1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * an allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 }; 308 309 struct pending_dir_move { 310 struct rb_node node; 311 struct list_head list; 312 u64 parent_ino; 313 u64 ino; 314 u64 gen; 315 struct list_head update_refs; 316 }; 317 318 struct waiting_dir_move { 319 struct rb_node node; 320 u64 ino; 321 /* 322 * There might be some directory that could not be removed because it 323 * was waiting for this directory inode to be moved first. Therefore 324 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 325 */ 326 u64 rmdir_ino; 327 u64 rmdir_gen; 328 bool orphanized; 329 }; 330 331 struct orphan_dir_info { 332 struct rb_node node; 333 u64 ino; 334 u64 gen; 335 u64 last_dir_index_offset; 336 u64 dir_high_seq_ino; 337 }; 338 339 struct name_cache_entry { 340 /* 341 * The key in the entry is an inode number, and the generation matches 342 * the inode's generation. 343 */ 344 struct btrfs_lru_cache_entry entry; 345 u64 parent_ino; 346 u64 parent_gen; 347 int ret; 348 int need_later_update; 349 /* Name length without NUL terminator. */ 350 int name_len; 351 /* Not NUL terminated. */ 352 char name[] __counted_by(name_len) __nonstring; 353 }; 354 355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 356 static_assert(offsetof(struct name_cache_entry, entry) == 0); 357 358 #define ADVANCE 1 359 #define ADVANCE_ONLY_NEXT -1 360 361 enum btrfs_compare_tree_result { 362 BTRFS_COMPARE_TREE_NEW, 363 BTRFS_COMPARE_TREE_DELETED, 364 BTRFS_COMPARE_TREE_CHANGED, 365 BTRFS_COMPARE_TREE_SAME, 366 }; 367 368 __cold 369 static void inconsistent_snapshot_error(struct send_ctx *sctx, 370 enum btrfs_compare_tree_result result, 371 const char *what) 372 { 373 const char *result_string; 374 375 switch (result) { 376 case BTRFS_COMPARE_TREE_NEW: 377 result_string = "new"; 378 break; 379 case BTRFS_COMPARE_TREE_DELETED: 380 result_string = "deleted"; 381 break; 382 case BTRFS_COMPARE_TREE_CHANGED: 383 result_string = "updated"; 384 break; 385 case BTRFS_COMPARE_TREE_SAME: 386 ASSERT(0); 387 result_string = "unchanged"; 388 break; 389 default: 390 ASSERT(0); 391 result_string = "unexpected"; 392 } 393 394 btrfs_err(sctx->send_root->fs_info, 395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 396 result_string, what, sctx->cmp_key->objectid, 397 btrfs_root_id(sctx->send_root), 398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 399 } 400 401 __maybe_unused 402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 403 { 404 switch (sctx->proto) { 405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 408 default: return false; 409 } 410 } 411 412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 413 414 static struct waiting_dir_move * 415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 416 417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 418 419 static int need_send_hole(struct send_ctx *sctx) 420 { 421 return (sctx->parent_root && !sctx->cur_inode_new && 422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 423 S_ISREG(sctx->cur_inode_mode)); 424 } 425 426 static void fs_path_reset(struct fs_path *p) 427 { 428 if (p->reversed) { 429 p->start = p->buf + p->buf_len - 1; 430 p->end = p->start; 431 *p->start = 0; 432 } else { 433 p->start = p->buf; 434 p->end = p->start; 435 *p->start = 0; 436 } 437 } 438 439 static struct fs_path *fs_path_alloc(void) 440 { 441 struct fs_path *p; 442 443 p = kmalloc(sizeof(*p), GFP_KERNEL); 444 if (!p) 445 return NULL; 446 p->reversed = 0; 447 p->buf = p->inline_buf; 448 p->buf_len = FS_PATH_INLINE_SIZE; 449 fs_path_reset(p); 450 return p; 451 } 452 453 static struct fs_path *fs_path_alloc_reversed(void) 454 { 455 struct fs_path *p; 456 457 p = fs_path_alloc(); 458 if (!p) 459 return NULL; 460 p->reversed = 1; 461 fs_path_reset(p); 462 return p; 463 } 464 465 static void fs_path_free(struct fs_path *p) 466 { 467 if (!p) 468 return; 469 if (p->buf != p->inline_buf) 470 kfree(p->buf); 471 kfree(p); 472 } 473 474 static int fs_path_len(struct fs_path *p) 475 { 476 return p->end - p->start; 477 } 478 479 static int fs_path_ensure_buf(struct fs_path *p, int len) 480 { 481 char *tmp_buf; 482 int path_len; 483 int old_buf_len; 484 485 len++; 486 487 if (p->buf_len >= len) 488 return 0; 489 490 if (len > PATH_MAX) { 491 WARN_ON(1); 492 return -ENOMEM; 493 } 494 495 path_len = p->end - p->start; 496 old_buf_len = p->buf_len; 497 498 /* 499 * Allocate to the next largest kmalloc bucket size, to let 500 * the fast path happen most of the time. 501 */ 502 len = kmalloc_size_roundup(len); 503 /* 504 * First time the inline_buf does not suffice 505 */ 506 if (p->buf == p->inline_buf) { 507 tmp_buf = kmalloc(len, GFP_KERNEL); 508 if (tmp_buf) 509 memcpy(tmp_buf, p->buf, old_buf_len); 510 } else { 511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 512 } 513 if (!tmp_buf) 514 return -ENOMEM; 515 p->buf = tmp_buf; 516 p->buf_len = len; 517 518 if (p->reversed) { 519 tmp_buf = p->buf + old_buf_len - path_len - 1; 520 p->end = p->buf + p->buf_len - 1; 521 p->start = p->end - path_len; 522 memmove(p->start, tmp_buf, path_len + 1); 523 } else { 524 p->start = p->buf; 525 p->end = p->start + path_len; 526 } 527 return 0; 528 } 529 530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 531 char **prepared) 532 { 533 int ret; 534 int new_len; 535 536 new_len = p->end - p->start + name_len; 537 if (p->start != p->end) 538 new_len++; 539 ret = fs_path_ensure_buf(p, new_len); 540 if (ret < 0) 541 goto out; 542 543 if (p->reversed) { 544 if (p->start != p->end) 545 *--p->start = '/'; 546 p->start -= name_len; 547 *prepared = p->start; 548 } else { 549 if (p->start != p->end) 550 *p->end++ = '/'; 551 *prepared = p->end; 552 p->end += name_len; 553 *p->end = 0; 554 } 555 556 out: 557 return ret; 558 } 559 560 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 561 { 562 int ret; 563 char *prepared; 564 565 ret = fs_path_prepare_for_add(p, name_len, &prepared); 566 if (ret < 0) 567 goto out; 568 memcpy(prepared, name, name_len); 569 570 out: 571 return ret; 572 } 573 574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 575 { 576 int ret; 577 char *prepared; 578 579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 580 if (ret < 0) 581 goto out; 582 memcpy(prepared, p2->start, p2->end - p2->start); 583 584 out: 585 return ret; 586 } 587 588 static int fs_path_add_from_extent_buffer(struct fs_path *p, 589 struct extent_buffer *eb, 590 unsigned long off, int len) 591 { 592 int ret; 593 char *prepared; 594 595 ret = fs_path_prepare_for_add(p, len, &prepared); 596 if (ret < 0) 597 goto out; 598 599 read_extent_buffer(eb, prepared, off, len); 600 601 out: 602 return ret; 603 } 604 605 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 606 { 607 p->reversed = from->reversed; 608 fs_path_reset(p); 609 610 return fs_path_add_path(p, from); 611 } 612 613 static void fs_path_unreverse(struct fs_path *p) 614 { 615 char *tmp; 616 int len; 617 618 if (!p->reversed) 619 return; 620 621 tmp = p->start; 622 len = p->end - p->start; 623 p->start = p->buf; 624 p->end = p->start + len; 625 memmove(p->start, tmp, len + 1); 626 p->reversed = 0; 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (ret == 0) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 p->end - p->start); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 if (unlikely(sctx->send_size != 0)) { 781 btrfs_err(sctx->send_root->fs_info, 782 "send: command header buffer not empty cmd %d offset %llu", 783 cmd, sctx->send_off); 784 return -EINVAL; 785 } 786 787 sctx->send_size += sizeof(*hdr); 788 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 789 put_unaligned_le16(cmd, &hdr->cmd); 790 791 return 0; 792 } 793 794 static int send_cmd(struct send_ctx *sctx) 795 { 796 int ret; 797 struct btrfs_cmd_header *hdr; 798 u32 crc; 799 800 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 802 put_unaligned_le32(0, &hdr->crc); 803 804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 805 put_unaligned_le32(crc, &hdr->crc); 806 807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 808 &sctx->send_off); 809 810 sctx->send_size = 0; 811 sctx->put_data = false; 812 813 return ret; 814 } 815 816 /* 817 * Sends a move instruction to user space 818 */ 819 static int send_rename(struct send_ctx *sctx, 820 struct fs_path *from, struct fs_path *to) 821 { 822 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 823 int ret; 824 825 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 826 827 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 828 if (ret < 0) 829 goto out; 830 831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 832 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 833 834 ret = send_cmd(sctx); 835 836 tlv_put_failure: 837 out: 838 return ret; 839 } 840 841 /* 842 * Sends a link instruction to user space 843 */ 844 static int send_link(struct send_ctx *sctx, 845 struct fs_path *path, struct fs_path *lnk) 846 { 847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 848 int ret; 849 850 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 851 852 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 853 if (ret < 0) 854 goto out; 855 856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 857 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 858 859 ret = send_cmd(sctx); 860 861 tlv_put_failure: 862 out: 863 return ret; 864 } 865 866 /* 867 * Sends an unlink instruction to user space 868 */ 869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 870 { 871 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 872 int ret; 873 874 btrfs_debug(fs_info, "send_unlink %s", path->start); 875 876 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 877 if (ret < 0) 878 goto out; 879 880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 881 882 ret = send_cmd(sctx); 883 884 tlv_put_failure: 885 out: 886 return ret; 887 } 888 889 /* 890 * Sends a rmdir instruction to user space 891 */ 892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 893 { 894 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 895 int ret; 896 897 btrfs_debug(fs_info, "send_rmdir %s", path->start); 898 899 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 900 if (ret < 0) 901 goto out; 902 903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 904 905 ret = send_cmd(sctx); 906 907 tlv_put_failure: 908 out: 909 return ret; 910 } 911 912 struct btrfs_inode_info { 913 u64 size; 914 u64 gen; 915 u64 mode; 916 u64 uid; 917 u64 gid; 918 u64 rdev; 919 u64 fileattr; 920 u64 nlink; 921 }; 922 923 /* 924 * Helper function to retrieve some fields from an inode item. 925 */ 926 static int get_inode_info(struct btrfs_root *root, u64 ino, 927 struct btrfs_inode_info *info) 928 { 929 int ret; 930 struct btrfs_path *path; 931 struct btrfs_inode_item *ii; 932 struct btrfs_key key; 933 934 path = alloc_path_for_send(); 935 if (!path) 936 return -ENOMEM; 937 938 key.objectid = ino; 939 key.type = BTRFS_INODE_ITEM_KEY; 940 key.offset = 0; 941 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 942 if (ret) { 943 if (ret > 0) 944 ret = -ENOENT; 945 goto out; 946 } 947 948 if (!info) 949 goto out; 950 951 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 952 struct btrfs_inode_item); 953 info->size = btrfs_inode_size(path->nodes[0], ii); 954 info->gen = btrfs_inode_generation(path->nodes[0], ii); 955 info->mode = btrfs_inode_mode(path->nodes[0], ii); 956 info->uid = btrfs_inode_uid(path->nodes[0], ii); 957 info->gid = btrfs_inode_gid(path->nodes[0], ii); 958 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 959 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 960 /* 961 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 962 * otherwise logically split to 32/32 parts. 963 */ 964 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 965 966 out: 967 btrfs_free_path(path); 968 return ret; 969 } 970 971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 972 { 973 int ret; 974 struct btrfs_inode_info info = { 0 }; 975 976 ASSERT(gen); 977 978 ret = get_inode_info(root, ino, &info); 979 *gen = info.gen; 980 return ret; 981 } 982 983 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 984 985 /* 986 * Helper function to iterate the entries in ONE btrfs_inode_ref or 987 * btrfs_inode_extref. 988 * The iterate callback may return a non zero value to stop iteration. This can 989 * be a negative value for error codes or 1 to simply stop it. 990 * 991 * path must point to the INODE_REF or INODE_EXTREF when called. 992 */ 993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 994 struct btrfs_key *found_key, int resolve, 995 iterate_inode_ref_t iterate, void *ctx) 996 { 997 struct extent_buffer *eb = path->nodes[0]; 998 struct btrfs_inode_ref *iref; 999 struct btrfs_inode_extref *extref; 1000 struct btrfs_path *tmp_path; 1001 struct fs_path *p; 1002 u32 cur = 0; 1003 u32 total; 1004 int slot = path->slots[0]; 1005 u32 name_len; 1006 char *start; 1007 int ret = 0; 1008 u64 dir; 1009 unsigned long name_off; 1010 unsigned long elem_size; 1011 unsigned long ptr; 1012 1013 p = fs_path_alloc_reversed(); 1014 if (!p) 1015 return -ENOMEM; 1016 1017 tmp_path = alloc_path_for_send(); 1018 if (!tmp_path) { 1019 fs_path_free(p); 1020 return -ENOMEM; 1021 } 1022 1023 1024 if (found_key->type == BTRFS_INODE_REF_KEY) { 1025 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1026 struct btrfs_inode_ref); 1027 total = btrfs_item_size(eb, slot); 1028 elem_size = sizeof(*iref); 1029 } else { 1030 ptr = btrfs_item_ptr_offset(eb, slot); 1031 total = btrfs_item_size(eb, slot); 1032 elem_size = sizeof(*extref); 1033 } 1034 1035 while (cur < total) { 1036 fs_path_reset(p); 1037 1038 if (found_key->type == BTRFS_INODE_REF_KEY) { 1039 iref = (struct btrfs_inode_ref *)(ptr + cur); 1040 name_len = btrfs_inode_ref_name_len(eb, iref); 1041 name_off = (unsigned long)(iref + 1); 1042 dir = found_key->offset; 1043 } else { 1044 extref = (struct btrfs_inode_extref *)(ptr + cur); 1045 name_len = btrfs_inode_extref_name_len(eb, extref); 1046 name_off = (unsigned long)&extref->name; 1047 dir = btrfs_inode_extref_parent(eb, extref); 1048 } 1049 1050 if (resolve) { 1051 start = btrfs_ref_to_path(root, tmp_path, name_len, 1052 name_off, eb, dir, 1053 p->buf, p->buf_len); 1054 if (IS_ERR(start)) { 1055 ret = PTR_ERR(start); 1056 goto out; 1057 } 1058 if (start < p->buf) { 1059 /* overflow , try again with larger buffer */ 1060 ret = fs_path_ensure_buf(p, 1061 p->buf_len + p->buf - start); 1062 if (ret < 0) 1063 goto out; 1064 start = btrfs_ref_to_path(root, tmp_path, 1065 name_len, name_off, 1066 eb, dir, 1067 p->buf, p->buf_len); 1068 if (IS_ERR(start)) { 1069 ret = PTR_ERR(start); 1070 goto out; 1071 } 1072 if (unlikely(start < p->buf)) { 1073 btrfs_err(root->fs_info, 1074 "send: path ref buffer underflow for key (%llu %u %llu)", 1075 found_key->objectid, 1076 found_key->type, 1077 found_key->offset); 1078 ret = -EINVAL; 1079 goto out; 1080 } 1081 } 1082 p->start = start; 1083 } else { 1084 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1085 name_len); 1086 if (ret < 0) 1087 goto out; 1088 } 1089 1090 cur += elem_size + name_len; 1091 ret = iterate(dir, p, ctx); 1092 if (ret) 1093 goto out; 1094 } 1095 1096 out: 1097 btrfs_free_path(tmp_path); 1098 fs_path_free(p); 1099 return ret; 1100 } 1101 1102 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1103 const char *name, int name_len, 1104 const char *data, int data_len, 1105 void *ctx); 1106 1107 /* 1108 * Helper function to iterate the entries in ONE btrfs_dir_item. 1109 * The iterate callback may return a non zero value to stop iteration. This can 1110 * be a negative value for error codes or 1 to simply stop it. 1111 * 1112 * path must point to the dir item when called. 1113 */ 1114 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1115 iterate_dir_item_t iterate, void *ctx) 1116 { 1117 int ret = 0; 1118 struct extent_buffer *eb; 1119 struct btrfs_dir_item *di; 1120 struct btrfs_key di_key; 1121 char *buf = NULL; 1122 int buf_len; 1123 u32 name_len; 1124 u32 data_len; 1125 u32 cur; 1126 u32 len; 1127 u32 total; 1128 int slot; 1129 int num; 1130 1131 /* 1132 * Start with a small buffer (1 page). If later we end up needing more 1133 * space, which can happen for xattrs on a fs with a leaf size greater 1134 * than the page size, attempt to increase the buffer. Typically xattr 1135 * values are small. 1136 */ 1137 buf_len = PATH_MAX; 1138 buf = kmalloc(buf_len, GFP_KERNEL); 1139 if (!buf) { 1140 ret = -ENOMEM; 1141 goto out; 1142 } 1143 1144 eb = path->nodes[0]; 1145 slot = path->slots[0]; 1146 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1147 cur = 0; 1148 len = 0; 1149 total = btrfs_item_size(eb, slot); 1150 1151 num = 0; 1152 while (cur < total) { 1153 name_len = btrfs_dir_name_len(eb, di); 1154 data_len = btrfs_dir_data_len(eb, di); 1155 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1156 1157 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1158 if (name_len > XATTR_NAME_MAX) { 1159 ret = -ENAMETOOLONG; 1160 goto out; 1161 } 1162 if (name_len + data_len > 1163 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1164 ret = -E2BIG; 1165 goto out; 1166 } 1167 } else { 1168 /* 1169 * Path too long 1170 */ 1171 if (name_len + data_len > PATH_MAX) { 1172 ret = -ENAMETOOLONG; 1173 goto out; 1174 } 1175 } 1176 1177 if (name_len + data_len > buf_len) { 1178 buf_len = name_len + data_len; 1179 if (is_vmalloc_addr(buf)) { 1180 vfree(buf); 1181 buf = NULL; 1182 } else { 1183 char *tmp = krealloc(buf, buf_len, 1184 GFP_KERNEL | __GFP_NOWARN); 1185 1186 if (!tmp) 1187 kfree(buf); 1188 buf = tmp; 1189 } 1190 if (!buf) { 1191 buf = kvmalloc(buf_len, GFP_KERNEL); 1192 if (!buf) { 1193 ret = -ENOMEM; 1194 goto out; 1195 } 1196 } 1197 } 1198 1199 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1200 name_len + data_len); 1201 1202 len = sizeof(*di) + name_len + data_len; 1203 di = (struct btrfs_dir_item *)((char *)di + len); 1204 cur += len; 1205 1206 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1207 data_len, ctx); 1208 if (ret < 0) 1209 goto out; 1210 if (ret) { 1211 ret = 0; 1212 goto out; 1213 } 1214 1215 num++; 1216 } 1217 1218 out: 1219 kvfree(buf); 1220 return ret; 1221 } 1222 1223 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1224 { 1225 int ret; 1226 struct fs_path *pt = ctx; 1227 1228 ret = fs_path_copy(pt, p); 1229 if (ret < 0) 1230 return ret; 1231 1232 /* we want the first only */ 1233 return 1; 1234 } 1235 1236 /* 1237 * Retrieve the first path of an inode. If an inode has more then one 1238 * ref/hardlink, this is ignored. 1239 */ 1240 static int get_inode_path(struct btrfs_root *root, 1241 u64 ino, struct fs_path *path) 1242 { 1243 int ret; 1244 struct btrfs_key key, found_key; 1245 struct btrfs_path *p; 1246 1247 p = alloc_path_for_send(); 1248 if (!p) 1249 return -ENOMEM; 1250 1251 fs_path_reset(path); 1252 1253 key.objectid = ino; 1254 key.type = BTRFS_INODE_REF_KEY; 1255 key.offset = 0; 1256 1257 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1258 if (ret < 0) 1259 goto out; 1260 if (ret) { 1261 ret = 1; 1262 goto out; 1263 } 1264 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1265 if (found_key.objectid != ino || 1266 (found_key.type != BTRFS_INODE_REF_KEY && 1267 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1268 ret = -ENOENT; 1269 goto out; 1270 } 1271 1272 ret = iterate_inode_ref(root, p, &found_key, 1, 1273 __copy_first_ref, path); 1274 if (ret < 0) 1275 goto out; 1276 ret = 0; 1277 1278 out: 1279 btrfs_free_path(p); 1280 return ret; 1281 } 1282 1283 struct backref_ctx { 1284 struct send_ctx *sctx; 1285 1286 /* number of total found references */ 1287 u64 found; 1288 1289 /* 1290 * used for clones found in send_root. clones found behind cur_objectid 1291 * and cur_offset are not considered as allowed clones. 1292 */ 1293 u64 cur_objectid; 1294 u64 cur_offset; 1295 1296 /* may be truncated in case it's the last extent in a file */ 1297 u64 extent_len; 1298 1299 /* The bytenr the file extent item we are processing refers to. */ 1300 u64 bytenr; 1301 /* The owner (root id) of the data backref for the current extent. */ 1302 u64 backref_owner; 1303 /* The offset of the data backref for the current extent. */ 1304 u64 backref_offset; 1305 }; 1306 1307 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1308 { 1309 u64 root = (u64)(uintptr_t)key; 1310 const struct clone_root *cr = elt; 1311 1312 if (root < btrfs_root_id(cr->root)) 1313 return -1; 1314 if (root > btrfs_root_id(cr->root)) 1315 return 1; 1316 return 0; 1317 } 1318 1319 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1320 { 1321 const struct clone_root *cr1 = e1; 1322 const struct clone_root *cr2 = e2; 1323 1324 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1325 return -1; 1326 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1327 return 1; 1328 return 0; 1329 } 1330 1331 /* 1332 * Called for every backref that is found for the current extent. 1333 * Results are collected in sctx->clone_roots->ino/offset. 1334 */ 1335 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1336 void *ctx_) 1337 { 1338 struct backref_ctx *bctx = ctx_; 1339 struct clone_root *clone_root; 1340 1341 /* First check if the root is in the list of accepted clone sources */ 1342 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1343 bctx->sctx->clone_roots_cnt, 1344 sizeof(struct clone_root), 1345 __clone_root_cmp_bsearch); 1346 if (!clone_root) 1347 return 0; 1348 1349 /* This is our own reference, bail out as we can't clone from it. */ 1350 if (clone_root->root == bctx->sctx->send_root && 1351 ino == bctx->cur_objectid && 1352 offset == bctx->cur_offset) 1353 return 0; 1354 1355 /* 1356 * Make sure we don't consider clones from send_root that are 1357 * behind the current inode/offset. 1358 */ 1359 if (clone_root->root == bctx->sctx->send_root) { 1360 /* 1361 * If the source inode was not yet processed we can't issue a 1362 * clone operation, as the source extent does not exist yet at 1363 * the destination of the stream. 1364 */ 1365 if (ino > bctx->cur_objectid) 1366 return 0; 1367 /* 1368 * We clone from the inode currently being sent as long as the 1369 * source extent is already processed, otherwise we could try 1370 * to clone from an extent that does not exist yet at the 1371 * destination of the stream. 1372 */ 1373 if (ino == bctx->cur_objectid && 1374 offset + bctx->extent_len > 1375 bctx->sctx->cur_inode_next_write_offset) 1376 return 0; 1377 } 1378 1379 bctx->found++; 1380 clone_root->found_ref = true; 1381 1382 /* 1383 * If the given backref refers to a file extent item with a larger 1384 * number of bytes than what we found before, use the new one so that 1385 * we clone more optimally and end up doing less writes and getting 1386 * less exclusive, non-shared extents at the destination. 1387 */ 1388 if (num_bytes > clone_root->num_bytes) { 1389 clone_root->ino = ino; 1390 clone_root->offset = offset; 1391 clone_root->num_bytes = num_bytes; 1392 1393 /* 1394 * Found a perfect candidate, so there's no need to continue 1395 * backref walking. 1396 */ 1397 if (num_bytes >= bctx->extent_len) 1398 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1399 } 1400 1401 return 0; 1402 } 1403 1404 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1405 const u64 **root_ids_ret, int *root_count_ret) 1406 { 1407 struct backref_ctx *bctx = ctx; 1408 struct send_ctx *sctx = bctx->sctx; 1409 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1410 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1411 struct btrfs_lru_cache_entry *raw_entry; 1412 struct backref_cache_entry *entry; 1413 1414 if (sctx->backref_cache.size == 0) 1415 return false; 1416 1417 /* 1418 * If relocation happened since we first filled the cache, then we must 1419 * empty the cache and can not use it, because even though we operate on 1420 * read-only roots, their leaves and nodes may have been reallocated and 1421 * now be used for different nodes/leaves of the same tree or some other 1422 * tree. 1423 * 1424 * We are called from iterate_extent_inodes() while either holding a 1425 * transaction handle or holding fs_info->commit_root_sem, so no need 1426 * to take any lock here. 1427 */ 1428 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1429 btrfs_lru_cache_clear(&sctx->backref_cache); 1430 return false; 1431 } 1432 1433 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1434 if (!raw_entry) 1435 return false; 1436 1437 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1438 *root_ids_ret = entry->root_ids; 1439 *root_count_ret = entry->num_roots; 1440 1441 return true; 1442 } 1443 1444 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1445 void *ctx) 1446 { 1447 struct backref_ctx *bctx = ctx; 1448 struct send_ctx *sctx = bctx->sctx; 1449 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1450 struct backref_cache_entry *new_entry; 1451 struct ulist_iterator uiter; 1452 struct ulist_node *node; 1453 int ret; 1454 1455 /* 1456 * We're called while holding a transaction handle or while holding 1457 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1458 * NOFS allocation. 1459 */ 1460 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1461 /* No worries, cache is optional. */ 1462 if (!new_entry) 1463 return; 1464 1465 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1466 new_entry->entry.gen = 0; 1467 new_entry->num_roots = 0; 1468 ULIST_ITER_INIT(&uiter); 1469 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1470 const u64 root_id = node->val; 1471 struct clone_root *root; 1472 1473 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1474 sctx->clone_roots_cnt, sizeof(struct clone_root), 1475 __clone_root_cmp_bsearch); 1476 if (!root) 1477 continue; 1478 1479 /* Too many roots, just exit, no worries as caching is optional. */ 1480 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1481 kfree(new_entry); 1482 return; 1483 } 1484 1485 new_entry->root_ids[new_entry->num_roots] = root_id; 1486 new_entry->num_roots++; 1487 } 1488 1489 /* 1490 * We may have not added any roots to the new cache entry, which means 1491 * none of the roots is part of the list of roots from which we are 1492 * allowed to clone. Cache the new entry as it's still useful to avoid 1493 * backref walking to determine which roots have a path to the leaf. 1494 * 1495 * Also use GFP_NOFS because we're called while holding a transaction 1496 * handle or while holding fs_info->commit_root_sem. 1497 */ 1498 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1499 GFP_NOFS); 1500 ASSERT(ret == 0 || ret == -ENOMEM); 1501 if (ret) { 1502 /* Caching is optional, no worries. */ 1503 kfree(new_entry); 1504 return; 1505 } 1506 1507 /* 1508 * We are called from iterate_extent_inodes() while either holding a 1509 * transaction handle or holding fs_info->commit_root_sem, so no need 1510 * to take any lock here. 1511 */ 1512 if (sctx->backref_cache.size == 1) 1513 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1514 } 1515 1516 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1517 const struct extent_buffer *leaf, void *ctx) 1518 { 1519 const u64 refs = btrfs_extent_refs(leaf, ei); 1520 const struct backref_ctx *bctx = ctx; 1521 const struct send_ctx *sctx = bctx->sctx; 1522 1523 if (bytenr == bctx->bytenr) { 1524 const u64 flags = btrfs_extent_flags(leaf, ei); 1525 1526 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1527 return -EUCLEAN; 1528 1529 /* 1530 * If we have only one reference and only the send root as a 1531 * clone source - meaning no clone roots were given in the 1532 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1533 * it's our reference and there's no point in doing backref 1534 * walking which is expensive, so exit early. 1535 */ 1536 if (refs == 1 && sctx->clone_roots_cnt == 1) 1537 return -ENOENT; 1538 } 1539 1540 /* 1541 * Backreference walking (iterate_extent_inodes() below) is currently 1542 * too expensive when an extent has a large number of references, both 1543 * in time spent and used memory. So for now just fallback to write 1544 * operations instead of clone operations when an extent has more than 1545 * a certain amount of references. 