xref: /linux/fs/btrfs/send.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35 
36 /*
37  * Maximum number of references an extent can have in order for us to attempt to
38  * issue clone operations instead of write operations. This currently exists to
39  * avoid hitting limitations of the backreference walking code (taking a lot of
40  * time and using too much memory for extents with large number of references).
41  */
42 #define SEND_MAX_EXTENT_REFS	1024
43 
44 /*
45  * A fs_path is a helper to dynamically build path names with unknown size.
46  * It reallocates the internal buffer on demand.
47  * It allows fast adding of path elements on the right side (normal path) and
48  * fast adding to the left side (reversed path). A reversed path can also be
49  * unreversed if needed.
50  */
51 struct fs_path {
52 	union {
53 		struct {
54 			char *start;
55 			char *end;
56 
57 			char *buf;
58 			unsigned short buf_len:15;
59 			unsigned short reversed:1;
60 			char inline_buf[];
61 		};
62 		/*
63 		 * Average path length does not exceed 200 bytes, we'll have
64 		 * better packing in the slab and higher chance to satisfy
65 		 * an allocation later during send.
66 		 */
67 		char pad[256];
68 	};
69 };
70 #define FS_PATH_INLINE_SIZE \
71 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 
73 
74 /* reused for each extent */
75 struct clone_root {
76 	struct btrfs_root *root;
77 	u64 ino;
78 	u64 offset;
79 	u64 num_bytes;
80 	bool found_ref;
81 };
82 
83 #define SEND_MAX_NAME_CACHE_SIZE			256
84 
85 /*
86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
89  * The most common case is to have a single root for cloning, which corresponds
90  * to the send root. Having the user specify more than 16 clone roots is not
91  * common, and in such rare cases we simply don't use caching if the number of
92  * cloning roots that lead down to a leaf is more than 17.
93  */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
95 
96 /*
97  * Max number of entries in the cache.
98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110 	struct btrfs_lru_cache_entry entry;
111 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 	/* Number of valid elements in the root_ids array. */
113 	int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
134 
135 struct send_ctx {
136 	struct file *send_filp;
137 	loff_t send_off;
138 	char *send_buf;
139 	u32 send_size;
140 	u32 send_max_size;
141 	/*
142 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 	 * command (since protocol v2, data must be the last attribute).
144 	 */
145 	bool put_data;
146 	struct page **send_buf_pages;
147 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
148 	/* Protocol version compatibility requested */
149 	u32 proto;
150 
151 	struct btrfs_root *send_root;
152 	struct btrfs_root *parent_root;
153 	struct clone_root *clone_roots;
154 	int clone_roots_cnt;
155 
156 	/* current state of the compare_tree call */
157 	struct btrfs_path *left_path;
158 	struct btrfs_path *right_path;
159 	struct btrfs_key *cmp_key;
160 
161 	/*
162 	 * Keep track of the generation of the last transaction that was used
163 	 * for relocating a block group. This is periodically checked in order
164 	 * to detect if a relocation happened since the last check, so that we
165 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 	 * stale disk_bytenr values of file extent items.
167 	 */
168 	u64 last_reloc_trans;
169 
170 	/*
171 	 * infos of the currently processed inode. In case of deleted inodes,
172 	 * these are the values from the deleted inode.
173 	 */
174 	u64 cur_ino;
175 	u64 cur_inode_gen;
176 	u64 cur_inode_size;
177 	u64 cur_inode_mode;
178 	u64 cur_inode_rdev;
179 	u64 cur_inode_last_extent;
180 	u64 cur_inode_next_write_offset;
181 	bool cur_inode_new;
182 	bool cur_inode_new_gen;
183 	bool cur_inode_deleted;
184 	bool ignore_cur_inode;
185 	bool cur_inode_needs_verity;
186 	void *verity_descriptor;
187 
188 	u64 send_progress;
189 
190 	struct list_head new_refs;
191 	struct list_head deleted_refs;
192 
193 	struct btrfs_lru_cache name_cache;
194 
195 	/*
196 	 * The inode we are currently processing. It's not NULL only when we
197 	 * need to issue write commands for data extents from this inode.
198 	 */
199 	struct inode *cur_inode;
200 	struct file_ra_state ra;
201 	u64 page_cache_clear_start;
202 	bool clean_page_cache;
203 
204 	/*
205 	 * We process inodes by their increasing order, so if before an
206 	 * incremental send we reverse the parent/child relationship of
207 	 * directories such that a directory with a lower inode number was
208 	 * the parent of a directory with a higher inode number, and the one
209 	 * becoming the new parent got renamed too, we can't rename/move the
210 	 * directory with lower inode number when we finish processing it - we
211 	 * must process the directory with higher inode number first, then
212 	 * rename/move it and then rename/move the directory with lower inode
213 	 * number. Example follows.
214 	 *
215 	 * Tree state when the first send was performed:
216 	 *
217 	 * .
218 	 * |-- a                   (ino 257)
219 	 *     |-- b               (ino 258)
220 	 *         |
221 	 *         |
222 	 *         |-- c           (ino 259)
223 	 *         |   |-- d       (ino 260)
224 	 *         |
225 	 *         |-- c2          (ino 261)
226 	 *
227 	 * Tree state when the second (incremental) send is performed:
228 	 *
229 	 * .
230 	 * |-- a                   (ino 257)
231 	 *     |-- b               (ino 258)
232 	 *         |-- c2          (ino 261)
233 	 *             |-- d2      (ino 260)
234 	 *                 |-- cc  (ino 259)
235 	 *
236 	 * The sequence of steps that lead to the second state was:
237 	 *
238 	 * mv /a/b/c/d /a/b/c2/d2
239 	 * mv /a/b/c /a/b/c2/d2/cc
240 	 *
241 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 	 * before we move "d", which has higher inode number.
243 	 *
244 	 * So we just memorize which move/rename operations must be performed
245 	 * later when their respective parent is processed and moved/renamed.
246 	 */
247 
248 	/* Indexed by parent directory inode number. */
249 	struct rb_root pending_dir_moves;
250 
251 	/*
252 	 * Reverse index, indexed by the inode number of a directory that
253 	 * is waiting for the move/rename of its immediate parent before its
254 	 * own move/rename can be performed.
255 	 */
256 	struct rb_root waiting_dir_moves;
257 
258 	/*
259 	 * A directory that is going to be rm'ed might have a child directory
260 	 * which is in the pending directory moves index above. In this case,
261 	 * the directory can only be removed after the move/rename of its child
262 	 * is performed. Example:
263 	 *
264 	 * Parent snapshot:
265 	 *
266 	 * .                        (ino 256)
267 	 * |-- a/                   (ino 257)
268 	 *     |-- b/               (ino 258)
269 	 *         |-- c/           (ino 259)
270 	 *         |   |-- x/       (ino 260)
271 	 *         |
272 	 *         |-- y/           (ino 261)
273 	 *
274 	 * Send snapshot:
275 	 *
276 	 * .                        (ino 256)
277 	 * |-- a/                   (ino 257)
278 	 *     |-- b/               (ino 258)
279 	 *         |-- YY/          (ino 261)
280 	 *              |-- x/      (ino 260)
281 	 *
282 	 * Sequence of steps that lead to the send snapshot:
283 	 * rm -f /a/b/c/foo.txt
284 	 * mv /a/b/y /a/b/YY
285 	 * mv /a/b/c/x /a/b/YY
286 	 * rmdir /a/b/c
287 	 *
288 	 * When the child is processed, its move/rename is delayed until its
289 	 * parent is processed (as explained above), but all other operations
290 	 * like update utimes, chown, chgrp, etc, are performed and the paths
291 	 * that it uses for those operations must use the orphanized name of
292 	 * its parent (the directory we're going to rm later), so we need to
293 	 * memorize that name.
294 	 *
295 	 * Indexed by the inode number of the directory to be deleted.
296 	 */
297 	struct rb_root orphan_dirs;
298 
299 	struct rb_root rbtree_new_refs;
300 	struct rb_root rbtree_deleted_refs;
301 
302 	struct btrfs_lru_cache backref_cache;
303 	u64 backref_cache_last_reloc_trans;
304 
305 	struct btrfs_lru_cache dir_created_cache;
306 	struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310 	struct rb_node node;
311 	struct list_head list;
312 	u64 parent_ino;
313 	u64 ino;
314 	u64 gen;
315 	struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319 	struct rb_node node;
320 	u64 ino;
321 	/*
322 	 * There might be some directory that could not be removed because it
323 	 * was waiting for this directory inode to be moved first. Therefore
324 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 	 */
326 	u64 rmdir_ino;
327 	u64 rmdir_gen;
328 	bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332 	struct rb_node node;
333 	u64 ino;
334 	u64 gen;
335 	u64 last_dir_index_offset;
336 	u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340 	/*
341 	 * The key in the entry is an inode number, and the generation matches
342 	 * the inode's generation.
343 	 */
344 	struct btrfs_lru_cache_entry entry;
345 	u64 parent_ino;
346 	u64 parent_gen;
347 	int ret;
348 	int need_later_update;
349 	int name_len;
350 	char name[] __counted_by(name_len);
351 };
352 
353 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
354 static_assert(offsetof(struct name_cache_entry, entry) == 0);
355 
356 #define ADVANCE							1
357 #define ADVANCE_ONLY_NEXT					-1
358 
359 enum btrfs_compare_tree_result {
360 	BTRFS_COMPARE_TREE_NEW,
361 	BTRFS_COMPARE_TREE_DELETED,
362 	BTRFS_COMPARE_TREE_CHANGED,
363 	BTRFS_COMPARE_TREE_SAME,
364 };
365 
366 __cold
367 static void inconsistent_snapshot_error(struct send_ctx *sctx,
368 					enum btrfs_compare_tree_result result,
369 					const char *what)
370 {
371 	const char *result_string;
372 
373 	switch (result) {
374 	case BTRFS_COMPARE_TREE_NEW:
375 		result_string = "new";
376 		break;
377 	case BTRFS_COMPARE_TREE_DELETED:
378 		result_string = "deleted";
379 		break;
380 	case BTRFS_COMPARE_TREE_CHANGED:
381 		result_string = "updated";
382 		break;
383 	case BTRFS_COMPARE_TREE_SAME:
384 		ASSERT(0);
385 		result_string = "unchanged";
386 		break;
387 	default:
388 		ASSERT(0);
389 		result_string = "unexpected";
390 	}
391 
392 	btrfs_err(sctx->send_root->fs_info,
393 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
394 		  result_string, what, sctx->cmp_key->objectid,
395 		  btrfs_root_id(sctx->send_root),
396 		  (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
397 }
398 
399 __maybe_unused
400 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
401 {
402 	switch (sctx->proto) {
403 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
404 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
405 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
406 	default: return false;
407 	}
408 }
409 
410 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
411 
412 static struct waiting_dir_move *
413 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
414 
415 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
416 
417 static int need_send_hole(struct send_ctx *sctx)
418 {
419 	return (sctx->parent_root && !sctx->cur_inode_new &&
420 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
421 		S_ISREG(sctx->cur_inode_mode));
422 }
423 
424 static void fs_path_reset(struct fs_path *p)
425 {
426 	if (p->reversed) {
427 		p->start = p->buf + p->buf_len - 1;
428 		p->end = p->start;
429 		*p->start = 0;
430 	} else {
431 		p->start = p->buf;
432 		p->end = p->start;
433 		*p->start = 0;
434 	}
435 }
436 
437 static struct fs_path *fs_path_alloc(void)
438 {
439 	struct fs_path *p;
440 
441 	p = kmalloc(sizeof(*p), GFP_KERNEL);
442 	if (!p)
443 		return NULL;
444 	p->reversed = 0;
445 	p->buf = p->inline_buf;
446 	p->buf_len = FS_PATH_INLINE_SIZE;
447 	fs_path_reset(p);
448 	return p;
449 }
450 
451 static struct fs_path *fs_path_alloc_reversed(void)
452 {
453 	struct fs_path *p;
454 
455 	p = fs_path_alloc();
456 	if (!p)
457 		return NULL;
458 	p->reversed = 1;
459 	fs_path_reset(p);
460 	return p;
461 }
462 
463 static void fs_path_free(struct fs_path *p)
464 {
465 	if (!p)
466 		return;
467 	if (p->buf != p->inline_buf)
468 		kfree(p->buf);
469 	kfree(p);
470 }
471 
472 static int fs_path_len(struct fs_path *p)
473 {
474 	return p->end - p->start;
475 }
476 
477 static int fs_path_ensure_buf(struct fs_path *p, int len)
478 {
479 	char *tmp_buf;
480 	int path_len;
481 	int old_buf_len;
482 
483 	len++;
484 
485 	if (p->buf_len >= len)
486 		return 0;
487 
488 	if (len > PATH_MAX) {
489 		WARN_ON(1);
490 		return -ENOMEM;
491 	}
492 
493 	path_len = p->end - p->start;
494 	old_buf_len = p->buf_len;
495 
496 	/*
497 	 * Allocate to the next largest kmalloc bucket size, to let
498 	 * the fast path happen most of the time.
499 	 */
500 	len = kmalloc_size_roundup(len);
501 	/*
502 	 * First time the inline_buf does not suffice
503 	 */
504 	if (p->buf == p->inline_buf) {
505 		tmp_buf = kmalloc(len, GFP_KERNEL);
506 		if (tmp_buf)
507 			memcpy(tmp_buf, p->buf, old_buf_len);
508 	} else {
509 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
510 	}
511 	if (!tmp_buf)
512 		return -ENOMEM;
513 	p->buf = tmp_buf;
514 	p->buf_len = len;
515 
516 	if (p->reversed) {
517 		tmp_buf = p->buf + old_buf_len - path_len - 1;
518 		p->end = p->buf + p->buf_len - 1;
519 		p->start = p->end - path_len;
520 		memmove(p->start, tmp_buf, path_len + 1);
521 	} else {
522 		p->start = p->buf;
523 		p->end = p->start + path_len;
524 	}
525 	return 0;
526 }
527 
528 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
529 				   char **prepared)
530 {
531 	int ret;
532 	int new_len;
533 
534 	new_len = p->end - p->start + name_len;
535 	if (p->start != p->end)
536 		new_len++;
537 	ret = fs_path_ensure_buf(p, new_len);
538 	if (ret < 0)
539 		goto out;
540 
541 	if (p->reversed) {
542 		if (p->start != p->end)
543 			*--p->start = '/';
544 		p->start -= name_len;
545 		*prepared = p->start;
546 	} else {
547 		if (p->start != p->end)
548 			*p->end++ = '/';
549 		*prepared = p->end;
550 		p->end += name_len;
551 		*p->end = 0;
552 	}
553 
554 out:
555 	return ret;
556 }
557 
558 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
559 {
560 	int ret;
561 	char *prepared;
562 
563 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
564 	if (ret < 0)
565 		goto out;
566 	memcpy(prepared, name, name_len);
567 
568 out:
569 	return ret;
570 }
571 
572 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
573 {
574 	int ret;
575 	char *prepared;
576 
577 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
578 	if (ret < 0)
579 		goto out;
580 	memcpy(prepared, p2->start, p2->end - p2->start);
581 
582 out:
583 	return ret;
584 }
585 
586 static int fs_path_add_from_extent_buffer(struct fs_path *p,
587 					  struct extent_buffer *eb,
588 					  unsigned long off, int len)
589 {
590 	int ret;
591 	char *prepared;
592 
593 	ret = fs_path_prepare_for_add(p, len, &prepared);
594 	if (ret < 0)
595 		goto out;
596 
597 	read_extent_buffer(eb, prepared, off, len);
598 
599 out:
600 	return ret;
601 }
602 
603 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
604 {
605 	p->reversed = from->reversed;
606 	fs_path_reset(p);
607 
608 	return fs_path_add_path(p, from);
609 }
610 
611 static void fs_path_unreverse(struct fs_path *p)
612 {
613 	char *tmp;
614 	int len;
615 
616 	if (!p->reversed)
617 		return;
618 
619 	tmp = p->start;
620 	len = p->end - p->start;
621 	p->start = p->buf;
622 	p->end = p->start + len;
623 	memmove(p->start, tmp, len + 1);
624 	p->reversed = 0;
625 }
626 
627 static struct btrfs_path *alloc_path_for_send(void)
628 {
629 	struct btrfs_path *path;
630 
631 	path = btrfs_alloc_path();
632 	if (!path)
633 		return NULL;
634 	path->search_commit_root = 1;
635 	path->skip_locking = 1;
636 	path->need_commit_sem = 1;
637 	return path;
638 }
639 
640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
641 {
642 	int ret;
643 	u32 pos = 0;
644 
645 	while (pos < len) {
646 		ret = kernel_write(filp, buf + pos, len - pos, off);
647 		if (ret < 0)
648 			return ret;
649 		if (ret == 0)
650 			return -EIO;
651 		pos += ret;
652 	}
653 
654 	return 0;
655 }
656 
657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
658 {
659 	struct btrfs_tlv_header *hdr;
660 	int total_len = sizeof(*hdr) + len;
661 	int left = sctx->send_max_size - sctx->send_size;
662 
663 	if (WARN_ON_ONCE(sctx->put_data))
664 		return -EINVAL;
665 
666 	if (unlikely(left < total_len))
667 		return -EOVERFLOW;
668 
669 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
670 	put_unaligned_le16(attr, &hdr->tlv_type);
671 	put_unaligned_le16(len, &hdr->tlv_len);
672 	memcpy(hdr + 1, data, len);
673 	sctx->send_size += total_len;
674 
675 	return 0;
676 }
677 
678 #define TLV_PUT_DEFINE_INT(bits) \
679 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
680 			u##bits attr, u##bits value)			\
681 	{								\
682 		__le##bits __tmp = cpu_to_le##bits(value);		\
683 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
684 	}
685 
686 TLV_PUT_DEFINE_INT(8)
687 TLV_PUT_DEFINE_INT(32)
688 TLV_PUT_DEFINE_INT(64)
689 
690 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
691 			  const char *str, int len)
692 {
693 	if (len == -1)
694 		len = strlen(str);
695 	return tlv_put(sctx, attr, str, len);
696 }
697 
698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
699 			const u8 *uuid)
700 {
701 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
702 }
703 
704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
705 				  struct extent_buffer *eb,
706 				  struct btrfs_timespec *ts)
707 {
708 	struct btrfs_timespec bts;
709 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
710 	return tlv_put(sctx, attr, &bts, sizeof(bts));
711 }
712 
713 
714 #define TLV_PUT(sctx, attrtype, data, attrlen) \
715 	do { \
716 		ret = tlv_put(sctx, attrtype, data, attrlen); \
717 		if (ret < 0) \
718 			goto tlv_put_failure; \
719 	} while (0)
720 
721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
722 	do { \
723 		ret = tlv_put_u##bits(sctx, attrtype, value); \
724 		if (ret < 0) \
725 			goto tlv_put_failure; \
726 	} while (0)
727 
728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
733 	do { \
734 		ret = tlv_put_string(sctx, attrtype, str, len); \
735 		if (ret < 0) \
736 			goto tlv_put_failure; \
737 	} while (0)
738 #define TLV_PUT_PATH(sctx, attrtype, p) \
739 	do { \
740 		ret = tlv_put_string(sctx, attrtype, p->start, \
741 			p->end - p->start); \
742 		if (ret < 0) \
743 			goto tlv_put_failure; \
744 	} while(0)
745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
746 	do { \
747 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
748 		if (ret < 0) \
749 			goto tlv_put_failure; \
750 	} while (0)
751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
752 	do { \
753 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
754 		if (ret < 0) \
755 			goto tlv_put_failure; \
756 	} while (0)
757 
758 static int send_header(struct send_ctx *sctx)
759 {
760 	struct btrfs_stream_header hdr;
761 
762 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
763 	hdr.version = cpu_to_le32(sctx->proto);
764 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
765 					&sctx->send_off);
766 }
767 
768 /*
769  * For each command/item we want to send to userspace, we call this function.
770  */
771 static int begin_cmd(struct send_ctx *sctx, int cmd)
772 {
773 	struct btrfs_cmd_header *hdr;
774 
775 	if (WARN_ON(!sctx->send_buf))
776 		return -EINVAL;
777 
778 	if (unlikely(sctx->send_size != 0)) {
779 		btrfs_err(sctx->send_root->fs_info,
780 			  "send: command header buffer not empty cmd %d offset %llu",
781 			  cmd, sctx->send_off);
782 		return -EINVAL;
783 	}
784 
785 	sctx->send_size += sizeof(*hdr);
786 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
787 	put_unaligned_le16(cmd, &hdr->cmd);
788 
789 	return 0;
790 }
791 
792 static int send_cmd(struct send_ctx *sctx)
793 {
794 	int ret;
795 	struct btrfs_cmd_header *hdr;
796 	u32 crc;
797 
798 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
799 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
800 	put_unaligned_le32(0, &hdr->crc);
801 
802 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
803 	put_unaligned_le32(crc, &hdr->crc);
804 
805 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
806 					&sctx->send_off);
807 
808 	sctx->send_size = 0;
809 	sctx->put_data = false;
810 
811 	return ret;
812 }
813 
814 /*
815  * Sends a move instruction to user space
816  */
817 static int send_rename(struct send_ctx *sctx,
818 		     struct fs_path *from, struct fs_path *to)
819 {
820 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
821 	int ret;
822 
823 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
824 
825 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
826 	if (ret < 0)
827 		goto out;
828 
829 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
830 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
831 
832 	ret = send_cmd(sctx);
833 
834 tlv_put_failure:
835 out:
836 	return ret;
837 }
838 
839 /*
840  * Sends a link instruction to user space
841  */
842 static int send_link(struct send_ctx *sctx,
843 		     struct fs_path *path, struct fs_path *lnk)
844 {
845 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
846 	int ret;
847 
848 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
849 
850 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
851 	if (ret < 0)
852 		goto out;
853 
854 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
855 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
856 
857 	ret = send_cmd(sctx);
858 
859 tlv_put_failure:
860 out:
861 	return ret;
862 }
863 
864 /*
865  * Sends an unlink instruction to user space
866  */
867 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
868 {
869 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
870 	int ret;
871 
872 	btrfs_debug(fs_info, "send_unlink %s", path->start);
873 
874 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
875 	if (ret < 0)
876 		goto out;
877 
878 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
879 
880 	ret = send_cmd(sctx);
881 
882 tlv_put_failure:
883 out:
884 	return ret;
885 }
886 
887 /*
888  * Sends a rmdir instruction to user space
889  */
890 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
891 {
892 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
893 	int ret;
894 
895 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
896 
897 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
898 	if (ret < 0)
899 		goto out;
900 
901 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
902 
903 	ret = send_cmd(sctx);
904 
905 tlv_put_failure:
906 out:
907 	return ret;
908 }
909 
910 struct btrfs_inode_info {
911 	u64 size;
912 	u64 gen;
913 	u64 mode;
914 	u64 uid;
915 	u64 gid;
916 	u64 rdev;
917 	u64 fileattr;
918 	u64 nlink;
919 };
920 
921 /*
922  * Helper function to retrieve some fields from an inode item.
923  */
924 static int get_inode_info(struct btrfs_root *root, u64 ino,
925 			  struct btrfs_inode_info *info)
926 {
927 	int ret;
928 	struct btrfs_path *path;
929 	struct btrfs_inode_item *ii;
930 	struct btrfs_key key;
931 
932 	path = alloc_path_for_send();
933 	if (!path)
934 		return -ENOMEM;
935 
936 	key.objectid = ino;
937 	key.type = BTRFS_INODE_ITEM_KEY;
938 	key.offset = 0;
939 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
940 	if (ret) {
941 		if (ret > 0)
942 			ret = -ENOENT;
943 		goto out;
944 	}
945 
946 	if (!info)
947 		goto out;
948 
949 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
950 			struct btrfs_inode_item);
951 	info->size = btrfs_inode_size(path->nodes[0], ii);
952 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
953 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
954 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
955 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
956 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
957 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
958 	/*
959 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
960 	 * otherwise logically split to 32/32 parts.
961 	 */
962 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
963 
964 out:
965 	btrfs_free_path(path);
966 	return ret;
967 }
968 
969 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
970 {
971 	int ret;
972 	struct btrfs_inode_info info = { 0 };
973 
974 	ASSERT(gen);
975 
976 	ret = get_inode_info(root, ino, &info);
977 	*gen = info.gen;
978 	return ret;
979 }
980 
981 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
982 				   struct fs_path *p,
983 				   void *ctx);
984 
985 /*
986  * Helper function to iterate the entries in ONE btrfs_inode_ref or
987  * btrfs_inode_extref.
988  * The iterate callback may return a non zero value to stop iteration. This can
989  * be a negative value for error codes or 1 to simply stop it.
990  *
991  * path must point to the INODE_REF or INODE_EXTREF when called.
992  */
993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994 			     struct btrfs_key *found_key, int resolve,
995 			     iterate_inode_ref_t iterate, void *ctx)
996 {
997 	struct extent_buffer *eb = path->nodes[0];
998 	struct btrfs_inode_ref *iref;
999 	struct btrfs_inode_extref *extref;
1000 	struct btrfs_path *tmp_path;
1001 	struct fs_path *p;
1002 	u32 cur = 0;
1003 	u32 total;
1004 	int slot = path->slots[0];
1005 	u32 name_len;
1006 	char *start;
1007 	int ret = 0;
1008 	int num = 0;
1009 	int index;
1010 	u64 dir;
1011 	unsigned long name_off;
1012 	unsigned long elem_size;
1013 	unsigned long ptr;
1014 
1015 	p = fs_path_alloc_reversed();
1016 	if (!p)
1017 		return -ENOMEM;
1018 
1019 	tmp_path = alloc_path_for_send();
1020 	if (!tmp_path) {
1021 		fs_path_free(p);
1022 		return -ENOMEM;
1023 	}
1024 
1025 
1026 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1027 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1028 						    struct btrfs_inode_ref);
1029 		total = btrfs_item_size(eb, slot);
1030 		elem_size = sizeof(*iref);
1031 	} else {
1032 		ptr = btrfs_item_ptr_offset(eb, slot);
1033 		total = btrfs_item_size(eb, slot);
1034 		elem_size = sizeof(*extref);
1035 	}
1036 
1037 	while (cur < total) {
1038 		fs_path_reset(p);
1039 
1040 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1041 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1042 			name_len = btrfs_inode_ref_name_len(eb, iref);
1043 			name_off = (unsigned long)(iref + 1);
1044 			index = btrfs_inode_ref_index(eb, iref);
1045 			dir = found_key->offset;
1046 		} else {
1047 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1048 			name_len = btrfs_inode_extref_name_len(eb, extref);
1049 			name_off = (unsigned long)&extref->name;
1050 			index = btrfs_inode_extref_index(eb, extref);
1051 			dir = btrfs_inode_extref_parent(eb, extref);
1052 		}
1053 
1054 		if (resolve) {
1055 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1056 						  name_off, eb, dir,
1057 						  p->buf, p->buf_len);
1058 			if (IS_ERR(start)) {
1059 				ret = PTR_ERR(start);
1060 				goto out;
1061 			}
1062 			if (start < p->buf) {
1063 				/* overflow , try again with larger buffer */
1064 				ret = fs_path_ensure_buf(p,
1065 						p->buf_len + p->buf - start);
1066 				if (ret < 0)
1067 					goto out;
1068 				start = btrfs_ref_to_path(root, tmp_path,
1069 							  name_len, name_off,
1070 							  eb, dir,
1071 							  p->buf, p->buf_len);
1072 				if (IS_ERR(start)) {
1073 					ret = PTR_ERR(start);
1074 					goto out;
1075 				}
1076 				if (unlikely(start < p->buf)) {
1077 					btrfs_err(root->fs_info,
1078 			"send: path ref buffer underflow for key (%llu %u %llu)",
1079 						  found_key->objectid,
1080 						  found_key->type,
1081 						  found_key->offset);
1082 					ret = -EINVAL;
1083 					goto out;
1084 				}
1085 			}
1086 			p->start = start;
1087 		} else {
1088 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1089 							     name_len);
1090 			if (ret < 0)
1091 				goto out;
1092 		}
1093 
1094 		cur += elem_size + name_len;
1095 		ret = iterate(num, dir, index, p, ctx);
1096 		if (ret)
1097 			goto out;
1098 		num++;
1099 	}
1100 
1101 out:
1102 	btrfs_free_path(tmp_path);
1103 	fs_path_free(p);
1104 	return ret;
1105 }
1106 
1107 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1108 				  const char *name, int name_len,
1109 				  const char *data, int data_len,
1110 				  void *ctx);
1111 
1112 /*
1113  * Helper function to iterate the entries in ONE btrfs_dir_item.
1114  * The iterate callback may return a non zero value to stop iteration. This can
1115  * be a negative value for error codes or 1 to simply stop it.
1116  *
1117  * path must point to the dir item when called.
1118  */
1119 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1120 			    iterate_dir_item_t iterate, void *ctx)
1121 {
1122 	int ret = 0;
1123 	struct extent_buffer *eb;
1124 	struct btrfs_dir_item *di;
1125 	struct btrfs_key di_key;
1126 	char *buf = NULL;
1127 	int buf_len;
1128 	u32 name_len;
1129 	u32 data_len;
1130 	u32 cur;
1131 	u32 len;
1132 	u32 total;
1133 	int slot;
1134 	int num;
1135 
1136 	/*
1137 	 * Start with a small buffer (1 page). If later we end up needing more
1138 	 * space, which can happen for xattrs on a fs with a leaf size greater
1139 	 * than the page size, attempt to increase the buffer. Typically xattr
1140 	 * values are small.
1141 	 */
1142 	buf_len = PATH_MAX;
1143 	buf = kmalloc(buf_len, GFP_KERNEL);
1144 	if (!buf) {
1145 		ret = -ENOMEM;
1146 		goto out;
1147 	}
1148 
1149 	eb = path->nodes[0];
1150 	slot = path->slots[0];
1151 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1152 	cur = 0;
1153 	len = 0;
1154 	total = btrfs_item_size(eb, slot);
1155 
1156 	num = 0;
1157 	while (cur < total) {
1158 		name_len = btrfs_dir_name_len(eb, di);
1159 		data_len = btrfs_dir_data_len(eb, di);
1160 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1161 
1162 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1163 			if (name_len > XATTR_NAME_MAX) {
1164 				ret = -ENAMETOOLONG;
1165 				goto out;
1166 			}
1167 			if (name_len + data_len >
1168 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1169 				ret = -E2BIG;
1170 				goto out;
1171 			}
1172 		} else {
1173 			/*
1174 			 * Path too long
1175 			 */
1176 			if (name_len + data_len > PATH_MAX) {
1177 				ret = -ENAMETOOLONG;
1178 				goto out;
1179 			}
1180 		}
1181 
1182 		if (name_len + data_len > buf_len) {
1183 			buf_len = name_len + data_len;
1184 			if (is_vmalloc_addr(buf)) {
1185 				vfree(buf);
1186 				buf = NULL;
1187 			} else {
1188 				char *tmp = krealloc(buf, buf_len,
1189 						GFP_KERNEL | __GFP_NOWARN);
1190 
1191 				if (!tmp)
1192 					kfree(buf);
1193 				buf = tmp;
1194 			}
1195 			if (!buf) {
1196 				buf = kvmalloc(buf_len, GFP_KERNEL);
1197 				if (!buf) {
1198 					ret = -ENOMEM;
1199 					goto out;
1200 				}
1201 			}
1202 		}
1203 
1204 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1205 				name_len + data_len);
1206 
1207 		len = sizeof(*di) + name_len + data_len;
1208 		di = (struct btrfs_dir_item *)((char *)di + len);
1209 		cur += len;
1210 
1211 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1212 			      data_len, ctx);
1213 		if (ret < 0)
1214 			goto out;
1215 		if (ret) {
1216 			ret = 0;
1217 			goto out;
1218 		}
1219 
1220 		num++;
1221 	}
1222 
1223 out:
1224 	kvfree(buf);
1225 	return ret;
1226 }
1227 
1228 static int __copy_first_ref(int num, u64 dir, int index,
1229 			    struct fs_path *p, void *ctx)
1230 {
1231 	int ret;
1232 	struct fs_path *pt = ctx;
1233 
1234 	ret = fs_path_copy(pt, p);
1235 	if (ret < 0)
1236 		return ret;
1237 
1238 	/* we want the first only */
1239 	return 1;
1240 }
1241 
1242 /*
1243  * Retrieve the first path of an inode. If an inode has more then one
1244  * ref/hardlink, this is ignored.
