xref: /linux/fs/btrfs/send.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38 
39 /*
40  * A fs_path is a helper to dynamically build path names with unknown size.
41  * It reallocates the internal buffer on demand.
42  * It allows fast adding of path elements on the right side (normal path) and
43  * fast adding to the left side (reversed path). A reversed path can also be
44  * unreversed if needed.
45  */
46 struct fs_path {
47 	union {
48 		struct {
49 			char *start;
50 			char *end;
51 
52 			char *buf;
53 			unsigned short buf_len:15;
54 			unsigned short reversed:1;
55 			char inline_buf[];
56 		};
57 		/*
58 		 * Average path length does not exceed 200 bytes, we'll have
59 		 * better packing in the slab and higher chance to satisfy
60 		 * a allocation later during send.
61 		 */
62 		char pad[256];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 	u64 cur_inode_rdev;
113 	u64 cur_inode_last_extent;
114 
115 	u64 send_progress;
116 
117 	struct list_head new_refs;
118 	struct list_head deleted_refs;
119 
120 	struct radix_tree_root name_cache;
121 	struct list_head name_cache_list;
122 	int name_cache_size;
123 
124 	struct file_ra_state ra;
125 
126 	char *read_buf;
127 
128 	/*
129 	 * We process inodes by their increasing order, so if before an
130 	 * incremental send we reverse the parent/child relationship of
131 	 * directories such that a directory with a lower inode number was
132 	 * the parent of a directory with a higher inode number, and the one
133 	 * becoming the new parent got renamed too, we can't rename/move the
134 	 * directory with lower inode number when we finish processing it - we
135 	 * must process the directory with higher inode number first, then
136 	 * rename/move it and then rename/move the directory with lower inode
137 	 * number. Example follows.
138 	 *
139 	 * Tree state when the first send was performed:
140 	 *
141 	 * .
142 	 * |-- a                   (ino 257)
143 	 *     |-- b               (ino 258)
144 	 *         |
145 	 *         |
146 	 *         |-- c           (ino 259)
147 	 *         |   |-- d       (ino 260)
148 	 *         |
149 	 *         |-- c2          (ino 261)
150 	 *
151 	 * Tree state when the second (incremental) send is performed:
152 	 *
153 	 * .
154 	 * |-- a                   (ino 257)
155 	 *     |-- b               (ino 258)
156 	 *         |-- c2          (ino 261)
157 	 *             |-- d2      (ino 260)
158 	 *                 |-- cc  (ino 259)
159 	 *
160 	 * The sequence of steps that lead to the second state was:
161 	 *
162 	 * mv /a/b/c/d /a/b/c2/d2
163 	 * mv /a/b/c /a/b/c2/d2/cc
164 	 *
165 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 	 * before we move "d", which has higher inode number.
167 	 *
168 	 * So we just memorize which move/rename operations must be performed
169 	 * later when their respective parent is processed and moved/renamed.
170 	 */
171 
172 	/* Indexed by parent directory inode number. */
173 	struct rb_root pending_dir_moves;
174 
175 	/*
176 	 * Reverse index, indexed by the inode number of a directory that
177 	 * is waiting for the move/rename of its immediate parent before its
178 	 * own move/rename can be performed.
179 	 */
180 	struct rb_root waiting_dir_moves;
181 
182 	/*
183 	 * A directory that is going to be rm'ed might have a child directory
184 	 * which is in the pending directory moves index above. In this case,
185 	 * the directory can only be removed after the move/rename of its child
186 	 * is performed. Example:
187 	 *
188 	 * Parent snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- c/           (ino 259)
194 	 *         |   |-- x/       (ino 260)
195 	 *         |
196 	 *         |-- y/           (ino 261)
197 	 *
198 	 * Send snapshot:
199 	 *
200 	 * .                        (ino 256)
201 	 * |-- a/                   (ino 257)
202 	 *     |-- b/               (ino 258)
203 	 *         |-- YY/          (ino 261)
204 	 *              |-- x/      (ino 260)
205 	 *
206 	 * Sequence of steps that lead to the send snapshot:
207 	 * rm -f /a/b/c/foo.txt
208 	 * mv /a/b/y /a/b/YY
209 	 * mv /a/b/c/x /a/b/YY
210 	 * rmdir /a/b/c
211 	 *
212 	 * When the child is processed, its move/rename is delayed until its
213 	 * parent is processed (as explained above), but all other operations
214 	 * like update utimes, chown, chgrp, etc, are performed and the paths
215 	 * that it uses for those operations must use the orphanized name of
216 	 * its parent (the directory we're going to rm later), so we need to
217 	 * memorize that name.
218 	 *
219 	 * Indexed by the inode number of the directory to be deleted.
220 	 */
221 	struct rb_root orphan_dirs;
222 };
223 
224 struct pending_dir_move {
225 	struct rb_node node;
226 	struct list_head list;
227 	u64 parent_ino;
228 	u64 ino;
229 	u64 gen;
230 	struct list_head update_refs;
231 };
232 
233 struct waiting_dir_move {
234 	struct rb_node node;
235 	u64 ino;
236 	/*
237 	 * There might be some directory that could not be removed because it
238 	 * was waiting for this directory inode to be moved first. Therefore
239 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 	 */
241 	u64 rmdir_ino;
242 	bool orphanized;
243 };
244 
245 struct orphan_dir_info {
246 	struct rb_node node;
247 	u64 ino;
248 	u64 gen;
249 };
250 
251 struct name_cache_entry {
252 	struct list_head list;
253 	/*
254 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 	 * more then one inum would fall into the same entry, we use radix_list
257 	 * to store the additional entries. radix_list is also used to store
258 	 * entries where two entries have the same inum but different
259 	 * generations.
260 	 */
261 	struct list_head radix_list;
262 	u64 ino;
263 	u64 gen;
264 	u64 parent_ino;
265 	u64 parent_gen;
266 	int ret;
267 	int need_later_update;
268 	int name_len;
269 	char name[];
270 };
271 
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 					enum btrfs_compare_tree_result result,
274 					const char *what)
275 {
276 	const char *result_string;
277 
278 	switch (result) {
279 	case BTRFS_COMPARE_TREE_NEW:
280 		result_string = "new";
281 		break;
282 	case BTRFS_COMPARE_TREE_DELETED:
283 		result_string = "deleted";
284 		break;
285 	case BTRFS_COMPARE_TREE_CHANGED:
286 		result_string = "updated";
287 		break;
288 	case BTRFS_COMPARE_TREE_SAME:
289 		ASSERT(0);
290 		result_string = "unchanged";
291 		break;
292 	default:
293 		ASSERT(0);
294 		result_string = "unexpected";
295 	}
296 
297 	btrfs_err(sctx->send_root->fs_info,
298 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 		  result_string, what, sctx->cmp_key->objectid,
300 		  sctx->send_root->root_key.objectid,
301 		  (sctx->parent_root ?
302 		   sctx->parent_root->root_key.objectid : 0));
303 }
304 
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306 
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309 
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311 
312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 	return (sctx->parent_root && !sctx->cur_inode_new &&
315 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 		S_ISREG(sctx->cur_inode_mode));
317 }
318 
319 static void fs_path_reset(struct fs_path *p)
320 {
321 	if (p->reversed) {
322 		p->start = p->buf + p->buf_len - 1;
323 		p->end = p->start;
324 		*p->start = 0;
325 	} else {
326 		p->start = p->buf;
327 		p->end = p->start;
328 		*p->start = 0;
329 	}
330 }
331 
332 static struct fs_path *fs_path_alloc(void)
333 {
334 	struct fs_path *p;
335 
336 	p = kmalloc(sizeof(*p), GFP_KERNEL);
337 	if (!p)
338 		return NULL;
339 	p->reversed = 0;
340 	p->buf = p->inline_buf;
341 	p->buf_len = FS_PATH_INLINE_SIZE;
342 	fs_path_reset(p);
343 	return p;
344 }
345 
346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 	struct fs_path *p;
349 
350 	p = fs_path_alloc();
351 	if (!p)
352 		return NULL;
353 	p->reversed = 1;
354 	fs_path_reset(p);
355 	return p;
356 }
357 
358 static void fs_path_free(struct fs_path *p)
359 {
360 	if (!p)
361 		return;
362 	if (p->buf != p->inline_buf)
363 		kfree(p->buf);
364 	kfree(p);
365 }
366 
367 static int fs_path_len(struct fs_path *p)
368 {
369 	return p->end - p->start;
370 }
371 
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 	char *tmp_buf;
375 	int path_len;
376 	int old_buf_len;
377 
378 	len++;
379 
380 	if (p->buf_len >= len)
381 		return 0;
382 
383 	if (len > PATH_MAX) {
384 		WARN_ON(1);
385 		return -ENOMEM;
386 	}
387 
388 	path_len = p->end - p->start;
389 	old_buf_len = p->buf_len;
390 
391 	/*
392 	 * First time the inline_buf does not suffice
393 	 */
394 	if (p->buf == p->inline_buf) {
395 		tmp_buf = kmalloc(len, GFP_KERNEL);
396 		if (tmp_buf)
397 			memcpy(tmp_buf, p->buf, old_buf_len);
398 	} else {
399 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 	}
401 	if (!tmp_buf)
402 		return -ENOMEM;
403 	p->buf = tmp_buf;
404 	/*
405 	 * The real size of the buffer is bigger, this will let the fast path
406 	 * happen most of the time
407 	 */
408 	p->buf_len = ksize(p->buf);
409 
410 	if (p->reversed) {
411 		tmp_buf = p->buf + old_buf_len - path_len - 1;
412 		p->end = p->buf + p->buf_len - 1;
413 		p->start = p->end - path_len;
414 		memmove(p->start, tmp_buf, path_len + 1);
415 	} else {
416 		p->start = p->buf;
417 		p->end = p->start + path_len;
418 	}
419 	return 0;
420 }
421 
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 				   char **prepared)
424 {
425 	int ret;
426 	int new_len;
427 
428 	new_len = p->end - p->start + name_len;
429 	if (p->start != p->end)
430 		new_len++;
431 	ret = fs_path_ensure_buf(p, new_len);
432 	if (ret < 0)
433 		goto out;
434 
435 	if (p->reversed) {
436 		if (p->start != p->end)
437 			*--p->start = '/';
438 		p->start -= name_len;
439 		*prepared = p->start;
440 	} else {
441 		if (p->start != p->end)
442 			*p->end++ = '/';
443 		*prepared = p->end;
444 		p->end += name_len;
445 		*p->end = 0;
446 	}
447 
448 out:
449 	return ret;
450 }
451 
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 	int ret;
455 	char *prepared;
456 
457 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 	if (ret < 0)
459 		goto out;
460 	memcpy(prepared, name, name_len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 	int ret;
469 	char *prepared;
470 
471 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 	if (ret < 0)
473 		goto out;
474 	memcpy(prepared, p2->start, p2->end - p2->start);
475 
476 out:
477 	return ret;
478 }
479 
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 					  struct extent_buffer *eb,
482 					  unsigned long off, int len)
483 {
484 	int ret;
485 	char *prepared;
486 
487 	ret = fs_path_prepare_for_add(p, len, &prepared);
488 	if (ret < 0)
489 		goto out;
490 
491 	read_extent_buffer(eb, prepared, off, len);
492 
493 out:
494 	return ret;
495 }
496 
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 	int ret;
500 
501 	p->reversed = from->reversed;
502 	fs_path_reset(p);
503 
504 	ret = fs_path_add_path(p, from);
505 
506 	return ret;
507 }
508 
509 
510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 	char *tmp;
513 	int len;
514 
515 	if (!p->reversed)
516 		return;
517 
518 	tmp = p->start;
519 	len = p->end - p->start;
520 	p->start = p->buf;
521 	p->end = p->start + len;
522 	memmove(p->start, tmp, len + 1);
523 	p->reversed = 0;
524 }
525 
526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 	struct btrfs_path *path;
529 
530 	path = btrfs_alloc_path();
531 	if (!path)
532 		return NULL;
533 	path->search_commit_root = 1;
534 	path->skip_locking = 1;
535 	path->need_commit_sem = 1;
536 	return path;
537 }
538 
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 	int ret;
542 	mm_segment_t old_fs;
543 	u32 pos = 0;
544 
545 	old_fs = get_fs();
546 	set_fs(KERNEL_DS);
547 
548 	while (pos < len) {
549 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 				len - pos, off);
551 		/* TODO handle that correctly */
552 		/*if (ret == -ERESTARTSYS) {
553 			continue;
554 		}*/
555 		if (ret < 0)
556 			goto out;
557 		if (ret == 0) {
558 			ret = -EIO;
559 			goto out;
560 		}
561 		pos += ret;
562 	}
563 
564 	ret = 0;
565 
566 out:
567 	set_fs(old_fs);
568 	return ret;
569 }
570 
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 	struct btrfs_tlv_header *hdr;
574 	int total_len = sizeof(*hdr) + len;
575 	int left = sctx->send_max_size - sctx->send_size;
576 
577 	if (unlikely(left < total_len))
578 		return -EOVERFLOW;
579 
580 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 	hdr->tlv_type = cpu_to_le16(attr);
582 	hdr->tlv_len = cpu_to_le16(len);
583 	memcpy(hdr + 1, data, len);
584 	sctx->send_size += total_len;
585 
586 	return 0;
587 }
588 
589 #define TLV_PUT_DEFINE_INT(bits) \
590 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591 			u##bits attr, u##bits value)			\
592 	{								\
593 		__le##bits __tmp = cpu_to_le##bits(value);		\
594 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595 	}
596 
597 TLV_PUT_DEFINE_INT(64)
598 
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 			  const char *str, int len)
601 {
602 	if (len == -1)
603 		len = strlen(str);
604 	return tlv_put(sctx, attr, str, len);
605 }
606 
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 			const u8 *uuid)
609 {
610 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612 
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 				  struct extent_buffer *eb,
615 				  struct btrfs_timespec *ts)
616 {
617 	struct btrfs_timespec bts;
618 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 	return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621 
622 
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
624 	do { \
625 		ret = tlv_put(sctx, attrtype, attrlen, data); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 	do { \
632 		ret = tlv_put_u##bits(sctx, attrtype, value); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 	do { \
643 		ret = tlv_put_string(sctx, attrtype, str, len); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, p->start, \
650 			p->end - p->start); \
651 		if (ret < 0) \
652 			goto tlv_put_failure; \
653 	} while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 	do { \
656 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 	do { \
662 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 
667 static int send_header(struct send_ctx *sctx)
668 {
669 	struct btrfs_stream_header hdr;
670 
671 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673 
674 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 					&sctx->send_off);
676 }
677 
678 /*
679  * For each command/item we want to send to userspace, we call this function.
680  */
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 	struct btrfs_cmd_header *hdr;
684 
685 	if (WARN_ON(!sctx->send_buf))
686 		return -EINVAL;
687 
688 	BUG_ON(sctx->send_size);
689 
690 	sctx->send_size += sizeof(*hdr);
691 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 	hdr->cmd = cpu_to_le16(cmd);
693 
694 	return 0;
695 }
696 
697 static int send_cmd(struct send_ctx *sctx)
698 {
699 	int ret;
700 	struct btrfs_cmd_header *hdr;
701 	u32 crc;
702 
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 	hdr->crc = 0;
706 
707 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 	hdr->crc = cpu_to_le32(crc);
709 
710 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 					&sctx->send_off);
712 
713 	sctx->total_send_size += sctx->send_size;
714 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 	sctx->send_size = 0;
716 
717 	return ret;
718 }
719 
720 /*
721  * Sends a move instruction to user space
722  */
723 static int send_rename(struct send_ctx *sctx,
724 		     struct fs_path *from, struct fs_path *to)
725 {
726 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 	int ret;
728 
729 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 
731 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 	if (ret < 0)
733 		goto out;
734 
735 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737 
738 	ret = send_cmd(sctx);
739 
740 tlv_put_failure:
741 out:
742 	return ret;
743 }
744 
745 /*
746  * Sends a link instruction to user space
747  */
748 static int send_link(struct send_ctx *sctx,
749 		     struct fs_path *path, struct fs_path *lnk)
750 {
751 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 	int ret;
753 
754 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 
756 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 	if (ret < 0)
758 		goto out;
759 
760 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762 
763 	ret = send_cmd(sctx);
764 
765 tlv_put_failure:
766 out:
767 	return ret;
768 }
769 
770 /*
771  * Sends an unlink instruction to user space
772  */
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 	int ret;
777 
778 	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 
780 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 	if (ret < 0)
782 		goto out;
783 
784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785 
786 	ret = send_cmd(sctx);
787 
788 tlv_put_failure:
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Sends a rmdir instruction to user space
795  */
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 	int ret;
800 
801 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    struct btrfs_key *found_key,
1006 			    iterate_dir_item_t iterate, void *ctx)
1007 {
1008 	int ret = 0;
1009 	struct extent_buffer *eb;
1010 	struct btrfs_item *item;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key di_key;
1013 	char *buf = NULL;
1014 	int buf_len;
1015 	u32 name_len;
1016 	u32 data_len;
1017 	u32 cur;
1018 	u32 len;
1019 	u32 total;
1020 	int slot;
1021 	int num;
1022 	u8 type;
1023 
1024 	/*
1025 	 * Start with a small buffer (1 page). If later we end up needing more
1026 	 * space, which can happen for xattrs on a fs with a leaf size greater
1027 	 * then the page size, attempt to increase the buffer. Typically xattr
1028 	 * values are small.
1029 	 */
1030 	buf_len = PATH_MAX;
1031 	buf = kmalloc(buf_len, GFP_KERNEL);
1032 	if (!buf) {
1033 		ret = -ENOMEM;
1034 		goto out;
1035 	}
1036 
1037 	eb = path->nodes[0];
1038 	slot = path->slots[0];
1039 	item = btrfs_item_nr(slot);
1040 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 	cur = 0;
1042 	len = 0;
1043 	total = btrfs_item_size(eb, item);
1044 
1045 	num = 0;
1046 	while (cur < total) {
1047 		name_len = btrfs_dir_name_len(eb, di);
1048 		data_len = btrfs_dir_data_len(eb, di);
1049 		type = btrfs_dir_type(eb, di);
1050 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051 
1052 		if (type == BTRFS_FT_XATTR) {
1053 			if (name_len > XATTR_NAME_MAX) {
1054 				ret = -ENAMETOOLONG;
1055 				goto out;
1056 			}
1057 			if (name_len + data_len >
1058 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1059 				ret = -E2BIG;
1060 				goto out;
1061 			}
1062 		} else {
1063 			/*
1064 			 * Path too long
1065 			 */
1066 			if (name_len + data_len > PATH_MAX) {
1067 				ret = -ENAMETOOLONG;
1068 				goto out;
1069 			}
1070 		}
1071 
1072 		if (name_len + data_len > buf_len) {
1073 			buf_len = name_len + data_len;
1074 			if (is_vmalloc_addr(buf)) {
1075 				vfree(buf);
1076 				buf = NULL;
1077 			} else {
1078 				char *tmp = krealloc(buf, buf_len,
1079 						GFP_KERNEL | __GFP_NOWARN);
1080 
1081 				if (!tmp)
1082 					kfree(buf);
1083 				buf = tmp;
1084 			}
1085 			if (!buf) {
1086 				buf = vmalloc(buf_len);
1087 				if (!buf) {
1088 					ret = -ENOMEM;
1089 					goto out;
1090 				}
1091 			}
1092 		}
1093 
1094 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1095 				name_len + data_len);
1096 
1097 		len = sizeof(*di) + name_len + data_len;
1098 		di = (struct btrfs_dir_item *)((char *)di + len);
1099 		cur += len;
1100 
1101 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1102 				data_len, type, ctx);
1103 		if (ret < 0)
1104 			goto out;
1105 		if (ret) {
1106 			ret = 0;
1107 			goto out;
1108 		}
1109 
1110 		num++;
1111 	}
1112 
1113 out:
1114 	kvfree(buf);
1115 	return ret;
1116 }
1117 
1118 static int __copy_first_ref(int num, u64 dir, int index,
1119 			    struct fs_path *p, void *ctx)
1120 {
1121 	int ret;
1122 	struct fs_path *pt = ctx;
1123 
1124 	ret = fs_path_copy(pt, p);
1125 	if (ret < 0)
1126 		return ret;
1127 
1128 	/* we want the first only */
1129 	return 1;
1130 }
1131 
1132 /*
1133  * Retrieve the first path of an inode. If an inode has more then one
1134  * ref/hardlink, this is ignored.
1135  */
1136 static int get_inode_path(struct btrfs_root *root,
1137 			  u64 ino, struct fs_path *path)
1138 {
1139 	int ret;
1140 	struct btrfs_key key, found_key;
1141 	struct btrfs_path *p;
1142 
1143 	p = alloc_path_for_send();
1144 	if (!p)
1145 		return -ENOMEM;
1146 
1147 	fs_path_reset(path);
1148 
1149 	key.objectid = ino;
1150 	key.type = BTRFS_INODE_REF_KEY;
1151 	key.offset = 0;
1152 
1153 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1154 	if (ret < 0)
1155 		goto out;
1156 	if (ret) {
1157 		ret = 1;
1158 		goto out;
1159 	}
1160 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1161 	if (found_key.objectid != ino ||
1162 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1163 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1164 		ret = -ENOENT;
1165 		goto out;
1166 	}
1167 
1168 	ret = iterate_inode_ref(root, p, &found_key, 1,
1169 				__copy_first_ref, path);
1170 	if (ret < 0)
1171 		goto out;
1172 	ret = 0;
1173 
1174 out:
1175 	btrfs_free_path(p);
1176 	return ret;
1177 }
1178 
1179 struct backref_ctx {
1180 	struct send_ctx *sctx;
1181 
1182 	struct btrfs_path *path;
1183 	/* number of total found references */
1184 	u64 found;
1185 
1186 	/*
1187 	 * used for clones found in send_root. clones found behind cur_objectid
1188 	 * and cur_offset are not considered as allowed clones.
1189 	 */
1190 	u64 cur_objectid;
1191 	u64 cur_offset;
1192 
1193 	/* may be truncated in case it's the last extent in a file */
1194 	u64 extent_len;
1195 
1196 	/* data offset in the file extent item */
1197 	u64 data_offset;
1198 
1199 	/* Just to check for bugs in backref resolving */
1200 	int found_itself;
1201 };
1202 
1203 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1204 {
1205 	u64 root = (u64)(uintptr_t)key;
1206 	struct clone_root *cr = (struct clone_root *)elt;
1207 
1208 	if (root < cr->root->objectid)
1209 		return -1;
1210 	if (root > cr->root->objectid)
1211 		return 1;
1212 	return 0;
1213 }
1214 
1215 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1216 {
1217 	struct clone_root *cr1 = (struct clone_root *)e1;
1218 	struct clone_root *cr2 = (struct clone_root *)e2;
1219 
1220 	if (cr1->root->objectid < cr2->root->objectid)
1221 		return -1;
1222 	if (cr1->root->objectid > cr2->root->objectid)
1223 		return 1;
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Called for every backref that is found for the current extent.