1546 */ 1547 if (refs > SEND_MAX_EXTENT_REFS) 1548 return -ENOENT; 1549 1550 return 0; 1551 } 1552 1553 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1554 { 1555 const struct backref_ctx *bctx = ctx; 1556 1557 if (ino == bctx->cur_objectid && 1558 root == bctx->backref_owner && 1559 offset == bctx->backref_offset) 1560 return true; 1561 1562 return false; 1563 } 1564 1565 /* 1566 * Given an inode, offset and extent item, it finds a good clone for a clone 1567 * instruction. Returns -ENOENT when none could be found. The function makes 1568 * sure that the returned clone is usable at the point where sending is at the 1569 * moment. This means, that no clones are accepted which lie behind the current 1570 * inode+offset. 1571 * 1572 * path must point to the extent item when called. 1573 */ 1574 static int find_extent_clone(struct send_ctx *sctx, 1575 struct btrfs_path *path, 1576 u64 ino, u64 data_offset, 1577 u64 ino_size, 1578 struct clone_root **found) 1579 { 1580 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1581 int ret; 1582 int extent_type; 1583 u64 logical; 1584 u64 disk_byte; 1585 u64 num_bytes; 1586 struct btrfs_file_extent_item *fi; 1587 struct extent_buffer *eb = path->nodes[0]; 1588 struct backref_ctx backref_ctx = { 0 }; 1589 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1590 struct clone_root *cur_clone_root; 1591 int compressed; 1592 u32 i; 1593 1594 /* 1595 * With fallocate we can get prealloc extents beyond the inode's i_size, 1596 * so we don't do anything here because clone operations can not clone 1597 * to a range beyond i_size without increasing the i_size of the 1598 * destination inode. 1599 */ 1600 if (data_offset >= ino_size) 1601 return 0; 1602 1603 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1604 extent_type = btrfs_file_extent_type(eb, fi); 1605 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1606 return -ENOENT; 1607 1608 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1609 if (disk_byte == 0) 1610 return -ENOENT; 1611 1612 compressed = btrfs_file_extent_compression(eb, fi); 1613 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1614 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1615 1616 /* 1617 * Setup the clone roots. 1618 */ 1619 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1620 cur_clone_root = sctx->clone_roots + i; 1621 cur_clone_root->ino = (u64)-1; 1622 cur_clone_root->offset = 0; 1623 cur_clone_root->num_bytes = 0; 1624 cur_clone_root->found_ref = false; 1625 } 1626 1627 backref_ctx.sctx = sctx; 1628 backref_ctx.cur_objectid = ino; 1629 backref_ctx.cur_offset = data_offset; 1630 backref_ctx.bytenr = disk_byte; 1631 /* 1632 * Use the header owner and not the send root's id, because in case of a 1633 * snapshot we can have shared subtrees. 1634 */ 1635 backref_ctx.backref_owner = btrfs_header_owner(eb); 1636 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1637 1638 /* 1639 * The last extent of a file may be too large due to page alignment. 1640 * We need to adjust extent_len in this case so that the checks in 1641 * iterate_backrefs() work. 1642 */ 1643 if (data_offset + num_bytes >= ino_size) 1644 backref_ctx.extent_len = ino_size - data_offset; 1645 else 1646 backref_ctx.extent_len = num_bytes; 1647 1648 /* 1649 * Now collect all backrefs. 1650 */ 1651 backref_walk_ctx.bytenr = disk_byte; 1652 if (compressed == BTRFS_COMPRESS_NONE) 1653 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1654 backref_walk_ctx.fs_info = fs_info; 1655 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1656 backref_walk_ctx.cache_store = store_backref_cache; 1657 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1658 backref_walk_ctx.check_extent_item = check_extent_item; 1659 backref_walk_ctx.user_ctx = &backref_ctx; 1660 1661 /* 1662 * If have a single clone root, then it's the send root and we can tell 1663 * the backref walking code to skip our own backref and not resolve it, 1664 * since we can not use it for cloning - the source and destination 1665 * ranges can't overlap and in case the leaf is shared through a subtree 1666 * due to snapshots, we can't use those other roots since they are not 1667 * in the list of clone roots. 1668 */ 1669 if (sctx->clone_roots_cnt == 1) 1670 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1671 1672 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1673 &backref_ctx); 1674 if (ret < 0) 1675 return ret; 1676 1677 down_read(&fs_info->commit_root_sem); 1678 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1679 /* 1680 * A transaction commit for a transaction in which block group 1681 * relocation was done just happened. 1682 * The disk_bytenr of the file extent item we processed is 1683 * possibly stale, referring to the extent's location before 1684 * relocation. So act as if we haven't found any clone sources 1685 * and fallback to write commands, which will read the correct 1686 * data from the new extent location. Otherwise we will fail 1687 * below because we haven't found our own back reference or we 1688 * could be getting incorrect sources in case the old extent 1689 * was already reallocated after the relocation. 1690 */ 1691 up_read(&fs_info->commit_root_sem); 1692 return -ENOENT; 1693 } 1694 up_read(&fs_info->commit_root_sem); 1695 1696 btrfs_debug(fs_info, 1697 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1698 data_offset, ino, num_bytes, logical); 1699 1700 if (!backref_ctx.found) { 1701 btrfs_debug(fs_info, "no clones found"); 1702 return -ENOENT; 1703 } 1704 1705 cur_clone_root = NULL; 1706 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1707 struct clone_root *clone_root = &sctx->clone_roots[i]; 1708 1709 if (!clone_root->found_ref) 1710 continue; 1711 1712 /* 1713 * Choose the root from which we can clone more bytes, to 1714 * minimize write operations and therefore have more extent 1715 * sharing at the destination (the same as in the source). 1716 */ 1717 if (!cur_clone_root || 1718 clone_root->num_bytes > cur_clone_root->num_bytes) { 1719 cur_clone_root = clone_root; 1720 1721 /* 1722 * We found an optimal clone candidate (any inode from 1723 * any root is fine), so we're done. 1724 */ 1725 if (clone_root->num_bytes >= backref_ctx.extent_len) 1726 break; 1727 } 1728 } 1729 1730 if (cur_clone_root) { 1731 *found = cur_clone_root; 1732 ret = 0; 1733 } else { 1734 ret = -ENOENT; 1735 } 1736 1737 return ret; 1738 } 1739 1740 static int read_symlink(struct btrfs_root *root, 1741 u64 ino, 1742 struct fs_path *dest) 1743 { 1744 int ret; 1745 struct btrfs_path *path; 1746 struct btrfs_key key; 1747 struct btrfs_file_extent_item *ei; 1748 u8 type; 1749 u8 compression; 1750 unsigned long off; 1751 int len; 1752 1753 path = alloc_path_for_send(); 1754 if (!path) 1755 return -ENOMEM; 1756 1757 key.objectid = ino; 1758 key.type = BTRFS_EXTENT_DATA_KEY; 1759 key.offset = 0; 1760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1761 if (ret < 0) 1762 goto out; 1763 if (ret) { 1764 /* 1765 * An empty symlink inode. Can happen in rare error paths when 1766 * creating a symlink (transaction committed before the inode 1767 * eviction handler removed the symlink inode items and a crash 1768 * happened in between or the subvol was snapshoted in between). 1769 * Print an informative message to dmesg/syslog so that the user 1770 * can delete the symlink. 1771 */ 1772 btrfs_err(root->fs_info, 1773 "Found empty symlink inode %llu at root %llu", 1774 ino, btrfs_root_id(root)); 1775 ret = -EIO; 1776 goto out; 1777 } 1778 1779 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1780 struct btrfs_file_extent_item); 1781 type = btrfs_file_extent_type(path->nodes[0], ei); 1782 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1783 ret = -EUCLEAN; 1784 btrfs_crit(root->fs_info, 1785 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1786 ino, btrfs_root_id(root), type); 1787 goto out; 1788 } 1789 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1790 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1791 ret = -EUCLEAN; 1792 btrfs_crit(root->fs_info, 1793 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1794 ino, btrfs_root_id(root), compression); 1795 goto out; 1796 } 1797 1798 off = btrfs_file_extent_inline_start(ei); 1799 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1800 1801 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1802 1803 out: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 /* 1809 * Helper function to generate a file name that is unique in the root of 1810 * send_root and parent_root. This is used to generate names for orphan inodes. 1811 */ 1812 static int gen_unique_name(struct send_ctx *sctx, 1813 u64 ino, u64 gen, 1814 struct fs_path *dest) 1815 { 1816 int ret = 0; 1817 struct btrfs_path *path; 1818 struct btrfs_dir_item *di; 1819 char tmp[64]; 1820 int len; 1821 u64 idx = 0; 1822 1823 path = alloc_path_for_send(); 1824 if (!path) 1825 return -ENOMEM; 1826 1827 while (1) { 1828 struct fscrypt_str tmp_name; 1829 1830 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1831 ino, gen, idx); 1832 ASSERT(len < sizeof(tmp)); 1833 tmp_name.name = tmp; 1834 tmp_name.len = strlen(tmp); 1835 1836 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1837 path, BTRFS_FIRST_FREE_OBJECTID, 1838 &tmp_name, 0); 1839 btrfs_release_path(path); 1840 if (IS_ERR(di)) { 1841 ret = PTR_ERR(di); 1842 goto out; 1843 } 1844 if (di) { 1845 /* not unique, try again */ 1846 idx++; 1847 continue; 1848 } 1849 1850 if (!sctx->parent_root) { 1851 /* unique */ 1852 ret = 0; 1853 break; 1854 } 1855 1856 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1857 path, BTRFS_FIRST_FREE_OBJECTID, 1858 &tmp_name, 0); 1859 btrfs_release_path(path); 1860 if (IS_ERR(di)) { 1861 ret = PTR_ERR(di); 1862 goto out; 1863 } 1864 if (di) { 1865 /* not unique, try again */ 1866 idx++; 1867 continue; 1868 } 1869 /* unique */ 1870 break; 1871 } 1872 1873 ret = fs_path_add(dest, tmp, strlen(tmp)); 1874 1875 out: 1876 btrfs_free_path(path); 1877 return ret; 1878 } 1879 1880 enum inode_state { 1881 inode_state_no_change, 1882 inode_state_will_create, 1883 inode_state_did_create, 1884 inode_state_will_delete, 1885 inode_state_did_delete, 1886 }; 1887 1888 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1889 u64 *send_gen, u64 *parent_gen) 1890 { 1891 int ret; 1892 int left_ret; 1893 int right_ret; 1894 u64 left_gen; 1895 u64 right_gen = 0; 1896 struct btrfs_inode_info info; 1897 1898 ret = get_inode_info(sctx->send_root, ino, &info); 1899 if (ret < 0 && ret != -ENOENT) 1900 goto out; 1901 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1902 left_gen = info.gen; 1903 if (send_gen) 1904 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1905 1906 if (!sctx->parent_root) { 1907 right_ret = -ENOENT; 1908 } else { 1909 ret = get_inode_info(sctx->parent_root, ino, &info); 1910 if (ret < 0 && ret != -ENOENT) 1911 goto out; 1912 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1913 right_gen = info.gen; 1914 if (parent_gen) 1915 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1916 } 1917 1918 if (!left_ret && !right_ret) { 1919 if (left_gen == gen && right_gen == gen) { 1920 ret = inode_state_no_change; 1921 } else if (left_gen == gen) { 1922 if (ino < sctx->send_progress) 1923 ret = inode_state_did_create; 1924 else 1925 ret = inode_state_will_create; 1926 } else if (right_gen == gen) { 1927 if (ino < sctx->send_progress) 1928 ret = inode_state_did_delete; 1929 else 1930 ret = inode_state_will_delete; 1931 } else { 1932 ret = -ENOENT; 1933 } 1934 } else if (!left_ret) { 1935 if (left_gen == gen) { 1936 if (ino < sctx->send_progress) 1937 ret = inode_state_did_create; 1938 else 1939 ret = inode_state_will_create; 1940 } else { 1941 ret = -ENOENT; 1942 } 1943 } else if (!right_ret) { 1944 if (right_gen == gen) { 1945 if (ino < sctx->send_progress) 1946 ret = inode_state_did_delete; 1947 else 1948 ret = inode_state_will_delete; 1949 } else { 1950 ret = -ENOENT; 1951 } 1952 } else { 1953 ret = -ENOENT; 1954 } 1955 1956 out: 1957 return ret; 1958 } 1959 1960 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1961 u64 *send_gen, u64 *parent_gen) 1962 { 1963 int ret; 1964 1965 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1966 return 1; 1967 1968 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1969 if (ret < 0) 1970 goto out; 1971 1972 if (ret == inode_state_no_change || 1973 ret == inode_state_did_create || 1974 ret == inode_state_will_delete) 1975 ret = 1; 1976 else 1977 ret = 0; 1978 1979 out: 1980 return ret; 1981 } 1982 1983 /* 1984 * Helper function to lookup a dir item in a dir. 1985 */ 1986 static int lookup_dir_item_inode(struct btrfs_root *root, 1987 u64 dir, const char *name, int name_len, 1988 u64 *found_inode) 1989 { 1990 int ret = 0; 1991 struct btrfs_dir_item *di; 1992 struct btrfs_key key; 1993 struct btrfs_path *path; 1994 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1995 1996 path = alloc_path_for_send(); 1997 if (!path) 1998 return -ENOMEM; 1999 2000 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 2001 if (IS_ERR_OR_NULL(di)) { 2002 ret = di ? PTR_ERR(di) : -ENOENT; 2003 goto out; 2004 } 2005 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2006 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2007 ret = -ENOENT; 2008 goto out; 2009 } 2010 *found_inode = key.objectid; 2011 2012 out: 2013 btrfs_free_path(path); 2014 return ret; 2015 } 2016 2017 /* 2018 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2019 * generation of the parent dir and the name of the dir entry. 2020 */ 2021 static int get_first_ref(struct btrfs_root *root, u64 ino, 2022 u64 *dir, u64 *dir_gen, struct fs_path *name) 2023 { 2024 int ret; 2025 struct btrfs_key key; 2026 struct btrfs_key found_key; 2027 struct btrfs_path *path; 2028 int len; 2029 u64 parent_dir; 2030 2031 path = alloc_path_for_send(); 2032 if (!path) 2033 return -ENOMEM; 2034 2035 key.objectid = ino; 2036 key.type = BTRFS_INODE_REF_KEY; 2037 key.offset = 0; 2038 2039 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2040 if (ret < 0) 2041 goto out; 2042 if (!ret) 2043 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2044 path->slots[0]); 2045 if (ret || found_key.objectid != ino || 2046 (found_key.type != BTRFS_INODE_REF_KEY && 2047 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2048 ret = -ENOENT; 2049 goto out; 2050 } 2051 2052 if (found_key.type == BTRFS_INODE_REF_KEY) { 2053 struct btrfs_inode_ref *iref; 2054 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2055 struct btrfs_inode_ref); 2056 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2057 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2058 (unsigned long)(iref + 1), 2059 len); 2060 parent_dir = found_key.offset; 2061 } else { 2062 struct btrfs_inode_extref *extref; 2063 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2064 struct btrfs_inode_extref); 2065 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2066 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2067 (unsigned long)&extref->name, len); 2068 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2069 } 2070 if (ret < 0) 2071 goto out; 2072 btrfs_release_path(path); 2073 2074 if (dir_gen) { 2075 ret = get_inode_gen(root, parent_dir, dir_gen); 2076 if (ret < 0) 2077 goto out; 2078 } 2079 2080 *dir = parent_dir; 2081 2082 out: 2083 btrfs_free_path(path); 2084 return ret; 2085 } 2086 2087 static int is_first_ref(struct btrfs_root *root, 2088 u64 ino, u64 dir, 2089 const char *name, int name_len) 2090 { 2091 int ret; 2092 struct fs_path *tmp_name; 2093 u64 tmp_dir; 2094 2095 tmp_name = fs_path_alloc(); 2096 if (!tmp_name) 2097 return -ENOMEM; 2098 2099 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2100 if (ret < 0) 2101 goto out; 2102 2103 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2104 ret = 0; 2105 goto out; 2106 } 2107 2108 ret = !memcmp(tmp_name->start, name, name_len); 2109 2110 out: 2111 fs_path_free(tmp_name); 2112 return ret; 2113 } 2114 2115 /* 2116 * Used by process_recorded_refs to determine if a new ref would overwrite an 2117 * already existing ref. In case it detects an overwrite, it returns the 2118 * inode/gen in who_ino/who_gen. 2119 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2120 * to make sure later references to the overwritten inode are possible. 2121 * Orphanizing is however only required for the first ref of an inode. 2122 * process_recorded_refs does an additional is_first_ref check to see if 2123 * orphanizing is really required. 2124 */ 2125 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2126 const char *name, int name_len, 2127 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2128 { 2129 int ret; 2130 u64 parent_root_dir_gen; 2131 u64 other_inode = 0; 2132 struct btrfs_inode_info info; 2133 2134 if (!sctx->parent_root) 2135 return 0; 2136 2137 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2138 if (ret <= 0) 2139 return 0; 2140 2141 /* 2142 * If we have a parent root we need to verify that the parent dir was 2143 * not deleted and then re-created, if it was then we have no overwrite 2144 * and we can just unlink this entry. 2145 * 2146 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2147 * parent root. 2148 */ 2149 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2150 parent_root_dir_gen != dir_gen) 2151 return 0; 2152 2153 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2154 &other_inode); 2155 if (ret == -ENOENT) 2156 return 0; 2157 else if (ret < 0) 2158 return ret; 2159 2160 /* 2161 * Check if the overwritten ref was already processed. If yes, the ref 2162 * was already unlinked/moved, so we can safely assume that we will not 2163 * overwrite anything at this point in time. 2164 */ 2165 if (other_inode > sctx->send_progress || 2166 is_waiting_for_move(sctx, other_inode)) { 2167 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2168 if (ret < 0) 2169 return ret; 2170 2171 *who_ino = other_inode; 2172 *who_gen = info.gen; 2173 *who_mode = info.mode; 2174 return 1; 2175 } 2176 2177 return 0; 2178 } 2179 2180 /* 2181 * Checks if the ref was overwritten by an already processed inode. This is 2182 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2183 * thus the orphan name needs be used. 2184 * process_recorded_refs also uses it to avoid unlinking of refs that were 2185 * overwritten. 2186 */ 2187 static int did_overwrite_ref(struct send_ctx *sctx, 2188 u64 dir, u64 dir_gen, 2189 u64 ino, u64 ino_gen, 2190 const char *name, int name_len) 2191 { 2192 int ret; 2193 u64 ow_inode; 2194 u64 ow_gen = 0; 2195 u64 send_root_dir_gen; 2196 2197 if (!sctx->parent_root) 2198 return 0; 2199 2200 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2201 if (ret <= 0) 2202 return ret; 2203 2204 /* 2205 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2206 * send root. 2207 */ 2208 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2209 return 0; 2210 2211 /* check if the ref was overwritten by another ref */ 2212 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2213 &ow_inode); 2214 if (ret == -ENOENT) { 2215 /* was never and will never be overwritten */ 2216 return 0; 2217 } else if (ret < 0) { 2218 return ret; 2219 } 2220 2221 if (ow_inode == ino) { 2222 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2223 if (ret < 0) 2224 return ret; 2225 2226 /* It's the same inode, so no overwrite happened. */ 2227 if (ow_gen == ino_gen) 2228 return 0; 2229 } 2230 2231 /* 2232 * We know that it is or will be overwritten. Check this now. 2233 * The current inode being processed might have been the one that caused 2234 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2235 * the current inode being processed. 2236 */ 2237 if (ow_inode < sctx->send_progress) 2238 return 1; 2239 2240 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2241 if (ow_gen == 0) { 2242 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2243 if (ret < 0) 2244 return ret; 2245 } 2246 if (ow_gen == sctx->cur_inode_gen) 2247 return 1; 2248 } 2249 2250 return 0; 2251 } 2252 2253 /* 2254 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2255 * that got overwritten. This is used by process_recorded_refs to determine 2256 * if it has to use the path as returned by get_cur_path or the orphan name. 2257 */ 2258 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2259 { 2260 int ret = 0; 2261 struct fs_path *name = NULL; 2262 u64 dir; 2263 u64 dir_gen; 2264 2265 if (!sctx->parent_root) 2266 goto out; 2267 2268 name = fs_path_alloc(); 2269 if (!name) 2270 return -ENOMEM; 2271 2272 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2273 if (ret < 0) 2274 goto out; 2275 2276 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2277 name->start, fs_path_len(name)); 2278 2279 out: 2280 fs_path_free(name); 2281 return ret; 2282 } 2283 2284 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2285 u64 ino, u64 gen) 2286 { 2287 struct btrfs_lru_cache_entry *entry; 2288 2289 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2290 if (!entry) 2291 return NULL; 2292 2293 return container_of(entry, struct name_cache_entry, entry); 2294 } 2295 2296 /* 2297 * Used by get_cur_path for each ref up to the root. 2298 * Returns 0 if it succeeded. 2299 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2300 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2301 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2302 * Returns <0 in case of error. 2303 */ 2304 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2305 u64 ino, u64 gen, 2306 u64 *parent_ino, 2307 u64 *parent_gen, 2308 struct fs_path *dest) 2309 { 2310 int ret; 2311 int nce_ret; 2312 struct name_cache_entry *nce; 2313 2314 /* 2315 * First check if we already did a call to this function with the same 2316 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2317 * return the cached result. 2318 */ 2319 nce = name_cache_search(sctx, ino, gen); 2320 if (nce) { 2321 if (ino < sctx->send_progress && nce->need_later_update) { 2322 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2323 nce = NULL; 2324 } else { 2325 *parent_ino = nce->parent_ino; 2326 *parent_gen = nce->parent_gen; 2327 ret = fs_path_add(dest, nce->name, nce->name_len); 2328 if (ret < 0) 2329 goto out; 2330 ret = nce->ret; 2331 goto out; 2332 } 2333 } 2334 2335 /* 2336 * If the inode is not existent yet, add the orphan name and return 1. 2337 * This should only happen for the parent dir that we determine in 2338 * record_new_ref_if_needed(). 2339 */ 2340 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2341 if (ret < 0) 2342 goto out; 2343 2344 if (!ret) { 2345 ret = gen_unique_name(sctx, ino, gen, dest); 2346 if (ret < 0) 2347 goto out; 2348 ret = 1; 2349 goto out_cache; 2350 } 2351 2352 /* 2353 * Depending on whether the inode was already processed or not, use 2354 * send_root or parent_root for ref lookup. 2355 */ 2356 if (ino < sctx->send_progress) 2357 ret = get_first_ref(sctx->send_root, ino, 2358 parent_ino, parent_gen, dest); 2359 else 2360 ret = get_first_ref(sctx->parent_root, ino, 2361 parent_ino, parent_gen, dest); 2362 if (ret < 0) 2363 goto out; 2364 2365 /* 2366 * Check if the ref was overwritten by an inode's ref that was processed 2367 * earlier. If yes, treat as orphan and return 1. 2368 */ 2369 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2370 dest->start, dest->end - dest->start); 2371 if (ret < 0) 2372 goto out; 2373 if (ret) { 2374 fs_path_reset(dest); 2375 ret = gen_unique_name(sctx, ino, gen, dest); 2376 if (ret < 0) 2377 goto out; 2378 ret = 1; 2379 } 2380 2381 out_cache: 2382 /* 2383 * Store the result of the lookup in the name cache. 2384 */ 2385 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2386 if (!nce) { 2387 ret = -ENOMEM; 2388 goto out; 2389 } 2390 2391 nce->entry.key = ino; 2392 nce->entry.gen = gen; 2393 nce->parent_ino = *parent_ino; 2394 nce->parent_gen = *parent_gen; 2395 nce->name_len = fs_path_len(dest); 2396 nce->ret = ret; 2397 memcpy(nce->name, dest->start, nce->name_len); 2398 2399 if (ino < sctx->send_progress) 2400 nce->need_later_update = 0; 2401 else 2402 nce->need_later_update = 1; 2403 2404 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2405 if (nce_ret < 0) { 2406 kfree(nce); 2407 ret = nce_ret; 2408 } 2409 2410 out: 2411 return ret; 2412 } 2413 2414 /* 2415 * Magic happens here. This function returns the first ref to an inode as it 2416 * would look like while receiving the stream at this point in time. 2417 * We walk the path up to the root. For every inode in between, we check if it 2418 * was already processed/sent. If yes, we continue with the parent as found 2419 * in send_root. If not, we continue with the parent as found in parent_root. 2420 * If we encounter an inode that was deleted at this point in time, we use the 2421 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2422 * that were not created yet and overwritten inodes/refs. 2423 * 2424 * When do we have orphan inodes: 2425 * 1. When an inode is freshly created and thus no valid refs are available yet 2426 * 2. When a directory lost all it's refs (deleted) but still has dir items 2427 * inside which were not processed yet (pending for move/delete). If anyone 2428 * tried to get the path to the dir items, it would get a path inside that 2429 * orphan directory. 2430 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2431 * of an unprocessed inode. If in that case the first ref would be 2432 * overwritten, the overwritten inode gets "orphanized". Later when we 2433 * process this overwritten inode, it is restored at a new place by moving 2434 * the orphan inode. 