1245  */
1246 static int get_inode_path(struct btrfs_root *root,
1247 			  u64 ino, struct fs_path *path)
1248 {
1249 	int ret;
1250 	struct btrfs_key key, found_key;
1251 	struct btrfs_path *p;
1252 
1253 	p = alloc_path_for_send();
1254 	if (!p)
1255 		return -ENOMEM;
1256 
1257 	fs_path_reset(path);
1258 
1259 	key.objectid = ino;
1260 	key.type = BTRFS_INODE_REF_KEY;
1261 	key.offset = 0;
1262 
1263 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1264 	if (ret < 0)
1265 		goto out;
1266 	if (ret) {
1267 		ret = 1;
1268 		goto out;
1269 	}
1270 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1271 	if (found_key.objectid != ino ||
1272 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1273 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1274 		ret = -ENOENT;
1275 		goto out;
1276 	}
1277 
1278 	ret = iterate_inode_ref(root, p, &found_key, 1,
1279 				__copy_first_ref, path);
1280 	if (ret < 0)
1281 		goto out;
1282 	ret = 0;
1283 
1284 out:
1285 	btrfs_free_path(p);
1286 	return ret;
1287 }
1288 
1289 struct backref_ctx {
1290 	struct send_ctx *sctx;
1291 
1292 	/* number of total found references */
1293 	u64 found;
1294 
1295 	/*
1296 	 * used for clones found in send_root. clones found behind cur_objectid
1297 	 * and cur_offset are not considered as allowed clones.
1298 	 */
1299 	u64 cur_objectid;
1300 	u64 cur_offset;
1301 
1302 	/* may be truncated in case it's the last extent in a file */
1303 	u64 extent_len;
1304 
1305 	/* The bytenr the file extent item we are processing refers to. */
1306 	u64 bytenr;
1307 	/* The owner (root id) of the data backref for the current extent. */
1308 	u64 backref_owner;
1309 	/* The offset of the data backref for the current extent. */
1310 	u64 backref_offset;
1311 };
1312 
1313 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1314 {
1315 	u64 root = (u64)(uintptr_t)key;
1316 	const struct clone_root *cr = elt;
1317 
1318 	if (root < btrfs_root_id(cr->root))
1319 		return -1;
1320 	if (root > btrfs_root_id(cr->root))
1321 		return 1;
1322 	return 0;
1323 }
1324 
1325 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1326 {
1327 	const struct clone_root *cr1 = e1;
1328 	const struct clone_root *cr2 = e2;
1329 
1330 	if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1331 		return -1;
1332 	if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1333 		return 1;
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Called for every backref that is found for the current extent.
1339  * Results are collected in sctx->clone_roots->ino/offset.
1340  */
1341 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1342 			    void *ctx_)
1343 {
1344 	struct backref_ctx *bctx = ctx_;
1345 	struct clone_root *clone_root;
1346 
1347 	/* First check if the root is in the list of accepted clone sources */
1348 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1349 			     bctx->sctx->clone_roots_cnt,
1350 			     sizeof(struct clone_root),
1351 			     __clone_root_cmp_bsearch);
1352 	if (!clone_root)
1353 		return 0;
1354 
1355 	/* This is our own reference, bail out as we can't clone from it. */
1356 	if (clone_root->root == bctx->sctx->send_root &&
1357 	    ino == bctx->cur_objectid &&
1358 	    offset == bctx->cur_offset)
1359 		return 0;
1360 
1361 	/*
1362 	 * Make sure we don't consider clones from send_root that are
1363 	 * behind the current inode/offset.
1364 	 */
1365 	if (clone_root->root == bctx->sctx->send_root) {
1366 		/*
1367 		 * If the source inode was not yet processed we can't issue a
1368 		 * clone operation, as the source extent does not exist yet at
1369 		 * the destination of the stream.
1370 		 */
1371 		if (ino > bctx->cur_objectid)
1372 			return 0;
1373 		/*
1374 		 * We clone from the inode currently being sent as long as the
1375 		 * source extent is already processed, otherwise we could try
1376 		 * to clone from an extent that does not exist yet at the
1377 		 * destination of the stream.
1378 		 */
1379 		if (ino == bctx->cur_objectid &&
1380 		    offset + bctx->extent_len >
1381 		    bctx->sctx->cur_inode_next_write_offset)
1382 			return 0;
1383 	}
1384 
1385 	bctx->found++;
1386 	clone_root->found_ref = true;
1387 
1388 	/*
1389 	 * If the given backref refers to a file extent item with a larger
1390 	 * number of bytes than what we found before, use the new one so that
1391 	 * we clone more optimally and end up doing less writes and getting
1392 	 * less exclusive, non-shared extents at the destination.
1393 	 */
1394 	if (num_bytes > clone_root->num_bytes) {
1395 		clone_root->ino = ino;
1396 		clone_root->offset = offset;
1397 		clone_root->num_bytes = num_bytes;
1398 
1399 		/*
1400 		 * Found a perfect candidate, so there's no need to continue
1401 		 * backref walking.
1402 		 */
1403 		if (num_bytes >= bctx->extent_len)
1404 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1411 				 const u64 **root_ids_ret, int *root_count_ret)
1412 {
1413 	struct backref_ctx *bctx = ctx;
1414 	struct send_ctx *sctx = bctx->sctx;
1415 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1416 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1417 	struct btrfs_lru_cache_entry *raw_entry;
1418 	struct backref_cache_entry *entry;
1419 
1420 	if (sctx->backref_cache.size == 0)
1421 		return false;
1422 
1423 	/*
1424 	 * If relocation happened since we first filled the cache, then we must
1425 	 * empty the cache and can not use it, because even though we operate on
1426 	 * read-only roots, their leaves and nodes may have been reallocated and
1427 	 * now be used for different nodes/leaves of the same tree or some other
1428 	 * tree.
1429 	 *
1430 	 * We are called from iterate_extent_inodes() while either holding a
1431 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1432 	 * to take any lock here.
1433 	 */
1434 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1435 		btrfs_lru_cache_clear(&sctx->backref_cache);
1436 		return false;
1437 	}
1438 
1439 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1440 	if (!raw_entry)
1441 		return false;
1442 
1443 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1444 	*root_ids_ret = entry->root_ids;
1445 	*root_count_ret = entry->num_roots;
1446 
1447 	return true;
1448 }
1449 
1450 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1451 				void *ctx)
1452 {
1453 	struct backref_ctx *bctx = ctx;
1454 	struct send_ctx *sctx = bctx->sctx;
1455 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1456 	struct backref_cache_entry *new_entry;
1457 	struct ulist_iterator uiter;
1458 	struct ulist_node *node;
1459 	int ret;
1460 
1461 	/*
1462 	 * We're called while holding a transaction handle or while holding
1463 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1464 	 * NOFS allocation.
1465 	 */
1466 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1467 	/* No worries, cache is optional. */
1468 	if (!new_entry)
1469 		return;
1470 
1471 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1472 	new_entry->entry.gen = 0;
1473 	new_entry->num_roots = 0;
1474 	ULIST_ITER_INIT(&uiter);
1475 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1476 		const u64 root_id = node->val;
1477 		struct clone_root *root;
1478 
1479 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1480 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1481 			       __clone_root_cmp_bsearch);
1482 		if (!root)
1483 			continue;
1484 
1485 		/* Too many roots, just exit, no worries as caching is optional. */
1486 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1487 			kfree(new_entry);
1488 			return;
1489 		}
1490 
1491 		new_entry->root_ids[new_entry->num_roots] = root_id;
1492 		new_entry->num_roots++;
1493 	}
1494 
1495 	/*
1496 	 * We may have not added any roots to the new cache entry, which means
1497 	 * none of the roots is part of the list of roots from which we are
1498 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1499 	 * backref walking to determine which roots have a path to the leaf.
1500 	 *
1501 	 * Also use GFP_NOFS because we're called while holding a transaction
1502 	 * handle or while holding fs_info->commit_root_sem.
1503 	 */
1504 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1505 				    GFP_NOFS);
1506 	ASSERT(ret == 0 || ret == -ENOMEM);
1507 	if (ret) {
1508 		/* Caching is optional, no worries. */
1509 		kfree(new_entry);
1510 		return;
1511 	}
1512 
1513 	/*
1514 	 * We are called from iterate_extent_inodes() while either holding a
1515 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1516 	 * to take any lock here.
1517 	 */
1518 	if (sctx->backref_cache.size == 1)
1519 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1520 }
1521 
1522 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1523 			     const struct extent_buffer *leaf, void *ctx)
1524 {
1525 	const u64 refs = btrfs_extent_refs(leaf, ei);
1526 	const struct backref_ctx *bctx = ctx;
1527 	const struct send_ctx *sctx = bctx->sctx;
1528 
1529 	if (bytenr == bctx->bytenr) {
1530 		const u64 flags = btrfs_extent_flags(leaf, ei);
1531 
1532 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1533 			return -EUCLEAN;
1534 
1535 		/*
1536 		 * If we have only one reference and only the send root as a
1537 		 * clone source - meaning no clone roots were given in the
1538 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1539 		 * it's our reference and there's no point in doing backref
1540 		 * walking which is expensive, so exit early.
1541 		 */
1542 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1543 			return -ENOENT;
1544 	}
1545 
1546 	/*
1547 	 * Backreference walking (iterate_extent_inodes() below) is currently
1548 	 * too expensive when an extent has a large number of references, both
1549 	 * in time spent and used memory. So for now just fallback to write
1550 	 * operations instead of clone operations when an extent has more than
1551 	 * a certain amount of references.
1552 	 */
1553 	if (refs > SEND_MAX_EXTENT_REFS)
1554 		return -ENOENT;
1555 
1556 	return 0;
1557 }
1558 
1559 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1560 {
1561 	const struct backref_ctx *bctx = ctx;
1562 
1563 	if (ino == bctx->cur_objectid &&
1564 	    root == bctx->backref_owner &&
1565 	    offset == bctx->backref_offset)
1566 		return true;
1567 
1568 	return false;
1569 }
1570 
1571 /*
1572  * Given an inode, offset and extent item, it finds a good clone for a clone
1573  * instruction. Returns -ENOENT when none could be found. The function makes
1574  * sure that the returned clone is usable at the point where sending is at the
1575  * moment. This means, that no clones are accepted which lie behind the current
1576  * inode+offset.
1577  *
1578  * path must point to the extent item when called.
1579  */
1580 static int find_extent_clone(struct send_ctx *sctx,
1581 			     struct btrfs_path *path,
1582 			     u64 ino, u64 data_offset,
1583 			     u64 ino_size,
1584 			     struct clone_root **found)
1585 {
1586 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1587 	int ret;
1588 	int extent_type;
1589 	u64 logical;
1590 	u64 disk_byte;
1591 	u64 num_bytes;
1592 	struct btrfs_file_extent_item *fi;
1593 	struct extent_buffer *eb = path->nodes[0];
1594 	struct backref_ctx backref_ctx = { 0 };
1595 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1596 	struct clone_root *cur_clone_root;
1597 	int compressed;
1598 	u32 i;
1599 
1600 	/*
1601 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1602 	 * so we don't do anything here because clone operations can not clone
1603 	 * to a range beyond i_size without increasing the i_size of the
1604 	 * destination inode.
1605 	 */
1606 	if (data_offset >= ino_size)
1607 		return 0;
1608 
1609 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1610 	extent_type = btrfs_file_extent_type(eb, fi);
1611 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1612 		return -ENOENT;
1613 
1614 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1615 	if (disk_byte == 0)
1616 		return -ENOENT;
1617 
1618 	compressed = btrfs_file_extent_compression(eb, fi);
1619 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1620 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1621 
1622 	/*
1623 	 * Setup the clone roots.
1624 	 */
1625 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1626 		cur_clone_root = sctx->clone_roots + i;
1627 		cur_clone_root->ino = (u64)-1;
1628 		cur_clone_root->offset = 0;
1629 		cur_clone_root->num_bytes = 0;
1630 		cur_clone_root->found_ref = false;
1631 	}
1632 
1633 	backref_ctx.sctx = sctx;
1634 	backref_ctx.cur_objectid = ino;
1635 	backref_ctx.cur_offset = data_offset;
1636 	backref_ctx.bytenr = disk_byte;
1637 	/*
1638 	 * Use the header owner and not the send root's id, because in case of a
1639 	 * snapshot we can have shared subtrees.
1640 	 */
1641 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1642 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1643 
1644 	/*
1645 	 * The last extent of a file may be too large due to page alignment.
1646 	 * We need to adjust extent_len in this case so that the checks in
1647 	 * iterate_backrefs() work.
1648 	 */
1649 	if (data_offset + num_bytes >= ino_size)
1650 		backref_ctx.extent_len = ino_size - data_offset;
1651 	else
1652 		backref_ctx.extent_len = num_bytes;
1653 
1654 	/*
1655 	 * Now collect all backrefs.
1656 	 */
1657 	backref_walk_ctx.bytenr = disk_byte;
1658 	if (compressed == BTRFS_COMPRESS_NONE)
1659 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1660 	backref_walk_ctx.fs_info = fs_info;
1661 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1662 	backref_walk_ctx.cache_store = store_backref_cache;
1663 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1664 	backref_walk_ctx.check_extent_item = check_extent_item;
1665 	backref_walk_ctx.user_ctx = &backref_ctx;
1666 
1667 	/*
1668 	 * If have a single clone root, then it's the send root and we can tell
1669 	 * the backref walking code to skip our own backref and not resolve it,
1670 	 * since we can not use it for cloning - the source and destination
1671 	 * ranges can't overlap and in case the leaf is shared through a subtree
1672 	 * due to snapshots, we can't use those other roots since they are not
1673 	 * in the list of clone roots.
1674 	 */
1675 	if (sctx->clone_roots_cnt == 1)
1676 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1677 
1678 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1679 				    &backref_ctx);
1680 	if (ret < 0)
1681 		return ret;
1682 
1683 	down_read(&fs_info->commit_root_sem);
1684 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1685 		/*
1686 		 * A transaction commit for a transaction in which block group
1687 		 * relocation was done just happened.
1688 		 * The disk_bytenr of the file extent item we processed is
1689 		 * possibly stale, referring to the extent's location before
1690 		 * relocation. So act as if we haven't found any clone sources
1691 		 * and fallback to write commands, which will read the correct
1692 		 * data from the new extent location. Otherwise we will fail
1693 		 * below because we haven't found our own back reference or we
1694 		 * could be getting incorrect sources in case the old extent
1695 		 * was already reallocated after the relocation.
1696 		 */
1697 		up_read(&fs_info->commit_root_sem);
1698 		return -ENOENT;
1699 	}
1700 	up_read(&fs_info->commit_root_sem);
1701 
1702 	btrfs_debug(fs_info,
1703 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1704 		    data_offset, ino, num_bytes, logical);
1705 
1706 	if (!backref_ctx.found) {
1707 		btrfs_debug(fs_info, "no clones found");
1708 		return -ENOENT;
1709 	}
1710 
1711 	cur_clone_root = NULL;
1712 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1713 		struct clone_root *clone_root = &sctx->clone_roots[i];
1714 
1715 		if (!clone_root->found_ref)
1716 			continue;
1717 
1718 		/*
1719 		 * Choose the root from which we can clone more bytes, to
1720 		 * minimize write operations and therefore have more extent
1721 		 * sharing at the destination (the same as in the source).
1722 		 */
1723 		if (!cur_clone_root ||
1724 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1725 			cur_clone_root = clone_root;
1726 
1727 			/*
1728 			 * We found an optimal clone candidate (any inode from
1729 			 * any root is fine), so we're done.
1730 			 */
1731 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1732 				break;
1733 		}
1734 	}
1735 
1736 	if (cur_clone_root) {
1737 		*found = cur_clone_root;
1738 		ret = 0;
1739 	} else {
1740 		ret = -ENOENT;
1741 	}
1742 
1743 	return ret;
1744 }
1745 
1746 static int read_symlink(struct btrfs_root *root,
1747 			u64 ino,
1748 			struct fs_path *dest)
1749 {
1750 	int ret;
1751 	struct btrfs_path *path;
1752 	struct btrfs_key key;
1753 	struct btrfs_file_extent_item *ei;
1754 	u8 type;
1755 	u8 compression;
1756 	unsigned long off;
1757 	int len;
1758 
1759 	path = alloc_path_for_send();
1760 	if (!path)
1761 		return -ENOMEM;
1762 
1763 	key.objectid = ino;
1764 	key.type = BTRFS_EXTENT_DATA_KEY;
1765 	key.offset = 0;
1766 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1767 	if (ret < 0)
1768 		goto out;
1769 	if (ret) {
1770 		/*
1771 		 * An empty symlink inode. Can happen in rare error paths when
1772 		 * creating a symlink (transaction committed before the inode
1773 		 * eviction handler removed the symlink inode items and a crash
1774 		 * happened in between or the subvol was snapshoted in between).
1775 		 * Print an informative message to dmesg/syslog so that the user
1776 		 * can delete the symlink.
1777 		 */
1778 		btrfs_err(root->fs_info,
1779 			  "Found empty symlink inode %llu at root %llu",
1780 			  ino, btrfs_root_id(root));
1781 		ret = -EIO;
1782 		goto out;
1783 	}
1784 
1785 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 			struct btrfs_file_extent_item);
1787 	type = btrfs_file_extent_type(path->nodes[0], ei);
1788 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1789 		ret = -EUCLEAN;
1790 		btrfs_crit(root->fs_info,
1791 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1792 			   ino, btrfs_root_id(root), type);
1793 		goto out;
1794 	}
1795 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1796 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1797 		ret = -EUCLEAN;
1798 		btrfs_crit(root->fs_info,
1799 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1800 			   ino, btrfs_root_id(root), compression);
1801 		goto out;
1802 	}
1803 
1804 	off = btrfs_file_extent_inline_start(ei);
1805 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1806 
1807 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1808 
1809 out:
1810 	btrfs_free_path(path);
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Helper function to generate a file name that is unique in the root of
1816  * send_root and parent_root. This is used to generate names for orphan inodes.
1817  */
1818 static int gen_unique_name(struct send_ctx *sctx,
1819 			   u64 ino, u64 gen,
1820 			   struct fs_path *dest)
1821 {
1822 	int ret = 0;
1823 	struct btrfs_path *path;
1824 	struct btrfs_dir_item *di;
1825 	char tmp[64];
1826 	int len;
1827 	u64 idx = 0;
1828 
1829 	path = alloc_path_for_send();
1830 	if (!path)
1831 		return -ENOMEM;
1832 
1833 	while (1) {
1834 		struct fscrypt_str tmp_name;
1835 
1836 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1837 				ino, gen, idx);
1838 		ASSERT(len < sizeof(tmp));
1839 		tmp_name.name = tmp;
1840 		tmp_name.len = strlen(tmp);
1841 
1842 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1843 				path, BTRFS_FIRST_FREE_OBJECTID,
1844 				&tmp_name, 0);
1845 		btrfs_release_path(path);
1846 		if (IS_ERR(di)) {
1847 			ret = PTR_ERR(di);
1848 			goto out;
1849 		}
1850 		if (di) {
1851 			/* not unique, try again */
1852 			idx++;
1853 			continue;
1854 		}
1855 
1856 		if (!sctx->parent_root) {
1857 			/* unique */
1858 			ret = 0;
1859 			break;
1860 		}
1861 
1862 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1863 				path, BTRFS_FIRST_FREE_OBJECTID,
1864 				&tmp_name, 0);
1865 		btrfs_release_path(path);
1866 		if (IS_ERR(di)) {
1867 			ret = PTR_ERR(di);
1868 			goto out;
1869 		}
1870 		if (di) {
1871 			/* not unique, try again */
1872 			idx++;
1873 			continue;
1874 		}
1875 		/* unique */
1876 		break;
1877 	}
1878 
1879 	ret = fs_path_add(dest, tmp, strlen(tmp));
1880 
1881 out:
1882 	btrfs_free_path(path);
1883 	return ret;
1884 }
1885 
1886 enum inode_state {
1887 	inode_state_no_change,
1888 	inode_state_will_create,
1889 	inode_state_did_create,
1890 	inode_state_will_delete,
1891 	inode_state_did_delete,
1892 };
1893 
1894 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1895 			       u64 *send_gen, u64 *parent_gen)
1896 {
1897 	int ret;
1898 	int left_ret;
1899 	int right_ret;
1900 	u64 left_gen;
1901 	u64 right_gen = 0;
1902 	struct btrfs_inode_info info;
1903 
1904 	ret = get_inode_info(sctx->send_root, ino, &info);
1905 	if (ret < 0 && ret != -ENOENT)
1906 		goto out;
1907 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1908 	left_gen = info.gen;
1909 	if (send_gen)
1910 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1911 
1912 	if (!sctx->parent_root) {
1913 		right_ret = -ENOENT;
1914 	} else {
1915 		ret = get_inode_info(sctx->parent_root, ino, &info);
1916 		if (ret < 0 && ret != -ENOENT)
1917 			goto out;
1918 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1919 		right_gen = info.gen;
1920 		if (parent_gen)
1921 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1922 	}
1923 
1924 	if (!left_ret && !right_ret) {
1925 		if (left_gen == gen && right_gen == gen) {
1926 			ret = inode_state_no_change;
1927 		} else if (left_gen == gen) {
1928 			if (ino < sctx->send_progress)
1929 				ret = inode_state_did_create;
1930 			else
1931 				ret = inode_state_will_create;
1932 		} else if (right_gen == gen) {
1933 			if (ino < sctx->send_progress)
1934 				ret = inode_state_did_delete;
1935 			else
1936 				ret = inode_state_will_delete;
1937 		} else  {
1938 			ret = -ENOENT;
1939 		}
1940 	} else if (!left_ret) {
1941 		if (left_gen == gen) {
1942 			if (ino < sctx->send_progress)
1943 				ret = inode_state_did_create;
1944 			else
1945 				ret = inode_state_will_create;
1946 		} else {
1947 			ret = -ENOENT;
1948 		}
1949 	} else if (!right_ret) {
1950 		if (right_gen == gen) {
1951 			if (ino < sctx->send_progress)
1952 				ret = inode_state_did_delete;
1953 			else
1954 				ret = inode_state_will_delete;
1955 		} else {
1956 			ret = -ENOENT;
1957 		}
1958 	} else {
1959 		ret = -ENOENT;
1960 	}
1961 
1962 out:
1963 	return ret;
1964 }
1965 
1966 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1967 			     u64 *send_gen, u64 *parent_gen)
1968 {
1969 	int ret;
1970 
1971 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1972 		return 1;
1973 
1974 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1975 	if (ret < 0)
1976 		goto out;
1977 
1978 	if (ret == inode_state_no_change ||
1979 	    ret == inode_state_did_create ||
1980 	    ret == inode_state_will_delete)
1981 		ret = 1;
1982 	else
1983 		ret = 0;
1984 
1985 out:
1986 	return ret;
1987 }
1988 
1989 /*
1990  * Helper function to lookup a dir item in a dir.
1991  */
1992 static int lookup_dir_item_inode(struct btrfs_root *root,
1993 				 u64 dir, const char *name, int name_len,
1994 				 u64 *found_inode)
1995 {
1996 	int ret = 0;
1997 	struct btrfs_dir_item *di;
1998 	struct btrfs_key key;
1999 	struct btrfs_path *path;
2000 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2001 
2002 	path = alloc_path_for_send();
2003 	if (!path)
2004 		return -ENOMEM;
2005 
2006 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2007 	if (IS_ERR_OR_NULL(di)) {
2008 		ret = di ? PTR_ERR(di) : -ENOENT;
2009 		goto out;
2010 	}
2011 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2012 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2013 		ret = -ENOENT;
2014 		goto out;
2015 	}
2016 	*found_inode = key.objectid;
2017 
2018 out:
2019 	btrfs_free_path(path);
2020 	return ret;
2021 }
2022 
2023 /*
2024  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2025  * generation of the parent dir and the name of the dir entry.
2026  */
2027 static int get_first_ref(struct btrfs_root *root, u64 ino,
2028 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2029 {
2030 	int ret;
2031 	struct btrfs_key key;
2032 	struct btrfs_key found_key;
2033 	struct btrfs_path *path;
2034 	int len;
2035 	u64 parent_dir;
2036 
2037 	path = alloc_path_for_send();
2038 	if (!path)
2039 		return -ENOMEM;
2040 
2041 	key.objectid = ino;
2042 	key.type = BTRFS_INODE_REF_KEY;
2043 	key.offset = 0;
2044 
2045 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2046 	if (ret < 0)
2047 		goto out;
2048 	if (!ret)
2049 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2050 				path->slots[0]);
2051 	if (ret || found_key.objectid != ino ||
2052 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2053 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2054 		ret = -ENOENT;
2055 		goto out;
2056 	}
2057 
2058 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2059 		struct btrfs_inode_ref *iref;
2060 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2061 				      struct btrfs_inode_ref);
2062 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2063 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2064 						     (unsigned long)(iref + 1),
2065 						     len);
2066 		parent_dir = found_key.offset;
2067 	} else {
2068 		struct btrfs_inode_extref *extref;
2069 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2070 					struct btrfs_inode_extref);
2071 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2072 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2073 					(unsigned long)&extref->name, len);
2074 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2075 	}
2076 	if (ret < 0)
2077 		goto out;
2078 	btrfs_release_path(path);
2079 
2080 	if (dir_gen) {
2081 		ret = get_inode_gen(root, parent_dir, dir_gen);
2082 		if (ret < 0)
2083 			goto out;
2084 	}
2085 
2086 	*dir = parent_dir;
2087 
2088 out:
2089 	btrfs_free_path(path);
2090 	return ret;
2091 }
2092 
2093 static int is_first_ref(struct btrfs_root *root,
2094 			u64 ino, u64 dir,
2095 			const char *name, int name_len)
2096 {
2097 	int ret;
2098 	struct fs_path *tmp_name;
2099 	u64 tmp_dir;
2100 
2101 	tmp_name = fs_path_alloc();
2102 	if (!tmp_name)
2103 		return -ENOMEM;
2104 
2105 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2106 	if (ret < 0)
2107 		goto out;
2108 
2109 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2110 		ret = 0;
2111 		goto out;
2112 	}
2113 
2114 	ret = !memcmp(tmp_name->start, name, name_len);
2115 
2116 out:
2117 	fs_path_free(tmp_name);
2118 	return ret;
2119 }
2120 
2121 /*
2122  * Used by process_recorded_refs to determine if a new ref would overwrite an
2123  * already existing ref. In case it detects an overwrite, it returns the
2124  * inode/gen in who_ino/who_gen.
2125  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2126  * to make sure later references to the overwritten inode are possible.
2127  * Orphanizing is however only required for the first ref of an inode.
2128  * process_recorded_refs does an additional is_first_ref check to see if
2129  * orphanizing is really required.
2130  */
2131 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2132 			      const char *name, int name_len,
2133 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2134 {
2135 	int ret;
2136 	u64 parent_root_dir_gen;
2137 	u64 other_inode = 0;
2138 	struct btrfs_inode_info info;
2139 
2140 	if (!sctx->parent_root)
2141 		return 0;
2142 
2143 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2144 	if (ret <= 0)
2145 		return 0;
2146 
2147 	/*
2148 	 * If we have a parent root we need to verify that the parent dir was
2149 	 * not deleted and then re-created, if it was then we have no overwrite
2150 	 * and we can just unlink this entry.
2151 	 *
2152 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2153 	 * parent root.
2154 	 */
2155 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2156 	    parent_root_dir_gen != dir_gen)
2157 		return 0;
2158 
2159 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2160 				    &other_inode);
2161 	if (ret == -ENOENT)
2162 		return 0;
2163 	else if (ret < 0)
2164 		return ret;
2165 
2166 	/*
2167 	 * Check if the overwritten ref was already processed. If yes, the ref
2168 	 * was already unlinked/moved, so we can safely assume that we will not
2169 	 * overwrite anything at this point in time.
2170 	 */
2171 	if (other_inode > sctx->send_progress ||
2172 	    is_waiting_for_move(sctx, other_inode)) {
2173 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2174 		if (ret < 0)
2175 			return ret;
2176 
2177 		*who_ino = other_inode;
2178 		*who_gen = info.gen;
2179 		*who_mode = info.mode;
2180 		return 1;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 /*
2187  * Checks if the ref was overwritten by an already processed inode. This is
2188  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2189  * thus the orphan name needs be used.
2190  * process_recorded_refs also uses it to avoid unlinking of refs that were
2191  * overwritten.
2192  */
2193 static int did_overwrite_ref(struct send_ctx *sctx,
2194 			    u64 dir, u64 dir_gen,
2195 			    u64 ino, u64 ino_gen,
2196 			    const char *name, int name_len)
2197 {
2198 	int ret;
2199 	u64 ow_inode;
2200 	u64 ow_gen = 0;
2201 	u64 send_root_dir_gen;
2202 
2203 	if (!sctx->parent_root)
2204 		return 0;
2205 
2206 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2207 	if (ret <= 0)
2208 		return ret;
2209 
2210 	/*
2211 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2212 	 * send root.
2213 	 */
2214 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2215 		return 0;
2216 
2217 	/* check if the ref was overwritten by another ref */
2218 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2219 				    &ow_inode);
2220 	if (ret == -ENOENT) {
2221 		/* was never and will never be overwritten */
2222 		return 0;
2223 	} else if (ret < 0) {
2224 		return ret;
2225 	}
2226 
2227 	if (ow_inode == ino) {
2228 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2229 		if (ret < 0)
2230 			return ret;
2231 
2232 		/* It's the same inode, so no overwrite happened. */
2233 		if (ow_gen == ino_gen)
2234 			return 0;
2235 	}
2236 
2237 	/*
2238 	 * We know that it is or will be overwritten. Check this now.
2239 	 * The current inode being processed might have been the one that caused
2240 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2241 	 * the current inode being processed.
2242 	 */
2243 	if (ow_inode < sctx->send_progress)
2244 		return 1;
2245 
2246 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2247 		if (ow_gen == 0) {
2248 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2249 			if (ret < 0)
2250 				return ret;
2251 		}
2252 		if (ow_gen == sctx->cur_inode_gen)
2253 			return 1;
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2261  * that got overwritten. This is used by process_recorded_refs to determine
2262  * if it has to use the path as returned by get_cur_path or the orphan name.
2263  */
2264 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2265 {
2266 	int ret = 0;
2267 	struct fs_path *name = NULL;
2268 	u64 dir;
2269 	u64 dir_gen;
2270 
2271 	if (!sctx->parent_root)
2272 		goto out;
2273 
2274 	name = fs_path_alloc();
2275 	if (!name)
2276 		return -ENOMEM;
2277 
2278 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2279 	if (ret < 0)
2280 		goto out;
2281 
2282 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2283 			name->start, fs_path_len(name));
2284 
2285 out:
2286 	fs_path_free(name);
2287 	return ret;
2288 }
2289 
2290 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2291 							 u64 ino, u64 gen)
2292 {
2293 	struct btrfs_lru_cache_entry *entry;
2294 
2295 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2296 	if (!entry)
2297 		return NULL;
2298 
2299 	return container_of(entry, struct name_cache_entry, entry);
2300 }
2301 
2302 /*
2303  * Used by get_cur_path for each ref up to the root.
