_len;
607 
608 	return 0;
609 }
610 
611 #define TLV_PUT_DEFINE_INT(bits) \
612 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
613 			u##bits attr, u##bits value)			\
614 	{								\
615 		__le##bits __tmp = cpu_to_le##bits(value);		\
616 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
617 	}
618 
619 TLV_PUT_DEFINE_INT(64)
620 
621 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
622 			  const char *str, int len)
623 {
624 	if (len == -1)
625 		len = strlen(str);
626 	return tlv_put(sctx, attr, str, len);
627 }
628 
629 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
630 			const u8 *uuid)
631 {
632 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
633 }
634 
635 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
636 				  struct extent_buffer *eb,
637 				  struct btrfs_timespec *ts)
638 {
639 	struct btrfs_timespec bts;
640 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
641 	return tlv_put(sctx, attr, &bts, sizeof(bts));
642 }
643 
644 
645 #define TLV_PUT(sctx, attrtype, data, attrlen) \
646 	do { \
647 		ret = tlv_put(sctx, attrtype, data, attrlen); \
648 		if (ret < 0) \
649 			goto tlv_put_failure; \
650 	} while (0)
651 
652 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
653 	do { \
654 		ret = tlv_put_u##bits(sctx, attrtype, value); \
655 		if (ret < 0) \
656 			goto tlv_put_failure; \
657 	} while (0)
658 
659 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
660 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
661 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
662 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
663 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
664 	do { \
665 		ret = tlv_put_string(sctx, attrtype, str, len); \
666 		if (ret < 0) \
667 			goto tlv_put_failure; \
668 	} while (0)
669 #define TLV_PUT_PATH(sctx, attrtype, p) \
670 	do { \
671 		ret = tlv_put_string(sctx, attrtype, p->start, \
672 			p->end - p->start); \
673 		if (ret < 0) \
674 			goto tlv_put_failure; \
675 	} while(0)
676 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
677 	do { \
678 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
679 		if (ret < 0) \
680 			goto tlv_put_failure; \
681 	} while (0)
682 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
683 	do { \
684 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
685 		if (ret < 0) \
686 			goto tlv_put_failure; \
687 	} while (0)
688 
689 static int send_header(struct send_ctx *sctx)
690 {
691 	struct btrfs_stream_header hdr;
692 
693 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
694 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
695 
696 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
697 					&sctx->send_off);
698 }
699 
700 /*
701  * For each command/item we want to send to userspace, we call this function.
702  */
703 static int begin_cmd(struct send_ctx *sctx, int cmd)
704 {
705 	struct btrfs_cmd_header *hdr;
706 
707 	if (WARN_ON(!sctx->send_buf))
708 		return -EINVAL;
709 
710 	BUG_ON(sctx->send_size);
711 
712 	sctx->send_size += sizeof(*hdr);
713 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
714 	put_unaligned_le16(cmd, &hdr->cmd);
715 
716 	return 0;
717 }
718 
719 static int send_cmd(struct send_ctx *sctx)
720 {
721 	int ret;
722 	struct btrfs_cmd_header *hdr;
723 	u32 crc;
724 
725 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
726 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
727 	put_unaligned_le32(0, &hdr->crc);
728 
729 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
730 	put_unaligned_le32(crc, &hdr->crc);
731 
732 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
733 					&sctx->send_off);
734 
735 	sctx->total_send_size += sctx->send_size;
736 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
737 	sctx->send_size = 0;
738 
739 	return ret;
740 }
741 
742 /*
743  * Sends a move instruction to user space
744  */
745 static int send_rename(struct send_ctx *sctx,
746 		     struct fs_path *from, struct fs_path *to)
747 {
748 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
749 	int ret;
750 
751 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
752 
753 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
754 	if (ret < 0)
755 		goto out;
756 
757 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
758 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
759 
760 	ret = send_cmd(sctx);
761 
762 tlv_put_failure:
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Sends a link instruction to user space
769  */
770 static int send_link(struct send_ctx *sctx,
771 		     struct fs_path *path, struct fs_path *lnk)
772 {
773 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
774 	int ret;
775 
776 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
777 
778 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
779 	if (ret < 0)
780 		goto out;
781 
782 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
783 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
784 
785 	ret = send_cmd(sctx);
786 
787 tlv_put_failure:
788 out:
789 	return ret;
790 }
791 
792 /*
793  * Sends an unlink instruction to user space
794  */
795 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
796 {
797 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
798 	int ret;
799 
800 	btrfs_debug(fs_info, "send_unlink %s", path->start);
801 
802 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
803 	if (ret < 0)
804 		goto out;
805 
806 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
807 
808 	ret = send_cmd(sctx);
809 
810 tlv_put_failure:
811 out:
812 	return ret;
813 }
814 
815 /*
816  * Sends a rmdir instruction to user space
817  */
818 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
819 {
820 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
821 	int ret;
822 
823 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
824 
825 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
826 	if (ret < 0)
827 		goto out;
828 
829 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
830 
831 	ret = send_cmd(sctx);
832 
833 tlv_put_failure:
834 out:
835 	return ret;
836 }
837 
838 /*
839  * Helper function to retrieve some fields from an inode item.
840  */
841 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
842 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
843 			  u64 *gid, u64 *rdev)
844 {
845 	int ret;
846 	struct btrfs_inode_item *ii;
847 	struct btrfs_key key;
848 
849 	key.objectid = ino;
850 	key.type = BTRFS_INODE_ITEM_KEY;
851 	key.offset = 0;
852 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
853 	if (ret) {
854 		if (ret > 0)
855 			ret = -ENOENT;
856 		return ret;
857 	}
858 
859 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
860 			struct btrfs_inode_item);
861 	if (size)
862 		*size = btrfs_inode_size(path->nodes[0], ii);
863 	if (gen)
864 		*gen = btrfs_inode_generation(path->nodes[0], ii);
865 	if (mode)
866 		*mode = btrfs_inode_mode(path->nodes[0], ii);
867 	if (uid)
868 		*uid = btrfs_inode_uid(path->nodes[0], ii);
869 	if (gid)
870 		*gid = btrfs_inode_gid(path->nodes[0], ii);
871 	if (rdev)
872 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
873 
874 	return ret;
875 }
876 
877 static int get_inode_info(struct btrfs_root *root,
878 			  u64 ino, u64 *size, u64 *gen,
879 			  u64 *mode, u64 *uid, u64 *gid,
880 			  u64 *rdev)
881 {
882 	struct btrfs_path *path;
883 	int ret;
884 
885 	path = alloc_path_for_send();
886 	if (!path)
887 		return -ENOMEM;
888 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
889 			       rdev);
890 	btrfs_free_path(path);
891 	return ret;
892 }
893 
894 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
895 				   struct fs_path *p,
896 				   void *ctx);
897 
898 /*
899  * Helper function to iterate the entries in ONE btrfs_inode_ref or
900  * btrfs_inode_extref.
901  * The iterate callback may return a non zero value to stop iteration. This can
902  * be a negative value for error codes or 1 to simply stop it.
903  *
904  * path must point to the INODE_REF or INODE_EXTREF when called.
905  */
906 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
907 			     struct btrfs_key *found_key, int resolve,
908 			     iterate_inode_ref_t iterate, void *ctx)
909 {
910 	struct extent_buffer *eb = path->nodes[0];
911 	struct btrfs_inode_ref *iref;
912 	struct btrfs_inode_extref *extref;
913 	struct btrfs_path *tmp_path;
914 	struct fs_path *p;
915 	u32 cur = 0;
916 	u32 total;
917 	int slot = path->slots[0];
918 	u32 name_len;
919 	char *start;
920 	int ret = 0;
921 	int num = 0;
922 	int index;
923 	u64 dir;
924 	unsigned long name_off;
925 	unsigned long elem_size;
926 	unsigned long ptr;
927 
928 	p = fs_path_alloc_reversed();
929 	if (!p)
930 		return -ENOMEM;
931 
932 	tmp_path = alloc_path_for_send();
933 	if (!tmp_path) {
934 		fs_path_free(p);
935 		return -ENOMEM;
936 	}
937 
938 
939 	if (found_key->type == BTRFS_INODE_REF_KEY) {
940 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
941 						    struct btrfs_inode_ref);
942 		total = btrfs_item_size(eb, slot);
943 		elem_size = sizeof(*iref);
944 	} else {
945 		ptr = btrfs_item_ptr_offset(eb, slot);
946 		total = btrfs_item_size(eb, slot);
947 		elem_size = sizeof(*extref);
948 	}
949 
950 	while (cur < total) {
951 		fs_path_reset(p);
952 
953 		if (found_key->type == BTRFS_INODE_REF_KEY) {
954 			iref = (struct btrfs_inode_ref *)(ptr + cur);
955 			name_len = btrfs_inode_ref_name_len(eb, iref);
956 			name_off = (unsigned long)(iref + 1);
957 			index = btrfs_inode_ref_index(eb, iref);
958 			dir = found_key->offset;
959 		} else {
960 			extref = (struct btrfs_inode_extref *)(ptr + cur);
961 			name_len = btrfs_inode_extref_name_len(eb, extref);
962 			name_off = (unsigned long)&extref->name;
963 			index = btrfs_inode_extref_index(eb, extref);
964 			dir = btrfs_inode_extref_parent(eb, extref);
965 		}
966 
967 		if (resolve) {
968 			start = btrfs_ref_to_path(root, tmp_path, name_len,
969 						  name_off, eb, dir,
970 						  p->buf, p->buf_len);
971 			if (IS_ERR(start)) {
972 				ret = PTR_ERR(start);
973 				goto out;
974 			}
975 			if (start < p->buf) {
976 				/* overflow , try again with larger buffer */
977 				ret = fs_path_ensure_buf(p,
978 						p->buf_len + p->buf - start);
979 				if (ret < 0)
980 					goto out;
981 				start = btrfs_ref_to_path(root, tmp_path,
982 							  name_len, name_off,
983 							  eb, dir,
984 							  p->buf, p->buf_len);
985 				if (IS_ERR(start)) {
986 					ret = PTR_ERR(start);
987 					goto out;
988 				}
989 				BUG_ON(start < p->buf);
990 			}
991 			p->start = start;
992 		} else {
993 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
994 							     name_len);
995 			if (ret < 0)
996 				goto out;
997 		}
998 
999 		cur += elem_size + name_len;
1000 		ret = iterate(num, dir, index, p, ctx);
1001 		if (ret)
1002 			goto out;
1003 		num++;
1004 	}
1005 
1006 out:
1007 	btrfs_free_path(tmp_path);
1008 	fs_path_free(p);
1009 	return ret;
1010 }
1011 
1012 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1013 				  const char *name, int name_len,
1014 				  const char *data, int data_len,
1015 				  void *ctx);
1016 
1017 /*
1018  * Helper function to iterate the entries in ONE btrfs_dir_item.
1019  * The iterate callback may return a non zero value to stop iteration. This can
1020  * be a negative value for error codes or 1 to simply stop it.
1021  *
1022  * path must point to the dir item when called.
1023  */
1024 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1025 			    iterate_dir_item_t iterate, void *ctx)
1026 {
1027 	int ret = 0;
1028 	struct extent_buffer *eb;
1029 	struct btrfs_dir_item *di;
1030 	struct btrfs_key di_key;
1031 	char *buf = NULL;
1032 	int buf_len;
1033 	u32 name_len;
1034 	u32 data_len;
1035 	u32 cur;
1036 	u32 len;
1037 	u32 total;
1038 	int slot;
1039 	int num;
1040 
1041 	/*
1042 	 * Start with a small buffer (1 page). If later we end up needing more
1043 	 * space, which can happen for xattrs on a fs with a leaf size greater
1044 	 * then the page size, attempt to increase the buffer. Typically xattr
1045 	 * values are small.
1046 	 */
1047 	buf_len = PATH_MAX;
1048 	buf = kmalloc(buf_len, GFP_KERNEL);
1049 	if (!buf) {
1050 		ret = -ENOMEM;
1051 		goto out;
1052 	}
1053 
1054 	eb = path->nodes[0];
1055 	slot = path->slots[0];
1056 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1057 	cur = 0;
1058 	len = 0;
1059 	total = btrfs_item_size(eb, slot);
1060 
1061 	num = 0;
1062 	while (cur < total) {
1063 		name_len = btrfs_dir_name_len(eb, di);
1064 		data_len = btrfs_dir_data_len(eb, di);
1065 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1066 
1067 		if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
1068 			if (name_len > XATTR_NAME_MAX) {
1069 				ret = -ENAMETOOLONG;
1070 				goto out;
1071 			}
1072 			if (name_len + data_len >
1073 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1074 				ret = -E2BIG;
1075 				goto out;
1076 			}
1077 		} else {
1078 			/*
1079 			 * Path too long
1080 			 */
1081 			if (name_len + data_len > PATH_MAX) {
1082 				ret = -ENAMETOOLONG;
1083 				goto out;
1084 			}
1085 		}
1086 
1087 		if (name_len + data_len > buf_len) {
1088 			buf_len = name_len + data_len;
1089 			if (is_vmalloc_addr(buf)) {
1090 				vfree(buf);
1091 				buf = NULL;
1092 			} else {
1093 				char *tmp = krealloc(buf, buf_len,
1094 						GFP_KERNEL | __GFP_NOWARN);
1095 
1096 				if (!tmp)
1097 					kfree(buf);
1098 				buf = tmp;
1099 			}
1100 			if (!buf) {
1101 				buf = kvmalloc(buf_len, GFP_KERNEL);
1102 				if (!buf) {
1103 					ret = -ENOMEM;
1104 					goto out;
1105 				}
1106 			}
1107 		}
1108 
1109 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1110 				name_len + data_len);
1111 
1112 		len = sizeof(*di) + name_len + data_len;
1113 		di = (struct btrfs_dir_item *)((char *)di + len);
1114 		cur += len;
1115 
1116 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1117 			      data_len, ctx);
1118 		if (ret < 0)
1119 			goto out;
1120 		if (ret) {
1121 			ret = 0;
1122 			goto out;
1123 		}
1124 
1125 		num++;
1126 	}
1127 
1128 out:
1129 	kvfree(buf);
1130 	return ret;
1131 }
1132 
1133 static int __copy_first_ref(int num, u64 dir, int index,
1134 			    struct fs_path *p, void *ctx)
1135 {
1136 	int ret;
1137 	struct fs_path *pt = ctx;
1138 
1139 	ret = fs_path_copy(pt, p);
1140 	if (ret < 0)
1141 		return ret;
1142 
1143 	/* we want the first only */
1144 	return 1;
1145 }
1146 
1147 /*
1148  * Retrieve the first path of an inode. If an inode has more then one
1149  * ref/hardlink, this is ignored.
1150  */
1151 static int get_inode_path(struct btrfs_root *root,
1152 			  u64 ino, struct fs_path *path)
1153 {
1154 	int ret;
1155 	struct btrfs_key key, found_key;
1156 	struct btrfs_path *p;
1157 
1158 	p = alloc_path_for_send();
1159 	if (!p)
1160 		return -ENOMEM;
1161 
1162 	fs_path_reset(path);
1163 
1164 	key.objectid = ino;
1165 	key.type = BTRFS_INODE_REF_KEY;
1166 	key.offset = 0;
1167 
1168 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1169 	if (ret < 0)
1170 		goto out;
1171 	if (ret) {
1172 		ret = 1;
1173 		goto out;
1174 	}
1175 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1176 	if (found_key.objectid != ino ||
1177 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1178 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1179 		ret = -ENOENT;
1180 		goto out;
1181 	}
1182 
1183 	ret = iterate_inode_ref(root, p, &found_key, 1,
1184 				__copy_first_ref, path);
1185 	if (ret < 0)
1186 		goto out;
1187 	ret = 0;
1188 
1189 out:
1190 	btrfs_free_path(p);
1191 	return ret;
1192 }
1193 
1194 struct backref_ctx {
1195 	struct send_ctx *sctx;
1196 
1197 	/* number of total found references */
1198 	u64 found;
1199 
1200 	/*
1201 	 * used for clones found in send_root. clones found behind cur_objectid
1202 	 * and cur_offset are not considered as allowed clones.
1203 	 */
1204 	u64 cur_objectid;
1205 	u64 cur_offset;
1206 
1207 	/* may be truncated in case it's the last extent in a file */
1208 	u64 extent_len;
1209 
1210 	/* Just to check for bugs in backref resolving */
1211 	int found_itself;
1212 };
1213 
1214 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1215 {
1216 	u64 root = (u64)(uintptr_t)key;
1217 	const struct clone_root *cr = elt;
1218 
1219 	if (root < cr->root->root_key.objectid)
1220 		return -1;
1221 	if (root > cr->root->root_key.objectid)
1222 		return 1;
1223 	return 0;
1224 }
1225 
1226 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1227 {
1228 	const struct clone_root *cr1 = e1;
1229 	const struct clone_root *cr2 = e2;
1230 
1231 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1232 		return -1;
1233 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1234 		return 1;
1235 	return 0;
1236 }
1237 
1238 /*
1239  * Called for every backref that is found for the current extent.
1240  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1241  */
1242 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1243 {
1244 	struct backref_ctx *bctx = ctx_;
1245 	struct clone_root *found;
1246 
1247 	/* First check if the root is in the list of accepted clone sources */
1248 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1249 			bctx->sctx->clone_roots_cnt,
1250 			sizeof(struct clone_root),
1251 			__clone_root_cmp_bsearch);
1252 	if (!found)
1253 		return 0;
1254 
1255 	if (found->root == bctx->sctx->send_root &&
1256 	    ino == bctx->cur_objectid &&
1257 	    offset == bctx->cur_offset) {
1258 		bctx->found_itself = 1;
1259 	}
1260 
1261 	/*
1262 	 * Make sure we don't consider clones from send_root that are
1263 	 * behind the current inode/offset.
1264 	 */
1265 	if (found->root == bctx->sctx->send_root) {
1266 		/*
1267 		 * If the source inode was not yet processed we can't issue a
1268 		 * clone operation, as the source extent does not exist yet at
1269 		 * the destination of the stream.
1270 		 */
1271 		if (ino > bctx->cur_objectid)
1272 			return 0;
1273 		/*
1274 		 * We clone from the inode currently being sent as long as the
1275 		 * source extent is already processed, otherwise we could try
1276 		 * to clone from an extent that does not exist yet at the
1277 		 * destination of the stream.
1278 		 */
1279 		if (ino == bctx->cur_objectid &&
1280 		    offset + bctx->extent_len >
1281 		    bctx->sctx->cur_inode_next_write_offset)
1282 			return 0;
1283 	}
1284 
1285 	bctx->found++;
1286 	found->found_refs++;
1287 	if (ino < found->ino) {
1288 		found->ino = ino;
1289 		found->offset = offset;
1290 	} else if (found->ino == ino) {
1291 		/*
1292 		 * same extent found more then once in the same file.
1293 		 */
1294 		if (found->offset > offset + bctx->extent_len)
1295 			found->offset = offset;
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Given an inode, offset and extent item, it finds a good clone for a clone
1303  * instruction. Returns -ENOENT when none could be found. The function makes
1304  * sure that the returned clone is usable at the point where sending is at the
1305  * moment. This means, that no clones are accepted which lie behind the current
1306  * inode+offset.
1307  *
1308  * path must point to the extent item when called.
1309  */
1310 static int find_extent_clone(struct send_ctx *sctx,
1311 			     struct btrfs_path *path,
1312 			     u64 ino, u64 data_offset,
1313 			     u64 ino_size,
1314 			     struct clone_root **found)
1315 {
1316 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1317 	int ret;
1318 	int extent_type;
1319 	u64 logical;
1320 	u64 disk_byte;
1321 	u64 num_bytes;
1322 	u64 extent_item_pos;
1323 	u64 flags = 0;
1324 	struct btrfs_file_extent_item *fi;
1325 	struct extent_buffer *eb = path->nodes[0];
1326 	struct backref_ctx backref_ctx = {0};
1327 	struct clone_root *cur_clone_root;
1328 	struct btrfs_key found_key;
1329 	struct btrfs_path *tmp_path;
1330 	struct btrfs_extent_item *ei;
1331 	int compressed;
1332 	u32 i;
1333 
1334 	tmp_path = alloc_path_for_send();
1335 	if (!tmp_path)
1336 		return -ENOMEM;
1337 
1338 	/* We only use this path under the commit sem */
1339 	tmp_path->need_commit_sem = 0;
1340 
1341 	if (data_offset >= ino_size) {
1342 		/*
1343 		 * There may be extents that lie behind the file's size.
1344 		 * I at least had this in combination with snapshotting while
1345 		 * writing large files.
1346 		 */
1347 		ret = 0;
1348 		goto out;
1349 	}
1350 
1351 	fi = btrfs_item_ptr(eb, path->slots[0],
1352 			struct btrfs_file_extent_item);
1353 	extent_type = btrfs_file_extent_type(eb, fi);
1354 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1355 		ret = -ENOENT;
1356 		goto out;
1357 	}
1358 	compressed = btrfs_file_extent_compression(eb, fi);
1359 
1360 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1361 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1362 	if (disk_byte == 0) {
1363 		ret = -ENOENT;
1364 		goto out;
1365 	}
1366 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1367 
1368 	down_read(&fs_info->commit_root_sem);
1369 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1370 				  &found_key, &flags);
1371 	up_read(&fs_info->commit_root_sem);
1372 
1373 	if (ret < 0)
1374 		goto out;
1375 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1376 		ret = -EIO;
1377 		goto out;
1378 	}
1379 
1380 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1381 			    struct btrfs_extent_item);
1382 	/*
1383 	 * Backreference walking (iterate_extent_inodes() below) is currently
1384 	 * too expensive when an extent has a large number of references, both
1385 	 * in time spent and used memory. So for now just fallback to write
1386 	 * operations instead of clone operations when an extent has more than
1387 	 * a certain amount of references.
1388 	 */
1389 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1390 		ret = -ENOENT;
1391 		goto out;
1392 	}
1393 	btrfs_release_path(tmp_path);
1394 
1395 	/*
1396 	 * Setup the clone roots.
1397 	 */
1398 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1399 		cur_clone_root = sctx->clone_roots + i;
1400 		cur_clone_root->ino = (u64)-1;
1401 		cur_clone_root->offset = 0;
1402 		cur_clone_root->found_refs = 0;
1403 	}
1404 
1405 	backref_ctx.sctx = sctx;
1406 	backref_ctx.found = 0;
1407 	backref_ctx.cur_objectid = ino;
1408 	backref_ctx.cur_offset = data_offset;
1409 	backref_ctx.found_itself = 0;
1410 	backref_ctx.extent_len = num_bytes;
1411 
1412 	/*
1413 	 * The last extent of a file may be too large due to page alignment.
1414 	 * We need to adjust extent_len in this case so that the checks in
1415 	 * __iterate_backrefs work.
1416 	 */
1417 	if (data_offset + num_bytes >= ino_size)
1418 		backref_ctx.extent_len = ino_size - data_offset;
1419 
1420 	/*
1421 	 * Now collect all backrefs.
1422 	 */
1423 	if (compressed == BTRFS_COMPRESS_NONE)
1424 		extent_item_pos = logical - found_key.objectid;
1425 	else
1426 		extent_item_pos = 0;
1427 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1428 				    extent_item_pos, 1, __iterate_backrefs,
1429 				    &backref_ctx, false);
1430 
1431 	if (ret < 0)
1432 		goto out;
1433 
1434 	down_read(&fs_info->commit_root_sem);
1435 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1436 		/*
1437 		 * A transaction commit for a transaction in which block group
1438 		 * relocation was done just happened.
1439 		 * The disk_bytenr of the file extent item we processed is
1440 		 * possibly stale, referring to the extent's location before
1441 		 * relocation. So act as if we haven't found any clone sources
1442 		 * and fallback to write commands, which will read the correct
1443 		 * data from the new extent location. Otherwise we will fail
1444 		 * below because we haven't found our own back reference or we
1445 		 * could be getting incorrect sources in case the old extent
1446 		 * was already reallocated after the relocation.
1447 		 */
1448 		up_read(&fs_info->commit_root_sem);
1449 		ret = -ENOENT;
1450 		goto out;
1451 	}
1452 	up_read(&fs_info->commit_root_sem);
1453 
1454 	if (!backref_ctx.found_itself) {
1455 		/* found a bug in backref code? */
1456 		ret = -EIO;
1457 		btrfs_err(fs_info,
1458 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1459 			  ino, data_offset, disk_byte, found_key.objectid);
1460 		goto out;
1461 	}
1462 
1463 	btrfs_debug(fs_info,
1464 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1465 		    data_offset, ino, num_bytes, logical);
1466 
1467 	if (!backref_ctx.found)
1468 		btrfs_debug(fs_info, "no clones found");
1469 
1470 	cur_clone_root = NULL;
1471 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1472 		if (sctx->clone_roots[i].found_refs) {
1473 			if (!cur_clone_root)
1474 				cur_clone_root = sctx->clone_roots + i;
1475 			else if (sctx->clone_roots[i].root == sctx->send_root)
1476 				/* prefer clones from send_root over others */
1477 				cur_clone_root = sctx->clone_roots + i;
1478 		}
1479 
1480 	}
1481 
1482 	if (cur_clone_root) {
1483 		*found = cur_clone_root;
1484 		ret = 0;
1485 	} else {
1486 		ret = -ENOENT;
1487 	}
1488 
1489 out:
1490 	btrfs_free_path(tmp_path);
1491 	return ret;
1492 }
1493 
1494 static int read_symlink(struct btrfs_root *root,
1495 			u64 ino,
1496 			struct fs_path *dest)
1497 {
1498 	int ret;
1499 	struct btrfs_path *path;
1500 	struct btrfs_key key;
1501 	struct btrfs_file_extent_item *ei;
1502 	u8 type;
1503 	u8 compression;
1504 	unsigned long off;
1505 	int len;
1506 
1507 	path = alloc_path_for_send();
1508 	if (!path)
1509 		return -ENOMEM;
1510 
1511 	key.objectid = ino;
1512 	key.type = BTRFS_EXTENT_DATA_KEY;
1513 	key.offset = 0;
1514 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1515 	if (ret < 0)
1516 		goto out;
1517 	if (ret) {
1518 		/*
1519 		 * An empty symlink inode. Can happen in rare error paths when
1520 		 * creating a symlink (transaction committed before the inode
1521 		 * eviction handler removed the symlink inode items and a crash
1522 		 * happened in between or the subvol was snapshoted in between).
1523 		 * Print an informative message to dmesg/syslog so that the user
1524 		 * can delete the symlink.
1525 		 */
1526 		btrfs_err(root->fs_info,
1527 			  "Found empty symlink inode %llu at root %llu",
1528 			  ino, root->root_key.objectid);
1529 		ret = -EIO;
1530 		goto out;
1531 	}
1532 
1533 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1534 			struct btrfs_file_extent_item);
1535 	type = btrfs_file_extent_type(path->nodes[0], ei);
1536 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1537 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1538 	BUG_ON(compression);
1539 
1540 	off = btrfs_file_extent_inline_start(ei);
1541 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1542 
1543 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1544 
1545 out:
1546 	btrfs_free_path(path);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * Helper function to generate a file name that is unique in the root of
1552  * send_root and parent_root. This is used to generate names for orphan inodes.
