xref: /linux/fs/btrfs/send.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * A fs_path is a helper to dynamically build path names with unknown size.
29  * It reallocates the internal buffer on demand.
30  * It allows fast adding of path elements on the right side (normal path) and
31  * fast adding to the left side (reversed path). A reversed path can also be
32  * unreversed if needed.
33  */
34 struct fs_path {
35 	union {
36 		struct {
37 			char *start;
38 			char *end;
39 
40 			char *buf;
41 			unsigned short buf_len:15;
42 			unsigned short reversed:1;
43 			char inline_buf[];
44 		};
45 		/*
46 		 * Average path length does not exceed 200 bytes, we'll have
47 		 * better packing in the slab and higher chance to satisfy
48 		 * a allocation later during send.
49 		 */
50 		char pad[256];
51 	};
52 };
53 #define FS_PATH_INLINE_SIZE \
54 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55 
56 
57 /* reused for each extent */
58 struct clone_root {
59 	struct btrfs_root *root;
60 	u64 ino;
61 	u64 offset;
62 
63 	u64 found_refs;
64 };
65 
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68 
69 struct send_ctx {
70 	struct file *send_filp;
71 	loff_t send_off;
72 	char *send_buf;
73 	u32 send_size;
74 	u32 send_max_size;
75 	u64 total_send_size;
76 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
78 
79 	struct btrfs_root *send_root;
80 	struct btrfs_root *parent_root;
81 	struct clone_root *clone_roots;
82 	int clone_roots_cnt;
83 
84 	/* current state of the compare_tree call */
85 	struct btrfs_path *left_path;
86 	struct btrfs_path *right_path;
87 	struct btrfs_key *cmp_key;
88 
89 	/*
90 	 * infos of the currently processed inode. In case of deleted inodes,
91 	 * these are the values from the deleted inode.
92 	 */
93 	u64 cur_ino;
94 	u64 cur_inode_gen;
95 	int cur_inode_new;
96 	int cur_inode_new_gen;
97 	int cur_inode_deleted;
98 	u64 cur_inode_size;
99 	u64 cur_inode_mode;
100 	u64 cur_inode_rdev;
101 	u64 cur_inode_last_extent;
102 	u64 cur_inode_next_write_offset;
103 
104 	u64 send_progress;
105 
106 	struct list_head new_refs;
107 	struct list_head deleted_refs;
108 
109 	struct radix_tree_root name_cache;
110 	struct list_head name_cache_list;
111 	int name_cache_size;
112 
113 	struct file_ra_state ra;
114 
115 	char *read_buf;
116 
117 	/*
118 	 * We process inodes by their increasing order, so if before an
119 	 * incremental send we reverse the parent/child relationship of
120 	 * directories such that a directory with a lower inode number was
121 	 * the parent of a directory with a higher inode number, and the one
122 	 * becoming the new parent got renamed too, we can't rename/move the
123 	 * directory with lower inode number when we finish processing it - we
124 	 * must process the directory with higher inode number first, then
125 	 * rename/move it and then rename/move the directory with lower inode
126 	 * number. Example follows.
127 	 *
128 	 * Tree state when the first send was performed:
129 	 *
130 	 * .
131 	 * |-- a                   (ino 257)
132 	 *     |-- b               (ino 258)
133 	 *         |
134 	 *         |
135 	 *         |-- c           (ino 259)
136 	 *         |   |-- d       (ino 260)
137 	 *         |
138 	 *         |-- c2          (ino 261)
139 	 *
140 	 * Tree state when the second (incremental) send is performed:
141 	 *
142 	 * .
143 	 * |-- a                   (ino 257)
144 	 *     |-- b               (ino 258)
145 	 *         |-- c2          (ino 261)
146 	 *             |-- d2      (ino 260)
147 	 *                 |-- cc  (ino 259)
148 	 *
149 	 * The sequence of steps that lead to the second state was:
150 	 *
151 	 * mv /a/b/c/d /a/b/c2/d2
152 	 * mv /a/b/c /a/b/c2/d2/cc
153 	 *
154 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
155 	 * before we move "d", which has higher inode number.
156 	 *
157 	 * So we just memorize which move/rename operations must be performed
158 	 * later when their respective parent is processed and moved/renamed.
159 	 */
160 
161 	/* Indexed by parent directory inode number. */
162 	struct rb_root pending_dir_moves;
163 
164 	/*
165 	 * Reverse index, indexed by the inode number of a directory that
166 	 * is waiting for the move/rename of its immediate parent before its
167 	 * own move/rename can be performed.
168 	 */
169 	struct rb_root waiting_dir_moves;
170 
171 	/*
172 	 * A directory that is going to be rm'ed might have a child directory
173 	 * which is in the pending directory moves index above. In this case,
174 	 * the directory can only be removed after the move/rename of its child
175 	 * is performed. Example:
176 	 *
177 	 * Parent snapshot:
178 	 *
179 	 * .                        (ino 256)
180 	 * |-- a/                   (ino 257)
181 	 *     |-- b/               (ino 258)
182 	 *         |-- c/           (ino 259)
183 	 *         |   |-- x/       (ino 260)
184 	 *         |
185 	 *         |-- y/           (ino 261)
186 	 *
187 	 * Send snapshot:
188 	 *
189 	 * .                        (ino 256)
190 	 * |-- a/                   (ino 257)
191 	 *     |-- b/               (ino 258)
192 	 *         |-- YY/          (ino 261)
193 	 *              |-- x/      (ino 260)
194 	 *
195 	 * Sequence of steps that lead to the send snapshot:
196 	 * rm -f /a/b/c/foo.txt
197 	 * mv /a/b/y /a/b/YY
198 	 * mv /a/b/c/x /a/b/YY
199 	 * rmdir /a/b/c
200 	 *
201 	 * When the child is processed, its move/rename is delayed until its
202 	 * parent is processed (as explained above), but all other operations
203 	 * like update utimes, chown, chgrp, etc, are performed and the paths
204 	 * that it uses for those operations must use the orphanized name of
205 	 * its parent (the directory we're going to rm later), so we need to
206 	 * memorize that name.
207 	 *
208 	 * Indexed by the inode number of the directory to be deleted.
209 	 */
210 	struct rb_root orphan_dirs;
211 };
212 
213 struct pending_dir_move {
214 	struct rb_node node;
215 	struct list_head list;
216 	u64 parent_ino;
217 	u64 ino;
218 	u64 gen;
219 	struct list_head update_refs;
220 };
221 
222 struct waiting_dir_move {
223 	struct rb_node node;
224 	u64 ino;
225 	/*
226 	 * There might be some directory that could not be removed because it
227 	 * was waiting for this directory inode to be moved first. Therefore
228 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
229 	 */
230 	u64 rmdir_ino;
231 	bool orphanized;
232 };
233 
234 struct orphan_dir_info {
235 	struct rb_node node;
236 	u64 ino;
237 	u64 gen;
238 	u64 last_dir_index_offset;
239 };
240 
241 struct name_cache_entry {
242 	struct list_head list;
243 	/*
244 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
245 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
246 	 * more then one inum would fall into the same entry, we use radix_list
247 	 * to store the additional entries. radix_list is also used to store
248 	 * entries where two entries have the same inum but different
249 	 * generations.
250 	 */
251 	struct list_head radix_list;
252 	u64 ino;
253 	u64 gen;
254 	u64 parent_ino;
255 	u64 parent_gen;
256 	int ret;
257 	int need_later_update;
258 	int name_len;
259 	char name[];
260 };
261 
262 __cold
263 static void inconsistent_snapshot_error(struct send_ctx *sctx,
264 					enum btrfs_compare_tree_result result,
265 					const char *what)
266 {
267 	const char *result_string;
268 
269 	switch (result) {
270 	case BTRFS_COMPARE_TREE_NEW:
271 		result_string = "new";
272 		break;
273 	case BTRFS_COMPARE_TREE_DELETED:
274 		result_string = "deleted";
275 		break;
276 	case BTRFS_COMPARE_TREE_CHANGED:
277 		result_string = "updated";
278 		break;
279 	case BTRFS_COMPARE_TREE_SAME:
280 		ASSERT(0);
281 		result_string = "unchanged";
282 		break;
283 	default:
284 		ASSERT(0);
285 		result_string = "unexpected";
286 	}
287 
288 	btrfs_err(sctx->send_root->fs_info,
289 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
290 		  result_string, what, sctx->cmp_key->objectid,
291 		  sctx->send_root->root_key.objectid,
292 		  (sctx->parent_root ?
293 		   sctx->parent_root->root_key.objectid : 0));
294 }
295 
296 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
297 
298 static struct waiting_dir_move *
299 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
300 
301 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
302 
303 static int need_send_hole(struct send_ctx *sctx)
304 {
305 	return (sctx->parent_root && !sctx->cur_inode_new &&
306 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
307 		S_ISREG(sctx->cur_inode_mode));
308 }
309 
310 static void fs_path_reset(struct fs_path *p)
311 {
312 	if (p->reversed) {
313 		p->start = p->buf + p->buf_len - 1;
314 		p->end = p->start;
315 		*p->start = 0;
316 	} else {
317 		p->start = p->buf;
318 		p->end = p->start;
319 		*p->start = 0;
320 	}
321 }
322 
323 static struct fs_path *fs_path_alloc(void)
324 {
325 	struct fs_path *p;
326 
327 	p = kmalloc(sizeof(*p), GFP_KERNEL);
328 	if (!p)
329 		return NULL;
330 	p->reversed = 0;
331 	p->buf = p->inline_buf;
332 	p->buf_len = FS_PATH_INLINE_SIZE;
333 	fs_path_reset(p);
334 	return p;
335 }
336 
337 static struct fs_path *fs_path_alloc_reversed(void)
338 {
339 	struct fs_path *p;
340 
341 	p = fs_path_alloc();
342 	if (!p)
343 		return NULL;
344 	p->reversed = 1;
345 	fs_path_reset(p);
346 	return p;
347 }
348 
349 static void fs_path_free(struct fs_path *p)
350 {
351 	if (!p)
352 		return;
353 	if (p->buf != p->inline_buf)
354 		kfree(p->buf);
355 	kfree(p);
356 }
357 
358 static int fs_path_len(struct fs_path *p)
359 {
360 	return p->end - p->start;
361 }
362 
363 static int fs_path_ensure_buf(struct fs_path *p, int len)
364 {
365 	char *tmp_buf;
366 	int path_len;
367 	int old_buf_len;
368 
369 	len++;
370 
371 	if (p->buf_len >= len)
372 		return 0;
373 
374 	if (len > PATH_MAX) {
375 		WARN_ON(1);
376 		return -ENOMEM;
377 	}
378 
379 	path_len = p->end - p->start;
380 	old_buf_len = p->buf_len;
381 
382 	/*
383 	 * First time the inline_buf does not suffice
384 	 */
385 	if (p->buf == p->inline_buf) {
386 		tmp_buf = kmalloc(len, GFP_KERNEL);
387 		if (tmp_buf)
388 			memcpy(tmp_buf, p->buf, old_buf_len);
389 	} else {
390 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
391 	}
392 	if (!tmp_buf)
393 		return -ENOMEM;
394 	p->buf = tmp_buf;
395 	/*
396 	 * The real size of the buffer is bigger, this will let the fast path
397 	 * happen most of the time
398 	 */
399 	p->buf_len = ksize(p->buf);
400 
401 	if (p->reversed) {
402 		tmp_buf = p->buf + old_buf_len - path_len - 1;
403 		p->end = p->buf + p->buf_len - 1;
404 		p->start = p->end - path_len;
405 		memmove(p->start, tmp_buf, path_len + 1);
406 	} else {
407 		p->start = p->buf;
408 		p->end = p->start + path_len;
409 	}
410 	return 0;
411 }
412 
413 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
414 				   char **prepared)
415 {
416 	int ret;
417 	int new_len;
418 
419 	new_len = p->end - p->start + name_len;
420 	if (p->start != p->end)
421 		new_len++;
422 	ret = fs_path_ensure_buf(p, new_len);
423 	if (ret < 0)
424 		goto out;
425 
426 	if (p->reversed) {
427 		if (p->start != p->end)
428 			*--p->start = '/';
429 		p->start -= name_len;
430 		*prepared = p->start;
431 	} else {
432 		if (p->start != p->end)
433 			*p->end++ = '/';
434 		*prepared = p->end;
435 		p->end += name_len;
436 		*p->end = 0;
437 	}
438 
439 out:
440 	return ret;
441 }
442 
443 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
444 {
445 	int ret;
446 	char *prepared;
447 
448 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
449 	if (ret < 0)
450 		goto out;
451 	memcpy(prepared, name, name_len);
452 
453 out:
454 	return ret;
455 }
456 
457 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
458 {
459 	int ret;
460 	char *prepared;
461 
462 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
463 	if (ret < 0)
464 		goto out;
465 	memcpy(prepared, p2->start, p2->end - p2->start);
466 
467 out:
468 	return ret;
469 }
470 
471 static int fs_path_add_from_extent_buffer(struct fs_path *p,
472 					  struct extent_buffer *eb,
473 					  unsigned long off, int len)
474 {
475 	int ret;
476 	char *prepared;
477 
478 	ret = fs_path_prepare_for_add(p, len, &prepared);
479 	if (ret < 0)
480 		goto out;
481 
482 	read_extent_buffer(eb, prepared, off, len);
483 
484 out:
485 	return ret;
486 }
487 
488 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
489 {
490 	int ret;
491 
492 	p->reversed = from->reversed;
493 	fs_path_reset(p);
494 
495 	ret = fs_path_add_path(p, from);
496 
497 	return ret;
498 }
499 
500 
501 static void fs_path_unreverse(struct fs_path *p)
502 {
503 	char *tmp;
504 	int len;
505 
506 	if (!p->reversed)
507 		return;
508 
509 	tmp = p->start;
510 	len = p->end - p->start;
511 	p->start = p->buf;
512 	p->end = p->start + len;
513 	memmove(p->start, tmp, len + 1);
514 	p->reversed = 0;
515 }
516 
517 static struct btrfs_path *alloc_path_for_send(void)
518 {
519 	struct btrfs_path *path;
520 
521 	path = btrfs_alloc_path();
522 	if (!path)
523 		return NULL;
524 	path->search_commit_root = 1;
525 	path->skip_locking = 1;
526 	path->need_commit_sem = 1;
527 	return path;
528 }
529 
530 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
531 {
532 	int ret;
533 	u32 pos = 0;
534 
535 	while (pos < len) {
536 		ret = kernel_write(filp, buf + pos, len - pos, off);
537 		/* TODO handle that correctly */
538 		/*if (ret == -ERESTARTSYS) {
539 			continue;
540 		}*/
541 		if (ret < 0)
542 			return ret;
543 		if (ret == 0) {
544 			return -EIO;
545 		}
546 		pos += ret;
547 	}
548 
549 	return 0;
550 }
551 
552 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
553 {
554 	struct btrfs_tlv_header *hdr;
555 	int total_len = sizeof(*hdr) + len;
556 	int left = sctx->send_max_size - sctx->send_size;
557 
558 	if (unlikely(left < total_len))
559 		return -EOVERFLOW;
560 
561 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
562 	hdr->tlv_type = cpu_to_le16(attr);
563 	hdr->tlv_len = cpu_to_le16(len);
564 	memcpy(hdr + 1, data, len);
565 	sctx->send_size += total_len;
566 
567 	return 0;
568 }
569 
570 #define TLV_PUT_DEFINE_INT(bits) \
571 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
572 			u##bits attr, u##bits value)			\
573 	{								\
574 		__le##bits __tmp = cpu_to_le##bits(value);		\
575 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
576 	}
577 
578 TLV_PUT_DEFINE_INT(64)
579 
580 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
581 			  const char *str, int len)
582 {
583 	if (len == -1)
584 		len = strlen(str);
585 	return tlv_put(sctx, attr, str, len);
586 }
587 
588 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
589 			const u8 *uuid)
590 {
591 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
592 }
593 
594 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
595 				  struct extent_buffer *eb,
596 				  struct btrfs_timespec *ts)
597 {
598 	struct btrfs_timespec bts;
599 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
600 	return tlv_put(sctx, attr, &bts, sizeof(bts));
601 }
602 
603 
604 #define TLV_PUT(sctx, attrtype, data, attrlen) \
605 	do { \
606 		ret = tlv_put(sctx, attrtype, data, attrlen); \
607 		if (ret < 0) \
608 			goto tlv_put_failure; \
609 	} while (0)
610 
611 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
612 	do { \
613 		ret = tlv_put_u##bits(sctx, attrtype, value); \
614 		if (ret < 0) \
615 			goto tlv_put_failure; \
616 	} while (0)
617 
618 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
619 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
620 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
621 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
622 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
623 	do { \
624 		ret = tlv_put_string(sctx, attrtype, str, len); \
625 		if (ret < 0) \
626 			goto tlv_put_failure; \
627 	} while (0)
628 #define TLV_PUT_PATH(sctx, attrtype, p) \
629 	do { \
630 		ret = tlv_put_string(sctx, attrtype, p->start, \
631 			p->end - p->start); \
632 		if (ret < 0) \
633 			goto tlv_put_failure; \
634 	} while(0)
635 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
636 	do { \
637 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
638 		if (ret < 0) \
639 			goto tlv_put_failure; \
640 	} while (0)
641 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
642 	do { \
643 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 
648 static int send_header(struct send_ctx *sctx)
649 {
650 	struct btrfs_stream_header hdr;
651 
652 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
653 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
654 
655 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
656 					&sctx->send_off);
657 }
658 
659 /*
660  * For each command/item we want to send to userspace, we call this function.
661  */
662 static int begin_cmd(struct send_ctx *sctx, int cmd)
663 {
664 	struct btrfs_cmd_header *hdr;
665 
666 	if (WARN_ON(!sctx->send_buf))
667 		return -EINVAL;
668 
669 	BUG_ON(sctx->send_size);
670 
671 	sctx->send_size += sizeof(*hdr);
672 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
673 	hdr->cmd = cpu_to_le16(cmd);
674 
675 	return 0;
676 }
677 
678 static int send_cmd(struct send_ctx *sctx)
679 {
680 	int ret;
681 	struct btrfs_cmd_header *hdr;
682 	u32 crc;
683 
684 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
685 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
686 	hdr->crc = 0;
687 
688 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
689 	hdr->crc = cpu_to_le32(crc);
690 
691 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
692 					&sctx->send_off);
693 
694 	sctx->total_send_size += sctx->send_size;
695 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
696 	sctx->send_size = 0;
697 
698 	return ret;
699 }
700 
701 /*
702  * Sends a move instruction to user space
703  */
704 static int send_rename(struct send_ctx *sctx,
705 		     struct fs_path *from, struct fs_path *to)
706 {
707 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
708 	int ret;
709 
710 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
711 
712 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
713 	if (ret < 0)
714 		goto out;
715 
716 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
717 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
718 
719 	ret = send_cmd(sctx);
720 
721 tlv_put_failure:
722 out:
723 	return ret;
724 }
725 
726 /*
727  * Sends a link instruction to user space
728  */
729 static int send_link(struct send_ctx *sctx,
730 		     struct fs_path *path, struct fs_path *lnk)
731 {
732 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
733 	int ret;
734 
735 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
736 
737 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
738 	if (ret < 0)
739 		goto out;
740 
741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
742 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
743 
744 	ret = send_cmd(sctx);
745 
746 tlv_put_failure:
747 out:
748 	return ret;
749 }
750 
751 /*
752  * Sends an unlink instruction to user space
753  */
754 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
755 {
756 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
757 	int ret;
758 
759 	btrfs_debug(fs_info, "send_unlink %s", path->start);
760 
761 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
762 	if (ret < 0)
763 		goto out;
764 
765 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
766 
767 	ret = send_cmd(sctx);
768 
769 tlv_put_failure:
770 out:
771 	return ret;
772 }
773 
774 /*
775  * Sends a rmdir instruction to user space
776  */
777 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
778 {
779 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
780 	int ret;
781 
782 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
783 
784 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
785 	if (ret < 0)
786 		goto out;
787 
788 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
789 
790 	ret = send_cmd(sctx);
791 
792 tlv_put_failure:
793 out:
794 	return ret;
795 }
796 
797 /*
798  * Helper function to retrieve some fields from an inode item.
799  */
800 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
801 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
802 			  u64 *gid, u64 *rdev)
803 {
804 	int ret;
805 	struct btrfs_inode_item *ii;
806 	struct btrfs_key key;
807 
808 	key.objectid = ino;
809 	key.type = BTRFS_INODE_ITEM_KEY;
810 	key.offset = 0;
811 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
812 	if (ret) {
813 		if (ret > 0)
814 			ret = -ENOENT;
815 		return ret;
816 	}
817 
818 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
819 			struct btrfs_inode_item);
820 	if (size)
821 		*size = btrfs_inode_size(path->nodes[0], ii);
822 	if (gen)
823 		*gen = btrfs_inode_generation(path->nodes[0], ii);
824 	if (mode)
825 		*mode = btrfs_inode_mode(path->nodes[0], ii);
826 	if (uid)
827 		*uid = btrfs_inode_uid(path->nodes[0], ii);
828 	if (gid)
829 		*gid = btrfs_inode_gid(path->nodes[0], ii);
830 	if (rdev)
831 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
832 
833 	return ret;
834 }
835 
836 static int get_inode_info(struct btrfs_root *root,
837 			  u64 ino, u64 *size, u64 *gen,
838 			  u64 *mode, u64 *uid, u64 *gid,
839 			  u64 *rdev)
840 {
841 	struct btrfs_path *path;
842 	int ret;
843 
844 	path = alloc_path_for_send();
845 	if (!path)
846 		return -ENOMEM;
847 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
848 			       rdev);
849 	btrfs_free_path(path);
850 	return ret;
851 }
852 
853 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
854 				   struct fs_path *p,
855 				   void *ctx);
856 
857 /*
858  * Helper function to iterate the entries in ONE btrfs_inode_ref or
859  * btrfs_inode_extref.
860  * The iterate callback may return a non zero value to stop iteration. This can
861  * be a negative value for error codes or 1 to simply stop it.
862  *
863  * path must point to the INODE_REF or INODE_EXTREF when called.
864  */
865 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
866 			     struct btrfs_key *found_key, int resolve,
867 			     iterate_inode_ref_t iterate, void *ctx)
868 {
869 	struct extent_buffer *eb = path->nodes[0];
870 	struct btrfs_item *item;
871 	struct btrfs_inode_ref *iref;
872 	struct btrfs_inode_extref *extref;
873 	struct btrfs_path *tmp_path;
874 	struct fs_path *p;
875 	u32 cur = 0;
876 	u32 total;
877 	int slot = path->slots[0];
878 	u32 name_len;
879 	char *start;
880 	int ret = 0;
881 	int num = 0;
882 	int index;
883 	u64 dir;
884 	unsigned long name_off;
885 	unsigned long elem_size;
886 	unsigned long ptr;
887 
888 	p = fs_path_alloc_reversed();
889 	if (!p)
890 		return -ENOMEM;
891 
892 	tmp_path = alloc_path_for_send();
893 	if (!tmp_path) {
894 		fs_path_free(p);
895 		return -ENOMEM;
896 	}
897 
898 
899 	if (found_key->type == BTRFS_INODE_REF_KEY) {
900 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
901 						    struct btrfs_inode_ref);
902 		item = btrfs_item_nr(slot);
903 		total = btrfs_item_size(eb, item);
904 		elem_size = sizeof(*iref);
905 	} else {
906 		ptr = btrfs_item_ptr_offset(eb, slot);
907 		total = btrfs_item_size_nr(eb, slot);
908 		elem_size = sizeof(*extref);
909 	}
910 
911 	while (cur < total) {
912 		fs_path_reset(p);
913 
914 		if (found_key->type == BTRFS_INODE_REF_KEY) {
915 			iref = (struct btrfs_inode_ref *)(ptr + cur);
916 			name_len = btrfs_inode_ref_name_len(eb, iref);
917 			name_off = (unsigned long)(iref + 1);
918 			index = btrfs_inode_ref_index(eb, iref);
919 			dir = found_key->offset;
920 		} else {
921 			extref = (struct btrfs_inode_extref *)(ptr + cur);
922 			name_len = btrfs_inode_extref_name_len(eb, extref);
923 			name_off = (unsigned long)&extref->name;
924 			index = btrfs_inode_extref_index(eb, extref);
925 			dir = btrfs_inode_extref_parent(eb, extref);
926 		}
927 
928 		if (resolve) {
929 			start = btrfs_ref_to_path(root, tmp_path, name_len,
930 						  name_off, eb, dir,
931 						  p->buf, p->buf_len);
932 			if (IS_ERR(start)) {
933 				ret = PTR_ERR(start);
934 				goto out;
935 			}
936 			if (start < p->buf) {
937 				/* overflow , try again with larger buffer */
938 				ret = fs_path_ensure_buf(p,
939 						p->buf_len + p->buf - start);
940 				if (ret < 0)
941 					goto out;
942 				start = btrfs_ref_to_path(root, tmp_path,
943 							  name_len, name_off,
944 							  eb, dir,
945 							  p->buf, p->buf_len);
946 				if (IS_ERR(start)) {
947 					ret = PTR_ERR(start);
948 					goto out;
949 				}
950 				BUG_ON(start < p->buf);
951 			}
952 			p->start = start;
953 		} else {
954 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
955 							     name_len);
956 			if (ret < 0)
957 				goto out;
958 		}
959 
960 		cur += elem_size + name_len;
961 		ret = iterate(num, dir, index, p, ctx);
962 		if (ret)
963 			goto out;
964 		num++;
965 	}
966 
967 out:
968 	btrfs_free_path(tmp_path);
969 	fs_path_free(p);
970 	return ret;
971 }
972 
973 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
974 				  const char *name, int name_len,
975 				  const char *data, int data_len,
976 				  u8 type, void *ctx);
977 
978 /*
979  * Helper function to iterate the entries in ONE btrfs_dir_item.