2304  * Returns 0 if it succeeded.
2305  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2306  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2307  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2308  * Returns <0 in case of error.
2309  */
2310 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2311 				     u64 ino, u64 gen,
2312 				     u64 *parent_ino,
2313 				     u64 *parent_gen,
2314 				     struct fs_path *dest)
2315 {
2316 	int ret;
2317 	int nce_ret;
2318 	struct name_cache_entry *nce;
2319 
2320 	/*
2321 	 * First check if we already did a call to this function with the same
2322 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2323 	 * return the cached result.
2324 	 */
2325 	nce = name_cache_search(sctx, ino, gen);
2326 	if (nce) {
2327 		if (ino < sctx->send_progress && nce->need_later_update) {
2328 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2329 			nce = NULL;
2330 		} else {
2331 			*parent_ino = nce->parent_ino;
2332 			*parent_gen = nce->parent_gen;
2333 			ret = fs_path_add(dest, nce->name, nce->name_len);
2334 			if (ret < 0)
2335 				goto out;
2336 			ret = nce->ret;
2337 			goto out;
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * If the inode is not existent yet, add the orphan name and return 1.
2343 	 * This should only happen for the parent dir that we determine in
2344 	 * record_new_ref_if_needed().
2345 	 */
2346 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2347 	if (ret < 0)
2348 		goto out;
2349 
2350 	if (!ret) {
2351 		ret = gen_unique_name(sctx, ino, gen, dest);
2352 		if (ret < 0)
2353 			goto out;
2354 		ret = 1;
2355 		goto out_cache;
2356 	}
2357 
2358 	/*
2359 	 * Depending on whether the inode was already processed or not, use
2360 	 * send_root or parent_root for ref lookup.
2361 	 */
2362 	if (ino < sctx->send_progress)
2363 		ret = get_first_ref(sctx->send_root, ino,
2364 				    parent_ino, parent_gen, dest);
2365 	else
2366 		ret = get_first_ref(sctx->parent_root, ino,
2367 				    parent_ino, parent_gen, dest);
2368 	if (ret < 0)
2369 		goto out;
2370 
2371 	/*
2372 	 * Check if the ref was overwritten by an inode's ref that was processed
2373 	 * earlier. If yes, treat as orphan and return 1.
2374 	 */
2375 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2376 			dest->start, dest->end - dest->start);
2377 	if (ret < 0)
2378 		goto out;
2379 	if (ret) {
2380 		fs_path_reset(dest);
2381 		ret = gen_unique_name(sctx, ino, gen, dest);
2382 		if (ret < 0)
2383 			goto out;
2384 		ret = 1;
2385 	}
2386 
2387 out_cache:
2388 	/*
2389 	 * Store the result of the lookup in the name cache.
2390 	 */
2391 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2392 	if (!nce) {
2393 		ret = -ENOMEM;
2394 		goto out;
2395 	}
2396 
2397 	nce->entry.key = ino;
2398 	nce->entry.gen = gen;
2399 	nce->parent_ino = *parent_ino;
2400 	nce->parent_gen = *parent_gen;
2401 	nce->name_len = fs_path_len(dest);
2402 	nce->ret = ret;
2403 	strcpy(nce->name, dest->start);
2404 
2405 	if (ino < sctx->send_progress)
2406 		nce->need_later_update = 0;
2407 	else
2408 		nce->need_later_update = 1;
2409 
2410 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2411 	if (nce_ret < 0) {
2412 		kfree(nce);
2413 		ret = nce_ret;
2414 	}
2415 
2416 out:
2417 	return ret;
2418 }
2419 
2420 /*
2421  * Magic happens here. This function returns the first ref to an inode as it
2422  * would look like while receiving the stream at this point in time.
2423  * We walk the path up to the root. For every inode in between, we check if it
2424  * was already processed/sent. If yes, we continue with the parent as found
2425  * in send_root. If not, we continue with the parent as found in parent_root.
2426  * If we encounter an inode that was deleted at this point in time, we use the
2427  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2428  * that were not created yet and overwritten inodes/refs.
2429  *
2430  * When do we have orphan inodes:
2431  * 1. When an inode is freshly created and thus no valid refs are available yet
2432  * 2. When a directory lost all it's refs (deleted) but still has dir items
2433  *    inside which were not processed yet (pending for move/delete). If anyone
2434  *    tried to get the path to the dir items, it would get a path inside that
2435  *    orphan directory.
2436  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2437  *    of an unprocessed inode. If in that case the first ref would be
2438  *    overwritten, the overwritten inode gets "orphanized". Later when we
2439  *    process this overwritten inode, it is restored at a new place by moving
2440  *    the orphan inode.
2441  *
2442  * sctx->send_progress tells this function at which point in time receiving
2443  * would be.
2444  */
2445 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2446 			struct fs_path *dest)
2447 {
2448 	int ret = 0;
2449 	struct fs_path *name = NULL;
2450 	u64 parent_inode = 0;
2451 	u64 parent_gen = 0;
2452 	int stop = 0;
2453 
2454 	name = fs_path_alloc();
2455 	if (!name) {
2456 		ret = -ENOMEM;
2457 		goto out;
2458 	}
2459 
2460 	dest->reversed = 1;
2461 	fs_path_reset(dest);
2462 
2463 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2464 		struct waiting_dir_move *wdm;
2465 
2466 		fs_path_reset(name);
2467 
2468 		if (is_waiting_for_rm(sctx, ino, gen)) {
2469 			ret = gen_unique_name(sctx, ino, gen, name);
2470 			if (ret < 0)
2471 				goto out;
2472 			ret = fs_path_add_path(dest, name);
2473 			break;
2474 		}
2475 
2476 		wdm = get_waiting_dir_move(sctx, ino);
2477 		if (wdm && wdm->orphanized) {
2478 			ret = gen_unique_name(sctx, ino, gen, name);
2479 			stop = 1;
2480 		} else if (wdm) {
2481 			ret = get_first_ref(sctx->parent_root, ino,
2482 					    &parent_inode, &parent_gen, name);
2483 		} else {
2484 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2485 							&parent_inode,
2486 							&parent_gen, name);
2487 			if (ret)
2488 				stop = 1;
2489 		}
2490 
2491 		if (ret < 0)
2492 			goto out;
2493 
2494 		ret = fs_path_add_path(dest, name);
2495 		if (ret < 0)
2496 			goto out;
2497 
2498 		ino = parent_inode;
2499 		gen = parent_gen;
2500 	}
2501 
2502 out:
2503 	fs_path_free(name);
2504 	if (!ret)
2505 		fs_path_unreverse(dest);
2506 	return ret;
2507 }
2508 
2509 /*
2510  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2511  */
2512 static int send_subvol_begin(struct send_ctx *sctx)
2513 {
2514 	int ret;
2515 	struct btrfs_root *send_root = sctx->send_root;
2516 	struct btrfs_root *parent_root = sctx->parent_root;
2517 	struct btrfs_path *path;
2518 	struct btrfs_key key;
2519 	struct btrfs_root_ref *ref;
2520 	struct extent_buffer *leaf;
2521 	char *name = NULL;
2522 	int namelen;
2523 
2524 	path = btrfs_alloc_path();
2525 	if (!path)
2526 		return -ENOMEM;
2527 
2528 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2529 	if (!name) {
2530 		btrfs_free_path(path);
2531 		return -ENOMEM;
2532 	}
2533 
2534 	key.objectid = btrfs_root_id(send_root);
2535 	key.type = BTRFS_ROOT_BACKREF_KEY;
2536 	key.offset = 0;
2537 
2538 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2539 				&key, path, 1, 0);
2540 	if (ret < 0)
2541 		goto out;
2542 	if (ret) {
2543 		ret = -ENOENT;
2544 		goto out;
2545 	}
2546 
2547 	leaf = path->nodes[0];
2548 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2549 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2550 	    key.objectid != btrfs_root_id(send_root)) {
2551 		ret = -ENOENT;
2552 		goto out;
2553 	}
2554 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2555 	namelen = btrfs_root_ref_name_len(leaf, ref);
2556 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2557 	btrfs_release_path(path);
2558 
2559 	if (parent_root) {
2560 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2561 		if (ret < 0)
2562 			goto out;
2563 	} else {
2564 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2565 		if (ret < 0)
2566 			goto out;
2567 	}
2568 
2569 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2570 
2571 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2572 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2573 			    sctx->send_root->root_item.received_uuid);
2574 	else
2575 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2576 			    sctx->send_root->root_item.uuid);
2577 
2578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2579 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2580 	if (parent_root) {
2581 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2582 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2583 				     parent_root->root_item.received_uuid);
2584 		else
2585 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2586 				     parent_root->root_item.uuid);
2587 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2588 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2589 	}
2590 
2591 	ret = send_cmd(sctx);
2592 
2593 tlv_put_failure:
2594 out:
2595 	btrfs_free_path(path);
2596 	kfree(name);
2597 	return ret;
2598 }
2599 
2600 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2601 {
2602 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2603 	int ret = 0;
2604 	struct fs_path *p;
2605 
2606 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2607 
2608 	p = fs_path_alloc();
2609 	if (!p)
2610 		return -ENOMEM;
2611 
2612 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2613 	if (ret < 0)
2614 		goto out;
2615 
2616 	ret = get_cur_path(sctx, ino, gen, p);
2617 	if (ret < 0)
2618 		goto out;
2619 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2620 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2621 
2622 	ret = send_cmd(sctx);
2623 
2624 tlv_put_failure:
2625 out:
2626 	fs_path_free(p);
2627 	return ret;
2628 }
2629 
2630 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2631 {
2632 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2633 	int ret = 0;
2634 	struct fs_path *p;
2635 
2636 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2637 
2638 	p = fs_path_alloc();
2639 	if (!p)
2640 		return -ENOMEM;
2641 
2642 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2643 	if (ret < 0)
2644 		goto out;
2645 
2646 	ret = get_cur_path(sctx, ino, gen, p);
2647 	if (ret < 0)
2648 		goto out;
2649 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2651 
2652 	ret = send_cmd(sctx);
2653 
2654 tlv_put_failure:
2655 out:
2656 	fs_path_free(p);
2657 	return ret;
2658 }
2659 
2660 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2661 {
2662 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2663 	int ret = 0;
2664 	struct fs_path *p;
2665 
2666 	if (sctx->proto < 2)
2667 		return 0;
2668 
2669 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2670 
2671 	p = fs_path_alloc();
2672 	if (!p)
2673 		return -ENOMEM;
2674 
2675 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2676 	if (ret < 0)
2677 		goto out;
2678 
2679 	ret = get_cur_path(sctx, ino, gen, p);
2680 	if (ret < 0)
2681 		goto out;
2682 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2683 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2684 
2685 	ret = send_cmd(sctx);
2686 
2687 tlv_put_failure:
2688 out:
2689 	fs_path_free(p);
2690 	return ret;
2691 }
2692 
2693 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2694 {
2695 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2696 	int ret = 0;
2697 	struct fs_path *p;
2698 
2699 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2700 		    ino, uid, gid);
2701 
2702 	p = fs_path_alloc();
2703 	if (!p)
2704 		return -ENOMEM;
2705 
2706 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2707 	if (ret < 0)
2708 		goto out;
2709 
2710 	ret = get_cur_path(sctx, ino, gen, p);
2711 	if (ret < 0)
2712 		goto out;
2713 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2714 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2715 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2716 
2717 	ret = send_cmd(sctx);
2718 
2719 tlv_put_failure:
2720 out:
2721 	fs_path_free(p);
2722 	return ret;
2723 }
2724 
2725 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2726 {
2727 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2728 	int ret = 0;
2729 	struct fs_path *p = NULL;
2730 	struct btrfs_inode_item *ii;
2731 	struct btrfs_path *path = NULL;
2732 	struct extent_buffer *eb;
2733 	struct btrfs_key key;
2734 	int slot;
2735 
2736 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2737 
2738 	p = fs_path_alloc();
2739 	if (!p)
2740 		return -ENOMEM;
2741 
2742 	path = alloc_path_for_send();
2743 	if (!path) {
2744 		ret = -ENOMEM;
2745 		goto out;
2746 	}
2747 
2748 	key.objectid = ino;
2749 	key.type = BTRFS_INODE_ITEM_KEY;
2750 	key.offset = 0;
2751 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2752 	if (ret > 0)
2753 		ret = -ENOENT;
2754 	if (ret < 0)
2755 		goto out;
2756 
2757 	eb = path->nodes[0];
2758 	slot = path->slots[0];
2759 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2760 
2761 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2762 	if (ret < 0)
2763 		goto out;
2764 
2765 	ret = get_cur_path(sctx, ino, gen, p);
2766 	if (ret < 0)
2767 		goto out;
2768 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2769 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2770 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2771 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2772 	if (sctx->proto >= 2)
2773 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2774 
2775 	ret = send_cmd(sctx);
2776 
2777 tlv_put_failure:
2778 out:
2779 	fs_path_free(p);
2780 	btrfs_free_path(path);
2781 	return ret;
2782 }
2783 
2784 /*
2785  * If the cache is full, we can't remove entries from it and do a call to
2786  * send_utimes() for each respective inode, because we might be finishing
2787  * processing an inode that is a directory and it just got renamed, and existing
2788  * entries in the cache may refer to inodes that have the directory in their
2789  * full path - in which case we would generate outdated paths (pre-rename)
2790  * for the inodes that the cache entries point to. Instead of prunning the
2791  * cache when inserting, do it after we finish processing each inode at
2792  * finish_inode_if_needed().
2793  */
2794 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2795 {
2796 	struct btrfs_lru_cache_entry *entry;
2797 	int ret;
2798 
2799 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2800 	if (entry != NULL)
2801 		return 0;
2802 
2803 	/* Caching is optional, don't fail if we can't allocate memory. */
2804 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2805 	if (!entry)
2806 		return send_utimes(sctx, dir, gen);
2807 
2808 	entry->key = dir;
2809 	entry->gen = gen;
2810 
2811 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2812 	ASSERT(ret != -EEXIST);
2813 	if (ret) {
2814 		kfree(entry);
2815 		return send_utimes(sctx, dir, gen);
2816 	}
2817 
2818 	return 0;
2819 }
2820 
2821 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2822 {
2823 	while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2824 		struct btrfs_lru_cache_entry *lru;
2825 		int ret;
2826 
2827 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2828 		ASSERT(lru != NULL);
2829 
2830 		ret = send_utimes(sctx, lru->key, lru->gen);
2831 		if (ret)
2832 			return ret;
2833 
2834 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 /*
2841  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2842  * a valid path yet because we did not process the refs yet. So, the inode
2843  * is created as orphan.
2844  */
2845 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2846 {
2847 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2848 	int ret = 0;
2849 	struct fs_path *p;
2850 	int cmd;
2851 	struct btrfs_inode_info info;
2852 	u64 gen;
2853 	u64 mode;
2854 	u64 rdev;
2855 
2856 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2857 
2858 	p = fs_path_alloc();
2859 	if (!p)
2860 		return -ENOMEM;
2861 
2862 	if (ino != sctx->cur_ino) {
2863 		ret = get_inode_info(sctx->send_root, ino, &info);
2864 		if (ret < 0)
2865 			goto out;
2866 		gen = info.gen;
2867 		mode = info.mode;
2868 		rdev = info.rdev;
2869 	} else {
2870 		gen = sctx->cur_inode_gen;
2871 		mode = sctx->cur_inode_mode;
2872 		rdev = sctx->cur_inode_rdev;
2873 	}
2874 
2875 	if (S_ISREG(mode)) {
2876 		cmd = BTRFS_SEND_C_MKFILE;
2877 	} else if (S_ISDIR(mode)) {
2878 		cmd = BTRFS_SEND_C_MKDIR;
2879 	} else if (S_ISLNK(mode)) {
2880 		cmd = BTRFS_SEND_C_SYMLINK;
2881 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2882 		cmd = BTRFS_SEND_C_MKNOD;
2883 	} else if (S_ISFIFO(mode)) {
2884 		cmd = BTRFS_SEND_C_MKFIFO;
2885 	} else if (S_ISSOCK(mode)) {
2886 		cmd = BTRFS_SEND_C_MKSOCK;
2887 	} else {
2888 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2889 				(int)(mode & S_IFMT));
2890 		ret = -EOPNOTSUPP;
2891 		goto out;
2892 	}
2893 
2894 	ret = begin_cmd(sctx, cmd);
2895 	if (ret < 0)
2896 		goto out;
2897 
2898 	ret = gen_unique_name(sctx, ino, gen, p);
2899 	if (ret < 0)
2900 		goto out;
2901 
2902 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2903 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2904 
2905 	if (S_ISLNK(mode)) {
2906 		fs_path_reset(p);
2907 		ret = read_symlink(sctx->send_root, ino, p);
2908 		if (ret < 0)
2909 			goto out;
2910 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2911 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2912 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2913 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2914 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2915 	}
2916 
2917 	ret = send_cmd(sctx);
2918 	if (ret < 0)
2919 		goto out;
2920 
2921 
2922 tlv_put_failure:
2923 out:
2924 	fs_path_free(p);
2925 	return ret;
2926 }
2927 
2928 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2929 {
2930 	struct btrfs_lru_cache_entry *entry;
2931 	int ret;
2932 
2933 	/* Caching is optional, ignore any failures. */
2934 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2935 	if (!entry)
2936 		return;
2937 
2938 	entry->key = dir;
2939 	entry->gen = 0;
2940 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2941 	if (ret < 0)
2942 		kfree(entry);
2943 }
2944 
2945 /*
2946  * We need some special handling for inodes that get processed before the parent
2947  * directory got created. See process_recorded_refs for details.
2948  * This function does the check if we already created the dir out of order.
2949  */
2950 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2951 {
2952 	int ret = 0;
2953 	int iter_ret = 0;
2954 	struct btrfs_path *path = NULL;
2955 	struct btrfs_key key;
2956 	struct btrfs_key found_key;
2957 	struct btrfs_key di_key;
2958 	struct btrfs_dir_item *di;
2959 
2960 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2961 		return 1;
2962 
2963 	path = alloc_path_for_send();
2964 	if (!path)
2965 		return -ENOMEM;
2966 
2967 	key.objectid = dir;
2968 	key.type = BTRFS_DIR_INDEX_KEY;
2969 	key.offset = 0;
2970 
2971 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2972 		struct extent_buffer *eb = path->nodes[0];
2973 
2974 		if (found_key.objectid != key.objectid ||
2975 		    found_key.type != key.type) {
2976 			ret = 0;
2977 			break;
2978 		}
2979 
2980 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2981 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2982 
2983 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2984 		    di_key.objectid < sctx->send_progress) {
2985 			ret = 1;
2986 			cache_dir_created(sctx, dir);
2987 			break;
2988 		}
2989 	}
2990 	/* Catch error found during iteration */
2991 	if (iter_ret < 0)
2992 		ret = iter_ret;
2993 
2994 	btrfs_free_path(path);
2995 	return ret;
2996 }
2997 
2998 /*
2999  * Only creates the inode if it is:
3000  * 1. Not a directory
3001  * 2. Or a directory which was not created already due to out of order
3002  *    directories. See did_create_dir and process_recorded_refs for details.
3003  */
3004 static int send_create_inode_if_needed(struct send_ctx *sctx)
3005 {
3006 	int ret;
3007 
3008 	if (S_ISDIR(sctx->cur_inode_mode)) {
3009 		ret = did_create_dir(sctx, sctx->cur_ino);
3010 		if (ret < 0)
3011 			return ret;
3012 		else if (ret > 0)
3013 			return 0;
3014 	}
3015 
3016 	ret = send_create_inode(sctx, sctx->cur_ino);
3017 
3018 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3019 		cache_dir_created(sctx, sctx->cur_ino);
3020 
3021 	return ret;
3022 }
3023 
3024 struct recorded_ref {
3025 	struct list_head list;
3026 	char *name;
3027 	struct fs_path *full_path;
3028 	u64 dir;
3029 	u64 dir_gen;
3030 	int name_len;
3031 	struct rb_node node;
3032 	struct rb_root *root;
3033 };
3034 
3035 static struct recorded_ref *recorded_ref_alloc(void)
3036 {
3037 	struct recorded_ref *ref;
3038 
3039 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3040 	if (!ref)
3041 		return NULL;
3042 	RB_CLEAR_NODE(&ref->node);
3043 	INIT_LIST_HEAD(&ref->list);
3044 	return ref;
3045 }
3046 
3047 static void recorded_ref_free(struct recorded_ref *ref)
3048 {
3049 	if (!ref)
3050 		return;
3051 	if (!RB_EMPTY_NODE(&ref->node))
3052 		rb_erase(&ref->node, ref->root);
3053 	list_del(&ref->list);
3054 	fs_path_free(ref->full_path);
3055 	kfree(ref);
3056 }
3057 
3058 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3059 {
3060 	ref->full_path = path;
3061 	ref->name = (char *)kbasename(ref->full_path->start);
3062 	ref->name_len = ref->full_path->end - ref->name;
3063 }
3064 
3065 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3066 {
3067 	struct recorded_ref *new;
3068 
3069 	new = recorded_ref_alloc();
3070 	if (!new)
3071 		return -ENOMEM;
3072 
3073 	new->dir = ref->dir;
3074 	new->dir_gen = ref->dir_gen;
3075 	list_add_tail(&new->list, list);
3076 	return 0;
3077 }
3078 
3079 static void __free_recorded_refs(struct list_head *head)
3080 {
3081 	struct recorded_ref *cur;
3082 
3083 	while (!list_empty(head)) {
3084 		cur = list_entry(head->next, struct recorded_ref, list);
3085 		recorded_ref_free(cur);
3086 	}
3087 }
3088 
3089 static void free_recorded_refs(struct send_ctx *sctx)
3090 {
3091 	__free_recorded_refs(&sctx->new_refs);
3092 	__free_recorded_refs(&sctx->deleted_refs);
3093 }
3094 
3095 /*
3096  * Renames/moves a file/dir to its orphan name. Used when the first
3097  * ref of an unprocessed inode gets overwritten and for all non empty
3098  * directories.
3099  */
3100 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3101 			  struct fs_path *path)
3102 {
3103 	int ret;
3104 	struct fs_path *orphan;
3105 
3106 	orphan = fs_path_alloc();
3107 	if (!orphan)
3108 		return -ENOMEM;
3109 
3110 	ret = gen_unique_name(sctx, ino, gen, orphan);
3111 	if (ret < 0)
3112 		goto out;
3113 
3114 	ret = send_rename(sctx, path, orphan);
3115 
3116 out:
3117 	fs_path_free(orphan);
3118 	return ret;
3119 }
3120 
3121 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3122 						   u64 dir_ino, u64 dir_gen)
3123 {
3124 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3125 	struct rb_node *parent = NULL;
3126 	struct orphan_dir_info *entry, *odi;
3127 
3128 	while (*p) {
3129 		parent = *p;
3130 		entry = rb_entry(parent, struct orphan_dir_info, node);
3131 		if (dir_ino < entry->ino)
3132 			p = &(*p)->rb_left;
3133 		else if (dir_ino > entry->ino)
3134 			p = &(*p)->rb_right;
3135 		else if (dir_gen < entry->gen)
3136 			p = &(*p)->rb_left;
3137 		else if (dir_gen > entry->gen)
3138 			p = &(*p)->rb_right;
3139 		else
3140 			return entry;
3141 	}
3142 
3143 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3144 	if (!odi)
3145 		return ERR_PTR(-ENOMEM);
3146 	odi->ino = dir_ino;
3147 	odi->gen = dir_gen;
3148 	odi->last_dir_index_offset = 0;
3149 	odi->dir_high_seq_ino = 0;
3150 
3151 	rb_link_node(&odi->node, parent, p);
3152 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3153 	return odi;
3154 }
3155 
3156 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3157 						   u64 dir_ino, u64 gen)
3158 {
3159 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3160 	struct orphan_dir_info *entry;
3161 
3162 	while (n) {
3163 		entry = rb_entry(n, struct orphan_dir_info, node);
3164 		if (dir_ino < entry->ino)
3165 			n = n->rb_left;
3166 		else if (dir_ino > entry->ino)
3167 			n = n->rb_right;
3168 		else if (gen < entry->gen)
3169 			n = n->rb_left;
3170 		else if (gen > entry->gen)
3171 			n = n->rb_right;
3172 		else
3173 			return entry;
3174 	}
3175 	return NULL;
3176 }
3177 
3178 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3179 {
3180 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3181 
3182 	return odi != NULL;
3183 }
3184 
3185 static void free_orphan_dir_info(struct send_ctx *sctx,
3186 				 struct orphan_dir_info *odi)
3187 {
3188 	if (!odi)
3189 		return;
3190 	rb_erase(&odi->node, &sctx->orphan_dirs);
3191 	kfree(odi);
3192 }
3193 
3194 /*
3195  * Returns 1 if a directory can be removed at this point in time.
3196  * We check this by iterating all dir items and checking if the inode behind
3197  * the dir item was already processed.
3198  */
3199 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3200 {
3201 	int ret = 0;
3202 	int iter_ret = 0;
3203 	struct btrfs_root *root = sctx->parent_root;
3204 	struct btrfs_path *path;
3205 	struct btrfs_key key;
3206 	struct btrfs_key found_key;
3207 	struct btrfs_key loc;
3208 	struct btrfs_dir_item *di;
3209 	struct orphan_dir_info *odi = NULL;
3210 	u64 dir_high_seq_ino = 0;
3211 	u64 last_dir_index_offset = 0;
3212 
3213 	/*
3214 	 * Don't try to rmdir the top/root subvolume dir.
3215 	 */
3216 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3217 		return 0;
3218 
3219 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3220 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3221 		return 0;
3222 
3223 	path = alloc_path_for_send();
3224 	if (!path)
3225 		return -ENOMEM;
3226 
3227 	if (!odi) {
3228 		/*
3229 		 * Find the inode number associated with the last dir index
3230 		 * entry. This is very likely the inode with the highest number
3231 		 * of all inodes that have an entry in the directory. We can
3232 		 * then use it to avoid future calls to can_rmdir(), when
3233 		 * processing inodes with a lower number, from having to search
3234 		 * the parent root b+tree for dir index keys.
