xref: /linux/fs/btrfs/send.c (revision a9cb09b7be84a7adc9e6f4aaf8d770933d65f953)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 #include "xattr.h"
27 
28 /*
29  * Maximum number of references an extent can have in order for us to attempt to
30  * issue clone operations instead of write operations. This currently exists to
31  * avoid hitting limitations of the backreference walking code (taking a lot of
32  * time and using too much memory for extents with large number of references).
33  */
34 #define SEND_MAX_EXTENT_REFS	64
35 
36 /*
37  * A fs_path is a helper to dynamically build path names with unknown size.
38  * It reallocates the internal buffer on demand.
39  * It allows fast adding of path elements on the right side (normal path) and
40  * fast adding to the left side (reversed path). A reversed path can also be
41  * unreversed if needed.
42  */
43 struct fs_path {
44 	union {
45 		struct {
46 			char *start;
47 			char *end;
48 
49 			char *buf;
50 			unsigned short buf_len:15;
51 			unsigned short reversed:1;
52 			char inline_buf[];
53 		};
54 		/*
55 		 * Average path length does not exceed 200 bytes, we'll have
56 		 * better packing in the slab and higher chance to satisfy
57 		 * a allocation later during send.
58 		 */
59 		char pad[256];
60 	};
61 };
62 #define FS_PATH_INLINE_SIZE \
63 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64 
65 
66 /* reused for each extent */
67 struct clone_root {
68 	struct btrfs_root *root;
69 	u64 ino;
70 	u64 offset;
71 
72 	u64 found_refs;
73 };
74 
75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77 
78 struct send_ctx {
79 	struct file *send_filp;
80 	loff_t send_off;
81 	char *send_buf;
82 	u32 send_size;
83 	u32 send_max_size;
84 	u64 total_send_size;
85 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
86 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
87 
88 	struct btrfs_root *send_root;
89 	struct btrfs_root *parent_root;
90 	struct clone_root *clone_roots;
91 	int clone_roots_cnt;
92 
93 	/* current state of the compare_tree call */
94 	struct btrfs_path *left_path;
95 	struct btrfs_path *right_path;
96 	struct btrfs_key *cmp_key;
97 
98 	/*
99 	 * infos of the currently processed inode. In case of deleted inodes,
100 	 * these are the values from the deleted inode.
101 	 */
102 	u64 cur_ino;
103 	u64 cur_inode_gen;
104 	int cur_inode_new;
105 	int cur_inode_new_gen;
106 	int cur_inode_deleted;
107 	u64 cur_inode_size;
108 	u64 cur_inode_mode;
109 	u64 cur_inode_rdev;
110 	u64 cur_inode_last_extent;
111 	u64 cur_inode_next_write_offset;
112 	bool ignore_cur_inode;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	struct file_ra_state ra;
124 
125 	/*
126 	 * We process inodes by their increasing order, so if before an
127 	 * incremental send we reverse the parent/child relationship of
128 	 * directories such that a directory with a lower inode number was
129 	 * the parent of a directory with a higher inode number, and the one
130 	 * becoming the new parent got renamed too, we can't rename/move the
131 	 * directory with lower inode number when we finish processing it - we
132 	 * must process the directory with higher inode number first, then
133 	 * rename/move it and then rename/move the directory with lower inode
134 	 * number. Example follows.
135 	 *
136 	 * Tree state when the first send was performed:
137 	 *
138 	 * .
139 	 * |-- a                   (ino 257)
140 	 *     |-- b               (ino 258)
141 	 *         |
142 	 *         |
143 	 *         |-- c           (ino 259)
144 	 *         |   |-- d       (ino 260)
145 	 *         |
146 	 *         |-- c2          (ino 261)
147 	 *
148 	 * Tree state when the second (incremental) send is performed:
149 	 *
150 	 * .
