1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 38 static int g_verbose = 0; 39 40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 41 42 /* 43 * A fs_path is a helper to dynamically build path names with unknown size. 44 * It reallocates the internal buffer on demand. 45 * It allows fast adding of path elements on the right side (normal path) and 46 * fast adding to the left side (reversed path). A reversed path can also be 47 * unreversed if needed. 48 */ 49 struct fs_path { 50 union { 51 struct { 52 char *start; 53 char *end; 54 55 char *buf; 56 unsigned short buf_len:15; 57 unsigned short reversed:1; 58 char inline_buf[]; 59 }; 60 /* 61 * Average path length does not exceed 200 bytes, we'll have 62 * better packing in the slab and higher chance to satisfy 63 * a allocation later during send. 64 */ 65 char pad[256]; 66 }; 67 }; 68 #define FS_PATH_INLINE_SIZE \ 69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 70 71 72 /* reused for each extent */ 73 struct clone_root { 74 struct btrfs_root *root; 75 u64 ino; 76 u64 offset; 77 78 u64 found_refs; 79 }; 80 81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 83 84 struct send_ctx { 85 struct file *send_filp; 86 loff_t send_off; 87 char *send_buf; 88 u32 send_size; 89 u32 send_max_size; 90 u64 total_send_size; 91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 93 94 struct btrfs_root *send_root; 95 struct btrfs_root *parent_root; 96 struct clone_root *clone_roots; 97 int clone_roots_cnt; 98 99 /* current state of the compare_tree call */ 100 struct btrfs_path *left_path; 101 struct btrfs_path *right_path; 102 struct btrfs_key *cmp_key; 103 104 /* 105 * infos of the currently processed inode. In case of deleted inodes, 106 * these are the values from the deleted inode. 107 */ 108 u64 cur_ino; 109 u64 cur_inode_gen; 110 int cur_inode_new; 111 int cur_inode_new_gen; 112 int cur_inode_deleted; 113 u64 cur_inode_size; 114 u64 cur_inode_mode; 115 u64 cur_inode_rdev; 116 u64 cur_inode_last_extent; 117 118 u64 send_progress; 119 120 struct list_head new_refs; 121 struct list_head deleted_refs; 122 123 struct radix_tree_root name_cache; 124 struct list_head name_cache_list; 125 int name_cache_size; 126 127 struct file_ra_state ra; 128 129 char *read_buf; 130 131 /* 132 * We process inodes by their increasing order, so if before an 133 * incremental send we reverse the parent/child relationship of 134 * directories such that a directory with a lower inode number was 135 * the parent of a directory with a higher inode number, and the one 136 * becoming the new parent got renamed too, we can't rename/move the 137 * directory with lower inode number when we finish processing it - we 138 * must process the directory with higher inode number first, then 139 * rename/move it and then rename/move the directory with lower inode 140 * number. Example follows. 141 * 142 * Tree state when the first send was performed: 143 * 144 * . 145 * |-- a (ino 257) 146 * |-- b (ino 258) 147 * | 148 * | 149 * |-- c (ino 259) 150 * | |-- d (ino 260) 151 * | 152 * |-- c2 (ino 261) 153 * 154 * Tree state when the second (incremental) send is performed: 155 * 156 * . 157 * |-- a (ino 257) 158 * |-- b (ino 258) 159 * |-- c2 (ino 261) 160 * |-- d2 (ino 260) 161 * |-- cc (ino 259) 162 * 163 * The sequence of steps that lead to the second state was: 164 * 165 * mv /a/b/c/d /a/b/c2/d2 166 * mv /a/b/c /a/b/c2/d2/cc 167 * 168 * "c" has lower inode number, but we can't move it (2nd mv operation) 169 * before we move "d", which has higher inode number. 170 * 171 * So we just memorize which move/rename operations must be performed 172 * later when their respective parent is processed and moved/renamed. 173 */ 174 175 /* Indexed by parent directory inode number. */ 176 struct rb_root pending_dir_moves; 177 178 /* 179 * Reverse index, indexed by the inode number of a directory that 180 * is waiting for the move/rename of its immediate parent before its 181 * own move/rename can be performed. 182 */ 183 struct rb_root waiting_dir_moves; 184 185 /* 186 * A directory that is going to be rm'ed might have a child directory 187 * which is in the pending directory moves index above. In this case, 188 * the directory can only be removed after the move/rename of its child 189 * is performed. Example: 190 * 191 * Parent snapshot: 192 * 193 * . (ino 256) 194 * |-- a/ (ino 257) 195 * |-- b/ (ino 258) 196 * |-- c/ (ino 259) 197 * | |-- x/ (ino 260) 198 * | 199 * |-- y/ (ino 261) 200 * 201 * Send snapshot: 202 * 203 * . (ino 256) 204 * |-- a/ (ino 257) 205 * |-- b/ (ino 258) 206 * |-- YY/ (ino 261) 207 * |-- x/ (ino 260) 208 * 209 * Sequence of steps that lead to the send snapshot: 210 * rm -f /a/b/c/foo.txt 211 * mv /a/b/y /a/b/YY 212 * mv /a/b/c/x /a/b/YY 213 * rmdir /a/b/c 214 * 215 * When the child is processed, its move/rename is delayed until its 216 * parent is processed (as explained above), but all other operations 217 * like update utimes, chown, chgrp, etc, are performed and the paths 218 * that it uses for those operations must use the orphanized name of 219 * its parent (the directory we're going to rm later), so we need to 220 * memorize that name. 221 * 222 * Indexed by the inode number of the directory to be deleted. 223 */ 224 struct rb_root orphan_dirs; 225 }; 226 227 struct pending_dir_move { 228 struct rb_node node; 229 struct list_head list; 230 u64 parent_ino; 231 u64 ino; 232 u64 gen; 233 bool is_orphan; 234 struct list_head update_refs; 235 }; 236 237 struct waiting_dir_move { 238 struct rb_node node; 239 u64 ino; 240 /* 241 * There might be some directory that could not be removed because it 242 * was waiting for this directory inode to be moved first. Therefore 243 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 244 */ 245 u64 rmdir_ino; 246 }; 247 248 struct orphan_dir_info { 249 struct rb_node node; 250 u64 ino; 251 u64 gen; 252 }; 253 254 struct name_cache_entry { 255 struct list_head list; 256 /* 257 * radix_tree has only 32bit entries but we need to handle 64bit inums. 258 * We use the lower 32bit of the 64bit inum to store it in the tree. If 259 * more then one inum would fall into the same entry, we use radix_list 260 * to store the additional entries. radix_list is also used to store 261 * entries where two entries have the same inum but different 262 * generations. 263 */ 264 struct list_head radix_list; 265 u64 ino; 266 u64 gen; 267 u64 parent_ino; 268 u64 parent_gen; 269 int ret; 270 int need_later_update; 271 int name_len; 272 char name[]; 273 }; 274 275 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 276 277 static struct waiting_dir_move * 278 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 279 280 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 281 282 static int need_send_hole(struct send_ctx *sctx) 283 { 284 return (sctx->parent_root && !sctx->cur_inode_new && 285 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 286 S_ISREG(sctx->cur_inode_mode)); 287 } 288 289 static void fs_path_reset(struct fs_path *p) 290 { 291 if (p->reversed) { 292 p->start = p->buf + p->buf_len - 1; 293 p->end = p->start; 294 *p->start = 0; 295 } else { 296 p->start = p->buf; 297 p->end = p->start; 298 *p->start = 0; 299 } 300 } 301 302 static struct fs_path *fs_path_alloc(void) 303 { 304 struct fs_path *p; 305 306 p = kmalloc(sizeof(*p), GFP_NOFS); 307 if (!p) 308 return NULL; 309 p->reversed = 0; 310 p->buf = p->inline_buf; 311 p->buf_len = FS_PATH_INLINE_SIZE; 312 fs_path_reset(p); 313 return p; 314 } 315 316 static struct fs_path *fs_path_alloc_reversed(void) 317 { 318 struct fs_path *p; 319 320 p = fs_path_alloc(); 321 if (!p) 322 return NULL; 323 p->reversed = 1; 324 fs_path_reset(p); 325 return p; 326 } 327 328 static void fs_path_free(struct fs_path *p) 329 { 330 if (!p) 331 return; 332 if (p->buf != p->inline_buf) 333 kfree(p->buf); 334 kfree(p); 335 } 336 337 static int fs_path_len(struct fs_path *p) 338 { 339 return p->end - p->start; 340 } 341 342 static int fs_path_ensure_buf(struct fs_path *p, int len) 343 { 344 char *tmp_buf; 345 int path_len; 346 int old_buf_len; 347 348 len++; 349 350 if (p->buf_len >= len) 351 return 0; 352 353 if (len > PATH_MAX) { 354 WARN_ON(1); 355 return -ENOMEM; 356 } 357 358 path_len = p->end - p->start; 359 old_buf_len = p->buf_len; 360 361 /* 362 * First time the inline_buf does not suffice 363 */ 364 if (p->buf == p->inline_buf) { 365 tmp_buf = kmalloc(len, GFP_NOFS); 366 if (tmp_buf) 367 memcpy(tmp_buf, p->buf, old_buf_len); 368 } else { 369 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 370 } 371 if (!tmp_buf) 372 return -ENOMEM; 373 p->buf = tmp_buf; 374 /* 375 * The real size of the buffer is bigger, this will let the fast path 376 * happen most of the time 377 */ 378 p->buf_len = ksize(p->buf); 379 380 if (p->reversed) { 381 tmp_buf = p->buf + old_buf_len - path_len - 1; 382 p->end = p->buf + p->buf_len - 1; 383 p->start = p->end - path_len; 384 memmove(p->start, tmp_buf, path_len + 1); 385 } else { 386 p->start = p->buf; 387 p->end = p->start + path_len; 388 } 389 return 0; 390 } 391 392 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 393 char **prepared) 394 { 395 int ret; 396 int new_len; 397 398 new_len = p->end - p->start + name_len; 399 if (p->start != p->end) 400 new_len++; 401 ret = fs_path_ensure_buf(p, new_len); 402 if (ret < 0) 403 goto out; 404 405 if (p->reversed) { 406 if (p->start != p->end) 407 *--p->start = '/'; 408 p->start -= name_len; 409 *prepared = p->start; 410 } else { 411 if (p->start != p->end) 412 *p->end++ = '/'; 413 *prepared = p->end; 414 p->end += name_len; 415 *p->end = 0; 416 } 417 418 out: 419 return ret; 420 } 421 422 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 423 { 424 int ret; 425 char *prepared; 426 427 ret = fs_path_prepare_for_add(p, name_len, &prepared); 428 if (ret < 0) 429 goto out; 430 memcpy(prepared, name, name_len); 431 432 out: 433 return ret; 434 } 435 436 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 437 { 438 int ret; 439 char *prepared; 440 441 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 442 if (ret < 0) 443 goto out; 444 memcpy(prepared, p2->start, p2->end - p2->start); 445 446 out: 447 return ret; 448 } 449 450 static int fs_path_add_from_extent_buffer(struct fs_path *p, 451 struct extent_buffer *eb, 452 unsigned long off, int len) 453 { 454 int ret; 455 char *prepared; 456 457 ret = fs_path_prepare_for_add(p, len, &prepared); 458 if (ret < 0) 459 goto out; 460 461 read_extent_buffer(eb, prepared, off, len); 462 463 out: 464 return ret; 465 } 466 467 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 468 { 469 int ret; 470 471 p->reversed = from->reversed; 472 fs_path_reset(p); 473 474 ret = fs_path_add_path(p, from); 475 476 return ret; 477 } 478 479 480 static void fs_path_unreverse(struct fs_path *p) 481 { 482 char *tmp; 483 int len; 484 485 if (!p->reversed) 486 return; 487 488 tmp = p->start; 489 len = p->end - p->start; 490 p->start = p->buf; 491 p->end = p->start + len; 492 memmove(p->start, tmp, len + 1); 493 p->reversed = 0; 494 } 495 496 static struct btrfs_path *alloc_path_for_send(void) 497 { 498 struct btrfs_path *path; 499 500 path = btrfs_alloc_path(); 501 if (!path) 502 return NULL; 503 path->search_commit_root = 1; 504 path->skip_locking = 1; 505 path->need_commit_sem = 1; 506 return path; 507 } 508 509 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 510 { 511 int ret; 512 mm_segment_t old_fs; 513 u32 pos = 0; 514 515 old_fs = get_fs(); 516 set_fs(KERNEL_DS); 517 518 while (pos < len) { 519 ret = vfs_write(filp, (__force const char __user *)buf + pos, 520 len - pos, off); 521 /* TODO handle that correctly */ 522 /*if (ret == -ERESTARTSYS) { 523 continue; 524 }*/ 525 if (ret < 0) 526 goto out; 527 if (ret == 0) { 528 ret = -EIO; 529 goto out; 530 } 531 pos += ret; 532 } 533 534 ret = 0; 535 536 out: 537 set_fs(old_fs); 538 return ret; 539 } 540 541 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 542 { 543 struct btrfs_tlv_header *hdr; 544 int total_len = sizeof(*hdr) + len; 545 int left = sctx->send_max_size - sctx->send_size; 546 547 if (unlikely(left < total_len)) 548 return -EOVERFLOW; 549 550 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 551 hdr->tlv_type = cpu_to_le16(attr); 552 hdr->tlv_len = cpu_to_le16(len); 553 memcpy(hdr + 1, data, len); 554 sctx->send_size += total_len; 555 556 return 0; 557 } 558 559 #define TLV_PUT_DEFINE_INT(bits) \ 560 static int tlv_put_u##bits(struct send_ctx *sctx, \ 561 u##bits attr, u##bits value) \ 562 { \ 563 __le##bits __tmp = cpu_to_le##bits(value); \ 564 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 565 } 566 567 TLV_PUT_DEFINE_INT(64) 568 569 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 570 const char *str, int len) 571 { 572 if (len == -1) 573 len = strlen(str); 574 return tlv_put(sctx, attr, str, len); 575 } 576 577 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 578 const u8 *uuid) 579 { 580 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 581 } 582 583 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 584 struct extent_buffer *eb, 585 struct btrfs_timespec *ts) 586 { 587 struct btrfs_timespec bts; 588 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 589 return tlv_put(sctx, attr, &bts, sizeof(bts)); 590 } 591 592 593 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 594 do { \ 595 ret = tlv_put(sctx, attrtype, attrlen, data); \ 596 if (ret < 0) \ 597 goto tlv_put_failure; \ 598 } while (0) 599 600 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 601 do { \ 602 ret = tlv_put_u##bits(sctx, attrtype, value); \ 603 if (ret < 0) \ 604 goto tlv_put_failure; \ 605 } while (0) 606 607 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 608 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 609 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 610 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 611 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 612 do { \ 613 ret = tlv_put_string(sctx, attrtype, str, len); \ 614 if (ret < 0) \ 615 goto tlv_put_failure; \ 616 } while (0) 617 #define TLV_PUT_PATH(sctx, attrtype, p) \ 618 do { \ 619 ret = tlv_put_string(sctx, attrtype, p->start, \ 620 p->end - p->start); \ 621 if (ret < 0) \ 622 goto tlv_put_failure; \ 623 } while(0) 624 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 625 do { \ 626 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 627 if (ret < 0) \ 628 goto tlv_put_failure; \ 629 } while (0) 630 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 631 do { \ 632 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 static int send_header(struct send_ctx *sctx) 638 { 639 struct btrfs_stream_header hdr; 640 641 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 642 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 643 644 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 645 &sctx->send_off); 646 } 647 648 /* 649 * For each command/item we want to send to userspace, we call this function. 650 */ 651 static int begin_cmd(struct send_ctx *sctx, int cmd) 652 { 653 struct btrfs_cmd_header *hdr; 654 655 if (WARN_ON(!sctx->send_buf)) 656 return -EINVAL; 657 658 BUG_ON(sctx->send_size); 659 660 sctx->send_size += sizeof(*hdr); 661 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 662 hdr->cmd = cpu_to_le16(cmd); 663 664 return 0; 665 } 666 667 static int send_cmd(struct send_ctx *sctx) 668 { 669 int ret; 670 struct btrfs_cmd_header *hdr; 671 u32 crc; 672 673 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 674 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 675 hdr->crc = 0; 676 677 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 678 hdr->crc = cpu_to_le32(crc); 679 680 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 681 &sctx->send_off); 682 683 sctx->total_send_size += sctx->send_size; 684 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 685 sctx->send_size = 0; 686 687 return ret; 688 } 689 690 /* 691 * Sends a move instruction to user space 692 */ 693 static int send_rename(struct send_ctx *sctx, 694 struct fs_path *from, struct fs_path *to) 695 { 696 int ret; 697 698 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 699 700 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 701 if (ret < 0) 702 goto out; 703 704 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 706 707 ret = send_cmd(sctx); 708 709 tlv_put_failure: 710 out: 711 return ret; 712 } 713 714 /* 715 * Sends a link instruction to user space 716 */ 717 static int send_link(struct send_ctx *sctx, 718 struct fs_path *path, struct fs_path *lnk) 719 { 720 int ret; 721 722 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 723 724 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 725 if (ret < 0) 726 goto out; 727 728 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 730 731 ret = send_cmd(sctx); 732 733 tlv_put_failure: 734 out: 735 return ret; 736 } 737 738 /* 739 * Sends an unlink instruction to user space 740 */ 741 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 742 { 743 int ret; 744 745 verbose_printk("btrfs: send_unlink %s\n", path->start); 746 747 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 748 if (ret < 0) 749 goto out; 750 751 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 752 753 ret = send_cmd(sctx); 754 755 tlv_put_failure: 756 out: 757 return ret; 758 } 759 760 /* 761 * Sends a rmdir instruction to user space 762 */ 763 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 764 { 765 int ret; 766 767 verbose_printk("btrfs: send_rmdir %s\n", path->start); 768 769 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 770 if (ret < 0) 771 goto out; 772 773 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 774 775 ret = send_cmd(sctx); 776 777 tlv_put_failure: 778 out: 779 return ret; 780 } 781 782 /* 783 * Helper function to retrieve some fields from an inode item. 784 */ 785 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 786 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 787 u64 *gid, u64 *rdev) 788 { 789 int ret; 790 struct btrfs_inode_item *ii; 791 struct btrfs_key key; 792 793 key.objectid = ino; 794 key.type = BTRFS_INODE_ITEM_KEY; 795 key.offset = 0; 796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 797 if (ret) { 798 if (ret > 0) 799 ret = -ENOENT; 800 return ret; 801 } 802 803 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 804 struct btrfs_inode_item); 805 if (size) 806 *size = btrfs_inode_size(path->nodes[0], ii); 807 if (gen) 808 *gen = btrfs_inode_generation(path->nodes[0], ii); 809 if (mode) 810 *mode = btrfs_inode_mode(path->nodes[0], ii); 811 if (uid) 812 *uid = btrfs_inode_uid(path->nodes[0], ii); 813 if (gid) 814 *gid = btrfs_inode_gid(path->nodes[0], ii); 815 if (rdev) 816 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 817 818 return ret; 819 } 820 821 static int get_inode_info(struct btrfs_root *root, 822 u64 ino, u64 *size, u64 *gen, 823 u64 *mode, u64 *uid, u64 *gid, 824 u64 *rdev) 825 { 826 struct btrfs_path *path; 827 int ret; 828 829 path = alloc_path_for_send(); 830 if (!path) 831 return -ENOMEM; 832 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 833 rdev); 834 btrfs_free_path(path); 835 return ret; 836 } 837 838 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 839 struct fs_path *p, 840 void *ctx); 841 842 /* 843 * Helper function to iterate the entries in ONE btrfs_inode_ref or 844 * btrfs_inode_extref. 845 * The iterate callback may return a non zero value to stop iteration. This can 846 * be a negative value for error codes or 1 to simply stop it. 847 * 848 * path must point to the INODE_REF or INODE_EXTREF when called. 