980  * The iterate callback may return a non zero value to stop iteration. This can
981  * be a negative value for error codes or 1 to simply stop it.
982  *
983  * path must point to the dir item when called.
984  */
985 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
986 			    iterate_dir_item_t iterate, void *ctx)
987 {
988 	int ret = 0;
989 	struct extent_buffer *eb;
990 	struct btrfs_item *item;
991 	struct btrfs_dir_item *di;
992 	struct btrfs_key di_key;
993 	char *buf = NULL;
994 	int buf_len;
995 	u32 name_len;
996 	u32 data_len;
997 	u32 cur;
998 	u32 len;
999 	u32 total;
1000 	int slot;
1001 	int num;
1002 	u8 type;
1003 
1004 	/*
1005 	 * Start with a small buffer (1 page). If later we end up needing more
1006 	 * space, which can happen for xattrs on a fs with a leaf size greater
1007 	 * then the page size, attempt to increase the buffer. Typically xattr
1008 	 * values are small.
1009 	 */
1010 	buf_len = PATH_MAX;
1011 	buf = kmalloc(buf_len, GFP_KERNEL);
1012 	if (!buf) {
1013 		ret = -ENOMEM;
1014 		goto out;
1015 	}
1016 
1017 	eb = path->nodes[0];
1018 	slot = path->slots[0];
1019 	item = btrfs_item_nr(slot);
1020 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1021 	cur = 0;
1022 	len = 0;
1023 	total = btrfs_item_size(eb, item);
1024 
1025 	num = 0;
1026 	while (cur < total) {
1027 		name_len = btrfs_dir_name_len(eb, di);
1028 		data_len = btrfs_dir_data_len(eb, di);
1029 		type = btrfs_dir_type(eb, di);
1030 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1031 
1032 		if (type == BTRFS_FT_XATTR) {
1033 			if (name_len > XATTR_NAME_MAX) {
1034 				ret = -ENAMETOOLONG;
1035 				goto out;
1036 			}
1037 			if (name_len + data_len >
1038 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1039 				ret = -E2BIG;
1040 				goto out;
1041 			}
1042 		} else {
1043 			/*
1044 			 * Path too long
1045 			 */
1046 			if (name_len + data_len > PATH_MAX) {
1047 				ret = -ENAMETOOLONG;
1048 				goto out;
1049 			}
1050 		}
1051 
1052 		if (name_len + data_len > buf_len) {
1053 			buf_len = name_len + data_len;
1054 			if (is_vmalloc_addr(buf)) {
1055 				vfree(buf);
1056 				buf = NULL;
1057 			} else {
1058 				char *tmp = krealloc(buf, buf_len,
1059 						GFP_KERNEL | __GFP_NOWARN);
1060 
1061 				if (!tmp)
1062 					kfree(buf);
1063 				buf = tmp;
1064 			}
1065 			if (!buf) {
1066 				buf = kvmalloc(buf_len, GFP_KERNEL);
1067 				if (!buf) {
1068 					ret = -ENOMEM;
1069 					goto out;
1070 				}
1071 			}
1072 		}
1073 
1074 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1075 				name_len + data_len);
1076 
1077 		len = sizeof(*di) + name_len + data_len;
1078 		di = (struct btrfs_dir_item *)((char *)di + len);
1079 		cur += len;
1080 
1081 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1082 				data_len, type, ctx);
1083 		if (ret < 0)
1084 			goto out;
1085 		if (ret) {
1086 			ret = 0;
1087 			goto out;
1088 		}
1089 
1090 		num++;
1091 	}
1092 
1093 out:
1094 	kvfree(buf);
1095 	return ret;
1096 }
1097 
1098 static int __copy_first_ref(int num, u64 dir, int index,
1099 			    struct fs_path *p, void *ctx)
1100 {
1101 	int ret;
1102 	struct fs_path *pt = ctx;
1103 
1104 	ret = fs_path_copy(pt, p);
1105 	if (ret < 0)
1106 		return ret;
1107 
1108 	/* we want the first only */
1109 	return 1;
1110 }
1111 
1112 /*
1113  * Retrieve the first path of an inode. If an inode has more then one
1114  * ref/hardlink, this is ignored.
1115  */
1116 static int get_inode_path(struct btrfs_root *root,
1117 			  u64 ino, struct fs_path *path)
1118 {
1119 	int ret;
1120 	struct btrfs_key key, found_key;
1121 	struct btrfs_path *p;
1122 
1123 	p = alloc_path_for_send();
1124 	if (!p)
1125 		return -ENOMEM;
1126 
1127 	fs_path_reset(path);
1128 
1129 	key.objectid = ino;
1130 	key.type = BTRFS_INODE_REF_KEY;
1131 	key.offset = 0;
1132 
1133 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1134 	if (ret < 0)
1135 		goto out;
1136 	if (ret) {
1137 		ret = 1;
1138 		goto out;
1139 	}
1140 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1141 	if (found_key.objectid != ino ||
1142 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1143 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1144 		ret = -ENOENT;
1145 		goto out;
1146 	}
1147 
1148 	ret = iterate_inode_ref(root, p, &found_key, 1,
1149 				__copy_first_ref, path);
1150 	if (ret < 0)
1151 		goto out;
1152 	ret = 0;
1153 
1154 out:
1155 	btrfs_free_path(p);
1156 	return ret;
1157 }
1158 
1159 struct backref_ctx {
1160 	struct send_ctx *sctx;
1161 
1162 	struct btrfs_path *path;
1163 	/* number of total found references */
1164 	u64 found;
1165 
1166 	/*
1167 	 * used for clones found in send_root. clones found behind cur_objectid
1168 	 * and cur_offset are not considered as allowed clones.
1169 	 */
1170 	u64 cur_objectid;
1171 	u64 cur_offset;
1172 
1173 	/* may be truncated in case it's the last extent in a file */
1174 	u64 extent_len;
1175 
1176 	/* data offset in the file extent item */
1177 	u64 data_offset;
1178 
1179 	/* Just to check for bugs in backref resolving */
1180 	int found_itself;
1181 };
1182 
1183 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1184 {
1185 	u64 root = (u64)(uintptr_t)key;
1186 	struct clone_root *cr = (struct clone_root *)elt;
1187 
1188 	if (root < cr->root->objectid)
1189 		return -1;
1190 	if (root > cr->root->objectid)
1191 		return 1;
1192 	return 0;
1193 }
1194 
1195 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1196 {
1197 	struct clone_root *cr1 = (struct clone_root *)e1;
1198 	struct clone_root *cr2 = (struct clone_root *)e2;
1199 
1200 	if (cr1->root->objectid < cr2->root->objectid)
1201 		return -1;
1202 	if (cr1->root->objectid > cr2->root->objectid)
1203 		return 1;
1204 	return 0;
1205 }
1206 
1207 /*
1208  * Called for every backref that is found for the current extent.
1209  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1210  */
1211 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1212 {
1213 	struct backref_ctx *bctx = ctx_;
1214 	struct clone_root *found;
1215 	int ret;
1216 	u64 i_size;
1217 
1218 	/* First check if the root is in the list of accepted clone sources */
1219 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1220 			bctx->sctx->clone_roots_cnt,
1221 			sizeof(struct clone_root),
1222 			__clone_root_cmp_bsearch);
1223 	if (!found)
1224 		return 0;
1225 
1226 	if (found->root == bctx->sctx->send_root &&
1227 	    ino == bctx->cur_objectid &&
1228 	    offset == bctx->cur_offset) {
1229 		bctx->found_itself = 1;
1230 	}
1231 
1232 	/*
1233 	 * There are inodes that have extents that lie behind its i_size. Don't
1234 	 * accept clones from these extents.
1235 	 */
1236 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1237 			       NULL, NULL, NULL);
1238 	btrfs_release_path(bctx->path);
1239 	if (ret < 0)
1240 		return ret;
1241 
1242 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1243 		return 0;
1244 
1245 	/*
1246 	 * Make sure we don't consider clones from send_root that are
1247 	 * behind the current inode/offset.
1248 	 */
1249 	if (found->root == bctx->sctx->send_root) {
1250 		/*
1251 		 * TODO for the moment we don't accept clones from the inode
1252 		 * that is currently send. We may change this when
1253 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1254 		 * file.
1255 		 */
1256 		if (ino >= bctx->cur_objectid)
1257 			return 0;
1258 	}
1259 
1260 	bctx->found++;
1261 	found->found_refs++;
1262 	if (ino < found->ino) {
1263 		found->ino = ino;
1264 		found->offset = offset;
1265 	} else if (found->ino == ino) {
1266 		/*
1267 		 * same extent found more then once in the same file.
1268 		 */
1269 		if (found->offset > offset + bctx->extent_len)
1270 			found->offset = offset;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Given an inode, offset and extent item, it finds a good clone for a clone
1278  * instruction. Returns -ENOENT when none could be found. The function makes
1279  * sure that the returned clone is usable at the point where sending is at the
1280  * moment. This means, that no clones are accepted which lie behind the current
1281  * inode+offset.
1282  *
1283  * path must point to the extent item when called.
1284  */
1285 static int find_extent_clone(struct send_ctx *sctx,
1286 			     struct btrfs_path *path,
1287 			     u64 ino, u64 data_offset,
1288 			     u64 ino_size,
1289 			     struct clone_root **found)
1290 {
1291 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1292 	int ret;
1293 	int extent_type;
1294 	u64 logical;
1295 	u64 disk_byte;
1296 	u64 num_bytes;
1297 	u64 extent_item_pos;
1298 	u64 flags = 0;
1299 	struct btrfs_file_extent_item *fi;
1300 	struct extent_buffer *eb = path->nodes[0];
1301 	struct backref_ctx *backref_ctx = NULL;
1302 	struct clone_root *cur_clone_root;
1303 	struct btrfs_key found_key;
1304 	struct btrfs_path *tmp_path;
1305 	int compressed;
1306 	u32 i;
1307 
1308 	tmp_path = alloc_path_for_send();
1309 	if (!tmp_path)
1310 		return -ENOMEM;
1311 
1312 	/* We only use this path under the commit sem */
1313 	tmp_path->need_commit_sem = 0;
1314 
1315 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1316 	if (!backref_ctx) {
1317 		ret = -ENOMEM;
1318 		goto out;
1319 	}
1320 
1321 	backref_ctx->path = tmp_path;
1322 
1323 	if (data_offset >= ino_size) {
1324 		/*
1325 		 * There may be extents that lie behind the file's size.
1326 		 * I at least had this in combination with snapshotting while
1327 		 * writing large files.
1328 		 */
1329 		ret = 0;
1330 		goto out;
1331 	}
1332 
1333 	fi = btrfs_item_ptr(eb, path->slots[0],
1334 			struct btrfs_file_extent_item);
1335 	extent_type = btrfs_file_extent_type(eb, fi);
1336 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1337 		ret = -ENOENT;
1338 		goto out;
1339 	}
1340 	compressed = btrfs_file_extent_compression(eb, fi);
1341 
1342 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1343 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1344 	if (disk_byte == 0) {
1345 		ret = -ENOENT;
1346 		goto out;
1347 	}
1348 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1349 
1350 	down_read(&fs_info->commit_root_sem);
1351 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1352 				  &found_key, &flags);
1353 	up_read(&fs_info->commit_root_sem);
1354 	btrfs_release_path(tmp_path);
1355 
1356 	if (ret < 0)
1357 		goto out;
1358 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1359 		ret = -EIO;
1360 		goto out;
1361 	}
1362 
1363 	/*
1364 	 * Setup the clone roots.
1365 	 */
1366 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1367 		cur_clone_root = sctx->clone_roots + i;
1368 		cur_clone_root->ino = (u64)-1;
1369 		cur_clone_root->offset = 0;
1370 		cur_clone_root->found_refs = 0;
1371 	}
1372 
1373 	backref_ctx->sctx = sctx;
1374 	backref_ctx->found = 0;
1375 	backref_ctx->cur_objectid = ino;
1376 	backref_ctx->cur_offset = data_offset;
1377 	backref_ctx->found_itself = 0;
1378 	backref_ctx->extent_len = num_bytes;
1379 	/*
1380 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1381 	 * offsets that already take into account the data offset, but not for
1382 	 * compressed extents, since the offset is logical and not relative to
1383 	 * the physical extent locations. We must take this into account to
1384 	 * avoid sending clone offsets that go beyond the source file's size,
1385 	 * which would result in the clone ioctl failing with -EINVAL on the
1386 	 * receiving end.
1387 	 */
1388 	if (compressed == BTRFS_COMPRESS_NONE)
1389 		backref_ctx->data_offset = 0;
1390 	else
1391 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1392 
1393 	/*
1394 	 * The last extent of a file may be too large due to page alignment.
1395 	 * We need to adjust extent_len in this case so that the checks in
1396 	 * __iterate_backrefs work.
1397 	 */
1398 	if (data_offset + num_bytes >= ino_size)
1399 		backref_ctx->extent_len = ino_size - data_offset;
1400 
1401 	/*
1402 	 * Now collect all backrefs.
1403 	 */
1404 	if (compressed == BTRFS_COMPRESS_NONE)
1405 		extent_item_pos = logical - found_key.objectid;
1406 	else
1407 		extent_item_pos = 0;
1408 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1409 				    extent_item_pos, 1, __iterate_backrefs,
1410 				    backref_ctx, false);
1411 
1412 	if (ret < 0)
1413 		goto out;
1414 
1415 	if (!backref_ctx->found_itself) {
1416 		/* found a bug in backref code? */
1417 		ret = -EIO;
1418 		btrfs_err(fs_info,
1419 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1420 			  ino, data_offset, disk_byte, found_key.objectid);
1421 		goto out;
1422 	}
1423 
1424 	btrfs_debug(fs_info,
1425 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1426 		    data_offset, ino, num_bytes, logical);
1427 
1428 	if (!backref_ctx->found)
1429 		btrfs_debug(fs_info, "no clones found");
1430 
1431 	cur_clone_root = NULL;
1432 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1433 		if (sctx->clone_roots[i].found_refs) {
1434 			if (!cur_clone_root)
1435 				cur_clone_root = sctx->clone_roots + i;
1436 			else if (sctx->clone_roots[i].root == sctx->send_root)
1437 				/* prefer clones from send_root over others */
1438 				cur_clone_root = sctx->clone_roots + i;
1439 		}
1440 
1441 	}
1442 
1443 	if (cur_clone_root) {
1444 		*found = cur_clone_root;
1445 		ret = 0;
1446 	} else {
1447 		ret = -ENOENT;
1448 	}
1449 
1450 out:
1451 	btrfs_free_path(tmp_path);
1452 	kfree(backref_ctx);
1453 	return ret;
1454 }
1455 
1456 static int read_symlink(struct btrfs_root *root,
1457 			u64 ino,
1458 			struct fs_path *dest)
1459 {
1460 	int ret;
1461 	struct btrfs_path *path;
1462 	struct btrfs_key key;
1463 	struct btrfs_file_extent_item *ei;
1464 	u8 type;
1465 	u8 compression;
1466 	unsigned long off;
1467 	int len;
1468 
1469 	path = alloc_path_for_send();
1470 	if (!path)
1471 		return -ENOMEM;
1472 
1473 	key.objectid = ino;
1474 	key.type = BTRFS_EXTENT_DATA_KEY;
1475 	key.offset = 0;
1476 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1477 	if (ret < 0)
1478 		goto out;
1479 	if (ret) {
1480 		/*
1481 		 * An empty symlink inode. Can happen in rare error paths when
1482 		 * creating a symlink (transaction committed before the inode
1483 		 * eviction handler removed the symlink inode items and a crash
1484 		 * happened in between or the subvol was snapshoted in between).
1485 		 * Print an informative message to dmesg/syslog so that the user
1486 		 * can delete the symlink.
1487 		 */
1488 		btrfs_err(root->fs_info,
1489 			  "Found empty symlink inode %llu at root %llu",
1490 			  ino, root->root_key.objectid);
1491 		ret = -EIO;
1492 		goto out;
1493 	}
1494 
1495 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1496 			struct btrfs_file_extent_item);
1497 	type = btrfs_file_extent_type(path->nodes[0], ei);
1498 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1499 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1500 	BUG_ON(compression);
1501 
1502 	off = btrfs_file_extent_inline_start(ei);
1503 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1504 
1505 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1506 
1507 out:
1508 	btrfs_free_path(path);
1509 	return ret;
1510 }
1511 
1512 /*
1513  * Helper function to generate a file name that is unique in the root of
1514  * send_root and parent_root. This is used to generate names for orphan inodes.
1515  */
1516 static int gen_unique_name(struct send_ctx *sctx,
1517 			   u64 ino, u64 gen,
1518 			   struct fs_path *dest)
1519 {
1520 	int ret = 0;
1521 	struct btrfs_path *path;
1522 	struct btrfs_dir_item *di;
1523 	char tmp[64];
1524 	int len;
1525 	u64 idx = 0;
1526 
1527 	path = alloc_path_for_send();
1528 	if (!path)
1529 		return -ENOMEM;
1530 
1531 	while (1) {
1532 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1533 				ino, gen, idx);
1534 		ASSERT(len < sizeof(tmp));
1535 
1536 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1537 				path, BTRFS_FIRST_FREE_OBJECTID,
1538 				tmp, strlen(tmp), 0);
1539 		btrfs_release_path(path);
1540 		if (IS_ERR(di)) {
1541 			ret = PTR_ERR(di);
1542 			goto out;
1543 		}
1544 		if (di) {
1545 			/* not unique, try again */
1546 			idx++;
1547 			continue;
1548 		}
1549 
1550 		if (!sctx->parent_root) {
1551 			/* unique */
1552 			ret = 0;
1553 			break;
1554 		}
1555 
1556 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1557 				path, BTRFS_FIRST_FREE_OBJECTID,
1558 				tmp, strlen(tmp), 0);
1559 		btrfs_release_path(path);
1560 		if (IS_ERR(di)) {
1561 			ret = PTR_ERR(di);
1562 			goto out;
1563 		}
1564 		if (di) {
1565 			/* not unique, try again */
1566 			idx++;
1567 			continue;
1568 		}
1569 		/* unique */
1570 		break;
1571 	}
1572 
1573 	ret = fs_path_add(dest, tmp, strlen(tmp));
1574 
1575 out:
1576 	btrfs_free_path(path);
1577 	return ret;
1578 }
1579 
1580 enum inode_state {
1581 	inode_state_no_change,
1582 	inode_state_will_create,
1583 	inode_state_did_create,
1584 	inode_state_will_delete,
1585 	inode_state_did_delete,
1586 };
1587 
1588 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1589 {
1590 	int ret;
1591 	int left_ret;
1592 	int right_ret;
1593 	u64 left_gen;
1594 	u64 right_gen;
1595 
1596 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1597 			NULL, NULL);
1598 	if (ret < 0 && ret != -ENOENT)
1599 		goto out;
1600 	left_ret = ret;
1601 
1602 	if (!sctx->parent_root) {
1603 		right_ret = -ENOENT;
1604 	} else {
1605 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1606 				NULL, NULL, NULL, NULL);
1607 		if (ret < 0 && ret != -ENOENT)
1608 			goto out;
1609 		right_ret = ret;
1610 	}
1611 
1612 	if (!left_ret && !right_ret) {
1613 		if (left_gen == gen && right_gen == gen) {
1614 			ret = inode_state_no_change;
1615 		} else if (left_gen == gen) {
1616 			if (ino < sctx->send_progress)
1617 				ret = inode_state_did_create;
1618 			else
1619 				ret = inode_state_will_create;
1620 		} else if (right_gen == gen) {
1621 			if (ino < sctx->send_progress)
1622 				ret = inode_state_did_delete;
1623 			else
1624 				ret = inode_state_will_delete;
1625 		} else  {
1626 			ret = -ENOENT;
1627 		}
1628 	} else if (!left_ret) {
1629 		if (left_gen == gen) {
1630 			if (ino < sctx->send_progress)
1631 				ret = inode_state_did_create;
1632 			else
1633 				ret = inode_state_will_create;
1634 		} else {
1635 			ret = -ENOENT;
1636 		}
1637 	} else if (!right_ret) {
1638 		if (right_gen == gen) {
1639 			if (ino < sctx->send_progress)
1640 				ret = inode_state_did_delete;
1641 			else
1642 				ret = inode_state_will_delete;
1643 		} else {
1644 			ret = -ENOENT;
1645 		}
1646 	} else {
1647 		ret = -ENOENT;
1648 	}
1649 
1650 out:
1651 	return ret;
1652 }
1653 
1654 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1655 {
1656 	int ret;
1657 
1658 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1659 		return 1;
1660 
1661 	ret = get_cur_inode_state(sctx, ino, gen);
1662 	if (ret < 0)
1663 		goto out;
1664 
1665 	if (ret == inode_state_no_change ||
1666 	    ret == inode_state_did_create ||
1667 	    ret == inode_state_will_delete)
1668 		ret = 1;
1669 	else
1670 		ret = 0;
1671 
1672 out:
1673 	return ret;
1674 }
1675 
1676 /*
1677  * Helper function to lookup a dir item in a dir.
1678  */
1679 static int lookup_dir_item_inode(struct btrfs_root *root,
1680 				 u64 dir, const char *name, int name_len,
1681 				 u64 *found_inode,
1682 				 u8 *found_type)
1683 {
1684 	int ret = 0;
1685 	struct btrfs_dir_item *di;
1686 	struct btrfs_key key;
1687 	struct btrfs_path *path;
1688 
1689 	path = alloc_path_for_send();
1690 	if (!path)
1691 		return -ENOMEM;
1692 
1693 	di = btrfs_lookup_dir_item(NULL, root, path,
1694 			dir, name, name_len, 0);
1695 	if (!di) {
1696 		ret = -ENOENT;
1697 		goto out;
1698 	}
1699 	if (IS_ERR(di)) {
1700 		ret = PTR_ERR(di);
1701 		goto out;
1702 	}
1703 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1704 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1705 		ret = -ENOENT;
1706 		goto out;
1707 	}
1708 	*found_inode = key.objectid;
1709 	*found_type = btrfs_dir_type(path->nodes[0], di);
1710 
1711 out:
1712 	btrfs_free_path(path);
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1718  * generation of the parent dir and the name of the dir entry.
1719  */
1720 static int get_first_ref(struct btrfs_root *root, u64 ino,
1721 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1722 {
1723 	int ret;
1724 	struct btrfs_key key;
1725 	struct btrfs_key found_key;
1726 	struct btrfs_path *path;
1727 	int len;
1728 	u64 parent_dir;
1729 
1730 	path = alloc_path_for_send();
1731 	if (!path)
1732 		return -ENOMEM;
1733 
1734 	key.objectid = ino;
1735 	key.type = BTRFS_INODE_REF_KEY;
1736 	key.offset = 0;
1737 
1738 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1739 	if (ret < 0)
1740 		goto out;
1741 	if (!ret)
1742 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1743 				path->slots[0]);
1744 	if (ret || found_key.objectid != ino ||
1745 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1746 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1747 		ret = -ENOENT;
1748 		goto out;
1749 	}
1750 
1751 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1752 		struct btrfs_inode_ref *iref;
1753 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1754 				      struct btrfs_inode_ref);
1755 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1756 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1757 						     (unsigned long)(iref + 1),
1758 						     len);
1759 		parent_dir = found_key.offset;
1760 	} else {
1761 		struct btrfs_inode_extref *extref;
1762 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1763 					struct btrfs_inode_extref);
1764 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1765 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1766 					(unsigned long)&extref->name, len);
1767 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1768 	}
1769 	if (ret < 0)
1770 		goto out;
1771 	btrfs_release_path(path);
1772 
1773 	if (dir_gen) {
1774 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1775 				     NULL, NULL, NULL);
1776 		if (ret < 0)
1777 			goto out;
1778 	}
1779 
1780 	*dir = parent_dir;
1781 
1782 out:
1783 	btrfs_free_path(path);
1784 	return ret;
1785 }
1786 
1787 static int is_first_ref(struct btrfs_root *root,
1788 			u64 ino, u64 dir,
1789 			const char *name, int name_len)
1790 {
1791 	int ret;
1792 	struct fs_path *tmp_name;
1793 	u64 tmp_dir;
1794 
1795 	tmp_name = fs_path_alloc();
1796 	if (!tmp_name)
1797 		return -ENOMEM;
1798 
1799 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1800 	if (ret < 0)
1801 		goto out;
1802 
1803 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1804 		ret = 0;
1805 		goto out;
1806 	}
1807 
1808 	ret = !memcmp(tmp_name->start, name, name_len);
1809 
1810 out:
1811 	fs_path_free(tmp_name);
1812 	return ret;
1813 }
1814 
1815 /*
1816  * Used by process_recorded_refs to determine if a new ref would overwrite an
1817  * already existing ref. In case it detects an overwrite, it returns the
1818  * inode/gen in who_ino/who_gen.