1553  */
1554 static int gen_unique_name(struct send_ctx *sctx,
1555 			   u64 ino, u64 gen,
1556 			   struct fs_path *dest)
1557 {
1558 	int ret = 0;
1559 	struct btrfs_path *path;
1560 	struct btrfs_dir_item *di;
1561 	char tmp[64];
1562 	int len;
1563 	u64 idx = 0;
1564 
1565 	path = alloc_path_for_send();
1566 	if (!path)
1567 		return -ENOMEM;
1568 
1569 	while (1) {
1570 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1571 				ino, gen, idx);
1572 		ASSERT(len < sizeof(tmp));
1573 
1574 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1575 				path, BTRFS_FIRST_FREE_OBJECTID,
1576 				tmp, strlen(tmp), 0);
1577 		btrfs_release_path(path);
1578 		if (IS_ERR(di)) {
1579 			ret = PTR_ERR(di);
1580 			goto out;
1581 		}
1582 		if (di) {
1583 			/* not unique, try again */
1584 			idx++;
1585 			continue;
1586 		}
1587 
1588 		if (!sctx->parent_root) {
1589 			/* unique */
1590 			ret = 0;
1591 			break;
1592 		}
1593 
1594 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1595 				path, BTRFS_FIRST_FREE_OBJECTID,
1596 				tmp, strlen(tmp), 0);
1597 		btrfs_release_path(path);
1598 		if (IS_ERR(di)) {
1599 			ret = PTR_ERR(di);
1600 			goto out;
1601 		}
1602 		if (di) {
1603 			/* not unique, try again */
1604 			idx++;
1605 			continue;
1606 		}
1607 		/* unique */
1608 		break;
1609 	}
1610 
1611 	ret = fs_path_add(dest, tmp, strlen(tmp));
1612 
1613 out:
1614 	btrfs_free_path(path);
1615 	return ret;
1616 }
1617 
1618 enum inode_state {
1619 	inode_state_no_change,
1620 	inode_state_will_create,
1621 	inode_state_did_create,
1622 	inode_state_will_delete,
1623 	inode_state_did_delete,
1624 };
1625 
1626 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1627 {
1628 	int ret;
1629 	int left_ret;
1630 	int right_ret;
1631 	u64 left_gen;
1632 	u64 right_gen;
1633 
1634 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1635 			NULL, NULL);
1636 	if (ret < 0 && ret != -ENOENT)
1637 		goto out;
1638 	left_ret = ret;
1639 
1640 	if (!sctx->parent_root) {
1641 		right_ret = -ENOENT;
1642 	} else {
1643 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1644 				NULL, NULL, NULL, NULL);
1645 		if (ret < 0 && ret != -ENOENT)
1646 			goto out;
1647 		right_ret = ret;
1648 	}
1649 
1650 	if (!left_ret && !right_ret) {
1651 		if (left_gen == gen && right_gen == gen) {
1652 			ret = inode_state_no_change;
1653 		} else if (left_gen == gen) {
1654 			if (ino < sctx->send_progress)
1655 				ret = inode_state_did_create;
1656 			else
1657 				ret = inode_state_will_create;
1658 		} else if (right_gen == gen) {
1659 			if (ino < sctx->send_progress)
1660 				ret = inode_state_did_delete;
1661 			else
1662 				ret = inode_state_will_delete;
1663 		} else  {
1664 			ret = -ENOENT;
1665 		}
1666 	} else if (!left_ret) {
1667 		if (left_gen == gen) {
1668 			if (ino < sctx->send_progress)
1669 				ret = inode_state_did_create;
1670 			else
1671 				ret = inode_state_will_create;
1672 		} else {
1673 			ret = -ENOENT;
1674 		}
1675 	} else if (!right_ret) {
1676 		if (right_gen == gen) {
1677 			if (ino < sctx->send_progress)
1678 				ret = inode_state_did_delete;
1679 			else
1680 				ret = inode_state_will_delete;
1681 		} else {
1682 			ret = -ENOENT;
1683 		}
1684 	} else {
1685 		ret = -ENOENT;
1686 	}
1687 
1688 out:
1689 	return ret;
1690 }
1691 
1692 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1693 {
1694 	int ret;
1695 
1696 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1697 		return 1;
1698 
1699 	ret = get_cur_inode_state(sctx, ino, gen);
1700 	if (ret < 0)
1701 		goto out;
1702 
1703 	if (ret == inode_state_no_change ||
1704 	    ret == inode_state_did_create ||
1705 	    ret == inode_state_will_delete)
1706 		ret = 1;
1707 	else
1708 		ret = 0;
1709 
1710 out:
1711 	return ret;
1712 }
1713 
1714 /*
1715  * Helper function to lookup a dir item in a dir.
1716  */
1717 static int lookup_dir_item_inode(struct btrfs_root *root,
1718 				 u64 dir, const char *name, int name_len,
1719 				 u64 *found_inode)
1720 {
1721 	int ret = 0;
1722 	struct btrfs_dir_item *di;
1723 	struct btrfs_key key;
1724 	struct btrfs_path *path;
1725 
1726 	path = alloc_path_for_send();
1727 	if (!path)
1728 		return -ENOMEM;
1729 
1730 	di = btrfs_lookup_dir_item(NULL, root, path,
1731 			dir, name, name_len, 0);
1732 	if (IS_ERR_OR_NULL(di)) {
1733 		ret = di ? PTR_ERR(di) : -ENOENT;
1734 		goto out;
1735 	}
1736 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1737 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1738 		ret = -ENOENT;
1739 		goto out;
1740 	}
1741 	*found_inode = key.objectid;
1742 
1743 out:
1744 	btrfs_free_path(path);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750  * generation of the parent dir and the name of the dir entry.
1751  */
1752 static int get_first_ref(struct btrfs_root *root, u64 ino,
1753 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1754 {
1755 	int ret;
1756 	struct btrfs_key key;
1757 	struct btrfs_key found_key;
1758 	struct btrfs_path *path;
1759 	int len;
1760 	u64 parent_dir;
1761 
1762 	path = alloc_path_for_send();
1763 	if (!path)
1764 		return -ENOMEM;
1765 
1766 	key.objectid = ino;
1767 	key.type = BTRFS_INODE_REF_KEY;
1768 	key.offset = 0;
1769 
1770 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1771 	if (ret < 0)
1772 		goto out;
1773 	if (!ret)
1774 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1775 				path->slots[0]);
1776 	if (ret || found_key.objectid != ino ||
1777 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1778 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1779 		ret = -ENOENT;
1780 		goto out;
1781 	}
1782 
1783 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1784 		struct btrfs_inode_ref *iref;
1785 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 				      struct btrfs_inode_ref);
1787 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1788 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 						     (unsigned long)(iref + 1),
1790 						     len);
1791 		parent_dir = found_key.offset;
1792 	} else {
1793 		struct btrfs_inode_extref *extref;
1794 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1795 					struct btrfs_inode_extref);
1796 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1797 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1798 					(unsigned long)&extref->name, len);
1799 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1800 	}
1801 	if (ret < 0)
1802 		goto out;
1803 	btrfs_release_path(path);
1804 
1805 	if (dir_gen) {
1806 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1807 				     NULL, NULL, NULL);
1808 		if (ret < 0)
1809 			goto out;
1810 	}
1811 
1812 	*dir = parent_dir;
1813 
1814 out:
1815 	btrfs_free_path(path);
1816 	return ret;
1817 }
1818 
1819 static int is_first_ref(struct btrfs_root *root,
1820 			u64 ino, u64 dir,
1821 			const char *name, int name_len)
1822 {
1823 	int ret;
1824 	struct fs_path *tmp_name;
1825 	u64 tmp_dir;
1826 
1827 	tmp_name = fs_path_alloc();
1828 	if (!tmp_name)
1829 		return -ENOMEM;
1830 
1831 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1832 	if (ret < 0)
1833 		goto out;
1834 
1835 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1836 		ret = 0;
1837 		goto out;
1838 	}
1839 
1840 	ret = !memcmp(tmp_name->start, name, name_len);
1841 
1842 out:
1843 	fs_path_free(tmp_name);
1844 	return ret;
1845 }
1846 
1847 /*
1848  * Used by process_recorded_refs to determine if a new ref would overwrite an
1849  * already existing ref. In case it detects an overwrite, it returns the
1850  * inode/gen in who_ino/who_gen.
1851  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852  * to make sure later references to the overwritten inode are possible.
1853  * Orphanizing is however only required for the first ref of an inode.
1854  * process_recorded_refs does an additional is_first_ref check to see if
1855  * orphanizing is really required.
1856  */
1857 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1858 			      const char *name, int name_len,
1859 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1860 {
1861 	int ret = 0;
1862 	u64 gen;
1863 	u64 other_inode = 0;
1864 
1865 	if (!sctx->parent_root)
1866 		goto out;
1867 
1868 	ret = is_inode_existent(sctx, dir, dir_gen);
1869 	if (ret <= 0)
1870 		goto out;
1871 
1872 	/*
1873 	 * If we have a parent root we need to verify that the parent dir was
1874 	 * not deleted and then re-created, if it was then we have no overwrite
1875 	 * and we can just unlink this entry.
1876 	 */
1877 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1878 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1879 				     NULL, NULL, NULL);
1880 		if (ret < 0 && ret != -ENOENT)
1881 			goto out;
1882 		if (ret) {
1883 			ret = 0;
1884 			goto out;
1885 		}
1886 		if (gen != dir_gen)
1887 			goto out;
1888 	}
1889 
1890 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1891 				    &other_inode);
1892 	if (ret < 0 && ret != -ENOENT)
1893 		goto out;
1894 	if (ret) {
1895 		ret = 0;
1896 		goto out;
1897 	}
1898 
1899 	/*
1900 	 * Check if the overwritten ref was already processed. If yes, the ref
1901 	 * was already unlinked/moved, so we can safely assume that we will not
1902 	 * overwrite anything at this point in time.
1903 	 */
1904 	if (other_inode > sctx->send_progress ||
1905 	    is_waiting_for_move(sctx, other_inode)) {
1906 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1907 				who_gen, who_mode, NULL, NULL, NULL);
1908 		if (ret < 0)
1909 			goto out;
1910 
1911 		ret = 1;
1912 		*who_ino = other_inode;
1913 	} else {
1914 		ret = 0;
1915 	}
1916 
1917 out:
1918 	return ret;
1919 }
1920 
1921 /*
1922  * Checks if the ref was overwritten by an already processed inode. This is
1923  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1924  * thus the orphan name needs be used.
1925  * process_recorded_refs also uses it to avoid unlinking of refs that were
1926  * overwritten.
1927  */
1928 static int did_overwrite_ref(struct send_ctx *sctx,
1929 			    u64 dir, u64 dir_gen,
1930 			    u64 ino, u64 ino_gen,
1931 			    const char *name, int name_len)
1932 {
1933 	int ret = 0;
1934 	u64 gen;
1935 	u64 ow_inode;
1936 
1937 	if (!sctx->parent_root)
1938 		goto out;
1939 
1940 	ret = is_inode_existent(sctx, dir, dir_gen);
1941 	if (ret <= 0)
1942 		goto out;
1943 
1944 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1945 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1946 				     NULL, NULL, NULL);
1947 		if (ret < 0 && ret != -ENOENT)
1948 			goto out;
1949 		if (ret) {
1950 			ret = 0;
1951 			goto out;
1952 		}
1953 		if (gen != dir_gen)
1954 			goto out;
1955 	}
1956 
1957 	/* check if the ref was overwritten by another ref */
1958 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1959 				    &ow_inode);
1960 	if (ret < 0 && ret != -ENOENT)
1961 		goto out;
1962 	if (ret) {
1963 		/* was never and will never be overwritten */
1964 		ret = 0;
1965 		goto out;
1966 	}
1967 
1968 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1969 			NULL, NULL);
1970 	if (ret < 0)
1971 		goto out;
1972 
1973 	if (ow_inode == ino && gen == ino_gen) {
1974 		ret = 0;
1975 		goto out;
1976 	}
1977 
1978 	/*
1979 	 * We know that it is or will be overwritten. Check this now.
1980 	 * The current inode being processed might have been the one that caused
1981 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1982 	 * the current inode being processed.
1983 	 */
1984 	if ((ow_inode < sctx->send_progress) ||
1985 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1986 	     gen == sctx->cur_inode_gen))
1987 		ret = 1;
1988 	else
1989 		ret = 0;
1990 
1991 out:
1992 	return ret;
1993 }
1994 
1995 /*
1996  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1997  * that got overwritten. This is used by process_recorded_refs to determine
1998  * if it has to use the path as returned by get_cur_path or the orphan name.
1999  */
2000 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2001 {
2002 	int ret = 0;
2003 	struct fs_path *name = NULL;
2004 	u64 dir;
2005 	u64 dir_gen;
2006 
2007 	if (!sctx->parent_root)
2008 		goto out;
2009 
2010 	name = fs_path_alloc();
2011 	if (!name)
2012 		return -ENOMEM;
2013 
2014 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2015 	if (ret < 0)
2016 		goto out;
2017 
2018 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2019 			name->start, fs_path_len(name));
2020 
2021 out:
2022 	fs_path_free(name);
2023 	return ret;
2024 }
2025 
2026 /*
2027  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2028  * so we need to do some special handling in case we have clashes. This function
2029  * takes care of this with the help of name_cache_entry::radix_list.
2030  * In case of error, nce is kfreed.
2031  */
2032 static int name_cache_insert(struct send_ctx *sctx,
2033 			     struct name_cache_entry *nce)
2034 {
2035 	int ret = 0;
2036 	struct list_head *nce_head;
2037 
2038 	nce_head = radix_tree_lookup(&sctx->name_cache,
2039 			(unsigned long)nce->ino);
2040 	if (!nce_head) {
2041 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2042 		if (!nce_head) {
2043 			kfree(nce);
2044 			return -ENOMEM;
2045 		}
2046 		INIT_LIST_HEAD(nce_head);
2047 
2048 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2049 		if (ret < 0) {
2050 			kfree(nce_head);
2051 			kfree(nce);
2052 			return ret;
2053 		}
2054 	}
2055 	list_add_tail(&nce->radix_list, nce_head);
2056 	list_add_tail(&nce->list, &sctx->name_cache_list);
2057 	sctx->name_cache_size++;
2058 
2059 	return ret;
2060 }
2061 
2062 static void name_cache_delete(struct send_ctx *sctx,
2063 			      struct name_cache_entry *nce)
2064 {
2065 	struct list_head *nce_head;
2066 
2067 	nce_head = radix_tree_lookup(&sctx->name_cache,
2068 			(unsigned long)nce->ino);
2069 	if (!nce_head) {
2070 		btrfs_err(sctx->send_root->fs_info,
2071 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2072 			nce->ino, sctx->name_cache_size);
2073 	}
2074 
2075 	list_del(&nce->radix_list);
2076 	list_del(&nce->list);
2077 	sctx->name_cache_size--;
2078 
2079 	/*
2080 	 * We may not get to the final release of nce_head if the lookup fails
2081 	 */
2082 	if (nce_head && list_empty(nce_head)) {
2083 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2084 		kfree(nce_head);
2085 	}
2086 }
2087 
2088 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2089 						    u64 ino, u64 gen)
2090 {
2091 	struct list_head *nce_head;
2092 	struct name_cache_entry *cur;
2093 
2094 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2095 	if (!nce_head)
2096 		return NULL;
2097 
2098 	list_for_each_entry(cur, nce_head, radix_list) {
2099 		if (cur->ino == ino && cur->gen == gen)
2100 			return cur;
2101 	}
2102 	return NULL;
2103 }
2104 
2105 /*
2106  * Remove some entries from the beginning of name_cache_list.
2107  */
2108 static void name_cache_clean_unused(struct send_ctx *sctx)
2109 {
2110 	struct name_cache_entry *nce;
2111 
2112 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2113 		return;
2114 
2115 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2116 		nce = list_entry(sctx->name_cache_list.next,
2117 				struct name_cache_entry, list);
2118 		name_cache_delete(sctx, nce);
2119 		kfree(nce);
2120 	}
2121 }
2122 
2123 static void name_cache_free(struct send_ctx *sctx)
2124 {
2125 	struct name_cache_entry *nce;
2126 
2127 	while (!list_empty(&sctx->name_cache_list)) {
2128 		nce = list_entry(sctx->name_cache_list.next,
2129 				struct name_cache_entry, list);
2130 		name_cache_delete(sctx, nce);
2131 		kfree(nce);
2132 	}
2133 }
2134 
2135 /*
2136  * Used by get_cur_path for each ref up to the root.
2137  * Returns 0 if it succeeded.
2138  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2139  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2140  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2141  * Returns <0 in case of error.
2142  */
2143 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2144 				     u64 ino, u64 gen,
2145 				     u64 *parent_ino,
2146 				     u64 *parent_gen,
2147 				     struct fs_path *dest)
2148 {
2149 	int ret;
2150 	int nce_ret;
2151 	struct name_cache_entry *nce = NULL;
2152 
2153 	/*
2154 	 * First check if we already did a call to this function with the same
2155 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2156 	 * return the cached result.
2157 	 */
2158 	nce = name_cache_search(sctx, ino, gen);
2159 	if (nce) {
2160 		if (ino < sctx->send_progress && nce->need_later_update) {
2161 			name_cache_delete(sctx, nce);
2162 			kfree(nce);
2163 			nce = NULL;
2164 		} else {
2165 			/*
2166 			 * Removes the entry from the list and adds it back to
2167 			 * the end.  This marks the entry as recently used so
2168 			 * that name_cache_clean_unused does not remove it.
2169 			 */
2170 			list_move_tail(&nce->list, &sctx->name_cache_list);
2171 
2172 			*parent_ino = nce->parent_ino;
2173 			*parent_gen = nce->parent_gen;
2174 			ret = fs_path_add(dest, nce->name, nce->name_len);
2175 			if (ret < 0)
2176 				goto out;
2177 			ret = nce->ret;
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * If the inode is not existent yet, add the orphan name and return 1.
2184 	 * This should only happen for the parent dir that we determine in
2185 	 * __record_new_ref
2186 	 */
2187 	ret = is_inode_existent(sctx, ino, gen);
2188 	if (ret < 0)
2189 		goto out;
2190 
2191 	if (!ret) {
2192 		ret = gen_unique_name(sctx, ino, gen, dest);
2193 		if (ret < 0)
2194 			goto out;
2195 		ret = 1;
2196 		goto out_cache;
2197 	}
2198 
2199 	/*
2200 	 * Depending on whether the inode was already processed or not, use
2201 	 * send_root or parent_root for ref lookup.
2202 	 */
2203 	if (ino < sctx->send_progress)
2204 		ret = get_first_ref(sctx->send_root, ino,
2205 				    parent_ino, parent_gen, dest);
2206 	else
2207 		ret = get_first_ref(sctx->parent_root, ino,
2208 				    parent_ino, parent_gen, dest);
2209 	if (ret < 0)
2210 		goto out;
2211 
2212 	/*
2213 	 * Check if the ref was overwritten by an inode's ref that was processed
2214 	 * earlier. If yes, treat as orphan and return 1.
2215 	 */
2216 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2217 			dest->start, dest->end - dest->start);
2218 	if (ret < 0)
2219 		goto out;
2220 	if (ret) {
2221 		fs_path_reset(dest);
2222 		ret = gen_unique_name(sctx, ino, gen, dest);
2223 		if (ret < 0)
2224 			goto out;
2225 		ret = 1;
2226 	}
2227 
2228 out_cache:
2229 	/*
2230 	 * Store the result of the lookup in the name cache.
2231 	 */
2232 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2233 	if (!nce) {
2234 		ret = -ENOMEM;
2235 		goto out;
2236 	}
2237 
2238 	nce->ino = ino;
2239 	nce->gen = gen;
2240 	nce->parent_ino = *parent_ino;
2241 	nce->parent_gen = *parent_gen;
2242 	nce->name_len = fs_path_len(dest);
2243 	nce->ret = ret;
2244 	strcpy(nce->name, dest->start);
2245 
2246 	if (ino < sctx->send_progress)
2247 		nce->need_later_update = 0;
2248 	else
2249 		nce->need_later_update = 1;
2250 
2251 	nce_ret = name_cache_insert(sctx, nce);
2252 	if (nce_ret < 0)
2253 		ret = nce_ret;
2254 	name_cache_clean_unused(sctx);
2255 
2256 out:
2257 	return ret;
2258 }
2259 
2260 /*
2261  * Magic happens here. This function returns the first ref to an inode as it
2262  * would look like while receiving the stream at this point in time.
2263  * We walk the path up to the root. For every inode in between, we check if it
2264  * was already processed/sent. If yes, we continue with the parent as found
2265  * in send_root. If not, we continue with the parent as found in parent_root.
2266  * If we encounter an inode that was deleted at this point in time, we use the
2267  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2268  * that were not created yet and overwritten inodes/refs.
2269  *
2270  * When do we have orphan inodes:
2271  * 1. When an inode is freshly created and thus no valid refs are available yet
2272  * 2. When a directory lost all it's refs (deleted) but still has dir items
2273  *    inside which were not processed yet (pending for move/delete). If anyone
2274  *    tried to get the path to the dir items, it would get a path inside that
2275  *    orphan directory.
2276  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2277  *    of an unprocessed inode. If in that case the first ref would be
2278  *    overwritten, the overwritten inode gets "orphanized". Later when we
2279  *    process this overwritten inode, it is restored at a new place by moving
2280  *    the orphan inode.
2281  *
2282  * sctx->send_progress tells this function at which point in time receiving
2283  * would be.
2284  */
2285 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2286 			struct fs_path *dest)
2287 {
2288 	int ret = 0;
2289 	struct fs_path *name = NULL;
2290 	u64 parent_inode = 0;
2291 	u64 parent_gen = 0;
2292 	int stop = 0;
2293 
2294 	name = fs_path_alloc();
2295 	if (!name) {
2296 		ret = -ENOMEM;
2297 		goto out;
2298 	}
2299 
2300 	dest->reversed = 1;
2301 	fs_path_reset(dest);
2302 
2303 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2304 		struct waiting_dir_move *wdm;
2305 
2306 		fs_path_reset(name);
2307 
2308 		if (is_waiting_for_rm(sctx, ino, gen)) {
2309 			ret = gen_unique_name(sctx, ino, gen, name);
2310 			if (ret < 0)
2311 				goto out;
2312 			ret = fs_path_add_path(dest, name);
2313 			break;
2314 		}
2315 
2316 		wdm = get_waiting_dir_move(sctx, ino);
2317 		if (wdm && wdm->orphanized) {
2318 			ret = gen_unique_name(sctx, ino, gen, name);
2319 			stop = 1;
2320 		} else if (wdm) {
2321 			ret = get_first_ref(sctx->parent_root, ino,
2322 					    &parent_inode, &parent_gen, name);
2323 		} else {
2324 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2325 							&parent_inode,
2326 							&parent_gen, name);
2327 			if (ret)
2328 				stop = 1;
2329 		}
2330 
2331 		if (ret < 0)
2332 			goto out;
2333 
2334 		ret = fs_path_add_path(dest, name);
2335 		if (ret < 0)
2336 			goto out;
2337 
2338 		ino = parent_inode;
2339 		gen = parent_gen;
2340 	}
2341 
2342 out:
2343 	fs_path_free(name);
2344 	if (!ret)
2345 		fs_path_unreverse(dest);
2346 	return ret;
2347 }
2348 
2349 /*
2350  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2351  */
2352 static int send_subvol_begin(struct send_ctx *sctx)
2353 {
2354 	int ret;
2355 	struct btrfs_root *send_root = sctx->send_root;
2356 	struct btrfs_root *parent_root = sctx->parent_root;
2357 	struct btrfs_path *path;
2358 	struct btrfs_key key;
2359 	struct btrfs_root_ref *ref;
2360 	struct extent_buffer *leaf;
2361 	char *name = NULL;
2362 	int namelen;
2363 
2364 	path = btrfs_alloc_path();
2365 	if (!path)
2366 		return -ENOMEM;
2367 
2368 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2369 	if (!name) {
2370 		btrfs_free_path(path);
2371 		return -ENOMEM;
2372 	}
2373 
2374 	key.objectid = send_root->root_key.objectid;
2375 	key.type = BTRFS_ROOT_BACKREF_KEY;
2376 	key.offset = 0;
2377 
2378 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2379 				&key, path, 1, 0);
2380 	if (ret < 0)
2381 		goto out;
2382 	if (ret) {
2383 		ret = -ENOENT;
2384 		goto out;
2385 	}
2386 
2387 	leaf = path->nodes[0];
2388 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2389 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2390 	    key.objectid != send_root->root_key.objectid) {
2391 		ret = -ENOENT;
2392 		goto out;
2393 	}
2394 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2395 	namelen = btrfs_root_ref_name_len(leaf, ref);
2396 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2397 	btrfs_release_path(path);
2398 
2399 	if (parent_root) {
2400 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2401 		if (ret < 0)
2402 			goto out;
2403 	} else {
2404 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2405 		if (ret < 0)
2406 			goto out;
2407 	}
2408 
2409 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2410 
2411 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2412 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2413 			    sctx->send_root->root_item.received_uuid);
2414 	else
2415 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2416 			    sctx->send_root->root_item.uuid);
2417 
2418 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2419 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2420 	if (parent_root) {
2421 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2422 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2423 				     parent_root->root_item.received_uuid);
2424 		else
2425 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2426 				     parent_root->root_item.uuid);
2427 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2428 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2429 	}
2430 
2431 	ret = send_cmd(sctx);
2432 
2433 tlv_put_failure:
2434 out:
2435 	btrfs_free_path(path);
2436 	kfree(name);
2437 	return ret;
2438 }
2439 
2440 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2441 {
2442 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2443 	int ret = 0;
2444 	struct fs_path *p;
2445 
2446 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2447 
2448 	p = fs_path_alloc();
2449 	if (!p)
2450 		return -ENOMEM;
2451 
2452 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2453 	if (ret < 0)
2454 		goto out;
2455 
2456 	ret = get_cur_path(sctx, ino, gen, p);
2457 	if (ret < 0)
2458 		goto out;
2459 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2460 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2461 
2462 	ret = send_cmd(sctx);
2463 
2464 tlv_put_failure:
2465 out:
2466 	fs_path_free(p);
2467 	return ret;
2468 }
2469 
2470 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2471 {
2472 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2473 	int ret = 0;
2474 	struct fs_path *p;
2475 
2476 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2477 
2478 	p = fs_path_alloc();
2479 	if (!p)
2480 		return -ENOMEM;
2481 
2482 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2483 	if (ret < 0)
2484 		goto out;
2485 
2486 	ret = get_cur_path(sctx, ino, gen, p);
2487 	if (ret < 0)
2488 		goto out;
2489 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2490 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2491 
2492 	ret = send_cmd(sctx);
2493 
2494 tlv_put_failure:
2495 out:
2496 	fs_path_free(p);
2497 	return ret;
2498 }
2499 
2500 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2501 {
2502 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503 	int ret = 0;
2504 	struct fs_path *p;
2505 
2506 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2507 		    ino, uid, gid);
2508 
2509 	p = fs_path_alloc();
2510 	if (!p)
2511 		return -ENOMEM;
2512 
2513 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2514 	if (ret < 0)
2515 		goto out;
2516 
2517 	ret = get_cur_path(sctx, ino, gen, p);
2518 	if (ret < 0)
2519 		goto out;
2520 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2521 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2522 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2523 
2524 	ret = send_cmd(sctx);
2525 
2526 tlv_put_failure:
2527 out:
2528 	fs_path_free(p);
2529 	return ret;
2530 }
2531 
2532 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2533 {
2534 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2535 	int ret = 0;
2536 	struct fs_path *p = NULL;
2537 	struct btrfs_inode_item *ii;
2538 	struct btrfs_path *path = NULL;
2539 	struct extent_buffer *eb;
2540 	struct btrfs_key key;
2541 	int slot;
2542 
2543 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2544 
2545 	p = fs_path_alloc();
2546 	if (!p)
2547 		return -ENOMEM;
2548 
2549 	path = alloc_path_for_send();
2550 	if (!path) {
2551 		ret = -ENOMEM;
2552 		goto out;
2553 	}
2554 
2555 	key.objectid = ino;
2556 	key.type = BTRFS_INODE_ITEM_KEY;
2557 	key.offset = 0;
2558 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2559 	if (ret > 0)
2560 		ret = -ENOENT;
2561 	if (ret < 0)
2562 		goto out;
2563 
2564 	eb = path->nodes[0];
2565 	slot = path->slots[0];
2566 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2567 
2568 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2569 	if (ret < 0)
2570 		goto out;
2571 
2572 	ret = get_cur_path(sctx, ino, gen, p);
2573 	if (ret < 0)
2574 		goto out;
2575 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2576 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2577 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2578 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2579 	/* TODO Add otime support when the otime patches get into upstream */
2580 
2581 	ret = send_cmd(sctx);
2582 
2583 tlv_put_failure:
2584 out:
2585 	fs_path_free(p);
2586 	btrfs_free_path(path);
2587 	return ret;
2588 }
2589 
2590 /*
2591  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2592  * a valid path yet because we did not process the refs yet. So, the inode
2593  * is created as orphan.