849 */ 850 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 851 struct btrfs_key *found_key, int resolve, 852 iterate_inode_ref_t iterate, void *ctx) 853 { 854 struct extent_buffer *eb = path->nodes[0]; 855 struct btrfs_item *item; 856 struct btrfs_inode_ref *iref; 857 struct btrfs_inode_extref *extref; 858 struct btrfs_path *tmp_path; 859 struct fs_path *p; 860 u32 cur = 0; 861 u32 total; 862 int slot = path->slots[0]; 863 u32 name_len; 864 char *start; 865 int ret = 0; 866 int num = 0; 867 int index; 868 u64 dir; 869 unsigned long name_off; 870 unsigned long elem_size; 871 unsigned long ptr; 872 873 p = fs_path_alloc_reversed(); 874 if (!p) 875 return -ENOMEM; 876 877 tmp_path = alloc_path_for_send(); 878 if (!tmp_path) { 879 fs_path_free(p); 880 return -ENOMEM; 881 } 882 883 884 if (found_key->type == BTRFS_INODE_REF_KEY) { 885 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 886 struct btrfs_inode_ref); 887 item = btrfs_item_nr(slot); 888 total = btrfs_item_size(eb, item); 889 elem_size = sizeof(*iref); 890 } else { 891 ptr = btrfs_item_ptr_offset(eb, slot); 892 total = btrfs_item_size_nr(eb, slot); 893 elem_size = sizeof(*extref); 894 } 895 896 while (cur < total) { 897 fs_path_reset(p); 898 899 if (found_key->type == BTRFS_INODE_REF_KEY) { 900 iref = (struct btrfs_inode_ref *)(ptr + cur); 901 name_len = btrfs_inode_ref_name_len(eb, iref); 902 name_off = (unsigned long)(iref + 1); 903 index = btrfs_inode_ref_index(eb, iref); 904 dir = found_key->offset; 905 } else { 906 extref = (struct btrfs_inode_extref *)(ptr + cur); 907 name_len = btrfs_inode_extref_name_len(eb, extref); 908 name_off = (unsigned long)&extref->name; 909 index = btrfs_inode_extref_index(eb, extref); 910 dir = btrfs_inode_extref_parent(eb, extref); 911 } 912 913 if (resolve) { 914 start = btrfs_ref_to_path(root, tmp_path, name_len, 915 name_off, eb, dir, 916 p->buf, p->buf_len); 917 if (IS_ERR(start)) { 918 ret = PTR_ERR(start); 919 goto out; 920 } 921 if (start < p->buf) { 922 /* overflow , try again with larger buffer */ 923 ret = fs_path_ensure_buf(p, 924 p->buf_len + p->buf - start); 925 if (ret < 0) 926 goto out; 927 start = btrfs_ref_to_path(root, tmp_path, 928 name_len, name_off, 929 eb, dir, 930 p->buf, p->buf_len); 931 if (IS_ERR(start)) { 932 ret = PTR_ERR(start); 933 goto out; 934 } 935 BUG_ON(start < p->buf); 936 } 937 p->start = start; 938 } else { 939 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 940 name_len); 941 if (ret < 0) 942 goto out; 943 } 944 945 cur += elem_size + name_len; 946 ret = iterate(num, dir, index, p, ctx); 947 if (ret) 948 goto out; 949 num++; 950 } 951 952 out: 953 btrfs_free_path(tmp_path); 954 fs_path_free(p); 955 return ret; 956 } 957 958 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 959 const char *name, int name_len, 960 const char *data, int data_len, 961 u8 type, void *ctx); 962 963 /* 964 * Helper function to iterate the entries in ONE btrfs_dir_item. 965 * The iterate callback may return a non zero value to stop iteration. This can 966 * be a negative value for error codes or 1 to simply stop it. 967 * 968 * path must point to the dir item when called. 969 */ 970 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 971 struct btrfs_key *found_key, 972 iterate_dir_item_t iterate, void *ctx) 973 { 974 int ret = 0; 975 struct extent_buffer *eb; 976 struct btrfs_item *item; 977 struct btrfs_dir_item *di; 978 struct btrfs_key di_key; 979 char *buf = NULL; 980 int buf_len; 981 u32 name_len; 982 u32 data_len; 983 u32 cur; 984 u32 len; 985 u32 total; 986 int slot; 987 int num; 988 u8 type; 989 990 /* 991 * Start with a small buffer (1 page). If later we end up needing more 992 * space, which can happen for xattrs on a fs with a leaf size greater 993 * then the page size, attempt to increase the buffer. Typically xattr 994 * values are small. 995 */ 996 buf_len = PATH_MAX; 997 buf = kmalloc(buf_len, GFP_NOFS); 998 if (!buf) { 999 ret = -ENOMEM; 1000 goto out; 1001 } 1002 1003 eb = path->nodes[0]; 1004 slot = path->slots[0]; 1005 item = btrfs_item_nr(slot); 1006 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1007 cur = 0; 1008 len = 0; 1009 total = btrfs_item_size(eb, item); 1010 1011 num = 0; 1012 while (cur < total) { 1013 name_len = btrfs_dir_name_len(eb, di); 1014 data_len = btrfs_dir_data_len(eb, di); 1015 type = btrfs_dir_type(eb, di); 1016 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1017 1018 if (type == BTRFS_FT_XATTR) { 1019 if (name_len > XATTR_NAME_MAX) { 1020 ret = -ENAMETOOLONG; 1021 goto out; 1022 } 1023 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) { 1024 ret = -E2BIG; 1025 goto out; 1026 } 1027 } else { 1028 /* 1029 * Path too long 1030 */ 1031 if (name_len + data_len > PATH_MAX) { 1032 ret = -ENAMETOOLONG; 1033 goto out; 1034 } 1035 } 1036 1037 if (name_len + data_len > buf_len) { 1038 buf_len = name_len + data_len; 1039 if (is_vmalloc_addr(buf)) { 1040 vfree(buf); 1041 buf = NULL; 1042 } else { 1043 char *tmp = krealloc(buf, buf_len, 1044 GFP_NOFS | __GFP_NOWARN); 1045 1046 if (!tmp) 1047 kfree(buf); 1048 buf = tmp; 1049 } 1050 if (!buf) { 1051 buf = vmalloc(buf_len); 1052 if (!buf) { 1053 ret = -ENOMEM; 1054 goto out; 1055 } 1056 } 1057 } 1058 1059 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1060 name_len + data_len); 1061 1062 len = sizeof(*di) + name_len + data_len; 1063 di = (struct btrfs_dir_item *)((char *)di + len); 1064 cur += len; 1065 1066 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1067 data_len, type, ctx); 1068 if (ret < 0) 1069 goto out; 1070 if (ret) { 1071 ret = 0; 1072 goto out; 1073 } 1074 1075 num++; 1076 } 1077 1078 out: 1079 kvfree(buf); 1080 return ret; 1081 } 1082 1083 static int __copy_first_ref(int num, u64 dir, int index, 1084 struct fs_path *p, void *ctx) 1085 { 1086 int ret; 1087 struct fs_path *pt = ctx; 1088 1089 ret = fs_path_copy(pt, p); 1090 if (ret < 0) 1091 return ret; 1092 1093 /* we want the first only */ 1094 return 1; 1095 } 1096 1097 /* 1098 * Retrieve the first path of an inode. If an inode has more then one 1099 * ref/hardlink, this is ignored. 1100 */ 1101 static int get_inode_path(struct btrfs_root *root, 1102 u64 ino, struct fs_path *path) 1103 { 1104 int ret; 1105 struct btrfs_key key, found_key; 1106 struct btrfs_path *p; 1107 1108 p = alloc_path_for_send(); 1109 if (!p) 1110 return -ENOMEM; 1111 1112 fs_path_reset(path); 1113 1114 key.objectid = ino; 1115 key.type = BTRFS_INODE_REF_KEY; 1116 key.offset = 0; 1117 1118 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1119 if (ret < 0) 1120 goto out; 1121 if (ret) { 1122 ret = 1; 1123 goto out; 1124 } 1125 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1126 if (found_key.objectid != ino || 1127 (found_key.type != BTRFS_INODE_REF_KEY && 1128 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1129 ret = -ENOENT; 1130 goto out; 1131 } 1132 1133 ret = iterate_inode_ref(root, p, &found_key, 1, 1134 __copy_first_ref, path); 1135 if (ret < 0) 1136 goto out; 1137 ret = 0; 1138 1139 out: 1140 btrfs_free_path(p); 1141 return ret; 1142 } 1143 1144 struct backref_ctx { 1145 struct send_ctx *sctx; 1146 1147 struct btrfs_path *path; 1148 /* number of total found references */ 1149 u64 found; 1150 1151 /* 1152 * used for clones found in send_root. clones found behind cur_objectid 1153 * and cur_offset are not considered as allowed clones. 1154 */ 1155 u64 cur_objectid; 1156 u64 cur_offset; 1157 1158 /* may be truncated in case it's the last extent in a file */ 1159 u64 extent_len; 1160 1161 /* Just to check for bugs in backref resolving */ 1162 int found_itself; 1163 }; 1164 1165 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1166 { 1167 u64 root = (u64)(uintptr_t)key; 1168 struct clone_root *cr = (struct clone_root *)elt; 1169 1170 if (root < cr->root->objectid) 1171 return -1; 1172 if (root > cr->root->objectid) 1173 return 1; 1174 return 0; 1175 } 1176 1177 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1178 { 1179 struct clone_root *cr1 = (struct clone_root *)e1; 1180 struct clone_root *cr2 = (struct clone_root *)e2; 1181 1182 if (cr1->root->objectid < cr2->root->objectid) 1183 return -1; 1184 if (cr1->root->objectid > cr2->root->objectid) 1185 return 1; 1186 return 0; 1187 } 1188 1189 /* 1190 * Called for every backref that is found for the current extent. 1191 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1192 */ 1193 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1194 { 1195 struct backref_ctx *bctx = ctx_; 1196 struct clone_root *found; 1197 int ret; 1198 u64 i_size; 1199 1200 /* First check if the root is in the list of accepted clone sources */ 1201 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1202 bctx->sctx->clone_roots_cnt, 1203 sizeof(struct clone_root), 1204 __clone_root_cmp_bsearch); 1205 if (!found) 1206 return 0; 1207 1208 if (found->root == bctx->sctx->send_root && 1209 ino == bctx->cur_objectid && 1210 offset == bctx->cur_offset) { 1211 bctx->found_itself = 1; 1212 } 1213 1214 /* 1215 * There are inodes that have extents that lie behind its i_size. Don't 1216 * accept clones from these extents. 1217 */ 1218 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1219 NULL, NULL, NULL); 1220 btrfs_release_path(bctx->path); 1221 if (ret < 0) 1222 return ret; 1223 1224 if (offset + bctx->extent_len > i_size) 1225 return 0; 1226 1227 /* 1228 * Make sure we don't consider clones from send_root that are 1229 * behind the current inode/offset. 1230 */ 1231 if (found->root == bctx->sctx->send_root) { 1232 /* 1233 * TODO for the moment we don't accept clones from the inode 1234 * that is currently send. We may change this when 1235 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1236 * file. 1237 */ 1238 if (ino >= bctx->cur_objectid) 1239 return 0; 1240 #if 0 1241 if (ino > bctx->cur_objectid) 1242 return 0; 1243 if (offset + bctx->extent_len > bctx->cur_offset) 1244 return 0; 1245 #endif 1246 } 1247 1248 bctx->found++; 1249 found->found_refs++; 1250 if (ino < found->ino) { 1251 found->ino = ino; 1252 found->offset = offset; 1253 } else if (found->ino == ino) { 1254 /* 1255 * same extent found more then once in the same file. 1256 */ 1257 if (found->offset > offset + bctx->extent_len) 1258 found->offset = offset; 1259 } 1260 1261 return 0; 1262 } 1263 1264 /* 1265 * Given an inode, offset and extent item, it finds a good clone for a clone 1266 * instruction. Returns -ENOENT when none could be found. The function makes 1267 * sure that the returned clone is usable at the point where sending is at the 1268 * moment. This means, that no clones are accepted which lie behind the current 1269 * inode+offset. 1270 * 1271 * path must point to the extent item when called. 1272 */ 1273 static int find_extent_clone(struct send_ctx *sctx, 1274 struct btrfs_path *path, 1275 u64 ino, u64 data_offset, 1276 u64 ino_size, 1277 struct clone_root **found) 1278 { 1279 int ret; 1280 int extent_type; 1281 u64 logical; 1282 u64 disk_byte; 1283 u64 num_bytes; 1284 u64 extent_item_pos; 1285 u64 flags = 0; 1286 struct btrfs_file_extent_item *fi; 1287 struct extent_buffer *eb = path->nodes[0]; 1288 struct backref_ctx *backref_ctx = NULL; 1289 struct clone_root *cur_clone_root; 1290 struct btrfs_key found_key; 1291 struct btrfs_path *tmp_path; 1292 int compressed; 1293 u32 i; 1294 1295 tmp_path = alloc_path_for_send(); 1296 if (!tmp_path) 1297 return -ENOMEM; 1298 1299 /* We only use this path under the commit sem */ 1300 tmp_path->need_commit_sem = 0; 1301 1302 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1303 if (!backref_ctx) { 1304 ret = -ENOMEM; 1305 goto out; 1306 } 1307 1308 backref_ctx->path = tmp_path; 1309 1310 if (data_offset >= ino_size) { 1311 /* 1312 * There may be extents that lie behind the file's size. 1313 * I at least had this in combination with snapshotting while 1314 * writing large files. 1315 */ 1316 ret = 0; 1317 goto out; 1318 } 1319 1320 fi = btrfs_item_ptr(eb, path->slots[0], 1321 struct btrfs_file_extent_item); 1322 extent_type = btrfs_file_extent_type(eb, fi); 1323 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1324 ret = -ENOENT; 1325 goto out; 1326 } 1327 compressed = btrfs_file_extent_compression(eb, fi); 1328 1329 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1330 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1331 if (disk_byte == 0) { 1332 ret = -ENOENT; 1333 goto out; 1334 } 1335 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1336 1337 down_read(&sctx->send_root->fs_info->commit_root_sem); 1338 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1339 &found_key, &flags); 1340 up_read(&sctx->send_root->fs_info->commit_root_sem); 1341 btrfs_release_path(tmp_path); 1342 1343 if (ret < 0) 1344 goto out; 1345 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1346 ret = -EIO; 1347 goto out; 1348 } 1349 1350 /* 1351 * Setup the clone roots. 1352 */ 1353 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1354 cur_clone_root = sctx->clone_roots + i; 1355 cur_clone_root->ino = (u64)-1; 1356 cur_clone_root->offset = 0; 1357 cur_clone_root->found_refs = 0; 1358 } 1359 1360 backref_ctx->sctx = sctx; 1361 backref_ctx->found = 0; 1362 backref_ctx->cur_objectid = ino; 1363 backref_ctx->cur_offset = data_offset; 1364 backref_ctx->found_itself = 0; 1365 backref_ctx->extent_len = num_bytes; 1366 1367 /* 1368 * The last extent of a file may be too large due to page alignment. 1369 * We need to adjust extent_len in this case so that the checks in 1370 * __iterate_backrefs work. 1371 */ 1372 if (data_offset + num_bytes >= ino_size) 1373 backref_ctx->extent_len = ino_size - data_offset; 1374 1375 /* 1376 * Now collect all backrefs. 1377 */ 1378 if (compressed == BTRFS_COMPRESS_NONE) 1379 extent_item_pos = logical - found_key.objectid; 1380 else 1381 extent_item_pos = 0; 1382 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1383 found_key.objectid, extent_item_pos, 1, 1384 __iterate_backrefs, backref_ctx); 1385 1386 if (ret < 0) 1387 goto out; 1388 1389 if (!backref_ctx->found_itself) { 1390 /* found a bug in backref code? */ 1391 ret = -EIO; 1392 btrfs_err(sctx->send_root->fs_info, "did not find backref in " 1393 "send_root. inode=%llu, offset=%llu, " 1394 "disk_byte=%llu found extent=%llu", 1395 ino, data_offset, disk_byte, found_key.objectid); 1396 goto out; 1397 } 1398 1399 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1400 "ino=%llu, " 1401 "num_bytes=%llu, logical=%llu\n", 1402 data_offset, ino, num_bytes, logical); 1403 1404 if (!backref_ctx->found) 1405 verbose_printk("btrfs: no clones found\n"); 1406 1407 cur_clone_root = NULL; 1408 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1409 if (sctx->clone_roots[i].found_refs) { 1410 if (!cur_clone_root) 1411 cur_clone_root = sctx->clone_roots + i; 1412 else if (sctx->clone_roots[i].root == sctx->send_root) 1413 /* prefer clones from send_root over others */ 1414 cur_clone_root = sctx->clone_roots + i; 1415 } 1416 1417 } 1418 1419 if (cur_clone_root) { 1420 if (compressed != BTRFS_COMPRESS_NONE) { 1421 /* 1422 * Offsets given by iterate_extent_inodes() are relative 1423 * to the start of the extent, we need to add logical 1424 * offset from the file extent item. 1425 * (See why at backref.c:check_extent_in_eb()) 1426 */ 1427 cur_clone_root->offset += btrfs_file_extent_offset(eb, 1428 fi); 1429 } 1430 *found = cur_clone_root; 1431 ret = 0; 1432 } else { 1433 ret = -ENOENT; 1434 } 1435 1436 out: 1437 btrfs_free_path(tmp_path); 1438 kfree(backref_ctx); 1439 return ret; 1440 } 1441 1442 static int read_symlink(struct btrfs_root *root, 1443 u64 ino, 1444 struct fs_path *dest) 1445 { 1446 int ret; 1447 struct btrfs_path *path; 1448 struct btrfs_key key; 1449 struct btrfs_file_extent_item *ei; 1450 u8 type; 1451 u8 compression; 1452 unsigned long off; 1453 int len; 1454 1455 path = alloc_path_for_send(); 1456 if (!path) 1457 return -ENOMEM; 1458 1459 key.objectid = ino; 1460 key.type = BTRFS_EXTENT_DATA_KEY; 1461 key.offset = 0; 1462 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1463 if (ret < 0) 1464 goto out; 1465 BUG_ON(ret); 1466 1467 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1468 struct btrfs_file_extent_item); 1469 type = btrfs_file_extent_type(path->nodes[0], ei); 1470 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1471 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1472 BUG_ON(compression); 1473 1474 off = btrfs_file_extent_inline_start(ei); 1475 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1476 1477 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1478 1479 out: 1480 btrfs_free_path(path); 1481 return ret; 1482 } 1483 1484 /* 1485 * Helper function to generate a file name that is unique in the root of 1486 * send_root and parent_root. This is used to generate names for orphan inodes. 1487 */ 1488 static int gen_unique_name(struct send_ctx *sctx, 1489 u64 ino, u64 gen, 1490 struct fs_path *dest) 1491 { 1492 int ret = 0; 1493 struct btrfs_path *path; 1494 struct btrfs_dir_item *di; 1495 char tmp[64]; 1496 int len; 1497 u64 idx = 0; 1498 1499 path = alloc_path_for_send(); 1500 if (!path) 1501 return -ENOMEM; 1502 1503 while (1) { 1504 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1505 ino, gen, idx); 1506 ASSERT(len < sizeof(tmp)); 1507 1508 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1509 path, BTRFS_FIRST_FREE_OBJECTID, 1510 tmp, strlen(tmp), 0); 1511 btrfs_release_path(path); 1512 if (IS_ERR(di)) { 1513 ret = PTR_ERR(di); 1514 goto out; 1515 } 1516 if (di) { 1517 /* not unique, try again */ 1518 idx++; 1519 continue; 1520 } 1521 1522 if (!sctx->parent_root) { 1523 /* unique */ 1524 ret = 0; 1525 break; 1526 } 1527 1528 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1529 path, BTRFS_FIRST_FREE_OBJECTID, 1530 tmp, strlen(tmp), 0); 1531 btrfs_release_path(path); 1532 if (IS_ERR(di)) { 1533 ret = PTR_ERR(di); 1534 goto out; 1535 } 1536 if (di) { 1537 /* not unique, try again */ 1538 idx++; 1539 continue; 1540 } 1541 /* unique */ 1542 break; 1543 } 1544 1545 ret = fs_path_add(dest, tmp, strlen(tmp)); 1546 1547 out: 1548 btrfs_free_path(path); 1549 return ret; 1550 } 1551 1552 enum inode_state { 1553 inode_state_no_change, 1554 inode_state_will_create, 1555 inode_state_did_create, 1556 inode_state_will_delete, 1557 inode_state_did_delete, 1558 }; 1559 1560 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1561 { 1562 int ret; 1563 int left_ret; 1564 int right_ret; 1565 u64 left_gen; 1566 u64 right_gen; 1567 1568 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1569 NULL, NULL); 1570 if (ret < 0 && ret != -ENOENT) 1571 goto out; 1572 left_ret = ret; 1573 1574 if (!sctx->parent_root) { 1575 right_ret = -ENOENT; 1576 } else { 1577 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1578 NULL, NULL, NULL, NULL); 1579 if (ret < 0 && ret != -ENOENT) 1580 goto out; 1581 right_ret = ret; 1582 } 1583 1584 if (!left_ret && !right_ret) { 1585 if (left_gen == gen && right_gen == gen) { 1586 ret = inode_state_no_change; 1587 } else if (left_gen == gen) { 1588 if (ino < sctx->send_progress) 1589 ret = inode_state_did_create; 1590 else 1591 ret = inode_state_will_create; 1592 } else if (right_gen == gen) { 1593 if (ino < sctx->send_progress) 1594 ret = inode_state_did_delete; 1595 else 1596 ret = inode_state_will_delete; 1597 } else { 1598 ret = -ENOENT; 1599 } 1600 } else if (!left_ret) { 1601 if (left_gen == gen) { 1602 if (ino < sctx->send_progress) 1603 ret = inode_state_did_create; 1604 else 1605 ret = inode_state_will_create; 1606 } else { 1607 ret = -ENOENT; 1608 } 1609 } else if (!right_ret) { 1610 if (right_gen == gen) { 1611 if (ino < sctx->send_progress) 1612 ret = inode_state_did_delete; 1613 else 1614 ret = inode_state_will_delete; 1615 } else { 1616 ret = -ENOENT; 1617 } 1618 } else { 1619 ret = -ENOENT; 1620 } 1621 1622 out: 1623 return ret; 1624 } 1625 1626 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1627 { 1628 int ret; 1629 1630 ret = get_cur_inode_state(sctx, ino, gen); 1631 if (ret < 0) 1632 goto out; 1633 1634 if (ret == inode_state_no_change || 1635 ret == inode_state_did_create || 1636 ret == inode_state_will_delete) 1637 ret = 1; 1638 else 1639 ret = 0; 1640 1641 out: 1642 return ret; 1643 } 1644 1645 /* 1646 * Helper function to lookup a dir item in a dir. 1647 */ 1648 static int lookup_dir_item_inode(struct btrfs_root *root, 1649 u64 dir, const char *name, int name_len, 1650 u64 *found_inode, 1651 u8 *found_type) 1652 { 1653 int ret = 0; 1654 struct btrfs_dir_item *di; 1655 struct btrfs_key key; 1656 struct btrfs_path *path; 1657 1658 path = alloc_path_for_send(); 1659 if (!path) 1660 return -ENOMEM; 1661 1662 di = btrfs_lookup_dir_item(NULL, root, path, 1663 dir, name, name_len, 0); 1664 if (!di) { 1665 ret = -ENOENT; 1666 goto out; 1667 } 1668 if (IS_ERR(di)) { 1669 ret = PTR_ERR(di); 1670 goto out; 1671 } 1672 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1673 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1674 ret = -ENOENT; 1675 goto out; 1676 } 1677 *found_inode = key.objectid; 1678 *found_type = btrfs_dir_type(path->nodes[0], di); 1679 1680 out: 1681 btrfs_free_path(path); 1682 return ret; 1683 } 1684 1685 /* 1686 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1687 * generation of the parent dir and the name of the dir entry. 