2435 * 2436 * sctx->send_progress tells this function at which point in time receiving 2437 * would be. 2438 */ 2439 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2440 struct fs_path *dest) 2441 { 2442 int ret = 0; 2443 struct fs_path *name = NULL; 2444 u64 parent_inode = 0; 2445 u64 parent_gen = 0; 2446 int stop = 0; 2447 2448 name = fs_path_alloc(); 2449 if (!name) { 2450 ret = -ENOMEM; 2451 goto out; 2452 } 2453 2454 dest->reversed = 1; 2455 fs_path_reset(dest); 2456 2457 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2458 struct waiting_dir_move *wdm; 2459 2460 fs_path_reset(name); 2461 2462 if (is_waiting_for_rm(sctx, ino, gen)) { 2463 ret = gen_unique_name(sctx, ino, gen, name); 2464 if (ret < 0) 2465 goto out; 2466 ret = fs_path_add_path(dest, name); 2467 break; 2468 } 2469 2470 wdm = get_waiting_dir_move(sctx, ino); 2471 if (wdm && wdm->orphanized) { 2472 ret = gen_unique_name(sctx, ino, gen, name); 2473 stop = 1; 2474 } else if (wdm) { 2475 ret = get_first_ref(sctx->parent_root, ino, 2476 &parent_inode, &parent_gen, name); 2477 } else { 2478 ret = __get_cur_name_and_parent(sctx, ino, gen, 2479 &parent_inode, 2480 &parent_gen, name); 2481 if (ret) 2482 stop = 1; 2483 } 2484 2485 if (ret < 0) 2486 goto out; 2487 2488 ret = fs_path_add_path(dest, name); 2489 if (ret < 0) 2490 goto out; 2491 2492 ino = parent_inode; 2493 gen = parent_gen; 2494 } 2495 2496 out: 2497 fs_path_free(name); 2498 if (!ret) 2499 fs_path_unreverse(dest); 2500 return ret; 2501 } 2502 2503 /* 2504 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2505 */ 2506 static int send_subvol_begin(struct send_ctx *sctx) 2507 { 2508 int ret; 2509 struct btrfs_root *send_root = sctx->send_root; 2510 struct btrfs_root *parent_root = sctx->parent_root; 2511 struct btrfs_path *path; 2512 struct btrfs_key key; 2513 struct btrfs_root_ref *ref; 2514 struct extent_buffer *leaf; 2515 char *name = NULL; 2516 int namelen; 2517 2518 path = btrfs_alloc_path(); 2519 if (!path) 2520 return -ENOMEM; 2521 2522 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2523 if (!name) { 2524 btrfs_free_path(path); 2525 return -ENOMEM; 2526 } 2527 2528 key.objectid = btrfs_root_id(send_root); 2529 key.type = BTRFS_ROOT_BACKREF_KEY; 2530 key.offset = 0; 2531 2532 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2533 &key, path, 1, 0); 2534 if (ret < 0) 2535 goto out; 2536 if (ret) { 2537 ret = -ENOENT; 2538 goto out; 2539 } 2540 2541 leaf = path->nodes[0]; 2542 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2543 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2544 key.objectid != btrfs_root_id(send_root)) { 2545 ret = -ENOENT; 2546 goto out; 2547 } 2548 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2549 namelen = btrfs_root_ref_name_len(leaf, ref); 2550 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2551 btrfs_release_path(path); 2552 2553 if (parent_root) { 2554 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2555 if (ret < 0) 2556 goto out; 2557 } else { 2558 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2559 if (ret < 0) 2560 goto out; 2561 } 2562 2563 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2564 2565 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2566 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2567 sctx->send_root->root_item.received_uuid); 2568 else 2569 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2570 sctx->send_root->root_item.uuid); 2571 2572 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2573 btrfs_root_ctransid(&sctx->send_root->root_item)); 2574 if (parent_root) { 2575 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2577 parent_root->root_item.received_uuid); 2578 else 2579 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2580 parent_root->root_item.uuid); 2581 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2582 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2583 } 2584 2585 ret = send_cmd(sctx); 2586 2587 tlv_put_failure: 2588 out: 2589 btrfs_free_path(path); 2590 kfree(name); 2591 return ret; 2592 } 2593 2594 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2595 { 2596 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2597 int ret = 0; 2598 struct fs_path *p; 2599 2600 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2601 2602 p = fs_path_alloc(); 2603 if (!p) 2604 return -ENOMEM; 2605 2606 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2607 if (ret < 0) 2608 goto out; 2609 2610 ret = get_cur_path(sctx, ino, gen, p); 2611 if (ret < 0) 2612 goto out; 2613 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2614 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2615 2616 ret = send_cmd(sctx); 2617 2618 tlv_put_failure: 2619 out: 2620 fs_path_free(p); 2621 return ret; 2622 } 2623 2624 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2625 { 2626 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2627 int ret = 0; 2628 struct fs_path *p; 2629 2630 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2631 2632 p = fs_path_alloc(); 2633 if (!p) 2634 return -ENOMEM; 2635 2636 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2637 if (ret < 0) 2638 goto out; 2639 2640 ret = get_cur_path(sctx, ino, gen, p); 2641 if (ret < 0) 2642 goto out; 2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2645 2646 ret = send_cmd(sctx); 2647 2648 tlv_put_failure: 2649 out: 2650 fs_path_free(p); 2651 return ret; 2652 } 2653 2654 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2655 { 2656 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2657 int ret = 0; 2658 struct fs_path *p; 2659 2660 if (sctx->proto < 2) 2661 return 0; 2662 2663 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2664 2665 p = fs_path_alloc(); 2666 if (!p) 2667 return -ENOMEM; 2668 2669 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2670 if (ret < 0) 2671 goto out; 2672 2673 ret = get_cur_path(sctx, ino, gen, p); 2674 if (ret < 0) 2675 goto out; 2676 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2677 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2678 2679 ret = send_cmd(sctx); 2680 2681 tlv_put_failure: 2682 out: 2683 fs_path_free(p); 2684 return ret; 2685 } 2686 2687 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2688 { 2689 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2690 int ret = 0; 2691 struct fs_path *p; 2692 2693 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2694 ino, uid, gid); 2695 2696 p = fs_path_alloc(); 2697 if (!p) 2698 return -ENOMEM; 2699 2700 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2701 if (ret < 0) 2702 goto out; 2703 2704 ret = get_cur_path(sctx, ino, gen, p); 2705 if (ret < 0) 2706 goto out; 2707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2708 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2709 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2710 2711 ret = send_cmd(sctx); 2712 2713 tlv_put_failure: 2714 out: 2715 fs_path_free(p); 2716 return ret; 2717 } 2718 2719 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2720 { 2721 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2722 int ret = 0; 2723 struct fs_path *p = NULL; 2724 struct btrfs_inode_item *ii; 2725 struct btrfs_path *path = NULL; 2726 struct extent_buffer *eb; 2727 struct btrfs_key key; 2728 int slot; 2729 2730 btrfs_debug(fs_info, "send_utimes %llu", ino); 2731 2732 p = fs_path_alloc(); 2733 if (!p) 2734 return -ENOMEM; 2735 2736 path = alloc_path_for_send(); 2737 if (!path) { 2738 ret = -ENOMEM; 2739 goto out; 2740 } 2741 2742 key.objectid = ino; 2743 key.type = BTRFS_INODE_ITEM_KEY; 2744 key.offset = 0; 2745 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2746 if (ret > 0) 2747 ret = -ENOENT; 2748 if (ret < 0) 2749 goto out; 2750 2751 eb = path->nodes[0]; 2752 slot = path->slots[0]; 2753 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2754 2755 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2756 if (ret < 0) 2757 goto out; 2758 2759 ret = get_cur_path(sctx, ino, gen, p); 2760 if (ret < 0) 2761 goto out; 2762 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2763 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2764 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2765 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2766 if (sctx->proto >= 2) 2767 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2768 2769 ret = send_cmd(sctx); 2770 2771 tlv_put_failure: 2772 out: 2773 fs_path_free(p); 2774 btrfs_free_path(path); 2775 return ret; 2776 } 2777 2778 /* 2779 * If the cache is full, we can't remove entries from it and do a call to 2780 * send_utimes() for each respective inode, because we might be finishing 2781 * processing an inode that is a directory and it just got renamed, and existing 2782 * entries in the cache may refer to inodes that have the directory in their 2783 * full path - in which case we would generate outdated paths (pre-rename) 2784 * for the inodes that the cache entries point to. Instead of prunning the 2785 * cache when inserting, do it after we finish processing each inode at 2786 * finish_inode_if_needed(). 2787 */ 2788 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2789 { 2790 struct btrfs_lru_cache_entry *entry; 2791 int ret; 2792 2793 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2794 if (entry != NULL) 2795 return 0; 2796 2797 /* Caching is optional, don't fail if we can't allocate memory. */ 2798 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2799 if (!entry) 2800 return send_utimes(sctx, dir, gen); 2801 2802 entry->key = dir; 2803 entry->gen = gen; 2804 2805 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2806 ASSERT(ret != -EEXIST); 2807 if (ret) { 2808 kfree(entry); 2809 return send_utimes(sctx, dir, gen); 2810 } 2811 2812 return 0; 2813 } 2814 2815 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2816 { 2817 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2818 struct btrfs_lru_cache_entry *lru; 2819 int ret; 2820 2821 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2822 ASSERT(lru != NULL); 2823 2824 ret = send_utimes(sctx, lru->key, lru->gen); 2825 if (ret) 2826 return ret; 2827 2828 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2829 } 2830 2831 return 0; 2832 } 2833 2834 /* 2835 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2836 * a valid path yet because we did not process the refs yet. So, the inode 2837 * is created as orphan. 2838 */ 2839 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2840 { 2841 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2842 int ret = 0; 2843 struct fs_path *p; 2844 int cmd; 2845 struct btrfs_inode_info info; 2846 u64 gen; 2847 u64 mode; 2848 u64 rdev; 2849 2850 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2851 2852 p = fs_path_alloc(); 2853 if (!p) 2854 return -ENOMEM; 2855 2856 if (ino != sctx->cur_ino) { 2857 ret = get_inode_info(sctx->send_root, ino, &info); 2858 if (ret < 0) 2859 goto out; 2860 gen = info.gen; 2861 mode = info.mode; 2862 rdev = info.rdev; 2863 } else { 2864 gen = sctx->cur_inode_gen; 2865 mode = sctx->cur_inode_mode; 2866 rdev = sctx->cur_inode_rdev; 2867 } 2868 2869 if (S_ISREG(mode)) { 2870 cmd = BTRFS_SEND_C_MKFILE; 2871 } else if (S_ISDIR(mode)) { 2872 cmd = BTRFS_SEND_C_MKDIR; 2873 } else if (S_ISLNK(mode)) { 2874 cmd = BTRFS_SEND_C_SYMLINK; 2875 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2876 cmd = BTRFS_SEND_C_MKNOD; 2877 } else if (S_ISFIFO(mode)) { 2878 cmd = BTRFS_SEND_C_MKFIFO; 2879 } else if (S_ISSOCK(mode)) { 2880 cmd = BTRFS_SEND_C_MKSOCK; 2881 } else { 2882 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2883 (int)(mode & S_IFMT)); 2884 ret = -EOPNOTSUPP; 2885 goto out; 2886 } 2887 2888 ret = begin_cmd(sctx, cmd); 2889 if (ret < 0) 2890 goto out; 2891 2892 ret = gen_unique_name(sctx, ino, gen, p); 2893 if (ret < 0) 2894 goto out; 2895 2896 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2897 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2898 2899 if (S_ISLNK(mode)) { 2900 fs_path_reset(p); 2901 ret = read_symlink(sctx->send_root, ino, p); 2902 if (ret < 0) 2903 goto out; 2904 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2905 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2906 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2907 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2908 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2909 } 2910 2911 ret = send_cmd(sctx); 2912 if (ret < 0) 2913 goto out; 2914 2915 2916 tlv_put_failure: 2917 out: 2918 fs_path_free(p); 2919 return ret; 2920 } 2921 2922 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2923 { 2924 struct btrfs_lru_cache_entry *entry; 2925 int ret; 2926 2927 /* Caching is optional, ignore any failures. */ 2928 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2929 if (!entry) 2930 return; 2931 2932 entry->key = dir; 2933 entry->gen = 0; 2934 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2935 if (ret < 0) 2936 kfree(entry); 2937 } 2938 2939 /* 2940 * We need some special handling for inodes that get processed before the parent 2941 * directory got created. See process_recorded_refs for details. 2942 * This function does the check if we already created the dir out of order. 2943 */ 2944 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2945 { 2946 int ret = 0; 2947 int iter_ret = 0; 2948 struct btrfs_path *path = NULL; 2949 struct btrfs_key key; 2950 struct btrfs_key found_key; 2951 struct btrfs_key di_key; 2952 struct btrfs_dir_item *di; 2953 2954 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2955 return 1; 2956 2957 path = alloc_path_for_send(); 2958 if (!path) 2959 return -ENOMEM; 2960 2961 key.objectid = dir; 2962 key.type = BTRFS_DIR_INDEX_KEY; 2963 key.offset = 0; 2964 2965 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2966 struct extent_buffer *eb = path->nodes[0]; 2967 2968 if (found_key.objectid != key.objectid || 2969 found_key.type != key.type) { 2970 ret = 0; 2971 break; 2972 } 2973 2974 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2975 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2976 2977 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2978 di_key.objectid < sctx->send_progress) { 2979 ret = 1; 2980 cache_dir_created(sctx, dir); 2981 break; 2982 } 2983 } 2984 /* Catch error found during iteration */ 2985 if (iter_ret < 0) 2986 ret = iter_ret; 2987 2988 btrfs_free_path(path); 2989 return ret; 2990 } 2991 2992 /* 2993 * Only creates the inode if it is: 2994 * 1. Not a directory 2995 * 2. Or a directory which was not created already due to out of order 2996 * directories. See did_create_dir and process_recorded_refs for details. 2997 */ 2998 static int send_create_inode_if_needed(struct send_ctx *sctx) 2999 { 3000 int ret; 3001 3002 if (S_ISDIR(sctx->cur_inode_mode)) { 3003 ret = did_create_dir(sctx, sctx->cur_ino); 3004 if (ret < 0) 3005 return ret; 3006 else if (ret > 0) 3007 return 0; 3008 } 3009 3010 ret = send_create_inode(sctx, sctx->cur_ino); 3011 3012 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3013 cache_dir_created(sctx, sctx->cur_ino); 3014 3015 return ret; 3016 } 3017 3018 struct recorded_ref { 3019 struct list_head list; 3020 char *name; 3021 struct fs_path *full_path; 3022 u64 dir; 3023 u64 dir_gen; 3024 int name_len; 3025 struct rb_node node; 3026 struct rb_root *root; 3027 }; 3028 3029 static struct recorded_ref *recorded_ref_alloc(void) 3030 { 3031 struct recorded_ref *ref; 3032 3033 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3034 if (!ref) 3035 return NULL; 3036 RB_CLEAR_NODE(&ref->node); 3037 INIT_LIST_HEAD(&ref->list); 3038 return ref; 3039 } 3040 3041 static void recorded_ref_free(struct recorded_ref *ref) 3042 { 3043 if (!ref) 3044 return; 3045 if (!RB_EMPTY_NODE(&ref->node)) 3046 rb_erase(&ref->node, ref->root); 3047 list_del(&ref->list); 3048 fs_path_free(ref->full_path); 3049 kfree(ref); 3050 } 3051 3052 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3053 { 3054 ref->full_path = path; 3055 ref->name = (char *)kbasename(ref->full_path->start); 3056 ref->name_len = ref->full_path->end - ref->name; 3057 } 3058 3059 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3060 { 3061 struct recorded_ref *new; 3062 3063 new = recorded_ref_alloc(); 3064 if (!new) 3065 return -ENOMEM; 3066 3067 new->dir = ref->dir; 3068 new->dir_gen = ref->dir_gen; 3069 list_add_tail(&new->list, list); 3070 return 0; 3071 } 3072 3073 static void __free_recorded_refs(struct list_head *head) 3074 { 3075 struct recorded_ref *cur; 3076 3077 while (!list_empty(head)) { 3078 cur = list_entry(head->next, struct recorded_ref, list); 3079 recorded_ref_free(cur); 3080 } 3081 } 3082 3083 static void free_recorded_refs(struct send_ctx *sctx) 3084 { 3085 __free_recorded_refs(&sctx->new_refs); 3086 __free_recorded_refs(&sctx->deleted_refs); 3087 } 3088 3089 /* 3090 * Renames/moves a file/dir to its orphan name. Used when the first 3091 * ref of an unprocessed inode gets overwritten and for all non empty 3092 * directories. 3093 */ 3094 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3095 struct fs_path *path) 3096 { 3097 int ret; 3098 struct fs_path *orphan; 3099 3100 orphan = fs_path_alloc(); 3101 if (!orphan) 3102 return -ENOMEM; 3103 3104 ret = gen_unique_name(sctx, ino, gen, orphan); 3105 if (ret < 0) 3106 goto out; 3107 3108 ret = send_rename(sctx, path, orphan); 3109 3110 out: 3111 fs_path_free(orphan); 3112 return ret; 3113 } 3114 3115 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3116 u64 dir_ino, u64 dir_gen) 3117 { 3118 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3119 struct rb_node *parent = NULL; 3120 struct orphan_dir_info *entry, *odi; 3121 3122 while (*p) { 3123 parent = *p; 3124 entry = rb_entry(parent, struct orphan_dir_info, node); 3125 if (dir_ino < entry->ino) 3126 p = &(*p)->rb_left; 3127 else if (dir_ino > entry->ino) 3128 p = &(*p)->rb_right; 3129 else if (dir_gen < entry->gen) 3130 p = &(*p)->rb_left; 3131 else if (dir_gen > entry->gen) 3132 p = &(*p)->rb_right; 3133 else 3134 return entry; 3135 } 3136 3137 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3138 if (!odi) 3139 return ERR_PTR(-ENOMEM); 3140 odi->ino = dir_ino; 3141 odi->gen = dir_gen; 3142 odi->last_dir_index_offset = 0; 3143 odi->dir_high_seq_ino = 0; 3144 3145 rb_link_node(&odi->node, parent, p); 3146 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3147 return odi; 3148 } 3149 3150 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3151 u64 dir_ino, u64 gen) 3152 { 3153 struct rb_node *n = sctx->orphan_dirs.rb_node; 3154 struct orphan_dir_info *entry; 3155 3156 while (n) { 3157 entry = rb_entry(n, struct orphan_dir_info, node); 3158 if (dir_ino < entry->ino) 3159 n = n->rb_left; 3160 else if (dir_ino > entry->ino) 3161 n = n->rb_right; 3162 else if (gen < entry->gen) 3163 n = n->rb_left; 3164 else if (gen > entry->gen) 3165 n = n->rb_right; 3166 else 3167 return entry; 3168 } 3169 return NULL; 3170 } 3171 3172 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3173 { 3174 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3175 3176 return odi != NULL; 3177 } 3178 3179 static void free_orphan_dir_info(struct send_ctx *sctx, 3180 struct orphan_dir_info *odi) 3181 { 3182 if (!odi) 3183 return; 3184 rb_erase(&odi->node, &sctx->orphan_dirs); 3185 kfree(odi); 3186 } 3187 3188 /* 3189 * Returns 1 if a directory can be removed at this point in time. 3190 * We check this by iterating all dir items and checking if the inode behind 3191 * the dir item was already processed. 3192 */ 3193 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3194 { 3195 int ret = 0; 3196 int iter_ret = 0; 3197 struct btrfs_root *root = sctx->parent_root; 3198 struct btrfs_path *path; 3199 struct btrfs_key key; 3200 struct btrfs_key found_key; 3201 struct btrfs_key loc; 3202 struct btrfs_dir_item *di; 3203 struct orphan_dir_info *odi = NULL; 3204 u64 dir_high_seq_ino = 0; 3205 u64 last_dir_index_offset = 0; 3206 3207 /* 3208 * Don't try to rmdir the top/root subvolume dir. 3209 */ 3210 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3211 return 0; 3212 3213 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3214 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3215 return 0; 3216 3217 path = alloc_path_for_send(); 3218 if (!path) 3219 return -ENOMEM; 3220 3221 if (!odi) { 3222 /* 3223 * Find the inode number associated with the last dir index 3224 * entry. This is very likely the inode with the highest number 3225 * of all inodes that have an entry in the directory. We can 3226 * then use it to avoid future calls to can_rmdir(), when 3227 * processing inodes with a lower number, from having to search 3228 * the parent root b+tree for dir index keys. 3229 */ 3230 key.objectid = dir; 3231 key.type = BTRFS_DIR_INDEX_KEY; 3232 key.offset = (u64)-1; 3233 3234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3235 if (ret < 0) { 3236 goto out; 3237 } else if (ret > 0) { 3238 /* Can't happen, the root is never empty. */ 3239 ASSERT(path->slots[0] > 0); 3240 if (WARN_ON(path->slots[0] == 0)) { 3241 ret = -EUCLEAN; 3242 goto out; 3243 } 3244 path->slots[0]--; 3245 } 3246 3247 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3248 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3249 /* No index keys, dir can be removed. */ 3250 ret = 1; 3251 goto out; 3252 } 3253 3254 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3255 struct btrfs_dir_item); 3256 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3257 dir_high_seq_ino = loc.objectid; 3258 if (sctx->cur_ino < dir_high_seq_ino) { 3259 ret = 0; 3260 goto out; 3261 } 3262 3263 btrfs_release_path(path); 3264 } 3265 3266 key.objectid = dir; 3267 key.type = BTRFS_DIR_INDEX_KEY; 3268 key.offset = (odi ? odi->last_dir_index_offset : 0); 3269 3270 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3271 struct waiting_dir_move *dm; 3272 3273 if (found_key.objectid != key.objectid || 3274 found_key.type != key.type) 3275 break; 3276 3277 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3278 struct btrfs_dir_item); 3279 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3280 3281 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3282 last_dir_index_offset = found_key.offset; 3283 3284 dm = get_waiting_dir_move(sctx, loc.objectid); 3285 if (dm) { 3286 dm->rmdir_ino = dir; 3287 dm->rmdir_gen = dir_gen; 3288 ret = 0; 3289 goto out; 3290 } 3291 3292 if (loc.objectid > sctx->cur_ino) { 3293 ret = 0; 3294 goto out; 3295 } 3296 } 3297 if (iter_ret < 0) { 3298 ret = iter_ret; 3299 goto out; 3300 } 3301 free_orphan_dir_info(sctx, odi); 3302 3303 ret = 1; 3304 3305 out: 3306 btrfs_free_path(path); 3307 3308 if (ret) 3309 return ret; 3310 3311 if (!odi) { 3312 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3313 if (IS_ERR(odi)) 3314 return PTR_ERR(odi); 3315 3316 odi->gen = dir_gen; 3317 } 3318 3319 odi->last_dir_index_offset = last_dir_index_offset; 3320 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3321 3322 return 0; 3323 } 3324 3325 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3326 { 3327 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3328 3329 return entry != NULL; 3330 } 3331 3332 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3333 { 3334 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3335 struct rb_node *parent = NULL; 3336 struct waiting_dir_move *entry, *dm; 3337 3338 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3339 if (!dm) 3340 return -ENOMEM; 3341 dm->ino = ino; 3342 dm->rmdir_ino = 0; 3343 dm->rmdir_gen = 0; 3344 dm->orphanized = orphanized; 3345 3346 while (*p) { 3347 parent = *p; 3348 entry = rb_entry(parent, struct waiting_dir_move, node); 3349 if (ino < entry->ino) { 3350 p = &(*p)->rb_left; 3351 } else if (ino > entry->ino) { 3352 p = &(*p)->rb_right; 3353 } else { 3354 kfree(dm); 3355 return -EEXIST; 3356 } 3357 } 3358 3359 rb_link_node(&dm->node, parent, p); 3360 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3361 return 0; 3362 } 3363 3364 static struct waiting_dir_move * 3365 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3366 { 3367 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3368 struct waiting_dir_move *entry; 3369 3370 while (n) { 3371 entry = rb_entry(n, struct waiting_dir_move, node); 3372 if (ino < entry->ino) 3373 n = n->rb_left; 3374 else if (ino > entry->ino) 3375 n = n->rb_right; 3376 else 3377 return entry; 3378 } 3379 return NULL; 3380 } 3381 3382 static void free_waiting_dir_move(struct send_ctx *sctx, 3383 struct waiting_dir_move *dm) 3384 { 3385 if (!dm) 3386 return; 3387 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3388 kfree(dm); 3389 } 3390 3391 static int add_pending_dir_move(struct send_ctx *sctx, 3392 u64 ino, 3393 u64 ino_gen, 3394 u64 parent_ino, 3395 struct list_head *new_refs, 3396 struct list_head *deleted_refs, 3397 const bool is_orphan) 3398 { 3399 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3400 struct rb_node *parent = NULL; 3401 struct pending_dir_move *entry = NULL, *pm; 3402 struct recorded_ref *cur; 3403 int exists = 0; 3404 int ret; 3405 3406 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3407 if (!pm) 3408 return -ENOMEM; 3409 pm->parent_ino = parent_ino; 3410 pm->ino = ino; 3411 pm->gen = ino_gen; 3412 INIT_LIST_HEAD(&pm->list); 3413 INIT_LIST_HEAD(&pm->update_refs); 3414 RB_CLEAR_NODE(&pm->node); 3415 3416 while (*p) { 3417 parent = *p; 3418 entry = rb_entry(parent, struct pending_dir_move, node); 3419 if (parent_ino < entry->parent_ino) { 3420 p = &(*p)->rb_left; 3421 } else if (parent_ino > entry->parent_ino) { 3422 p = &(*p)->rb_right; 3423 } else { 3424 exists = 1; 3425 break; 3426 } 3427 } 3428 3429 list_for_each_entry(cur, deleted_refs, list) { 3430 ret = dup_ref(cur, &pm->update_refs); 3431 if (ret < 0) 3432 goto out; 3433 } 3434 list_for_each_entry(cur, new_refs, list) { 3435 ret = dup_ref(cur, &pm->update_refs); 3436 if (ret < 0) 3437 goto out; 3438 } 3439 3440 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3441 if (ret) 3442 goto out; 3443 3444 if (exists) { 3445 list_add_tail(&pm->list, &entry->list); 3446 } else { 3447 rb_link_node(&pm->node, parent, p); 3448 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3449 } 3450 ret = 0; 3451 out: 3452 if (ret) { 3453 __free_recorded_refs(&pm->update_refs); 3454 kfree(pm); 3455 } 3456 return ret; 3457 } 3458 3459 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3460 u64 parent_ino) 3461 { 3462 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3463 struct pending_dir_move *entry; 3464 3465 while (n) { 3466 entry = rb_entry(n, struct pending_dir_move, node); 3467 if (parent_ino < entry->parent_ino) 3468 n = n->rb_left; 3469 else if (parent_ino > entry->parent_ino) 3470 n = n->rb_right; 3471 else 3472 return entry; 3473 } 3474 return NULL; 3475 } 3476 3477 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3478 u64 ino, u64 gen, u64 *ancestor_ino) 3479 { 3480 int ret = 0; 3481 u64 parent_inode = 0; 3482 u64 parent_gen = 0; 3483 u64 start_ino = ino; 3484 3485 *ancestor_ino = 0; 3486 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3487 fs_path_reset(name); 3488 3489 if (is_waiting_for_rm(sctx, ino, gen)) 3490 break; 3491 if (is_waiting_for_move(sctx, ino)) { 3492 if (*ancestor_ino == 0) 3493 *ancestor_ino = ino; 3494 ret = get_first_ref(sctx->parent_root, ino, 3495 &parent_inode, &parent_gen, name); 3496 } else { 3497 ret = __get_cur_name_and_parent(sctx, ino, gen, 3498 &parent_inode, 3499 &parent_gen, name); 3500 if (ret > 0) { 3501 ret = 0; 3502 break; 3503 } 3504 } 3505 if (ret < 0) 3506 break; 3507 if (parent_inode == start_ino) { 3508 ret = 1; 3509 if (*ancestor_ino == 0) 3510 *ancestor_ino = ino; 3511 break; 3512 } 3513 ino = parent_inode; 3514 gen = parent_gen; 3515 } 3516 return ret; 3517 } 3518 3519 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3520 { 3521 struct fs_path *from_path = NULL; 3522 struct fs_path *to_path = NULL; 3523 struct fs_path *name = NULL; 3524 u64 orig_progress = sctx->send_progress; 3525 struct recorded_ref *cur; 3526 u64 parent_ino, parent_gen; 3527 struct waiting_dir_move *dm = NULL; 3528 u64 rmdir_ino = 0; 3529 u64 rmdir_gen; 3530 u64 ancestor; 3531 bool is_orphan; 3532 int ret; 3533 3534 name = fs_path_alloc(); 3535 from_path = fs_path_alloc(); 3536 if (!name || !from_path) { 3537 ret = -ENOMEM; 3538 goto out; 3539 } 3540 3541 dm = get_waiting_dir_move(sctx, pm->ino); 3542 ASSERT(dm); 3543 rmdir_ino = dm->rmdir_ino; 3544 rmdir_gen = dm->rmdir_gen; 3545 is_orphan = dm->orphanized; 3546 free_waiting_dir_move(sctx, dm); 3547 3548 if (is_orphan) { 3549 ret = gen_unique_name(sctx, pm->ino, 3550 pm->gen, from_path); 3551 } else { 3552 ret = get_first_ref(sctx->parent_root, pm->ino, 3553 &parent_ino, &parent_gen, name); 3554 if (ret < 0) 3555 goto out; 3556 ret = get_cur_path(sctx, parent_ino, parent_gen, 3557 from_path); 3558 if (ret < 0) 3559 goto out; 3560 ret = fs_path_add_path(from_path, name); 3561 } 3562 if (ret < 0) 3563 goto out; 3564 3565 sctx->send_progress = sctx->cur_ino + 1; 3566 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3567 if (ret < 0) 3568 goto out; 3569 if (ret) { 3570 LIST_HEAD(deleted_refs); 3571 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3572 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3573 &pm->update_refs, &deleted_refs, 3574 is_orphan); 3575 if (ret < 0) 3576 goto out; 3577 if (rmdir_ino) { 3578 dm = get_waiting_dir_move(sctx, pm->ino); 3579 ASSERT(dm); 3580 dm->rmdir_ino = rmdir_ino; 3581 dm->rmdir_gen = rmdir_gen; 3582 } 3583 goto out; 3584 } 3585 fs_path_reset(name); 3586 to_path = name; 3587 name = NULL; 3588 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3589 if (ret < 0) 3590 goto out; 3591 3592 ret = send_rename(sctx, from_path, to_path); 3593 if (ret < 0) 3594 goto out; 3595 3596 if (rmdir_ino) { 3597 struct orphan_dir_info *odi; 3598 u64 gen; 3599 3600 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3601 if (!odi) { 3602 /* already deleted */ 3603 goto finish; 3604 } 3605 gen = odi->gen; 3606 3607 ret = can_rmdir(sctx, rmdir_ino, gen); 3608 if (ret < 0) 3609 goto out; 3610 if (!ret) 3611 goto finish; 3612 3613 name = fs_path_alloc(); 3614 if (!name) { 3615 ret = -ENOMEM; 3616 goto out; 3617 } 3618 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3619 if (ret < 0) 3620 goto out; 3621 ret = send_rmdir(sctx, name); 3622 if (ret < 0) 3623 goto out; 3624 } 3625 3626 finish: 3627 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3628 if (ret < 0) 3629 goto out; 3630 3631 /* 3632 * After rename/move, need to update the utimes of both new parent(s) 3633 * and old parent(s). 