2594  */
2595 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2596 {
2597 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2598 	int ret = 0;
2599 	struct fs_path *p;
2600 	int cmd;
2601 	u64 gen;
2602 	u64 mode;
2603 	u64 rdev;
2604 
2605 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2606 
2607 	p = fs_path_alloc();
2608 	if (!p)
2609 		return -ENOMEM;
2610 
2611 	if (ino != sctx->cur_ino) {
2612 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2613 				     NULL, NULL, &rdev);
2614 		if (ret < 0)
2615 			goto out;
2616 	} else {
2617 		gen = sctx->cur_inode_gen;
2618 		mode = sctx->cur_inode_mode;
2619 		rdev = sctx->cur_inode_rdev;
2620 	}
2621 
2622 	if (S_ISREG(mode)) {
2623 		cmd = BTRFS_SEND_C_MKFILE;
2624 	} else if (S_ISDIR(mode)) {
2625 		cmd = BTRFS_SEND_C_MKDIR;
2626 	} else if (S_ISLNK(mode)) {
2627 		cmd = BTRFS_SEND_C_SYMLINK;
2628 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2629 		cmd = BTRFS_SEND_C_MKNOD;
2630 	} else if (S_ISFIFO(mode)) {
2631 		cmd = BTRFS_SEND_C_MKFIFO;
2632 	} else if (S_ISSOCK(mode)) {
2633 		cmd = BTRFS_SEND_C_MKSOCK;
2634 	} else {
2635 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2636 				(int)(mode & S_IFMT));
2637 		ret = -EOPNOTSUPP;
2638 		goto out;
2639 	}
2640 
2641 	ret = begin_cmd(sctx, cmd);
2642 	if (ret < 0)
2643 		goto out;
2644 
2645 	ret = gen_unique_name(sctx, ino, gen, p);
2646 	if (ret < 0)
2647 		goto out;
2648 
2649 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2651 
2652 	if (S_ISLNK(mode)) {
2653 		fs_path_reset(p);
2654 		ret = read_symlink(sctx->send_root, ino, p);
2655 		if (ret < 0)
2656 			goto out;
2657 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2658 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2659 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2660 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2661 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2662 	}
2663 
2664 	ret = send_cmd(sctx);
2665 	if (ret < 0)
2666 		goto out;
2667 
2668 
2669 tlv_put_failure:
2670 out:
2671 	fs_path_free(p);
2672 	return ret;
2673 }
2674 
2675 /*
2676  * We need some special handling for inodes that get processed before the parent
2677  * directory got created. See process_recorded_refs for details.
2678  * This function does the check if we already created the dir out of order.
2679  */
2680 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2681 {
2682 	int ret = 0;
2683 	struct btrfs_path *path = NULL;
2684 	struct btrfs_key key;
2685 	struct btrfs_key found_key;
2686 	struct btrfs_key di_key;
2687 	struct extent_buffer *eb;
2688 	struct btrfs_dir_item *di;
2689 	int slot;
2690 
2691 	path = alloc_path_for_send();
2692 	if (!path) {
2693 		ret = -ENOMEM;
2694 		goto out;
2695 	}
2696 
2697 	key.objectid = dir;
2698 	key.type = BTRFS_DIR_INDEX_KEY;
2699 	key.offset = 0;
2700 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	while (1) {
2705 		eb = path->nodes[0];
2706 		slot = path->slots[0];
2707 		if (slot >= btrfs_header_nritems(eb)) {
2708 			ret = btrfs_next_leaf(sctx->send_root, path);
2709 			if (ret < 0) {
2710 				goto out;
2711 			} else if (ret > 0) {
2712 				ret = 0;
2713 				break;
2714 			}
2715 			continue;
2716 		}
2717 
2718 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2719 		if (found_key.objectid != key.objectid ||
2720 		    found_key.type != key.type) {
2721 			ret = 0;
2722 			goto out;
2723 		}
2724 
2725 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2726 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2727 
2728 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2729 		    di_key.objectid < sctx->send_progress) {
2730 			ret = 1;
2731 			goto out;
2732 		}
2733 
2734 		path->slots[0]++;
2735 	}
2736 
2737 out:
2738 	btrfs_free_path(path);
2739 	return ret;
2740 }
2741 
2742 /*
2743  * Only creates the inode if it is:
2744  * 1. Not a directory
2745  * 2. Or a directory which was not created already due to out of order
2746  *    directories. See did_create_dir and process_recorded_refs for details.
2747  */
2748 static int send_create_inode_if_needed(struct send_ctx *sctx)
2749 {
2750 	int ret;
2751 
2752 	if (S_ISDIR(sctx->cur_inode_mode)) {
2753 		ret = did_create_dir(sctx, sctx->cur_ino);
2754 		if (ret < 0)
2755 			return ret;
2756 		else if (ret > 0)
2757 			return 0;
2758 	}
2759 
2760 	return send_create_inode(sctx, sctx->cur_ino);
2761 }
2762 
2763 struct recorded_ref {
2764 	struct list_head list;
2765 	char *name;
2766 	struct fs_path *full_path;
2767 	u64 dir;
2768 	u64 dir_gen;
2769 	int name_len;
2770 };
2771 
2772 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2773 {
2774 	ref->full_path = path;
2775 	ref->name = (char *)kbasename(ref->full_path->start);
2776 	ref->name_len = ref->full_path->end - ref->name;
2777 }
2778 
2779 /*
2780  * We need to process new refs before deleted refs, but compare_tree gives us
2781  * everything mixed. So we first record all refs and later process them.
2782  * This function is a helper to record one ref.
2783  */
2784 static int __record_ref(struct list_head *head, u64 dir,
2785 		      u64 dir_gen, struct fs_path *path)
2786 {
2787 	struct recorded_ref *ref;
2788 
2789 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2790 	if (!ref)
2791 		return -ENOMEM;
2792 
2793 	ref->dir = dir;
2794 	ref->dir_gen = dir_gen;
2795 	set_ref_path(ref, path);
2796 	list_add_tail(&ref->list, head);
2797 	return 0;
2798 }
2799 
2800 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2801 {
2802 	struct recorded_ref *new;
2803 
2804 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2805 	if (!new)
2806 		return -ENOMEM;
2807 
2808 	new->dir = ref->dir;
2809 	new->dir_gen = ref->dir_gen;
2810 	new->full_path = NULL;
2811 	INIT_LIST_HEAD(&new->list);
2812 	list_add_tail(&new->list, list);
2813 	return 0;
2814 }
2815 
2816 static void __free_recorded_refs(struct list_head *head)
2817 {
2818 	struct recorded_ref *cur;
2819 
2820 	while (!list_empty(head)) {
2821 		cur = list_entry(head->next, struct recorded_ref, list);
2822 		fs_path_free(cur->full_path);
2823 		list_del(&cur->list);
2824 		kfree(cur);
2825 	}
2826 }
2827 
2828 static void free_recorded_refs(struct send_ctx *sctx)
2829 {
2830 	__free_recorded_refs(&sctx->new_refs);
2831 	__free_recorded_refs(&sctx->deleted_refs);
2832 }
2833 
2834 /*
2835  * Renames/moves a file/dir to its orphan name. Used when the first
2836  * ref of an unprocessed inode gets overwritten and for all non empty
2837  * directories.
2838  */
2839 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2840 			  struct fs_path *path)
2841 {
2842 	int ret;
2843 	struct fs_path *orphan;
2844 
2845 	orphan = fs_path_alloc();
2846 	if (!orphan)
2847 		return -ENOMEM;
2848 
2849 	ret = gen_unique_name(sctx, ino, gen, orphan);
2850 	if (ret < 0)
2851 		goto out;
2852 
2853 	ret = send_rename(sctx, path, orphan);
2854 
2855 out:
2856 	fs_path_free(orphan);
2857 	return ret;
2858 }
2859 
2860 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2861 						   u64 dir_ino, u64 dir_gen)
2862 {
2863 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2864 	struct rb_node *parent = NULL;
2865 	struct orphan_dir_info *entry, *odi;
2866 
2867 	while (*p) {
2868 		parent = *p;
2869 		entry = rb_entry(parent, struct orphan_dir_info, node);
2870 		if (dir_ino < entry->ino)
2871 			p = &(*p)->rb_left;
2872 		else if (dir_ino > entry->ino)
2873 			p = &(*p)->rb_right;
2874 		else if (dir_gen < entry->gen)
2875 			p = &(*p)->rb_left;
2876 		else if (dir_gen > entry->gen)
2877 			p = &(*p)->rb_right;
2878 		else
2879 			return entry;
2880 	}
2881 
2882 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2883 	if (!odi)
2884 		return ERR_PTR(-ENOMEM);
2885 	odi->ino = dir_ino;
2886 	odi->gen = dir_gen;
2887 	odi->last_dir_index_offset = 0;
2888 
2889 	rb_link_node(&odi->node, parent, p);
2890 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2891 	return odi;
2892 }
2893 
2894 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2895 						   u64 dir_ino, u64 gen)
2896 {
2897 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2898 	struct orphan_dir_info *entry;
2899 
2900 	while (n) {
2901 		entry = rb_entry(n, struct orphan_dir_info, node);
2902 		if (dir_ino < entry->ino)
2903 			n = n->rb_left;
2904 		else if (dir_ino > entry->ino)
2905 			n = n->rb_right;
2906 		else if (gen < entry->gen)
2907 			n = n->rb_left;
2908 		else if (gen > entry->gen)
2909 			n = n->rb_right;
2910 		else
2911 			return entry;
2912 	}
2913 	return NULL;
2914 }
2915 
2916 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2917 {
2918 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2919 
2920 	return odi != NULL;
2921 }
2922 
2923 static void free_orphan_dir_info(struct send_ctx *sctx,
2924 				 struct orphan_dir_info *odi)
2925 {
2926 	if (!odi)
2927 		return;
2928 	rb_erase(&odi->node, &sctx->orphan_dirs);
2929 	kfree(odi);
2930 }
2931 
2932 /*
2933  * Returns 1 if a directory can be removed at this point in time.
2934  * We check this by iterating all dir items and checking if the inode behind
2935  * the dir item was already processed.
2936  */
2937 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2938 		     u64 send_progress)
2939 {
2940 	int ret = 0;
2941 	struct btrfs_root *root = sctx->parent_root;
2942 	struct btrfs_path *path;
2943 	struct btrfs_key key;
2944 	struct btrfs_key found_key;
2945 	struct btrfs_key loc;
2946 	struct btrfs_dir_item *di;
2947 	struct orphan_dir_info *odi = NULL;
2948 
2949 	/*
2950 	 * Don't try to rmdir the top/root subvolume dir.
2951 	 */
2952 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2953 		return 0;
2954 
2955 	path = alloc_path_for_send();
2956 	if (!path)
2957 		return -ENOMEM;
2958 
2959 	key.objectid = dir;
2960 	key.type = BTRFS_DIR_INDEX_KEY;
2961 	key.offset = 0;
2962 
2963 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2964 	if (odi)
2965 		key.offset = odi->last_dir_index_offset;
2966 
2967 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2968 	if (ret < 0)
2969 		goto out;
2970 
2971 	while (1) {
2972 		struct waiting_dir_move *dm;
2973 
2974 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2975 			ret = btrfs_next_leaf(root, path);
2976 			if (ret < 0)
2977 				goto out;
2978 			else if (ret > 0)
2979 				break;
2980 			continue;
2981 		}
2982 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2983 				      path->slots[0]);
2984 		if (found_key.objectid != key.objectid ||
2985 		    found_key.type != key.type)
2986 			break;
2987 
2988 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2989 				struct btrfs_dir_item);
2990 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2991 
2992 		dm = get_waiting_dir_move(sctx, loc.objectid);
2993 		if (dm) {
2994 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2995 			if (IS_ERR(odi)) {
2996 				ret = PTR_ERR(odi);
2997 				goto out;
2998 			}
2999 			odi->gen = dir_gen;
3000 			odi->last_dir_index_offset = found_key.offset;
3001 			dm->rmdir_ino = dir;
3002 			dm->rmdir_gen = dir_gen;
3003 			ret = 0;
3004 			goto out;
3005 		}
3006 
3007 		if (loc.objectid > send_progress) {
3008 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
3009 			if (IS_ERR(odi)) {
3010 				ret = PTR_ERR(odi);
3011 				goto out;
3012 			}
3013 			odi->gen = dir_gen;
3014 			odi->last_dir_index_offset = found_key.offset;
3015 			ret = 0;
3016 			goto out;
3017 		}
3018 
3019 		path->slots[0]++;
3020 	}
3021 	free_orphan_dir_info(sctx, odi);
3022 
3023 	ret = 1;
3024 
3025 out:
3026 	btrfs_free_path(path);
3027 	return ret;
3028 }
3029 
3030 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3031 {
3032 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3033 
3034 	return entry != NULL;
3035 }
3036 
3037 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3038 {
3039 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3040 	struct rb_node *parent = NULL;
3041 	struct waiting_dir_move *entry, *dm;
3042 
3043 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3044 	if (!dm)
3045 		return -ENOMEM;
3046 	dm->ino = ino;
3047 	dm->rmdir_ino = 0;
3048 	dm->rmdir_gen = 0;
3049 	dm->orphanized = orphanized;
3050 
3051 	while (*p) {
3052 		parent = *p;
3053 		entry = rb_entry(parent, struct waiting_dir_move, node);
3054 		if (ino < entry->ino) {
3055 			p = &(*p)->rb_left;
3056 		} else if (ino > entry->ino) {
3057 			p = &(*p)->rb_right;
3058 		} else {
3059 			kfree(dm);
3060 			return -EEXIST;
3061 		}
3062 	}
3063 
3064 	rb_link_node(&dm->node, parent, p);
3065 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3066 	return 0;
3067 }
3068 
3069 static struct waiting_dir_move *
3070 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3071 {
3072 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3073 	struct waiting_dir_move *entry;
3074 
3075 	while (n) {
3076 		entry = rb_entry(n, struct waiting_dir_move, node);
3077 		if (ino < entry->ino)
3078 			n = n->rb_left;
3079 		else if (ino > entry->ino)
3080 			n = n->rb_right;
3081 		else
3082 			return entry;
3083 	}
3084 	return NULL;
3085 }
3086 
3087 static void free_waiting_dir_move(struct send_ctx *sctx,
3088 				  struct waiting_dir_move *dm)
3089 {
3090 	if (!dm)
3091 		return;
3092 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3093 	kfree(dm);
3094 }
3095 
3096 static int add_pending_dir_move(struct send_ctx *sctx,
3097 				u64 ino,
3098 				u64 ino_gen,
3099 				u64 parent_ino,
3100 				struct list_head *new_refs,
3101 				struct list_head *deleted_refs,
3102 				const bool is_orphan)
3103 {
3104 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3105 	struct rb_node *parent = NULL;
3106 	struct pending_dir_move *entry = NULL, *pm;
3107 	struct recorded_ref *cur;
3108 	int exists = 0;
3109 	int ret;
3110 
3111 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3112 	if (!pm)
3113 		return -ENOMEM;
3114 	pm->parent_ino = parent_ino;
3115 	pm->ino = ino;
3116 	pm->gen = ino_gen;
3117 	INIT_LIST_HEAD(&pm->list);
3118 	INIT_LIST_HEAD(&pm->update_refs);
3119 	RB_CLEAR_NODE(&pm->node);
3120 
3121 	while (*p) {
3122 		parent = *p;
3123 		entry = rb_entry(parent, struct pending_dir_move, node);
3124 		if (parent_ino < entry->parent_ino) {
3125 			p = &(*p)->rb_left;
3126 		} else if (parent_ino > entry->parent_ino) {
3127 			p = &(*p)->rb_right;
3128 		} else {
3129 			exists = 1;
3130 			break;
3131 		}
3132 	}
3133 
3134 	list_for_each_entry(cur, deleted_refs, list) {
3135 		ret = dup_ref(cur, &pm->update_refs);
3136 		if (ret < 0)
3137 			goto out;
3138 	}
3139 	list_for_each_entry(cur, new_refs, list) {
3140 		ret = dup_ref(cur, &pm->update_refs);
3141 		if (ret < 0)
3142 			goto out;
3143 	}
3144 
3145 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3146 	if (ret)
3147 		goto out;
3148 
3149 	if (exists) {
3150 		list_add_tail(&pm->list, &entry->list);
3151 	} else {
3152 		rb_link_node(&pm->node, parent, p);
3153 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3154 	}
3155 	ret = 0;
3156 out:
3157 	if (ret) {
3158 		__free_recorded_refs(&pm->update_refs);
3159 		kfree(pm);
3160 	}
3161 	return ret;
3162 }
3163 
3164 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3165 						      u64 parent_ino)
3166 {
3167 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3168 	struct pending_dir_move *entry;
3169 
3170 	while (n) {
3171 		entry = rb_entry(n, struct pending_dir_move, node);
3172 		if (parent_ino < entry->parent_ino)
3173 			n = n->rb_left;
3174 		else if (parent_ino > entry->parent_ino)
3175 			n = n->rb_right;
3176 		else
3177 			return entry;
3178 	}
3179 	return NULL;
3180 }
3181 
3182 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3183 		     u64 ino, u64 gen, u64 *ancestor_ino)
3184 {
3185 	int ret = 0;
3186 	u64 parent_inode = 0;
3187 	u64 parent_gen = 0;
3188 	u64 start_ino = ino;
3189 
3190 	*ancestor_ino = 0;
3191 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3192 		fs_path_reset(name);
3193 
3194 		if (is_waiting_for_rm(sctx, ino, gen))
3195 			break;
3196 		if (is_waiting_for_move(sctx, ino)) {
3197 			if (*ancestor_ino == 0)
3198 				*ancestor_ino = ino;
3199 			ret = get_first_ref(sctx->parent_root, ino,
3200 					    &parent_inode, &parent_gen, name);
3201 		} else {
3202 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3203 							&parent_inode,
3204 							&parent_gen, name);
3205 			if (ret > 0) {
3206 				ret = 0;
3207 				break;
3208 			}
3209 		}
3210 		if (ret < 0)
3211 			break;
3212 		if (parent_inode == start_ino) {
3213 			ret = 1;
3214 			if (*ancestor_ino == 0)
3215 				*ancestor_ino = ino;
3216 			break;
3217 		}
3218 		ino = parent_inode;
3219 		gen = parent_gen;
3220 	}
3221 	return ret;
3222 }
3223 
3224 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3225 {
3226 	struct fs_path *from_path = NULL;
3227 	struct fs_path *to_path = NULL;
3228 	struct fs_path *name = NULL;
3229 	u64 orig_progress = sctx->send_progress;
3230 	struct recorded_ref *cur;
3231 	u64 parent_ino, parent_gen;
3232 	struct waiting_dir_move *dm = NULL;
3233 	u64 rmdir_ino = 0;
3234 	u64 rmdir_gen;
3235 	u64 ancestor;
3236 	bool is_orphan;
3237 	int ret;
3238 
3239 	name = fs_path_alloc();
3240 	from_path = fs_path_alloc();
3241 	if (!name || !from_path) {
3242 		ret = -ENOMEM;
3243 		goto out;
3244 	}
3245 
3246 	dm = get_waiting_dir_move(sctx, pm->ino);
3247 	ASSERT(dm);
3248 	rmdir_ino = dm->rmdir_ino;
3249 	rmdir_gen = dm->rmdir_gen;
3250 	is_orphan = dm->orphanized;
3251 	free_waiting_dir_move(sctx, dm);
3252 
3253 	if (is_orphan) {
3254 		ret = gen_unique_name(sctx, pm->ino,
3255 				      pm->gen, from_path);
3256 	} else {
3257 		ret = get_first_ref(sctx->parent_root, pm->ino,
3258 				    &parent_ino, &parent_gen, name);
3259 		if (ret < 0)
3260 			goto out;
3261 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3262 				   from_path);
3263 		if (ret < 0)
3264 			goto out;
3265 		ret = fs_path_add_path(from_path, name);
3266 	}
3267 	if (ret < 0)
3268 		goto out;
3269 
3270 	sctx->send_progress = sctx->cur_ino + 1;
3271 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3272 	if (ret < 0)
3273 		goto out;
3274 	if (ret) {
3275 		LIST_HEAD(deleted_refs);
3276 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3277 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3278 					   &pm->update_refs, &deleted_refs,
3279 					   is_orphan);
3280 		if (ret < 0)
3281 			goto out;
3282 		if (rmdir_ino) {
3283 			dm = get_waiting_dir_move(sctx, pm->ino);
3284 			ASSERT(dm);
3285 			dm->rmdir_ino = rmdir_ino;
3286 			dm->rmdir_gen = rmdir_gen;
3287 		}
3288 		goto out;
3289 	}
3290 	fs_path_reset(name);
3291 	to_path = name;
3292 	name = NULL;
3293 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3294 	if (ret < 0)
3295 		goto out;
3296 
3297 	ret = send_rename(sctx, from_path, to_path);
3298 	if (ret < 0)
3299 		goto out;
3300 
3301 	if (rmdir_ino) {
3302 		struct orphan_dir_info *odi;
3303 		u64 gen;
3304 
3305 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3306 		if (!odi) {
3307 			/* already deleted */
3308 			goto finish;
3309 		}
3310 		gen = odi->gen;
3311 
3312 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3313 		if (ret < 0)
3314 			goto out;
3315 		if (!ret)
3316 			goto finish;
3317 
3318 		name = fs_path_alloc();
3319 		if (!name) {
3320 			ret = -ENOMEM;
3321 			goto out;
3322 		}
3323 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3324 		if (ret < 0)
3325 			goto out;
3326 		ret = send_rmdir(sctx, name);
3327 		if (ret < 0)
3328 			goto out;
3329 	}
3330 
3331 finish:
3332 	ret = send_utimes(sctx, pm->ino, pm->gen);
3333 	if (ret < 0)
3334 		goto out;
3335 
3336 	/*
3337 	 * After rename/move, need to update the utimes of both new parent(s)
3338 	 * and old parent(s).
3339 	 */
3340 	list_for_each_entry(cur, &pm->update_refs, list) {
3341 		/*
3342 		 * The parent inode might have been deleted in the send snapshot
3343 		 */
3344 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3345 				     NULL, NULL, NULL, NULL, NULL);
3346 		if (ret == -ENOENT) {
3347 			ret = 0;
3348 			continue;
3349 		}
3350 		if (ret < 0)
3351 			goto out;
3352 
3353 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3354 		if (ret < 0)
3355 			goto out;
3356 	}
3357 
3358 out:
3359 	fs_path_free(name);
3360 	fs_path_free(from_path);
3361 	fs_path_free(to_path);
3362 	sctx->send_progress = orig_progress;
3363 
3364 	return ret;
3365 }
3366 
3367 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3368 {
3369 	if (!list_empty(&m->list))
3370 		list_del(&m->list);
3371 	if (!RB_EMPTY_NODE(&m->node))
3372 		rb_erase(&m->node, &sctx->pending_dir_moves);
3373 	__free_recorded_refs(&m->update_refs);
3374 	kfree(m);
3375 }
3376 
3377 static void tail_append_pending_moves(struct send_ctx *sctx,
3378 				      struct pending_dir_move *moves,
3379 				      struct list_head *stack)
3380 {
3381 	if (list_empty(&moves->list)) {
3382 		list_add_tail(&moves->list, stack);
3383 	} else {
3384 		LIST_HEAD(list);
3385 		list_splice_init(&moves->list, &list);
3386 		list_add_tail(&moves->list, stack);
3387 		list_splice_tail(&list, stack);
3388 	}
3389 	if (!RB_EMPTY_NODE(&moves->node)) {
3390 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3391 		RB_CLEAR_NODE(&moves->node);
3392 	}
3393 }
3394 
3395 static int apply_children_dir_moves(struct send_ctx *sctx)
3396 {
3397 	struct pending_dir_move *pm;
3398 	struct list_head stack;
3399 	u64 parent_ino = sctx->cur_ino;
3400 	int ret = 0;
3401 
3402 	pm = get_pending_dir_moves(sctx, parent_ino);
3403 	if (!pm)
3404 		return 0;
3405 
3406 	INIT_LIST_HEAD(&stack);
3407 	tail_append_pending_moves(sctx, pm, &stack);
3408 
3409 	while (!list_empty(&stack)) {
3410 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3411 		parent_ino = pm->ino;
3412 		ret = apply_dir_move(sctx, pm);
3413 		free_pending_move(sctx, pm);
3414 		if (ret)
3415 			goto out;
3416 		pm = get_pending_dir_moves(sctx, parent_ino);
3417 		if (pm)
3418 			tail_append_pending_moves(sctx, pm, &stack);
3419 	}
3420 	return 0;
3421 
3422 out:
3423 	while (!list_empty(&stack)) {
3424 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3425 		free_pending_move(sctx, pm);
3426 	}
3427 	return ret;
3428 }
3429 
3430 /*
3431  * We might need to delay a directory rename even when no ancestor directory
3432  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3433  * renamed. This happens when we rename a directory to the old name (the name
3434  * in the parent root) of some other unrelated directory that got its rename
3435  * delayed due to some ancestor with higher number that got renamed.
3436  *
3437  * Example:
3438  *
3439  * Parent snapshot:
3440  * .                                       (ino 256)
3441  * |---- a/                                (ino 257)
3442  * |     |---- file                        (ino 260)
3443  * |
3444  * |---- b/                                (ino 258)
3445  * |---- c/                                (ino 259)
3446  *
3447  * Send snapshot:
3448  * .                                       (ino 256)
3449  * |---- a/                                (ino 258)
3450  * |---- x/                                (ino 259)
3451  *       |---- y/                          (ino 257)
3452  *             |----- file                 (ino 260)
3453  *
3454  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3455  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3456  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3457  * must issue is:
3458  *
3459  * 1 - rename 259 from 'c' to 'x'
3460  * 2 - rename 257 from 'a' to 'x/y'
3461  * 3 - rename 258 from 'b' to 'a'
3462  *
3463  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3464  * be done right away and < 0 on error.