1688 */ 1689 static int get_first_ref(struct btrfs_root *root, u64 ino, 1690 u64 *dir, u64 *dir_gen, struct fs_path *name) 1691 { 1692 int ret; 1693 struct btrfs_key key; 1694 struct btrfs_key found_key; 1695 struct btrfs_path *path; 1696 int len; 1697 u64 parent_dir; 1698 1699 path = alloc_path_for_send(); 1700 if (!path) 1701 return -ENOMEM; 1702 1703 key.objectid = ino; 1704 key.type = BTRFS_INODE_REF_KEY; 1705 key.offset = 0; 1706 1707 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1708 if (ret < 0) 1709 goto out; 1710 if (!ret) 1711 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1712 path->slots[0]); 1713 if (ret || found_key.objectid != ino || 1714 (found_key.type != BTRFS_INODE_REF_KEY && 1715 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1716 ret = -ENOENT; 1717 goto out; 1718 } 1719 1720 if (found_key.type == BTRFS_INODE_REF_KEY) { 1721 struct btrfs_inode_ref *iref; 1722 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1723 struct btrfs_inode_ref); 1724 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1725 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1726 (unsigned long)(iref + 1), 1727 len); 1728 parent_dir = found_key.offset; 1729 } else { 1730 struct btrfs_inode_extref *extref; 1731 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1732 struct btrfs_inode_extref); 1733 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1734 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1735 (unsigned long)&extref->name, len); 1736 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1737 } 1738 if (ret < 0) 1739 goto out; 1740 btrfs_release_path(path); 1741 1742 if (dir_gen) { 1743 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1744 NULL, NULL, NULL); 1745 if (ret < 0) 1746 goto out; 1747 } 1748 1749 *dir = parent_dir; 1750 1751 out: 1752 btrfs_free_path(path); 1753 return ret; 1754 } 1755 1756 static int is_first_ref(struct btrfs_root *root, 1757 u64 ino, u64 dir, 1758 const char *name, int name_len) 1759 { 1760 int ret; 1761 struct fs_path *tmp_name; 1762 u64 tmp_dir; 1763 1764 tmp_name = fs_path_alloc(); 1765 if (!tmp_name) 1766 return -ENOMEM; 1767 1768 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1769 if (ret < 0) 1770 goto out; 1771 1772 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1773 ret = 0; 1774 goto out; 1775 } 1776 1777 ret = !memcmp(tmp_name->start, name, name_len); 1778 1779 out: 1780 fs_path_free(tmp_name); 1781 return ret; 1782 } 1783 1784 /* 1785 * Used by process_recorded_refs to determine if a new ref would overwrite an 1786 * already existing ref. In case it detects an overwrite, it returns the 1787 * inode/gen in who_ino/who_gen. 1788 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1789 * to make sure later references to the overwritten inode are possible. 1790 * Orphanizing is however only required for the first ref of an inode. 1791 * process_recorded_refs does an additional is_first_ref check to see if 1792 * orphanizing is really required. 1793 */ 1794 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1795 const char *name, int name_len, 1796 u64 *who_ino, u64 *who_gen) 1797 { 1798 int ret = 0; 1799 u64 gen; 1800 u64 other_inode = 0; 1801 u8 other_type = 0; 1802 1803 if (!sctx->parent_root) 1804 goto out; 1805 1806 ret = is_inode_existent(sctx, dir, dir_gen); 1807 if (ret <= 0) 1808 goto out; 1809 1810 /* 1811 * If we have a parent root we need to verify that the parent dir was 1812 * not delted and then re-created, if it was then we have no overwrite 1813 * and we can just unlink this entry. 1814 */ 1815 if (sctx->parent_root) { 1816 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1817 NULL, NULL, NULL); 1818 if (ret < 0 && ret != -ENOENT) 1819 goto out; 1820 if (ret) { 1821 ret = 0; 1822 goto out; 1823 } 1824 if (gen != dir_gen) 1825 goto out; 1826 } 1827 1828 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1829 &other_inode, &other_type); 1830 if (ret < 0 && ret != -ENOENT) 1831 goto out; 1832 if (ret) { 1833 ret = 0; 1834 goto out; 1835 } 1836 1837 /* 1838 * Check if the overwritten ref was already processed. If yes, the ref 1839 * was already unlinked/moved, so we can safely assume that we will not 1840 * overwrite anything at this point in time. 1841 */ 1842 if (other_inode > sctx->send_progress) { 1843 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1844 who_gen, NULL, NULL, NULL, NULL); 1845 if (ret < 0) 1846 goto out; 1847 1848 ret = 1; 1849 *who_ino = other_inode; 1850 } else { 1851 ret = 0; 1852 } 1853 1854 out: 1855 return ret; 1856 } 1857 1858 /* 1859 * Checks if the ref was overwritten by an already processed inode. This is 1860 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1861 * thus the orphan name needs be used. 1862 * process_recorded_refs also uses it to avoid unlinking of refs that were 1863 * overwritten. 1864 */ 1865 static int did_overwrite_ref(struct send_ctx *sctx, 1866 u64 dir, u64 dir_gen, 1867 u64 ino, u64 ino_gen, 1868 const char *name, int name_len) 1869 { 1870 int ret = 0; 1871 u64 gen; 1872 u64 ow_inode; 1873 u8 other_type; 1874 1875 if (!sctx->parent_root) 1876 goto out; 1877 1878 ret = is_inode_existent(sctx, dir, dir_gen); 1879 if (ret <= 0) 1880 goto out; 1881 1882 /* check if the ref was overwritten by another ref */ 1883 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1884 &ow_inode, &other_type); 1885 if (ret < 0 && ret != -ENOENT) 1886 goto out; 1887 if (ret) { 1888 /* was never and will never be overwritten */ 1889 ret = 0; 1890 goto out; 1891 } 1892 1893 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1894 NULL, NULL); 1895 if (ret < 0) 1896 goto out; 1897 1898 if (ow_inode == ino && gen == ino_gen) { 1899 ret = 0; 1900 goto out; 1901 } 1902 1903 /* we know that it is or will be overwritten. check this now */ 1904 if (ow_inode < sctx->send_progress) 1905 ret = 1; 1906 else 1907 ret = 0; 1908 1909 out: 1910 return ret; 1911 } 1912 1913 /* 1914 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1915 * that got overwritten. This is used by process_recorded_refs to determine 1916 * if it has to use the path as returned by get_cur_path or the orphan name. 1917 */ 1918 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1919 { 1920 int ret = 0; 1921 struct fs_path *name = NULL; 1922 u64 dir; 1923 u64 dir_gen; 1924 1925 if (!sctx->parent_root) 1926 goto out; 1927 1928 name = fs_path_alloc(); 1929 if (!name) 1930 return -ENOMEM; 1931 1932 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1933 if (ret < 0) 1934 goto out; 1935 1936 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1937 name->start, fs_path_len(name)); 1938 1939 out: 1940 fs_path_free(name); 1941 return ret; 1942 } 1943 1944 /* 1945 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1946 * so we need to do some special handling in case we have clashes. This function 1947 * takes care of this with the help of name_cache_entry::radix_list. 1948 * In case of error, nce is kfreed. 1949 */ 1950 static int name_cache_insert(struct send_ctx *sctx, 1951 struct name_cache_entry *nce) 1952 { 1953 int ret = 0; 1954 struct list_head *nce_head; 1955 1956 nce_head = radix_tree_lookup(&sctx->name_cache, 1957 (unsigned long)nce->ino); 1958 if (!nce_head) { 1959 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1960 if (!nce_head) { 1961 kfree(nce); 1962 return -ENOMEM; 1963 } 1964 INIT_LIST_HEAD(nce_head); 1965 1966 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1967 if (ret < 0) { 1968 kfree(nce_head); 1969 kfree(nce); 1970 return ret; 1971 } 1972 } 1973 list_add_tail(&nce->radix_list, nce_head); 1974 list_add_tail(&nce->list, &sctx->name_cache_list); 1975 sctx->name_cache_size++; 1976 1977 return ret; 1978 } 1979 1980 static void name_cache_delete(struct send_ctx *sctx, 1981 struct name_cache_entry *nce) 1982 { 1983 struct list_head *nce_head; 1984 1985 nce_head = radix_tree_lookup(&sctx->name_cache, 1986 (unsigned long)nce->ino); 1987 if (!nce_head) { 1988 btrfs_err(sctx->send_root->fs_info, 1989 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 1990 nce->ino, sctx->name_cache_size); 1991 } 1992 1993 list_del(&nce->radix_list); 1994 list_del(&nce->list); 1995 sctx->name_cache_size--; 1996 1997 /* 1998 * We may not get to the final release of nce_head if the lookup fails 1999 */ 2000 if (nce_head && list_empty(nce_head)) { 2001 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2002 kfree(nce_head); 2003 } 2004 } 2005 2006 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2007 u64 ino, u64 gen) 2008 { 2009 struct list_head *nce_head; 2010 struct name_cache_entry *cur; 2011 2012 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2013 if (!nce_head) 2014 return NULL; 2015 2016 list_for_each_entry(cur, nce_head, radix_list) { 2017 if (cur->ino == ino && cur->gen == gen) 2018 return cur; 2019 } 2020 return NULL; 2021 } 2022 2023 /* 2024 * Removes the entry from the list and adds it back to the end. This marks the 2025 * entry as recently used so that name_cache_clean_unused does not remove it. 2026 */ 2027 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2028 { 2029 list_del(&nce->list); 2030 list_add_tail(&nce->list, &sctx->name_cache_list); 2031 } 2032 2033 /* 2034 * Remove some entries from the beginning of name_cache_list. 2035 */ 2036 static void name_cache_clean_unused(struct send_ctx *sctx) 2037 { 2038 struct name_cache_entry *nce; 2039 2040 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2041 return; 2042 2043 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2044 nce = list_entry(sctx->name_cache_list.next, 2045 struct name_cache_entry, list); 2046 name_cache_delete(sctx, nce); 2047 kfree(nce); 2048 } 2049 } 2050 2051 static void name_cache_free(struct send_ctx *sctx) 2052 { 2053 struct name_cache_entry *nce; 2054 2055 while (!list_empty(&sctx->name_cache_list)) { 2056 nce = list_entry(sctx->name_cache_list.next, 2057 struct name_cache_entry, list); 2058 name_cache_delete(sctx, nce); 2059 kfree(nce); 2060 } 2061 } 2062 2063 /* 2064 * Used by get_cur_path for each ref up to the root. 2065 * Returns 0 if it succeeded. 2066 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2067 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2068 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2069 * Returns <0 in case of error. 2070 */ 2071 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2072 u64 ino, u64 gen, 2073 u64 *parent_ino, 2074 u64 *parent_gen, 2075 struct fs_path *dest) 2076 { 2077 int ret; 2078 int nce_ret; 2079 struct name_cache_entry *nce = NULL; 2080 2081 /* 2082 * First check if we already did a call to this function with the same 2083 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2084 * return the cached result. 2085 */ 2086 nce = name_cache_search(sctx, ino, gen); 2087 if (nce) { 2088 if (ino < sctx->send_progress && nce->need_later_update) { 2089 name_cache_delete(sctx, nce); 2090 kfree(nce); 2091 nce = NULL; 2092 } else { 2093 name_cache_used(sctx, nce); 2094 *parent_ino = nce->parent_ino; 2095 *parent_gen = nce->parent_gen; 2096 ret = fs_path_add(dest, nce->name, nce->name_len); 2097 if (ret < 0) 2098 goto out; 2099 ret = nce->ret; 2100 goto out; 2101 } 2102 } 2103 2104 /* 2105 * If the inode is not existent yet, add the orphan name and return 1. 2106 * This should only happen for the parent dir that we determine in 2107 * __record_new_ref 2108 */ 2109 ret = is_inode_existent(sctx, ino, gen); 2110 if (ret < 0) 2111 goto out; 2112 2113 if (!ret) { 2114 ret = gen_unique_name(sctx, ino, gen, dest); 2115 if (ret < 0) 2116 goto out; 2117 ret = 1; 2118 goto out_cache; 2119 } 2120 2121 /* 2122 * Depending on whether the inode was already processed or not, use 2123 * send_root or parent_root for ref lookup. 2124 */ 2125 if (ino < sctx->send_progress) 2126 ret = get_first_ref(sctx->send_root, ino, 2127 parent_ino, parent_gen, dest); 2128 else 2129 ret = get_first_ref(sctx->parent_root, ino, 2130 parent_ino, parent_gen, dest); 2131 if (ret < 0) 2132 goto out; 2133 2134 /* 2135 * Check if the ref was overwritten by an inode's ref that was processed 2136 * earlier. If yes, treat as orphan and return 1. 2137 */ 2138 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2139 dest->start, dest->end - dest->start); 2140 if (ret < 0) 2141 goto out; 2142 if (ret) { 2143 fs_path_reset(dest); 2144 ret = gen_unique_name(sctx, ino, gen, dest); 2145 if (ret < 0) 2146 goto out; 2147 ret = 1; 2148 } 2149 2150 out_cache: 2151 /* 2152 * Store the result of the lookup in the name cache. 2153 */ 2154 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2155 if (!nce) { 2156 ret = -ENOMEM; 2157 goto out; 2158 } 2159 2160 nce->ino = ino; 2161 nce->gen = gen; 2162 nce->parent_ino = *parent_ino; 2163 nce->parent_gen = *parent_gen; 2164 nce->name_len = fs_path_len(dest); 2165 nce->ret = ret; 2166 strcpy(nce->name, dest->start); 2167 2168 if (ino < sctx->send_progress) 2169 nce->need_later_update = 0; 2170 else 2171 nce->need_later_update = 1; 2172 2173 nce_ret = name_cache_insert(sctx, nce); 2174 if (nce_ret < 0) 2175 ret = nce_ret; 2176 name_cache_clean_unused(sctx); 2177 2178 out: 2179 return ret; 2180 } 2181 2182 /* 2183 * Magic happens here. This function returns the first ref to an inode as it 2184 * would look like while receiving the stream at this point in time. 2185 * We walk the path up to the root. For every inode in between, we check if it 2186 * was already processed/sent. If yes, we continue with the parent as found 2187 * in send_root. If not, we continue with the parent as found in parent_root. 2188 * If we encounter an inode that was deleted at this point in time, we use the 2189 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2190 * that were not created yet and overwritten inodes/refs. 2191 * 2192 * When do we have have orphan inodes: 2193 * 1. When an inode is freshly created and thus no valid refs are available yet 2194 * 2. When a directory lost all it's refs (deleted) but still has dir items 2195 * inside which were not processed yet (pending for move/delete). If anyone 2196 * tried to get the path to the dir items, it would get a path inside that 2197 * orphan directory. 2198 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2199 * of an unprocessed inode. If in that case the first ref would be 2200 * overwritten, the overwritten inode gets "orphanized". Later when we 2201 * process this overwritten inode, it is restored at a new place by moving 2202 * the orphan inode. 2203 * 2204 * sctx->send_progress tells this function at which point in time receiving 2205 * would be. 2206 */ 2207 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2208 struct fs_path *dest) 2209 { 2210 int ret = 0; 2211 struct fs_path *name = NULL; 2212 u64 parent_inode = 0; 2213 u64 parent_gen = 0; 2214 int stop = 0; 2215 2216 name = fs_path_alloc(); 2217 if (!name) { 2218 ret = -ENOMEM; 2219 goto out; 2220 } 2221 2222 dest->reversed = 1; 2223 fs_path_reset(dest); 2224 2225 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2226 fs_path_reset(name); 2227 2228 if (is_waiting_for_rm(sctx, ino)) { 2229 ret = gen_unique_name(sctx, ino, gen, name); 2230 if (ret < 0) 2231 goto out; 2232 ret = fs_path_add_path(dest, name); 2233 break; 2234 } 2235 2236 if (is_waiting_for_move(sctx, ino)) { 2237 ret = get_first_ref(sctx->parent_root, ino, 2238 &parent_inode, &parent_gen, name); 2239 } else { 2240 ret = __get_cur_name_and_parent(sctx, ino, gen, 2241 &parent_inode, 2242 &parent_gen, name); 2243 if (ret) 2244 stop = 1; 2245 } 2246 2247 if (ret < 0) 2248 goto out; 2249 2250 ret = fs_path_add_path(dest, name); 2251 if (ret < 0) 2252 goto out; 2253 2254 ino = parent_inode; 2255 gen = parent_gen; 2256 } 2257 2258 out: 2259 fs_path_free(name); 2260 if (!ret) 2261 fs_path_unreverse(dest); 2262 return ret; 2263 } 2264 2265 /* 2266 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2267 */ 2268 static int send_subvol_begin(struct send_ctx *sctx) 2269 { 2270 int ret; 2271 struct btrfs_root *send_root = sctx->send_root; 2272 struct btrfs_root *parent_root = sctx->parent_root; 2273 struct btrfs_path *path; 2274 struct btrfs_key key; 2275 struct btrfs_root_ref *ref; 2276 struct extent_buffer *leaf; 2277 char *name = NULL; 2278 int namelen; 2279 2280 path = btrfs_alloc_path(); 2281 if (!path) 2282 return -ENOMEM; 2283 2284 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2285 if (!name) { 2286 btrfs_free_path(path); 2287 return -ENOMEM; 2288 } 2289 2290 key.objectid = send_root->objectid; 2291 key.type = BTRFS_ROOT_BACKREF_KEY; 2292 key.offset = 0; 2293 2294 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2295 &key, path, 1, 0); 2296 if (ret < 0) 2297 goto out; 2298 if (ret) { 2299 ret = -ENOENT; 2300 goto out; 2301 } 2302 2303 leaf = path->nodes[0]; 2304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2305 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2306 key.objectid != send_root->objectid) { 2307 ret = -ENOENT; 2308 goto out; 2309 } 2310 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2311 namelen = btrfs_root_ref_name_len(leaf, ref); 2312 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2313 btrfs_release_path(path); 2314 2315 if (parent_root) { 2316 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2317 if (ret < 0) 2318 goto out; 2319 } else { 2320 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2321 if (ret < 0) 2322 goto out; 2323 } 2324 2325 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2326 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2327 sctx->send_root->root_item.uuid); 2328 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2329 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2330 if (parent_root) { 2331 