3235 		 */
3236 		key.objectid = dir;
3237 		key.type = BTRFS_DIR_INDEX_KEY;
3238 		key.offset = (u64)-1;
3239 
3240 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3241 		if (ret < 0) {
3242 			goto out;
3243 		} else if (ret > 0) {
3244 			/* Can't happen, the root is never empty. */
3245 			ASSERT(path->slots[0] > 0);
3246 			if (WARN_ON(path->slots[0] == 0)) {
3247 				ret = -EUCLEAN;
3248 				goto out;
3249 			}
3250 			path->slots[0]--;
3251 		}
3252 
3253 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3254 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3255 			/* No index keys, dir can be removed. */
3256 			ret = 1;
3257 			goto out;
3258 		}
3259 
3260 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3261 				    struct btrfs_dir_item);
3262 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3263 		dir_high_seq_ino = loc.objectid;
3264 		if (sctx->cur_ino < dir_high_seq_ino) {
3265 			ret = 0;
3266 			goto out;
3267 		}
3268 
3269 		btrfs_release_path(path);
3270 	}
3271 
3272 	key.objectid = dir;
3273 	key.type = BTRFS_DIR_INDEX_KEY;
3274 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3275 
3276 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3277 		struct waiting_dir_move *dm;
3278 
3279 		if (found_key.objectid != key.objectid ||
3280 		    found_key.type != key.type)
3281 			break;
3282 
3283 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3284 				struct btrfs_dir_item);
3285 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3286 
3287 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3288 		last_dir_index_offset = found_key.offset;
3289 
3290 		dm = get_waiting_dir_move(sctx, loc.objectid);
3291 		if (dm) {
3292 			dm->rmdir_ino = dir;
3293 			dm->rmdir_gen = dir_gen;
3294 			ret = 0;
3295 			goto out;
3296 		}
3297 
3298 		if (loc.objectid > sctx->cur_ino) {
3299 			ret = 0;
3300 			goto out;
3301 		}
3302 	}
3303 	if (iter_ret < 0) {
3304 		ret = iter_ret;
3305 		goto out;
3306 	}
3307 	free_orphan_dir_info(sctx, odi);
3308 
3309 	ret = 1;
3310 
3311 out:
3312 	btrfs_free_path(path);
3313 
3314 	if (ret)
3315 		return ret;
3316 
3317 	if (!odi) {
3318 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3319 		if (IS_ERR(odi))
3320 			return PTR_ERR(odi);
3321 
3322 		odi->gen = dir_gen;
3323 	}
3324 
3325 	odi->last_dir_index_offset = last_dir_index_offset;
3326 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3327 
3328 	return 0;
3329 }
3330 
3331 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3332 {
3333 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3334 
3335 	return entry != NULL;
3336 }
3337 
3338 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3339 {
3340 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3341 	struct rb_node *parent = NULL;
3342 	struct waiting_dir_move *entry, *dm;
3343 
3344 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3345 	if (!dm)
3346 		return -ENOMEM;
3347 	dm->ino = ino;
3348 	dm->rmdir_ino = 0;
3349 	dm->rmdir_gen = 0;
3350 	dm->orphanized = orphanized;
3351 
3352 	while (*p) {
3353 		parent = *p;
3354 		entry = rb_entry(parent, struct waiting_dir_move, node);
3355 		if (ino < entry->ino) {
3356 			p = &(*p)->rb_left;
3357 		} else if (ino > entry->ino) {
3358 			p = &(*p)->rb_right;
3359 		} else {
3360 			kfree(dm);
3361 			return -EEXIST;
3362 		}
3363 	}
3364 
3365 	rb_link_node(&dm->node, parent, p);
3366 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3367 	return 0;
3368 }
3369 
3370 static struct waiting_dir_move *
3371 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3372 {
3373 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3374 	struct waiting_dir_move *entry;
3375 
3376 	while (n) {
3377 		entry = rb_entry(n, struct waiting_dir_move, node);
3378 		if (ino < entry->ino)
3379 			n = n->rb_left;
3380 		else if (ino > entry->ino)
3381 			n = n->rb_right;
3382 		else
3383 			return entry;
3384 	}
3385 	return NULL;
3386 }
3387 
3388 static void free_waiting_dir_move(struct send_ctx *sctx,
3389 				  struct waiting_dir_move *dm)
3390 {
3391 	if (!dm)
3392 		return;
3393 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3394 	kfree(dm);
3395 }
3396 
3397 static int add_pending_dir_move(struct send_ctx *sctx,
3398 				u64 ino,
3399 				u64 ino_gen,
3400 				u64 parent_ino,
3401 				struct list_head *new_refs,
3402 				struct list_head *deleted_refs,
3403 				const bool is_orphan)
3404 {
3405 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3406 	struct rb_node *parent = NULL;
3407 	struct pending_dir_move *entry = NULL, *pm;
3408 	struct recorded_ref *cur;
3409 	int exists = 0;
3410 	int ret;
3411 
3412 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3413 	if (!pm)
3414 		return -ENOMEM;
3415 	pm->parent_ino = parent_ino;
3416 	pm->ino = ino;
3417 	pm->gen = ino_gen;
3418 	INIT_LIST_HEAD(&pm->list);
3419 	INIT_LIST_HEAD(&pm->update_refs);
3420 	RB_CLEAR_NODE(&pm->node);
3421 
3422 	while (*p) {
3423 		parent = *p;
3424 		entry = rb_entry(parent, struct pending_dir_move, node);
3425 		if (parent_ino < entry->parent_ino) {
3426 			p = &(*p)->rb_left;
3427 		} else if (parent_ino > entry->parent_ino) {
3428 			p = &(*p)->rb_right;
3429 		} else {
3430 			exists = 1;
3431 			break;
3432 		}
3433 	}
3434 
3435 	list_for_each_entry(cur, deleted_refs, list) {
3436 		ret = dup_ref(cur, &pm->update_refs);
3437 		if (ret < 0)
3438 			goto out;
3439 	}
3440 	list_for_each_entry(cur, new_refs, list) {
3441 		ret = dup_ref(cur, &pm->update_refs);
3442 		if (ret < 0)
3443 			goto out;
3444 	}
3445 
3446 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3447 	if (ret)
3448 		goto out;
3449 
3450 	if (exists) {
3451 		list_add_tail(&pm->list, &entry->list);
3452 	} else {
3453 		rb_link_node(&pm->node, parent, p);
3454 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3455 	}
3456 	ret = 0;
3457 out:
3458 	if (ret) {
3459 		__free_recorded_refs(&pm->update_refs);
3460 		kfree(pm);
3461 	}
3462 	return ret;
3463 }
3464 
3465 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3466 						      u64 parent_ino)
3467 {
3468 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3469 	struct pending_dir_move *entry;
3470 
3471 	while (n) {
3472 		entry = rb_entry(n, struct pending_dir_move, node);
3473 		if (parent_ino < entry->parent_ino)
3474 			n = n->rb_left;
3475 		else if (parent_ino > entry->parent_ino)
3476 			n = n->rb_right;
3477 		else
3478 			return entry;
3479 	}
3480 	return NULL;
3481 }
3482 
3483 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3484 		     u64 ino, u64 gen, u64 *ancestor_ino)
3485 {
3486 	int ret = 0;
3487 	u64 parent_inode = 0;
3488 	u64 parent_gen = 0;
3489 	u64 start_ino = ino;
3490 
3491 	*ancestor_ino = 0;
3492 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3493 		fs_path_reset(name);
3494 
3495 		if (is_waiting_for_rm(sctx, ino, gen))
3496 			break;
3497 		if (is_waiting_for_move(sctx, ino)) {
3498 			if (*ancestor_ino == 0)
3499 				*ancestor_ino = ino;
3500 			ret = get_first_ref(sctx->parent_root, ino,
3501 					    &parent_inode, &parent_gen, name);
3502 		} else {
3503 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3504 							&parent_inode,
3505 							&parent_gen, name);
3506 			if (ret > 0) {
3507 				ret = 0;
3508 				break;
3509 			}
3510 		}
3511 		if (ret < 0)
3512 			break;
3513 		if (parent_inode == start_ino) {
3514 			ret = 1;
3515 			if (*ancestor_ino == 0)
3516 				*ancestor_ino = ino;
3517 			break;
3518 		}
3519 		ino = parent_inode;
3520 		gen = parent_gen;
3521 	}
3522 	return ret;
3523 }
3524 
3525 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3526 {
3527 	struct fs_path *from_path = NULL;
3528 	struct fs_path *to_path = NULL;
3529 	struct fs_path *name = NULL;
3530 	u64 orig_progress = sctx->send_progress;
3531 	struct recorded_ref *cur;
3532 	u64 parent_ino, parent_gen;
3533 	struct waiting_dir_move *dm = NULL;
3534 	u64 rmdir_ino = 0;
3535 	u64 rmdir_gen;
3536 	u64 ancestor;
3537 	bool is_orphan;
3538 	int ret;
3539 
3540 	name = fs_path_alloc();
3541 	from_path = fs_path_alloc();
3542 	if (!name || !from_path) {
3543 		ret = -ENOMEM;
3544 		goto out;
3545 	}
3546 
3547 	dm = get_waiting_dir_move(sctx, pm->ino);
3548 	ASSERT(dm);
3549 	rmdir_ino = dm->rmdir_ino;
3550 	rmdir_gen = dm->rmdir_gen;
3551 	is_orphan = dm->orphanized;
3552 	free_waiting_dir_move(sctx, dm);
3553 
3554 	if (is_orphan) {
3555 		ret = gen_unique_name(sctx, pm->ino,
3556 				      pm->gen, from_path);
3557 	} else {
3558 		ret = get_first_ref(sctx->parent_root, pm->ino,
3559 				    &parent_ino, &parent_gen, name);
3560 		if (ret < 0)
3561 			goto out;
3562 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3563 				   from_path);
3564 		if (ret < 0)
3565 			goto out;
3566 		ret = fs_path_add_path(from_path, name);
3567 	}
3568 	if (ret < 0)
3569 		goto out;
3570 
3571 	sctx->send_progress = sctx->cur_ino + 1;
3572 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3573 	if (ret < 0)
3574 		goto out;
3575 	if (ret) {
3576 		LIST_HEAD(deleted_refs);
3577 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3578 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3579 					   &pm->update_refs, &deleted_refs,
3580 					   is_orphan);
3581 		if (ret < 0)
3582 			goto out;
3583 		if (rmdir_ino) {
3584 			dm = get_waiting_dir_move(sctx, pm->ino);
3585 			ASSERT(dm);
3586 			dm->rmdir_ino = rmdir_ino;
3587 			dm->rmdir_gen = rmdir_gen;
3588 		}
3589 		goto out;
3590 	}
3591 	fs_path_reset(name);
3592 	to_path = name;
3593 	name = NULL;
3594 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3595 	if (ret < 0)
3596 		goto out;
3597 
3598 	ret = send_rename(sctx, from_path, to_path);
3599 	if (ret < 0)
3600 		goto out;
3601 
3602 	if (rmdir_ino) {
3603 		struct orphan_dir_info *odi;
3604 		u64 gen;
3605 
3606 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3607 		if (!odi) {
3608 			/* already deleted */
3609 			goto finish;
3610 		}
3611 		gen = odi->gen;
3612 
3613 		ret = can_rmdir(sctx, rmdir_ino, gen);
3614 		if (ret < 0)
3615 			goto out;
3616 		if (!ret)
3617 			goto finish;
3618 
3619 		name = fs_path_alloc();
3620 		if (!name) {
3621 			ret = -ENOMEM;
3622 			goto out;
3623 		}
3624 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3625 		if (ret < 0)
3626 			goto out;
3627 		ret = send_rmdir(sctx, name);
3628 		if (ret < 0)
3629 			goto out;
3630 	}
3631 
3632 finish:
3633 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3634 	if (ret < 0)
3635 		goto out;
3636 
3637 	/*
3638 	 * After rename/move, need to update the utimes of both new parent(s)
3639 	 * and old parent(s).
3640 	 */
3641 	list_for_each_entry(cur, &pm->update_refs, list) {
3642 		/*
3643 		 * The parent inode might have been deleted in the send snapshot
3644 		 */
3645 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3646 		if (ret == -ENOENT) {
3647 			ret = 0;
3648 			continue;
3649 		}
3650 		if (ret < 0)
3651 			goto out;
3652 
3653 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3654 		if (ret < 0)
3655 			goto out;
3656 	}
3657 
3658 out:
3659 	fs_path_free(name);
3660 	fs_path_free(from_path);
3661 	fs_path_free(to_path);
3662 	sctx->send_progress = orig_progress;
3663 
3664 	return ret;
3665 }
3666 
3667 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3668 {
3669 	if (!list_empty(&m->list))
3670 		list_del(&m->list);
3671 	if (!RB_EMPTY_NODE(&m->node))
3672 		rb_erase(&m->node, &sctx->pending_dir_moves);
3673 	__free_recorded_refs(&m->update_refs);
3674 	kfree(m);
3675 }
3676 
3677 static void tail_append_pending_moves(struct send_ctx *sctx,
3678 				      struct pending_dir_move *moves,
3679 				      struct list_head *stack)
3680 {
3681 	if (list_empty(&moves->list)) {
3682 		list_add_tail(&moves->list, stack);
3683 	} else {
3684 		LIST_HEAD(list);
3685 		list_splice_init(&moves->list, &list);
3686 		list_add_tail(&moves->list, stack);
3687 		list_splice_tail(&list, stack);
3688 	}
3689 	if (!RB_EMPTY_NODE(&moves->node)) {
3690 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3691 		RB_CLEAR_NODE(&moves->node);
3692 	}
3693 }
3694 
3695 static int apply_children_dir_moves(struct send_ctx *sctx)
3696 {
3697 	struct pending_dir_move *pm;
3698 	LIST_HEAD(stack);
3699 	u64 parent_ino = sctx->cur_ino;
3700 	int ret = 0;
3701 
3702 	pm = get_pending_dir_moves(sctx, parent_ino);
3703 	if (!pm)
3704 		return 0;
3705 
3706 	tail_append_pending_moves(sctx, pm, &stack);
3707 
3708 	while (!list_empty(&stack)) {
3709 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3710 		parent_ino = pm->ino;
3711 		ret = apply_dir_move(sctx, pm);
3712 		free_pending_move(sctx, pm);
3713 		if (ret)
3714 			goto out;
3715 		pm = get_pending_dir_moves(sctx, parent_ino);
3716 		if (pm)
3717 			tail_append_pending_moves(sctx, pm, &stack);
3718 	}
3719 	return 0;
3720 
3721 out:
3722 	while (!list_empty(&stack)) {
3723 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3724 		free_pending_move(sctx, pm);
3725 	}
3726 	return ret;
3727 }
3728 
3729 /*
3730  * We might need to delay a directory rename even when no ancestor directory
3731  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3732  * renamed. This happens when we rename a directory to the old name (the name
3733  * in the parent root) of some other unrelated directory that got its rename
3734  * delayed due to some ancestor with higher number that got renamed.
3735  *
3736  * Example:
3737  *
3738  * Parent snapshot:
3739  * .                                       (ino 256)
3740  * |---- a/                                (ino 257)
3741  * |     |---- file                        (ino 260)
3742  * |
3743  * |---- b/                                (ino 258)
3744  * |---- c/                                (ino 259)
3745  *
3746  * Send snapshot:
3747  * .                                       (ino 256)
3748  * |---- a/                                (ino 258)
3749  * |---- x/                                (ino 259)
3750  *       |---- y/                          (ino 257)
3751  *             |----- file                 (ino 260)
3752  *
3753  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3754  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3755  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3756  * must issue is:
3757  *
3758  * 1 - rename 259 from 'c' to 'x'
3759  * 2 - rename 257 from 'a' to 'x/y'
3760  * 3 - rename 258 from 'b' to 'a'
3761  *
3762  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3763  * be done right away and < 0 on error.
3764  */
3765 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3766 				  struct recorded_ref *parent_ref,
3767 				  const bool is_orphan)
3768 {
3769 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3770 	struct btrfs_path *path;
3771 	struct btrfs_key key;
3772 	struct btrfs_key di_key;
3773 	struct btrfs_dir_item *di;
3774 	u64 left_gen;
3775 	u64 right_gen;
3776 	int ret = 0;
3777 	struct waiting_dir_move *wdm;
3778 
3779 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3780 		return 0;
3781 
3782 	path = alloc_path_for_send();
3783 	if (!path)
3784 		return -ENOMEM;
3785 
3786 	key.objectid = parent_ref->dir;
3787 	key.type = BTRFS_DIR_ITEM_KEY;
3788 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3789 
3790 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3791 	if (ret < 0) {
3792 		goto out;
3793 	} else if (ret > 0) {
3794 		ret = 0;
3795 		goto out;
3796 	}
3797 
3798 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3799 				       parent_ref->name_len);
3800 	if (!di) {
3801 		ret = 0;
3802 		goto out;
3803 	}
3804 	/*
3805 	 * di_key.objectid has the number of the inode that has a dentry in the
3806 	 * parent directory with the same name that sctx->cur_ino is being
3807 	 * renamed to. We need to check if that inode is in the send root as
3808 	 * well and if it is currently marked as an inode with a pending rename,
3809 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3810 	 * that it happens after that other inode is renamed.
3811 	 */
3812 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3813 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3814 		ret = 0;
3815 		goto out;
3816 	}
3817 
3818 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3819 	if (ret < 0)
3820 		goto out;
3821 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3822 	if (ret < 0) {
3823 		if (ret == -ENOENT)
3824 			ret = 0;
3825 		goto out;
3826 	}
3827 
3828 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3829 	if (right_gen != left_gen) {
3830 		ret = 0;
3831 		goto out;
3832 	}
3833 
3834 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3835 	if (wdm && !wdm->orphanized) {
3836 		ret = add_pending_dir_move(sctx,
3837 					   sctx->cur_ino,
3838 					   sctx->cur_inode_gen,
3839 					   di_key.objectid,
3840 					   &sctx->new_refs,
3841 					   &sctx->deleted_refs,
3842 					   is_orphan);
3843 		if (!ret)
3844 			ret = 1;
3845 	}
3846 out:
3847 	btrfs_free_path(path);
3848 	return ret;
3849 }
3850 
3851 /*
3852  * Check if inode ino2, or any of its ancestors, is inode ino1.
3853  * Return 1 if true, 0 if false and < 0 on error.
3854  */
3855 static int check_ino_in_path(struct btrfs_root *root,
3856 			     const u64 ino1,
3857 			     const u64 ino1_gen,
3858 			     const u64 ino2,
3859 			     const u64 ino2_gen,
3860 			     struct fs_path *fs_path)
3861 {
3862 	u64 ino = ino2;
3863 
3864 	if (ino1 == ino2)
3865 		return ino1_gen == ino2_gen;
3866 
3867 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3868 		u64 parent;
3869 		u64 parent_gen;
3870 		int ret;
3871 
3872 		fs_path_reset(fs_path);
3873 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3874 		if (ret < 0)
3875 			return ret;
3876 		if (parent == ino1)
3877 			return parent_gen == ino1_gen;
3878 		ino = parent;
3879 	}
3880 	return 0;
3881 }
3882 
3883 /*
3884  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3885  * possible path (in case ino2 is not a directory and has multiple hard links).
3886  * Return 1 if true, 0 if false and < 0 on error.
3887  */
3888 static int is_ancestor(struct btrfs_root *root,
3889 		       const u64 ino1,
3890 		       const u64 ino1_gen,
3891 		       const u64 ino2,
3892 		       struct fs_path *fs_path)
3893 {
3894 	bool free_fs_path = false;
3895 	int ret = 0;
3896 	int iter_ret = 0;
3897 	struct btrfs_path *path = NULL;
3898 	struct btrfs_key key;
3899 
3900 	if (!fs_path) {
3901 		fs_path = fs_path_alloc();
3902 		if (!fs_path)
3903 			return -ENOMEM;
3904 		free_fs_path = true;
3905 	}
3906 
3907 	path = alloc_path_for_send();
3908 	if (!path) {
3909 		ret = -ENOMEM;
3910 		goto out;
3911 	}
3912 
3913 	key.objectid = ino2;
3914 	key.type = BTRFS_INODE_REF_KEY;
3915 	key.offset = 0;
3916 
3917 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3918 		struct extent_buffer *leaf = path->nodes[0];
3919 		int slot = path->slots[0];
3920 		u32 cur_offset = 0;
3921 		u32 item_size;
3922 
3923 		if (key.objectid != ino2)
3924 			break;
3925 		if (key.type != BTRFS_INODE_REF_KEY &&
3926 		    key.type != BTRFS_INODE_EXTREF_KEY)
3927 			break;
3928 
3929 		item_size = btrfs_item_size(leaf, slot);
3930 		while (cur_offset < item_size) {
3931 			u64 parent;
3932 			u64 parent_gen;
3933 
3934 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3935 				unsigned long ptr;
3936 				struct btrfs_inode_extref *extref;
3937 
3938 				ptr = btrfs_item_ptr_offset(leaf, slot);
3939 				extref = (struct btrfs_inode_extref *)
3940 					(ptr + cur_offset);
3941 				parent = btrfs_inode_extref_parent(leaf,
3942 								   extref);
3943 				cur_offset += sizeof(*extref);
3944 				cur_offset += btrfs_inode_extref_name_len(leaf,
3945 								  extref);
3946 			} else {
3947 				parent = key.offset;
3948 				cur_offset = item_size;
3949 			}
3950 
3951 			ret = get_inode_gen(root, parent, &parent_gen);
3952 			if (ret < 0)
3953 				goto out;
3954 			ret = check_ino_in_path(root, ino1, ino1_gen,
3955 						parent, parent_gen, fs_path);
3956 			if (ret)
3957 				goto out;
3958 		}
3959 	}
3960 	ret = 0;
3961 	if (iter_ret < 0)
3962 		ret = iter_ret;
3963 
3964 out:
3965 	btrfs_free_path(path);
3966 	if (free_fs_path)
3967 		fs_path_free(fs_path);
3968 	return ret;
3969 }
3970 
3971 static int wait_for_parent_move(struct send_ctx *sctx,
3972 				struct recorded_ref *parent_ref,
3973 				const bool is_orphan)
3974 {
3975 	int ret = 0;
3976 	u64 ino = parent_ref->dir;
3977 	u64 ino_gen = parent_ref->dir_gen;
3978 	u64 parent_ino_before, parent_ino_after;
3979 	struct fs_path *path_before = NULL;
3980 	struct fs_path *path_after = NULL;
3981 	int len1, len2;
3982 
3983 	path_after = fs_path_alloc();
3984 	path_before = fs_path_alloc();
3985 	if (!path_after || !path_before) {
3986 		ret = -ENOMEM;
3987 		goto out;
3988 	}
3989 
3990 	/*
3991 	 * Our current directory inode may not yet be renamed/moved because some
3992 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3993 	 * such ancestor exists and make sure our own rename/move happens after
3994 	 * that ancestor is processed to avoid path build infinite loops (done
3995 	 * at get_cur_path()).
3996 	 */
3997 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3998 		u64 parent_ino_after_gen;
3999 
4000 		if (is_waiting_for_move(sctx, ino)) {
4001 			/*
4002 			 * If the current inode is an ancestor of ino in the
4003 			 * parent root, we need to delay the rename of the
4004 			 * current inode, otherwise don't delayed the rename
4005 			 * because we can end up with a circular dependency
4006 			 * of renames, resulting in some directories never
4007 			 * getting the respective rename operations issued in
4008 			 * the send stream or getting into infinite path build
4009 			 * loops.
4010 			 */
4011 			ret = is_ancestor(sctx->parent_root,
4012 					  sctx->cur_ino, sctx->cur_inode_gen,
4013 					  ino, path_before);
4014 			if (ret)
4015 				break;
4016 		}
4017 
4018 		fs_path_reset(path_before);
4019 		fs_path_reset(path_after);
4020 
4021 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4022 				    &parent_ino_after_gen, path_after);
4023 		if (ret < 0)
4024 			goto out;
4025 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4026 				    NULL, path_before);
4027 		if (ret < 0 && ret != -ENOENT) {
4028 			goto out;
4029 		} else if (ret == -ENOENT) {
4030 			ret = 0;
4031 			break;
4032 		}
4033 
4034 		len1 = fs_path_len(path_before);
4035 		len2 = fs_path_len(path_after);
4036 		if (ino > sctx->cur_ino &&
4037 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4038 		     memcmp(path_before->start, path_after->start, len1))) {
4039 			u64 parent_ino_gen;
4040 
4041 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4042 			if (ret < 0)
4043 				goto out;
4044 			if (ino_gen == parent_ino_gen) {
4045 				ret = 1;
4046 				break;
4047 			}
4048 		}
4049 		ino = parent_ino_after;
4050 		ino_gen = parent_ino_after_gen;
4051 	}
4052 
4053 out:
4054 	fs_path_free(path_before);
4055 	fs_path_free(path_after);
4056 
4057 	if (ret == 1) {
4058 		ret = add_pending_dir_move(sctx,
4059 					   sctx->cur_ino,
4060 					   sctx->cur_inode_gen,
4061 					   ino,
4062 					   &sctx->new_refs,
4063 					   &sctx->deleted_refs,
4064 					   is_orphan);
4065 		if (!ret)
4066 			ret = 1;
4067 	}
4068 
4069 	return ret;
4070 }
4071 
4072 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4073 {
4074 	int ret;
4075 	struct fs_path *new_path;
4076 
4077 	/*
4078 	 * Our reference's name member points to its full_path member string, so
4079 	 * we use here a new path.
4080 	 */
4081 	new_path = fs_path_alloc();
4082 	if (!new_path)
4083 		return -ENOMEM;
4084 
4085 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4086 	if (ret < 0) {
4087 		fs_path_free(new_path);
4088 		return ret;
4089 	}
4090 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4091 	if (ret < 0) {
4092 		fs_path_free(new_path);
4093 		return ret;
4094 	}
4095 
4096 	fs_path_free(ref->full_path);
4097 	set_ref_path(ref, new_path);
4098 
4099 	return 0;
4100 }
4101 
4102 /*
4103  * When processing the new references for an inode we may orphanize an existing
4104  * directory inode because its old name conflicts with one of the new references
4105  * of the current inode. Later, when processing another new reference of our
4106  * inode, we might need to orphanize another inode, but the path we have in the
4107  * reference reflects the pre-orphanization name of the directory we previously
4108  * orphanized. For example:
4109  *
4110  * parent snapshot looks like:
4111  *
4112  * .                                     (ino 256)
4113  * |----- f1                             (ino 257)
4114  * |----- f2                             (ino 258)
4115  * |----- d1/                            (ino 259)
4116  *        |----- d2/                     (ino 260)
4117  *
4118  * send snapshot looks like:
4119  *
4120  * .                                     (ino 256)
4121  * |----- d1                             (ino 258)
4122  * |----- f2/                            (ino 259)
4123  *        |----- f2_link/                (ino 260)
4124  *        |       |----- f1              (ino 257)
4125  *        |
4126  *        |----- d2                      (ino 258)
4127  *
4128  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4129  * cache it in the name cache. Later when we start processing inode 258, when
4130  * collecting all its new references we set a full path of "d1/d2" for its new
4131  * reference with name "d2". When we start processing the new references we
4132  * start by processing the new reference with name "d1", and this results in
4133  * orphanizing inode 259, since its old reference causes a conflict. Then we
4134  * move on the next new reference, with name "d2", and we find out we must
4135  * orphanize inode 260, as its old reference conflicts with ours - but for the
4136  * orphanization we use a source path corresponding to the path we stored in the
4137  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4138  * receiver fail since the path component "d1/" no longer exists, it was renamed
4139  * to "o259-6-0/" when processing the previous new reference. So in this case we
4140  * must recompute the path in the new reference and use it for the new
4141  * orphanization operation.
4142  */
4143 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4144 {
4145 	char *name;
4146 	int ret;
4147 
4148 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4149 	if (!name)
4150 		return -ENOMEM;
4151 
4152 	fs_path_reset(ref->full_path);
4153 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4154 	if (ret < 0)
4155 		goto out;
4156 
4157 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4158 	if (ret < 0)
4159 		goto out;
4160 
4161 	/* Update the reference's base name pointer. */
4162 	set_ref_path(ref, ref->full_path);
4163 out:
4164 	kfree(name);
4165 	return ret;
4166 }
4167 
4168 /*
4169  * This does all the move/link/unlink/rmdir magic.
4170  */
4171 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4172 {
4173 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4174 	int ret = 0;
4175 	struct recorded_ref *cur;
4176 	struct recorded_ref *cur2;
4177 	LIST_HEAD(check_dirs);
4178 	struct fs_path *valid_path = NULL;
4179 	u64 ow_inode = 0;
4180 	u64 ow_gen;
4181 	u64 ow_mode;
4182 	int did_overwrite = 0;
4183 	int is_orphan = 0;
4184 	u64 last_dir_ino_rm = 0;
4185 	bool can_rename = true;
4186 	bool orphanized_dir = false;
4187 	bool orphanized_ancestor = false;
4188 
4189 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4190 
4191 	/*
4192 	 * This should never happen as the root dir always has the same ref
4193 	 * which is always '..'
4194 	 */
4195 	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4196 		btrfs_err(fs_info,
4197 			  "send: unexpected inode %llu in process_recorded_refs()",
4198 			  sctx->cur_ino);
4199 		ret = -EINVAL;
4200 		goto out;
4201 	}
4202 
4203 	valid_path = fs_path_alloc();
4204 	if (!valid_path) {
4205 		ret = -ENOMEM;
4206 		goto out;
4207 	}
4208 
4209 	/*
4210 	 * First, check if the first ref of the current inode was overwritten
4211 	 * before. If yes, we know that the current inode was already orphanized
4212 	 * and thus use the orphan name. If not, we can use get_cur_path to
4213 	 * get the path of the first ref as it would like while receiving at
4214 	 * this point in time.
4215 	 * New inodes are always orphan at the beginning, so force to use the
4216 	 * orphan name in this case.
4217 	 * The first ref is stored in valid_path and will be updated if it
4218 	 * gets moved around.
4219 	 */
4220 	if (!sctx->cur_inode_new) {
4221 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4222 				sctx->cur_inode_gen);
4223 		if (ret < 0)
4224 			goto out;
4225 		if (ret)
4226 			did_overwrite = 1;
4227 	}
4228 	if (sctx->cur_inode_new || did_overwrite) {
4229 		ret = gen_unique_name(sctx, sctx->cur_ino,
4230 				sctx->cur_inode_gen, valid_path);
4231 		if (ret < 0)
4232 			goto out;
4233 		is_orphan = 1;
4234 	} else {
4235 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4236 				valid_path);
4237 		if (ret < 0)
4238 			goto out;
4239 	}
4240 
4241 	/*
4242 	 * Before doing any rename and link operations, do a first pass on the
4243 	 * new references to orphanize any unprocessed inodes that may have a
4244 	 * reference that conflicts with one of the new references of the current
4245 	 * inode. This needs to happen first because a new reference may conflict
4246 	 * with the old reference of a parent directory, so we must make sure
4247 	 * that the path used for link and rename commands don't use an
4248 	 * orphanized name when an ancestor was not yet orphanized.
4249 	 *
4250 	 * Example:
4251 	 *
4252 	 * Parent snapshot:
4253 	 *
4254 	 * .                                                      (ino 256)
4255 	 * |----- testdir/                                        (ino 259)
4256 	 * |          |----- a                                    (ino 257)
4257 	 * |
4258 	 * |----- b                                               (ino 258)
4259 	 *
4260 	 * Send snapshot:
4261 	 *
4262 	 * .                                                      (ino 256)
4263 	 * |----- testdir_2/                                      (ino 259)
4264 	 * |          |----- a                                    (ino 260)
4265 	 * |
4266 	 * |----- testdir                                         (ino 257)
4267 	 * |----- b                                               (ino 257)
4268 	 * |----- b2                                              (ino 258)
4269 	 *
4270 	 * Processing the new reference for inode 257 with name "b" may happen
4271 	 * before processing the new reference with name "testdir". If so, we
4272 	 * must make sure that by the time we send a link command to create the
4273 	 * hard link "b", inode 259 was already orphanized, since the generated
4274 	 * path in "valid_path" already contains the orphanized name for 259.
4275 	 * We are processing inode 257, so only later when processing 259 we do
4276 	 * the rename operation to change its temporary (orphanized) name to
4277 	 * "testdir_2".
4278 	 */
4279 	list_for_each_entry(cur, &sctx->new_refs, list) {
4280 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4281 		if (ret < 0)
4282 			goto out;
4283 		if (ret == inode_state_will_create)
4284 			continue;
4285 
4286 		/*
4287 		 * Check if this new ref would overwrite the first ref of another
4288 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4289 		 * If we find an overwritten ref that is not the first ref,
4290 		 * simply unlink it.
4291 		 */
4292 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4293 				cur->name, cur->name_len,
4294 				&ow_inode, &ow_gen, &ow_mode);
4295 		if (ret < 0)
4296 			goto out;
4297 		if (ret) {
4298 			ret = is_first_ref(sctx->parent_root,
4299 					   ow_inode, cur->dir, cur->name,
4300 					   cur->name_len);
4301 			if (ret < 0)
4302 				goto out;
4303 			if (ret) {
4304 				struct name_cache_entry *nce;
4305 				struct waiting_dir_move *wdm;
4306 
4307 				if (orphanized_dir) {
4308 					ret = refresh_ref_path(sctx, cur);
4309 					if (ret < 0)
4310 						goto out;
4311 				}
4312 
4313 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4314 						cur->full_path);
4315 				if (ret < 0)
4316 					goto out;
4317 				if (S_ISDIR(ow_mode))
4318 					orphanized_dir = true;
4319 
4320 				/*
4321 				 * If ow_inode has its rename operation delayed
4322 				 * make sure that its orphanized name is used in
4323 				 * the source path when performing its rename
4324 				 * operation.
4325 				 */
4326 				wdm = get_waiting_dir_move(sctx, ow_inode);
4327 				if (wdm)
4328 					wdm->orphanized = true;
4329 
4330 				/*
4331 				 * Make sure we clear our orphanized inode's
4332 				 * name from the name cache. This is because the
4333 				 * inode ow_inode might be an ancestor of some
4334 				 * other inode that will be orphanized as well
4335 				 * later and has an inode number greater than
4336 				 * sctx->send_progress. We need to prevent
4337 				 * future name lookups from using the old name
4338 				 * and get instead the orphan name.
4339 				 */
4340 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4341 				if (nce)
4342 					btrfs_lru_cache_remove(&sctx->name_cache,
4343 							       &nce->entry);
4344 
4345 				/*
4346 				 * ow_inode might currently be an ancestor of
4347 				 * cur_ino, therefore compute valid_path (the
4348 				 * current path of cur_ino) again because it
4349 				 * might contain the pre-orphanization name of
4350 				 * ow_inode, which is no longer valid.
4351 				 */
4352 				ret = is_ancestor(sctx->parent_root,
4353 						  ow_inode, ow_gen,
4354 						  sctx->cur_ino, NULL);
4355 				if (ret > 0) {
4356 					orphanized_ancestor = true;
4357 					fs_path_reset(valid_path);
4358 					ret = get_cur_path(sctx, sctx->cur_ino,
4359 							   sctx->cur_inode_gen,
4360 							   valid_path);
4361 				}
4362 				if (ret < 0)
4363 					goto out;
4364 			} else {
4365 				/*
4366 				 * If we previously orphanized a directory that
4367 				 * collided with a new reference that we already
4368 				 * processed, recompute the current path because
4369 				 * that directory may be part of the path.
4370 				 */
4371 				if (orphanized_dir) {
4372 					ret = refresh_ref_path(sctx, cur);
4373 					if (ret < 0)
4374 						goto out;
4375 				}
4376 				ret = send_unlink(sctx, cur->full_path);
4377 				if (ret < 0)
4378 					goto out;
4379 			}
4380 		}
4381 
4382 	}
4383 
4384 	list_for_each_entry(cur, &sctx->new_refs, list) {
4385 		/*
4386 		 * We may have refs where the parent directory does not exist
4387 		 * yet. This happens if the parent directories inum is higher
4388 		 * than the current inum. To handle this case, we create the
4389 		 * parent directory out of order. But we need to check if this
4390 		 * did already happen before due to other refs in the same dir.
4391 		 */
4392 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4393 		if (ret < 0)
4394 			goto out;
4395 		if (ret == inode_state_will_create) {
4396 			ret = 0;
4397 			/*
4398 			 * First check if any of the current inodes refs did
4399 			 * already create the dir.
4400 			 */
4401 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4402 				if (cur == cur2)
4403 					break;
4404 				if (cur2->dir == cur->dir) {
4405 					ret = 1;
4406 					break;
4407 				}
4408 			}
4409 
4410 			/*
4411 			 * If that did not happen, check if a previous inode
4412 			 * did already create the dir.