3465  */
3466 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3467 				  struct recorded_ref *parent_ref,
3468 				  const bool is_orphan)
3469 {
3470 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3471 	struct btrfs_path *path;
3472 	struct btrfs_key key;
3473 	struct btrfs_key di_key;
3474 	struct btrfs_dir_item *di;
3475 	u64 left_gen;
3476 	u64 right_gen;
3477 	int ret = 0;
3478 	struct waiting_dir_move *wdm;
3479 
3480 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3481 		return 0;
3482 
3483 	path = alloc_path_for_send();
3484 	if (!path)
3485 		return -ENOMEM;
3486 
3487 	key.objectid = parent_ref->dir;
3488 	key.type = BTRFS_DIR_ITEM_KEY;
3489 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3490 
3491 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3492 	if (ret < 0) {
3493 		goto out;
3494 	} else if (ret > 0) {
3495 		ret = 0;
3496 		goto out;
3497 	}
3498 
3499 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3500 				       parent_ref->name_len);
3501 	if (!di) {
3502 		ret = 0;
3503 		goto out;
3504 	}
3505 	/*
3506 	 * di_key.objectid has the number of the inode that has a dentry in the
3507 	 * parent directory with the same name that sctx->cur_ino is being
3508 	 * renamed to. We need to check if that inode is in the send root as
3509 	 * well and if it is currently marked as an inode with a pending rename,
3510 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3511 	 * that it happens after that other inode is renamed.
3512 	 */
3513 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3514 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3515 		ret = 0;
3516 		goto out;
3517 	}
3518 
3519 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3520 			     &left_gen, NULL, NULL, NULL, NULL);
3521 	if (ret < 0)
3522 		goto out;
3523 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3524 			     &right_gen, NULL, NULL, NULL, NULL);
3525 	if (ret < 0) {
3526 		if (ret == -ENOENT)
3527 			ret = 0;
3528 		goto out;
3529 	}
3530 
3531 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3532 	if (right_gen != left_gen) {
3533 		ret = 0;
3534 		goto out;
3535 	}
3536 
3537 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3538 	if (wdm && !wdm->orphanized) {
3539 		ret = add_pending_dir_move(sctx,
3540 					   sctx->cur_ino,
3541 					   sctx->cur_inode_gen,
3542 					   di_key.objectid,
3543 					   &sctx->new_refs,
3544 					   &sctx->deleted_refs,
3545 					   is_orphan);
3546 		if (!ret)
3547 			ret = 1;
3548 	}
3549 out:
3550 	btrfs_free_path(path);
3551 	return ret;
3552 }
3553 
3554 /*
3555  * Check if inode ino2, or any of its ancestors, is inode ino1.
3556  * Return 1 if true, 0 if false and < 0 on error.
3557  */
3558 static int check_ino_in_path(struct btrfs_root *root,
3559 			     const u64 ino1,
3560 			     const u64 ino1_gen,
3561 			     const u64 ino2,
3562 			     const u64 ino2_gen,
3563 			     struct fs_path *fs_path)
3564 {
3565 	u64 ino = ino2;
3566 
3567 	if (ino1 == ino2)
3568 		return ino1_gen == ino2_gen;
3569 
3570 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3571 		u64 parent;
3572 		u64 parent_gen;
3573 		int ret;
3574 
3575 		fs_path_reset(fs_path);
3576 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3577 		if (ret < 0)
3578 			return ret;
3579 		if (parent == ino1)
3580 			return parent_gen == ino1_gen;
3581 		ino = parent;
3582 	}
3583 	return 0;
3584 }
3585 
3586 /*
3587  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3588  * possible path (in case ino2 is not a directory and has multiple hard links).
3589  * Return 1 if true, 0 if false and < 0 on error.
3590  */
3591 static int is_ancestor(struct btrfs_root *root,
3592 		       const u64 ino1,
3593 		       const u64 ino1_gen,
3594 		       const u64 ino2,
3595 		       struct fs_path *fs_path)
3596 {
3597 	bool free_fs_path = false;
3598 	int ret = 0;
3599 	struct btrfs_path *path = NULL;
3600 	struct btrfs_key key;
3601 
3602 	if (!fs_path) {
3603 		fs_path = fs_path_alloc();
3604 		if (!fs_path)
3605 			return -ENOMEM;
3606 		free_fs_path = true;
3607 	}
3608 
3609 	path = alloc_path_for_send();
3610 	if (!path) {
3611 		ret = -ENOMEM;
3612 		goto out;
3613 	}
3614 
3615 	key.objectid = ino2;
3616 	key.type = BTRFS_INODE_REF_KEY;
3617 	key.offset = 0;
3618 
3619 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620 	if (ret < 0)
3621 		goto out;
3622 
3623 	while (true) {
3624 		struct extent_buffer *leaf = path->nodes[0];
3625 		int slot = path->slots[0];
3626 		u32 cur_offset = 0;
3627 		u32 item_size;
3628 
3629 		if (slot >= btrfs_header_nritems(leaf)) {
3630 			ret = btrfs_next_leaf(root, path);
3631 			if (ret < 0)
3632 				goto out;
3633 			if (ret > 0)
3634 				break;
3635 			continue;
3636 		}
3637 
3638 		btrfs_item_key_to_cpu(leaf, &key, slot);
3639 		if (key.objectid != ino2)
3640 			break;
3641 		if (key.type != BTRFS_INODE_REF_KEY &&
3642 		    key.type != BTRFS_INODE_EXTREF_KEY)
3643 			break;
3644 
3645 		item_size = btrfs_item_size(leaf, slot);
3646 		while (cur_offset < item_size) {
3647 			u64 parent;
3648 			u64 parent_gen;
3649 
3650 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3651 				unsigned long ptr;
3652 				struct btrfs_inode_extref *extref;
3653 
3654 				ptr = btrfs_item_ptr_offset(leaf, slot);
3655 				extref = (struct btrfs_inode_extref *)
3656 					(ptr + cur_offset);
3657 				parent = btrfs_inode_extref_parent(leaf,
3658 								   extref);
3659 				cur_offset += sizeof(*extref);
3660 				cur_offset += btrfs_inode_extref_name_len(leaf,
3661 								  extref);
3662 			} else {
3663 				parent = key.offset;
3664 				cur_offset = item_size;
3665 			}
3666 
3667 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3668 					     NULL, NULL, NULL, NULL);
3669 			if (ret < 0)
3670 				goto out;
3671 			ret = check_ino_in_path(root, ino1, ino1_gen,
3672 						parent, parent_gen, fs_path);
3673 			if (ret)
3674 				goto out;
3675 		}
3676 		path->slots[0]++;
3677 	}
3678 	ret = 0;
3679  out:
3680 	btrfs_free_path(path);
3681 	if (free_fs_path)
3682 		fs_path_free(fs_path);
3683 	return ret;
3684 }
3685 
3686 static int wait_for_parent_move(struct send_ctx *sctx,
3687 				struct recorded_ref *parent_ref,
3688 				const bool is_orphan)
3689 {
3690 	int ret = 0;
3691 	u64 ino = parent_ref->dir;
3692 	u64 ino_gen = parent_ref->dir_gen;
3693 	u64 parent_ino_before, parent_ino_after;
3694 	struct fs_path *path_before = NULL;
3695 	struct fs_path *path_after = NULL;
3696 	int len1, len2;
3697 
3698 	path_after = fs_path_alloc();
3699 	path_before = fs_path_alloc();
3700 	if (!path_after || !path_before) {
3701 		ret = -ENOMEM;
3702 		goto out;
3703 	}
3704 
3705 	/*
3706 	 * Our current directory inode may not yet be renamed/moved because some
3707 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3708 	 * such ancestor exists and make sure our own rename/move happens after
3709 	 * that ancestor is processed to avoid path build infinite loops (done
3710 	 * at get_cur_path()).
3711 	 */
3712 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3713 		u64 parent_ino_after_gen;
3714 
3715 		if (is_waiting_for_move(sctx, ino)) {
3716 			/*
3717 			 * If the current inode is an ancestor of ino in the
3718 			 * parent root, we need to delay the rename of the
3719 			 * current inode, otherwise don't delayed the rename
3720 			 * because we can end up with a circular dependency
3721 			 * of renames, resulting in some directories never
3722 			 * getting the respective rename operations issued in
3723 			 * the send stream or getting into infinite path build
3724 			 * loops.
3725 			 */
3726 			ret = is_ancestor(sctx->parent_root,
3727 					  sctx->cur_ino, sctx->cur_inode_gen,
3728 					  ino, path_before);
3729 			if (ret)
3730 				break;
3731 		}
3732 
3733 		fs_path_reset(path_before);
3734 		fs_path_reset(path_after);
3735 
3736 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3737 				    &parent_ino_after_gen, path_after);
3738 		if (ret < 0)
3739 			goto out;
3740 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3741 				    NULL, path_before);
3742 		if (ret < 0 && ret != -ENOENT) {
3743 			goto out;
3744 		} else if (ret == -ENOENT) {
3745 			ret = 0;
3746 			break;
3747 		}
3748 
3749 		len1 = fs_path_len(path_before);
3750 		len2 = fs_path_len(path_after);
3751 		if (ino > sctx->cur_ino &&
3752 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3753 		     memcmp(path_before->start, path_after->start, len1))) {
3754 			u64 parent_ino_gen;
3755 
3756 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3757 					     &parent_ino_gen, NULL, NULL, NULL,
3758 					     NULL);
3759 			if (ret < 0)
3760 				goto out;
3761 			if (ino_gen == parent_ino_gen) {
3762 				ret = 1;
3763 				break;
3764 			}
3765 		}
3766 		ino = parent_ino_after;
3767 		ino_gen = parent_ino_after_gen;
3768 	}
3769 
3770 out:
3771 	fs_path_free(path_before);
3772 	fs_path_free(path_after);
3773 
3774 	if (ret == 1) {
3775 		ret = add_pending_dir_move(sctx,
3776 					   sctx->cur_ino,
3777 					   sctx->cur_inode_gen,
3778 					   ino,
3779 					   &sctx->new_refs,
3780 					   &sctx->deleted_refs,
3781 					   is_orphan);
3782 		if (!ret)
3783 			ret = 1;
3784 	}
3785 
3786 	return ret;
3787 }
3788 
3789 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3790 {
3791 	int ret;
3792 	struct fs_path *new_path;
3793 
3794 	/*
3795 	 * Our reference's name member points to its full_path member string, so
3796 	 * we use here a new path.
3797 	 */
3798 	new_path = fs_path_alloc();
3799 	if (!new_path)
3800 		return -ENOMEM;
3801 
3802 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3803 	if (ret < 0) {
3804 		fs_path_free(new_path);
3805 		return ret;
3806 	}
3807 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3808 	if (ret < 0) {
3809 		fs_path_free(new_path);
3810 		return ret;
3811 	}
3812 
3813 	fs_path_free(ref->full_path);
3814 	set_ref_path(ref, new_path);
3815 
3816 	return 0;
3817 }
3818 
3819 /*
3820  * When processing the new references for an inode we may orphanize an existing
3821  * directory inode because its old name conflicts with one of the new references
3822  * of the current inode. Later, when processing another new reference of our
3823  * inode, we might need to orphanize another inode, but the path we have in the
3824  * reference reflects the pre-orphanization name of the directory we previously
3825  * orphanized. For example:
3826  *
3827  * parent snapshot looks like:
3828  *
3829  * .                                     (ino 256)
3830  * |----- f1                             (ino 257)
3831  * |----- f2                             (ino 258)
3832  * |----- d1/                            (ino 259)
3833  *        |----- d2/                     (ino 260)
3834  *
3835  * send snapshot looks like:
3836  *
3837  * .                                     (ino 256)
3838  * |----- d1                             (ino 258)
3839  * |----- f2/                            (ino 259)
3840  *        |----- f2_link/                (ino 260)
3841  *        |       |----- f1              (ino 257)
3842  *        |
3843  *        |----- d2                      (ino 258)
3844  *
3845  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3846  * cache it in the name cache. Later when we start processing inode 258, when
3847  * collecting all its new references we set a full path of "d1/d2" for its new
3848  * reference with name "d2". When we start processing the new references we
3849  * start by processing the new reference with name "d1", and this results in
3850  * orphanizing inode 259, since its old reference causes a conflict. Then we
3851  * move on the next new reference, with name "d2", and we find out we must
3852  * orphanize inode 260, as its old reference conflicts with ours - but for the
3853  * orphanization we use a source path corresponding to the path we stored in the
3854  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3855  * receiver fail since the path component "d1/" no longer exists, it was renamed
3856  * to "o259-6-0/" when processing the previous new reference. So in this case we
3857  * must recompute the path in the new reference and use it for the new
3858  * orphanization operation.
3859  */
3860 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3861 {
3862 	char *name;
3863 	int ret;
3864 
3865 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3866 	if (!name)
3867 		return -ENOMEM;
3868 
3869 	fs_path_reset(ref->full_path);
3870 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3871 	if (ret < 0)
3872 		goto out;
3873 
3874 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3875 	if (ret < 0)
3876 		goto out;
3877 
3878 	/* Update the reference's base name pointer. */
3879 	set_ref_path(ref, ref->full_path);
3880 out:
3881 	kfree(name);
3882 	return ret;
3883 }
3884 
3885 /*
3886  * This does all the move/link/unlink/rmdir magic.
3887  */
3888 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3889 {
3890 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3891 	int ret = 0;
3892 	struct recorded_ref *cur;
3893 	struct recorded_ref *cur2;
3894 	struct list_head check_dirs;
3895 	struct fs_path *valid_path = NULL;
3896 	u64 ow_inode = 0;
3897 	u64 ow_gen;
3898 	u64 ow_mode;
3899 	int did_overwrite = 0;
3900 	int is_orphan = 0;
3901 	u64 last_dir_ino_rm = 0;
3902 	bool can_rename = true;
3903 	bool orphanized_dir = false;
3904 	bool orphanized_ancestor = false;
3905 
3906 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3907 
3908 	/*
3909 	 * This should never happen as the root dir always has the same ref
3910 	 * which is always '..'
3911 	 */
3912 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3913 	INIT_LIST_HEAD(&check_dirs);
3914 
3915 	valid_path = fs_path_alloc();
3916 	if (!valid_path) {
3917 		ret = -ENOMEM;
3918 		goto out;
3919 	}
3920 
3921 	/*
3922 	 * First, check if the first ref of the current inode was overwritten
3923 	 * before. If yes, we know that the current inode was already orphanized
3924 	 * and thus use the orphan name. If not, we can use get_cur_path to
3925 	 * get the path of the first ref as it would like while receiving at
3926 	 * this point in time.
3927 	 * New inodes are always orphan at the beginning, so force to use the
3928 	 * orphan name in this case.
3929 	 * The first ref is stored in valid_path and will be updated if it
3930 	 * gets moved around.
3931 	 */
3932 	if (!sctx->cur_inode_new) {
3933 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3934 				sctx->cur_inode_gen);
3935 		if (ret < 0)
3936 			goto out;
3937 		if (ret)
3938 			did_overwrite = 1;
3939 	}
3940 	if (sctx->cur_inode_new || did_overwrite) {
3941 		ret = gen_unique_name(sctx, sctx->cur_ino,
3942 				sctx->cur_inode_gen, valid_path);
3943 		if (ret < 0)
3944 			goto out;
3945 		is_orphan = 1;
3946 	} else {
3947 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3948 				valid_path);
3949 		if (ret < 0)
3950 			goto out;
3951 	}
3952 
3953 	/*
3954 	 * Before doing any rename and link operations, do a first pass on the
3955 	 * new references to orphanize any unprocessed inodes that may have a
3956 	 * reference that conflicts with one of the new references of the current
3957 	 * inode. This needs to happen first because a new reference may conflict
3958 	 * with the old reference of a parent directory, so we must make sure
3959 	 * that the path used for link and rename commands don't use an
3960 	 * orphanized name when an ancestor was not yet orphanized.
3961 	 *
3962 	 * Example:
3963 	 *
3964 	 * Parent snapshot:
3965 	 *
3966 	 * .                                                      (ino 256)
3967 	 * |----- testdir/                                        (ino 259)
3968 	 * |          |----- a                                    (ino 257)
3969 	 * |
3970 	 * |----- b                                               (ino 258)
3971 	 *
3972 	 * Send snapshot:
3973 	 *
3974 	 * .                                                      (ino 256)
3975 	 * |----- testdir_2/                                      (ino 259)
3976 	 * |          |----- a                                    (ino 260)
3977 	 * |
3978 	 * |----- testdir                                         (ino 257)
3979 	 * |----- b                                               (ino 257)
3980 	 * |----- b2                                              (ino 258)
3981 	 *
3982 	 * Processing the new reference for inode 257 with name "b" may happen
3983 	 * before processing the new reference with name "testdir". If so, we
3984 	 * must make sure that by the time we send a link command to create the
3985 	 * hard link "b", inode 259 was already orphanized, since the generated
3986 	 * path in "valid_path" already contains the orphanized name for 259.
3987 	 * We are processing inode 257, so only later when processing 259 we do
3988 	 * the rename operation to change its temporary (orphanized) name to
3989 	 * "testdir_2".
3990 	 */
3991 	list_for_each_entry(cur, &sctx->new_refs, list) {
3992 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3993 		if (ret < 0)
3994 			goto out;
3995 		if (ret == inode_state_will_create)
3996 			continue;
3997 
3998 		/*
3999 		 * Check if this new ref would overwrite the first ref of another
4000 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4001 		 * If we find an overwritten ref that is not the first ref,
4002 		 * simply unlink it.
4003 		 */
4004 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4005 				cur->name, cur->name_len,
4006 				&ow_inode, &ow_gen, &ow_mode);
4007 		if (ret < 0)
4008 			goto out;
4009 		if (ret) {
4010 			ret = is_first_ref(sctx->parent_root,
4011 					   ow_inode, cur->dir, cur->name,
4012 					   cur->name_len);
4013 			if (ret < 0)
4014 				goto out;
4015 			if (ret) {
4016 				struct name_cache_entry *nce;
4017 				struct waiting_dir_move *wdm;
4018 
4019 				if (orphanized_dir) {
4020 					ret = refresh_ref_path(sctx, cur);
4021 					if (ret < 0)
4022 						goto out;
4023 				}
4024 
4025 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4026 						cur->full_path);
4027 				if (ret < 0)
4028 					goto out;
4029 				if (S_ISDIR(ow_mode))
4030 					orphanized_dir = true;
4031 
4032 				/*
4033 				 * If ow_inode has its rename operation delayed
4034 				 * make sure that its orphanized name is used in
4035 				 * the source path when performing its rename
4036 				 * operation.
4037 				 */
4038 				if (is_waiting_for_move(sctx, ow_inode)) {
4039 					wdm = get_waiting_dir_move(sctx,
4040 								   ow_inode);
4041 					ASSERT(wdm);
4042 					wdm->orphanized = true;
4043 				}
4044 
4045 				/*
4046 				 * Make sure we clear our orphanized inode's
4047 				 * name from the name cache. This is because the
4048 				 * inode ow_inode might be an ancestor of some
4049 				 * other inode that will be orphanized as well
4050 				 * later and has an inode number greater than
4051 				 * sctx->send_progress. We need to prevent
4052 				 * future name lookups from using the old name
4053 				 * and get instead the orphan name.
4054 				 */
4055 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4056 				if (nce) {
4057 					name_cache_delete(sctx, nce);
4058 					kfree(nce);
4059 				}
4060 
4061 				/*
4062 				 * ow_inode might currently be an ancestor of
4063 				 * cur_ino, therefore compute valid_path (the
4064 				 * current path of cur_ino) again because it
4065 				 * might contain the pre-orphanization name of
4066 				 * ow_inode, which is no longer valid.
4067 				 */
4068 				ret = is_ancestor(sctx->parent_root,
4069 						  ow_inode, ow_gen,
4070 						  sctx->cur_ino, NULL);
4071 				if (ret > 0) {
4072 					orphanized_ancestor = true;
4073 					fs_path_reset(valid_path);
4074 					ret = get_cur_path(sctx, sctx->cur_ino,
4075 							   sctx->cur_inode_gen,
4076 							   valid_path);
4077 				}
4078 				if (ret < 0)
4079 					goto out;
4080 			} else {
4081 				/*
4082 				 * If we previously orphanized a directory that
4083 				 * collided with a new reference that we already
4084 				 * processed, recompute the current path because
4085 				 * that directory may be part of the path.
4086 				 */
4087 				if (orphanized_dir) {
4088 					ret = refresh_ref_path(sctx, cur);
4089 					if (ret < 0)
4090 						goto out;
4091 				}
4092 				ret = send_unlink(sctx, cur->full_path);
4093 				if (ret < 0)
4094 					goto out;
4095 			}
4096 		}
4097 
4098 	}
4099 
4100 	list_for_each_entry(cur, &sctx->new_refs, list) {
4101 		/*
4102 		 * We may have refs where the parent directory does not exist
4103 		 * yet. This happens if the parent directories inum is higher
4104 		 * than the current inum. To handle this case, we create the
4105 		 * parent directory out of order. But we need to check if this
4106 		 * did already happen before due to other refs in the same dir.
4107 		 */
4108 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4109 		if (ret < 0)
4110 			goto out;
4111 		if (ret == inode_state_will_create) {
4112 			ret = 0;
4113 			/*
4114 			 * First check if any of the current inodes refs did
4115 			 * already create the dir.
4116 			 */
4117 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4118 				if (cur == cur2)
4119 					break;
4120 				if (cur2->dir == cur->dir) {
4121 					ret = 1;
4122 					break;
4123 				}
4124 			}
4125 
4126 			/*
4127 			 * If that did not happen, check if a previous inode
4128 			 * did already create the dir.
4129 			 */
4130 			if (!ret)
4131 				ret = did_create_dir(sctx, cur->dir);
4132 			if (ret < 0)
4133 				goto out;
4134 			if (!ret) {
4135 				ret = send_create_inode(sctx, cur->dir);
4136 				if (ret < 0)
4137 					goto out;
4138 			}
4139 		}
4140 
4141 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4142 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4143 			if (ret < 0)
4144 				goto out;
4145 			if (ret == 1) {
4146 				can_rename = false;
4147 				*pending_move = 1;
4148 			}
4149 		}
4150 
4151 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4152 		    can_rename) {
4153 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4154 			if (ret < 0)
4155 				goto out;
4156 			if (ret == 1) {
4157 				can_rename = false;
4158 				*pending_move = 1;
4159 			}
4160 		}
4161 
4162 		/*
4163 		 * link/move the ref to the new place. If we have an orphan
4164 		 * inode, move it and update valid_path. If not, link or move
4165 		 * it depending on the inode mode.
4166 		 */
4167 		if (is_orphan && can_rename) {
4168 			ret = send_rename(sctx, valid_path, cur->full_path);
4169 			if (ret < 0)
4170 				goto out;
4171 			is_orphan = 0;
4172 			ret = fs_path_copy(valid_path, cur->full_path);
4173 			if (ret < 0)
4174 				goto out;
4175 		} else if (can_rename) {
4176 			if (S_ISDIR(sctx->cur_inode_mode)) {
4177 				/*
4178 				 * Dirs can't be linked, so move it. For moved
4179 				 * dirs, we always have one new and one deleted
4180 				 * ref. The deleted ref is ignored later.
4181 				 */
4182 				ret = send_rename(sctx, valid_path,
4183 						  cur->full_path);
4184 				if (!ret)
4185 					ret = fs_path_copy(valid_path,
4186 							   cur->full_path);
4187 				if (ret < 0)
4188 					goto out;
4189 			} else {
4190 				/*
4191 				 * We might have previously orphanized an inode
4192 				 * which is an ancestor of our current inode,
4193 				 * so our reference's full path, which was
4194 				 * computed before any such orphanizations, must
4195 				 * be updated.
4196 				 */
4197 				if (orphanized_dir) {
4198 					ret = update_ref_path(sctx, cur);
4199 					if (ret < 0)
4200 						goto out;
4201 				}
4202 				ret = send_link(sctx, cur->full_path,
4203 						valid_path);
4204 				if (ret < 0)
4205 					goto out;
4206 			}
4207 		}
4208 		ret = dup_ref(cur, &check_dirs);
4209 		if (ret < 0)
4210 			goto out;
4211 	}
4212 
4213 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4214 		/*
4215 		 * Check if we can already rmdir the directory. If not,
4216 		 * orphanize it. For every dir item inside that gets deleted
4217 		 * later, we do this check again and rmdir it then if possible.
4218 		 * See the use of check_dirs for more details.
4219 		 */
4220 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4221 				sctx->cur_ino);
4222 		if (ret < 0)
4223 			goto out;
4224 		if (ret) {
4225 			ret = send_rmdir(sctx, valid_path);
4226 			if (ret < 0)
4227 				goto out;
4228 		} else if (!is_orphan) {
4229 			ret = orphanize_inode(sctx, sctx->cur_ino,
4230 					sctx->cur_inode_gen, valid_path);
4231 			if (ret < 0)
4232 				goto out;
4233 			is_orphan = 1;
4234 		}
4235 
4236 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4237 			ret = dup_ref(cur, &check_dirs);
4238 			if (ret < 0)
4239 				goto out;
4240 		}
4241 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4242 		   !list_empty(&sctx->deleted_refs)) {
4243 		/*
4244 		 * We have a moved dir. Add the old parent to check_dirs
4245 		 */
4246 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4247 				list);
4248 		ret = dup_ref(cur, &check_dirs);
4249 		if (ret < 0)
4250 			goto out;
4251 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4252 		/*
4253 		 * We have a non dir inode. Go through all deleted refs and
4254 		 * unlink them if they were not already overwritten by other
4255 		 * inodes.
4256 		 */
4257 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4258 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4259 					sctx->cur_ino, sctx->cur_inode_gen,
4260 					cur->name, cur->name_len);
4261 			if (ret < 0)
4262 				goto out;
4263 			if (!ret) {
4264 				/*
4265 				 * If we orphanized any ancestor before, we need
4266 				 * to recompute the full path for deleted names,
4267 				 * since any such path was computed before we
4268 				 * processed any references and orphanized any
4269 				 * ancestor inode.
4270 				 */
4271 				if (orphanized_ancestor) {
4272 					ret = update_ref_path(sctx, cur);
4273 					if (ret < 0)
4274 						goto out;
4275 				}
4276 				ret = send_unlink(sctx, cur->full_path);
4277 				if (ret < 0)
4278 					goto out;
4279 			}
4280 			ret = dup_ref(cur, &check_dirs);
4281 			if (ret < 0)
4282 				goto out;
4283 		}
4284 		/*
4285 		 * If the inode is still orphan, unlink the orphan. This may
4286 		 * happen when a previous inode did overwrite the first ref
4287 		 * of this inode and no new refs were added for the current
4288 		 * inode. Unlinking does not mean that the inode is deleted in
4289 		 * all cases. There may still be links to this inode in other
4290 		 * places.