1229  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1230  */
1231 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1232 {
1233 	struct backref_ctx *bctx = ctx_;
1234 	struct clone_root *found;
1235 	int ret;
1236 	u64 i_size;
1237 
1238 	/* First check if the root is in the list of accepted clone sources */
1239 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1240 			bctx->sctx->clone_roots_cnt,
1241 			sizeof(struct clone_root),
1242 			__clone_root_cmp_bsearch);
1243 	if (!found)
1244 		return 0;
1245 
1246 	if (found->root == bctx->sctx->send_root &&
1247 	    ino == bctx->cur_objectid &&
1248 	    offset == bctx->cur_offset) {
1249 		bctx->found_itself = 1;
1250 	}
1251 
1252 	/*
1253 	 * There are inodes that have extents that lie behind its i_size. Don't
1254 	 * accept clones from these extents.
1255 	 */
1256 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1257 			       NULL, NULL, NULL);
1258 	btrfs_release_path(bctx->path);
1259 	if (ret < 0)
1260 		return ret;
1261 
1262 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1263 		return 0;
1264 
1265 	/*
1266 	 * Make sure we don't consider clones from send_root that are
1267 	 * behind the current inode/offset.
1268 	 */
1269 	if (found->root == bctx->sctx->send_root) {
1270 		/*
1271 		 * TODO for the moment we don't accept clones from the inode
1272 		 * that is currently send. We may change this when
1273 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1274 		 * file.
1275 		 */
1276 		if (ino >= bctx->cur_objectid)
1277 			return 0;
1278 #if 0
1279 		if (ino > bctx->cur_objectid)
1280 			return 0;
1281 		if (offset + bctx->extent_len > bctx->cur_offset)
1282 			return 0;
1283 #endif
1284 	}
1285 
1286 	bctx->found++;
1287 	found->found_refs++;
1288 	if (ino < found->ino) {
1289 		found->ino = ino;
1290 		found->offset = offset;
1291 	} else if (found->ino == ino) {
1292 		/*
1293 		 * same extent found more then once in the same file.
1294 		 */
1295 		if (found->offset > offset + bctx->extent_len)
1296 			found->offset = offset;
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Given an inode, offset and extent item, it finds a good clone for a clone
1304  * instruction. Returns -ENOENT when none could be found. The function makes
1305  * sure that the returned clone is usable at the point where sending is at the
1306  * moment. This means, that no clones are accepted which lie behind the current
1307  * inode+offset.
1308  *
1309  * path must point to the extent item when called.
1310  */
1311 static int find_extent_clone(struct send_ctx *sctx,
1312 			     struct btrfs_path *path,
1313 			     u64 ino, u64 data_offset,
1314 			     u64 ino_size,
1315 			     struct clone_root **found)
1316 {
1317 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1318 	int ret;
1319 	int extent_type;
1320 	u64 logical;
1321 	u64 disk_byte;
1322 	u64 num_bytes;
1323 	u64 extent_item_pos;
1324 	u64 flags = 0;
1325 	struct btrfs_file_extent_item *fi;
1326 	struct extent_buffer *eb = path->nodes[0];
1327 	struct backref_ctx *backref_ctx = NULL;
1328 	struct clone_root *cur_clone_root;
1329 	struct btrfs_key found_key;
1330 	struct btrfs_path *tmp_path;
1331 	int compressed;
1332 	u32 i;
1333 
1334 	tmp_path = alloc_path_for_send();
1335 	if (!tmp_path)
1336 		return -ENOMEM;
1337 
1338 	/* We only use this path under the commit sem */
1339 	tmp_path->need_commit_sem = 0;
1340 
1341 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1342 	if (!backref_ctx) {
1343 		ret = -ENOMEM;
1344 		goto out;
1345 	}
1346 
1347 	backref_ctx->path = tmp_path;
1348 
1349 	if (data_offset >= ino_size) {
1350 		/*
1351 		 * There may be extents that lie behind the file's size.
1352 		 * I at least had this in combination with snapshotting while
1353 		 * writing large files.
1354 		 */
1355 		ret = 0;
1356 		goto out;
1357 	}
1358 
1359 	fi = btrfs_item_ptr(eb, path->slots[0],
1360 			struct btrfs_file_extent_item);
1361 	extent_type = btrfs_file_extent_type(eb, fi);
1362 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1363 		ret = -ENOENT;
1364 		goto out;
1365 	}
1366 	compressed = btrfs_file_extent_compression(eb, fi);
1367 
1368 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1369 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1370 	if (disk_byte == 0) {
1371 		ret = -ENOENT;
1372 		goto out;
1373 	}
1374 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1375 
1376 	down_read(&fs_info->commit_root_sem);
1377 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1378 				  &found_key, &flags);
1379 	up_read(&fs_info->commit_root_sem);
1380 	btrfs_release_path(tmp_path);
1381 
1382 	if (ret < 0)
1383 		goto out;
1384 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1385 		ret = -EIO;
1386 		goto out;
1387 	}
1388 
1389 	/*
1390 	 * Setup the clone roots.
1391 	 */
1392 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1393 		cur_clone_root = sctx->clone_roots + i;
1394 		cur_clone_root->ino = (u64)-1;
1395 		cur_clone_root->offset = 0;
1396 		cur_clone_root->found_refs = 0;
1397 	}
1398 
1399 	backref_ctx->sctx = sctx;
1400 	backref_ctx->found = 0;
1401 	backref_ctx->cur_objectid = ino;
1402 	backref_ctx->cur_offset = data_offset;
1403 	backref_ctx->found_itself = 0;
1404 	backref_ctx->extent_len = num_bytes;
1405 	/*
1406 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1407 	 * offsets that already take into account the data offset, but not for
1408 	 * compressed extents, since the offset is logical and not relative to
1409 	 * the physical extent locations. We must take this into account to
1410 	 * avoid sending clone offsets that go beyond the source file's size,
1411 	 * which would result in the clone ioctl failing with -EINVAL on the
1412 	 * receiving end.
1413 	 */
1414 	if (compressed == BTRFS_COMPRESS_NONE)
1415 		backref_ctx->data_offset = 0;
1416 	else
1417 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1418 
1419 	/*
1420 	 * The last extent of a file may be too large due to page alignment.
1421 	 * We need to adjust extent_len in this case so that the checks in
1422 	 * __iterate_backrefs work.
1423 	 */
1424 	if (data_offset + num_bytes >= ino_size)
1425 		backref_ctx->extent_len = ino_size - data_offset;
1426 
1427 	/*
1428 	 * Now collect all backrefs.
1429 	 */
1430 	if (compressed == BTRFS_COMPRESS_NONE)
1431 		extent_item_pos = logical - found_key.objectid;
1432 	else
1433 		extent_item_pos = 0;
1434 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1435 				    extent_item_pos, 1, __iterate_backrefs,
1436 				    backref_ctx);
1437 
1438 	if (ret < 0)
1439 		goto out;
1440 
1441 	if (!backref_ctx->found_itself) {
1442 		/* found a bug in backref code? */
1443 		ret = -EIO;
1444 		btrfs_err(fs_info,
1445 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1446 			  ino, data_offset, disk_byte, found_key.objectid);
1447 		goto out;
1448 	}
1449 
1450 	btrfs_debug(fs_info,
1451 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1452 		    data_offset, ino, num_bytes, logical);
1453 
1454 	if (!backref_ctx->found)
1455 		btrfs_debug(fs_info, "no clones found");
1456 
1457 	cur_clone_root = NULL;
1458 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 		if (sctx->clone_roots[i].found_refs) {
1460 			if (!cur_clone_root)
1461 				cur_clone_root = sctx->clone_roots + i;
1462 			else if (sctx->clone_roots[i].root == sctx->send_root)
1463 				/* prefer clones from send_root over others */
1464 				cur_clone_root = sctx->clone_roots + i;
1465 		}
1466 
1467 	}
1468 
1469 	if (cur_clone_root) {
1470 		*found = cur_clone_root;
1471 		ret = 0;
1472 	} else {
1473 		ret = -ENOENT;
1474 	}
1475 
1476 out:
1477 	btrfs_free_path(tmp_path);
1478 	kfree(backref_ctx);
1479 	return ret;
1480 }
1481 
1482 static int read_symlink(struct btrfs_root *root,
1483 			u64 ino,
1484 			struct fs_path *dest)
1485 {
1486 	int ret;
1487 	struct btrfs_path *path;
1488 	struct btrfs_key key;
1489 	struct btrfs_file_extent_item *ei;
1490 	u8 type;
1491 	u8 compression;
1492 	unsigned long off;
1493 	int len;
1494 
1495 	path = alloc_path_for_send();
1496 	if (!path)
1497 		return -ENOMEM;
1498 
1499 	key.objectid = ino;
1500 	key.type = BTRFS_EXTENT_DATA_KEY;
1501 	key.offset = 0;
1502 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1503 	if (ret < 0)
1504 		goto out;
1505 	if (ret) {
1506 		/*
1507 		 * An empty symlink inode. Can happen in rare error paths when
1508 		 * creating a symlink (transaction committed before the inode
1509 		 * eviction handler removed the symlink inode items and a crash
1510 		 * happened in between or the subvol was snapshoted in between).
1511 		 * Print an informative message to dmesg/syslog so that the user
1512 		 * can delete the symlink.
1513 		 */
1514 		btrfs_err(root->fs_info,
1515 			  "Found empty symlink inode %llu at root %llu",
1516 			  ino, root->root_key.objectid);
1517 		ret = -EIO;
1518 		goto out;
1519 	}
1520 
1521 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 			struct btrfs_file_extent_item);
1523 	type = btrfs_file_extent_type(path->nodes[0], ei);
1524 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 	BUG_ON(compression);
1527 
1528 	off = btrfs_file_extent_inline_start(ei);
1529 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1530 
1531 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1532 
1533 out:
1534 	btrfs_free_path(path);
1535 	return ret;
1536 }
1537 
1538 /*
1539  * Helper function to generate a file name that is unique in the root of
1540  * send_root and parent_root. This is used to generate names for orphan inodes.
1541  */
1542 static int gen_unique_name(struct send_ctx *sctx,
1543 			   u64 ino, u64 gen,
1544 			   struct fs_path *dest)
1545 {
1546 	int ret = 0;
1547 	struct btrfs_path *path;
1548 	struct btrfs_dir_item *di;
1549 	char tmp[64];
1550 	int len;
1551 	u64 idx = 0;
1552 
1553 	path = alloc_path_for_send();
1554 	if (!path)
1555 		return -ENOMEM;
1556 
1557 	while (1) {
1558 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1559 				ino, gen, idx);
1560 		ASSERT(len < sizeof(tmp));
1561 
1562 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 				path, BTRFS_FIRST_FREE_OBJECTID,
1564 				tmp, strlen(tmp), 0);
1565 		btrfs_release_path(path);
1566 		if (IS_ERR(di)) {
1567 			ret = PTR_ERR(di);
1568 			goto out;
1569 		}
1570 		if (di) {
1571 			/* not unique, try again */
1572 			idx++;
1573 			continue;
1574 		}
1575 
1576 		if (!sctx->parent_root) {
1577 			/* unique */
1578 			ret = 0;
1579 			break;
1580 		}
1581 
1582 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 				path, BTRFS_FIRST_FREE_OBJECTID,
1584 				tmp, strlen(tmp), 0);
1585 		btrfs_release_path(path);
1586 		if (IS_ERR(di)) {
1587 			ret = PTR_ERR(di);
1588 			goto out;
1589 		}
1590 		if (di) {
1591 			/* not unique, try again */
1592 			idx++;
1593 			continue;
1594 		}
1595 		/* unique */
1596 		break;
1597 	}
1598 
1599 	ret = fs_path_add(dest, tmp, strlen(tmp));
1600 
1601 out:
1602 	btrfs_free_path(path);
1603 	return ret;
1604 }
1605 
1606 enum inode_state {
1607 	inode_state_no_change,
1608 	inode_state_will_create,
1609 	inode_state_did_create,
1610 	inode_state_will_delete,
1611 	inode_state_did_delete,
1612 };
1613 
1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1615 {
1616 	int ret;
1617 	int left_ret;
1618 	int right_ret;
1619 	u64 left_gen;
1620 	u64 right_gen;
1621 
1622 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1623 			NULL, NULL);
1624 	if (ret < 0 && ret != -ENOENT)
1625 		goto out;
1626 	left_ret = ret;
1627 
1628 	if (!sctx->parent_root) {
1629 		right_ret = -ENOENT;
1630 	} else {
1631 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1632 				NULL, NULL, NULL, NULL);
1633 		if (ret < 0 && ret != -ENOENT)
1634 			goto out;
1635 		right_ret = ret;
1636 	}
1637 
1638 	if (!left_ret && !right_ret) {
1639 		if (left_gen == gen && right_gen == gen) {
1640 			ret = inode_state_no_change;
1641 		} else if (left_gen == gen) {
1642 			if (ino < sctx->send_progress)
1643 				ret = inode_state_did_create;
1644 			else
1645 				ret = inode_state_will_create;
1646 		} else if (right_gen == gen) {
1647 			if (ino < sctx->send_progress)
1648 				ret = inode_state_did_delete;
1649 			else
1650 				ret = inode_state_will_delete;
1651 		} else  {
1652 			ret = -ENOENT;
1653 		}
1654 	} else if (!left_ret) {
1655 		if (left_gen == gen) {
1656 			if (ino < sctx->send_progress)
1657 				ret = inode_state_did_create;
1658 			else
1659 				ret = inode_state_will_create;
1660 		} else {
1661 			ret = -ENOENT;
1662 		}
1663 	} else if (!right_ret) {
1664 		if (right_gen == gen) {
1665 			if (ino < sctx->send_progress)
1666 				ret = inode_state_did_delete;
1667 			else
1668 				ret = inode_state_will_delete;
1669 		} else {
1670 			ret = -ENOENT;
1671 		}
1672 	} else {
1673 		ret = -ENOENT;
1674 	}
1675 
1676 out:
1677 	return ret;
1678 }
1679 
1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1681 {
1682 	int ret;
1683 
1684 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1685 		return 1;
1686 
1687 	ret = get_cur_inode_state(sctx, ino, gen);
1688 	if (ret < 0)
1689 		goto out;
1690 
1691 	if (ret == inode_state_no_change ||
1692 	    ret == inode_state_did_create ||
1693 	    ret == inode_state_will_delete)
1694 		ret = 1;
1695 	else
1696 		ret = 0;
1697 
1698 out:
1699 	return ret;
1700 }
1701 
1702 /*
1703  * Helper function to lookup a dir item in a dir.
1704  */
1705 static int lookup_dir_item_inode(struct btrfs_root *root,
1706 				 u64 dir, const char *name, int name_len,
1707 				 u64 *found_inode,
1708 				 u8 *found_type)
1709 {
1710 	int ret = 0;
1711 	struct btrfs_dir_item *di;
1712 	struct btrfs_key key;
1713 	struct btrfs_path *path;
1714 
1715 	path = alloc_path_for_send();
1716 	if (!path)
1717 		return -ENOMEM;
1718 
1719 	di = btrfs_lookup_dir_item(NULL, root, path,
1720 			dir, name, name_len, 0);
1721 	if (!di) {
1722 		ret = -ENOENT;
1723 		goto out;
1724 	}
1725 	if (IS_ERR(di)) {
1726 		ret = PTR_ERR(di);
1727 		goto out;
1728 	}
1729 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1730 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1731 		ret = -ENOENT;
1732 		goto out;
1733 	}
1734 	*found_inode = key.objectid;
1735 	*found_type = btrfs_dir_type(path->nodes[0], di);
1736 
1737 out:
1738 	btrfs_free_path(path);
1739 	return ret;
1740 }
1741 
1742 /*
1743  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1744  * generation of the parent dir and the name of the dir entry.
1745  */
1746 static int get_first_ref(struct btrfs_root *root, u64 ino,
1747 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1748 {
1749 	int ret;
1750 	struct btrfs_key key;
1751 	struct btrfs_key found_key;
1752 	struct btrfs_path *path;
1753 	int len;
1754 	u64 parent_dir;
1755 
1756 	path = alloc_path_for_send();
1757 	if (!path)
1758 		return -ENOMEM;
1759 
1760 	key.objectid = ino;
1761 	key.type = BTRFS_INODE_REF_KEY;
1762 	key.offset = 0;
1763 
1764 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1765 	if (ret < 0)
1766 		goto out;
1767 	if (!ret)
1768 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1769 				path->slots[0]);
1770 	if (ret || found_key.objectid != ino ||
1771 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1772 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1773 		ret = -ENOENT;
1774 		goto out;
1775 	}
1776 
1777 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1778 		struct btrfs_inode_ref *iref;
1779 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 				      struct btrfs_inode_ref);
1781 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1782 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1783 						     (unsigned long)(iref + 1),
1784 						     len);
1785 		parent_dir = found_key.offset;
1786 	} else {
1787 		struct btrfs_inode_extref *extref;
1788 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1789 					struct btrfs_inode_extref);
1790 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1791 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1792 					(unsigned long)&extref->name, len);
1793 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1794 	}
1795 	if (ret < 0)
1796 		goto out;
1797 	btrfs_release_path(path);
1798 
1799 	if (dir_gen) {
1800 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1801 				     NULL, NULL, NULL);
1802 		if (ret < 0)
1803 			goto out;
1804 	}
1805 
1806 	*dir = parent_dir;
1807 
1808 out:
1809 	btrfs_free_path(path);
1810 	return ret;
1811 }
1812 
1813 static int is_first_ref(struct btrfs_root *root,
1814 			u64 ino, u64 dir,
1815 			const char *name, int name_len)
1816 {
1817 	int ret;
1818 	struct fs_path *tmp_name;
1819 	u64 tmp_dir;
1820 
1821 	tmp_name = fs_path_alloc();
1822 	if (!tmp_name)
1823 		return -ENOMEM;
1824 
1825 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1826 	if (ret < 0)
1827 		goto out;
1828 
1829 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1830 		ret = 0;
1831 		goto out;
1832 	}
1833 
1834 	ret = !memcmp(tmp_name->start, name, name_len);
1835 
1836 out:
1837 	fs_path_free(tmp_name);
1838 	return ret;
1839 }
1840 
1841 /*
1842  * Used by process_recorded_refs to determine if a new ref would overwrite an
1843  * already existing ref. In case it detects an overwrite, it returns the
1844  * inode/gen in who_ino/who_gen.
1845  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1846  * to make sure later references to the overwritten inode are possible.
1847  * Orphanizing is however only required for the first ref of an inode.
1848  * process_recorded_refs does an additional is_first_ref check to see if
1849  * orphanizing is really required.
1850  */
1851 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1852 			      const char *name, int name_len,
1853 			      u64 *who_ino, u64 *who_gen)
1854 {
1855 	int ret = 0;
1856 	u64 gen;
1857 	u64 other_inode = 0;
1858 	u8 other_type = 0;
1859 
1860 	if (!sctx->parent_root)
1861 		goto out;
1862 
1863 	ret = is_inode_existent(sctx, dir, dir_gen);
1864 	if (ret <= 0)
1865 		goto out;
1866 
1867 	/*
1868 	 * If we have a parent root we need to verify that the parent dir was
1869 	 * not deleted and then re-created, if it was then we have no overwrite
1870 	 * and we can just unlink this entry.
1871 	 */
1872 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1873 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1874 				     NULL, NULL, NULL);
1875 		if (ret < 0 && ret != -ENOENT)
1876 			goto out;
1877 		if (ret) {
1878 			ret = 0;
1879 			goto out;
1880 		}
1881 		if (gen != dir_gen)
1882 			goto out;
1883 	}
1884 
1885 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1886 			&other_inode, &other_type);
1887 	if (ret < 0 && ret != -ENOENT)
1888 		goto out;
1889 	if (ret) {
1890 		ret = 0;
1891 		goto out;
1892 	}
1893 
1894 	/*
1895 	 * Check if the overwritten ref was already processed. If yes, the ref
1896 	 * was already unlinked/moved, so we can safely assume that we will not
1897 	 * overwrite anything at this point in time.
1898 	 */
1899 	if (other_inode > sctx->send_progress ||
1900 	    is_waiting_for_move(sctx, other_inode)) {
1901 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1902 				who_gen, NULL, NULL, NULL, NULL);
1903 		if (ret < 0)
1904 			goto out;
1905 
1906 		ret = 1;
1907 		*who_ino = other_inode;
1908 	} else {
1909 		ret = 0;
1910 	}
1911 
1912 out:
1913 	return ret;
1914 }
1915 
1916 /*
1917  * Checks if the ref was overwritten by an already processed inode. This is
1918  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1919  * thus the orphan name needs be used.
1920  * process_recorded_refs also uses it to avoid unlinking of refs that were
1921  * overwritten.
1922  */
1923 static int did_overwrite_ref(struct send_ctx *sctx,
1924 			    u64 dir, u64 dir_gen,
1925 			    u64 ino, u64 ino_gen,
1926 			    const char *name, int name_len)
1927 {
1928 	int ret = 0;
1929 	u64 gen;
1930 	u64 ow_inode;
1931 	u8 other_type;
1932 
1933 	if (!sctx->parent_root)
1934 		goto out;
1935 
1936 	ret = is_inode_existent(sctx, dir, dir_gen);
1937 	if (ret <= 0)
1938 		goto out;
1939 
1940 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1941 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1942 				     NULL, NULL, NULL);
1943 		if (ret < 0 && ret != -ENOENT)
1944 			goto out;
1945 		if (ret) {
1946 			ret = 0;
1947 			goto out;
1948 		}
1949 		if (gen != dir_gen)
1950 			goto out;
1951 	}
1952 
1953 	/* check if the ref was overwritten by another ref */
1954 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1955 			&ow_inode, &other_type);
1956 	if (ret < 0 && ret != -ENOENT)
1957 		goto out;
1958 	if (ret) {
1959 		/* was never and will never be overwritten */
1960 		ret = 0;
1961 		goto out;
1962 	}
1963 
1964 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1965 			NULL, NULL);
1966 	if (ret < 0)
1967 		goto out;
1968 
1969 	if (ow_inode == ino && gen == ino_gen) {
1970 		ret = 0;
1971 		goto out;
1972 	}
1973 
1974 	/*
1975 	 * We know that it is or will be overwritten. Check this now.
1976 	 * The current inode being processed might have been the one that caused
1977 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1978 	 * the current inode being processed.
1979 	 */
1980 	if ((ow_inode < sctx->send_progress) ||
1981 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1982 	     gen == sctx->cur_inode_gen))
1983 		ret = 1;
1984 	else
1985 		ret = 0;
1986 
1987 out:
1988 	return ret;
1989 }
1990 
1991 /*
1992  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1993  * that got overwritten. This is used by process_recorded_refs to determine
1994  * if it has to use the path as returned by get_cur_path or the orphan name.
