xref: /linux/fs/btrfs/send.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 
38 static int g_verbose = 0;
39 
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41 
42 /*
43  * A fs_path is a helper to dynamically build path names with unknown size.
44  * It reallocates the internal buffer on demand.
45  * It allows fast adding of path elements on the right side (normal path) and
46  * fast adding to the left side (reversed path). A reversed path can also be
47  * unreversed if needed.
48  */
49 struct fs_path {
50 	union {
51 		struct {
52 			char *start;
53 			char *end;
54 
55 			char *buf;
56 			unsigned short buf_len:15;
57 			unsigned short reversed:1;
58 			char inline_buf[];
59 		};
60 		/*
61 		 * Average path length does not exceed 200 bytes, we'll have
62 		 * better packing in the slab and higher chance to satisfy
63 		 * a allocation later during send.
64 		 */
65 		char pad[256];
66 	};
67 };
68 #define FS_PATH_INLINE_SIZE \
69 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70 
71 
72 /* reused for each extent */
73 struct clone_root {
74 	struct btrfs_root *root;
75 	u64 ino;
76 	u64 offset;
77 
78 	u64 found_refs;
79 };
80 
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83 
84 struct send_ctx {
85 	struct file *send_filp;
86 	loff_t send_off;
87 	char *send_buf;
88 	u32 send_size;
89 	u32 send_max_size;
90 	u64 total_send_size;
91 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
93 
94 	struct btrfs_root *send_root;
95 	struct btrfs_root *parent_root;
96 	struct clone_root *clone_roots;
97 	int clone_roots_cnt;
98 
99 	/* current state of the compare_tree call */
100 	struct btrfs_path *left_path;
101 	struct btrfs_path *right_path;
102 	struct btrfs_key *cmp_key;
103 
104 	/*
105 	 * infos of the currently processed inode. In case of deleted inodes,
106 	 * these are the values from the deleted inode.
107 	 */
108 	u64 cur_ino;
109 	u64 cur_inode_gen;
110 	int cur_inode_new;
111 	int cur_inode_new_gen;
112 	int cur_inode_deleted;
113 	u64 cur_inode_size;
114 	u64 cur_inode_mode;
115 	u64 cur_inode_rdev;
116 	u64 cur_inode_last_extent;
117 
118 	u64 send_progress;
119 
120 	struct list_head new_refs;
121 	struct list_head deleted_refs;
122 
123 	struct radix_tree_root name_cache;
124 	struct list_head name_cache_list;
125 	int name_cache_size;
126 
127 	struct file_ra_state ra;
128 
129 	char *read_buf;
130 
131 	/*
132 	 * We process inodes by their increasing order, so if before an
133 	 * incremental send we reverse the parent/child relationship of
134 	 * directories such that a directory with a lower inode number was
135 	 * the parent of a directory with a higher inode number, and the one
136 	 * becoming the new parent got renamed too, we can't rename/move the
137 	 * directory with lower inode number when we finish processing it - we
138 	 * must process the directory with higher inode number first, then
139 	 * rename/move it and then rename/move the directory with lower inode
140 	 * number. Example follows.
141 	 *
142 	 * Tree state when the first send was performed:
143 	 *
144 	 * .
145 	 * |-- a                   (ino 257)
146 	 *     |-- b               (ino 258)
147 	 *         |
148 	 *         |
149 	 *         |-- c           (ino 259)
150 	 *         |   |-- d       (ino 260)
151 	 *         |
152 	 *         |-- c2          (ino 261)
153 	 *
154 	 * Tree state when the second (incremental) send is performed:
155 	 *
156 	 * .
157 	 * |-- a                   (ino 257)
158 	 *     |-- b               (ino 258)
159 	 *         |-- c2          (ino 261)
160 	 *             |-- d2      (ino 260)
161 	 *                 |-- cc  (ino 259)
162 	 *
163 	 * The sequence of steps that lead to the second state was:
164 	 *
165 	 * mv /a/b/c/d /a/b/c2/d2
166 	 * mv /a/b/c /a/b/c2/d2/cc
167 	 *
168 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 	 * before we move "d", which has higher inode number.
170 	 *
171 	 * So we just memorize which move/rename operations must be performed
172 	 * later when their respective parent is processed and moved/renamed.
173 	 */
174 
175 	/* Indexed by parent directory inode number. */
176 	struct rb_root pending_dir_moves;
177 
178 	/*
179 	 * Reverse index, indexed by the inode number of a directory that
180 	 * is waiting for the move/rename of its immediate parent before its
181 	 * own move/rename can be performed.
182 	 */
183 	struct rb_root waiting_dir_moves;
184 
185 	/*
186 	 * A directory that is going to be rm'ed might have a child directory
187 	 * which is in the pending directory moves index above. In this case,
188 	 * the directory can only be removed after the move/rename of its child
189 	 * is performed. Example:
190 	 *
191 	 * Parent snapshot:
192 	 *
193 	 * .                        (ino 256)
194 	 * |-- a/                   (ino 257)
195 	 *     |-- b/               (ino 258)
196 	 *         |-- c/           (ino 259)
197 	 *         |   |-- x/       (ino 260)
198 	 *         |
199 	 *         |-- y/           (ino 261)
200 	 *
201 	 * Send snapshot:
202 	 *
203 	 * .                        (ino 256)
204 	 * |-- a/                   (ino 257)
205 	 *     |-- b/               (ino 258)
206 	 *         |-- YY/          (ino 261)
207 	 *              |-- x/      (ino 260)
208 	 *
209 	 * Sequence of steps that lead to the send snapshot:
210 	 * rm -f /a/b/c/foo.txt
211 	 * mv /a/b/y /a/b/YY
212 	 * mv /a/b/c/x /a/b/YY
213 	 * rmdir /a/b/c
214 	 *
215 	 * When the child is processed, its move/rename is delayed until its
216 	 * parent is processed (as explained above), but all other operations
217 	 * like update utimes, chown, chgrp, etc, are performed and the paths
218 	 * that it uses for those operations must use the orphanized name of
219 	 * its parent (the directory we're going to rm later), so we need to
220 	 * memorize that name.
221 	 *
222 	 * Indexed by the inode number of the directory to be deleted.
223 	 */
224 	struct rb_root orphan_dirs;
225 };
226 
227 struct pending_dir_move {
228 	struct rb_node node;
229 	struct list_head list;
230 	u64 parent_ino;
231 	u64 ino;
232 	u64 gen;
233 	bool is_orphan;
234 	struct list_head update_refs;
235 };
236 
237 struct waiting_dir_move {
238 	struct rb_node node;
239 	u64 ino;
240 	/*
241 	 * There might be some directory that could not be removed because it
242 	 * was waiting for this directory inode to be moved first. Therefore
243 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 	 */
245 	u64 rmdir_ino;
246 };
247 
248 struct orphan_dir_info {
249 	struct rb_node node;
250 	u64 ino;
251 	u64 gen;
252 };
253 
254 struct name_cache_entry {
255 	struct list_head list;
256 	/*
257 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
258 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
259 	 * more then one inum would fall into the same entry, we use radix_list
260 	 * to store the additional entries. radix_list is also used to store
261 	 * entries where two entries have the same inum but different
262 	 * generations.
263 	 */
264 	struct list_head radix_list;
265 	u64 ino;
266 	u64 gen;
267 	u64 parent_ino;
268 	u64 parent_gen;
269 	int ret;
270 	int need_later_update;
271 	int name_len;
272 	char name[];
273 };
274 
275 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
276 
277 static struct waiting_dir_move *
278 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
279 
280 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
281 
282 static int need_send_hole(struct send_ctx *sctx)
283 {
284 	return (sctx->parent_root && !sctx->cur_inode_new &&
285 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
286 		S_ISREG(sctx->cur_inode_mode));
287 }
288 
289 static void fs_path_reset(struct fs_path *p)
290 {
291 	if (p->reversed) {
292 		p->start = p->buf + p->buf_len - 1;
293 		p->end = p->start;
294 		*p->start = 0;
295 	} else {
296 		p->start = p->buf;
297 		p->end = p->start;
298 		*p->start = 0;
299 	}
300 }
301 
302 static struct fs_path *fs_path_alloc(void)
303 {
304 	struct fs_path *p;
305 
306 	p = kmalloc(sizeof(*p), GFP_NOFS);
307 	if (!p)
308 		return NULL;
309 	p->reversed = 0;
310 	p->buf = p->inline_buf;
311 	p->buf_len = FS_PATH_INLINE_SIZE;
312 	fs_path_reset(p);
313 	return p;
314 }
315 
316 static struct fs_path *fs_path_alloc_reversed(void)
317 {
318 	struct fs_path *p;
319 
320 	p = fs_path_alloc();
321 	if (!p)
322 		return NULL;
323 	p->reversed = 1;
324 	fs_path_reset(p);
325 	return p;
326 }
327 
328 static void fs_path_free(struct fs_path *p)
329 {
330 	if (!p)
331 		return;
332 	if (p->buf != p->inline_buf)
333 		kfree(p->buf);
334 	kfree(p);
335 }
336 
337 static int fs_path_len(struct fs_path *p)
338 {
339 	return p->end - p->start;
340 }
341 
342 static int fs_path_ensure_buf(struct fs_path *p, int len)
343 {
344 	char *tmp_buf;
345 	int path_len;
346 	int old_buf_len;
347 
348 	len++;
349 
350 	if (p->buf_len >= len)
351 		return 0;
352 
353 	if (len > PATH_MAX) {
354 		WARN_ON(1);
355 		return -ENOMEM;
356 	}
357 
358 	path_len = p->end - p->start;
359 	old_buf_len = p->buf_len;
360 
361 	/*
362 	 * First time the inline_buf does not suffice
363 	 */
364 	if (p->buf == p->inline_buf) {
365 		tmp_buf = kmalloc(len, GFP_NOFS);
366 		if (tmp_buf)
367 			memcpy(tmp_buf, p->buf, old_buf_len);
368 	} else {
369 		tmp_buf = krealloc(p->buf, len, GFP_NOFS);
370 	}
371 	if (!tmp_buf)
372 		return -ENOMEM;
373 	p->buf = tmp_buf;
374 	/*
375 	 * The real size of the buffer is bigger, this will let the fast path
376 	 * happen most of the time
377 	 */
378 	p->buf_len = ksize(p->buf);
379 
380 	if (p->reversed) {
381 		tmp_buf = p->buf + old_buf_len - path_len - 1;
382 		p->end = p->buf + p->buf_len - 1;
383 		p->start = p->end - path_len;
384 		memmove(p->start, tmp_buf, path_len + 1);
385 	} else {
386 		p->start = p->buf;
387 		p->end = p->start + path_len;
388 	}
389 	return 0;
390 }
391 
392 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
393 				   char **prepared)
394 {
395 	int ret;
396 	int new_len;
397 
398 	new_len = p->end - p->start + name_len;
399 	if (p->start != p->end)
400 		new_len++;
401 	ret = fs_path_ensure_buf(p, new_len);
402 	if (ret < 0)
403 		goto out;
404 
405 	if (p->reversed) {
406 		if (p->start != p->end)
407 			*--p->start = '/';
408 		p->start -= name_len;
409 		*prepared = p->start;
410 	} else {
411 		if (p->start != p->end)
412 			*p->end++ = '/';
413 		*prepared = p->end;
414 		p->end += name_len;
415 		*p->end = 0;
416 	}
417 
418 out:
419 	return ret;
420 }
421 
422 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
423 {
424 	int ret;
425 	char *prepared;
426 
427 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
428 	if (ret < 0)
429 		goto out;
430 	memcpy(prepared, name, name_len);
431 
432 out:
433 	return ret;
434 }
435 
436 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
437 {
438 	int ret;
439 	char *prepared;
440 
441 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
442 	if (ret < 0)
443 		goto out;
444 	memcpy(prepared, p2->start, p2->end - p2->start);
445 
446 out:
447 	return ret;
448 }
449 
450 static int fs_path_add_from_extent_buffer(struct fs_path *p,
451 					  struct extent_buffer *eb,
452 					  unsigned long off, int len)
453 {
454 	int ret;
455 	char *prepared;
456 
457 	ret = fs_path_prepare_for_add(p, len, &prepared);
458 	if (ret < 0)
459 		goto out;
460 
461 	read_extent_buffer(eb, prepared, off, len);
462 
463 out:
464 	return ret;
465 }
466 
467 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
468 {
469 	int ret;
470 
471 	p->reversed = from->reversed;
472 	fs_path_reset(p);
473 
474 	ret = fs_path_add_path(p, from);
475 
476 	return ret;
477 }
478 
479 
480 static void fs_path_unreverse(struct fs_path *p)
481 {
482 	char *tmp;
483 	int len;
484 
485 	if (!p->reversed)
486 		return;
487 
488 	tmp = p->start;
489 	len = p->end - p->start;
490 	p->start = p->buf;
491 	p->end = p->start + len;
492 	memmove(p->start, tmp, len + 1);
493 	p->reversed = 0;
494 }
495 
496 static struct btrfs_path *alloc_path_for_send(void)
497 {
498 	struct btrfs_path *path;
499 
500 	path = btrfs_alloc_path();
501 	if (!path)
502 		return NULL;
503 	path->search_commit_root = 1;
504 	path->skip_locking = 1;
505 	path->need_commit_sem = 1;
506 	return path;
507 }
508 
509 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
510 {
511 	int ret;
512 	mm_segment_t old_fs;
513 	u32 pos = 0;
514 
515 	old_fs = get_fs();
516 	set_fs(KERNEL_DS);
517 
518 	while (pos < len) {
519 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
520 				len - pos, off);
521 		/* TODO handle that correctly */
522 		/*if (ret == -ERESTARTSYS) {
523 			continue;
524 		}*/
525 		if (ret < 0)
526 			goto out;
527 		if (ret == 0) {
528 			ret = -EIO;
529 			goto out;
530 		}
531 		pos += ret;
532 	}
533 
534 	ret = 0;
535 
536 out:
537 	set_fs(old_fs);
538 	return ret;
539 }
540 
541 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
542 {
543 	struct btrfs_tlv_header *hdr;
544 	int total_len = sizeof(*hdr) + len;
545 	int left = sctx->send_max_size - sctx->send_size;
546 
547 	if (unlikely(left < total_len))
548 		return -EOVERFLOW;
549 
550 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
551 	hdr->tlv_type = cpu_to_le16(attr);
552 	hdr->tlv_len = cpu_to_le16(len);
553 	memcpy(hdr + 1, data, len);
554 	sctx->send_size += total_len;
555 
556 	return 0;
557 }
558 
559 #define TLV_PUT_DEFINE_INT(bits) \
560 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
561 			u##bits attr, u##bits value)			\
562 	{								\
563 		__le##bits __tmp = cpu_to_le##bits(value);		\
564 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
565 	}
566 
567 TLV_PUT_DEFINE_INT(64)
568 
569 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
570 			  const char *str, int len)
571 {
572 	if (len == -1)
573 		len = strlen(str);
574 	return tlv_put(sctx, attr, str, len);
575 }
576 
577 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
578 			const u8 *uuid)
579 {
580 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
581 }
582 
583 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
584 				  struct extent_buffer *eb,
585 				  struct btrfs_timespec *ts)
586 {
587 	struct btrfs_timespec bts;
588 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
589 	return tlv_put(sctx, attr, &bts, sizeof(bts));
590 }
591 
592 
593 #define TLV_PUT(sctx, attrtype, attrlen, data) \
594 	do { \
595 		ret = tlv_put(sctx, attrtype, attrlen, data); \
596 		if (ret < 0) \
597 			goto tlv_put_failure; \
598 	} while (0)
599 
600 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
601 	do { \
602 		ret = tlv_put_u##bits(sctx, attrtype, value); \
603 		if (ret < 0) \
604 			goto tlv_put_failure; \
605 	} while (0)
606 
607 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
608 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
609 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
610 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
611 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
612 	do { \
613 		ret = tlv_put_string(sctx, attrtype, str, len); \
614 		if (ret < 0) \
615 			goto tlv_put_failure; \
616 	} while (0)
617 #define TLV_PUT_PATH(sctx, attrtype, p) \
618 	do { \
619 		ret = tlv_put_string(sctx, attrtype, p->start, \
620 			p->end - p->start); \
621 		if (ret < 0) \
622 			goto tlv_put_failure; \
623 	} while(0)
624 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
625 	do { \
626 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
627 		if (ret < 0) \
628 			goto tlv_put_failure; \
629 	} while (0)
630 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
631 	do { \
632 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 static int send_header(struct send_ctx *sctx)
638 {
639 	struct btrfs_stream_header hdr;
640 
641 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
642 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
643 
644 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
645 					&sctx->send_off);
646 }
647 
648 /*
649  * For each command/item we want to send to userspace, we call this function.
650  */
651 static int begin_cmd(struct send_ctx *sctx, int cmd)
652 {
653 	struct btrfs_cmd_header *hdr;
654 
655 	if (WARN_ON(!sctx->send_buf))
656 		return -EINVAL;
657 
658 	BUG_ON(sctx->send_size);
659 
660 	sctx->send_size += sizeof(*hdr);
661 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
662 	hdr->cmd = cpu_to_le16(cmd);
663 
664 	return 0;
665 }
666 
667 static int send_cmd(struct send_ctx *sctx)
668 {
669 	int ret;
670 	struct btrfs_cmd_header *hdr;
671 	u32 crc;
672 
673 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
675 	hdr->crc = 0;
676 
677 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
678 	hdr->crc = cpu_to_le32(crc);
679 
680 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
681 					&sctx->send_off);
682 
683 	sctx->total_send_size += sctx->send_size;
684 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
685 	sctx->send_size = 0;
686 
687 	return ret;
688 }
689 
690 /*
691  * Sends a move instruction to user space
692  */
693 static int send_rename(struct send_ctx *sctx,
694 		     struct fs_path *from, struct fs_path *to)
695 {
696 	int ret;
697 
698 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
699 
700 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
701 	if (ret < 0)
702 		goto out;
703 
704 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
705 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
706 
707 	ret = send_cmd(sctx);
708 
709 tlv_put_failure:
710 out:
711 	return ret;
712 }
713 
714 /*
715  * Sends a link instruction to user space
716  */
717 static int send_link(struct send_ctx *sctx,
718 		     struct fs_path *path, struct fs_path *lnk)
719 {
720 	int ret;
721 
722 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
723 
724 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
725 	if (ret < 0)
726 		goto out;
727 
728 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
729 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
730 
731 	ret = send_cmd(sctx);
732 
733 tlv_put_failure:
734 out:
735 	return ret;
736 }
737 
738 /*
739  * Sends an unlink instruction to user space
740  */
741 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
742 {
743 	int ret;
744 
745 verbose_printk("btrfs: send_unlink %s\n", path->start);
746 
747 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
748 	if (ret < 0)
749 		goto out;
750 
751 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 
753 	ret = send_cmd(sctx);
754 
755 tlv_put_failure:
756 out:
757 	return ret;
758 }
759 
760 /*
761  * Sends a rmdir instruction to user space
762  */
763 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
764 {
765 	int ret;
766 
767 verbose_printk("btrfs: send_rmdir %s\n", path->start);
768 
769 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
770 	if (ret < 0)
771 		goto out;
772 
773 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
774 
775 	ret = send_cmd(sctx);
776 
777 tlv_put_failure:
778 out:
779 	return ret;
780 }
781 
782 /*
783  * Helper function to retrieve some fields from an inode item.
784  */
785 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
786 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
787 			  u64 *gid, u64 *rdev)
788 {
789 	int ret;
790 	struct btrfs_inode_item *ii;
791 	struct btrfs_key key;
792 
793 	key.objectid = ino;
794 	key.type = BTRFS_INODE_ITEM_KEY;
795 	key.offset = 0;
796 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
797 	if (ret) {
798 		if (ret > 0)
799 			ret = -ENOENT;
800 		return ret;
801 	}
802 
803 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
804 			struct btrfs_inode_item);
805 	if (size)
806 		*size = btrfs_inode_size(path->nodes[0], ii);
807 	if (gen)
808 		*gen = btrfs_inode_generation(path->nodes[0], ii);
809 	if (mode)
810 		*mode = btrfs_inode_mode(path->nodes[0], ii);
811 	if (uid)
812 		*uid = btrfs_inode_uid(path->nodes[0], ii);
813 	if (gid)
814 		*gid = btrfs_inode_gid(path->nodes[0], ii);
815 	if (rdev)
816 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
817 
818 	return ret;
819 }
820 
821 static int get_inode_info(struct btrfs_root *root,
822 			  u64 ino, u64 *size, u64 *gen,
823 			  u64 *mode, u64 *uid, u64 *gid,
824 			  u64 *rdev)
825 {
826 	struct btrfs_path *path;
827 	int ret;
828 
829 	path = alloc_path_for_send();
830 	if (!path)
831 		return -ENOMEM;
832 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
833 			       rdev);
834 	btrfs_free_path(path);
835 	return ret;
836 }
837 
838 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
839 				   struct fs_path *p,
840 				   void *ctx);
841 
842 /*
843  * Helper function to iterate the entries in ONE btrfs_inode_ref or
844  * btrfs_inode_extref.
845  * The iterate callback may return a non zero value to stop iteration. This can
846  * be a negative value for error codes or 1 to simply stop it.
847  *
848  * path must point to the INODE_REF or INODE_EXTREF when called.