4291 		 */
4292 		if (is_orphan) {
4293 			ret = send_unlink(sctx, valid_path);
4294 			if (ret < 0)
4295 				goto out;
4296 		}
4297 	}
4298 
4299 	/*
4300 	 * We did collect all parent dirs where cur_inode was once located. We
4301 	 * now go through all these dirs and check if they are pending for
4302 	 * deletion and if it's finally possible to perform the rmdir now.
4303 	 * We also update the inode stats of the parent dirs here.
4304 	 */
4305 	list_for_each_entry(cur, &check_dirs, list) {
4306 		/*
4307 		 * In case we had refs into dirs that were not processed yet,
4308 		 * we don't need to do the utime and rmdir logic for these dirs.
4309 		 * The dir will be processed later.
4310 		 */
4311 		if (cur->dir > sctx->cur_ino)
4312 			continue;
4313 
4314 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4315 		if (ret < 0)
4316 			goto out;
4317 
4318 		if (ret == inode_state_did_create ||
4319 		    ret == inode_state_no_change) {
4320 			/* TODO delayed utimes */
4321 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4322 			if (ret < 0)
4323 				goto out;
4324 		} else if (ret == inode_state_did_delete &&
4325 			   cur->dir != last_dir_ino_rm) {
4326 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4327 					sctx->cur_ino);
4328 			if (ret < 0)
4329 				goto out;
4330 			if (ret) {
4331 				ret = get_cur_path(sctx, cur->dir,
4332 						   cur->dir_gen, valid_path);
4333 				if (ret < 0)
4334 					goto out;
4335 				ret = send_rmdir(sctx, valid_path);
4336 				if (ret < 0)
4337 					goto out;
4338 				last_dir_ino_rm = cur->dir;
4339 			}
4340 		}
4341 	}
4342 
4343 	ret = 0;
4344 
4345 out:
4346 	__free_recorded_refs(&check_dirs);
4347 	free_recorded_refs(sctx);
4348 	fs_path_free(valid_path);
4349 	return ret;
4350 }
4351 
4352 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4353 		      void *ctx, struct list_head *refs)
4354 {
4355 	int ret = 0;
4356 	struct send_ctx *sctx = ctx;
4357 	struct fs_path *p;
4358 	u64 gen;
4359 
4360 	p = fs_path_alloc();
4361 	if (!p)
4362 		return -ENOMEM;
4363 
4364 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4365 			NULL, NULL);
4366 	if (ret < 0)
4367 		goto out;
4368 
4369 	ret = get_cur_path(sctx, dir, gen, p);
4370 	if (ret < 0)
4371 		goto out;
4372 	ret = fs_path_add_path(p, name);
4373 	if (ret < 0)
4374 		goto out;
4375 
4376 	ret = __record_ref(refs, dir, gen, p);
4377 
4378 out:
4379 	if (ret)
4380 		fs_path_free(p);
4381 	return ret;
4382 }
4383 
4384 static int __record_new_ref(int num, u64 dir, int index,
4385 			    struct fs_path *name,
4386 			    void *ctx)
4387 {
4388 	struct send_ctx *sctx = ctx;
4389 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4390 }
4391 
4392 
4393 static int __record_deleted_ref(int num, u64 dir, int index,
4394 				struct fs_path *name,
4395 				void *ctx)
4396 {
4397 	struct send_ctx *sctx = ctx;
4398 	return record_ref(sctx->parent_root, dir, name, ctx,
4399 			  &sctx->deleted_refs);
4400 }
4401 
4402 static int record_new_ref(struct send_ctx *sctx)
4403 {
4404 	int ret;
4405 
4406 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4407 				sctx->cmp_key, 0, __record_new_ref, sctx);
4408 	if (ret < 0)
4409 		goto out;
4410 	ret = 0;
4411 
4412 out:
4413 	return ret;
4414 }
4415 
4416 static int record_deleted_ref(struct send_ctx *sctx)
4417 {
4418 	int ret;
4419 
4420 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4421 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4422 	if (ret < 0)
4423 		goto out;
4424 	ret = 0;
4425 
4426 out:
4427 	return ret;
4428 }
4429 
4430 struct find_ref_ctx {
4431 	u64 dir;
4432 	u64 dir_gen;
4433 	struct btrfs_root *root;
4434 	struct fs_path *name;
4435 	int found_idx;
4436 };
4437 
4438 static int __find_iref(int num, u64 dir, int index,
4439 		       struct fs_path *name,
4440 		       void *ctx_)
4441 {
4442 	struct find_ref_ctx *ctx = ctx_;
4443 	u64 dir_gen;
4444 	int ret;
4445 
4446 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4447 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4448 		/*
4449 		 * To avoid doing extra lookups we'll only do this if everything
4450 		 * else matches.
4451 		 */
4452 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4453 				     NULL, NULL, NULL);
4454 		if (ret)
4455 			return ret;
4456 		if (dir_gen != ctx->dir_gen)
4457 			return 0;
4458 		ctx->found_idx = num;
4459 		return 1;
4460 	}
4461 	return 0;
4462 }
4463 
4464 static int find_iref(struct btrfs_root *root,
4465 		     struct btrfs_path *path,
4466 		     struct btrfs_key *key,
4467 		     u64 dir, u64 dir_gen, struct fs_path *name)
4468 {
4469 	int ret;
4470 	struct find_ref_ctx ctx;
4471 
4472 	ctx.dir = dir;
4473 	ctx.name = name;
4474 	ctx.dir_gen = dir_gen;
4475 	ctx.found_idx = -1;
4476 	ctx.root = root;
4477 
4478 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4479 	if (ret < 0)
4480 		return ret;
4481 
4482 	if (ctx.found_idx == -1)
4483 		return -ENOENT;
4484 
4485 	return ctx.found_idx;
4486 }
4487 
4488 static int __record_changed_new_ref(int num, u64 dir, int index,
4489 				    struct fs_path *name,
4490 				    void *ctx)
4491 {
4492 	u64 dir_gen;
4493 	int ret;
4494 	struct send_ctx *sctx = ctx;
4495 
4496 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4497 			     NULL, NULL, NULL);
4498 	if (ret)
4499 		return ret;
4500 
4501 	ret = find_iref(sctx->parent_root, sctx->right_path,
4502 			sctx->cmp_key, dir, dir_gen, name);
4503 	if (ret == -ENOENT)
4504 		ret = __record_new_ref(num, dir, index, name, sctx);
4505 	else if (ret > 0)
4506 		ret = 0;
4507 
4508 	return ret;
4509 }
4510 
4511 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4512 					struct fs_path *name,
4513 					void *ctx)
4514 {
4515 	u64 dir_gen;
4516 	int ret;
4517 	struct send_ctx *sctx = ctx;
4518 
4519 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4520 			     NULL, NULL, NULL);
4521 	if (ret)
4522 		return ret;
4523 
4524 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4525 			dir, dir_gen, name);
4526 	if (ret == -ENOENT)
4527 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4528 	else if (ret > 0)
4529 		ret = 0;
4530 
4531 	return ret;
4532 }
4533 
4534 static int record_changed_ref(struct send_ctx *sctx)
4535 {
4536 	int ret = 0;
4537 
4538 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4539 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4540 	if (ret < 0)
4541 		goto out;
4542 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4543 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4544 	if (ret < 0)
4545 		goto out;
4546 	ret = 0;
4547 
4548 out:
4549 	return ret;
4550 }
4551 
4552 /*
4553  * Record and process all refs at once. Needed when an inode changes the
4554  * generation number, which means that it was deleted and recreated.
4555  */
4556 static int process_all_refs(struct send_ctx *sctx,
4557 			    enum btrfs_compare_tree_result cmd)
4558 {
4559 	int ret;
4560 	struct btrfs_root *root;
4561 	struct btrfs_path *path;
4562 	struct btrfs_key key;
4563 	struct btrfs_key found_key;
4564 	struct extent_buffer *eb;
4565 	int slot;
4566 	iterate_inode_ref_t cb;
4567 	int pending_move = 0;
4568 
4569 	path = alloc_path_for_send();
4570 	if (!path)
4571 		return -ENOMEM;
4572 
4573 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4574 		root = sctx->send_root;
4575 		cb = __record_new_ref;
4576 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4577 		root = sctx->parent_root;
4578 		cb = __record_deleted_ref;
4579 	} else {
4580 		btrfs_err(sctx->send_root->fs_info,
4581 				"Wrong command %d in process_all_refs", cmd);
4582 		ret = -EINVAL;
4583 		goto out;
4584 	}
4585 
4586 	key.objectid = sctx->cmp_key->objectid;
4587 	key.type = BTRFS_INODE_REF_KEY;
4588 	key.offset = 0;
4589 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4590 	if (ret < 0)
4591 		goto out;
4592 
4593 	while (1) {
4594 		eb = path->nodes[0];
4595 		slot = path->slots[0];
4596 		if (slot >= btrfs_header_nritems(eb)) {
4597 			ret = btrfs_next_leaf(root, path);
4598 			if (ret < 0)
4599 				goto out;
4600 			else if (ret > 0)
4601 				break;
4602 			continue;
4603 		}
4604 
4605 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4606 
4607 		if (found_key.objectid != key.objectid ||
4608 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4609 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4610 			break;
4611 
4612 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4613 		if (ret < 0)
4614 			goto out;
4615 
4616 		path->slots[0]++;
4617 	}
4618 	btrfs_release_path(path);
4619 
4620 	/*
4621 	 * We don't actually care about pending_move as we are simply
4622 	 * re-creating this inode and will be rename'ing it into place once we
4623 	 * rename the parent directory.
4624 	 */
4625 	ret = process_recorded_refs(sctx, &pending_move);
4626 out:
4627 	btrfs_free_path(path);
4628 	return ret;
4629 }
4630 
4631 static int send_set_xattr(struct send_ctx *sctx,
4632 			  struct fs_path *path,
4633 			  const char *name, int name_len,
4634 			  const char *data, int data_len)
4635 {
4636 	int ret = 0;
4637 
4638 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4639 	if (ret < 0)
4640 		goto out;
4641 
4642 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4643 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4644 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4645 
4646 	ret = send_cmd(sctx);
4647 
4648 tlv_put_failure:
4649 out:
4650 	return ret;
4651 }
4652 
4653 static int send_remove_xattr(struct send_ctx *sctx,
4654 			  struct fs_path *path,
4655 			  const char *name, int name_len)
4656 {
4657 	int ret = 0;
4658 
4659 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4660 	if (ret < 0)
4661 		goto out;
4662 
4663 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4664 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4665 
4666 	ret = send_cmd(sctx);
4667 
4668 tlv_put_failure:
4669 out:
4670 	return ret;
4671 }
4672 
4673 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4674 			       const char *name, int name_len, const char *data,
4675 			       int data_len, void *ctx)
4676 {
4677 	int ret;
4678 	struct send_ctx *sctx = ctx;
4679 	struct fs_path *p;
4680 	struct posix_acl_xattr_header dummy_acl;
4681 
4682 	/* Capabilities are emitted by finish_inode_if_needed */
4683 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4684 		return 0;
4685 
4686 	p = fs_path_alloc();
4687 	if (!p)
4688 		return -ENOMEM;
4689 
4690 	/*
4691 	 * This hack is needed because empty acls are stored as zero byte
4692 	 * data in xattrs. Problem with that is, that receiving these zero byte
4693 	 * acls will fail later. To fix this, we send a dummy acl list that
4694 	 * only contains the version number and no entries.
4695 	 */
4696 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4697 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4698 		if (data_len == 0) {
4699 			dummy_acl.a_version =
4700 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4701 			data = (char *)&dummy_acl;
4702 			data_len = sizeof(dummy_acl);
4703 		}
4704 	}
4705 
4706 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4707 	if (ret < 0)
4708 		goto out;
4709 
4710 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4711 
4712 out:
4713 	fs_path_free(p);
4714 	return ret;
4715 }
4716 
4717 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4718 				   const char *name, int name_len,
4719 				   const char *data, int data_len, void *ctx)
4720 {
4721 	int ret;
4722 	struct send_ctx *sctx = ctx;
4723 	struct fs_path *p;
4724 
4725 	p = fs_path_alloc();
4726 	if (!p)
4727 		return -ENOMEM;
4728 
4729 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4730 	if (ret < 0)
4731 		goto out;
4732 
4733 	ret = send_remove_xattr(sctx, p, name, name_len);
4734 
4735 out:
4736 	fs_path_free(p);
4737 	return ret;
4738 }
4739 
4740 static int process_new_xattr(struct send_ctx *sctx)
4741 {
4742 	int ret = 0;
4743 
4744 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4745 			       __process_new_xattr, sctx);
4746 
4747 	return ret;
4748 }
4749 
4750 static int process_deleted_xattr(struct send_ctx *sctx)
4751 {
4752 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4753 				__process_deleted_xattr, sctx);
4754 }
4755 
4756 struct find_xattr_ctx {
4757 	const char *name;
4758 	int name_len;
4759 	int found_idx;
4760 	char *found_data;
4761 	int found_data_len;
4762 };
4763 
4764 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4765 			int name_len, const char *data, int data_len, void *vctx)
4766 {
4767 	struct find_xattr_ctx *ctx = vctx;
4768 
4769 	if (name_len == ctx->name_len &&
4770 	    strncmp(name, ctx->name, name_len) == 0) {
4771 		ctx->found_idx = num;
4772 		ctx->found_data_len = data_len;
4773 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4774 		if (!ctx->found_data)
4775 			return -ENOMEM;
4776 		return 1;
4777 	}
4778 	return 0;
4779 }
4780 
4781 static int find_xattr(struct btrfs_root *root,
4782 		      struct btrfs_path *path,
4783 		      struct btrfs_key *key,
4784 		      const char *name, int name_len,
4785 		      char **data, int *data_len)
4786 {
4787 	int ret;
4788 	struct find_xattr_ctx ctx;
4789 
4790 	ctx.name = name;
4791 	ctx.name_len = name_len;
4792 	ctx.found_idx = -1;
4793 	ctx.found_data = NULL;
4794 	ctx.found_data_len = 0;
4795 
4796 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4797 	if (ret < 0)
4798 		return ret;
4799 
4800 	if (ctx.found_idx == -1)
4801 		return -ENOENT;
4802 	if (data) {
4803 		*data = ctx.found_data;
4804 		*data_len = ctx.found_data_len;
4805 	} else {
4806 		kfree(ctx.found_data);
4807 	}
4808 	return ctx.found_idx;
4809 }
4810 
4811 
4812 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4813 				       const char *name, int name_len,
4814 				       const char *data, int data_len,
4815 				       void *ctx)
4816 {
4817 	int ret;
4818 	struct send_ctx *sctx = ctx;
4819 	char *found_data = NULL;
4820 	int found_data_len  = 0;
4821 
4822 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4823 			 sctx->cmp_key, name, name_len, &found_data,
4824 			 &found_data_len);
4825 	if (ret == -ENOENT) {
4826 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4827 					  data_len, ctx);
4828 	} else if (ret >= 0) {
4829 		if (data_len != found_data_len ||
4830 		    memcmp(data, found_data, data_len)) {
4831 			ret = __process_new_xattr(num, di_key, name, name_len,
4832 						  data, data_len, ctx);
4833 		} else {
4834 			ret = 0;
4835 		}
4836 	}
4837 
4838 	kfree(found_data);
4839 	return ret;
4840 }
4841 
4842 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4843 					   const char *name, int name_len,
4844 					   const char *data, int data_len,
4845 					   void *ctx)
4846 {
4847 	int ret;
4848 	struct send_ctx *sctx = ctx;
4849 
4850 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4851 			 name, name_len, NULL, NULL);
4852 	if (ret == -ENOENT)
4853 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4854 					      data_len, ctx);
4855 	else if (ret >= 0)
4856 		ret = 0;
4857 
4858 	return ret;
4859 }
4860 
4861 static int process_changed_xattr(struct send_ctx *sctx)
4862 {
4863 	int ret = 0;
4864 
4865 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4866 			__process_changed_new_xattr, sctx);
4867 	if (ret < 0)
4868 		goto out;
4869 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4870 			__process_changed_deleted_xattr, sctx);
4871 
4872 out:
4873 	return ret;
4874 }
4875 
4876 static int process_all_new_xattrs(struct send_ctx *sctx)
4877 {
4878 	int ret;
4879 	struct btrfs_root *root;
4880 	struct btrfs_path *path;
4881 	struct btrfs_key key;
4882 	struct btrfs_key found_key;
4883 	struct extent_buffer *eb;
4884 	int slot;
4885 
4886 	path = alloc_path_for_send();
4887 	if (!path)
4888 		return -ENOMEM;
4889 
4890 	root = sctx->send_root;
4891 
4892 	key.objectid = sctx->cmp_key->objectid;
4893 	key.type = BTRFS_XATTR_ITEM_KEY;
4894 	key.offset = 0;
4895 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4896 	if (ret < 0)
4897 		goto out;
4898 
4899 	while (1) {
4900 		eb = path->nodes[0];
4901 		slot = path->slots[0];
4902 		if (slot >= btrfs_header_nritems(eb)) {
4903 			ret = btrfs_next_leaf(root, path);
4904 			if (ret < 0) {
4905 				goto out;
4906 			} else if (ret > 0) {
4907 				ret = 0;
4908 				break;
4909 			}
4910 			continue;
4911 		}
4912 
4913 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4914 		if (found_key.objectid != key.objectid ||
4915 		    found_key.type != key.type) {
4916 			ret = 0;
4917 			goto out;
4918 		}
4919 
4920 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4921 		if (ret < 0)
4922 			goto out;
4923 
4924 		path->slots[0]++;
4925 	}
4926 
4927 out:
4928 	btrfs_free_path(path);
4929 	return ret;
4930 }
4931 
4932 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4933 {
4934 	return sctx->send_max_size - SZ_16K;
4935 }
4936 
4937 static int put_data_header(struct send_ctx *sctx, u32 len)
4938 {
4939 	struct btrfs_tlv_header *hdr;
4940 
4941 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4942 		return -EOVERFLOW;
4943 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4944 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4945 	put_unaligned_le16(len, &hdr->tlv_len);
4946 	sctx->send_size += sizeof(*hdr);
4947 	return 0;
4948 }
4949 
4950 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4951 {
4952 	struct btrfs_root *root = sctx->send_root;
4953 	struct btrfs_fs_info *fs_info = root->fs_info;
4954 	struct inode *inode;
4955 	struct page *page;
4956 	pgoff_t index = offset >> PAGE_SHIFT;
4957 	pgoff_t last_index;
4958 	unsigned pg_offset = offset_in_page(offset);
4959 	int ret;
4960 
4961 	ret = put_data_header(sctx, len);
4962 	if (ret)
4963 		return ret;
4964 
4965 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4966 	if (IS_ERR(inode))
4967 		return PTR_ERR(inode);
4968 
4969 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4970 
4971 	/* initial readahead */
4972 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4973 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4974 
4975 	while (index <= last_index) {
4976 		unsigned cur_len = min_t(unsigned, len,
4977 					 PAGE_SIZE - pg_offset);
4978 
4979 		page = find_lock_page(inode->i_mapping, index);
4980 		if (!page) {
4981 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4982 				NULL, index, last_index + 1 - index);
4983 
4984 			page = find_or_create_page(inode->i_mapping, index,
4985 					GFP_KERNEL);
4986 			if (!page) {
4987 				ret = -ENOMEM;
4988 				break;
4989 			}
4990 		}
4991 
4992 		if (PageReadahead(page)) {
4993 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4994 				NULL, page, index, last_index + 1 - index);
4995 		}
4996 
4997 		if (!PageUptodate(page)) {
4998 			btrfs_readpage(NULL, page);
4999 			lock_page(page);
5000 			if (!PageUptodate(page)) {
5001 				unlock_page(page);
5002 				btrfs_err(fs_info,
5003 			"send: IO error at offset %llu for inode %llu root %llu",
5004 					page_offset(page), sctx->cur_ino,
5005 					sctx->send_root->root_key.objectid);
5006 				put_page(page);
5007 				ret = -EIO;
5008 				break;
5009 			}
5010 		}
5011 
5012 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5013 				 pg_offset, cur_len);
5014 		unlock_page(page);
5015 		put_page(page);
5016 		index++;
5017 		pg_offset = 0;
5018 		len -= cur_len;
5019 		sctx->send_size += cur_len;
5020 	}
5021 	iput(inode);
5022 	return ret;
5023 }
5024 
5025 /*
5026  * Read some bytes from the current inode/file and send a write command to
5027  * user space.
5028  */
5029 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5030 {
5031 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5032 	int ret = 0;
5033 	struct fs_path *p;
5034 
5035 	p = fs_path_alloc();
5036 	if (!p)
5037 		return -ENOMEM;
5038 
5039 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5040 
5041 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5042 	if (ret < 0)
5043 		goto out;
5044 
5045 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5046 	if (ret < 0)
5047 		goto out;
5048 
5049 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5050 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5051 	ret = put_file_data(sctx, offset, len);
5052 	if (ret < 0)
5053 		goto out;
5054 
5055 	ret = send_cmd(sctx);
5056 
5057 tlv_put_failure:
5058 out:
5059 	fs_path_free(p);
5060 	return ret;
5061 }
5062 
5063 /*
5064  * Send a clone command to user space.
5065  */
5066 static int send_clone(struct send_ctx *sctx,
5067 		      u64 offset, u32 len,
5068 		      struct clone_root *clone_root)
5069 {
5070 	int ret = 0;
5071 	struct fs_path *p;
5072 	u64 gen;
5073 
5074 	btrfs_debug(sctx->send_root->fs_info,
5075 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5076 		    offset, len, clone_root->root->root_key.objectid,
5077 		    clone_root->ino, clone_root->offset);
5078 
5079 	p = fs_path_alloc();
5080 	if (!p)
5081 		return -ENOMEM;
5082 
5083 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5084 	if (ret < 0)
5085 		goto out;
5086 
5087 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5088 	if (ret < 0)
5089 		goto out;
5090 
5091 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5092 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5093 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5094 
5095 	if (clone_root->root == sctx->send_root) {
5096 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5097 				&gen, NULL, NULL, NULL, NULL);
5098 		if (ret < 0)
5099 			goto out;
5100 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5101 	} else {
5102 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5103 	}
5104 	if (ret < 0)
5105 		goto out;
5106 
5107 	/*
5108 	 * If the parent we're using has a received_uuid set then use that as
5109 	 * our clone source as that is what we will look for when doing a
5110 	 * receive.
5111 	 *
5112 	 * This covers the case that we create a snapshot off of a received
5113 	 * subvolume and then use that as the parent and try to receive on a
5114 	 * different host.
5115 	 */
5116 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5117 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5118 			     clone_root->root->root_item.received_uuid);
5119 	else
5120 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5121 			     clone_root->root->root_item.uuid);
5122 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5123 		    btrfs_root_ctransid(&clone_root->root->root_item));
5124 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5125 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5126 			clone_root->offset);
5127 
5128 	ret = send_cmd(sctx);
5129 
5130 tlv_put_failure:
5131 out:
5132 	fs_path_free(p);
5133 	return ret;
5134 }
5135 
5136 /*
5137  * Send an update extent command to user space.
5138  */
5139 static int send_update_extent(struct send_ctx *sctx,
5140 			      u64 offset, u32 len)
5141 {
5142 	int ret = 0;
5143 	struct fs_path *p;
5144 
5145 	p = fs_path_alloc();
5146 	if (!p)
5147 		return -ENOMEM;
5148 
5149 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5150 	if (ret < 0)
5151 		goto out;
5152 
5153 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5154 	if (ret < 0)
5155 		goto out;
5156 
5157 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5158 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5159 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5160 
5161 	ret = send_cmd(sctx);
5162 
5163 tlv_put_failure:
5164 out:
5165 	fs_path_free(p);
5166 	return ret;
5167 }
5168 
5169 static int send_hole(struct send_ctx *sctx, u64 end)
5170 {
5171 	struct fs_path *p = NULL;
5172 	u64 read_size = max_send_read_size(sctx);
5173 	u64 offset = sctx->cur_inode_last_extent;
5174 	int ret = 0;
5175 
5176 	/*
5177 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5178 	 * fallocate (for extent preallocation and hole punching), sending a
5179 	 * write of zeroes starting at EOF or beyond would later require issuing
5180 	 * a truncate operation which would undo the write and achieve nothing.
5181 	 */
5182 	if (offset >= sctx->cur_inode_size)
5183 		return 0;
5184 
5185 	/*
5186 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5187 	 * after the i_size.
5188 	 */
5189 	end = min_t(u64, end, sctx->cur_inode_size);
5190 
5191 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5192 		return send_update_extent(sctx, offset, end - offset);
5193 
5194 	p = fs_path_alloc();
5195 	if (!p)
5196 		return -ENOMEM;
5197 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5198 	if (ret < 0)
5199 		goto tlv_put_failure;
5200 	while (offset < end) {
5201 		u64 len = min(end - offset, read_size);
5202 
5203 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5204 		if (ret < 0)
5205 			break;
5206 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5207 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5208 		ret = put_data_header(sctx, len);
5209 		if (ret < 0)
5210 			break;
5211 		memset(sctx->send_buf + sctx->send_size, 0, len);
5212 		sctx->send_size += len;
5213 		ret = send_cmd(sctx);
5214 		if (ret < 0)
5215 			break;
5216 		offset += len;
5217 	}
5218 	sctx->cur_inode_next_write_offset = offset;
5219 tlv_put_failure:
5220 	fs_path_free(p);
5221 	return ret;
5222 }
5223 
5224 static int send_extent_data(struct send_ctx *sctx,
5225 			    const u64 offset,
5226 			    const u64 len)
5227 {
5228 	u64 read_size = max_send_read_size(sctx);
5229 	u64 sent = 0;
5230 
5231 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5232 		return send_update_extent(sctx, offset, len);
5233 
5234 	while (sent < len) {
5235 		u64 size = min(len - sent, read_size);
5236 		int ret;
5237 
5238 		ret = send_write(sctx, offset + sent, size);
5239 		if (ret < 0)
5240 			return ret;
5241 		sent += size;
5242 	}
5243 	return 0;
5244 }
5245 
5246 /*
5247  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5248  * found, call send_set_xattr function to emit it.
5249  *
5250  * Return 0 if there isn't a capability, or when the capability was emitted
5251  * successfully, or < 0 if an error occurred.
5252  */
5253 static int send_capabilities(struct send_ctx *sctx)
5254 {
5255 	struct fs_path *fspath = NULL;
5256 	struct btrfs_path *path;
5257 	struct btrfs_dir_item *di;
5258 	struct extent_buffer *leaf;
5259 	unsigned long data_ptr;
5260 	char *buf = NULL;
5261 	int buf_len;
5262 	int ret = 0;
5263 
5264 	path = alloc_path_for_send();
5265 	if (!path)
5266 		return -ENOMEM;
5267 
5268 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5269 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5270 	if (!di) {
5271 		/* There is no xattr for this inode */
5272 		goto out;
5273 	} else if (IS_ERR(di)) {
5274 		ret = PTR_ERR(di);
5275 		goto out;
5276 	}
5277 
5278 	leaf = path->nodes[0];
5279 	buf_len = btrfs_dir_data_len(leaf, di);
5280 
5281 	fspath = fs_path_alloc();
5282 	buf = kmalloc(buf_len, GFP_KERNEL);
5283 	if (!fspath || !buf) {
5284 		ret = -ENOMEM;
5285 		goto out;
5286 	}
5287 
5288 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5289 	if (ret < 0)
5290 		goto out;
5291 
5292 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5293 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5294 
5295 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5296 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5297 out:
5298 	kfree(buf);
5299 	fs_path_free(fspath);
5300 	btrfs_free_path(path);
5301 	return ret;
5302 }
5303 
5304 static int clone_range(struct send_ctx *sctx,
5305 		       struct clone_root *clone_root,
5306 		       const u64 disk_byte,
5307 		       u64 data_offset,
5308 		       u64 offset,
5309 		       u64 len)
5310 {
5311 	struct btrfs_path *path;
5312 	struct btrfs_key key;
5313 	int ret;
5314 	u64 clone_src_i_size = 0;
5315 
5316 	/*
5317 	 * Prevent cloning from a zero offset with a length matching the sector
5318 	 * size because in some scenarios this will make the receiver fail.