3634 */ 3635 list_for_each_entry(cur, &pm->update_refs, list) { 3636 /* 3637 * The parent inode might have been deleted in the send snapshot 3638 */ 3639 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3640 if (ret == -ENOENT) { 3641 ret = 0; 3642 continue; 3643 } 3644 if (ret < 0) 3645 goto out; 3646 3647 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3648 if (ret < 0) 3649 goto out; 3650 } 3651 3652 out: 3653 fs_path_free(name); 3654 fs_path_free(from_path); 3655 fs_path_free(to_path); 3656 sctx->send_progress = orig_progress; 3657 3658 return ret; 3659 } 3660 3661 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3662 { 3663 if (!list_empty(&m->list)) 3664 list_del(&m->list); 3665 if (!RB_EMPTY_NODE(&m->node)) 3666 rb_erase(&m->node, &sctx->pending_dir_moves); 3667 __free_recorded_refs(&m->update_refs); 3668 kfree(m); 3669 } 3670 3671 static void tail_append_pending_moves(struct send_ctx *sctx, 3672 struct pending_dir_move *moves, 3673 struct list_head *stack) 3674 { 3675 if (list_empty(&moves->list)) { 3676 list_add_tail(&moves->list, stack); 3677 } else { 3678 LIST_HEAD(list); 3679 list_splice_init(&moves->list, &list); 3680 list_add_tail(&moves->list, stack); 3681 list_splice_tail(&list, stack); 3682 } 3683 if (!RB_EMPTY_NODE(&moves->node)) { 3684 rb_erase(&moves->node, &sctx->pending_dir_moves); 3685 RB_CLEAR_NODE(&moves->node); 3686 } 3687 } 3688 3689 static int apply_children_dir_moves(struct send_ctx *sctx) 3690 { 3691 struct pending_dir_move *pm; 3692 LIST_HEAD(stack); 3693 u64 parent_ino = sctx->cur_ino; 3694 int ret = 0; 3695 3696 pm = get_pending_dir_moves(sctx, parent_ino); 3697 if (!pm) 3698 return 0; 3699 3700 tail_append_pending_moves(sctx, pm, &stack); 3701 3702 while (!list_empty(&stack)) { 3703 pm = list_first_entry(&stack, struct pending_dir_move, list); 3704 parent_ino = pm->ino; 3705 ret = apply_dir_move(sctx, pm); 3706 free_pending_move(sctx, pm); 3707 if (ret) 3708 goto out; 3709 pm = get_pending_dir_moves(sctx, parent_ino); 3710 if (pm) 3711 tail_append_pending_moves(sctx, pm, &stack); 3712 } 3713 return 0; 3714 3715 out: 3716 while (!list_empty(&stack)) { 3717 pm = list_first_entry(&stack, struct pending_dir_move, list); 3718 free_pending_move(sctx, pm); 3719 } 3720 return ret; 3721 } 3722 3723 /* 3724 * We might need to delay a directory rename even when no ancestor directory 3725 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3726 * renamed. This happens when we rename a directory to the old name (the name 3727 * in the parent root) of some other unrelated directory that got its rename 3728 * delayed due to some ancestor with higher number that got renamed. 3729 * 3730 * Example: 3731 * 3732 * Parent snapshot: 3733 * . (ino 256) 3734 * |---- a/ (ino 257) 3735 * | |---- file (ino 260) 3736 * | 3737 * |---- b/ (ino 258) 3738 * |---- c/ (ino 259) 3739 * 3740 * Send snapshot: 3741 * . (ino 256) 3742 * |---- a/ (ino 258) 3743 * |---- x/ (ino 259) 3744 * |---- y/ (ino 257) 3745 * |----- file (ino 260) 3746 * 3747 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3748 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3749 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3750 * must issue is: 3751 * 3752 * 1 - rename 259 from 'c' to 'x' 3753 * 2 - rename 257 from 'a' to 'x/y' 3754 * 3 - rename 258 from 'b' to 'a' 3755 * 3756 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3757 * be done right away and < 0 on error. 3758 */ 3759 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3760 struct recorded_ref *parent_ref, 3761 const bool is_orphan) 3762 { 3763 struct btrfs_path *path; 3764 struct btrfs_key key; 3765 struct btrfs_key di_key; 3766 struct btrfs_dir_item *di; 3767 u64 left_gen; 3768 u64 right_gen; 3769 int ret = 0; 3770 struct waiting_dir_move *wdm; 3771 3772 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3773 return 0; 3774 3775 path = alloc_path_for_send(); 3776 if (!path) 3777 return -ENOMEM; 3778 3779 key.objectid = parent_ref->dir; 3780 key.type = BTRFS_DIR_ITEM_KEY; 3781 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3782 3783 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3784 if (ret < 0) { 3785 goto out; 3786 } else if (ret > 0) { 3787 ret = 0; 3788 goto out; 3789 } 3790 3791 di = btrfs_match_dir_item_name(path, parent_ref->name, 3792 parent_ref->name_len); 3793 if (!di) { 3794 ret = 0; 3795 goto out; 3796 } 3797 /* 3798 * di_key.objectid has the number of the inode that has a dentry in the 3799 * parent directory with the same name that sctx->cur_ino is being 3800 * renamed to. We need to check if that inode is in the send root as 3801 * well and if it is currently marked as an inode with a pending rename, 3802 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3803 * that it happens after that other inode is renamed. 3804 */ 3805 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3806 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3807 ret = 0; 3808 goto out; 3809 } 3810 3811 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3812 if (ret < 0) 3813 goto out; 3814 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3815 if (ret < 0) { 3816 if (ret == -ENOENT) 3817 ret = 0; 3818 goto out; 3819 } 3820 3821 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3822 if (right_gen != left_gen) { 3823 ret = 0; 3824 goto out; 3825 } 3826 3827 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3828 if (wdm && !wdm->orphanized) { 3829 ret = add_pending_dir_move(sctx, 3830 sctx->cur_ino, 3831 sctx->cur_inode_gen, 3832 di_key.objectid, 3833 &sctx->new_refs, 3834 &sctx->deleted_refs, 3835 is_orphan); 3836 if (!ret) 3837 ret = 1; 3838 } 3839 out: 3840 btrfs_free_path(path); 3841 return ret; 3842 } 3843 3844 /* 3845 * Check if inode ino2, or any of its ancestors, is inode ino1. 3846 * Return 1 if true, 0 if false and < 0 on error. 3847 */ 3848 static int check_ino_in_path(struct btrfs_root *root, 3849 const u64 ino1, 3850 const u64 ino1_gen, 3851 const u64 ino2, 3852 const u64 ino2_gen, 3853 struct fs_path *fs_path) 3854 { 3855 u64 ino = ino2; 3856 3857 if (ino1 == ino2) 3858 return ino1_gen == ino2_gen; 3859 3860 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3861 u64 parent; 3862 u64 parent_gen; 3863 int ret; 3864 3865 fs_path_reset(fs_path); 3866 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3867 if (ret < 0) 3868 return ret; 3869 if (parent == ino1) 3870 return parent_gen == ino1_gen; 3871 ino = parent; 3872 } 3873 return 0; 3874 } 3875 3876 /* 3877 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3878 * possible path (in case ino2 is not a directory and has multiple hard links). 3879 * Return 1 if true, 0 if false and < 0 on error. 3880 */ 3881 static int is_ancestor(struct btrfs_root *root, 3882 const u64 ino1, 3883 const u64 ino1_gen, 3884 const u64 ino2, 3885 struct fs_path *fs_path) 3886 { 3887 bool free_fs_path = false; 3888 int ret = 0; 3889 int iter_ret = 0; 3890 struct btrfs_path *path = NULL; 3891 struct btrfs_key key; 3892 3893 if (!fs_path) { 3894 fs_path = fs_path_alloc(); 3895 if (!fs_path) 3896 return -ENOMEM; 3897 free_fs_path = true; 3898 } 3899 3900 path = alloc_path_for_send(); 3901 if (!path) { 3902 ret = -ENOMEM; 3903 goto out; 3904 } 3905 3906 key.objectid = ino2; 3907 key.type = BTRFS_INODE_REF_KEY; 3908 key.offset = 0; 3909 3910 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3911 struct extent_buffer *leaf = path->nodes[0]; 3912 int slot = path->slots[0]; 3913 u32 cur_offset = 0; 3914 u32 item_size; 3915 3916 if (key.objectid != ino2) 3917 break; 3918 if (key.type != BTRFS_INODE_REF_KEY && 3919 key.type != BTRFS_INODE_EXTREF_KEY) 3920 break; 3921 3922 item_size = btrfs_item_size(leaf, slot); 3923 while (cur_offset < item_size) { 3924 u64 parent; 3925 u64 parent_gen; 3926 3927 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3928 unsigned long ptr; 3929 struct btrfs_inode_extref *extref; 3930 3931 ptr = btrfs_item_ptr_offset(leaf, slot); 3932 extref = (struct btrfs_inode_extref *) 3933 (ptr + cur_offset); 3934 parent = btrfs_inode_extref_parent(leaf, 3935 extref); 3936 cur_offset += sizeof(*extref); 3937 cur_offset += btrfs_inode_extref_name_len(leaf, 3938 extref); 3939 } else { 3940 parent = key.offset; 3941 cur_offset = item_size; 3942 } 3943 3944 ret = get_inode_gen(root, parent, &parent_gen); 3945 if (ret < 0) 3946 goto out; 3947 ret = check_ino_in_path(root, ino1, ino1_gen, 3948 parent, parent_gen, fs_path); 3949 if (ret) 3950 goto out; 3951 } 3952 } 3953 ret = 0; 3954 if (iter_ret < 0) 3955 ret = iter_ret; 3956 3957 out: 3958 btrfs_free_path(path); 3959 if (free_fs_path) 3960 fs_path_free(fs_path); 3961 return ret; 3962 } 3963 3964 static int wait_for_parent_move(struct send_ctx *sctx, 3965 struct recorded_ref *parent_ref, 3966 const bool is_orphan) 3967 { 3968 int ret = 0; 3969 u64 ino = parent_ref->dir; 3970 u64 ino_gen = parent_ref->dir_gen; 3971 u64 parent_ino_before, parent_ino_after; 3972 struct fs_path *path_before = NULL; 3973 struct fs_path *path_after = NULL; 3974 int len1, len2; 3975 3976 path_after = fs_path_alloc(); 3977 path_before = fs_path_alloc(); 3978 if (!path_after || !path_before) { 3979 ret = -ENOMEM; 3980 goto out; 3981 } 3982 3983 /* 3984 * Our current directory inode may not yet be renamed/moved because some 3985 * ancestor (immediate or not) has to be renamed/moved first. So find if 3986 * such ancestor exists and make sure our own rename/move happens after 3987 * that ancestor is processed to avoid path build infinite loops (done 3988 * at get_cur_path()). 3989 */ 3990 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3991 u64 parent_ino_after_gen; 3992 3993 if (is_waiting_for_move(sctx, ino)) { 3994 /* 3995 * If the current inode is an ancestor of ino in the 3996 * parent root, we need to delay the rename of the 3997 * current inode, otherwise don't delayed the rename 3998 * because we can end up with a circular dependency 3999 * of renames, resulting in some directories never 4000 * getting the respective rename operations issued in 4001 * the send stream or getting into infinite path build 4002 * loops. 4003 */ 4004 ret = is_ancestor(sctx->parent_root, 4005 sctx->cur_ino, sctx->cur_inode_gen, 4006 ino, path_before); 4007 if (ret) 4008 break; 4009 } 4010 4011 fs_path_reset(path_before); 4012 fs_path_reset(path_after); 4013 4014 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4015 &parent_ino_after_gen, path_after); 4016 if (ret < 0) 4017 goto out; 4018 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4019 NULL, path_before); 4020 if (ret < 0 && ret != -ENOENT) { 4021 goto out; 4022 } else if (ret == -ENOENT) { 4023 ret = 0; 4024 break; 4025 } 4026 4027 len1 = fs_path_len(path_before); 4028 len2 = fs_path_len(path_after); 4029 if (ino > sctx->cur_ino && 4030 (parent_ino_before != parent_ino_after || len1 != len2 || 4031 memcmp(path_before->start, path_after->start, len1))) { 4032 u64 parent_ino_gen; 4033 4034 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4035 if (ret < 0) 4036 goto out; 4037 if (ino_gen == parent_ino_gen) { 4038 ret = 1; 4039 break; 4040 } 4041 } 4042 ino = parent_ino_after; 4043 ino_gen = parent_ino_after_gen; 4044 } 4045 4046 out: 4047 fs_path_free(path_before); 4048 fs_path_free(path_after); 4049 4050 if (ret == 1) { 4051 ret = add_pending_dir_move(sctx, 4052 sctx->cur_ino, 4053 sctx->cur_inode_gen, 4054 ino, 4055 &sctx->new_refs, 4056 &sctx->deleted_refs, 4057 is_orphan); 4058 if (!ret) 4059 ret = 1; 4060 } 4061 4062 return ret; 4063 } 4064 4065 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4066 { 4067 int ret; 4068 struct fs_path *new_path; 4069 4070 /* 4071 * Our reference's name member points to its full_path member string, so 4072 * we use here a new path. 4073 */ 4074 new_path = fs_path_alloc(); 4075 if (!new_path) 4076 return -ENOMEM; 4077 4078 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4079 if (ret < 0) { 4080 fs_path_free(new_path); 4081 return ret; 4082 } 4083 ret = fs_path_add(new_path, ref->name, ref->name_len); 4084 if (ret < 0) { 4085 fs_path_free(new_path); 4086 return ret; 4087 } 4088 4089 fs_path_free(ref->full_path); 4090 set_ref_path(ref, new_path); 4091 4092 return 0; 4093 } 4094 4095 /* 4096 * When processing the new references for an inode we may orphanize an existing 4097 * directory inode because its old name conflicts with one of the new references 4098 * of the current inode. Later, when processing another new reference of our 4099 * inode, we might need to orphanize another inode, but the path we have in the 4100 * reference reflects the pre-orphanization name of the directory we previously 4101 * orphanized. For example: 4102 * 4103 * parent snapshot looks like: 4104 * 4105 * . (ino 256) 4106 * |----- f1 (ino 257) 4107 * |----- f2 (ino 258) 4108 * |----- d1/ (ino 259) 4109 * |----- d2/ (ino 260) 4110 * 4111 * send snapshot looks like: 4112 * 4113 * . (ino 256) 4114 * |----- d1 (ino 258) 4115 * |----- f2/ (ino 259) 4116 * |----- f2_link/ (ino 260) 4117 * | |----- f1 (ino 257) 4118 * | 4119 * |----- d2 (ino 258) 4120 * 4121 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4122 * cache it in the name cache. Later when we start processing inode 258, when 4123 * collecting all its new references we set a full path of "d1/d2" for its new 4124 * reference with name "d2". When we start processing the new references we 4125 * start by processing the new reference with name "d1", and this results in 4126 * orphanizing inode 259, since its old reference causes a conflict. Then we 4127 * move on the next new reference, with name "d2", and we find out we must 4128 * orphanize inode 260, as its old reference conflicts with ours - but for the 4129 * orphanization we use a source path corresponding to the path we stored in the 4130 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4131 * receiver fail since the path component "d1/" no longer exists, it was renamed 4132 * to "o259-6-0/" when processing the previous new reference. So in this case we 4133 * must recompute the path in the new reference and use it for the new 4134 * orphanization operation. 4135 */ 4136 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4137 { 4138 char *name; 4139 int ret; 4140 4141 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4142 if (!name) 4143 return -ENOMEM; 4144 4145 fs_path_reset(ref->full_path); 4146 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4147 if (ret < 0) 4148 goto out; 4149 4150 ret = fs_path_add(ref->full_path, name, ref->name_len); 4151 if (ret < 0) 4152 goto out; 4153 4154 /* Update the reference's base name pointer. */ 4155 set_ref_path(ref, ref->full_path); 4156 out: 4157 kfree(name); 4158 return ret; 4159 } 4160 4161 /* 4162 * This does all the move/link/unlink/rmdir magic. 4163 */ 4164 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4165 { 4166 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4167 int ret = 0; 4168 struct recorded_ref *cur; 4169 struct recorded_ref *cur2; 4170 LIST_HEAD(check_dirs); 4171 struct fs_path *valid_path = NULL; 4172 u64 ow_inode = 0; 4173 u64 ow_gen; 4174 u64 ow_mode; 4175 int did_overwrite = 0; 4176 int is_orphan = 0; 4177 u64 last_dir_ino_rm = 0; 4178 bool can_rename = true; 4179 bool orphanized_dir = false; 4180 bool orphanized_ancestor = false; 4181 4182 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4183 4184 /* 4185 * This should never happen as the root dir always has the same ref 4186 * which is always '..' 4187 */ 4188 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4189 btrfs_err(fs_info, 4190 "send: unexpected inode %llu in process_recorded_refs()", 4191 sctx->cur_ino); 4192 ret = -EINVAL; 4193 goto out; 4194 } 4195 4196 valid_path = fs_path_alloc(); 4197 if (!valid_path) { 4198 ret = -ENOMEM; 4199 goto out; 4200 } 4201 4202 /* 4203 * First, check if the first ref of the current inode was overwritten 4204 * before. If yes, we know that the current inode was already orphanized 4205 * and thus use the orphan name. If not, we can use get_cur_path to 4206 * get the path of the first ref as it would like while receiving at 4207 * this point in time. 4208 * New inodes are always orphan at the beginning, so force to use the 4209 * orphan name in this case. 4210 * The first ref is stored in valid_path and will be updated if it 4211 * gets moved around. 4212 */ 4213 if (!sctx->cur_inode_new) { 4214 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4215 sctx->cur_inode_gen); 4216 if (ret < 0) 4217 goto out; 4218 if (ret) 4219 did_overwrite = 1; 4220 } 4221 if (sctx->cur_inode_new || did_overwrite) { 4222 ret = gen_unique_name(sctx, sctx->cur_ino, 4223 sctx->cur_inode_gen, valid_path); 4224 if (ret < 0) 4225 goto out; 4226 is_orphan = 1; 4227 } else { 4228 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4229 valid_path); 4230 if (ret < 0) 4231 goto out; 4232 } 4233 4234 /* 4235 * Before doing any rename and link operations, do a first pass on the 4236 * new references to orphanize any unprocessed inodes that may have a 4237 * reference that conflicts with one of the new references of the current 4238 * inode. This needs to happen first because a new reference may conflict 4239 * with the old reference of a parent directory, so we must make sure 4240 * that the path used for link and rename commands don't use an 4241 * orphanized name when an ancestor was not yet orphanized. 4242 * 4243 * Example: 4244 * 4245 * Parent snapshot: 4246 * 4247 * . (ino 256) 4248 * |----- testdir/ (ino 259) 4249 * | |----- a (ino 257) 4250 * | 4251 * |----- b (ino 258) 4252 * 4253 * Send snapshot: 4254 * 4255 * . (ino 256) 4256 * |----- testdir_2/ (ino 259) 4257 * | |----- a (ino 260) 4258 * | 4259 * |----- testdir (ino 257) 4260 * |----- b (ino 257) 4261 * |----- b2 (ino 258) 4262 * 4263 * Processing the new reference for inode 257 with name "b" may happen 4264 * before processing the new reference with name "testdir". If so, we 4265 * must make sure that by the time we send a link command to create the 4266 * hard link "b", inode 259 was already orphanized, since the generated 4267 * path in "valid_path" already contains the orphanized name for 259. 4268 * We are processing inode 257, so only later when processing 259 we do 4269 * the rename operation to change its temporary (orphanized) name to 4270 * "testdir_2". 4271 */ 4272 list_for_each_entry(cur, &sctx->new_refs, list) { 4273 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4274 if (ret < 0) 4275 goto out; 4276 if (ret == inode_state_will_create) 4277 continue; 4278 4279 /* 4280 * Check if this new ref would overwrite the first ref of another 4281 * unprocessed inode. If yes, orphanize the overwritten inode. 4282 * If we find an overwritten ref that is not the first ref, 4283 * simply unlink it. 4284 */ 4285 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4286 cur->name, cur->name_len, 4287 &ow_inode, &ow_gen, &ow_mode); 4288 if (ret < 0) 4289 goto out; 4290 if (ret) { 4291 ret = is_first_ref(sctx->parent_root, 4292 ow_inode, cur->dir, cur->name, 4293 cur->name_len); 4294 if (ret < 0) 4295 goto out; 4296 if (ret) { 4297 struct name_cache_entry *nce; 4298 struct waiting_dir_move *wdm; 4299 4300 if (orphanized_dir) { 4301 ret = refresh_ref_path(sctx, cur); 4302 if (ret < 0) 4303 goto out; 4304 } 4305 4306 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4307 cur->full_path); 4308 if (ret < 0) 4309 goto out; 4310 if (S_ISDIR(ow_mode)) 4311 orphanized_dir = true; 4312 4313 /* 4314 * If ow_inode has its rename operation delayed 4315 * make sure that its orphanized name is used in 4316 * the source path when performing its rename 4317 * operation. 4318 */ 4319 wdm = get_waiting_dir_move(sctx, ow_inode); 4320 if (wdm) 4321 wdm->orphanized = true; 4322 4323 /* 4324 * Make sure we clear our orphanized inode's 4325 * name from the name cache. This is because the 4326 * inode ow_inode might be an ancestor of some 4327 * other inode that will be orphanized as well 4328 * later and has an inode number greater than 4329 * sctx->send_progress. We need to prevent 4330 * future name lookups from using the old name 4331 * and get instead the orphan name. 4332 */ 4333 nce = name_cache_search(sctx, ow_inode, ow_gen); 4334 if (nce) 4335 btrfs_lru_cache_remove(&sctx->name_cache, 4336 &nce->entry); 4337 4338 /* 4339 * ow_inode might currently be an ancestor of 4340 * cur_ino, therefore compute valid_path (the 4341 * current path of cur_ino) again because it 4342 * might contain the pre-orphanization name of 4343 * ow_inode, which is no longer valid. 4344 */ 4345 ret = is_ancestor(sctx->parent_root, 4346 ow_inode, ow_gen, 4347 sctx->cur_ino, NULL); 4348 if (ret > 0) { 4349 orphanized_ancestor = true; 4350 fs_path_reset(valid_path); 4351 ret = get_cur_path(sctx, sctx->cur_ino, 4352 sctx->cur_inode_gen, 4353 valid_path); 4354 } 4355 if (ret < 0) 4356 goto out; 4357 } else { 4358 /* 4359 * If we previously orphanized a directory that 4360 * collided with a new reference that we already 4361 * processed, recompute the current path because 4362 * that directory may be part of the path. 4363 */ 4364 if (orphanized_dir) { 4365 ret = refresh_ref_path(sctx, cur); 4366 if (ret < 0) 4367 goto out; 4368 } 4369 ret = send_unlink(sctx, cur->full_path); 4370 if (ret < 0) 4371 goto out; 4372 } 4373 } 4374 4375 } 4376 4377 list_for_each_entry(cur, &sctx->new_refs, list) { 4378 /* 4379 * We may have refs where the parent directory does not exist 4380 * yet. This happens if the parent directories inum is higher 4381 * than the current inum. To handle this case, we create the 4382 * parent directory out of order. But we need to check if this 4383 * did already happen before due to other refs in the same dir. 4384 */ 4385 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4386 if (ret < 0) 4387 goto out; 4388 if (ret == inode_state_will_create) { 4389 ret = 0; 4390 /* 4391 * First check if any of the current inodes refs did 4392 * already create the dir. 4393 */ 4394 list_for_each_entry(cur2, &sctx->new_refs, list) { 4395 if (cur == cur2) 4396 break; 4397 if (cur2->dir == cur->dir) { 4398 ret = 1; 4399 break; 4400 } 4401 } 4402 4403 /* 4404 * If that did not happen, check if a previous inode 4405 * did already create the dir. 4406 */ 4407 if (!ret) 4408 ret = did_create_dir(sctx, cur->dir); 4409 if (ret < 0) 4410 goto out; 4411 if (!ret) { 4412 ret = send_create_inode(sctx, cur->dir); 4413 if (ret < 0) 4414 goto out; 4415 cache_dir_created(sctx, cur->dir); 4416 } 4417 } 4418 4419 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4420 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4421 if (ret < 0) 4422 goto out; 4423 if (ret == 1) { 4424 can_rename = false; 4425 *pending_move = 1; 4426 } 4427 } 4428 4429 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4430 can_rename) { 4431 ret = wait_for_parent_move(sctx, cur, is_orphan); 4432 if (ret < 0) 4433 goto out; 4434 if (ret == 1) { 4435 can_rename = false; 4436 *pending_move = 1; 4437 } 4438 } 4439 4440 /* 4441 * link/move the ref to the new place. If we have an orphan 4442 * inode, move it and update valid_path. If not, link or move 4443 * it depending on the inode mode. 4444 */ 4445 if (is_orphan && can_rename) { 4446 ret = send_rename(sctx, valid_path, cur->full_path); 4447 if (ret < 0) 4448 goto out; 4449 is_orphan = 0; 4450 ret = fs_path_copy(valid_path, cur->full_path); 4451 if (ret < 0) 4452 goto out; 4453 } else if (can_rename) { 4454 if (S_ISDIR(sctx->cur_inode_mode)) { 4455 /* 4456 * Dirs can't be linked, so move it. For moved 4457 * dirs, we always have one new and one deleted 4458 * ref. The deleted ref is ignored later. 4459 */ 4460 ret = send_rename(sctx, valid_path, 4461 cur->full_path); 4462 if (!ret) 4463 ret = fs_path_copy(valid_path, 4464 cur->full_path); 4465 if (ret < 0) 4466 goto out; 4467 } else { 4468 /* 4469 * We might have previously orphanized an inode 4470 * which is an ancestor of our current inode, 4471 * so our reference's full path, which was 4472 * computed before any such orphanizations, must 4473 * be updated. 4474 */ 4475 if (orphanized_dir) { 4476 ret = update_ref_path(sctx, cur); 4477 if (ret < 0) 4478 goto out; 4479 } 4480 ret = send_link(sctx, cur->full_path, 4481 valid_path); 4482 if (ret < 0) 4483 goto out; 4484 } 4485 } 4486 ret = dup_ref(cur, &check_dirs); 4487 if (ret < 0) 4488 goto out; 4489 } 4490 4491 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4492 /* 4493 * Check if we can already rmdir the directory. If not, 4494 * orphanize it. For every dir item inside that gets deleted 4495 * later, we do this check again and rmdir it then if possible. 4496 * See the use of check_dirs for more details. 4497 */ 4498 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4499 if (ret < 0) 4500 goto out; 4501 if (ret) { 4502 ret = send_rmdir(sctx, valid_path); 4503 if (ret < 0) 4504 goto out; 4505 } else if (!is_orphan) { 4506 ret = orphanize_inode(sctx, sctx->cur_ino, 4507 sctx->cur_inode_gen, valid_path); 4508 if (ret < 0) 4509 goto out; 4510 is_orphan = 1; 4511 } 4512 4513 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4514 ret = dup_ref(cur, &check_dirs); 4515 if (ret < 0) 4516 goto out; 4517 } 4518 } else if (S_ISDIR(sctx->cur_inode_mode) && 4519 !list_empty(&sctx->deleted_refs)) { 4520 /* 4521 * We have a moved dir. Add the old parent to check_dirs 4522 */ 4523 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4524 list); 4525 ret = dup_ref(cur, &check_dirs); 4526 if (ret < 0) 4527 goto out; 4528 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4529 /* 4530 * We have a non dir inode. Go through all deleted refs and 4531 * unlink them if they were not already overwritten by other 4532 * inodes. 4533 */ 4534 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4535 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4536 sctx->cur_ino, sctx->cur_inode_gen, 4537 cur->name, cur->name_len); 4538 if (ret < 0) 4539 goto out; 4540 if (!ret) { 4541 /* 4542 * If we orphanized any ancestor before, we need 4543 * to recompute the full path for deleted names, 4544 * since any such path was computed before we 4545 * processed any references and orphanized any 4546 * ancestor inode. 4547 */ 4548 if (orphanized_ancestor) { 4549 ret = update_ref_path(sctx, cur); 4550 if (ret < 0) 4551 goto out; 4552 } 4553 ret = send_unlink(sctx, cur->full_path); 4554 if (ret < 0) 4555 goto out; 4556 } 4557 ret = dup_ref(cur, &check_dirs); 4558 if (ret < 0) 4559 goto out; 4560 } 4561 /* 4562 * If the inode is still orphan, unlink the orphan. This may 4563 * happen when a previous inode did overwrite the first ref 4564 * of this inode and no new refs were added for the current 4565 * inode. Unlinking does not mean that the inode is deleted in 4566 * all cases. There may still be links to this inode in other 4567 * places. 4568 */ 4569 if (is_orphan) { 4570 ret = send_unlink(sctx, valid_path); 4571 if (ret < 0) 4572 goto out; 4573 } 4574 } 4575 4576 /* 4577 * We did collect all parent dirs where cur_inode was once located. We 4578 * now go through all these dirs and check if they are pending for 4579 * deletion and if it's finally possible to perform the rmdir now. 4580 * We also update the inode stats of the parent dirs here. 4581 */ 4582 list_for_each_entry(cur, &check_dirs, list) { 4583 /* 4584 * In case we had refs into dirs that were not processed yet, 4585 * we don't need to do the utime and rmdir logic for these dirs. 4586 * The dir will be processed later. 