849  */
850 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
851 			     struct btrfs_key *found_key, int resolve,
852 			     iterate_inode_ref_t iterate, void *ctx)
853 {
854 	struct extent_buffer *eb = path->nodes[0];
855 	struct btrfs_item *item;
856 	struct btrfs_inode_ref *iref;
857 	struct btrfs_inode_extref *extref;
858 	struct btrfs_path *tmp_path;
859 	struct fs_path *p;
860 	u32 cur = 0;
861 	u32 total;
862 	int slot = path->slots[0];
863 	u32 name_len;
864 	char *start;
865 	int ret = 0;
866 	int num = 0;
867 	int index;
868 	u64 dir;
869 	unsigned long name_off;
870 	unsigned long elem_size;
871 	unsigned long ptr;
872 
873 	p = fs_path_alloc_reversed();
874 	if (!p)
875 		return -ENOMEM;
876 
877 	tmp_path = alloc_path_for_send();
878 	if (!tmp_path) {
879 		fs_path_free(p);
880 		return -ENOMEM;
881 	}
882 
883 
884 	if (found_key->type == BTRFS_INODE_REF_KEY) {
885 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
886 						    struct btrfs_inode_ref);
887 		item = btrfs_item_nr(slot);
888 		total = btrfs_item_size(eb, item);
889 		elem_size = sizeof(*iref);
890 	} else {
891 		ptr = btrfs_item_ptr_offset(eb, slot);
892 		total = btrfs_item_size_nr(eb, slot);
893 		elem_size = sizeof(*extref);
894 	}
895 
896 	while (cur < total) {
897 		fs_path_reset(p);
898 
899 		if (found_key->type == BTRFS_INODE_REF_KEY) {
900 			iref = (struct btrfs_inode_ref *)(ptr + cur);
901 			name_len = btrfs_inode_ref_name_len(eb, iref);
902 			name_off = (unsigned long)(iref + 1);
903 			index = btrfs_inode_ref_index(eb, iref);
904 			dir = found_key->offset;
905 		} else {
906 			extref = (struct btrfs_inode_extref *)(ptr + cur);
907 			name_len = btrfs_inode_extref_name_len(eb, extref);
908 			name_off = (unsigned long)&extref->name;
909 			index = btrfs_inode_extref_index(eb, extref);
910 			dir = btrfs_inode_extref_parent(eb, extref);
911 		}
912 
913 		if (resolve) {
914 			start = btrfs_ref_to_path(root, tmp_path, name_len,
915 						  name_off, eb, dir,
916 						  p->buf, p->buf_len);
917 			if (IS_ERR(start)) {
918 				ret = PTR_ERR(start);
919 				goto out;
920 			}
921 			if (start < p->buf) {
922 				/* overflow , try again with larger buffer */
923 				ret = fs_path_ensure_buf(p,
924 						p->buf_len + p->buf - start);
925 				if (ret < 0)
926 					goto out;
927 				start = btrfs_ref_to_path(root, tmp_path,
928 							  name_len, name_off,
929 							  eb, dir,
930 							  p->buf, p->buf_len);
931 				if (IS_ERR(start)) {
932 					ret = PTR_ERR(start);
933 					goto out;
934 				}
935 				BUG_ON(start < p->buf);
936 			}
937 			p->start = start;
938 		} else {
939 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
940 							     name_len);
941 			if (ret < 0)
942 				goto out;
943 		}
944 
945 		cur += elem_size + name_len;
946 		ret = iterate(num, dir, index, p, ctx);
947 		if (ret)
948 			goto out;
949 		num++;
950 	}
951 
952 out:
953 	btrfs_free_path(tmp_path);
954 	fs_path_free(p);
955 	return ret;
956 }
957 
958 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
959 				  const char *name, int name_len,
960 				  const char *data, int data_len,
961 				  u8 type, void *ctx);
962 
963 /*
964  * Helper function to iterate the entries in ONE btrfs_dir_item.
965  * The iterate callback may return a non zero value to stop iteration. This can
966  * be a negative value for error codes or 1 to simply stop it.
967  *
968  * path must point to the dir item when called.
969  */
970 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
971 			    struct btrfs_key *found_key,
972 			    iterate_dir_item_t iterate, void *ctx)
973 {
974 	int ret = 0;
975 	struct extent_buffer *eb;
976 	struct btrfs_item *item;
977 	struct btrfs_dir_item *di;
978 	struct btrfs_key di_key;
979 	char *buf = NULL;
980 	int buf_len;
981 	u32 name_len;
982 	u32 data_len;
983 	u32 cur;
984 	u32 len;
985 	u32 total;
986 	int slot;
987 	int num;
988 	u8 type;
989 
990 	/*
991 	 * Start with a small buffer (1 page). If later we end up needing more
992 	 * space, which can happen for xattrs on a fs with a leaf size greater
993 	 * then the page size, attempt to increase the buffer. Typically xattr
994 	 * values are small.
995 	 */
996 	buf_len = PATH_MAX;
997 	buf = kmalloc(buf_len, GFP_NOFS);
998 	if (!buf) {
999 		ret = -ENOMEM;
1000 		goto out;
1001 	}
1002 
1003 	eb = path->nodes[0];
1004 	slot = path->slots[0];
1005 	item = btrfs_item_nr(slot);
1006 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1007 	cur = 0;
1008 	len = 0;
1009 	total = btrfs_item_size(eb, item);
1010 
1011 	num = 0;
1012 	while (cur < total) {
1013 		name_len = btrfs_dir_name_len(eb, di);
1014 		data_len = btrfs_dir_data_len(eb, di);
1015 		type = btrfs_dir_type(eb, di);
1016 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1017 
1018 		if (type == BTRFS_FT_XATTR) {
1019 			if (name_len > XATTR_NAME_MAX) {
1020 				ret = -ENAMETOOLONG;
1021 				goto out;
1022 			}
1023 			if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1024 				ret = -E2BIG;
1025 				goto out;
1026 			}
1027 		} else {
1028 			/*
1029 			 * Path too long
1030 			 */
1031 			if (name_len + data_len > PATH_MAX) {
1032 				ret = -ENAMETOOLONG;
1033 				goto out;
1034 			}
1035 		}
1036 
1037 		if (name_len + data_len > buf_len) {
1038 			buf_len = name_len + data_len;
1039 			if (is_vmalloc_addr(buf)) {
1040 				vfree(buf);
1041 				buf = NULL;
1042 			} else {
1043 				char *tmp = krealloc(buf, buf_len,
1044 						     GFP_NOFS | __GFP_NOWARN);
1045 
1046 				if (!tmp)
1047 					kfree(buf);
1048 				buf = tmp;
1049 			}
1050 			if (!buf) {
1051 				buf = vmalloc(buf_len);
1052 				if (!buf) {
1053 					ret = -ENOMEM;
1054 					goto out;
1055 				}
1056 			}
1057 		}
1058 
1059 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1060 				name_len + data_len);
1061 
1062 		len = sizeof(*di) + name_len + data_len;
1063 		di = (struct btrfs_dir_item *)((char *)di + len);
1064 		cur += len;
1065 
1066 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1067 				data_len, type, ctx);
1068 		if (ret < 0)
1069 			goto out;
1070 		if (ret) {
1071 			ret = 0;
1072 			goto out;
1073 		}
1074 
1075 		num++;
1076 	}
1077 
1078 out:
1079 	kvfree(buf);
1080 	return ret;
1081 }
1082 
1083 static int __copy_first_ref(int num, u64 dir, int index,
1084 			    struct fs_path *p, void *ctx)
1085 {
1086 	int ret;
1087 	struct fs_path *pt = ctx;
1088 
1089 	ret = fs_path_copy(pt, p);
1090 	if (ret < 0)
1091 		return ret;
1092 
1093 	/* we want the first only */
1094 	return 1;
1095 }
1096 
1097 /*
1098  * Retrieve the first path of an inode. If an inode has more then one
1099  * ref/hardlink, this is ignored.
1100  */
1101 static int get_inode_path(struct btrfs_root *root,
1102 			  u64 ino, struct fs_path *path)
1103 {
1104 	int ret;
1105 	struct btrfs_key key, found_key;
1106 	struct btrfs_path *p;
1107 
1108 	p = alloc_path_for_send();
1109 	if (!p)
1110 		return -ENOMEM;
1111 
1112 	fs_path_reset(path);
1113 
1114 	key.objectid = ino;
1115 	key.type = BTRFS_INODE_REF_KEY;
1116 	key.offset = 0;
1117 
1118 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1119 	if (ret < 0)
1120 		goto out;
1121 	if (ret) {
1122 		ret = 1;
1123 		goto out;
1124 	}
1125 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1126 	if (found_key.objectid != ino ||
1127 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1128 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1129 		ret = -ENOENT;
1130 		goto out;
1131 	}
1132 
1133 	ret = iterate_inode_ref(root, p, &found_key, 1,
1134 				__copy_first_ref, path);
1135 	if (ret < 0)
1136 		goto out;
1137 	ret = 0;
1138 
1139 out:
1140 	btrfs_free_path(p);
1141 	return ret;
1142 }
1143 
1144 struct backref_ctx {
1145 	struct send_ctx *sctx;
1146 
1147 	struct btrfs_path *path;
1148 	/* number of total found references */
1149 	u64 found;
1150 
1151 	/*
1152 	 * used for clones found in send_root. clones found behind cur_objectid
1153 	 * and cur_offset are not considered as allowed clones.
1154 	 */
1155 	u64 cur_objectid;
1156 	u64 cur_offset;
1157 
1158 	/* may be truncated in case it's the last extent in a file */
1159 	u64 extent_len;
1160 
1161 	/* Just to check for bugs in backref resolving */
1162 	int found_itself;
1163 };
1164 
1165 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1166 {
1167 	u64 root = (u64)(uintptr_t)key;
1168 	struct clone_root *cr = (struct clone_root *)elt;
1169 
1170 	if (root < cr->root->objectid)
1171 		return -1;
1172 	if (root > cr->root->objectid)
1173 		return 1;
1174 	return 0;
1175 }
1176 
1177 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1178 {
1179 	struct clone_root *cr1 = (struct clone_root *)e1;
1180 	struct clone_root *cr2 = (struct clone_root *)e2;
1181 
1182 	if (cr1->root->objectid < cr2->root->objectid)
1183 		return -1;
1184 	if (cr1->root->objectid > cr2->root->objectid)
1185 		return 1;
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Called for every backref that is found for the current extent.
1191  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1192  */
1193 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1194 {
1195 	struct backref_ctx *bctx = ctx_;
1196 	struct clone_root *found;
1197 	int ret;
1198 	u64 i_size;
1199 
1200 	/* First check if the root is in the list of accepted clone sources */
1201 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1202 			bctx->sctx->clone_roots_cnt,
1203 			sizeof(struct clone_root),
1204 			__clone_root_cmp_bsearch);
1205 	if (!found)
1206 		return 0;
1207 
1208 	if (found->root == bctx->sctx->send_root &&
1209 	    ino == bctx->cur_objectid &&
1210 	    offset == bctx->cur_offset) {
1211 		bctx->found_itself = 1;
1212 	}
1213 
1214 	/*
1215 	 * There are inodes that have extents that lie behind its i_size. Don't
1216 	 * accept clones from these extents.
1217 	 */
1218 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1219 			       NULL, NULL, NULL);
1220 	btrfs_release_path(bctx->path);
1221 	if (ret < 0)
1222 		return ret;
1223 
1224 	if (offset + bctx->extent_len > i_size)
1225 		return 0;
1226 
1227 	/*
1228 	 * Make sure we don't consider clones from send_root that are
1229 	 * behind the current inode/offset.
1230 	 */
1231 	if (found->root == bctx->sctx->send_root) {
1232 		/*
1233 		 * TODO for the moment we don't accept clones from the inode
1234 		 * that is currently send. We may change this when
1235 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1236 		 * file.
1237 		 */
1238 		if (ino >= bctx->cur_objectid)
1239 			return 0;
1240 #if 0
1241 		if (ino > bctx->cur_objectid)
1242 			return 0;
1243 		if (offset + bctx->extent_len > bctx->cur_offset)
1244 			return 0;
1245 #endif
1246 	}
1247 
1248 	bctx->found++;
1249 	found->found_refs++;
1250 	if (ino < found->ino) {
1251 		found->ino = ino;
1252 		found->offset = offset;
1253 	} else if (found->ino == ino) {
1254 		/*
1255 		 * same extent found more then once in the same file.
1256 		 */
1257 		if (found->offset > offset + bctx->extent_len)
1258 			found->offset = offset;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /*
1265  * Given an inode, offset and extent item, it finds a good clone for a clone
1266  * instruction. Returns -ENOENT when none could be found. The function makes
1267  * sure that the returned clone is usable at the point where sending is at the
1268  * moment. This means, that no clones are accepted which lie behind the current
1269  * inode+offset.
1270  *
1271  * path must point to the extent item when called.
1272  */
1273 static int find_extent_clone(struct send_ctx *sctx,
1274 			     struct btrfs_path *path,
1275 			     u64 ino, u64 data_offset,
1276 			     u64 ino_size,
1277 			     struct clone_root **found)
1278 {
1279 	int ret;
1280 	int extent_type;
1281 	u64 logical;
1282 	u64 disk_byte;
1283 	u64 num_bytes;
1284 	u64 extent_item_pos;
1285 	u64 flags = 0;
1286 	struct btrfs_file_extent_item *fi;
1287 	struct extent_buffer *eb = path->nodes[0];
1288 	struct backref_ctx *backref_ctx = NULL;
1289 	struct clone_root *cur_clone_root;
1290 	struct btrfs_key found_key;
1291 	struct btrfs_path *tmp_path;
1292 	int compressed;
1293 	u32 i;
1294 
1295 	tmp_path = alloc_path_for_send();
1296 	if (!tmp_path)
1297 		return -ENOMEM;
1298 
1299 	/* We only use this path under the commit sem */
1300 	tmp_path->need_commit_sem = 0;
1301 
1302 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1303 	if (!backref_ctx) {
1304 		ret = -ENOMEM;
1305 		goto out;
1306 	}
1307 
1308 	backref_ctx->path = tmp_path;
1309 
1310 	if (data_offset >= ino_size) {
1311 		/*
1312 		 * There may be extents that lie behind the file's size.
1313 		 * I at least had this in combination with snapshotting while
1314 		 * writing large files.
1315 		 */
1316 		ret = 0;
1317 		goto out;
1318 	}
1319 
1320 	fi = btrfs_item_ptr(eb, path->slots[0],
1321 			struct btrfs_file_extent_item);
1322 	extent_type = btrfs_file_extent_type(eb, fi);
1323 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1324 		ret = -ENOENT;
1325 		goto out;
1326 	}
1327 	compressed = btrfs_file_extent_compression(eb, fi);
1328 
1329 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1330 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1331 	if (disk_byte == 0) {
1332 		ret = -ENOENT;
1333 		goto out;
1334 	}
1335 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1336 
1337 	down_read(&sctx->send_root->fs_info->commit_root_sem);
1338 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1339 				  &found_key, &flags);
1340 	up_read(&sctx->send_root->fs_info->commit_root_sem);
1341 	btrfs_release_path(tmp_path);
1342 
1343 	if (ret < 0)
1344 		goto out;
1345 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1346 		ret = -EIO;
1347 		goto out;
1348 	}
1349 
1350 	/*
1351 	 * Setup the clone roots.
1352 	 */
1353 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1354 		cur_clone_root = sctx->clone_roots + i;
1355 		cur_clone_root->ino = (u64)-1;
1356 		cur_clone_root->offset = 0;
1357 		cur_clone_root->found_refs = 0;
1358 	}
1359 
1360 	backref_ctx->sctx = sctx;
1361 	backref_ctx->found = 0;
1362 	backref_ctx->cur_objectid = ino;
1363 	backref_ctx->cur_offset = data_offset;
1364 	backref_ctx->found_itself = 0;
1365 	backref_ctx->extent_len = num_bytes;
1366 
1367 	/*
1368 	 * The last extent of a file may be too large due to page alignment.
1369 	 * We need to adjust extent_len in this case so that the checks in
1370 	 * __iterate_backrefs work.
1371 	 */
1372 	if (data_offset + num_bytes >= ino_size)
1373 		backref_ctx->extent_len = ino_size - data_offset;
1374 
1375 	/*
1376 	 * Now collect all backrefs.
1377 	 */
1378 	if (compressed == BTRFS_COMPRESS_NONE)
1379 		extent_item_pos = logical - found_key.objectid;
1380 	else
1381 		extent_item_pos = 0;
1382 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1383 					found_key.objectid, extent_item_pos, 1,
1384 					__iterate_backrefs, backref_ctx);
1385 
1386 	if (ret < 0)
1387 		goto out;
1388 
1389 	if (!backref_ctx->found_itself) {
1390 		/* found a bug in backref code? */
1391 		ret = -EIO;
1392 		btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1393 				"send_root. inode=%llu, offset=%llu, "
1394 				"disk_byte=%llu found extent=%llu",
1395 				ino, data_offset, disk_byte, found_key.objectid);
1396 		goto out;
1397 	}
1398 
1399 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1400 		"ino=%llu, "
1401 		"num_bytes=%llu, logical=%llu\n",
1402 		data_offset, ino, num_bytes, logical);
1403 
1404 	if (!backref_ctx->found)
1405 		verbose_printk("btrfs:    no clones found\n");
1406 
1407 	cur_clone_root = NULL;
1408 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1409 		if (sctx->clone_roots[i].found_refs) {
1410 			if (!cur_clone_root)
1411 				cur_clone_root = sctx->clone_roots + i;
1412 			else if (sctx->clone_roots[i].root == sctx->send_root)
1413 				/* prefer clones from send_root over others */
1414 				cur_clone_root = sctx->clone_roots + i;
1415 		}
1416 
1417 	}
1418 
1419 	if (cur_clone_root) {
1420 		if (compressed != BTRFS_COMPRESS_NONE) {
1421 			/*
1422 			 * Offsets given by iterate_extent_inodes() are relative
1423 			 * to the start of the extent, we need to add logical
1424 			 * offset from the file extent item.
1425 			 * (See why at backref.c:check_extent_in_eb())
1426 			 */
1427 			cur_clone_root->offset += btrfs_file_extent_offset(eb,
1428 									   fi);
1429 		}
1430 		*found = cur_clone_root;
1431 		ret = 0;
1432 	} else {
1433 		ret = -ENOENT;
1434 	}
1435 
1436 out:
1437 	btrfs_free_path(tmp_path);
1438 	kfree(backref_ctx);
1439 	return ret;
1440 }
1441 
1442 static int read_symlink(struct btrfs_root *root,
1443 			u64 ino,
1444 			struct fs_path *dest)
1445 {
1446 	int ret;
1447 	struct btrfs_path *path;
1448 	struct btrfs_key key;
1449 	struct btrfs_file_extent_item *ei;
1450 	u8 type;
1451 	u8 compression;
1452 	unsigned long off;
1453 	int len;
1454 
1455 	path = alloc_path_for_send();
1456 	if (!path)
1457 		return -ENOMEM;
1458 
1459 	key.objectid = ino;
1460 	key.type = BTRFS_EXTENT_DATA_KEY;
1461 	key.offset = 0;
1462 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1463 	if (ret < 0)
1464 		goto out;
1465 	BUG_ON(ret);
1466 
1467 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1468 			struct btrfs_file_extent_item);
1469 	type = btrfs_file_extent_type(path->nodes[0], ei);
1470 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1471 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1472 	BUG_ON(compression);
1473 
1474 	off = btrfs_file_extent_inline_start(ei);
1475 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1476 
1477 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1478 
1479 out:
1480 	btrfs_free_path(path);
1481 	return ret;
1482 }
1483 
1484 /*
1485  * Helper function to generate a file name that is unique in the root of
1486  * send_root and parent_root. This is used to generate names for orphan inodes.
1487  */
1488 static int gen_unique_name(struct send_ctx *sctx,
1489 			   u64 ino, u64 gen,
1490 			   struct fs_path *dest)
1491 {
1492 	int ret = 0;
1493 	struct btrfs_path *path;
1494 	struct btrfs_dir_item *di;
1495 	char tmp[64];
1496 	int len;
1497 	u64 idx = 0;
1498 
1499 	path = alloc_path_for_send();
1500 	if (!path)
1501 		return -ENOMEM;
1502 
1503 	while (1) {
1504 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1505 				ino, gen, idx);
1506 		ASSERT(len < sizeof(tmp));
1507 
1508 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1509 				path, BTRFS_FIRST_FREE_OBJECTID,
1510 				tmp, strlen(tmp), 0);
1511 		btrfs_release_path(path);
1512 		if (IS_ERR(di)) {
1513 			ret = PTR_ERR(di);
1514 			goto out;
1515 		}
1516 		if (di) {
1517 			/* not unique, try again */
1518 			idx++;
1519 			continue;
1520 		}
1521 
1522 		if (!sctx->parent_root) {
1523 			/* unique */
1524 			ret = 0;
1525 			break;
1526 		}
1527 
1528 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1529 				path, BTRFS_FIRST_FREE_OBJECTID,
1530 				tmp, strlen(tmp), 0);
1531 		btrfs_release_path(path);
1532 		if (IS_ERR(di)) {
1533 			ret = PTR_ERR(di);
1534 			goto out;
1535 		}
1536 		if (di) {
1537 			/* not unique, try again */
1538 			idx++;
1539 			continue;
1540 		}
1541 		/* unique */
1542 		break;
1543 	}
1544 
1545 	ret = fs_path_add(dest, tmp, strlen(tmp));
1546 
1547 out:
1548 	btrfs_free_path(path);
1549 	return ret;
1550 }
1551 
1552 enum inode_state {
1553 	inode_state_no_change,
1554 	inode_state_will_create,
1555 	inode_state_did_create,
1556 	inode_state_will_delete,
1557 	inode_state_did_delete,
1558 };
1559 
1560 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1561 {
1562 	int ret;
1563 	int left_ret;
1564 	int right_ret;
1565 	u64 left_gen;
1566 	u64 right_gen;
1567 
1568 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1569 			NULL, NULL);
1570 	if (ret < 0 && ret != -ENOENT)
1571 		goto out;
1572 	left_ret = ret;
1573 
1574 	if (!sctx->parent_root) {
1575 		right_ret = -ENOENT;
1576 	} else {
1577 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1578 				NULL, NULL, NULL, NULL);
1579 		if (ret < 0 && ret != -ENOENT)
1580 			goto out;
1581 		right_ret = ret;
1582 	}
1583 
1584 	if (!left_ret && !right_ret) {
1585 		if (left_gen == gen && right_gen == gen) {
1586 			ret = inode_state_no_change;
1587 		} else if (left_gen == gen) {
1588 			if (ino < sctx->send_progress)
1589 				ret = inode_state_did_create;
1590 			else
1591 				ret = inode_state_will_create;
1592 		} else if (right_gen == gen) {
1593 			if (ino < sctx->send_progress)
1594 				ret = inode_state_did_delete;
1595 			else
1596 				ret = inode_state_will_delete;
1597 		} else  {
1598 			ret = -ENOENT;
1599 		}
1600 	} else if (!left_ret) {
1601 		if (left_gen == gen) {
1602 			if (ino < sctx->send_progress)
1603 				ret = inode_state_did_create;
1604 			else
1605 				ret = inode_state_will_create;
1606 		} else {
1607 			ret = -ENOENT;
1608 		}
1609 	} else if (!right_ret) {
1610 		if (right_gen == gen) {
1611 			if (ino < sctx->send_progress)
1612 				ret = inode_state_did_delete;
1613 			else
1614 				ret = inode_state_will_delete;
1615 		} else {
1616 			ret = -ENOENT;
1617 		}
1618 	} else {
1619 		ret = -ENOENT;
1620 	}
1621 
1622 out:
1623 	return ret;
1624 }
1625 
1626 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1627 {
1628 	int ret;
1629 
1630 	ret = get_cur_inode_state(sctx, ino, gen);
1631 	if (ret < 0)
1632 		goto out;
1633 
1634 	if (ret == inode_state_no_change ||
1635 	    ret == inode_state_did_create ||
1636 	    ret == inode_state_will_delete)
1637 		ret = 1;
1638 	else
1639 		ret = 0;
1640 
1641 out:
1642 	return ret;
1643 }
1644 
1645 /*
1646  * Helper function to lookup a dir item in a dir.