1819  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1820  * to make sure later references to the overwritten inode are possible.
1821  * Orphanizing is however only required for the first ref of an inode.
1822  * process_recorded_refs does an additional is_first_ref check to see if
1823  * orphanizing is really required.
1824  */
1825 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1826 			      const char *name, int name_len,
1827 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1828 {
1829 	int ret = 0;
1830 	u64 gen;
1831 	u64 other_inode = 0;
1832 	u8 other_type = 0;
1833 
1834 	if (!sctx->parent_root)
1835 		goto out;
1836 
1837 	ret = is_inode_existent(sctx, dir, dir_gen);
1838 	if (ret <= 0)
1839 		goto out;
1840 
1841 	/*
1842 	 * If we have a parent root we need to verify that the parent dir was
1843 	 * not deleted and then re-created, if it was then we have no overwrite
1844 	 * and we can just unlink this entry.
1845 	 */
1846 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1847 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1848 				     NULL, NULL, NULL);
1849 		if (ret < 0 && ret != -ENOENT)
1850 			goto out;
1851 		if (ret) {
1852 			ret = 0;
1853 			goto out;
1854 		}
1855 		if (gen != dir_gen)
1856 			goto out;
1857 	}
1858 
1859 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1860 			&other_inode, &other_type);
1861 	if (ret < 0 && ret != -ENOENT)
1862 		goto out;
1863 	if (ret) {
1864 		ret = 0;
1865 		goto out;
1866 	}
1867 
1868 	/*
1869 	 * Check if the overwritten ref was already processed. If yes, the ref
1870 	 * was already unlinked/moved, so we can safely assume that we will not
1871 	 * overwrite anything at this point in time.
1872 	 */
1873 	if (other_inode > sctx->send_progress ||
1874 	    is_waiting_for_move(sctx, other_inode)) {
1875 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1876 				who_gen, who_mode, NULL, NULL, NULL);
1877 		if (ret < 0)
1878 			goto out;
1879 
1880 		ret = 1;
1881 		*who_ino = other_inode;
1882 	} else {
1883 		ret = 0;
1884 	}
1885 
1886 out:
1887 	return ret;
1888 }
1889 
1890 /*
1891  * Checks if the ref was overwritten by an already processed inode. This is
1892  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1893  * thus the orphan name needs be used.
1894  * process_recorded_refs also uses it to avoid unlinking of refs that were
1895  * overwritten.
1896  */
1897 static int did_overwrite_ref(struct send_ctx *sctx,
1898 			    u64 dir, u64 dir_gen,
1899 			    u64 ino, u64 ino_gen,
1900 			    const char *name, int name_len)
1901 {
1902 	int ret = 0;
1903 	u64 gen;
1904 	u64 ow_inode;
1905 	u8 other_type;
1906 
1907 	if (!sctx->parent_root)
1908 		goto out;
1909 
1910 	ret = is_inode_existent(sctx, dir, dir_gen);
1911 	if (ret <= 0)
1912 		goto out;
1913 
1914 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1915 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1916 				     NULL, NULL, NULL);
1917 		if (ret < 0 && ret != -ENOENT)
1918 			goto out;
1919 		if (ret) {
1920 			ret = 0;
1921 			goto out;
1922 		}
1923 		if (gen != dir_gen)
1924 			goto out;
1925 	}
1926 
1927 	/* check if the ref was overwritten by another ref */
1928 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1929 			&ow_inode, &other_type);
1930 	if (ret < 0 && ret != -ENOENT)
1931 		goto out;
1932 	if (ret) {
1933 		/* was never and will never be overwritten */
1934 		ret = 0;
1935 		goto out;
1936 	}
1937 
1938 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1939 			NULL, NULL);
1940 	if (ret < 0)
1941 		goto out;
1942 
1943 	if (ow_inode == ino && gen == ino_gen) {
1944 		ret = 0;
1945 		goto out;
1946 	}
1947 
1948 	/*
1949 	 * We know that it is or will be overwritten. Check this now.
1950 	 * The current inode being processed might have been the one that caused
1951 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1952 	 * the current inode being processed.
1953 	 */
1954 	if ((ow_inode < sctx->send_progress) ||
1955 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1956 	     gen == sctx->cur_inode_gen))
1957 		ret = 1;
1958 	else
1959 		ret = 0;
1960 
1961 out:
1962 	return ret;
1963 }
1964 
1965 /*
1966  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1967  * that got overwritten. This is used by process_recorded_refs to determine
1968  * if it has to use the path as returned by get_cur_path or the orphan name.
1969  */
1970 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1971 {
1972 	int ret = 0;
1973 	struct fs_path *name = NULL;
1974 	u64 dir;
1975 	u64 dir_gen;
1976 
1977 	if (!sctx->parent_root)
1978 		goto out;
1979 
1980 	name = fs_path_alloc();
1981 	if (!name)
1982 		return -ENOMEM;
1983 
1984 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1985 	if (ret < 0)
1986 		goto out;
1987 
1988 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1989 			name->start, fs_path_len(name));
1990 
1991 out:
1992 	fs_path_free(name);
1993 	return ret;
1994 }
1995 
1996 /*
1997  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1998  * so we need to do some special handling in case we have clashes. This function
1999  * takes care of this with the help of name_cache_entry::radix_list.
2000  * In case of error, nce is kfreed.
2001  */
2002 static int name_cache_insert(struct send_ctx *sctx,
2003 			     struct name_cache_entry *nce)
2004 {
2005 	int ret = 0;
2006 	struct list_head *nce_head;
2007 
2008 	nce_head = radix_tree_lookup(&sctx->name_cache,
2009 			(unsigned long)nce->ino);
2010 	if (!nce_head) {
2011 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2012 		if (!nce_head) {
2013 			kfree(nce);
2014 			return -ENOMEM;
2015 		}
2016 		INIT_LIST_HEAD(nce_head);
2017 
2018 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2019 		if (ret < 0) {
2020 			kfree(nce_head);
2021 			kfree(nce);
2022 			return ret;
2023 		}
2024 	}
2025 	list_add_tail(&nce->radix_list, nce_head);
2026 	list_add_tail(&nce->list, &sctx->name_cache_list);
2027 	sctx->name_cache_size++;
2028 
2029 	return ret;
2030 }
2031 
2032 static void name_cache_delete(struct send_ctx *sctx,
2033 			      struct name_cache_entry *nce)
2034 {
2035 	struct list_head *nce_head;
2036 
2037 	nce_head = radix_tree_lookup(&sctx->name_cache,
2038 			(unsigned long)nce->ino);
2039 	if (!nce_head) {
2040 		btrfs_err(sctx->send_root->fs_info,
2041 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2042 			nce->ino, sctx->name_cache_size);
2043 	}
2044 
2045 	list_del(&nce->radix_list);
2046 	list_del(&nce->list);
2047 	sctx->name_cache_size--;
2048 
2049 	/*
2050 	 * We may not get to the final release of nce_head if the lookup fails
2051 	 */
2052 	if (nce_head && list_empty(nce_head)) {
2053 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2054 		kfree(nce_head);
2055 	}
2056 }
2057 
2058 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2059 						    u64 ino, u64 gen)
2060 {
2061 	struct list_head *nce_head;
2062 	struct name_cache_entry *cur;
2063 
2064 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2065 	if (!nce_head)
2066 		return NULL;
2067 
2068 	list_for_each_entry(cur, nce_head, radix_list) {
2069 		if (cur->ino == ino && cur->gen == gen)
2070 			return cur;
2071 	}
2072 	return NULL;
2073 }
2074 
2075 /*
2076  * Removes the entry from the list and adds it back to the end. This marks the
2077  * entry as recently used so that name_cache_clean_unused does not remove it.
2078  */
2079 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2080 {
2081 	list_del(&nce->list);
2082 	list_add_tail(&nce->list, &sctx->name_cache_list);
2083 }
2084 
2085 /*
2086  * Remove some entries from the beginning of name_cache_list.
2087  */
2088 static void name_cache_clean_unused(struct send_ctx *sctx)
2089 {
2090 	struct name_cache_entry *nce;
2091 
2092 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2093 		return;
2094 
2095 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2096 		nce = list_entry(sctx->name_cache_list.next,
2097 				struct name_cache_entry, list);
2098 		name_cache_delete(sctx, nce);
2099 		kfree(nce);
2100 	}
2101 }
2102 
2103 static void name_cache_free(struct send_ctx *sctx)
2104 {
2105 	struct name_cache_entry *nce;
2106 
2107 	while (!list_empty(&sctx->name_cache_list)) {
2108 		nce = list_entry(sctx->name_cache_list.next,
2109 				struct name_cache_entry, list);
2110 		name_cache_delete(sctx, nce);
2111 		kfree(nce);
2112 	}
2113 }
2114 
2115 /*
2116  * Used by get_cur_path for each ref up to the root.
2117  * Returns 0 if it succeeded.
2118  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2119  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2120  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2121  * Returns <0 in case of error.
2122  */
2123 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2124 				     u64 ino, u64 gen,
2125 				     u64 *parent_ino,
2126 				     u64 *parent_gen,
2127 				     struct fs_path *dest)
2128 {
2129 	int ret;
2130 	int nce_ret;
2131 	struct name_cache_entry *nce = NULL;
2132 
2133 	/*
2134 	 * First check if we already did a call to this function with the same
2135 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2136 	 * return the cached result.
2137 	 */
2138 	nce = name_cache_search(sctx, ino, gen);
2139 	if (nce) {
2140 		if (ino < sctx->send_progress && nce->need_later_update) {
2141 			name_cache_delete(sctx, nce);
2142 			kfree(nce);
2143 			nce = NULL;
2144 		} else {
2145 			name_cache_used(sctx, nce);
2146 			*parent_ino = nce->parent_ino;
2147 			*parent_gen = nce->parent_gen;
2148 			ret = fs_path_add(dest, nce->name, nce->name_len);
2149 			if (ret < 0)
2150 				goto out;
2151 			ret = nce->ret;
2152 			goto out;
2153 		}
2154 	}
2155 
2156 	/*
2157 	 * If the inode is not existent yet, add the orphan name and return 1.
2158 	 * This should only happen for the parent dir that we determine in
2159 	 * __record_new_ref
2160 	 */
2161 	ret = is_inode_existent(sctx, ino, gen);
2162 	if (ret < 0)
2163 		goto out;
2164 
2165 	if (!ret) {
2166 		ret = gen_unique_name(sctx, ino, gen, dest);
2167 		if (ret < 0)
2168 			goto out;
2169 		ret = 1;
2170 		goto out_cache;
2171 	}
2172 
2173 	/*
2174 	 * Depending on whether the inode was already processed or not, use
2175 	 * send_root or parent_root for ref lookup.
2176 	 */
2177 	if (ino < sctx->send_progress)
2178 		ret = get_first_ref(sctx->send_root, ino,
2179 				    parent_ino, parent_gen, dest);
2180 	else
2181 		ret = get_first_ref(sctx->parent_root, ino,
2182 				    parent_ino, parent_gen, dest);
2183 	if (ret < 0)
2184 		goto out;
2185 
2186 	/*
2187 	 * Check if the ref was overwritten by an inode's ref that was processed
2188 	 * earlier. If yes, treat as orphan and return 1.
2189 	 */
2190 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2191 			dest->start, dest->end - dest->start);
2192 	if (ret < 0)
2193 		goto out;
2194 	if (ret) {
2195 		fs_path_reset(dest);
2196 		ret = gen_unique_name(sctx, ino, gen, dest);
2197 		if (ret < 0)
2198 			goto out;
2199 		ret = 1;
2200 	}
2201 
2202 out_cache:
2203 	/*
2204 	 * Store the result of the lookup in the name cache.
2205 	 */
2206 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2207 	if (!nce) {
2208 		ret = -ENOMEM;
2209 		goto out;
2210 	}
2211 
2212 	nce->ino = ino;
2213 	nce->gen = gen;
2214 	nce->parent_ino = *parent_ino;
2215 	nce->parent_gen = *parent_gen;
2216 	nce->name_len = fs_path_len(dest);
2217 	nce->ret = ret;
2218 	strcpy(nce->name, dest->start);
2219 
2220 	if (ino < sctx->send_progress)
2221 		nce->need_later_update = 0;
2222 	else
2223 		nce->need_later_update = 1;
2224 
2225 	nce_ret = name_cache_insert(sctx, nce);
2226 	if (nce_ret < 0)
2227 		ret = nce_ret;
2228 	name_cache_clean_unused(sctx);
2229 
2230 out:
2231 	return ret;
2232 }
2233 
2234 /*
2235  * Magic happens here. This function returns the first ref to an inode as it
2236  * would look like while receiving the stream at this point in time.
2237  * We walk the path up to the root. For every inode in between, we check if it
2238  * was already processed/sent. If yes, we continue with the parent as found
2239  * in send_root. If not, we continue with the parent as found in parent_root.
2240  * If we encounter an inode that was deleted at this point in time, we use the
2241  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2242  * that were not created yet and overwritten inodes/refs.
2243  *
2244  * When do we have have orphan inodes:
2245  * 1. When an inode is freshly created and thus no valid refs are available yet
2246  * 2. When a directory lost all it's refs (deleted) but still has dir items
2247  *    inside which were not processed yet (pending for move/delete). If anyone
2248  *    tried to get the path to the dir items, it would get a path inside that
2249  *    orphan directory.
2250  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2251  *    of an unprocessed inode. If in that case the first ref would be
2252  *    overwritten, the overwritten inode gets "orphanized". Later when we
2253  *    process this overwritten inode, it is restored at a new place by moving
2254  *    the orphan inode.
2255  *
2256  * sctx->send_progress tells this function at which point in time receiving
2257  * would be.
2258  */
2259 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2260 			struct fs_path *dest)
2261 {
2262 	int ret = 0;
2263 	struct fs_path *name = NULL;
2264 	u64 parent_inode = 0;
2265 	u64 parent_gen = 0;
2266 	int stop = 0;
2267 
2268 	name = fs_path_alloc();
2269 	if (!name) {
2270 		ret = -ENOMEM;
2271 		goto out;
2272 	}
2273 
2274 	dest->reversed = 1;
2275 	fs_path_reset(dest);
2276 
2277 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2278 		struct waiting_dir_move *wdm;
2279 
2280 		fs_path_reset(name);
2281 
2282 		if (is_waiting_for_rm(sctx, ino)) {
2283 			ret = gen_unique_name(sctx, ino, gen, name);
2284 			if (ret < 0)
2285 				goto out;
2286 			ret = fs_path_add_path(dest, name);
2287 			break;
2288 		}
2289 
2290 		wdm = get_waiting_dir_move(sctx, ino);
2291 		if (wdm && wdm->orphanized) {
2292 			ret = gen_unique_name(sctx, ino, gen, name);
2293 			stop = 1;
2294 		} else if (wdm) {
2295 			ret = get_first_ref(sctx->parent_root, ino,
2296 					    &parent_inode, &parent_gen, name);
2297 		} else {
2298 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2299 							&parent_inode,
2300 							&parent_gen, name);
2301 			if (ret)
2302 				stop = 1;
2303 		}
2304 
2305 		if (ret < 0)
2306 			goto out;
2307 
2308 		ret = fs_path_add_path(dest, name);
2309 		if (ret < 0)
2310 			goto out;
2311 
2312 		ino = parent_inode;
2313 		gen = parent_gen;
2314 	}
2315 
2316 out:
2317 	fs_path_free(name);
2318 	if (!ret)
2319 		fs_path_unreverse(dest);
2320 	return ret;
2321 }
2322 
2323 /*
2324  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2325  */
2326 static int send_subvol_begin(struct send_ctx *sctx)
2327 {
2328 	int ret;
2329 	struct btrfs_root *send_root = sctx->send_root;
2330 	struct btrfs_root *parent_root = sctx->parent_root;
2331 	struct btrfs_path *path;
2332 	struct btrfs_key key;
2333 	struct btrfs_root_ref *ref;
2334 	struct extent_buffer *leaf;
2335 	char *name = NULL;
2336 	int namelen;
2337 
2338 	path = btrfs_alloc_path();
2339 	if (!path)
2340 		return -ENOMEM;
2341 
2342 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2343 	if (!name) {
2344 		btrfs_free_path(path);
2345 		return -ENOMEM;
2346 	}
2347 
2348 	key.objectid = send_root->objectid;
2349 	key.type = BTRFS_ROOT_BACKREF_KEY;
2350 	key.offset = 0;
2351 
2352 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2353 				&key, path, 1, 0);
2354 	if (ret < 0)
2355 		goto out;
2356 	if (ret) {
2357 		ret = -ENOENT;
2358 		goto out;
2359 	}
2360 
2361 	leaf = path->nodes[0];
2362 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2363 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2364 	    key.objectid != send_root->objectid) {
2365 		ret = -ENOENT;
2366 		goto out;
2367 	}
2368 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2369 	namelen = btrfs_root_ref_name_len(leaf, ref);
2370 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2371 	btrfs_release_path(path);
2372 
2373 	if (parent_root) {
2374 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2375 		if (ret < 0)
2376 			goto out;
2377 	} else {
2378 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2379 		if (ret < 0)
2380 			goto out;
2381 	}
2382 
2383 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2384 
2385 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2386 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2387 			    sctx->send_root->root_item.received_uuid);
2388 	else
2389 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2390 			    sctx->send_root->root_item.uuid);
2391 
2392 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2393 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2394 	if (parent_root) {
2395 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2396 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2397 				     parent_root->root_item.received_uuid);
2398 		else
2399 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2400 				     parent_root->root_item.uuid);
2401 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2402 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2403 	}
2404 
2405 	ret = send_cmd(sctx);
2406 
2407 tlv_put_failure:
2408 out:
2409 	btrfs_free_path(path);
2410 	kfree(name);
2411 	return ret;
2412 }
2413 
2414 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2415 {
2416 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2417 	int ret = 0;
2418 	struct fs_path *p;
2419 
2420 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2421 
2422 	p = fs_path_alloc();
2423 	if (!p)
2424 		return -ENOMEM;
2425 
2426 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2427 	if (ret < 0)
2428 		goto out;
2429 
2430 	ret = get_cur_path(sctx, ino, gen, p);
2431 	if (ret < 0)
2432 		goto out;
2433 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2434 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2435 
2436 	ret = send_cmd(sctx);
2437 
2438 tlv_put_failure:
2439 out:
2440 	fs_path_free(p);
2441 	return ret;
2442 }
2443 
2444 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2445 {
2446 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2447 	int ret = 0;
2448 	struct fs_path *p;
2449 
2450 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2451 
2452 	p = fs_path_alloc();
2453 	if (!p)
2454 		return -ENOMEM;
2455 
2456 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2457 	if (ret < 0)
2458 		goto out;
2459 
2460 	ret = get_cur_path(sctx, ino, gen, p);
2461 	if (ret < 0)
2462 		goto out;
2463 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2464 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2465 
2466 	ret = send_cmd(sctx);
2467 
2468 tlv_put_failure:
2469 out:
2470 	fs_path_free(p);
2471 	return ret;
2472 }
2473 
2474 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2475 {
2476 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2477 	int ret = 0;
2478 	struct fs_path *p;
2479 
2480 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2481 		    ino, uid, gid);
2482 
2483 	p = fs_path_alloc();
2484 	if (!p)
2485 		return -ENOMEM;
2486 
2487 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2488 	if (ret < 0)
2489 		goto out;
2490 
2491 	ret = get_cur_path(sctx, ino, gen, p);
2492 	if (ret < 0)
2493 		goto out;
2494 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2495 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2496 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2497 
2498 	ret = send_cmd(sctx);
2499 
2500 tlv_put_failure:
2501 out:
2502 	fs_path_free(p);
2503 	return ret;
2504 }
2505 
2506 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2507 {
2508 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2509 	int ret = 0;
2510 	struct fs_path *p = NULL;
2511 	struct btrfs_inode_item *ii;
2512 	struct btrfs_path *path = NULL;
2513 	struct extent_buffer *eb;
2514 	struct btrfs_key key;
2515 	int slot;
2516 
2517 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2518 
2519 	p = fs_path_alloc();
2520 	if (!p)
2521 		return -ENOMEM;
2522 
2523 	path = alloc_path_for_send();
2524 	if (!path) {
2525 		ret = -ENOMEM;
2526 		goto out;
2527 	}
2528 
2529 	key.objectid = ino;
2530 	key.type = BTRFS_INODE_ITEM_KEY;
2531 	key.offset = 0;
2532 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2533 	if (ret > 0)
2534 		ret = -ENOENT;
2535 	if (ret < 0)
2536 		goto out;
2537 
2538 	eb = path->nodes[0];
2539 	slot = path->slots[0];
2540 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2541 
2542 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2543 	if (ret < 0)
2544 		goto out;
2545 
2546 	ret = get_cur_path(sctx, ino, gen, p);
2547 	if (ret < 0)
2548 		goto out;
2549 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2550 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2551 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2552 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2553 	/* TODO Add otime support when the otime patches get into upstream */
2554 
2555 	ret = send_cmd(sctx);
2556 
2557 tlv_put_failure:
2558 out:
2559 	fs_path_free(p);
2560 	btrfs_free_path(path);
2561 	return ret;
2562 }
2563 
2564 /*
2565  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2566  * a valid path yet because we did not process the refs yet. So, the inode
2567  * is created as orphan.
2568  */
2569 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2570 {
2571 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2572 	int ret = 0;
2573 	struct fs_path *p;
2574 	int cmd;
2575 	u64 gen;
2576 	u64 mode;
2577 	u64 rdev;
2578 
2579 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2580 
2581 	p = fs_path_alloc();
2582 	if (!p)
2583 		return -ENOMEM;
2584 
2585 	if (ino != sctx->cur_ino) {
2586 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2587 				     NULL, NULL, &rdev);
2588 		if (ret < 0)
2589 			goto out;
2590 	} else {
2591 		gen = sctx->cur_inode_gen;
2592 		mode = sctx->cur_inode_mode;
2593 		rdev = sctx->cur_inode_rdev;
2594 	}
2595 
2596 	if (S_ISREG(mode)) {
2597 		cmd = BTRFS_SEND_C_MKFILE;
2598 	} else if (S_ISDIR(mode)) {
2599 		cmd = BTRFS_SEND_C_MKDIR;
2600 	} else if (S_ISLNK(mode)) {
2601 		cmd = BTRFS_SEND_C_SYMLINK;
2602 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2603 		cmd = BTRFS_SEND_C_MKNOD;
2604 	} else if (S_ISFIFO(mode)) {
2605 		cmd = BTRFS_SEND_C_MKFIFO;
2606 	} else if (S_ISSOCK(mode)) {
2607 		cmd = BTRFS_SEND_C_MKSOCK;
2608 	} else {
2609 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2610 				(int)(mode & S_IFMT));
2611 		ret = -EOPNOTSUPP;
2612 		goto out;
2613 	}
2614 
2615 	ret = begin_cmd(sctx, cmd);
2616 	if (ret < 0)
2617 		goto out;
2618 
2619 	ret = gen_unique_name(sctx, ino, gen, p);
2620 	if (ret < 0)
2621 		goto out;
2622 
2623 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2624 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2625 
2626 	if (S_ISLNK(mode)) {
2627 		fs_path_reset(p);
2628 		ret = read_symlink(sctx->send_root, ino, p);
2629 		if (ret < 0)
2630 			goto out;
2631 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2632 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2633 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2634 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2635 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2636 	}
2637 
2638 	ret = send_cmd(sctx);
2639 	if (ret < 0)
2640 		goto out;
2641 
2642 
2643 tlv_put_failure:
2644 out:
2645 	fs_path_free(p);
2646 	return ret;
2647 }
2648 
2649 /*
2650  * We need some special handling for inodes that get processed before the parent
2651  * directory got created. See process_recorded_refs for details.
2652  * This function does the check if we already created the dir out of order.