4413 			 */
4414 			if (!ret)
4415 				ret = did_create_dir(sctx, cur->dir);
4416 			if (ret < 0)
4417 				goto out;
4418 			if (!ret) {
4419 				ret = send_create_inode(sctx, cur->dir);
4420 				if (ret < 0)
4421 					goto out;
4422 				cache_dir_created(sctx, cur->dir);
4423 			}
4424 		}
4425 
4426 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4427 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4428 			if (ret < 0)
4429 				goto out;
4430 			if (ret == 1) {
4431 				can_rename = false;
4432 				*pending_move = 1;
4433 			}
4434 		}
4435 
4436 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4437 		    can_rename) {
4438 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4439 			if (ret < 0)
4440 				goto out;
4441 			if (ret == 1) {
4442 				can_rename = false;
4443 				*pending_move = 1;
4444 			}
4445 		}
4446 
4447 		/*
4448 		 * link/move the ref to the new place. If we have an orphan
4449 		 * inode, move it and update valid_path. If not, link or move
4450 		 * it depending on the inode mode.
4451 		 */
4452 		if (is_orphan && can_rename) {
4453 			ret = send_rename(sctx, valid_path, cur->full_path);
4454 			if (ret < 0)
4455 				goto out;
4456 			is_orphan = 0;
4457 			ret = fs_path_copy(valid_path, cur->full_path);
4458 			if (ret < 0)
4459 				goto out;
4460 		} else if (can_rename) {
4461 			if (S_ISDIR(sctx->cur_inode_mode)) {
4462 				/*
4463 				 * Dirs can't be linked, so move it. For moved
4464 				 * dirs, we always have one new and one deleted
4465 				 * ref. The deleted ref is ignored later.
4466 				 */
4467 				ret = send_rename(sctx, valid_path,
4468 						  cur->full_path);
4469 				if (!ret)
4470 					ret = fs_path_copy(valid_path,
4471 							   cur->full_path);
4472 				if (ret < 0)
4473 					goto out;
4474 			} else {
4475 				/*
4476 				 * We might have previously orphanized an inode
4477 				 * which is an ancestor of our current inode,
4478 				 * so our reference's full path, which was
4479 				 * computed before any such orphanizations, must
4480 				 * be updated.
4481 				 */
4482 				if (orphanized_dir) {
4483 					ret = update_ref_path(sctx, cur);
4484 					if (ret < 0)
4485 						goto out;
4486 				}
4487 				ret = send_link(sctx, cur->full_path,
4488 						valid_path);
4489 				if (ret < 0)
4490 					goto out;
4491 			}
4492 		}
4493 		ret = dup_ref(cur, &check_dirs);
4494 		if (ret < 0)
4495 			goto out;
4496 	}
4497 
4498 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4499 		/*
4500 		 * Check if we can already rmdir the directory. If not,
4501 		 * orphanize it. For every dir item inside that gets deleted
4502 		 * later, we do this check again and rmdir it then if possible.
4503 		 * See the use of check_dirs for more details.
4504 		 */
4505 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4506 		if (ret < 0)
4507 			goto out;
4508 		if (ret) {
4509 			ret = send_rmdir(sctx, valid_path);
4510 			if (ret < 0)
4511 				goto out;
4512 		} else if (!is_orphan) {
4513 			ret = orphanize_inode(sctx, sctx->cur_ino,
4514 					sctx->cur_inode_gen, valid_path);
4515 			if (ret < 0)
4516 				goto out;
4517 			is_orphan = 1;
4518 		}
4519 
4520 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4521 			ret = dup_ref(cur, &check_dirs);
4522 			if (ret < 0)
4523 				goto out;
4524 		}
4525 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4526 		   !list_empty(&sctx->deleted_refs)) {
4527 		/*
4528 		 * We have a moved dir. Add the old parent to check_dirs
4529 		 */
4530 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4531 				list);
4532 		ret = dup_ref(cur, &check_dirs);
4533 		if (ret < 0)
4534 			goto out;
4535 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4536 		/*
4537 		 * We have a non dir inode. Go through all deleted refs and
4538 		 * unlink them if they were not already overwritten by other
4539 		 * inodes.
4540 		 */
4541 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4542 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4543 					sctx->cur_ino, sctx->cur_inode_gen,
4544 					cur->name, cur->name_len);
4545 			if (ret < 0)
4546 				goto out;
4547 			if (!ret) {
4548 				/*
4549 				 * If we orphanized any ancestor before, we need
4550 				 * to recompute the full path for deleted names,
4551 				 * since any such path was computed before we
4552 				 * processed any references and orphanized any
4553 				 * ancestor inode.
4554 				 */
4555 				if (orphanized_ancestor) {
4556 					ret = update_ref_path(sctx, cur);
4557 					if (ret < 0)
4558 						goto out;
4559 				}
4560 				ret = send_unlink(sctx, cur->full_path);
4561 				if (ret < 0)
4562 					goto out;
4563 			}
4564 			ret = dup_ref(cur, &check_dirs);
4565 			if (ret < 0)
4566 				goto out;
4567 		}
4568 		/*
4569 		 * If the inode is still orphan, unlink the orphan. This may
4570 		 * happen when a previous inode did overwrite the first ref
4571 		 * of this inode and no new refs were added for the current
4572 		 * inode. Unlinking does not mean that the inode is deleted in
4573 		 * all cases. There may still be links to this inode in other
4574 		 * places.
4575 		 */
4576 		if (is_orphan) {
4577 			ret = send_unlink(sctx, valid_path);
4578 			if (ret < 0)
4579 				goto out;
4580 		}
4581 	}
4582 
4583 	/*
4584 	 * We did collect all parent dirs where cur_inode was once located. We
4585 	 * now go through all these dirs and check if they are pending for
4586 	 * deletion and if it's finally possible to perform the rmdir now.
4587 	 * We also update the inode stats of the parent dirs here.
4588 	 */
4589 	list_for_each_entry(cur, &check_dirs, list) {
4590 		/*
4591 		 * In case we had refs into dirs that were not processed yet,
4592 		 * we don't need to do the utime and rmdir logic for these dirs.
4593 		 * The dir will be processed later.
4594 		 */
4595 		if (cur->dir > sctx->cur_ino)
4596 			continue;
4597 
4598 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4599 		if (ret < 0)
4600 			goto out;
4601 
4602 		if (ret == inode_state_did_create ||
4603 		    ret == inode_state_no_change) {
4604 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4605 			if (ret < 0)
4606 				goto out;
4607 		} else if (ret == inode_state_did_delete &&
4608 			   cur->dir != last_dir_ino_rm) {
4609 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4610 			if (ret < 0)
4611 				goto out;
4612 			if (ret) {
4613 				ret = get_cur_path(sctx, cur->dir,
4614 						   cur->dir_gen, valid_path);
4615 				if (ret < 0)
4616 					goto out;
4617 				ret = send_rmdir(sctx, valid_path);
4618 				if (ret < 0)
4619 					goto out;
4620 				last_dir_ino_rm = cur->dir;
4621 			}
4622 		}
4623 	}
4624 
4625 	ret = 0;
4626 
4627 out:
4628 	__free_recorded_refs(&check_dirs);
4629 	free_recorded_refs(sctx);
4630 	fs_path_free(valid_path);
4631 	return ret;
4632 }
4633 
4634 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4635 {
4636 	const struct recorded_ref *data = k;
4637 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4638 	int result;
4639 
4640 	if (data->dir > ref->dir)
4641 		return 1;
4642 	if (data->dir < ref->dir)
4643 		return -1;
4644 	if (data->dir_gen > ref->dir_gen)
4645 		return 1;
4646 	if (data->dir_gen < ref->dir_gen)
4647 		return -1;
4648 	if (data->name_len > ref->name_len)
4649 		return 1;
4650 	if (data->name_len < ref->name_len)
4651 		return -1;
4652 	result = strcmp(data->name, ref->name);
4653 	if (result > 0)
4654 		return 1;
4655 	if (result < 0)
4656 		return -1;
4657 	return 0;
4658 }
4659 
4660 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4661 {
4662 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4663 
4664 	return rbtree_ref_comp(entry, parent) < 0;
4665 }
4666 
4667 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4668 			      struct fs_path *name, u64 dir, u64 dir_gen,
4669 			      struct send_ctx *sctx)
4670 {
4671 	int ret = 0;
4672 	struct fs_path *path = NULL;
4673 	struct recorded_ref *ref = NULL;
4674 
4675 	path = fs_path_alloc();
4676 	if (!path) {
4677 		ret = -ENOMEM;
4678 		goto out;
4679 	}
4680 
4681 	ref = recorded_ref_alloc();
4682 	if (!ref) {
4683 		ret = -ENOMEM;
4684 		goto out;
4685 	}
4686 
4687 	ret = get_cur_path(sctx, dir, dir_gen, path);
4688 	if (ret < 0)
4689 		goto out;
4690 	ret = fs_path_add_path(path, name);
4691 	if (ret < 0)
4692 		goto out;
4693 
4694 	ref->dir = dir;
4695 	ref->dir_gen = dir_gen;
4696 	set_ref_path(ref, path);
4697 	list_add_tail(&ref->list, refs);
4698 	rb_add(&ref->node, root, rbtree_ref_less);
4699 	ref->root = root;
4700 out:
4701 	if (ret) {
4702 		if (path && (!ref || !ref->full_path))
4703 			fs_path_free(path);
4704 		recorded_ref_free(ref);
4705 	}
4706 	return ret;
4707 }
4708 
4709 static int record_new_ref_if_needed(int num, u64 dir, int index,
4710 				    struct fs_path *name, void *ctx)
4711 {
4712 	int ret = 0;
4713 	struct send_ctx *sctx = ctx;
4714 	struct rb_node *node = NULL;
4715 	struct recorded_ref data;
4716 	struct recorded_ref *ref;
4717 	u64 dir_gen;
4718 
4719 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4720 	if (ret < 0)
4721 		goto out;
4722 
4723 	data.dir = dir;
4724 	data.dir_gen = dir_gen;
4725 	set_ref_path(&data, name);
4726 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4727 	if (node) {
4728 		ref = rb_entry(node, struct recorded_ref, node);
4729 		recorded_ref_free(ref);
4730 	} else {
4731 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4732 					 &sctx->new_refs, name, dir, dir_gen,
4733 					 sctx);
4734 	}
4735 out:
4736 	return ret;
4737 }
4738 
4739 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4740 					struct fs_path *name, void *ctx)
4741 {
4742 	int ret = 0;
4743 	struct send_ctx *sctx = ctx;
4744 	struct rb_node *node = NULL;
4745 	struct recorded_ref data;
4746 	struct recorded_ref *ref;
4747 	u64 dir_gen;
4748 
4749 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4750 	if (ret < 0)
4751 		goto out;
4752 
4753 	data.dir = dir;
4754 	data.dir_gen = dir_gen;
4755 	set_ref_path(&data, name);
4756 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4757 	if (node) {
4758 		ref = rb_entry(node, struct recorded_ref, node);
4759 		recorded_ref_free(ref);
4760 	} else {
4761 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4762 					 &sctx->deleted_refs, name, dir,
4763 					 dir_gen, sctx);
4764 	}
4765 out:
4766 	return ret;
4767 }
4768 
4769 static int record_new_ref(struct send_ctx *sctx)
4770 {
4771 	int ret;
4772 
4773 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4774 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4775 	if (ret < 0)
4776 		goto out;
4777 	ret = 0;
4778 
4779 out:
4780 	return ret;
4781 }
4782 
4783 static int record_deleted_ref(struct send_ctx *sctx)
4784 {
4785 	int ret;
4786 
4787 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4788 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4789 				sctx);
4790 	if (ret < 0)
4791 		goto out;
4792 	ret = 0;
4793 
4794 out:
4795 	return ret;
4796 }
4797 
4798 static int record_changed_ref(struct send_ctx *sctx)
4799 {
4800 	int ret = 0;
4801 
4802 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4803 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4804 	if (ret < 0)
4805 		goto out;
4806 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4807 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4808 	if (ret < 0)
4809 		goto out;
4810 	ret = 0;
4811 
4812 out:
4813 	return ret;
4814 }
4815 
4816 /*
4817  * Record and process all refs at once. Needed when an inode changes the
4818  * generation number, which means that it was deleted and recreated.
4819  */
4820 static int process_all_refs(struct send_ctx *sctx,
4821 			    enum btrfs_compare_tree_result cmd)
4822 {
4823 	int ret = 0;
4824 	int iter_ret = 0;
4825 	struct btrfs_root *root;
4826 	struct btrfs_path *path;
4827 	struct btrfs_key key;
4828 	struct btrfs_key found_key;
4829 	iterate_inode_ref_t cb;
4830 	int pending_move = 0;
4831 
4832 	path = alloc_path_for_send();
4833 	if (!path)
4834 		return -ENOMEM;
4835 
4836 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4837 		root = sctx->send_root;
4838 		cb = record_new_ref_if_needed;
4839 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4840 		root = sctx->parent_root;
4841 		cb = record_deleted_ref_if_needed;
4842 	} else {
4843 		btrfs_err(sctx->send_root->fs_info,
4844 				"Wrong command %d in process_all_refs", cmd);
4845 		ret = -EINVAL;
4846 		goto out;
4847 	}
4848 
4849 	key.objectid = sctx->cmp_key->objectid;
4850 	key.type = BTRFS_INODE_REF_KEY;
4851 	key.offset = 0;
4852 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4853 		if (found_key.objectid != key.objectid ||
4854 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4855 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4856 			break;
4857 
4858 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4859 		if (ret < 0)
4860 			goto out;
4861 	}
4862 	/* Catch error found during iteration */
4863 	if (iter_ret < 0) {
4864 		ret = iter_ret;
4865 		goto out;
4866 	}
4867 	btrfs_release_path(path);
4868 
4869 	/*
4870 	 * We don't actually care about pending_move as we are simply
4871 	 * re-creating this inode and will be rename'ing it into place once we
4872 	 * rename the parent directory.
4873 	 */
4874 	ret = process_recorded_refs(sctx, &pending_move);
4875 out:
4876 	btrfs_free_path(path);
4877 	return ret;
4878 }
4879 
4880 static int send_set_xattr(struct send_ctx *sctx,
4881 			  struct fs_path *path,
4882 			  const char *name, int name_len,
4883 			  const char *data, int data_len)
4884 {
4885 	int ret = 0;
4886 
4887 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4888 	if (ret < 0)
4889 		goto out;
4890 
4891 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4892 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4893 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4894 
4895 	ret = send_cmd(sctx);
4896 
4897 tlv_put_failure:
4898 out:
4899 	return ret;
4900 }
4901 
4902 static int send_remove_xattr(struct send_ctx *sctx,
4903 			  struct fs_path *path,
4904 			  const char *name, int name_len)
4905 {
4906 	int ret = 0;
4907 
4908 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4909 	if (ret < 0)
4910 		goto out;
4911 
4912 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4913 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4914 
4915 	ret = send_cmd(sctx);
4916 
4917 tlv_put_failure:
4918 out:
4919 	return ret;
4920 }
4921 
4922 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4923 			       const char *name, int name_len, const char *data,
4924 			       int data_len, void *ctx)
4925 {
4926 	int ret;
4927 	struct send_ctx *sctx = ctx;
4928 	struct fs_path *p;
4929 	struct posix_acl_xattr_header dummy_acl;
4930 
4931 	/* Capabilities are emitted by finish_inode_if_needed */
4932 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4933 		return 0;
4934 
4935 	p = fs_path_alloc();
4936 	if (!p)
4937 		return -ENOMEM;
4938 
4939 	/*
4940 	 * This hack is needed because empty acls are stored as zero byte
4941 	 * data in xattrs. Problem with that is, that receiving these zero byte
4942 	 * acls will fail later. To fix this, we send a dummy acl list that
4943 	 * only contains the version number and no entries.
4944 	 */
4945 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4946 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4947 		if (data_len == 0) {
4948 			dummy_acl.a_version =
4949 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4950 			data = (char *)&dummy_acl;
4951 			data_len = sizeof(dummy_acl);
4952 		}
4953 	}
4954 
4955 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4956 	if (ret < 0)
4957 		goto out;
4958 
4959 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4960 
4961 out:
4962 	fs_path_free(p);
4963 	return ret;
4964 }
4965 
4966 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4967 				   const char *name, int name_len,
4968 				   const char *data, int data_len, void *ctx)
4969 {
4970 	int ret;
4971 	struct send_ctx *sctx = ctx;
4972 	struct fs_path *p;
4973 
4974 	p = fs_path_alloc();
4975 	if (!p)
4976 		return -ENOMEM;
4977 
4978 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4979 	if (ret < 0)
4980 		goto out;
4981 
4982 	ret = send_remove_xattr(sctx, p, name, name_len);
4983 
4984 out:
4985 	fs_path_free(p);
4986 	return ret;
4987 }
4988 
4989 static int process_new_xattr(struct send_ctx *sctx)
4990 {
4991 	int ret = 0;
4992 
4993 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4994 			       __process_new_xattr, sctx);
4995 
4996 	return ret;
4997 }
4998 
4999 static int process_deleted_xattr(struct send_ctx *sctx)
5000 {
5001 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
5002 				__process_deleted_xattr, sctx);
5003 }
5004 
5005 struct find_xattr_ctx {
5006 	const char *name;
5007 	int name_len;
5008 	int found_idx;
5009 	char *found_data;
5010 	int found_data_len;
5011 };
5012 
5013 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5014 			int name_len, const char *data, int data_len, void *vctx)
5015 {
5016 	struct find_xattr_ctx *ctx = vctx;
5017 
5018 	if (name_len == ctx->name_len &&
5019 	    strncmp(name, ctx->name, name_len) == 0) {
5020 		ctx->found_idx = num;
5021 		ctx->found_data_len = data_len;
5022 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5023 		if (!ctx->found_data)
5024 			return -ENOMEM;
5025 		return 1;
5026 	}
5027 	return 0;
5028 }
5029 
5030 static int find_xattr(struct btrfs_root *root,
5031 		      struct btrfs_path *path,
5032 		      struct btrfs_key *key,
5033 		      const char *name, int name_len,
5034 		      char **data, int *data_len)
5035 {
5036 	int ret;
5037 	struct find_xattr_ctx ctx;
5038 
5039 	ctx.name = name;
5040 	ctx.name_len = name_len;
5041 	ctx.found_idx = -1;
5042 	ctx.found_data = NULL;
5043 	ctx.found_data_len = 0;
5044 
5045 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5046 	if (ret < 0)
5047 		return ret;
5048 
5049 	if (ctx.found_idx == -1)
5050 		return -ENOENT;
5051 	if (data) {
5052 		*data = ctx.found_data;
5053 		*data_len = ctx.found_data_len;
5054 	} else {
5055 		kfree(ctx.found_data);
5056 	}
5057 	return ctx.found_idx;
5058 }
5059 
5060 
5061 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5062 				       const char *name, int name_len,
5063 				       const char *data, int data_len,
5064 				       void *ctx)
5065 {
5066 	int ret;
5067 	struct send_ctx *sctx = ctx;
5068 	char *found_data = NULL;
5069 	int found_data_len  = 0;
5070 
5071 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5072 			 sctx->cmp_key, name, name_len, &found_data,
5073 			 &found_data_len);
5074 	if (ret == -ENOENT) {
5075 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5076 					  data_len, ctx);
5077 	} else if (ret >= 0) {
5078 		if (data_len != found_data_len ||
5079 		    memcmp(data, found_data, data_len)) {
5080 			ret = __process_new_xattr(num, di_key, name, name_len,
5081 						  data, data_len, ctx);
5082 		} else {
5083 			ret = 0;
5084 		}
5085 	}
5086 
5087 	kfree(found_data);
5088 	return ret;
5089 }
5090 
5091 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5092 					   const char *name, int name_len,
5093 					   const char *data, int data_len,
5094 					   void *ctx)
5095 {
5096 	int ret;
5097 	struct send_ctx *sctx = ctx;
5098 
5099 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5100 			 name, name_len, NULL, NULL);
5101 	if (ret == -ENOENT)
5102 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5103 					      data_len, ctx);
5104 	else if (ret >= 0)
5105 		ret = 0;
5106 
5107 	return ret;
5108 }
5109 
5110 static int process_changed_xattr(struct send_ctx *sctx)
5111 {
5112 	int ret = 0;
5113 
5114 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5115 			__process_changed_new_xattr, sctx);
5116 	if (ret < 0)
5117 		goto out;
5118 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5119 			__process_changed_deleted_xattr, sctx);
5120 
5121 out:
5122 	return ret;
5123 }
5124 
5125 static int process_all_new_xattrs(struct send_ctx *sctx)
5126 {
5127 	int ret = 0;
5128 	int iter_ret = 0;
5129 	struct btrfs_root *root;
5130 	struct btrfs_path *path;
5131 	struct btrfs_key key;
5132 	struct btrfs_key found_key;
5133 
5134 	path = alloc_path_for_send();
5135 	if (!path)
5136 		return -ENOMEM;
5137 
5138 	root = sctx->send_root;
5139 
5140 	key.objectid = sctx->cmp_key->objectid;
5141 	key.type = BTRFS_XATTR_ITEM_KEY;
5142 	key.offset = 0;
5143 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5144 		if (found_key.objectid != key.objectid ||
5145 		    found_key.type != key.type) {
5146 			ret = 0;
5147 			break;
5148 		}
5149 
5150 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5151 		if (ret < 0)
5152 			break;
5153 	}
5154 	/* Catch error found during iteration */
5155 	if (iter_ret < 0)
5156 		ret = iter_ret;
5157 
5158 	btrfs_free_path(path);
5159 	return ret;
5160 }
5161 
5162 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5163 		       struct fsverity_descriptor *desc)
5164 {
5165 	int ret;
5166 
5167 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5168 	if (ret < 0)
5169 		goto out;
5170 
5171 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5172 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5173 			le8_to_cpu(desc->hash_algorithm));
5174 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5175 			1U << le8_to_cpu(desc->log_blocksize));
5176 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5177 			le8_to_cpu(desc->salt_size));
5178 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5179 			le32_to_cpu(desc->sig_size));
5180 
5181 	ret = send_cmd(sctx);
5182 
5183 tlv_put_failure:
5184 out:
5185 	return ret;
5186 }
5187 
5188 static int process_verity(struct send_ctx *sctx)
5189 {
5190 	int ret = 0;
5191 	struct inode *inode;
5192 	struct fs_path *p;
5193 
5194 	inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5195 	if (IS_ERR(inode))
5196 		return PTR_ERR(inode);
5197 
5198 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5199 	if (ret < 0)
5200 		goto iput;
5201 
5202 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5203 		ret = -EMSGSIZE;
5204 		goto iput;
5205 	}
5206 	if (!sctx->verity_descriptor) {
5207 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5208 						   GFP_KERNEL);
5209 		if (!sctx->verity_descriptor) {
5210 			ret = -ENOMEM;
5211 			goto iput;
5212 		}
5213 	}
5214 
5215 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5216 	if (ret < 0)
5217 		goto iput;
5218 
5219 	p = fs_path_alloc();
5220 	if (!p) {
5221 		ret = -ENOMEM;
5222 		goto iput;
5223 	}
5224 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5225 	if (ret < 0)
5226 		goto free_path;
5227 
5228 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5229 	if (ret < 0)
5230 		goto free_path;
5231 
5232 free_path:
5233 	fs_path_free(p);
5234 iput:
5235 	iput(inode);
5236 	return ret;
5237 }
5238 
5239 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5240 {
5241 	return sctx->send_max_size - SZ_16K;
5242 }
5243 
5244 static int put_data_header(struct send_ctx *sctx, u32 len)
5245 {
5246 	if (WARN_ON_ONCE(sctx->put_data))
5247 		return -EINVAL;
5248 	sctx->put_data = true;
5249 	if (sctx->proto >= 2) {
5250 		/*
5251 		 * Since v2, the data attribute header doesn't include a length,
5252 		 * it is implicitly to the end of the command.
5253 		 */
5254 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5255 			return -EOVERFLOW;
5256 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5257 		sctx->send_size += sizeof(__le16);
5258 	} else {
5259 		struct btrfs_tlv_header *hdr;
5260 
5261 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5262 			return -EOVERFLOW;
5263 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5264 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5265 		put_unaligned_le16(len, &hdr->tlv_len);
5266 		sctx->send_size += sizeof(*hdr);
5267 	}
5268 	return 0;
5269 }
5270 
5271 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5272 {
5273 	struct btrfs_root *root = sctx->send_root;
5274 	struct btrfs_fs_info *fs_info = root->fs_info;
5275 	struct folio *folio;
5276 	pgoff_t index = offset >> PAGE_SHIFT;
5277 	pgoff_t last_index;
5278 	unsigned pg_offset = offset_in_page(offset);
5279 	struct address_space *mapping = sctx->cur_inode->i_mapping;
5280 	int ret;
5281 
5282 	ret = put_data_header(sctx, len);
5283 	if (ret)
5284 		return ret;
5285 
5286 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5287 
5288 	while (index <= last_index) {
5289 		unsigned cur_len = min_t(unsigned, len,
5290 					 PAGE_SIZE - pg_offset);
5291 
5292 		folio = filemap_lock_folio(mapping, index);
5293 		if (IS_ERR(folio)) {
5294 			page_cache_sync_readahead(mapping,
5295 						  &sctx->ra, NULL, index,
5296 						  last_index + 1 - index);
5297 
5298 	                folio = filemap_grab_folio(mapping, index);
5299 			if (IS_ERR(folio)) {
5300 				ret = PTR_ERR(folio);
5301 				break;
5302 			}
5303 		}
5304 
5305 		WARN_ON(folio_order(folio));
5306 
5307 		if (folio_test_readahead(folio))
5308 			page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5309 						   last_index + 1 - index);
5310 
5311 		if (!folio_test_uptodate(folio)) {
5312 			btrfs_read_folio(NULL, folio);
5313 			folio_lock(folio);
5314 			if (!folio_test_uptodate(folio)) {
5315 				folio_unlock(folio);
5316 				btrfs_err(fs_info,
5317 			"send: IO error at offset %llu for inode %llu root %llu",
5318 					folio_pos(folio), sctx->cur_ino,
5319 					btrfs_root_id(sctx->send_root));
5320 				folio_put(folio);
5321 				ret = -EIO;
5322 				break;
5323 			}
5324 		}
5325 
5326 		memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5327 				  pg_offset, cur_len);
5328 		folio_unlock(folio);
5329 		folio_put(folio);
5330 		index++;
5331 		pg_offset = 0;
5332 		len -= cur_len;
5333 		sctx->send_size += cur_len;
5334 	}
5335 
5336 	return ret;
5337 }
5338 
5339 /*
5340  * Read some bytes from the current inode/file and send a write command to
5341  * user space.
5342  */
5343 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5344 {
5345 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5346 	int ret = 0;
5347 	struct fs_path *p;
5348 
5349 	p = fs_path_alloc();
5350 	if (!p)
5351 		return -ENOMEM;
5352 
5353 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5354 
5355 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5356 	if (ret < 0)
5357 		goto out;
5358 
5359 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5360 	if (ret < 0)
5361 		goto out;
5362 
5363 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5364 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5365 	ret = put_file_data(sctx, offset, len);
5366 	if (ret < 0)
5367 		goto out;
5368 
5369 	ret = send_cmd(sctx);
5370 
5371 tlv_put_failure:
5372 out:
5373 	fs_path_free(p);
5374 	return ret;
5375 }
5376 
5377 /*
5378  * Send a clone command to user space.
5379  */
5380 static int send_clone(struct send_ctx *sctx,
5381 		      u64 offset, u32 len,
5382 		      struct clone_root *clone_root)
5383 {
5384 	int ret = 0;
5385 	struct fs_path *p;
5386 	u64 gen;
5387 
5388 	btrfs_debug(sctx->send_root->fs_info,
5389 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5390 		    offset, len, btrfs_root_id(clone_root->root),
5391 		    clone_root->ino, clone_root->offset);
5392 
5393 	p = fs_path_alloc();
5394 	if (!p)
5395 		return -ENOMEM;
5396 
5397 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5398 	if (ret < 0)
5399 		goto out;
5400 
5401 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5402 	if (ret < 0)
5403 		goto out;
5404 
5405 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5406 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5407 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5408 
5409 	if (clone_root->root == sctx->send_root) {
5410 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5411 		if (ret < 0)
5412 			goto out;
5413 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5414 	} else {
5415 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5416 	}
5417 	if (ret < 0)
5418 		goto out;
5419 
5420 	/*
5421 	 * If the parent we're using has a received_uuid set then use that as
5422 	 * our clone source as that is what we will look for when doing a
5423 	 * receive.
5424 	 *
5425 	 * This covers the case that we create a snapshot off of a received
5426 	 * subvolume and then use that as the parent and try to receive on a
5427 	 * different host.
5428 	 */
5429 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5430 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5431 			     clone_root->root->root_item.received_uuid);
5432 	else
5433 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5434 			     clone_root->root->root_item.uuid);
5435 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5436 		    btrfs_root_ctransid(&clone_root->root->root_item));
5437 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5438 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5439 			clone_root->offset);
5440 
5441 	ret = send_cmd(sctx);
5442 
5443 tlv_put_failure:
5444 out:
5445 	fs_path_free(p);
5446 	return ret;
5447 }
5448 
5449 /*
5450  * Send an update extent command to user space.
5451  */
5452 static int send_update_extent(struct send_ctx *sctx,
5453 			      u64 offset, u32 len)
5454 {
5455 	int ret = 0;
5456 	struct fs_path *p;
5457 
5458 	p = fs_path_alloc();
5459 	if (!p)
5460 		return -ENOMEM;
5461 
5462 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5463 	if (ret < 0)
5464 		goto out;
5465 
5466 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5467 	if (ret < 0)
5468 		goto out;
5469 
5470 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5471 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5472 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5473 
5474 	ret = send_cmd(sctx);
5475 
5476 tlv_put_failure:
5477 out:
5478 	fs_path_free(p);
5479 	return ret;
5480 }
5481 
5482 static int send_hole(struct send_ctx *sctx, u64 end)
5483 {
5484 	struct fs_path *p = NULL;
5485 	u64 read_size = max_send_read_size(sctx);
5486 	u64 offset = sctx->cur_inode_last_extent;
5487 	int ret = 0;
5488 
5489 	/*
5490 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5491 	 * fallocate (for extent preallocation and hole punching), sending a
5492 	 * write of zeroes starting at EOF or beyond would later require issuing
5493 	 * a truncate operation which would undo the write and achieve nothing.
5494 	 */
5495 	if (offset >= sctx->cur_inode_size)
5496 		return 0;
5497 
5498 	/*
5499 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5500 	 * after the i_size.