151 	 * |-- a                   (ino 257)
152 	 *     |-- b               (ino 258)
153 	 *         |-- c2          (ino 261)
154 	 *             |-- d2      (ino 260)
155 	 *                 |-- cc  (ino 259)
156 	 *
157 	 * The sequence of steps that lead to the second state was:
158 	 *
159 	 * mv /a/b/c/d /a/b/c2/d2
160 	 * mv /a/b/c /a/b/c2/d2/cc
161 	 *
162 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 	 * before we move "d", which has higher inode number.
164 	 *
165 	 * So we just memorize which move/rename operations must be performed
166 	 * later when their respective parent is processed and moved/renamed.
167 	 */
168 
169 	/* Indexed by parent directory inode number. */
170 	struct rb_root pending_dir_moves;
171 
172 	/*
173 	 * Reverse index, indexed by the inode number of a directory that
174 	 * is waiting for the move/rename of its immediate parent before its
175 	 * own move/rename can be performed.
176 	 */
177 	struct rb_root waiting_dir_moves;
178 
179 	/*
180 	 * A directory that is going to be rm'ed might have a child directory
181 	 * which is in the pending directory moves index above. In this case,
182 	 * the directory can only be removed after the move/rename of its child
183 	 * is performed. Example:
184 	 *
185 	 * Parent snapshot:
186 	 *
187 	 * .                        (ino 256)
188 	 * |-- a/                   (ino 257)
189 	 *     |-- b/               (ino 258)
190 	 *         |-- c/           (ino 259)
191 	 *         |   |-- x/       (ino 260)
192 	 *         |
193 	 *         |-- y/           (ino 261)
194 	 *
195 	 * Send snapshot:
196 	 *
197 	 * .                        (ino 256)
198 	 * |-- a/                   (ino 257)
199 	 *     |-- b/               (ino 258)
200 	 *         |-- YY/          (ino 261)
201 	 *              |-- x/      (ino 260)
202 	 *
203 	 * Sequence of steps that lead to the send snapshot:
204 	 * rm -f /a/b/c/foo.txt
205 	 * mv /a/b/y /a/b/YY
206 	 * mv /a/b/c/x /a/b/YY
207 	 * rmdir /a/b/c
208 	 *
209 	 * When the child is processed, its move/rename is delayed until its
210 	 * parent is processed (as explained above), but all other operations
211 	 * like update utimes, chown, chgrp, etc, are performed and the paths
212 	 * that it uses for those operations must use the orphanized name of
213 	 * its parent (the directory we're going to rm later), so we need to
214 	 * memorize that name.
215 	 *
216 	 * Indexed by the inode number of the directory to be deleted.
217 	 */
218 	struct rb_root orphan_dirs;
219 };
220 
221 struct pending_dir_move {
222 	struct rb_node node;
223 	struct list_head list;
224 	u64 parent_ino;
225 	u64 ino;
226 	u64 gen;
227 	struct list_head update_refs;
228 };
229 
230 struct waiting_dir_move {
231 	struct rb_node node;
232 	u64 ino;
233 	/*
234 	 * There might be some directory that could not be removed because it
235 	 * was waiting for this directory inode to be moved first. Therefore
236 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237 	 */
238 	u64 rmdir_ino;
239 	u64 rmdir_gen;
240 	bool orphanized;
241 };
242 
243 struct orphan_dir_info {
244 	struct rb_node node;
245 	u64 ino;
246 	u64 gen;
247 	u64 last_dir_index_offset;
248 };
249 
250 struct name_cache_entry {
251 	struct list_head list;
252 	/*
253 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 	 * more then one inum would fall into the same entry, we use radix_list
256 	 * to store the additional entries. radix_list is also used to store
257 	 * entries where two entries have the same inum but different
258 	 * generations.