2653  */
2654 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2655 {
2656 	int ret = 0;
2657 	struct btrfs_path *path = NULL;
2658 	struct btrfs_key key;
2659 	struct btrfs_key found_key;
2660 	struct btrfs_key di_key;
2661 	struct extent_buffer *eb;
2662 	struct btrfs_dir_item *di;
2663 	int slot;
2664 
2665 	path = alloc_path_for_send();
2666 	if (!path) {
2667 		ret = -ENOMEM;
2668 		goto out;
2669 	}
2670 
2671 	key.objectid = dir;
2672 	key.type = BTRFS_DIR_INDEX_KEY;
2673 	key.offset = 0;
2674 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2675 	if (ret < 0)
2676 		goto out;
2677 
2678 	while (1) {
2679 		eb = path->nodes[0];
2680 		slot = path->slots[0];
2681 		if (slot >= btrfs_header_nritems(eb)) {
2682 			ret = btrfs_next_leaf(sctx->send_root, path);
2683 			if (ret < 0) {
2684 				goto out;
2685 			} else if (ret > 0) {
2686 				ret = 0;
2687 				break;
2688 			}
2689 			continue;
2690 		}
2691 
2692 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2693 		if (found_key.objectid != key.objectid ||
2694 		    found_key.type != key.type) {
2695 			ret = 0;
2696 			goto out;
2697 		}
2698 
2699 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2700 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2701 
2702 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2703 		    di_key.objectid < sctx->send_progress) {
2704 			ret = 1;
2705 			goto out;
2706 		}
2707 
2708 		path->slots[0]++;
2709 	}
2710 
2711 out:
2712 	btrfs_free_path(path);
2713 	return ret;
2714 }
2715 
2716 /*
2717  * Only creates the inode if it is:
2718  * 1. Not a directory
2719  * 2. Or a directory which was not created already due to out of order
2720  *    directories. See did_create_dir and process_recorded_refs for details.
2721  */
2722 static int send_create_inode_if_needed(struct send_ctx *sctx)
2723 {
2724 	int ret;
2725 
2726 	if (S_ISDIR(sctx->cur_inode_mode)) {
2727 		ret = did_create_dir(sctx, sctx->cur_ino);
2728 		if (ret < 0)
2729 			goto out;
2730 		if (ret) {
2731 			ret = 0;
2732 			goto out;
2733 		}
2734 	}
2735 
2736 	ret = send_create_inode(sctx, sctx->cur_ino);
2737 	if (ret < 0)
2738 		goto out;
2739 
2740 out:
2741 	return ret;
2742 }
2743 
2744 struct recorded_ref {
2745 	struct list_head list;
2746 	char *name;
2747 	struct fs_path *full_path;
2748 	u64 dir;
2749 	u64 dir_gen;
2750 	int name_len;
2751 };
2752 
2753 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2754 {
2755 	ref->full_path = path;
2756 	ref->name = (char *)kbasename(ref->full_path->start);
2757 	ref->name_len = ref->full_path->end - ref->name;
2758 }
2759 
2760 /*
2761  * We need to process new refs before deleted refs, but compare_tree gives us
2762  * everything mixed. So we first record all refs and later process them.
2763  * This function is a helper to record one ref.
2764  */
2765 static int __record_ref(struct list_head *head, u64 dir,
2766 		      u64 dir_gen, struct fs_path *path)
2767 {
2768 	struct recorded_ref *ref;
2769 
2770 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2771 	if (!ref)
2772 		return -ENOMEM;
2773 
2774 	ref->dir = dir;
2775 	ref->dir_gen = dir_gen;
2776 	set_ref_path(ref, path);
2777 	list_add_tail(&ref->list, head);
2778 	return 0;
2779 }
2780 
2781 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2782 {
2783 	struct recorded_ref *new;
2784 
2785 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2786 	if (!new)
2787 		return -ENOMEM;
2788 
2789 	new->dir = ref->dir;
2790 	new->dir_gen = ref->dir_gen;
2791 	new->full_path = NULL;
2792 	INIT_LIST_HEAD(&new->list);
2793 	list_add_tail(&new->list, list);
2794 	return 0;
2795 }
2796 
2797 static void __free_recorded_refs(struct list_head *head)
2798 {
2799 	struct recorded_ref *cur;
2800 
2801 	while (!list_empty(head)) {
2802 		cur = list_entry(head->next, struct recorded_ref, list);
2803 		fs_path_free(cur->full_path);
2804 		list_del(&cur->list);
2805 		kfree(cur);
2806 	}
2807 }
2808 
2809 static void free_recorded_refs(struct send_ctx *sctx)
2810 {
2811 	__free_recorded_refs(&sctx->new_refs);
2812 	__free_recorded_refs(&sctx->deleted_refs);
2813 }
2814 
2815 /*
2816  * Renames/moves a file/dir to its orphan name. Used when the first
2817  * ref of an unprocessed inode gets overwritten and for all non empty
2818  * directories.
2819  */
2820 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2821 			  struct fs_path *path)
2822 {
2823 	int ret;
2824 	struct fs_path *orphan;
2825 
2826 	orphan = fs_path_alloc();
2827 	if (!orphan)
2828 		return -ENOMEM;
2829 
2830 	ret = gen_unique_name(sctx, ino, gen, orphan);
2831 	if (ret < 0)
2832 		goto out;
2833 
2834 	ret = send_rename(sctx, path, orphan);
2835 
2836 out:
2837 	fs_path_free(orphan);
2838 	return ret;
2839 }
2840 
2841 static struct orphan_dir_info *
2842 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2843 {
2844 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2845 	struct rb_node *parent = NULL;
2846 	struct orphan_dir_info *entry, *odi;
2847 
2848 	while (*p) {
2849 		parent = *p;
2850 		entry = rb_entry(parent, struct orphan_dir_info, node);
2851 		if (dir_ino < entry->ino) {
2852 			p = &(*p)->rb_left;
2853 		} else if (dir_ino > entry->ino) {
2854 			p = &(*p)->rb_right;
2855 		} else {
2856 			return entry;
2857 		}
2858 	}
2859 
2860 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2861 	if (!odi)
2862 		return ERR_PTR(-ENOMEM);
2863 	odi->ino = dir_ino;
2864 	odi->gen = 0;
2865 	odi->last_dir_index_offset = 0;
2866 
2867 	rb_link_node(&odi->node, parent, p);
2868 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2869 	return odi;
2870 }
2871 
2872 static struct orphan_dir_info *
2873 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2874 {
2875 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2876 	struct orphan_dir_info *entry;
2877 
2878 	while (n) {
2879 		entry = rb_entry(n, struct orphan_dir_info, node);
2880 		if (dir_ino < entry->ino)
2881 			n = n->rb_left;
2882 		else if (dir_ino > entry->ino)
2883 			n = n->rb_right;
2884 		else
2885 			return entry;
2886 	}
2887 	return NULL;
2888 }
2889 
2890 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2891 {
2892 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2893 
2894 	return odi != NULL;
2895 }
2896 
2897 static void free_orphan_dir_info(struct send_ctx *sctx,
2898 				 struct orphan_dir_info *odi)
2899 {
2900 	if (!odi)
2901 		return;
2902 	rb_erase(&odi->node, &sctx->orphan_dirs);
2903 	kfree(odi);
2904 }
2905 
2906 /*
2907  * Returns 1 if a directory can be removed at this point in time.
2908  * We check this by iterating all dir items and checking if the inode behind
2909  * the dir item was already processed.
2910  */
2911 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2912 		     u64 send_progress)
2913 {
2914 	int ret = 0;
2915 	struct btrfs_root *root = sctx->parent_root;
2916 	struct btrfs_path *path;
2917 	struct btrfs_key key;
2918 	struct btrfs_key found_key;
2919 	struct btrfs_key loc;
2920 	struct btrfs_dir_item *di;
2921 	struct orphan_dir_info *odi = NULL;
2922 
2923 	/*
2924 	 * Don't try to rmdir the top/root subvolume dir.
2925 	 */
2926 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2927 		return 0;
2928 
2929 	path = alloc_path_for_send();
2930 	if (!path)
2931 		return -ENOMEM;
2932 
2933 	key.objectid = dir;
2934 	key.type = BTRFS_DIR_INDEX_KEY;
2935 	key.offset = 0;
2936 
2937 	odi = get_orphan_dir_info(sctx, dir);
2938 	if (odi)
2939 		key.offset = odi->last_dir_index_offset;
2940 
2941 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2942 	if (ret < 0)
2943 		goto out;
2944 
2945 	while (1) {
2946 		struct waiting_dir_move *dm;
2947 
2948 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2949 			ret = btrfs_next_leaf(root, path);
2950 			if (ret < 0)
2951 				goto out;
2952 			else if (ret > 0)
2953 				break;
2954 			continue;
2955 		}
2956 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2957 				      path->slots[0]);
2958 		if (found_key.objectid != key.objectid ||
2959 		    found_key.type != key.type)
2960 			break;
2961 
2962 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2963 				struct btrfs_dir_item);
2964 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2965 
2966 		dm = get_waiting_dir_move(sctx, loc.objectid);
2967 		if (dm) {
2968 			odi = add_orphan_dir_info(sctx, dir);
2969 			if (IS_ERR(odi)) {
2970 				ret = PTR_ERR(odi);
2971 				goto out;
2972 			}
2973 			odi->gen = dir_gen;
2974 			odi->last_dir_index_offset = found_key.offset;
2975 			dm->rmdir_ino = dir;
2976 			ret = 0;
2977 			goto out;
2978 		}
2979 
2980 		if (loc.objectid > send_progress) {
2981 			odi = add_orphan_dir_info(sctx, dir);
2982 			if (IS_ERR(odi)) {
2983 				ret = PTR_ERR(odi);
2984 				goto out;
2985 			}
2986 			odi->gen = dir_gen;
2987 			odi->last_dir_index_offset = found_key.offset;
2988 			ret = 0;
2989 			goto out;
2990 		}
2991 
2992 		path->slots[0]++;
2993 	}
2994 	free_orphan_dir_info(sctx, odi);
2995 
2996 	ret = 1;
2997 
2998 out:
2999 	btrfs_free_path(path);
3000 	return ret;
3001 }
3002 
3003 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3004 {
3005 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3006 
3007 	return entry != NULL;
3008 }
3009 
3010 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3011 {
3012 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3013 	struct rb_node *parent = NULL;
3014 	struct waiting_dir_move *entry, *dm;
3015 
3016 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3017 	if (!dm)
3018 		return -ENOMEM;
3019 	dm->ino = ino;
3020 	dm->rmdir_ino = 0;
3021 	dm->orphanized = orphanized;
3022 
3023 	while (*p) {
3024 		parent = *p;
3025 		entry = rb_entry(parent, struct waiting_dir_move, node);
3026 		if (ino < entry->ino) {
3027 			p = &(*p)->rb_left;
3028 		} else if (ino > entry->ino) {
3029 			p = &(*p)->rb_right;
3030 		} else {
3031 			kfree(dm);
3032 			return -EEXIST;
3033 		}
3034 	}
3035 
3036 	rb_link_node(&dm->node, parent, p);
3037 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3038 	return 0;
3039 }
3040 
3041 static struct waiting_dir_move *
3042 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3043 {
3044 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3045 	struct waiting_dir_move *entry;
3046 
3047 	while (n) {
3048 		entry = rb_entry(n, struct waiting_dir_move, node);
3049 		if (ino < entry->ino)
3050 			n = n->rb_left;
3051 		else if (ino > entry->ino)
3052 			n = n->rb_right;
3053 		else
3054 			return entry;
3055 	}
3056 	return NULL;
3057 }
3058 
3059 static void free_waiting_dir_move(struct send_ctx *sctx,
3060 				  struct waiting_dir_move *dm)
3061 {
3062 	if (!dm)
3063 		return;
3064 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3065 	kfree(dm);
3066 }
3067 
3068 static int add_pending_dir_move(struct send_ctx *sctx,
3069 				u64 ino,
3070 				u64 ino_gen,
3071 				u64 parent_ino,
3072 				struct list_head *new_refs,
3073 				struct list_head *deleted_refs,
3074 				const bool is_orphan)
3075 {
3076 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3077 	struct rb_node *parent = NULL;
3078 	struct pending_dir_move *entry = NULL, *pm;
3079 	struct recorded_ref *cur;
3080 	int exists = 0;
3081 	int ret;
3082 
3083 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3084 	if (!pm)
3085 		return -ENOMEM;
3086 	pm->parent_ino = parent_ino;
3087 	pm->ino = ino;
3088 	pm->gen = ino_gen;
3089 	INIT_LIST_HEAD(&pm->list);
3090 	INIT_LIST_HEAD(&pm->update_refs);
3091 	RB_CLEAR_NODE(&pm->node);
3092 
3093 	while (*p) {
3094 		parent = *p;
3095 		entry = rb_entry(parent, struct pending_dir_move, node);
3096 		if (parent_ino < entry->parent_ino) {
3097 			p = &(*p)->rb_left;
3098 		} else if (parent_ino > entry->parent_ino) {
3099 			p = &(*p)->rb_right;
3100 		} else {
3101 			exists = 1;
3102 			break;
3103 		}
3104 	}
3105 
3106 	list_for_each_entry(cur, deleted_refs, list) {
3107 		ret = dup_ref(cur, &pm->update_refs);
3108 		if (ret < 0)
3109 			goto out;
3110 	}
3111 	list_for_each_entry(cur, new_refs, list) {
3112 		ret = dup_ref(cur, &pm->update_refs);
3113 		if (ret < 0)
3114 			goto out;
3115 	}
3116 
3117 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3118 	if (ret)
3119 		goto out;
3120 
3121 	if (exists) {
3122 		list_add_tail(&pm->list, &entry->list);
3123 	} else {
3124 		rb_link_node(&pm->node, parent, p);
3125 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3126 	}
3127 	ret = 0;
3128 out:
3129 	if (ret) {
3130 		__free_recorded_refs(&pm->update_refs);
3131 		kfree(pm);
3132 	}
3133 	return ret;
3134 }
3135 
3136 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3137 						      u64 parent_ino)
3138 {
3139 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3140 	struct pending_dir_move *entry;
3141 
3142 	while (n) {
3143 		entry = rb_entry(n, struct pending_dir_move, node);
3144 		if (parent_ino < entry->parent_ino)
3145 			n = n->rb_left;
3146 		else if (parent_ino > entry->parent_ino)
3147 			n = n->rb_right;
3148 		else
3149 			return entry;
3150 	}
3151 	return NULL;
3152 }
3153 
3154 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3155 		     u64 ino, u64 gen, u64 *ancestor_ino)
3156 {
3157 	int ret = 0;
3158 	u64 parent_inode = 0;
3159 	u64 parent_gen = 0;
3160 	u64 start_ino = ino;
3161 
3162 	*ancestor_ino = 0;
3163 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3164 		fs_path_reset(name);
3165 
3166 		if (is_waiting_for_rm(sctx, ino))
3167 			break;
3168 		if (is_waiting_for_move(sctx, ino)) {
3169 			if (*ancestor_ino == 0)
3170 				*ancestor_ino = ino;
3171 			ret = get_first_ref(sctx->parent_root, ino,
3172 					    &parent_inode, &parent_gen, name);
3173 		} else {
3174 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3175 							&parent_inode,
3176 							&parent_gen, name);
3177 			if (ret > 0) {
3178 				ret = 0;
3179 				break;
3180 			}
3181 		}
3182 		if (ret < 0)
3183 			break;
3184 		if (parent_inode == start_ino) {
3185 			ret = 1;
3186 			if (*ancestor_ino == 0)
3187 				*ancestor_ino = ino;
3188 			break;
3189 		}
3190 		ino = parent_inode;
3191 		gen = parent_gen;
3192 	}
3193 	return ret;
3194 }
3195 
3196 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3197 {
3198 	struct fs_path *from_path = NULL;
3199 	struct fs_path *to_path = NULL;
3200 	struct fs_path *name = NULL;
3201 	u64 orig_progress = sctx->send_progress;
3202 	struct recorded_ref *cur;
3203 	u64 parent_ino, parent_gen;
3204 	struct waiting_dir_move *dm = NULL;
3205 	u64 rmdir_ino = 0;
3206 	u64 ancestor;
3207 	bool is_orphan;
3208 	int ret;
3209 
3210 	name = fs_path_alloc();
3211 	from_path = fs_path_alloc();
3212 	if (!name || !from_path) {
3213 		ret = -ENOMEM;
3214 		goto out;
3215 	}
3216 
3217 	dm = get_waiting_dir_move(sctx, pm->ino);
3218 	ASSERT(dm);
3219 	rmdir_ino = dm->rmdir_ino;
3220 	is_orphan = dm->orphanized;
3221 	free_waiting_dir_move(sctx, dm);
3222 
3223 	if (is_orphan) {
3224 		ret = gen_unique_name(sctx, pm->ino,
3225 				      pm->gen, from_path);
3226 	} else {
3227 		ret = get_first_ref(sctx->parent_root, pm->ino,
3228 				    &parent_ino, &parent_gen, name);
3229 		if (ret < 0)
3230 			goto out;
3231 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3232 				   from_path);
3233 		if (ret < 0)
3234 			goto out;
3235 		ret = fs_path_add_path(from_path, name);
3236 	}
3237 	if (ret < 0)
3238 		goto out;
3239 
3240 	sctx->send_progress = sctx->cur_ino + 1;
3241 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3242 	if (ret < 0)
3243 		goto out;
3244 	if (ret) {
3245 		LIST_HEAD(deleted_refs);
3246 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3247 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3248 					   &pm->update_refs, &deleted_refs,
3249 					   is_orphan);
3250 		if (ret < 0)
3251 			goto out;
3252 		if (rmdir_ino) {
3253 			dm = get_waiting_dir_move(sctx, pm->ino);
3254 			ASSERT(dm);
3255 			dm->rmdir_ino = rmdir_ino;
3256 		}
3257 		goto out;
3258 	}
3259 	fs_path_reset(name);
3260 	to_path = name;
3261 	name = NULL;
3262 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3263 	if (ret < 0)
3264 		goto out;
3265 
3266 	ret = send_rename(sctx, from_path, to_path);
3267 	if (ret < 0)
3268 		goto out;
3269 
3270 	if (rmdir_ino) {
3271 		struct orphan_dir_info *odi;
3272 		u64 gen;
3273 
3274 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3275 		if (!odi) {
3276 			/* already deleted */
3277 			goto finish;
3278 		}
3279 		gen = odi->gen;
3280 
3281 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3282 		if (ret < 0)
3283 			goto out;
3284 		if (!ret)
3285 			goto finish;
3286 
3287 		name = fs_path_alloc();
3288 		if (!name) {
3289 			ret = -ENOMEM;
3290 			goto out;
3291 		}
3292 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3293 		if (ret < 0)
3294 			goto out;
3295 		ret = send_rmdir(sctx, name);
3296 		if (ret < 0)
3297 			goto out;
3298 	}
3299 
3300 finish:
3301 	ret = send_utimes(sctx, pm->ino, pm->gen);
3302 	if (ret < 0)
3303 		goto out;
3304 
3305 	/*
3306 	 * After rename/move, need to update the utimes of both new parent(s)
3307 	 * and old parent(s).
3308 	 */
3309 	list_for_each_entry(cur, &pm->update_refs, list) {
3310 		/*
3311 		 * The parent inode might have been deleted in the send snapshot
3312 		 */
3313 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3314 				     NULL, NULL, NULL, NULL, NULL);
3315 		if (ret == -ENOENT) {
3316 			ret = 0;
3317 			continue;
3318 		}
3319 		if (ret < 0)
3320 			goto out;
3321 
3322 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3323 		if (ret < 0)
3324 			goto out;
3325 	}
3326 
3327 out:
3328 	fs_path_free(name);
3329 	fs_path_free(from_path);
3330 	fs_path_free(to_path);
3331 	sctx->send_progress = orig_progress;
3332 
3333 	return ret;
3334 }
3335 
3336 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3337 {
3338 	if (!list_empty(&m->list))
3339 		list_del(&m->list);
3340 	if (!RB_EMPTY_NODE(&m->node))
3341 		rb_erase(&m->node, &sctx->pending_dir_moves);
3342 	__free_recorded_refs(&m->update_refs);
3343 	kfree(m);
3344 }
3345 
3346 static void tail_append_pending_moves(struct pending_dir_move *moves,
3347 				      struct list_head *stack)
3348 {
3349 	if (list_empty(&moves->list)) {
3350 		list_add_tail(&moves->list, stack);
3351 	} else {
3352 		LIST_HEAD(list);
3353 		list_splice_init(&moves->list, &list);
3354 		list_add_tail(&moves->list, stack);
3355 		list_splice_tail(&list, stack);
3356 	}
3357 }
3358 
3359 static int apply_children_dir_moves(struct send_ctx *sctx)
3360 {
3361 	struct pending_dir_move *pm;
3362 	struct list_head stack;
3363 	u64 parent_ino = sctx->cur_ino;
3364 	int ret = 0;
3365 
3366 	pm = get_pending_dir_moves(sctx, parent_ino);
3367 	if (!pm)
3368 		return 0;
3369 
3370 	INIT_LIST_HEAD(&stack);
3371 	tail_append_pending_moves(pm, &stack);
3372 
3373 	while (!list_empty(&stack)) {
3374 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3375 		parent_ino = pm->ino;
3376 		ret = apply_dir_move(sctx, pm);
3377 		free_pending_move(sctx, pm);
3378 		if (ret)
3379 			goto out;
3380 		pm = get_pending_dir_moves(sctx, parent_ino);
3381 		if (pm)
3382 			tail_append_pending_moves(pm, &stack);
3383 	}
3384 	return 0;
3385 
3386 out:
3387 	while (!list_empty(&stack)) {
3388 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3389 		free_pending_move(sctx, pm);
3390 	}
3391 	return ret;
3392 }
3393 
3394 /*
3395  * We might need to delay a directory rename even when no ancestor directory
3396  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3397  * renamed. This happens when we rename a directory to the old name (the name
3398  * in the parent root) of some other unrelated directory that got its rename
3399  * delayed due to some ancestor with higher number that got renamed.
3400  *
3401  * Example:
3402  *
3403  * Parent snapshot:
3404  * .                                       (ino 256)
3405  * |---- a/                                (ino 257)
3406  * |     |---- file                        (ino 260)
3407  * |
3408  * |---- b/                                (ino 258)
3409  * |---- c/                                (ino 259)
3410  *
3411  * Send snapshot:
3412  * .                                       (ino 256)
3413  * |---- a/                                (ino 258)
3414  * |---- x/                                (ino 259)
3415  *       |---- y/                          (ino 257)
3416  *             |----- file                 (ino 260)
3417  *
3418  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3419  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3420  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3421  * must issue is:
3422  *
3423  * 1 - rename 259 from 'c' to 'x'
3424  * 2 - rename 257 from 'a' to 'x/y'
3425  * 3 - rename 258 from 'b' to 'a'
3426  *
3427  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3428  * be done right away and < 0 on error.
3429  */
3430 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3431 				  struct recorded_ref *parent_ref,
3432 				  const bool is_orphan)
3433 {
3434 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3435 	struct btrfs_path *path;
3436 	struct btrfs_key key;
3437 	struct btrfs_key di_key;
3438 	struct btrfs_dir_item *di;
3439 	u64 left_gen;
3440 	u64 right_gen;
3441 	int ret = 0;
3442 	struct waiting_dir_move *wdm;
3443 
3444 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3445 		return 0;
3446 
3447 	path = alloc_path_for_send();
3448 	if (!path)
3449 		return -ENOMEM;
3450 
3451 	key.objectid = parent_ref->dir;
3452 	key.type = BTRFS_DIR_ITEM_KEY;
3453 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3454 
3455 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3456 	if (ret < 0) {
3457 		goto out;
3458 	} else if (ret > 0) {
3459 		ret = 0;
3460 		goto out;
3461 	}
3462 
3463 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3464 				       parent_ref->name_len);
3465 	if (!di) {
3466 		ret = 0;
3467 		goto out;
3468 	}
3469 	/*
3470 	 * di_key.objectid has the number of the inode that has a dentry in the
3471 	 * parent directory with the same name that sctx->cur_ino is being
3472 	 * renamed to. We need to check if that inode is in the send root as
3473 	 * well and if it is currently marked as an inode with a pending rename,
3474 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3475 	 * that it happens after that other inode is renamed.
3476 	 */
3477 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3478 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3479 		ret = 0;
3480 		goto out;
3481 	}
3482 
3483 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3484 			     &left_gen, NULL, NULL, NULL, NULL);
3485 	if (ret < 0)
3486 		goto out;
3487 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3488 			     &right_gen, NULL, NULL, NULL, NULL);
3489 	if (ret < 0) {
3490 		if (ret == -ENOENT)
3491 			ret = 0;
3492 		goto out;
3493 	}
3494 
3495 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3496 	if (right_gen != left_gen) {
3497 		ret = 0;
3498 		goto out;
3499 	}
3500 
3501 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3502 	if (wdm && !wdm->orphanized) {
3503 		ret = add_pending_dir_move(sctx,
3504 					   sctx->cur_ino,
3505 					   sctx->cur_inode_gen,
3506 					   di_key.objectid,
3507 					   &sctx->new_refs,
3508 					   &sctx->deleted_refs,
3509 					   is_orphan);
3510 		if (!ret)
3511 			ret = 1;
3512 	}
3513 out:
3514 	btrfs_free_path(path);
3515 	return ret;
3516 }
3517 
3518 /*
3519  * Check if inode ino2, or any of its ancestors, is inode ino1.