1647  */
1648 static int lookup_dir_item_inode(struct btrfs_root *root,
1649 				 u64 dir, const char *name, int name_len,
1650 				 u64 *found_inode,
1651 				 u8 *found_type)
1652 {
1653 	int ret = 0;
1654 	struct btrfs_dir_item *di;
1655 	struct btrfs_key key;
1656 	struct btrfs_path *path;
1657 
1658 	path = alloc_path_for_send();
1659 	if (!path)
1660 		return -ENOMEM;
1661 
1662 	di = btrfs_lookup_dir_item(NULL, root, path,
1663 			dir, name, name_len, 0);
1664 	if (!di) {
1665 		ret = -ENOENT;
1666 		goto out;
1667 	}
1668 	if (IS_ERR(di)) {
1669 		ret = PTR_ERR(di);
1670 		goto out;
1671 	}
1672 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1673 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1674 		ret = -ENOENT;
1675 		goto out;
1676 	}
1677 	*found_inode = key.objectid;
1678 	*found_type = btrfs_dir_type(path->nodes[0], di);
1679 
1680 out:
1681 	btrfs_free_path(path);
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1687  * generation of the parent dir and the name of the dir entry.
1688  */
1689 static int get_first_ref(struct btrfs_root *root, u64 ino,
1690 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1691 {
1692 	int ret;
1693 	struct btrfs_key key;
1694 	struct btrfs_key found_key;
1695 	struct btrfs_path *path;
1696 	int len;
1697 	u64 parent_dir;
1698 
1699 	path = alloc_path_for_send();
1700 	if (!path)
1701 		return -ENOMEM;
1702 
1703 	key.objectid = ino;
1704 	key.type = BTRFS_INODE_REF_KEY;
1705 	key.offset = 0;
1706 
1707 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1708 	if (ret < 0)
1709 		goto out;
1710 	if (!ret)
1711 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1712 				path->slots[0]);
1713 	if (ret || found_key.objectid != ino ||
1714 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1715 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1716 		ret = -ENOENT;
1717 		goto out;
1718 	}
1719 
1720 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1721 		struct btrfs_inode_ref *iref;
1722 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1723 				      struct btrfs_inode_ref);
1724 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1725 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1726 						     (unsigned long)(iref + 1),
1727 						     len);
1728 		parent_dir = found_key.offset;
1729 	} else {
1730 		struct btrfs_inode_extref *extref;
1731 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1732 					struct btrfs_inode_extref);
1733 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1734 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1735 					(unsigned long)&extref->name, len);
1736 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1737 	}
1738 	if (ret < 0)
1739 		goto out;
1740 	btrfs_release_path(path);
1741 
1742 	if (dir_gen) {
1743 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1744 				     NULL, NULL, NULL);
1745 		if (ret < 0)
1746 			goto out;
1747 	}
1748 
1749 	*dir = parent_dir;
1750 
1751 out:
1752 	btrfs_free_path(path);
1753 	return ret;
1754 }
1755 
1756 static int is_first_ref(struct btrfs_root *root,
1757 			u64 ino, u64 dir,
1758 			const char *name, int name_len)
1759 {
1760 	int ret;
1761 	struct fs_path *tmp_name;
1762 	u64 tmp_dir;
1763 
1764 	tmp_name = fs_path_alloc();
1765 	if (!tmp_name)
1766 		return -ENOMEM;
1767 
1768 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1769 	if (ret < 0)
1770 		goto out;
1771 
1772 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1773 		ret = 0;
1774 		goto out;
1775 	}
1776 
1777 	ret = !memcmp(tmp_name->start, name, name_len);
1778 
1779 out:
1780 	fs_path_free(tmp_name);
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Used by process_recorded_refs to determine if a new ref would overwrite an
1786  * already existing ref. In case it detects an overwrite, it returns the
1787  * inode/gen in who_ino/who_gen.
1788  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1789  * to make sure later references to the overwritten inode are possible.
1790  * Orphanizing is however only required for the first ref of an inode.
1791  * process_recorded_refs does an additional is_first_ref check to see if
1792  * orphanizing is really required.
1793  */
1794 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1795 			      const char *name, int name_len,
1796 			      u64 *who_ino, u64 *who_gen)
1797 {
1798 	int ret = 0;
1799 	u64 gen;
1800 	u64 other_inode = 0;
1801 	u8 other_type = 0;
1802 
1803 	if (!sctx->parent_root)
1804 		goto out;
1805 
1806 	ret = is_inode_existent(sctx, dir, dir_gen);
1807 	if (ret <= 0)
1808 		goto out;
1809 
1810 	/*
1811 	 * If we have a parent root we need to verify that the parent dir was
1812 	 * not delted and then re-created, if it was then we have no overwrite
1813 	 * and we can just unlink this entry.
1814 	 */
1815 	if (sctx->parent_root) {
1816 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1817 				     NULL, NULL, NULL);
1818 		if (ret < 0 && ret != -ENOENT)
1819 			goto out;
1820 		if (ret) {
1821 			ret = 0;
1822 			goto out;
1823 		}
1824 		if (gen != dir_gen)
1825 			goto out;
1826 	}
1827 
1828 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1829 			&other_inode, &other_type);
1830 	if (ret < 0 && ret != -ENOENT)
1831 		goto out;
1832 	if (ret) {
1833 		ret = 0;
1834 		goto out;
1835 	}
1836 
1837 	/*
1838 	 * Check if the overwritten ref was already processed. If yes, the ref
1839 	 * was already unlinked/moved, so we can safely assume that we will not
1840 	 * overwrite anything at this point in time.
1841 	 */
1842 	if (other_inode > sctx->send_progress) {
1843 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1844 				who_gen, NULL, NULL, NULL, NULL);
1845 		if (ret < 0)
1846 			goto out;
1847 
1848 		ret = 1;
1849 		*who_ino = other_inode;
1850 	} else {
1851 		ret = 0;
1852 	}
1853 
1854 out:
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Checks if the ref was overwritten by an already processed inode. This is
1860  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1861  * thus the orphan name needs be used.
1862  * process_recorded_refs also uses it to avoid unlinking of refs that were
1863  * overwritten.
1864  */
1865 static int did_overwrite_ref(struct send_ctx *sctx,
1866 			    u64 dir, u64 dir_gen,
1867 			    u64 ino, u64 ino_gen,
1868 			    const char *name, int name_len)
1869 {
1870 	int ret = 0;
1871 	u64 gen;
1872 	u64 ow_inode;
1873 	u8 other_type;
1874 
1875 	if (!sctx->parent_root)
1876 		goto out;
1877 
1878 	ret = is_inode_existent(sctx, dir, dir_gen);
1879 	if (ret <= 0)
1880 		goto out;
1881 
1882 	/* check if the ref was overwritten by another ref */
1883 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1884 			&ow_inode, &other_type);
1885 	if (ret < 0 && ret != -ENOENT)
1886 		goto out;
1887 	if (ret) {
1888 		/* was never and will never be overwritten */
1889 		ret = 0;
1890 		goto out;
1891 	}
1892 
1893 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1894 			NULL, NULL);
1895 	if (ret < 0)
1896 		goto out;
1897 
1898 	if (ow_inode == ino && gen == ino_gen) {
1899 		ret = 0;
1900 		goto out;
1901 	}
1902 
1903 	/* we know that it is or will be overwritten. check this now */
1904 	if (ow_inode < sctx->send_progress)
1905 		ret = 1;
1906 	else
1907 		ret = 0;
1908 
1909 out:
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1915  * that got overwritten. This is used by process_recorded_refs to determine
1916  * if it has to use the path as returned by get_cur_path or the orphan name.
1917  */
1918 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1919 {
1920 	int ret = 0;
1921 	struct fs_path *name = NULL;
1922 	u64 dir;
1923 	u64 dir_gen;
1924 
1925 	if (!sctx->parent_root)
1926 		goto out;
1927 
1928 	name = fs_path_alloc();
1929 	if (!name)
1930 		return -ENOMEM;
1931 
1932 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1933 	if (ret < 0)
1934 		goto out;
1935 
1936 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1937 			name->start, fs_path_len(name));
1938 
1939 out:
1940 	fs_path_free(name);
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1946  * so we need to do some special handling in case we have clashes. This function
1947  * takes care of this with the help of name_cache_entry::radix_list.
1948  * In case of error, nce is kfreed.
1949  */
1950 static int name_cache_insert(struct send_ctx *sctx,
1951 			     struct name_cache_entry *nce)
1952 {
1953 	int ret = 0;
1954 	struct list_head *nce_head;
1955 
1956 	nce_head = radix_tree_lookup(&sctx->name_cache,
1957 			(unsigned long)nce->ino);
1958 	if (!nce_head) {
1959 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1960 		if (!nce_head) {
1961 			kfree(nce);
1962 			return -ENOMEM;
1963 		}
1964 		INIT_LIST_HEAD(nce_head);
1965 
1966 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1967 		if (ret < 0) {
1968 			kfree(nce_head);
1969 			kfree(nce);
1970 			return ret;
1971 		}
1972 	}
1973 	list_add_tail(&nce->radix_list, nce_head);
1974 	list_add_tail(&nce->list, &sctx->name_cache_list);
1975 	sctx->name_cache_size++;
1976 
1977 	return ret;
1978 }
1979 
1980 static void name_cache_delete(struct send_ctx *sctx,
1981 			      struct name_cache_entry *nce)
1982 {
1983 	struct list_head *nce_head;
1984 
1985 	nce_head = radix_tree_lookup(&sctx->name_cache,
1986 			(unsigned long)nce->ino);
1987 	if (!nce_head) {
1988 		btrfs_err(sctx->send_root->fs_info,
1989 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
1990 			nce->ino, sctx->name_cache_size);
1991 	}
1992 
1993 	list_del(&nce->radix_list);
1994 	list_del(&nce->list);
1995 	sctx->name_cache_size--;
1996 
1997 	/*
1998 	 * We may not get to the final release of nce_head if the lookup fails
1999 	 */
2000 	if (nce_head && list_empty(nce_head)) {
2001 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2002 		kfree(nce_head);
2003 	}
2004 }
2005 
2006 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2007 						    u64 ino, u64 gen)
2008 {
2009 	struct list_head *nce_head;
2010 	struct name_cache_entry *cur;
2011 
2012 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2013 	if (!nce_head)
2014 		return NULL;
2015 
2016 	list_for_each_entry(cur, nce_head, radix_list) {
2017 		if (cur->ino == ino && cur->gen == gen)
2018 			return cur;
2019 	}
2020 	return NULL;
2021 }
2022 
2023 /*
2024  * Removes the entry from the list and adds it back to the end. This marks the
2025  * entry as recently used so that name_cache_clean_unused does not remove it.
2026  */
2027 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2028 {
2029 	list_del(&nce->list);
2030 	list_add_tail(&nce->list, &sctx->name_cache_list);
2031 }
2032 
2033 /*
2034  * Remove some entries from the beginning of name_cache_list.
2035  */
2036 static void name_cache_clean_unused(struct send_ctx *sctx)
2037 {
2038 	struct name_cache_entry *nce;
2039 
2040 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2041 		return;
2042 
2043 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2044 		nce = list_entry(sctx->name_cache_list.next,
2045 				struct name_cache_entry, list);
2046 		name_cache_delete(sctx, nce);
2047 		kfree(nce);
2048 	}
2049 }
2050 
2051 static void name_cache_free(struct send_ctx *sctx)
2052 {
2053 	struct name_cache_entry *nce;
2054 
2055 	while (!list_empty(&sctx->name_cache_list)) {
2056 		nce = list_entry(sctx->name_cache_list.next,
2057 				struct name_cache_entry, list);
2058 		name_cache_delete(sctx, nce);
2059 		kfree(nce);
2060 	}
2061 }
2062 
2063 /*
2064  * Used by get_cur_path for each ref up to the root.
2065  * Returns 0 if it succeeded.
2066  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2067  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2068  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2069  * Returns <0 in case of error.
2070  */
2071 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2072 				     u64 ino, u64 gen,
2073 				     u64 *parent_ino,
2074 				     u64 *parent_gen,
2075 				     struct fs_path *dest)
2076 {
2077 	int ret;
2078 	int nce_ret;
2079 	struct name_cache_entry *nce = NULL;
2080 
2081 	/*
2082 	 * First check if we already did a call to this function with the same
2083 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2084 	 * return the cached result.
2085 	 */
2086 	nce = name_cache_search(sctx, ino, gen);
2087 	if (nce) {
2088 		if (ino < sctx->send_progress && nce->need_later_update) {
2089 			name_cache_delete(sctx, nce);
2090 			kfree(nce);
2091 			nce = NULL;
2092 		} else {
2093 			name_cache_used(sctx, nce);
2094 			*parent_ino = nce->parent_ino;
2095 			*parent_gen = nce->parent_gen;
2096 			ret = fs_path_add(dest, nce->name, nce->name_len);
2097 			if (ret < 0)
2098 				goto out;
2099 			ret = nce->ret;
2100 			goto out;
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * If the inode is not existent yet, add the orphan name and return 1.
2106 	 * This should only happen for the parent dir that we determine in
2107 	 * __record_new_ref
2108 	 */
2109 	ret = is_inode_existent(sctx, ino, gen);
2110 	if (ret < 0)
2111 		goto out;
2112 
2113 	if (!ret) {
2114 		ret = gen_unique_name(sctx, ino, gen, dest);
2115 		if (ret < 0)
2116 			goto out;
2117 		ret = 1;
2118 		goto out_cache;
2119 	}
2120 
2121 	/*
2122 	 * Depending on whether the inode was already processed or not, use
2123 	 * send_root or parent_root for ref lookup.
2124 	 */
2125 	if (ino < sctx->send_progress)
2126 		ret = get_first_ref(sctx->send_root, ino,
2127 				    parent_ino, parent_gen, dest);
2128 	else
2129 		ret = get_first_ref(sctx->parent_root, ino,
2130 				    parent_ino, parent_gen, dest);
2131 	if (ret < 0)
2132 		goto out;
2133 
2134 	/*
2135 	 * Check if the ref was overwritten by an inode's ref that was processed
2136 	 * earlier. If yes, treat as orphan and return 1.
2137 	 */
2138 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2139 			dest->start, dest->end - dest->start);
2140 	if (ret < 0)
2141 		goto out;
2142 	if (ret) {
2143 		fs_path_reset(dest);
2144 		ret = gen_unique_name(sctx, ino, gen, dest);
2145 		if (ret < 0)
2146 			goto out;
2147 		ret = 1;
2148 	}
2149 
2150 out_cache:
2151 	/*
2152 	 * Store the result of the lookup in the name cache.
2153 	 */
2154 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2155 	if (!nce) {
2156 		ret = -ENOMEM;
2157 		goto out;
2158 	}
2159 
2160 	nce->ino = ino;
2161 	nce->gen = gen;
2162 	nce->parent_ino = *parent_ino;
2163 	nce->parent_gen = *parent_gen;
2164 	nce->name_len = fs_path_len(dest);
2165 	nce->ret = ret;
2166 	strcpy(nce->name, dest->start);
2167 
2168 	if (ino < sctx->send_progress)
2169 		nce->need_later_update = 0;
2170 	else
2171 		nce->need_later_update = 1;
2172 
2173 	nce_ret = name_cache_insert(sctx, nce);
2174 	if (nce_ret < 0)
2175 		ret = nce_ret;
2176 	name_cache_clean_unused(sctx);
2177 
2178 out:
2179 	return ret;
2180 }
2181 
2182 /*
2183  * Magic happens here. This function returns the first ref to an inode as it
2184  * would look like while receiving the stream at this point in time.
2185  * We walk the path up to the root. For every inode in between, we check if it
2186  * was already processed/sent. If yes, we continue with the parent as found
2187  * in send_root. If not, we continue with the parent as found in parent_root.
2188  * If we encounter an inode that was deleted at this point in time, we use the
2189  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2190  * that were not created yet and overwritten inodes/refs.
2191  *
2192  * When do we have have orphan inodes:
2193  * 1. When an inode is freshly created and thus no valid refs are available yet
2194  * 2. When a directory lost all it's refs (deleted) but still has dir items
2195  *    inside which were not processed yet (pending for move/delete). If anyone
2196  *    tried to get the path to the dir items, it would get a path inside that
2197  *    orphan directory.
2198  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2199  *    of an unprocessed inode. If in that case the first ref would be
2200  *    overwritten, the overwritten inode gets "orphanized". Later when we
2201  *    process this overwritten inode, it is restored at a new place by moving
2202  *    the orphan inode.
2203  *
2204  * sctx->send_progress tells this function at which point in time receiving
2205  * would be.
2206  */
2207 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2208 			struct fs_path *dest)
2209 {
2210 	int ret = 0;
2211 	struct fs_path *name = NULL;
2212 	u64 parent_inode = 0;
2213 	u64 parent_gen = 0;
2214 	int stop = 0;
2215 
2216 	name = fs_path_alloc();
2217 	if (!name) {
2218 		ret = -ENOMEM;
2219 		goto out;
2220 	}
2221 
2222 	dest->reversed = 1;
2223 	fs_path_reset(dest);
2224 
2225 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2226 		fs_path_reset(name);
2227 
2228 		if (is_waiting_for_rm(sctx, ino)) {
2229 			ret = gen_unique_name(sctx, ino, gen, name);
2230 			if (ret < 0)
2231 				goto out;
2232 			ret = fs_path_add_path(dest, name);
2233 			break;
2234 		}
2235 
2236 		if (is_waiting_for_move(sctx, ino)) {
2237 			ret = get_first_ref(sctx->parent_root, ino,
2238 					    &parent_inode, &parent_gen, name);
2239 		} else {
2240 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2241 							&parent_inode,
2242 							&parent_gen, name);
2243 			if (ret)
2244 				stop = 1;
2245 		}
2246 
2247 		if (ret < 0)
2248 			goto out;
2249 
2250 		ret = fs_path_add_path(dest, name);
2251 		if (ret < 0)
2252 			goto out;
2253 
2254 		ino = parent_inode;
2255 		gen = parent_gen;
2256 	}
2257 
2258 out:
2259 	fs_path_free(name);
2260 	if (!ret)
2261 		fs_path_unreverse(dest);
2262 	return ret;
2263 }
2264 
2265 /*
2266  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2267  */
2268 static int send_subvol_begin(struct send_ctx *sctx)
2269 {
2270 	int ret;
2271 	struct btrfs_root *send_root = sctx->send_root;
2272 	struct btrfs_root *parent_root = sctx->parent_root;
2273 	struct btrfs_path *path;
2274 	struct btrfs_key key;
2275 	struct btrfs_root_ref *ref;
2276 	struct extent_buffer *leaf;
2277 	char *name = NULL;
2278 	int namelen;
2279 
2280 	path = btrfs_alloc_path();
2281 	if (!path)
2282 		return -ENOMEM;
2283 
2284 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2285 	if (!name) {
2286 		btrfs_free_path(path);
2287 		return -ENOMEM;
2288 	}
2289 
2290 	key.objectid = send_root->objectid;
2291 	key.type = BTRFS_ROOT_BACKREF_KEY;
2292 	key.offset = 0;
2293 
2294 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2295 				&key, path, 1, 0);
2296 	if (ret < 0)
2297 		goto out;
2298 	if (ret) {
2299 		ret = -ENOENT;
2300 		goto out;
2301 	}
2302 
2303 	leaf = path->nodes[0];
2304 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2305 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2306 	    key.objectid != send_root->objectid) {
2307 		ret = -ENOENT;
2308 		goto out;
2309 	}
2310 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2311 	namelen = btrfs_root_ref_name_len(leaf, ref);
2312 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2313 	btrfs_release_path(path);
2314 
2315 	if (parent_root) {
2316 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2317 		if (ret < 0)
2318 			goto out;
2319 	} else {
2320 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2321 		if (ret < 0)
2322 			goto out;
2323 	}
2324 
2325 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2326 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2327 			sctx->send_root->root_item.uuid);
2328 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2329 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2330 	if (parent_root) {
2331 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2332 				sctx->parent_root->root_item.uuid);
2333 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2334 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2335 	}
2336 
2337 	ret = send_cmd(sctx);
2338 
2339 tlv_put_failure:
2340 out:
2341 	btrfs_free_path(path);
2342 	kfree(name);
2343 	return ret;
2344 }
2345 
2346 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2347 {
2348 	int ret = 0;
2349 	struct fs_path *p;
2350 
2351 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2352 
2353 	p = fs_path_alloc();
2354 	if (!p)
2355 		return -ENOMEM;
2356 
2357 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2358 	if (ret < 0)
2359 		goto out;
2360 
2361 	ret = get_cur_path(sctx, ino, gen, p);
2362 	if (ret < 0)
2363 		goto out;
2364 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2365 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2366 
2367 	ret = send_cmd(sctx);
2368 
2369 tlv_put_failure:
2370 out:
2371 	fs_path_free(p);
2372 	return ret;
2373 }
2374 
2375 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2376 {
2377 	int ret = 0;
2378 	struct fs_path *p;
2379 
2380 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2381 
2382 	p = fs_path_alloc();
2383 	if (!p)
2384 		return -ENOMEM;
2385 
2386 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2387 	if (ret < 0)
2388 		goto out;
2389 
2390 	ret = get_cur_path(sctx, ino, gen, p);
2391 	if (ret < 0)
2392 		goto out;
2393 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2394 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2395 
2396 	ret = send_cmd(sctx);
2397 
2398 tlv_put_failure:
2399 out:
2400 	fs_path_free(p);
2401 	return ret;
2402 }
2403 
2404 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2405 {
2406 	int ret = 0;
2407 	struct fs_path *p;
2408 
2409 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2410 
2411 	p = fs_path_alloc();
2412 	if (!p)
2413 		return -ENOMEM;
2414 
2415 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2416 	if (ret < 0)
2417 		goto out;
2418 
2419 	ret = get_cur_path(sctx, ino, gen, p);
2420 	if (ret < 0)
2421 		goto out;
2422 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2423 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2424 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2425 
2426 	ret = send_cmd(sctx);
2427 
2428 tlv_put_failure:
2429 out:
2430 	fs_path_free(p);
2431 	return ret;
2432 }
2433 
2434 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2435 {
2436 	int ret = 0;
2437 	struct fs_path *p = NULL;
2438 	struct btrfs_inode_item *ii;
2439 	struct btrfs_path *path = NULL;
2440 	struct extent_buffer *eb;
2441 	struct btrfs_key key;
2442 	int slot;
2443 
2444 verbose_printk("btrfs: send_utimes %llu\n", ino);
2445 
2446 	p = fs_path_alloc();
2447 	if (!p)
2448 		return -ENOMEM;
2449 
2450 	path = alloc_path_for_send();
2451 	if (!path) {
2452 		ret = -ENOMEM;
2453 		goto out;
2454 	}
2455 
2456 	key.objectid = ino;
2457 	key.type = BTRFS_INODE_ITEM_KEY;
2458 	key.offset = 0;
2459 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2460 	if (ret < 0)
2461 		goto out;
2462 
2463 	eb = path->nodes[0];
2464 	slot = path->slots[0];
2465 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2466 
2467 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2468 	if (ret < 0)
2469 		goto out;
2470 
2471 	ret = get_cur_path(sctx, ino, gen, p);
2472 	if (ret < 0)
2473 		goto out;
2474 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2475 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2476 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2477 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2478 	/* TODO Add otime support when the otime patches get into upstream */
2479 
2480 	ret = send_cmd(sctx);
2481 
2482 tlv_put_failure:
2483 out:
2484 	fs_path_free(p);
2485 	btrfs_free_path(path);
2486 	return ret;
2487 }
2488 
2489 /*
2490  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2491  * a valid path yet because we did not process the refs yet. So, the inode
2492  * is created as orphan.