5319 	 *
5320 	 * For example, if in the source filesystem the extent at offset 0
5321 	 * has a length of sectorsize and it was written using direct IO, then
5322 	 * it can never be an inline extent (even if compression is enabled).
5323 	 * Then this extent can be cloned in the original filesystem to a non
5324 	 * zero file offset, but it may not be possible to clone in the
5325 	 * destination filesystem because it can be inlined due to compression
5326 	 * on the destination filesystem (as the receiver's write operations are
5327 	 * always done using buffered IO). The same happens when the original
5328 	 * filesystem does not have compression enabled but the destination
5329 	 * filesystem has.
5330 	 */
5331 	if (clone_root->offset == 0 &&
5332 	    len == sctx->send_root->fs_info->sectorsize)
5333 		return send_extent_data(sctx, offset, len);
5334 
5335 	path = alloc_path_for_send();
5336 	if (!path)
5337 		return -ENOMEM;
5338 
5339 	/*
5340 	 * There are inodes that have extents that lie behind its i_size. Don't
5341 	 * accept clones from these extents.
5342 	 */
5343 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5344 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5345 	btrfs_release_path(path);
5346 	if (ret < 0)
5347 		goto out;
5348 
5349 	/*
5350 	 * We can't send a clone operation for the entire range if we find
5351 	 * extent items in the respective range in the source file that
5352 	 * refer to different extents or if we find holes.
5353 	 * So check for that and do a mix of clone and regular write/copy
5354 	 * operations if needed.
5355 	 *
5356 	 * Example:
5357 	 *
5358 	 * mkfs.btrfs -f /dev/sda
5359 	 * mount /dev/sda /mnt
5360 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5361 	 * cp --reflink=always /mnt/foo /mnt/bar
5362 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5363 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5364 	 *
5365 	 * If when we send the snapshot and we are processing file bar (which
5366 	 * has a higher inode number than foo) we blindly send a clone operation
5367 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5368 	 * a file bar that matches the content of file foo - iow, doesn't match
5369 	 * the content from bar in the original filesystem.
5370 	 */
5371 	key.objectid = clone_root->ino;
5372 	key.type = BTRFS_EXTENT_DATA_KEY;
5373 	key.offset = clone_root->offset;
5374 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5375 	if (ret < 0)
5376 		goto out;
5377 	if (ret > 0 && path->slots[0] > 0) {
5378 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5379 		if (key.objectid == clone_root->ino &&
5380 		    key.type == BTRFS_EXTENT_DATA_KEY)
5381 			path->slots[0]--;
5382 	}
5383 
5384 	while (true) {
5385 		struct extent_buffer *leaf = path->nodes[0];
5386 		int slot = path->slots[0];
5387 		struct btrfs_file_extent_item *ei;
5388 		u8 type;
5389 		u64 ext_len;
5390 		u64 clone_len;
5391 		u64 clone_data_offset;
5392 
5393 		if (slot >= btrfs_header_nritems(leaf)) {
5394 			ret = btrfs_next_leaf(clone_root->root, path);
5395 			if (ret < 0)
5396 				goto out;
5397 			else if (ret > 0)
5398 				break;
5399 			continue;
5400 		}
5401 
5402 		btrfs_item_key_to_cpu(leaf, &key, slot);
5403 
5404 		/*
5405 		 * We might have an implicit trailing hole (NO_HOLES feature
5406 		 * enabled). We deal with it after leaving this loop.
5407 		 */
5408 		if (key.objectid != clone_root->ino ||
5409 		    key.type != BTRFS_EXTENT_DATA_KEY)
5410 			break;
5411 
5412 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5413 		type = btrfs_file_extent_type(leaf, ei);
5414 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5415 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5416 			ext_len = PAGE_ALIGN(ext_len);
5417 		} else {
5418 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5419 		}
5420 
5421 		if (key.offset + ext_len <= clone_root->offset)
5422 			goto next;
5423 
5424 		if (key.offset > clone_root->offset) {
5425 			/* Implicit hole, NO_HOLES feature enabled. */
5426 			u64 hole_len = key.offset - clone_root->offset;
5427 
5428 			if (hole_len > len)
5429 				hole_len = len;
5430 			ret = send_extent_data(sctx, offset, hole_len);
5431 			if (ret < 0)
5432 				goto out;
5433 
5434 			len -= hole_len;
5435 			if (len == 0)
5436 				break;
5437 			offset += hole_len;
5438 			clone_root->offset += hole_len;
5439 			data_offset += hole_len;
5440 		}
5441 
5442 		if (key.offset >= clone_root->offset + len)
5443 			break;
5444 
5445 		if (key.offset >= clone_src_i_size)
5446 			break;
5447 
5448 		if (key.offset + ext_len > clone_src_i_size)
5449 			ext_len = clone_src_i_size - key.offset;
5450 
5451 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5452 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5453 			clone_root->offset = key.offset;
5454 			if (clone_data_offset < data_offset &&
5455 				clone_data_offset + ext_len > data_offset) {
5456 				u64 extent_offset;
5457 
5458 				extent_offset = data_offset - clone_data_offset;
5459 				ext_len -= extent_offset;
5460 				clone_data_offset += extent_offset;
5461 				clone_root->offset += extent_offset;
5462 			}
5463 		}
5464 
5465 		clone_len = min_t(u64, ext_len, len);
5466 
5467 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5468 		    clone_data_offset == data_offset) {
5469 			const u64 src_end = clone_root->offset + clone_len;
5470 			const u64 sectorsize = SZ_64K;
5471 
5472 			/*
5473 			 * We can't clone the last block, when its size is not
5474 			 * sector size aligned, into the middle of a file. If we
5475 			 * do so, the receiver will get a failure (-EINVAL) when
5476 			 * trying to clone or will silently corrupt the data in
5477 			 * the destination file if it's on a kernel without the
5478 			 * fix introduced by commit ac765f83f1397646
5479 			 * ("Btrfs: fix data corruption due to cloning of eof
5480 			 * block).
5481 			 *
5482 			 * So issue a clone of the aligned down range plus a
5483 			 * regular write for the eof block, if we hit that case.
5484 			 *
5485 			 * Also, we use the maximum possible sector size, 64K,
5486 			 * because we don't know what's the sector size of the
5487 			 * filesystem that receives the stream, so we have to
5488 			 * assume the largest possible sector size.
5489 			 */
5490 			if (src_end == clone_src_i_size &&
5491 			    !IS_ALIGNED(src_end, sectorsize) &&
5492 			    offset + clone_len < sctx->cur_inode_size) {
5493 				u64 slen;
5494 
5495 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5496 						  sectorsize);
5497 				if (slen > 0) {
5498 					ret = send_clone(sctx, offset, slen,
5499 							 clone_root);
5500 					if (ret < 0)
5501 						goto out;
5502 				}
5503 				ret = send_extent_data(sctx, offset + slen,
5504 						       clone_len - slen);
5505 			} else {
5506 				ret = send_clone(sctx, offset, clone_len,
5507 						 clone_root);
5508 			}
5509 		} else {
5510 			ret = send_extent_data(sctx, offset, clone_len);
5511 		}
5512 
5513 		if (ret < 0)
5514 			goto out;
5515 
5516 		len -= clone_len;
5517 		if (len == 0)
5518 			break;
5519 		offset += clone_len;
5520 		clone_root->offset += clone_len;
5521 
5522 		/*
5523 		 * If we are cloning from the file we are currently processing,
5524 		 * and using the send root as the clone root, we must stop once
5525 		 * the current clone offset reaches the current eof of the file
5526 		 * at the receiver, otherwise we would issue an invalid clone
5527 		 * operation (source range going beyond eof) and cause the
5528 		 * receiver to fail. So if we reach the current eof, bail out
5529 		 * and fallback to a regular write.
5530 		 */
5531 		if (clone_root->root == sctx->send_root &&
5532 		    clone_root->ino == sctx->cur_ino &&
5533 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5534 			break;
5535 
5536 		data_offset += clone_len;
5537 next:
5538 		path->slots[0]++;
5539 	}
5540 
5541 	if (len > 0)
5542 		ret = send_extent_data(sctx, offset, len);
5543 	else
5544 		ret = 0;
5545 out:
5546 	btrfs_free_path(path);
5547 	return ret;
5548 }
5549 
5550 static int send_write_or_clone(struct send_ctx *sctx,
5551 			       struct btrfs_path *path,
5552 			       struct btrfs_key *key,
5553 			       struct clone_root *clone_root)
5554 {
5555 	int ret = 0;
5556 	u64 offset = key->offset;
5557 	u64 end;
5558 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5559 
5560 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5561 	if (offset >= end)
5562 		return 0;
5563 
5564 	if (clone_root && IS_ALIGNED(end, bs)) {
5565 		struct btrfs_file_extent_item *ei;
5566 		u64 disk_byte;
5567 		u64 data_offset;
5568 
5569 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5570 				    struct btrfs_file_extent_item);
5571 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5572 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5573 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5574 				  offset, end - offset);
5575 	} else {
5576 		ret = send_extent_data(sctx, offset, end - offset);
5577 	}
5578 	sctx->cur_inode_next_write_offset = end;
5579 	return ret;
5580 }
5581 
5582 static int is_extent_unchanged(struct send_ctx *sctx,
5583 			       struct btrfs_path *left_path,
5584 			       struct btrfs_key *ekey)
5585 {
5586 	int ret = 0;
5587 	struct btrfs_key key;
5588 	struct btrfs_path *path = NULL;
5589 	struct extent_buffer *eb;
5590 	int slot;
5591 	struct btrfs_key found_key;
5592 	struct btrfs_file_extent_item *ei;
5593 	u64 left_disknr;
5594 	u64 right_disknr;
5595 	u64 left_offset;
5596 	u64 right_offset;
5597 	u64 left_offset_fixed;
5598 	u64 left_len;
5599 	u64 right_len;
5600 	u64 left_gen;
5601 	u64 right_gen;
5602 	u8 left_type;
5603 	u8 right_type;
5604 
5605 	path = alloc_path_for_send();
5606 	if (!path)
5607 		return -ENOMEM;
5608 
5609 	eb = left_path->nodes[0];
5610 	slot = left_path->slots[0];
5611 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5612 	left_type = btrfs_file_extent_type(eb, ei);
5613 
5614 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5615 		ret = 0;
5616 		goto out;
5617 	}
5618 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5619 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5620 	left_offset = btrfs_file_extent_offset(eb, ei);
5621 	left_gen = btrfs_file_extent_generation(eb, ei);
5622 
5623 	/*
5624 	 * Following comments will refer to these graphics. L is the left
5625 	 * extents which we are checking at the moment. 1-8 are the right
5626 	 * extents that we iterate.
5627 	 *
5628 	 *       |-----L-----|
5629 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5630 	 *
5631 	 *       |-----L-----|
5632 	 * |--1--|-2b-|...(same as above)
5633 	 *
5634 	 * Alternative situation. Happens on files where extents got split.
5635 	 *       |-----L-----|
5636 	 * |-----------7-----------|-6-|
5637 	 *
5638 	 * Alternative situation. Happens on files which got larger.
5639 	 *       |-----L-----|
5640 	 * |-8-|
5641 	 * Nothing follows after 8.
5642 	 */
5643 
5644 	key.objectid = ekey->objectid;
5645 	key.type = BTRFS_EXTENT_DATA_KEY;
5646 	key.offset = ekey->offset;
5647 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5648 	if (ret < 0)
5649 		goto out;
5650 	if (ret) {
5651 		ret = 0;
5652 		goto out;
5653 	}
5654 
5655 	/*
5656 	 * Handle special case where the right side has no extents at all.
5657 	 */
5658 	eb = path->nodes[0];
5659 	slot = path->slots[0];
5660 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5661 	if (found_key.objectid != key.objectid ||
5662 	    found_key.type != key.type) {
5663 		/* If we're a hole then just pretend nothing changed */
5664 		ret = (left_disknr) ? 0 : 1;
5665 		goto out;
5666 	}
5667 
5668 	/*
5669 	 * We're now on 2a, 2b or 7.
5670 	 */
5671 	key = found_key;
5672 	while (key.offset < ekey->offset + left_len) {
5673 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5674 		right_type = btrfs_file_extent_type(eb, ei);
5675 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5676 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5677 			ret = 0;
5678 			goto out;
5679 		}
5680 
5681 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5682 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5683 			right_len = PAGE_ALIGN(right_len);
5684 		} else {
5685 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5686 		}
5687 
5688 		/*
5689 		 * Are we at extent 8? If yes, we know the extent is changed.
5690 		 * This may only happen on the first iteration.
5691 		 */
5692 		if (found_key.offset + right_len <= ekey->offset) {
5693 			/* If we're a hole just pretend nothing changed */
5694 			ret = (left_disknr) ? 0 : 1;
5695 			goto out;
5696 		}
5697 
5698 		/*
5699 		 * We just wanted to see if when we have an inline extent, what
5700 		 * follows it is a regular extent (wanted to check the above
5701 		 * condition for inline extents too). This should normally not
5702 		 * happen but it's possible for example when we have an inline
5703 		 * compressed extent representing data with a size matching
5704 		 * the page size (currently the same as sector size).
5705 		 */
5706 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5707 			ret = 0;
5708 			goto out;
5709 		}
5710 
5711 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5712 		right_offset = btrfs_file_extent_offset(eb, ei);
5713 		right_gen = btrfs_file_extent_generation(eb, ei);
5714 
5715 		left_offset_fixed = left_offset;
5716 		if (key.offset < ekey->offset) {
5717 			/* Fix the right offset for 2a and 7. */
5718 			right_offset += ekey->offset - key.offset;
5719 		} else {
5720 			/* Fix the left offset for all behind 2a and 2b */
5721 			left_offset_fixed += key.offset - ekey->offset;
5722 		}
5723 
5724 		/*
5725 		 * Check if we have the same extent.
5726 		 */
5727 		if (left_disknr != right_disknr ||
5728 		    left_offset_fixed != right_offset ||
5729 		    left_gen != right_gen) {
5730 			ret = 0;
5731 			goto out;
5732 		}
5733 
5734 		/*
5735 		 * Go to the next extent.
5736 		 */
5737 		ret = btrfs_next_item(sctx->parent_root, path);
5738 		if (ret < 0)
5739 			goto out;
5740 		if (!ret) {
5741 			eb = path->nodes[0];
5742 			slot = path->slots[0];
5743 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5744 		}
5745 		if (ret || found_key.objectid != key.objectid ||
5746 		    found_key.type != key.type) {
5747 			key.offset += right_len;
5748 			break;
5749 		}
5750 		if (found_key.offset != key.offset + right_len) {
5751 			ret = 0;
5752 			goto out;
5753 		}
5754 		key = found_key;
5755 	}
5756 
5757 	/*
5758 	 * We're now behind the left extent (treat as unchanged) or at the end
5759 	 * of the right side (treat as changed).
5760 	 */
5761 	if (key.offset >= ekey->offset + left_len)
5762 		ret = 1;
5763 	else
5764 		ret = 0;
5765 
5766 
5767 out:
5768 	btrfs_free_path(path);
5769 	return ret;
5770 }
5771 
5772 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5773 {
5774 	struct btrfs_path *path;
5775 	struct btrfs_root *root = sctx->send_root;
5776 	struct btrfs_key key;
5777 	int ret;
5778 
5779 	path = alloc_path_for_send();
5780 	if (!path)
5781 		return -ENOMEM;
5782 
5783 	sctx->cur_inode_last_extent = 0;
5784 
5785 	key.objectid = sctx->cur_ino;
5786 	key.type = BTRFS_EXTENT_DATA_KEY;
5787 	key.offset = offset;
5788 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5789 	if (ret < 0)
5790 		goto out;
5791 	ret = 0;
5792 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5793 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5794 		goto out;
5795 
5796 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5797 out:
5798 	btrfs_free_path(path);
5799 	return ret;
5800 }
5801 
5802 static int range_is_hole_in_parent(struct send_ctx *sctx,
5803 				   const u64 start,
5804 				   const u64 end)
5805 {
5806 	struct btrfs_path *path;
5807 	struct btrfs_key key;
5808 	struct btrfs_root *root = sctx->parent_root;
5809 	u64 search_start = start;
5810 	int ret;
5811 
5812 	path = alloc_path_for_send();
5813 	if (!path)
5814 		return -ENOMEM;
5815 
5816 	key.objectid = sctx->cur_ino;
5817 	key.type = BTRFS_EXTENT_DATA_KEY;
5818 	key.offset = search_start;
5819 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5820 	if (ret < 0)
5821 		goto out;
5822 	if (ret > 0 && path->slots[0] > 0)
5823 		path->slots[0]--;
5824 
5825 	while (search_start < end) {
5826 		struct extent_buffer *leaf = path->nodes[0];
5827 		int slot = path->slots[0];
5828 		struct btrfs_file_extent_item *fi;
5829 		u64 extent_end;
5830 
5831 		if (slot >= btrfs_header_nritems(leaf)) {
5832 			ret = btrfs_next_leaf(root, path);
5833 			if (ret < 0)
5834 				goto out;
5835 			else if (ret > 0)
5836 				break;
5837 			continue;
5838 		}
5839 
5840 		btrfs_item_key_to_cpu(leaf, &key, slot);
5841 		if (key.objectid < sctx->cur_ino ||
5842 		    key.type < BTRFS_EXTENT_DATA_KEY)
5843 			goto next;
5844 		if (key.objectid > sctx->cur_ino ||
5845 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5846 		    key.offset >= end)
5847 			break;
5848 
5849 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5850 		extent_end = btrfs_file_extent_end(path);
5851 		if (extent_end <= start)
5852 			goto next;
5853 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5854 			search_start = extent_end;
5855 			goto next;
5856 		}
5857 		ret = 0;
5858 		goto out;
5859 next:
5860 		path->slots[0]++;
5861 	}
5862 	ret = 1;
5863 out:
5864 	btrfs_free_path(path);
5865 	return ret;
5866 }
5867 
5868 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5869 			   struct btrfs_key *key)
5870 {
5871 	int ret = 0;
5872 
5873 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5874 		return 0;
5875 
5876 	if (sctx->cur_inode_last_extent == (u64)-1) {
5877 		ret = get_last_extent(sctx, key->offset - 1);
5878 		if (ret)
5879 			return ret;
5880 	}
5881 
5882 	if (path->slots[0] == 0 &&
5883 	    sctx->cur_inode_last_extent < key->offset) {
5884 		/*
5885 		 * We might have skipped entire leafs that contained only
5886 		 * file extent items for our current inode. These leafs have
5887 		 * a generation number smaller (older) than the one in the
5888 		 * current leaf and the leaf our last extent came from, and
5889 		 * are located between these 2 leafs.
5890 		 */
5891 		ret = get_last_extent(sctx, key->offset - 1);
5892 		if (ret)
5893 			return ret;
5894 	}
5895 
5896 	if (sctx->cur_inode_last_extent < key->offset) {
5897 		ret = range_is_hole_in_parent(sctx,
5898 					      sctx->cur_inode_last_extent,
5899 					      key->offset);
5900 		if (ret < 0)
5901 			return ret;
5902 		else if (ret == 0)
5903 			ret = send_hole(sctx, key->offset);
5904 		else
5905 			ret = 0;
5906 	}
5907 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5908 	return ret;
5909 }
5910 
5911 static int process_extent(struct send_ctx *sctx,
5912 			  struct btrfs_path *path,
5913 			  struct btrfs_key *key)
5914 {
5915 	struct clone_root *found_clone = NULL;
5916 	int ret = 0;
5917 
5918 	if (S_ISLNK(sctx->cur_inode_mode))
5919 		return 0;
5920 
5921 	if (sctx->parent_root && !sctx->cur_inode_new) {
5922 		ret = is_extent_unchanged(sctx, path, key);
5923 		if (ret < 0)
5924 			goto out;
5925 		if (ret) {
5926 			ret = 0;
5927 			goto out_hole;
5928 		}
5929 	} else {
5930 		struct btrfs_file_extent_item *ei;
5931 		u8 type;
5932 
5933 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5934 				    struct btrfs_file_extent_item);
5935 		type = btrfs_file_extent_type(path->nodes[0], ei);
5936 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5937 		    type == BTRFS_FILE_EXTENT_REG) {
5938 			/*
5939 			 * The send spec does not have a prealloc command yet,
5940 			 * so just leave a hole for prealloc'ed extents until
5941 			 * we have enough commands queued up to justify rev'ing
5942 			 * the send spec.
5943 			 */
5944 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5945 				ret = 0;
5946 				goto out;
5947 			}
5948 
5949 			/* Have a hole, just skip it. */
5950 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5951 				ret = 0;
5952 				goto out;
5953 			}
5954 		}
5955 	}
5956 
5957 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5958 			sctx->cur_inode_size, &found_clone);
5959 	if (ret != -ENOENT && ret < 0)
5960 		goto out;
5961 
5962 	ret = send_write_or_clone(sctx, path, key, found_clone);
5963 	if (ret)
5964 		goto out;
5965 out_hole:
5966 	ret = maybe_send_hole(sctx, path, key);
5967 out:
5968 	return ret;
5969 }
5970 
5971 static int process_all_extents(struct send_ctx *sctx)
5972 {
5973 	int ret;
5974 	struct btrfs_root *root;
5975 	struct btrfs_path *path;
5976 	struct btrfs_key key;
5977 	struct btrfs_key found_key;
5978 	struct extent_buffer *eb;
5979 	int slot;
5980 
5981 	root = sctx->send_root;
5982 	path = alloc_path_for_send();
5983 	if (!path)
5984 		return -ENOMEM;
5985 
5986 	key.objectid = sctx->cmp_key->objectid;
5987 	key.type = BTRFS_EXTENT_DATA_KEY;
5988 	key.offset = 0;
5989 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5990 	if (ret < 0)
5991 		goto out;
5992 
5993 	while (1) {
5994 		eb = path->nodes[0];
5995 		slot = path->slots[0];
5996 
5997 		if (slot >= btrfs_header_nritems(eb)) {
5998 			ret = btrfs_next_leaf(root, path);
5999 			if (ret < 0) {
6000 				goto out;
6001 			} else if (ret > 0) {
6002 				ret = 0;
6003 				break;
6004 			}
6005 			continue;
6006 		}
6007 
6008 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6009 
6010 		if (found_key.objectid != key.objectid ||
6011 		    found_key.type != key.type) {
6012 			ret = 0;
6013 			goto out;
6014 		}
6015 
6016 		ret = process_extent(sctx, path, &found_key);
6017 		if (ret < 0)
6018 			goto out;
6019 
6020 		path->slots[0]++;
6021 	}
6022 
6023 out:
6024 	btrfs_free_path(path);
6025 	return ret;
6026 }
6027 
6028 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6029 					   int *pending_move,
6030 					   int *refs_processed)
6031 {
6032 	int ret = 0;
6033 
6034 	if (sctx->cur_ino == 0)
6035 		goto out;
6036 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6037 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6038 		goto out;
6039 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6040 		goto out;
6041 
6042 	ret = process_recorded_refs(sctx, pending_move);
6043 	if (ret < 0)
6044 		goto out;
6045 
6046 	*refs_processed = 1;
6047 out:
6048 	return ret;
6049 }
6050 
6051 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6052 {
6053 	int ret = 0;
6054 	u64 left_mode;
6055 	u64 left_uid;
6056 	u64 left_gid;
6057 	u64 right_mode;
6058 	u64 right_uid;
6059 	u64 right_gid;
6060 	int need_chmod = 0;
6061 	int need_chown = 0;
6062 	int need_truncate = 1;
6063 	int pending_move = 0;
6064 	int refs_processed = 0;
6065 
6066 	if (sctx->ignore_cur_inode)
6067 		return 0;
6068 
6069 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6070 					      &refs_processed);
6071 	if (ret < 0)
6072 		goto out;
6073 
6074 	/*
6075 	 * We have processed the refs and thus need to advance send_progress.
6076 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6077 	 * inode into account.
6078 	 *
6079 	 * On the other hand, if our current inode is a directory and couldn't
6080 	 * be moved/renamed because its parent was renamed/moved too and it has
6081 	 * a higher inode number, we can only move/rename our current inode
6082 	 * after we moved/renamed its parent. Therefore in this case operate on
6083 	 * the old path (pre move/rename) of our current inode, and the
6084 	 * move/rename will be performed later.
6085 	 */
6086 	if (refs_processed && !pending_move)
6087 		sctx->send_progress = sctx->cur_ino + 1;
6088 
6089 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6090 		goto out;
6091 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6092 		goto out;
6093 
6094 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6095 			&left_mode, &left_uid, &left_gid, NULL);
6096 	if (ret < 0)
6097 		goto out;
6098 
6099 	if (!sctx->parent_root || sctx->cur_inode_new) {
6100 		need_chown = 1;
6101 		if (!S_ISLNK(sctx->cur_inode_mode))
6102 			need_chmod = 1;
6103 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6104 			need_truncate = 0;
6105 	} else {
6106 		u64 old_size;
6107 
6108 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6109 				&old_size, NULL, &right_mode, &right_uid,
6110 				&right_gid, NULL);
6111 		if (ret < 0)
6112 			goto out;
6113 
6114 		if (left_uid != right_uid || left_gid != right_gid)
6115 			need_chown = 1;
6116 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6117 			need_chmod = 1;
6118 		if ((old_size == sctx->cur_inode_size) ||
6119 		    (sctx->cur_inode_size > old_size &&
6120 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6121 			need_truncate = 0;
6122 	}
6123 
6124 	if (S_ISREG(sctx->cur_inode_mode)) {
6125 		if (need_send_hole(sctx)) {
6126 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6127 			    sctx->cur_inode_last_extent <
6128 			    sctx->cur_inode_size) {
6129 				ret = get_last_extent(sctx, (u64)-1);
6130 				if (ret)
6131 					goto out;
6132 			}
6133 			if (sctx->cur_inode_last_extent <
6134 			    sctx->cur_inode_size) {
6135 				ret = send_hole(sctx, sctx->cur_inode_size);
6136 				if (ret)
6137 					goto out;
6138 			}
6139 		}
6140 		if (need_truncate) {
6141 			ret = send_truncate(sctx, sctx->cur_ino,
6142 					    sctx->cur_inode_gen,
6143 					    sctx->cur_inode_size);
6144 			if (ret < 0)
6145 				goto out;
6146 		}
6147 	}
6148 
6149 	if (need_chown) {
6150 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6151 				left_uid, left_gid);
6152 		if (ret < 0)
6153 			goto out;
6154 	}
6155 	if (need_chmod) {
6156 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6157 				left_mode);
6158 		if (ret < 0)
6159 			goto out;
6160 	}
6161 
6162 	ret = send_capabilities(sctx);
6163 	if (ret < 0)
6164 		goto out;
6165 
6166 	/*
6167 	 * If other directory inodes depended on our current directory
6168 	 * inode's move/rename, now do their move/rename operations.