3520  * Return 1 if true, 0 if false and < 0 on error.
3521  */
3522 static int check_ino_in_path(struct btrfs_root *root,
3523 			     const u64 ino1,
3524 			     const u64 ino1_gen,
3525 			     const u64 ino2,
3526 			     const u64 ino2_gen,
3527 			     struct fs_path *fs_path)
3528 {
3529 	u64 ino = ino2;
3530 
3531 	if (ino1 == ino2)
3532 		return ino1_gen == ino2_gen;
3533 
3534 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3535 		u64 parent;
3536 		u64 parent_gen;
3537 		int ret;
3538 
3539 		fs_path_reset(fs_path);
3540 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3541 		if (ret < 0)
3542 			return ret;
3543 		if (parent == ino1)
3544 			return parent_gen == ino1_gen;
3545 		ino = parent;
3546 	}
3547 	return 0;
3548 }
3549 
3550 /*
3551  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3552  * possible path (in case ino2 is not a directory and has multiple hard links).
3553  * Return 1 if true, 0 if false and < 0 on error.
3554  */
3555 static int is_ancestor(struct btrfs_root *root,
3556 		       const u64 ino1,
3557 		       const u64 ino1_gen,
3558 		       const u64 ino2,
3559 		       struct fs_path *fs_path)
3560 {
3561 	bool free_fs_path = false;
3562 	int ret = 0;
3563 	struct btrfs_path *path = NULL;
3564 	struct btrfs_key key;
3565 
3566 	if (!fs_path) {
3567 		fs_path = fs_path_alloc();
3568 		if (!fs_path)
3569 			return -ENOMEM;
3570 		free_fs_path = true;
3571 	}
3572 
3573 	path = alloc_path_for_send();
3574 	if (!path) {
3575 		ret = -ENOMEM;
3576 		goto out;
3577 	}
3578 
3579 	key.objectid = ino2;
3580 	key.type = BTRFS_INODE_REF_KEY;
3581 	key.offset = 0;
3582 
3583 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3584 	if (ret < 0)
3585 		goto out;
3586 
3587 	while (true) {
3588 		struct extent_buffer *leaf = path->nodes[0];
3589 		int slot = path->slots[0];
3590 		u32 cur_offset = 0;
3591 		u32 item_size;
3592 
3593 		if (slot >= btrfs_header_nritems(leaf)) {
3594 			ret = btrfs_next_leaf(root, path);
3595 			if (ret < 0)
3596 				goto out;
3597 			if (ret > 0)
3598 				break;
3599 			continue;
3600 		}
3601 
3602 		btrfs_item_key_to_cpu(leaf, &key, slot);
3603 		if (key.objectid != ino2)
3604 			break;
3605 		if (key.type != BTRFS_INODE_REF_KEY &&
3606 		    key.type != BTRFS_INODE_EXTREF_KEY)
3607 			break;
3608 
3609 		item_size = btrfs_item_size_nr(leaf, slot);
3610 		while (cur_offset < item_size) {
3611 			u64 parent;
3612 			u64 parent_gen;
3613 
3614 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3615 				unsigned long ptr;
3616 				struct btrfs_inode_extref *extref;
3617 
3618 				ptr = btrfs_item_ptr_offset(leaf, slot);
3619 				extref = (struct btrfs_inode_extref *)
3620 					(ptr + cur_offset);
3621 				parent = btrfs_inode_extref_parent(leaf,
3622 								   extref);
3623 				cur_offset += sizeof(*extref);
3624 				cur_offset += btrfs_inode_extref_name_len(leaf,
3625 								  extref);
3626 			} else {
3627 				parent = key.offset;
3628 				cur_offset = item_size;
3629 			}
3630 
3631 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3632 					     NULL, NULL, NULL, NULL);
3633 			if (ret < 0)
3634 				goto out;
3635 			ret = check_ino_in_path(root, ino1, ino1_gen,
3636 						parent, parent_gen, fs_path);
3637 			if (ret)
3638 				goto out;
3639 		}
3640 		path->slots[0]++;
3641 	}
3642 	ret = 0;
3643  out:
3644 	btrfs_free_path(path);
3645 	if (free_fs_path)
3646 		fs_path_free(fs_path);
3647 	return ret;
3648 }
3649 
3650 static int wait_for_parent_move(struct send_ctx *sctx,
3651 				struct recorded_ref *parent_ref,
3652 				const bool is_orphan)
3653 {
3654 	int ret = 0;
3655 	u64 ino = parent_ref->dir;
3656 	u64 ino_gen = parent_ref->dir_gen;
3657 	u64 parent_ino_before, parent_ino_after;
3658 	struct fs_path *path_before = NULL;
3659 	struct fs_path *path_after = NULL;
3660 	int len1, len2;
3661 
3662 	path_after = fs_path_alloc();
3663 	path_before = fs_path_alloc();
3664 	if (!path_after || !path_before) {
3665 		ret = -ENOMEM;
3666 		goto out;
3667 	}
3668 
3669 	/*
3670 	 * Our current directory inode may not yet be renamed/moved because some
3671 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3672 	 * such ancestor exists and make sure our own rename/move happens after
3673 	 * that ancestor is processed to avoid path build infinite loops (done
3674 	 * at get_cur_path()).
3675 	 */
3676 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3677 		u64 parent_ino_after_gen;
3678 
3679 		if (is_waiting_for_move(sctx, ino)) {
3680 			/*
3681 			 * If the current inode is an ancestor of ino in the
3682 			 * parent root, we need to delay the rename of the
3683 			 * current inode, otherwise don't delayed the rename
3684 			 * because we can end up with a circular dependency
3685 			 * of renames, resulting in some directories never
3686 			 * getting the respective rename operations issued in
3687 			 * the send stream or getting into infinite path build
3688 			 * loops.
3689 			 */
3690 			ret = is_ancestor(sctx->parent_root,
3691 					  sctx->cur_ino, sctx->cur_inode_gen,
3692 					  ino, path_before);
3693 			if (ret)
3694 				break;
3695 		}
3696 
3697 		fs_path_reset(path_before);
3698 		fs_path_reset(path_after);
3699 
3700 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3701 				    &parent_ino_after_gen, path_after);
3702 		if (ret < 0)
3703 			goto out;
3704 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3705 				    NULL, path_before);
3706 		if (ret < 0 && ret != -ENOENT) {
3707 			goto out;
3708 		} else if (ret == -ENOENT) {
3709 			ret = 0;
3710 			break;
3711 		}
3712 
3713 		len1 = fs_path_len(path_before);
3714 		len2 = fs_path_len(path_after);
3715 		if (ino > sctx->cur_ino &&
3716 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3717 		     memcmp(path_before->start, path_after->start, len1))) {
3718 			u64 parent_ino_gen;
3719 
3720 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3721 					     &parent_ino_gen, NULL, NULL, NULL,
3722 					     NULL);
3723 			if (ret < 0)
3724 				goto out;
3725 			if (ino_gen == parent_ino_gen) {
3726 				ret = 1;
3727 				break;
3728 			}
3729 		}
3730 		ino = parent_ino_after;
3731 		ino_gen = parent_ino_after_gen;
3732 	}
3733 
3734 out:
3735 	fs_path_free(path_before);
3736 	fs_path_free(path_after);
3737 
3738 	if (ret == 1) {
3739 		ret = add_pending_dir_move(sctx,
3740 					   sctx->cur_ino,
3741 					   sctx->cur_inode_gen,
3742 					   ino,
3743 					   &sctx->new_refs,
3744 					   &sctx->deleted_refs,
3745 					   is_orphan);
3746 		if (!ret)
3747 			ret = 1;
3748 	}
3749 
3750 	return ret;
3751 }
3752 
3753 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3754 {
3755 	int ret;
3756 	struct fs_path *new_path;
3757 
3758 	/*
3759 	 * Our reference's name member points to its full_path member string, so
3760 	 * we use here a new path.
3761 	 */
3762 	new_path = fs_path_alloc();
3763 	if (!new_path)
3764 		return -ENOMEM;
3765 
3766 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3767 	if (ret < 0) {
3768 		fs_path_free(new_path);
3769 		return ret;
3770 	}
3771 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3772 	if (ret < 0) {
3773 		fs_path_free(new_path);
3774 		return ret;
3775 	}
3776 
3777 	fs_path_free(ref->full_path);
3778 	set_ref_path(ref, new_path);
3779 
3780 	return 0;
3781 }
3782 
3783 /*
3784  * This does all the move/link/unlink/rmdir magic.
3785  */
3786 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3787 {
3788 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3789 	int ret = 0;
3790 	struct recorded_ref *cur;
3791 	struct recorded_ref *cur2;
3792 	struct list_head check_dirs;
3793 	struct fs_path *valid_path = NULL;
3794 	u64 ow_inode = 0;
3795 	u64 ow_gen;
3796 	u64 ow_mode;
3797 	int did_overwrite = 0;
3798 	int is_orphan = 0;
3799 	u64 last_dir_ino_rm = 0;
3800 	bool can_rename = true;
3801 	bool orphanized_dir = false;
3802 	bool orphanized_ancestor = false;
3803 
3804 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3805 
3806 	/*
3807 	 * This should never happen as the root dir always has the same ref
3808 	 * which is always '..'
3809 	 */
3810 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3811 	INIT_LIST_HEAD(&check_dirs);
3812 
3813 	valid_path = fs_path_alloc();
3814 	if (!valid_path) {
3815 		ret = -ENOMEM;
3816 		goto out;
3817 	}
3818 
3819 	/*
3820 	 * First, check if the first ref of the current inode was overwritten
3821 	 * before. If yes, we know that the current inode was already orphanized
3822 	 * and thus use the orphan name. If not, we can use get_cur_path to
3823 	 * get the path of the first ref as it would like while receiving at
3824 	 * this point in time.
3825 	 * New inodes are always orphan at the beginning, so force to use the
3826 	 * orphan name in this case.
3827 	 * The first ref is stored in valid_path and will be updated if it
3828 	 * gets moved around.
3829 	 */
3830 	if (!sctx->cur_inode_new) {
3831 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3832 				sctx->cur_inode_gen);
3833 		if (ret < 0)
3834 			goto out;
3835 		if (ret)
3836 			did_overwrite = 1;
3837 	}
3838 	if (sctx->cur_inode_new || did_overwrite) {
3839 		ret = gen_unique_name(sctx, sctx->cur_ino,
3840 				sctx->cur_inode_gen, valid_path);
3841 		if (ret < 0)
3842 			goto out;
3843 		is_orphan = 1;
3844 	} else {
3845 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3846 				valid_path);
3847 		if (ret < 0)
3848 			goto out;
3849 	}
3850 
3851 	list_for_each_entry(cur, &sctx->new_refs, list) {
3852 		/*
3853 		 * We may have refs where the parent directory does not exist
3854 		 * yet. This happens if the parent directories inum is higher
3855 		 * the the current inum. To handle this case, we create the
3856 		 * parent directory out of order. But we need to check if this
3857 		 * did already happen before due to other refs in the same dir.
3858 		 */
3859 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3860 		if (ret < 0)
3861 			goto out;
3862 		if (ret == inode_state_will_create) {
3863 			ret = 0;
3864 			/*
3865 			 * First check if any of the current inodes refs did
3866 			 * already create the dir.
3867 			 */
3868 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3869 				if (cur == cur2)
3870 					break;
3871 				if (cur2->dir == cur->dir) {
3872 					ret = 1;
3873 					break;
3874 				}
3875 			}
3876 
3877 			/*
3878 			 * If that did not happen, check if a previous inode
3879 			 * did already create the dir.
3880 			 */
3881 			if (!ret)
3882 				ret = did_create_dir(sctx, cur->dir);
3883 			if (ret < 0)
3884 				goto out;
3885 			if (!ret) {
3886 				ret = send_create_inode(sctx, cur->dir);
3887 				if (ret < 0)
3888 					goto out;
3889 			}
3890 		}
3891 
3892 		/*
3893 		 * Check if this new ref would overwrite the first ref of
3894 		 * another unprocessed inode. If yes, orphanize the
3895 		 * overwritten inode. If we find an overwritten ref that is
3896 		 * not the first ref, simply unlink it.
3897 		 */
3898 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3899 				cur->name, cur->name_len,
3900 				&ow_inode, &ow_gen, &ow_mode);
3901 		if (ret < 0)
3902 			goto out;
3903 		if (ret) {
3904 			ret = is_first_ref(sctx->parent_root,
3905 					   ow_inode, cur->dir, cur->name,
3906 					   cur->name_len);
3907 			if (ret < 0)
3908 				goto out;
3909 			if (ret) {
3910 				struct name_cache_entry *nce;
3911 				struct waiting_dir_move *wdm;
3912 
3913 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3914 						cur->full_path);
3915 				if (ret < 0)
3916 					goto out;
3917 				if (S_ISDIR(ow_mode))
3918 					orphanized_dir = true;
3919 
3920 				/*
3921 				 * If ow_inode has its rename operation delayed
3922 				 * make sure that its orphanized name is used in
3923 				 * the source path when performing its rename
3924 				 * operation.
3925 				 */
3926 				if (is_waiting_for_move(sctx, ow_inode)) {
3927 					wdm = get_waiting_dir_move(sctx,
3928 								   ow_inode);
3929 					ASSERT(wdm);
3930 					wdm->orphanized = true;
3931 				}
3932 
3933 				/*
3934 				 * Make sure we clear our orphanized inode's
3935 				 * name from the name cache. This is because the
3936 				 * inode ow_inode might be an ancestor of some
3937 				 * other inode that will be orphanized as well
3938 				 * later and has an inode number greater than
3939 				 * sctx->send_progress. We need to prevent
3940 				 * future name lookups from using the old name
3941 				 * and get instead the orphan name.
3942 				 */
3943 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3944 				if (nce) {
3945 					name_cache_delete(sctx, nce);
3946 					kfree(nce);
3947 				}
3948 
3949 				/*
3950 				 * ow_inode might currently be an ancestor of
3951 				 * cur_ino, therefore compute valid_path (the
3952 				 * current path of cur_ino) again because it
3953 				 * might contain the pre-orphanization name of
3954 				 * ow_inode, which is no longer valid.
3955 				 */
3956 				ret = is_ancestor(sctx->parent_root,
3957 						  ow_inode, ow_gen,
3958 						  sctx->cur_ino, NULL);
3959 				if (ret > 0) {
3960 					orphanized_ancestor = true;
3961 					fs_path_reset(valid_path);
3962 					ret = get_cur_path(sctx, sctx->cur_ino,
3963 							   sctx->cur_inode_gen,
3964 							   valid_path);
3965 				}
3966 				if (ret < 0)
3967 					goto out;
3968 			} else {
3969 				ret = send_unlink(sctx, cur->full_path);
3970 				if (ret < 0)
3971 					goto out;
3972 			}
3973 		}
3974 
3975 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3976 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3977 			if (ret < 0)
3978 				goto out;
3979 			if (ret == 1) {
3980 				can_rename = false;
3981 				*pending_move = 1;
3982 			}
3983 		}
3984 
3985 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3986 		    can_rename) {
3987 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3988 			if (ret < 0)
3989 				goto out;
3990 			if (ret == 1) {
3991 				can_rename = false;
3992 				*pending_move = 1;
3993 			}
3994 		}
3995 
3996 		/*
3997 		 * link/move the ref to the new place. If we have an orphan
3998 		 * inode, move it and update valid_path. If not, link or move
3999 		 * it depending on the inode mode.
4000 		 */
4001 		if (is_orphan && can_rename) {
4002 			ret = send_rename(sctx, valid_path, cur->full_path);
4003 			if (ret < 0)
4004 				goto out;
4005 			is_orphan = 0;
4006 			ret = fs_path_copy(valid_path, cur->full_path);
4007 			if (ret < 0)
4008 				goto out;
4009 		} else if (can_rename) {
4010 			if (S_ISDIR(sctx->cur_inode_mode)) {
4011 				/*
4012 				 * Dirs can't be linked, so move it. For moved
4013 				 * dirs, we always have one new and one deleted
4014 				 * ref. The deleted ref is ignored later.
4015 				 */
4016 				ret = send_rename(sctx, valid_path,
4017 						  cur->full_path);
4018 				if (!ret)
4019 					ret = fs_path_copy(valid_path,
4020 							   cur->full_path);
4021 				if (ret < 0)
4022 					goto out;
4023 			} else {
4024 				/*
4025 				 * We might have previously orphanized an inode
4026 				 * which is an ancestor of our current inode,
4027 				 * so our reference's full path, which was
4028 				 * computed before any such orphanizations, must
4029 				 * be updated.
4030 				 */
4031 				if (orphanized_dir) {
4032 					ret = update_ref_path(sctx, cur);
4033 					if (ret < 0)
4034 						goto out;
4035 				}
4036 				ret = send_link(sctx, cur->full_path,
4037 						valid_path);
4038 				if (ret < 0)
4039 					goto out;
4040 			}
4041 		}
4042 		ret = dup_ref(cur, &check_dirs);
4043 		if (ret < 0)
4044 			goto out;
4045 	}
4046 
4047 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4048 		/*
4049 		 * Check if we can already rmdir the directory. If not,
4050 		 * orphanize it. For every dir item inside that gets deleted
4051 		 * later, we do this check again and rmdir it then if possible.
4052 		 * See the use of check_dirs for more details.
4053 		 */
4054 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4055 				sctx->cur_ino);
4056 		if (ret < 0)
4057 			goto out;
4058 		if (ret) {
4059 			ret = send_rmdir(sctx, valid_path);
4060 			if (ret < 0)
4061 				goto out;
4062 		} else if (!is_orphan) {
4063 			ret = orphanize_inode(sctx, sctx->cur_ino,
4064 					sctx->cur_inode_gen, valid_path);
4065 			if (ret < 0)
4066 				goto out;
4067 			is_orphan = 1;
4068 		}
4069 
4070 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4071 			ret = dup_ref(cur, &check_dirs);
4072 			if (ret < 0)
4073 				goto out;
4074 		}
4075 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4076 		   !list_empty(&sctx->deleted_refs)) {
4077 		/*
4078 		 * We have a moved dir. Add the old parent to check_dirs
4079 		 */
4080 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4081 				list);
4082 		ret = dup_ref(cur, &check_dirs);
4083 		if (ret < 0)
4084 			goto out;
4085 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4086 		/*
4087 		 * We have a non dir inode. Go through all deleted refs and
4088 		 * unlink them if they were not already overwritten by other
4089 		 * inodes.
4090 		 */
4091 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4092 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4093 					sctx->cur_ino, sctx->cur_inode_gen,
4094 					cur->name, cur->name_len);
4095 			if (ret < 0)
4096 				goto out;
4097 			if (!ret) {
4098 				/*
4099 				 * If we orphanized any ancestor before, we need
4100 				 * to recompute the full path for deleted names,
4101 				 * since any such path was computed before we
4102 				 * processed any references and orphanized any
4103 				 * ancestor inode.
4104 				 */
4105 				if (orphanized_ancestor) {
4106 					ret = update_ref_path(sctx, cur);
4107 					if (ret < 0)
4108 						goto out;
4109 				}
4110 				ret = send_unlink(sctx, cur->full_path);
4111 				if (ret < 0)
4112 					goto out;
4113 			}
4114 			ret = dup_ref(cur, &check_dirs);
4115 			if (ret < 0)
4116 				goto out;
4117 		}
4118 		/*
4119 		 * If the inode is still orphan, unlink the orphan. This may
4120 		 * happen when a previous inode did overwrite the first ref
4121 		 * of this inode and no new refs were added for the current
4122 		 * inode. Unlinking does not mean that the inode is deleted in
4123 		 * all cases. There may still be links to this inode in other
4124 		 * places.
4125 		 */
4126 		if (is_orphan) {
4127 			ret = send_unlink(sctx, valid_path);
4128 			if (ret < 0)
4129 				goto out;
4130 		}
4131 	}
4132 
4133 	/*
4134 	 * We did collect all parent dirs where cur_inode was once located. We
4135 	 * now go through all these dirs and check if they are pending for
4136 	 * deletion and if it's finally possible to perform the rmdir now.
4137 	 * We also update the inode stats of the parent dirs here.
4138 	 */
4139 	list_for_each_entry(cur, &check_dirs, list) {
4140 		/*
4141 		 * In case we had refs into dirs that were not processed yet,
4142 		 * we don't need to do the utime and rmdir logic for these dirs.
4143 		 * The dir will be processed later.
4144 		 */
4145 		if (cur->dir > sctx->cur_ino)
4146 			continue;
4147 
4148 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4149 		if (ret < 0)
4150 			goto out;
4151 
4152 		if (ret == inode_state_did_create ||
4153 		    ret == inode_state_no_change) {
4154 			/* TODO delayed utimes */
4155 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4156 			if (ret < 0)
4157 				goto out;
4158 		} else if (ret == inode_state_did_delete &&
4159 			   cur->dir != last_dir_ino_rm) {
4160 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4161 					sctx->cur_ino);
4162 			if (ret < 0)
4163 				goto out;
4164 			if (ret) {
4165 				ret = get_cur_path(sctx, cur->dir,
4166 						   cur->dir_gen, valid_path);
4167 				if (ret < 0)
4168 					goto out;
4169 				ret = send_rmdir(sctx, valid_path);
4170 				if (ret < 0)
4171 					goto out;
4172 				last_dir_ino_rm = cur->dir;
4173 			}
4174 		}
4175 	}
4176 
4177 	ret = 0;
4178 
4179 out:
4180 	__free_recorded_refs(&check_dirs);
4181 	free_recorded_refs(sctx);
4182 	fs_path_free(valid_path);
4183 	return ret;
4184 }
4185 
4186 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4187 		      void *ctx, struct list_head *refs)
4188 {
4189 	int ret = 0;
4190 	struct send_ctx *sctx = ctx;
4191 	struct fs_path *p;
4192 	u64 gen;
4193 
4194 	p = fs_path_alloc();
4195 	if (!p)
4196 		return -ENOMEM;
4197 
4198 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4199 			NULL, NULL);
4200 	if (ret < 0)
4201 		goto out;
4202 
4203 	ret = get_cur_path(sctx, dir, gen, p);
4204 	if (ret < 0)
4205 		goto out;
4206 	ret = fs_path_add_path(p, name);
4207 	if (ret < 0)
4208 		goto out;
4209 
4210 	ret = __record_ref(refs, dir, gen, p);
4211 
4212 out:
4213 	if (ret)
4214 		fs_path_free(p);
4215 	return ret;
4216 }
4217 
4218 static int __record_new_ref(int num, u64 dir, int index,
4219 			    struct fs_path *name,
4220 			    void *ctx)
4221 {
4222 	struct send_ctx *sctx = ctx;
4223 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4224 }
4225 
4226 
4227 static int __record_deleted_ref(int num, u64 dir, int index,
4228 				struct fs_path *name,
4229 				void *ctx)
4230 {
4231 	struct send_ctx *sctx = ctx;
4232 	return record_ref(sctx->parent_root, dir, name, ctx,
4233 			  &sctx->deleted_refs);
4234 }
4235 
4236 static int record_new_ref(struct send_ctx *sctx)
4237 {
4238 	int ret;
4239 
4240 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4241 				sctx->cmp_key, 0, __record_new_ref, sctx);
4242 	if (ret < 0)
4243 		goto out;
4244 	ret = 0;
4245 
4246 out:
4247 	return ret;
4248 }
4249 
4250 static int record_deleted_ref(struct send_ctx *sctx)
4251 {
4252 	int ret;
4253 
4254 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4255 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4256 	if (ret < 0)
4257 		goto out;
4258 	ret = 0;
4259 
4260 out:
4261 	return ret;
4262 }
4263 
4264 struct find_ref_ctx {
4265 	u64 dir;
4266 	u64 dir_gen;
4267 	struct btrfs_root *root;
4268 	struct fs_path *name;
4269 	int found_idx;
4270 };
4271 
4272 static int __find_iref(int num, u64 dir, int index,
4273 		       struct fs_path *name,
4274 		       void *ctx_)
4275 {
4276 	struct find_ref_ctx *ctx = ctx_;
4277 	u64 dir_gen;
4278 	int ret;
4279 
4280 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4281 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4282 		/*
4283 		 * To avoid doing extra lookups we'll only do this if everything
4284 		 * else matches.