1995  */
1996 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1997 {
1998 	int ret = 0;
1999 	struct fs_path *name = NULL;
2000 	u64 dir;
2001 	u64 dir_gen;
2002 
2003 	if (!sctx->parent_root)
2004 		goto out;
2005 
2006 	name = fs_path_alloc();
2007 	if (!name)
2008 		return -ENOMEM;
2009 
2010 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2011 	if (ret < 0)
2012 		goto out;
2013 
2014 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2015 			name->start, fs_path_len(name));
2016 
2017 out:
2018 	fs_path_free(name);
2019 	return ret;
2020 }
2021 
2022 /*
2023  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2024  * so we need to do some special handling in case we have clashes. This function
2025  * takes care of this with the help of name_cache_entry::radix_list.
2026  * In case of error, nce is kfreed.
2027  */
2028 static int name_cache_insert(struct send_ctx *sctx,
2029 			     struct name_cache_entry *nce)
2030 {
2031 	int ret = 0;
2032 	struct list_head *nce_head;
2033 
2034 	nce_head = radix_tree_lookup(&sctx->name_cache,
2035 			(unsigned long)nce->ino);
2036 	if (!nce_head) {
2037 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2038 		if (!nce_head) {
2039 			kfree(nce);
2040 			return -ENOMEM;
2041 		}
2042 		INIT_LIST_HEAD(nce_head);
2043 
2044 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2045 		if (ret < 0) {
2046 			kfree(nce_head);
2047 			kfree(nce);
2048 			return ret;
2049 		}
2050 	}
2051 	list_add_tail(&nce->radix_list, nce_head);
2052 	list_add_tail(&nce->list, &sctx->name_cache_list);
2053 	sctx->name_cache_size++;
2054 
2055 	return ret;
2056 }
2057 
2058 static void name_cache_delete(struct send_ctx *sctx,
2059 			      struct name_cache_entry *nce)
2060 {
2061 	struct list_head *nce_head;
2062 
2063 	nce_head = radix_tree_lookup(&sctx->name_cache,
2064 			(unsigned long)nce->ino);
2065 	if (!nce_head) {
2066 		btrfs_err(sctx->send_root->fs_info,
2067 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2068 			nce->ino, sctx->name_cache_size);
2069 	}
2070 
2071 	list_del(&nce->radix_list);
2072 	list_del(&nce->list);
2073 	sctx->name_cache_size--;
2074 
2075 	/*
2076 	 * We may not get to the final release of nce_head if the lookup fails
2077 	 */
2078 	if (nce_head && list_empty(nce_head)) {
2079 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2080 		kfree(nce_head);
2081 	}
2082 }
2083 
2084 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2085 						    u64 ino, u64 gen)
2086 {
2087 	struct list_head *nce_head;
2088 	struct name_cache_entry *cur;
2089 
2090 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2091 	if (!nce_head)
2092 		return NULL;
2093 
2094 	list_for_each_entry(cur, nce_head, radix_list) {
2095 		if (cur->ino == ino && cur->gen == gen)
2096 			return cur;
2097 	}
2098 	return NULL;
2099 }
2100 
2101 /*
2102  * Removes the entry from the list and adds it back to the end. This marks the
2103  * entry as recently used so that name_cache_clean_unused does not remove it.
2104  */
2105 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2106 {
2107 	list_del(&nce->list);
2108 	list_add_tail(&nce->list, &sctx->name_cache_list);
2109 }
2110 
2111 /*
2112  * Remove some entries from the beginning of name_cache_list.
2113  */
2114 static void name_cache_clean_unused(struct send_ctx *sctx)
2115 {
2116 	struct name_cache_entry *nce;
2117 
2118 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2119 		return;
2120 
2121 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2122 		nce = list_entry(sctx->name_cache_list.next,
2123 				struct name_cache_entry, list);
2124 		name_cache_delete(sctx, nce);
2125 		kfree(nce);
2126 	}
2127 }
2128 
2129 static void name_cache_free(struct send_ctx *sctx)
2130 {
2131 	struct name_cache_entry *nce;
2132 
2133 	while (!list_empty(&sctx->name_cache_list)) {
2134 		nce = list_entry(sctx->name_cache_list.next,
2135 				struct name_cache_entry, list);
2136 		name_cache_delete(sctx, nce);
2137 		kfree(nce);
2138 	}
2139 }
2140 
2141 /*
2142  * Used by get_cur_path for each ref up to the root.
2143  * Returns 0 if it succeeded.
2144  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2145  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2146  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2147  * Returns <0 in case of error.
2148  */
2149 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2150 				     u64 ino, u64 gen,
2151 				     u64 *parent_ino,
2152 				     u64 *parent_gen,
2153 				     struct fs_path *dest)
2154 {
2155 	int ret;
2156 	int nce_ret;
2157 	struct name_cache_entry *nce = NULL;
2158 
2159 	/*
2160 	 * First check if we already did a call to this function with the same
2161 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2162 	 * return the cached result.
2163 	 */
2164 	nce = name_cache_search(sctx, ino, gen);
2165 	if (nce) {
2166 		if (ino < sctx->send_progress && nce->need_later_update) {
2167 			name_cache_delete(sctx, nce);
2168 			kfree(nce);
2169 			nce = NULL;
2170 		} else {
2171 			name_cache_used(sctx, nce);
2172 			*parent_ino = nce->parent_ino;
2173 			*parent_gen = nce->parent_gen;
2174 			ret = fs_path_add(dest, nce->name, nce->name_len);
2175 			if (ret < 0)
2176 				goto out;
2177 			ret = nce->ret;
2178 			goto out;
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * If the inode is not existent yet, add the orphan name and return 1.
2184 	 * This should only happen for the parent dir that we determine in
2185 	 * __record_new_ref
2186 	 */
2187 	ret = is_inode_existent(sctx, ino, gen);
2188 	if (ret < 0)
2189 		goto out;
2190 
2191 	if (!ret) {
2192 		ret = gen_unique_name(sctx, ino, gen, dest);
2193 		if (ret < 0)
2194 			goto out;
2195 		ret = 1;
2196 		goto out_cache;
2197 	}
2198 
2199 	/*
2200 	 * Depending on whether the inode was already processed or not, use
2201 	 * send_root or parent_root for ref lookup.
2202 	 */
2203 	if (ino < sctx->send_progress)
2204 		ret = get_first_ref(sctx->send_root, ino,
2205 				    parent_ino, parent_gen, dest);
2206 	else
2207 		ret = get_first_ref(sctx->parent_root, ino,
2208 				    parent_ino, parent_gen, dest);
2209 	if (ret < 0)
2210 		goto out;
2211 
2212 	/*
2213 	 * Check if the ref was overwritten by an inode's ref that was processed
2214 	 * earlier. If yes, treat as orphan and return 1.
2215 	 */
2216 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2217 			dest->start, dest->end - dest->start);
2218 	if (ret < 0)
2219 		goto out;
2220 	if (ret) {
2221 		fs_path_reset(dest);
2222 		ret = gen_unique_name(sctx, ino, gen, dest);
2223 		if (ret < 0)
2224 			goto out;
2225 		ret = 1;
2226 	}
2227 
2228 out_cache:
2229 	/*
2230 	 * Store the result of the lookup in the name cache.
2231 	 */
2232 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2233 	if (!nce) {
2234 		ret = -ENOMEM;
2235 		goto out;
2236 	}
2237 
2238 	nce->ino = ino;
2239 	nce->gen = gen;
2240 	nce->parent_ino = *parent_ino;
2241 	nce->parent_gen = *parent_gen;
2242 	nce->name_len = fs_path_len(dest);
2243 	nce->ret = ret;
2244 	strcpy(nce->name, dest->start);
2245 
2246 	if (ino < sctx->send_progress)
2247 		nce->need_later_update = 0;
2248 	else
2249 		nce->need_later_update = 1;
2250 
2251 	nce_ret = name_cache_insert(sctx, nce);
2252 	if (nce_ret < 0)
2253 		ret = nce_ret;
2254 	name_cache_clean_unused(sctx);
2255 
2256 out:
2257 	return ret;
2258 }
2259 
2260 /*
2261  * Magic happens here. This function returns the first ref to an inode as it
2262  * would look like while receiving the stream at this point in time.
2263  * We walk the path up to the root. For every inode in between, we check if it
2264  * was already processed/sent. If yes, we continue with the parent as found
2265  * in send_root. If not, we continue with the parent as found in parent_root.
2266  * If we encounter an inode that was deleted at this point in time, we use the
2267  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2268  * that were not created yet and overwritten inodes/refs.
2269  *
2270  * When do we have have orphan inodes:
2271  * 1. When an inode is freshly created and thus no valid refs are available yet
2272  * 2. When a directory lost all it's refs (deleted) but still has dir items
2273  *    inside which were not processed yet (pending for move/delete). If anyone
2274  *    tried to get the path to the dir items, it would get a path inside that
2275  *    orphan directory.
2276  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2277  *    of an unprocessed inode. If in that case the first ref would be
2278  *    overwritten, the overwritten inode gets "orphanized". Later when we
2279  *    process this overwritten inode, it is restored at a new place by moving
2280  *    the orphan inode.
2281  *
2282  * sctx->send_progress tells this function at which point in time receiving
2283  * would be.
2284  */
2285 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2286 			struct fs_path *dest)
2287 {
2288 	int ret = 0;
2289 	struct fs_path *name = NULL;
2290 	u64 parent_inode = 0;
2291 	u64 parent_gen = 0;
2292 	int stop = 0;
2293 
2294 	name = fs_path_alloc();
2295 	if (!name) {
2296 		ret = -ENOMEM;
2297 		goto out;
2298 	}
2299 
2300 	dest->reversed = 1;
2301 	fs_path_reset(dest);
2302 
2303 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2304 		struct waiting_dir_move *wdm;
2305 
2306 		fs_path_reset(name);
2307 
2308 		if (is_waiting_for_rm(sctx, ino)) {
2309 			ret = gen_unique_name(sctx, ino, gen, name);
2310 			if (ret < 0)
2311 				goto out;
2312 			ret = fs_path_add_path(dest, name);
2313 			break;
2314 		}
2315 
2316 		wdm = get_waiting_dir_move(sctx, ino);
2317 		if (wdm && wdm->orphanized) {
2318 			ret = gen_unique_name(sctx, ino, gen, name);
2319 			stop = 1;
2320 		} else if (wdm) {
2321 			ret = get_first_ref(sctx->parent_root, ino,
2322 					    &parent_inode, &parent_gen, name);
2323 		} else {
2324 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2325 							&parent_inode,
2326 							&parent_gen, name);
2327 			if (ret)
2328 				stop = 1;
2329 		}
2330 
2331 		if (ret < 0)
2332 			goto out;
2333 
2334 		ret = fs_path_add_path(dest, name);
2335 		if (ret < 0)
2336 			goto out;
2337 
2338 		ino = parent_inode;
2339 		gen = parent_gen;
2340 	}
2341 
2342 out:
2343 	fs_path_free(name);
2344 	if (!ret)
2345 		fs_path_unreverse(dest);
2346 	return ret;
2347 }
2348 
2349 /*
2350  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2351  */
2352 static int send_subvol_begin(struct send_ctx *sctx)
2353 {
2354 	int ret;
2355 	struct btrfs_root *send_root = sctx->send_root;
2356 	struct btrfs_root *parent_root = sctx->parent_root;
2357 	struct btrfs_path *path;
2358 	struct btrfs_key key;
2359 	struct btrfs_root_ref *ref;
2360 	struct extent_buffer *leaf;
2361 	char *name = NULL;
2362 	int namelen;
2363 
2364 	path = btrfs_alloc_path();
2365 	if (!path)
2366 		return -ENOMEM;
2367 
2368 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2369 	if (!name) {
2370 		btrfs_free_path(path);
2371 		return -ENOMEM;
2372 	}
2373 
2374 	key.objectid = send_root->objectid;
2375 	key.type = BTRFS_ROOT_BACKREF_KEY;
2376 	key.offset = 0;
2377 
2378 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2379 				&key, path, 1, 0);
2380 	if (ret < 0)
2381 		goto out;
2382 	if (ret) {
2383 		ret = -ENOENT;
2384 		goto out;
2385 	}
2386 
2387 	leaf = path->nodes[0];
2388 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2389 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2390 	    key.objectid != send_root->objectid) {
2391 		ret = -ENOENT;
2392 		goto out;
2393 	}
2394 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2395 	namelen = btrfs_root_ref_name_len(leaf, ref);
2396 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2397 	btrfs_release_path(path);
2398 
2399 	if (parent_root) {
2400 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2401 		if (ret < 0)
2402 			goto out;
2403 	} else {
2404 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2405 		if (ret < 0)
2406 			goto out;
2407 	}
2408 
2409 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2410 
2411 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2412 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2413 			    sctx->send_root->root_item.received_uuid);
2414 	else
2415 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2416 			    sctx->send_root->root_item.uuid);
2417 
2418 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2419 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2420 	if (parent_root) {
2421 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2422 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2423 				     parent_root->root_item.received_uuid);
2424 		else
2425 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2426 				     parent_root->root_item.uuid);
2427 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2428 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2429 	}
2430 
2431 	ret = send_cmd(sctx);
2432 
2433 tlv_put_failure:
2434 out:
2435 	btrfs_free_path(path);
2436 	kfree(name);
2437 	return ret;
2438 }
2439 
2440 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2441 {
2442 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2443 	int ret = 0;
2444 	struct fs_path *p;
2445 
2446 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2447 
2448 	p = fs_path_alloc();
2449 	if (!p)
2450 		return -ENOMEM;
2451 
2452 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2453 	if (ret < 0)
2454 		goto out;
2455 
2456 	ret = get_cur_path(sctx, ino, gen, p);
2457 	if (ret < 0)
2458 		goto out;
2459 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2460 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2461 
2462 	ret = send_cmd(sctx);
2463 
2464 tlv_put_failure:
2465 out:
2466 	fs_path_free(p);
2467 	return ret;
2468 }
2469 
2470 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2471 {
2472 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2473 	int ret = 0;
2474 	struct fs_path *p;
2475 
2476 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2477 
2478 	p = fs_path_alloc();
2479 	if (!p)
2480 		return -ENOMEM;
2481 
2482 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2483 	if (ret < 0)
2484 		goto out;
2485 
2486 	ret = get_cur_path(sctx, ino, gen, p);
2487 	if (ret < 0)
2488 		goto out;
2489 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2490 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2491 
2492 	ret = send_cmd(sctx);
2493 
2494 tlv_put_failure:
2495 out:
2496 	fs_path_free(p);
2497 	return ret;
2498 }
2499 
2500 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2501 {
2502 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503 	int ret = 0;
2504 	struct fs_path *p;
2505 
2506 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2507 		    ino, uid, gid);
2508 
2509 	p = fs_path_alloc();
2510 	if (!p)
2511 		return -ENOMEM;
2512 
2513 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2514 	if (ret < 0)
2515 		goto out;
2516 
2517 	ret = get_cur_path(sctx, ino, gen, p);
2518 	if (ret < 0)
2519 		goto out;
2520 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2521 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2522 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2523 
2524 	ret = send_cmd(sctx);
2525 
2526 tlv_put_failure:
2527 out:
2528 	fs_path_free(p);
2529 	return ret;
2530 }
2531 
2532 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2533 {
2534 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2535 	int ret = 0;
2536 	struct fs_path *p = NULL;
2537 	struct btrfs_inode_item *ii;
2538 	struct btrfs_path *path = NULL;
2539 	struct extent_buffer *eb;
2540 	struct btrfs_key key;
2541 	int slot;
2542 
2543 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2544 
2545 	p = fs_path_alloc();
2546 	if (!p)
2547 		return -ENOMEM;
2548 
2549 	path = alloc_path_for_send();
2550 	if (!path) {
2551 		ret = -ENOMEM;
2552 		goto out;
2553 	}
2554 
2555 	key.objectid = ino;
2556 	key.type = BTRFS_INODE_ITEM_KEY;
2557 	key.offset = 0;
2558 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2559 	if (ret > 0)
2560 		ret = -ENOENT;
2561 	if (ret < 0)
2562 		goto out;
2563 
2564 	eb = path->nodes[0];
2565 	slot = path->slots[0];
2566 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2567 
2568 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2569 	if (ret < 0)
2570 		goto out;
2571 
2572 	ret = get_cur_path(sctx, ino, gen, p);
2573 	if (ret < 0)
2574 		goto out;
2575 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2576 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2577 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2578 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2579 	/* TODO Add otime support when the otime patches get into upstream */
2580 
2581 	ret = send_cmd(sctx);
2582 
2583 tlv_put_failure:
2584 out:
2585 	fs_path_free(p);
2586 	btrfs_free_path(path);
2587 	return ret;
2588 }
2589 
2590 /*
2591  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2592  * a valid path yet because we did not process the refs yet. So, the inode
2593  * is created as orphan.
2594  */
2595 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2596 {
2597 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2598 	int ret = 0;
2599 	struct fs_path *p;
2600 	int cmd;
2601 	u64 gen;
2602 	u64 mode;
2603 	u64 rdev;
2604 
2605 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2606 
2607 	p = fs_path_alloc();
2608 	if (!p)
2609 		return -ENOMEM;
2610 
2611 	if (ino != sctx->cur_ino) {
2612 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2613 				     NULL, NULL, &rdev);
2614 		if (ret < 0)
2615 			goto out;
2616 	} else {
2617 		gen = sctx->cur_inode_gen;
2618 		mode = sctx->cur_inode_mode;
2619 		rdev = sctx->cur_inode_rdev;
2620 	}
2621 
2622 	if (S_ISREG(mode)) {
2623 		cmd = BTRFS_SEND_C_MKFILE;
2624 	} else if (S_ISDIR(mode)) {
2625 		cmd = BTRFS_SEND_C_MKDIR;
2626 	} else if (S_ISLNK(mode)) {
2627 		cmd = BTRFS_SEND_C_SYMLINK;
2628 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2629 		cmd = BTRFS_SEND_C_MKNOD;
2630 	} else if (S_ISFIFO(mode)) {
2631 		cmd = BTRFS_SEND_C_MKFIFO;
2632 	} else if (S_ISSOCK(mode)) {
2633 		cmd = BTRFS_SEND_C_MKSOCK;
2634 	} else {
2635 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2636 				(int)(mode & S_IFMT));
2637 		ret = -ENOTSUPP;
2638 		goto out;
2639 	}
2640 
2641 	ret = begin_cmd(sctx, cmd);
2642 	if (ret < 0)
2643 		goto out;
2644 
2645 	ret = gen_unique_name(sctx, ino, gen, p);
2646 	if (ret < 0)
2647 		goto out;
2648 
2649 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2651 
2652 	if (S_ISLNK(mode)) {
2653 		fs_path_reset(p);
2654 		ret = read_symlink(sctx->send_root, ino, p);
2655 		if (ret < 0)
2656 			goto out;
2657 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2658 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2659 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2660 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2661 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2662 	}
2663 
2664 	ret = send_cmd(sctx);
2665 	if (ret < 0)
2666 		goto out;
2667 
2668 
2669 tlv_put_failure:
2670 out:
2671 	fs_path_free(p);
2672 	return ret;
2673 }
2674 
2675 /*
2676  * We need some special handling for inodes that get processed before the parent
2677  * directory got created. See process_recorded_refs for details.
2678  * This function does the check if we already created the dir out of order.
2679  */
2680 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2681 {
2682 	int ret = 0;
2683 	struct btrfs_path *path = NULL;
2684 	struct btrfs_key key;
2685 	struct btrfs_key found_key;
2686 	struct btrfs_key di_key;
2687 	struct extent_buffer *eb;
2688 	struct btrfs_dir_item *di;
2689 	int slot;
2690 
2691 	path = alloc_path_for_send();
2692 	if (!path) {
2693 		ret = -ENOMEM;
2694 		goto out;
2695 	}
2696 
2697 	key.objectid = dir;
2698 	key.type = BTRFS_DIR_INDEX_KEY;
2699 	key.offset = 0;
2700 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	while (1) {
2705 		eb = path->nodes[0];
2706 		slot = path->slots[0];
2707 		if (slot >= btrfs_header_nritems(eb)) {
2708 			ret = btrfs_next_leaf(sctx->send_root, path);
2709 			if (ret < 0) {
2710 				goto out;
2711 			} else if (ret > 0) {
2712 				ret = 0;
2713 				break;
2714 			}
2715 			continue;
2716 		}
2717 
2718 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2719 		if (found_key.objectid != key.objectid ||
2720 		    found_key.type != key.type) {
2721 			ret = 0;
2722 			goto out;
2723 		}
2724 
2725 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2726 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2727 
2728 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2729 		    di_key.objectid < sctx->send_progress) {
2730 			ret = 1;
2731 			goto out;
2732 		}
2733 
2734 		path->slots[0]++;
2735 	}
2736 
2737 out:
2738 	btrfs_free_path(path);
2739 	return ret;
2740 }
2741 
2742 /*
2743  * Only creates the inode if it is:
2744  * 1. Not a directory
2745  * 2. Or a directory which was not created already due to out of order
2746  *    directories. See did_create_dir and process_recorded_refs for details.
2747  */
2748 static int send_create_inode_if_needed(struct send_ctx *sctx)
2749 {
2750 	int ret;
2751 
2752 	if (S_ISDIR(sctx->cur_inode_mode)) {
2753 		ret = did_create_dir(sctx, sctx->cur_ino);
2754 		if (ret < 0)
2755 			goto out;
2756 		if (ret) {
2757 			ret = 0;
2758 			goto out;
2759 		}
2760 	}
2761 
2762 	ret = send_create_inode(sctx, sctx->cur_ino);
2763 	if (ret < 0)
2764 		goto out;
2765 
2766 out:
2767 	return ret;
2768 }
2769 
2770 struct recorded_ref {
2771 	struct list_head list;
2772 	char *dir_path;
2773 	char *name;
2774 	struct fs_path *full_path;
2775 	u64 dir;
2776 	u64 dir_gen;
2777 	int dir_path_len;
2778 	int name_len;
2779 };
2780 
2781 /*
2782  * We need to process new refs before deleted refs, but compare_tree gives us
2783  * everything mixed. So we first record all refs and later process them.
2784  * This function is a helper to record one ref.