259 	 */
260 	struct list_head radix_list;
261 	u64 ino;
262 	u64 gen;
263 	u64 parent_ino;
264 	u64 parent_gen;
265 	int ret;
266 	int need_later_update;
267 	int name_len;
268 	char name[];
269 };
270 
271 #define ADVANCE							1
272 #define ADVANCE_ONLY_NEXT					-1
273 
274 enum btrfs_compare_tree_result {
275 	BTRFS_COMPARE_TREE_NEW,
276 	BTRFS_COMPARE_TREE_DELETED,
277 	BTRFS_COMPARE_TREE_CHANGED,
278 	BTRFS_COMPARE_TREE_SAME,
279 };
280 
281 __cold
282 static void inconsistent_snapshot_error(struct send_ctx *sctx,
283 					enum btrfs_compare_tree_result result,
284 					const char *what)
285 {
286 	const char *result_string;
287 
288 	switch (result) {
289 	case BTRFS_COMPARE_TREE_NEW:
290 		result_string = "new";
291 		break;
292 	case BTRFS_COMPARE_TREE_DELETED:
293 		result_string = "deleted";
294 		break;
295 	case BTRFS_COMPARE_TREE_CHANGED:
296 		result_string = "updated";
297 		break;
298 	case BTRFS_COMPARE_TREE_SAME:
299 		ASSERT(0);
300 		result_string = "unchanged";
301 		break;
302 	default:
303 		ASSERT(0);
304 		result_string = "unexpected";
305 	}
306 
307 	btrfs_err(sctx->send_root->fs_info,
308 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
309 		  result_string, what, sctx->cmp_key->objectid,
310 		  sctx->send_root->root_key.objectid,
311 		  (sctx->parent_root ?
312 		   sctx->parent_root->root_key.objectid : 0));
313 }
314 
315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
316 
317 static struct waiting_dir_move *
318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
319 
320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
321 
322 static int need_send_hole(struct send_ctx *sctx)
323 {
324 	return (sctx->parent_root && !sctx->cur_inode_new &&
325 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
326 		S_ISREG(sctx->cur_inode_mode));
327 }
328 
329 static void fs_path_reset(struct fs_path *p)
330 {
331 	if (p->reversed) {
332 		p->start = p->buf + p->buf_len - 1;
333 		p->end = p->start;
334 		*p->start = 0;
335 	} else {
336 		p->start = p->buf;
337 		p->end = p->start;
338 		*p->start = 0;
339 	}
340 }
341 
342 static struct fs_path *fs_path_alloc(void)
343 {
344 	struct fs_path *p;
345 
346 	p = kmalloc(sizeof(*p), GFP_KERNEL);
347 	if (!p)
348 		return NULL;
349 	p->reversed = 0;
350 	p->buf = p->inline_buf;
351 	p->buf_len = FS_PATH_INLINE_SIZE;
352 	fs_path_reset(p);
353 	return p;
354 }
355 
356 static struct fs_path *fs_path_alloc_reversed(void)
357 {
358 	struct fs_path *p;
359 
360 	p = fs_path_alloc();
361 	if (!p)
362 		return NULL;
363 	p->reversed = 1;
364 	fs_path_reset(p);
365 	return p;
366 }
367 
368 static void fs_path_free(struct fs_path *p)
369 {
370 	if (!p)
371 		return;
372 	if (p->buf != p->inline_buf)
373 		kfree(p->buf);
374 	kfree(p);
375 }
376 
377 static int fs_path_len(struct fs_path *p)
378 {
379 	return p->end - p->start;
380 }
381 
382 static int fs_path_ensure_buf(struct fs_path *p, int len)
383 {
384 	char *tmp_buf;
385 	int path_len;
386 	int old_buf_len;
387 
388 	len++;
389 
390 	if (p->buf_len >= len)
391 		return 0;
392 
393 	if (len > PATH_MAX) {
394 		WARN_ON(1);
395 		return -ENOMEM;
396 	}
397 
398 	path_len = p->end - p->start;
399 	old_buf_len = p->buf_len;
400 
401 	/*
402 	 * First time the inline_buf does not suffice
403 	 */
404 	if (p->buf == p->inline_buf) {
405 		tmp_buf = kmalloc(len, GFP_KERNEL);
406 		if (tmp_buf)
407 			memcpy(tmp_buf, p->buf, old_buf_len);
408 	} else {
409 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
410 	}
411 	if (!tmp_buf)
412 		return -ENOMEM;
413 	p->buf = tmp_buf;
414 	/*
415 	 * The real size of the buffer is bigger, this will let the fast path
416 	 * happen most of the time
417 	 */
418 	p->buf_len = ksize(p->buf);
419 
420 	if (p->reversed) {
421 		tmp_buf = p->buf + old_buf_len - path_len - 1;
422 		p->end = p->buf + p->buf_len - 1;
423 		p->start = p->end - path_len;
424 		memmove(p->start, tmp_buf, path_len + 1);
425 	} else {
426 		p->start = p->buf;
427 		p->end = p->start + path_len;