4587 */ 4588 if (cur->dir > sctx->cur_ino) 4589 continue; 4590 4591 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4592 if (ret < 0) 4593 goto out; 4594 4595 if (ret == inode_state_did_create || 4596 ret == inode_state_no_change) { 4597 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4598 if (ret < 0) 4599 goto out; 4600 } else if (ret == inode_state_did_delete && 4601 cur->dir != last_dir_ino_rm) { 4602 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4603 if (ret < 0) 4604 goto out; 4605 if (ret) { 4606 ret = get_cur_path(sctx, cur->dir, 4607 cur->dir_gen, valid_path); 4608 if (ret < 0) 4609 goto out; 4610 ret = send_rmdir(sctx, valid_path); 4611 if (ret < 0) 4612 goto out; 4613 last_dir_ino_rm = cur->dir; 4614 } 4615 } 4616 } 4617 4618 ret = 0; 4619 4620 out: 4621 __free_recorded_refs(&check_dirs); 4622 free_recorded_refs(sctx); 4623 fs_path_free(valid_path); 4624 return ret; 4625 } 4626 4627 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4628 { 4629 const struct recorded_ref *data = k; 4630 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4631 int result; 4632 4633 if (data->dir > ref->dir) 4634 return 1; 4635 if (data->dir < ref->dir) 4636 return -1; 4637 if (data->dir_gen > ref->dir_gen) 4638 return 1; 4639 if (data->dir_gen < ref->dir_gen) 4640 return -1; 4641 if (data->name_len > ref->name_len) 4642 return 1; 4643 if (data->name_len < ref->name_len) 4644 return -1; 4645 result = strcmp(data->name, ref->name); 4646 if (result > 0) 4647 return 1; 4648 if (result < 0) 4649 return -1; 4650 return 0; 4651 } 4652 4653 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4654 { 4655 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4656 4657 return rbtree_ref_comp(entry, parent) < 0; 4658 } 4659 4660 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4661 struct fs_path *name, u64 dir, u64 dir_gen, 4662 struct send_ctx *sctx) 4663 { 4664 int ret = 0; 4665 struct fs_path *path = NULL; 4666 struct recorded_ref *ref = NULL; 4667 4668 path = fs_path_alloc(); 4669 if (!path) { 4670 ret = -ENOMEM; 4671 goto out; 4672 } 4673 4674 ref = recorded_ref_alloc(); 4675 if (!ref) { 4676 ret = -ENOMEM; 4677 goto out; 4678 } 4679 4680 ret = get_cur_path(sctx, dir, dir_gen, path); 4681 if (ret < 0) 4682 goto out; 4683 ret = fs_path_add_path(path, name); 4684 if (ret < 0) 4685 goto out; 4686 4687 ref->dir = dir; 4688 ref->dir_gen = dir_gen; 4689 set_ref_path(ref, path); 4690 list_add_tail(&ref->list, refs); 4691 rb_add(&ref->node, root, rbtree_ref_less); 4692 ref->root = root; 4693 out: 4694 if (ret) { 4695 if (path && (!ref || !ref->full_path)) 4696 fs_path_free(path); 4697 recorded_ref_free(ref); 4698 } 4699 return ret; 4700 } 4701 4702 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4703 { 4704 int ret = 0; 4705 struct send_ctx *sctx = ctx; 4706 struct rb_node *node = NULL; 4707 struct recorded_ref data; 4708 struct recorded_ref *ref; 4709 u64 dir_gen; 4710 4711 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4712 if (ret < 0) 4713 goto out; 4714 4715 data.dir = dir; 4716 data.dir_gen = dir_gen; 4717 set_ref_path(&data, name); 4718 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4719 if (node) { 4720 ref = rb_entry(node, struct recorded_ref, node); 4721 recorded_ref_free(ref); 4722 } else { 4723 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4724 &sctx->new_refs, name, dir, dir_gen, 4725 sctx); 4726 } 4727 out: 4728 return ret; 4729 } 4730 4731 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4732 { 4733 int ret = 0; 4734 struct send_ctx *sctx = ctx; 4735 struct rb_node *node = NULL; 4736 struct recorded_ref data; 4737 struct recorded_ref *ref; 4738 u64 dir_gen; 4739 4740 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4741 if (ret < 0) 4742 goto out; 4743 4744 data.dir = dir; 4745 data.dir_gen = dir_gen; 4746 set_ref_path(&data, name); 4747 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4748 if (node) { 4749 ref = rb_entry(node, struct recorded_ref, node); 4750 recorded_ref_free(ref); 4751 } else { 4752 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4753 &sctx->deleted_refs, name, dir, 4754 dir_gen, sctx); 4755 } 4756 out: 4757 return ret; 4758 } 4759 4760 static int record_new_ref(struct send_ctx *sctx) 4761 { 4762 int ret; 4763 4764 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4765 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4766 if (ret < 0) 4767 goto out; 4768 ret = 0; 4769 4770 out: 4771 return ret; 4772 } 4773 4774 static int record_deleted_ref(struct send_ctx *sctx) 4775 { 4776 int ret; 4777 4778 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4779 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4780 sctx); 4781 if (ret < 0) 4782 goto out; 4783 ret = 0; 4784 4785 out: 4786 return ret; 4787 } 4788 4789 static int record_changed_ref(struct send_ctx *sctx) 4790 { 4791 int ret = 0; 4792 4793 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4794 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4795 if (ret < 0) 4796 goto out; 4797 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4798 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4799 if (ret < 0) 4800 goto out; 4801 ret = 0; 4802 4803 out: 4804 return ret; 4805 } 4806 4807 /* 4808 * Record and process all refs at once. Needed when an inode changes the 4809 * generation number, which means that it was deleted and recreated. 4810 */ 4811 static int process_all_refs(struct send_ctx *sctx, 4812 enum btrfs_compare_tree_result cmd) 4813 { 4814 int ret = 0; 4815 int iter_ret = 0; 4816 struct btrfs_root *root; 4817 struct btrfs_path *path; 4818 struct btrfs_key key; 4819 struct btrfs_key found_key; 4820 iterate_inode_ref_t cb; 4821 int pending_move = 0; 4822 4823 path = alloc_path_for_send(); 4824 if (!path) 4825 return -ENOMEM; 4826 4827 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4828 root = sctx->send_root; 4829 cb = record_new_ref_if_needed; 4830 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4831 root = sctx->parent_root; 4832 cb = record_deleted_ref_if_needed; 4833 } else { 4834 btrfs_err(sctx->send_root->fs_info, 4835 "Wrong command %d in process_all_refs", cmd); 4836 ret = -EINVAL; 4837 goto out; 4838 } 4839 4840 key.objectid = sctx->cmp_key->objectid; 4841 key.type = BTRFS_INODE_REF_KEY; 4842 key.offset = 0; 4843 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4844 if (found_key.objectid != key.objectid || 4845 (found_key.type != BTRFS_INODE_REF_KEY && 4846 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4847 break; 4848 4849 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4850 if (ret < 0) 4851 goto out; 4852 } 4853 /* Catch error found during iteration */ 4854 if (iter_ret < 0) { 4855 ret = iter_ret; 4856 goto out; 4857 } 4858 btrfs_release_path(path); 4859 4860 /* 4861 * We don't actually care about pending_move as we are simply 4862 * re-creating this inode and will be rename'ing it into place once we 4863 * rename the parent directory. 4864 */ 4865 ret = process_recorded_refs(sctx, &pending_move); 4866 out: 4867 btrfs_free_path(path); 4868 return ret; 4869 } 4870 4871 static int send_set_xattr(struct send_ctx *sctx, 4872 struct fs_path *path, 4873 const char *name, int name_len, 4874 const char *data, int data_len) 4875 { 4876 int ret = 0; 4877 4878 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4879 if (ret < 0) 4880 goto out; 4881 4882 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4883 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4884 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4885 4886 ret = send_cmd(sctx); 4887 4888 tlv_put_failure: 4889 out: 4890 return ret; 4891 } 4892 4893 static int send_remove_xattr(struct send_ctx *sctx, 4894 struct fs_path *path, 4895 const char *name, int name_len) 4896 { 4897 int ret = 0; 4898 4899 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4900 if (ret < 0) 4901 goto out; 4902 4903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4904 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4905 4906 ret = send_cmd(sctx); 4907 4908 tlv_put_failure: 4909 out: 4910 return ret; 4911 } 4912 4913 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4914 const char *name, int name_len, const char *data, 4915 int data_len, void *ctx) 4916 { 4917 int ret; 4918 struct send_ctx *sctx = ctx; 4919 struct fs_path *p; 4920 struct posix_acl_xattr_header dummy_acl; 4921 4922 /* Capabilities are emitted by finish_inode_if_needed */ 4923 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4924 return 0; 4925 4926 p = fs_path_alloc(); 4927 if (!p) 4928 return -ENOMEM; 4929 4930 /* 4931 * This hack is needed because empty acls are stored as zero byte 4932 * data in xattrs. Problem with that is, that receiving these zero byte 4933 * acls will fail later. To fix this, we send a dummy acl list that 4934 * only contains the version number and no entries. 4935 */ 4936 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4937 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4938 if (data_len == 0) { 4939 dummy_acl.a_version = 4940 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4941 data = (char *)&dummy_acl; 4942 data_len = sizeof(dummy_acl); 4943 } 4944 } 4945 4946 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4947 if (ret < 0) 4948 goto out; 4949 4950 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4951 4952 out: 4953 fs_path_free(p); 4954 return ret; 4955 } 4956 4957 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4958 const char *name, int name_len, 4959 const char *data, int data_len, void *ctx) 4960 { 4961 int ret; 4962 struct send_ctx *sctx = ctx; 4963 struct fs_path *p; 4964 4965 p = fs_path_alloc(); 4966 if (!p) 4967 return -ENOMEM; 4968 4969 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4970 if (ret < 0) 4971 goto out; 4972 4973 ret = send_remove_xattr(sctx, p, name, name_len); 4974 4975 out: 4976 fs_path_free(p); 4977 return ret; 4978 } 4979 4980 static int process_new_xattr(struct send_ctx *sctx) 4981 { 4982 int ret = 0; 4983 4984 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4985 __process_new_xattr, sctx); 4986 4987 return ret; 4988 } 4989 4990 static int process_deleted_xattr(struct send_ctx *sctx) 4991 { 4992 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4993 __process_deleted_xattr, sctx); 4994 } 4995 4996 struct find_xattr_ctx { 4997 const char *name; 4998 int name_len; 4999 int found_idx; 5000 char *found_data; 5001 int found_data_len; 5002 }; 5003 5004 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5005 int name_len, const char *data, int data_len, void *vctx) 5006 { 5007 struct find_xattr_ctx *ctx = vctx; 5008 5009 if (name_len == ctx->name_len && 5010 strncmp(name, ctx->name, name_len) == 0) { 5011 ctx->found_idx = num; 5012 ctx->found_data_len = data_len; 5013 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5014 if (!ctx->found_data) 5015 return -ENOMEM; 5016 return 1; 5017 } 5018 return 0; 5019 } 5020 5021 static int find_xattr(struct btrfs_root *root, 5022 struct btrfs_path *path, 5023 struct btrfs_key *key, 5024 const char *name, int name_len, 5025 char **data, int *data_len) 5026 { 5027 int ret; 5028 struct find_xattr_ctx ctx; 5029 5030 ctx.name = name; 5031 ctx.name_len = name_len; 5032 ctx.found_idx = -1; 5033 ctx.found_data = NULL; 5034 ctx.found_data_len = 0; 5035 5036 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5037 if (ret < 0) 5038 return ret; 5039 5040 if (ctx.found_idx == -1) 5041 return -ENOENT; 5042 if (data) { 5043 *data = ctx.found_data; 5044 *data_len = ctx.found_data_len; 5045 } else { 5046 kfree(ctx.found_data); 5047 } 5048 return ctx.found_idx; 5049 } 5050 5051 5052 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5053 const char *name, int name_len, 5054 const char *data, int data_len, 5055 void *ctx) 5056 { 5057 int ret; 5058 struct send_ctx *sctx = ctx; 5059 char *found_data = NULL; 5060 int found_data_len = 0; 5061 5062 ret = find_xattr(sctx->parent_root, sctx->right_path, 5063 sctx->cmp_key, name, name_len, &found_data, 5064 &found_data_len); 5065 if (ret == -ENOENT) { 5066 ret = __process_new_xattr(num, di_key, name, name_len, data, 5067 data_len, ctx); 5068 } else if (ret >= 0) { 5069 if (data_len != found_data_len || 5070 memcmp(data, found_data, data_len)) { 5071 ret = __process_new_xattr(num, di_key, name, name_len, 5072 data, data_len, ctx); 5073 } else { 5074 ret = 0; 5075 } 5076 } 5077 5078 kfree(found_data); 5079 return ret; 5080 } 5081 5082 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5083 const char *name, int name_len, 5084 const char *data, int data_len, 5085 void *ctx) 5086 { 5087 int ret; 5088 struct send_ctx *sctx = ctx; 5089 5090 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5091 name, name_len, NULL, NULL); 5092 if (ret == -ENOENT) 5093 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5094 data_len, ctx); 5095 else if (ret >= 0) 5096 ret = 0; 5097 5098 return ret; 5099 } 5100 5101 static int process_changed_xattr(struct send_ctx *sctx) 5102 { 5103 int ret = 0; 5104 5105 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5106 __process_changed_new_xattr, sctx); 5107 if (ret < 0) 5108 goto out; 5109 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5110 __process_changed_deleted_xattr, sctx); 5111 5112 out: 5113 return ret; 5114 } 5115 5116 static int process_all_new_xattrs(struct send_ctx *sctx) 5117 { 5118 int ret = 0; 5119 int iter_ret = 0; 5120 struct btrfs_root *root; 5121 struct btrfs_path *path; 5122 struct btrfs_key key; 5123 struct btrfs_key found_key; 5124 5125 path = alloc_path_for_send(); 5126 if (!path) 5127 return -ENOMEM; 5128 5129 root = sctx->send_root; 5130 5131 key.objectid = sctx->cmp_key->objectid; 5132 key.type = BTRFS_XATTR_ITEM_KEY; 5133 key.offset = 0; 5134 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5135 if (found_key.objectid != key.objectid || 5136 found_key.type != key.type) { 5137 ret = 0; 5138 break; 5139 } 5140 5141 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5142 if (ret < 0) 5143 break; 5144 } 5145 /* Catch error found during iteration */ 5146 if (iter_ret < 0) 5147 ret = iter_ret; 5148 5149 btrfs_free_path(path); 5150 return ret; 5151 } 5152 5153 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5154 struct fsverity_descriptor *desc) 5155 { 5156 int ret; 5157 5158 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5159 if (ret < 0) 5160 goto out; 5161 5162 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5163 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5164 le8_to_cpu(desc->hash_algorithm)); 5165 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5166 1U << le8_to_cpu(desc->log_blocksize)); 5167 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5168 le8_to_cpu(desc->salt_size)); 5169 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5170 le32_to_cpu(desc->sig_size)); 5171 5172 ret = send_cmd(sctx); 5173 5174 tlv_put_failure: 5175 out: 5176 return ret; 5177 } 5178 5179 static int process_verity(struct send_ctx *sctx) 5180 { 5181 int ret = 0; 5182 struct inode *inode; 5183 struct fs_path *p; 5184 5185 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5186 if (IS_ERR(inode)) 5187 return PTR_ERR(inode); 5188 5189 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5190 if (ret < 0) 5191 goto iput; 5192 5193 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5194 ret = -EMSGSIZE; 5195 goto iput; 5196 } 5197 if (!sctx->verity_descriptor) { 5198 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5199 GFP_KERNEL); 5200 if (!sctx->verity_descriptor) { 5201 ret = -ENOMEM; 5202 goto iput; 5203 } 5204 } 5205 5206 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5207 if (ret < 0) 5208 goto iput; 5209 5210 p = fs_path_alloc(); 5211 if (!p) { 5212 ret = -ENOMEM; 5213 goto iput; 5214 } 5215 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5216 if (ret < 0) 5217 goto free_path; 5218 5219 ret = send_verity(sctx, p, sctx->verity_descriptor); 5220 if (ret < 0) 5221 goto free_path; 5222 5223 free_path: 5224 fs_path_free(p); 5225 iput: 5226 iput(inode); 5227 return ret; 5228 } 5229 5230 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5231 { 5232 return sctx->send_max_size - SZ_16K; 5233 } 5234 5235 static int put_data_header(struct send_ctx *sctx, u32 len) 5236 { 5237 if (WARN_ON_ONCE(sctx->put_data)) 5238 return -EINVAL; 5239 sctx->put_data = true; 5240 if (sctx->proto >= 2) { 5241 /* 5242 * Since v2, the data attribute header doesn't include a length, 5243 * it is implicitly to the end of the command. 5244 */ 5245 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5246 return -EOVERFLOW; 5247 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5248 sctx->send_size += sizeof(__le16); 5249 } else { 5250 struct btrfs_tlv_header *hdr; 5251 5252 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5253 return -EOVERFLOW; 5254 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5255 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5256 put_unaligned_le16(len, &hdr->tlv_len); 5257 sctx->send_size += sizeof(*hdr); 5258 } 5259 return 0; 5260 } 5261 5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5263 { 5264 struct btrfs_root *root = sctx->send_root; 5265 struct btrfs_fs_info *fs_info = root->fs_info; 5266 struct folio *folio; 5267 pgoff_t index = offset >> PAGE_SHIFT; 5268 pgoff_t last_index; 5269 unsigned pg_offset = offset_in_page(offset); 5270 struct address_space *mapping = sctx->cur_inode->i_mapping; 5271 int ret; 5272 5273 ret = put_data_header(sctx, len); 5274 if (ret) 5275 return ret; 5276 5277 last_index = (offset + len - 1) >> PAGE_SHIFT; 5278 5279 while (index <= last_index) { 5280 unsigned cur_len = min_t(unsigned, len, 5281 PAGE_SIZE - pg_offset); 5282 5283 again: 5284 folio = filemap_lock_folio(mapping, index); 5285 if (IS_ERR(folio)) { 5286 page_cache_sync_readahead(mapping, 5287 &sctx->ra, NULL, index, 5288 last_index + 1 - index); 5289 5290 folio = filemap_grab_folio(mapping, index); 5291 if (IS_ERR(folio)) { 5292 ret = PTR_ERR(folio); 5293 break; 5294 } 5295 } 5296 5297 WARN_ON(folio_order(folio)); 5298 5299 if (folio_test_readahead(folio)) 5300 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5301 last_index + 1 - index); 5302 5303 if (!folio_test_uptodate(folio)) { 5304 btrfs_read_folio(NULL, folio); 5305 folio_lock(folio); 5306 if (!folio_test_uptodate(folio)) { 5307 folio_unlock(folio); 5308 btrfs_err(fs_info, 5309 "send: IO error at offset %llu for inode %llu root %llu", 5310 folio_pos(folio), sctx->cur_ino, 5311 btrfs_root_id(sctx->send_root)); 5312 folio_put(folio); 5313 ret = -EIO; 5314 break; 5315 } 5316 if (folio->mapping != mapping) { 5317 folio_unlock(folio); 5318 folio_put(folio); 5319 goto again; 5320 } 5321 } 5322 5323 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5324 pg_offset, cur_len); 5325 folio_unlock(folio); 5326 folio_put(folio); 5327 index++; 5328 pg_offset = 0; 5329 len -= cur_len; 5330 sctx->send_size += cur_len; 5331 } 5332 5333 return ret; 5334 } 5335 5336 /* 5337 * Read some bytes from the current inode/file and send a write command to 5338 * user space. 5339 */ 5340 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5341 { 5342 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5343 int ret = 0; 5344 struct fs_path *p; 5345 5346 p = fs_path_alloc(); 5347 if (!p) 5348 return -ENOMEM; 5349 5350 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5351 5352 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5353 if (ret < 0) 5354 goto out; 5355 5356 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5357 if (ret < 0) 5358 goto out; 5359 5360 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5361 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5362 ret = put_file_data(sctx, offset, len); 5363 if (ret < 0) 5364 goto out; 5365 5366 ret = send_cmd(sctx); 5367 5368 tlv_put_failure: 5369 out: 5370 fs_path_free(p); 5371 return ret; 5372 } 5373 5374 /* 5375 * Send a clone command to user space. 5376 */ 5377 static int send_clone(struct send_ctx *sctx, 5378 u64 offset, u32 len, 5379 struct clone_root *clone_root) 5380 { 5381 int ret = 0; 5382 struct fs_path *p; 5383 u64 gen; 5384 5385 btrfs_debug(sctx->send_root->fs_info, 5386 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5387 offset, len, btrfs_root_id(clone_root->root), 5388 clone_root->ino, clone_root->offset); 5389 5390 p = fs_path_alloc(); 5391 if (!p) 5392 return -ENOMEM; 5393 5394 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5395 if (ret < 0) 5396 goto out; 5397 5398 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5399 if (ret < 0) 5400 goto out; 5401 5402 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5403 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5404 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5405 5406 if (clone_root->root == sctx->send_root) { 5407 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5408 if (ret < 0) 5409 goto out; 5410 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5411 } else { 5412 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5413 } 5414 if (ret < 0) 5415 goto out; 5416 5417 /* 5418 * If the parent we're using has a received_uuid set then use that as 5419 * our clone source as that is what we will look for when doing a 5420 * receive. 5421 * 5422 * This covers the case that we create a snapshot off of a received 5423 * subvolume and then use that as the parent and try to receive on a 5424 * different host. 5425 */ 5426 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5427 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5428 clone_root->root->root_item.received_uuid); 5429 else 5430 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5431 clone_root->root->root_item.uuid); 5432 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5433 btrfs_root_ctransid(&clone_root->root->root_item)); 5434 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5435 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5436 clone_root->offset); 5437 5438 ret = send_cmd(sctx); 5439 5440 tlv_put_failure: 5441 out: 5442 fs_path_free(p); 5443 return ret; 5444 } 5445 5446 /* 5447 * Send an update extent command to user space. 5448 */ 5449 static int send_update_extent(struct send_ctx *sctx, 5450 u64 offset, u32 len) 5451 { 5452 int ret = 0; 5453 struct fs_path *p; 5454 5455 p = fs_path_alloc(); 5456 if (!p) 5457 return -ENOMEM; 5458 5459 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5460 if (ret < 0) 5461 goto out; 5462 5463 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5464 if (ret < 0) 5465 goto out; 5466 5467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5468 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5469 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5470 5471 ret = send_cmd(sctx); 5472 5473 tlv_put_failure: 5474 out: 5475 fs_path_free(p); 5476 return ret; 5477 } 5478 5479 static int send_hole(struct send_ctx *sctx, u64 end) 5480 { 5481 struct fs_path *p = NULL; 5482 u64 read_size = max_send_read_size(sctx); 5483 u64 offset = sctx->cur_inode_last_extent; 5484 int ret = 0; 5485 5486 /* 5487 * A hole that starts at EOF or beyond it. Since we do not yet support 5488 * fallocate (for extent preallocation and hole punching), sending a 5489 * write of zeroes starting at EOF or beyond would later require issuing 5490 * a truncate operation which would undo the write and achieve nothing. 5491 */ 5492 if (offset >= sctx->cur_inode_size) 5493 return 0; 5494 5495 /* 5496 * Don't go beyond the inode's i_size due to prealloc extents that start 5497 * after the i_size. 5498 */ 5499 end = min_t(u64, end, sctx->cur_inode_size); 5500 5501 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5502 return send_update_extent(sctx, offset, end - offset); 5503 5504 p = fs_path_alloc(); 5505 if (!p) 5506 return -ENOMEM; 5507 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5508 if (ret < 0) 5509 goto tlv_put_failure; 5510 while (offset < end) { 5511 u64 len = min(end - offset, read_size); 5512 5513 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5514 if (ret < 0) 5515 break; 5516 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5517 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5518 ret = put_data_header(sctx, len); 5519 if (ret < 0) 5520 break; 5521 memset(sctx->send_buf + sctx->send_size, 0, len); 5522 sctx->send_size += len; 5523 ret = send_cmd(sctx); 5524 if (ret < 0) 5525 break; 5526 offset += len; 5527 } 5528 sctx->cur_inode_next_write_offset = offset; 5529 tlv_put_failure: 5530 fs_path_free(p); 5531 return ret; 5532 } 5533 5534 static int send_encoded_inline_extent(struct send_ctx *sctx, 5535 struct btrfs_path *path, u64 offset, 5536 u64 len) 5537 { 5538 struct btrfs_root *root = sctx->send_root; 5539 struct btrfs_fs_info *fs_info = root->fs_info; 5540 struct inode *inode; 5541 struct fs_path *fspath; 5542 struct extent_buffer *leaf = path->nodes[0]; 5543 struct btrfs_key key; 5544 struct btrfs_file_extent_item *ei; 5545 u64 ram_bytes; 5546 size_t inline_size; 5547 int ret; 5548 5549 inode = btrfs_iget(sctx->cur_ino, root); 5550 if (IS_ERR(inode)) 5551 return PTR_ERR(inode); 5552 5553 fspath = fs_path_alloc(); 5554 if (!fspath) { 5555 ret = -ENOMEM; 5556 goto out; 5557 } 5558 5559 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5560 if (ret < 0) 5561 goto out; 5562 5563 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5564 if (ret < 0) 5565 goto out; 5566 5567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5568 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5569 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5570 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5571 5572 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5573 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5574 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5575 min(key.offset + ram_bytes - offset, len)); 5576 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5577 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5578 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5579 btrfs_file_extent_compression(leaf, ei)); 5580 if (ret < 0) 5581 goto out; 5582 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5583 5584 ret = put_data_header(sctx, inline_size); 5585 if (ret < 0) 5586 goto out; 5587 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5588 btrfs_file_extent_inline_start(ei), inline_size); 5589 sctx->send_size += inline_size; 5590 5591 ret = send_cmd(sctx); 5592 5593 tlv_put_failure: 5594 out: 5595 fs_path_free(fspath); 5596 iput(inode); 5597 return ret; 5598 } 5599 5600 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5601 u64 offset, u64 len) 5602 { 5603 struct btrfs_root *root = sctx->send_root; 5604 struct btrfs_fs_info *fs_info = root->fs_info; 5605 struct inode *inode; 5606 struct fs_path *fspath; 5607 struct extent_buffer *leaf = path->nodes[0]; 5608 struct btrfs_key key; 5609 struct btrfs_file_extent_item *ei; 5610 u64 disk_bytenr, disk_num_bytes; 5611 u32 data_offset; 5612 struct btrfs_cmd_header *hdr; 5613 u32 crc; 5614 int ret; 5615 5616 inode = btrfs_iget(sctx->cur_ino, root); 5617 if (IS_ERR(inode)) 5618 return PTR_ERR(inode); 5619 5620 fspath = fs_path_alloc(); 5621 if (!fspath) { 5622 ret = -ENOMEM; 5623 goto out; 5624 } 5625 5626 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5627 if (ret < 0) 5628 goto out; 5629 5630 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5631 if (ret < 0) 5632 goto out; 5633 5634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5636 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5637 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5638 5639 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5640 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5641 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5642 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5643 len)); 5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5645 btrfs_file_extent_ram_bytes(leaf, ei)); 5646 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5647 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5648 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5649 btrfs_file_extent_compression(leaf, ei)); 5650 if (ret < 0) 5651 goto out; 5652 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5653 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5654 5655 ret = put_data_header(sctx, disk_num_bytes); 5656 if (ret < 0) 5657 goto out; 5658 5659 /* 5660 * We want to do I/O directly into the send buffer, so get the next page 5661 * boundary in the send buffer. This means that there may be a gap 5662 * between the beginning of the command and the file data. 5663 */ 5664 data_offset = PAGE_ALIGN(sctx->send_size); 5665 if (data_offset > sctx->send_max_size || 5666 sctx->send_max_size - data_offset < disk_num_bytes) { 5667 ret = -EOVERFLOW; 5668 goto out; 5669 } 5670 5671 /* 5672 * Note that send_buf is a mapping of send_buf_pages, so this is really 5673 * reading into send_buf. 5674 */ 5675 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), 5676 disk_bytenr, disk_num_bytes, 5677 sctx->send_buf_pages + 5678 (data_offset >> PAGE_SHIFT), 5679 NULL); 5680 if (ret) 5681 goto out; 5682 5683 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5684 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5685 hdr->crc = 0; 5686 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5687 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5688 hdr->crc = cpu_to_le32(crc); 5689 5690 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5691 &sctx->send_off); 5692 if (!ret) { 5693 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5694 disk_num_bytes, &sctx->send_off); 5695 } 5696 sctx->send_size = 0; 5697 sctx->put_data = false; 5698 5699 tlv_put_failure: 5700 out: 5701 fs_path_free(fspath); 5702 iput(inode); 5703 return ret; 5704 } 5705 5706 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5707 const u64 offset, const u64 len) 5708 { 5709 const u64 end = offset + len; 5710 struct extent_buffer *leaf = path->nodes[0]; 5711 struct btrfs_file_extent_item *ei; 5712 u64 read_size = max_send_read_size(sctx); 5713 u64 sent = 0; 5714 5715 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5716 return send_update_extent(sctx, offset, len); 5717 5718 ei = btrfs_item_ptr(leaf, path->slots[0], 5719 struct btrfs_file_extent_item); 5720 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5721 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5722 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5723 BTRFS_FILE_EXTENT_INLINE); 5724 5725 /* 5726 * Send the compressed extent unless the compressed data is 5727 * larger than the decompressed data. This can happen if we're 5728 * not sending the entire extent, either because it has been 5729 * partially overwritten/truncated or because this is a part of 5730 * the extent that we couldn't clone in clone_range(). 