2493  */
2494 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2495 {
2496 	int ret = 0;
2497 	struct fs_path *p;
2498 	int cmd;
2499 	u64 gen;
2500 	u64 mode;
2501 	u64 rdev;
2502 
2503 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2504 
2505 	p = fs_path_alloc();
2506 	if (!p)
2507 		return -ENOMEM;
2508 
2509 	if (ino != sctx->cur_ino) {
2510 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2511 				     NULL, NULL, &rdev);
2512 		if (ret < 0)
2513 			goto out;
2514 	} else {
2515 		gen = sctx->cur_inode_gen;
2516 		mode = sctx->cur_inode_mode;
2517 		rdev = sctx->cur_inode_rdev;
2518 	}
2519 
2520 	if (S_ISREG(mode)) {
2521 		cmd = BTRFS_SEND_C_MKFILE;
2522 	} else if (S_ISDIR(mode)) {
2523 		cmd = BTRFS_SEND_C_MKDIR;
2524 	} else if (S_ISLNK(mode)) {
2525 		cmd = BTRFS_SEND_C_SYMLINK;
2526 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2527 		cmd = BTRFS_SEND_C_MKNOD;
2528 	} else if (S_ISFIFO(mode)) {
2529 		cmd = BTRFS_SEND_C_MKFIFO;
2530 	} else if (S_ISSOCK(mode)) {
2531 		cmd = BTRFS_SEND_C_MKSOCK;
2532 	} else {
2533 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2534 				(int)(mode & S_IFMT));
2535 		ret = -ENOTSUPP;
2536 		goto out;
2537 	}
2538 
2539 	ret = begin_cmd(sctx, cmd);
2540 	if (ret < 0)
2541 		goto out;
2542 
2543 	ret = gen_unique_name(sctx, ino, gen, p);
2544 	if (ret < 0)
2545 		goto out;
2546 
2547 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2548 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2549 
2550 	if (S_ISLNK(mode)) {
2551 		fs_path_reset(p);
2552 		ret = read_symlink(sctx->send_root, ino, p);
2553 		if (ret < 0)
2554 			goto out;
2555 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2556 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2557 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2558 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2559 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2560 	}
2561 
2562 	ret = send_cmd(sctx);
2563 	if (ret < 0)
2564 		goto out;
2565 
2566 
2567 tlv_put_failure:
2568 out:
2569 	fs_path_free(p);
2570 	return ret;
2571 }
2572 
2573 /*
2574  * We need some special handling for inodes that get processed before the parent
2575  * directory got created. See process_recorded_refs for details.
2576  * This function does the check if we already created the dir out of order.
2577  */
2578 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2579 {
2580 	int ret = 0;
2581 	struct btrfs_path *path = NULL;
2582 	struct btrfs_key key;
2583 	struct btrfs_key found_key;
2584 	struct btrfs_key di_key;
2585 	struct extent_buffer *eb;
2586 	struct btrfs_dir_item *di;
2587 	int slot;
2588 
2589 	path = alloc_path_for_send();
2590 	if (!path) {
2591 		ret = -ENOMEM;
2592 		goto out;
2593 	}
2594 
2595 	key.objectid = dir;
2596 	key.type = BTRFS_DIR_INDEX_KEY;
2597 	key.offset = 0;
2598 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2599 	if (ret < 0)
2600 		goto out;
2601 
2602 	while (1) {
2603 		eb = path->nodes[0];
2604 		slot = path->slots[0];
2605 		if (slot >= btrfs_header_nritems(eb)) {
2606 			ret = btrfs_next_leaf(sctx->send_root, path);
2607 			if (ret < 0) {
2608 				goto out;
2609 			} else if (ret > 0) {
2610 				ret = 0;
2611 				break;
2612 			}
2613 			continue;
2614 		}
2615 
2616 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2617 		if (found_key.objectid != key.objectid ||
2618 		    found_key.type != key.type) {
2619 			ret = 0;
2620 			goto out;
2621 		}
2622 
2623 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2624 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2625 
2626 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2627 		    di_key.objectid < sctx->send_progress) {
2628 			ret = 1;
2629 			goto out;
2630 		}
2631 
2632 		path->slots[0]++;
2633 	}
2634 
2635 out:
2636 	btrfs_free_path(path);
2637 	return ret;
2638 }
2639 
2640 /*
2641  * Only creates the inode if it is:
2642  * 1. Not a directory
2643  * 2. Or a directory which was not created already due to out of order
2644  *    directories. See did_create_dir and process_recorded_refs for details.
2645  */
2646 static int send_create_inode_if_needed(struct send_ctx *sctx)
2647 {
2648 	int ret;
2649 
2650 	if (S_ISDIR(sctx->cur_inode_mode)) {
2651 		ret = did_create_dir(sctx, sctx->cur_ino);
2652 		if (ret < 0)
2653 			goto out;
2654 		if (ret) {
2655 			ret = 0;
2656 			goto out;
2657 		}
2658 	}
2659 
2660 	ret = send_create_inode(sctx, sctx->cur_ino);
2661 	if (ret < 0)
2662 		goto out;
2663 
2664 out:
2665 	return ret;
2666 }
2667 
2668 struct recorded_ref {
2669 	struct list_head list;
2670 	char *dir_path;
2671 	char *name;
2672 	struct fs_path *full_path;
2673 	u64 dir;
2674 	u64 dir_gen;
2675 	int dir_path_len;
2676 	int name_len;
2677 };
2678 
2679 /*
2680  * We need to process new refs before deleted refs, but compare_tree gives us
2681  * everything mixed. So we first record all refs and later process them.
2682  * This function is a helper to record one ref.
2683  */
2684 static int __record_ref(struct list_head *head, u64 dir,
2685 		      u64 dir_gen, struct fs_path *path)
2686 {
2687 	struct recorded_ref *ref;
2688 
2689 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2690 	if (!ref)
2691 		return -ENOMEM;
2692 
2693 	ref->dir = dir;
2694 	ref->dir_gen = dir_gen;
2695 	ref->full_path = path;
2696 
2697 	ref->name = (char *)kbasename(ref->full_path->start);
2698 	ref->name_len = ref->full_path->end - ref->name;
2699 	ref->dir_path = ref->full_path->start;
2700 	if (ref->name == ref->full_path->start)
2701 		ref->dir_path_len = 0;
2702 	else
2703 		ref->dir_path_len = ref->full_path->end -
2704 				ref->full_path->start - 1 - ref->name_len;
2705 
2706 	list_add_tail(&ref->list, head);
2707 	return 0;
2708 }
2709 
2710 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2711 {
2712 	struct recorded_ref *new;
2713 
2714 	new = kmalloc(sizeof(*ref), GFP_NOFS);
2715 	if (!new)
2716 		return -ENOMEM;
2717 
2718 	new->dir = ref->dir;
2719 	new->dir_gen = ref->dir_gen;
2720 	new->full_path = NULL;
2721 	INIT_LIST_HEAD(&new->list);
2722 	list_add_tail(&new->list, list);
2723 	return 0;
2724 }
2725 
2726 static void __free_recorded_refs(struct list_head *head)
2727 {
2728 	struct recorded_ref *cur;
2729 
2730 	while (!list_empty(head)) {
2731 		cur = list_entry(head->next, struct recorded_ref, list);
2732 		fs_path_free(cur->full_path);
2733 		list_del(&cur->list);
2734 		kfree(cur);
2735 	}
2736 }
2737 
2738 static void free_recorded_refs(struct send_ctx *sctx)
2739 {
2740 	__free_recorded_refs(&sctx->new_refs);
2741 	__free_recorded_refs(&sctx->deleted_refs);
2742 }
2743 
2744 /*
2745  * Renames/moves a file/dir to its orphan name. Used when the first
2746  * ref of an unprocessed inode gets overwritten and for all non empty
2747  * directories.
2748  */
2749 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2750 			  struct fs_path *path)
2751 {
2752 	int ret;
2753 	struct fs_path *orphan;
2754 
2755 	orphan = fs_path_alloc();
2756 	if (!orphan)
2757 		return -ENOMEM;
2758 
2759 	ret = gen_unique_name(sctx, ino, gen, orphan);
2760 	if (ret < 0)
2761 		goto out;
2762 
2763 	ret = send_rename(sctx, path, orphan);
2764 
2765 out:
2766 	fs_path_free(orphan);
2767 	return ret;
2768 }
2769 
2770 static struct orphan_dir_info *
2771 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2772 {
2773 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2774 	struct rb_node *parent = NULL;
2775 	struct orphan_dir_info *entry, *odi;
2776 
2777 	odi = kmalloc(sizeof(*odi), GFP_NOFS);
2778 	if (!odi)
2779 		return ERR_PTR(-ENOMEM);
2780 	odi->ino = dir_ino;
2781 	odi->gen = 0;
2782 
2783 	while (*p) {
2784 		parent = *p;
2785 		entry = rb_entry(parent, struct orphan_dir_info, node);
2786 		if (dir_ino < entry->ino) {
2787 			p = &(*p)->rb_left;
2788 		} else if (dir_ino > entry->ino) {
2789 			p = &(*p)->rb_right;
2790 		} else {
2791 			kfree(odi);
2792 			return entry;
2793 		}
2794 	}
2795 
2796 	rb_link_node(&odi->node, parent, p);
2797 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2798 	return odi;
2799 }
2800 
2801 static struct orphan_dir_info *
2802 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2803 {
2804 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2805 	struct orphan_dir_info *entry;
2806 
2807 	while (n) {
2808 		entry = rb_entry(n, struct orphan_dir_info, node);
2809 		if (dir_ino < entry->ino)
2810 			n = n->rb_left;
2811 		else if (dir_ino > entry->ino)
2812 			n = n->rb_right;
2813 		else
2814 			return entry;
2815 	}
2816 	return NULL;
2817 }
2818 
2819 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2820 {
2821 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2822 
2823 	return odi != NULL;
2824 }
2825 
2826 static void free_orphan_dir_info(struct send_ctx *sctx,
2827 				 struct orphan_dir_info *odi)
2828 {
2829 	if (!odi)
2830 		return;
2831 	rb_erase(&odi->node, &sctx->orphan_dirs);
2832 	kfree(odi);
2833 }
2834 
2835 /*
2836  * Returns 1 if a directory can be removed at this point in time.
2837  * We check this by iterating all dir items and checking if the inode behind
2838  * the dir item was already processed.
2839  */
2840 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2841 		     u64 send_progress)
2842 {
2843 	int ret = 0;
2844 	struct btrfs_root *root = sctx->parent_root;
2845 	struct btrfs_path *path;
2846 	struct btrfs_key key;
2847 	struct btrfs_key found_key;
2848 	struct btrfs_key loc;
2849 	struct btrfs_dir_item *di;
2850 
2851 	/*
2852 	 * Don't try to rmdir the top/root subvolume dir.
2853 	 */
2854 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2855 		return 0;
2856 
2857 	path = alloc_path_for_send();
2858 	if (!path)
2859 		return -ENOMEM;
2860 
2861 	key.objectid = dir;
2862 	key.type = BTRFS_DIR_INDEX_KEY;
2863 	key.offset = 0;
2864 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2865 	if (ret < 0)
2866 		goto out;
2867 
2868 	while (1) {
2869 		struct waiting_dir_move *dm;
2870 
2871 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2872 			ret = btrfs_next_leaf(root, path);
2873 			if (ret < 0)
2874 				goto out;
2875 			else if (ret > 0)
2876 				break;
2877 			continue;
2878 		}
2879 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2880 				      path->slots[0]);
2881 		if (found_key.objectid != key.objectid ||
2882 		    found_key.type != key.type)
2883 			break;
2884 
2885 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2886 				struct btrfs_dir_item);
2887 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2888 
2889 		dm = get_waiting_dir_move(sctx, loc.objectid);
2890 		if (dm) {
2891 			struct orphan_dir_info *odi;
2892 
2893 			odi = add_orphan_dir_info(sctx, dir);
2894 			if (IS_ERR(odi)) {
2895 				ret = PTR_ERR(odi);
2896 				goto out;
2897 			}
2898 			odi->gen = dir_gen;
2899 			dm->rmdir_ino = dir;
2900 			ret = 0;
2901 			goto out;
2902 		}
2903 
2904 		if (loc.objectid > send_progress) {
2905 			ret = 0;
2906 			goto out;
2907 		}
2908 
2909 		path->slots[0]++;
2910 	}
2911 
2912 	ret = 1;
2913 
2914 out:
2915 	btrfs_free_path(path);
2916 	return ret;
2917 }
2918 
2919 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2920 {
2921 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2922 
2923 	return entry != NULL;
2924 }
2925 
2926 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2927 {
2928 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2929 	struct rb_node *parent = NULL;
2930 	struct waiting_dir_move *entry, *dm;
2931 
2932 	dm = kmalloc(sizeof(*dm), GFP_NOFS);
2933 	if (!dm)
2934 		return -ENOMEM;
2935 	dm->ino = ino;
2936 	dm->rmdir_ino = 0;
2937 
2938 	while (*p) {
2939 		parent = *p;
2940 		entry = rb_entry(parent, struct waiting_dir_move, node);
2941 		if (ino < entry->ino) {
2942 			p = &(*p)->rb_left;
2943 		} else if (ino > entry->ino) {
2944 			p = &(*p)->rb_right;
2945 		} else {
2946 			kfree(dm);
2947 			return -EEXIST;
2948 		}
2949 	}
2950 
2951 	rb_link_node(&dm->node, parent, p);
2952 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2953 	return 0;
2954 }
2955 
2956 static struct waiting_dir_move *
2957 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2958 {
2959 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2960 	struct waiting_dir_move *entry;
2961 
2962 	while (n) {
2963 		entry = rb_entry(n, struct waiting_dir_move, node);
2964 		if (ino < entry->ino)
2965 			n = n->rb_left;
2966 		else if (ino > entry->ino)
2967 			n = n->rb_right;
2968 		else
2969 			return entry;
2970 	}
2971 	return NULL;
2972 }
2973 
2974 static void free_waiting_dir_move(struct send_ctx *sctx,
2975 				  struct waiting_dir_move *dm)
2976 {
2977 	if (!dm)
2978 		return;
2979 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
2980 	kfree(dm);
2981 }
2982 
2983 static int add_pending_dir_move(struct send_ctx *sctx,
2984 				u64 ino,
2985 				u64 ino_gen,
2986 				u64 parent_ino,
2987 				struct list_head *new_refs,
2988 				struct list_head *deleted_refs,
2989 				const bool is_orphan)
2990 {
2991 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2992 	struct rb_node *parent = NULL;
2993 	struct pending_dir_move *entry = NULL, *pm;
2994 	struct recorded_ref *cur;
2995 	int exists = 0;
2996 	int ret;
2997 
2998 	pm = kmalloc(sizeof(*pm), GFP_NOFS);
2999 	if (!pm)
3000 		return -ENOMEM;
3001 	pm->parent_ino = parent_ino;
3002 	pm->ino = ino;
3003 	pm->gen = ino_gen;
3004 	pm->is_orphan = is_orphan;
3005 	INIT_LIST_HEAD(&pm->list);
3006 	INIT_LIST_HEAD(&pm->update_refs);
3007 	RB_CLEAR_NODE(&pm->node);
3008 
3009 	while (*p) {
3010 		parent = *p;
3011 		entry = rb_entry(parent, struct pending_dir_move, node);
3012 		if (parent_ino < entry->parent_ino) {
3013 			p = &(*p)->rb_left;
3014 		} else if (parent_ino > entry->parent_ino) {
3015 			p = &(*p)->rb_right;
3016 		} else {
3017 			exists = 1;
3018 			break;
3019 		}
3020 	}
3021 
3022 	list_for_each_entry(cur, deleted_refs, list) {
3023 		ret = dup_ref(cur, &pm->update_refs);
3024 		if (ret < 0)
3025 			goto out;
3026 	}
3027 	list_for_each_entry(cur, new_refs, list) {
3028 		ret = dup_ref(cur, &pm->update_refs);
3029 		if (ret < 0)
3030 			goto out;
3031 	}
3032 
3033 	ret = add_waiting_dir_move(sctx, pm->ino);
3034 	if (ret)
3035 		goto out;
3036 
3037 	if (exists) {
3038 		list_add_tail(&pm->list, &entry->list);
3039 	} else {
3040 		rb_link_node(&pm->node, parent, p);
3041 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3042 	}
3043 	ret = 0;
3044 out:
3045 	if (ret) {
3046 		__free_recorded_refs(&pm->update_refs);
3047 		kfree(pm);
3048 	}
3049 	return ret;
3050 }
3051 
3052 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3053 						      u64 parent_ino)
3054 {
3055 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3056 	struct pending_dir_move *entry;
3057 
3058 	while (n) {
3059 		entry = rb_entry(n, struct pending_dir_move, node);
3060 		if (parent_ino < entry->parent_ino)
3061 			n = n->rb_left;
3062 		else if (parent_ino > entry->parent_ino)
3063 			n = n->rb_right;
3064 		else
3065 			return entry;
3066 	}
3067 	return NULL;
3068 }
3069 
3070 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3071 		     u64 ino, u64 gen, u64 *ancestor_ino)
3072 {
3073 	int ret = 0;
3074 	u64 parent_inode = 0;
3075 	u64 parent_gen = 0;
3076 	u64 start_ino = ino;
3077 
3078 	*ancestor_ino = 0;
3079 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3080 		fs_path_reset(name);
3081 
3082 		if (is_waiting_for_rm(sctx, ino))
3083 			break;
3084 		if (is_waiting_for_move(sctx, ino)) {
3085 			if (*ancestor_ino == 0)
3086 				*ancestor_ino = ino;
3087 			ret = get_first_ref(sctx->parent_root, ino,
3088 					    &parent_inode, &parent_gen, name);
3089 		} else {
3090 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3091 							&parent_inode,
3092 							&parent_gen, name);
3093 			if (ret > 0) {
3094 				ret = 0;
3095 				break;
3096 			}
3097 		}
3098 		if (ret < 0)
3099 			break;
3100 		if (parent_inode == start_ino) {
3101 			ret = 1;
3102 			if (*ancestor_ino == 0)
3103 				*ancestor_ino = ino;
3104 			break;
3105 		}
3106 		ino = parent_inode;
3107 		gen = parent_gen;
3108 	}
3109 	return ret;
3110 }
3111 
3112 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3113 {
3114 	struct fs_path *from_path = NULL;
3115 	struct fs_path *to_path = NULL;
3116 	struct fs_path *name = NULL;
3117 	u64 orig_progress = sctx->send_progress;
3118 	struct recorded_ref *cur;
3119 	u64 parent_ino, parent_gen;
3120 	struct waiting_dir_move *dm = NULL;
3121 	u64 rmdir_ino = 0;
3122 	int ret;
3123 	u64 ancestor = 0;
3124 
3125 	name = fs_path_alloc();
3126 	from_path = fs_path_alloc();
3127 	if (!name || !from_path) {
3128 		ret = -ENOMEM;
3129 		goto out;
3130 	}
3131 
3132 	dm = get_waiting_dir_move(sctx, pm->ino);
3133 	ASSERT(dm);
3134 	rmdir_ino = dm->rmdir_ino;
3135 	free_waiting_dir_move(sctx, dm);
3136 
3137 	if (pm->is_orphan) {
3138 		ret = gen_unique_name(sctx, pm->ino,
3139 				      pm->gen, from_path);
3140 	} else {
3141 		ret = get_first_ref(sctx->parent_root, pm->ino,
3142 				    &parent_ino, &parent_gen, name);
3143 		if (ret < 0)
3144 			goto out;
3145 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3146 				   from_path);
3147 		if (ret < 0)
3148 			goto out;
3149 		ret = fs_path_add_path(from_path, name);
3150 	}
3151 	if (ret < 0)
3152 		goto out;
3153 
3154 	sctx->send_progress = sctx->cur_ino + 1;
3155 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3156 	if (ret) {
3157 		LIST_HEAD(deleted_refs);
3158 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3159 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3160 					   &pm->update_refs, &deleted_refs,
3161 					   pm->is_orphan);
3162 		if (ret < 0)
3163 			goto out;
3164 		if (rmdir_ino) {
3165 			dm = get_waiting_dir_move(sctx, pm->ino);
3166 			ASSERT(dm);
3167 			dm->rmdir_ino = rmdir_ino;
3168 		}
3169 		goto out;
3170 	}
3171 	fs_path_reset(name);
3172 	to_path = name;
3173 	name = NULL;
3174 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3175 	if (ret < 0)
3176 		goto out;
3177 
3178 	ret = send_rename(sctx, from_path, to_path);
3179 	if (ret < 0)
3180 		goto out;
3181 
3182 	if (rmdir_ino) {
3183 		struct orphan_dir_info *odi;
3184 
3185 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3186 		if (!odi) {
3187 			/* already deleted */
3188 			goto finish;
3189 		}
3190 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3191 		if (ret < 0)
3192 			goto out;
3193 		if (!ret)
3194 			goto finish;
3195 
3196 		name = fs_path_alloc();
3197 		if (!name) {
3198 			ret = -ENOMEM;
3199 			goto out;
3200 		}
3201 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3202 		if (ret < 0)
3203 			goto out;
3204 		ret = send_rmdir(sctx, name);
3205 		if (ret < 0)
3206 			goto out;
3207 		free_orphan_dir_info(sctx, odi);
3208 	}
3209 
3210 finish:
3211 	ret = send_utimes(sctx, pm->ino, pm->gen);
3212 	if (ret < 0)
3213 		goto out;
3214 
3215 	/*
3216 	 * After rename/move, need to update the utimes of both new parent(s)
3217 	 * and old parent(s).