6169 	 */
6170 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6171 		ret = apply_children_dir_moves(sctx);
6172 		if (ret)
6173 			goto out;
6174 		/*
6175 		 * Need to send that every time, no matter if it actually
6176 		 * changed between the two trees as we have done changes to
6177 		 * the inode before. If our inode is a directory and it's
6178 		 * waiting to be moved/renamed, we will send its utimes when
6179 		 * it's moved/renamed, therefore we don't need to do it here.
6180 		 */
6181 		sctx->send_progress = sctx->cur_ino + 1;
6182 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6183 		if (ret < 0)
6184 			goto out;
6185 	}
6186 
6187 out:
6188 	return ret;
6189 }
6190 
6191 struct parent_paths_ctx {
6192 	struct list_head *refs;
6193 	struct send_ctx *sctx;
6194 };
6195 
6196 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6197 			     void *ctx)
6198 {
6199 	struct parent_paths_ctx *ppctx = ctx;
6200 
6201 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6202 			  ppctx->refs);
6203 }
6204 
6205 /*
6206  * Issue unlink operations for all paths of the current inode found in the
6207  * parent snapshot.
6208  */
6209 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6210 {
6211 	LIST_HEAD(deleted_refs);
6212 	struct btrfs_path *path;
6213 	struct btrfs_key key;
6214 	struct parent_paths_ctx ctx;
6215 	int ret;
6216 
6217 	path = alloc_path_for_send();
6218 	if (!path)
6219 		return -ENOMEM;
6220 
6221 	key.objectid = sctx->cur_ino;
6222 	key.type = BTRFS_INODE_REF_KEY;
6223 	key.offset = 0;
6224 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6225 	if (ret < 0)
6226 		goto out;
6227 
6228 	ctx.refs = &deleted_refs;
6229 	ctx.sctx = sctx;
6230 
6231 	while (true) {
6232 		struct extent_buffer *eb = path->nodes[0];
6233 		int slot = path->slots[0];
6234 
6235 		if (slot >= btrfs_header_nritems(eb)) {
6236 			ret = btrfs_next_leaf(sctx->parent_root, path);
6237 			if (ret < 0)
6238 				goto out;
6239 			else if (ret > 0)
6240 				break;
6241 			continue;
6242 		}
6243 
6244 		btrfs_item_key_to_cpu(eb, &key, slot);
6245 		if (key.objectid != sctx->cur_ino)
6246 			break;
6247 		if (key.type != BTRFS_INODE_REF_KEY &&
6248 		    key.type != BTRFS_INODE_EXTREF_KEY)
6249 			break;
6250 
6251 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6252 					record_parent_ref, &ctx);
6253 		if (ret < 0)
6254 			goto out;
6255 
6256 		path->slots[0]++;
6257 	}
6258 
6259 	while (!list_empty(&deleted_refs)) {
6260 		struct recorded_ref *ref;
6261 
6262 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6263 		ret = send_unlink(sctx, ref->full_path);
6264 		if (ret < 0)
6265 			goto out;
6266 		fs_path_free(ref->full_path);
6267 		list_del(&ref->list);
6268 		kfree(ref);
6269 	}
6270 	ret = 0;
6271 out:
6272 	btrfs_free_path(path);
6273 	if (ret)
6274 		__free_recorded_refs(&deleted_refs);
6275 	return ret;
6276 }
6277 
6278 static int changed_inode(struct send_ctx *sctx,
6279 			 enum btrfs_compare_tree_result result)
6280 {
6281 	int ret = 0;
6282 	struct btrfs_key *key = sctx->cmp_key;
6283 	struct btrfs_inode_item *left_ii = NULL;
6284 	struct btrfs_inode_item *right_ii = NULL;
6285 	u64 left_gen = 0;
6286 	u64 right_gen = 0;
6287 
6288 	sctx->cur_ino = key->objectid;
6289 	sctx->cur_inode_new_gen = 0;
6290 	sctx->cur_inode_last_extent = (u64)-1;
6291 	sctx->cur_inode_next_write_offset = 0;
6292 	sctx->ignore_cur_inode = false;
6293 
6294 	/*
6295 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6296 	 * functions that the current inode's refs are not updated yet. Later,
6297 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6298 	 */
6299 	sctx->send_progress = sctx->cur_ino;
6300 
6301 	if (result == BTRFS_COMPARE_TREE_NEW ||
6302 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6303 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6304 				sctx->left_path->slots[0],
6305 				struct btrfs_inode_item);
6306 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6307 				left_ii);
6308 	} else {
6309 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6310 				sctx->right_path->slots[0],
6311 				struct btrfs_inode_item);
6312 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6313 				right_ii);
6314 	}
6315 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6316 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6317 				sctx->right_path->slots[0],
6318 				struct btrfs_inode_item);
6319 
6320 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6321 				right_ii);
6322 
6323 		/*
6324 		 * The cur_ino = root dir case is special here. We can't treat
6325 		 * the inode as deleted+reused because it would generate a
6326 		 * stream that tries to delete/mkdir the root dir.
6327 		 */
6328 		if (left_gen != right_gen &&
6329 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6330 			sctx->cur_inode_new_gen = 1;
6331 	}
6332 
6333 	/*
6334 	 * Normally we do not find inodes with a link count of zero (orphans)
6335 	 * because the most common case is to create a snapshot and use it
6336 	 * for a send operation. However other less common use cases involve
6337 	 * using a subvolume and send it after turning it to RO mode just
6338 	 * after deleting all hard links of a file while holding an open
6339 	 * file descriptor against it or turning a RO snapshot into RW mode,
6340 	 * keep an open file descriptor against a file, delete it and then
6341 	 * turn the snapshot back to RO mode before using it for a send
6342 	 * operation. So if we find such cases, ignore the inode and all its
6343 	 * items completely if it's a new inode, or if it's a changed inode
6344 	 * make sure all its previous paths (from the parent snapshot) are all
6345 	 * unlinked and all other the inode items are ignored.
6346 	 */
6347 	if (result == BTRFS_COMPARE_TREE_NEW ||
6348 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6349 		u32 nlinks;
6350 
6351 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6352 		if (nlinks == 0) {
6353 			sctx->ignore_cur_inode = true;
6354 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6355 				ret = btrfs_unlink_all_paths(sctx);
6356 			goto out;
6357 		}
6358 	}
6359 
6360 	if (result == BTRFS_COMPARE_TREE_NEW) {
6361 		sctx->cur_inode_gen = left_gen;
6362 		sctx->cur_inode_new = 1;
6363 		sctx->cur_inode_deleted = 0;
6364 		sctx->cur_inode_size = btrfs_inode_size(
6365 				sctx->left_path->nodes[0], left_ii);
6366 		sctx->cur_inode_mode = btrfs_inode_mode(
6367 				sctx->left_path->nodes[0], left_ii);
6368 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6369 				sctx->left_path->nodes[0], left_ii);
6370 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6371 			ret = send_create_inode_if_needed(sctx);
6372 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6373 		sctx->cur_inode_gen = right_gen;
6374 		sctx->cur_inode_new = 0;
6375 		sctx->cur_inode_deleted = 1;
6376 		sctx->cur_inode_size = btrfs_inode_size(
6377 				sctx->right_path->nodes[0], right_ii);
6378 		sctx->cur_inode_mode = btrfs_inode_mode(
6379 				sctx->right_path->nodes[0], right_ii);
6380 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6381 		/*
6382 		 * We need to do some special handling in case the inode was
6383 		 * reported as changed with a changed generation number. This
6384 		 * means that the original inode was deleted and new inode
6385 		 * reused the same inum. So we have to treat the old inode as
6386 		 * deleted and the new one as new.
6387 		 */
6388 		if (sctx->cur_inode_new_gen) {
6389 			/*
6390 			 * First, process the inode as if it was deleted.
6391 			 */
6392 			sctx->cur_inode_gen = right_gen;
6393 			sctx->cur_inode_new = 0;
6394 			sctx->cur_inode_deleted = 1;
6395 			sctx->cur_inode_size = btrfs_inode_size(
6396 					sctx->right_path->nodes[0], right_ii);
6397 			sctx->cur_inode_mode = btrfs_inode_mode(
6398 					sctx->right_path->nodes[0], right_ii);
6399 			ret = process_all_refs(sctx,
6400 					BTRFS_COMPARE_TREE_DELETED);
6401 			if (ret < 0)
6402 				goto out;
6403 
6404 			/*
6405 			 * Now process the inode as if it was new.
6406 			 */
6407 			sctx->cur_inode_gen = left_gen;
6408 			sctx->cur_inode_new = 1;
6409 			sctx->cur_inode_deleted = 0;
6410 			sctx->cur_inode_size = btrfs_inode_size(
6411 					sctx->left_path->nodes[0], left_ii);
6412 			sctx->cur_inode_mode = btrfs_inode_mode(
6413 					sctx->left_path->nodes[0], left_ii);
6414 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6415 					sctx->left_path->nodes[0], left_ii);
6416 			ret = send_create_inode_if_needed(sctx);
6417 			if (ret < 0)
6418 				goto out;
6419 
6420 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6421 			if (ret < 0)
6422 				goto out;
6423 			/*
6424 			 * Advance send_progress now as we did not get into
6425 			 * process_recorded_refs_if_needed in the new_gen case.
6426 			 */
6427 			sctx->send_progress = sctx->cur_ino + 1;
6428 
6429 			/*
6430 			 * Now process all extents and xattrs of the inode as if
6431 			 * they were all new.
6432 			 */
6433 			ret = process_all_extents(sctx);
6434 			if (ret < 0)
6435 				goto out;
6436 			ret = process_all_new_xattrs(sctx);
6437 			if (ret < 0)
6438 				goto out;
6439 		} else {
6440 			sctx->cur_inode_gen = left_gen;
6441 			sctx->cur_inode_new = 0;
6442 			sctx->cur_inode_new_gen = 0;
6443 			sctx->cur_inode_deleted = 0;
6444 			sctx->cur_inode_size = btrfs_inode_size(
6445 					sctx->left_path->nodes[0], left_ii);
6446 			sctx->cur_inode_mode = btrfs_inode_mode(
6447 					sctx->left_path->nodes[0], left_ii);
6448 		}
6449 	}
6450 
6451 out:
6452 	return ret;
6453 }
6454 
6455 /*
6456  * We have to process new refs before deleted refs, but compare_trees gives us
6457  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6458  * first and later process them in process_recorded_refs.
6459  * For the cur_inode_new_gen case, we skip recording completely because
6460  * changed_inode did already initiate processing of refs. The reason for this is
6461  * that in this case, compare_tree actually compares the refs of 2 different
6462  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6463  * refs of the right tree as deleted and all refs of the left tree as new.
6464  */
6465 static int changed_ref(struct send_ctx *sctx,
6466 		       enum btrfs_compare_tree_result result)
6467 {
6468 	int ret = 0;
6469 
6470 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6471 		inconsistent_snapshot_error(sctx, result, "reference");
6472 		return -EIO;
6473 	}
6474 
6475 	if (!sctx->cur_inode_new_gen &&
6476 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6477 		if (result == BTRFS_COMPARE_TREE_NEW)
6478 			ret = record_new_ref(sctx);
6479 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6480 			ret = record_deleted_ref(sctx);
6481 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6482 			ret = record_changed_ref(sctx);
6483 	}
6484 
6485 	return ret;
6486 }
6487 
6488 /*
6489  * Process new/deleted/changed xattrs. We skip processing in the
6490  * cur_inode_new_gen case because changed_inode did already initiate processing
6491  * of xattrs. The reason is the same as in changed_ref
6492  */
6493 static int changed_xattr(struct send_ctx *sctx,
6494 			 enum btrfs_compare_tree_result result)
6495 {
6496 	int ret = 0;
6497 
6498 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6499 		inconsistent_snapshot_error(sctx, result, "xattr");
6500 		return -EIO;
6501 	}
6502 
6503 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6504 		if (result == BTRFS_COMPARE_TREE_NEW)
6505 			ret = process_new_xattr(sctx);
6506 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6507 			ret = process_deleted_xattr(sctx);
6508 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6509 			ret = process_changed_xattr(sctx);
6510 	}
6511 
6512 	return ret;
6513 }
6514 
6515 /*
6516  * Process new/deleted/changed extents. We skip processing in the
6517  * cur_inode_new_gen case because changed_inode did already initiate processing
6518  * of extents. The reason is the same as in changed_ref
6519  */
6520 static int changed_extent(struct send_ctx *sctx,
6521 			  enum btrfs_compare_tree_result result)
6522 {
6523 	int ret = 0;
6524 
6525 	/*
6526 	 * We have found an extent item that changed without the inode item
6527 	 * having changed. This can happen either after relocation (where the
6528 	 * disk_bytenr of an extent item is replaced at
6529 	 * relocation.c:replace_file_extents()) or after deduplication into a
6530 	 * file in both the parent and send snapshots (where an extent item can
6531 	 * get modified or replaced with a new one). Note that deduplication
6532 	 * updates the inode item, but it only changes the iversion (sequence
6533 	 * field in the inode item) of the inode, so if a file is deduplicated
6534 	 * the same amount of times in both the parent and send snapshots, its
6535 	 * iversion becomes the same in both snapshots, whence the inode item is
6536 	 * the same on both snapshots.
6537 	 */
6538 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6539 		return 0;
6540 
6541 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6542 		if (result != BTRFS_COMPARE_TREE_DELETED)
6543 			ret = process_extent(sctx, sctx->left_path,
6544 					sctx->cmp_key);
6545 	}
6546 
6547 	return ret;
6548 }
6549 
6550 static int dir_changed(struct send_ctx *sctx, u64 dir)
6551 {
6552 	u64 orig_gen, new_gen;
6553 	int ret;
6554 
6555 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6556 			     NULL, NULL);
6557 	if (ret)
6558 		return ret;
6559 
6560 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6561 			     NULL, NULL, NULL);
6562 	if (ret)
6563 		return ret;
6564 
6565 	return (orig_gen != new_gen) ? 1 : 0;
6566 }
6567 
6568 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6569 			struct btrfs_key *key)
6570 {
6571 	struct btrfs_inode_extref *extref;
6572 	struct extent_buffer *leaf;
6573 	u64 dirid = 0, last_dirid = 0;
6574 	unsigned long ptr;
6575 	u32 item_size;
6576 	u32 cur_offset = 0;
6577 	int ref_name_len;
6578 	int ret = 0;
6579 
6580 	/* Easy case, just check this one dirid */
6581 	if (key->type == BTRFS_INODE_REF_KEY) {
6582 		dirid = key->offset;
6583 
6584 		ret = dir_changed(sctx, dirid);
6585 		goto out;
6586 	}
6587 
6588 	leaf = path->nodes[0];
6589 	item_size = btrfs_item_size(leaf, path->slots[0]);
6590 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6591 	while (cur_offset < item_size) {
6592 		extref = (struct btrfs_inode_extref *)(ptr +
6593 						       cur_offset);
6594 		dirid = btrfs_inode_extref_parent(leaf, extref);
6595 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6596 		cur_offset += ref_name_len + sizeof(*extref);
6597 		if (dirid == last_dirid)
6598 			continue;
6599 		ret = dir_changed(sctx, dirid);
6600 		if (ret)
6601 			break;
6602 		last_dirid = dirid;
6603 	}
6604 out:
6605 	return ret;
6606 }
6607 
6608 /*
6609  * Updates compare related fields in sctx and simply forwards to the actual
6610  * changed_xxx functions.
6611  */
6612 static int changed_cb(struct btrfs_path *left_path,
6613 		      struct btrfs_path *right_path,
6614 		      struct btrfs_key *key,
6615 		      enum btrfs_compare_tree_result result,
6616 		      struct send_ctx *sctx)
6617 {
6618 	int ret = 0;
6619 
6620 	/*
6621 	 * We can not hold the commit root semaphore here. This is because in
6622 	 * the case of sending and receiving to the same filesystem, using a
6623 	 * pipe, could result in a deadlock:
6624 	 *
6625 	 * 1) The task running send blocks on the pipe because it's full;
6626 	 *
6627 	 * 2) The task running receive, which is the only consumer of the pipe,
6628 	 *    is waiting for a transaction commit (for example due to a space
6629 	 *    reservation when doing a write or triggering a transaction commit
6630 	 *    when creating a subvolume);
6631 	 *
6632 	 * 3) The transaction is waiting to write lock the commit root semaphore,
6633 	 *    but can not acquire it since it's being held at 1).
6634 	 *
6635 	 * Down this call chain we write to the pipe through kernel_write().
6636 	 * The same type of problem can also happen when sending to a file that
6637 	 * is stored in the same filesystem - when reserving space for a write
6638 	 * into the file, we can trigger a transaction commit.
6639 	 *
6640 	 * Our caller has supplied us with clones of leaves from the send and
6641 	 * parent roots, so we're safe here from a concurrent relocation and
6642 	 * further reallocation of metadata extents while we are here. Below we
6643 	 * also assert that the leaves are clones.
6644 	 */
6645 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
6646 
6647 	/*
6648 	 * We always have a send root, so left_path is never NULL. We will not
6649 	 * have a leaf when we have reached the end of the send root but have
6650 	 * not yet reached the end of the parent root.
6651 	 */
6652 	if (left_path->nodes[0])
6653 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6654 				&left_path->nodes[0]->bflags));
6655 	/*
6656 	 * When doing a full send we don't have a parent root, so right_path is
6657 	 * NULL. When doing an incremental send, we may have reached the end of
6658 	 * the parent root already, so we don't have a leaf at right_path.
6659 	 */
6660 	if (right_path && right_path->nodes[0])
6661 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6662 				&right_path->nodes[0]->bflags));
6663 
6664 	if (result == BTRFS_COMPARE_TREE_SAME) {
6665 		if (key->type == BTRFS_INODE_REF_KEY ||
6666 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6667 			ret = compare_refs(sctx, left_path, key);
6668 			if (!ret)
6669 				return 0;
6670 			if (ret < 0)
6671 				return ret;
6672 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6673 			return maybe_send_hole(sctx, left_path, key);
6674 		} else {
6675 			return 0;
6676 		}
6677 		result = BTRFS_COMPARE_TREE_CHANGED;
6678 		ret = 0;
6679 	}
6680 
6681 	sctx->left_path = left_path;
6682 	sctx->right_path = right_path;
6683 	sctx->cmp_key = key;
6684 
6685 	ret = finish_inode_if_needed(sctx, 0);
6686 	if (ret < 0)
6687 		goto out;
6688 
6689 	/* Ignore non-FS objects */
6690 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6691 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6692 		goto out;
6693 
6694 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6695 		ret = changed_inode(sctx, result);
6696 	} else if (!sctx->ignore_cur_inode) {
6697 		if (key->type == BTRFS_INODE_REF_KEY ||
6698 		    key->type == BTRFS_INODE_EXTREF_KEY)
6699 			ret = changed_ref(sctx, result);
6700 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6701 			ret = changed_xattr(sctx, result);
6702 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6703 			ret = changed_extent(sctx, result);
6704 	}
6705 
6706 out:
6707 	return ret;
6708 }
6709 
6710 static int search_key_again(const struct send_ctx *sctx,
6711 			    struct btrfs_root *root,
6712 			    struct btrfs_path *path,
6713 			    const struct btrfs_key *key)
6714 {
6715 	int ret;
6716 
6717 	if (!path->need_commit_sem)
6718 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
6719 
6720 	/*
6721 	 * Roots used for send operations are readonly and no one can add,
6722 	 * update or remove keys from them, so we should be able to find our
6723 	 * key again. The only exception is deduplication, which can operate on
6724 	 * readonly roots and add, update or remove keys to/from them - but at
6725 	 * the moment we don't allow it to run in parallel with send.
6726 	 */
6727 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6728 	ASSERT(ret <= 0);
6729 	if (ret > 0) {
6730 		btrfs_print_tree(path->nodes[path->lowest_level], false);
6731 		btrfs_err(root->fs_info,
6732 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
6733 			  key->objectid, key->type, key->offset,
6734 			  (root == sctx->parent_root ? "parent" : "send"),
6735 			  root->root_key.objectid, path->lowest_level,
6736 			  path->slots[path->lowest_level]);
6737 		return -EUCLEAN;
6738 	}
6739 
6740 	return ret;
6741 }
6742 
6743 static int full_send_tree(struct send_ctx *sctx)
6744 {
6745 	int ret;
6746 	struct btrfs_root *send_root = sctx->send_root;
6747 	struct btrfs_key key;
6748 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6749 	struct btrfs_path *path;
6750 
6751 	path = alloc_path_for_send();
6752 	if (!path)
6753 		return -ENOMEM;
6754 	path->reada = READA_FORWARD_ALWAYS;
6755 
6756 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6757 	key.type = BTRFS_INODE_ITEM_KEY;
6758 	key.offset = 0;
6759 
6760 	down_read(&fs_info->commit_root_sem);
6761 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
6762 	up_read(&fs_info->commit_root_sem);
6763 
6764 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6765 	if (ret < 0)
6766 		goto out;
6767 	if (ret)
6768 		goto out_finish;
6769 
6770 	while (1) {
6771 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6772 
6773 		ret = changed_cb(path, NULL, &key,
6774 				 BTRFS_COMPARE_TREE_NEW, sctx);
6775 		if (ret < 0)
6776 			goto out;
6777 
6778 		down_read(&fs_info->commit_root_sem);
6779 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
6780 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
6781 			up_read(&fs_info->commit_root_sem);
6782 			/*
6783 			 * A transaction used for relocating a block group was
6784 			 * committed or is about to finish its commit. Release
6785 			 * our path (leaf) and restart the search, so that we
6786 			 * avoid operating on any file extent items that are
6787 			 * stale, with a disk_bytenr that reflects a pre
6788 			 * relocation value. This way we avoid as much as
6789 			 * possible to fallback to regular writes when checking
6790 			 * if we can clone file ranges.
6791 			 */
6792 			btrfs_release_path(path);
6793 			ret = search_key_again(sctx, send_root, path, &key);
6794 			if (ret < 0)
6795 				goto out;
6796 		} else {
6797 			up_read(&fs_info->commit_root_sem);
6798 		}
6799 
6800 		ret = btrfs_next_item(send_root, path);
6801 		if (ret < 0)
6802 			goto out;
6803 		if (ret) {
6804 			ret  = 0;
6805 			break;
6806 		}
6807 	}
6808 
6809 out_finish:
6810 	ret = finish_inode_if_needed(sctx, 1);
6811 
6812 out:
6813 	btrfs_free_path(path);
6814 	return ret;
6815 }
6816 
6817 static int replace_node_with_clone(struct btrfs_path *path, int level)
6818 {
6819 	struct extent_buffer *clone;
6820 
6821 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
6822 	if (!clone)
6823 		return -ENOMEM;
6824 
6825 	free_extent_buffer(path->nodes[level]);
6826 	path->nodes[level] = clone;
6827 
6828 	return 0;
6829 }
6830 
6831 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6832 {
6833 	struct extent_buffer *eb;
6834 	struct extent_buffer *parent = path->nodes[*level];
6835 	int slot = path->slots[*level];
6836 	const int nritems = btrfs_header_nritems(parent);
6837 	u64 reada_max;
6838 	u64 reada_done = 0;
6839 
6840 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
6841 
6842 	BUG_ON(*level == 0);
6843 	eb = btrfs_read_node_slot(parent, slot);
6844 	if (IS_ERR(eb))
6845 		return PTR_ERR(eb);
6846 
6847 	/*
6848 	 * Trigger readahead for the next leaves we will process, so that it is
6849 	 * very likely that when we need them they are already in memory and we
6850 	 * will not block on disk IO. For nodes we only do readahead for one,
6851 	 * since the time window between processing nodes is typically larger.
6852 	 */
6853 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6854 
6855 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6856 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6857 			btrfs_readahead_node_child(parent, slot);
6858 			reada_done += eb->fs_info->nodesize;
6859 		}
6860 	}
6861 
6862 	path->nodes[*level - 1] = eb;
6863 	path->slots[*level - 1] = 0;
6864 	(*level)--;
6865 
6866 	if (*level == 0)
6867 		return replace_node_with_clone(path, 0);
6868 
6869 	return 0;
6870 }
6871 
6872 static int tree_move_next_or_upnext(struct btrfs_path *path,
6873 				    int *level, int root_level)
6874 {
6875 	int ret = 0;
6876 	int nritems;
6877 	nritems = btrfs_header_nritems(path->nodes[*level]);
6878 
6879 	path->slots[*level]++;
6880 
6881 	while (path->slots[*level] >= nritems) {
6882 		if (*level == root_level) {
6883 			path->slots[*level] = nritems - 1;
6884 			return -1;
6885 		}
6886 
6887 		/* move upnext */
6888 		path->slots[*level] = 0;
6889 		free_extent_buffer(path->nodes[*level]);
6890 		path->nodes[*level] = NULL;
6891 		(*level)++;
6892 		path->slots[*level]++;
6893 
6894 		nritems = btrfs_header_nritems(path->nodes[*level]);
6895 		ret = 1;
6896 	}
6897 	return ret;
6898 }
6899 
6900 /*
6901  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6902  * or down.
6903  */
6904 static int tree_advance(struct btrfs_path *path,
6905 			int *level, int root_level,
6906 			int allow_down,
6907 			struct btrfs_key *key,
6908 			u64 reada_min_gen)
6909 {
6910 	int ret;
6911 
6912 	if (*level == 0 || !allow_down) {
6913 		ret = tree_move_next_or_upnext(path, level, root_level);
6914 	} else {
6915 		ret = tree_move_down(path, level, reada_min_gen);
6916 	}
6917 
6918 	/*
6919 	 * Even if we have reached the end of a tree, ret is -1, update the key
6920 	 * anyway, so that in case we need to restart due to a block group
6921 	 * relocation, we can assert that the last key of the root node still
6922 	 * exists in the tree.
6923 	 */
6924 	if (*level == 0)
6925 		btrfs_item_key_to_cpu(path->nodes[*level], key,
6926 				      path->slots[*level]);
6927 	else
6928 		btrfs_node_key_to_cpu(path->nodes[*level], key,
6929 				      path->slots[*level]);
6930 
6931 	return ret;
6932 }
6933 
6934 static int tree_compare_item(struct btrfs_path *left_path,
6935 			     struct btrfs_path *right_path,
6936 			     char *tmp_buf)
6937 {
6938 	int cmp;
6939 	int len1, len2;
6940 	unsigned long off1, off2;
6941 
6942 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
6943 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
6944 	if (len1 != len2)
6945 		return 1;
6946 
6947 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6948 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6949 				right_path->slots[0]);
6950 
6951 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6952 
6953 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6954 	if (cmp)
6955 		return 1;
6956 	return 0;
6957 }
6958 
6959 /*
6960  * A transaction used for relocating a block group was committed or is about to
6961  * finish its commit. Release our paths and restart the search, so that we are
6962  * not using stale extent buffers:
6963  *
6964  * 1) For levels > 0, we are only holding references of extent buffers, without
6965  *    any locks on them, which does not prevent them from having been relocated
6966  *    and reallocated after the last time we released the commit root semaphore.