5731 */ 5732 if (is_inline && 5733 btrfs_file_extent_inline_item_len(leaf, 5734 path->slots[0]) <= len) { 5735 return send_encoded_inline_extent(sctx, path, offset, 5736 len); 5737 } else if (!is_inline && 5738 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5739 return send_encoded_extent(sctx, path, offset, len); 5740 } 5741 } 5742 5743 if (sctx->cur_inode == NULL) { 5744 struct btrfs_root *root = sctx->send_root; 5745 5746 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root); 5747 if (IS_ERR(sctx->cur_inode)) { 5748 int err = PTR_ERR(sctx->cur_inode); 5749 5750 sctx->cur_inode = NULL; 5751 return err; 5752 } 5753 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5754 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5755 5756 /* 5757 * It's very likely there are no pages from this inode in the page 5758 * cache, so after reading extents and sending their data, we clean 5759 * the page cache to avoid trashing the page cache (adding pressure 5760 * to the page cache and forcing eviction of other data more useful 5761 * for applications). 5762 * 5763 * We decide if we should clean the page cache simply by checking 5764 * if the inode's mapping nrpages is 0 when we first open it, and 5765 * not by using something like filemap_range_has_page() before 5766 * reading an extent because when we ask the readahead code to 5767 * read a given file range, it may (and almost always does) read 5768 * pages from beyond that range (see the documentation for 5769 * page_cache_sync_readahead()), so it would not be reliable, 5770 * because after reading the first extent future calls to 5771 * filemap_range_has_page() would return true because the readahead 5772 * on the previous extent resulted in reading pages of the current 5773 * extent as well. 5774 */ 5775 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5776 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5777 } 5778 5779 while (sent < len) { 5780 u64 size = min(len - sent, read_size); 5781 int ret; 5782 5783 ret = send_write(sctx, offset + sent, size); 5784 if (ret < 0) 5785 return ret; 5786 sent += size; 5787 } 5788 5789 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5790 /* 5791 * Always operate only on ranges that are a multiple of the page 5792 * size. This is not only to prevent zeroing parts of a page in 5793 * the case of subpage sector size, but also to guarantee we evict 5794 * pages, as passing a range that is smaller than page size does 5795 * not evict the respective page (only zeroes part of its content). 5796 * 5797 * Always start from the end offset of the last range cleared. 5798 * This is because the readahead code may (and very often does) 5799 * reads pages beyond the range we request for readahead. So if 5800 * we have an extent layout like this: 5801 * 5802 * [ extent A ] [ extent B ] [ extent C ] 5803 * 5804 * When we ask page_cache_sync_readahead() to read extent A, it 5805 * may also trigger reads for pages of extent B. If we are doing 5806 * an incremental send and extent B has not changed between the 5807 * parent and send snapshots, some or all of its pages may end 5808 * up being read and placed in the page cache. So when truncating 5809 * the page cache we always start from the end offset of the 5810 * previously processed extent up to the end of the current 5811 * extent. 5812 */ 5813 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5814 sctx->page_cache_clear_start, 5815 end - 1); 5816 sctx->page_cache_clear_start = end; 5817 } 5818 5819 return 0; 5820 } 5821 5822 /* 5823 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5824 * found, call send_set_xattr function to emit it. 5825 * 5826 * Return 0 if there isn't a capability, or when the capability was emitted 5827 * successfully, or < 0 if an error occurred. 5828 */ 5829 static int send_capabilities(struct send_ctx *sctx) 5830 { 5831 struct fs_path *fspath = NULL; 5832 struct btrfs_path *path; 5833 struct btrfs_dir_item *di; 5834 struct extent_buffer *leaf; 5835 unsigned long data_ptr; 5836 char *buf = NULL; 5837 int buf_len; 5838 int ret = 0; 5839 5840 path = alloc_path_for_send(); 5841 if (!path) 5842 return -ENOMEM; 5843 5844 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5845 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5846 if (!di) { 5847 /* There is no xattr for this inode */ 5848 goto out; 5849 } else if (IS_ERR(di)) { 5850 ret = PTR_ERR(di); 5851 goto out; 5852 } 5853 5854 leaf = path->nodes[0]; 5855 buf_len = btrfs_dir_data_len(leaf, di); 5856 5857 fspath = fs_path_alloc(); 5858 buf = kmalloc(buf_len, GFP_KERNEL); 5859 if (!fspath || !buf) { 5860 ret = -ENOMEM; 5861 goto out; 5862 } 5863 5864 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5865 if (ret < 0) 5866 goto out; 5867 5868 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5869 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5870 5871 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5872 strlen(XATTR_NAME_CAPS), buf, buf_len); 5873 out: 5874 kfree(buf); 5875 fs_path_free(fspath); 5876 btrfs_free_path(path); 5877 return ret; 5878 } 5879 5880 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5881 struct clone_root *clone_root, const u64 disk_byte, 5882 u64 data_offset, u64 offset, u64 len) 5883 { 5884 struct btrfs_path *path; 5885 struct btrfs_key key; 5886 int ret; 5887 struct btrfs_inode_info info; 5888 u64 clone_src_i_size = 0; 5889 5890 /* 5891 * Prevent cloning from a zero offset with a length matching the sector 5892 * size because in some scenarios this will make the receiver fail. 5893 * 5894 * For example, if in the source filesystem the extent at offset 0 5895 * has a length of sectorsize and it was written using direct IO, then 5896 * it can never be an inline extent (even if compression is enabled). 5897 * Then this extent can be cloned in the original filesystem to a non 5898 * zero file offset, but it may not be possible to clone in the 5899 * destination filesystem because it can be inlined due to compression 5900 * on the destination filesystem (as the receiver's write operations are 5901 * always done using buffered IO). The same happens when the original 5902 * filesystem does not have compression enabled but the destination 5903 * filesystem has. 5904 */ 5905 if (clone_root->offset == 0 && 5906 len == sctx->send_root->fs_info->sectorsize) 5907 return send_extent_data(sctx, dst_path, offset, len); 5908 5909 path = alloc_path_for_send(); 5910 if (!path) 5911 return -ENOMEM; 5912 5913 /* 5914 * There are inodes that have extents that lie behind its i_size. Don't 5915 * accept clones from these extents. 5916 */ 5917 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5918 btrfs_release_path(path); 5919 if (ret < 0) 5920 goto out; 5921 clone_src_i_size = info.size; 5922 5923 /* 5924 * We can't send a clone operation for the entire range if we find 5925 * extent items in the respective range in the source file that 5926 * refer to different extents or if we find holes. 5927 * So check for that and do a mix of clone and regular write/copy 5928 * operations if needed. 5929 * 5930 * Example: 5931 * 5932 * mkfs.btrfs -f /dev/sda 5933 * mount /dev/sda /mnt 5934 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5935 * cp --reflink=always /mnt/foo /mnt/bar 5936 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5937 * btrfs subvolume snapshot -r /mnt /mnt/snap 5938 * 5939 * If when we send the snapshot and we are processing file bar (which 5940 * has a higher inode number than foo) we blindly send a clone operation 5941 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5942 * a file bar that matches the content of file foo - iow, doesn't match 5943 * the content from bar in the original filesystem. 5944 */ 5945 key.objectid = clone_root->ino; 5946 key.type = BTRFS_EXTENT_DATA_KEY; 5947 key.offset = clone_root->offset; 5948 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5949 if (ret < 0) 5950 goto out; 5951 if (ret > 0 && path->slots[0] > 0) { 5952 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5953 if (key.objectid == clone_root->ino && 5954 key.type == BTRFS_EXTENT_DATA_KEY) 5955 path->slots[0]--; 5956 } 5957 5958 while (true) { 5959 struct extent_buffer *leaf = path->nodes[0]; 5960 int slot = path->slots[0]; 5961 struct btrfs_file_extent_item *ei; 5962 u8 type; 5963 u64 ext_len; 5964 u64 clone_len; 5965 u64 clone_data_offset; 5966 bool crossed_src_i_size = false; 5967 5968 if (slot >= btrfs_header_nritems(leaf)) { 5969 ret = btrfs_next_leaf(clone_root->root, path); 5970 if (ret < 0) 5971 goto out; 5972 else if (ret > 0) 5973 break; 5974 continue; 5975 } 5976 5977 btrfs_item_key_to_cpu(leaf, &key, slot); 5978 5979 /* 5980 * We might have an implicit trailing hole (NO_HOLES feature 5981 * enabled). We deal with it after leaving this loop. 5982 */ 5983 if (key.objectid != clone_root->ino || 5984 key.type != BTRFS_EXTENT_DATA_KEY) 5985 break; 5986 5987 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5988 type = btrfs_file_extent_type(leaf, ei); 5989 if (type == BTRFS_FILE_EXTENT_INLINE) { 5990 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5991 ext_len = PAGE_ALIGN(ext_len); 5992 } else { 5993 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5994 } 5995 5996 if (key.offset + ext_len <= clone_root->offset) 5997 goto next; 5998 5999 if (key.offset > clone_root->offset) { 6000 /* Implicit hole, NO_HOLES feature enabled. */ 6001 u64 hole_len = key.offset - clone_root->offset; 6002 6003 if (hole_len > len) 6004 hole_len = len; 6005 ret = send_extent_data(sctx, dst_path, offset, 6006 hole_len); 6007 if (ret < 0) 6008 goto out; 6009 6010 len -= hole_len; 6011 if (len == 0) 6012 break; 6013 offset += hole_len; 6014 clone_root->offset += hole_len; 6015 data_offset += hole_len; 6016 } 6017 6018 if (key.offset >= clone_root->offset + len) 6019 break; 6020 6021 if (key.offset >= clone_src_i_size) 6022 break; 6023 6024 if (key.offset + ext_len > clone_src_i_size) { 6025 ext_len = clone_src_i_size - key.offset; 6026 crossed_src_i_size = true; 6027 } 6028 6029 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6030 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6031 clone_root->offset = key.offset; 6032 if (clone_data_offset < data_offset && 6033 clone_data_offset + ext_len > data_offset) { 6034 u64 extent_offset; 6035 6036 extent_offset = data_offset - clone_data_offset; 6037 ext_len -= extent_offset; 6038 clone_data_offset += extent_offset; 6039 clone_root->offset += extent_offset; 6040 } 6041 } 6042 6043 clone_len = min_t(u64, ext_len, len); 6044 6045 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6046 clone_data_offset == data_offset) { 6047 const u64 src_end = clone_root->offset + clone_len; 6048 const u64 sectorsize = SZ_64K; 6049 6050 /* 6051 * We can't clone the last block, when its size is not 6052 * sector size aligned, into the middle of a file. If we 6053 * do so, the receiver will get a failure (-EINVAL) when 6054 * trying to clone or will silently corrupt the data in 6055 * the destination file if it's on a kernel without the 6056 * fix introduced by commit ac765f83f1397646 6057 * ("Btrfs: fix data corruption due to cloning of eof 6058 * block). 6059 * 6060 * So issue a clone of the aligned down range plus a 6061 * regular write for the eof block, if we hit that case. 6062 * 6063 * Also, we use the maximum possible sector size, 64K, 6064 * because we don't know what's the sector size of the 6065 * filesystem that receives the stream, so we have to 6066 * assume the largest possible sector size. 6067 */ 6068 if (src_end == clone_src_i_size && 6069 !IS_ALIGNED(src_end, sectorsize) && 6070 offset + clone_len < sctx->cur_inode_size) { 6071 u64 slen; 6072 6073 slen = ALIGN_DOWN(src_end - clone_root->offset, 6074 sectorsize); 6075 if (slen > 0) { 6076 ret = send_clone(sctx, offset, slen, 6077 clone_root); 6078 if (ret < 0) 6079 goto out; 6080 } 6081 ret = send_extent_data(sctx, dst_path, 6082 offset + slen, 6083 clone_len - slen); 6084 } else { 6085 ret = send_clone(sctx, offset, clone_len, 6086 clone_root); 6087 } 6088 } else if (crossed_src_i_size && clone_len < len) { 6089 /* 6090 * If we are at i_size of the clone source inode and we 6091 * can not clone from it, terminate the loop. This is 6092 * to avoid sending two write operations, one with a 6093 * length matching clone_len and the final one after 6094 * this loop with a length of len - clone_len. 6095 * 6096 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6097 * was passed to the send ioctl), this helps avoid 6098 * sending an encoded write for an offset that is not 6099 * sector size aligned, in case the i_size of the source 6100 * inode is not sector size aligned. That will make the 6101 * receiver fallback to decompression of the data and 6102 * writing it using regular buffered IO, therefore while 6103 * not incorrect, it's not optimal due decompression and 6104 * possible re-compression at the receiver. 6105 */ 6106 break; 6107 } else { 6108 ret = send_extent_data(sctx, dst_path, offset, 6109 clone_len); 6110 } 6111 6112 if (ret < 0) 6113 goto out; 6114 6115 len -= clone_len; 6116 if (len == 0) 6117 break; 6118 offset += clone_len; 6119 clone_root->offset += clone_len; 6120 6121 /* 6122 * If we are cloning from the file we are currently processing, 6123 * and using the send root as the clone root, we must stop once 6124 * the current clone offset reaches the current eof of the file 6125 * at the receiver, otherwise we would issue an invalid clone 6126 * operation (source range going beyond eof) and cause the 6127 * receiver to fail. So if we reach the current eof, bail out 6128 * and fallback to a regular write. 6129 */ 6130 if (clone_root->root == sctx->send_root && 6131 clone_root->ino == sctx->cur_ino && 6132 clone_root->offset >= sctx->cur_inode_next_write_offset) 6133 break; 6134 6135 data_offset += clone_len; 6136 next: 6137 path->slots[0]++; 6138 } 6139 6140 if (len > 0) 6141 ret = send_extent_data(sctx, dst_path, offset, len); 6142 else 6143 ret = 0; 6144 out: 6145 btrfs_free_path(path); 6146 return ret; 6147 } 6148 6149 static int send_write_or_clone(struct send_ctx *sctx, 6150 struct btrfs_path *path, 6151 struct btrfs_key *key, 6152 struct clone_root *clone_root) 6153 { 6154 int ret = 0; 6155 u64 offset = key->offset; 6156 u64 end; 6157 u64 bs = sctx->send_root->fs_info->sectorsize; 6158 struct btrfs_file_extent_item *ei; 6159 u64 disk_byte; 6160 u64 data_offset; 6161 u64 num_bytes; 6162 struct btrfs_inode_info info = { 0 }; 6163 6164 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6165 if (offset >= end) 6166 return 0; 6167 6168 num_bytes = end - offset; 6169 6170 if (!clone_root) 6171 goto write_data; 6172 6173 if (IS_ALIGNED(end, bs)) 6174 goto clone_data; 6175 6176 /* 6177 * If the extent end is not aligned, we can clone if the extent ends at 6178 * the i_size of the inode and the clone range ends at the i_size of the 6179 * source inode, otherwise the clone operation fails with -EINVAL. 6180 */ 6181 if (end != sctx->cur_inode_size) 6182 goto write_data; 6183 6184 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6185 if (ret < 0) 6186 return ret; 6187 6188 if (clone_root->offset + num_bytes == info.size) { 6189 /* 6190 * The final size of our file matches the end offset, but it may 6191 * be that its current size is larger, so we have to truncate it 6192 * to any value between the start offset of the range and the 6193 * final i_size, otherwise the clone operation is invalid 6194 * because it's unaligned and it ends before the current EOF. 6195 * We do this truncate to the final i_size when we finish 6196 * processing the inode, but it's too late by then. And here we 6197 * truncate to the start offset of the range because it's always 6198 * sector size aligned while if it were the final i_size it 6199 * would result in dirtying part of a page, filling part of a 6200 * page with zeroes and then having the clone operation at the 6201 * receiver trigger IO and wait for it due to the dirty page. 6202 */ 6203 if (sctx->parent_root != NULL) { 6204 ret = send_truncate(sctx, sctx->cur_ino, 6205 sctx->cur_inode_gen, offset); 6206 if (ret < 0) 6207 return ret; 6208 } 6209 goto clone_data; 6210 } 6211 6212 write_data: 6213 ret = send_extent_data(sctx, path, offset, num_bytes); 6214 sctx->cur_inode_next_write_offset = end; 6215 return ret; 6216 6217 clone_data: 6218 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6219 struct btrfs_file_extent_item); 6220 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6221 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6222 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6223 num_bytes); 6224 sctx->cur_inode_next_write_offset = end; 6225 return ret; 6226 } 6227 6228 static int is_extent_unchanged(struct send_ctx *sctx, 6229 struct btrfs_path *left_path, 6230 struct btrfs_key *ekey) 6231 { 6232 int ret = 0; 6233 struct btrfs_key key; 6234 struct btrfs_path *path = NULL; 6235 struct extent_buffer *eb; 6236 int slot; 6237 struct btrfs_key found_key; 6238 struct btrfs_file_extent_item *ei; 6239 u64 left_disknr; 6240 u64 right_disknr; 6241 u64 left_offset; 6242 u64 right_offset; 6243 u64 left_offset_fixed; 6244 u64 left_len; 6245 u64 right_len; 6246 u64 left_gen; 6247 u64 right_gen; 6248 u8 left_type; 6249 u8 right_type; 6250 6251 path = alloc_path_for_send(); 6252 if (!path) 6253 return -ENOMEM; 6254 6255 eb = left_path->nodes[0]; 6256 slot = left_path->slots[0]; 6257 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6258 left_type = btrfs_file_extent_type(eb, ei); 6259 6260 if (left_type != BTRFS_FILE_EXTENT_REG) { 6261 ret = 0; 6262 goto out; 6263 } 6264 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6265 left_len = btrfs_file_extent_num_bytes(eb, ei); 6266 left_offset = btrfs_file_extent_offset(eb, ei); 6267 left_gen = btrfs_file_extent_generation(eb, ei); 6268 6269 /* 6270 * Following comments will refer to these graphics. L is the left 6271 * extents which we are checking at the moment. 1-8 are the right 6272 * extents that we iterate. 6273 * 6274 * |-----L-----| 6275 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6276 * 6277 * |-----L-----| 6278 * |--1--|-2b-|...(same as above) 6279 * 6280 * Alternative situation. Happens on files where extents got split. 6281 * |-----L-----| 6282 * |-----------7-----------|-6-| 6283 * 6284 * Alternative situation. Happens on files which got larger. 6285 * |-----L-----| 6286 * |-8-| 6287 * Nothing follows after 8. 6288 */ 6289 6290 key.objectid = ekey->objectid; 6291 key.type = BTRFS_EXTENT_DATA_KEY; 6292 key.offset = ekey->offset; 6293 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6294 if (ret < 0) 6295 goto out; 6296 if (ret) { 6297 ret = 0; 6298 goto out; 6299 } 6300 6301 /* 6302 * Handle special case where the right side has no extents at all. 6303 */ 6304 eb = path->nodes[0]; 6305 slot = path->slots[0]; 6306 btrfs_item_key_to_cpu(eb, &found_key, slot); 6307 if (found_key.objectid != key.objectid || 6308 found_key.type != key.type) { 6309 /* If we're a hole then just pretend nothing changed */ 6310 ret = (left_disknr) ? 0 : 1; 6311 goto out; 6312 } 6313 6314 /* 6315 * We're now on 2a, 2b or 7. 6316 */ 6317 key = found_key; 6318 while (key.offset < ekey->offset + left_len) { 6319 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6320 right_type = btrfs_file_extent_type(eb, ei); 6321 if (right_type != BTRFS_FILE_EXTENT_REG && 6322 right_type != BTRFS_FILE_EXTENT_INLINE) { 6323 ret = 0; 6324 goto out; 6325 } 6326 6327 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6328 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6329 right_len = PAGE_ALIGN(right_len); 6330 } else { 6331 right_len = btrfs_file_extent_num_bytes(eb, ei); 6332 } 6333 6334 /* 6335 * Are we at extent 8? If yes, we know the extent is changed. 6336 * This may only happen on the first iteration. 6337 */ 6338 if (found_key.offset + right_len <= ekey->offset) { 6339 /* If we're a hole just pretend nothing changed */ 6340 ret = (left_disknr) ? 0 : 1; 6341 goto out; 6342 } 6343 6344 /* 6345 * We just wanted to see if when we have an inline extent, what 6346 * follows it is a regular extent (wanted to check the above 6347 * condition for inline extents too). This should normally not 6348 * happen but it's possible for example when we have an inline 6349 * compressed extent representing data with a size matching 6350 * the page size (currently the same as sector size). 6351 */ 6352 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6353 ret = 0; 6354 goto out; 6355 } 6356 6357 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6358 right_offset = btrfs_file_extent_offset(eb, ei); 6359 right_gen = btrfs_file_extent_generation(eb, ei); 6360 6361 left_offset_fixed = left_offset; 6362 if (key.offset < ekey->offset) { 6363 /* Fix the right offset for 2a and 7. */ 6364 right_offset += ekey->offset - key.offset; 6365 } else { 6366 /* Fix the left offset for all behind 2a and 2b */ 6367 left_offset_fixed += key.offset - ekey->offset; 6368 } 6369 6370 /* 6371 * Check if we have the same extent. 6372 */ 6373 if (left_disknr != right_disknr || 6374 left_offset_fixed != right_offset || 6375 left_gen != right_gen) { 6376 ret = 0; 6377 goto out; 6378 } 6379 6380 /* 6381 * Go to the next extent. 6382 */ 6383 ret = btrfs_next_item(sctx->parent_root, path); 6384 if (ret < 0) 6385 goto out; 6386 if (!ret) { 6387 eb = path->nodes[0]; 6388 slot = path->slots[0]; 6389 btrfs_item_key_to_cpu(eb, &found_key, slot); 6390 } 6391 if (ret || found_key.objectid != key.objectid || 6392 found_key.type != key.type) { 6393 key.offset += right_len; 6394 break; 6395 } 6396 if (found_key.offset != key.offset + right_len) { 6397 ret = 0; 6398 goto out; 6399 } 6400 key = found_key; 6401 } 6402 6403 /* 6404 * We're now behind the left extent (treat as unchanged) or at the end 6405 * of the right side (treat as changed). 6406 */ 6407 if (key.offset >= ekey->offset + left_len) 6408 ret = 1; 6409 else 6410 ret = 0; 6411 6412 6413 out: 6414 btrfs_free_path(path); 6415 return ret; 6416 } 6417 6418 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6419 { 6420 struct btrfs_path *path; 6421 struct btrfs_root *root = sctx->send_root; 6422 struct btrfs_key key; 6423 int ret; 6424 6425 path = alloc_path_for_send(); 6426 if (!path) 6427 return -ENOMEM; 6428 6429 sctx->cur_inode_last_extent = 0; 6430 6431 key.objectid = sctx->cur_ino; 6432 key.type = BTRFS_EXTENT_DATA_KEY; 6433 key.offset = offset; 6434 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6435 if (ret < 0) 6436 goto out; 6437 ret = 0; 6438 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6439 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6440 goto out; 6441 6442 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6443 out: 6444 btrfs_free_path(path); 6445 return ret; 6446 } 6447 6448 static int range_is_hole_in_parent(struct send_ctx *sctx, 6449 const u64 start, 6450 const u64 end) 6451 { 6452 struct btrfs_path *path; 6453 struct btrfs_key key; 6454 struct btrfs_root *root = sctx->parent_root; 6455 u64 search_start = start; 6456 int ret; 6457 6458 path = alloc_path_for_send(); 6459 if (!path) 6460 return -ENOMEM; 6461 6462 key.objectid = sctx->cur_ino; 6463 key.type = BTRFS_EXTENT_DATA_KEY; 6464 key.offset = search_start; 6465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6466 if (ret < 0) 6467 goto out; 6468 if (ret > 0 && path->slots[0] > 0) 6469 path->slots[0]--; 6470 6471 while (search_start < end) { 6472 struct extent_buffer *leaf = path->nodes[0]; 6473 int slot = path->slots[0]; 6474 struct btrfs_file_extent_item *fi; 6475 u64 extent_end; 6476 6477 if (slot >= btrfs_header_nritems(leaf)) { 6478 ret = btrfs_next_leaf(root, path); 6479 if (ret < 0) 6480 goto out; 6481 else if (ret > 0) 6482 break; 6483 continue; 6484 } 6485 6486 btrfs_item_key_to_cpu(leaf, &key, slot); 6487 if (key.objectid < sctx->cur_ino || 6488 key.type < BTRFS_EXTENT_DATA_KEY) 6489 goto next; 6490 if (key.objectid > sctx->cur_ino || 6491 key.type > BTRFS_EXTENT_DATA_KEY || 6492 key.offset >= end) 6493 break; 6494 6495 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6496 extent_end = btrfs_file_extent_end(path); 6497 if (extent_end <= start) 6498 goto next; 6499 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6500 search_start = extent_end; 6501 goto next; 6502 } 6503 ret = 0; 6504 goto out; 6505 next: 6506 path->slots[0]++; 6507 } 6508 ret = 1; 6509 out: 6510 btrfs_free_path(path); 6511 return ret; 6512 } 6513 6514 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6515 struct btrfs_key *key) 6516 { 6517 int ret = 0; 6518 6519 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6520 return 0; 6521 6522 /* 6523 * Get last extent's end offset (exclusive) if we haven't determined it 6524 * yet (we're processing the first file extent item that is new), or if 6525 * we're at the first slot of a leaf and the last extent's end is less 6526 * than the current extent's offset, because we might have skipped 6527 * entire leaves that contained only file extent items for our current 6528 * inode. These leaves have a generation number smaller (older) than the 6529 * one in the current leaf and the leaf our last extent came from, and 6530 * are located between these 2 leaves. 6531 */ 6532 if ((sctx->cur_inode_last_extent == (u64)-1) || 6533 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6534 ret = get_last_extent(sctx, key->offset - 1); 6535 if (ret) 6536 return ret; 6537 } 6538 6539 if (sctx->cur_inode_last_extent < key->offset) { 6540 ret = range_is_hole_in_parent(sctx, 6541 sctx->cur_inode_last_extent, 6542 key->offset); 6543 if (ret < 0) 6544 return ret; 6545 else if (ret == 0) 6546 ret = send_hole(sctx, key->offset); 6547 else 6548 ret = 0; 6549 } 6550 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6551 return ret; 6552 } 6553 6554 static int process_extent(struct send_ctx *sctx, 6555 struct btrfs_path *path, 6556 struct btrfs_key *key) 6557 { 6558 struct clone_root *found_clone = NULL; 6559 int ret = 0; 6560 6561 if (S_ISLNK(sctx->cur_inode_mode)) 6562 return 0; 6563 6564 if (sctx->parent_root && !sctx->cur_inode_new) { 6565 ret = is_extent_unchanged(sctx, path, key); 6566 if (ret < 0) 6567 goto out; 6568 if (ret) { 6569 ret = 0; 6570 goto out_hole; 6571 } 6572 } else { 6573 struct btrfs_file_extent_item *ei; 6574 u8 type; 6575 6576 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6577 struct btrfs_file_extent_item); 6578 type = btrfs_file_extent_type(path->nodes[0], ei); 6579 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6580 type == BTRFS_FILE_EXTENT_REG) { 6581 /* 6582 * The send spec does not have a prealloc command yet, 6583 * so just leave a hole for prealloc'ed extents until 6584 * we have enough commands queued up to justify rev'ing 6585 * the send spec. 6586 */ 6587 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6588 ret = 0; 6589 goto out; 6590 } 6591 6592 /* Have a hole, just skip it. */ 6593 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6594 ret = 0; 6595 goto out; 6596 } 6597 } 6598 } 6599 6600 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6601 sctx->cur_inode_size, &found_clone); 6602 if (ret != -ENOENT && ret < 0) 6603 goto out; 6604 6605 ret = send_write_or_clone(sctx, path, key, found_clone); 6606 if (ret) 6607 goto out; 6608 out_hole: 6609 ret = maybe_send_hole(sctx, path, key); 6610 out: 6611 return ret; 6612 } 6613 6614 static int process_all_extents(struct send_ctx *sctx) 6615 { 6616 int ret = 0; 6617 int iter_ret = 0; 6618 struct btrfs_root *root; 6619 struct btrfs_path *path; 6620 struct btrfs_key key; 6621 struct btrfs_key found_key; 6622 6623 root = sctx->send_root; 6624 path = alloc_path_for_send(); 6625 if (!path) 6626 return -ENOMEM; 6627 6628 key.objectid = sctx->cmp_key->objectid; 6629 key.type = BTRFS_EXTENT_DATA_KEY; 6630 key.offset = 0; 6631 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6632 if (found_key.objectid != key.objectid || 6633 found_key.type != key.type) { 6634 ret = 0; 6635 break; 6636 } 6637 6638 ret = process_extent(sctx, path, &found_key); 6639 if (ret < 0) 6640 break; 6641 } 6642 /* Catch error found during iteration */ 6643 if (iter_ret < 0) 6644 ret = iter_ret; 6645 6646 btrfs_free_path(path); 6647 return ret; 6648 } 6649 6650 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6651 int *pending_move, 6652 int *refs_processed) 6653 { 6654 int ret = 0; 6655 6656 if (sctx->cur_ino == 0) 6657 goto out; 6658 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6659 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6660 goto out; 6661 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6662 goto out; 6663 6664 ret = process_recorded_refs(sctx, pending_move); 6665 if (ret < 0) 6666 goto out; 6667 6668 *refs_processed = 1; 6669 out: 6670 return ret; 6671 } 6672 6673 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6674 { 6675 int ret = 0; 6676 struct btrfs_inode_info info; 6677 u64 left_mode; 6678 u64 left_uid; 6679 u64 left_gid; 6680 u64 left_fileattr; 6681 u64 right_mode; 6682 u64 right_uid; 6683 u64 right_gid; 6684 u64 right_fileattr; 6685 int need_chmod = 0; 6686 int need_chown = 0; 6687 bool need_fileattr = false; 6688 int need_truncate = 1; 6689 int pending_move = 0; 6690 int refs_processed = 0; 6691 6692 if (sctx->ignore_cur_inode) 6693 return 0; 6694 6695 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6696 &refs_processed); 6697 if (ret < 0) 6698 goto out; 6699 6700 /* 6701 * We have processed the refs and thus need to advance send_progress. 