3218 	 */
3219 	list_for_each_entry(cur, &pm->update_refs, list) {
3220 		if (cur->dir == rmdir_ino)
3221 			continue;
3222 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3223 		if (ret < 0)
3224 			goto out;
3225 	}
3226 
3227 out:
3228 	fs_path_free(name);
3229 	fs_path_free(from_path);
3230 	fs_path_free(to_path);
3231 	sctx->send_progress = orig_progress;
3232 
3233 	return ret;
3234 }
3235 
3236 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3237 {
3238 	if (!list_empty(&m->list))
3239 		list_del(&m->list);
3240 	if (!RB_EMPTY_NODE(&m->node))
3241 		rb_erase(&m->node, &sctx->pending_dir_moves);
3242 	__free_recorded_refs(&m->update_refs);
3243 	kfree(m);
3244 }
3245 
3246 static void tail_append_pending_moves(struct pending_dir_move *moves,
3247 				      struct list_head *stack)
3248 {
3249 	if (list_empty(&moves->list)) {
3250 		list_add_tail(&moves->list, stack);
3251 	} else {
3252 		LIST_HEAD(list);
3253 		list_splice_init(&moves->list, &list);
3254 		list_add_tail(&moves->list, stack);
3255 		list_splice_tail(&list, stack);
3256 	}
3257 }
3258 
3259 static int apply_children_dir_moves(struct send_ctx *sctx)
3260 {
3261 	struct pending_dir_move *pm;
3262 	struct list_head stack;
3263 	u64 parent_ino = sctx->cur_ino;
3264 	int ret = 0;
3265 
3266 	pm = get_pending_dir_moves(sctx, parent_ino);
3267 	if (!pm)
3268 		return 0;
3269 
3270 	INIT_LIST_HEAD(&stack);
3271 	tail_append_pending_moves(pm, &stack);
3272 
3273 	while (!list_empty(&stack)) {
3274 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3275 		parent_ino = pm->ino;
3276 		ret = apply_dir_move(sctx, pm);
3277 		free_pending_move(sctx, pm);
3278 		if (ret)
3279 			goto out;
3280 		pm = get_pending_dir_moves(sctx, parent_ino);
3281 		if (pm)
3282 			tail_append_pending_moves(pm, &stack);
3283 	}
3284 	return 0;
3285 
3286 out:
3287 	while (!list_empty(&stack)) {
3288 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3289 		free_pending_move(sctx, pm);
3290 	}
3291 	return ret;
3292 }
3293 
3294 /*
3295  * We might need to delay a directory rename even when no ancestor directory
3296  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3297  * renamed. This happens when we rename a directory to the old name (the name
3298  * in the parent root) of some other unrelated directory that got its rename
3299  * delayed due to some ancestor with higher number that got renamed.
3300  *
3301  * Example:
3302  *
3303  * Parent snapshot:
3304  * .                                       (ino 256)
3305  * |---- a/                                (ino 257)
3306  * |     |---- file                        (ino 260)
3307  * |
3308  * |---- b/                                (ino 258)
3309  * |---- c/                                (ino 259)
3310  *
3311  * Send snapshot:
3312  * .                                       (ino 256)
3313  * |---- a/                                (ino 258)
3314  * |---- x/                                (ino 259)
3315  *       |---- y/                          (ino 257)
3316  *             |----- file                 (ino 260)
3317  *
3318  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3319  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3320  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3321  * must issue is:
3322  *
3323  * 1 - rename 259 from 'c' to 'x'
3324  * 2 - rename 257 from 'a' to 'x/y'
3325  * 3 - rename 258 from 'b' to 'a'
3326  *
3327  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3328  * be done right away and < 0 on error.
3329  */
3330 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3331 				  struct recorded_ref *parent_ref,
3332 				  const bool is_orphan)
3333 {
3334 	struct btrfs_path *path;
3335 	struct btrfs_key key;
3336 	struct btrfs_key di_key;
3337 	struct btrfs_dir_item *di;
3338 	u64 left_gen;
3339 	u64 right_gen;
3340 	int ret = 0;
3341 
3342 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3343 		return 0;
3344 
3345 	path = alloc_path_for_send();
3346 	if (!path)
3347 		return -ENOMEM;
3348 
3349 	key.objectid = parent_ref->dir;
3350 	key.type = BTRFS_DIR_ITEM_KEY;
3351 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3352 
3353 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3354 	if (ret < 0) {
3355 		goto out;
3356 	} else if (ret > 0) {
3357 		ret = 0;
3358 		goto out;
3359 	}
3360 
3361 	di = btrfs_match_dir_item_name(sctx->parent_root, path,
3362 				       parent_ref->name, parent_ref->name_len);
3363 	if (!di) {
3364 		ret = 0;
3365 		goto out;
3366 	}
3367 	/*
3368 	 * di_key.objectid has the number of the inode that has a dentry in the
3369 	 * parent directory with the same name that sctx->cur_ino is being
3370 	 * renamed to. We need to check if that inode is in the send root as
3371 	 * well and if it is currently marked as an inode with a pending rename,
3372 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3373 	 * that it happens after that other inode is renamed.
3374 	 */
3375 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3376 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3377 		ret = 0;
3378 		goto out;
3379 	}
3380 
3381 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3382 			     &left_gen, NULL, NULL, NULL, NULL);
3383 	if (ret < 0)
3384 		goto out;
3385 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3386 			     &right_gen, NULL, NULL, NULL, NULL);
3387 	if (ret < 0) {
3388 		if (ret == -ENOENT)
3389 			ret = 0;
3390 		goto out;
3391 	}
3392 
3393 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3394 	if (right_gen != left_gen) {
3395 		ret = 0;
3396 		goto out;
3397 	}
3398 
3399 	if (is_waiting_for_move(sctx, di_key.objectid)) {
3400 		ret = add_pending_dir_move(sctx,
3401 					   sctx->cur_ino,
3402 					   sctx->cur_inode_gen,
3403 					   di_key.objectid,
3404 					   &sctx->new_refs,
3405 					   &sctx->deleted_refs,
3406 					   is_orphan);
3407 		if (!ret)
3408 			ret = 1;
3409 	}
3410 out:
3411 	btrfs_free_path(path);
3412 	return ret;
3413 }
3414 
3415 static int wait_for_parent_move(struct send_ctx *sctx,
3416 				struct recorded_ref *parent_ref)
3417 {
3418 	int ret = 0;
3419 	u64 ino = parent_ref->dir;
3420 	u64 parent_ino_before, parent_ino_after;
3421 	struct fs_path *path_before = NULL;
3422 	struct fs_path *path_after = NULL;
3423 	int len1, len2;
3424 
3425 	path_after = fs_path_alloc();
3426 	path_before = fs_path_alloc();
3427 	if (!path_after || !path_before) {
3428 		ret = -ENOMEM;
3429 		goto out;
3430 	}
3431 
3432 	/*
3433 	 * Our current directory inode may not yet be renamed/moved because some
3434 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3435 	 * such ancestor exists and make sure our own rename/move happens after
3436 	 * that ancestor is processed.
3437 	 */
3438 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3439 		if (is_waiting_for_move(sctx, ino)) {
3440 			ret = 1;
3441 			break;
3442 		}
3443 
3444 		fs_path_reset(path_before);
3445 		fs_path_reset(path_after);
3446 
3447 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3448 				    NULL, path_after);
3449 		if (ret < 0)
3450 			goto out;
3451 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3452 				    NULL, path_before);
3453 		if (ret < 0 && ret != -ENOENT) {
3454 			goto out;
3455 		} else if (ret == -ENOENT) {
3456 			ret = 0;
3457 			break;
3458 		}
3459 
3460 		len1 = fs_path_len(path_before);
3461 		len2 = fs_path_len(path_after);
3462 		if (ino > sctx->cur_ino &&
3463 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3464 		     memcmp(path_before->start, path_after->start, len1))) {
3465 			ret = 1;
3466 			break;
3467 		}
3468 		ino = parent_ino_after;
3469 	}
3470 
3471 out:
3472 	fs_path_free(path_before);
3473 	fs_path_free(path_after);
3474 
3475 	if (ret == 1) {
3476 		ret = add_pending_dir_move(sctx,
3477 					   sctx->cur_ino,
3478 					   sctx->cur_inode_gen,
3479 					   ino,
3480 					   &sctx->new_refs,
3481 					   &sctx->deleted_refs,
3482 					   false);
3483 		if (!ret)
3484 			ret = 1;
3485 	}
3486 
3487 	return ret;
3488 }
3489 
3490 /*
3491  * This does all the move/link/unlink/rmdir magic.
3492  */
3493 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3494 {
3495 	int ret = 0;
3496 	struct recorded_ref *cur;
3497 	struct recorded_ref *cur2;
3498 	struct list_head check_dirs;
3499 	struct fs_path *valid_path = NULL;
3500 	u64 ow_inode = 0;
3501 	u64 ow_gen;
3502 	int did_overwrite = 0;
3503 	int is_orphan = 0;
3504 	u64 last_dir_ino_rm = 0;
3505 	bool can_rename = true;
3506 
3507 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3508 
3509 	/*
3510 	 * This should never happen as the root dir always has the same ref
3511 	 * which is always '..'
3512 	 */
3513 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3514 	INIT_LIST_HEAD(&check_dirs);
3515 
3516 	valid_path = fs_path_alloc();
3517 	if (!valid_path) {
3518 		ret = -ENOMEM;
3519 		goto out;
3520 	}
3521 
3522 	/*
3523 	 * First, check if the first ref of the current inode was overwritten
3524 	 * before. If yes, we know that the current inode was already orphanized
3525 	 * and thus use the orphan name. If not, we can use get_cur_path to
3526 	 * get the path of the first ref as it would like while receiving at
3527 	 * this point in time.
3528 	 * New inodes are always orphan at the beginning, so force to use the
3529 	 * orphan name in this case.
3530 	 * The first ref is stored in valid_path and will be updated if it
3531 	 * gets moved around.
3532 	 */
3533 	if (!sctx->cur_inode_new) {
3534 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3535 				sctx->cur_inode_gen);
3536 		if (ret < 0)
3537 			goto out;
3538 		if (ret)
3539 			did_overwrite = 1;
3540 	}
3541 	if (sctx->cur_inode_new || did_overwrite) {
3542 		ret = gen_unique_name(sctx, sctx->cur_ino,
3543 				sctx->cur_inode_gen, valid_path);
3544 		if (ret < 0)
3545 			goto out;
3546 		is_orphan = 1;
3547 	} else {
3548 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3549 				valid_path);
3550 		if (ret < 0)
3551 			goto out;
3552 	}
3553 
3554 	list_for_each_entry(cur, &sctx->new_refs, list) {
3555 		/*
3556 		 * We may have refs where the parent directory does not exist
3557 		 * yet. This happens if the parent directories inum is higher
3558 		 * the the current inum. To handle this case, we create the
3559 		 * parent directory out of order. But we need to check if this
3560 		 * did already happen before due to other refs in the same dir.
3561 		 */
3562 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3563 		if (ret < 0)
3564 			goto out;
3565 		if (ret == inode_state_will_create) {
3566 			ret = 0;
3567 			/*
3568 			 * First check if any of the current inodes refs did
3569 			 * already create the dir.
3570 			 */
3571 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3572 				if (cur == cur2)
3573 					break;
3574 				if (cur2->dir == cur->dir) {
3575 					ret = 1;
3576 					break;
3577 				}
3578 			}
3579 
3580 			/*
3581 			 * If that did not happen, check if a previous inode
3582 			 * did already create the dir.
3583 			 */
3584 			if (!ret)
3585 				ret = did_create_dir(sctx, cur->dir);
3586 			if (ret < 0)
3587 				goto out;
3588 			if (!ret) {
3589 				ret = send_create_inode(sctx, cur->dir);
3590 				if (ret < 0)
3591 					goto out;
3592 			}
3593 		}
3594 
3595 		/*
3596 		 * Check if this new ref would overwrite the first ref of
3597 		 * another unprocessed inode. If yes, orphanize the
3598 		 * overwritten inode. If we find an overwritten ref that is
3599 		 * not the first ref, simply unlink it.
3600 		 */
3601 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3602 				cur->name, cur->name_len,
3603 				&ow_inode, &ow_gen);
3604 		if (ret < 0)
3605 			goto out;
3606 		if (ret) {
3607 			ret = is_first_ref(sctx->parent_root,
3608 					   ow_inode, cur->dir, cur->name,
3609 					   cur->name_len);
3610 			if (ret < 0)
3611 				goto out;
3612 			if (ret) {
3613 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3614 						cur->full_path);
3615 				if (ret < 0)
3616 					goto out;
3617 			} else {
3618 				ret = send_unlink(sctx, cur->full_path);
3619 				if (ret < 0)
3620 					goto out;
3621 			}
3622 		}
3623 
3624 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3625 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3626 			if (ret < 0)
3627 				goto out;
3628 			if (ret == 1) {
3629 				can_rename = false;
3630 				*pending_move = 1;
3631 			}
3632 		}
3633 
3634 		/*
3635 		 * link/move the ref to the new place. If we have an orphan
3636 		 * inode, move it and update valid_path. If not, link or move
3637 		 * it depending on the inode mode.
3638 		 */
3639 		if (is_orphan && can_rename) {
3640 			ret = send_rename(sctx, valid_path, cur->full_path);
3641 			if (ret < 0)
3642 				goto out;
3643 			is_orphan = 0;
3644 			ret = fs_path_copy(valid_path, cur->full_path);
3645 			if (ret < 0)
3646 				goto out;
3647 		} else if (can_rename) {
3648 			if (S_ISDIR(sctx->cur_inode_mode)) {
3649 				/*
3650 				 * Dirs can't be linked, so move it. For moved
3651 				 * dirs, we always have one new and one deleted
3652 				 * ref. The deleted ref is ignored later.
3653 				 */
3654 				ret = wait_for_parent_move(sctx, cur);
3655 				if (ret < 0)
3656 					goto out;
3657 				if (ret) {
3658 					*pending_move = 1;
3659 				} else {
3660 					ret = send_rename(sctx, valid_path,
3661 							  cur->full_path);
3662 					if (!ret)
3663 						ret = fs_path_copy(valid_path,
3664 							       cur->full_path);
3665 				}
3666 				if (ret < 0)
3667 					goto out;
3668 			} else {
3669 				ret = send_link(sctx, cur->full_path,
3670 						valid_path);
3671 				if (ret < 0)
3672 					goto out;
3673 			}
3674 		}
3675 		ret = dup_ref(cur, &check_dirs);
3676 		if (ret < 0)
3677 			goto out;
3678 	}
3679 
3680 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3681 		/*
3682 		 * Check if we can already rmdir the directory. If not,
3683 		 * orphanize it. For every dir item inside that gets deleted
3684 		 * later, we do this check again and rmdir it then if possible.
3685 		 * See the use of check_dirs for more details.
3686 		 */
3687 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3688 				sctx->cur_ino);
3689 		if (ret < 0)
3690 			goto out;
3691 		if (ret) {
3692 			ret = send_rmdir(sctx, valid_path);
3693 			if (ret < 0)
3694 				goto out;
3695 		} else if (!is_orphan) {
3696 			ret = orphanize_inode(sctx, sctx->cur_ino,
3697 					sctx->cur_inode_gen, valid_path);
3698 			if (ret < 0)
3699 				goto out;
3700 			is_orphan = 1;
3701 		}
3702 
3703 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3704 			ret = dup_ref(cur, &check_dirs);
3705 			if (ret < 0)
3706 				goto out;
3707 		}
3708 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3709 		   !list_empty(&sctx->deleted_refs)) {
3710 		/*
3711 		 * We have a moved dir. Add the old parent to check_dirs
3712 		 */
3713 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3714 				list);
3715 		ret = dup_ref(cur, &check_dirs);
3716 		if (ret < 0)
3717 			goto out;
3718 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3719 		/*
3720 		 * We have a non dir inode. Go through all deleted refs and
3721 		 * unlink them if they were not already overwritten by other
3722 		 * inodes.
3723 		 */
3724 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3725 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3726 					sctx->cur_ino, sctx->cur_inode_gen,
3727 					cur->name, cur->name_len);
3728 			if (ret < 0)
3729 				goto out;
3730 			if (!ret) {
3731 				ret = send_unlink(sctx, cur->full_path);
3732 				if (ret < 0)
3733 					goto out;
3734 			}
3735 			ret = dup_ref(cur, &check_dirs);
3736 			if (ret < 0)
3737 				goto out;
3738 		}
3739 		/*
3740 		 * If the inode is still orphan, unlink the orphan. This may
3741 		 * happen when a previous inode did overwrite the first ref
3742 		 * of this inode and no new refs were added for the current
3743 		 * inode. Unlinking does not mean that the inode is deleted in
3744 		 * all cases. There may still be links to this inode in other
3745 		 * places.
3746 		 */
3747 		if (is_orphan) {
3748 			ret = send_unlink(sctx, valid_path);
3749 			if (ret < 0)
3750 				goto out;
3751 		}
3752 	}
3753 
3754 	/*
3755 	 * We did collect all parent dirs where cur_inode was once located. We
3756 	 * now go through all these dirs and check if they are pending for
3757 	 * deletion and if it's finally possible to perform the rmdir now.
3758 	 * We also update the inode stats of the parent dirs here.
3759 	 */
3760 	list_for_each_entry(cur, &check_dirs, list) {
3761 		/*
3762 		 * In case we had refs into dirs that were not processed yet,
3763 		 * we don't need to do the utime and rmdir logic for these dirs.
3764 		 * The dir will be processed later.