2785  */
2786 static int __record_ref(struct list_head *head, u64 dir,
2787 		      u64 dir_gen, struct fs_path *path)
2788 {
2789 	struct recorded_ref *ref;
2790 
2791 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2792 	if (!ref)
2793 		return -ENOMEM;
2794 
2795 	ref->dir = dir;
2796 	ref->dir_gen = dir_gen;
2797 	ref->full_path = path;
2798 
2799 	ref->name = (char *)kbasename(ref->full_path->start);
2800 	ref->name_len = ref->full_path->end - ref->name;
2801 	ref->dir_path = ref->full_path->start;
2802 	if (ref->name == ref->full_path->start)
2803 		ref->dir_path_len = 0;
2804 	else
2805 		ref->dir_path_len = ref->full_path->end -
2806 				ref->full_path->start - 1 - ref->name_len;
2807 
2808 	list_add_tail(&ref->list, head);
2809 	return 0;
2810 }
2811 
2812 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2813 {
2814 	struct recorded_ref *new;
2815 
2816 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2817 	if (!new)
2818 		return -ENOMEM;
2819 
2820 	new->dir = ref->dir;
2821 	new->dir_gen = ref->dir_gen;
2822 	new->full_path = NULL;
2823 	INIT_LIST_HEAD(&new->list);
2824 	list_add_tail(&new->list, list);
2825 	return 0;
2826 }
2827 
2828 static void __free_recorded_refs(struct list_head *head)
2829 {
2830 	struct recorded_ref *cur;
2831 
2832 	while (!list_empty(head)) {
2833 		cur = list_entry(head->next, struct recorded_ref, list);
2834 		fs_path_free(cur->full_path);
2835 		list_del(&cur->list);
2836 		kfree(cur);
2837 	}
2838 }
2839 
2840 static void free_recorded_refs(struct send_ctx *sctx)
2841 {
2842 	__free_recorded_refs(&sctx->new_refs);
2843 	__free_recorded_refs(&sctx->deleted_refs);
2844 }
2845 
2846 /*
2847  * Renames/moves a file/dir to its orphan name. Used when the first
2848  * ref of an unprocessed inode gets overwritten and for all non empty
2849  * directories.
2850  */
2851 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2852 			  struct fs_path *path)
2853 {
2854 	int ret;
2855 	struct fs_path *orphan;
2856 
2857 	orphan = fs_path_alloc();
2858 	if (!orphan)
2859 		return -ENOMEM;
2860 
2861 	ret = gen_unique_name(sctx, ino, gen, orphan);
2862 	if (ret < 0)
2863 		goto out;
2864 
2865 	ret = send_rename(sctx, path, orphan);
2866 
2867 out:
2868 	fs_path_free(orphan);
2869 	return ret;
2870 }
2871 
2872 static struct orphan_dir_info *
2873 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2874 {
2875 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2876 	struct rb_node *parent = NULL;
2877 	struct orphan_dir_info *entry, *odi;
2878 
2879 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2880 	if (!odi)
2881 		return ERR_PTR(-ENOMEM);
2882 	odi->ino = dir_ino;
2883 	odi->gen = 0;
2884 
2885 	while (*p) {
2886 		parent = *p;
2887 		entry = rb_entry(parent, struct orphan_dir_info, node);
2888 		if (dir_ino < entry->ino) {
2889 			p = &(*p)->rb_left;
2890 		} else if (dir_ino > entry->ino) {
2891 			p = &(*p)->rb_right;
2892 		} else {
2893 			kfree(odi);
2894 			return entry;
2895 		}
2896 	}
2897 
2898 	rb_link_node(&odi->node, parent, p);
2899 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2900 	return odi;
2901 }
2902 
2903 static struct orphan_dir_info *
2904 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2905 {
2906 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2907 	struct orphan_dir_info *entry;
2908 
2909 	while (n) {
2910 		entry = rb_entry(n, struct orphan_dir_info, node);
2911 		if (dir_ino < entry->ino)
2912 			n = n->rb_left;
2913 		else if (dir_ino > entry->ino)
2914 			n = n->rb_right;
2915 		else
2916 			return entry;
2917 	}
2918 	return NULL;
2919 }
2920 
2921 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2922 {
2923 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2924 
2925 	return odi != NULL;
2926 }
2927 
2928 static void free_orphan_dir_info(struct send_ctx *sctx,
2929 				 struct orphan_dir_info *odi)
2930 {
2931 	if (!odi)
2932 		return;
2933 	rb_erase(&odi->node, &sctx->orphan_dirs);
2934 	kfree(odi);
2935 }
2936 
2937 /*
2938  * Returns 1 if a directory can be removed at this point in time.
2939  * We check this by iterating all dir items and checking if the inode behind
2940  * the dir item was already processed.
2941  */
2942 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2943 		     u64 send_progress)
2944 {
2945 	int ret = 0;
2946 	struct btrfs_root *root = sctx->parent_root;
2947 	struct btrfs_path *path;
2948 	struct btrfs_key key;
2949 	struct btrfs_key found_key;
2950 	struct btrfs_key loc;
2951 	struct btrfs_dir_item *di;
2952 
2953 	/*
2954 	 * Don't try to rmdir the top/root subvolume dir.
2955 	 */
2956 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2957 		return 0;
2958 
2959 	path = alloc_path_for_send();
2960 	if (!path)
2961 		return -ENOMEM;
2962 
2963 	key.objectid = dir;
2964 	key.type = BTRFS_DIR_INDEX_KEY;
2965 	key.offset = 0;
2966 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2967 	if (ret < 0)
2968 		goto out;
2969 
2970 	while (1) {
2971 		struct waiting_dir_move *dm;
2972 
2973 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2974 			ret = btrfs_next_leaf(root, path);
2975 			if (ret < 0)
2976 				goto out;
2977 			else if (ret > 0)
2978 				break;
2979 			continue;
2980 		}
2981 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2982 				      path->slots[0]);
2983 		if (found_key.objectid != key.objectid ||
2984 		    found_key.type != key.type)
2985 			break;
2986 
2987 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2988 				struct btrfs_dir_item);
2989 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2990 
2991 		dm = get_waiting_dir_move(sctx, loc.objectid);
2992 		if (dm) {
2993 			struct orphan_dir_info *odi;
2994 
2995 			odi = add_orphan_dir_info(sctx, dir);
2996 			if (IS_ERR(odi)) {
2997 				ret = PTR_ERR(odi);
2998 				goto out;
2999 			}
3000 			odi->gen = dir_gen;
3001 			dm->rmdir_ino = dir;
3002 			ret = 0;
3003 			goto out;
3004 		}
3005 
3006 		if (loc.objectid > send_progress) {
3007 			struct orphan_dir_info *odi;
3008 
3009 			odi = get_orphan_dir_info(sctx, dir);
3010 			free_orphan_dir_info(sctx, odi);
3011 			ret = 0;
3012 			goto out;
3013 		}
3014 
3015 		path->slots[0]++;
3016 	}
3017 
3018 	ret = 1;
3019 
3020 out:
3021 	btrfs_free_path(path);
3022 	return ret;
3023 }
3024 
3025 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3026 {
3027 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3028 
3029 	return entry != NULL;
3030 }
3031 
3032 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3033 {
3034 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3035 	struct rb_node *parent = NULL;
3036 	struct waiting_dir_move *entry, *dm;
3037 
3038 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3039 	if (!dm)
3040 		return -ENOMEM;
3041 	dm->ino = ino;
3042 	dm->rmdir_ino = 0;
3043 	dm->orphanized = orphanized;
3044 
3045 	while (*p) {
3046 		parent = *p;
3047 		entry = rb_entry(parent, struct waiting_dir_move, node);
3048 		if (ino < entry->ino) {
3049 			p = &(*p)->rb_left;
3050 		} else if (ino > entry->ino) {
3051 			p = &(*p)->rb_right;
3052 		} else {
3053 			kfree(dm);
3054 			return -EEXIST;
3055 		}
3056 	}
3057 
3058 	rb_link_node(&dm->node, parent, p);
3059 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3060 	return 0;
3061 }
3062 
3063 static struct waiting_dir_move *
3064 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3065 {
3066 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3067 	struct waiting_dir_move *entry;
3068 
3069 	while (n) {
3070 		entry = rb_entry(n, struct waiting_dir_move, node);
3071 		if (ino < entry->ino)
3072 			n = n->rb_left;
3073 		else if (ino > entry->ino)
3074 			n = n->rb_right;
3075 		else
3076 			return entry;
3077 	}
3078 	return NULL;
3079 }
3080 
3081 static void free_waiting_dir_move(struct send_ctx *sctx,
3082 				  struct waiting_dir_move *dm)
3083 {
3084 	if (!dm)
3085 		return;
3086 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3087 	kfree(dm);
3088 }
3089 
3090 static int add_pending_dir_move(struct send_ctx *sctx,
3091 				u64 ino,
3092 				u64 ino_gen,
3093 				u64 parent_ino,
3094 				struct list_head *new_refs,
3095 				struct list_head *deleted_refs,
3096 				const bool is_orphan)
3097 {
3098 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3099 	struct rb_node *parent = NULL;
3100 	struct pending_dir_move *entry = NULL, *pm;
3101 	struct recorded_ref *cur;
3102 	int exists = 0;
3103 	int ret;
3104 
3105 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3106 	if (!pm)
3107 		return -ENOMEM;
3108 	pm->parent_ino = parent_ino;
3109 	pm->ino = ino;
3110 	pm->gen = ino_gen;
3111 	INIT_LIST_HEAD(&pm->list);
3112 	INIT_LIST_HEAD(&pm->update_refs);
3113 	RB_CLEAR_NODE(&pm->node);
3114 
3115 	while (*p) {
3116 		parent = *p;
3117 		entry = rb_entry(parent, struct pending_dir_move, node);
3118 		if (parent_ino < entry->parent_ino) {
3119 			p = &(*p)->rb_left;
3120 		} else if (parent_ino > entry->parent_ino) {
3121 			p = &(*p)->rb_right;
3122 		} else {
3123 			exists = 1;
3124 			break;
3125 		}
3126 	}
3127 
3128 	list_for_each_entry(cur, deleted_refs, list) {
3129 		ret = dup_ref(cur, &pm->update_refs);
3130 		if (ret < 0)
3131 			goto out;
3132 	}
3133 	list_for_each_entry(cur, new_refs, list) {
3134 		ret = dup_ref(cur, &pm->update_refs);
3135 		if (ret < 0)
3136 			goto out;
3137 	}
3138 
3139 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3140 	if (ret)
3141 		goto out;
3142 
3143 	if (exists) {
3144 		list_add_tail(&pm->list, &entry->list);
3145 	} else {
3146 		rb_link_node(&pm->node, parent, p);
3147 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3148 	}
3149 	ret = 0;
3150 out:
3151 	if (ret) {
3152 		__free_recorded_refs(&pm->update_refs);
3153 		kfree(pm);
3154 	}
3155 	return ret;
3156 }
3157 
3158 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3159 						      u64 parent_ino)
3160 {
3161 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3162 	struct pending_dir_move *entry;
3163 
3164 	while (n) {
3165 		entry = rb_entry(n, struct pending_dir_move, node);
3166 		if (parent_ino < entry->parent_ino)
3167 			n = n->rb_left;
3168 		else if (parent_ino > entry->parent_ino)
3169 			n = n->rb_right;
3170 		else
3171 			return entry;
3172 	}
3173 	return NULL;
3174 }
3175 
3176 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3177 		     u64 ino, u64 gen, u64 *ancestor_ino)
3178 {
3179 	int ret = 0;
3180 	u64 parent_inode = 0;
3181 	u64 parent_gen = 0;
3182 	u64 start_ino = ino;
3183 
3184 	*ancestor_ino = 0;
3185 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3186 		fs_path_reset(name);
3187 
3188 		if (is_waiting_for_rm(sctx, ino))
3189 			break;
3190 		if (is_waiting_for_move(sctx, ino)) {
3191 			if (*ancestor_ino == 0)
3192 				*ancestor_ino = ino;
3193 			ret = get_first_ref(sctx->parent_root, ino,
3194 					    &parent_inode, &parent_gen, name);
3195 		} else {
3196 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3197 							&parent_inode,
3198 							&parent_gen, name);
3199 			if (ret > 0) {
3200 				ret = 0;
3201 				break;
3202 			}
3203 		}
3204 		if (ret < 0)
3205 			break;
3206 		if (parent_inode == start_ino) {
3207 			ret = 1;
3208 			if (*ancestor_ino == 0)
3209 				*ancestor_ino = ino;
3210 			break;
3211 		}
3212 		ino = parent_inode;
3213 		gen = parent_gen;
3214 	}
3215 	return ret;
3216 }
3217 
3218 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3219 {
3220 	struct fs_path *from_path = NULL;
3221 	struct fs_path *to_path = NULL;
3222 	struct fs_path *name = NULL;
3223 	u64 orig_progress = sctx->send_progress;
3224 	struct recorded_ref *cur;
3225 	u64 parent_ino, parent_gen;
3226 	struct waiting_dir_move *dm = NULL;
3227 	u64 rmdir_ino = 0;
3228 	u64 ancestor;
3229 	bool is_orphan;
3230 	int ret;
3231 
3232 	name = fs_path_alloc();
3233 	from_path = fs_path_alloc();
3234 	if (!name || !from_path) {
3235 		ret = -ENOMEM;
3236 		goto out;
3237 	}
3238 
3239 	dm = get_waiting_dir_move(sctx, pm->ino);
3240 	ASSERT(dm);
3241 	rmdir_ino = dm->rmdir_ino;
3242 	is_orphan = dm->orphanized;
3243 	free_waiting_dir_move(sctx, dm);
3244 
3245 	if (is_orphan) {
3246 		ret = gen_unique_name(sctx, pm->ino,
3247 				      pm->gen, from_path);
3248 	} else {
3249 		ret = get_first_ref(sctx->parent_root, pm->ino,
3250 				    &parent_ino, &parent_gen, name);
3251 		if (ret < 0)
3252 			goto out;
3253 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3254 				   from_path);
3255 		if (ret < 0)
3256 			goto out;
3257 		ret = fs_path_add_path(from_path, name);
3258 	}
3259 	if (ret < 0)
3260 		goto out;
3261 
3262 	sctx->send_progress = sctx->cur_ino + 1;
3263 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3264 	if (ret < 0)
3265 		goto out;
3266 	if (ret) {
3267 		LIST_HEAD(deleted_refs);
3268 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3269 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3270 					   &pm->update_refs, &deleted_refs,
3271 					   is_orphan);
3272 		if (ret < 0)
3273 			goto out;
3274 		if (rmdir_ino) {
3275 			dm = get_waiting_dir_move(sctx, pm->ino);
3276 			ASSERT(dm);
3277 			dm->rmdir_ino = rmdir_ino;
3278 		}
3279 		goto out;
3280 	}
3281 	fs_path_reset(name);
3282 	to_path = name;
3283 	name = NULL;
3284 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3285 	if (ret < 0)
3286 		goto out;
3287 
3288 	ret = send_rename(sctx, from_path, to_path);
3289 	if (ret < 0)
3290 		goto out;
3291 
3292 	if (rmdir_ino) {
3293 		struct orphan_dir_info *odi;
3294 
3295 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3296 		if (!odi) {
3297 			/* already deleted */
3298 			goto finish;
3299 		}
3300 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3301 		if (ret < 0)
3302 			goto out;
3303 		if (!ret)
3304 			goto finish;
3305 
3306 		name = fs_path_alloc();
3307 		if (!name) {
3308 			ret = -ENOMEM;
3309 			goto out;
3310 		}
3311 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3312 		if (ret < 0)
3313 			goto out;
3314 		ret = send_rmdir(sctx, name);
3315 		if (ret < 0)
3316 			goto out;
3317 		free_orphan_dir_info(sctx, odi);
3318 	}
3319 
3320 finish:
3321 	ret = send_utimes(sctx, pm->ino, pm->gen);
3322 	if (ret < 0)
3323 		goto out;
3324 
3325 	/*
3326 	 * After rename/move, need to update the utimes of both new parent(s)
3327 	 * and old parent(s).
3328 	 */
3329 	list_for_each_entry(cur, &pm->update_refs, list) {
3330 		/*
3331 		 * The parent inode might have been deleted in the send snapshot
3332 		 */
3333 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3334 				     NULL, NULL, NULL, NULL, NULL);
3335 		if (ret == -ENOENT) {
3336 			ret = 0;
3337 			continue;
3338 		}
3339 		if (ret < 0)
3340 			goto out;
3341 
3342 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3343 		if (ret < 0)
3344 			goto out;
3345 	}
3346 
3347 out:
3348 	fs_path_free(name);
3349 	fs_path_free(from_path);
3350 	fs_path_free(to_path);
3351 	sctx->send_progress = orig_progress;
3352 
3353 	return ret;
3354 }
3355 
3356 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3357 {
3358 	if (!list_empty(&m->list))
3359 		list_del(&m->list);
3360 	if (!RB_EMPTY_NODE(&m->node))
3361 		rb_erase(&m->node, &sctx->pending_dir_moves);
3362 	__free_recorded_refs(&m->update_refs);
3363 	kfree(m);
3364 }
3365 
3366 static void tail_append_pending_moves(struct pending_dir_move *moves,
3367 				      struct list_head *stack)
3368 {
3369 	if (list_empty(&moves->list)) {
3370 		list_add_tail(&moves->list, stack);
3371 	} else {
3372 		LIST_HEAD(list);
3373 		list_splice_init(&moves->list, &list);
3374 		list_add_tail(&moves->list, stack);
3375 		list_splice_tail(&list, stack);
3376 	}
3377 }
3378 
3379 static int apply_children_dir_moves(struct send_ctx *sctx)
3380 {
3381 	struct pending_dir_move *pm;
3382 	struct list_head stack;
3383 	u64 parent_ino = sctx->cur_ino;
3384 	int ret = 0;
3385 
3386 	pm = get_pending_dir_moves(sctx, parent_ino);
3387 	if (!pm)
3388 		return 0;
3389 
3390 	INIT_LIST_HEAD(&stack);
3391 	tail_append_pending_moves(pm, &stack);
3392 
3393 	while (!list_empty(&stack)) {
3394 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3395 		parent_ino = pm->ino;
3396 		ret = apply_dir_move(sctx, pm);
3397 		free_pending_move(sctx, pm);
3398 		if (ret)
3399 			goto out;
3400 		pm = get_pending_dir_moves(sctx, parent_ino);
3401 		if (pm)
3402 			tail_append_pending_moves(pm, &stack);
3403 	}
3404 	return 0;
3405 
3406 out:
3407 	while (!list_empty(&stack)) {
3408 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3409 		free_pending_move(sctx, pm);
3410 	}
3411 	return ret;
3412 }
3413 
3414 /*
3415  * We might need to delay a directory rename even when no ancestor directory
3416  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3417  * renamed. This happens when we rename a directory to the old name (the name
3418  * in the parent root) of some other unrelated directory that got its rename
3419  * delayed due to some ancestor with higher number that got renamed.
3420  *
3421  * Example:
3422  *
3423  * Parent snapshot:
3424  * .                                       (ino 256)
3425  * |---- a/                                (ino 257)
3426  * |     |---- file                        (ino 260)
3427  * |
3428  * |---- b/                                (ino 258)
3429  * |---- c/                                (ino 259)
3430  *
3431  * Send snapshot:
3432  * .                                       (ino 256)
3433  * |---- a/                                (ino 258)
3434  * |---- x/                                (ino 259)
3435  *       |---- y/                          (ino 257)
3436  *             |----- file                 (ino 260)
3437  *
3438  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3439  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3440  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3441  * must issue is:
3442  *
3443  * 1 - rename 259 from 'c' to 'x'
3444  * 2 - rename 257 from 'a' to 'x/y'
3445  * 3 - rename 258 from 'b' to 'a'
3446  *
3447  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3448  * be done right away and < 0 on error.
3449  */
3450 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3451 				  struct recorded_ref *parent_ref,
3452 				  const bool is_orphan)
3453 {
3454 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3455 	struct btrfs_path *path;
3456 	struct btrfs_key key;
3457 	struct btrfs_key di_key;
3458 	struct btrfs_dir_item *di;
3459 	u64 left_gen;
3460 	u64 right_gen;
3461 	int ret = 0;
3462 	struct waiting_dir_move *wdm;
3463 
3464 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3465 		return 0;
3466 
3467 	path = alloc_path_for_send();
3468 	if (!path)
3469 		return -ENOMEM;
3470 
3471 	key.objectid = parent_ref->dir;
3472 	key.type = BTRFS_DIR_ITEM_KEY;
3473 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3474 
3475 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3476 	if (ret < 0) {
3477 		goto out;
3478 	} else if (ret > 0) {
3479 		ret = 0;
3480 		goto out;
3481 	}
3482 
3483 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3484 				       parent_ref->name_len);
3485 	if (!di) {
3486 		ret = 0;
3487 		goto out;
3488 	}
3489 	/*
3490 	 * di_key.objectid has the number of the inode that has a dentry in the
3491 	 * parent directory with the same name that sctx->cur_ino is being
3492 	 * renamed to. We need to check if that inode is in the send root as
3493 	 * well and if it is currently marked as an inode with a pending rename,
3494 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3495 	 * that it happens after that other inode is renamed.
3496 	 */
3497 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3498 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3499 		ret = 0;
3500 		goto out;
3501 	}
3502 
3503 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3504 			     &left_gen, NULL, NULL, NULL, NULL);
3505 	if (ret < 0)
3506 		goto out;
3507 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3508 			     &right_gen, NULL, NULL, NULL, NULL);
3509 	if (ret < 0) {
3510 		if (ret == -ENOENT)
3511 			ret = 0;
3512 		goto out;
3513 	}
3514 
3515 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3516 	if (right_gen != left_gen) {
3517 		ret = 0;
3518 		goto out;
3519 	}
3520 
3521 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3522 	if (wdm && !wdm->orphanized) {
3523 		ret = add_pending_dir_move(sctx,
3524 					   sctx->cur_ino,
3525 					   sctx->cur_inode_gen,
3526 					   di_key.objectid,
3527 					   &sctx->new_refs,
3528 					   &sctx->deleted_refs,
3529 					   is_orphan);
3530 		if (!ret)
3531 			ret = 1;
3532 	}
3533 out:
3534 	btrfs_free_path(path);
3535 	return ret;
3536 }
3537 
3538 /*
3539  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3540  * Return 1 if true, 0 if false and < 0 on error.
3541  */
3542 static int is_ancestor(struct btrfs_root *root,
3543 		       const u64 ino1,
3544 		       const u64 ino1_gen,
3545 		       const u64 ino2,
3546 		       struct fs_path *fs_path)
3547 {
3548 	u64 ino = ino2;
3549 
3550 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3551 		int ret;
3552 		u64 parent;
3553 		u64 parent_gen;
3554 
3555 		fs_path_reset(fs_path);
3556 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3557 		if (ret < 0) {
3558 			if (ret == -ENOENT && ino == ino2)
3559 				ret = 0;
3560 			return ret;
3561 		}
3562 		if (parent == ino1)
3563 			return parent_gen == ino1_gen ? 1 : 0;
3564 		ino = parent;
3565 	}
3566 	return 0;
3567 }
3568 
3569 static int wait_for_parent_move(struct send_ctx *sctx,
3570 				struct recorded_ref *parent_ref,
3571 				const bool is_orphan)
3572 {
3573 	int ret = 0;
3574 	u64 ino = parent_ref->dir;
3575 	u64 ino_gen = parent_ref->dir_gen;
3576 	u64 parent_ino_before, parent_ino_after;
3577 	struct fs_path *path_before = NULL;
3578 	struct fs_path *path_after = NULL;
3579 	int len1, len2;
3580 
3581 	path_after = fs_path_alloc();
3582 	path_before = fs_path_alloc();
3583 	if (!path_after || !path_before) {
3584 		ret = -ENOMEM;
3585 		goto out;
3586 	}
3587 
3588 	/*
3589 	 * Our current directory inode may not yet be renamed/moved because some
3590 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3591 	 * such ancestor exists and make sure our own rename/move happens after
3592 	 * that ancestor is processed to avoid path build infinite loops (done
3593 	 * at get_cur_path()).