5501 	 */
5502 	end = min_t(u64, end, sctx->cur_inode_size);
5503 
5504 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5505 		return send_update_extent(sctx, offset, end - offset);
5506 
5507 	p = fs_path_alloc();
5508 	if (!p)
5509 		return -ENOMEM;
5510 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5511 	if (ret < 0)
5512 		goto tlv_put_failure;
5513 	while (offset < end) {
5514 		u64 len = min(end - offset, read_size);
5515 
5516 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5517 		if (ret < 0)
5518 			break;
5519 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5520 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5521 		ret = put_data_header(sctx, len);
5522 		if (ret < 0)
5523 			break;
5524 		memset(sctx->send_buf + sctx->send_size, 0, len);
5525 		sctx->send_size += len;
5526 		ret = send_cmd(sctx);
5527 		if (ret < 0)
5528 			break;
5529 		offset += len;
5530 	}
5531 	sctx->cur_inode_next_write_offset = offset;
5532 tlv_put_failure:
5533 	fs_path_free(p);
5534 	return ret;
5535 }
5536 
5537 static int send_encoded_inline_extent(struct send_ctx *sctx,
5538 				      struct btrfs_path *path, u64 offset,
5539 				      u64 len)
5540 {
5541 	struct btrfs_root *root = sctx->send_root;
5542 	struct btrfs_fs_info *fs_info = root->fs_info;
5543 	struct inode *inode;
5544 	struct fs_path *fspath;
5545 	struct extent_buffer *leaf = path->nodes[0];
5546 	struct btrfs_key key;
5547 	struct btrfs_file_extent_item *ei;
5548 	u64 ram_bytes;
5549 	size_t inline_size;
5550 	int ret;
5551 
5552 	inode = btrfs_iget(sctx->cur_ino, root);
5553 	if (IS_ERR(inode))
5554 		return PTR_ERR(inode);
5555 
5556 	fspath = fs_path_alloc();
5557 	if (!fspath) {
5558 		ret = -ENOMEM;
5559 		goto out;
5560 	}
5561 
5562 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5563 	if (ret < 0)
5564 		goto out;
5565 
5566 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5567 	if (ret < 0)
5568 		goto out;
5569 
5570 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5571 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5572 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5573 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5574 
5575 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5576 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5577 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5578 		    min(key.offset + ram_bytes - offset, len));
5579 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5580 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5581 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5582 				btrfs_file_extent_compression(leaf, ei));
5583 	if (ret < 0)
5584 		goto out;
5585 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5586 
5587 	ret = put_data_header(sctx, inline_size);
5588 	if (ret < 0)
5589 		goto out;
5590 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5591 			   btrfs_file_extent_inline_start(ei), inline_size);
5592 	sctx->send_size += inline_size;
5593 
5594 	ret = send_cmd(sctx);
5595 
5596 tlv_put_failure:
5597 out:
5598 	fs_path_free(fspath);
5599 	iput(inode);
5600 	return ret;
5601 }
5602 
5603 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5604 			       u64 offset, u64 len)
5605 {
5606 	struct btrfs_root *root = sctx->send_root;
5607 	struct btrfs_fs_info *fs_info = root->fs_info;
5608 	struct inode *inode;
5609 	struct fs_path *fspath;
5610 	struct extent_buffer *leaf = path->nodes[0];
5611 	struct btrfs_key key;
5612 	struct btrfs_file_extent_item *ei;
5613 	u64 disk_bytenr, disk_num_bytes;
5614 	u32 data_offset;
5615 	struct btrfs_cmd_header *hdr;
5616 	u32 crc;
5617 	int ret;
5618 
5619 	inode = btrfs_iget(sctx->cur_ino, root);
5620 	if (IS_ERR(inode))
5621 		return PTR_ERR(inode);
5622 
5623 	fspath = fs_path_alloc();
5624 	if (!fspath) {
5625 		ret = -ENOMEM;
5626 		goto out;
5627 	}
5628 
5629 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5630 	if (ret < 0)
5631 		goto out;
5632 
5633 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5634 	if (ret < 0)
5635 		goto out;
5636 
5637 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5638 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5639 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5640 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5641 
5642 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5643 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5645 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5646 			len));
5647 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5648 		    btrfs_file_extent_ram_bytes(leaf, ei));
5649 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5650 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5651 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5652 				btrfs_file_extent_compression(leaf, ei));
5653 	if (ret < 0)
5654 		goto out;
5655 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5656 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5657 
5658 	ret = put_data_header(sctx, disk_num_bytes);
5659 	if (ret < 0)
5660 		goto out;
5661 
5662 	/*
5663 	 * We want to do I/O directly into the send buffer, so get the next page
5664 	 * boundary in the send buffer. This means that there may be a gap
5665 	 * between the beginning of the command and the file data.
5666 	 */
5667 	data_offset = PAGE_ALIGN(sctx->send_size);
5668 	if (data_offset > sctx->send_max_size ||
5669 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5670 		ret = -EOVERFLOW;
5671 		goto out;
5672 	}
5673 
5674 	/*
5675 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5676 	 * reading into send_buf.
5677 	 */
5678 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5679 						    disk_bytenr, disk_num_bytes,
5680 						    sctx->send_buf_pages +
5681 						    (data_offset >> PAGE_SHIFT));
5682 	if (ret)
5683 		goto out;
5684 
5685 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5686 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5687 	hdr->crc = 0;
5688 	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5689 	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5690 	hdr->crc = cpu_to_le32(crc);
5691 
5692 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5693 			&sctx->send_off);
5694 	if (!ret) {
5695 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5696 				disk_num_bytes, &sctx->send_off);
5697 	}
5698 	sctx->send_size = 0;
5699 	sctx->put_data = false;
5700 
5701 tlv_put_failure:
5702 out:
5703 	fs_path_free(fspath);
5704 	iput(inode);
5705 	return ret;
5706 }
5707 
5708 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5709 			    const u64 offset, const u64 len)
5710 {
5711 	const u64 end = offset + len;
5712 	struct extent_buffer *leaf = path->nodes[0];
5713 	struct btrfs_file_extent_item *ei;
5714 	u64 read_size = max_send_read_size(sctx);
5715 	u64 sent = 0;
5716 
5717 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5718 		return send_update_extent(sctx, offset, len);
5719 
5720 	ei = btrfs_item_ptr(leaf, path->slots[0],
5721 			    struct btrfs_file_extent_item);
5722 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5723 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5724 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5725 				  BTRFS_FILE_EXTENT_INLINE);
5726 
5727 		/*
5728 		 * Send the compressed extent unless the compressed data is
5729 		 * larger than the decompressed data. This can happen if we're
5730 		 * not sending the entire extent, either because it has been
5731 		 * partially overwritten/truncated or because this is a part of
5732 		 * the extent that we couldn't clone in clone_range().
5733 		 */
5734 		if (is_inline &&
5735 		    btrfs_file_extent_inline_item_len(leaf,
5736 						      path->slots[0]) <= len) {
5737 			return send_encoded_inline_extent(sctx, path, offset,
5738 							  len);
5739 		} else if (!is_inline &&
5740 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5741 			return send_encoded_extent(sctx, path, offset, len);
5742 		}
5743 	}
5744 
5745 	if (sctx->cur_inode == NULL) {
5746 		struct btrfs_root *root = sctx->send_root;
5747 
5748 		sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5749 		if (IS_ERR(sctx->cur_inode)) {
5750 			int err = PTR_ERR(sctx->cur_inode);
5751 
5752 			sctx->cur_inode = NULL;
5753 			return err;
5754 		}
5755 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5756 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5757 
5758 		/*
5759 		 * It's very likely there are no pages from this inode in the page
5760 		 * cache, so after reading extents and sending their data, we clean
5761 		 * the page cache to avoid trashing the page cache (adding pressure
5762 		 * to the page cache and forcing eviction of other data more useful
5763 		 * for applications).
5764 		 *
5765 		 * We decide if we should clean the page cache simply by checking
5766 		 * if the inode's mapping nrpages is 0 when we first open it, and
5767 		 * not by using something like filemap_range_has_page() before
5768 		 * reading an extent because when we ask the readahead code to
5769 		 * read a given file range, it may (and almost always does) read
5770 		 * pages from beyond that range (see the documentation for
5771 		 * page_cache_sync_readahead()), so it would not be reliable,
5772 		 * because after reading the first extent future calls to
5773 		 * filemap_range_has_page() would return true because the readahead
5774 		 * on the previous extent resulted in reading pages of the current
5775 		 * extent as well.
5776 		 */
5777 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5778 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5779 	}
5780 
5781 	while (sent < len) {
5782 		u64 size = min(len - sent, read_size);
5783 		int ret;
5784 
5785 		ret = send_write(sctx, offset + sent, size);
5786 		if (ret < 0)
5787 			return ret;
5788 		sent += size;
5789 	}
5790 
5791 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5792 		/*
5793 		 * Always operate only on ranges that are a multiple of the page
5794 		 * size. This is not only to prevent zeroing parts of a page in
5795 		 * the case of subpage sector size, but also to guarantee we evict
5796 		 * pages, as passing a range that is smaller than page size does
5797 		 * not evict the respective page (only zeroes part of its content).
5798 		 *
5799 		 * Always start from the end offset of the last range cleared.
5800 		 * This is because the readahead code may (and very often does)
5801 		 * reads pages beyond the range we request for readahead. So if
5802 		 * we have an extent layout like this:
5803 		 *
5804 		 *            [ extent A ] [ extent B ] [ extent C ]
5805 		 *
5806 		 * When we ask page_cache_sync_readahead() to read extent A, it
5807 		 * may also trigger reads for pages of extent B. If we are doing
5808 		 * an incremental send and extent B has not changed between the
5809 		 * parent and send snapshots, some or all of its pages may end
5810 		 * up being read and placed in the page cache. So when truncating
5811 		 * the page cache we always start from the end offset of the
5812 		 * previously processed extent up to the end of the current
5813 		 * extent.
5814 		 */
5815 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5816 					   sctx->page_cache_clear_start,
5817 					   end - 1);
5818 		sctx->page_cache_clear_start = end;
5819 	}
5820 
5821 	return 0;
5822 }
5823 
5824 /*
5825  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5826  * found, call send_set_xattr function to emit it.
5827  *
5828  * Return 0 if there isn't a capability, or when the capability was emitted
5829  * successfully, or < 0 if an error occurred.
5830  */
5831 static int send_capabilities(struct send_ctx *sctx)
5832 {
5833 	struct fs_path *fspath = NULL;
5834 	struct btrfs_path *path;
5835 	struct btrfs_dir_item *di;
5836 	struct extent_buffer *leaf;
5837 	unsigned long data_ptr;
5838 	char *buf = NULL;
5839 	int buf_len;
5840 	int ret = 0;
5841 
5842 	path = alloc_path_for_send();
5843 	if (!path)
5844 		return -ENOMEM;
5845 
5846 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5847 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5848 	if (!di) {
5849 		/* There is no xattr for this inode */
5850 		goto out;
5851 	} else if (IS_ERR(di)) {
5852 		ret = PTR_ERR(di);
5853 		goto out;
5854 	}
5855 
5856 	leaf = path->nodes[0];
5857 	buf_len = btrfs_dir_data_len(leaf, di);
5858 
5859 	fspath = fs_path_alloc();
5860 	buf = kmalloc(buf_len, GFP_KERNEL);
5861 	if (!fspath || !buf) {
5862 		ret = -ENOMEM;
5863 		goto out;
5864 	}
5865 
5866 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5867 	if (ret < 0)
5868 		goto out;
5869 
5870 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5871 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5872 
5873 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5874 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5875 out:
5876 	kfree(buf);
5877 	fs_path_free(fspath);
5878 	btrfs_free_path(path);
5879 	return ret;
5880 }
5881 
5882 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5883 		       struct clone_root *clone_root, const u64 disk_byte,
5884 		       u64 data_offset, u64 offset, u64 len)
5885 {
5886 	struct btrfs_path *path;
5887 	struct btrfs_key key;
5888 	int ret;
5889 	struct btrfs_inode_info info;
5890 	u64 clone_src_i_size = 0;
5891 
5892 	/*
5893 	 * Prevent cloning from a zero offset with a length matching the sector
5894 	 * size because in some scenarios this will make the receiver fail.
5895 	 *
5896 	 * For example, if in the source filesystem the extent at offset 0
5897 	 * has a length of sectorsize and it was written using direct IO, then
5898 	 * it can never be an inline extent (even if compression is enabled).
5899 	 * Then this extent can be cloned in the original filesystem to a non
5900 	 * zero file offset, but it may not be possible to clone in the
5901 	 * destination filesystem because it can be inlined due to compression
5902 	 * on the destination filesystem (as the receiver's write operations are
5903 	 * always done using buffered IO). The same happens when the original
5904 	 * filesystem does not have compression enabled but the destination
5905 	 * filesystem has.
5906 	 */
5907 	if (clone_root->offset == 0 &&
5908 	    len == sctx->send_root->fs_info->sectorsize)
5909 		return send_extent_data(sctx, dst_path, offset, len);
5910 
5911 	path = alloc_path_for_send();
5912 	if (!path)
5913 		return -ENOMEM;
5914 
5915 	/*
5916 	 * There are inodes that have extents that lie behind its i_size. Don't
5917 	 * accept clones from these extents.
5918 	 */
5919 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5920 	btrfs_release_path(path);
5921 	if (ret < 0)
5922 		goto out;
5923 	clone_src_i_size = info.size;
5924 
5925 	/*
5926 	 * We can't send a clone operation for the entire range if we find
5927 	 * extent items in the respective range in the source file that
5928 	 * refer to different extents or if we find holes.
5929 	 * So check for that and do a mix of clone and regular write/copy
5930 	 * operations if needed.
5931 	 *
5932 	 * Example:
5933 	 *
5934 	 * mkfs.btrfs -f /dev/sda
5935 	 * mount /dev/sda /mnt
5936 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5937 	 * cp --reflink=always /mnt/foo /mnt/bar
5938 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5939 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5940 	 *
5941 	 * If when we send the snapshot and we are processing file bar (which
5942 	 * has a higher inode number than foo) we blindly send a clone operation
5943 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5944 	 * a file bar that matches the content of file foo - iow, doesn't match
5945 	 * the content from bar in the original filesystem.
5946 	 */
5947 	key.objectid = clone_root->ino;
5948 	key.type = BTRFS_EXTENT_DATA_KEY;
5949 	key.offset = clone_root->offset;
5950 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5951 	if (ret < 0)
5952 		goto out;
5953 	if (ret > 0 && path->slots[0] > 0) {
5954 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5955 		if (key.objectid == clone_root->ino &&
5956 		    key.type == BTRFS_EXTENT_DATA_KEY)
5957 			path->slots[0]--;
5958 	}
5959 
5960 	while (true) {
5961 		struct extent_buffer *leaf = path->nodes[0];
5962 		int slot = path->slots[0];
5963 		struct btrfs_file_extent_item *ei;
5964 		u8 type;
5965 		u64 ext_len;
5966 		u64 clone_len;
5967 		u64 clone_data_offset;
5968 		bool crossed_src_i_size = false;
5969 
5970 		if (slot >= btrfs_header_nritems(leaf)) {
5971 			ret = btrfs_next_leaf(clone_root->root, path);
5972 			if (ret < 0)
5973 				goto out;
5974 			else if (ret > 0)
5975 				break;
5976 			continue;
5977 		}
5978 
5979 		btrfs_item_key_to_cpu(leaf, &key, slot);
5980 
5981 		/*
5982 		 * We might have an implicit trailing hole (NO_HOLES feature
5983 		 * enabled). We deal with it after leaving this loop.
5984 		 */
5985 		if (key.objectid != clone_root->ino ||
5986 		    key.type != BTRFS_EXTENT_DATA_KEY)
5987 			break;
5988 
5989 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5990 		type = btrfs_file_extent_type(leaf, ei);
5991 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5992 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5993 			ext_len = PAGE_ALIGN(ext_len);
5994 		} else {
5995 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5996 		}
5997 
5998 		if (key.offset + ext_len <= clone_root->offset)
5999 			goto next;
6000 
6001 		if (key.offset > clone_root->offset) {
6002 			/* Implicit hole, NO_HOLES feature enabled. */
6003 			u64 hole_len = key.offset - clone_root->offset;
6004 
6005 			if (hole_len > len)
6006 				hole_len = len;
6007 			ret = send_extent_data(sctx, dst_path, offset,
6008 					       hole_len);
6009 			if (ret < 0)
6010 				goto out;
6011 
6012 			len -= hole_len;
6013 			if (len == 0)
6014 				break;
6015 			offset += hole_len;
6016 			clone_root->offset += hole_len;
6017 			data_offset += hole_len;
6018 		}
6019 
6020 		if (key.offset >= clone_root->offset + len)
6021 			break;
6022 
6023 		if (key.offset >= clone_src_i_size)
6024 			break;
6025 
6026 		if (key.offset + ext_len > clone_src_i_size) {
6027 			ext_len = clone_src_i_size - key.offset;
6028 			crossed_src_i_size = true;
6029 		}
6030 
6031 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6032 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6033 			clone_root->offset = key.offset;
6034 			if (clone_data_offset < data_offset &&
6035 				clone_data_offset + ext_len > data_offset) {
6036 				u64 extent_offset;
6037 
6038 				extent_offset = data_offset - clone_data_offset;
6039 				ext_len -= extent_offset;
6040 				clone_data_offset += extent_offset;
6041 				clone_root->offset += extent_offset;
6042 			}
6043 		}
6044 
6045 		clone_len = min_t(u64, ext_len, len);
6046 
6047 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6048 		    clone_data_offset == data_offset) {
6049 			const u64 src_end = clone_root->offset + clone_len;
6050 			const u64 sectorsize = SZ_64K;
6051 
6052 			/*
6053 			 * We can't clone the last block, when its size is not
6054 			 * sector size aligned, into the middle of a file. If we
6055 			 * do so, the receiver will get a failure (-EINVAL) when
6056 			 * trying to clone or will silently corrupt the data in
6057 			 * the destination file if it's on a kernel without the
6058 			 * fix introduced by commit ac765f83f1397646
6059 			 * ("Btrfs: fix data corruption due to cloning of eof
6060 			 * block).
6061 			 *
6062 			 * So issue a clone of the aligned down range plus a
6063 			 * regular write for the eof block, if we hit that case.
6064 			 *
6065 			 * Also, we use the maximum possible sector size, 64K,
6066 			 * because we don't know what's the sector size of the
6067 			 * filesystem that receives the stream, so we have to
6068 			 * assume the largest possible sector size.
6069 			 */
6070 			if (src_end == clone_src_i_size &&
6071 			    !IS_ALIGNED(src_end, sectorsize) &&
6072 			    offset + clone_len < sctx->cur_inode_size) {
6073 				u64 slen;
6074 
6075 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6076 						  sectorsize);
6077 				if (slen > 0) {
6078 					ret = send_clone(sctx, offset, slen,
6079 							 clone_root);
6080 					if (ret < 0)
6081 						goto out;
6082 				}
6083 				ret = send_extent_data(sctx, dst_path,
6084 						       offset + slen,
6085 						       clone_len - slen);
6086 			} else {
6087 				ret = send_clone(sctx, offset, clone_len,
6088 						 clone_root);
6089 			}
6090 		} else if (crossed_src_i_size && clone_len < len) {
6091 			/*
6092 			 * If we are at i_size of the clone source inode and we
6093 			 * can not clone from it, terminate the loop. This is
6094 			 * to avoid sending two write operations, one with a
6095 			 * length matching clone_len and the final one after
6096 			 * this loop with a length of len - clone_len.
6097 			 *
6098 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6099 			 * was passed to the send ioctl), this helps avoid
6100 			 * sending an encoded write for an offset that is not
6101 			 * sector size aligned, in case the i_size of the source
6102 			 * inode is not sector size aligned. That will make the
6103 			 * receiver fallback to decompression of the data and
6104 			 * writing it using regular buffered IO, therefore while
6105 			 * not incorrect, it's not optimal due decompression and
6106 			 * possible re-compression at the receiver.
6107 			 */
6108 			break;
6109 		} else {
6110 			ret = send_extent_data(sctx, dst_path, offset,
6111 					       clone_len);
6112 		}
6113 
6114 		if (ret < 0)
6115 			goto out;
6116 
6117 		len -= clone_len;
6118 		if (len == 0)
6119 			break;
6120 		offset += clone_len;
6121 		clone_root->offset += clone_len;
6122 
6123 		/*
6124 		 * If we are cloning from the file we are currently processing,
6125 		 * and using the send root as the clone root, we must stop once
6126 		 * the current clone offset reaches the current eof of the file
6127 		 * at the receiver, otherwise we would issue an invalid clone
6128 		 * operation (source range going beyond eof) and cause the
6129 		 * receiver to fail. So if we reach the current eof, bail out
6130 		 * and fallback to a regular write.
6131 		 */
6132 		if (clone_root->root == sctx->send_root &&
6133 		    clone_root->ino == sctx->cur_ino &&
6134 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6135 			break;
6136 
6137 		data_offset += clone_len;
6138 next:
6139 		path->slots[0]++;
6140 	}
6141 
6142 	if (len > 0)
6143 		ret = send_extent_data(sctx, dst_path, offset, len);
6144 	else
6145 		ret = 0;
6146 out:
6147 	btrfs_free_path(path);
6148 	return ret;
6149 }
6150 
6151 static int send_write_or_clone(struct send_ctx *sctx,
6152 			       struct btrfs_path *path,
6153 			       struct btrfs_key *key,
6154 			       struct clone_root *clone_root)
6155 {
6156 	int ret = 0;
6157 	u64 offset = key->offset;
6158 	u64 end;
6159 	u64 bs = sctx->send_root->fs_info->sectorsize;
6160 	struct btrfs_file_extent_item *ei;
6161 	u64 disk_byte;
6162 	u64 data_offset;
6163 	u64 num_bytes;
6164 	struct btrfs_inode_info info = { 0 };
6165 
6166 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6167 	if (offset >= end)
6168 		return 0;
6169 
6170 	num_bytes = end - offset;
6171 
6172 	if (!clone_root)
6173 		goto write_data;
6174 
6175 	if (IS_ALIGNED(end, bs))
6176 		goto clone_data;
6177 
6178 	/*
6179 	 * If the extent end is not aligned, we can clone if the extent ends at
6180 	 * the i_size of the inode and the clone range ends at the i_size of the
6181 	 * source inode, otherwise the clone operation fails with -EINVAL.
6182 	 */
6183 	if (end != sctx->cur_inode_size)
6184 		goto write_data;
6185 
6186 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6187 	if (ret < 0)
6188 		return ret;
6189 
6190 	if (clone_root->offset + num_bytes == info.size)
6191 		goto clone_data;
6192 
6193 write_data:
6194 	ret = send_extent_data(sctx, path, offset, num_bytes);
6195 	sctx->cur_inode_next_write_offset = end;
6196 	return ret;
6197 
6198 clone_data:
6199 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6200 			    struct btrfs_file_extent_item);
6201 	disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6202 	data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6203 	ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6204 			  num_bytes);
6205 	sctx->cur_inode_next_write_offset = end;
6206 	return ret;
6207 }
6208 
6209 static int is_extent_unchanged(struct send_ctx *sctx,
6210 			       struct btrfs_path *left_path,
6211 			       struct btrfs_key *ekey)
6212 {
6213 	int ret = 0;
6214 	struct btrfs_key key;
6215 	struct btrfs_path *path = NULL;
6216 	struct extent_buffer *eb;
6217 	int slot;
6218 	struct btrfs_key found_key;
6219 	struct btrfs_file_extent_item *ei;
6220 	u64 left_disknr;
6221 	u64 right_disknr;
6222 	u64 left_offset;
6223 	u64 right_offset;
6224 	u64 left_offset_fixed;
6225 	u64 left_len;
6226 	u64 right_len;
6227 	u64 left_gen;
6228 	u64 right_gen;
6229 	u8 left_type;
6230 	u8 right_type;
6231 
6232 	path = alloc_path_for_send();
6233 	if (!path)
6234 		return -ENOMEM;
6235 
6236 	eb = left_path->nodes[0];
6237 	slot = left_path->slots[0];
6238 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6239 	left_type = btrfs_file_extent_type(eb, ei);
6240 
6241 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6242 		ret = 0;
6243 		goto out;
6244 	}
6245 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6246 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6247 	left_offset = btrfs_file_extent_offset(eb, ei);
6248 	left_gen = btrfs_file_extent_generation(eb, ei);
6249 
6250 	/*
6251 	 * Following comments will refer to these graphics. L is the left
6252 	 * extents which we are checking at the moment. 1-8 are the right
6253 	 * extents that we iterate.
6254 	 *
6255 	 *       |-----L-----|
6256 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6257 	 *
6258 	 *       |-----L-----|
6259 	 * |--1--|-2b-|...(same as above)
6260 	 *
6261 	 * Alternative situation. Happens on files where extents got split.
6262 	 *       |-----L-----|
6263 	 * |-----------7-----------|-6-|
6264 	 *
6265 	 * Alternative situation. Happens on files which got larger.
6266 	 *       |-----L-----|
6267 	 * |-8-|
6268 	 * Nothing follows after 8.
6269 	 */
6270 
6271 	key.objectid = ekey->objectid;
6272 	key.type = BTRFS_EXTENT_DATA_KEY;
6273 	key.offset = ekey->offset;
6274 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6275 	if (ret < 0)
6276 		goto out;
6277 	if (ret) {
6278 		ret = 0;
6279 		goto out;
6280 	}
6281 
6282 	/*
6283 	 * Handle special case where the right side has no extents at all.
6284 	 */
6285 	eb = path->nodes[0];
6286 	slot = path->slots[0];
6287 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6288 	if (found_key.objectid != key.objectid ||
6289 	    found_key.type != key.type) {
6290 		/* If we're a hole then just pretend nothing changed */
6291 		ret = (left_disknr) ? 0 : 1;
6292 		goto out;
6293 	}
6294 
6295 	/*
6296 	 * We're now on 2a, 2b or 7.
6297 	 */
6298 	key = found_key;
6299 	while (key.offset < ekey->offset + left_len) {
6300 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6301 		right_type = btrfs_file_extent_type(eb, ei);
6302 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6303 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6304 			ret = 0;
6305 			goto out;
6306 		}
6307 
6308 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6309 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6310 			right_len = PAGE_ALIGN(right_len);
6311 		} else {
6312 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6313 		}
6314 
6315 		/*
6316 		 * Are we at extent 8? If yes, we know the extent is changed.
6317 		 * This may only happen on the first iteration.
6318 		 */
6319 		if (found_key.offset + right_len <= ekey->offset) {
6320 			/* If we're a hole just pretend nothing changed */
6321 			ret = (left_disknr) ? 0 : 1;
6322 			goto out;
6323 		}
6324 
6325 		/*
6326 		 * We just wanted to see if when we have an inline extent, what
6327 		 * follows it is a regular extent (wanted to check the above
6328 		 * condition for inline extents too). This should normally not
6329 		 * happen but it's possible for example when we have an inline
6330 		 * compressed extent representing data with a size matching
6331 		 * the page size (currently the same as sector size).
6332 		 */
6333 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6334 			ret = 0;
6335 			goto out;
6336 		}
6337 
6338 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6339 		right_offset = btrfs_file_extent_offset(eb, ei);
6340 		right_gen = btrfs_file_extent_generation(eb, ei);
6341 
6342 		left_offset_fixed = left_offset;
6343 		if (key.offset < ekey->offset) {
6344 			/* Fix the right offset for 2a and 7. */
6345 			right_offset += ekey->offset - key.offset;
6346 		} else {
6347 			/* Fix the left offset for all behind 2a and 2b */
6348 			left_offset_fixed += key.offset - ekey->offset;
6349 		}
6350 
6351 		/*
6352 		 * Check if we have the same extent.
6353 		 */
6354 		if (left_disknr != right_disknr ||
6355 		    left_offset_fixed != right_offset ||
6356 		    left_gen != right_gen) {
6357 			ret = 0;
6358 			goto out;
6359 		}
6360 
6361 		/*
6362 		 * Go to the next extent.
6363 		 */
6364 		ret = btrfs_next_item(sctx->parent_root, path);
6365 		if (ret < 0)
6366 			goto out;
6367 		if (!ret) {
6368 			eb = path->nodes[0];
6369 			slot = path->slots[0];
6370 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6371 		}
6372 		if (ret || found_key.objectid != key.objectid ||
6373 		    found_key.type != key.type) {
6374 			key.offset += right_len;
6375 			break;
6376 		}
6377 		if (found_key.offset != key.offset + right_len) {
6378 			ret = 0;
6379 			goto out;
6380 		}
6381 		key = found_key;
6382 	}
6383 
6384 	/*
6385 	 * We're now behind the left extent (treat as unchanged) or at the end
6386 	 * of the right side (treat as changed).
6387 	 */
6388 	if (key.offset >= ekey->offset + left_len)
6389 		ret = 1;
6390 	else
6391 		ret = 0;
6392 
6393 
6394 out:
6395 	btrfs_free_path(path);
6396 	return ret;
6397 }
6398 
6399 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6400 {
6401 	struct btrfs_path *path;
6402 	struct btrfs_root *root = sctx->send_root;
6403 	struct btrfs_key key;
6404 	int ret;
6405 
6406 	path = alloc_path_for_send();
6407 	if (!path)
6408 		return -ENOMEM;
6409 
6410 	sctx->cur_inode_last_extent = 0;
6411 
6412 	key.objectid = sctx->cur_ino;
6413 	key.type = BTRFS_EXTENT_DATA_KEY;
6414 	key.offset = offset;
6415 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6416 	if (ret < 0)
6417 		goto out;
6418 	ret = 0;
6419 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6420 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6421 		goto out;
6422 
6423 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6424 out:
6425 	btrfs_free_path(path);
6426 	return ret;
6427 }
6428 
6429 static int range_is_hole_in_parent(struct send_ctx *sctx,
6430 				   const u64 start,
6431 				   const u64 end)
6432 {
6433 	struct btrfs_path *path;
6434 	struct btrfs_key key;
6435 	struct btrfs_root *root = sctx->parent_root;
6436 	u64 search_start = start;
6437 	int ret;
6438 
6439 	path = alloc_path_for_send();
6440 	if (!path)
6441 		return -ENOMEM;
6442 
6443 	key.objectid = sctx->cur_ino;
6444 	key.type = BTRFS_EXTENT_DATA_KEY;
6445 	key.offset = search_start;
6446 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6447 	if (ret < 0)
6448 		goto out;
6449 	if (ret > 0 && path->slots[0] > 0)
6450 		path->slots[0]--;
6451 
6452 	while (search_start < end) {
6453 		struct extent_buffer *leaf = path->nodes[0];
6454 		int slot = path->slots[0];
6455 		struct btrfs_file_extent_item *fi;
6456 		u64 extent_end;
6457 
6458 		if (slot >= btrfs_header_nritems(leaf)) {
6459 			ret = btrfs_next_leaf(root, path);
6460 			if (ret < 0)
6461 				goto out;
6462 			else if (ret > 0)
6463 				break;
6464 			continue;
6465 		}
6466 
6467 		btrfs_item_key_to_cpu(leaf, &key, slot);
6468 		if (key.objectid < sctx->cur_ino ||
6469 		    key.type < BTRFS_EXTENT_DATA_KEY)
6470 			goto next;
6471 		if (key.objectid > sctx->cur_ino ||
6472 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6473 		    key.offset >= end)
6474 			break;
6475 
6476 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6477 		extent_end = btrfs_file_extent_end(path);
6478 		if (extent_end <= start)
6479 			goto next;
6480 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6481 			search_start = extent_end;
6482 			goto next;
6483 		}
6484 		ret = 0;
6485 		goto out;
6486 next:
6487 		path->slots[0]++;
6488 	}
6489 	ret = 1;
6490 out:
6491 	btrfs_free_path(path);
6492 	return ret;
6493 }
6494 
6495 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6496 			   struct btrfs_key *key)
6497 {
6498 	int ret = 0;
6499 
6500 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6501 		return 0;
6502 
6503 	/*
6504 	 * Get last extent's end offset (exclusive) if we haven't determined it
6505 	 * yet (we're processing the first file extent item that is new), or if
6506 	 * we're at the first slot of a leaf and the last extent's end is less
6507 	 * than the current extent's offset, because we might have skipped
6508 	 * entire leaves that contained only file extent items for our current
6509 	 * inode. These leaves have a generation number smaller (older) than the
6510 	 * one in the current leaf and the leaf our last extent came from, and
6511 	 * are located between these 2 leaves.