3765 		 */
3766 		if (cur->dir > sctx->cur_ino)
3767 			continue;
3768 
3769 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3770 		if (ret < 0)
3771 			goto out;
3772 
3773 		if (ret == inode_state_did_create ||
3774 		    ret == inode_state_no_change) {
3775 			/* TODO delayed utimes */
3776 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3777 			if (ret < 0)
3778 				goto out;
3779 		} else if (ret == inode_state_did_delete &&
3780 			   cur->dir != last_dir_ino_rm) {
3781 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3782 					sctx->cur_ino);
3783 			if (ret < 0)
3784 				goto out;
3785 			if (ret) {
3786 				ret = get_cur_path(sctx, cur->dir,
3787 						   cur->dir_gen, valid_path);
3788 				if (ret < 0)
3789 					goto out;
3790 				ret = send_rmdir(sctx, valid_path);
3791 				if (ret < 0)
3792 					goto out;
3793 				last_dir_ino_rm = cur->dir;
3794 			}
3795 		}
3796 	}
3797 
3798 	ret = 0;
3799 
3800 out:
3801 	__free_recorded_refs(&check_dirs);
3802 	free_recorded_refs(sctx);
3803 	fs_path_free(valid_path);
3804 	return ret;
3805 }
3806 
3807 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3808 		      struct fs_path *name, void *ctx, struct list_head *refs)
3809 {
3810 	int ret = 0;
3811 	struct send_ctx *sctx = ctx;
3812 	struct fs_path *p;
3813 	u64 gen;
3814 
3815 	p = fs_path_alloc();
3816 	if (!p)
3817 		return -ENOMEM;
3818 
3819 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3820 			NULL, NULL);
3821 	if (ret < 0)
3822 		goto out;
3823 
3824 	ret = get_cur_path(sctx, dir, gen, p);
3825 	if (ret < 0)
3826 		goto out;
3827 	ret = fs_path_add_path(p, name);
3828 	if (ret < 0)
3829 		goto out;
3830 
3831 	ret = __record_ref(refs, dir, gen, p);
3832 
3833 out:
3834 	if (ret)
3835 		fs_path_free(p);
3836 	return ret;
3837 }
3838 
3839 static int __record_new_ref(int num, u64 dir, int index,
3840 			    struct fs_path *name,
3841 			    void *ctx)
3842 {
3843 	struct send_ctx *sctx = ctx;
3844 	return record_ref(sctx->send_root, num, dir, index, name,
3845 			  ctx, &sctx->new_refs);
3846 }
3847 
3848 
3849 static int __record_deleted_ref(int num, u64 dir, int index,
3850 				struct fs_path *name,
3851 				void *ctx)
3852 {
3853 	struct send_ctx *sctx = ctx;
3854 	return record_ref(sctx->parent_root, num, dir, index, name,
3855 			  ctx, &sctx->deleted_refs);
3856 }
3857 
3858 static int record_new_ref(struct send_ctx *sctx)
3859 {
3860 	int ret;
3861 
3862 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3863 				sctx->cmp_key, 0, __record_new_ref, sctx);
3864 	if (ret < 0)
3865 		goto out;
3866 	ret = 0;
3867 
3868 out:
3869 	return ret;
3870 }
3871 
3872 static int record_deleted_ref(struct send_ctx *sctx)
3873 {
3874 	int ret;
3875 
3876 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3877 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
3878 	if (ret < 0)
3879 		goto out;
3880 	ret = 0;
3881 
3882 out:
3883 	return ret;
3884 }
3885 
3886 struct find_ref_ctx {
3887 	u64 dir;
3888 	u64 dir_gen;
3889 	struct btrfs_root *root;
3890 	struct fs_path *name;
3891 	int found_idx;
3892 };
3893 
3894 static int __find_iref(int num, u64 dir, int index,
3895 		       struct fs_path *name,
3896 		       void *ctx_)
3897 {
3898 	struct find_ref_ctx *ctx = ctx_;
3899 	u64 dir_gen;
3900 	int ret;
3901 
3902 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3903 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3904 		/*
3905 		 * To avoid doing extra lookups we'll only do this if everything
3906 		 * else matches.
3907 		 */
3908 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3909 				     NULL, NULL, NULL);
3910 		if (ret)
3911 			return ret;
3912 		if (dir_gen != ctx->dir_gen)
3913 			return 0;
3914 		ctx->found_idx = num;
3915 		return 1;
3916 	}
3917 	return 0;
3918 }
3919 
3920 static int find_iref(struct btrfs_root *root,
3921 		     struct btrfs_path *path,
3922 		     struct btrfs_key *key,
3923 		     u64 dir, u64 dir_gen, struct fs_path *name)
3924 {
3925 	int ret;
3926 	struct find_ref_ctx ctx;
3927 
3928 	ctx.dir = dir;
3929 	ctx.name = name;
3930 	ctx.dir_gen = dir_gen;
3931 	ctx.found_idx = -1;
3932 	ctx.root = root;
3933 
3934 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3935 	if (ret < 0)
3936 		return ret;
3937 
3938 	if (ctx.found_idx == -1)
3939 		return -ENOENT;
3940 
3941 	return ctx.found_idx;
3942 }
3943 
3944 static int __record_changed_new_ref(int num, u64 dir, int index,
3945 				    struct fs_path *name,
3946 				    void *ctx)
3947 {
3948 	u64 dir_gen;
3949 	int ret;
3950 	struct send_ctx *sctx = ctx;
3951 
3952 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3953 			     NULL, NULL, NULL);
3954 	if (ret)
3955 		return ret;
3956 
3957 	ret = find_iref(sctx->parent_root, sctx->right_path,
3958 			sctx->cmp_key, dir, dir_gen, name);
3959 	if (ret == -ENOENT)
3960 		ret = __record_new_ref(num, dir, index, name, sctx);
3961 	else if (ret > 0)
3962 		ret = 0;
3963 
3964 	return ret;
3965 }
3966 
3967 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3968 					struct fs_path *name,
3969 					void *ctx)
3970 {
3971 	u64 dir_gen;
3972 	int ret;
3973 	struct send_ctx *sctx = ctx;
3974 
3975 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3976 			     NULL, NULL, NULL);
3977 	if (ret)
3978 		return ret;
3979 
3980 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
3981 			dir, dir_gen, name);
3982 	if (ret == -ENOENT)
3983 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3984 	else if (ret > 0)
3985 		ret = 0;
3986 
3987 	return ret;
3988 }
3989 
3990 static int record_changed_ref(struct send_ctx *sctx)
3991 {
3992 	int ret = 0;
3993 
3994 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3995 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3996 	if (ret < 0)
3997 		goto out;
3998 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3999 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4000 	if (ret < 0)
4001 		goto out;
4002 	ret = 0;
4003 
4004 out:
4005 	return ret;
4006 }
4007 
4008 /*
4009  * Record and process all refs at once. Needed when an inode changes the
4010  * generation number, which means that it was deleted and recreated.
4011  */
4012 static int process_all_refs(struct send_ctx *sctx,
4013 			    enum btrfs_compare_tree_result cmd)
4014 {
4015 	int ret;
4016 	struct btrfs_root *root;
4017 	struct btrfs_path *path;
4018 	struct btrfs_key key;
4019 	struct btrfs_key found_key;
4020 	struct extent_buffer *eb;
4021 	int slot;
4022 	iterate_inode_ref_t cb;
4023 	int pending_move = 0;
4024 
4025 	path = alloc_path_for_send();
4026 	if (!path)
4027 		return -ENOMEM;
4028 
4029 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4030 		root = sctx->send_root;
4031 		cb = __record_new_ref;
4032 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4033 		root = sctx->parent_root;
4034 		cb = __record_deleted_ref;
4035 	} else {
4036 		btrfs_err(sctx->send_root->fs_info,
4037 				"Wrong command %d in process_all_refs", cmd);
4038 		ret = -EINVAL;
4039 		goto out;
4040 	}
4041 
4042 	key.objectid = sctx->cmp_key->objectid;
4043 	key.type = BTRFS_INODE_REF_KEY;
4044 	key.offset = 0;
4045 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4046 	if (ret < 0)
4047 		goto out;
4048 
4049 	while (1) {
4050 		eb = path->nodes[0];
4051 		slot = path->slots[0];
4052 		if (slot >= btrfs_header_nritems(eb)) {
4053 			ret = btrfs_next_leaf(root, path);
4054 			if (ret < 0)
4055 				goto out;
4056 			else if (ret > 0)
4057 				break;
4058 			continue;
4059 		}
4060 
4061 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4062 
4063 		if (found_key.objectid != key.objectid ||
4064 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4065 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4066 			break;
4067 
4068 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4069 		if (ret < 0)
4070 			goto out;
4071 
4072 		path->slots[0]++;
4073 	}
4074 	btrfs_release_path(path);
4075 
4076 	ret = process_recorded_refs(sctx, &pending_move);
4077 	/* Only applicable to an incremental send. */
4078 	ASSERT(pending_move == 0);
4079 
4080 out:
4081 	btrfs_free_path(path);
4082 	return ret;
4083 }
4084 
4085 static int send_set_xattr(struct send_ctx *sctx,
4086 			  struct fs_path *path,
4087 			  const char *name, int name_len,
4088 			  const char *data, int data_len)
4089 {
4090 	int ret = 0;
4091 
4092 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4093 	if (ret < 0)
4094 		goto out;
4095 
4096 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4097 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4098 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4099 
4100 	ret = send_cmd(sctx);
4101 
4102 tlv_put_failure:
4103 out:
4104 	return ret;
4105 }
4106 
4107 static int send_remove_xattr(struct send_ctx *sctx,
4108 			  struct fs_path *path,
4109 			  const char *name, int name_len)
4110 {
4111 	int ret = 0;
4112 
4113 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4114 	if (ret < 0)
4115 		goto out;
4116 
4117 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4118 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4119 
4120 	ret = send_cmd(sctx);
4121 
4122 tlv_put_failure:
4123 out:
4124 	return ret;
4125 }
4126 
4127 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4128 			       const char *name, int name_len,
4129 			       const char *data, int data_len,
4130 			       u8 type, void *ctx)
4131 {
4132 	int ret;
4133 	struct send_ctx *sctx = ctx;
4134 	struct fs_path *p;
4135 	posix_acl_xattr_header dummy_acl;
4136 
4137 	p = fs_path_alloc();
4138 	if (!p)
4139 		return -ENOMEM;
4140 
4141 	/*
4142 	 * This hack is needed because empty acl's are stored as zero byte
4143 	 * data in xattrs. Problem with that is, that receiving these zero byte
4144 	 * acl's will fail later. To fix this, we send a dummy acl list that
4145 	 * only contains the version number and no entries.
4146 	 */
4147 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4148 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4149 		if (data_len == 0) {
4150 			dummy_acl.a_version =
4151 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4152 			data = (char *)&dummy_acl;
4153 			data_len = sizeof(dummy_acl);
4154 		}
4155 	}
4156 
4157 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4158 	if (ret < 0)
4159 		goto out;
4160 
4161 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4162 
4163 out:
4164 	fs_path_free(p);
4165 	return ret;
4166 }
4167 
4168 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4169 				   const char *name, int name_len,
4170 				   const char *data, int data_len,
4171 				   u8 type, void *ctx)
4172 {
4173 	int ret;
4174 	struct send_ctx *sctx = ctx;
4175 	struct fs_path *p;
4176 
4177 	p = fs_path_alloc();
4178 	if (!p)
4179 		return -ENOMEM;
4180 
4181 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4182 	if (ret < 0)
4183 		goto out;
4184 
4185 	ret = send_remove_xattr(sctx, p, name, name_len);
4186 
4187 out:
4188 	fs_path_free(p);
4189 	return ret;
4190 }
4191 
4192 static int process_new_xattr(struct send_ctx *sctx)
4193 {
4194 	int ret = 0;
4195 
4196 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4197 			       sctx->cmp_key, __process_new_xattr, sctx);
4198 
4199 	return ret;
4200 }
4201 
4202 static int process_deleted_xattr(struct send_ctx *sctx)
4203 {
4204 	int ret;
4205 
4206 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4207 			       sctx->cmp_key, __process_deleted_xattr, sctx);
4208 
4209 	return ret;
4210 }
4211 
4212 struct find_xattr_ctx {
4213 	const char *name;
4214 	int name_len;
4215 	int found_idx;
4216 	char *found_data;
4217 	int found_data_len;
4218 };
4219 
4220 static int __find_xattr(int num, struct btrfs_key *di_key,
4221 			const char *name, int name_len,
4222 			const char *data, int data_len,
4223 			u8 type, void *vctx)
4224 {
4225 	struct find_xattr_ctx *ctx = vctx;
4226 
4227 	if (name_len == ctx->name_len &&
4228 	    strncmp(name, ctx->name, name_len) == 0) {
4229 		ctx->found_idx = num;
4230 		ctx->found_data_len = data_len;
4231 		ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4232 		if (!ctx->found_data)
4233 			return -ENOMEM;
4234 		return 1;
4235 	}
4236 	return 0;
4237 }
4238 
4239 static int find_xattr(struct btrfs_root *root,
4240 		      struct btrfs_path *path,
4241 		      struct btrfs_key *key,
4242 		      const char *name, int name_len,
4243 		      char **data, int *data_len)
4244 {
4245 	int ret;
4246 	struct find_xattr_ctx ctx;
4247 
4248 	ctx.name = name;
4249 	ctx.name_len = name_len;
4250 	ctx.found_idx = -1;
4251 	ctx.found_data = NULL;
4252 	ctx.found_data_len = 0;
4253 
4254 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4255 	if (ret < 0)
4256 		return ret;
4257 
4258 	if (ctx.found_idx == -1)
4259 		return -ENOENT;
4260 	if (data) {
4261 		*data = ctx.found_data;
4262 		*data_len = ctx.found_data_len;
4263 	} else {
4264 		kfree(ctx.found_data);
4265 	}
4266 	return ctx.found_idx;
4267 }
4268 
4269 
4270 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4271 				       const char *name, int name_len,
4272 				       const char *data, int data_len,
4273 				       u8 type, void *ctx)
4274 {
4275 	int ret;
4276 	struct send_ctx *sctx = ctx;
4277 	char *found_data = NULL;
4278 	int found_data_len  = 0;
4279 
4280 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4281 			 sctx->cmp_key, name, name_len, &found_data,
4282 			 &found_data_len);
4283 	if (ret == -ENOENT) {
4284 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4285 				data_len, type, ctx);
4286 	} else if (ret >= 0) {
4287 		if (data_len != found_data_len ||
4288 		    memcmp(data, found_data, data_len)) {
4289 			ret = __process_new_xattr(num, di_key, name, name_len,
4290 					data, data_len, type, ctx);
4291 		} else {
4292 			ret = 0;
4293 		}
4294 	}
4295 
4296 	kfree(found_data);
4297 	return ret;
4298 }
4299 
4300 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4301 					   const char *name, int name_len,
4302 					   const char *data, int data_len,
4303 					   u8 type, void *ctx)
4304 {
4305 	int ret;
4306 	struct send_ctx *sctx = ctx;
4307 
4308 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4309 			 name, name_len, NULL, NULL);
4310 	if (ret == -ENOENT)
4311 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4312 				data_len, type, ctx);
4313 	else if (ret >= 0)
4314 		ret = 0;
4315 
4316 	return ret;
4317 }
4318 
4319 static int process_changed_xattr(struct send_ctx *sctx)
4320 {
4321 	int ret = 0;
4322 
4323 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4324 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4325 	if (ret < 0)
4326 		goto out;
4327 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4328 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4329 
4330 out:
4331 	return ret;
4332 }
4333 
4334 static int process_all_new_xattrs(struct send_ctx *sctx)
4335 {
4336 	int ret;
4337 	struct btrfs_root *root;
4338 	struct btrfs_path *path;
4339 	struct btrfs_key key;
4340 	struct btrfs_key found_key;
4341 	struct extent_buffer *eb;
4342 	int slot;
4343 
4344 	path = alloc_path_for_send();
4345 	if (!path)
4346 		return -ENOMEM;
4347 
4348 	root = sctx->send_root;
4349 
4350 	key.objectid = sctx->cmp_key->objectid;
4351 	key.type = BTRFS_XATTR_ITEM_KEY;
4352 	key.offset = 0;
4353 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4354 	if (ret < 0)
4355 		goto out;
4356 
4357 	while (1) {
4358 		eb = path->nodes[0];
4359 		slot = path->slots[0];
4360 		if (slot >= btrfs_header_nritems(eb)) {
4361 			ret = btrfs_next_leaf(root, path);
4362 			if (ret < 0) {
4363 				goto out;
4364 			} else if (ret > 0) {
4365 				ret = 0;
4366 				break;
4367 			}
4368 			continue;
4369 		}
4370 
4371 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4372 		if (found_key.objectid != key.objectid ||
4373 		    found_key.type != key.type) {
4374 			ret = 0;
4375 			goto out;
4376 		}
4377 
4378 		ret = iterate_dir_item(root, path, &found_key,
4379 				       __process_new_xattr, sctx);
4380 		if (ret < 0)
4381 			goto out;
4382 
4383 		path->slots[0]++;
4384 	}
4385 
4386 out:
4387 	btrfs_free_path(path);
4388 	return ret;
4389 }
4390 
4391 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4392 {
4393 	struct btrfs_root *root = sctx->send_root;
4394 	struct btrfs_fs_info *fs_info = root->fs_info;
4395 	struct inode *inode;
4396 	struct page *page;
4397 	char *addr;
4398 	struct btrfs_key key;
4399 	pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4400 	pgoff_t last_index;
4401 	unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4402 	ssize_t ret = 0;
4403 
4404 	key.objectid = sctx->cur_ino;
4405 	key.type = BTRFS_INODE_ITEM_KEY;
4406 	key.offset = 0;
4407 
4408 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4409 	if (IS_ERR(inode))
4410 		return PTR_ERR(inode);
4411 
4412 	if (offset + len > i_size_read(inode)) {
4413 		if (offset > i_size_read(inode))
4414 			len = 0;
4415 		else
4416 			len = offset - i_size_read(inode);
4417 	}
4418 	if (len == 0)
4419 		goto out;
4420 
4421 	last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4422 
4423 	/* initial readahead */
4424 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4425 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4426 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4427 		       last_index - index + 1);
4428 
4429 	while (index <= last_index) {
4430 		unsigned cur_len = min_t(unsigned, len,
4431 					 PAGE_CACHE_SIZE - pg_offset);
4432 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4433 		if (!page) {
4434 			ret = -ENOMEM;
4435 			break;
4436 		}
4437 
4438 		if (!PageUptodate(page)) {
4439 			btrfs_readpage(NULL, page);
4440 			lock_page(page);
4441 			if (!PageUptodate(page)) {
4442 				unlock_page(page);
4443 				page_cache_release(page);
4444 				ret = -EIO;
4445 				break;
4446 			}
4447 		}
4448 
4449 		addr = kmap(page);
4450 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4451 		kunmap(page);
4452 		unlock_page(page);
4453 		page_cache_release(page);
4454 		index++;
4455 		pg_offset = 0;
4456 		len -= cur_len;
4457 		ret += cur_len;
4458 	}
4459 out:
4460 	iput(inode);
4461 	return ret;
4462 }
4463 
4464 /*
4465  * Read some bytes from the current inode/file and send a write command to
4466  * user space.
4467  */
4468 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4469 {
4470 	int ret = 0;
4471 	struct fs_path *p;
4472 	ssize_t num_read = 0;
4473 
4474 	p = fs_path_alloc();
4475 	if (!p)
4476 		return -ENOMEM;
4477 
4478 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4479 
4480 	num_read = fill_read_buf(sctx, offset, len);
4481 	if (num_read <= 0) {
4482 		if (num_read < 0)
4483 			ret = num_read;
4484 		goto out;
4485 	}
4486 
4487 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4488 	if (ret < 0)
4489 		goto out;
4490 
4491 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4492 	if (ret < 0)
4493 		goto out;
4494 
4495 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4496 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4497 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4498 
4499 	ret = send_cmd(sctx);
4500 
4501 tlv_put_failure:
4502 out:
4503 	fs_path_free(p);
4504 	if (ret < 0)
4505 		return ret;
4506 	return num_read;
4507 }
4508 
4509 /*
4510  * Send a clone command to user space.
4511  */
4512 static int send_clone(struct send_ctx *sctx,
4513 		      u64 offset, u32 len,
4514 		      struct clone_root *clone_root)
4515 {
4516 	int ret = 0;
4517 	struct fs_path *p;
4518 	u64 gen;
4519 
4520 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4521 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4522 		clone_root->root->objectid, clone_root->ino,
4523 		clone_root->offset);
4524 
4525 	p = fs_path_alloc();
4526 	if (!p)
4527 		return -ENOMEM;
4528 
4529 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4530 	if (ret < 0)
4531 		goto out;
4532 
4533 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4534 	if (ret < 0)
4535 		goto out;
4536 
4537 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4538 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4539 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4540 
4541 	if (clone_root->root == sctx->send_root) {
4542 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4543 				&gen, NULL, NULL, NULL, NULL);
4544 		if (ret < 0)
4545 			goto out;
4546 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4547 	} else {
4548 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4549 	}
4550 	if (ret < 0)
4551 		goto out;
4552 
4553 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4554 			clone_root->root->root_item.uuid);
4555 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4556 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4557 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4558 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4559 			clone_root->offset);
4560 
4561 	ret = send_cmd(sctx);
4562 
4563 tlv_put_failure:
4564 out:
4565 	fs_path_free(p);
4566 	return ret;
4567 }
4568 
4569 /*
4570  * Send an update extent command to user space.