3594 	 */
3595 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3596 		u64 parent_ino_after_gen;
3597 
3598 		if (is_waiting_for_move(sctx, ino)) {
3599 			/*
3600 			 * If the current inode is an ancestor of ino in the
3601 			 * parent root, we need to delay the rename of the
3602 			 * current inode, otherwise don't delayed the rename
3603 			 * because we can end up with a circular dependency
3604 			 * of renames, resulting in some directories never
3605 			 * getting the respective rename operations issued in
3606 			 * the send stream or getting into infinite path build
3607 			 * loops.
3608 			 */
3609 			ret = is_ancestor(sctx->parent_root,
3610 					  sctx->cur_ino, sctx->cur_inode_gen,
3611 					  ino, path_before);
3612 			if (ret)
3613 				break;
3614 		}
3615 
3616 		fs_path_reset(path_before);
3617 		fs_path_reset(path_after);
3618 
3619 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3620 				    &parent_ino_after_gen, path_after);
3621 		if (ret < 0)
3622 			goto out;
3623 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3624 				    NULL, path_before);
3625 		if (ret < 0 && ret != -ENOENT) {
3626 			goto out;
3627 		} else if (ret == -ENOENT) {
3628 			ret = 0;
3629 			break;
3630 		}
3631 
3632 		len1 = fs_path_len(path_before);
3633 		len2 = fs_path_len(path_after);
3634 		if (ino > sctx->cur_ino &&
3635 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3636 		     memcmp(path_before->start, path_after->start, len1))) {
3637 			u64 parent_ino_gen;
3638 
3639 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3640 					     &parent_ino_gen, NULL, NULL, NULL,
3641 					     NULL);
3642 			if (ret < 0)
3643 				goto out;
3644 			if (ino_gen == parent_ino_gen) {
3645 				ret = 1;
3646 				break;
3647 			}
3648 		}
3649 		ino = parent_ino_after;
3650 		ino_gen = parent_ino_after_gen;
3651 	}
3652 
3653 out:
3654 	fs_path_free(path_before);
3655 	fs_path_free(path_after);
3656 
3657 	if (ret == 1) {
3658 		ret = add_pending_dir_move(sctx,
3659 					   sctx->cur_ino,
3660 					   sctx->cur_inode_gen,
3661 					   ino,
3662 					   &sctx->new_refs,
3663 					   &sctx->deleted_refs,
3664 					   is_orphan);
3665 		if (!ret)
3666 			ret = 1;
3667 	}
3668 
3669 	return ret;
3670 }
3671 
3672 /*
3673  * This does all the move/link/unlink/rmdir magic.
3674  */
3675 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3676 {
3677 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3678 	int ret = 0;
3679 	struct recorded_ref *cur;
3680 	struct recorded_ref *cur2;
3681 	struct list_head check_dirs;
3682 	struct fs_path *valid_path = NULL;
3683 	u64 ow_inode = 0;
3684 	u64 ow_gen;
3685 	int did_overwrite = 0;
3686 	int is_orphan = 0;
3687 	u64 last_dir_ino_rm = 0;
3688 	bool can_rename = true;
3689 
3690 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3691 
3692 	/*
3693 	 * This should never happen as the root dir always has the same ref
3694 	 * which is always '..'
3695 	 */
3696 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3697 	INIT_LIST_HEAD(&check_dirs);
3698 
3699 	valid_path = fs_path_alloc();
3700 	if (!valid_path) {
3701 		ret = -ENOMEM;
3702 		goto out;
3703 	}
3704 
3705 	/*
3706 	 * First, check if the first ref of the current inode was overwritten
3707 	 * before. If yes, we know that the current inode was already orphanized
3708 	 * and thus use the orphan name. If not, we can use get_cur_path to
3709 	 * get the path of the first ref as it would like while receiving at
3710 	 * this point in time.
3711 	 * New inodes are always orphan at the beginning, so force to use the
3712 	 * orphan name in this case.
3713 	 * The first ref is stored in valid_path and will be updated if it
3714 	 * gets moved around.
3715 	 */
3716 	if (!sctx->cur_inode_new) {
3717 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3718 				sctx->cur_inode_gen);
3719 		if (ret < 0)
3720 			goto out;
3721 		if (ret)
3722 			did_overwrite = 1;
3723 	}
3724 	if (sctx->cur_inode_new || did_overwrite) {
3725 		ret = gen_unique_name(sctx, sctx->cur_ino,
3726 				sctx->cur_inode_gen, valid_path);
3727 		if (ret < 0)
3728 			goto out;
3729 		is_orphan = 1;
3730 	} else {
3731 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3732 				valid_path);
3733 		if (ret < 0)
3734 			goto out;
3735 	}
3736 
3737 	list_for_each_entry(cur, &sctx->new_refs, list) {
3738 		/*
3739 		 * We may have refs where the parent directory does not exist
3740 		 * yet. This happens if the parent directories inum is higher
3741 		 * the the current inum. To handle this case, we create the
3742 		 * parent directory out of order. But we need to check if this
3743 		 * did already happen before due to other refs in the same dir.
3744 		 */
3745 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3746 		if (ret < 0)
3747 			goto out;
3748 		if (ret == inode_state_will_create) {
3749 			ret = 0;
3750 			/*
3751 			 * First check if any of the current inodes refs did
3752 			 * already create the dir.
3753 			 */
3754 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3755 				if (cur == cur2)
3756 					break;
3757 				if (cur2->dir == cur->dir) {
3758 					ret = 1;
3759 					break;
3760 				}
3761 			}
3762 
3763 			/*
3764 			 * If that did not happen, check if a previous inode
3765 			 * did already create the dir.
3766 			 */
3767 			if (!ret)
3768 				ret = did_create_dir(sctx, cur->dir);
3769 			if (ret < 0)
3770 				goto out;
3771 			if (!ret) {
3772 				ret = send_create_inode(sctx, cur->dir);
3773 				if (ret < 0)
3774 					goto out;
3775 			}
3776 		}
3777 
3778 		/*
3779 		 * Check if this new ref would overwrite the first ref of
3780 		 * another unprocessed inode. If yes, orphanize the
3781 		 * overwritten inode. If we find an overwritten ref that is
3782 		 * not the first ref, simply unlink it.
3783 		 */
3784 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3785 				cur->name, cur->name_len,
3786 				&ow_inode, &ow_gen);
3787 		if (ret < 0)
3788 			goto out;
3789 		if (ret) {
3790 			ret = is_first_ref(sctx->parent_root,
3791 					   ow_inode, cur->dir, cur->name,
3792 					   cur->name_len);
3793 			if (ret < 0)
3794 				goto out;
3795 			if (ret) {
3796 				struct name_cache_entry *nce;
3797 				struct waiting_dir_move *wdm;
3798 
3799 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3800 						cur->full_path);
3801 				if (ret < 0)
3802 					goto out;
3803 
3804 				/*
3805 				 * If ow_inode has its rename operation delayed
3806 				 * make sure that its orphanized name is used in
3807 				 * the source path when performing its rename
3808 				 * operation.
3809 				 */
3810 				if (is_waiting_for_move(sctx, ow_inode)) {
3811 					wdm = get_waiting_dir_move(sctx,
3812 								   ow_inode);
3813 					ASSERT(wdm);
3814 					wdm->orphanized = true;
3815 				}
3816 
3817 				/*
3818 				 * Make sure we clear our orphanized inode's
3819 				 * name from the name cache. This is because the
3820 				 * inode ow_inode might be an ancestor of some
3821 				 * other inode that will be orphanized as well
3822 				 * later and has an inode number greater than
3823 				 * sctx->send_progress. We need to prevent
3824 				 * future name lookups from using the old name
3825 				 * and get instead the orphan name.
3826 				 */
3827 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3828 				if (nce) {
3829 					name_cache_delete(sctx, nce);
3830 					kfree(nce);
3831 				}
3832 
3833 				/*
3834 				 * ow_inode might currently be an ancestor of
3835 				 * cur_ino, therefore compute valid_path (the
3836 				 * current path of cur_ino) again because it
3837 				 * might contain the pre-orphanization name of
3838 				 * ow_inode, which is no longer valid.
3839 				 */
3840 				fs_path_reset(valid_path);
3841 				ret = get_cur_path(sctx, sctx->cur_ino,
3842 					   sctx->cur_inode_gen, valid_path);
3843 				if (ret < 0)
3844 					goto out;
3845 			} else {
3846 				ret = send_unlink(sctx, cur->full_path);
3847 				if (ret < 0)
3848 					goto out;
3849 			}
3850 		}
3851 
3852 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3853 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3854 			if (ret < 0)
3855 				goto out;
3856 			if (ret == 1) {
3857 				can_rename = false;
3858 				*pending_move = 1;
3859 			}
3860 		}
3861 
3862 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3863 		    can_rename) {
3864 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3865 			if (ret < 0)
3866 				goto out;
3867 			if (ret == 1) {
3868 				can_rename = false;
3869 				*pending_move = 1;
3870 			}
3871 		}
3872 
3873 		/*
3874 		 * link/move the ref to the new place. If we have an orphan
3875 		 * inode, move it and update valid_path. If not, link or move
3876 		 * it depending on the inode mode.
3877 		 */
3878 		if (is_orphan && can_rename) {
3879 			ret = send_rename(sctx, valid_path, cur->full_path);
3880 			if (ret < 0)
3881 				goto out;
3882 			is_orphan = 0;
3883 			ret = fs_path_copy(valid_path, cur->full_path);
3884 			if (ret < 0)
3885 				goto out;
3886 		} else if (can_rename) {
3887 			if (S_ISDIR(sctx->cur_inode_mode)) {
3888 				/*
3889 				 * Dirs can't be linked, so move it. For moved
3890 				 * dirs, we always have one new and one deleted
3891 				 * ref. The deleted ref is ignored later.
3892 				 */
3893 				ret = send_rename(sctx, valid_path,
3894 						  cur->full_path);
3895 				if (!ret)
3896 					ret = fs_path_copy(valid_path,
3897 							   cur->full_path);
3898 				if (ret < 0)
3899 					goto out;
3900 			} else {
3901 				ret = send_link(sctx, cur->full_path,
3902 						valid_path);
3903 				if (ret < 0)
3904 					goto out;
3905 			}
3906 		}
3907 		ret = dup_ref(cur, &check_dirs);
3908 		if (ret < 0)
3909 			goto out;
3910 	}
3911 
3912 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3913 		/*
3914 		 * Check if we can already rmdir the directory. If not,
3915 		 * orphanize it. For every dir item inside that gets deleted
3916 		 * later, we do this check again and rmdir it then if possible.
3917 		 * See the use of check_dirs for more details.
3918 		 */
3919 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3920 				sctx->cur_ino);
3921 		if (ret < 0)
3922 			goto out;
3923 		if (ret) {
3924 			ret = send_rmdir(sctx, valid_path);
3925 			if (ret < 0)
3926 				goto out;
3927 		} else if (!is_orphan) {
3928 			ret = orphanize_inode(sctx, sctx->cur_ino,
3929 					sctx->cur_inode_gen, valid_path);
3930 			if (ret < 0)
3931 				goto out;
3932 			is_orphan = 1;
3933 		}
3934 
3935 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3936 			ret = dup_ref(cur, &check_dirs);
3937 			if (ret < 0)
3938 				goto out;
3939 		}
3940 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3941 		   !list_empty(&sctx->deleted_refs)) {
3942 		/*
3943 		 * We have a moved dir. Add the old parent to check_dirs
3944 		 */
3945 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3946 				list);
3947 		ret = dup_ref(cur, &check_dirs);
3948 		if (ret < 0)
3949 			goto out;
3950 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3951 		/*
3952 		 * We have a non dir inode. Go through all deleted refs and
3953 		 * unlink them if they were not already overwritten by other
3954 		 * inodes.
3955 		 */
3956 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3957 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3958 					sctx->cur_ino, sctx->cur_inode_gen,
3959 					cur->name, cur->name_len);
3960 			if (ret < 0)
3961 				goto out;
3962 			if (!ret) {
3963 				ret = send_unlink(sctx, cur->full_path);
3964 				if (ret < 0)
3965 					goto out;
3966 			}
3967 			ret = dup_ref(cur, &check_dirs);
3968 			if (ret < 0)
3969 				goto out;
3970 		}
3971 		/*
3972 		 * If the inode is still orphan, unlink the orphan. This may
3973 		 * happen when a previous inode did overwrite the first ref
3974 		 * of this inode and no new refs were added for the current
3975 		 * inode. Unlinking does not mean that the inode is deleted in
3976 		 * all cases. There may still be links to this inode in other
3977 		 * places.
3978 		 */
3979 		if (is_orphan) {
3980 			ret = send_unlink(sctx, valid_path);
3981 			if (ret < 0)
3982 				goto out;
3983 		}
3984 	}
3985 
3986 	/*
3987 	 * We did collect all parent dirs where cur_inode was once located. We
3988 	 * now go through all these dirs and check if they are pending for
3989 	 * deletion and if it's finally possible to perform the rmdir now.
3990 	 * We also update the inode stats of the parent dirs here.
3991 	 */
3992 	list_for_each_entry(cur, &check_dirs, list) {
3993 		/*
3994 		 * In case we had refs into dirs that were not processed yet,
3995 		 * we don't need to do the utime and rmdir logic for these dirs.
3996 		 * The dir will be processed later.
3997 		 */
3998 		if (cur->dir > sctx->cur_ino)
3999 			continue;
4000 
4001 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4002 		if (ret < 0)
4003 			goto out;
4004 
4005 		if (ret == inode_state_did_create ||
4006 		    ret == inode_state_no_change) {
4007 			/* TODO delayed utimes */
4008 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4009 			if (ret < 0)
4010 				goto out;
4011 		} else if (ret == inode_state_did_delete &&
4012 			   cur->dir != last_dir_ino_rm) {
4013 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4014 					sctx->cur_ino);
4015 			if (ret < 0)
4016 				goto out;
4017 			if (ret) {
4018 				ret = get_cur_path(sctx, cur->dir,
4019 						   cur->dir_gen, valid_path);
4020 				if (ret < 0)
4021 					goto out;
4022 				ret = send_rmdir(sctx, valid_path);
4023 				if (ret < 0)
4024 					goto out;
4025 				last_dir_ino_rm = cur->dir;
4026 			}
4027 		}
4028 	}
4029 
4030 	ret = 0;
4031 
4032 out:
4033 	__free_recorded_refs(&check_dirs);
4034 	free_recorded_refs(sctx);
4035 	fs_path_free(valid_path);
4036 	return ret;
4037 }
4038 
4039 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4040 		      struct fs_path *name, void *ctx, struct list_head *refs)
4041 {
4042 	int ret = 0;
4043 	struct send_ctx *sctx = ctx;
4044 	struct fs_path *p;
4045 	u64 gen;
4046 
4047 	p = fs_path_alloc();
4048 	if (!p)
4049 		return -ENOMEM;
4050 
4051 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4052 			NULL, NULL);
4053 	if (ret < 0)
4054 		goto out;
4055 
4056 	ret = get_cur_path(sctx, dir, gen, p);
4057 	if (ret < 0)
4058 		goto out;
4059 	ret = fs_path_add_path(p, name);
4060 	if (ret < 0)
4061 		goto out;
4062 
4063 	ret = __record_ref(refs, dir, gen, p);
4064 
4065 out:
4066 	if (ret)
4067 		fs_path_free(p);
4068 	return ret;
4069 }
4070 
4071 static int __record_new_ref(int num, u64 dir, int index,
4072 			    struct fs_path *name,
4073 			    void *ctx)
4074 {
4075 	struct send_ctx *sctx = ctx;
4076 	return record_ref(sctx->send_root, num, dir, index, name,
4077 			  ctx, &sctx->new_refs);
4078 }
4079 
4080 
4081 static int __record_deleted_ref(int num, u64 dir, int index,
4082 				struct fs_path *name,
4083 				void *ctx)
4084 {
4085 	struct send_ctx *sctx = ctx;
4086 	return record_ref(sctx->parent_root, num, dir, index, name,
4087 			  ctx, &sctx->deleted_refs);
4088 }
4089 
4090 static int record_new_ref(struct send_ctx *sctx)
4091 {
4092 	int ret;
4093 
4094 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4095 				sctx->cmp_key, 0, __record_new_ref, sctx);
4096 	if (ret < 0)
4097 		goto out;
4098 	ret = 0;
4099 
4100 out:
4101 	return ret;
4102 }
4103 
4104 static int record_deleted_ref(struct send_ctx *sctx)
4105 {
4106 	int ret;
4107 
4108 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4109 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4110 	if (ret < 0)
4111 		goto out;
4112 	ret = 0;
4113 
4114 out:
4115 	return ret;
4116 }
4117 
4118 struct find_ref_ctx {
4119 	u64 dir;
4120 	u64 dir_gen;
4121 	struct btrfs_root *root;
4122 	struct fs_path *name;
4123 	int found_idx;
4124 };
4125 
4126 static int __find_iref(int num, u64 dir, int index,
4127 		       struct fs_path *name,
4128 		       void *ctx_)
4129 {
4130 	struct find_ref_ctx *ctx = ctx_;
4131 	u64 dir_gen;
4132 	int ret;
4133 
4134 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4135 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4136 		/*
4137 		 * To avoid doing extra lookups we'll only do this if everything
4138 		 * else matches.
4139 		 */
4140 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4141 				     NULL, NULL, NULL);
4142 		if (ret)
4143 			return ret;
4144 		if (dir_gen != ctx->dir_gen)
4145 			return 0;
4146 		ctx->found_idx = num;
4147 		return 1;
4148 	}
4149 	return 0;
4150 }
4151 
4152 static int find_iref(struct btrfs_root *root,
4153 		     struct btrfs_path *path,
4154 		     struct btrfs_key *key,
4155 		     u64 dir, u64 dir_gen, struct fs_path *name)
4156 {
4157 	int ret;
4158 	struct find_ref_ctx ctx;
4159 
4160 	ctx.dir = dir;
4161 	ctx.name = name;
4162 	ctx.dir_gen = dir_gen;
4163 	ctx.found_idx = -1;
4164 	ctx.root = root;
4165 
4166 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4167 	if (ret < 0)
4168 		return ret;
4169 
4170 	if (ctx.found_idx == -1)
4171 		return -ENOENT;
4172 
4173 	return ctx.found_idx;
4174 }
4175 
4176 static int __record_changed_new_ref(int num, u64 dir, int index,
4177 				    struct fs_path *name,
4178 				    void *ctx)
4179 {
4180 	u64 dir_gen;
4181 	int ret;
4182 	struct send_ctx *sctx = ctx;
4183 
4184 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4185 			     NULL, NULL, NULL);
4186 	if (ret)
4187 		return ret;
4188 
4189 	ret = find_iref(sctx->parent_root, sctx->right_path,
4190 			sctx->cmp_key, dir, dir_gen, name);
4191 	if (ret == -ENOENT)
4192 		ret = __record_new_ref(num, dir, index, name, sctx);
4193 	else if (ret > 0)
4194 		ret = 0;
4195 
4196 	return ret;
4197 }
4198 
4199 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4200 					struct fs_path *name,
4201 					void *ctx)
4202 {
4203 	u64 dir_gen;
4204 	int ret;
4205 	struct send_ctx *sctx = ctx;
4206 
4207 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4208 			     NULL, NULL, NULL);
4209 	if (ret)
4210 		return ret;
4211 
4212 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4213 			dir, dir_gen, name);
4214 	if (ret == -ENOENT)
4215 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4216 	else if (ret > 0)
4217 		ret = 0;
4218 
4219 	return ret;
4220 }
4221 
4222 static int record_changed_ref(struct send_ctx *sctx)
4223 {
4224 	int ret = 0;
4225 
4226 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4227 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4228 	if (ret < 0)
4229 		goto out;
4230 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4231 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4232 	if (ret < 0)
4233 		goto out;
4234 	ret = 0;
4235 
4236 out:
4237 	return ret;
4238 }
4239 
4240 /*
4241  * Record and process all refs at once. Needed when an inode changes the
4242  * generation number, which means that it was deleted and recreated.
4243  */
4244 static int process_all_refs(struct send_ctx *sctx,
4245 			    enum btrfs_compare_tree_result cmd)
4246 {
4247 	int ret;
4248 	struct btrfs_root *root;
4249 	struct btrfs_path *path;
4250 	struct btrfs_key key;
4251 	struct btrfs_key found_key;
4252 	struct extent_buffer *eb;
4253 	int slot;
4254 	iterate_inode_ref_t cb;
4255 	int pending_move = 0;
4256 
4257 	path = alloc_path_for_send();
4258 	if (!path)
4259 		return -ENOMEM;
4260 
4261 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4262 		root = sctx->send_root;
4263 		cb = __record_new_ref;
4264 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4265 		root = sctx->parent_root;
4266 		cb = __record_deleted_ref;
4267 	} else {
4268 		btrfs_err(sctx->send_root->fs_info,
4269 				"Wrong command %d in process_all_refs", cmd);
4270 		ret = -EINVAL;
4271 		goto out;
4272 	}
4273 
4274 	key.objectid = sctx->cmp_key->objectid;
4275 	key.type = BTRFS_INODE_REF_KEY;
4276 	key.offset = 0;
4277 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4278 	if (ret < 0)
4279 		goto out;
4280 
4281 	while (1) {
4282 		eb = path->nodes[0];
4283 		slot = path->slots[0];
4284 		if (slot >= btrfs_header_nritems(eb)) {
4285 			ret = btrfs_next_leaf(root, path);
4286 			if (ret < 0)
4287 				goto out;
4288 			else if (ret > 0)
4289 				break;
4290 			continue;
4291 		}
4292 
4293 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4294 
4295 		if (found_key.objectid != key.objectid ||
4296 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4297 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4298 			break;
4299 
4300 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4301 		if (ret < 0)
4302 			goto out;
4303 
4304 		path->slots[0]++;
4305 	}
4306 	btrfs_release_path(path);
4307 
4308 	/*
4309 	 * We don't actually care about pending_move as we are simply
4310 	 * re-creating this inode and will be rename'ing it into place once we
4311 	 * rename the parent directory.