428 	}
429 	return 0;
430 }
431 
432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
433 				   char **prepared)
434 {
435 	int ret;
436 	int new_len;
437 
438 	new_len = p->end - p->start + name_len;
439 	if (p->start != p->end)
440 		new_len++;
441 	ret = fs_path_ensure_buf(p, new_len);
442 	if (ret < 0)
443 		goto out;
444 
445 	if (p->reversed) {
446 		if (p->start != p->end)
447 			*--p->start = '/';
448 		p->start -= name_len;
449 		*prepared = p->start;
450 	} else {
451 		if (p->start != p->end)
452 			*p->end++ = '/';
453 		*prepared = p->end;
454 		p->end += name_len;
455 		*p->end = 0;
456 	}
457 
458 out:
459 	return ret;
460 }
461 
462 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
463 {
464 	int ret;
465 	char *prepared;
466 
467 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
468 	if (ret < 0)
469 		goto out;
470 	memcpy(prepared, name, name_len);
471 
472 out:
473 	return ret;
474 }
475 
476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
477 {
478 	int ret;
479 	char *prepared;
480 
481 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
482 	if (ret < 0)
483 		goto out;
484 	memcpy(prepared, p2->start, p2->end - p2->start);
485 
486 out:
487 	return ret;
488 }
489 
490 static int fs_path_add_from_extent_buffer(struct fs_path *p,
491 					  struct extent_buffer *eb,
492 					  unsigned long off, int len)
493 {
494 	int ret;
495 	char *prepared;
496 
497 	ret = fs_path_prepare_for_add(p, len, &prepared);
498 	if (ret < 0)
499 		goto out;
500 
501 	read_extent_buffer(eb, prepared, off, len);
502 
503 out:
504 	return ret;
505 }
506 
507 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
508 {
509 	int ret;
510 
511 	p->reversed = from->reversed;
512 	fs_path_reset(p);
513 
514 	ret = fs_path_add_path(p, from);
515 
516 	return ret;
517 }
518 
519 
520 static void fs_path_unreverse(struct fs_path *p)
521 {
522 	char *tmp;
523 	int len;
524 
525 	if (!p->reversed)
526 		return;
527 
528 	tmp = p->start;
529 	len = p->end - p->start;
530 	p->start = p->buf;
531 	p->end = p->start + len;
532 	memmove(p->start, tmp, len + 1);
533 	p->reversed = 0;
534 }
535 
536 static struct btrfs_path *alloc_path_for_send(void)
537 {
538 	struct btrfs_path *path;
539 
540 	path = btrfs_alloc_path();
541 	if (!path)
542 		return NULL;
543 	path->search_commit_root = 1;
544 	path->skip_locking = 1;
545 	path->need_commit_sem = 1;
546 	return path;
547 }
548 
549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
550 {
551 	int ret;
552 	u32 pos = 0;
553 
554 	while (pos < len) {
555 		ret = kernel_write(filp, buf + pos, len - pos, off);
556 		/* TODO handle that correctly */
557 		/*if (ret == -ERESTARTSYS) {
558 			continue;
559 		}*/
560 		if (ret < 0)
561 			return ret;
562 		if (ret == 0) {
563 			return -EIO;
564 		}
565 		pos += ret;
566 	}
567 
568 	return 0;
569 }
570 
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 	struct btrfs_tlv_header *hdr;
574 	int total_len = sizeof(*hdr) + len;
575 	int left = sctx->send_max_size - sctx->send_size;
576 
577 	if (unlikely(left < total_len))
578 		return -EOVERFLOW;
579 
580 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 	put_unaligned_le16(attr, &hdr->tlv_type);
582 	put_unaligned_le16(len, &hdr->tlv_len);
583 	memcpy(hdr + 1, data, len);
584 	sctx->send_size += total_len;
585 
586 	return 0;
587 }
588 
589 #define TLV_PUT_DEFINE_INT(bits) \
590 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591 			u##bits attr, u##bits value)			\
592 	{								\
593 		__le##bits __tmp = cpu_to_le##bits(value);		\
594 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595 	}
596 
597 TLV_PUT_DEFINE_INT(64)
598 
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 			  const char *str, int len)
601 {
602 	if (len == -1)
603 		len = strlen(str);
604 	return tlv_put(sctx, attr, str, len);
605 }
606 
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 			const u8 *uuid)
609 {
610 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612 