4571  */
4572 static int send_update_extent(struct send_ctx *sctx,
4573 			      u64 offset, u32 len)
4574 {
4575 	int ret = 0;
4576 	struct fs_path *p;
4577 
4578 	p = fs_path_alloc();
4579 	if (!p)
4580 		return -ENOMEM;
4581 
4582 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4583 	if (ret < 0)
4584 		goto out;
4585 
4586 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4587 	if (ret < 0)
4588 		goto out;
4589 
4590 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4591 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4592 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4593 
4594 	ret = send_cmd(sctx);
4595 
4596 tlv_put_failure:
4597 out:
4598 	fs_path_free(p);
4599 	return ret;
4600 }
4601 
4602 static int send_hole(struct send_ctx *sctx, u64 end)
4603 {
4604 	struct fs_path *p = NULL;
4605 	u64 offset = sctx->cur_inode_last_extent;
4606 	u64 len;
4607 	int ret = 0;
4608 
4609 	p = fs_path_alloc();
4610 	if (!p)
4611 		return -ENOMEM;
4612 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4613 	if (ret < 0)
4614 		goto tlv_put_failure;
4615 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4616 	while (offset < end) {
4617 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4618 
4619 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4620 		if (ret < 0)
4621 			break;
4622 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4623 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4624 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4625 		ret = send_cmd(sctx);
4626 		if (ret < 0)
4627 			break;
4628 		offset += len;
4629 	}
4630 tlv_put_failure:
4631 	fs_path_free(p);
4632 	return ret;
4633 }
4634 
4635 static int send_write_or_clone(struct send_ctx *sctx,
4636 			       struct btrfs_path *path,
4637 			       struct btrfs_key *key,
4638 			       struct clone_root *clone_root)
4639 {
4640 	int ret = 0;
4641 	struct btrfs_file_extent_item *ei;
4642 	u64 offset = key->offset;
4643 	u64 pos = 0;
4644 	u64 len;
4645 	u32 l;
4646 	u8 type;
4647 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4648 
4649 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4650 			struct btrfs_file_extent_item);
4651 	type = btrfs_file_extent_type(path->nodes[0], ei);
4652 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4653 		len = btrfs_file_extent_inline_len(path->nodes[0],
4654 						   path->slots[0], ei);
4655 		/*
4656 		 * it is possible the inline item won't cover the whole page,
4657 		 * but there may be items after this page.  Make
4658 		 * sure to send the whole thing
4659 		 */
4660 		len = PAGE_CACHE_ALIGN(len);
4661 	} else {
4662 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4663 	}
4664 
4665 	if (offset + len > sctx->cur_inode_size)
4666 		len = sctx->cur_inode_size - offset;
4667 	if (len == 0) {
4668 		ret = 0;
4669 		goto out;
4670 	}
4671 
4672 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
4673 		ret = send_clone(sctx, offset, len, clone_root);
4674 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4675 		ret = send_update_extent(sctx, offset, len);
4676 	} else {
4677 		while (pos < len) {
4678 			l = len - pos;
4679 			if (l > BTRFS_SEND_READ_SIZE)
4680 				l = BTRFS_SEND_READ_SIZE;
4681 			ret = send_write(sctx, pos + offset, l);
4682 			if (ret < 0)
4683 				goto out;
4684 			if (!ret)
4685 				break;
4686 			pos += ret;
4687 		}
4688 		ret = 0;
4689 	}
4690 out:
4691 	return ret;
4692 }
4693 
4694 static int is_extent_unchanged(struct send_ctx *sctx,
4695 			       struct btrfs_path *left_path,
4696 			       struct btrfs_key *ekey)
4697 {
4698 	int ret = 0;
4699 	struct btrfs_key key;
4700 	struct btrfs_path *path = NULL;
4701 	struct extent_buffer *eb;
4702 	int slot;
4703 	struct btrfs_key found_key;
4704 	struct btrfs_file_extent_item *ei;
4705 	u64 left_disknr;
4706 	u64 right_disknr;
4707 	u64 left_offset;
4708 	u64 right_offset;
4709 	u64 left_offset_fixed;
4710 	u64 left_len;
4711 	u64 right_len;
4712 	u64 left_gen;
4713 	u64 right_gen;
4714 	u8 left_type;
4715 	u8 right_type;
4716 
4717 	path = alloc_path_for_send();
4718 	if (!path)
4719 		return -ENOMEM;
4720 
4721 	eb = left_path->nodes[0];
4722 	slot = left_path->slots[0];
4723 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4724 	left_type = btrfs_file_extent_type(eb, ei);
4725 
4726 	if (left_type != BTRFS_FILE_EXTENT_REG) {
4727 		ret = 0;
4728 		goto out;
4729 	}
4730 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4731 	left_len = btrfs_file_extent_num_bytes(eb, ei);
4732 	left_offset = btrfs_file_extent_offset(eb, ei);
4733 	left_gen = btrfs_file_extent_generation(eb, ei);
4734 
4735 	/*
4736 	 * Following comments will refer to these graphics. L is the left
4737 	 * extents which we are checking at the moment. 1-8 are the right
4738 	 * extents that we iterate.
4739 	 *
4740 	 *       |-----L-----|
4741 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4742 	 *
4743 	 *       |-----L-----|
4744 	 * |--1--|-2b-|...(same as above)
4745 	 *
4746 	 * Alternative situation. Happens on files where extents got split.
4747 	 *       |-----L-----|
4748 	 * |-----------7-----------|-6-|
4749 	 *
4750 	 * Alternative situation. Happens on files which got larger.
4751 	 *       |-----L-----|
4752 	 * |-8-|
4753 	 * Nothing follows after 8.
4754 	 */
4755 
4756 	key.objectid = ekey->objectid;
4757 	key.type = BTRFS_EXTENT_DATA_KEY;
4758 	key.offset = ekey->offset;
4759 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4760 	if (ret < 0)
4761 		goto out;
4762 	if (ret) {
4763 		ret = 0;
4764 		goto out;
4765 	}
4766 
4767 	/*
4768 	 * Handle special case where the right side has no extents at all.
4769 	 */
4770 	eb = path->nodes[0];
4771 	slot = path->slots[0];
4772 	btrfs_item_key_to_cpu(eb, &found_key, slot);
4773 	if (found_key.objectid != key.objectid ||
4774 	    found_key.type != key.type) {
4775 		/* If we're a hole then just pretend nothing changed */
4776 		ret = (left_disknr) ? 0 : 1;
4777 		goto out;
4778 	}
4779 
4780 	/*
4781 	 * We're now on 2a, 2b or 7.
4782 	 */
4783 	key = found_key;
4784 	while (key.offset < ekey->offset + left_len) {
4785 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4786 		right_type = btrfs_file_extent_type(eb, ei);
4787 		if (right_type != BTRFS_FILE_EXTENT_REG) {
4788 			ret = 0;
4789 			goto out;
4790 		}
4791 
4792 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4793 		right_len = btrfs_file_extent_num_bytes(eb, ei);
4794 		right_offset = btrfs_file_extent_offset(eb, ei);
4795 		right_gen = btrfs_file_extent_generation(eb, ei);
4796 
4797 		/*
4798 		 * Are we at extent 8? If yes, we know the extent is changed.
4799 		 * This may only happen on the first iteration.
4800 		 */
4801 		if (found_key.offset + right_len <= ekey->offset) {
4802 			/* If we're a hole just pretend nothing changed */
4803 			ret = (left_disknr) ? 0 : 1;
4804 			goto out;
4805 		}
4806 
4807 		left_offset_fixed = left_offset;
4808 		if (key.offset < ekey->offset) {
4809 			/* Fix the right offset for 2a and 7. */
4810 			right_offset += ekey->offset - key.offset;
4811 		} else {
4812 			/* Fix the left offset for all behind 2a and 2b */
4813 			left_offset_fixed += key.offset - ekey->offset;
4814 		}
4815 
4816 		/*
4817 		 * Check if we have the same extent.
4818 		 */
4819 		if (left_disknr != right_disknr ||
4820 		    left_offset_fixed != right_offset ||
4821 		    left_gen != right_gen) {
4822 			ret = 0;
4823 			goto out;
4824 		}
4825 
4826 		/*
4827 		 * Go to the next extent.
4828 		 */
4829 		ret = btrfs_next_item(sctx->parent_root, path);
4830 		if (ret < 0)
4831 			goto out;
4832 		if (!ret) {
4833 			eb = path->nodes[0];
4834 			slot = path->slots[0];
4835 			btrfs_item_key_to_cpu(eb, &found_key, slot);
4836 		}
4837 		if (ret || found_key.objectid != key.objectid ||
4838 		    found_key.type != key.type) {
4839 			key.offset += right_len;
4840 			break;
4841 		}
4842 		if (found_key.offset != key.offset + right_len) {
4843 			ret = 0;
4844 			goto out;
4845 		}
4846 		key = found_key;
4847 	}
4848 
4849 	/*
4850 	 * We're now behind the left extent (treat as unchanged) or at the end
4851 	 * of the right side (treat as changed).
4852 	 */
4853 	if (key.offset >= ekey->offset + left_len)
4854 		ret = 1;
4855 	else
4856 		ret = 0;
4857 
4858 
4859 out:
4860 	btrfs_free_path(path);
4861 	return ret;
4862 }
4863 
4864 static int get_last_extent(struct send_ctx *sctx, u64 offset)
4865 {
4866 	struct btrfs_path *path;
4867 	struct btrfs_root *root = sctx->send_root;
4868 	struct btrfs_file_extent_item *fi;
4869 	struct btrfs_key key;
4870 	u64 extent_end;
4871 	u8 type;
4872 	int ret;
4873 
4874 	path = alloc_path_for_send();
4875 	if (!path)
4876 		return -ENOMEM;
4877 
4878 	sctx->cur_inode_last_extent = 0;
4879 
4880 	key.objectid = sctx->cur_ino;
4881 	key.type = BTRFS_EXTENT_DATA_KEY;
4882 	key.offset = offset;
4883 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4884 	if (ret < 0)
4885 		goto out;
4886 	ret = 0;
4887 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4888 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4889 		goto out;
4890 
4891 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4892 			    struct btrfs_file_extent_item);
4893 	type = btrfs_file_extent_type(path->nodes[0], fi);
4894 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4895 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4896 							path->slots[0], fi);
4897 		extent_end = ALIGN(key.offset + size,
4898 				   sctx->send_root->sectorsize);
4899 	} else {
4900 		extent_end = key.offset +
4901 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4902 	}
4903 	sctx->cur_inode_last_extent = extent_end;
4904 out:
4905 	btrfs_free_path(path);
4906 	return ret;
4907 }
4908 
4909 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4910 			   struct btrfs_key *key)
4911 {
4912 	struct btrfs_file_extent_item *fi;
4913 	u64 extent_end;
4914 	u8 type;
4915 	int ret = 0;
4916 
4917 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4918 		return 0;
4919 
4920 	if (sctx->cur_inode_last_extent == (u64)-1) {
4921 		ret = get_last_extent(sctx, key->offset - 1);
4922 		if (ret)
4923 			return ret;
4924 	}
4925 
4926 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4927 			    struct btrfs_file_extent_item);
4928 	type = btrfs_file_extent_type(path->nodes[0], fi);
4929 	if (type == BTRFS_FILE_EXTENT_INLINE) {
4930 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4931 							path->slots[0], fi);
4932 		extent_end = ALIGN(key->offset + size,
4933 				   sctx->send_root->sectorsize);
4934 	} else {
4935 		extent_end = key->offset +
4936 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
4937 	}
4938 
4939 	if (path->slots[0] == 0 &&
4940 	    sctx->cur_inode_last_extent < key->offset) {
4941 		/*
4942 		 * We might have skipped entire leafs that contained only
4943 		 * file extent items for our current inode. These leafs have
4944 		 * a generation number smaller (older) than the one in the
4945 		 * current leaf and the leaf our last extent came from, and
4946 		 * are located between these 2 leafs.
4947 		 */
4948 		ret = get_last_extent(sctx, key->offset - 1);
4949 		if (ret)
4950 			return ret;
4951 	}
4952 
4953 	if (sctx->cur_inode_last_extent < key->offset)
4954 		ret = send_hole(sctx, key->offset);
4955 	sctx->cur_inode_last_extent = extent_end;
4956 	return ret;
4957 }
4958 
4959 static int process_extent(struct send_ctx *sctx,
4960 			  struct btrfs_path *path,
4961 			  struct btrfs_key *key)
4962 {
4963 	struct clone_root *found_clone = NULL;
4964 	int ret = 0;
4965 
4966 	if (S_ISLNK(sctx->cur_inode_mode))
4967 		return 0;
4968 
4969 	if (sctx->parent_root && !sctx->cur_inode_new) {
4970 		ret = is_extent_unchanged(sctx, path, key);
4971 		if (ret < 0)
4972 			goto out;
4973 		if (ret) {
4974 			ret = 0;
4975 			goto out_hole;
4976 		}
4977 	} else {
4978 		struct btrfs_file_extent_item *ei;
4979 		u8 type;
4980 
4981 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4982 				    struct btrfs_file_extent_item);
4983 		type = btrfs_file_extent_type(path->nodes[0], ei);
4984 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4985 		    type == BTRFS_FILE_EXTENT_REG) {
4986 			/*
4987 			 * The send spec does not have a prealloc command yet,
4988 			 * so just leave a hole for prealloc'ed extents until
4989 			 * we have enough commands queued up to justify rev'ing
4990 			 * the send spec.
4991 			 */
4992 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4993 				ret = 0;
4994 				goto out;
4995 			}
4996 
4997 			/* Have a hole, just skip it. */
4998 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4999 				ret = 0;
5000 				goto out;
5001 			}
5002 		}
5003 	}
5004 
5005 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5006 			sctx->cur_inode_size, &found_clone);
5007 	if (ret != -ENOENT && ret < 0)
5008 		goto out;
5009 
5010 	ret = send_write_or_clone(sctx, path, key, found_clone);
5011 	if (ret)
5012 		goto out;
5013 out_hole:
5014 	ret = maybe_send_hole(sctx, path, key);
5015 out:
5016 	return ret;
5017 }
5018 
5019 static int process_all_extents(struct send_ctx *sctx)
5020 {
5021 	int ret;
5022 	struct btrfs_root *root;
5023 	struct btrfs_path *path;
5024 	struct btrfs_key key;
5025 	struct btrfs_key found_key;
5026 	struct extent_buffer *eb;
5027 	int slot;
5028 
5029 	root = sctx->send_root;
5030 	path = alloc_path_for_send();
5031 	if (!path)
5032 		return -ENOMEM;
5033 
5034 	key.objectid = sctx->cmp_key->objectid;
5035 	key.type = BTRFS_EXTENT_DATA_KEY;
5036 	key.offset = 0;
5037 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5038 	if (ret < 0)
5039 		goto out;
5040 
5041 	while (1) {
5042 		eb = path->nodes[0];
5043 		slot = path->slots[0];
5044 
5045 		if (slot >= btrfs_header_nritems(eb)) {
5046 			ret = btrfs_next_leaf(root, path);
5047 			if (ret < 0) {
5048 				goto out;
5049 			} else if (ret > 0) {
5050 				ret = 0;
5051 				break;
5052 			}
5053 			continue;
5054 		}
5055 
5056 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5057 
5058 		if (found_key.objectid != key.objectid ||
5059 		    found_key.type != key.type) {
5060 			ret = 0;
5061 			goto out;
5062 		}
5063 
5064 		ret = process_extent(sctx, path, &found_key);
5065 		if (ret < 0)
5066 			goto out;
5067 
5068 		path->slots[0]++;
5069 	}
5070 
5071 out:
5072 	btrfs_free_path(path);
5073 	return ret;
5074 }
5075 
5076 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5077 					   int *pending_move,
5078 					   int *refs_processed)
5079 {
5080 	int ret = 0;
5081 
5082 	if (sctx->cur_ino == 0)
5083 		goto out;
5084 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5085 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5086 		goto out;
5087 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5088 		goto out;
5089 
5090 	ret = process_recorded_refs(sctx, pending_move);
5091 	if (ret < 0)
5092 		goto out;
5093 
5094 	*refs_processed = 1;
5095 out:
5096 	return ret;
5097 }
5098 
5099 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5100 {
5101 	int ret = 0;
5102 	u64 left_mode;
5103 	u64 left_uid;
5104 	u64 left_gid;
5105 	u64 right_mode;
5106 	u64 right_uid;
5107 	u64 right_gid;
5108 	int need_chmod = 0;
5109 	int need_chown = 0;
5110 	int pending_move = 0;
5111 	int refs_processed = 0;
5112 
5113 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5114 					      &refs_processed);
5115 	if (ret < 0)
5116 		goto out;
5117 
5118 	/*
5119 	 * We have processed the refs and thus need to advance send_progress.
5120 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5121 	 * inode into account.
5122 	 *
5123 	 * On the other hand, if our current inode is a directory and couldn't
5124 	 * be moved/renamed because its parent was renamed/moved too and it has
5125 	 * a higher inode number, we can only move/rename our current inode
5126 	 * after we moved/renamed its parent. Therefore in this case operate on
5127 	 * the old path (pre move/rename) of our current inode, and the
5128 	 * move/rename will be performed later.
5129 	 */
5130 	if (refs_processed && !pending_move)
5131 		sctx->send_progress = sctx->cur_ino + 1;
5132 
5133 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5134 		goto out;
5135 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5136 		goto out;
5137 
5138 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5139 			&left_mode, &left_uid, &left_gid, NULL);
5140 	if (ret < 0)
5141 		goto out;
5142 
5143 	if (!sctx->parent_root || sctx->cur_inode_new) {
5144 		need_chown = 1;
5145 		if (!S_ISLNK(sctx->cur_inode_mode))
5146 			need_chmod = 1;
5147 	} else {
5148 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5149 				NULL, NULL, &right_mode, &right_uid,
5150 				&right_gid, NULL);
5151 		if (ret < 0)
5152 			goto out;
5153 
5154 		if (left_uid != right_uid || left_gid != right_gid)
5155 			need_chown = 1;
5156 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5157 			need_chmod = 1;
5158 	}
5159 
5160 	if (S_ISREG(sctx->cur_inode_mode)) {
5161 		if (need_send_hole(sctx)) {
5162 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5163 			    sctx->cur_inode_last_extent <
5164 			    sctx->cur_inode_size) {
5165 				ret = get_last_extent(sctx, (u64)-1);
5166 				if (ret)
5167 					goto out;
5168 			}
5169 			if (sctx->cur_inode_last_extent <
5170 			    sctx->cur_inode_size) {
5171 				ret = send_hole(sctx, sctx->cur_inode_size);
5172 				if (ret)
5173 					goto out;
5174 			}
5175 		}
5176 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5177 				sctx->cur_inode_size);
5178 		if (ret < 0)
5179 			goto out;
5180 	}
5181 
5182 	if (need_chown) {
5183 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5184 				left_uid, left_gid);
5185 		if (ret < 0)
5186 			goto out;
5187 	}
5188 	if (need_chmod) {
5189 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5190 				left_mode);
5191 		if (ret < 0)
5192 			goto out;
5193 	}
5194 
5195 	/*
5196 	 * If other directory inodes depended on our current directory
5197 	 * inode's move/rename, now do their move/rename operations.
5198 	 */
5199 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5200 		ret = apply_children_dir_moves(sctx);
5201 		if (ret)
5202 			goto out;
5203 		/*
5204 		 * Need to send that every time, no matter if it actually
5205 		 * changed between the two trees as we have done changes to
5206 		 * the inode before. If our inode is a directory and it's
5207 		 * waiting to be moved/renamed, we will send its utimes when
5208 		 * it's moved/renamed, therefore we don't need to do it here.
5209 		 */
5210 		sctx->send_progress = sctx->cur_ino + 1;
5211 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5212 		if (ret < 0)
5213 			goto out;
5214 	}
5215 
5216 out:
5217 	return ret;
5218 }
5219 
5220 static int changed_inode(struct send_ctx *sctx,
5221 			 enum btrfs_compare_tree_result result)
5222 {
5223 	int ret = 0;
5224 	struct btrfs_key *key = sctx->cmp_key;
5225 	struct btrfs_inode_item *left_ii = NULL;
5226 	struct btrfs_inode_item *right_ii = NULL;
5227 	u64 left_gen = 0;
5228 	u64 right_gen = 0;
5229 
5230 	sctx->cur_ino = key->objectid;
5231 	sctx->cur_inode_new_gen = 0;
5232 	sctx->cur_inode_last_extent = (u64)-1;
5233 
5234 	/*
5235 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5236 	 * functions that the current inode's refs are not updated yet. Later,
5237 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5238 	 */
5239 	sctx->send_progress = sctx->cur_ino;
5240 
5241 	if (result == BTRFS_COMPARE_TREE_NEW ||
5242 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5243 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5244 				sctx->left_path->slots[0],
5245 				struct btrfs_inode_item);
5246 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5247 				left_ii);
5248 	} else {
5249 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5250 				sctx->right_path->slots[0],
5251 				struct btrfs_inode_item);
5252 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5253 				right_ii);
5254 	}
5255 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5256 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5257 				sctx->right_path->slots[0],
5258 				struct btrfs_inode_item);
5259 
5260 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5261 				right_ii);
5262 
5263 		/*
5264 		 * The cur_ino = root dir case is special here. We can't treat
5265 		 * the inode as deleted+reused because it would generate a
5266 		 * stream that tries to delete/mkdir the root dir.
5267 		 */
5268 		if (left_gen != right_gen &&
5269 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5270 			sctx->cur_inode_new_gen = 1;
5271 	}
5272 
5273 	if (result == BTRFS_COMPARE_TREE_NEW) {
5274 		sctx->cur_inode_gen = left_gen;
5275 		sctx->cur_inode_new = 1;
5276 		sctx->cur_inode_deleted = 0;
5277 		sctx->cur_inode_size = btrfs_inode_size(
5278 				sctx->left_path->nodes[0], left_ii);
5279 		sctx->cur_inode_mode = btrfs_inode_mode(
5280 				sctx->left_path->nodes[0], left_ii);
5281 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5282 				sctx->left_path->nodes[0], left_ii);
5283 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5284 			ret = send_create_inode_if_needed(sctx);
5285 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5286 		sctx->cur_inode_gen = right_gen;
5287 		sctx->cur_inode_new = 0;
5288 		sctx->cur_inode_deleted = 1;
5289 		sctx->cur_inode_size = btrfs_inode_size(
5290 				sctx->right_path->nodes[0], right_ii);
5291 		sctx->cur_inode_mode = btrfs_inode_mode(
5292 				sctx->right_path->nodes[0], right_ii);
5293 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5294 		/*
5295 		 * We need to do some special handling in case the inode was
5296 		 * reported as changed with a changed generation number. This
5297 		 * means that the original inode was deleted and new inode
5298 		 * reused the same inum. So we have to treat the old inode as
5299 		 * deleted and the new one as new.
5300 		 */
5301 		if (sctx->cur_inode_new_gen) {
5302 			/*
5303 			 * First, process the inode as if it was deleted.
5304 			 */
5305 			sctx->cur_inode_gen = right_gen;
5306 			sctx->cur_inode_new = 0;
5307 			sctx->cur_inode_deleted = 1;
5308 			sctx->cur_inode_size = btrfs_inode_size(
5309 					sctx->right_path->nodes[0], right_ii);
5310 			sctx->cur_inode_mode = btrfs_inode_mode(
5311 					sctx->right_path->nodes[0], right_ii);
5312 			ret = process_all_refs(sctx,
5313 					BTRFS_COMPARE_TREE_DELETED);
5314 			if (ret < 0)
5315 				goto out;
5316 
5317 			/*
5318 			 * Now process the inode as if it was new.