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2332 sctx->parent_root->root_item.uuid); 2333 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2334 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2335 } 2336 2337 ret = send_cmd(sctx); 2338 2339 tlv_put_failure: 2340 out: 2341 btrfs_free_path(path); 2342 kfree(name); 2343 return ret; 2344 } 2345 2346 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2347 { 2348 int ret = 0; 2349 struct fs_path *p; 2350 2351 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2352 2353 p = fs_path_alloc(); 2354 if (!p) 2355 return -ENOMEM; 2356 2357 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2358 if (ret < 0) 2359 goto out; 2360 2361 ret = get_cur_path(sctx, ino, gen, p); 2362 if (ret < 0) 2363 goto out; 2364 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2365 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2366 2367 ret = send_cmd(sctx); 2368 2369 tlv_put_failure: 2370 out: 2371 fs_path_free(p); 2372 return ret; 2373 } 2374 2375 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2376 { 2377 int ret = 0; 2378 struct fs_path *p; 2379 2380 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2381 2382 p = fs_path_alloc(); 2383 if (!p) 2384 return -ENOMEM; 2385 2386 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2387 if (ret < 0) 2388 goto out; 2389 2390 ret = get_cur_path(sctx, ino, gen, p); 2391 if (ret < 0) 2392 goto out; 2393 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2394 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2395 2396 ret = send_cmd(sctx); 2397 2398 tlv_put_failure: 2399 out: 2400 fs_path_free(p); 2401 return ret; 2402 } 2403 2404 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2405 { 2406 int ret = 0; 2407 struct fs_path *p; 2408 2409 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2410 2411 p = fs_path_alloc(); 2412 if (!p) 2413 return -ENOMEM; 2414 2415 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2416 if (ret < 0) 2417 goto out; 2418 2419 ret = get_cur_path(sctx, ino, gen, p); 2420 if (ret < 0) 2421 goto out; 2422 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2423 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2424 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2425 2426 ret = send_cmd(sctx); 2427 2428 tlv_put_failure: 2429 out: 2430 fs_path_free(p); 2431 return ret; 2432 } 2433 2434 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2435 { 2436 int ret = 0; 2437 struct fs_path *p = NULL; 2438 struct btrfs_inode_item *ii; 2439 struct btrfs_path *path = NULL; 2440 struct extent_buffer *eb; 2441 struct btrfs_key key; 2442 int slot; 2443 2444 verbose_printk("btrfs: send_utimes %llu\n", ino); 2445 2446 p = fs_path_alloc(); 2447 if (!p) 2448 return -ENOMEM; 2449 2450 path = alloc_path_for_send(); 2451 if (!path) { 2452 ret = -ENOMEM; 2453 goto out; 2454 } 2455 2456 key.objectid = ino; 2457 key.type = BTRFS_INODE_ITEM_KEY; 2458 key.offset = 0; 2459 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2460 if (ret < 0) 2461 goto out; 2462 2463 eb = path->nodes[0]; 2464 slot = path->slots[0]; 2465 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2466 2467 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2468 if (ret < 0) 2469 goto out; 2470 2471 ret = get_cur_path(sctx, ino, gen, p); 2472 if (ret < 0) 2473 goto out; 2474 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2475 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2476 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2477 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2478 /* TODO Add otime support when the otime patches get into upstream */ 2479 2480 ret = send_cmd(sctx); 2481 2482 tlv_put_failure: 2483 out: 2484 fs_path_free(p); 2485 btrfs_free_path(path); 2486 return ret; 2487 } 2488 2489 /* 2490 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2491 * a valid path yet because we did not process the refs yet. So, the inode 2492 * is created as orphan. 2493 */ 2494 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2495 { 2496 int ret = 0; 2497 struct fs_path *p; 2498 int cmd; 2499 u64 gen; 2500 u64 mode; 2501 u64 rdev; 2502 2503 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2504 2505 p = fs_path_alloc(); 2506 if (!p) 2507 return -ENOMEM; 2508 2509 if (ino != sctx->cur_ino) { 2510 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2511 NULL, NULL, &rdev); 2512 if (ret < 0) 2513 goto out; 2514 } else { 2515 gen = sctx->cur_inode_gen; 2516 mode = sctx->cur_inode_mode; 2517 rdev = sctx->cur_inode_rdev; 2518 } 2519 2520 if (S_ISREG(mode)) { 2521 cmd = BTRFS_SEND_C_MKFILE; 2522 } else if (S_ISDIR(mode)) { 2523 cmd = BTRFS_SEND_C_MKDIR; 2524 } else if (S_ISLNK(mode)) { 2525 cmd = BTRFS_SEND_C_SYMLINK; 2526 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2527 cmd = BTRFS_SEND_C_MKNOD; 2528 } else if (S_ISFIFO(mode)) { 2529 cmd = BTRFS_SEND_C_MKFIFO; 2530 } else if (S_ISSOCK(mode)) { 2531 cmd = BTRFS_SEND_C_MKSOCK; 2532 } else { 2533 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2534 (int)(mode & S_IFMT)); 2535 ret = -ENOTSUPP; 2536 goto out; 2537 } 2538 2539 ret = begin_cmd(sctx, cmd); 2540 if (ret < 0) 2541 goto out; 2542 2543 ret = gen_unique_name(sctx, ino, gen, p); 2544 if (ret < 0) 2545 goto out; 2546 2547 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2548 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2549 2550 if (S_ISLNK(mode)) { 2551 fs_path_reset(p); 2552 ret = read_symlink(sctx->send_root, ino, p); 2553 if (ret < 0) 2554 goto out; 2555 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2556 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2557 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2558 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2559 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2560 } 2561 2562 ret = send_cmd(sctx); 2563 if (ret < 0) 2564 goto out; 2565 2566 2567 tlv_put_failure: 2568 out: 2569 fs_path_free(p); 2570 return ret; 2571 } 2572 2573 /* 2574 * We need some special handling for inodes that get processed before the parent 2575 * directory got created. See process_recorded_refs for details. 2576 * This function does the check if we already created the dir out of order. 2577 */ 2578 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2579 { 2580 int ret = 0; 2581 struct btrfs_path *path = NULL; 2582 struct btrfs_key key; 2583 struct btrfs_key found_key; 2584 struct btrfs_key di_key; 2585 struct extent_buffer *eb; 2586 struct btrfs_dir_item *di; 2587 int slot; 2588 2589 path = alloc_path_for_send(); 2590 if (!path) { 2591 ret = -ENOMEM; 2592 goto out; 2593 } 2594 2595 key.objectid = dir; 2596 key.type = BTRFS_DIR_INDEX_KEY; 2597 key.offset = 0; 2598 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2599 if (ret < 0) 2600 goto out; 2601 2602 while (1) { 2603 eb = path->nodes[0]; 2604 slot = path->slots[0]; 2605 if (slot >= btrfs_header_nritems(eb)) { 2606 ret = btrfs_next_leaf(sctx->send_root, path); 2607 if (ret < 0) { 2608 goto out; 2609 } else if (ret > 0) { 2610 ret = 0; 2611 break; 2612 } 2613 continue; 2614 } 2615 2616 btrfs_item_key_to_cpu(eb, &found_key, slot); 2617 if (found_key.objectid != key.objectid || 2618 found_key.type != key.type) { 2619 ret = 0; 2620 goto out; 2621 } 2622 2623 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2624 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2625 2626 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2627 di_key.objectid < sctx->send_progress) { 2628 ret = 1; 2629 goto out; 2630 } 2631 2632 path->slots[0]++; 2633 } 2634 2635 out: 2636 btrfs_free_path(path); 2637 return ret; 2638 } 2639 2640 /* 2641 * Only creates the inode if it is: 2642 * 1. Not a directory 2643 * 2. Or a directory which was not created already due to out of order 2644 * directories. See did_create_dir and process_recorded_refs for details. 2645 */ 2646 static int send_create_inode_if_needed(struct send_ctx *sctx) 2647 { 2648 int ret; 2649 2650 if (S_ISDIR(sctx->cur_inode_mode)) { 2651 ret = did_create_dir(sctx, sctx->cur_ino); 2652 if (ret < 0) 2653 goto out; 2654 if (ret) { 2655 ret = 0; 2656 goto out; 2657 } 2658 } 2659 2660 ret = send_create_inode(sctx, sctx->cur_ino); 2661 if (ret < 0) 2662 goto out; 2663 2664 out: 2665 return ret; 2666 } 2667 2668 struct recorded_ref { 2669 struct list_head list; 2670 char *dir_path; 2671 char *name; 2672 struct fs_path *full_path; 2673 u64 dir; 2674 u64 dir_gen; 2675 int dir_path_len; 2676 int name_len; 2677 }; 2678 2679 /* 2680 * We need to process new refs before deleted refs, but compare_tree gives us 2681 * everything mixed. So we first record all refs and later process them. 2682 * This function is a helper to record one ref. 2683 */ 2684 static int __record_ref(struct list_head *head, u64 dir, 2685 u64 dir_gen, struct fs_path *path) 2686 { 2687 struct recorded_ref *ref; 2688 2689 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2690 if (!ref) 2691 return -ENOMEM; 2692 2693 ref->dir = dir; 2694 ref->dir_gen = dir_gen; 2695 ref->full_path = path; 2696 2697 ref->name = (char *)kbasename(ref->full_path->start); 2698 ref->name_len = ref->full_path->end - ref->name; 2699 ref->dir_path = ref->full_path->start; 2700 if (ref->name == ref->full_path->start) 2701 ref->dir_path_len = 0; 2702 else 2703 ref->dir_path_len = ref->full_path->end - 2704 ref->full_path->start - 1 - ref->name_len; 2705 2706 list_add_tail(&ref->list, head); 2707 return 0; 2708 } 2709 2710 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2711 { 2712 struct recorded_ref *new; 2713 2714 new = kmalloc(sizeof(*ref), GFP_NOFS); 2715 if (!new) 2716 return -ENOMEM; 2717 2718 new->dir = ref->dir; 2719 new->dir_gen = ref->dir_gen; 2720 new->full_path = NULL; 2721 INIT_LIST_HEAD(&new->list); 2722 list_add_tail(&new->list, list); 2723 return 0; 2724 } 2725 2726 static void __free_recorded_refs(struct list_head *head) 2727 { 2728 struct recorded_ref *cur; 2729 2730 while (!list_empty(head)) { 2731 cur = list_entry(head->next, struct recorded_ref, list); 2732 fs_path_free(cur->full_path); 2733 list_del(&cur->list); 2734 kfree(cur); 2735 } 2736 } 2737 2738 static void free_recorded_refs(struct send_ctx *sctx) 2739 { 2740 __free_recorded_refs(&sctx->new_refs); 2741 __free_recorded_refs(&sctx->deleted_refs); 2742 } 2743 2744 /* 2745 * Renames/moves a file/dir to its orphan name. Used when the first 2746 * ref of an unprocessed inode gets overwritten and for all non empty 2747 * directories. 2748 */ 2749 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2750 struct fs_path *path) 2751 { 2752 int ret; 2753 struct fs_path *orphan; 2754 2755 orphan = fs_path_alloc(); 2756 if (!orphan) 2757 return -ENOMEM; 2758 2759 ret = gen_unique_name(sctx, ino, gen, orphan); 2760 if (ret < 0) 2761 goto out; 2762 2763 ret = send_rename(sctx, path, orphan); 2764 2765 out: 2766 fs_path_free(orphan); 2767 return ret; 2768 } 2769 2770 static struct orphan_dir_info * 2771 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2772 { 2773 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2774 struct rb_node *parent = NULL; 2775 struct orphan_dir_info *entry, *odi; 2776 2777 odi = kmalloc(sizeof(*odi), GFP_NOFS); 2778 if (!odi) 2779 return ERR_PTR(-ENOMEM); 2780 odi->ino = dir_ino; 2781 odi->gen = 0; 2782 2783 while (*p) { 2784 parent = *p; 2785 entry = rb_entry(parent, struct orphan_dir_info, node); 2786 if (dir_ino < entry->ino) { 2787 p = &(*p)->rb_left; 2788 } else if (dir_ino > entry->ino) { 2789 p = &(*p)->rb_right; 2790 } else { 2791 kfree(odi); 2792 return entry; 2793 } 2794 } 2795 2796 rb_link_node(&odi->node, parent, p); 2797 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2798 return odi; 2799 } 2800 2801 static struct orphan_dir_info * 2802 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2803 { 2804 struct rb_node *n = sctx->orphan_dirs.rb_node; 2805 struct orphan_dir_info *entry; 2806 2807 while (n) { 2808 entry = rb_entry(n, struct orphan_dir_info, node); 2809 if (dir_ino < entry->ino) 2810 n = n->rb_left; 2811 else if (dir_ino > entry->ino) 2812 n = n->rb_right; 2813 else 2814 return entry; 2815 } 2816 return NULL; 2817 } 2818 2819 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2820 { 2821 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2822 2823 return odi != NULL; 2824 } 2825 2826 static void free_orphan_dir_info(struct send_ctx *sctx, 2827 struct orphan_dir_info *odi) 2828 { 2829 if (!odi) 2830 return; 2831 rb_erase(&odi->node, &sctx->orphan_dirs); 2832 kfree(odi); 2833 } 2834 2835 /* 2836 * Returns 1 if a directory can be removed at this point in time. 2837 * We check this by iterating all dir items and checking if the inode behind 2838 * the dir item was already processed. 2839 */ 2840 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2841 u64 send_progress) 2842 { 2843 int ret = 0; 2844 struct btrfs_root *root = sctx->parent_root; 2845 struct btrfs_path *path; 2846 struct btrfs_key key; 2847 struct btrfs_key found_key; 2848 struct btrfs_key loc; 2849 struct btrfs_dir_item *di; 2850 2851 /* 2852 * Don't try to rmdir the top/root subvolume dir. 2853 */ 2854 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2855 return 0; 2856 2857 path = alloc_path_for_send(); 2858 if (!path) 2859 return -ENOMEM; 2860 2861 key.objectid = dir; 2862 key.type = BTRFS_DIR_INDEX_KEY; 2863 key.offset = 0; 2864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2865 if (ret < 0) 2866 goto out; 2867 2868 while (1) { 2869 struct waiting_dir_move *dm; 2870 2871 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2872 ret = btrfs_next_leaf(root, path); 2873 if (ret < 0) 2874 goto out; 2875 else if (ret > 0) 2876 break; 2877 continue; 2878 } 2879 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2880 path->slots[0]); 2881 if (found_key.objectid != key.objectid || 2882 found_key.type != key.type) 2883 break; 2884 2885 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2886 struct btrfs_dir_item); 2887 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2888 2889 dm = get_waiting_dir_move(sctx, loc.objectid); 2890 if (dm) { 2891 struct orphan_dir_info *odi; 2892 2893 odi = add_orphan_dir_info(sctx, dir); 2894 if (IS_ERR(odi)) { 2895 ret = PTR_ERR(odi); 2896 goto out; 2897 } 2898 odi->gen = dir_gen; 2899 dm->rmdir_ino = dir; 2900 ret = 0; 2901 goto out; 2902 } 2903 2904 if (loc.objectid > send_progress) { 2905 ret = 0; 2906 goto out; 2907 } 2908 2909 path->slots[0]++; 2910 } 2911 2912 ret = 1; 2913 2914 out: 2915 btrfs_free_path(path); 2916 return ret; 2917 } 2918 2919 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2920 { 2921 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 2922 2923 return entry != NULL; 2924 } 2925 2926 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2927 { 2928 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 2929 struct rb_node *parent = NULL; 2930 struct waiting_dir_move *entry, *dm; 2931 2932 dm = kmalloc(sizeof(*dm), GFP_NOFS); 2933 if (!dm) 2934 return -ENOMEM; 2935 dm->ino = ino; 2936 dm->rmdir_ino = 0; 2937 2938 while (*p) { 2939 parent = *p; 2940 entry = rb_entry(parent, struct waiting_dir_move, node); 2941 if (ino < entry->ino) { 2942 p = &(*p)->rb_left; 2943 } else if (ino > entry->ino) { 2944 p = &(*p)->rb_right; 2945 } else { 2946 kfree(dm); 2947 return -EEXIST; 2948 } 2949 } 2950 2951 rb_link_node(&dm->node, parent, p); 2952 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 2953 return 0; 2954 } 2955 2956 static struct waiting_dir_move * 2957 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 2958 { 2959 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 2960 struct waiting_dir_move *entry; 2961 2962 while (n) { 2963 entry = rb_entry(n, struct waiting_dir_move, node); 2964 if (ino < entry->ino) 2965 n = n->rb_left; 2966 else if (ino > entry->ino) 2967 n = n->rb_right; 2968 else 2969 return entry; 2970 } 2971 return NULL; 2972 } 2973 2974 static void free_waiting_dir_move(struct send_ctx *sctx, 2975 struct waiting_dir_move *dm) 2976 { 2977 if (!dm) 2978 return; 2979 rb_erase(&dm->node, &sctx->waiting_dir_moves); 2980 kfree(dm); 2981 } 2982 2983 static int add_pending_dir_move(struct send_ctx *sctx, 2984 u64 ino, 2985 u64 ino_gen, 2986 u64 parent_ino, 2987 struct list_head *new_refs, 2988 struct list_head *deleted_refs, 2989 const bool is_orphan) 2990 { 2991 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 2992 struct rb_node *parent = NULL; 2993 struct pending_dir_move *entry = NULL, *pm; 2994 struct recorded_ref *cur; 2995 int exists = 0; 2996 int ret; 2997 2998 pm = kmalloc(sizeof(*pm), GFP_NOFS); 2999 if (!pm) 3000 return -ENOMEM; 3001 pm->parent_ino = parent_ino; 3002 pm->ino = ino; 3003 pm->gen = ino_gen; 3004 pm->is_orphan = is_orphan; 3005 INIT_LIST_HEAD(&pm->list); 3006 INIT_LIST_HEAD(&pm->update_refs); 3007 RB_CLEAR_NODE(&pm->node); 3008 3009 while (*p) { 3010 parent = *p; 3011 entry = rb_entry(parent, struct pending_dir_move, node); 3012 if (parent_ino < entry->parent_ino) { 3013 p = &(*p)->rb_left; 3014 } else if (parent_ino > entry->parent_ino) { 3015 p = &(*p)->rb_right; 3016 } else { 3017 exists = 1; 3018 break; 3019 } 3020 } 3021 3022 list_for_each_entry(cur, deleted_refs, list) { 3023 ret = dup_ref(cur, &pm->update_refs); 3024 if (ret < 0) 3025 goto out; 3026 } 3027 list_for_each_entry(cur, new_refs, list) { 3028 ret = dup_ref(cur, &pm->update_refs); 3029 if (ret < 0) 3030 goto out; 3031 } 3032 3033 ret = add_waiting_dir_move(sctx, pm->ino); 3034 if (ret) 3035 goto out; 3036 3037 if (exists) { 3038 list_add_tail(&pm->list, &entry->list); 3039 } else { 3040 rb_link_node(&pm->node, parent, p); 3041 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3042 } 3043 ret = 0; 3044 out: 3045 if (ret) { 3046 __free_recorded_refs(&pm->update_refs); 3047 kfree(pm); 3048 } 3049 return ret; 3050 } 3051 3052 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3053 u64 parent_ino) 3054 { 3055 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3056 struct pending_dir_move *entry; 3057 3058 while (n) { 3059 entry = rb_entry(n, struct pending_dir_move, node); 3060 if (parent_ino < entry->parent_ino) 3061 n = n->rb_left; 3062 else if (parent_ino > entry->parent_ino) 3063 n = n->rb_right; 3064 else 3065 return entry; 3066 } 3067 return NULL; 3068 } 3069 3070 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3071 u64 ino, u64 gen, u64 *ancestor_ino) 3072 { 3073 int ret = 0; 3074 u64 parent_inode = 0; 3075 u64 parent_gen = 0; 3076 u64 start_ino = ino; 3077 3078 *ancestor_ino = 0; 3079 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3080 fs_path_reset(name); 3081 3082 if (is_waiting_for_rm(sctx, ino)) 3083 break; 3084 if (is_waiting_for_move(sctx, ino)) { 3085 if (*ancestor_ino == 0) 3086 *ancestor_ino = ino; 3087 ret = get_first_ref(sctx->parent_root, ino, 3088 &parent_inode, &parent_gen, name); 3089 } else { 3090 ret = __get_cur_name_and_parent(sctx, ino, gen, 3091 &parent_inode, 3092 &parent_gen, name); 3093 if (ret > 0) { 3094 ret = 0; 3095 break; 3096 } 3097 } 3098 if (ret < 0) 3099 break; 3100 if (parent_inode == start_ino) { 3101 ret = 1; 3102 if (*ancestor_ino == 0) 3103 *ancestor_ino = ino; 3104 break; 3105 } 3106 ino = parent_inode; 3107 gen = parent_gen; 3108 } 3109 return ret; 3110 } 3111 3112 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3113 { 3114 struct fs_path *from_path = NULL; 3115 struct fs_path *to_path = NULL; 3116 struct fs_path *name = NULL; 3117 u64 orig_progress = sctx->send_progress; 3118 struct recorded_ref *cur; 3119 u64 parent_ino, parent_gen; 3120 struct waiting_dir_move *dm = NULL; 3121 u64 rmdir_ino = 0; 3122 int ret; 3123 u64 ancestor = 0; 3124 3125 name = fs_path_alloc(); 3126 from_path = fs_path_alloc(); 3127 if (!name || !from_path) { 3128 ret = -ENOMEM; 3129 goto out; 3130 } 3131 3132 dm = get_waiting_dir_move(sctx, pm->ino); 3133 ASSERT(dm); 3134 rmdir_ino = dm->rmdir_ino; 3135 free_waiting_dir_move(sctx, dm); 3136 3137 if (pm->is_orphan) { 3138 ret = gen_unique_name(sctx, pm->ino, 3139 pm->gen, from_path); 3140 } else { 3141 ret = get_first_ref(sctx->parent_root, pm->ino, 3142 &parent_ino, &parent_gen, name); 3143 if (ret < 0) 3144 goto out; 3145 ret = get_cur_path(sctx, parent_ino, parent_gen, 3146 from_path); 3147 if (ret < 0) 3148 goto out; 3149 ret = fs_path_add_path(from_path, name); 3150 } 3151 if (ret < 0) 3152 goto out; 3153 3154 sctx->send_progress = sctx->cur_ino + 1; 3155 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3156 if (ret) { 3157 LIST_HEAD(deleted_refs); 3158 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3159 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3160 &pm->update_refs, &deleted_refs, 3161 pm->is_orphan); 3162 if (ret < 0) 3163 goto out; 3164 if (rmdir_ino) { 3165 dm = get_waiting_dir_move(sctx, pm->ino); 3166 ASSERT(dm); 3167 dm->rmdir_ino = rmdir_ino; 3168 } 3169 goto out; 3170 } 3171 fs_path_reset(name); 3172 to_path = name; 3173 name = NULL; 3174 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3175 if (ret < 0) 3176 goto out; 3177 3178 ret = send_rename(sctx, from_path, to_path); 3179 if (ret < 0) 3180 goto out; 3181 3182 if (rmdir_ino) { 3183 struct orphan_dir_info *odi; 3184 3185 odi = get_orphan_dir_info(sctx, rmdir_ino); 3186 if (!odi) { 3187 /* already deleted */ 3188 goto finish; 3189 } 3190 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1); 3191 if (ret < 0) 3192 goto out; 3193 if (!ret) 3194 goto finish; 3195 3196 name = fs_path_alloc(); 3197 if (!name) { 3198 ret = -ENOMEM; 3199 goto out; 3200 } 3201 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3202 if (ret < 0) 3203 goto out; 3204 ret = send_rmdir(sctx, name); 3205 if (ret < 0) 3206 goto out; 3207 free_orphan_dir_info(sctx, odi); 3208 } 3209 3210 finish: 3211 ret = send_utimes(sctx, pm->ino, pm->gen); 3212 if (ret < 0) 3213 goto out; 3214 3215 /* 3216 * After rename/move, need to update the utimes of both new parent(s) 3217 * and old parent(s). 