6512 	 */
6513 	if ((sctx->cur_inode_last_extent == (u64)-1) ||
6514 	    (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6515 		ret = get_last_extent(sctx, key->offset - 1);
6516 		if (ret)
6517 			return ret;
6518 	}
6519 
6520 	if (sctx->cur_inode_last_extent < key->offset) {
6521 		ret = range_is_hole_in_parent(sctx,
6522 					      sctx->cur_inode_last_extent,
6523 					      key->offset);
6524 		if (ret < 0)
6525 			return ret;
6526 		else if (ret == 0)
6527 			ret = send_hole(sctx, key->offset);
6528 		else
6529 			ret = 0;
6530 	}
6531 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6532 	return ret;
6533 }
6534 
6535 static int process_extent(struct send_ctx *sctx,
6536 			  struct btrfs_path *path,
6537 			  struct btrfs_key *key)
6538 {
6539 	struct clone_root *found_clone = NULL;
6540 	int ret = 0;
6541 
6542 	if (S_ISLNK(sctx->cur_inode_mode))
6543 		return 0;
6544 
6545 	if (sctx->parent_root && !sctx->cur_inode_new) {
6546 		ret = is_extent_unchanged(sctx, path, key);
6547 		if (ret < 0)
6548 			goto out;
6549 		if (ret) {
6550 			ret = 0;
6551 			goto out_hole;
6552 		}
6553 	} else {
6554 		struct btrfs_file_extent_item *ei;
6555 		u8 type;
6556 
6557 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6558 				    struct btrfs_file_extent_item);
6559 		type = btrfs_file_extent_type(path->nodes[0], ei);
6560 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6561 		    type == BTRFS_FILE_EXTENT_REG) {
6562 			/*
6563 			 * The send spec does not have a prealloc command yet,
6564 			 * so just leave a hole for prealloc'ed extents until
6565 			 * we have enough commands queued up to justify rev'ing
6566 			 * the send spec.
6567 			 */
6568 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6569 				ret = 0;
6570 				goto out;
6571 			}
6572 
6573 			/* Have a hole, just skip it. */
6574 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6575 				ret = 0;
6576 				goto out;
6577 			}
6578 		}
6579 	}
6580 
6581 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6582 			sctx->cur_inode_size, &found_clone);
6583 	if (ret != -ENOENT && ret < 0)
6584 		goto out;
6585 
6586 	ret = send_write_or_clone(sctx, path, key, found_clone);
6587 	if (ret)
6588 		goto out;
6589 out_hole:
6590 	ret = maybe_send_hole(sctx, path, key);
6591 out:
6592 	return ret;
6593 }
6594 
6595 static int process_all_extents(struct send_ctx *sctx)
6596 {
6597 	int ret = 0;
6598 	int iter_ret = 0;
6599 	struct btrfs_root *root;
6600 	struct btrfs_path *path;
6601 	struct btrfs_key key;
6602 	struct btrfs_key found_key;
6603 
6604 	root = sctx->send_root;
6605 	path = alloc_path_for_send();
6606 	if (!path)
6607 		return -ENOMEM;
6608 
6609 	key.objectid = sctx->cmp_key->objectid;
6610 	key.type = BTRFS_EXTENT_DATA_KEY;
6611 	key.offset = 0;
6612 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6613 		if (found_key.objectid != key.objectid ||
6614 		    found_key.type != key.type) {
6615 			ret = 0;
6616 			break;
6617 		}
6618 
6619 		ret = process_extent(sctx, path, &found_key);
6620 		if (ret < 0)
6621 			break;
6622 	}
6623 	/* Catch error found during iteration */
6624 	if (iter_ret < 0)
6625 		ret = iter_ret;
6626 
6627 	btrfs_free_path(path);
6628 	return ret;
6629 }
6630 
6631 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6632 					   int *pending_move,
6633 					   int *refs_processed)
6634 {
6635 	int ret = 0;
6636 
6637 	if (sctx->cur_ino == 0)
6638 		goto out;
6639 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6640 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6641 		goto out;
6642 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6643 		goto out;
6644 
6645 	ret = process_recorded_refs(sctx, pending_move);
6646 	if (ret < 0)
6647 		goto out;
6648 
6649 	*refs_processed = 1;
6650 out:
6651 	return ret;
6652 }
6653 
6654 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6655 {
6656 	int ret = 0;
6657 	struct btrfs_inode_info info;
6658 	u64 left_mode;
6659 	u64 left_uid;
6660 	u64 left_gid;
6661 	u64 left_fileattr;
6662 	u64 right_mode;
6663 	u64 right_uid;
6664 	u64 right_gid;
6665 	u64 right_fileattr;
6666 	int need_chmod = 0;
6667 	int need_chown = 0;
6668 	bool need_fileattr = false;
6669 	int need_truncate = 1;
6670 	int pending_move = 0;
6671 	int refs_processed = 0;
6672 
6673 	if (sctx->ignore_cur_inode)
6674 		return 0;
6675 
6676 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6677 					      &refs_processed);
6678 	if (ret < 0)
6679 		goto out;
6680 
6681 	/*
6682 	 * We have processed the refs and thus need to advance send_progress.
6683 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6684 	 * inode into account.
6685 	 *
6686 	 * On the other hand, if our current inode is a directory and couldn't
6687 	 * be moved/renamed because its parent was renamed/moved too and it has
6688 	 * a higher inode number, we can only move/rename our current inode
6689 	 * after we moved/renamed its parent. Therefore in this case operate on
6690 	 * the old path (pre move/rename) of our current inode, and the
6691 	 * move/rename will be performed later.
6692 	 */
6693 	if (refs_processed && !pending_move)
6694 		sctx->send_progress = sctx->cur_ino + 1;
6695 
6696 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6697 		goto out;
6698 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6699 		goto out;
6700 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6701 	if (ret < 0)
6702 		goto out;
6703 	left_mode = info.mode;
6704 	left_uid = info.uid;
6705 	left_gid = info.gid;
6706 	left_fileattr = info.fileattr;
6707 
6708 	if (!sctx->parent_root || sctx->cur_inode_new) {
6709 		need_chown = 1;
6710 		if (!S_ISLNK(sctx->cur_inode_mode))
6711 			need_chmod = 1;
6712 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6713 			need_truncate = 0;
6714 	} else {
6715 		u64 old_size;
6716 
6717 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6718 		if (ret < 0)
6719 			goto out;
6720 		old_size = info.size;
6721 		right_mode = info.mode;
6722 		right_uid = info.uid;
6723 		right_gid = info.gid;
6724 		right_fileattr = info.fileattr;
6725 
6726 		if (left_uid != right_uid || left_gid != right_gid)
6727 			need_chown = 1;
6728 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6729 			need_chmod = 1;
6730 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6731 			need_fileattr = true;
6732 		if ((old_size == sctx->cur_inode_size) ||
6733 		    (sctx->cur_inode_size > old_size &&
6734 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6735 			need_truncate = 0;
6736 	}
6737 
6738 	if (S_ISREG(sctx->cur_inode_mode)) {
6739 		if (need_send_hole(sctx)) {
6740 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6741 			    sctx->cur_inode_last_extent <
6742 			    sctx->cur_inode_size) {
6743 				ret = get_last_extent(sctx, (u64)-1);
6744 				if (ret)
6745 					goto out;
6746 			}
6747 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6748 				ret = range_is_hole_in_parent(sctx,
6749 						      sctx->cur_inode_last_extent,
6750 						      sctx->cur_inode_size);
6751 				if (ret < 0) {
6752 					goto out;
6753 				} else if (ret == 0) {
6754 					ret = send_hole(sctx, sctx->cur_inode_size);
6755 					if (ret < 0)
6756 						goto out;
6757 				} else {
6758 					/* Range is already a hole, skip. */
6759 					ret = 0;
6760 				}
6761 			}
6762 		}
6763 		if (need_truncate) {
6764 			ret = send_truncate(sctx, sctx->cur_ino,
6765 					    sctx->cur_inode_gen,
6766 					    sctx->cur_inode_size);
6767 			if (ret < 0)
6768 				goto out;
6769 		}
6770 	}
6771 
6772 	if (need_chown) {
6773 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6774 				left_uid, left_gid);
6775 		if (ret < 0)
6776 			goto out;
6777 	}
6778 	if (need_chmod) {
6779 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6780 				left_mode);
6781 		if (ret < 0)
6782 			goto out;
6783 	}
6784 	if (need_fileattr) {
6785 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6786 				    left_fileattr);
6787 		if (ret < 0)
6788 			goto out;
6789 	}
6790 
6791 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6792 	    && sctx->cur_inode_needs_verity) {
6793 		ret = process_verity(sctx);
6794 		if (ret < 0)
6795 			goto out;
6796 	}
6797 
6798 	ret = send_capabilities(sctx);
6799 	if (ret < 0)
6800 		goto out;
6801 
6802 	/*
6803 	 * If other directory inodes depended on our current directory
6804 	 * inode's move/rename, now do their move/rename operations.
6805 	 */
6806 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6807 		ret = apply_children_dir_moves(sctx);
6808 		if (ret)
6809 			goto out;
6810 		/*
6811 		 * Need to send that every time, no matter if it actually
6812 		 * changed between the two trees as we have done changes to
6813 		 * the inode before. If our inode is a directory and it's
6814 		 * waiting to be moved/renamed, we will send its utimes when
6815 		 * it's moved/renamed, therefore we don't need to do it here.
6816 		 */
6817 		sctx->send_progress = sctx->cur_ino + 1;
6818 
6819 		/*
6820 		 * If the current inode is a non-empty directory, delay issuing
6821 		 * the utimes command for it, as it's very likely we have inodes
6822 		 * with an higher number inside it. We want to issue the utimes
6823 		 * command only after adding all dentries to it.
6824 		 */
6825 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6826 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6827 		else
6828 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6829 
6830 		if (ret < 0)
6831 			goto out;
6832 	}
6833 
6834 out:
6835 	if (!ret)
6836 		ret = trim_dir_utimes_cache(sctx);
6837 
6838 	return ret;
6839 }
6840 
6841 static void close_current_inode(struct send_ctx *sctx)
6842 {
6843 	u64 i_size;
6844 
6845 	if (sctx->cur_inode == NULL)
6846 		return;
6847 
6848 	i_size = i_size_read(sctx->cur_inode);
6849 
6850 	/*
6851 	 * If we are doing an incremental send, we may have extents between the
6852 	 * last processed extent and the i_size that have not been processed
6853 	 * because they haven't changed but we may have read some of their pages
6854 	 * through readahead, see the comments at send_extent_data().
6855 	 */
6856 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6857 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6858 					   sctx->page_cache_clear_start,
6859 					   round_up(i_size, PAGE_SIZE) - 1);
6860 
6861 	iput(sctx->cur_inode);
6862 	sctx->cur_inode = NULL;
6863 }
6864 
6865 static int changed_inode(struct send_ctx *sctx,
6866 			 enum btrfs_compare_tree_result result)
6867 {
6868 	int ret = 0;
6869 	struct btrfs_key *key = sctx->cmp_key;
6870 	struct btrfs_inode_item *left_ii = NULL;
6871 	struct btrfs_inode_item *right_ii = NULL;
6872 	u64 left_gen = 0;
6873 	u64 right_gen = 0;
6874 
6875 	close_current_inode(sctx);
6876 
6877 	sctx->cur_ino = key->objectid;
6878 	sctx->cur_inode_new_gen = false;
6879 	sctx->cur_inode_last_extent = (u64)-1;
6880 	sctx->cur_inode_next_write_offset = 0;
6881 	sctx->ignore_cur_inode = false;
6882 
6883 	/*
6884 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6885 	 * functions that the current inode's refs are not updated yet. Later,
6886 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6887 	 */
6888 	sctx->send_progress = sctx->cur_ino;
6889 
6890 	if (result == BTRFS_COMPARE_TREE_NEW ||
6891 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6892 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6893 				sctx->left_path->slots[0],
6894 				struct btrfs_inode_item);
6895 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6896 				left_ii);
6897 	} else {
6898 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6899 				sctx->right_path->slots[0],
6900 				struct btrfs_inode_item);
6901 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6902 				right_ii);
6903 	}
6904 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6905 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6906 				sctx->right_path->slots[0],
6907 				struct btrfs_inode_item);
6908 
6909 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6910 				right_ii);
6911 
6912 		/*
6913 		 * The cur_ino = root dir case is special here. We can't treat
6914 		 * the inode as deleted+reused because it would generate a
6915 		 * stream that tries to delete/mkdir the root dir.
6916 		 */
6917 		if (left_gen != right_gen &&
6918 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6919 			sctx->cur_inode_new_gen = true;
6920 	}
6921 
6922 	/*
6923 	 * Normally we do not find inodes with a link count of zero (orphans)
6924 	 * because the most common case is to create a snapshot and use it
6925 	 * for a send operation. However other less common use cases involve
6926 	 * using a subvolume and send it after turning it to RO mode just
6927 	 * after deleting all hard links of a file while holding an open
6928 	 * file descriptor against it or turning a RO snapshot into RW mode,
6929 	 * keep an open file descriptor against a file, delete it and then
6930 	 * turn the snapshot back to RO mode before using it for a send
6931 	 * operation. The former is what the receiver operation does.
6932 	 * Therefore, if we want to send these snapshots soon after they're
6933 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6934 	 * can appear not only in the send snapshot but also in the parent
6935 	 * snapshot. Here are several cases:
6936 	 *
6937 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6938 	 *       |  send snapshot  | action
6939 	 * --------------------------------
6940 	 * nlink |        0        | ignore
6941 	 *
6942 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6943 	 *       | parent snapshot | action
6944 	 * ----------------------------------
6945 	 * nlink |        0        | as usual
6946 	 * Note: No unlinks will be sent because there're no paths for it.
6947 	 *
6948 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6949 	 *           |       | parent snapshot | send snapshot | action
6950 	 * -----------------------------------------------------------------------
6951 	 * subcase 1 | nlink |        0        |       0       | ignore
6952 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6953 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6954 	 *
6955 	 */
6956 	if (result == BTRFS_COMPARE_TREE_NEW) {
6957 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6958 			sctx->ignore_cur_inode = true;
6959 			goto out;
6960 		}
6961 		sctx->cur_inode_gen = left_gen;
6962 		sctx->cur_inode_new = true;
6963 		sctx->cur_inode_deleted = false;
6964 		sctx->cur_inode_size = btrfs_inode_size(
6965 				sctx->left_path->nodes[0], left_ii);
6966 		sctx->cur_inode_mode = btrfs_inode_mode(
6967 				sctx->left_path->nodes[0], left_ii);
6968 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6969 				sctx->left_path->nodes[0], left_ii);
6970 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6971 			ret = send_create_inode_if_needed(sctx);
6972 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6973 		sctx->cur_inode_gen = right_gen;
6974 		sctx->cur_inode_new = false;
6975 		sctx->cur_inode_deleted = true;
6976 		sctx->cur_inode_size = btrfs_inode_size(
6977 				sctx->right_path->nodes[0], right_ii);
6978 		sctx->cur_inode_mode = btrfs_inode_mode(
6979 				sctx->right_path->nodes[0], right_ii);
6980 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6981 		u32 new_nlinks, old_nlinks;
6982 
6983 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6984 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6985 		if (new_nlinks == 0 && old_nlinks == 0) {
6986 			sctx->ignore_cur_inode = true;
6987 			goto out;
6988 		} else if (new_nlinks == 0 || old_nlinks == 0) {
6989 			sctx->cur_inode_new_gen = 1;
6990 		}
6991 		/*
6992 		 * We need to do some special handling in case the inode was
6993 		 * reported as changed with a changed generation number. This
6994 		 * means that the original inode was deleted and new inode
6995 		 * reused the same inum. So we have to treat the old inode as
6996 		 * deleted and the new one as new.
6997 		 */
6998 		if (sctx->cur_inode_new_gen) {
6999 			/*
7000 			 * First, process the inode as if it was deleted.
7001 			 */
7002 			if (old_nlinks > 0) {
7003 				sctx->cur_inode_gen = right_gen;
7004 				sctx->cur_inode_new = false;
7005 				sctx->cur_inode_deleted = true;
7006 				sctx->cur_inode_size = btrfs_inode_size(
7007 						sctx->right_path->nodes[0], right_ii);
7008 				sctx->cur_inode_mode = btrfs_inode_mode(
7009 						sctx->right_path->nodes[0], right_ii);
7010 				ret = process_all_refs(sctx,
7011 						BTRFS_COMPARE_TREE_DELETED);
7012 				if (ret < 0)
7013 					goto out;
7014 			}
7015 
7016 			/*
7017 			 * Now process the inode as if it was new.
7018 			 */
7019 			if (new_nlinks > 0) {
7020 				sctx->cur_inode_gen = left_gen;
7021 				sctx->cur_inode_new = true;
7022 				sctx->cur_inode_deleted = false;
7023 				sctx->cur_inode_size = btrfs_inode_size(
7024 						sctx->left_path->nodes[0],
7025 						left_ii);
7026 				sctx->cur_inode_mode = btrfs_inode_mode(
7027 						sctx->left_path->nodes[0],
7028 						left_ii);
7029 				sctx->cur_inode_rdev = btrfs_inode_rdev(
7030 						sctx->left_path->nodes[0],
7031 						left_ii);
7032 				ret = send_create_inode_if_needed(sctx);
7033 				if (ret < 0)
7034 					goto out;
7035 
7036 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7037 				if (ret < 0)
7038 					goto out;
7039 				/*
7040 				 * Advance send_progress now as we did not get
7041 				 * into process_recorded_refs_if_needed in the
7042 				 * new_gen case.
7043 				 */
7044 				sctx->send_progress = sctx->cur_ino + 1;
7045 
7046 				/*
7047 				 * Now process all extents and xattrs of the
7048 				 * inode as if they were all new.
7049 				 */
7050 				ret = process_all_extents(sctx);
7051 				if (ret < 0)
7052 					goto out;
7053 				ret = process_all_new_xattrs(sctx);
7054 				if (ret < 0)
7055 					goto out;
7056 			}
7057 		} else {
7058 			sctx->cur_inode_gen = left_gen;
7059 			sctx->cur_inode_new = false;
7060 			sctx->cur_inode_new_gen = false;
7061 			sctx->cur_inode_deleted = false;
7062 			sctx->cur_inode_size = btrfs_inode_size(
7063 					sctx->left_path->nodes[0], left_ii);
7064 			sctx->cur_inode_mode = btrfs_inode_mode(
7065 					sctx->left_path->nodes[0], left_ii);
7066 		}
7067 	}
7068 
7069 out:
7070 	return ret;
7071 }
7072 
7073 /*
7074  * We have to process new refs before deleted refs, but compare_trees gives us
7075  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7076  * first and later process them in process_recorded_refs.
7077  * For the cur_inode_new_gen case, we skip recording completely because
7078  * changed_inode did already initiate processing of refs. The reason for this is
7079  * that in this case, compare_tree actually compares the refs of 2 different
7080  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7081  * refs of the right tree as deleted and all refs of the left tree as new.
7082  */
7083 static int changed_ref(struct send_ctx *sctx,
7084 		       enum btrfs_compare_tree_result result)
7085 {
7086 	int ret = 0;
7087 
7088 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7089 		inconsistent_snapshot_error(sctx, result, "reference");
7090 		return -EIO;
7091 	}
7092 
7093 	if (!sctx->cur_inode_new_gen &&
7094 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7095 		if (result == BTRFS_COMPARE_TREE_NEW)
7096 			ret = record_new_ref(sctx);
7097 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7098 			ret = record_deleted_ref(sctx);
7099 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7100 			ret = record_changed_ref(sctx);
7101 	}
7102 
7103 	return ret;
7104 }
7105 
7106 /*
7107  * Process new/deleted/changed xattrs. We skip processing in the
7108  * cur_inode_new_gen case because changed_inode did already initiate processing
7109  * of xattrs. The reason is the same as in changed_ref
7110  */
7111 static int changed_xattr(struct send_ctx *sctx,
7112 			 enum btrfs_compare_tree_result result)
7113 {
7114 	int ret = 0;
7115 
7116 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7117 		inconsistent_snapshot_error(sctx, result, "xattr");
7118 		return -EIO;
7119 	}
7120 
7121 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7122 		if (result == BTRFS_COMPARE_TREE_NEW)
7123 			ret = process_new_xattr(sctx);
7124 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7125 			ret = process_deleted_xattr(sctx);
7126 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7127 			ret = process_changed_xattr(sctx);
7128 	}
7129 
7130 	return ret;
7131 }
7132 
7133 /*
7134  * Process new/deleted/changed extents. We skip processing in the
7135  * cur_inode_new_gen case because changed_inode did already initiate processing
7136  * of extents. The reason is the same as in changed_ref
7137  */
7138 static int changed_extent(struct send_ctx *sctx,
7139 			  enum btrfs_compare_tree_result result)
7140 {
7141 	int ret = 0;
7142 
7143 	/*
7144 	 * We have found an extent item that changed without the inode item
7145 	 * having changed. This can happen either after relocation (where the
7146 	 * disk_bytenr of an extent item is replaced at
7147 	 * relocation.c:replace_file_extents()) or after deduplication into a
7148 	 * file in both the parent and send snapshots (where an extent item can
7149 	 * get modified or replaced with a new one). Note that deduplication
7150 	 * updates the inode item, but it only changes the iversion (sequence
7151 	 * field in the inode item) of the inode, so if a file is deduplicated
7152 	 * the same amount of times in both the parent and send snapshots, its
7153 	 * iversion becomes the same in both snapshots, whence the inode item is
7154 	 * the same on both snapshots.
7155 	 */
7156 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7157 		return 0;
7158 
7159 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7160 		if (result != BTRFS_COMPARE_TREE_DELETED)
7161 			ret = process_extent(sctx, sctx->left_path,
7162 					sctx->cmp_key);
7163 	}
7164 
7165 	return ret;
7166 }
7167 
7168 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7169 {
7170 	int ret = 0;
7171 
7172 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7173 		if (result == BTRFS_COMPARE_TREE_NEW)
7174 			sctx->cur_inode_needs_verity = true;
7175 	}
7176 	return ret;
7177 }
7178 
7179 static int dir_changed(struct send_ctx *sctx, u64 dir)
7180 {
7181 	u64 orig_gen, new_gen;
7182 	int ret;
7183 
7184 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7185 	if (ret)
7186 		return ret;
7187 
7188 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7189 	if (ret)
7190 		return ret;
7191 
7192 	return (orig_gen != new_gen) ? 1 : 0;
7193 }
7194 
7195 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7196 			struct btrfs_key *key)
7197 {
7198 	struct btrfs_inode_extref *extref;
7199 	struct extent_buffer *leaf;
7200 	u64 dirid = 0, last_dirid = 0;
7201 	unsigned long ptr;
7202 	u32 item_size;
7203 	u32 cur_offset = 0;
7204 	int ref_name_len;
7205 	int ret = 0;
7206 
7207 	/* Easy case, just check this one dirid */
7208 	if (key->type == BTRFS_INODE_REF_KEY) {
7209 		dirid = key->offset;
7210 
7211 		ret = dir_changed(sctx, dirid);
7212 		goto out;
7213 	}
7214 
7215 	leaf = path->nodes[0];
7216 	item_size = btrfs_item_size(leaf, path->slots[0]);
7217 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7218 	while (cur_offset < item_size) {
7219 		extref = (struct btrfs_inode_extref *)(ptr +
7220 						       cur_offset);
7221 		dirid = btrfs_inode_extref_parent(leaf, extref);
7222 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7223 		cur_offset += ref_name_len + sizeof(*extref);
7224 		if (dirid == last_dirid)
7225 			continue;
7226 		ret = dir_changed(sctx, dirid);
7227 		if (ret)
7228 			break;
7229 		last_dirid = dirid;
7230 	}
7231 out:
7232 	return ret;
7233 }
7234 
7235 /*
7236  * Updates compare related fields in sctx and simply forwards to the actual
7237  * changed_xxx functions.
7238  */
7239 static int changed_cb(struct btrfs_path *left_path,
7240 		      struct btrfs_path *right_path,
7241 		      struct btrfs_key *key,
7242 		      enum btrfs_compare_tree_result result,
7243 		      struct send_ctx *sctx)
7244 {
7245 	int ret = 0;
7246 
7247 	/*
7248 	 * We can not hold the commit root semaphore here. This is because in
7249 	 * the case of sending and receiving to the same filesystem, using a
7250 	 * pipe, could result in a deadlock:
7251 	 *
7252 	 * 1) The task running send blocks on the pipe because it's full;
7253 	 *
7254 	 * 2) The task running receive, which is the only consumer of the pipe,
7255 	 *    is waiting for a transaction commit (for example due to a space
7256 	 *    reservation when doing a write or triggering a transaction commit
7257 	 *    when creating a subvolume);
7258 	 *
7259 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7260 	 *    but can not acquire it since it's being held at 1).
7261 	 *
7262 	 * Down this call chain we write to the pipe through kernel_write().
7263 	 * The same type of problem can also happen when sending to a file that
7264 	 * is stored in the same filesystem - when reserving space for a write
7265 	 * into the file, we can trigger a transaction commit.
7266 	 *
7267 	 * Our caller has supplied us with clones of leaves from the send and
7268 	 * parent roots, so we're safe here from a concurrent relocation and
7269 	 * further reallocation of metadata extents while we are here. Below we
7270 	 * also assert that the leaves are clones.
7271 	 */
7272 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7273 
7274 	/*
7275 	 * We always have a send root, so left_path is never NULL. We will not
7276 	 * have a leaf when we have reached the end of the send root but have
7277 	 * not yet reached the end of the parent root.
7278 	 */
7279 	if (left_path->nodes[0])
7280 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7281 				&left_path->nodes[0]->bflags));
7282 	/*
7283 	 * When doing a full send we don't have a parent root, so right_path is
7284 	 * NULL. When doing an incremental send, we may have reached the end of
7285 	 * the parent root already, so we don't have a leaf at right_path.
7286 	 */
7287 	if (right_path && right_path->nodes[0])
7288 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7289 				&right_path->nodes[0]->bflags));
7290 
7291 	if (result == BTRFS_COMPARE_TREE_SAME) {
7292 		if (key->type == BTRFS_INODE_REF_KEY ||
7293 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7294 			ret = compare_refs(sctx, left_path, key);
7295 			if (!ret)
7296 				return 0;
7297 			if (ret < 0)
7298 				return ret;
7299 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7300 			return maybe_send_hole(sctx, left_path, key);
7301 		} else {
7302 			return 0;
7303 		}
7304 		result = BTRFS_COMPARE_TREE_CHANGED;
7305 		ret = 0;
7306 	}
7307 
7308 	sctx->left_path = left_path;
7309 	sctx->right_path = right_path;
7310 	sctx->cmp_key = key;
7311 
7312 	ret = finish_inode_if_needed(sctx, 0);
7313 	if (ret < 0)
7314 		goto out;
7315 
7316 	/* Ignore non-FS objects */
7317 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7318 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7319 		goto out;
7320 
7321 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7322 		ret = changed_inode(sctx, result);
7323 	} else if (!sctx->ignore_cur_inode) {
7324 		if (key->type == BTRFS_INODE_REF_KEY ||
7325 		    key->type == BTRFS_INODE_EXTREF_KEY)
7326 			ret = changed_ref(sctx, result);
7327 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7328 			ret = changed_xattr(sctx, result);
7329 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7330 			ret = changed_extent(sctx, result);
7331 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7332 			 key->offset == 0)
7333 			ret = changed_verity(sctx, result);
7334 	}
7335 
7336 out:
7337 	return ret;
7338 }
7339 
7340 static int search_key_again(const struct send_ctx *sctx,
7341 			    struct btrfs_root *root,
7342 			    struct btrfs_path *path,
7343 			    const struct btrfs_key *key)
7344 {
7345 	int ret;
7346 
7347 	if (!path->need_commit_sem)
7348 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7349 
7350 	/*
7351 	 * Roots used for send operations are readonly and no one can add,
7352 	 * update or remove keys from them, so we should be able to find our
7353 	 * key again. The only exception is deduplication, which can operate on
7354 	 * readonly roots and add, update or remove keys to/from them - but at
7355 	 * the moment we don't allow it to run in parallel with send.
7356 	 */
7357 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7358 	ASSERT(ret <= 0);
7359 	if (ret > 0) {
7360 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7361 		btrfs_err(root->fs_info,
7362 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7363 			  key->objectid, key->type, key->offset,
7364 			  (root == sctx->parent_root ? "parent" : "send"),
7365 			  btrfs_root_id(root), path->lowest_level,
7366 			  path->slots[path->lowest_level]);
7367 		return -EUCLEAN;
7368 	}
7369 
7370 	return ret;
7371 }
7372 
7373 static int full_send_tree(struct send_ctx *sctx)
7374 {
7375 	int ret;
7376 	struct btrfs_root *send_root = sctx->send_root;
7377 	struct btrfs_key key;
7378 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7379 	struct btrfs_path *path;
7380 
7381 	path = alloc_path_for_send();
7382 	if (!path)
7383 		return -ENOMEM;
7384 	path->reada = READA_FORWARD_ALWAYS;
7385 
7386 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7387 	key.type = BTRFS_INODE_ITEM_KEY;
7388 	key.offset = 0;
7389 
7390 	down_read(&fs_info->commit_root_sem);
7391 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7392 	up_read(&fs_info->commit_root_sem);
7393 
7394 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7395 	if (ret < 0)
7396 		goto out;
7397 	if (ret)
7398 		goto out_finish;
7399 
7400 	while (1) {
7401 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7402 
7403 		ret = changed_cb(path, NULL, &key,
7404 				 BTRFS_COMPARE_TREE_NEW, sctx);
7405 		if (ret < 0)
7406 			goto out;
7407 
7408 		down_read(&fs_info->commit_root_sem);
7409 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7410 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7411 			up_read(&fs_info->commit_root_sem);
7412 			/*
7413 			 * A transaction used for relocating a block group was
7414 			 * committed or is about to finish its commit. Release
7415 			 * our path (leaf) and restart the search, so that we
7416 			 * avoid operating on any file extent items that are
7417 			 * stale, with a disk_bytenr that reflects a pre
7418 			 * relocation value. This way we avoid as much as
7419 			 * possible to fallback to regular writes when checking
7420 			 * if we can clone file ranges.
7421 			 */
7422 			btrfs_release_path(path);
7423 			ret = search_key_again(sctx, send_root, path, &key);
7424 			if (ret < 0)
7425 				goto out;
7426 		} else {
7427 			up_read(&fs_info->commit_root_sem);
7428 		}
7429 
7430 		ret = btrfs_next_item(send_root, path);
7431 		if (ret < 0)
7432 			goto out;
7433 		if (ret) {
7434 			ret  = 0;
7435 			break;
7436 		}
7437 	}
7438 
7439 out_finish:
7440 	ret = finish_inode_if_needed(sctx, 1);
7441 
7442 out:
7443 	btrfs_free_path(path);
7444 	return ret;
7445 }
7446 
7447 static int replace_node_with_clone(struct btrfs_path *path, int level)
7448 {
7449 	struct extent_buffer *clone;
7450 
7451 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7452 	if (!clone)
7453 		return -ENOMEM;
7454 
7455 	free_extent_buffer(path->nodes[level]);
7456 	path->nodes[level] = clone;
7457 
7458 	return 0;
7459 }
7460 
7461 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7462 {
7463 	struct extent_buffer *eb;
7464 	struct extent_buffer *parent = path->nodes[*level];
7465 	int slot = path->slots[*level];
7466 	const int nritems = btrfs_header_nritems(parent);
7467 	u64 reada_max;
7468 	u64 reada_done = 0;
7469 
7470 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7471 	ASSERT(*level != 0);
7472 
7473 	eb = btrfs_read_node_slot(parent, slot);
7474 	if (IS_ERR(eb))
7475 		return PTR_ERR(eb);
7476 
7477 	/*
7478 	 * Trigger readahead for the next leaves we will process, so that it is
7479 	 * very likely that when we need them they are already in memory and we
7480 	 * will not block on disk IO. For nodes we only do readahead for one,
7481 	 * since the time window between processing nodes is typically larger.