5319 			 */
5320 			sctx->cur_inode_gen = left_gen;
5321 			sctx->cur_inode_new = 1;
5322 			sctx->cur_inode_deleted = 0;
5323 			sctx->cur_inode_size = btrfs_inode_size(
5324 					sctx->left_path->nodes[0], left_ii);
5325 			sctx->cur_inode_mode = btrfs_inode_mode(
5326 					sctx->left_path->nodes[0], left_ii);
5327 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5328 					sctx->left_path->nodes[0], left_ii);
5329 			ret = send_create_inode_if_needed(sctx);
5330 			if (ret < 0)
5331 				goto out;
5332 
5333 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5334 			if (ret < 0)
5335 				goto out;
5336 			/*
5337 			 * Advance send_progress now as we did not get into
5338 			 * process_recorded_refs_if_needed in the new_gen case.
5339 			 */
5340 			sctx->send_progress = sctx->cur_ino + 1;
5341 
5342 			/*
5343 			 * Now process all extents and xattrs of the inode as if
5344 			 * they were all new.
5345 			 */
5346 			ret = process_all_extents(sctx);
5347 			if (ret < 0)
5348 				goto out;
5349 			ret = process_all_new_xattrs(sctx);
5350 			if (ret < 0)
5351 				goto out;
5352 		} else {
5353 			sctx->cur_inode_gen = left_gen;
5354 			sctx->cur_inode_new = 0;
5355 			sctx->cur_inode_new_gen = 0;
5356 			sctx->cur_inode_deleted = 0;
5357 			sctx->cur_inode_size = btrfs_inode_size(
5358 					sctx->left_path->nodes[0], left_ii);
5359 			sctx->cur_inode_mode = btrfs_inode_mode(
5360 					sctx->left_path->nodes[0], left_ii);
5361 		}
5362 	}
5363 
5364 out:
5365 	return ret;
5366 }
5367 
5368 /*
5369  * We have to process new refs before deleted refs, but compare_trees gives us
5370  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5371  * first and later process them in process_recorded_refs.
5372  * For the cur_inode_new_gen case, we skip recording completely because
5373  * changed_inode did already initiate processing of refs. The reason for this is
5374  * that in this case, compare_tree actually compares the refs of 2 different
5375  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5376  * refs of the right tree as deleted and all refs of the left tree as new.
5377  */
5378 static int changed_ref(struct send_ctx *sctx,
5379 		       enum btrfs_compare_tree_result result)
5380 {
5381 	int ret = 0;
5382 
5383 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5384 
5385 	if (!sctx->cur_inode_new_gen &&
5386 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5387 		if (result == BTRFS_COMPARE_TREE_NEW)
5388 			ret = record_new_ref(sctx);
5389 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5390 			ret = record_deleted_ref(sctx);
5391 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5392 			ret = record_changed_ref(sctx);
5393 	}
5394 
5395 	return ret;
5396 }
5397 
5398 /*
5399  * Process new/deleted/changed xattrs. We skip processing in the
5400  * cur_inode_new_gen case because changed_inode did already initiate processing
5401  * of xattrs. The reason is the same as in changed_ref
5402  */
5403 static int changed_xattr(struct send_ctx *sctx,
5404 			 enum btrfs_compare_tree_result result)
5405 {
5406 	int ret = 0;
5407 
5408 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5409 
5410 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5411 		if (result == BTRFS_COMPARE_TREE_NEW)
5412 			ret = process_new_xattr(sctx);
5413 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5414 			ret = process_deleted_xattr(sctx);
5415 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5416 			ret = process_changed_xattr(sctx);
5417 	}
5418 
5419 	return ret;
5420 }
5421 
5422 /*
5423  * Process new/deleted/changed extents. We skip processing in the
5424  * cur_inode_new_gen case because changed_inode did already initiate processing
5425  * of extents. The reason is the same as in changed_ref
5426  */
5427 static int changed_extent(struct send_ctx *sctx,
5428 			  enum btrfs_compare_tree_result result)
5429 {
5430 	int ret = 0;
5431 
5432 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5433 
5434 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5435 		if (result != BTRFS_COMPARE_TREE_DELETED)
5436 			ret = process_extent(sctx, sctx->left_path,
5437 					sctx->cmp_key);
5438 	}
5439 
5440 	return ret;
5441 }
5442 
5443 static int dir_changed(struct send_ctx *sctx, u64 dir)
5444 {
5445 	u64 orig_gen, new_gen;
5446 	int ret;
5447 
5448 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5449 			     NULL, NULL);
5450 	if (ret)
5451 		return ret;
5452 
5453 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5454 			     NULL, NULL, NULL);
5455 	if (ret)
5456 		return ret;
5457 
5458 	return (orig_gen != new_gen) ? 1 : 0;
5459 }
5460 
5461 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5462 			struct btrfs_key *key)
5463 {
5464 	struct btrfs_inode_extref *extref;
5465 	struct extent_buffer *leaf;
5466 	u64 dirid = 0, last_dirid = 0;
5467 	unsigned long ptr;
5468 	u32 item_size;
5469 	u32 cur_offset = 0;
5470 	int ref_name_len;
5471 	int ret = 0;
5472 
5473 	/* Easy case, just check this one dirid */
5474 	if (key->type == BTRFS_INODE_REF_KEY) {
5475 		dirid = key->offset;
5476 
5477 		ret = dir_changed(sctx, dirid);
5478 		goto out;
5479 	}
5480 
5481 	leaf = path->nodes[0];
5482 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5483 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5484 	while (cur_offset < item_size) {
5485 		extref = (struct btrfs_inode_extref *)(ptr +
5486 						       cur_offset);
5487 		dirid = btrfs_inode_extref_parent(leaf, extref);
5488 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5489 		cur_offset += ref_name_len + sizeof(*extref);
5490 		if (dirid == last_dirid)
5491 			continue;
5492 		ret = dir_changed(sctx, dirid);
5493 		if (ret)
5494 			break;
5495 		last_dirid = dirid;
5496 	}
5497 out:
5498 	return ret;
5499 }
5500 
5501 /*
5502  * Updates compare related fields in sctx and simply forwards to the actual
5503  * changed_xxx functions.
5504  */
5505 static int changed_cb(struct btrfs_root *left_root,
5506 		      struct btrfs_root *right_root,
5507 		      struct btrfs_path *left_path,
5508 		      struct btrfs_path *right_path,
5509 		      struct btrfs_key *key,
5510 		      enum btrfs_compare_tree_result result,
5511 		      void *ctx)
5512 {
5513 	int ret = 0;
5514 	struct send_ctx *sctx = ctx;
5515 
5516 	if (result == BTRFS_COMPARE_TREE_SAME) {
5517 		if (key->type == BTRFS_INODE_REF_KEY ||
5518 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5519 			ret = compare_refs(sctx, left_path, key);
5520 			if (!ret)
5521 				return 0;
5522 			if (ret < 0)
5523 				return ret;
5524 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5525 			return maybe_send_hole(sctx, left_path, key);
5526 		} else {
5527 			return 0;
5528 		}
5529 		result = BTRFS_COMPARE_TREE_CHANGED;
5530 		ret = 0;
5531 	}
5532 
5533 	sctx->left_path = left_path;
5534 	sctx->right_path = right_path;
5535 	sctx->cmp_key = key;
5536 
5537 	ret = finish_inode_if_needed(sctx, 0);
5538 	if (ret < 0)
5539 		goto out;
5540 
5541 	/* Ignore non-FS objects */
5542 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5543 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5544 		goto out;
5545 
5546 	if (key->type == BTRFS_INODE_ITEM_KEY)
5547 		ret = changed_inode(sctx, result);
5548 	else if (key->type == BTRFS_INODE_REF_KEY ||
5549 		 key->type == BTRFS_INODE_EXTREF_KEY)
5550 		ret = changed_ref(sctx, result);
5551 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5552 		ret = changed_xattr(sctx, result);
5553 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5554 		ret = changed_extent(sctx, result);
5555 
5556 out:
5557 	return ret;
5558 }
5559 
5560 static int full_send_tree(struct send_ctx *sctx)
5561 {
5562 	int ret;
5563 	struct btrfs_root *send_root = sctx->send_root;
5564 	struct btrfs_key key;
5565 	struct btrfs_key found_key;
5566 	struct btrfs_path *path;
5567 	struct extent_buffer *eb;
5568 	int slot;
5569 
5570 	path = alloc_path_for_send();
5571 	if (!path)
5572 		return -ENOMEM;
5573 
5574 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5575 	key.type = BTRFS_INODE_ITEM_KEY;
5576 	key.offset = 0;
5577 
5578 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5579 	if (ret < 0)
5580 		goto out;
5581 	if (ret)
5582 		goto out_finish;
5583 
5584 	while (1) {
5585 		eb = path->nodes[0];
5586 		slot = path->slots[0];
5587 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5588 
5589 		ret = changed_cb(send_root, NULL, path, NULL,
5590 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5591 		if (ret < 0)
5592 			goto out;
5593 
5594 		key.objectid = found_key.objectid;
5595 		key.type = found_key.type;
5596 		key.offset = found_key.offset + 1;
5597 
5598 		ret = btrfs_next_item(send_root, path);
5599 		if (ret < 0)
5600 			goto out;
5601 		if (ret) {
5602 			ret  = 0;
5603 			break;
5604 		}
5605 	}
5606 
5607 out_finish:
5608 	ret = finish_inode_if_needed(sctx, 1);
5609 
5610 out:
5611 	btrfs_free_path(path);
5612 	return ret;
5613 }
5614 
5615 static int send_subvol(struct send_ctx *sctx)
5616 {
5617 	int ret;
5618 
5619 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5620 		ret = send_header(sctx);
5621 		if (ret < 0)
5622 			goto out;
5623 	}
5624 
5625 	ret = send_subvol_begin(sctx);
5626 	if (ret < 0)
5627 		goto out;
5628 
5629 	if (sctx->parent_root) {
5630 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5631 				changed_cb, sctx);
5632 		if (ret < 0)
5633 			goto out;
5634 		ret = finish_inode_if_needed(sctx, 1);
5635 		if (ret < 0)
5636 			goto out;
5637 	} else {
5638 		ret = full_send_tree(sctx);
5639 		if (ret < 0)
5640 			goto out;
5641 	}
5642 
5643 out:
5644 	free_recorded_refs(sctx);
5645 	return ret;
5646 }
5647 
5648 /*
5649  * If orphan cleanup did remove any orphans from a root, it means the tree
5650  * was modified and therefore the commit root is not the same as the current
5651  * root anymore. This is a problem, because send uses the commit root and
5652  * therefore can see inode items that don't exist in the current root anymore,
5653  * and for example make calls to btrfs_iget, which will do tree lookups based
5654  * on the current root and not on the commit root. Those lookups will fail,
5655  * returning a -ESTALE error, and making send fail with that error. So make
5656  * sure a send does not see any orphans we have just removed, and that it will
5657  * see the same inodes regardless of whether a transaction commit happened
5658  * before it started (meaning that the commit root will be the same as the
5659  * current root) or not.
5660  */
5661 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5662 {
5663 	int i;
5664 	struct btrfs_trans_handle *trans = NULL;
5665 
5666 again:
5667 	if (sctx->parent_root &&
5668 	    sctx->parent_root->node != sctx->parent_root->commit_root)
5669 		goto commit_trans;
5670 
5671 	for (i = 0; i < sctx->clone_roots_cnt; i++)
5672 		if (sctx->clone_roots[i].root->node !=
5673 		    sctx->clone_roots[i].root->commit_root)
5674 			goto commit_trans;
5675 
5676 	if (trans)
5677 		return btrfs_end_transaction(trans, sctx->send_root);
5678 
5679 	return 0;
5680 
5681 commit_trans:
5682 	/* Use any root, all fs roots will get their commit roots updated. */
5683 	if (!trans) {
5684 		trans = btrfs_join_transaction(sctx->send_root);
5685 		if (IS_ERR(trans))
5686 			return PTR_ERR(trans);
5687 		goto again;
5688 	}
5689 
5690 	return btrfs_commit_transaction(trans, sctx->send_root);
5691 }
5692 
5693 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5694 {
5695 	spin_lock(&root->root_item_lock);
5696 	root->send_in_progress--;
5697 	/*
5698 	 * Not much left to do, we don't know why it's unbalanced and
5699 	 * can't blindly reset it to 0.
5700 	 */
5701 	if (root->send_in_progress < 0)
5702 		btrfs_err(root->fs_info,
5703 			"send_in_progres unbalanced %d root %llu",
5704 			root->send_in_progress, root->root_key.objectid);
5705 	spin_unlock(&root->root_item_lock);
5706 }
5707 
5708 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5709 {
5710 	int ret = 0;
5711 	struct btrfs_root *send_root;
5712 	struct btrfs_root *clone_root;
5713 	struct btrfs_fs_info *fs_info;
5714 	struct btrfs_ioctl_send_args *arg = NULL;
5715 	struct btrfs_key key;
5716 	struct send_ctx *sctx = NULL;
5717 	u32 i;
5718 	u64 *clone_sources_tmp = NULL;
5719 	int clone_sources_to_rollback = 0;
5720 	int sort_clone_roots = 0;
5721 	int index;
5722 
5723 	if (!capable(CAP_SYS_ADMIN))
5724 		return -EPERM;
5725 
5726 	send_root = BTRFS_I(file_inode(mnt_file))->root;
5727 	fs_info = send_root->fs_info;
5728 
5729 	/*
5730 	 * The subvolume must remain read-only during send, protect against
5731 	 * making it RW. This also protects against deletion.
5732 	 */
5733 	spin_lock(&send_root->root_item_lock);
5734 	send_root->send_in_progress++;
5735 	spin_unlock(&send_root->root_item_lock);
5736 
5737 	/*
5738 	 * This is done when we lookup the root, it should already be complete
5739 	 * by the time we get here.
5740 	 */
5741 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5742 
5743 	/*
5744 	 * Userspace tools do the checks and warn the user if it's
5745 	 * not RO.
5746 	 */
5747 	if (!btrfs_root_readonly(send_root)) {
5748 		ret = -EPERM;
5749 		goto out;
5750 	}
5751 
5752 	arg = memdup_user(arg_, sizeof(*arg));
5753 	if (IS_ERR(arg)) {
5754 		ret = PTR_ERR(arg);
5755 		arg = NULL;
5756 		goto out;
5757 	}
5758 
5759 	if (!access_ok(VERIFY_READ, arg->clone_sources,
5760 			sizeof(*arg->clone_sources) *
5761 			arg->clone_sources_count)) {
5762 		ret = -EFAULT;
5763 		goto out;
5764 	}
5765 
5766 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5767 		ret = -EINVAL;
5768 		goto out;
5769 	}
5770 
5771 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5772 	if (!sctx) {
5773 		ret = -ENOMEM;
5774 		goto out;
5775 	}
5776 
5777 	INIT_LIST_HEAD(&sctx->new_refs);
5778 	INIT_LIST_HEAD(&sctx->deleted_refs);
5779 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5780 	INIT_LIST_HEAD(&sctx->name_cache_list);
5781 
5782 	sctx->flags = arg->flags;
5783 
5784 	sctx->send_filp = fget(arg->send_fd);
5785 	if (!sctx->send_filp) {
5786 		ret = -EBADF;
5787 		goto out;
5788 	}
5789 
5790 	sctx->send_root = send_root;
5791 	/*
5792 	 * Unlikely but possible, if the subvolume is marked for deletion but
5793 	 * is slow to remove the directory entry, send can still be started
5794 	 */
5795 	if (btrfs_root_dead(sctx->send_root)) {
5796 		ret = -EPERM;
5797 		goto out;
5798 	}
5799 
5800 	sctx->clone_roots_cnt = arg->clone_sources_count;
5801 
5802 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5803 	sctx->send_buf = vmalloc(sctx->send_max_size);
5804 	if (!sctx->send_buf) {
5805 		ret = -ENOMEM;
5806 		goto out;
5807 	}
5808 
5809 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5810 	if (!sctx->read_buf) {
5811 		ret = -ENOMEM;
5812 		goto out;
5813 	}
5814 
5815 	sctx->pending_dir_moves = RB_ROOT;
5816 	sctx->waiting_dir_moves = RB_ROOT;
5817 	sctx->orphan_dirs = RB_ROOT;
5818 
5819 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5820 			(arg->clone_sources_count + 1));
5821 	if (!sctx->clone_roots) {
5822 		ret = -ENOMEM;
5823 		goto out;
5824 	}
5825 
5826 	if (arg->clone_sources_count) {
5827 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
5828 				sizeof(*arg->clone_sources));
5829 		if (!clone_sources_tmp) {
5830 			ret = -ENOMEM;
5831 			goto out;
5832 		}
5833 
5834 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5835 				arg->clone_sources_count *
5836 				sizeof(*arg->clone_sources));
5837 		if (ret) {
5838 			ret = -EFAULT;
5839 			goto out;
5840 		}
5841 
5842 		for (i = 0; i < arg->clone_sources_count; i++) {
5843 			key.objectid = clone_sources_tmp[i];
5844 			key.type = BTRFS_ROOT_ITEM_KEY;
5845 			key.offset = (u64)-1;
5846 
5847 			index = srcu_read_lock(&fs_info->subvol_srcu);
5848 
5849 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
5850 			if (IS_ERR(clone_root)) {
5851 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5852 				ret = PTR_ERR(clone_root);
5853 				goto out;
5854 			}
5855 			clone_sources_to_rollback = i + 1;
5856 			spin_lock(&clone_root->root_item_lock);
5857 			clone_root->send_in_progress++;
5858 			if (!btrfs_root_readonly(clone_root)) {
5859 				spin_unlock(&clone_root->root_item_lock);
5860 				srcu_read_unlock(&fs_info->subvol_srcu, index);
5861 				ret = -EPERM;
5862 				goto out;
5863 			}
5864 			spin_unlock(&clone_root->root_item_lock);
5865 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5866 
5867 			sctx->clone_roots[i].root = clone_root;
5868 		}
5869 		vfree(clone_sources_tmp);
5870 		clone_sources_tmp = NULL;
5871 	}
5872 
5873 	if (arg->parent_root) {
5874 		key.objectid = arg->parent_root;
5875 		key.type = BTRFS_ROOT_ITEM_KEY;
5876 		key.offset = (u64)-1;
5877 
5878 		index = srcu_read_lock(&fs_info->subvol_srcu);
5879 
5880 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
5881 		if (IS_ERR(sctx->parent_root)) {
5882 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5883 			ret = PTR_ERR(sctx->parent_root);
5884 			goto out;
5885 		}
5886 
5887 		spin_lock(&sctx->parent_root->root_item_lock);
5888 		sctx->parent_root->send_in_progress++;
5889 		if (!btrfs_root_readonly(sctx->parent_root) ||
5890 				btrfs_root_dead(sctx->parent_root)) {
5891 			spin_unlock(&sctx->parent_root->root_item_lock);
5892 			srcu_read_unlock(&fs_info->subvol_srcu, index);
5893 			ret = -EPERM;
5894 			goto out;
5895 		}
5896 		spin_unlock(&sctx->parent_root->root_item_lock);
5897 
5898 		srcu_read_unlock(&fs_info->subvol_srcu, index);
5899 	}
5900 
5901 	/*
5902 	 * Clones from send_root are allowed, but only if the clone source
5903 	 * is behind the current send position. This is checked while searching
5904 	 * for possible clone sources.
5905 	 */
5906 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5907 
5908 	/* We do a bsearch later */
5909 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
5910 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5911 			NULL);
5912 	sort_clone_roots = 1;
5913 
5914 	ret = ensure_commit_roots_uptodate(sctx);
5915 	if (ret)
5916 		goto out;
5917 
5918 	current->journal_info = BTRFS_SEND_TRANS_STUB;
5919 	ret = send_subvol(sctx);
5920 	current->journal_info = NULL;
5921 	if (ret < 0)
5922 		goto out;
5923 
5924 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5925 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5926 		if (ret < 0)
5927 			goto out;
5928 		ret = send_cmd(sctx);
5929 		if (ret < 0)
5930 			goto out;
5931 	}
5932 
5933 out:
5934 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5935 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5936 		struct rb_node *n;
5937 		struct pending_dir_move *pm;
5938 
5939 		n = rb_first(&sctx->pending_dir_moves);
5940 		pm = rb_entry(n, struct pending_dir_move, node);
5941 		while (!list_empty(&pm->list)) {
5942 			struct pending_dir_move *pm2;
5943 
5944 			pm2 = list_first_entry(&pm->list,
5945 					       struct pending_dir_move, list);
5946 			free_pending_move(sctx, pm2);
5947 		}
5948 		free_pending_move(sctx, pm);
5949 	}
5950 
5951 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5952 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5953 		struct rb_node *n;
5954 		struct waiting_dir_move *dm;
5955 
5956 		n = rb_first(&sctx->waiting_dir_moves);
5957 		dm = rb_entry(n, struct waiting_dir_move, node);
5958 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
5959 		kfree(dm);
5960 	}
5961 
5962 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
5963 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
5964 		struct rb_node *n;
5965 		struct orphan_dir_info *odi;
5966 
5967 		n = rb_first(&sctx->orphan_dirs);
5968 		odi = rb_entry(n, struct orphan_dir_info, node);
5969 		free_orphan_dir_info(sctx, odi);
5970 	}
5971 
5972 	if (sort_clone_roots) {
5973 		for (i = 0; i < sctx->clone_roots_cnt; i++)
5974 			btrfs_root_dec_send_in_progress(
5975 					sctx->clone_roots[i].root);
5976 	} else {
5977 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5978 			btrfs_root_dec_send_in_progress(
5979 					sctx->clone_roots[i].root);
5980 
5981 		btrfs_root_dec_send_in_progress(send_root);
5982 	}
5983 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5984 		btrfs_root_dec_send_in_progress(sctx->parent_root);
5985 
5986 	kfree(arg);
5987 	vfree(clone_sources_tmp);
5988 
5989 	if (sctx) {
5990 		if (sctx->send_filp)
5991 			fput(sctx->send_filp);
5992 
5993 		vfree(sctx->clone_roots);
5994 		vfree(sctx->send_buf);
5995 		vfree(sctx->read_buf);
5996 
5997 		name_cache_free(sctx);
5998 
5999 		kfree(sctx);
6000 	}
6001 
6002 	return ret;
6003 }
6004