3218 */ 3219 list_for_each_entry(cur, &pm->update_refs, list) { 3220 if (cur->dir == rmdir_ino) 3221 continue; 3222 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3223 if (ret < 0) 3224 goto out; 3225 } 3226 3227 out: 3228 fs_path_free(name); 3229 fs_path_free(from_path); 3230 fs_path_free(to_path); 3231 sctx->send_progress = orig_progress; 3232 3233 return ret; 3234 } 3235 3236 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3237 { 3238 if (!list_empty(&m->list)) 3239 list_del(&m->list); 3240 if (!RB_EMPTY_NODE(&m->node)) 3241 rb_erase(&m->node, &sctx->pending_dir_moves); 3242 __free_recorded_refs(&m->update_refs); 3243 kfree(m); 3244 } 3245 3246 static void tail_append_pending_moves(struct pending_dir_move *moves, 3247 struct list_head *stack) 3248 { 3249 if (list_empty(&moves->list)) { 3250 list_add_tail(&moves->list, stack); 3251 } else { 3252 LIST_HEAD(list); 3253 list_splice_init(&moves->list, &list); 3254 list_add_tail(&moves->list, stack); 3255 list_splice_tail(&list, stack); 3256 } 3257 } 3258 3259 static int apply_children_dir_moves(struct send_ctx *sctx) 3260 { 3261 struct pending_dir_move *pm; 3262 struct list_head stack; 3263 u64 parent_ino = sctx->cur_ino; 3264 int ret = 0; 3265 3266 pm = get_pending_dir_moves(sctx, parent_ino); 3267 if (!pm) 3268 return 0; 3269 3270 INIT_LIST_HEAD(&stack); 3271 tail_append_pending_moves(pm, &stack); 3272 3273 while (!list_empty(&stack)) { 3274 pm = list_first_entry(&stack, struct pending_dir_move, list); 3275 parent_ino = pm->ino; 3276 ret = apply_dir_move(sctx, pm); 3277 free_pending_move(sctx, pm); 3278 if (ret) 3279 goto out; 3280 pm = get_pending_dir_moves(sctx, parent_ino); 3281 if (pm) 3282 tail_append_pending_moves(pm, &stack); 3283 } 3284 return 0; 3285 3286 out: 3287 while (!list_empty(&stack)) { 3288 pm = list_first_entry(&stack, struct pending_dir_move, list); 3289 free_pending_move(sctx, pm); 3290 } 3291 return ret; 3292 } 3293 3294 /* 3295 * We might need to delay a directory rename even when no ancestor directory 3296 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3297 * renamed. This happens when we rename a directory to the old name (the name 3298 * in the parent root) of some other unrelated directory that got its rename 3299 * delayed due to some ancestor with higher number that got renamed. 3300 * 3301 * Example: 3302 * 3303 * Parent snapshot: 3304 * . (ino 256) 3305 * |---- a/ (ino 257) 3306 * | |---- file (ino 260) 3307 * | 3308 * |---- b/ (ino 258) 3309 * |---- c/ (ino 259) 3310 * 3311 * Send snapshot: 3312 * . (ino 256) 3313 * |---- a/ (ino 258) 3314 * |---- x/ (ino 259) 3315 * |---- y/ (ino 257) 3316 * |----- file (ino 260) 3317 * 3318 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3319 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3320 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3321 * must issue is: 3322 * 3323 * 1 - rename 259 from 'c' to 'x' 3324 * 2 - rename 257 from 'a' to 'x/y' 3325 * 3 - rename 258 from 'b' to 'a' 3326 * 3327 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3328 * be done right away and < 0 on error. 3329 */ 3330 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3331 struct recorded_ref *parent_ref, 3332 const bool is_orphan) 3333 { 3334 struct btrfs_path *path; 3335 struct btrfs_key key; 3336 struct btrfs_key di_key; 3337 struct btrfs_dir_item *di; 3338 u64 left_gen; 3339 u64 right_gen; 3340 int ret = 0; 3341 3342 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3343 return 0; 3344 3345 path = alloc_path_for_send(); 3346 if (!path) 3347 return -ENOMEM; 3348 3349 key.objectid = parent_ref->dir; 3350 key.type = BTRFS_DIR_ITEM_KEY; 3351 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3352 3353 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3354 if (ret < 0) { 3355 goto out; 3356 } else if (ret > 0) { 3357 ret = 0; 3358 goto out; 3359 } 3360 3361 di = btrfs_match_dir_item_name(sctx->parent_root, path, 3362 parent_ref->name, parent_ref->name_len); 3363 if (!di) { 3364 ret = 0; 3365 goto out; 3366 } 3367 /* 3368 * di_key.objectid has the number of the inode that has a dentry in the 3369 * parent directory with the same name that sctx->cur_ino is being 3370 * renamed to. We need to check if that inode is in the send root as 3371 * well and if it is currently marked as an inode with a pending rename, 3372 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3373 * that it happens after that other inode is renamed. 3374 */ 3375 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3376 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3377 ret = 0; 3378 goto out; 3379 } 3380 3381 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3382 &left_gen, NULL, NULL, NULL, NULL); 3383 if (ret < 0) 3384 goto out; 3385 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3386 &right_gen, NULL, NULL, NULL, NULL); 3387 if (ret < 0) { 3388 if (ret == -ENOENT) 3389 ret = 0; 3390 goto out; 3391 } 3392 3393 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3394 if (right_gen != left_gen) { 3395 ret = 0; 3396 goto out; 3397 } 3398 3399 if (is_waiting_for_move(sctx, di_key.objectid)) { 3400 ret = add_pending_dir_move(sctx, 3401 sctx->cur_ino, 3402 sctx->cur_inode_gen, 3403 di_key.objectid, 3404 &sctx->new_refs, 3405 &sctx->deleted_refs, 3406 is_orphan); 3407 if (!ret) 3408 ret = 1; 3409 } 3410 out: 3411 btrfs_free_path(path); 3412 return ret; 3413 } 3414 3415 static int wait_for_parent_move(struct send_ctx *sctx, 3416 struct recorded_ref *parent_ref) 3417 { 3418 int ret = 0; 3419 u64 ino = parent_ref->dir; 3420 u64 parent_ino_before, parent_ino_after; 3421 struct fs_path *path_before = NULL; 3422 struct fs_path *path_after = NULL; 3423 int len1, len2; 3424 3425 path_after = fs_path_alloc(); 3426 path_before = fs_path_alloc(); 3427 if (!path_after || !path_before) { 3428 ret = -ENOMEM; 3429 goto out; 3430 } 3431 3432 /* 3433 * Our current directory inode may not yet be renamed/moved because some 3434 * ancestor (immediate or not) has to be renamed/moved first. So find if 3435 * such ancestor exists and make sure our own rename/move happens after 3436 * that ancestor is processed. 3437 */ 3438 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3439 if (is_waiting_for_move(sctx, ino)) { 3440 ret = 1; 3441 break; 3442 } 3443 3444 fs_path_reset(path_before); 3445 fs_path_reset(path_after); 3446 3447 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3448 NULL, path_after); 3449 if (ret < 0) 3450 goto out; 3451 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3452 NULL, path_before); 3453 if (ret < 0 && ret != -ENOENT) { 3454 goto out; 3455 } else if (ret == -ENOENT) { 3456 ret = 0; 3457 break; 3458 } 3459 3460 len1 = fs_path_len(path_before); 3461 len2 = fs_path_len(path_after); 3462 if (ino > sctx->cur_ino && 3463 (parent_ino_before != parent_ino_after || len1 != len2 || 3464 memcmp(path_before->start, path_after->start, len1))) { 3465 ret = 1; 3466 break; 3467 } 3468 ino = parent_ino_after; 3469 } 3470 3471 out: 3472 fs_path_free(path_before); 3473 fs_path_free(path_after); 3474 3475 if (ret == 1) { 3476 ret = add_pending_dir_move(sctx, 3477 sctx->cur_ino, 3478 sctx->cur_inode_gen, 3479 ino, 3480 &sctx->new_refs, 3481 &sctx->deleted_refs, 3482 false); 3483 if (!ret) 3484 ret = 1; 3485 } 3486 3487 return ret; 3488 } 3489 3490 /* 3491 * This does all the move/link/unlink/rmdir magic. 3492 */ 3493 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3494 { 3495 int ret = 0; 3496 struct recorded_ref *cur; 3497 struct recorded_ref *cur2; 3498 struct list_head check_dirs; 3499 struct fs_path *valid_path = NULL; 3500 u64 ow_inode = 0; 3501 u64 ow_gen; 3502 int did_overwrite = 0; 3503 int is_orphan = 0; 3504 u64 last_dir_ino_rm = 0; 3505 bool can_rename = true; 3506 3507 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 3508 3509 /* 3510 * This should never happen as the root dir always has the same ref 3511 * which is always '..' 3512 */ 3513 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3514 INIT_LIST_HEAD(&check_dirs); 3515 3516 valid_path = fs_path_alloc(); 3517 if (!valid_path) { 3518 ret = -ENOMEM; 3519 goto out; 3520 } 3521 3522 /* 3523 * First, check if the first ref of the current inode was overwritten 3524 * before. If yes, we know that the current inode was already orphanized 3525 * and thus use the orphan name. If not, we can use get_cur_path to 3526 * get the path of the first ref as it would like while receiving at 3527 * this point in time. 3528 * New inodes are always orphan at the beginning, so force to use the 3529 * orphan name in this case. 3530 * The first ref is stored in valid_path and will be updated if it 3531 * gets moved around. 3532 */ 3533 if (!sctx->cur_inode_new) { 3534 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3535 sctx->cur_inode_gen); 3536 if (ret < 0) 3537 goto out; 3538 if (ret) 3539 did_overwrite = 1; 3540 } 3541 if (sctx->cur_inode_new || did_overwrite) { 3542 ret = gen_unique_name(sctx, sctx->cur_ino, 3543 sctx->cur_inode_gen, valid_path); 3544 if (ret < 0) 3545 goto out; 3546 is_orphan = 1; 3547 } else { 3548 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3549 valid_path); 3550 if (ret < 0) 3551 goto out; 3552 } 3553 3554 list_for_each_entry(cur, &sctx->new_refs, list) { 3555 /* 3556 * We may have refs where the parent directory does not exist 3557 * yet. This happens if the parent directories inum is higher 3558 * the the current inum. To handle this case, we create the 3559 * parent directory out of order. But we need to check if this 3560 * did already happen before due to other refs in the same dir. 3561 */ 3562 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3563 if (ret < 0) 3564 goto out; 3565 if (ret == inode_state_will_create) { 3566 ret = 0; 3567 /* 3568 * First check if any of the current inodes refs did 3569 * already create the dir. 3570 */ 3571 list_for_each_entry(cur2, &sctx->new_refs, list) { 3572 if (cur == cur2) 3573 break; 3574 if (cur2->dir == cur->dir) { 3575 ret = 1; 3576 break; 3577 } 3578 } 3579 3580 /* 3581 * If that did not happen, check if a previous inode 3582 * did already create the dir. 3583 */ 3584 if (!ret) 3585 ret = did_create_dir(sctx, cur->dir); 3586 if (ret < 0) 3587 goto out; 3588 if (!ret) { 3589 ret = send_create_inode(sctx, cur->dir); 3590 if (ret < 0) 3591 goto out; 3592 } 3593 } 3594 3595 /* 3596 * Check if this new ref would overwrite the first ref of 3597 * another unprocessed inode. If yes, orphanize the 3598 * overwritten inode. If we find an overwritten ref that is 3599 * not the first ref, simply unlink it. 3600 */ 3601 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3602 cur->name, cur->name_len, 3603 &ow_inode, &ow_gen); 3604 if (ret < 0) 3605 goto out; 3606 if (ret) { 3607 ret = is_first_ref(sctx->parent_root, 3608 ow_inode, cur->dir, cur->name, 3609 cur->name_len); 3610 if (ret < 0) 3611 goto out; 3612 if (ret) { 3613 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3614 cur->full_path); 3615 if (ret < 0) 3616 goto out; 3617 } else { 3618 ret = send_unlink(sctx, cur->full_path); 3619 if (ret < 0) 3620 goto out; 3621 } 3622 } 3623 3624 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3625 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3626 if (ret < 0) 3627 goto out; 3628 if (ret == 1) { 3629 can_rename = false; 3630 *pending_move = 1; 3631 } 3632 } 3633 3634 /* 3635 * link/move the ref to the new place. If we have an orphan 3636 * inode, move it and update valid_path. If not, link or move 3637 * it depending on the inode mode. 3638 */ 3639 if (is_orphan && can_rename) { 3640 ret = send_rename(sctx, valid_path, cur->full_path); 3641 if (ret < 0) 3642 goto out; 3643 is_orphan = 0; 3644 ret = fs_path_copy(valid_path, cur->full_path); 3645 if (ret < 0) 3646 goto out; 3647 } else if (can_rename) { 3648 if (S_ISDIR(sctx->cur_inode_mode)) { 3649 /* 3650 * Dirs can't be linked, so move it. For moved 3651 * dirs, we always have one new and one deleted 3652 * ref. The deleted ref is ignored later. 3653 */ 3654 ret = wait_for_parent_move(sctx, cur); 3655 if (ret < 0) 3656 goto out; 3657 if (ret) { 3658 *pending_move = 1; 3659 } else { 3660 ret = send_rename(sctx, valid_path, 3661 cur->full_path); 3662 if (!ret) 3663 ret = fs_path_copy(valid_path, 3664 cur->full_path); 3665 } 3666 if (ret < 0) 3667 goto out; 3668 } else { 3669 ret = send_link(sctx, cur->full_path, 3670 valid_path); 3671 if (ret < 0) 3672 goto out; 3673 } 3674 } 3675 ret = dup_ref(cur, &check_dirs); 3676 if (ret < 0) 3677 goto out; 3678 } 3679 3680 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3681 /* 3682 * Check if we can already rmdir the directory. If not, 3683 * orphanize it. For every dir item inside that gets deleted 3684 * later, we do this check again and rmdir it then if possible. 3685 * See the use of check_dirs for more details. 3686 */ 3687 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3688 sctx->cur_ino); 3689 if (ret < 0) 3690 goto out; 3691 if (ret) { 3692 ret = send_rmdir(sctx, valid_path); 3693 if (ret < 0) 3694 goto out; 3695 } else if (!is_orphan) { 3696 ret = orphanize_inode(sctx, sctx->cur_ino, 3697 sctx->cur_inode_gen, valid_path); 3698 if (ret < 0) 3699 goto out; 3700 is_orphan = 1; 3701 } 3702 3703 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3704 ret = dup_ref(cur, &check_dirs); 3705 if (ret < 0) 3706 goto out; 3707 } 3708 } else if (S_ISDIR(sctx->cur_inode_mode) && 3709 !list_empty(&sctx->deleted_refs)) { 3710 /* 3711 * We have a moved dir. Add the old parent to check_dirs 3712 */ 3713 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3714 list); 3715 ret = dup_ref(cur, &check_dirs); 3716 if (ret < 0) 3717 goto out; 3718 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3719 /* 3720 * We have a non dir inode. Go through all deleted refs and 3721 * unlink them if they were not already overwritten by other 3722 * inodes. 3723 */ 3724 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3725 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3726 sctx->cur_ino, sctx->cur_inode_gen, 3727 cur->name, cur->name_len); 3728 if (ret < 0) 3729 goto out; 3730 if (!ret) { 3731 ret = send_unlink(sctx, cur->full_path); 3732 if (ret < 0) 3733 goto out; 3734 } 3735 ret = dup_ref(cur, &check_dirs); 3736 if (ret < 0) 3737 goto out; 3738 } 3739 /* 3740 * If the inode is still orphan, unlink the orphan. This may 3741 * happen when a previous inode did overwrite the first ref 3742 * of this inode and no new refs were added for the current 3743 * inode. Unlinking does not mean that the inode is deleted in 3744 * all cases. There may still be links to this inode in other 3745 * places. 3746 */ 3747 if (is_orphan) { 3748 ret = send_unlink(sctx, valid_path); 3749 if (ret < 0) 3750 goto out; 3751 } 3752 } 3753 3754 /* 3755 * We did collect all parent dirs where cur_inode was once located. We 3756 * now go through all these dirs and check if they are pending for 3757 * deletion and if it's finally possible to perform the rmdir now. 3758 * We also update the inode stats of the parent dirs here. 3759 */ 3760 list_for_each_entry(cur, &check_dirs, list) { 3761 /* 3762 * In case we had refs into dirs that were not processed yet, 3763 * we don't need to do the utime and rmdir logic for these dirs. 3764 * The dir will be processed later. 3765 */ 3766 if (cur->dir > sctx->cur_ino) 3767 continue; 3768 3769 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3770 if (ret < 0) 3771 goto out; 3772 3773 if (ret == inode_state_did_create || 3774 ret == inode_state_no_change) { 3775 /* TODO delayed utimes */ 3776 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3777 if (ret < 0) 3778 goto out; 3779 } else if (ret == inode_state_did_delete && 3780 cur->dir != last_dir_ino_rm) { 3781 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3782 sctx->cur_ino); 3783 if (ret < 0) 3784 goto out; 3785 if (ret) { 3786 ret = get_cur_path(sctx, cur->dir, 3787 cur->dir_gen, valid_path); 3788 if (ret < 0) 3789 goto out; 3790 ret = send_rmdir(sctx, valid_path); 3791 if (ret < 0) 3792 goto out; 3793 last_dir_ino_rm = cur->dir; 3794 } 3795 } 3796 } 3797 3798 ret = 0; 3799 3800 out: 3801 __free_recorded_refs(&check_dirs); 3802 free_recorded_refs(sctx); 3803 fs_path_free(valid_path); 3804 return ret; 3805 } 3806 3807 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 3808 struct fs_path *name, void *ctx, struct list_head *refs) 3809 { 3810 int ret = 0; 3811 struct send_ctx *sctx = ctx; 3812 struct fs_path *p; 3813 u64 gen; 3814 3815 p = fs_path_alloc(); 3816 if (!p) 3817 return -ENOMEM; 3818 3819 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 3820 NULL, NULL); 3821 if (ret < 0) 3822 goto out; 3823 3824 ret = get_cur_path(sctx, dir, gen, p); 3825 if (ret < 0) 3826 goto out; 3827 ret = fs_path_add_path(p, name); 3828 if (ret < 0) 3829 goto out; 3830 3831 ret = __record_ref(refs, dir, gen, p); 3832 3833 out: 3834 if (ret) 3835 fs_path_free(p); 3836 return ret; 3837 } 3838 3839 static int __record_new_ref(int num, u64 dir, int index, 3840 struct fs_path *name, 3841 void *ctx) 3842 { 3843 struct send_ctx *sctx = ctx; 3844 return record_ref(sctx->send_root, num, dir, index, name, 3845 ctx, &sctx->new_refs); 3846 } 3847 3848 3849 static int __record_deleted_ref(int num, u64 dir, int index, 3850 struct fs_path *name, 3851 void *ctx) 3852 { 3853 struct send_ctx *sctx = ctx; 3854 return record_ref(sctx->parent_root, num, dir, index, name, 3855 ctx, &sctx->deleted_refs); 3856 } 3857 3858 static int record_new_ref(struct send_ctx *sctx) 3859 { 3860 int ret; 3861 3862 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3863 sctx->cmp_key, 0, __record_new_ref, sctx); 3864 if (ret < 0) 3865 goto out; 3866 ret = 0; 3867 3868 out: 3869 return ret; 3870 } 3871 3872 static int record_deleted_ref(struct send_ctx *sctx) 3873 { 3874 int ret; 3875 3876 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3877 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3878 if (ret < 0) 3879 goto out; 3880 ret = 0; 3881 3882 out: 3883 return ret; 3884 } 3885 3886 struct find_ref_ctx { 3887 u64 dir; 3888 u64 dir_gen; 3889 struct btrfs_root *root; 3890 struct fs_path *name; 3891 int found_idx; 3892 }; 3893 3894 static int __find_iref(int num, u64 dir, int index, 3895 struct fs_path *name, 3896 void *ctx_) 3897 { 3898 struct find_ref_ctx *ctx = ctx_; 3899 u64 dir_gen; 3900 int ret; 3901 3902 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3903 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3904 /* 3905 * To avoid doing extra lookups we'll only do this if everything 3906 * else matches. 