4285 		 */
4286 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4287 				     NULL, NULL, NULL);
4288 		if (ret)
4289 			return ret;
4290 		if (dir_gen != ctx->dir_gen)
4291 			return 0;
4292 		ctx->found_idx = num;
4293 		return 1;
4294 	}
4295 	return 0;
4296 }
4297 
4298 static int find_iref(struct btrfs_root *root,
4299 		     struct btrfs_path *path,
4300 		     struct btrfs_key *key,
4301 		     u64 dir, u64 dir_gen, struct fs_path *name)
4302 {
4303 	int ret;
4304 	struct find_ref_ctx ctx;
4305 
4306 	ctx.dir = dir;
4307 	ctx.name = name;
4308 	ctx.dir_gen = dir_gen;
4309 	ctx.found_idx = -1;
4310 	ctx.root = root;
4311 
4312 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4313 	if (ret < 0)
4314 		return ret;
4315 
4316 	if (ctx.found_idx == -1)
4317 		return -ENOENT;
4318 
4319 	return ctx.found_idx;
4320 }
4321 
4322 static int __record_changed_new_ref(int num, u64 dir, int index,
4323 				    struct fs_path *name,
4324 				    void *ctx)
4325 {
4326 	u64 dir_gen;
4327 	int ret;
4328 	struct send_ctx *sctx = ctx;
4329 
4330 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4331 			     NULL, NULL, NULL);
4332 	if (ret)
4333 		return ret;
4334 
4335 	ret = find_iref(sctx->parent_root, sctx->right_path,
4336 			sctx->cmp_key, dir, dir_gen, name);
4337 	if (ret == -ENOENT)
4338 		ret = __record_new_ref(num, dir, index, name, sctx);
4339 	else if (ret > 0)
4340 		ret = 0;
4341 
4342 	return ret;
4343 }
4344 
4345 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4346 					struct fs_path *name,
4347 					void *ctx)
4348 {
4349 	u64 dir_gen;
4350 	int ret;
4351 	struct send_ctx *sctx = ctx;
4352 
4353 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4354 			     NULL, NULL, NULL);
4355 	if (ret)
4356 		return ret;
4357 
4358 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4359 			dir, dir_gen, name);
4360 	if (ret == -ENOENT)
4361 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4362 	else if (ret > 0)
4363 		ret = 0;
4364 
4365 	return ret;
4366 }
4367 
4368 static int record_changed_ref(struct send_ctx *sctx)
4369 {
4370 	int ret = 0;
4371 
4372 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4373 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4374 	if (ret < 0)
4375 		goto out;
4376 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4377 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4378 	if (ret < 0)
4379 		goto out;
4380 	ret = 0;
4381 
4382 out:
4383 	return ret;
4384 }
4385 
4386 /*
4387  * Record and process all refs at once. Needed when an inode changes the
4388  * generation number, which means that it was deleted and recreated.
4389  */
4390 static int process_all_refs(struct send_ctx *sctx,
4391 			    enum btrfs_compare_tree_result cmd)
4392 {
4393 	int ret;
4394 	struct btrfs_root *root;
4395 	struct btrfs_path *path;
4396 	struct btrfs_key key;
4397 	struct btrfs_key found_key;
4398 	struct extent_buffer *eb;
4399 	int slot;
4400 	iterate_inode_ref_t cb;
4401 	int pending_move = 0;
4402 
4403 	path = alloc_path_for_send();
4404 	if (!path)
4405 		return -ENOMEM;
4406 
4407 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4408 		root = sctx->send_root;
4409 		cb = __record_new_ref;
4410 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4411 		root = sctx->parent_root;
4412 		cb = __record_deleted_ref;
4413 	} else {
4414 		btrfs_err(sctx->send_root->fs_info,
4415 				"Wrong command %d in process_all_refs", cmd);
4416 		ret = -EINVAL;
4417 		goto out;
4418 	}
4419 
4420 	key.objectid = sctx->cmp_key->objectid;
4421 	key.type = BTRFS_INODE_REF_KEY;
4422 	key.offset = 0;
4423 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4424 	if (ret < 0)
4425 		goto out;
4426 
4427 	while (1) {
4428 		eb = path->nodes[0];
4429 		slot = path->slots[0];
4430 		if (slot >= btrfs_header_nritems(eb)) {
4431 			ret = btrfs_next_leaf(root, path);
4432 			if (ret < 0)
4433 				goto out;
4434 			else if (ret > 0)
4435 				break;
4436 			continue;
4437 		}
4438 
4439 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4440 
4441 		if (found_key.objectid != key.objectid ||
4442 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4443 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4444 			break;
4445 
4446 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4447 		if (ret < 0)
4448 			goto out;
4449 
4450 		path->slots[0]++;
4451 	}
4452 	btrfs_release_path(path);
4453 
4454 	/*
4455 	 * We don't actually care about pending_move as we are simply
4456 	 * re-creating this inode and will be rename'ing it into place once we
4457 	 * rename the parent directory.
4458 	 */
4459 	ret = process_recorded_refs(sctx, &pending_move);
4460 out:
4461 	btrfs_free_path(path);
4462 	return ret;
4463 }
4464 
4465 static int send_set_xattr(struct send_ctx *sctx,
4466 			  struct fs_path *path,
4467 			  const char *name, int name_len,
4468 			  const char *data, int data_len)
4469 {
4470 	int ret = 0;
4471 
4472 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4473 	if (ret < 0)
4474 		goto out;
4475 
4476 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4477 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4478 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4479 
4480 	ret = send_cmd(sctx);
4481 
4482 tlv_put_failure:
4483 out:
4484 	return ret;
4485 }
4486 
4487 static int send_remove_xattr(struct send_ctx *sctx,
4488 			  struct fs_path *path,
4489 			  const char *name, int name_len)
4490 {
4491 	int ret = 0;
4492 
4493 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4494 	if (ret < 0)
4495 		goto out;
4496 
4497 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4498 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4499 
4500 	ret = send_cmd(sctx);
4501 
4502 tlv_put_failure:
4503 out:
4504 	return ret;
4505 }
4506 
4507 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4508 			       const char *name, int name_len,
4509 			       const char *data, int data_len,
4510 			       u8 type, void *ctx)
4511 {
4512 	int ret;
4513 	struct send_ctx *sctx = ctx;
4514 	struct fs_path *p;
4515 	struct posix_acl_xattr_header dummy_acl;
4516 
4517 	p = fs_path_alloc();
4518 	if (!p)
4519 		return -ENOMEM;
4520 
4521 	/*
4522 	 * This hack is needed because empty acls are stored as zero byte
4523 	 * data in xattrs. Problem with that is, that receiving these zero byte
4524 	 * acls will fail later. To fix this, we send a dummy acl list that
4525 	 * only contains the version number and no entries.
4526 	 */
4527 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4528 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4529 		if (data_len == 0) {
4530 			dummy_acl.a_version =
4531 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4532 			data = (char *)&dummy_acl;
4533 			data_len = sizeof(dummy_acl);
4534 		}
4535 	}
4536 
4537 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4538 	if (ret < 0)
4539 		goto out;
4540 
4541 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4542 
4543 out:
4544 	fs_path_free(p);
4545 	return ret;
4546 }
4547 
4548 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4549 				   const char *name, int name_len,
4550 				   const char *data, int data_len,
4551 				   u8 type, void *ctx)
4552 {
4553 	int ret;
4554 	struct send_ctx *sctx = ctx;
4555 	struct fs_path *p;
4556 
4557 	p = fs_path_alloc();
4558 	if (!p)
4559 		return -ENOMEM;
4560 
4561 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4562 	if (ret < 0)
4563 		goto out;
4564 
4565 	ret = send_remove_xattr(sctx, p, name, name_len);
4566 
4567 out:
4568 	fs_path_free(p);
4569 	return ret;
4570 }
4571 
4572 static int process_new_xattr(struct send_ctx *sctx)
4573 {
4574 	int ret = 0;
4575 
4576 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4577 			       __process_new_xattr, sctx);
4578 
4579 	return ret;
4580 }
4581 
4582 static int process_deleted_xattr(struct send_ctx *sctx)
4583 {
4584 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4585 				__process_deleted_xattr, sctx);
4586 }
4587 
4588 struct find_xattr_ctx {
4589 	const char *name;
4590 	int name_len;
4591 	int found_idx;
4592 	char *found_data;
4593 	int found_data_len;
4594 };
4595 
4596 static int __find_xattr(int num, struct btrfs_key *di_key,
4597 			const char *name, int name_len,
4598 			const char *data, int data_len,
4599 			u8 type, void *vctx)
4600 {
4601 	struct find_xattr_ctx *ctx = vctx;
4602 
4603 	if (name_len == ctx->name_len &&
4604 	    strncmp(name, ctx->name, name_len) == 0) {
4605 		ctx->found_idx = num;
4606 		ctx->found_data_len = data_len;
4607 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4608 		if (!ctx->found_data)
4609 			return -ENOMEM;
4610 		return 1;
4611 	}
4612 	return 0;
4613 }
4614 
4615 static int find_xattr(struct btrfs_root *root,
4616 		      struct btrfs_path *path,
4617 		      struct btrfs_key *key,
4618 		      const char *name, int name_len,
4619 		      char **data, int *data_len)
4620 {
4621 	int ret;
4622 	struct find_xattr_ctx ctx;
4623 
4624 	ctx.name = name;
4625 	ctx.name_len = name_len;
4626 	ctx.found_idx = -1;
4627 	ctx.found_data = NULL;
4628 	ctx.found_data_len = 0;
4629 
4630 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4631 	if (ret < 0)
4632 		return ret;
4633 
4634 	if (ctx.found_idx == -1)
4635 		return -ENOENT;
4636 	if (data) {
4637 		*data = ctx.found_data;
4638 		*data_len = ctx.found_data_len;
4639 	} else {
4640 		kfree(ctx.found_data);
4641 	}
4642 	return ctx.found_idx;
4643 }
4644 
4645 
4646 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4647 				       const char *name, int name_len,
4648 				       const char *data, int data_len,
4649 				       u8 type, void *ctx)
4650 {
4651 	int ret;
4652 	struct send_ctx *sctx = ctx;
4653 	char *found_data = NULL;
4654 	int found_data_len  = 0;
4655 
4656 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4657 			 sctx->cmp_key, name, name_len, &found_data,
4658 			 &found_data_len);
4659 	if (ret == -ENOENT) {
4660 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4661 				data_len, type, ctx);
4662 	} else if (ret >= 0) {
4663 		if (data_len != found_data_len ||
4664 		    memcmp(data, found_data, data_len)) {
4665 			ret = __process_new_xattr(num, di_key, name, name_len,
4666 					data, data_len, type, ctx);
4667 		} else {
4668 			ret = 0;
4669 		}
4670 	}
4671 
4672 	kfree(found_data);
4673 	return ret;
4674 }
4675 
4676 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4677 					   const char *name, int name_len,
4678 					   const char *data, int data_len,
4679 					   u8 type, void *ctx)
4680 {
4681 	int ret;
4682 	struct send_ctx *sctx = ctx;
4683 
4684 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4685 			 name, name_len, NULL, NULL);
4686 	if (ret == -ENOENT)
4687 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4688 				data_len, type, ctx);
4689 	else if (ret >= 0)
4690 		ret = 0;
4691 
4692 	return ret;
4693 }
4694 
4695 static int process_changed_xattr(struct send_ctx *sctx)
4696 {
4697 	int ret = 0;
4698 
4699 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4700 			__process_changed_new_xattr, sctx);
4701 	if (ret < 0)
4702 		goto out;
4703 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4704 			__process_changed_deleted_xattr, sctx);
4705 
4706 out:
4707 	return ret;
4708 }
4709 
4710 static int process_all_new_xattrs(struct send_ctx *sctx)
4711 {
4712 	int ret;
4713 	struct btrfs_root *root;
4714 	struct btrfs_path *path;
4715 	struct btrfs_key key;
4716 	struct btrfs_key found_key;
4717 	struct extent_buffer *eb;
4718 	int slot;
4719 
4720 	path = alloc_path_for_send();
4721 	if (!path)
4722 		return -ENOMEM;
4723 
4724 	root = sctx->send_root;
4725 
4726 	key.objectid = sctx->cmp_key->objectid;
4727 	key.type = BTRFS_XATTR_ITEM_KEY;
4728 	key.offset = 0;
4729 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4730 	if (ret < 0)
4731 		goto out;
4732 
4733 	while (1) {
4734 		eb = path->nodes[0];
4735 		slot = path->slots[0];
4736 		if (slot >= btrfs_header_nritems(eb)) {
4737 			ret = btrfs_next_leaf(root, path);
4738 			if (ret < 0) {
4739 				goto out;
4740 			} else if (ret > 0) {
4741 				ret = 0;
4742 				break;
4743 			}
4744 			continue;
4745 		}
4746 
4747 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4748 		if (found_key.objectid != key.objectid ||
4749 		    found_key.type != key.type) {
4750 			ret = 0;
4751 			goto out;
4752 		}
4753 
4754 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4755 		if (ret < 0)
4756 			goto out;
4757 
4758 		path->slots[0]++;
4759 	}
4760 
4761 out:
4762 	btrfs_free_path(path);
4763 	return ret;
4764 }
4765 
4766 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4767 {
4768 	struct btrfs_root *root = sctx->send_root;
4769 	struct btrfs_fs_info *fs_info = root->fs_info;
4770 	struct inode *inode;
4771 	struct page *page;
4772 	char *addr;
4773 	struct btrfs_key key;
4774 	pgoff_t index = offset >> PAGE_SHIFT;
4775 	pgoff_t last_index;
4776 	unsigned pg_offset = offset & ~PAGE_MASK;
4777 	ssize_t ret = 0;
4778 
4779 	key.objectid = sctx->cur_ino;
4780 	key.type = BTRFS_INODE_ITEM_KEY;
4781 	key.offset = 0;
4782 
4783 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4784 	if (IS_ERR(inode))
4785 		return PTR_ERR(inode);
4786 
4787 	if (offset + len > i_size_read(inode)) {
4788 		if (offset > i_size_read(inode))
4789 			len = 0;
4790 		else
4791 			len = offset - i_size_read(inode);
4792 	}
4793 	if (len == 0)
4794 		goto out;
4795 
4796 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4797 
4798 	/* initial readahead */
4799 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4800 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4801 
4802 	while (index <= last_index) {
4803 		unsigned cur_len = min_t(unsigned, len,
4804 					 PAGE_SIZE - pg_offset);
4805 
4806 		page = find_lock_page(inode->i_mapping, index);
4807 		if (!page) {
4808 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4809 				NULL, index, last_index + 1 - index);
4810 
4811 			page = find_or_create_page(inode->i_mapping, index,
4812 					GFP_KERNEL);
4813 			if (!page) {
4814 				ret = -ENOMEM;
4815 				break;
4816 			}
4817 		}
4818 
4819 		if (PageReadahead(page)) {
4820 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4821 				NULL, page, index, last_index + 1 - index);
4822 		}
4823 
4824 		if (!PageUptodate(page)) {
4825 			btrfs_readpage(NULL, page);
4826 			lock_page(page);
4827 			if (!PageUptodate(page)) {
4828 				unlock_page(page);
4829 				put_page(page);
4830 				ret = -EIO;
4831 				break;
4832 			}
4833 		}
4834 
4835 		addr = kmap(page);
4836 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4837 		kunmap(page);
4838 		unlock_page(page);
4839 		put_page(page);
4840 		index++;
4841 		pg_offset = 0;
4842 		len -= cur_len;
4843 		ret += cur_len;
4844 	}
4845 out:
4846 	iput(inode);
4847 	return ret;
4848 }
4849 
4850 /*
4851  * Read some bytes from the current inode/file and send a write command to
4852  * user space.
4853  */
4854 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4855 {
4856 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4857 	int ret = 0;
4858 	struct fs_path *p;
4859 	ssize_t num_read = 0;
4860 
4861 	p = fs_path_alloc();
4862 	if (!p)
4863 		return -ENOMEM;
4864 
4865 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4866 
4867 	num_read = fill_read_buf(sctx, offset, len);
4868 	if (num_read <= 0) {
4869 		if (num_read < 0)
4870 			ret = num_read;
4871 		goto out;
4872 	}
4873 
4874 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4875 	if (ret < 0)
4876 		goto out;
4877 
4878 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4879 	if (ret < 0)
4880 		goto out;
4881 
4882 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4883 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4884 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4885 
4886 	ret = send_cmd(sctx);
4887 
4888 tlv_put_failure:
4889 out:
4890 	fs_path_free(p);
4891 	if (ret < 0)
4892 		return ret;
4893 	return num_read;
4894 }
4895 
4896 /*
4897  * Send a clone command to user space.
4898  */
4899 static int send_clone(struct send_ctx *sctx,
4900 		      u64 offset, u32 len,
4901 		      struct clone_root *clone_root)
4902 {
4903 	int ret = 0;
4904 	struct fs_path *p;
4905 	u64 gen;
4906 
4907 	btrfs_debug(sctx->send_root->fs_info,
4908 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4909 		    offset, len, clone_root->root->objectid, clone_root->ino,
4910 		    clone_root->offset);
4911 
4912 	p = fs_path_alloc();
4913 	if (!p)
4914 		return -ENOMEM;
4915 
4916 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4917 	if (ret < 0)
4918 		goto out;
4919 
4920 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4921 	if (ret < 0)
4922 		goto out;
4923 
4924 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4925 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4926 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4927 
4928 	if (clone_root->root == sctx->send_root) {
4929 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4930 				&gen, NULL, NULL, NULL, NULL);
4931 		if (ret < 0)
4932 			goto out;
4933 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4934 	} else {
4935 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4936 	}
4937 	if (ret < 0)
4938 		goto out;
4939 
4940 	/*
4941 	 * If the parent we're using has a received_uuid set then use that as
4942 	 * our clone source as that is what we will look for when doing a
4943 	 * receive.
4944 	 *
4945 	 * This covers the case that we create a snapshot off of a received
4946 	 * subvolume and then use that as the parent and try to receive on a
4947 	 * different host.
4948 	 */
4949 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4950 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4951 			     clone_root->root->root_item.received_uuid);
4952 	else
4953 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4954 			     clone_root->root->root_item.uuid);
4955 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4956 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4957 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4958 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4959 			clone_root->offset);
4960 
4961 	ret = send_cmd(sctx);
4962 
4963 tlv_put_failure:
4964 out:
4965 	fs_path_free(p);
4966 	return ret;
4967 }
4968 
4969 /*
4970  * Send an update extent command to user space.
4971  */
4972 static int send_update_extent(struct send_ctx *sctx,
4973 			      u64 offset, u32 len)
4974 {
4975 	int ret = 0;
4976 	struct fs_path *p;
4977 
4978 	p = fs_path_alloc();
4979 	if (!p)
4980 		return -ENOMEM;
4981 
4982 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4983 	if (ret < 0)
4984 		goto out;
4985 
4986 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4987 	if (ret < 0)
4988 		goto out;
4989 
4990 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4991 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4992 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4993 
4994 	ret = send_cmd(sctx);
4995 
4996 tlv_put_failure:
4997 out:
4998 	fs_path_free(p);
4999 	return ret;
5000 }
5001 
5002 static int send_hole(struct send_ctx *sctx, u64 end)
5003 {
5004 	struct fs_path *p = NULL;
5005 	u64 offset = sctx->cur_inode_last_extent;
5006 	u64 len;
5007 	int ret = 0;
5008 
5009 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5010 		return send_update_extent(sctx, offset, end - offset);
5011 
5012 	p = fs_path_alloc();
5013 	if (!p)
5014 		return -ENOMEM;
5015 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5016 	if (ret < 0)
5017 		goto tlv_put_failure;
5018 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5019 	while (offset < end) {
5020 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5021 
5022 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5023 		if (ret < 0)
5024 			break;
5025 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5026 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5027 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5028 		ret = send_cmd(sctx);
5029 		if (ret < 0)
5030 			break;
5031 		offset += len;
5032 	}
5033 	sctx->cur_inode_next_write_offset = offset;
5034 tlv_put_failure:
5035 	fs_path_free(p);
5036 	return ret;
5037 }
5038 
5039 static int send_extent_data(struct send_ctx *sctx,
5040 			    const u64 offset,
5041 			    const u64 len)
5042 {
5043 	u64 sent = 0;
5044 
5045 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5046 		return send_update_extent(sctx, offset, len);
5047 
5048 	while (sent < len) {
5049 		u64 size = len - sent;
5050 		int ret;
5051 
5052 		if (size > BTRFS_SEND_READ_SIZE)
5053 			size = BTRFS_SEND_READ_SIZE;
5054 		ret = send_write(sctx, offset + sent, size);
5055 		if (ret < 0)
5056 			return ret;
5057 		if (!ret)
5058 			break;
5059 		sent += ret;
5060 	}
5061 	return 0;
5062 }
5063 
5064 static int clone_range(struct send_ctx *sctx,
5065 		       struct clone_root *clone_root,
5066 		       const u64 disk_byte,
5067 		       u64 data_offset,
5068 		       u64 offset,
5069 		       u64 len)
5070 {
5071 	struct btrfs_path *path;
5072 	struct btrfs_key key;
5073 	int ret;
5074 
5075 	/*
5076 	 * Prevent cloning from a zero offset with a length matching the sector
5077 	 * size because in some scenarios this will make the receiver fail.
5078 	 *
5079 	 * For example, if in the source filesystem the extent at offset 0
5080 	 * has a length of sectorsize and it was written using direct IO, then
5081 	 * it can never be an inline extent (even if compression is enabled).
5082 	 * Then this extent can be cloned in the original filesystem to a non
5083 	 * zero file offset, but it may not be possible to clone in the
5084 	 * destination filesystem because it can be inlined due to compression
5085 	 * on the destination filesystem (as the receiver's write operations are
5086 	 * always done using buffered IO). The same happens when the original
5087 	 * filesystem does not have compression enabled but the destination
5088 	 * filesystem has.
5089 	 */
5090 	if (clone_root->offset == 0 &&
5091 	    len == sctx->send_root->fs_info->sectorsize)
5092 		return send_extent_data(sctx, offset, len);
5093 
5094 	path = alloc_path_for_send();
5095 	if (!path)
5096 		return -ENOMEM;
5097 
5098 	/*
5099 	 * We can't send a clone operation for the entire range if we find
5100 	 * extent items in the respective range in the source file that
5101 	 * refer to different extents or if we find holes.
5102 	 * So check for that and do a mix of clone and regular write/copy
5103 	 * operations if needed.
5104 	 *
5105 	 * Example:
5106 	 *
5107 	 * mkfs.btrfs -f /dev/sda
5108 	 * mount /dev/sda /mnt
5109 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5110 	 * cp --reflink=always /mnt/foo /mnt/bar
5111 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5112 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5113 	 *
5114 	 * If when we send the snapshot and we are processing file bar (which
5115 	 * has a higher inode number than foo) we blindly send a clone operation
5116 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5117 	 * a file bar that matches the content of file foo - iow, doesn't match
5118 	 * the content from bar in the original filesystem.
5119 	 */
5120 	key.objectid = clone_root->ino;
5121 	key.type = BTRFS_EXTENT_DATA_KEY;
5122 	key.offset = clone_root->offset;
5123 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5124 	if (ret < 0)
5125 		goto out;
5126 	if (ret > 0 && path->slots[0] > 0) {
5127 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5128 		if (key.objectid == clone_root->ino &&
5129 		    key.type == BTRFS_EXTENT_DATA_KEY)
5130 			path->slots[0]--;
5131 	}
5132 
5133 	while (true) {
5134 		struct extent_buffer *leaf = path->nodes[0];
5135 		int slot = path->slots[0];
5136 		struct btrfs_file_extent_item *ei;
5137 		u8 type;
5138 		u64 ext_len;
5139 		u64 clone_len;
5140 
5141 		if (slot >= btrfs_header_nritems(leaf)) {
5142 			ret = btrfs_next_leaf(clone_root->root, path);
5143 			if (ret < 0)
5144 				goto out;
5145 			else if (ret > 0)
5146 				break;
5147 			continue;
5148 		}
5149 
5150 		btrfs_item_key_to_cpu(leaf, &key, slot);
5151 
5152 		/*
5153 		 * We might have an implicit trailing hole (NO_HOLES feature
5154 		 * enabled). We deal with it after leaving this loop.