4312 	 */
4313 	ret = process_recorded_refs(sctx, &pending_move);
4314 out:
4315 	btrfs_free_path(path);
4316 	return ret;
4317 }
4318 
4319 static int send_set_xattr(struct send_ctx *sctx,
4320 			  struct fs_path *path,
4321 			  const char *name, int name_len,
4322 			  const char *data, int data_len)
4323 {
4324 	int ret = 0;
4325 
4326 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4327 	if (ret < 0)
4328 		goto out;
4329 
4330 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4331 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4332 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4333 
4334 	ret = send_cmd(sctx);
4335 
4336 tlv_put_failure:
4337 out:
4338 	return ret;
4339 }
4340 
4341 static int send_remove_xattr(struct send_ctx *sctx,
4342 			  struct fs_path *path,
4343 			  const char *name, int name_len)
4344 {
4345 	int ret = 0;
4346 
4347 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4348 	if (ret < 0)
4349 		goto out;
4350 
4351 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4352 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4353 
4354 	ret = send_cmd(sctx);
4355 
4356 tlv_put_failure:
4357 out:
4358 	return ret;
4359 }
4360 
4361 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4362 			       const char *name, int name_len,
4363 			       const char *data, int data_len,
4364 			       u8 type, void *ctx)
4365 {
4366 	int ret;
4367 	struct send_ctx *sctx = ctx;
4368 	struct fs_path *p;
4369 	struct posix_acl_xattr_header dummy_acl;
4370 
4371 	p = fs_path_alloc();
4372 	if (!p)
4373 		return -ENOMEM;
4374 
4375 	/*
4376 	 * This hack is needed because empty acls are stored as zero byte
4377 	 * data in xattrs. Problem with that is, that receiving these zero byte
4378 	 * acls will fail later. To fix this, we send a dummy acl list that
4379 	 * only contains the version number and no entries.
4380 	 */
4381 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4382 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4383 		if (data_len == 0) {
4384 			dummy_acl.a_version =
4385 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4386 			data = (char *)&dummy_acl;
4387 			data_len = sizeof(dummy_acl);
4388 		}
4389 	}
4390 
4391 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4392 	if (ret < 0)
4393 		goto out;
4394 
4395 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4396 
4397 out:
4398 	fs_path_free(p);
4399 	return ret;
4400 }
4401 
4402 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4403 				   const char *name, int name_len,
4404 				   const char *data, int data_len,
4405 				   u8 type, void *ctx)
4406 {
4407 	int ret;
4408 	struct send_ctx *sctx = ctx;
4409 	struct fs_path *p;
4410 
4411 	p = fs_path_alloc();
4412 	if (!p)
4413 		return -ENOMEM;
4414 
4415 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4416 	if (ret < 0)
4417 		goto out;
4418 
4419 	ret = send_remove_xattr(sctx, p, name, name_len);
4420 
4421 out:
4422 	fs_path_free(p);
4423 	return ret;
4424 }
4425 
4426 static int process_new_xattr(struct send_ctx *sctx)
4427 {
4428 	int ret = 0;
4429 
4430 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4431 			       sctx->cmp_key, __process_new_xattr, sctx);
4432 
4433 	return ret;
4434 }
4435 
4436 static int process_deleted_xattr(struct send_ctx *sctx)
4437 {
4438 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4439 				sctx->cmp_key, __process_deleted_xattr, sctx);
4440 }
4441 
4442 struct find_xattr_ctx {
4443 	const char *name;
4444 	int name_len;
4445 	int found_idx;
4446 	char *found_data;
4447 	int found_data_len;
4448 };
4449 
4450 static int __find_xattr(int num, struct btrfs_key *di_key,
4451 			const char *name, int name_len,
4452 			const char *data, int data_len,
4453 			u8 type, void *vctx)
4454 {
4455 	struct find_xattr_ctx *ctx = vctx;
4456 
4457 	if (name_len == ctx->name_len &&
4458 	    strncmp(name, ctx->name, name_len) == 0) {
4459 		ctx->found_idx = num;
4460 		ctx->found_data_len = data_len;
4461 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4462 		if (!ctx->found_data)
4463 			return -ENOMEM;
4464 		return 1;
4465 	}
4466 	return 0;
4467 }
4468 
4469 static int find_xattr(struct btrfs_root *root,
4470 		      struct btrfs_path *path,
4471 		      struct btrfs_key *key,
4472 		      const char *name, int name_len,
4473 		      char **data, int *data_len)
4474 {
4475 	int ret;
4476 	struct find_xattr_ctx ctx;
4477 
4478 	ctx.name = name;
4479 	ctx.name_len = name_len;
4480 	ctx.found_idx = -1;
4481 	ctx.found_data = NULL;
4482 	ctx.found_data_len = 0;
4483 
4484 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4485 	if (ret < 0)
4486 		return ret;
4487 
4488 	if (ctx.found_idx == -1)
4489 		return -ENOENT;
4490 	if (data) {
4491 		*data = ctx.found_data;
4492 		*data_len = ctx.found_data_len;
4493 	} else {
4494 		kfree(ctx.found_data);
4495 	}
4496 	return ctx.found_idx;
4497 }
4498 
4499 
4500 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4501 				       const char *name, int name_len,
4502 				       const char *data, int data_len,
4503 				       u8 type, void *ctx)
4504 {
4505 	int ret;
4506 	struct send_ctx *sctx = ctx;
4507 	char *found_data = NULL;
4508 	int found_data_len  = 0;
4509 
4510 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4511 			 sctx->cmp_key, name, name_len, &found_data,
4512 			 &found_data_len);
4513 	if (ret == -ENOENT) {
4514 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4515 				data_len, type, ctx);
4516 	} else if (ret >= 0) {
4517 		if (data_len != found_data_len ||
4518 		    memcmp(data, found_data, data_len)) {
4519 			ret = __process_new_xattr(num, di_key, name, name_len,
4520 					data, data_len, type, ctx);
4521 		} else {
4522 			ret = 0;
4523 		}
4524 	}
4525 
4526 	kfree(found_data);
4527 	return ret;
4528 }
4529 
4530 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4531 					   const char *name, int name_len,
4532 					   const char *data, int data_len,
4533 					   u8 type, void *ctx)
4534 {
4535 	int ret;
4536 	struct send_ctx *sctx = ctx;
4537 
4538 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4539 			 name, name_len, NULL, NULL);
4540 	if (ret == -ENOENT)
4541 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4542 				data_len, type, ctx);
4543 	else if (ret >= 0)
4544 		ret = 0;
4545 
4546 	return ret;
4547 }
4548 
4549 static int process_changed_xattr(struct send_ctx *sctx)
4550 {
4551 	int ret = 0;
4552 
4553 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4554 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4555 	if (ret < 0)
4556 		goto out;
4557 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4558 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4559 
4560 out:
4561 	return ret;
4562 }
4563 
4564 static int process_all_new_xattrs(struct send_ctx *sctx)
4565 {
4566 	int ret;
4567 	struct btrfs_root *root;
4568 	struct btrfs_path *path;
4569 	struct btrfs_key key;
4570 	struct btrfs_key found_key;
4571 	struct extent_buffer *eb;
4572 	int slot;
4573 
4574 	path = alloc_path_for_send();
4575 	if (!path)
4576 		return -ENOMEM;
4577 
4578 	root = sctx->send_root;
4579 
4580 	key.objectid = sctx->cmp_key->objectid;
4581 	key.type = BTRFS_XATTR_ITEM_KEY;
4582 	key.offset = 0;
4583 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4584 	if (ret < 0)
4585 		goto out;
4586 
4587 	while (1) {
4588 		eb = path->nodes[0];
4589 		slot = path->slots[0];
4590 		if (slot >= btrfs_header_nritems(eb)) {
4591 			ret = btrfs_next_leaf(root, path);
4592 			if (ret < 0) {
4593 				goto out;
4594 			} else if (ret > 0) {
4595 				ret = 0;
4596 				break;
4597 			}
4598 			continue;
4599 		}
4600 
4601 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4602 		if (found_key.objectid != key.objectid ||
4603 		    found_key.type != key.type) {
4604 			ret = 0;
4605 			goto out;
4606 		}
4607 
4608 		ret = iterate_dir_item(root, path, &found_key,
4609 				       __process_new_xattr, sctx);
4610 		if (ret < 0)
4611 			goto out;
4612 
4613 		path->slots[0]++;
4614 	}
4615 
4616 out:
4617 	btrfs_free_path(path);
4618 	return ret;
4619 }
4620 
4621 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4622 {
4623 	struct btrfs_root *root = sctx->send_root;
4624 	struct btrfs_fs_info *fs_info = root->fs_info;
4625 	struct inode *inode;
4626 	struct page *page;
4627 	char *addr;
4628 	struct btrfs_key key;
4629 	pgoff_t index = offset >> PAGE_SHIFT;
4630 	pgoff_t last_index;
4631 	unsigned pg_offset = offset & ~PAGE_MASK;
4632 	ssize_t ret = 0;
4633 
4634 	key.objectid = sctx->cur_ino;
4635 	key.type = BTRFS_INODE_ITEM_KEY;
4636 	key.offset = 0;
4637 
4638 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4639 	if (IS_ERR(inode))
4640 		return PTR_ERR(inode);
4641 
4642 	if (offset + len > i_size_read(inode)) {
4643 		if (offset > i_size_read(inode))
4644 			len = 0;
4645 		else
4646 			len = offset - i_size_read(inode);
4647 	}
4648 	if (len == 0)
4649 		goto out;
4650 
4651 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4652 
4653 	/* initial readahead */
4654 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4655 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4656 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4657 		       last_index - index + 1);
4658 
4659 	while (index <= last_index) {
4660 		unsigned cur_len = min_t(unsigned, len,
4661 					 PAGE_SIZE - pg_offset);
4662 		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4663 		if (!page) {
4664 			ret = -ENOMEM;
4665 			break;
4666 		}
4667 
4668 		if (!PageUptodate(page)) {
4669 			btrfs_readpage(NULL, page);
4670 			lock_page(page);
4671 			if (!PageUptodate(page)) {
4672 				unlock_page(page);
4673 				put_page(page);
4674 				ret = -EIO;
4675 				break;
4676 			}
4677 		}
4678 
4679 		addr = kmap(page);
4680 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4681 		kunmap(page);
4682 		unlock_page(page);
4683 		put_page(page);
4684 		index++;
4685 		pg_offset = 0;
4686 		len -= cur_len;
4687 		ret += cur_len;
4688 	}
4689 out:
4690 	iput(inode);
4691 	return ret;
4692 }
4693 
4694 /*
4695  * Read some bytes from the current inode/file and send a write command to
4696  * user space.
4697  */
4698 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4699 {
4700 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4701 	int ret = 0;
4702 	struct fs_path *p;
4703 	ssize_t num_read = 0;
4704 
4705 	p = fs_path_alloc();
4706 	if (!p)
4707 		return -ENOMEM;
4708 
4709 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4710 
4711 	num_read = fill_read_buf(sctx, offset, len);
4712 	if (num_read <= 0) {
4713 		if (num_read < 0)
4714 			ret = num_read;
4715 		goto out;
4716 	}
4717 
4718 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4719 	if (ret < 0)
4720 		goto out;
4721 
4722 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4723 	if (ret < 0)
4724 		goto out;
4725 
4726 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4727 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4728 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4729 
4730 	ret = send_cmd(sctx);
4731 
4732 tlv_put_failure:
4733 out:
4734 	fs_path_free(p);
4735 	if (ret < 0)
4736 		return ret;
4737 	return num_read;
4738 }
4739 
4740 /*
4741  * Send a clone command to user space.
4742  */
4743 static int send_clone(struct send_ctx *sctx,
4744 		      u64 offset, u32 len,
4745 		      struct clone_root *clone_root)
4746 {
4747 	int ret = 0;
4748 	struct fs_path *p;
4749 	u64 gen;
4750 
4751 	btrfs_debug(sctx->send_root->fs_info,
4752 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4753 		    offset, len, clone_root->root->objectid, clone_root->ino,
4754 		    clone_root->offset);
4755 
4756 	p = fs_path_alloc();
4757 	if (!p)
4758 		return -ENOMEM;
4759 
4760 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4761 	if (ret < 0)
4762 		goto out;
4763 
4764 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4765 	if (ret < 0)
4766 		goto out;
4767 
4768 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4769 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4770 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4771 
4772 	if (clone_root->root == sctx->send_root) {
4773 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4774 				&gen, NULL, NULL, NULL, NULL);
4775 		if (ret < 0)
4776 			goto out;
4777 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4778 	} else {
4779 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4780 	}
4781 	if (ret < 0)
4782 		goto out;
4783 
4784 	/*
4785 	 * If the parent we're using has a received_uuid set then use that as
4786 	 * our clone source as that is what we will look for when doing a
4787 	 * receive.
4788 	 *
4789 	 * This covers the case that we create a snapshot off of a received
4790 	 * subvolume and then use that as the parent and try to receive on a
4791 	 * different host.
4792 	 */
4793 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4794 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4795 			     clone_root->root->root_item.received_uuid);
4796 	else
4797 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4798 			     clone_root->root->root_item.uuid);
4799 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4800 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4801 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4802 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4803 			clone_root->offset);
4804 
4805 	ret = send_cmd(sctx);
4806 
4807 tlv_put_failure:
4808 out:
4809 	fs_path_free(p);
4810 	return ret;
4811 }
4812 
4813 /*
4814  * Send an update extent command to user space.
4815  */
4816 static int send_update_extent(struct send_ctx *sctx,
4817 			      u64 offset, u32 len)
4818 {
4819 	int ret = 0;
4820 	struct fs_path *p;
4821 
4822 	p = fs_path_alloc();
4823 	if (!p)
4824 		return -ENOMEM;
4825 
4826 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4827 	if (ret < 0)
4828 		goto out;
4829 
4830 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4831 	if (ret < 0)
4832 		goto out;
4833 
4834 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4835 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4836 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4837 
4838 	ret = send_cmd(sctx);
4839 
4840 tlv_put_failure:
4841 out:
4842 	fs_path_free(p);
4843 	return ret;
4844 }
4845 
4846 static int send_hole(struct send_ctx *sctx, u64 end)
4847 {
4848 	struct fs_path *p = NULL;
4849 	u64 offset = sctx->cur_inode_last_extent;
4850 	u64 len;
4851 	int ret = 0;
4852 
4853 	p = fs_path_alloc();
4854 	if (!p)
4855 		return -ENOMEM;
4856 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4857 	if (ret < 0)
4858 		goto tlv_put_failure;
4859 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4860 	while (offset < end) {
4861 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4862 
4863 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4864 		if (ret < 0)
4865 			break;
4866 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4867 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4868 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4869 		ret = send_cmd(sctx);
4870 		if (ret < 0)
4871 			break;
4872 		offset += len;
4873 	}
4874 tlv_put_failure:
4875 	fs_path_free(p);
4876 	return ret;
4877 }
4878 
4879 static int send_extent_data(struct send_ctx *sctx,
4880 			    const u64 offset,
4881 			    const u64 len)
4882 {
4883 	u64 sent = 0;
4884 
4885 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4886 		return send_update_extent(sctx, offset, len);
4887 
4888 	while (sent < len) {
4889 		u64 size = len - sent;
4890 		int ret;
4891 
4892 		if (size > BTRFS_SEND_READ_SIZE)
4893 			size = BTRFS_SEND_READ_SIZE;
4894 		ret = send_write(sctx, offset + sent, size);
4895 		if (ret < 0)
4896 			return ret;
4897 		if (!ret)
4898 			break;
4899 		sent += ret;
4900 	}
4901 	return 0;
4902 }
4903 
4904 static int clone_range(struct send_ctx *sctx,
4905 		       struct clone_root *clone_root,
4906 		       const u64 disk_byte,
4907 		       u64 data_offset,
4908 		       u64 offset,
4909 		       u64 len)
4910 {
4911 	struct btrfs_path *path;
4912 	struct btrfs_key key;
4913 	int ret;
4914 
4915 	path = alloc_path_for_send();
4916 	if (!path)
4917 		return -ENOMEM;
4918 
4919 	/*
4920 	 * We can't send a clone operation for the entire range if we find
4921 	 * extent items in the respective range in the source file that
4922 	 * refer to different extents or if we find holes.
4923 	 * So check for that and do a mix of clone and regular write/copy
4924 	 * operations if needed.
4925 	 *
4926 	 * Example:
4927 	 *
4928 	 * mkfs.btrfs -f /dev/sda
4929 	 * mount /dev/sda /mnt
4930 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4931 	 * cp --reflink=always /mnt/foo /mnt/bar
4932 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4933 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4934 	 *
4935 	 * If when we send the snapshot and we are processing file bar (which
4936 	 * has a higher inode number than foo) we blindly send a clone operation
4937 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4938 	 * a file bar that matches the content of file foo - iow, doesn't match
4939 	 * the content from bar in the original filesystem.
4940 	 */
4941 	key.objectid = clone_root->ino;
4942 	key.type = BTRFS_EXTENT_DATA_KEY;
4943 	key.offset = clone_root->offset;
4944 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4945 	if (ret < 0)
4946 		goto out;
4947 	if (ret > 0 && path->slots[0] > 0) {
4948 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4949 		if (key.objectid == clone_root->ino &&
4950 		    key.type == BTRFS_EXTENT_DATA_KEY)
4951 			path->slots[0]--;
4952 	}
4953 
4954 	while (true) {
4955 		struct extent_buffer *leaf = path->nodes[0];
4956 		int slot = path->slots[0];
4957 		struct btrfs_file_extent_item *ei;
4958 		u8 type;
4959 		u64 ext_len;
4960 		u64 clone_len;
4961 
4962 		if (slot >= btrfs_header_nritems(leaf)) {
4963 			ret = btrfs_next_leaf(clone_root->root, path);
4964 			if (ret < 0)
4965 				goto out;
4966 			else if (ret > 0)
4967 				break;
4968 			continue;
4969 		}
4970 
4971 		btrfs_item_key_to_cpu(leaf, &key, slot);
4972 
4973 		/*
4974 		 * We might have an implicit trailing hole (NO_HOLES feature
4975 		 * enabled). We deal with it after leaving this loop.
4976 		 */
4977 		if (key.objectid != clone_root->ino ||
4978 		    key.type != BTRFS_EXTENT_DATA_KEY)
4979 			break;
4980 
4981 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4982 		type = btrfs_file_extent_type(leaf, ei);
4983 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4984 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4985 			ext_len = PAGE_ALIGN(ext_len);
4986 		} else {
4987 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4988 		}
4989 
4990 		if (key.offset + ext_len <= clone_root->offset)
4991 			goto next;
4992 
4993 		if (key.offset > clone_root->offset) {
4994 			/* Implicit hole, NO_HOLES feature enabled. */
4995 			u64 hole_len = key.offset - clone_root->offset;
4996 
4997 			if (hole_len > len)
4998 				hole_len = len;
4999 			ret = send_extent_data(sctx, offset, hole_len);
5000 			if (ret < 0)
5001 				goto out;
5002 
5003 			len -= hole_len;
5004 			if (len == 0)
5005 				break;
5006 			offset += hole_len;
5007 			clone_root->offset += hole_len;
5008 			data_offset += hole_len;
5009 		}
5010 
5011 		if (key.offset >= clone_root->offset + len)
5012 			break;
5013 
5014 		clone_len = min_t(u64, ext_len, len);
5015 
5016 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5017 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5018 			ret = send_clone(sctx, offset, clone_len, clone_root);
5019 		else
5020 			ret = send_extent_data(sctx, offset, clone_len);
5021 
5022 		if (ret < 0)
5023 			goto out;
5024 
5025 		len -= clone_len;
5026 		if (len == 0)
5027 			break;
5028 		offset += clone_len;
5029 		clone_root->offset += clone_len;
5030 		data_offset += clone_len;
5031 next:
5032 		path->slots[0]++;
5033 	}
5034 
5035 	if (len > 0)
5036 		ret = send_extent_data(sctx, offset, len);
5037 	else
5038 		ret = 0;
5039 out:
5040 	btrfs_free_path(path);
5041 	return ret;
5042 }
5043 
5044 static int send_write_or_clone(struct send_ctx *sctx,
5045 			       struct btrfs_path *path,
5046 			       struct btrfs_key *key,
5047 			       struct clone_root *clone_root)
5048 {
5049 	int ret = 0;
5050 	struct btrfs_file_extent_item *ei;
5051 	u64 offset = key->offset;
5052 	u64 len;
5053 	u8 type;
5054 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5055 
5056 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5057 			struct btrfs_file_extent_item);
5058 	type = btrfs_file_extent_type(path->nodes[0], ei);
5059 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5060 		len = btrfs_file_extent_inline_len(path->nodes[0],
5061 						   path->slots[0], ei);
5062 		/*
5063 		 * it is possible the inline item won't cover the whole page,
5064 		 * but there may be items after this page.  Make
5065 		 * sure to send the whole thing
5066 		 */
5067 		len = PAGE_ALIGN(len);
5068 	} else {
5069 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5070 	}
5071 
5072 	if (offset + len > sctx->cur_inode_size)
5073 		len = sctx->cur_inode_size - offset;
5074 	if (len == 0) {
5075 		ret = 0;
5076 		goto out;
5077 	}
5078 
5079 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5080 		u64 disk_byte;
5081 		u64 data_offset;
5082 
5083 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5084 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5085 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5086 				  offset, len);
5087 	} else {
5088 		ret = send_extent_data(sctx, offset, len);
5089 	}
5090 out:
5091 	return ret;
5092 }
5093 
5094 static int is_extent_unchanged(struct send_ctx *sctx,
5095 			       struct btrfs_path *left_path,
5096 			       struct btrfs_key *ekey)
5097 {
5098 	int ret = 0;
5099 	struct btrfs_key key;
5100 	struct btrfs_path *path = NULL;
5101 	struct extent_buffer *eb;
5102 	int slot;
5103 	struct btrfs_key found_key;
5104 	struct btrfs_file_extent_item *ei;
5105 	u64 left_disknr;
5106 	u64 right_disknr;
5107 	u64 left_offset;
5108 	u64 right_offset;
5109 	u64 left_offset_fixed;
5110 	u64 left_len;
5111 	u64 right_len;
5112 	u64 left_gen;
5113 	u64 right_gen;
5114 	u8 left_type;
5115 	u8 right_type;
5116 
5117 	path = alloc_path_for_send();
5118 	if (!path)
5119 		return -ENOMEM;
5120 
5121 	eb = left_path->nodes[0];
5122 	slot = left_path->slots[0];
5123 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5124 	left_type = btrfs_file_extent_type(eb, ei);
5125 
5126 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5127 		ret = 0;
5128 		goto out;
5129 	}
5130 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5131 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5132 	left_offset = btrfs_file_extent_offset(eb, ei);
5133 	left_gen = btrfs_file_extent_generation(eb, ei);
5134 
5135 	/*
5136 	 * Following comments will refer to these graphics. L is the left
5137 	 * extents which we are checking at the moment. 1-8 are the right
5138 	 * extents that we iterate.