3907 */ 3908 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 3909 NULL, NULL, NULL); 3910 if (ret) 3911 return ret; 3912 if (dir_gen != ctx->dir_gen) 3913 return 0; 3914 ctx->found_idx = num; 3915 return 1; 3916 } 3917 return 0; 3918 } 3919 3920 static int find_iref(struct btrfs_root *root, 3921 struct btrfs_path *path, 3922 struct btrfs_key *key, 3923 u64 dir, u64 dir_gen, struct fs_path *name) 3924 { 3925 int ret; 3926 struct find_ref_ctx ctx; 3927 3928 ctx.dir = dir; 3929 ctx.name = name; 3930 ctx.dir_gen = dir_gen; 3931 ctx.found_idx = -1; 3932 ctx.root = root; 3933 3934 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 3935 if (ret < 0) 3936 return ret; 3937 3938 if (ctx.found_idx == -1) 3939 return -ENOENT; 3940 3941 return ctx.found_idx; 3942 } 3943 3944 static int __record_changed_new_ref(int num, u64 dir, int index, 3945 struct fs_path *name, 3946 void *ctx) 3947 { 3948 u64 dir_gen; 3949 int ret; 3950 struct send_ctx *sctx = ctx; 3951 3952 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 3953 NULL, NULL, NULL); 3954 if (ret) 3955 return ret; 3956 3957 ret = find_iref(sctx->parent_root, sctx->right_path, 3958 sctx->cmp_key, dir, dir_gen, name); 3959 if (ret == -ENOENT) 3960 ret = __record_new_ref(num, dir, index, name, sctx); 3961 else if (ret > 0) 3962 ret = 0; 3963 3964 return ret; 3965 } 3966 3967 static int __record_changed_deleted_ref(int num, u64 dir, int index, 3968 struct fs_path *name, 3969 void *ctx) 3970 { 3971 u64 dir_gen; 3972 int ret; 3973 struct send_ctx *sctx = ctx; 3974 3975 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 3976 NULL, NULL, NULL); 3977 if (ret) 3978 return ret; 3979 3980 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 3981 dir, dir_gen, name); 3982 if (ret == -ENOENT) 3983 ret = __record_deleted_ref(num, dir, index, name, sctx); 3984 else if (ret > 0) 3985 ret = 0; 3986 3987 return ret; 3988 } 3989 3990 static int record_changed_ref(struct send_ctx *sctx) 3991 { 3992 int ret = 0; 3993 3994 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 3995 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3996 if (ret < 0) 3997 goto out; 3998 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 3999 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4000 if (ret < 0) 4001 goto out; 4002 ret = 0; 4003 4004 out: 4005 return ret; 4006 } 4007 4008 /* 4009 * Record and process all refs at once. Needed when an inode changes the 4010 * generation number, which means that it was deleted and recreated. 4011 */ 4012 static int process_all_refs(struct send_ctx *sctx, 4013 enum btrfs_compare_tree_result cmd) 4014 { 4015 int ret; 4016 struct btrfs_root *root; 4017 struct btrfs_path *path; 4018 struct btrfs_key key; 4019 struct btrfs_key found_key; 4020 struct extent_buffer *eb; 4021 int slot; 4022 iterate_inode_ref_t cb; 4023 int pending_move = 0; 4024 4025 path = alloc_path_for_send(); 4026 if (!path) 4027 return -ENOMEM; 4028 4029 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4030 root = sctx->send_root; 4031 cb = __record_new_ref; 4032 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4033 root = sctx->parent_root; 4034 cb = __record_deleted_ref; 4035 } else { 4036 btrfs_err(sctx->send_root->fs_info, 4037 "Wrong command %d in process_all_refs", cmd); 4038 ret = -EINVAL; 4039 goto out; 4040 } 4041 4042 key.objectid = sctx->cmp_key->objectid; 4043 key.type = BTRFS_INODE_REF_KEY; 4044 key.offset = 0; 4045 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4046 if (ret < 0) 4047 goto out; 4048 4049 while (1) { 4050 eb = path->nodes[0]; 4051 slot = path->slots[0]; 4052 if (slot >= btrfs_header_nritems(eb)) { 4053 ret = btrfs_next_leaf(root, path); 4054 if (ret < 0) 4055 goto out; 4056 else if (ret > 0) 4057 break; 4058 continue; 4059 } 4060 4061 btrfs_item_key_to_cpu(eb, &found_key, slot); 4062 4063 if (found_key.objectid != key.objectid || 4064 (found_key.type != BTRFS_INODE_REF_KEY && 4065 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4066 break; 4067 4068 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4069 if (ret < 0) 4070 goto out; 4071 4072 path->slots[0]++; 4073 } 4074 btrfs_release_path(path); 4075 4076 ret = process_recorded_refs(sctx, &pending_move); 4077 /* Only applicable to an incremental send. */ 4078 ASSERT(pending_move == 0); 4079 4080 out: 4081 btrfs_free_path(path); 4082 return ret; 4083 } 4084 4085 static int send_set_xattr(struct send_ctx *sctx, 4086 struct fs_path *path, 4087 const char *name, int name_len, 4088 const char *data, int data_len) 4089 { 4090 int ret = 0; 4091 4092 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4093 if (ret < 0) 4094 goto out; 4095 4096 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4097 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4098 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4099 4100 ret = send_cmd(sctx); 4101 4102 tlv_put_failure: 4103 out: 4104 return ret; 4105 } 4106 4107 static int send_remove_xattr(struct send_ctx *sctx, 4108 struct fs_path *path, 4109 const char *name, int name_len) 4110 { 4111 int ret = 0; 4112 4113 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4114 if (ret < 0) 4115 goto out; 4116 4117 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4118 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4119 4120 ret = send_cmd(sctx); 4121 4122 tlv_put_failure: 4123 out: 4124 return ret; 4125 } 4126 4127 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4128 const char *name, int name_len, 4129 const char *data, int data_len, 4130 u8 type, void *ctx) 4131 { 4132 int ret; 4133 struct send_ctx *sctx = ctx; 4134 struct fs_path *p; 4135 posix_acl_xattr_header dummy_acl; 4136 4137 p = fs_path_alloc(); 4138 if (!p) 4139 return -ENOMEM; 4140 4141 /* 4142 * This hack is needed because empty acl's are stored as zero byte 4143 * data in xattrs. Problem with that is, that receiving these zero byte 4144 * acl's will fail later. To fix this, we send a dummy acl list that 4145 * only contains the version number and no entries. 4146 */ 4147 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4148 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4149 if (data_len == 0) { 4150 dummy_acl.a_version = 4151 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4152 data = (char *)&dummy_acl; 4153 data_len = sizeof(dummy_acl); 4154 } 4155 } 4156 4157 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4158 if (ret < 0) 4159 goto out; 4160 4161 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4162 4163 out: 4164 fs_path_free(p); 4165 return ret; 4166 } 4167 4168 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4169 const char *name, int name_len, 4170 const char *data, int data_len, 4171 u8 type, void *ctx) 4172 { 4173 int ret; 4174 struct send_ctx *sctx = ctx; 4175 struct fs_path *p; 4176 4177 p = fs_path_alloc(); 4178 if (!p) 4179 return -ENOMEM; 4180 4181 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4182 if (ret < 0) 4183 goto out; 4184 4185 ret = send_remove_xattr(sctx, p, name, name_len); 4186 4187 out: 4188 fs_path_free(p); 4189 return ret; 4190 } 4191 4192 static int process_new_xattr(struct send_ctx *sctx) 4193 { 4194 int ret = 0; 4195 4196 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4197 sctx->cmp_key, __process_new_xattr, sctx); 4198 4199 return ret; 4200 } 4201 4202 static int process_deleted_xattr(struct send_ctx *sctx) 4203 { 4204 int ret; 4205 4206 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4207 sctx->cmp_key, __process_deleted_xattr, sctx); 4208 4209 return ret; 4210 } 4211 4212 struct find_xattr_ctx { 4213 const char *name; 4214 int name_len; 4215 int found_idx; 4216 char *found_data; 4217 int found_data_len; 4218 }; 4219 4220 static int __find_xattr(int num, struct btrfs_key *di_key, 4221 const char *name, int name_len, 4222 const char *data, int data_len, 4223 u8 type, void *vctx) 4224 { 4225 struct find_xattr_ctx *ctx = vctx; 4226 4227 if (name_len == ctx->name_len && 4228 strncmp(name, ctx->name, name_len) == 0) { 4229 ctx->found_idx = num; 4230 ctx->found_data_len = data_len; 4231 ctx->found_data = kmemdup(data, data_len, GFP_NOFS); 4232 if (!ctx->found_data) 4233 return -ENOMEM; 4234 return 1; 4235 } 4236 return 0; 4237 } 4238 4239 static int find_xattr(struct btrfs_root *root, 4240 struct btrfs_path *path, 4241 struct btrfs_key *key, 4242 const char *name, int name_len, 4243 char **data, int *data_len) 4244 { 4245 int ret; 4246 struct find_xattr_ctx ctx; 4247 4248 ctx.name = name; 4249 ctx.name_len = name_len; 4250 ctx.found_idx = -1; 4251 ctx.found_data = NULL; 4252 ctx.found_data_len = 0; 4253 4254 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4255 if (ret < 0) 4256 return ret; 4257 4258 if (ctx.found_idx == -1) 4259 return -ENOENT; 4260 if (data) { 4261 *data = ctx.found_data; 4262 *data_len = ctx.found_data_len; 4263 } else { 4264 kfree(ctx.found_data); 4265 } 4266 return ctx.found_idx; 4267 } 4268 4269 4270 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4271 const char *name, int name_len, 4272 const char *data, int data_len, 4273 u8 type, void *ctx) 4274 { 4275 int ret; 4276 struct send_ctx *sctx = ctx; 4277 char *found_data = NULL; 4278 int found_data_len = 0; 4279 4280 ret = find_xattr(sctx->parent_root, sctx->right_path, 4281 sctx->cmp_key, name, name_len, &found_data, 4282 &found_data_len); 4283 if (ret == -ENOENT) { 4284 ret = __process_new_xattr(num, di_key, name, name_len, data, 4285 data_len, type, ctx); 4286 } else if (ret >= 0) { 4287 if (data_len != found_data_len || 4288 memcmp(data, found_data, data_len)) { 4289 ret = __process_new_xattr(num, di_key, name, name_len, 4290 data, data_len, type, ctx); 4291 } else { 4292 ret = 0; 4293 } 4294 } 4295 4296 kfree(found_data); 4297 return ret; 4298 } 4299 4300 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4301 const char *name, int name_len, 4302 const char *data, int data_len, 4303 u8 type, void *ctx) 4304 { 4305 int ret; 4306 struct send_ctx *sctx = ctx; 4307 4308 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4309 name, name_len, NULL, NULL); 4310 if (ret == -ENOENT) 4311 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4312 data_len, type, ctx); 4313 else if (ret >= 0) 4314 ret = 0; 4315 4316 return ret; 4317 } 4318 4319 static int process_changed_xattr(struct send_ctx *sctx) 4320 { 4321 int ret = 0; 4322 4323 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4324 sctx->cmp_key, __process_changed_new_xattr, sctx); 4325 if (ret < 0) 4326 goto out; 4327 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4328 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4329 4330 out: 4331 return ret; 4332 } 4333 4334 static int process_all_new_xattrs(struct send_ctx *sctx) 4335 { 4336 int ret; 4337 struct btrfs_root *root; 4338 struct btrfs_path *path; 4339 struct btrfs_key key; 4340 struct btrfs_key found_key; 4341 struct extent_buffer *eb; 4342 int slot; 4343 4344 path = alloc_path_for_send(); 4345 if (!path) 4346 return -ENOMEM; 4347 4348 root = sctx->send_root; 4349 4350 key.objectid = sctx->cmp_key->objectid; 4351 key.type = BTRFS_XATTR_ITEM_KEY; 4352 key.offset = 0; 4353 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4354 if (ret < 0) 4355 goto out; 4356 4357 while (1) { 4358 eb = path->nodes[0]; 4359 slot = path->slots[0]; 4360 if (slot >= btrfs_header_nritems(eb)) { 4361 ret = btrfs_next_leaf(root, path); 4362 if (ret < 0) { 4363 goto out; 4364 } else if (ret > 0) { 4365 ret = 0; 4366 break; 4367 } 4368 continue; 4369 } 4370 4371 btrfs_item_key_to_cpu(eb, &found_key, slot); 4372 if (found_key.objectid != key.objectid || 4373 found_key.type != key.type) { 4374 ret = 0; 4375 goto out; 4376 } 4377 4378 ret = iterate_dir_item(root, path, &found_key, 4379 __process_new_xattr, sctx); 4380 if (ret < 0) 4381 goto out; 4382 4383 path->slots[0]++; 4384 } 4385 4386 out: 4387 btrfs_free_path(path); 4388 return ret; 4389 } 4390 4391 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4392 { 4393 struct btrfs_root *root = sctx->send_root; 4394 struct btrfs_fs_info *fs_info = root->fs_info; 4395 struct inode *inode; 4396 struct page *page; 4397 char *addr; 4398 struct btrfs_key key; 4399 pgoff_t index = offset >> PAGE_CACHE_SHIFT; 4400 pgoff_t last_index; 4401 unsigned pg_offset = offset & ~PAGE_CACHE_MASK; 4402 ssize_t ret = 0; 4403 4404 key.objectid = sctx->cur_ino; 4405 key.type = BTRFS_INODE_ITEM_KEY; 4406 key.offset = 0; 4407 4408 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4409 if (IS_ERR(inode)) 4410 return PTR_ERR(inode); 4411 4412 if (offset + len > i_size_read(inode)) { 4413 if (offset > i_size_read(inode)) 4414 len = 0; 4415 else 4416 len = offset - i_size_read(inode); 4417 } 4418 if (len == 0) 4419 goto out; 4420 4421 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT; 4422 4423 /* initial readahead */ 4424 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4425 file_ra_state_init(&sctx->ra, inode->i_mapping); 4426 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4427 last_index - index + 1); 4428 4429 while (index <= last_index) { 4430 unsigned cur_len = min_t(unsigned, len, 4431 PAGE_CACHE_SIZE - pg_offset); 4432 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 4433 if (!page) { 4434 ret = -ENOMEM; 4435 break; 4436 } 4437 4438 if (!PageUptodate(page)) { 4439 btrfs_readpage(NULL, page); 4440 lock_page(page); 4441 if (!PageUptodate(page)) { 4442 unlock_page(page); 4443 page_cache_release(page); 4444 ret = -EIO; 4445 break; 4446 } 4447 } 4448 4449 addr = kmap(page); 4450 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4451 kunmap(page); 4452 unlock_page(page); 4453 page_cache_release(page); 4454 index++; 4455 pg_offset = 0; 4456 len -= cur_len; 4457 ret += cur_len; 4458 } 4459 out: 4460 iput(inode); 4461 return ret; 4462 } 4463 4464 /* 4465 * Read some bytes from the current inode/file and send a write command to 4466 * user space. 4467 */ 4468 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4469 { 4470 int ret = 0; 4471 struct fs_path *p; 4472 ssize_t num_read = 0; 4473 4474 p = fs_path_alloc(); 4475 if (!p) 4476 return -ENOMEM; 4477 4478 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 4479 4480 num_read = fill_read_buf(sctx, offset, len); 4481 if (num_read <= 0) { 4482 if (num_read < 0) 4483 ret = num_read; 4484 goto out; 4485 } 4486 4487 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4488 if (ret < 0) 4489 goto out; 4490 4491 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4492 if (ret < 0) 4493 goto out; 4494 4495 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4496 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4497 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4498 4499 ret = send_cmd(sctx); 4500 4501 tlv_put_failure: 4502 out: 4503 fs_path_free(p); 4504 if (ret < 0) 4505 return ret; 4506 return num_read; 4507 } 4508 4509 /* 4510 * Send a clone command to user space. 4511 */ 4512 static int send_clone(struct send_ctx *sctx, 4513 u64 offset, u32 len, 4514 struct clone_root *clone_root) 4515 { 4516 int ret = 0; 4517 struct fs_path *p; 4518 u64 gen; 4519 4520 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 4521 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 4522 clone_root->root->objectid, clone_root->ino, 4523 clone_root->offset); 4524 4525 p = fs_path_alloc(); 4526 if (!p) 4527 return -ENOMEM; 4528 4529 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4530 if (ret < 0) 4531 goto out; 4532 4533 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4534 if (ret < 0) 4535 goto out; 4536 4537 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4538 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4539 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4540 4541 if (clone_root->root == sctx->send_root) { 4542 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4543 &gen, NULL, NULL, NULL, NULL); 4544 if (ret < 0) 4545 goto out; 4546 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4547 } else { 4548 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4549 } 4550 if (ret < 0) 4551 goto out; 4552 4553 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4554 clone_root->root->root_item.uuid); 4555 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4556 le64_to_cpu(clone_root->root->root_item.ctransid)); 4557 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4558 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4559 clone_root->offset); 4560 4561 ret = send_cmd(sctx); 4562 4563 tlv_put_failure: 4564 out: 4565 fs_path_free(p); 4566 return ret; 4567 } 4568 4569 /* 4570 * Send an update extent command to user space. 