7482 	 */
7483 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7484 
7485 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7486 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7487 			btrfs_readahead_node_child(parent, slot);
7488 			reada_done += eb->fs_info->nodesize;
7489 		}
7490 	}
7491 
7492 	path->nodes[*level - 1] = eb;
7493 	path->slots[*level - 1] = 0;
7494 	(*level)--;
7495 
7496 	if (*level == 0)
7497 		return replace_node_with_clone(path, 0);
7498 
7499 	return 0;
7500 }
7501 
7502 static int tree_move_next_or_upnext(struct btrfs_path *path,
7503 				    int *level, int root_level)
7504 {
7505 	int ret = 0;
7506 	int nritems;
7507 	nritems = btrfs_header_nritems(path->nodes[*level]);
7508 
7509 	path->slots[*level]++;
7510 
7511 	while (path->slots[*level] >= nritems) {
7512 		if (*level == root_level) {
7513 			path->slots[*level] = nritems - 1;
7514 			return -1;
7515 		}
7516 
7517 		/* move upnext */
7518 		path->slots[*level] = 0;
7519 		free_extent_buffer(path->nodes[*level]);
7520 		path->nodes[*level] = NULL;
7521 		(*level)++;
7522 		path->slots[*level]++;
7523 
7524 		nritems = btrfs_header_nritems(path->nodes[*level]);
7525 		ret = 1;
7526 	}
7527 	return ret;
7528 }
7529 
7530 /*
7531  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7532  * or down.
7533  */
7534 static int tree_advance(struct btrfs_path *path,
7535 			int *level, int root_level,
7536 			int allow_down,
7537 			struct btrfs_key *key,
7538 			u64 reada_min_gen)
7539 {
7540 	int ret;
7541 
7542 	if (*level == 0 || !allow_down) {
7543 		ret = tree_move_next_or_upnext(path, level, root_level);
7544 	} else {
7545 		ret = tree_move_down(path, level, reada_min_gen);
7546 	}
7547 
7548 	/*
7549 	 * Even if we have reached the end of a tree, ret is -1, update the key
7550 	 * anyway, so that in case we need to restart due to a block group
7551 	 * relocation, we can assert that the last key of the root node still
7552 	 * exists in the tree.
7553 	 */
7554 	if (*level == 0)
7555 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7556 				      path->slots[*level]);
7557 	else
7558 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7559 				      path->slots[*level]);
7560 
7561 	return ret;
7562 }
7563 
7564 static int tree_compare_item(struct btrfs_path *left_path,
7565 			     struct btrfs_path *right_path,
7566 			     char *tmp_buf)
7567 {
7568 	int cmp;
7569 	int len1, len2;
7570 	unsigned long off1, off2;
7571 
7572 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7573 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7574 	if (len1 != len2)
7575 		return 1;
7576 
7577 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7578 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7579 				right_path->slots[0]);
7580 
7581 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7582 
7583 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7584 	if (cmp)
7585 		return 1;
7586 	return 0;
7587 }
7588 
7589 /*
7590  * A transaction used for relocating a block group was committed or is about to
7591  * finish its commit. Release our paths and restart the search, so that we are
7592  * not using stale extent buffers:
7593  *
7594  * 1) For levels > 0, we are only holding references of extent buffers, without
7595  *    any locks on them, which does not prevent them from having been relocated
7596  *    and reallocated after the last time we released the commit root semaphore.
7597  *    The exception are the root nodes, for which we always have a clone, see
7598  *    the comment at btrfs_compare_trees();
7599  *
7600  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7601  *    we are safe from the concurrent relocation and reallocation. However they
7602  *    can have file extent items with a pre relocation disk_bytenr value, so we
7603  *    restart the start from the current commit roots and clone the new leaves so
7604  *    that we get the post relocation disk_bytenr values. Not doing so, could
7605  *    make us clone the wrong data in case there are new extents using the old
7606  *    disk_bytenr that happen to be shared.
7607  */
7608 static int restart_after_relocation(struct btrfs_path *left_path,
7609 				    struct btrfs_path *right_path,
7610 				    const struct btrfs_key *left_key,
7611 				    const struct btrfs_key *right_key,
7612 				    int left_level,
7613 				    int right_level,
7614 				    const struct send_ctx *sctx)
7615 {
7616 	int root_level;
7617 	int ret;
7618 
7619 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7620 
7621 	btrfs_release_path(left_path);
7622 	btrfs_release_path(right_path);
7623 
7624 	/*
7625 	 * Since keys can not be added or removed to/from our roots because they
7626 	 * are readonly and we do not allow deduplication to run in parallel
7627 	 * (which can add, remove or change keys), the layout of the trees should
7628 	 * not change.
7629 	 */
7630 	left_path->lowest_level = left_level;
7631 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7632 	if (ret < 0)
7633 		return ret;
7634 
7635 	right_path->lowest_level = right_level;
7636 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7637 	if (ret < 0)
7638 		return ret;
7639 
7640 	/*
7641 	 * If the lowest level nodes are leaves, clone them so that they can be
7642 	 * safely used by changed_cb() while not under the protection of the
7643 	 * commit root semaphore, even if relocation and reallocation happens in
7644 	 * parallel.
7645 	 */
7646 	if (left_level == 0) {
7647 		ret = replace_node_with_clone(left_path, 0);
7648 		if (ret < 0)
7649 			return ret;
7650 	}
7651 
7652 	if (right_level == 0) {
7653 		ret = replace_node_with_clone(right_path, 0);
7654 		if (ret < 0)
7655 			return ret;
7656 	}
7657 
7658 	/*
7659 	 * Now clone the root nodes (unless they happen to be the leaves we have
7660 	 * already cloned). This is to protect against concurrent snapshotting of
7661 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7662 	 */
7663 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7664 	if (root_level > 0) {
7665 		ret = replace_node_with_clone(left_path, root_level);
7666 		if (ret < 0)
7667 			return ret;
7668 	}
7669 
7670 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7671 	if (root_level > 0) {
7672 		ret = replace_node_with_clone(right_path, root_level);
7673 		if (ret < 0)
7674 			return ret;
7675 	}
7676 
7677 	return 0;
7678 }
7679 
7680 /*
7681  * This function compares two trees and calls the provided callback for
7682  * every changed/new/deleted item it finds.
7683  * If shared tree blocks are encountered, whole subtrees are skipped, making
7684  * the compare pretty fast on snapshotted subvolumes.
7685  *
7686  * This currently works on commit roots only. As commit roots are read only,
7687  * we don't do any locking. The commit roots are protected with transactions.
7688  * Transactions are ended and rejoined when a commit is tried in between.
7689  *
7690  * This function checks for modifications done to the trees while comparing.
7691  * If it detects a change, it aborts immediately.
7692  */
7693 static int btrfs_compare_trees(struct btrfs_root *left_root,
7694 			struct btrfs_root *right_root, struct send_ctx *sctx)
7695 {
7696 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7697 	int ret;
7698 	int cmp;
7699 	struct btrfs_path *left_path = NULL;
7700 	struct btrfs_path *right_path = NULL;
7701 	struct btrfs_key left_key;
7702 	struct btrfs_key right_key;
7703 	char *tmp_buf = NULL;
7704 	int left_root_level;
7705 	int right_root_level;
7706 	int left_level;
7707 	int right_level;
7708 	int left_end_reached = 0;
7709 	int right_end_reached = 0;
7710 	int advance_left = 0;
7711 	int advance_right = 0;
7712 	u64 left_blockptr;
7713 	u64 right_blockptr;
7714 	u64 left_gen;
7715 	u64 right_gen;
7716 	u64 reada_min_gen;
7717 
7718 	left_path = btrfs_alloc_path();
7719 	if (!left_path) {
7720 		ret = -ENOMEM;
7721 		goto out;
7722 	}
7723 	right_path = btrfs_alloc_path();
7724 	if (!right_path) {
7725 		ret = -ENOMEM;
7726 		goto out;
7727 	}
7728 
7729 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7730 	if (!tmp_buf) {
7731 		ret = -ENOMEM;
7732 		goto out;
7733 	}
7734 
7735 	left_path->search_commit_root = 1;
7736 	left_path->skip_locking = 1;
7737 	right_path->search_commit_root = 1;
7738 	right_path->skip_locking = 1;
7739 
7740 	/*
7741 	 * Strategy: Go to the first items of both trees. Then do
7742 	 *
7743 	 * If both trees are at level 0
7744 	 *   Compare keys of current items
7745 	 *     If left < right treat left item as new, advance left tree
7746 	 *       and repeat
7747 	 *     If left > right treat right item as deleted, advance right tree
7748 	 *       and repeat
7749 	 *     If left == right do deep compare of items, treat as changed if
7750 	 *       needed, advance both trees and repeat
7751 	 * If both trees are at the same level but not at level 0
7752 	 *   Compare keys of current nodes/leafs
7753 	 *     If left < right advance left tree and repeat
7754 	 *     If left > right advance right tree and repeat
7755 	 *     If left == right compare blockptrs of the next nodes/leafs
7756 	 *       If they match advance both trees but stay at the same level
7757 	 *         and repeat
7758 	 *       If they don't match advance both trees while allowing to go
7759 	 *         deeper and repeat
7760 	 * If tree levels are different
7761 	 *   Advance the tree that needs it and repeat
7762 	 *
7763 	 * Advancing a tree means:
7764 	 *   If we are at level 0, try to go to the next slot. If that's not
7765 	 *   possible, go one level up and repeat. Stop when we found a level
7766 	 *   where we could go to the next slot. We may at this point be on a
7767 	 *   node or a leaf.
7768 	 *
7769 	 *   If we are not at level 0 and not on shared tree blocks, go one
7770 	 *   level deeper.
7771 	 *
7772 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7773 	 *   the right if possible or go up and right.
7774 	 */
7775 
7776 	down_read(&fs_info->commit_root_sem);
7777 	left_level = btrfs_header_level(left_root->commit_root);
7778 	left_root_level = left_level;
7779 	/*
7780 	 * We clone the root node of the send and parent roots to prevent races
7781 	 * with snapshot creation of these roots. Snapshot creation COWs the
7782 	 * root node of a tree, so after the transaction is committed the old
7783 	 * extent can be reallocated while this send operation is still ongoing.
7784 	 * So we clone them, under the commit root semaphore, to be race free.
7785 	 */
7786 	left_path->nodes[left_level] =
7787 			btrfs_clone_extent_buffer(left_root->commit_root);
7788 	if (!left_path->nodes[left_level]) {
7789 		ret = -ENOMEM;
7790 		goto out_unlock;
7791 	}
7792 
7793 	right_level = btrfs_header_level(right_root->commit_root);
7794 	right_root_level = right_level;
7795 	right_path->nodes[right_level] =
7796 			btrfs_clone_extent_buffer(right_root->commit_root);
7797 	if (!right_path->nodes[right_level]) {
7798 		ret = -ENOMEM;
7799 		goto out_unlock;
7800 	}
7801 	/*
7802 	 * Our right root is the parent root, while the left root is the "send"
7803 	 * root. We know that all new nodes/leaves in the left root must have
7804 	 * a generation greater than the right root's generation, so we trigger
7805 	 * readahead for those nodes and leaves of the left root, as we know we
7806 	 * will need to read them at some point.
7807 	 */
7808 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7809 
7810 	if (left_level == 0)
7811 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7812 				&left_key, left_path->slots[left_level]);
7813 	else
7814 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7815 				&left_key, left_path->slots[left_level]);
7816 	if (right_level == 0)
7817 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7818 				&right_key, right_path->slots[right_level]);
7819 	else
7820 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7821 				&right_key, right_path->slots[right_level]);
7822 
7823 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7824 
7825 	while (1) {
7826 		if (need_resched() ||
7827 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7828 			up_read(&fs_info->commit_root_sem);
7829 			cond_resched();
7830 			down_read(&fs_info->commit_root_sem);
7831 		}
7832 
7833 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7834 			ret = restart_after_relocation(left_path, right_path,
7835 						       &left_key, &right_key,
7836 						       left_level, right_level,
7837 						       sctx);
7838 			if (ret < 0)
7839 				goto out_unlock;
7840 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7841 		}
7842 
7843 		if (advance_left && !left_end_reached) {
7844 			ret = tree_advance(left_path, &left_level,
7845 					left_root_level,
7846 					advance_left != ADVANCE_ONLY_NEXT,
7847 					&left_key, reada_min_gen);
7848 			if (ret == -1)
7849 				left_end_reached = ADVANCE;
7850 			else if (ret < 0)
7851 				goto out_unlock;
7852 			advance_left = 0;
7853 		}
7854 		if (advance_right && !right_end_reached) {
7855 			ret = tree_advance(right_path, &right_level,
7856 					right_root_level,
7857 					advance_right != ADVANCE_ONLY_NEXT,
7858 					&right_key, reada_min_gen);
7859 			if (ret == -1)
7860 				right_end_reached = ADVANCE;
7861 			else if (ret < 0)
7862 				goto out_unlock;
7863 			advance_right = 0;
7864 		}
7865 
7866 		if (left_end_reached && right_end_reached) {
7867 			ret = 0;
7868 			goto out_unlock;
7869 		} else if (left_end_reached) {
7870 			if (right_level == 0) {
7871 				up_read(&fs_info->commit_root_sem);
7872 				ret = changed_cb(left_path, right_path,
7873 						&right_key,
7874 						BTRFS_COMPARE_TREE_DELETED,
7875 						sctx);
7876 				if (ret < 0)
7877 					goto out;
7878 				down_read(&fs_info->commit_root_sem);
7879 			}
7880 			advance_right = ADVANCE;
7881 			continue;
7882 		} else if (right_end_reached) {
7883 			if (left_level == 0) {
7884 				up_read(&fs_info->commit_root_sem);
7885 				ret = changed_cb(left_path, right_path,
7886 						&left_key,
7887 						BTRFS_COMPARE_TREE_NEW,
7888 						sctx);
7889 				if (ret < 0)
7890 					goto out;
7891 				down_read(&fs_info->commit_root_sem);
7892 			}
7893 			advance_left = ADVANCE;
7894 			continue;
7895 		}
7896 
7897 		if (left_level == 0 && right_level == 0) {
7898 			up_read(&fs_info->commit_root_sem);
7899 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7900 			if (cmp < 0) {
7901 				ret = changed_cb(left_path, right_path,
7902 						&left_key,
7903 						BTRFS_COMPARE_TREE_NEW,
7904 						sctx);
7905 				advance_left = ADVANCE;
7906 			} else if (cmp > 0) {
7907 				ret = changed_cb(left_path, right_path,
7908 						&right_key,
7909 						BTRFS_COMPARE_TREE_DELETED,
7910 						sctx);
7911 				advance_right = ADVANCE;
7912 			} else {
7913 				enum btrfs_compare_tree_result result;
7914 
7915 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7916 				ret = tree_compare_item(left_path, right_path,
7917 							tmp_buf);
7918 				if (ret)
7919 					result = BTRFS_COMPARE_TREE_CHANGED;
7920 				else
7921 					result = BTRFS_COMPARE_TREE_SAME;
7922 				ret = changed_cb(left_path, right_path,
7923 						 &left_key, result, sctx);
7924 				advance_left = ADVANCE;
7925 				advance_right = ADVANCE;
7926 			}
7927 
7928 			if (ret < 0)
7929 				goto out;
7930 			down_read(&fs_info->commit_root_sem);
7931 		} else if (left_level == right_level) {
7932 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7933 			if (cmp < 0) {
7934 				advance_left = ADVANCE;
7935 			} else if (cmp > 0) {
7936 				advance_right = ADVANCE;
7937 			} else {
7938 				left_blockptr = btrfs_node_blockptr(
7939 						left_path->nodes[left_level],
7940 						left_path->slots[left_level]);
7941 				right_blockptr = btrfs_node_blockptr(
7942 						right_path->nodes[right_level],
7943 						right_path->slots[right_level]);
7944 				left_gen = btrfs_node_ptr_generation(
7945 						left_path->nodes[left_level],
7946 						left_path->slots[left_level]);
7947 				right_gen = btrfs_node_ptr_generation(
7948 						right_path->nodes[right_level],
7949 						right_path->slots[right_level]);
7950 				if (left_blockptr == right_blockptr &&
7951 				    left_gen == right_gen) {
7952 					/*
7953 					 * As we're on a shared block, don't
7954 					 * allow to go deeper.
7955 					 */
7956 					advance_left = ADVANCE_ONLY_NEXT;
7957 					advance_right = ADVANCE_ONLY_NEXT;
7958 				} else {
7959 					advance_left = ADVANCE;
7960 					advance_right = ADVANCE;
7961 				}
7962 			}
7963 		} else if (left_level < right_level) {
7964 			advance_right = ADVANCE;
7965 		} else {
7966 			advance_left = ADVANCE;
7967 		}
7968 	}
7969 
7970 out_unlock:
7971 	up_read(&fs_info->commit_root_sem);
7972 out:
7973 	btrfs_free_path(left_path);
7974 	btrfs_free_path(right_path);
7975 	kvfree(tmp_buf);
7976 	return ret;
7977 }
7978 
7979 static int send_subvol(struct send_ctx *sctx)
7980 {
7981 	int ret;
7982 
7983 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7984 		ret = send_header(sctx);
7985 		if (ret < 0)
7986 			goto out;
7987 	}
7988 
7989 	ret = send_subvol_begin(sctx);
7990 	if (ret < 0)
7991 		goto out;
7992 
7993 	if (sctx->parent_root) {
7994 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7995 		if (ret < 0)
7996 			goto out;
7997 		ret = finish_inode_if_needed(sctx, 1);
7998 		if (ret < 0)
7999 			goto out;
8000 	} else {
8001 		ret = full_send_tree(sctx);
8002 		if (ret < 0)
8003 			goto out;
8004 	}
8005 
8006 out:
8007 	free_recorded_refs(sctx);
8008 	return ret;
8009 }
8010 
8011 /*
8012  * If orphan cleanup did remove any orphans from a root, it means the tree
8013  * was modified and therefore the commit root is not the same as the current
8014  * root anymore. This is a problem, because send uses the commit root and
8015  * therefore can see inode items that don't exist in the current root anymore,
8016  * and for example make calls to btrfs_iget, which will do tree lookups based
8017  * on the current root and not on the commit root. Those lookups will fail,
8018  * returning a -ESTALE error, and making send fail with that error. So make
8019  * sure a send does not see any orphans we have just removed, and that it will
8020  * see the same inodes regardless of whether a transaction commit happened
8021  * before it started (meaning that the commit root will be the same as the
8022  * current root) or not.
8023  */
8024 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8025 {
8026 	struct btrfs_root *root = sctx->parent_root;
8027 
8028 	if (root && root->node != root->commit_root)
8029 		return btrfs_commit_current_transaction(root);
8030 
8031 	for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8032 		root = sctx->clone_roots[i].root;
8033 		if (root->node != root->commit_root)
8034 			return btrfs_commit_current_transaction(root);
8035 	}
8036 
8037 	return 0;
8038 }
8039 
8040 /*
8041  * Make sure any existing dellaloc is flushed for any root used by a send
8042  * operation so that we do not miss any data and we do not race with writeback
8043  * finishing and changing a tree while send is using the tree. This could
8044  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8045  * a send operation then uses the subvolume.
8046  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8047  */
8048 static int flush_delalloc_roots(struct send_ctx *sctx)
8049 {
8050 	struct btrfs_root *root = sctx->parent_root;
8051 	int ret;
8052 	int i;
8053 
8054 	if (root) {
8055 		ret = btrfs_start_delalloc_snapshot(root, false);
8056 		if (ret)
8057 			return ret;
8058 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8059 	}
8060 
8061 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8062 		root = sctx->clone_roots[i].root;
8063 		ret = btrfs_start_delalloc_snapshot(root, false);
8064 		if (ret)
8065 			return ret;
8066 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8067 	}
8068 
8069 	return 0;
8070 }
8071 
8072 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8073 {
8074 	spin_lock(&root->root_item_lock);
8075 	root->send_in_progress--;
8076 	/*
8077 	 * Not much left to do, we don't know why it's unbalanced and
8078 	 * can't blindly reset it to 0.
8079 	 */
8080 	if (root->send_in_progress < 0)
8081 		btrfs_err(root->fs_info,
8082 			  "send_in_progress unbalanced %d root %llu",
8083 			  root->send_in_progress, btrfs_root_id(root));
8084 	spin_unlock(&root->root_item_lock);
8085 }
8086 
8087 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8088 {
8089 	btrfs_warn_rl(root->fs_info,
8090 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8091 		      btrfs_root_id(root), root->dedupe_in_progress);
8092 }
8093 
8094 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8095 {
8096 	int ret = 0;
8097 	struct btrfs_root *send_root = inode->root;
8098 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8099 	struct btrfs_root *clone_root;
8100 	struct send_ctx *sctx = NULL;
8101 	u32 i;
8102 	u64 *clone_sources_tmp = NULL;
8103 	int clone_sources_to_rollback = 0;
8104 	size_t alloc_size;
8105 	int sort_clone_roots = 0;
8106 	struct btrfs_lru_cache_entry *entry;
8107 	struct btrfs_lru_cache_entry *tmp;
8108 
8109 	if (!capable(CAP_SYS_ADMIN))
8110 		return -EPERM;
8111 
8112 	/*
8113 	 * The subvolume must remain read-only during send, protect against
8114 	 * making it RW. This also protects against deletion.
8115 	 */
8116 	spin_lock(&send_root->root_item_lock);
8117 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8118 		dedupe_in_progress_warn(send_root);
8119 		spin_unlock(&send_root->root_item_lock);
8120 		return -EAGAIN;
8121 	}
8122 	send_root->send_in_progress++;
8123 	spin_unlock(&send_root->root_item_lock);
8124 
8125 	/*
8126 	 * Userspace tools do the checks and warn the user if it's
8127 	 * not RO.
8128 	 */
8129 	if (!btrfs_root_readonly(send_root)) {
8130 		ret = -EPERM;
8131 		goto out;
8132 	}
8133 
8134 	/*
8135 	 * Check that we don't overflow at later allocations, we request
8136 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8137 	 * access_ok. Also set an upper limit for allocation size so this can't
8138 	 * easily exhaust memory. Max number of clone sources is about 200K.
8139 	 */
8140 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8141 		ret = -EINVAL;
8142 		goto out;
8143 	}
8144 
8145 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8146 		ret = -EOPNOTSUPP;
8147 		goto out;
8148 	}
8149 
8150 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8151 	if (!sctx) {
8152 		ret = -ENOMEM;
8153 		goto out;
8154 	}
8155 
8156 	INIT_LIST_HEAD(&sctx->new_refs);
8157 	INIT_LIST_HEAD(&sctx->deleted_refs);
8158 
8159 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8160 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8161 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8162 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8163 	/*
8164 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8165 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8166 	 */
8167 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8168 
8169 	sctx->pending_dir_moves = RB_ROOT;
8170 	sctx->waiting_dir_moves = RB_ROOT;
8171 	sctx->orphan_dirs = RB_ROOT;
8172 	sctx->rbtree_new_refs = RB_ROOT;
8173 	sctx->rbtree_deleted_refs = RB_ROOT;
8174 
8175 	sctx->flags = arg->flags;
8176 
8177 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8178 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8179 			ret = -EPROTO;
8180 			goto out;
8181 		}
8182 		/* Zero means "use the highest version" */
8183 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8184 	} else {
8185 		sctx->proto = 1;
8186 	}
8187 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8188 		ret = -EINVAL;
8189 		goto out;
8190 	}
8191 
8192 	sctx->send_filp = fget(arg->send_fd);
8193 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8194 		ret = -EBADF;
8195 		goto out;
8196 	}
8197 
8198 	sctx->send_root = send_root;
8199 	/*
8200 	 * Unlikely but possible, if the subvolume is marked for deletion but
8201 	 * is slow to remove the directory entry, send can still be started
8202 	 */
8203 	if (btrfs_root_dead(sctx->send_root)) {
8204 		ret = -EPERM;
8205 		goto out;
8206 	}
8207 
8208 	sctx->clone_roots_cnt = arg->clone_sources_count;
8209 
8210 	if (sctx->proto >= 2) {
8211 		u32 send_buf_num_pages;
8212 
8213 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8214 		sctx->send_buf = vmalloc(sctx->send_max_size);
8215 		if (!sctx->send_buf) {
8216 			ret = -ENOMEM;
8217 			goto out;
8218 		}
8219 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8220 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8221 					       sizeof(*sctx->send_buf_pages),
8222 					       GFP_KERNEL);
8223 		if (!sctx->send_buf_pages) {
8224 			ret = -ENOMEM;
8225 			goto out;
8226 		}
8227 		for (i = 0; i < send_buf_num_pages; i++) {
8228 			sctx->send_buf_pages[i] =
8229 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8230 		}
8231 	} else {
8232 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8233 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8234 	}
8235 	if (!sctx->send_buf) {
8236 		ret = -ENOMEM;
8237 		goto out;
8238 	}
8239 
8240 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8241 				     sizeof(*sctx->clone_roots),
8242 				     GFP_KERNEL);
8243 	if (!sctx->clone_roots) {
8244 		ret = -ENOMEM;
8245 		goto out;
8246 	}
8247 
8248 	alloc_size = array_size(sizeof(*arg->clone_sources),
8249 				arg->clone_sources_count);
8250 
8251 	if (arg->clone_sources_count) {
8252 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8253 		if (!clone_sources_tmp) {
8254 			ret = -ENOMEM;
8255 			goto out;
8256 		}
8257 
8258 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8259 				alloc_size);
8260 		if (ret) {
8261 			ret = -EFAULT;
8262 			goto out;
8263 		}
8264 
8265 		for (i = 0; i < arg->clone_sources_count; i++) {
8266 			clone_root = btrfs_get_fs_root(fs_info,
8267 						clone_sources_tmp[i], true);
8268 			if (IS_ERR(clone_root)) {
8269 				ret = PTR_ERR(clone_root);
8270 				goto out;
8271 			}
8272 			spin_lock(&clone_root->root_item_lock);
8273 			if (!btrfs_root_readonly(clone_root) ||
8274 			    btrfs_root_dead(clone_root)) {
8275 				spin_unlock(&clone_root->root_item_lock);
8276 				btrfs_put_root(clone_root);
8277 				ret = -EPERM;
8278 				goto out;
8279 			}
8280 			if (clone_root->dedupe_in_progress) {
8281 				dedupe_in_progress_warn(clone_root);
8282 				spin_unlock(&clone_root->root_item_lock);
8283 				btrfs_put_root(clone_root);
8284 				ret = -EAGAIN;
8285 				goto out;
8286 			}
8287 			clone_root->send_in_progress++;
8288 			spin_unlock(&clone_root->root_item_lock);
8289 
8290 			sctx->clone_roots[i].root = clone_root;
8291 			clone_sources_to_rollback = i + 1;
8292 		}
8293 		kvfree(clone_sources_tmp);
8294 		clone_sources_tmp = NULL;
8295 	}
8296 
8297 	if (arg->parent_root) {
8298 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8299 						      true);
8300 		if (IS_ERR(sctx->parent_root)) {
8301 			ret = PTR_ERR(sctx->parent_root);
8302 			goto out;
8303 		}
8304 
8305 		spin_lock(&sctx->parent_root->root_item_lock);
8306 		sctx->parent_root->send_in_progress++;
8307 		if (!btrfs_root_readonly(sctx->parent_root) ||
8308 				btrfs_root_dead(sctx->parent_root)) {
8309 			spin_unlock(&sctx->parent_root->root_item_lock);
8310 			ret = -EPERM;
8311 			goto out;
8312 		}
8313 		if (sctx->parent_root->dedupe_in_progress) {
8314 			dedupe_in_progress_warn(sctx->parent_root);
8315 			spin_unlock(&sctx->parent_root->root_item_lock);
8316 			ret = -EAGAIN;
8317 			goto out;
8318 		}
8319 		spin_unlock(&sctx->parent_root->root_item_lock);
8320 	}
8321 
8322 	/*
8323 	 * Clones from send_root are allowed, but only if the clone source
8324 	 * is behind the current send position. This is checked while searching
8325 	 * for possible clone sources.
8326 	 */
8327 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8328 		btrfs_grab_root(sctx->send_root);
8329 
8330 	/* We do a bsearch later */
8331 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8332 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8333 			NULL);
8334 	sort_clone_roots = 1;
8335 
8336 	ret = flush_delalloc_roots(sctx);
8337 	if (ret)
8338 		goto out;
8339 
8340 	ret = ensure_commit_roots_uptodate(sctx);
8341 	if (ret)
8342 		goto out;
8343 
8344 	ret = send_subvol(sctx);
8345 	if (ret < 0)
8346 		goto out;
8347 
8348 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8349 		ret = send_utimes(sctx, entry->key, entry->gen);
8350 		if (ret < 0)
8351 			goto out;
8352 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8353 	}
8354 
8355 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8356 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8357 		if (ret < 0)
8358 			goto out;
8359 		ret = send_cmd(sctx);
8360 		if (ret < 0)
8361 			goto out;
8362 	}
8363 
8364 out:
8365 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8366 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8367 		struct rb_node *n;
8368 		struct pending_dir_move *pm;
8369 
8370 		n = rb_first(&sctx->pending_dir_moves);
8371 		pm = rb_entry(n, struct pending_dir_move, node);
8372 		while (!list_empty(&pm->list)) {
8373 			struct pending_dir_move *pm2;
8374 
8375 			pm2 = list_first_entry(&pm->list,
8376 					       struct pending_dir_move, list);
8377 			free_pending_move(sctx, pm2);
8378 		}
8379 		free_pending_move(sctx, pm);
8380 	}
8381 
8382 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8383 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8384 		struct rb_node *n;
8385 		struct waiting_dir_move *dm;
8386 
8387 		n = rb_first(&sctx->waiting_dir_moves);
8388 		dm = rb_entry(n, struct waiting_dir_move, node);
8389 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8390 		kfree(dm);
8391 	}
8392 
8393 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8394 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8395 		struct rb_node *n;
8396 		struct orphan_dir_info *odi;
8397 
8398 		n = rb_first(&sctx->orphan_dirs);
8399 		odi = rb_entry(n, struct orphan_dir_info, node);
8400 		free_orphan_dir_info(sctx, odi);
8401 	}
8402 
8403 	if (sort_clone_roots) {
8404 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8405 			btrfs_root_dec_send_in_progress(
8406 					sctx->clone_roots[i].root);
8407 			btrfs_put_root(sctx->clone_roots[i].root);
8408 		}
8409 	} else {
8410 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8411 			btrfs_root_dec_send_in_progress(
8412 					sctx->clone_roots[i].root);
8413 			btrfs_put_root(sctx->clone_roots[i].root);
8414 		}
8415 
8416 		btrfs_root_dec_send_in_progress(send_root);
8417 	}
8418 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8419 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8420 		btrfs_put_root(sctx->parent_root);
8421 	}
8422 
8423 	kvfree(clone_sources_tmp);
8424 
8425 	if (sctx) {
8426 		if (sctx->send_filp)
8427 			fput(sctx->send_filp);
8428 
8429 		kvfree(sctx->clone_roots);
8430 		kfree(sctx->send_buf_pages);
8431 		kvfree(sctx->send_buf);
8432 		kvfree(sctx->verity_descriptor);
8433 
8434 		close_current_inode(sctx);
8435 
8436 		btrfs_lru_cache_clear(&sctx->name_cache);
8437 		btrfs_lru_cache_clear(&sctx->backref_cache);
8438 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8439 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8440 
8441 		kfree(sctx);
8442 	}
8443 
8444 	return ret;
8445 }
8446