5139 	 *
5140 	 *       |-----L-----|
5141 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5142 	 *
5143 	 *       |-----L-----|
5144 	 * |--1--|-2b-|...(same as above)
5145 	 *
5146 	 * Alternative situation. Happens on files where extents got split.
5147 	 *       |-----L-----|
5148 	 * |-----------7-----------|-6-|
5149 	 *
5150 	 * Alternative situation. Happens on files which got larger.
5151 	 *       |-----L-----|
5152 	 * |-8-|
5153 	 * Nothing follows after 8.
5154 	 */
5155 
5156 	key.objectid = ekey->objectid;
5157 	key.type = BTRFS_EXTENT_DATA_KEY;
5158 	key.offset = ekey->offset;
5159 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5160 	if (ret < 0)
5161 		goto out;
5162 	if (ret) {
5163 		ret = 0;
5164 		goto out;
5165 	}
5166 
5167 	/*
5168 	 * Handle special case where the right side has no extents at all.
5169 	 */
5170 	eb = path->nodes[0];
5171 	slot = path->slots[0];
5172 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5173 	if (found_key.objectid != key.objectid ||
5174 	    found_key.type != key.type) {
5175 		/* If we're a hole then just pretend nothing changed */
5176 		ret = (left_disknr) ? 0 : 1;
5177 		goto out;
5178 	}
5179 
5180 	/*
5181 	 * We're now on 2a, 2b or 7.
5182 	 */
5183 	key = found_key;
5184 	while (key.offset < ekey->offset + left_len) {
5185 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5186 		right_type = btrfs_file_extent_type(eb, ei);
5187 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5188 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5189 			ret = 0;
5190 			goto out;
5191 		}
5192 
5193 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5194 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5195 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5196 			right_len = PAGE_ALIGN(right_len);
5197 		} else {
5198 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5199 		}
5200 		right_offset = btrfs_file_extent_offset(eb, ei);
5201 		right_gen = btrfs_file_extent_generation(eb, ei);
5202 
5203 		/*
5204 		 * Are we at extent 8? If yes, we know the extent is changed.
5205 		 * This may only happen on the first iteration.
5206 		 */
5207 		if (found_key.offset + right_len <= ekey->offset) {
5208 			/* If we're a hole just pretend nothing changed */
5209 			ret = (left_disknr) ? 0 : 1;
5210 			goto out;
5211 		}
5212 
5213 		/*
5214 		 * We just wanted to see if when we have an inline extent, what
5215 		 * follows it is a regular extent (wanted to check the above
5216 		 * condition for inline extents too). This should normally not
5217 		 * happen but it's possible for example when we have an inline
5218 		 * compressed extent representing data with a size matching
5219 		 * the page size (currently the same as sector size).
5220 		 */
5221 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5222 			ret = 0;
5223 			goto out;
5224 		}
5225 
5226 		left_offset_fixed = left_offset;
5227 		if (key.offset < ekey->offset) {
5228 			/* Fix the right offset for 2a and 7. */
5229 			right_offset += ekey->offset - key.offset;
5230 		} else {
5231 			/* Fix the left offset for all behind 2a and 2b */
5232 			left_offset_fixed += key.offset - ekey->offset;
5233 		}
5234 
5235 		/*
5236 		 * Check if we have the same extent.
5237 		 */
5238 		if (left_disknr != right_disknr ||
5239 		    left_offset_fixed != right_offset ||
5240 		    left_gen != right_gen) {
5241 			ret = 0;
5242 			goto out;
5243 		}
5244 
5245 		/*
5246 		 * Go to the next extent.
5247 		 */
5248 		ret = btrfs_next_item(sctx->parent_root, path);
5249 		if (ret < 0)
5250 			goto out;
5251 		if (!ret) {
5252 			eb = path->nodes[0];
5253 			slot = path->slots[0];
5254 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5255 		}
5256 		if (ret || found_key.objectid != key.objectid ||
5257 		    found_key.type != key.type) {
5258 			key.offset += right_len;
5259 			break;
5260 		}
5261 		if (found_key.offset != key.offset + right_len) {
5262 			ret = 0;
5263 			goto out;
5264 		}
5265 		key = found_key;
5266 	}
5267 
5268 	/*
5269 	 * We're now behind the left extent (treat as unchanged) or at the end
5270 	 * of the right side (treat as changed).
5271 	 */
5272 	if (key.offset >= ekey->offset + left_len)
5273 		ret = 1;
5274 	else
5275 		ret = 0;
5276 
5277 
5278 out:
5279 	btrfs_free_path(path);
5280 	return ret;
5281 }
5282 
5283 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5284 {
5285 	struct btrfs_path *path;
5286 	struct btrfs_root *root = sctx->send_root;
5287 	struct btrfs_file_extent_item *fi;
5288 	struct btrfs_key key;
5289 	u64 extent_end;
5290 	u8 type;
5291 	int ret;
5292 
5293 	path = alloc_path_for_send();
5294 	if (!path)
5295 		return -ENOMEM;
5296 
5297 	sctx->cur_inode_last_extent = 0;
5298 
5299 	key.objectid = sctx->cur_ino;
5300 	key.type = BTRFS_EXTENT_DATA_KEY;
5301 	key.offset = offset;
5302 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5303 	if (ret < 0)
5304 		goto out;
5305 	ret = 0;
5306 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5307 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5308 		goto out;
5309 
5310 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5311 			    struct btrfs_file_extent_item);
5312 	type = btrfs_file_extent_type(path->nodes[0], fi);
5313 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5314 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5315 							path->slots[0], fi);
5316 		extent_end = ALIGN(key.offset + size,
5317 				   sctx->send_root->fs_info->sectorsize);
5318 	} else {
5319 		extent_end = key.offset +
5320 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5321 	}
5322 	sctx->cur_inode_last_extent = extent_end;
5323 out:
5324 	btrfs_free_path(path);
5325 	return ret;
5326 }
5327 
5328 static int range_is_hole_in_parent(struct send_ctx *sctx,
5329 				   const u64 start,
5330 				   const u64 end)
5331 {
5332 	struct btrfs_path *path;
5333 	struct btrfs_key key;
5334 	struct btrfs_root *root = sctx->parent_root;
5335 	u64 search_start = start;
5336 	int ret;
5337 
5338 	path = alloc_path_for_send();
5339 	if (!path)
5340 		return -ENOMEM;
5341 
5342 	key.objectid = sctx->cur_ino;
5343 	key.type = BTRFS_EXTENT_DATA_KEY;
5344 	key.offset = search_start;
5345 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5346 	if (ret < 0)
5347 		goto out;
5348 	if (ret > 0 && path->slots[0] > 0)
5349 		path->slots[0]--;
5350 
5351 	while (search_start < end) {
5352 		struct extent_buffer *leaf = path->nodes[0];
5353 		int slot = path->slots[0];
5354 		struct btrfs_file_extent_item *fi;
5355 		u64 extent_end;
5356 
5357 		if (slot >= btrfs_header_nritems(leaf)) {
5358 			ret = btrfs_next_leaf(root, path);
5359 			if (ret < 0)
5360 				goto out;
5361 			else if (ret > 0)
5362 				break;
5363 			continue;
5364 		}
5365 
5366 		btrfs_item_key_to_cpu(leaf, &key, slot);
5367 		if (key.objectid < sctx->cur_ino ||
5368 		    key.type < BTRFS_EXTENT_DATA_KEY)
5369 			goto next;
5370 		if (key.objectid > sctx->cur_ino ||
5371 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5372 		    key.offset >= end)
5373 			break;
5374 
5375 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5376 		if (btrfs_file_extent_type(leaf, fi) ==
5377 		    BTRFS_FILE_EXTENT_INLINE) {
5378 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5379 
5380 			extent_end = ALIGN(key.offset + size,
5381 					   root->fs_info->sectorsize);
5382 		} else {
5383 			extent_end = key.offset +
5384 				btrfs_file_extent_num_bytes(leaf, fi);
5385 		}
5386 		if (extent_end <= start)
5387 			goto next;
5388 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5389 			search_start = extent_end;
5390 			goto next;
5391 		}
5392 		ret = 0;
5393 		goto out;
5394 next:
5395 		path->slots[0]++;
5396 	}
5397 	ret = 1;
5398 out:
5399 	btrfs_free_path(path);
5400 	return ret;
5401 }
5402 
5403 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5404 			   struct btrfs_key *key)
5405 {
5406 	struct btrfs_file_extent_item *fi;
5407 	u64 extent_end;
5408 	u8 type;
5409 	int ret = 0;
5410 
5411 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5412 		return 0;
5413 
5414 	if (sctx->cur_inode_last_extent == (u64)-1) {
5415 		ret = get_last_extent(sctx, key->offset - 1);
5416 		if (ret)
5417 			return ret;
5418 	}
5419 
5420 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5421 			    struct btrfs_file_extent_item);
5422 	type = btrfs_file_extent_type(path->nodes[0], fi);
5423 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5424 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5425 							path->slots[0], fi);
5426 		extent_end = ALIGN(key->offset + size,
5427 				   sctx->send_root->fs_info->sectorsize);
5428 	} else {
5429 		extent_end = key->offset +
5430 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5431 	}
5432 
5433 	if (path->slots[0] == 0 &&
5434 	    sctx->cur_inode_last_extent < key->offset) {
5435 		/*
5436 		 * We might have skipped entire leafs that contained only
5437 		 * file extent items for our current inode. These leafs have
5438 		 * a generation number smaller (older) than the one in the
5439 		 * current leaf and the leaf our last extent came from, and
5440 		 * are located between these 2 leafs.
5441 		 */
5442 		ret = get_last_extent(sctx, key->offset - 1);
5443 		if (ret)
5444 			return ret;
5445 	}
5446 
5447 	if (sctx->cur_inode_last_extent < key->offset) {
5448 		ret = range_is_hole_in_parent(sctx,
5449 					      sctx->cur_inode_last_extent,
5450 					      key->offset);
5451 		if (ret < 0)
5452 			return ret;
5453 		else if (ret == 0)
5454 			ret = send_hole(sctx, key->offset);
5455 		else
5456 			ret = 0;
5457 	}
5458 	sctx->cur_inode_last_extent = extent_end;
5459 	return ret;
5460 }
5461 
5462 static int process_extent(struct send_ctx *sctx,
5463 			  struct btrfs_path *path,
5464 			  struct btrfs_key *key)
5465 {
5466 	struct clone_root *found_clone = NULL;
5467 	int ret = 0;
5468 
5469 	if (S_ISLNK(sctx->cur_inode_mode))
5470 		return 0;
5471 
5472 	if (sctx->parent_root && !sctx->cur_inode_new) {
5473 		ret = is_extent_unchanged(sctx, path, key);
5474 		if (ret < 0)
5475 			goto out;
5476 		if (ret) {
5477 			ret = 0;
5478 			goto out_hole;
5479 		}
5480 	} else {
5481 		struct btrfs_file_extent_item *ei;
5482 		u8 type;
5483 
5484 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5485 				    struct btrfs_file_extent_item);
5486 		type = btrfs_file_extent_type(path->nodes[0], ei);
5487 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5488 		    type == BTRFS_FILE_EXTENT_REG) {
5489 			/*
5490 			 * The send spec does not have a prealloc command yet,
5491 			 * so just leave a hole for prealloc'ed extents until
5492 			 * we have enough commands queued up to justify rev'ing
5493 			 * the send spec.
5494 			 */
5495 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5496 				ret = 0;
5497 				goto out;
5498 			}
5499 
5500 			/* Have a hole, just skip it. */
5501 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5502 				ret = 0;
5503 				goto out;
5504 			}
5505 		}
5506 	}
5507 
5508 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5509 			sctx->cur_inode_size, &found_clone);
5510 	if (ret != -ENOENT && ret < 0)
5511 		goto out;
5512 
5513 	ret = send_write_or_clone(sctx, path, key, found_clone);
5514 	if (ret)
5515 		goto out;
5516 out_hole:
5517 	ret = maybe_send_hole(sctx, path, key);
5518 out:
5519 	return ret;
5520 }
5521 
5522 static int process_all_extents(struct send_ctx *sctx)
5523 {
5524 	int ret;
5525 	struct btrfs_root *root;
5526 	struct btrfs_path *path;
5527 	struct btrfs_key key;
5528 	struct btrfs_key found_key;
5529 	struct extent_buffer *eb;
5530 	int slot;
5531 
5532 	root = sctx->send_root;
5533 	path = alloc_path_for_send();
5534 	if (!path)
5535 		return -ENOMEM;
5536 
5537 	key.objectid = sctx->cmp_key->objectid;
5538 	key.type = BTRFS_EXTENT_DATA_KEY;
5539 	key.offset = 0;
5540 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5541 	if (ret < 0)
5542 		goto out;
5543 
5544 	while (1) {
5545 		eb = path->nodes[0];
5546 		slot = path->slots[0];
5547 
5548 		if (slot >= btrfs_header_nritems(eb)) {
5549 			ret = btrfs_next_leaf(root, path);
5550 			if (ret < 0) {
5551 				goto out;
5552 			} else if (ret > 0) {
5553 				ret = 0;
5554 				break;
5555 			}
5556 			continue;
5557 		}
5558 
5559 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5560 
5561 		if (found_key.objectid != key.objectid ||
5562 		    found_key.type != key.type) {
5563 			ret = 0;
5564 			goto out;
5565 		}
5566 
5567 		ret = process_extent(sctx, path, &found_key);
5568 		if (ret < 0)
5569 			goto out;
5570 
5571 		path->slots[0]++;
5572 	}
5573 
5574 out:
5575 	btrfs_free_path(path);
5576 	return ret;
5577 }
5578 
5579 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5580 					   int *pending_move,
5581 					   int *refs_processed)
5582 {
5583 	int ret = 0;
5584 
5585 	if (sctx->cur_ino == 0)
5586 		goto out;
5587 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5588 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5589 		goto out;
5590 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5591 		goto out;
5592 
5593 	ret = process_recorded_refs(sctx, pending_move);
5594 	if (ret < 0)
5595 		goto out;
5596 
5597 	*refs_processed = 1;
5598 out:
5599 	return ret;
5600 }
5601 
5602 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5603 {
5604 	int ret = 0;
5605 	u64 left_mode;
5606 	u64 left_uid;
5607 	u64 left_gid;
5608 	u64 right_mode;
5609 	u64 right_uid;
5610 	u64 right_gid;
5611 	int need_chmod = 0;
5612 	int need_chown = 0;
5613 	int pending_move = 0;
5614 	int refs_processed = 0;
5615 
5616 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5617 					      &refs_processed);
5618 	if (ret < 0)
5619 		goto out;
5620 
5621 	/*
5622 	 * We have processed the refs and thus need to advance send_progress.
5623 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5624 	 * inode into account.
5625 	 *
5626 	 * On the other hand, if our current inode is a directory and couldn't
5627 	 * be moved/renamed because its parent was renamed/moved too and it has
5628 	 * a higher inode number, we can only move/rename our current inode
5629 	 * after we moved/renamed its parent. Therefore in this case operate on
5630 	 * the old path (pre move/rename) of our current inode, and the
5631 	 * move/rename will be performed later.
5632 	 */
5633 	if (refs_processed && !pending_move)
5634 		sctx->send_progress = sctx->cur_ino + 1;
5635 
5636 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5637 		goto out;
5638 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5639 		goto out;
5640 
5641 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5642 			&left_mode, &left_uid, &left_gid, NULL);
5643 	if (ret < 0)
5644 		goto out;
5645 
5646 	if (!sctx->parent_root || sctx->cur_inode_new) {
5647 		need_chown = 1;
5648 		if (!S_ISLNK(sctx->cur_inode_mode))
5649 			need_chmod = 1;
5650 	} else {
5651 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5652 				NULL, NULL, &right_mode, &right_uid,
5653 				&right_gid, NULL);
5654 		if (ret < 0)
5655 			goto out;
5656 
5657 		if (left_uid != right_uid || left_gid != right_gid)
5658 			need_chown = 1;
5659 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5660 			need_chmod = 1;
5661 	}
5662 
5663 	if (S_ISREG(sctx->cur_inode_mode)) {
5664 		if (need_send_hole(sctx)) {
5665 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5666 			    sctx->cur_inode_last_extent <
5667 			    sctx->cur_inode_size) {
5668 				ret = get_last_extent(sctx, (u64)-1);
5669 				if (ret)
5670 					goto out;
5671 			}
5672 			if (sctx->cur_inode_last_extent <
5673 			    sctx->cur_inode_size) {
5674 				ret = send_hole(sctx, sctx->cur_inode_size);
5675 				if (ret)
5676 					goto out;
5677 			}
5678 		}
5679 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5680 				sctx->cur_inode_size);
5681 		if (ret < 0)
5682 			goto out;
5683 	}
5684 
5685 	if (need_chown) {
5686 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5687 				left_uid, left_gid);
5688 		if (ret < 0)
5689 			goto out;
5690 	}
5691 	if (need_chmod) {
5692 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5693 				left_mode);
5694 		if (ret < 0)
5695 			goto out;
5696 	}
5697 
5698 	/*
5699 	 * If other directory inodes depended on our current directory
5700 	 * inode's move/rename, now do their move/rename operations.
5701 	 */
5702 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5703 		ret = apply_children_dir_moves(sctx);
5704 		if (ret)
5705 			goto out;
5706 		/*
5707 		 * Need to send that every time, no matter if it actually
5708 		 * changed between the two trees as we have done changes to
5709 		 * the inode before. If our inode is a directory and it's
5710 		 * waiting to be moved/renamed, we will send its utimes when
5711 		 * it's moved/renamed, therefore we don't need to do it here.
5712 		 */
5713 		sctx->send_progress = sctx->cur_ino + 1;
5714 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5715 		if (ret < 0)
5716 			goto out;
5717 	}
5718 
5719 out:
5720 	return ret;
5721 }
5722 
5723 static int changed_inode(struct send_ctx *sctx,
5724 			 enum btrfs_compare_tree_result result)
5725 {
5726 	int ret = 0;
5727 	struct btrfs_key *key = sctx->cmp_key;
5728 	struct btrfs_inode_item *left_ii = NULL;
5729 	struct btrfs_inode_item *right_ii = NULL;
5730 	u64 left_gen = 0;
5731 	u64 right_gen = 0;
5732 
5733 	sctx->cur_ino = key->objectid;
5734 	sctx->cur_inode_new_gen = 0;
5735 	sctx->cur_inode_last_extent = (u64)-1;
5736 
5737 	/*
5738 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5739 	 * functions that the current inode's refs are not updated yet. Later,
5740 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5741 	 */
5742 	sctx->send_progress = sctx->cur_ino;
5743 
5744 	if (result == BTRFS_COMPARE_TREE_NEW ||
5745 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5746 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5747 				sctx->left_path->slots[0],
5748 				struct btrfs_inode_item);
5749 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5750 				left_ii);
5751 	} else {
5752 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5753 				sctx->right_path->slots[0],
5754 				struct btrfs_inode_item);
5755 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5756 				right_ii);
5757 	}
5758 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5759 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5760 				sctx->right_path->slots[0],
5761 				struct btrfs_inode_item);
5762 
5763 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5764 				right_ii);
5765 
5766 		/*
5767 		 * The cur_ino = root dir case is special here. We can't treat
5768 		 * the inode as deleted+reused because it would generate a
5769 		 * stream that tries to delete/mkdir the root dir.
5770 		 */
5771 		if (left_gen != right_gen &&
5772 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5773 			sctx->cur_inode_new_gen = 1;
5774 	}
5775 
5776 	if (result == BTRFS_COMPARE_TREE_NEW) {
5777 		sctx->cur_inode_gen = left_gen;
5778 		sctx->cur_inode_new = 1;
5779 		sctx->cur_inode_deleted = 0;
5780 		sctx->cur_inode_size = btrfs_inode_size(
5781 				sctx->left_path->nodes[0], left_ii);
5782 		sctx->cur_inode_mode = btrfs_inode_mode(
5783 				sctx->left_path->nodes[0], left_ii);
5784 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5785 				sctx->left_path->nodes[0], left_ii);
5786 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5787 			ret = send_create_inode_if_needed(sctx);
5788 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5789 		sctx->cur_inode_gen = right_gen;
5790 		sctx->cur_inode_new = 0;
5791 		sctx->cur_inode_deleted = 1;
5792 		sctx->cur_inode_size = btrfs_inode_size(
5793 				sctx->right_path->nodes[0], right_ii);
5794 		sctx->cur_inode_mode = btrfs_inode_mode(
5795 				sctx->right_path->nodes[0], right_ii);
5796 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5797 		/*
5798 		 * We need to do some special handling in case the inode was
5799 		 * reported as changed with a changed generation number. This
5800 		 * means that the original inode was deleted and new inode
5801 		 * reused the same inum. So we have to treat the old inode as
5802 		 * deleted and the new one as new.
5803 		 */
5804 		if (sctx->cur_inode_new_gen) {
5805 			/*
5806 			 * First, process the inode as if it was deleted.
5807 			 */
5808 			sctx->cur_inode_gen = right_gen;
5809 			sctx->cur_inode_new = 0;
5810 			sctx->cur_inode_deleted = 1;
5811 			sctx->cur_inode_size = btrfs_inode_size(
5812 					sctx->right_path->nodes[0], right_ii);
5813 			sctx->cur_inode_mode = btrfs_inode_mode(
5814 					sctx->right_path->nodes[0], right_ii);
5815 			ret = process_all_refs(sctx,
5816 					BTRFS_COMPARE_TREE_DELETED);
5817 			if (ret < 0)
5818 				goto out;
5819 
5820 			/*
5821 			 * Now process the inode as if it was new.
5822 			 */
5823 			sctx->cur_inode_gen = left_gen;
5824 			sctx->cur_inode_new = 1;
5825 			sctx->cur_inode_deleted = 0;
5826 			sctx->cur_inode_size = btrfs_inode_size(
5827 					sctx->left_path->nodes[0], left_ii);
5828 			sctx->cur_inode_mode = btrfs_inode_mode(
5829 					sctx->left_path->nodes[0], left_ii);
5830 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5831 					sctx->left_path->nodes[0], left_ii);
5832 			ret = send_create_inode_if_needed(sctx);
5833 			if (ret < 0)
5834 				goto out;
5835 
5836 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5837 			if (ret < 0)
5838 				goto out;
5839 			/*
5840 			 * Advance send_progress now as we did not get into
5841 			 * process_recorded_refs_if_needed in the new_gen case.
5842 			 */
5843 			sctx->send_progress = sctx->cur_ino + 1;
5844 
5845 			/*
5846 			 * Now process all extents and xattrs of the inode as if
5847 			 * they were all new.