4571 */ 4572 static int send_update_extent(struct send_ctx *sctx, 4573 u64 offset, u32 len) 4574 { 4575 int ret = 0; 4576 struct fs_path *p; 4577 4578 p = fs_path_alloc(); 4579 if (!p) 4580 return -ENOMEM; 4581 4582 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4583 if (ret < 0) 4584 goto out; 4585 4586 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4587 if (ret < 0) 4588 goto out; 4589 4590 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4591 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4592 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4593 4594 ret = send_cmd(sctx); 4595 4596 tlv_put_failure: 4597 out: 4598 fs_path_free(p); 4599 return ret; 4600 } 4601 4602 static int send_hole(struct send_ctx *sctx, u64 end) 4603 { 4604 struct fs_path *p = NULL; 4605 u64 offset = sctx->cur_inode_last_extent; 4606 u64 len; 4607 int ret = 0; 4608 4609 p = fs_path_alloc(); 4610 if (!p) 4611 return -ENOMEM; 4612 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4613 if (ret < 0) 4614 goto tlv_put_failure; 4615 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4616 while (offset < end) { 4617 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4618 4619 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4620 if (ret < 0) 4621 break; 4622 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4623 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4624 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4625 ret = send_cmd(sctx); 4626 if (ret < 0) 4627 break; 4628 offset += len; 4629 } 4630 tlv_put_failure: 4631 fs_path_free(p); 4632 return ret; 4633 } 4634 4635 static int send_write_or_clone(struct send_ctx *sctx, 4636 struct btrfs_path *path, 4637 struct btrfs_key *key, 4638 struct clone_root *clone_root) 4639 { 4640 int ret = 0; 4641 struct btrfs_file_extent_item *ei; 4642 u64 offset = key->offset; 4643 u64 pos = 0; 4644 u64 len; 4645 u32 l; 4646 u8 type; 4647 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 4648 4649 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4650 struct btrfs_file_extent_item); 4651 type = btrfs_file_extent_type(path->nodes[0], ei); 4652 if (type == BTRFS_FILE_EXTENT_INLINE) { 4653 len = btrfs_file_extent_inline_len(path->nodes[0], 4654 path->slots[0], ei); 4655 /* 4656 * it is possible the inline item won't cover the whole page, 4657 * but there may be items after this page. Make 4658 * sure to send the whole thing 4659 */ 4660 len = PAGE_CACHE_ALIGN(len); 4661 } else { 4662 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 4663 } 4664 4665 if (offset + len > sctx->cur_inode_size) 4666 len = sctx->cur_inode_size - offset; 4667 if (len == 0) { 4668 ret = 0; 4669 goto out; 4670 } 4671 4672 if (clone_root && IS_ALIGNED(offset + len, bs)) { 4673 ret = send_clone(sctx, offset, len, clone_root); 4674 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) { 4675 ret = send_update_extent(sctx, offset, len); 4676 } else { 4677 while (pos < len) { 4678 l = len - pos; 4679 if (l > BTRFS_SEND_READ_SIZE) 4680 l = BTRFS_SEND_READ_SIZE; 4681 ret = send_write(sctx, pos + offset, l); 4682 if (ret < 0) 4683 goto out; 4684 if (!ret) 4685 break; 4686 pos += ret; 4687 } 4688 ret = 0; 4689 } 4690 out: 4691 return ret; 4692 } 4693 4694 static int is_extent_unchanged(struct send_ctx *sctx, 4695 struct btrfs_path *left_path, 4696 struct btrfs_key *ekey) 4697 { 4698 int ret = 0; 4699 struct btrfs_key key; 4700 struct btrfs_path *path = NULL; 4701 struct extent_buffer *eb; 4702 int slot; 4703 struct btrfs_key found_key; 4704 struct btrfs_file_extent_item *ei; 4705 u64 left_disknr; 4706 u64 right_disknr; 4707 u64 left_offset; 4708 u64 right_offset; 4709 u64 left_offset_fixed; 4710 u64 left_len; 4711 u64 right_len; 4712 u64 left_gen; 4713 u64 right_gen; 4714 u8 left_type; 4715 u8 right_type; 4716 4717 path = alloc_path_for_send(); 4718 if (!path) 4719 return -ENOMEM; 4720 4721 eb = left_path->nodes[0]; 4722 slot = left_path->slots[0]; 4723 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4724 left_type = btrfs_file_extent_type(eb, ei); 4725 4726 if (left_type != BTRFS_FILE_EXTENT_REG) { 4727 ret = 0; 4728 goto out; 4729 } 4730 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4731 left_len = btrfs_file_extent_num_bytes(eb, ei); 4732 left_offset = btrfs_file_extent_offset(eb, ei); 4733 left_gen = btrfs_file_extent_generation(eb, ei); 4734 4735 /* 4736 * Following comments will refer to these graphics. L is the left 4737 * extents which we are checking at the moment. 1-8 are the right 4738 * extents that we iterate. 4739 * 4740 * |-----L-----| 4741 * |-1-|-2a-|-3-|-4-|-5-|-6-| 4742 * 4743 * |-----L-----| 4744 * |--1--|-2b-|...(same as above) 4745 * 4746 * Alternative situation. Happens on files where extents got split. 4747 * |-----L-----| 4748 * |-----------7-----------|-6-| 4749 * 4750 * Alternative situation. Happens on files which got larger. 4751 * |-----L-----| 4752 * |-8-| 4753 * Nothing follows after 8. 4754 */ 4755 4756 key.objectid = ekey->objectid; 4757 key.type = BTRFS_EXTENT_DATA_KEY; 4758 key.offset = ekey->offset; 4759 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 4760 if (ret < 0) 4761 goto out; 4762 if (ret) { 4763 ret = 0; 4764 goto out; 4765 } 4766 4767 /* 4768 * Handle special case where the right side has no extents at all. 4769 */ 4770 eb = path->nodes[0]; 4771 slot = path->slots[0]; 4772 btrfs_item_key_to_cpu(eb, &found_key, slot); 4773 if (found_key.objectid != key.objectid || 4774 found_key.type != key.type) { 4775 /* If we're a hole then just pretend nothing changed */ 4776 ret = (left_disknr) ? 0 : 1; 4777 goto out; 4778 } 4779 4780 /* 4781 * We're now on 2a, 2b or 7. 4782 */ 4783 key = found_key; 4784 while (key.offset < ekey->offset + left_len) { 4785 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 4786 right_type = btrfs_file_extent_type(eb, ei); 4787 if (right_type != BTRFS_FILE_EXTENT_REG) { 4788 ret = 0; 4789 goto out; 4790 } 4791 4792 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 4793 right_len = btrfs_file_extent_num_bytes(eb, ei); 4794 right_offset = btrfs_file_extent_offset(eb, ei); 4795 right_gen = btrfs_file_extent_generation(eb, ei); 4796 4797 /* 4798 * Are we at extent 8? If yes, we know the extent is changed. 4799 * This may only happen on the first iteration. 4800 */ 4801 if (found_key.offset + right_len <= ekey->offset) { 4802 /* If we're a hole just pretend nothing changed */ 4803 ret = (left_disknr) ? 0 : 1; 4804 goto out; 4805 } 4806 4807 left_offset_fixed = left_offset; 4808 if (key.offset < ekey->offset) { 4809 /* Fix the right offset for 2a and 7. */ 4810 right_offset += ekey->offset - key.offset; 4811 } else { 4812 /* Fix the left offset for all behind 2a and 2b */ 4813 left_offset_fixed += key.offset - ekey->offset; 4814 } 4815 4816 /* 4817 * Check if we have the same extent. 4818 */ 4819 if (left_disknr != right_disknr || 4820 left_offset_fixed != right_offset || 4821 left_gen != right_gen) { 4822 ret = 0; 4823 goto out; 4824 } 4825 4826 /* 4827 * Go to the next extent. 4828 */ 4829 ret = btrfs_next_item(sctx->parent_root, path); 4830 if (ret < 0) 4831 goto out; 4832 if (!ret) { 4833 eb = path->nodes[0]; 4834 slot = path->slots[0]; 4835 btrfs_item_key_to_cpu(eb, &found_key, slot); 4836 } 4837 if (ret || found_key.objectid != key.objectid || 4838 found_key.type != key.type) { 4839 key.offset += right_len; 4840 break; 4841 } 4842 if (found_key.offset != key.offset + right_len) { 4843 ret = 0; 4844 goto out; 4845 } 4846 key = found_key; 4847 } 4848 4849 /* 4850 * We're now behind the left extent (treat as unchanged) or at the end 4851 * of the right side (treat as changed). 4852 */ 4853 if (key.offset >= ekey->offset + left_len) 4854 ret = 1; 4855 else 4856 ret = 0; 4857 4858 4859 out: 4860 btrfs_free_path(path); 4861 return ret; 4862 } 4863 4864 static int get_last_extent(struct send_ctx *sctx, u64 offset) 4865 { 4866 struct btrfs_path *path; 4867 struct btrfs_root *root = sctx->send_root; 4868 struct btrfs_file_extent_item *fi; 4869 struct btrfs_key key; 4870 u64 extent_end; 4871 u8 type; 4872 int ret; 4873 4874 path = alloc_path_for_send(); 4875 if (!path) 4876 return -ENOMEM; 4877 4878 sctx->cur_inode_last_extent = 0; 4879 4880 key.objectid = sctx->cur_ino; 4881 key.type = BTRFS_EXTENT_DATA_KEY; 4882 key.offset = offset; 4883 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 4884 if (ret < 0) 4885 goto out; 4886 ret = 0; 4887 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4888 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 4889 goto out; 4890 4891 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4892 struct btrfs_file_extent_item); 4893 type = btrfs_file_extent_type(path->nodes[0], fi); 4894 if (type == BTRFS_FILE_EXTENT_INLINE) { 4895 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4896 path->slots[0], fi); 4897 extent_end = ALIGN(key.offset + size, 4898 sctx->send_root->sectorsize); 4899 } else { 4900 extent_end = key.offset + 4901 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4902 } 4903 sctx->cur_inode_last_extent = extent_end; 4904 out: 4905 btrfs_free_path(path); 4906 return ret; 4907 } 4908 4909 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 4910 struct btrfs_key *key) 4911 { 4912 struct btrfs_file_extent_item *fi; 4913 u64 extent_end; 4914 u8 type; 4915 int ret = 0; 4916 4917 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 4918 return 0; 4919 4920 if (sctx->cur_inode_last_extent == (u64)-1) { 4921 ret = get_last_extent(sctx, key->offset - 1); 4922 if (ret) 4923 return ret; 4924 } 4925 4926 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4927 struct btrfs_file_extent_item); 4928 type = btrfs_file_extent_type(path->nodes[0], fi); 4929 if (type == BTRFS_FILE_EXTENT_INLINE) { 4930 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 4931 path->slots[0], fi); 4932 extent_end = ALIGN(key->offset + size, 4933 sctx->send_root->sectorsize); 4934 } else { 4935 extent_end = key->offset + 4936 btrfs_file_extent_num_bytes(path->nodes[0], fi); 4937 } 4938 4939 if (path->slots[0] == 0 && 4940 sctx->cur_inode_last_extent < key->offset) { 4941 /* 4942 * We might have skipped entire leafs that contained only 4943 * file extent items for our current inode. These leafs have 4944 * a generation number smaller (older) than the one in the 4945 * current leaf and the leaf our last extent came from, and 4946 * are located between these 2 leafs. 4947 */ 4948 ret = get_last_extent(sctx, key->offset - 1); 4949 if (ret) 4950 return ret; 4951 } 4952 4953 if (sctx->cur_inode_last_extent < key->offset) 4954 ret = send_hole(sctx, key->offset); 4955 sctx->cur_inode_last_extent = extent_end; 4956 return ret; 4957 } 4958 4959 static int process_extent(struct send_ctx *sctx, 4960 struct btrfs_path *path, 4961 struct btrfs_key *key) 4962 { 4963 struct clone_root *found_clone = NULL; 4964 int ret = 0; 4965 4966 if (S_ISLNK(sctx->cur_inode_mode)) 4967 return 0; 4968 4969 if (sctx->parent_root && !sctx->cur_inode_new) { 4970 ret = is_extent_unchanged(sctx, path, key); 4971 if (ret < 0) 4972 goto out; 4973 if (ret) { 4974 ret = 0; 4975 goto out_hole; 4976 } 4977 } else { 4978 struct btrfs_file_extent_item *ei; 4979 u8 type; 4980 4981 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4982 struct btrfs_file_extent_item); 4983 type = btrfs_file_extent_type(path->nodes[0], ei); 4984 if (type == BTRFS_FILE_EXTENT_PREALLOC || 4985 type == BTRFS_FILE_EXTENT_REG) { 4986 /* 4987 * The send spec does not have a prealloc command yet, 4988 * so just leave a hole for prealloc'ed extents until 4989 * we have enough commands queued up to justify rev'ing 4990 * the send spec. 4991 */ 4992 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 4993 ret = 0; 4994 goto out; 4995 } 4996 4997 /* Have a hole, just skip it. */ 4998 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 4999 ret = 0; 5000 goto out; 5001 } 5002 } 5003 } 5004 5005 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5006 sctx->cur_inode_size, &found_clone); 5007 if (ret != -ENOENT && ret < 0) 5008 goto out; 5009 5010 ret = send_write_or_clone(sctx, path, key, found_clone); 5011 if (ret) 5012 goto out; 5013 out_hole: 5014 ret = maybe_send_hole(sctx, path, key); 5015 out: 5016 return ret; 5017 } 5018 5019 static int process_all_extents(struct send_ctx *sctx) 5020 { 5021 int ret; 5022 struct btrfs_root *root; 5023 struct btrfs_path *path; 5024 struct btrfs_key key; 5025 struct btrfs_key found_key; 5026 struct extent_buffer *eb; 5027 int slot; 5028 5029 root = sctx->send_root; 5030 path = alloc_path_for_send(); 5031 if (!path) 5032 return -ENOMEM; 5033 5034 key.objectid = sctx->cmp_key->objectid; 5035 key.type = BTRFS_EXTENT_DATA_KEY; 5036 key.offset = 0; 5037 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5038 if (ret < 0) 5039 goto out; 5040 5041 while (1) { 5042 eb = path->nodes[0]; 5043 slot = path->slots[0]; 5044 5045 if (slot >= btrfs_header_nritems(eb)) { 5046 ret = btrfs_next_leaf(root, path); 5047 if (ret < 0) { 5048 goto out; 5049 } else if (ret > 0) { 5050 ret = 0; 5051 break; 5052 } 5053 continue; 5054 } 5055 5056 btrfs_item_key_to_cpu(eb, &found_key, slot); 5057 5058 if (found_key.objectid != key.objectid || 5059 found_key.type != key.type) { 5060 ret = 0; 5061 goto out; 5062 } 5063 5064 ret = process_extent(sctx, path, &found_key); 5065 if (ret < 0) 5066 goto out; 5067 5068 path->slots[0]++; 5069 } 5070 5071 out: 5072 btrfs_free_path(path); 5073 return ret; 5074 } 5075 5076 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5077 int *pending_move, 5078 int *refs_processed) 5079 { 5080 int ret = 0; 5081 5082 if (sctx->cur_ino == 0) 5083 goto out; 5084 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5085 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5086 goto out; 5087 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5088 goto out; 5089 5090 ret = process_recorded_refs(sctx, pending_move); 5091 if (ret < 0) 5092 goto out; 5093 5094 *refs_processed = 1; 5095 out: 5096 return ret; 5097 } 5098 5099 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5100 { 5101 int ret = 0; 5102 u64 left_mode; 5103 u64 left_uid; 5104 u64 left_gid; 5105 u64 right_mode; 5106 u64 right_uid; 5107 u64 right_gid; 5108 int need_chmod = 0; 5109 int need_chown = 0; 5110 int pending_move = 0; 5111 int refs_processed = 0; 5112 5113 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5114 &refs_processed); 5115 if (ret < 0) 5116 goto out; 5117 5118 /* 5119 * We have processed the refs and thus need to advance send_progress. 5120 * Now, calls to get_cur_xxx will take the updated refs of the current 5121 * inode into account. 5122 * 5123 * On the other hand, if our current inode is a directory and couldn't 5124 * be moved/renamed because its parent was renamed/moved too and it has 5125 * a higher inode number, we can only move/rename our current inode 5126 * after we moved/renamed its parent. Therefore in this case operate on 5127 * the old path (pre move/rename) of our current inode, and the 5128 * move/rename will be performed later. 5129 */ 5130 if (refs_processed && !pending_move) 5131 sctx->send_progress = sctx->cur_ino + 1; 5132 5133 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5134 goto out; 5135 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5136 goto out; 5137 5138 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5139 &left_mode, &left_uid, &left_gid, NULL); 5140 if (ret < 0) 5141 goto out; 5142 5143 if (!sctx->parent_root || sctx->cur_inode_new) { 5144 need_chown = 1; 5145 if (!S_ISLNK(sctx->cur_inode_mode)) 5146 need_chmod = 1; 5147 } else { 5148 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5149 NULL, NULL, &right_mode, &right_uid, 5150 &right_gid, NULL); 5151 if (ret < 0) 5152 goto out; 5153 5154 if (left_uid != right_uid || left_gid != right_gid) 5155 need_chown = 1; 5156 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5157 need_chmod = 1; 5158 } 5159 5160 if (S_ISREG(sctx->cur_inode_mode)) { 5161 if (need_send_hole(sctx)) { 5162 if (sctx->cur_inode_last_extent == (u64)-1 || 5163 sctx->cur_inode_last_extent < 5164 sctx->cur_inode_size) { 5165 ret = get_last_extent(sctx, (u64)-1); 5166 if (ret) 5167 goto out; 5168 } 5169 if (sctx->cur_inode_last_extent < 5170 sctx->cur_inode_size) { 5171 ret = send_hole(sctx, sctx->cur_inode_size); 5172 if (ret) 5173 goto out; 5174 } 5175 } 5176 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5177 sctx->cur_inode_size); 5178 if (ret < 0) 5179 goto out; 5180 } 5181 5182 if (need_chown) { 5183 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5184 left_uid, left_gid); 5185 if (ret < 0) 5186 goto out; 5187 } 5188 if (need_chmod) { 5189 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5190 left_mode); 5191 if (ret < 0) 5192 goto out; 5193 } 5194 5195 /* 5196 * If other directory inodes depended on our current directory 5197 * inode's move/rename, now do their move/rename operations. 5198 */ 5199 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5200 ret = apply_children_dir_moves(sctx); 5201 if (ret) 5202 goto out; 5203 /* 5204 * Need to send that every time, no matter if it actually 5205 * changed between the two trees as we have done changes to 5206 * the inode before. If our inode is a directory and it's 5207 * waiting to be moved/renamed, we will send its utimes when 5208 * it's moved/renamed, therefore we don't need to do it here. 5209 */ 5210 sctx->send_progress = sctx->cur_ino + 1; 5211 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5212 if (ret < 0) 5213 goto out; 5214 } 5215 5216 out: 5217 return ret; 5218 } 5219 5220 static int changed_inode(struct send_ctx *sctx, 5221 enum btrfs_compare_tree_result result) 5222 { 5223 int ret = 0; 5224 struct btrfs_key *key = sctx->cmp_key; 5225 struct btrfs_inode_item *left_ii = NULL; 5226 struct btrfs_inode_item *right_ii = NULL; 5227 u64 left_gen = 0; 5228 u64 right_gen = 0; 5229 5230 sctx->cur_ino = key->objectid; 5231 sctx->cur_inode_new_gen = 0; 5232 sctx->cur_inode_last_extent = (u64)-1; 5233 5234 /* 5235 * Set send_progress to current inode. This will tell all get_cur_xxx 5236 * functions that the current inode's refs are not updated yet. Later, 5237 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5238 */ 5239 sctx->send_progress = sctx->cur_ino; 5240 5241 if (result == BTRFS_COMPARE_TREE_NEW || 5242 result == BTRFS_COMPARE_TREE_CHANGED) { 5243 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5244 sctx->left_path->slots[0], 5245 struct btrfs_inode_item); 5246 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5247 left_ii); 5248 } else { 5249 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5250 sctx->right_path->slots[0], 5251 struct btrfs_inode_item); 5252 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5253 right_ii); 5254 } 5255 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5256 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5257 sctx->right_path->slots[0], 5258 struct btrfs_inode_item); 5259 5260 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5261 right_ii); 5262 5263 /* 5264 * The cur_ino = root dir case is special here. We can't treat 5265 * the inode as deleted+reused because it would generate a 5266 * stream that tries to delete/mkdir the root dir. 5267 */ 5268 if (left_gen != right_gen && 5269 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5270 sctx->cur_inode_new_gen = 1; 5271 } 5272 5273 if (result == BTRFS_COMPARE_TREE_NEW) { 5274 sctx->cur_inode_gen = left_gen; 5275 sctx->cur_inode_new = 1; 5276 sctx->cur_inode_deleted = 0; 5277 sctx->cur_inode_size = btrfs_inode_size( 5278 sctx->left_path->nodes[0], left_ii); 5279 sctx->cur_inode_mode = btrfs_inode_mode( 5280 sctx->left_path->nodes[0], left_ii); 5281 sctx->cur_inode_rdev = btrfs_inode_rdev( 5282 sctx->left_path->nodes[0], left_ii); 5283 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5284 ret = send_create_inode_if_needed(sctx); 5285 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5286 sctx->cur_inode_gen = right_gen; 5287 sctx->cur_inode_new = 0; 5288 sctx->cur_inode_deleted = 1; 5289 sctx->cur_inode_size = btrfs_inode_size( 5290 sctx->right_path->nodes[0], right_ii); 5291 sctx->cur_inode_mode = btrfs_inode_mode( 5292 sctx->right_path->nodes[0], right_ii); 5293 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5294 /* 5295 * We need to do some special handling in case the inode was 5296 * reported as changed with a changed generation number. This 5297 * means that the original inode was deleted and new inode 5298 * reused the same inum. So we have to treat the old inode as 5299 * deleted and the new one as new. 5300 */ 5301 if (sctx->cur_inode_new_gen) { 5302 /* 5303 * First, process the inode as if it was deleted. 