6702 * Now, calls to get_cur_xxx will take the updated refs of the current 6703 * inode into account. 6704 * 6705 * On the other hand, if our current inode is a directory and couldn't 6706 * be moved/renamed because its parent was renamed/moved too and it has 6707 * a higher inode number, we can only move/rename our current inode 6708 * after we moved/renamed its parent. Therefore in this case operate on 6709 * the old path (pre move/rename) of our current inode, and the 6710 * move/rename will be performed later. 6711 */ 6712 if (refs_processed && !pending_move) 6713 sctx->send_progress = sctx->cur_ino + 1; 6714 6715 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6716 goto out; 6717 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6718 goto out; 6719 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6720 if (ret < 0) 6721 goto out; 6722 left_mode = info.mode; 6723 left_uid = info.uid; 6724 left_gid = info.gid; 6725 left_fileattr = info.fileattr; 6726 6727 if (!sctx->parent_root || sctx->cur_inode_new) { 6728 need_chown = 1; 6729 if (!S_ISLNK(sctx->cur_inode_mode)) 6730 need_chmod = 1; 6731 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6732 need_truncate = 0; 6733 } else { 6734 u64 old_size; 6735 6736 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6737 if (ret < 0) 6738 goto out; 6739 old_size = info.size; 6740 right_mode = info.mode; 6741 right_uid = info.uid; 6742 right_gid = info.gid; 6743 right_fileattr = info.fileattr; 6744 6745 if (left_uid != right_uid || left_gid != right_gid) 6746 need_chown = 1; 6747 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6748 need_chmod = 1; 6749 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6750 need_fileattr = true; 6751 if ((old_size == sctx->cur_inode_size) || 6752 (sctx->cur_inode_size > old_size && 6753 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6754 need_truncate = 0; 6755 } 6756 6757 if (S_ISREG(sctx->cur_inode_mode)) { 6758 if (need_send_hole(sctx)) { 6759 if (sctx->cur_inode_last_extent == (u64)-1 || 6760 sctx->cur_inode_last_extent < 6761 sctx->cur_inode_size) { 6762 ret = get_last_extent(sctx, (u64)-1); 6763 if (ret) 6764 goto out; 6765 } 6766 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6767 ret = range_is_hole_in_parent(sctx, 6768 sctx->cur_inode_last_extent, 6769 sctx->cur_inode_size); 6770 if (ret < 0) { 6771 goto out; 6772 } else if (ret == 0) { 6773 ret = send_hole(sctx, sctx->cur_inode_size); 6774 if (ret < 0) 6775 goto out; 6776 } else { 6777 /* Range is already a hole, skip. */ 6778 ret = 0; 6779 } 6780 } 6781 } 6782 if (need_truncate) { 6783 ret = send_truncate(sctx, sctx->cur_ino, 6784 sctx->cur_inode_gen, 6785 sctx->cur_inode_size); 6786 if (ret < 0) 6787 goto out; 6788 } 6789 } 6790 6791 if (need_chown) { 6792 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6793 left_uid, left_gid); 6794 if (ret < 0) 6795 goto out; 6796 } 6797 if (need_chmod) { 6798 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6799 left_mode); 6800 if (ret < 0) 6801 goto out; 6802 } 6803 if (need_fileattr) { 6804 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6805 left_fileattr); 6806 if (ret < 0) 6807 goto out; 6808 } 6809 6810 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6811 && sctx->cur_inode_needs_verity) { 6812 ret = process_verity(sctx); 6813 if (ret < 0) 6814 goto out; 6815 } 6816 6817 ret = send_capabilities(sctx); 6818 if (ret < 0) 6819 goto out; 6820 6821 /* 6822 * If other directory inodes depended on our current directory 6823 * inode's move/rename, now do their move/rename operations. 6824 */ 6825 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6826 ret = apply_children_dir_moves(sctx); 6827 if (ret) 6828 goto out; 6829 /* 6830 * Need to send that every time, no matter if it actually 6831 * changed between the two trees as we have done changes to 6832 * the inode before. If our inode is a directory and it's 6833 * waiting to be moved/renamed, we will send its utimes when 6834 * it's moved/renamed, therefore we don't need to do it here. 6835 */ 6836 sctx->send_progress = sctx->cur_ino + 1; 6837 6838 /* 6839 * If the current inode is a non-empty directory, delay issuing 6840 * the utimes command for it, as it's very likely we have inodes 6841 * with an higher number inside it. We want to issue the utimes 6842 * command only after adding all dentries to it. 6843 */ 6844 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6845 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6846 else 6847 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6848 6849 if (ret < 0) 6850 goto out; 6851 } 6852 6853 out: 6854 if (!ret) 6855 ret = trim_dir_utimes_cache(sctx); 6856 6857 return ret; 6858 } 6859 6860 static void close_current_inode(struct send_ctx *sctx) 6861 { 6862 u64 i_size; 6863 6864 if (sctx->cur_inode == NULL) 6865 return; 6866 6867 i_size = i_size_read(sctx->cur_inode); 6868 6869 /* 6870 * If we are doing an incremental send, we may have extents between the 6871 * last processed extent and the i_size that have not been processed 6872 * because they haven't changed but we may have read some of their pages 6873 * through readahead, see the comments at send_extent_data(). 6874 */ 6875 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6876 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6877 sctx->page_cache_clear_start, 6878 round_up(i_size, PAGE_SIZE) - 1); 6879 6880 iput(sctx->cur_inode); 6881 sctx->cur_inode = NULL; 6882 } 6883 6884 static int changed_inode(struct send_ctx *sctx, 6885 enum btrfs_compare_tree_result result) 6886 { 6887 int ret = 0; 6888 struct btrfs_key *key = sctx->cmp_key; 6889 struct btrfs_inode_item *left_ii = NULL; 6890 struct btrfs_inode_item *right_ii = NULL; 6891 u64 left_gen = 0; 6892 u64 right_gen = 0; 6893 6894 close_current_inode(sctx); 6895 6896 sctx->cur_ino = key->objectid; 6897 sctx->cur_inode_new_gen = false; 6898 sctx->cur_inode_last_extent = (u64)-1; 6899 sctx->cur_inode_next_write_offset = 0; 6900 sctx->ignore_cur_inode = false; 6901 6902 /* 6903 * Set send_progress to current inode. This will tell all get_cur_xxx 6904 * functions that the current inode's refs are not updated yet. Later, 6905 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6906 */ 6907 sctx->send_progress = sctx->cur_ino; 6908 6909 if (result == BTRFS_COMPARE_TREE_NEW || 6910 result == BTRFS_COMPARE_TREE_CHANGED) { 6911 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6912 sctx->left_path->slots[0], 6913 struct btrfs_inode_item); 6914 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6915 left_ii); 6916 } else { 6917 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6918 sctx->right_path->slots[0], 6919 struct btrfs_inode_item); 6920 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6921 right_ii); 6922 } 6923 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6924 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6925 sctx->right_path->slots[0], 6926 struct btrfs_inode_item); 6927 6928 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6929 right_ii); 6930 6931 /* 6932 * The cur_ino = root dir case is special here. We can't treat 6933 * the inode as deleted+reused because it would generate a 6934 * stream that tries to delete/mkdir the root dir. 6935 */ 6936 if (left_gen != right_gen && 6937 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6938 sctx->cur_inode_new_gen = true; 6939 } 6940 6941 /* 6942 * Normally we do not find inodes with a link count of zero (orphans) 6943 * because the most common case is to create a snapshot and use it 6944 * for a send operation. However other less common use cases involve 6945 * using a subvolume and send it after turning it to RO mode just 6946 * after deleting all hard links of a file while holding an open 6947 * file descriptor against it or turning a RO snapshot into RW mode, 6948 * keep an open file descriptor against a file, delete it and then 6949 * turn the snapshot back to RO mode before using it for a send 6950 * operation. The former is what the receiver operation does. 6951 * Therefore, if we want to send these snapshots soon after they're 6952 * received, we need to handle orphan inodes as well. Moreover, orphans 6953 * can appear not only in the send snapshot but also in the parent 6954 * snapshot. Here are several cases: 6955 * 6956 * Case 1: BTRFS_COMPARE_TREE_NEW 6957 * | send snapshot | action 6958 * -------------------------------- 6959 * nlink | 0 | ignore 6960 * 6961 * Case 2: BTRFS_COMPARE_TREE_DELETED 6962 * | parent snapshot | action 6963 * ---------------------------------- 6964 * nlink | 0 | as usual 6965 * Note: No unlinks will be sent because there're no paths for it. 6966 * 6967 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6968 * | | parent snapshot | send snapshot | action 6969 * ----------------------------------------------------------------------- 6970 * subcase 1 | nlink | 0 | 0 | ignore 6971 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6972 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6973 * 6974 */ 6975 if (result == BTRFS_COMPARE_TREE_NEW) { 6976 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6977 sctx->ignore_cur_inode = true; 6978 goto out; 6979 } 6980 sctx->cur_inode_gen = left_gen; 6981 sctx->cur_inode_new = true; 6982 sctx->cur_inode_deleted = false; 6983 sctx->cur_inode_size = btrfs_inode_size( 6984 sctx->left_path->nodes[0], left_ii); 6985 sctx->cur_inode_mode = btrfs_inode_mode( 6986 sctx->left_path->nodes[0], left_ii); 6987 sctx->cur_inode_rdev = btrfs_inode_rdev( 6988 sctx->left_path->nodes[0], left_ii); 6989 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6990 ret = send_create_inode_if_needed(sctx); 6991 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6992 sctx->cur_inode_gen = right_gen; 6993 sctx->cur_inode_new = false; 6994 sctx->cur_inode_deleted = true; 6995 sctx->cur_inode_size = btrfs_inode_size( 6996 sctx->right_path->nodes[0], right_ii); 6997 sctx->cur_inode_mode = btrfs_inode_mode( 6998 sctx->right_path->nodes[0], right_ii); 6999 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 7000 u32 new_nlinks, old_nlinks; 7001 7002 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 7003 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 7004 if (new_nlinks == 0 && old_nlinks == 0) { 7005 sctx->ignore_cur_inode = true; 7006 goto out; 7007 } else if (new_nlinks == 0 || old_nlinks == 0) { 7008 sctx->cur_inode_new_gen = 1; 7009 } 7010 /* 7011 * We need to do some special handling in case the inode was 7012 * reported as changed with a changed generation number. This 7013 * means that the original inode was deleted and new inode 7014 * reused the same inum. So we have to treat the old inode as 7015 * deleted and the new one as new. 7016 */ 7017 if (sctx->cur_inode_new_gen) { 7018 /* 7019 * First, process the inode as if it was deleted. 7020 */ 7021 if (old_nlinks > 0) { 7022 sctx->cur_inode_gen = right_gen; 7023 sctx->cur_inode_new = false; 7024 sctx->cur_inode_deleted = true; 7025 sctx->cur_inode_size = btrfs_inode_size( 7026 sctx->right_path->nodes[0], right_ii); 7027 sctx->cur_inode_mode = btrfs_inode_mode( 7028 sctx->right_path->nodes[0], right_ii); 7029 ret = process_all_refs(sctx, 7030 BTRFS_COMPARE_TREE_DELETED); 7031 if (ret < 0) 7032 goto out; 7033 } 7034 7035 /* 7036 * Now process the inode as if it was new. 7037 */ 7038 if (new_nlinks > 0) { 7039 sctx->cur_inode_gen = left_gen; 7040 sctx->cur_inode_new = true; 7041 sctx->cur_inode_deleted = false; 7042 sctx->cur_inode_size = btrfs_inode_size( 7043 sctx->left_path->nodes[0], 7044 left_ii); 7045 sctx->cur_inode_mode = btrfs_inode_mode( 7046 sctx->left_path->nodes[0], 7047 left_ii); 7048 sctx->cur_inode_rdev = btrfs_inode_rdev( 7049 sctx->left_path->nodes[0], 7050 left_ii); 7051 ret = send_create_inode_if_needed(sctx); 7052 if (ret < 0) 7053 goto out; 7054 7055 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7056 if (ret < 0) 7057 goto out; 7058 /* 7059 * Advance send_progress now as we did not get 7060 * into process_recorded_refs_if_needed in the 7061 * new_gen case. 7062 */ 7063 sctx->send_progress = sctx->cur_ino + 1; 7064 7065 /* 7066 * Now process all extents and xattrs of the 7067 * inode as if they were all new. 7068 */ 7069 ret = process_all_extents(sctx); 7070 if (ret < 0) 7071 goto out; 7072 ret = process_all_new_xattrs(sctx); 7073 if (ret < 0) 7074 goto out; 7075 } 7076 } else { 7077 sctx->cur_inode_gen = left_gen; 7078 sctx->cur_inode_new = false; 7079 sctx->cur_inode_new_gen = false; 7080 sctx->cur_inode_deleted = false; 7081 sctx->cur_inode_size = btrfs_inode_size( 7082 sctx->left_path->nodes[0], left_ii); 7083 sctx->cur_inode_mode = btrfs_inode_mode( 7084 sctx->left_path->nodes[0], left_ii); 7085 } 7086 } 7087 7088 out: 7089 return ret; 7090 } 7091 7092 /* 7093 * We have to process new refs before deleted refs, but compare_trees gives us 7094 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7095 * first and later process them in process_recorded_refs. 7096 * For the cur_inode_new_gen case, we skip recording completely because 7097 * changed_inode did already initiate processing of refs. The reason for this is 7098 * that in this case, compare_tree actually compares the refs of 2 different 7099 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7100 * refs of the right tree as deleted and all refs of the left tree as new. 7101 */ 7102 static int changed_ref(struct send_ctx *sctx, 7103 enum btrfs_compare_tree_result result) 7104 { 7105 int ret = 0; 7106 7107 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7108 inconsistent_snapshot_error(sctx, result, "reference"); 7109 return -EIO; 7110 } 7111 7112 if (!sctx->cur_inode_new_gen && 7113 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7114 if (result == BTRFS_COMPARE_TREE_NEW) 7115 ret = record_new_ref(sctx); 7116 else if (result == BTRFS_COMPARE_TREE_DELETED) 7117 ret = record_deleted_ref(sctx); 7118 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7119 ret = record_changed_ref(sctx); 7120 } 7121 7122 return ret; 7123 } 7124 7125 /* 7126 * Process new/deleted/changed xattrs. We skip processing in the 7127 * cur_inode_new_gen case because changed_inode did already initiate processing 7128 * of xattrs. The reason is the same as in changed_ref 7129 */ 7130 static int changed_xattr(struct send_ctx *sctx, 7131 enum btrfs_compare_tree_result result) 7132 { 7133 int ret = 0; 7134 7135 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7136 inconsistent_snapshot_error(sctx, result, "xattr"); 7137 return -EIO; 7138 } 7139 7140 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7141 if (result == BTRFS_COMPARE_TREE_NEW) 7142 ret = process_new_xattr(sctx); 7143 else if (result == BTRFS_COMPARE_TREE_DELETED) 7144 ret = process_deleted_xattr(sctx); 7145 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7146 ret = process_changed_xattr(sctx); 7147 } 7148 7149 return ret; 7150 } 7151 7152 /* 7153 * Process new/deleted/changed extents. We skip processing in the 7154 * cur_inode_new_gen case because changed_inode did already initiate processing 7155 * of extents. The reason is the same as in changed_ref 7156 */ 7157 static int changed_extent(struct send_ctx *sctx, 7158 enum btrfs_compare_tree_result result) 7159 { 7160 int ret = 0; 7161 7162 /* 7163 * We have found an extent item that changed without the inode item 7164 * having changed. This can happen either after relocation (where the 7165 * disk_bytenr of an extent item is replaced at 7166 * relocation.c:replace_file_extents()) or after deduplication into a 7167 * file in both the parent and send snapshots (where an extent item can 7168 * get modified or replaced with a new one). Note that deduplication 7169 * updates the inode item, but it only changes the iversion (sequence 7170 * field in the inode item) of the inode, so if a file is deduplicated 7171 * the same amount of times in both the parent and send snapshots, its 7172 * iversion becomes the same in both snapshots, whence the inode item is 7173 * the same on both snapshots. 7174 */ 7175 if (sctx->cur_ino != sctx->cmp_key->objectid) 7176 return 0; 7177 7178 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7179 if (result != BTRFS_COMPARE_TREE_DELETED) 7180 ret = process_extent(sctx, sctx->left_path, 7181 sctx->cmp_key); 7182 } 7183 7184 return ret; 7185 } 7186 7187 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7188 { 7189 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7190 if (result == BTRFS_COMPARE_TREE_NEW) 7191 sctx->cur_inode_needs_verity = true; 7192 } 7193 return 0; 7194 } 7195 7196 static int dir_changed(struct send_ctx *sctx, u64 dir) 7197 { 7198 u64 orig_gen, new_gen; 7199 int ret; 7200 7201 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7202 if (ret) 7203 return ret; 7204 7205 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7206 if (ret) 7207 return ret; 7208 7209 return (orig_gen != new_gen) ? 1 : 0; 7210 } 7211 7212 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7213 struct btrfs_key *key) 7214 { 7215 struct btrfs_inode_extref *extref; 7216 struct extent_buffer *leaf; 7217 u64 dirid = 0, last_dirid = 0; 7218 unsigned long ptr; 7219 u32 item_size; 7220 u32 cur_offset = 0; 7221 int ref_name_len; 7222 int ret = 0; 7223 7224 /* Easy case, just check this one dirid */ 7225 if (key->type == BTRFS_INODE_REF_KEY) { 7226 dirid = key->offset; 7227 7228 ret = dir_changed(sctx, dirid); 7229 goto out; 7230 } 7231 7232 leaf = path->nodes[0]; 7233 item_size = btrfs_item_size(leaf, path->slots[0]); 7234 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7235 while (cur_offset < item_size) { 7236 extref = (struct btrfs_inode_extref *)(ptr + 7237 cur_offset); 7238 dirid = btrfs_inode_extref_parent(leaf, extref); 7239 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7240 cur_offset += ref_name_len + sizeof(*extref); 7241 if (dirid == last_dirid) 7242 continue; 7243 ret = dir_changed(sctx, dirid); 7244 if (ret) 7245 break; 7246 last_dirid = dirid; 7247 } 7248 out: 7249 return ret; 7250 } 7251 7252 /* 7253 * Updates compare related fields in sctx and simply forwards to the actual 7254 * changed_xxx functions. 7255 */ 7256 static int changed_cb(struct btrfs_path *left_path, 7257 struct btrfs_path *right_path, 7258 struct btrfs_key *key, 7259 enum btrfs_compare_tree_result result, 7260 struct send_ctx *sctx) 7261 { 7262 int ret = 0; 7263 7264 /* 7265 * We can not hold the commit root semaphore here. This is because in 7266 * the case of sending and receiving to the same filesystem, using a 7267 * pipe, could result in a deadlock: 7268 * 7269 * 1) The task running send blocks on the pipe because it's full; 7270 * 7271 * 2) The task running receive, which is the only consumer of the pipe, 7272 * is waiting for a transaction commit (for example due to a space 7273 * reservation when doing a write or triggering a transaction commit 7274 * when creating a subvolume); 7275 * 7276 * 3) The transaction is waiting to write lock the commit root semaphore, 7277 * but can not acquire it since it's being held at 1). 7278 * 7279 * Down this call chain we write to the pipe through kernel_write(). 7280 * The same type of problem can also happen when sending to a file that 7281 * is stored in the same filesystem - when reserving space for a write 7282 * into the file, we can trigger a transaction commit. 7283 * 7284 * Our caller has supplied us with clones of leaves from the send and 7285 * parent roots, so we're safe here from a concurrent relocation and 7286 * further reallocation of metadata extents while we are here. Below we 7287 * also assert that the leaves are clones. 7288 */ 7289 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7290 7291 /* 7292 * We always have a send root, so left_path is never NULL. We will not 7293 * have a leaf when we have reached the end of the send root but have 7294 * not yet reached the end of the parent root. 7295 */ 7296 if (left_path->nodes[0]) 7297 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7298 &left_path->nodes[0]->bflags)); 7299 /* 7300 * When doing a full send we don't have a parent root, so right_path is 7301 * NULL. When doing an incremental send, we may have reached the end of 7302 * the parent root already, so we don't have a leaf at right_path. 7303 */ 7304 if (right_path && right_path->nodes[0]) 7305 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7306 &right_path->nodes[0]->bflags)); 7307 7308 if (result == BTRFS_COMPARE_TREE_SAME) { 7309 if (key->type == BTRFS_INODE_REF_KEY || 7310 key->type == BTRFS_INODE_EXTREF_KEY) { 7311 ret = compare_refs(sctx, left_path, key); 7312 if (!ret) 7313 return 0; 7314 if (ret < 0) 7315 return ret; 7316 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7317 return maybe_send_hole(sctx, left_path, key); 7318 } else { 7319 return 0; 7320 } 7321 result = BTRFS_COMPARE_TREE_CHANGED; 7322 ret = 0; 7323 } 7324 7325 sctx->left_path = left_path; 7326 sctx->right_path = right_path; 7327 sctx->cmp_key = key; 7328 7329 ret = finish_inode_if_needed(sctx, 0); 7330 if (ret < 0) 7331 goto out; 7332 7333 /* Ignore non-FS objects */ 7334 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7335 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7336 goto out; 7337 7338 if (key->type == BTRFS_INODE_ITEM_KEY) { 7339 ret = changed_inode(sctx, result); 7340 } else if (!sctx->ignore_cur_inode) { 7341 if (key->type == BTRFS_INODE_REF_KEY || 7342 key->type == BTRFS_INODE_EXTREF_KEY) 7343 ret = changed_ref(sctx, result); 7344 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7345 ret = changed_xattr(sctx, result); 7346 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7347 ret = changed_extent(sctx, result); 7348 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7349 key->offset == 0) 7350 ret = changed_verity(sctx, result); 7351 } 7352 7353 out: 7354 return ret; 7355 } 7356 7357 static int search_key_again(const struct send_ctx *sctx, 7358 struct btrfs_root *root, 7359 struct btrfs_path *path, 7360 const struct btrfs_key *key) 7361 { 7362 int ret; 7363 7364 if (!path->need_commit_sem) 7365 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7366 7367 /* 7368 * Roots used for send operations are readonly and no one can add, 7369 * update or remove keys from them, so we should be able to find our 7370 * key again. The only exception is deduplication, which can operate on 7371 * readonly roots and add, update or remove keys to/from them - but at 7372 * the moment we don't allow it to run in parallel with send. 7373 */ 7374 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7375 ASSERT(ret <= 0); 7376 if (ret > 0) { 7377 btrfs_print_tree(path->nodes[path->lowest_level], false); 7378 btrfs_err(root->fs_info, 7379 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7380 key->objectid, key->type, key->offset, 7381 (root == sctx->parent_root ? "parent" : "send"), 7382 btrfs_root_id(root), path->lowest_level, 7383 path->slots[path->lowest_level]); 7384 return -EUCLEAN; 7385 } 7386 7387 return ret; 7388 } 7389 7390 static int full_send_tree(struct send_ctx *sctx) 7391 { 7392 int ret; 7393 struct btrfs_root *send_root = sctx->send_root; 7394 struct btrfs_key key; 7395 struct btrfs_fs_info *fs_info = send_root->fs_info; 7396 struct btrfs_path *path; 7397 7398 path = alloc_path_for_send(); 7399 if (!path) 7400 return -ENOMEM; 7401 path->reada = READA_FORWARD_ALWAYS; 7402 7403 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7404 key.type = BTRFS_INODE_ITEM_KEY; 7405 key.offset = 0; 7406 7407 down_read(&fs_info->commit_root_sem); 7408 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7409 up_read(&fs_info->commit_root_sem); 7410 7411 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7412 if (ret < 0) 7413 goto out; 7414 if (ret) 7415 goto out_finish; 7416 7417 while (1) { 7418 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7419 7420 ret = changed_cb(path, NULL, &key, 7421 BTRFS_COMPARE_TREE_NEW, sctx); 7422 if (ret < 0) 7423 goto out; 7424 7425 down_read(&fs_info->commit_root_sem); 7426 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7427 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7428 up_read(&fs_info->commit_root_sem); 7429 /* 7430 * A transaction used for relocating a block group was 7431 * committed or is about to finish its commit. Release 7432 * our path (leaf) and restart the search, so that we 7433 * avoid operating on any file extent items that are 7434 * stale, with a disk_bytenr that reflects a pre 7435 * relocation value. This way we avoid as much as 7436 * possible to fallback to regular writes when checking 7437 * if we can clone file ranges. 7438 */ 7439 btrfs_release_path(path); 7440 ret = search_key_again(sctx, send_root, path, &key); 7441 if (ret < 0) 7442 goto out; 7443 } else { 7444 up_read(&fs_info->commit_root_sem); 7445 } 7446 7447 ret = btrfs_next_item(send_root, path); 7448 if (ret < 0) 7449 goto out; 7450 if (ret) { 7451 ret = 0; 7452 break; 7453 } 7454 } 7455 7456 out_finish: 7457 ret = finish_inode_if_needed(sctx, 1); 7458 7459 out: 7460 btrfs_free_path(path); 7461 return ret; 7462 } 7463 7464 static int replace_node_with_clone(struct btrfs_path *path, int level) 7465 { 7466 struct extent_buffer *clone; 7467 7468 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7469 if (!clone) 7470 return -ENOMEM; 7471 7472 free_extent_buffer(path->nodes[level]); 7473 path->nodes[level] = clone; 7474 7475 return 0; 7476 } 7477 7478 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7479 { 7480 struct extent_buffer *eb; 7481 struct extent_buffer *parent = path->nodes[*level]; 7482 int slot = path->slots[*level]; 7483 const int nritems = btrfs_header_nritems(parent); 7484 u64 reada_max; 7485 u64 reada_done = 0; 7486 7487 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7488 ASSERT(*level != 0); 7489 7490 eb = btrfs_read_node_slot(parent, slot); 7491 if (IS_ERR(eb)) 7492 return PTR_ERR(eb); 7493 7494 /* 7495 * Trigger readahead for the next leaves we will process, so that it is 7496 * very likely that when we need them they are already in memory and we 7497 * will not block on disk IO. For nodes we only do readahead for one, 7498 * since the time window between processing nodes is typically larger. 