6967  *    The exception are the root nodes, for which we always have a clone, see
6968  *    the comment at btrfs_compare_trees();
6969  *
6970  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
6971  *    we are safe from the concurrent relocation and reallocation. However they
6972  *    can have file extent items with a pre relocation disk_bytenr value, so we
6973  *    restart the start from the current commit roots and clone the new leaves so
6974  *    that we get the post relocation disk_bytenr values. Not doing so, could
6975  *    make us clone the wrong data in case there are new extents using the old
6976  *    disk_bytenr that happen to be shared.
6977  */
6978 static int restart_after_relocation(struct btrfs_path *left_path,
6979 				    struct btrfs_path *right_path,
6980 				    const struct btrfs_key *left_key,
6981 				    const struct btrfs_key *right_key,
6982 				    int left_level,
6983 				    int right_level,
6984 				    const struct send_ctx *sctx)
6985 {
6986 	int root_level;
6987 	int ret;
6988 
6989 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
6990 
6991 	btrfs_release_path(left_path);
6992 	btrfs_release_path(right_path);
6993 
6994 	/*
6995 	 * Since keys can not be added or removed to/from our roots because they
6996 	 * are readonly and we do not allow deduplication to run in parallel
6997 	 * (which can add, remove or change keys), the layout of the trees should
6998 	 * not change.
6999 	 */
7000 	left_path->lowest_level = left_level;
7001 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7002 	if (ret < 0)
7003 		return ret;
7004 
7005 	right_path->lowest_level = right_level;
7006 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7007 	if (ret < 0)
7008 		return ret;
7009 
7010 	/*
7011 	 * If the lowest level nodes are leaves, clone them so that they can be
7012 	 * safely used by changed_cb() while not under the protection of the
7013 	 * commit root semaphore, even if relocation and reallocation happens in
7014 	 * parallel.
7015 	 */
7016 	if (left_level == 0) {
7017 		ret = replace_node_with_clone(left_path, 0);
7018 		if (ret < 0)
7019 			return ret;
7020 	}
7021 
7022 	if (right_level == 0) {
7023 		ret = replace_node_with_clone(right_path, 0);
7024 		if (ret < 0)
7025 			return ret;
7026 	}
7027 
7028 	/*
7029 	 * Now clone the root nodes (unless they happen to be the leaves we have
7030 	 * already cloned). This is to protect against concurrent snapshotting of
7031 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7032 	 */
7033 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7034 	if (root_level > 0) {
7035 		ret = replace_node_with_clone(left_path, root_level);
7036 		if (ret < 0)
7037 			return ret;
7038 	}
7039 
7040 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7041 	if (root_level > 0) {
7042 		ret = replace_node_with_clone(right_path, root_level);
7043 		if (ret < 0)
7044 			return ret;
7045 	}
7046 
7047 	return 0;
7048 }
7049 
7050 /*
7051  * This function compares two trees and calls the provided callback for
7052  * every changed/new/deleted item it finds.
7053  * If shared tree blocks are encountered, whole subtrees are skipped, making
7054  * the compare pretty fast on snapshotted subvolumes.
7055  *
7056  * This currently works on commit roots only. As commit roots are read only,
7057  * we don't do any locking. The commit roots are protected with transactions.
7058  * Transactions are ended and rejoined when a commit is tried in between.
7059  *
7060  * This function checks for modifications done to the trees while comparing.
7061  * If it detects a change, it aborts immediately.
7062  */
7063 static int btrfs_compare_trees(struct btrfs_root *left_root,
7064 			struct btrfs_root *right_root, struct send_ctx *sctx)
7065 {
7066 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7067 	int ret;
7068 	int cmp;
7069 	struct btrfs_path *left_path = NULL;
7070 	struct btrfs_path *right_path = NULL;
7071 	struct btrfs_key left_key;
7072 	struct btrfs_key right_key;
7073 	char *tmp_buf = NULL;
7074 	int left_root_level;
7075 	int right_root_level;
7076 	int left_level;
7077 	int right_level;
7078 	int left_end_reached = 0;
7079 	int right_end_reached = 0;
7080 	int advance_left = 0;
7081 	int advance_right = 0;
7082 	u64 left_blockptr;
7083 	u64 right_blockptr;
7084 	u64 left_gen;
7085 	u64 right_gen;
7086 	u64 reada_min_gen;
7087 
7088 	left_path = btrfs_alloc_path();
7089 	if (!left_path) {
7090 		ret = -ENOMEM;
7091 		goto out;
7092 	}
7093 	right_path = btrfs_alloc_path();
7094 	if (!right_path) {
7095 		ret = -ENOMEM;
7096 		goto out;
7097 	}
7098 
7099 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7100 	if (!tmp_buf) {
7101 		ret = -ENOMEM;
7102 		goto out;
7103 	}
7104 
7105 	left_path->search_commit_root = 1;
7106 	left_path->skip_locking = 1;
7107 	right_path->search_commit_root = 1;
7108 	right_path->skip_locking = 1;
7109 
7110 	/*
7111 	 * Strategy: Go to the first items of both trees. Then do
7112 	 *
7113 	 * If both trees are at level 0
7114 	 *   Compare keys of current items
7115 	 *     If left < right treat left item as new, advance left tree
7116 	 *       and repeat
7117 	 *     If left > right treat right item as deleted, advance right tree
7118 	 *       and repeat
7119 	 *     If left == right do deep compare of items, treat as changed if
7120 	 *       needed, advance both trees and repeat
7121 	 * If both trees are at the same level but not at level 0
7122 	 *   Compare keys of current nodes/leafs
7123 	 *     If left < right advance left tree and repeat
7124 	 *     If left > right advance right tree and repeat
7125 	 *     If left == right compare blockptrs of the next nodes/leafs
7126 	 *       If they match advance both trees but stay at the same level
7127 	 *         and repeat
7128 	 *       If they don't match advance both trees while allowing to go
7129 	 *         deeper and repeat
7130 	 * If tree levels are different
7131 	 *   Advance the tree that needs it and repeat
7132 	 *
7133 	 * Advancing a tree means:
7134 	 *   If we are at level 0, try to go to the next slot. If that's not
7135 	 *   possible, go one level up and repeat. Stop when we found a level
7136 	 *   where we could go to the next slot. We may at this point be on a
7137 	 *   node or a leaf.
7138 	 *
7139 	 *   If we are not at level 0 and not on shared tree blocks, go one
7140 	 *   level deeper.
7141 	 *
7142 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7143 	 *   the right if possible or go up and right.
7144 	 */
7145 
7146 	down_read(&fs_info->commit_root_sem);
7147 	left_level = btrfs_header_level(left_root->commit_root);
7148 	left_root_level = left_level;
7149 	/*
7150 	 * We clone the root node of the send and parent roots to prevent races
7151 	 * with snapshot creation of these roots. Snapshot creation COWs the
7152 	 * root node of a tree, so after the transaction is committed the old
7153 	 * extent can be reallocated while this send operation is still ongoing.
7154 	 * So we clone them, under the commit root semaphore, to be race free.
7155 	 */
7156 	left_path->nodes[left_level] =
7157 			btrfs_clone_extent_buffer(left_root->commit_root);
7158 	if (!left_path->nodes[left_level]) {
7159 		ret = -ENOMEM;
7160 		goto out_unlock;
7161 	}
7162 
7163 	right_level = btrfs_header_level(right_root->commit_root);
7164 	right_root_level = right_level;
7165 	right_path->nodes[right_level] =
7166 			btrfs_clone_extent_buffer(right_root->commit_root);
7167 	if (!right_path->nodes[right_level]) {
7168 		ret = -ENOMEM;
7169 		goto out_unlock;
7170 	}
7171 	/*
7172 	 * Our right root is the parent root, while the left root is the "send"
7173 	 * root. We know that all new nodes/leaves in the left root must have
7174 	 * a generation greater than the right root's generation, so we trigger
7175 	 * readahead for those nodes and leaves of the left root, as we know we
7176 	 * will need to read them at some point.
7177 	 */
7178 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7179 
7180 	if (left_level == 0)
7181 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7182 				&left_key, left_path->slots[left_level]);
7183 	else
7184 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7185 				&left_key, left_path->slots[left_level]);
7186 	if (right_level == 0)
7187 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7188 				&right_key, right_path->slots[right_level]);
7189 	else
7190 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7191 				&right_key, right_path->slots[right_level]);
7192 
7193 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7194 
7195 	while (1) {
7196 		if (need_resched() ||
7197 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7198 			up_read(&fs_info->commit_root_sem);
7199 			cond_resched();
7200 			down_read(&fs_info->commit_root_sem);
7201 		}
7202 
7203 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7204 			ret = restart_after_relocation(left_path, right_path,
7205 						       &left_key, &right_key,
7206 						       left_level, right_level,
7207 						       sctx);
7208 			if (ret < 0)
7209 				goto out_unlock;
7210 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7211 		}
7212 
7213 		if (advance_left && !left_end_reached) {
7214 			ret = tree_advance(left_path, &left_level,
7215 					left_root_level,
7216 					advance_left != ADVANCE_ONLY_NEXT,
7217 					&left_key, reada_min_gen);
7218 			if (ret == -1)
7219 				left_end_reached = ADVANCE;
7220 			else if (ret < 0)
7221 				goto out_unlock;
7222 			advance_left = 0;
7223 		}
7224 		if (advance_right && !right_end_reached) {
7225 			ret = tree_advance(right_path, &right_level,
7226 					right_root_level,
7227 					advance_right != ADVANCE_ONLY_NEXT,
7228 					&right_key, reada_min_gen);
7229 			if (ret == -1)
7230 				right_end_reached = ADVANCE;
7231 			else if (ret < 0)
7232 				goto out_unlock;
7233 			advance_right = 0;
7234 		}
7235 
7236 		if (left_end_reached && right_end_reached) {
7237 			ret = 0;
7238 			goto out_unlock;
7239 		} else if (left_end_reached) {
7240 			if (right_level == 0) {
7241 				up_read(&fs_info->commit_root_sem);
7242 				ret = changed_cb(left_path, right_path,
7243 						&right_key,
7244 						BTRFS_COMPARE_TREE_DELETED,
7245 						sctx);
7246 				if (ret < 0)
7247 					goto out;
7248 				down_read(&fs_info->commit_root_sem);
7249 			}
7250 			advance_right = ADVANCE;
7251 			continue;
7252 		} else if (right_end_reached) {
7253 			if (left_level == 0) {
7254 				up_read(&fs_info->commit_root_sem);
7255 				ret = changed_cb(left_path, right_path,
7256 						&left_key,
7257 						BTRFS_COMPARE_TREE_NEW,
7258 						sctx);
7259 				if (ret < 0)
7260 					goto out;
7261 				down_read(&fs_info->commit_root_sem);
7262 			}
7263 			advance_left = ADVANCE;
7264 			continue;
7265 		}
7266 
7267 		if (left_level == 0 && right_level == 0) {
7268 			up_read(&fs_info->commit_root_sem);
7269 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7270 			if (cmp < 0) {
7271 				ret = changed_cb(left_path, right_path,
7272 						&left_key,
7273 						BTRFS_COMPARE_TREE_NEW,
7274 						sctx);
7275 				advance_left = ADVANCE;
7276 			} else if (cmp > 0) {
7277 				ret = changed_cb(left_path, right_path,
7278 						&right_key,
7279 						BTRFS_COMPARE_TREE_DELETED,
7280 						sctx);
7281 				advance_right = ADVANCE;
7282 			} else {
7283 				enum btrfs_compare_tree_result result;
7284 
7285 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7286 				ret = tree_compare_item(left_path, right_path,
7287 							tmp_buf);
7288 				if (ret)
7289 					result = BTRFS_COMPARE_TREE_CHANGED;
7290 				else
7291 					result = BTRFS_COMPARE_TREE_SAME;
7292 				ret = changed_cb(left_path, right_path,
7293 						 &left_key, result, sctx);
7294 				advance_left = ADVANCE;
7295 				advance_right = ADVANCE;
7296 			}
7297 
7298 			if (ret < 0)
7299 				goto out;
7300 			down_read(&fs_info->commit_root_sem);
7301 		} else if (left_level == right_level) {
7302 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7303 			if (cmp < 0) {
7304 				advance_left = ADVANCE;
7305 			} else if (cmp > 0) {
7306 				advance_right = ADVANCE;
7307 			} else {
7308 				left_blockptr = btrfs_node_blockptr(
7309 						left_path->nodes[left_level],
7310 						left_path->slots[left_level]);
7311 				right_blockptr = btrfs_node_blockptr(
7312 						right_path->nodes[right_level],
7313 						right_path->slots[right_level]);
7314 				left_gen = btrfs_node_ptr_generation(
7315 						left_path->nodes[left_level],
7316 						left_path->slots[left_level]);
7317 				right_gen = btrfs_node_ptr_generation(
7318 						right_path->nodes[right_level],
7319 						right_path->slots[right_level]);
7320 				if (left_blockptr == right_blockptr &&
7321 				    left_gen == right_gen) {
7322 					/*
7323 					 * As we're on a shared block, don't
7324 					 * allow to go deeper.
7325 					 */
7326 					advance_left = ADVANCE_ONLY_NEXT;
7327 					advance_right = ADVANCE_ONLY_NEXT;
7328 				} else {
7329 					advance_left = ADVANCE;
7330 					advance_right = ADVANCE;
7331 				}
7332 			}
7333 		} else if (left_level < right_level) {
7334 			advance_right = ADVANCE;
7335 		} else {
7336 			advance_left = ADVANCE;
7337 		}
7338 	}
7339 
7340 out_unlock:
7341 	up_read(&fs_info->commit_root_sem);
7342 out:
7343 	btrfs_free_path(left_path);
7344 	btrfs_free_path(right_path);
7345 	kvfree(tmp_buf);
7346 	return ret;
7347 }
7348 
7349 static int send_subvol(struct send_ctx *sctx)
7350 {
7351 	int ret;
7352 
7353 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7354 		ret = send_header(sctx);
7355 		if (ret < 0)
7356 			goto out;
7357 	}
7358 
7359 	ret = send_subvol_begin(sctx);
7360 	if (ret < 0)
7361 		goto out;
7362 
7363 	if (sctx->parent_root) {
7364 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7365 		if (ret < 0)
7366 			goto out;
7367 		ret = finish_inode_if_needed(sctx, 1);
7368 		if (ret < 0)
7369 			goto out;
7370 	} else {
7371 		ret = full_send_tree(sctx);
7372 		if (ret < 0)
7373 			goto out;
7374 	}
7375 
7376 out:
7377 	free_recorded_refs(sctx);
7378 	return ret;
7379 }
7380 
7381 /*
7382  * If orphan cleanup did remove any orphans from a root, it means the tree
7383  * was modified and therefore the commit root is not the same as the current
7384  * root anymore. This is a problem, because send uses the commit root and
7385  * therefore can see inode items that don't exist in the current root anymore,
7386  * and for example make calls to btrfs_iget, which will do tree lookups based
7387  * on the current root and not on the commit root. Those lookups will fail,
7388  * returning a -ESTALE error, and making send fail with that error. So make
7389  * sure a send does not see any orphans we have just removed, and that it will
7390  * see the same inodes regardless of whether a transaction commit happened
7391  * before it started (meaning that the commit root will be the same as the
7392  * current root) or not.
7393  */
7394 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7395 {
7396 	int i;
7397 	struct btrfs_trans_handle *trans = NULL;
7398 
7399 again:
7400 	if (sctx->parent_root &&
7401 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7402 		goto commit_trans;
7403 
7404 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7405 		if (sctx->clone_roots[i].root->node !=
7406 		    sctx->clone_roots[i].root->commit_root)
7407 			goto commit_trans;
7408 
7409 	if (trans)
7410 		return btrfs_end_transaction(trans);
7411 
7412 	return 0;
7413 
7414 commit_trans:
7415 	/* Use any root, all fs roots will get their commit roots updated. */
7416 	if (!trans) {
7417 		trans = btrfs_join_transaction(sctx->send_root);
7418 		if (IS_ERR(trans))
7419 			return PTR_ERR(trans);
7420 		goto again;
7421 	}
7422 
7423 	return btrfs_commit_transaction(trans);
7424 }
7425 
7426 /*
7427  * Make sure any existing dellaloc is flushed for any root used by a send
7428  * operation so that we do not miss any data and we do not race with writeback
7429  * finishing and changing a tree while send is using the tree. This could
7430  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7431  * a send operation then uses the subvolume.
7432  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7433  */
7434 static int flush_delalloc_roots(struct send_ctx *sctx)
7435 {
7436 	struct btrfs_root *root = sctx->parent_root;
7437 	int ret;
7438 	int i;
7439 
7440 	if (root) {
7441 		ret = btrfs_start_delalloc_snapshot(root, false);
7442 		if (ret)
7443 			return ret;
7444 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7445 	}
7446 
7447 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7448 		root = sctx->clone_roots[i].root;
7449 		ret = btrfs_start_delalloc_snapshot(root, false);
7450 		if (ret)
7451 			return ret;
7452 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7453 	}
7454 
7455 	return 0;
7456 }
7457 
7458 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7459 {
7460 	spin_lock(&root->root_item_lock);
7461 	root->send_in_progress--;
7462 	/*
7463 	 * Not much left to do, we don't know why it's unbalanced and
7464 	 * can't blindly reset it to 0.
7465 	 */
7466 	if (root->send_in_progress < 0)
7467 		btrfs_err(root->fs_info,
7468 			  "send_in_progress unbalanced %d root %llu",
7469 			  root->send_in_progress, root->root_key.objectid);
7470 	spin_unlock(&root->root_item_lock);
7471 }
7472 
7473 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7474 {
7475 	btrfs_warn_rl(root->fs_info,
7476 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7477 		      root->root_key.objectid, root->dedupe_in_progress);
7478 }
7479 
7480 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7481 {
7482 	int ret = 0;
7483 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7484 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7485 	struct btrfs_root *clone_root;
7486 	struct send_ctx *sctx = NULL;
7487 	u32 i;
7488 	u64 *clone_sources_tmp = NULL;
7489 	int clone_sources_to_rollback = 0;
7490 	size_t alloc_size;
7491 	int sort_clone_roots = 0;
7492 
7493 	if (!capable(CAP_SYS_ADMIN))
7494 		return -EPERM;
7495 
7496 	/*
7497 	 * The subvolume must remain read-only during send, protect against
7498 	 * making it RW. This also protects against deletion.
7499 	 */
7500 	spin_lock(&send_root->root_item_lock);
7501 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7502 		dedupe_in_progress_warn(send_root);
7503 		spin_unlock(&send_root->root_item_lock);
7504 		return -EAGAIN;
7505 	}
7506 	send_root->send_in_progress++;
7507 	spin_unlock(&send_root->root_item_lock);
7508 
7509 	/*
7510 	 * Userspace tools do the checks and warn the user if it's
7511 	 * not RO.
7512 	 */
7513 	if (!btrfs_root_readonly(send_root)) {
7514 		ret = -EPERM;
7515 		goto out;
7516 	}
7517 
7518 	/*
7519 	 * Check that we don't overflow at later allocations, we request
7520 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7521 	 * access_ok.
7522 	 */
7523 	if (arg->clone_sources_count >
7524 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7525 		ret = -EINVAL;
7526 		goto out;
7527 	}
7528 
7529 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7530 		ret = -EINVAL;
7531 		goto out;
7532 	}
7533 
7534 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7535 	if (!sctx) {
7536 		ret = -ENOMEM;
7537 		goto out;
7538 	}
7539 
7540 	INIT_LIST_HEAD(&sctx->new_refs);
7541 	INIT_LIST_HEAD(&sctx->deleted_refs);
7542 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7543 	INIT_LIST_HEAD(&sctx->name_cache_list);
7544 
7545 	sctx->flags = arg->flags;
7546 
7547 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7548 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7549 			ret = -EPROTO;
7550 			goto out;
7551 		}
7552 		/* Zero means "use the highest version" */
7553 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7554 	} else {
7555 		sctx->proto = 1;
7556 	}
7557 
7558 	sctx->send_filp = fget(arg->send_fd);
7559 	if (!sctx->send_filp) {
7560 		ret = -EBADF;
7561 		goto out;
7562 	}
7563 
7564 	sctx->send_root = send_root;
7565 	/*
7566 	 * Unlikely but possible, if the subvolume is marked for deletion but
7567 	 * is slow to remove the directory entry, send can still be started
7568 	 */
7569 	if (btrfs_root_dead(sctx->send_root)) {
7570 		ret = -EPERM;
7571 		goto out;
7572 	}
7573 
7574 	sctx->clone_roots_cnt = arg->clone_sources_count;
7575 
7576 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7577 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7578 	if (!sctx->send_buf) {
7579 		ret = -ENOMEM;
7580 		goto out;
7581 	}
7582 
7583 	sctx->pending_dir_moves = RB_ROOT;
7584 	sctx->waiting_dir_moves = RB_ROOT;
7585 	sctx->orphan_dirs = RB_ROOT;
7586 
7587 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7588 				     arg->clone_sources_count + 1,
7589 				     GFP_KERNEL);
7590 	if (!sctx->clone_roots) {
7591 		ret = -ENOMEM;
7592 		goto out;
7593 	}
7594 
7595 	alloc_size = array_size(sizeof(*arg->clone_sources),
7596 				arg->clone_sources_count);
7597 
7598 	if (arg->clone_sources_count) {
7599 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7600 		if (!clone_sources_tmp) {
7601 			ret = -ENOMEM;
7602 			goto out;
7603 		}
7604 
7605 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7606 				alloc_size);
7607 		if (ret) {
7608 			ret = -EFAULT;
7609 			goto out;
7610 		}
7611 
7612 		for (i = 0; i < arg->clone_sources_count; i++) {
7613 			clone_root = btrfs_get_fs_root(fs_info,
7614 						clone_sources_tmp[i], true);
7615 			if (IS_ERR(clone_root)) {
7616 				ret = PTR_ERR(clone_root);
7617 				goto out;
7618 			}
7619 			spin_lock(&clone_root->root_item_lock);
7620 			if (!btrfs_root_readonly(clone_root) ||
7621 			    btrfs_root_dead(clone_root)) {
7622 				spin_unlock(&clone_root->root_item_lock);
7623 				btrfs_put_root(clone_root);
7624 				ret = -EPERM;
7625 				goto out;
7626 			}
7627 			if (clone_root->dedupe_in_progress) {
7628 				dedupe_in_progress_warn(clone_root);
7629 				spin_unlock(&clone_root->root_item_lock);
7630 				btrfs_put_root(clone_root);
7631 				ret = -EAGAIN;
7632 				goto out;
7633 			}
7634 			clone_root->send_in_progress++;
7635 			spin_unlock(&clone_root->root_item_lock);
7636 
7637 			sctx->clone_roots[i].root = clone_root;
7638 			clone_sources_to_rollback = i + 1;
7639 		}
7640 		kvfree(clone_sources_tmp);
7641 		clone_sources_tmp = NULL;
7642 	}
7643 
7644 	if (arg->parent_root) {
7645 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7646 						      true);
7647 		if (IS_ERR(sctx->parent_root)) {
7648 			ret = PTR_ERR(sctx->parent_root);
7649 			goto out;
7650 		}
7651 
7652 		spin_lock(&sctx->parent_root->root_item_lock);
7653 		sctx->parent_root->send_in_progress++;
7654 		if (!btrfs_root_readonly(sctx->parent_root) ||
7655 				btrfs_root_dead(sctx->parent_root)) {
7656 			spin_unlock(&sctx->parent_root->root_item_lock);
7657 			ret = -EPERM;
7658 			goto out;
7659 		}
7660 		if (sctx->parent_root->dedupe_in_progress) {
7661 			dedupe_in_progress_warn(sctx->parent_root);
7662 			spin_unlock(&sctx->parent_root->root_item_lock);
7663 			ret = -EAGAIN;
7664 			goto out;
7665 		}
7666 		spin_unlock(&sctx->parent_root->root_item_lock);
7667 	}
7668 
7669 	/*
7670 	 * Clones from send_root are allowed, but only if the clone source
7671 	 * is behind the current send position. This is checked while searching
7672 	 * for possible clone sources.
7673 	 */
7674 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7675 		btrfs_grab_root(sctx->send_root);
7676 
7677 	/* We do a bsearch later */
7678 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7679 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7680 			NULL);
7681 	sort_clone_roots = 1;
7682 
7683 	ret = flush_delalloc_roots(sctx);
7684 	if (ret)
7685 		goto out;
7686 
7687 	ret = ensure_commit_roots_uptodate(sctx);
7688 	if (ret)
7689 		goto out;
7690 
7691 	ret = send_subvol(sctx);
7692 	if (ret < 0)
7693 		goto out;
7694 
7695 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7696 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7697 		if (ret < 0)
7698 			goto out;
7699 		ret = send_cmd(sctx);
7700 		if (ret < 0)
7701 			goto out;
7702 	}
7703 
7704 out:
7705 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7706 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7707 		struct rb_node *n;
7708 		struct pending_dir_move *pm;
7709 
7710 		n = rb_first(&sctx->pending_dir_moves);
7711 		pm = rb_entry(n, struct pending_dir_move, node);
7712 		while (!list_empty(&pm->list)) {
7713 			struct pending_dir_move *pm2;
7714 
7715 			pm2 = list_first_entry(&pm->list,
7716 					       struct pending_dir_move, list);
7717 			free_pending_move(sctx, pm2);
7718 		}
7719 		free_pending_move(sctx, pm);
7720 	}
7721 
7722 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7723 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7724 		struct rb_node *n;
7725 		struct waiting_dir_move *dm;
7726 
7727 		n = rb_first(&sctx->waiting_dir_moves);
7728 		dm = rb_entry(n, struct waiting_dir_move, node);
7729 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7730 		kfree(dm);
7731 	}
7732 
7733 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7734 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7735 		struct rb_node *n;
7736 		struct orphan_dir_info *odi;
7737 
7738 		n = rb_first(&sctx->orphan_dirs);
7739 		odi = rb_entry(n, struct orphan_dir_info, node);
7740 		free_orphan_dir_info(sctx, odi);
7741 	}
7742 
7743 	if (sort_clone_roots) {
7744 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7745 			btrfs_root_dec_send_in_progress(
7746 					sctx->clone_roots[i].root);
7747 			btrfs_put_root(sctx->clone_roots[i].root);
7748 		}
7749 	} else {
7750 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7751 			btrfs_root_dec_send_in_progress(
7752 					sctx->clone_roots[i].root);
7753 			btrfs_put_root(sctx->clone_roots[i].root);
7754 		}
7755 
7756 		btrfs_root_dec_send_in_progress(send_root);
7757 	}
7758 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7759 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7760 		btrfs_put_root(sctx->parent_root);
7761 	}
7762 
7763 	kvfree(clone_sources_tmp);
7764 
7765 	if (sctx) {
7766 		if (sctx->send_filp)
7767 			fput(sctx->send_filp);
7768 
7769 		kvfree(sctx->clone_roots);
7770 		kvfree(sctx->send_buf);
7771 
7772 		name_cache_free(sctx);
7773 
7774 		kfree(sctx);
7775 	}
7776 
7777 	return ret;
7778 }
7779