5304 */ 5305 sctx->cur_inode_gen = right_gen; 5306 sctx->cur_inode_new = 0; 5307 sctx->cur_inode_deleted = 1; 5308 sctx->cur_inode_size = btrfs_inode_size( 5309 sctx->right_path->nodes[0], right_ii); 5310 sctx->cur_inode_mode = btrfs_inode_mode( 5311 sctx->right_path->nodes[0], right_ii); 5312 ret = process_all_refs(sctx, 5313 BTRFS_COMPARE_TREE_DELETED); 5314 if (ret < 0) 5315 goto out; 5316 5317 /* 5318 * Now process the inode as if it was new. 5319 */ 5320 sctx->cur_inode_gen = left_gen; 5321 sctx->cur_inode_new = 1; 5322 sctx->cur_inode_deleted = 0; 5323 sctx->cur_inode_size = btrfs_inode_size( 5324 sctx->left_path->nodes[0], left_ii); 5325 sctx->cur_inode_mode = btrfs_inode_mode( 5326 sctx->left_path->nodes[0], left_ii); 5327 sctx->cur_inode_rdev = btrfs_inode_rdev( 5328 sctx->left_path->nodes[0], left_ii); 5329 ret = send_create_inode_if_needed(sctx); 5330 if (ret < 0) 5331 goto out; 5332 5333 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5334 if (ret < 0) 5335 goto out; 5336 /* 5337 * Advance send_progress now as we did not get into 5338 * process_recorded_refs_if_needed in the new_gen case. 5339 */ 5340 sctx->send_progress = sctx->cur_ino + 1; 5341 5342 /* 5343 * Now process all extents and xattrs of the inode as if 5344 * they were all new. 5345 */ 5346 ret = process_all_extents(sctx); 5347 if (ret < 0) 5348 goto out; 5349 ret = process_all_new_xattrs(sctx); 5350 if (ret < 0) 5351 goto out; 5352 } else { 5353 sctx->cur_inode_gen = left_gen; 5354 sctx->cur_inode_new = 0; 5355 sctx->cur_inode_new_gen = 0; 5356 sctx->cur_inode_deleted = 0; 5357 sctx->cur_inode_size = btrfs_inode_size( 5358 sctx->left_path->nodes[0], left_ii); 5359 sctx->cur_inode_mode = btrfs_inode_mode( 5360 sctx->left_path->nodes[0], left_ii); 5361 } 5362 } 5363 5364 out: 5365 return ret; 5366 } 5367 5368 /* 5369 * We have to process new refs before deleted refs, but compare_trees gives us 5370 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5371 * first and later process them in process_recorded_refs. 5372 * For the cur_inode_new_gen case, we skip recording completely because 5373 * changed_inode did already initiate processing of refs. The reason for this is 5374 * that in this case, compare_tree actually compares the refs of 2 different 5375 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5376 * refs of the right tree as deleted and all refs of the left tree as new. 5377 */ 5378 static int changed_ref(struct send_ctx *sctx, 5379 enum btrfs_compare_tree_result result) 5380 { 5381 int ret = 0; 5382 5383 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5384 5385 if (!sctx->cur_inode_new_gen && 5386 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5387 if (result == BTRFS_COMPARE_TREE_NEW) 5388 ret = record_new_ref(sctx); 5389 else if (result == BTRFS_COMPARE_TREE_DELETED) 5390 ret = record_deleted_ref(sctx); 5391 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5392 ret = record_changed_ref(sctx); 5393 } 5394 5395 return ret; 5396 } 5397 5398 /* 5399 * Process new/deleted/changed xattrs. We skip processing in the 5400 * cur_inode_new_gen case because changed_inode did already initiate processing 5401 * of xattrs. The reason is the same as in changed_ref 5402 */ 5403 static int changed_xattr(struct send_ctx *sctx, 5404 enum btrfs_compare_tree_result result) 5405 { 5406 int ret = 0; 5407 5408 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5409 5410 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5411 if (result == BTRFS_COMPARE_TREE_NEW) 5412 ret = process_new_xattr(sctx); 5413 else if (result == BTRFS_COMPARE_TREE_DELETED) 5414 ret = process_deleted_xattr(sctx); 5415 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5416 ret = process_changed_xattr(sctx); 5417 } 5418 5419 return ret; 5420 } 5421 5422 /* 5423 * Process new/deleted/changed extents. We skip processing in the 5424 * cur_inode_new_gen case because changed_inode did already initiate processing 5425 * of extents. The reason is the same as in changed_ref 5426 */ 5427 static int changed_extent(struct send_ctx *sctx, 5428 enum btrfs_compare_tree_result result) 5429 { 5430 int ret = 0; 5431 5432 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 5433 5434 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5435 if (result != BTRFS_COMPARE_TREE_DELETED) 5436 ret = process_extent(sctx, sctx->left_path, 5437 sctx->cmp_key); 5438 } 5439 5440 return ret; 5441 } 5442 5443 static int dir_changed(struct send_ctx *sctx, u64 dir) 5444 { 5445 u64 orig_gen, new_gen; 5446 int ret; 5447 5448 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5449 NULL, NULL); 5450 if (ret) 5451 return ret; 5452 5453 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5454 NULL, NULL, NULL); 5455 if (ret) 5456 return ret; 5457 5458 return (orig_gen != new_gen) ? 1 : 0; 5459 } 5460 5461 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5462 struct btrfs_key *key) 5463 { 5464 struct btrfs_inode_extref *extref; 5465 struct extent_buffer *leaf; 5466 u64 dirid = 0, last_dirid = 0; 5467 unsigned long ptr; 5468 u32 item_size; 5469 u32 cur_offset = 0; 5470 int ref_name_len; 5471 int ret = 0; 5472 5473 /* Easy case, just check this one dirid */ 5474 if (key->type == BTRFS_INODE_REF_KEY) { 5475 dirid = key->offset; 5476 5477 ret = dir_changed(sctx, dirid); 5478 goto out; 5479 } 5480 5481 leaf = path->nodes[0]; 5482 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5483 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5484 while (cur_offset < item_size) { 5485 extref = (struct btrfs_inode_extref *)(ptr + 5486 cur_offset); 5487 dirid = btrfs_inode_extref_parent(leaf, extref); 5488 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5489 cur_offset += ref_name_len + sizeof(*extref); 5490 if (dirid == last_dirid) 5491 continue; 5492 ret = dir_changed(sctx, dirid); 5493 if (ret) 5494 break; 5495 last_dirid = dirid; 5496 } 5497 out: 5498 return ret; 5499 } 5500 5501 /* 5502 * Updates compare related fields in sctx and simply forwards to the actual 5503 * changed_xxx functions. 5504 */ 5505 static int changed_cb(struct btrfs_root *left_root, 5506 struct btrfs_root *right_root, 5507 struct btrfs_path *left_path, 5508 struct btrfs_path *right_path, 5509 struct btrfs_key *key, 5510 enum btrfs_compare_tree_result result, 5511 void *ctx) 5512 { 5513 int ret = 0; 5514 struct send_ctx *sctx = ctx; 5515 5516 if (result == BTRFS_COMPARE_TREE_SAME) { 5517 if (key->type == BTRFS_INODE_REF_KEY || 5518 key->type == BTRFS_INODE_EXTREF_KEY) { 5519 ret = compare_refs(sctx, left_path, key); 5520 if (!ret) 5521 return 0; 5522 if (ret < 0) 5523 return ret; 5524 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5525 return maybe_send_hole(sctx, left_path, key); 5526 } else { 5527 return 0; 5528 } 5529 result = BTRFS_COMPARE_TREE_CHANGED; 5530 ret = 0; 5531 } 5532 5533 sctx->left_path = left_path; 5534 sctx->right_path = right_path; 5535 sctx->cmp_key = key; 5536 5537 ret = finish_inode_if_needed(sctx, 0); 5538 if (ret < 0) 5539 goto out; 5540 5541 /* Ignore non-FS objects */ 5542 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5543 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5544 goto out; 5545 5546 if (key->type == BTRFS_INODE_ITEM_KEY) 5547 ret = changed_inode(sctx, result); 5548 else if (key->type == BTRFS_INODE_REF_KEY || 5549 key->type == BTRFS_INODE_EXTREF_KEY) 5550 ret = changed_ref(sctx, result); 5551 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5552 ret = changed_xattr(sctx, result); 5553 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5554 ret = changed_extent(sctx, result); 5555 5556 out: 5557 return ret; 5558 } 5559 5560 static int full_send_tree(struct send_ctx *sctx) 5561 { 5562 int ret; 5563 struct btrfs_root *send_root = sctx->send_root; 5564 struct btrfs_key key; 5565 struct btrfs_key found_key; 5566 struct btrfs_path *path; 5567 struct extent_buffer *eb; 5568 int slot; 5569 5570 path = alloc_path_for_send(); 5571 if (!path) 5572 return -ENOMEM; 5573 5574 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 5575 key.type = BTRFS_INODE_ITEM_KEY; 5576 key.offset = 0; 5577 5578 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 5579 if (ret < 0) 5580 goto out; 5581 if (ret) 5582 goto out_finish; 5583 5584 while (1) { 5585 eb = path->nodes[0]; 5586 slot = path->slots[0]; 5587 btrfs_item_key_to_cpu(eb, &found_key, slot); 5588 5589 ret = changed_cb(send_root, NULL, path, NULL, 5590 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 5591 if (ret < 0) 5592 goto out; 5593 5594 key.objectid = found_key.objectid; 5595 key.type = found_key.type; 5596 key.offset = found_key.offset + 1; 5597 5598 ret = btrfs_next_item(send_root, path); 5599 if (ret < 0) 5600 goto out; 5601 if (ret) { 5602 ret = 0; 5603 break; 5604 } 5605 } 5606 5607 out_finish: 5608 ret = finish_inode_if_needed(sctx, 1); 5609 5610 out: 5611 btrfs_free_path(path); 5612 return ret; 5613 } 5614 5615 static int send_subvol(struct send_ctx *sctx) 5616 { 5617 int ret; 5618 5619 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 5620 ret = send_header(sctx); 5621 if (ret < 0) 5622 goto out; 5623 } 5624 5625 ret = send_subvol_begin(sctx); 5626 if (ret < 0) 5627 goto out; 5628 5629 if (sctx->parent_root) { 5630 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 5631 changed_cb, sctx); 5632 if (ret < 0) 5633 goto out; 5634 ret = finish_inode_if_needed(sctx, 1); 5635 if (ret < 0) 5636 goto out; 5637 } else { 5638 ret = full_send_tree(sctx); 5639 if (ret < 0) 5640 goto out; 5641 } 5642 5643 out: 5644 free_recorded_refs(sctx); 5645 return ret; 5646 } 5647 5648 /* 5649 * If orphan cleanup did remove any orphans from a root, it means the tree 5650 * was modified and therefore the commit root is not the same as the current 5651 * root anymore. This is a problem, because send uses the commit root and 5652 * therefore can see inode items that don't exist in the current root anymore, 5653 * and for example make calls to btrfs_iget, which will do tree lookups based 5654 * on the current root and not on the commit root. Those lookups will fail, 5655 * returning a -ESTALE error, and making send fail with that error. So make 5656 * sure a send does not see any orphans we have just removed, and that it will 5657 * see the same inodes regardless of whether a transaction commit happened 5658 * before it started (meaning that the commit root will be the same as the 5659 * current root) or not. 5660 */ 5661 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 5662 { 5663 int i; 5664 struct btrfs_trans_handle *trans = NULL; 5665 5666 again: 5667 if (sctx->parent_root && 5668 sctx->parent_root->node != sctx->parent_root->commit_root) 5669 goto commit_trans; 5670 5671 for (i = 0; i < sctx->clone_roots_cnt; i++) 5672 if (sctx->clone_roots[i].root->node != 5673 sctx->clone_roots[i].root->commit_root) 5674 goto commit_trans; 5675 5676 if (trans) 5677 return btrfs_end_transaction(trans, sctx->send_root); 5678 5679 return 0; 5680 5681 commit_trans: 5682 /* Use any root, all fs roots will get their commit roots updated. */ 5683 if (!trans) { 5684 trans = btrfs_join_transaction(sctx->send_root); 5685 if (IS_ERR(trans)) 5686 return PTR_ERR(trans); 5687 goto again; 5688 } 5689 5690 return btrfs_commit_transaction(trans, sctx->send_root); 5691 } 5692 5693 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 5694 { 5695 spin_lock(&root->root_item_lock); 5696 root->send_in_progress--; 5697 /* 5698 * Not much left to do, we don't know why it's unbalanced and 5699 * can't blindly reset it to 0. 5700 */ 5701 if (root->send_in_progress < 0) 5702 btrfs_err(root->fs_info, 5703 "send_in_progres unbalanced %d root %llu", 5704 root->send_in_progress, root->root_key.objectid); 5705 spin_unlock(&root->root_item_lock); 5706 } 5707 5708 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 5709 { 5710 int ret = 0; 5711 struct btrfs_root *send_root; 5712 struct btrfs_root *clone_root; 5713 struct btrfs_fs_info *fs_info; 5714 struct btrfs_ioctl_send_args *arg = NULL; 5715 struct btrfs_key key; 5716 struct send_ctx *sctx = NULL; 5717 u32 i; 5718 u64 *clone_sources_tmp = NULL; 5719 int clone_sources_to_rollback = 0; 5720 int sort_clone_roots = 0; 5721 int index; 5722 5723 if (!capable(CAP_SYS_ADMIN)) 5724 return -EPERM; 5725 5726 send_root = BTRFS_I(file_inode(mnt_file))->root; 5727 fs_info = send_root->fs_info; 5728 5729 /* 5730 * The subvolume must remain read-only during send, protect against 5731 * making it RW. This also protects against deletion. 5732 */ 5733 spin_lock(&send_root->root_item_lock); 5734 send_root->send_in_progress++; 5735 spin_unlock(&send_root->root_item_lock); 5736 5737 /* 5738 * This is done when we lookup the root, it should already be complete 5739 * by the time we get here. 5740 */ 5741 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 5742 5743 /* 5744 * Userspace tools do the checks and warn the user if it's 5745 * not RO. 5746 */ 5747 if (!btrfs_root_readonly(send_root)) { 5748 ret = -EPERM; 5749 goto out; 5750 } 5751 5752 arg = memdup_user(arg_, sizeof(*arg)); 5753 if (IS_ERR(arg)) { 5754 ret = PTR_ERR(arg); 5755 arg = NULL; 5756 goto out; 5757 } 5758 5759 if (!access_ok(VERIFY_READ, arg->clone_sources, 5760 sizeof(*arg->clone_sources) * 5761 arg->clone_sources_count)) { 5762 ret = -EFAULT; 5763 goto out; 5764 } 5765 5766 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 5767 ret = -EINVAL; 5768 goto out; 5769 } 5770 5771 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 5772 if (!sctx) { 5773 ret = -ENOMEM; 5774 goto out; 5775 } 5776 5777 INIT_LIST_HEAD(&sctx->new_refs); 5778 INIT_LIST_HEAD(&sctx->deleted_refs); 5779 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 5780 INIT_LIST_HEAD(&sctx->name_cache_list); 5781 5782 sctx->flags = arg->flags; 5783 5784 sctx->send_filp = fget(arg->send_fd); 5785 if (!sctx->send_filp) { 5786 ret = -EBADF; 5787 goto out; 5788 } 5789 5790 sctx->send_root = send_root; 5791 /* 5792 * Unlikely but possible, if the subvolume is marked for deletion but 5793 * is slow to remove the directory entry, send can still be started 5794 */ 5795 if (btrfs_root_dead(sctx->send_root)) { 5796 ret = -EPERM; 5797 goto out; 5798 } 5799 5800 sctx->clone_roots_cnt = arg->clone_sources_count; 5801 5802 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 5803 sctx->send_buf = vmalloc(sctx->send_max_size); 5804 if (!sctx->send_buf) { 5805 ret = -ENOMEM; 5806 goto out; 5807 } 5808 5809 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 5810 if (!sctx->read_buf) { 5811 ret = -ENOMEM; 5812 goto out; 5813 } 5814 5815 sctx->pending_dir_moves = RB_ROOT; 5816 sctx->waiting_dir_moves = RB_ROOT; 5817 sctx->orphan_dirs = RB_ROOT; 5818 5819 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 5820 (arg->clone_sources_count + 1)); 5821 if (!sctx->clone_roots) { 5822 ret = -ENOMEM; 5823 goto out; 5824 } 5825 5826 if (arg->clone_sources_count) { 5827 clone_sources_tmp = vmalloc(arg->clone_sources_count * 5828 sizeof(*arg->clone_sources)); 5829 if (!clone_sources_tmp) { 5830 ret = -ENOMEM; 5831 goto out; 5832 } 5833 5834 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 5835 arg->clone_sources_count * 5836 sizeof(*arg->clone_sources)); 5837 if (ret) { 5838 ret = -EFAULT; 5839 goto out; 5840 } 5841 5842 for (i = 0; i < arg->clone_sources_count; i++) { 5843 key.objectid = clone_sources_tmp[i]; 5844 key.type = BTRFS_ROOT_ITEM_KEY; 5845 key.offset = (u64)-1; 5846 5847 index = srcu_read_lock(&fs_info->subvol_srcu); 5848 5849 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 5850 if (IS_ERR(clone_root)) { 5851 srcu_read_unlock(&fs_info->subvol_srcu, index); 5852 ret = PTR_ERR(clone_root); 5853 goto out; 5854 } 5855 clone_sources_to_rollback = i + 1; 5856 spin_lock(&clone_root->root_item_lock); 5857 clone_root->send_in_progress++; 5858 if (!btrfs_root_readonly(clone_root)) { 5859 spin_unlock(&clone_root->root_item_lock); 5860 srcu_read_unlock(&fs_info->subvol_srcu, index); 5861 ret = -EPERM; 5862 goto out; 5863 } 5864 spin_unlock(&clone_root->root_item_lock); 5865 srcu_read_unlock(&fs_info->subvol_srcu, index); 5866 5867 sctx->clone_roots[i].root = clone_root; 5868 } 5869 vfree(clone_sources_tmp); 5870 clone_sources_tmp = NULL; 5871 } 5872 5873 if (arg->parent_root) { 5874 key.objectid = arg->parent_root; 5875 key.type = BTRFS_ROOT_ITEM_KEY; 5876 key.offset = (u64)-1; 5877 5878 index = srcu_read_lock(&fs_info->subvol_srcu); 5879 5880 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 5881 if (IS_ERR(sctx->parent_root)) { 5882 srcu_read_unlock(&fs_info->subvol_srcu, index); 5883 ret = PTR_ERR(sctx->parent_root); 5884 goto out; 5885 } 5886 5887 spin_lock(&sctx->parent_root->root_item_lock); 5888 sctx->parent_root->send_in_progress++; 5889 if (!btrfs_root_readonly(sctx->parent_root) || 5890 btrfs_root_dead(sctx->parent_root)) { 5891 spin_unlock(&sctx->parent_root->root_item_lock); 5892 srcu_read_unlock(&fs_info->subvol_srcu, index); 5893 ret = -EPERM; 5894 goto out; 5895 } 5896 spin_unlock(&sctx->parent_root->root_item_lock); 5897 5898 srcu_read_unlock(&fs_info->subvol_srcu, index); 5899 } 5900 5901 /* 5902 * Clones from send_root are allowed, but only if the clone source 5903 * is behind the current send position. This is checked while searching 5904 * for possible clone sources. 5905 */ 5906 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 5907 5908 /* We do a bsearch later */ 5909 sort(sctx->clone_roots, sctx->clone_roots_cnt, 5910 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 5911 NULL); 5912 sort_clone_roots = 1; 5913 5914 ret = ensure_commit_roots_uptodate(sctx); 5915 if (ret) 5916 goto out; 5917 5918 current->journal_info = BTRFS_SEND_TRANS_STUB; 5919 ret = send_subvol(sctx); 5920 current->journal_info = NULL; 5921 if (ret < 0) 5922 goto out; 5923 5924 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 5925 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 5926 if (ret < 0) 5927 goto out; 5928 ret = send_cmd(sctx); 5929 if (ret < 0) 5930 goto out; 5931 } 5932 5933 out: 5934 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 5935 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 5936 struct rb_node *n; 5937 struct pending_dir_move *pm; 5938 5939 n = rb_first(&sctx->pending_dir_moves); 5940 pm = rb_entry(n, struct pending_dir_move, node); 5941 while (!list_empty(&pm->list)) { 5942 struct pending_dir_move *pm2; 5943 5944 pm2 = list_first_entry(&pm->list, 5945 struct pending_dir_move, list); 5946 free_pending_move(sctx, pm2); 5947 } 5948 free_pending_move(sctx, pm); 5949 } 5950 5951 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 5952 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 5953 struct rb_node *n; 5954 struct waiting_dir_move *dm; 5955 5956 n = rb_first(&sctx->waiting_dir_moves); 5957 dm = rb_entry(n, struct waiting_dir_move, node); 5958 rb_erase(&dm->node, &sctx->waiting_dir_moves); 5959 kfree(dm); 5960 } 5961 5962 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 5963 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 5964 struct rb_node *n; 5965 struct orphan_dir_info *odi; 5966 5967 n = rb_first(&sctx->orphan_dirs); 5968 odi = rb_entry(n, struct orphan_dir_info, node); 5969 free_orphan_dir_info(sctx, odi); 5970 } 5971 5972 if (sort_clone_roots) { 5973 for (i = 0; i < sctx->clone_roots_cnt; i++) 5974 btrfs_root_dec_send_in_progress( 5975 sctx->clone_roots[i].root); 5976 } else { 5977 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 5978 btrfs_root_dec_send_in_progress( 5979 sctx->clone_roots[i].root); 5980 5981 btrfs_root_dec_send_in_progress(send_root); 5982 } 5983 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 5984 btrfs_root_dec_send_in_progress(sctx->parent_root); 5985 5986 kfree(arg); 5987 vfree(clone_sources_tmp); 5988 5989 if (sctx) { 5990 if (sctx->send_filp) 5991 fput(sctx->send_filp); 5992 5993 vfree(sctx->clone_roots); 5994 vfree(sctx->send_buf); 5995 vfree(sctx->read_buf); 5996 5997 name_cache_free(sctx); 5998 5999 kfree(sctx); 6000 } 6001 6002 return ret; 6003 } 6004