5155 		 */
5156 		if (key.objectid != clone_root->ino ||
5157 		    key.type != BTRFS_EXTENT_DATA_KEY)
5158 			break;
5159 
5160 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5161 		type = btrfs_file_extent_type(leaf, ei);
5162 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5163 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5164 			ext_len = PAGE_ALIGN(ext_len);
5165 		} else {
5166 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5167 		}
5168 
5169 		if (key.offset + ext_len <= clone_root->offset)
5170 			goto next;
5171 
5172 		if (key.offset > clone_root->offset) {
5173 			/* Implicit hole, NO_HOLES feature enabled. */
5174 			u64 hole_len = key.offset - clone_root->offset;
5175 
5176 			if (hole_len > len)
5177 				hole_len = len;
5178 			ret = send_extent_data(sctx, offset, hole_len);
5179 			if (ret < 0)
5180 				goto out;
5181 
5182 			len -= hole_len;
5183 			if (len == 0)
5184 				break;
5185 			offset += hole_len;
5186 			clone_root->offset += hole_len;
5187 			data_offset += hole_len;
5188 		}
5189 
5190 		if (key.offset >= clone_root->offset + len)
5191 			break;
5192 
5193 		clone_len = min_t(u64, ext_len, len);
5194 
5195 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5196 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5197 			ret = send_clone(sctx, offset, clone_len, clone_root);
5198 		else
5199 			ret = send_extent_data(sctx, offset, clone_len);
5200 
5201 		if (ret < 0)
5202 			goto out;
5203 
5204 		len -= clone_len;
5205 		if (len == 0)
5206 			break;
5207 		offset += clone_len;
5208 		clone_root->offset += clone_len;
5209 		data_offset += clone_len;
5210 next:
5211 		path->slots[0]++;
5212 	}
5213 
5214 	if (len > 0)
5215 		ret = send_extent_data(sctx, offset, len);
5216 	else
5217 		ret = 0;
5218 out:
5219 	btrfs_free_path(path);
5220 	return ret;
5221 }
5222 
5223 static int send_write_or_clone(struct send_ctx *sctx,
5224 			       struct btrfs_path *path,
5225 			       struct btrfs_key *key,
5226 			       struct clone_root *clone_root)
5227 {
5228 	int ret = 0;
5229 	struct btrfs_file_extent_item *ei;
5230 	u64 offset = key->offset;
5231 	u64 len;
5232 	u8 type;
5233 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5234 
5235 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5236 			struct btrfs_file_extent_item);
5237 	type = btrfs_file_extent_type(path->nodes[0], ei);
5238 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5239 		len = btrfs_file_extent_inline_len(path->nodes[0],
5240 						   path->slots[0], ei);
5241 		/*
5242 		 * it is possible the inline item won't cover the whole page,
5243 		 * but there may be items after this page.  Make
5244 		 * sure to send the whole thing
5245 		 */
5246 		len = PAGE_ALIGN(len);
5247 	} else {
5248 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5249 	}
5250 
5251 	if (offset >= sctx->cur_inode_size) {
5252 		ret = 0;
5253 		goto out;
5254 	}
5255 	if (offset + len > sctx->cur_inode_size)
5256 		len = sctx->cur_inode_size - offset;
5257 	if (len == 0) {
5258 		ret = 0;
5259 		goto out;
5260 	}
5261 
5262 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5263 		u64 disk_byte;
5264 		u64 data_offset;
5265 
5266 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5267 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5268 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5269 				  offset, len);
5270 	} else {
5271 		ret = send_extent_data(sctx, offset, len);
5272 	}
5273 	sctx->cur_inode_next_write_offset = offset + len;
5274 out:
5275 	return ret;
5276 }
5277 
5278 static int is_extent_unchanged(struct send_ctx *sctx,
5279 			       struct btrfs_path *left_path,
5280 			       struct btrfs_key *ekey)
5281 {
5282 	int ret = 0;
5283 	struct btrfs_key key;
5284 	struct btrfs_path *path = NULL;
5285 	struct extent_buffer *eb;
5286 	int slot;
5287 	struct btrfs_key found_key;
5288 	struct btrfs_file_extent_item *ei;
5289 	u64 left_disknr;
5290 	u64 right_disknr;
5291 	u64 left_offset;
5292 	u64 right_offset;
5293 	u64 left_offset_fixed;
5294 	u64 left_len;
5295 	u64 right_len;
5296 	u64 left_gen;
5297 	u64 right_gen;
5298 	u8 left_type;
5299 	u8 right_type;
5300 
5301 	path = alloc_path_for_send();
5302 	if (!path)
5303 		return -ENOMEM;
5304 
5305 	eb = left_path->nodes[0];
5306 	slot = left_path->slots[0];
5307 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5308 	left_type = btrfs_file_extent_type(eb, ei);
5309 
5310 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5311 		ret = 0;
5312 		goto out;
5313 	}
5314 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5315 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5316 	left_offset = btrfs_file_extent_offset(eb, ei);
5317 	left_gen = btrfs_file_extent_generation(eb, ei);
5318 
5319 	/*
5320 	 * Following comments will refer to these graphics. L is the left
5321 	 * extents which we are checking at the moment. 1-8 are the right
5322 	 * extents that we iterate.
5323 	 *
5324 	 *       |-----L-----|
5325 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5326 	 *
5327 	 *       |-----L-----|
5328 	 * |--1--|-2b-|...(same as above)
5329 	 *
5330 	 * Alternative situation. Happens on files where extents got split.
5331 	 *       |-----L-----|
5332 	 * |-----------7-----------|-6-|
5333 	 *
5334 	 * Alternative situation. Happens on files which got larger.
5335 	 *       |-----L-----|
5336 	 * |-8-|
5337 	 * Nothing follows after 8.
5338 	 */
5339 
5340 	key.objectid = ekey->objectid;
5341 	key.type = BTRFS_EXTENT_DATA_KEY;
5342 	key.offset = ekey->offset;
5343 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5344 	if (ret < 0)
5345 		goto out;
5346 	if (ret) {
5347 		ret = 0;
5348 		goto out;
5349 	}
5350 
5351 	/*
5352 	 * Handle special case where the right side has no extents at all.
5353 	 */
5354 	eb = path->nodes[0];
5355 	slot = path->slots[0];
5356 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5357 	if (found_key.objectid != key.objectid ||
5358 	    found_key.type != key.type) {
5359 		/* If we're a hole then just pretend nothing changed */
5360 		ret = (left_disknr) ? 0 : 1;
5361 		goto out;
5362 	}
5363 
5364 	/*
5365 	 * We're now on 2a, 2b or 7.
5366 	 */
5367 	key = found_key;
5368 	while (key.offset < ekey->offset + left_len) {
5369 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5370 		right_type = btrfs_file_extent_type(eb, ei);
5371 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5372 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5373 			ret = 0;
5374 			goto out;
5375 		}
5376 
5377 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5378 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5379 			right_len = PAGE_ALIGN(right_len);
5380 		} else {
5381 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5382 		}
5383 
5384 		/*
5385 		 * Are we at extent 8? If yes, we know the extent is changed.
5386 		 * This may only happen on the first iteration.
5387 		 */
5388 		if (found_key.offset + right_len <= ekey->offset) {
5389 			/* If we're a hole just pretend nothing changed */
5390 			ret = (left_disknr) ? 0 : 1;
5391 			goto out;
5392 		}
5393 
5394 		/*
5395 		 * We just wanted to see if when we have an inline extent, what
5396 		 * follows it is a regular extent (wanted to check the above
5397 		 * condition for inline extents too). This should normally not
5398 		 * happen but it's possible for example when we have an inline
5399 		 * compressed extent representing data with a size matching
5400 		 * the page size (currently the same as sector size).
5401 		 */
5402 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5403 			ret = 0;
5404 			goto out;
5405 		}
5406 
5407 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5408 		right_offset = btrfs_file_extent_offset(eb, ei);
5409 		right_gen = btrfs_file_extent_generation(eb, ei);
5410 
5411 		left_offset_fixed = left_offset;
5412 		if (key.offset < ekey->offset) {
5413 			/* Fix the right offset for 2a and 7. */
5414 			right_offset += ekey->offset - key.offset;
5415 		} else {
5416 			/* Fix the left offset for all behind 2a and 2b */
5417 			left_offset_fixed += key.offset - ekey->offset;
5418 		}
5419 
5420 		/*
5421 		 * Check if we have the same extent.
5422 		 */
5423 		if (left_disknr != right_disknr ||
5424 		    left_offset_fixed != right_offset ||
5425 		    left_gen != right_gen) {
5426 			ret = 0;
5427 			goto out;
5428 		}
5429 
5430 		/*
5431 		 * Go to the next extent.
5432 		 */
5433 		ret = btrfs_next_item(sctx->parent_root, path);
5434 		if (ret < 0)
5435 			goto out;
5436 		if (!ret) {
5437 			eb = path->nodes[0];
5438 			slot = path->slots[0];
5439 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5440 		}
5441 		if (ret || found_key.objectid != key.objectid ||
5442 		    found_key.type != key.type) {
5443 			key.offset += right_len;
5444 			break;
5445 		}
5446 		if (found_key.offset != key.offset + right_len) {
5447 			ret = 0;
5448 			goto out;
5449 		}
5450 		key = found_key;
5451 	}
5452 
5453 	/*
5454 	 * We're now behind the left extent (treat as unchanged) or at the end
5455 	 * of the right side (treat as changed).
5456 	 */
5457 	if (key.offset >= ekey->offset + left_len)
5458 		ret = 1;
5459 	else
5460 		ret = 0;
5461 
5462 
5463 out:
5464 	btrfs_free_path(path);
5465 	return ret;
5466 }
5467 
5468 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5469 {
5470 	struct btrfs_path *path;
5471 	struct btrfs_root *root = sctx->send_root;
5472 	struct btrfs_file_extent_item *fi;
5473 	struct btrfs_key key;
5474 	u64 extent_end;
5475 	u8 type;
5476 	int ret;
5477 
5478 	path = alloc_path_for_send();
5479 	if (!path)
5480 		return -ENOMEM;
5481 
5482 	sctx->cur_inode_last_extent = 0;
5483 
5484 	key.objectid = sctx->cur_ino;
5485 	key.type = BTRFS_EXTENT_DATA_KEY;
5486 	key.offset = offset;
5487 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5488 	if (ret < 0)
5489 		goto out;
5490 	ret = 0;
5491 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5492 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5493 		goto out;
5494 
5495 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5496 			    struct btrfs_file_extent_item);
5497 	type = btrfs_file_extent_type(path->nodes[0], fi);
5498 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5499 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5500 							path->slots[0], fi);
5501 		extent_end = ALIGN(key.offset + size,
5502 				   sctx->send_root->fs_info->sectorsize);
5503 	} else {
5504 		extent_end = key.offset +
5505 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5506 	}
5507 	sctx->cur_inode_last_extent = extent_end;
5508 out:
5509 	btrfs_free_path(path);
5510 	return ret;
5511 }
5512 
5513 static int range_is_hole_in_parent(struct send_ctx *sctx,
5514 				   const u64 start,
5515 				   const u64 end)
5516 {
5517 	struct btrfs_path *path;
5518 	struct btrfs_key key;
5519 	struct btrfs_root *root = sctx->parent_root;
5520 	u64 search_start = start;
5521 	int ret;
5522 
5523 	path = alloc_path_for_send();
5524 	if (!path)
5525 		return -ENOMEM;
5526 
5527 	key.objectid = sctx->cur_ino;
5528 	key.type = BTRFS_EXTENT_DATA_KEY;
5529 	key.offset = search_start;
5530 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5531 	if (ret < 0)
5532 		goto out;
5533 	if (ret > 0 && path->slots[0] > 0)
5534 		path->slots[0]--;
5535 
5536 	while (search_start < end) {
5537 		struct extent_buffer *leaf = path->nodes[0];
5538 		int slot = path->slots[0];
5539 		struct btrfs_file_extent_item *fi;
5540 		u64 extent_end;
5541 
5542 		if (slot >= btrfs_header_nritems(leaf)) {
5543 			ret = btrfs_next_leaf(root, path);
5544 			if (ret < 0)
5545 				goto out;
5546 			else if (ret > 0)
5547 				break;
5548 			continue;
5549 		}
5550 
5551 		btrfs_item_key_to_cpu(leaf, &key, slot);
5552 		if (key.objectid < sctx->cur_ino ||
5553 		    key.type < BTRFS_EXTENT_DATA_KEY)
5554 			goto next;
5555 		if (key.objectid > sctx->cur_ino ||
5556 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5557 		    key.offset >= end)
5558 			break;
5559 
5560 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5561 		if (btrfs_file_extent_type(leaf, fi) ==
5562 		    BTRFS_FILE_EXTENT_INLINE) {
5563 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5564 
5565 			extent_end = ALIGN(key.offset + size,
5566 					   root->fs_info->sectorsize);
5567 		} else {
5568 			extent_end = key.offset +
5569 				btrfs_file_extent_num_bytes(leaf, fi);
5570 		}
5571 		if (extent_end <= start)
5572 			goto next;
5573 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5574 			search_start = extent_end;
5575 			goto next;
5576 		}
5577 		ret = 0;
5578 		goto out;
5579 next:
5580 		path->slots[0]++;
5581 	}
5582 	ret = 1;
5583 out:
5584 	btrfs_free_path(path);
5585 	return ret;
5586 }
5587 
5588 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5589 			   struct btrfs_key *key)
5590 {
5591 	struct btrfs_file_extent_item *fi;
5592 	u64 extent_end;
5593 	u8 type;
5594 	int ret = 0;
5595 
5596 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5597 		return 0;
5598 
5599 	if (sctx->cur_inode_last_extent == (u64)-1) {
5600 		ret = get_last_extent(sctx, key->offset - 1);
5601 		if (ret)
5602 			return ret;
5603 	}
5604 
5605 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5606 			    struct btrfs_file_extent_item);
5607 	type = btrfs_file_extent_type(path->nodes[0], fi);
5608 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5609 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5610 							path->slots[0], fi);
5611 		extent_end = ALIGN(key->offset + size,
5612 				   sctx->send_root->fs_info->sectorsize);
5613 	} else {
5614 		extent_end = key->offset +
5615 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5616 	}
5617 
5618 	if (path->slots[0] == 0 &&
5619 	    sctx->cur_inode_last_extent < key->offset) {
5620 		/*
5621 		 * We might have skipped entire leafs that contained only
5622 		 * file extent items for our current inode. These leafs have
5623 		 * a generation number smaller (older) than the one in the
5624 		 * current leaf and the leaf our last extent came from, and
5625 		 * are located between these 2 leafs.
5626 		 */
5627 		ret = get_last_extent(sctx, key->offset - 1);
5628 		if (ret)
5629 			return ret;
5630 	}
5631 
5632 	if (sctx->cur_inode_last_extent < key->offset) {
5633 		ret = range_is_hole_in_parent(sctx,
5634 					      sctx->cur_inode_last_extent,
5635 					      key->offset);
5636 		if (ret < 0)
5637 			return ret;
5638 		else if (ret == 0)
5639 			ret = send_hole(sctx, key->offset);
5640 		else
5641 			ret = 0;
5642 	}
5643 	sctx->cur_inode_last_extent = extent_end;
5644 	return ret;
5645 }
5646 
5647 static int process_extent(struct send_ctx *sctx,
5648 			  struct btrfs_path *path,
5649 			  struct btrfs_key *key)
5650 {
5651 	struct clone_root *found_clone = NULL;
5652 	int ret = 0;
5653 
5654 	if (S_ISLNK(sctx->cur_inode_mode))
5655 		return 0;
5656 
5657 	if (sctx->parent_root && !sctx->cur_inode_new) {
5658 		ret = is_extent_unchanged(sctx, path, key);
5659 		if (ret < 0)
5660 			goto out;
5661 		if (ret) {
5662 			ret = 0;
5663 			goto out_hole;
5664 		}
5665 	} else {
5666 		struct btrfs_file_extent_item *ei;
5667 		u8 type;
5668 
5669 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5670 				    struct btrfs_file_extent_item);
5671 		type = btrfs_file_extent_type(path->nodes[0], ei);
5672 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5673 		    type == BTRFS_FILE_EXTENT_REG) {
5674 			/*
5675 			 * The send spec does not have a prealloc command yet,
5676 			 * so just leave a hole for prealloc'ed extents until
5677 			 * we have enough commands queued up to justify rev'ing
5678 			 * the send spec.
5679 			 */
5680 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5681 				ret = 0;
5682 				goto out;
5683 			}
5684 
5685 			/* Have a hole, just skip it. */
5686 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5687 				ret = 0;
5688 				goto out;
5689 			}
5690 		}
5691 	}
5692 
5693 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5694 			sctx->cur_inode_size, &found_clone);
5695 	if (ret != -ENOENT && ret < 0)
5696 		goto out;
5697 
5698 	ret = send_write_or_clone(sctx, path, key, found_clone);
5699 	if (ret)
5700 		goto out;
5701 out_hole:
5702 	ret = maybe_send_hole(sctx, path, key);
5703 out:
5704 	return ret;
5705 }
5706 
5707 static int process_all_extents(struct send_ctx *sctx)
5708 {
5709 	int ret;
5710 	struct btrfs_root *root;
5711 	struct btrfs_path *path;
5712 	struct btrfs_key key;
5713 	struct btrfs_key found_key;
5714 	struct extent_buffer *eb;
5715 	int slot;
5716 
5717 	root = sctx->send_root;
5718 	path = alloc_path_for_send();
5719 	if (!path)
5720 		return -ENOMEM;
5721 
5722 	key.objectid = sctx->cmp_key->objectid;
5723 	key.type = BTRFS_EXTENT_DATA_KEY;
5724 	key.offset = 0;
5725 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726 	if (ret < 0)
5727 		goto out;
5728 
5729 	while (1) {
5730 		eb = path->nodes[0];
5731 		slot = path->slots[0];
5732 
5733 		if (slot >= btrfs_header_nritems(eb)) {
5734 			ret = btrfs_next_leaf(root, path);
5735 			if (ret < 0) {
5736 				goto out;
5737 			} else if (ret > 0) {
5738 				ret = 0;
5739 				break;
5740 			}
5741 			continue;
5742 		}
5743 
5744 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5745 
5746 		if (found_key.objectid != key.objectid ||
5747 		    found_key.type != key.type) {
5748 			ret = 0;
5749 			goto out;
5750 		}
5751 
5752 		ret = process_extent(sctx, path, &found_key);
5753 		if (ret < 0)
5754 			goto out;
5755 
5756 		path->slots[0]++;
5757 	}
5758 
5759 out:
5760 	btrfs_free_path(path);
5761 	return ret;
5762 }
5763 
5764 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5765 					   int *pending_move,
5766 					   int *refs_processed)
5767 {
5768 	int ret = 0;
5769 
5770 	if (sctx->cur_ino == 0)
5771 		goto out;
5772 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5773 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5774 		goto out;
5775 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5776 		goto out;
5777 
5778 	ret = process_recorded_refs(sctx, pending_move);
5779 	if (ret < 0)
5780 		goto out;
5781 
5782 	*refs_processed = 1;
5783 out:
5784 	return ret;
5785 }
5786 
5787 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5788 {
5789 	int ret = 0;
5790 	u64 left_mode;
5791 	u64 left_uid;
5792 	u64 left_gid;
5793 	u64 right_mode;
5794 	u64 right_uid;
5795 	u64 right_gid;
5796 	int need_chmod = 0;
5797 	int need_chown = 0;
5798 	int need_truncate = 1;
5799 	int pending_move = 0;
5800 	int refs_processed = 0;
5801 
5802 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5803 					      &refs_processed);
5804 	if (ret < 0)
5805 		goto out;
5806 
5807 	/*
5808 	 * We have processed the refs and thus need to advance send_progress.
5809 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5810 	 * inode into account.
5811 	 *
5812 	 * On the other hand, if our current inode is a directory and couldn't
5813 	 * be moved/renamed because its parent was renamed/moved too and it has
5814 	 * a higher inode number, we can only move/rename our current inode
5815 	 * after we moved/renamed its parent. Therefore in this case operate on
5816 	 * the old path (pre move/rename) of our current inode, and the
5817 	 * move/rename will be performed later.
5818 	 */
5819 	if (refs_processed && !pending_move)
5820 		sctx->send_progress = sctx->cur_ino + 1;
5821 
5822 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5823 		goto out;
5824 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5825 		goto out;
5826 
5827 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5828 			&left_mode, &left_uid, &left_gid, NULL);
5829 	if (ret < 0)
5830 		goto out;
5831 
5832 	if (!sctx->parent_root || sctx->cur_inode_new) {
5833 		need_chown = 1;
5834 		if (!S_ISLNK(sctx->cur_inode_mode))
5835 			need_chmod = 1;
5836 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5837 			need_truncate = 0;
5838 	} else {
5839 		u64 old_size;
5840 
5841 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5842 				&old_size, NULL, &right_mode, &right_uid,
5843 				&right_gid, NULL);
5844 		if (ret < 0)
5845 			goto out;
5846 
5847 		if (left_uid != right_uid || left_gid != right_gid)
5848 			need_chown = 1;
5849 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5850 			need_chmod = 1;
5851 		if ((old_size == sctx->cur_inode_size) ||
5852 		    (sctx->cur_inode_size > old_size &&
5853 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5854 			need_truncate = 0;
5855 	}
5856 
5857 	if (S_ISREG(sctx->cur_inode_mode)) {
5858 		if (need_send_hole(sctx)) {
5859 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5860 			    sctx->cur_inode_last_extent <
5861 			    sctx->cur_inode_size) {
5862 				ret = get_last_extent(sctx, (u64)-1);
5863 				if (ret)
5864 					goto out;
5865 			}
5866 			if (sctx->cur_inode_last_extent <
5867 			    sctx->cur_inode_size) {
5868 				ret = send_hole(sctx, sctx->cur_inode_size);
5869 				if (ret)
5870 					goto out;
5871 			}
5872 		}
5873 		if (need_truncate) {
5874 			ret = send_truncate(sctx, sctx->cur_ino,
5875 					    sctx->cur_inode_gen,
5876 					    sctx->cur_inode_size);
5877 			if (ret < 0)
5878 				goto out;
5879 		}
5880 	}
5881 
5882 	if (need_chown) {
5883 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5884 				left_uid, left_gid);
5885 		if (ret < 0)
5886 			goto out;
5887 	}
5888 	if (need_chmod) {
5889 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5890 				left_mode);
5891 		if (ret < 0)
5892 			goto out;
5893 	}
5894 
5895 	/*
5896 	 * If other directory inodes depended on our current directory
5897 	 * inode's move/rename, now do their move/rename operations.
5898 	 */
5899 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5900 		ret = apply_children_dir_moves(sctx);
5901 		if (ret)
5902 			goto out;
5903 		/*
5904 		 * Need to send that every time, no matter if it actually
5905 		 * changed between the two trees as we have done changes to
5906 		 * the inode before. If our inode is a directory and it's
5907 		 * waiting to be moved/renamed, we will send its utimes when
5908 		 * it's moved/renamed, therefore we don't need to do it here.
5909 		 */
5910 		sctx->send_progress = sctx->cur_ino + 1;
5911 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5912 		if (ret < 0)
5913 			goto out;
5914 	}
5915 
5916 out:
5917 	return ret;
5918 }
5919 
5920 static int changed_inode(struct send_ctx *sctx,
5921 			 enum btrfs_compare_tree_result result)
5922 {
5923 	int ret = 0;
5924 	struct btrfs_key *key = sctx->cmp_key;
5925 	struct btrfs_inode_item *left_ii = NULL;
5926 	struct btrfs_inode_item *right_ii = NULL;
5927 	u64 left_gen = 0;
5928 	u64 right_gen = 0;
5929 
5930 	sctx->cur_ino = key->objectid;
5931 	sctx->cur_inode_new_gen = 0;
5932 	sctx->cur_inode_last_extent = (u64)-1;
5933 	sctx->cur_inode_next_write_offset = 0;
5934 
5935 	/*
5936 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5937 	 * functions that the current inode's refs are not updated yet. Later,
5938 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5939 	 */
5940 	sctx->send_progress = sctx->cur_ino;
5941 
5942 	if (result == BTRFS_COMPARE_TREE_NEW ||
5943 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5944 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5945 				sctx->left_path->slots[0],
5946 				struct btrfs_inode_item);
5947 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5948 				left_ii);
5949 	} else {
5950 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5951 				sctx->right_path->slots[0],
5952 				struct btrfs_inode_item);
5953 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5954 				right_ii);
5955 	}
5956 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5957 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5958 				sctx->right_path->slots[0],
5959 				struct btrfs_inode_item);
5960 
5961 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5962 				right_ii);
5963 
5964 		/*
5965 		 * The cur_ino = root dir case is special here. We can't treat
5966 		 * the inode as deleted+reused because it would generate a
5967 		 * stream that tries to delete/mkdir the root dir.
5968 		 */
5969 		if (left_gen != right_gen &&
5970 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5971 			sctx->cur_inode_new_gen = 1;
5972 	}
5973 
5974 	if (result == BTRFS_COMPARE_TREE_NEW) {
5975 		sctx->cur_inode_gen = left_gen;
5976 		sctx->cur_inode_new = 1;
5977 		sctx->cur_inode_deleted = 0;
5978 		sctx->cur_inode_size = btrfs_inode_size(
5979 				sctx->left_path->nodes[0], left_ii);
5980 		sctx->cur_inode_mode = btrfs_inode_mode(
5981 				sctx->left_path->nodes[0], left_ii);
5982 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5983 				sctx->left_path->nodes[0], left_ii);
5984 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5985 			ret = send_create_inode_if_needed(sctx);
5986 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5987 		sctx->cur_inode_gen = right_gen;
5988 		sctx->cur_inode_new = 0;
5989 		sctx->cur_inode_deleted = 1;
5990 		sctx->cur_inode_size = btrfs_inode_size(
5991 				sctx->right_path->nodes[0], right_ii);
5992 		sctx->cur_inode_mode = btrfs_inode_mode(
5993 				sctx->right_path->nodes[0], right_ii);
5994 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5995 		/*
5996 		 * We need to do some special handling in case the inode was
5997 		 * reported as changed with a changed generation number. This
5998 		 * means that the original inode was deleted and new inode
5999 		 * reused the same inum. So we have to treat the old inode as
6000 		 * deleted and the new one as new.