7499 */ 7500 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7501 7502 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7503 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7504 btrfs_readahead_node_child(parent, slot); 7505 reada_done += eb->fs_info->nodesize; 7506 } 7507 } 7508 7509 path->nodes[*level - 1] = eb; 7510 path->slots[*level - 1] = 0; 7511 (*level)--; 7512 7513 if (*level == 0) 7514 return replace_node_with_clone(path, 0); 7515 7516 return 0; 7517 } 7518 7519 static int tree_move_next_or_upnext(struct btrfs_path *path, 7520 int *level, int root_level) 7521 { 7522 int ret = 0; 7523 int nritems; 7524 nritems = btrfs_header_nritems(path->nodes[*level]); 7525 7526 path->slots[*level]++; 7527 7528 while (path->slots[*level] >= nritems) { 7529 if (*level == root_level) { 7530 path->slots[*level] = nritems - 1; 7531 return -1; 7532 } 7533 7534 /* move upnext */ 7535 path->slots[*level] = 0; 7536 free_extent_buffer(path->nodes[*level]); 7537 path->nodes[*level] = NULL; 7538 (*level)++; 7539 path->slots[*level]++; 7540 7541 nritems = btrfs_header_nritems(path->nodes[*level]); 7542 ret = 1; 7543 } 7544 return ret; 7545 } 7546 7547 /* 7548 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7549 * or down. 7550 */ 7551 static int tree_advance(struct btrfs_path *path, 7552 int *level, int root_level, 7553 int allow_down, 7554 struct btrfs_key *key, 7555 u64 reada_min_gen) 7556 { 7557 int ret; 7558 7559 if (*level == 0 || !allow_down) { 7560 ret = tree_move_next_or_upnext(path, level, root_level); 7561 } else { 7562 ret = tree_move_down(path, level, reada_min_gen); 7563 } 7564 7565 /* 7566 * Even if we have reached the end of a tree, ret is -1, update the key 7567 * anyway, so that in case we need to restart due to a block group 7568 * relocation, we can assert that the last key of the root node still 7569 * exists in the tree. 7570 */ 7571 if (*level == 0) 7572 btrfs_item_key_to_cpu(path->nodes[*level], key, 7573 path->slots[*level]); 7574 else 7575 btrfs_node_key_to_cpu(path->nodes[*level], key, 7576 path->slots[*level]); 7577 7578 return ret; 7579 } 7580 7581 static int tree_compare_item(struct btrfs_path *left_path, 7582 struct btrfs_path *right_path, 7583 char *tmp_buf) 7584 { 7585 int cmp; 7586 int len1, len2; 7587 unsigned long off1, off2; 7588 7589 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7590 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7591 if (len1 != len2) 7592 return 1; 7593 7594 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7595 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7596 right_path->slots[0]); 7597 7598 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7599 7600 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7601 if (cmp) 7602 return 1; 7603 return 0; 7604 } 7605 7606 /* 7607 * A transaction used for relocating a block group was committed or is about to 7608 * finish its commit. Release our paths and restart the search, so that we are 7609 * not using stale extent buffers: 7610 * 7611 * 1) For levels > 0, we are only holding references of extent buffers, without 7612 * any locks on them, which does not prevent them from having been relocated 7613 * and reallocated after the last time we released the commit root semaphore. 7614 * The exception are the root nodes, for which we always have a clone, see 7615 * the comment at btrfs_compare_trees(); 7616 * 7617 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7618 * we are safe from the concurrent relocation and reallocation. However they 7619 * can have file extent items with a pre relocation disk_bytenr value, so we 7620 * restart the start from the current commit roots and clone the new leaves so 7621 * that we get the post relocation disk_bytenr values. Not doing so, could 7622 * make us clone the wrong data in case there are new extents using the old 7623 * disk_bytenr that happen to be shared. 7624 */ 7625 static int restart_after_relocation(struct btrfs_path *left_path, 7626 struct btrfs_path *right_path, 7627 const struct btrfs_key *left_key, 7628 const struct btrfs_key *right_key, 7629 int left_level, 7630 int right_level, 7631 const struct send_ctx *sctx) 7632 { 7633 int root_level; 7634 int ret; 7635 7636 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7637 7638 btrfs_release_path(left_path); 7639 btrfs_release_path(right_path); 7640 7641 /* 7642 * Since keys can not be added or removed to/from our roots because they 7643 * are readonly and we do not allow deduplication to run in parallel 7644 * (which can add, remove or change keys), the layout of the trees should 7645 * not change. 7646 */ 7647 left_path->lowest_level = left_level; 7648 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7649 if (ret < 0) 7650 return ret; 7651 7652 right_path->lowest_level = right_level; 7653 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7654 if (ret < 0) 7655 return ret; 7656 7657 /* 7658 * If the lowest level nodes are leaves, clone them so that they can be 7659 * safely used by changed_cb() while not under the protection of the 7660 * commit root semaphore, even if relocation and reallocation happens in 7661 * parallel. 7662 */ 7663 if (left_level == 0) { 7664 ret = replace_node_with_clone(left_path, 0); 7665 if (ret < 0) 7666 return ret; 7667 } 7668 7669 if (right_level == 0) { 7670 ret = replace_node_with_clone(right_path, 0); 7671 if (ret < 0) 7672 return ret; 7673 } 7674 7675 /* 7676 * Now clone the root nodes (unless they happen to be the leaves we have 7677 * already cloned). This is to protect against concurrent snapshotting of 7678 * the send and parent roots (see the comment at btrfs_compare_trees()). 7679 */ 7680 root_level = btrfs_header_level(sctx->send_root->commit_root); 7681 if (root_level > 0) { 7682 ret = replace_node_with_clone(left_path, root_level); 7683 if (ret < 0) 7684 return ret; 7685 } 7686 7687 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7688 if (root_level > 0) { 7689 ret = replace_node_with_clone(right_path, root_level); 7690 if (ret < 0) 7691 return ret; 7692 } 7693 7694 return 0; 7695 } 7696 7697 /* 7698 * This function compares two trees and calls the provided callback for 7699 * every changed/new/deleted item it finds. 7700 * If shared tree blocks are encountered, whole subtrees are skipped, making 7701 * the compare pretty fast on snapshotted subvolumes. 7702 * 7703 * This currently works on commit roots only. As commit roots are read only, 7704 * we don't do any locking. The commit roots are protected with transactions. 7705 * Transactions are ended and rejoined when a commit is tried in between. 7706 * 7707 * This function checks for modifications done to the trees while comparing. 7708 * If it detects a change, it aborts immediately. 7709 */ 7710 static int btrfs_compare_trees(struct btrfs_root *left_root, 7711 struct btrfs_root *right_root, struct send_ctx *sctx) 7712 { 7713 struct btrfs_fs_info *fs_info = left_root->fs_info; 7714 int ret; 7715 int cmp; 7716 struct btrfs_path *left_path = NULL; 7717 struct btrfs_path *right_path = NULL; 7718 struct btrfs_key left_key; 7719 struct btrfs_key right_key; 7720 char *tmp_buf = NULL; 7721 int left_root_level; 7722 int right_root_level; 7723 int left_level; 7724 int right_level; 7725 int left_end_reached = 0; 7726 int right_end_reached = 0; 7727 int advance_left = 0; 7728 int advance_right = 0; 7729 u64 left_blockptr; 7730 u64 right_blockptr; 7731 u64 left_gen; 7732 u64 right_gen; 7733 u64 reada_min_gen; 7734 7735 left_path = btrfs_alloc_path(); 7736 if (!left_path) { 7737 ret = -ENOMEM; 7738 goto out; 7739 } 7740 right_path = btrfs_alloc_path(); 7741 if (!right_path) { 7742 ret = -ENOMEM; 7743 goto out; 7744 } 7745 7746 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7747 if (!tmp_buf) { 7748 ret = -ENOMEM; 7749 goto out; 7750 } 7751 7752 left_path->search_commit_root = 1; 7753 left_path->skip_locking = 1; 7754 right_path->search_commit_root = 1; 7755 right_path->skip_locking = 1; 7756 7757 /* 7758 * Strategy: Go to the first items of both trees. Then do 7759 * 7760 * If both trees are at level 0 7761 * Compare keys of current items 7762 * If left < right treat left item as new, advance left tree 7763 * and repeat 7764 * If left > right treat right item as deleted, advance right tree 7765 * and repeat 7766 * If left == right do deep compare of items, treat as changed if 7767 * needed, advance both trees and repeat 7768 * If both trees are at the same level but not at level 0 7769 * Compare keys of current nodes/leafs 7770 * If left < right advance left tree and repeat 7771 * If left > right advance right tree and repeat 7772 * If left == right compare blockptrs of the next nodes/leafs 7773 * If they match advance both trees but stay at the same level 7774 * and repeat 7775 * If they don't match advance both trees while allowing to go 7776 * deeper and repeat 7777 * If tree levels are different 7778 * Advance the tree that needs it and repeat 7779 * 7780 * Advancing a tree means: 7781 * If we are at level 0, try to go to the next slot. If that's not 7782 * possible, go one level up and repeat. Stop when we found a level 7783 * where we could go to the next slot. We may at this point be on a 7784 * node or a leaf. 7785 * 7786 * If we are not at level 0 and not on shared tree blocks, go one 7787 * level deeper. 7788 * 7789 * If we are not at level 0 and on shared tree blocks, go one slot to 7790 * the right if possible or go up and right. 7791 */ 7792 7793 down_read(&fs_info->commit_root_sem); 7794 left_level = btrfs_header_level(left_root->commit_root); 7795 left_root_level = left_level; 7796 /* 7797 * We clone the root node of the send and parent roots to prevent races 7798 * with snapshot creation of these roots. Snapshot creation COWs the 7799 * root node of a tree, so after the transaction is committed the old 7800 * extent can be reallocated while this send operation is still ongoing. 7801 * So we clone them, under the commit root semaphore, to be race free. 7802 */ 7803 left_path->nodes[left_level] = 7804 btrfs_clone_extent_buffer(left_root->commit_root); 7805 if (!left_path->nodes[left_level]) { 7806 ret = -ENOMEM; 7807 goto out_unlock; 7808 } 7809 7810 right_level = btrfs_header_level(right_root->commit_root); 7811 right_root_level = right_level; 7812 right_path->nodes[right_level] = 7813 btrfs_clone_extent_buffer(right_root->commit_root); 7814 if (!right_path->nodes[right_level]) { 7815 ret = -ENOMEM; 7816 goto out_unlock; 7817 } 7818 /* 7819 * Our right root is the parent root, while the left root is the "send" 7820 * root. We know that all new nodes/leaves in the left root must have 7821 * a generation greater than the right root's generation, so we trigger 7822 * readahead for those nodes and leaves of the left root, as we know we 7823 * will need to read them at some point. 7824 */ 7825 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7826 7827 if (left_level == 0) 7828 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7829 &left_key, left_path->slots[left_level]); 7830 else 7831 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7832 &left_key, left_path->slots[left_level]); 7833 if (right_level == 0) 7834 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7835 &right_key, right_path->slots[right_level]); 7836 else 7837 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7838 &right_key, right_path->slots[right_level]); 7839 7840 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7841 7842 while (1) { 7843 if (need_resched() || 7844 rwsem_is_contended(&fs_info->commit_root_sem)) { 7845 up_read(&fs_info->commit_root_sem); 7846 cond_resched(); 7847 down_read(&fs_info->commit_root_sem); 7848 } 7849 7850 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7851 ret = restart_after_relocation(left_path, right_path, 7852 &left_key, &right_key, 7853 left_level, right_level, 7854 sctx); 7855 if (ret < 0) 7856 goto out_unlock; 7857 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7858 } 7859 7860 if (advance_left && !left_end_reached) { 7861 ret = tree_advance(left_path, &left_level, 7862 left_root_level, 7863 advance_left != ADVANCE_ONLY_NEXT, 7864 &left_key, reada_min_gen); 7865 if (ret == -1) 7866 left_end_reached = ADVANCE; 7867 else if (ret < 0) 7868 goto out_unlock; 7869 advance_left = 0; 7870 } 7871 if (advance_right && !right_end_reached) { 7872 ret = tree_advance(right_path, &right_level, 7873 right_root_level, 7874 advance_right != ADVANCE_ONLY_NEXT, 7875 &right_key, reada_min_gen); 7876 if (ret == -1) 7877 right_end_reached = ADVANCE; 7878 else if (ret < 0) 7879 goto out_unlock; 7880 advance_right = 0; 7881 } 7882 7883 if (left_end_reached && right_end_reached) { 7884 ret = 0; 7885 goto out_unlock; 7886 } else if (left_end_reached) { 7887 if (right_level == 0) { 7888 up_read(&fs_info->commit_root_sem); 7889 ret = changed_cb(left_path, right_path, 7890 &right_key, 7891 BTRFS_COMPARE_TREE_DELETED, 7892 sctx); 7893 if (ret < 0) 7894 goto out; 7895 down_read(&fs_info->commit_root_sem); 7896 } 7897 advance_right = ADVANCE; 7898 continue; 7899 } else if (right_end_reached) { 7900 if (left_level == 0) { 7901 up_read(&fs_info->commit_root_sem); 7902 ret = changed_cb(left_path, right_path, 7903 &left_key, 7904 BTRFS_COMPARE_TREE_NEW, 7905 sctx); 7906 if (ret < 0) 7907 goto out; 7908 down_read(&fs_info->commit_root_sem); 7909 } 7910 advance_left = ADVANCE; 7911 continue; 7912 } 7913 7914 if (left_level == 0 && right_level == 0) { 7915 up_read(&fs_info->commit_root_sem); 7916 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7917 if (cmp < 0) { 7918 ret = changed_cb(left_path, right_path, 7919 &left_key, 7920 BTRFS_COMPARE_TREE_NEW, 7921 sctx); 7922 advance_left = ADVANCE; 7923 } else if (cmp > 0) { 7924 ret = changed_cb(left_path, right_path, 7925 &right_key, 7926 BTRFS_COMPARE_TREE_DELETED, 7927 sctx); 7928 advance_right = ADVANCE; 7929 } else { 7930 enum btrfs_compare_tree_result result; 7931 7932 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7933 ret = tree_compare_item(left_path, right_path, 7934 tmp_buf); 7935 if (ret) 7936 result = BTRFS_COMPARE_TREE_CHANGED; 7937 else 7938 result = BTRFS_COMPARE_TREE_SAME; 7939 ret = changed_cb(left_path, right_path, 7940 &left_key, result, sctx); 7941 advance_left = ADVANCE; 7942 advance_right = ADVANCE; 7943 } 7944 7945 if (ret < 0) 7946 goto out; 7947 down_read(&fs_info->commit_root_sem); 7948 } else if (left_level == right_level) { 7949 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7950 if (cmp < 0) { 7951 advance_left = ADVANCE; 7952 } else if (cmp > 0) { 7953 advance_right = ADVANCE; 7954 } else { 7955 left_blockptr = btrfs_node_blockptr( 7956 left_path->nodes[left_level], 7957 left_path->slots[left_level]); 7958 right_blockptr = btrfs_node_blockptr( 7959 right_path->nodes[right_level], 7960 right_path->slots[right_level]); 7961 left_gen = btrfs_node_ptr_generation( 7962 left_path->nodes[left_level], 7963 left_path->slots[left_level]); 7964 right_gen = btrfs_node_ptr_generation( 7965 right_path->nodes[right_level], 7966 right_path->slots[right_level]); 7967 if (left_blockptr == right_blockptr && 7968 left_gen == right_gen) { 7969 /* 7970 * As we're on a shared block, don't 7971 * allow to go deeper. 7972 */ 7973 advance_left = ADVANCE_ONLY_NEXT; 7974 advance_right = ADVANCE_ONLY_NEXT; 7975 } else { 7976 advance_left = ADVANCE; 7977 advance_right = ADVANCE; 7978 } 7979 } 7980 } else if (left_level < right_level) { 7981 advance_right = ADVANCE; 7982 } else { 7983 advance_left = ADVANCE; 7984 } 7985 } 7986 7987 out_unlock: 7988 up_read(&fs_info->commit_root_sem); 7989 out: 7990 btrfs_free_path(left_path); 7991 btrfs_free_path(right_path); 7992 kvfree(tmp_buf); 7993 return ret; 7994 } 7995 7996 static int send_subvol(struct send_ctx *sctx) 7997 { 7998 int ret; 7999 8000 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 8001 ret = send_header(sctx); 8002 if (ret < 0) 8003 goto out; 8004 } 8005 8006 ret = send_subvol_begin(sctx); 8007 if (ret < 0) 8008 goto out; 8009 8010 if (sctx->parent_root) { 8011 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 8012 if (ret < 0) 8013 goto out; 8014 ret = finish_inode_if_needed(sctx, 1); 8015 if (ret < 0) 8016 goto out; 8017 } else { 8018 ret = full_send_tree(sctx); 8019 if (ret < 0) 8020 goto out; 8021 } 8022 8023 out: 8024 free_recorded_refs(sctx); 8025 return ret; 8026 } 8027 8028 /* 8029 * If orphan cleanup did remove any orphans from a root, it means the tree 8030 * was modified and therefore the commit root is not the same as the current 8031 * root anymore. This is a problem, because send uses the commit root and 8032 * therefore can see inode items that don't exist in the current root anymore, 8033 * and for example make calls to btrfs_iget, which will do tree lookups based 8034 * on the current root and not on the commit root. Those lookups will fail, 8035 * returning a -ESTALE error, and making send fail with that error. So make 8036 * sure a send does not see any orphans we have just removed, and that it will 8037 * see the same inodes regardless of whether a transaction commit happened 8038 * before it started (meaning that the commit root will be the same as the 8039 * current root) or not. 8040 */ 8041 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 8042 { 8043 struct btrfs_root *root = sctx->parent_root; 8044 8045 if (root && root->node != root->commit_root) 8046 return btrfs_commit_current_transaction(root); 8047 8048 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 8049 root = sctx->clone_roots[i].root; 8050 if (root->node != root->commit_root) 8051 return btrfs_commit_current_transaction(root); 8052 } 8053 8054 return 0; 8055 } 8056 8057 /* 8058 * Make sure any existing dellaloc is flushed for any root used by a send 8059 * operation so that we do not miss any data and we do not race with writeback 8060 * finishing and changing a tree while send is using the tree. This could 8061 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8062 * a send operation then uses the subvolume. 8063 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8064 */ 8065 static int flush_delalloc_roots(struct send_ctx *sctx) 8066 { 8067 struct btrfs_root *root = sctx->parent_root; 8068 int ret; 8069 int i; 8070 8071 if (root) { 8072 ret = btrfs_start_delalloc_snapshot(root, false); 8073 if (ret) 8074 return ret; 8075 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8076 } 8077 8078 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8079 root = sctx->clone_roots[i].root; 8080 ret = btrfs_start_delalloc_snapshot(root, false); 8081 if (ret) 8082 return ret; 8083 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8084 } 8085 8086 return 0; 8087 } 8088 8089 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8090 { 8091 spin_lock(&root->root_item_lock); 8092 root->send_in_progress--; 8093 /* 8094 * Not much left to do, we don't know why it's unbalanced and 8095 * can't blindly reset it to 0. 8096 */ 8097 if (root->send_in_progress < 0) 8098 btrfs_err(root->fs_info, 8099 "send_in_progress unbalanced %d root %llu", 8100 root->send_in_progress, btrfs_root_id(root)); 8101 spin_unlock(&root->root_item_lock); 8102 } 8103 8104 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8105 { 8106 btrfs_warn_rl(root->fs_info, 8107 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8108 btrfs_root_id(root), root->dedupe_in_progress); 8109 } 8110 8111 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg) 8112 { 8113 int ret = 0; 8114 struct btrfs_root *send_root = inode->root; 8115 struct btrfs_fs_info *fs_info = send_root->fs_info; 8116 struct btrfs_root *clone_root; 8117 struct send_ctx *sctx = NULL; 8118 u32 i; 8119 u64 *clone_sources_tmp = NULL; 8120 int clone_sources_to_rollback = 0; 8121 size_t alloc_size; 8122 int sort_clone_roots = 0; 8123 struct btrfs_lru_cache_entry *entry; 8124 struct btrfs_lru_cache_entry *tmp; 8125 8126 if (!capable(CAP_SYS_ADMIN)) 8127 return -EPERM; 8128 8129 /* 8130 * The subvolume must remain read-only during send, protect against 8131 * making it RW. This also protects against deletion. 8132 */ 8133 spin_lock(&send_root->root_item_lock); 8134 /* 8135 * Unlikely but possible, if the subvolume is marked for deletion but 8136 * is slow to remove the directory entry, send can still be started. 8137 */ 8138 if (btrfs_root_dead(send_root)) { 8139 spin_unlock(&send_root->root_item_lock); 8140 return -EPERM; 8141 } 8142 /* Userspace tools do the checks and warn the user if it's not RO. */ 8143 if (!btrfs_root_readonly(send_root)) { 8144 spin_unlock(&send_root->root_item_lock); 8145 return -EPERM; 8146 } 8147 if (send_root->dedupe_in_progress) { 8148 dedupe_in_progress_warn(send_root); 8149 spin_unlock(&send_root->root_item_lock); 8150 return -EAGAIN; 8151 } 8152 send_root->send_in_progress++; 8153 spin_unlock(&send_root->root_item_lock); 8154 8155 /* 8156 * Check that we don't overflow at later allocations, we request 8157 * clone_sources_count + 1 items, and compare to unsigned long inside 8158 * access_ok. Also set an upper limit for allocation size so this can't 8159 * easily exhaust memory. Max number of clone sources is about 200K. 8160 */ 8161 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8162 ret = -EINVAL; 8163 goto out; 8164 } 8165 8166 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8167 ret = -EOPNOTSUPP; 8168 goto out; 8169 } 8170 8171 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8172 if (!sctx) { 8173 ret = -ENOMEM; 8174 goto out; 8175 } 8176 8177 INIT_LIST_HEAD(&sctx->new_refs); 8178 INIT_LIST_HEAD(&sctx->deleted_refs); 8179 8180 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8181 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8182 btrfs_lru_cache_init(&sctx->dir_created_cache, 8183 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8184 /* 8185 * This cache is periodically trimmed to a fixed size elsewhere, see 8186 * cache_dir_utimes() and trim_dir_utimes_cache(). 8187 */ 8188 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8189 8190 sctx->pending_dir_moves = RB_ROOT; 8191 sctx->waiting_dir_moves = RB_ROOT; 8192 sctx->orphan_dirs = RB_ROOT; 8193 sctx->rbtree_new_refs = RB_ROOT; 8194 sctx->rbtree_deleted_refs = RB_ROOT; 8195 8196 sctx->flags = arg->flags; 8197 8198 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8199 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8200 ret = -EPROTO; 8201 goto out; 8202 } 8203 /* Zero means "use the highest version" */ 8204 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8205 } else { 8206 sctx->proto = 1; 8207 } 8208 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8209 ret = -EINVAL; 8210 goto out; 8211 } 8212 8213 sctx->send_filp = fget(arg->send_fd); 8214 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8215 ret = -EBADF; 8216 goto out; 8217 } 8218 8219 sctx->send_root = send_root; 8220 sctx->clone_roots_cnt = arg->clone_sources_count; 8221 8222 if (sctx->proto >= 2) { 8223 u32 send_buf_num_pages; 8224 8225 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8226 sctx->send_buf = vmalloc(sctx->send_max_size); 8227 if (!sctx->send_buf) { 8228 ret = -ENOMEM; 8229 goto out; 8230 } 8231 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8232 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8233 sizeof(*sctx->send_buf_pages), 8234 GFP_KERNEL); 8235 if (!sctx->send_buf_pages) { 8236 ret = -ENOMEM; 8237 goto out; 8238 } 8239 for (i = 0; i < send_buf_num_pages; i++) { 8240 sctx->send_buf_pages[i] = 8241 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8242 } 8243 } else { 8244 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8245 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8246 } 8247 if (!sctx->send_buf) { 8248 ret = -ENOMEM; 8249 goto out; 8250 } 8251 8252 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8253 sizeof(*sctx->clone_roots), 8254 GFP_KERNEL); 8255 if (!sctx->clone_roots) { 8256 ret = -ENOMEM; 8257 goto out; 8258 } 8259 8260 alloc_size = array_size(sizeof(*arg->clone_sources), 8261 arg->clone_sources_count); 8262 8263 if (arg->clone_sources_count) { 8264 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8265 if (!clone_sources_tmp) { 8266 ret = -ENOMEM; 8267 goto out; 8268 } 8269 8270 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8271 alloc_size); 8272 if (ret) { 8273 ret = -EFAULT; 8274 goto out; 8275 } 8276 8277 for (i = 0; i < arg->clone_sources_count; i++) { 8278 clone_root = btrfs_get_fs_root(fs_info, 8279 clone_sources_tmp[i], true); 8280 if (IS_ERR(clone_root)) { 8281 ret = PTR_ERR(clone_root); 8282 goto out; 8283 } 8284 spin_lock(&clone_root->root_item_lock); 8285 if (!btrfs_root_readonly(clone_root) || 8286 btrfs_root_dead(clone_root)) { 8287 spin_unlock(&clone_root->root_item_lock); 8288 btrfs_put_root(clone_root); 8289 ret = -EPERM; 8290 goto out; 8291 } 8292 if (clone_root->dedupe_in_progress) { 8293 dedupe_in_progress_warn(clone_root); 8294 spin_unlock(&clone_root->root_item_lock); 8295 btrfs_put_root(clone_root); 8296 ret = -EAGAIN; 8297 goto out; 8298 } 8299 clone_root->send_in_progress++; 8300 spin_unlock(&clone_root->root_item_lock); 8301 8302 sctx->clone_roots[i].root = clone_root; 8303 clone_sources_to_rollback = i + 1; 8304 } 8305 kvfree(clone_sources_tmp); 8306 clone_sources_tmp = NULL; 8307 } 8308 8309 if (arg->parent_root) { 8310 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8311 true); 8312 if (IS_ERR(sctx->parent_root)) { 8313 ret = PTR_ERR(sctx->parent_root); 8314 goto out; 8315 } 8316 8317 spin_lock(&sctx->parent_root->root_item_lock); 8318 sctx->parent_root->send_in_progress++; 8319 if (!btrfs_root_readonly(sctx->parent_root) || 8320 btrfs_root_dead(sctx->parent_root)) { 8321 spin_unlock(&sctx->parent_root->root_item_lock); 8322 ret = -EPERM; 8323 goto out; 8324 } 8325 if (sctx->parent_root->dedupe_in_progress) { 8326 dedupe_in_progress_warn(sctx->parent_root); 8327 spin_unlock(&sctx->parent_root->root_item_lock); 8328 ret = -EAGAIN; 8329 goto out; 8330 } 8331 spin_unlock(&sctx->parent_root->root_item_lock); 8332 } 8333 8334 /* 8335 * Clones from send_root are allowed, but only if the clone source 8336 * is behind the current send position. This is checked while searching 8337 * for possible clone sources. 8338 */ 8339 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8340 btrfs_grab_root(sctx->send_root); 8341 8342 /* We do a bsearch later */ 8343 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8344 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8345 NULL); 8346 sort_clone_roots = 1; 8347 8348 ret = flush_delalloc_roots(sctx); 8349 if (ret) 8350 goto out; 8351 8352 ret = ensure_commit_roots_uptodate(sctx); 8353 if (ret) 8354 goto out; 8355 8356 ret = send_subvol(sctx); 8357 if (ret < 0) 8358 goto out; 8359 8360 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8361 ret = send_utimes(sctx, entry->key, entry->gen); 8362 if (ret < 0) 8363 goto out; 8364 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8365 } 8366 8367 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8368 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8369 if (ret < 0) 8370 goto out; 8371 ret = send_cmd(sctx); 8372 if (ret < 0) 8373 goto out; 8374 } 8375 8376 out: 8377 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8378 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8379 struct rb_node *n; 8380 struct pending_dir_move *pm; 8381 8382 n = rb_first(&sctx->pending_dir_moves); 8383 pm = rb_entry(n, struct pending_dir_move, node); 8384 while (!list_empty(&pm->list)) { 8385 struct pending_dir_move *pm2; 8386 8387 pm2 = list_first_entry(&pm->list, 8388 struct pending_dir_move, list); 8389 free_pending_move(sctx, pm2); 8390 } 8391 free_pending_move(sctx, pm); 8392 } 8393 8394 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8395 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8396 struct rb_node *n; 8397 struct waiting_dir_move *dm; 8398 8399 n = rb_first(&sctx->waiting_dir_moves); 8400 dm = rb_entry(n, struct waiting_dir_move, node); 8401 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8402 kfree(dm); 8403 } 8404 8405 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8406 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8407 struct rb_node *n; 8408 struct orphan_dir_info *odi; 8409 8410 n = rb_first(&sctx->orphan_dirs); 8411 odi = rb_entry(n, struct orphan_dir_info, node); 8412 free_orphan_dir_info(sctx, odi); 8413 } 8414 8415 if (sort_clone_roots) { 8416 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8417 btrfs_root_dec_send_in_progress( 8418 sctx->clone_roots[i].root); 8419 btrfs_put_root(sctx->clone_roots[i].root); 8420 } 8421 } else { 8422 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8423 btrfs_root_dec_send_in_progress( 8424 sctx->clone_roots[i].root); 8425 btrfs_put_root(sctx->clone_roots[i].root); 8426 } 8427 8428 btrfs_root_dec_send_in_progress(send_root); 8429 } 8430 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8431 btrfs_root_dec_send_in_progress(sctx->parent_root); 8432 btrfs_put_root(sctx->parent_root); 8433 } 8434 8435 kvfree(clone_sources_tmp); 8436 8437 if (sctx) { 8438 if (sctx->send_filp) 8439 fput(sctx->send_filp); 8440 8441 kvfree(sctx->clone_roots); 8442 kfree(sctx->send_buf_pages); 8443 kvfree(sctx->send_buf); 8444 kvfree(sctx->verity_descriptor); 8445 8446 close_current_inode(sctx); 8447 8448 btrfs_lru_cache_clear(&sctx->name_cache); 8449 btrfs_lru_cache_clear(&sctx->backref_cache); 8450 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8451 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8452 8453 kfree(sctx); 8454 } 8455 8456 return ret; 8457 } 8458