5848 			 */
5849 			ret = process_all_extents(sctx);
5850 			if (ret < 0)
5851 				goto out;
5852 			ret = process_all_new_xattrs(sctx);
5853 			if (ret < 0)
5854 				goto out;
5855 		} else {
5856 			sctx->cur_inode_gen = left_gen;
5857 			sctx->cur_inode_new = 0;
5858 			sctx->cur_inode_new_gen = 0;
5859 			sctx->cur_inode_deleted = 0;
5860 			sctx->cur_inode_size = btrfs_inode_size(
5861 					sctx->left_path->nodes[0], left_ii);
5862 			sctx->cur_inode_mode = btrfs_inode_mode(
5863 					sctx->left_path->nodes[0], left_ii);
5864 		}
5865 	}
5866 
5867 out:
5868 	return ret;
5869 }
5870 
5871 /*
5872  * We have to process new refs before deleted refs, but compare_trees gives us
5873  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5874  * first and later process them in process_recorded_refs.
5875  * For the cur_inode_new_gen case, we skip recording completely because
5876  * changed_inode did already initiate processing of refs. The reason for this is
5877  * that in this case, compare_tree actually compares the refs of 2 different
5878  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5879  * refs of the right tree as deleted and all refs of the left tree as new.
5880  */
5881 static int changed_ref(struct send_ctx *sctx,
5882 		       enum btrfs_compare_tree_result result)
5883 {
5884 	int ret = 0;
5885 
5886 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5887 		inconsistent_snapshot_error(sctx, result, "reference");
5888 		return -EIO;
5889 	}
5890 
5891 	if (!sctx->cur_inode_new_gen &&
5892 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5893 		if (result == BTRFS_COMPARE_TREE_NEW)
5894 			ret = record_new_ref(sctx);
5895 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5896 			ret = record_deleted_ref(sctx);
5897 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5898 			ret = record_changed_ref(sctx);
5899 	}
5900 
5901 	return ret;
5902 }
5903 
5904 /*
5905  * Process new/deleted/changed xattrs. We skip processing in the
5906  * cur_inode_new_gen case because changed_inode did already initiate processing
5907  * of xattrs. The reason is the same as in changed_ref
5908  */
5909 static int changed_xattr(struct send_ctx *sctx,
5910 			 enum btrfs_compare_tree_result result)
5911 {
5912 	int ret = 0;
5913 
5914 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5915 		inconsistent_snapshot_error(sctx, result, "xattr");
5916 		return -EIO;
5917 	}
5918 
5919 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5920 		if (result == BTRFS_COMPARE_TREE_NEW)
5921 			ret = process_new_xattr(sctx);
5922 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5923 			ret = process_deleted_xattr(sctx);
5924 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5925 			ret = process_changed_xattr(sctx);
5926 	}
5927 
5928 	return ret;
5929 }
5930 
5931 /*
5932  * Process new/deleted/changed extents. We skip processing in the
5933  * cur_inode_new_gen case because changed_inode did already initiate processing
5934  * of extents. The reason is the same as in changed_ref
5935  */
5936 static int changed_extent(struct send_ctx *sctx,
5937 			  enum btrfs_compare_tree_result result)
5938 {
5939 	int ret = 0;
5940 
5941 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5942 
5943 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
5944 			struct extent_buffer *leaf_l;
5945 			struct extent_buffer *leaf_r;
5946 			struct btrfs_file_extent_item *ei_l;
5947 			struct btrfs_file_extent_item *ei_r;
5948 
5949 			leaf_l = sctx->left_path->nodes[0];
5950 			leaf_r = sctx->right_path->nodes[0];
5951 			ei_l = btrfs_item_ptr(leaf_l,
5952 					      sctx->left_path->slots[0],
5953 					      struct btrfs_file_extent_item);
5954 			ei_r = btrfs_item_ptr(leaf_r,
5955 					      sctx->right_path->slots[0],
5956 					      struct btrfs_file_extent_item);
5957 
5958 			/*
5959 			 * We may have found an extent item that has changed
5960 			 * only its disk_bytenr field and the corresponding
5961 			 * inode item was not updated. This case happens due to
5962 			 * very specific timings during relocation when a leaf
5963 			 * that contains file extent items is COWed while
5964 			 * relocation is ongoing and its in the stage where it
5965 			 * updates data pointers. So when this happens we can
5966 			 * safely ignore it since we know it's the same extent,
5967 			 * but just at different logical and physical locations
5968 			 * (when an extent is fully replaced with a new one, we
5969 			 * know the generation number must have changed too,
5970 			 * since snapshot creation implies committing the current
5971 			 * transaction, and the inode item must have been updated
5972 			 * as well).
5973 			 * This replacement of the disk_bytenr happens at
5974 			 * relocation.c:replace_file_extents() through
5975 			 * relocation.c:btrfs_reloc_cow_block().
5976 			 */
5977 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
5978 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
5979 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
5980 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
5981 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
5982 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
5983 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
5984 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
5985 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
5986 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
5987 			    btrfs_file_extent_type(leaf_l, ei_l) ==
5988 			    btrfs_file_extent_type(leaf_r, ei_r) &&
5989 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
5990 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
5991 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
5992 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
5993 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
5994 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
5995 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
5996 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
5997 				return 0;
5998 		}
5999 
6000 		inconsistent_snapshot_error(sctx, result, "extent");
6001 		return -EIO;
6002 	}
6003 
6004 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6005 		if (result != BTRFS_COMPARE_TREE_DELETED)
6006 			ret = process_extent(sctx, sctx->left_path,
6007 					sctx->cmp_key);
6008 	}
6009 
6010 	return ret;
6011 }
6012 
6013 static int dir_changed(struct send_ctx *sctx, u64 dir)
6014 {
6015 	u64 orig_gen, new_gen;
6016 	int ret;
6017 
6018 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6019 			     NULL, NULL);
6020 	if (ret)
6021 		return ret;
6022 
6023 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6024 			     NULL, NULL, NULL);
6025 	if (ret)
6026 		return ret;
6027 
6028 	return (orig_gen != new_gen) ? 1 : 0;
6029 }
6030 
6031 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6032 			struct btrfs_key *key)
6033 {
6034 	struct btrfs_inode_extref *extref;
6035 	struct extent_buffer *leaf;
6036 	u64 dirid = 0, last_dirid = 0;
6037 	unsigned long ptr;
6038 	u32 item_size;
6039 	u32 cur_offset = 0;
6040 	int ref_name_len;
6041 	int ret = 0;
6042 
6043 	/* Easy case, just check this one dirid */
6044 	if (key->type == BTRFS_INODE_REF_KEY) {
6045 		dirid = key->offset;
6046 
6047 		ret = dir_changed(sctx, dirid);
6048 		goto out;
6049 	}
6050 
6051 	leaf = path->nodes[0];
6052 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6053 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6054 	while (cur_offset < item_size) {
6055 		extref = (struct btrfs_inode_extref *)(ptr +
6056 						       cur_offset);
6057 		dirid = btrfs_inode_extref_parent(leaf, extref);
6058 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6059 		cur_offset += ref_name_len + sizeof(*extref);
6060 		if (dirid == last_dirid)
6061 			continue;
6062 		ret = dir_changed(sctx, dirid);
6063 		if (ret)
6064 			break;
6065 		last_dirid = dirid;
6066 	}
6067 out:
6068 	return ret;
6069 }
6070 
6071 /*
6072  * Updates compare related fields in sctx and simply forwards to the actual
6073  * changed_xxx functions.
6074  */
6075 static int changed_cb(struct btrfs_root *left_root,
6076 		      struct btrfs_root *right_root,
6077 		      struct btrfs_path *left_path,
6078 		      struct btrfs_path *right_path,
6079 		      struct btrfs_key *key,
6080 		      enum btrfs_compare_tree_result result,
6081 		      void *ctx)
6082 {
6083 	int ret = 0;
6084 	struct send_ctx *sctx = ctx;
6085 
6086 	if (result == BTRFS_COMPARE_TREE_SAME) {
6087 		if (key->type == BTRFS_INODE_REF_KEY ||
6088 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6089 			ret = compare_refs(sctx, left_path, key);
6090 			if (!ret)
6091 				return 0;
6092 			if (ret < 0)
6093 				return ret;
6094 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6095 			return maybe_send_hole(sctx, left_path, key);
6096 		} else {
6097 			return 0;
6098 		}
6099 		result = BTRFS_COMPARE_TREE_CHANGED;
6100 		ret = 0;
6101 	}
6102 
6103 	sctx->left_path = left_path;
6104 	sctx->right_path = right_path;
6105 	sctx->cmp_key = key;
6106 
6107 	ret = finish_inode_if_needed(sctx, 0);
6108 	if (ret < 0)
6109 		goto out;
6110 
6111 	/* Ignore non-FS objects */
6112 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6113 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6114 		goto out;
6115 
6116 	if (key->type == BTRFS_INODE_ITEM_KEY)
6117 		ret = changed_inode(sctx, result);
6118 	else if (key->type == BTRFS_INODE_REF_KEY ||
6119 		 key->type == BTRFS_INODE_EXTREF_KEY)
6120 		ret = changed_ref(sctx, result);
6121 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6122 		ret = changed_xattr(sctx, result);
6123 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6124 		ret = changed_extent(sctx, result);
6125 
6126 out:
6127 	return ret;
6128 }
6129 
6130 static int full_send_tree(struct send_ctx *sctx)
6131 {
6132 	int ret;
6133 	struct btrfs_root *send_root = sctx->send_root;
6134 	struct btrfs_key key;
6135 	struct btrfs_key found_key;
6136 	struct btrfs_path *path;
6137 	struct extent_buffer *eb;
6138 	int slot;
6139 
6140 	path = alloc_path_for_send();
6141 	if (!path)
6142 		return -ENOMEM;
6143 
6144 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6145 	key.type = BTRFS_INODE_ITEM_KEY;
6146 	key.offset = 0;
6147 
6148 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6149 	if (ret < 0)
6150 		goto out;
6151 	if (ret)
6152 		goto out_finish;
6153 
6154 	while (1) {
6155 		eb = path->nodes[0];
6156 		slot = path->slots[0];
6157 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6158 
6159 		ret = changed_cb(send_root, NULL, path, NULL,
6160 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6161 		if (ret < 0)
6162 			goto out;
6163 
6164 		key.objectid = found_key.objectid;
6165 		key.type = found_key.type;
6166 		key.offset = found_key.offset + 1;
6167 
6168 		ret = btrfs_next_item(send_root, path);
6169 		if (ret < 0)
6170 			goto out;
6171 		if (ret) {
6172 			ret  = 0;
6173 			break;
6174 		}
6175 	}
6176 
6177 out_finish:
6178 	ret = finish_inode_if_needed(sctx, 1);
6179 
6180 out:
6181 	btrfs_free_path(path);
6182 	return ret;
6183 }
6184 
6185 static int send_subvol(struct send_ctx *sctx)
6186 {
6187 	int ret;
6188 
6189 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6190 		ret = send_header(sctx);
6191 		if (ret < 0)
6192 			goto out;
6193 	}
6194 
6195 	ret = send_subvol_begin(sctx);
6196 	if (ret < 0)
6197 		goto out;
6198 
6199 	if (sctx->parent_root) {
6200 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6201 				changed_cb, sctx);
6202 		if (ret < 0)
6203 			goto out;
6204 		ret = finish_inode_if_needed(sctx, 1);
6205 		if (ret < 0)
6206 			goto out;
6207 	} else {
6208 		ret = full_send_tree(sctx);
6209 		if (ret < 0)
6210 			goto out;
6211 	}
6212 
6213 out:
6214 	free_recorded_refs(sctx);
6215 	return ret;
6216 }
6217 
6218 /*
6219  * If orphan cleanup did remove any orphans from a root, it means the tree
6220  * was modified and therefore the commit root is not the same as the current
6221  * root anymore. This is a problem, because send uses the commit root and
6222  * therefore can see inode items that don't exist in the current root anymore,
6223  * and for example make calls to btrfs_iget, which will do tree lookups based
6224  * on the current root and not on the commit root. Those lookups will fail,
6225  * returning a -ESTALE error, and making send fail with that error. So make
6226  * sure a send does not see any orphans we have just removed, and that it will
6227  * see the same inodes regardless of whether a transaction commit happened
6228  * before it started (meaning that the commit root will be the same as the
6229  * current root) or not.
6230  */
6231 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6232 {
6233 	int i;
6234 	struct btrfs_trans_handle *trans = NULL;
6235 
6236 again:
6237 	if (sctx->parent_root &&
6238 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6239 		goto commit_trans;
6240 
6241 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6242 		if (sctx->clone_roots[i].root->node !=
6243 		    sctx->clone_roots[i].root->commit_root)
6244 			goto commit_trans;
6245 
6246 	if (trans)
6247 		return btrfs_end_transaction(trans);
6248 
6249 	return 0;
6250 
6251 commit_trans:
6252 	/* Use any root, all fs roots will get their commit roots updated. */
6253 	if (!trans) {
6254 		trans = btrfs_join_transaction(sctx->send_root);
6255 		if (IS_ERR(trans))
6256 			return PTR_ERR(trans);
6257 		goto again;
6258 	}
6259 
6260 	return btrfs_commit_transaction(trans);
6261 }
6262 
6263 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6264 {
6265 	spin_lock(&root->root_item_lock);
6266 	root->send_in_progress--;
6267 	/*
6268 	 * Not much left to do, we don't know why it's unbalanced and
6269 	 * can't blindly reset it to 0.
6270 	 */
6271 	if (root->send_in_progress < 0)
6272 		btrfs_err(root->fs_info,
6273 			  "send_in_progres unbalanced %d root %llu",
6274 			  root->send_in_progress, root->root_key.objectid);
6275 	spin_unlock(&root->root_item_lock);
6276 }
6277 
6278 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6279 {
6280 	int ret = 0;
6281 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6282 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6283 	struct btrfs_root *clone_root;
6284 	struct btrfs_ioctl_send_args *arg = NULL;
6285 	struct btrfs_key key;
6286 	struct send_ctx *sctx = NULL;
6287 	u32 i;
6288 	u64 *clone_sources_tmp = NULL;
6289 	int clone_sources_to_rollback = 0;
6290 	unsigned alloc_size;
6291 	int sort_clone_roots = 0;
6292 	int index;
6293 
6294 	if (!capable(CAP_SYS_ADMIN))
6295 		return -EPERM;
6296 
6297 	/*
6298 	 * The subvolume must remain read-only during send, protect against
6299 	 * making it RW. This also protects against deletion.
6300 	 */
6301 	spin_lock(&send_root->root_item_lock);
6302 	send_root->send_in_progress++;
6303 	spin_unlock(&send_root->root_item_lock);
6304 
6305 	/*
6306 	 * This is done when we lookup the root, it should already be complete
6307 	 * by the time we get here.
6308 	 */
6309 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6310 
6311 	/*
6312 	 * Userspace tools do the checks and warn the user if it's
6313 	 * not RO.
6314 	 */
6315 	if (!btrfs_root_readonly(send_root)) {
6316 		ret = -EPERM;
6317 		goto out;
6318 	}
6319 
6320 	arg = memdup_user(arg_, sizeof(*arg));
6321 	if (IS_ERR(arg)) {
6322 		ret = PTR_ERR(arg);
6323 		arg = NULL;
6324 		goto out;
6325 	}
6326 
6327 	/*
6328 	 * Check that we don't overflow at later allocations, we request
6329 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6330 	 * access_ok.
6331 	 */
6332 	if (arg->clone_sources_count >
6333 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6334 		ret = -EINVAL;
6335 		goto out;
6336 	}
6337 
6338 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6339 			sizeof(*arg->clone_sources) *
6340 			arg->clone_sources_count)) {
6341 		ret = -EFAULT;
6342 		goto out;
6343 	}
6344 
6345 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6346 		ret = -EINVAL;
6347 		goto out;
6348 	}
6349 
6350 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6351 	if (!sctx) {
6352 		ret = -ENOMEM;
6353 		goto out;
6354 	}
6355 
6356 	INIT_LIST_HEAD(&sctx->new_refs);
6357 	INIT_LIST_HEAD(&sctx->deleted_refs);
6358 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6359 	INIT_LIST_HEAD(&sctx->name_cache_list);
6360 
6361 	sctx->flags = arg->flags;
6362 
6363 	sctx->send_filp = fget(arg->send_fd);
6364 	if (!sctx->send_filp) {
6365 		ret = -EBADF;
6366 		goto out;
6367 	}
6368 
6369 	sctx->send_root = send_root;
6370 	/*
6371 	 * Unlikely but possible, if the subvolume is marked for deletion but
6372 	 * is slow to remove the directory entry, send can still be started
6373 	 */
6374 	if (btrfs_root_dead(sctx->send_root)) {
6375 		ret = -EPERM;
6376 		goto out;
6377 	}
6378 
6379 	sctx->clone_roots_cnt = arg->clone_sources_count;
6380 
6381 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6382 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6383 	if (!sctx->send_buf) {
6384 		ret = -ENOMEM;
6385 		goto out;
6386 	}
6387 
6388 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6389 	if (!sctx->read_buf) {
6390 		ret = -ENOMEM;
6391 		goto out;
6392 	}
6393 
6394 	sctx->pending_dir_moves = RB_ROOT;
6395 	sctx->waiting_dir_moves = RB_ROOT;
6396 	sctx->orphan_dirs = RB_ROOT;
6397 
6398 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6399 
6400 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6401 	if (!sctx->clone_roots) {
6402 		sctx->clone_roots = vzalloc(alloc_size);
6403 		if (!sctx->clone_roots) {
6404 			ret = -ENOMEM;
6405 			goto out;
6406 		}
6407 	}
6408 
6409 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6410 
6411 	if (arg->clone_sources_count) {
6412 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6413 		if (!clone_sources_tmp) {
6414 			ret = -ENOMEM;
6415 			goto out;
6416 		}
6417 
6418 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6419 				alloc_size);
6420 		if (ret) {
6421 			ret = -EFAULT;
6422 			goto out;
6423 		}
6424 
6425 		for (i = 0; i < arg->clone_sources_count; i++) {
6426 			key.objectid = clone_sources_tmp[i];
6427 			key.type = BTRFS_ROOT_ITEM_KEY;
6428 			key.offset = (u64)-1;
6429 
6430 			index = srcu_read_lock(&fs_info->subvol_srcu);
6431 
6432 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6433 			if (IS_ERR(clone_root)) {
6434 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6435 				ret = PTR_ERR(clone_root);
6436 				goto out;
6437 			}
6438 			spin_lock(&clone_root->root_item_lock);
6439 			if (!btrfs_root_readonly(clone_root) ||
6440 			    btrfs_root_dead(clone_root)) {
6441 				spin_unlock(&clone_root->root_item_lock);
6442 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6443 				ret = -EPERM;
6444 				goto out;
6445 			}
6446 			clone_root->send_in_progress++;
6447 			spin_unlock(&clone_root->root_item_lock);
6448 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6449 
6450 			sctx->clone_roots[i].root = clone_root;
6451 			clone_sources_to_rollback = i + 1;
6452 		}
6453 		kvfree(clone_sources_tmp);
6454 		clone_sources_tmp = NULL;
6455 	}
6456 
6457 	if (arg->parent_root) {
6458 		key.objectid = arg->parent_root;
6459 		key.type = BTRFS_ROOT_ITEM_KEY;
6460 		key.offset = (u64)-1;
6461 
6462 		index = srcu_read_lock(&fs_info->subvol_srcu);
6463 
6464 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6465 		if (IS_ERR(sctx->parent_root)) {
6466 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6467 			ret = PTR_ERR(sctx->parent_root);
6468 			goto out;
6469 		}
6470 
6471 		spin_lock(&sctx->parent_root->root_item_lock);
6472 		sctx->parent_root->send_in_progress++;
6473 		if (!btrfs_root_readonly(sctx->parent_root) ||
6474 				btrfs_root_dead(sctx->parent_root)) {
6475 			spin_unlock(&sctx->parent_root->root_item_lock);
6476 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6477 			ret = -EPERM;
6478 			goto out;
6479 		}
6480 		spin_unlock(&sctx->parent_root->root_item_lock);
6481 
6482 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6483 	}
6484 
6485 	/*
6486 	 * Clones from send_root are allowed, but only if the clone source
6487 	 * is behind the current send position. This is checked while searching
6488 	 * for possible clone sources.
6489 	 */
6490 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6491 
6492 	/* We do a bsearch later */
6493 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6494 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6495 			NULL);
6496 	sort_clone_roots = 1;
6497 
6498 	ret = ensure_commit_roots_uptodate(sctx);
6499 	if (ret)
6500 		goto out;
6501 
6502 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6503 	ret = send_subvol(sctx);
6504 	current->journal_info = NULL;
6505 	if (ret < 0)
6506 		goto out;
6507 
6508 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6509 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6510 		if (ret < 0)
6511 			goto out;
6512 		ret = send_cmd(sctx);
6513 		if (ret < 0)
6514 			goto out;
6515 	}
6516 
6517 out:
6518 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6519 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6520 		struct rb_node *n;
6521 		struct pending_dir_move *pm;
6522 
6523 		n = rb_first(&sctx->pending_dir_moves);
6524 		pm = rb_entry(n, struct pending_dir_move, node);
6525 		while (!list_empty(&pm->list)) {
6526 			struct pending_dir_move *pm2;
6527 
6528 			pm2 = list_first_entry(&pm->list,
6529 					       struct pending_dir_move, list);
6530 			free_pending_move(sctx, pm2);
6531 		}
6532 		free_pending_move(sctx, pm);
6533 	}
6534 
6535 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6536 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6537 		struct rb_node *n;
6538 		struct waiting_dir_move *dm;
6539 
6540 		n = rb_first(&sctx->waiting_dir_moves);
6541 		dm = rb_entry(n, struct waiting_dir_move, node);
6542 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6543 		kfree(dm);
6544 	}
6545 
6546 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6547 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6548 		struct rb_node *n;
6549 		struct orphan_dir_info *odi;
6550 
6551 		n = rb_first(&sctx->orphan_dirs);
6552 		odi = rb_entry(n, struct orphan_dir_info, node);
6553 		free_orphan_dir_info(sctx, odi);
6554 	}
6555 
6556 	if (sort_clone_roots) {
6557 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6558 			btrfs_root_dec_send_in_progress(
6559 					sctx->clone_roots[i].root);
6560 	} else {
6561 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6562 			btrfs_root_dec_send_in_progress(
6563 					sctx->clone_roots[i].root);
6564 
6565 		btrfs_root_dec_send_in_progress(send_root);
6566 	}
6567 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6568 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6569 
6570 	kfree(arg);
6571 	kvfree(clone_sources_tmp);
6572 
6573 	if (sctx) {
6574 		if (sctx->send_filp)
6575 			fput(sctx->send_filp);
6576 
6577 		kvfree(sctx->clone_roots);
6578 		kvfree(sctx->send_buf);
6579 		kvfree(sctx->read_buf);
6580 
6581 		name_cache_free(sctx);
6582 
6583 		kfree(sctx);
6584 	}
6585 
6586 	return ret;
6587 }
6588