6001 		 */
6002 		if (sctx->cur_inode_new_gen) {
6003 			/*
6004 			 * First, process the inode as if it was deleted.
6005 			 */
6006 			sctx->cur_inode_gen = right_gen;
6007 			sctx->cur_inode_new = 0;
6008 			sctx->cur_inode_deleted = 1;
6009 			sctx->cur_inode_size = btrfs_inode_size(
6010 					sctx->right_path->nodes[0], right_ii);
6011 			sctx->cur_inode_mode = btrfs_inode_mode(
6012 					sctx->right_path->nodes[0], right_ii);
6013 			ret = process_all_refs(sctx,
6014 					BTRFS_COMPARE_TREE_DELETED);
6015 			if (ret < 0)
6016 				goto out;
6017 
6018 			/*
6019 			 * Now process the inode as if it was new.
6020 			 */
6021 			sctx->cur_inode_gen = left_gen;
6022 			sctx->cur_inode_new = 1;
6023 			sctx->cur_inode_deleted = 0;
6024 			sctx->cur_inode_size = btrfs_inode_size(
6025 					sctx->left_path->nodes[0], left_ii);
6026 			sctx->cur_inode_mode = btrfs_inode_mode(
6027 					sctx->left_path->nodes[0], left_ii);
6028 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6029 					sctx->left_path->nodes[0], left_ii);
6030 			ret = send_create_inode_if_needed(sctx);
6031 			if (ret < 0)
6032 				goto out;
6033 
6034 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6035 			if (ret < 0)
6036 				goto out;
6037 			/*
6038 			 * Advance send_progress now as we did not get into
6039 			 * process_recorded_refs_if_needed in the new_gen case.
6040 			 */
6041 			sctx->send_progress = sctx->cur_ino + 1;
6042 
6043 			/*
6044 			 * Now process all extents and xattrs of the inode as if
6045 			 * they were all new.
6046 			 */
6047 			ret = process_all_extents(sctx);
6048 			if (ret < 0)
6049 				goto out;
6050 			ret = process_all_new_xattrs(sctx);
6051 			if (ret < 0)
6052 				goto out;
6053 		} else {
6054 			sctx->cur_inode_gen = left_gen;
6055 			sctx->cur_inode_new = 0;
6056 			sctx->cur_inode_new_gen = 0;
6057 			sctx->cur_inode_deleted = 0;
6058 			sctx->cur_inode_size = btrfs_inode_size(
6059 					sctx->left_path->nodes[0], left_ii);
6060 			sctx->cur_inode_mode = btrfs_inode_mode(
6061 					sctx->left_path->nodes[0], left_ii);
6062 		}
6063 	}
6064 
6065 out:
6066 	return ret;
6067 }
6068 
6069 /*
6070  * We have to process new refs before deleted refs, but compare_trees gives us
6071  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6072  * first and later process them in process_recorded_refs.
6073  * For the cur_inode_new_gen case, we skip recording completely because
6074  * changed_inode did already initiate processing of refs. The reason for this is
6075  * that in this case, compare_tree actually compares the refs of 2 different
6076  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6077  * refs of the right tree as deleted and all refs of the left tree as new.
6078  */
6079 static int changed_ref(struct send_ctx *sctx,
6080 		       enum btrfs_compare_tree_result result)
6081 {
6082 	int ret = 0;
6083 
6084 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6085 		inconsistent_snapshot_error(sctx, result, "reference");
6086 		return -EIO;
6087 	}
6088 
6089 	if (!sctx->cur_inode_new_gen &&
6090 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6091 		if (result == BTRFS_COMPARE_TREE_NEW)
6092 			ret = record_new_ref(sctx);
6093 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6094 			ret = record_deleted_ref(sctx);
6095 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6096 			ret = record_changed_ref(sctx);
6097 	}
6098 
6099 	return ret;
6100 }
6101 
6102 /*
6103  * Process new/deleted/changed xattrs. We skip processing in the
6104  * cur_inode_new_gen case because changed_inode did already initiate processing
6105  * of xattrs. The reason is the same as in changed_ref
6106  */
6107 static int changed_xattr(struct send_ctx *sctx,
6108 			 enum btrfs_compare_tree_result result)
6109 {
6110 	int ret = 0;
6111 
6112 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6113 		inconsistent_snapshot_error(sctx, result, "xattr");
6114 		return -EIO;
6115 	}
6116 
6117 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6118 		if (result == BTRFS_COMPARE_TREE_NEW)
6119 			ret = process_new_xattr(sctx);
6120 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6121 			ret = process_deleted_xattr(sctx);
6122 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6123 			ret = process_changed_xattr(sctx);
6124 	}
6125 
6126 	return ret;
6127 }
6128 
6129 /*
6130  * Process new/deleted/changed extents. We skip processing in the
6131  * cur_inode_new_gen case because changed_inode did already initiate processing
6132  * of extents. The reason is the same as in changed_ref
6133  */
6134 static int changed_extent(struct send_ctx *sctx,
6135 			  enum btrfs_compare_tree_result result)
6136 {
6137 	int ret = 0;
6138 
6139 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6140 
6141 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6142 			struct extent_buffer *leaf_l;
6143 			struct extent_buffer *leaf_r;
6144 			struct btrfs_file_extent_item *ei_l;
6145 			struct btrfs_file_extent_item *ei_r;
6146 
6147 			leaf_l = sctx->left_path->nodes[0];
6148 			leaf_r = sctx->right_path->nodes[0];
6149 			ei_l = btrfs_item_ptr(leaf_l,
6150 					      sctx->left_path->slots[0],
6151 					      struct btrfs_file_extent_item);
6152 			ei_r = btrfs_item_ptr(leaf_r,
6153 					      sctx->right_path->slots[0],
6154 					      struct btrfs_file_extent_item);
6155 
6156 			/*
6157 			 * We may have found an extent item that has changed
6158 			 * only its disk_bytenr field and the corresponding
6159 			 * inode item was not updated. This case happens due to
6160 			 * very specific timings during relocation when a leaf
6161 			 * that contains file extent items is COWed while
6162 			 * relocation is ongoing and its in the stage where it
6163 			 * updates data pointers. So when this happens we can
6164 			 * safely ignore it since we know it's the same extent,
6165 			 * but just at different logical and physical locations
6166 			 * (when an extent is fully replaced with a new one, we
6167 			 * know the generation number must have changed too,
6168 			 * since snapshot creation implies committing the current
6169 			 * transaction, and the inode item must have been updated
6170 			 * as well).
6171 			 * This replacement of the disk_bytenr happens at
6172 			 * relocation.c:replace_file_extents() through
6173 			 * relocation.c:btrfs_reloc_cow_block().
6174 			 */
6175 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6176 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6177 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6178 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6179 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6180 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6181 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6182 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6183 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6184 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6185 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6186 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6187 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6188 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6189 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6190 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6191 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6192 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6193 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6194 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6195 				return 0;
6196 		}
6197 
6198 		inconsistent_snapshot_error(sctx, result, "extent");
6199 		return -EIO;
6200 	}
6201 
6202 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6203 		if (result != BTRFS_COMPARE_TREE_DELETED)
6204 			ret = process_extent(sctx, sctx->left_path,
6205 					sctx->cmp_key);
6206 	}
6207 
6208 	return ret;
6209 }
6210 
6211 static int dir_changed(struct send_ctx *sctx, u64 dir)
6212 {
6213 	u64 orig_gen, new_gen;
6214 	int ret;
6215 
6216 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6217 			     NULL, NULL);
6218 	if (ret)
6219 		return ret;
6220 
6221 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6222 			     NULL, NULL, NULL);
6223 	if (ret)
6224 		return ret;
6225 
6226 	return (orig_gen != new_gen) ? 1 : 0;
6227 }
6228 
6229 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6230 			struct btrfs_key *key)
6231 {
6232 	struct btrfs_inode_extref *extref;
6233 	struct extent_buffer *leaf;
6234 	u64 dirid = 0, last_dirid = 0;
6235 	unsigned long ptr;
6236 	u32 item_size;
6237 	u32 cur_offset = 0;
6238 	int ref_name_len;
6239 	int ret = 0;
6240 
6241 	/* Easy case, just check this one dirid */
6242 	if (key->type == BTRFS_INODE_REF_KEY) {
6243 		dirid = key->offset;
6244 
6245 		ret = dir_changed(sctx, dirid);
6246 		goto out;
6247 	}
6248 
6249 	leaf = path->nodes[0];
6250 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6251 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6252 	while (cur_offset < item_size) {
6253 		extref = (struct btrfs_inode_extref *)(ptr +
6254 						       cur_offset);
6255 		dirid = btrfs_inode_extref_parent(leaf, extref);
6256 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6257 		cur_offset += ref_name_len + sizeof(*extref);
6258 		if (dirid == last_dirid)
6259 			continue;
6260 		ret = dir_changed(sctx, dirid);
6261 		if (ret)
6262 			break;
6263 		last_dirid = dirid;
6264 	}
6265 out:
6266 	return ret;
6267 }
6268 
6269 /*
6270  * Updates compare related fields in sctx and simply forwards to the actual
6271  * changed_xxx functions.
6272  */
6273 static int changed_cb(struct btrfs_path *left_path,
6274 		      struct btrfs_path *right_path,
6275 		      struct btrfs_key *key,
6276 		      enum btrfs_compare_tree_result result,
6277 		      void *ctx)
6278 {
6279 	int ret = 0;
6280 	struct send_ctx *sctx = ctx;
6281 
6282 	if (result == BTRFS_COMPARE_TREE_SAME) {
6283 		if (key->type == BTRFS_INODE_REF_KEY ||
6284 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6285 			ret = compare_refs(sctx, left_path, key);
6286 			if (!ret)
6287 				return 0;
6288 			if (ret < 0)
6289 				return ret;
6290 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6291 			return maybe_send_hole(sctx, left_path, key);
6292 		} else {
6293 			return 0;
6294 		}
6295 		result = BTRFS_COMPARE_TREE_CHANGED;
6296 		ret = 0;
6297 	}
6298 
6299 	sctx->left_path = left_path;
6300 	sctx->right_path = right_path;
6301 	sctx->cmp_key = key;
6302 
6303 	ret = finish_inode_if_needed(sctx, 0);
6304 	if (ret < 0)
6305 		goto out;
6306 
6307 	/* Ignore non-FS objects */
6308 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6309 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6310 		goto out;
6311 
6312 	if (key->type == BTRFS_INODE_ITEM_KEY)
6313 		ret = changed_inode(sctx, result);
6314 	else if (key->type == BTRFS_INODE_REF_KEY ||
6315 		 key->type == BTRFS_INODE_EXTREF_KEY)
6316 		ret = changed_ref(sctx, result);
6317 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6318 		ret = changed_xattr(sctx, result);
6319 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6320 		ret = changed_extent(sctx, result);
6321 
6322 out:
6323 	return ret;
6324 }
6325 
6326 static int full_send_tree(struct send_ctx *sctx)
6327 {
6328 	int ret;
6329 	struct btrfs_root *send_root = sctx->send_root;
6330 	struct btrfs_key key;
6331 	struct btrfs_key found_key;
6332 	struct btrfs_path *path;
6333 	struct extent_buffer *eb;
6334 	int slot;
6335 
6336 	path = alloc_path_for_send();
6337 	if (!path)
6338 		return -ENOMEM;
6339 
6340 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6341 	key.type = BTRFS_INODE_ITEM_KEY;
6342 	key.offset = 0;
6343 
6344 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6345 	if (ret < 0)
6346 		goto out;
6347 	if (ret)
6348 		goto out_finish;
6349 
6350 	while (1) {
6351 		eb = path->nodes[0];
6352 		slot = path->slots[0];
6353 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6354 
6355 		ret = changed_cb(path, NULL, &found_key,
6356 				 BTRFS_COMPARE_TREE_NEW, sctx);
6357 		if (ret < 0)
6358 			goto out;
6359 
6360 		key.objectid = found_key.objectid;
6361 		key.type = found_key.type;
6362 		key.offset = found_key.offset + 1;
6363 
6364 		ret = btrfs_next_item(send_root, path);
6365 		if (ret < 0)
6366 			goto out;
6367 		if (ret) {
6368 			ret  = 0;
6369 			break;
6370 		}
6371 	}
6372 
6373 out_finish:
6374 	ret = finish_inode_if_needed(sctx, 1);
6375 
6376 out:
6377 	btrfs_free_path(path);
6378 	return ret;
6379 }
6380 
6381 static int send_subvol(struct send_ctx *sctx)
6382 {
6383 	int ret;
6384 
6385 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6386 		ret = send_header(sctx);
6387 		if (ret < 0)
6388 			goto out;
6389 	}
6390 
6391 	ret = send_subvol_begin(sctx);
6392 	if (ret < 0)
6393 		goto out;
6394 
6395 	if (sctx->parent_root) {
6396 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6397 				changed_cb, sctx);
6398 		if (ret < 0)
6399 			goto out;
6400 		ret = finish_inode_if_needed(sctx, 1);
6401 		if (ret < 0)
6402 			goto out;
6403 	} else {
6404 		ret = full_send_tree(sctx);
6405 		if (ret < 0)
6406 			goto out;
6407 	}
6408 
6409 out:
6410 	free_recorded_refs(sctx);
6411 	return ret;
6412 }
6413 
6414 /*
6415  * If orphan cleanup did remove any orphans from a root, it means the tree
6416  * was modified and therefore the commit root is not the same as the current
6417  * root anymore. This is a problem, because send uses the commit root and
6418  * therefore can see inode items that don't exist in the current root anymore,
6419  * and for example make calls to btrfs_iget, which will do tree lookups based
6420  * on the current root and not on the commit root. Those lookups will fail,
6421  * returning a -ESTALE error, and making send fail with that error. So make
6422  * sure a send does not see any orphans we have just removed, and that it will
6423  * see the same inodes regardless of whether a transaction commit happened
6424  * before it started (meaning that the commit root will be the same as the
6425  * current root) or not.
6426  */
6427 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6428 {
6429 	int i;
6430 	struct btrfs_trans_handle *trans = NULL;
6431 
6432 again:
6433 	if (sctx->parent_root &&
6434 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6435 		goto commit_trans;
6436 
6437 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6438 		if (sctx->clone_roots[i].root->node !=
6439 		    sctx->clone_roots[i].root->commit_root)
6440 			goto commit_trans;
6441 
6442 	if (trans)
6443 		return btrfs_end_transaction(trans);
6444 
6445 	return 0;
6446 
6447 commit_trans:
6448 	/* Use any root, all fs roots will get their commit roots updated. */
6449 	if (!trans) {
6450 		trans = btrfs_join_transaction(sctx->send_root);
6451 		if (IS_ERR(trans))
6452 			return PTR_ERR(trans);
6453 		goto again;
6454 	}
6455 
6456 	return btrfs_commit_transaction(trans);
6457 }
6458 
6459 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6460 {
6461 	spin_lock(&root->root_item_lock);
6462 	root->send_in_progress--;
6463 	/*
6464 	 * Not much left to do, we don't know why it's unbalanced and
6465 	 * can't blindly reset it to 0.
6466 	 */
6467 	if (root->send_in_progress < 0)
6468 		btrfs_err(root->fs_info,
6469 			  "send_in_progress unbalanced %d root %llu",
6470 			  root->send_in_progress, root->root_key.objectid);
6471 	spin_unlock(&root->root_item_lock);
6472 }
6473 
6474 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6475 {
6476 	int ret = 0;
6477 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6478 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6479 	struct btrfs_root *clone_root;
6480 	struct btrfs_key key;
6481 	struct send_ctx *sctx = NULL;
6482 	u32 i;
6483 	u64 *clone_sources_tmp = NULL;
6484 	int clone_sources_to_rollback = 0;
6485 	unsigned alloc_size;
6486 	int sort_clone_roots = 0;
6487 	int index;
6488 
6489 	if (!capable(CAP_SYS_ADMIN))
6490 		return -EPERM;
6491 
6492 	/*
6493 	 * The subvolume must remain read-only during send, protect against
6494 	 * making it RW. This also protects against deletion.
6495 	 */
6496 	spin_lock(&send_root->root_item_lock);
6497 	send_root->send_in_progress++;
6498 	spin_unlock(&send_root->root_item_lock);
6499 
6500 	/*
6501 	 * This is done when we lookup the root, it should already be complete
6502 	 * by the time we get here.
6503 	 */
6504 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6505 
6506 	/*
6507 	 * Userspace tools do the checks and warn the user if it's
6508 	 * not RO.
6509 	 */
6510 	if (!btrfs_root_readonly(send_root)) {
6511 		ret = -EPERM;
6512 		goto out;
6513 	}
6514 
6515 	/*
6516 	 * Check that we don't overflow at later allocations, we request
6517 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6518 	 * access_ok.
6519 	 */
6520 	if (arg->clone_sources_count >
6521 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6522 		ret = -EINVAL;
6523 		goto out;
6524 	}
6525 
6526 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6527 			sizeof(*arg->clone_sources) *
6528 			arg->clone_sources_count)) {
6529 		ret = -EFAULT;
6530 		goto out;
6531 	}
6532 
6533 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6534 		ret = -EINVAL;
6535 		goto out;
6536 	}
6537 
6538 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6539 	if (!sctx) {
6540 		ret = -ENOMEM;
6541 		goto out;
6542 	}
6543 
6544 	INIT_LIST_HEAD(&sctx->new_refs);
6545 	INIT_LIST_HEAD(&sctx->deleted_refs);
6546 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6547 	INIT_LIST_HEAD(&sctx->name_cache_list);
6548 
6549 	sctx->flags = arg->flags;
6550 
6551 	sctx->send_filp = fget(arg->send_fd);
6552 	if (!sctx->send_filp) {
6553 		ret = -EBADF;
6554 		goto out;
6555 	}
6556 
6557 	sctx->send_root = send_root;
6558 	/*
6559 	 * Unlikely but possible, if the subvolume is marked for deletion but
6560 	 * is slow to remove the directory entry, send can still be started
6561 	 */
6562 	if (btrfs_root_dead(sctx->send_root)) {
6563 		ret = -EPERM;
6564 		goto out;
6565 	}
6566 
6567 	sctx->clone_roots_cnt = arg->clone_sources_count;
6568 
6569 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6570 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6571 	if (!sctx->send_buf) {
6572 		ret = -ENOMEM;
6573 		goto out;
6574 	}
6575 
6576 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6577 	if (!sctx->read_buf) {
6578 		ret = -ENOMEM;
6579 		goto out;
6580 	}
6581 
6582 	sctx->pending_dir_moves = RB_ROOT;
6583 	sctx->waiting_dir_moves = RB_ROOT;
6584 	sctx->orphan_dirs = RB_ROOT;
6585 
6586 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6587 
6588 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6589 	if (!sctx->clone_roots) {
6590 		ret = -ENOMEM;
6591 		goto out;
6592 	}
6593 
6594 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6595 
6596 	if (arg->clone_sources_count) {
6597 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6598 		if (!clone_sources_tmp) {
6599 			ret = -ENOMEM;
6600 			goto out;
6601 		}
6602 
6603 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6604 				alloc_size);
6605 		if (ret) {
6606 			ret = -EFAULT;
6607 			goto out;
6608 		}
6609 
6610 		for (i = 0; i < arg->clone_sources_count; i++) {
6611 			key.objectid = clone_sources_tmp[i];
6612 			key.type = BTRFS_ROOT_ITEM_KEY;
6613 			key.offset = (u64)-1;
6614 
6615 			index = srcu_read_lock(&fs_info->subvol_srcu);
6616 
6617 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6618 			if (IS_ERR(clone_root)) {
6619 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6620 				ret = PTR_ERR(clone_root);
6621 				goto out;
6622 			}
6623 			spin_lock(&clone_root->root_item_lock);
6624 			if (!btrfs_root_readonly(clone_root) ||
6625 			    btrfs_root_dead(clone_root)) {
6626 				spin_unlock(&clone_root->root_item_lock);
6627 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6628 				ret = -EPERM;
6629 				goto out;
6630 			}
6631 			clone_root->send_in_progress++;
6632 			spin_unlock(&clone_root->root_item_lock);
6633 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6634 
6635 			sctx->clone_roots[i].root = clone_root;
6636 			clone_sources_to_rollback = i + 1;
6637 		}
6638 		kvfree(clone_sources_tmp);
6639 		clone_sources_tmp = NULL;
6640 	}
6641 
6642 	if (arg->parent_root) {
6643 		key.objectid = arg->parent_root;
6644 		key.type = BTRFS_ROOT_ITEM_KEY;
6645 		key.offset = (u64)-1;
6646 
6647 		index = srcu_read_lock(&fs_info->subvol_srcu);
6648 
6649 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6650 		if (IS_ERR(sctx->parent_root)) {
6651 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6652 			ret = PTR_ERR(sctx->parent_root);
6653 			goto out;
6654 		}
6655 
6656 		spin_lock(&sctx->parent_root->root_item_lock);
6657 		sctx->parent_root->send_in_progress++;
6658 		if (!btrfs_root_readonly(sctx->parent_root) ||
6659 				btrfs_root_dead(sctx->parent_root)) {
6660 			spin_unlock(&sctx->parent_root->root_item_lock);
6661 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6662 			ret = -EPERM;
6663 			goto out;
6664 		}
6665 		spin_unlock(&sctx->parent_root->root_item_lock);
6666 
6667 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6668 	}
6669 
6670 	/*
6671 	 * Clones from send_root are allowed, but only if the clone source
6672 	 * is behind the current send position. This is checked while searching
6673 	 * for possible clone sources.
6674 	 */
6675 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6676 
6677 	/* We do a bsearch later */
6678 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6679 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6680 			NULL);
6681 	sort_clone_roots = 1;
6682 
6683 	ret = ensure_commit_roots_uptodate(sctx);
6684 	if (ret)
6685 		goto out;
6686 
6687 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6688 	ret = send_subvol(sctx);
6689 	current->journal_info = NULL;
6690 	if (ret < 0)
6691 		goto out;
6692 
6693 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6694 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6695 		if (ret < 0)
6696 			goto out;
6697 		ret = send_cmd(sctx);
6698 		if (ret < 0)
6699 			goto out;
6700 	}
6701 
6702 out:
6703 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6704 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6705 		struct rb_node *n;
6706 		struct pending_dir_move *pm;
6707 
6708 		n = rb_first(&sctx->pending_dir_moves);
6709 		pm = rb_entry(n, struct pending_dir_move, node);
6710 		while (!list_empty(&pm->list)) {
6711 			struct pending_dir_move *pm2;
6712 
6713 			pm2 = list_first_entry(&pm->list,
6714 					       struct pending_dir_move, list);
6715 			free_pending_move(sctx, pm2);
6716 		}
6717 		free_pending_move(sctx, pm);
6718 	}
6719 
6720 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6721 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6722 		struct rb_node *n;
6723 		struct waiting_dir_move *dm;
6724 
6725 		n = rb_first(&sctx->waiting_dir_moves);
6726 		dm = rb_entry(n, struct waiting_dir_move, node);
6727 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6728 		kfree(dm);
6729 	}
6730 
6731 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6732 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6733 		struct rb_node *n;
6734 		struct orphan_dir_info *odi;
6735 
6736 		n = rb_first(&sctx->orphan_dirs);
6737 		odi = rb_entry(n, struct orphan_dir_info, node);
6738 		free_orphan_dir_info(sctx, odi);
6739 	}
6740 
6741 	if (sort_clone_roots) {
6742 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6743 			btrfs_root_dec_send_in_progress(
6744 					sctx->clone_roots[i].root);
6745 	} else {
6746 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6747 			btrfs_root_dec_send_in_progress(
6748 					sctx->clone_roots[i].root);
6749 
6750 		btrfs_root_dec_send_in_progress(send_root);
6751 	}
6752 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6753 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6754 
6755 	kvfree(clone_sources_tmp);
6756 
6757 	if (sctx) {
6758 		if (sctx->send_filp)
6759 			fput(sctx->send_filp);
6760 
6761 		kvfree(sctx->clone_roots);
6762 		kvfree(sctx->send_buf);
6763 		kvfree(sctx->read_buf);
6764 
6765 		name_cache_free(sctx);
6766 
6767 		kfree(sctx);
6768 	}
6769 
6770 	return ret;
6771 }
6772