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 				  struct extent_buffer *eb,
615 				  struct btrfs_timespec *ts)
616 {
617 	struct btrfs_timespec bts;
618 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 	return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621 
622 
623 #define TLV_PUT(sctx, attrtype, data, attrlen) \
624 	do { \
625 		ret = tlv_put(sctx, attrtype, data, attrlen); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 	do { \
632 		ret = tlv_put_u##bits(sctx, attrtype, value); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 	do { \
643 		ret = tlv_put_string(sctx, attrtype, str, len); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, p->start, \
650 			p->end - p->start); \
651 		if (ret < 0) \
652 			goto tlv_put_failure; \
653 	} while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 	do { \
656 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 	do { \
662 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 
667 static int send_header(struct send_ctx *sctx)
668 {
669 	struct btrfs_stream_header hdr;
670 
671 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673 
674 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 					&sctx->send_off);
676 }
677 
678 /*
679  * For each command/item we want to send to userspace, we call this function.
680  */
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 	struct btrfs_cmd_header *hdr;
684 
685 	if (WARN_ON(!sctx->send_buf))
686 		return -EINVAL;
687 
688 	BUG_ON(sctx->send_size);
689 
690 	sctx->send_size += sizeof(*hdr);
691 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 	put_unaligned_le16(cmd, &hdr->cmd);
693 
694 	return 0;
695 }
696 
697 static int send_cmd(struct send_ctx *sctx)
698 {
699 	int ret;
700 	struct btrfs_cmd_header *hdr;
701 	u32 crc;
702 
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
705 	put_unaligned_le32(0, &hdr->crc);
706 
707 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 	put_unaligned_le32(crc, &hdr->crc);
709 
710 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 					&sctx->send_off);
712 
713 	sctx->total_send_size += sctx->send_size;
714 	sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size;
715 	sctx->send_size = 0;
716 
717 	return ret;
718 }
719 
720 /*
721  * Sends a move instruction to user space
722  */
723 static int send_rename(struct send_ctx *sctx,
724 		     struct fs_path *from, struct fs_path *to)
725 {
726 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 	int ret;
728 
729 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 
731 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 	if (ret < 0)
733 		goto out;
734 
735 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737 
738 	ret = send_cmd(sctx);
739 
740 tlv_put_failure:
741 out:
742 	return ret;
743 }
744 
745 /*
746  * Sends a link instruction to user space
747  */
748 static int send_link(struct send_ctx *sctx,
749 		     struct fs_path *path, struct fs_path *lnk)
750 {
751 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 	int ret;
753 
754 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 
756 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 	if (ret < 0)
758 		goto out;
759 
760 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762 
763 	ret = send_cmd(sctx);
764 
765 tlv_put_failure:
766 out:
767 	return ret;
768 }
769 
770 /*
771  * Sends an unlink instruction to user space
772  */
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 	int ret;
777 
778 	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 
780 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 	if (ret < 0)
782 		goto out;
783 
784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785 
786 	ret = send_cmd(sctx);
787 
788 tlv_put_failure:
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Sends a rmdir instruction to user space
795  */
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 	int ret;
800 
801 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    iterate_dir_item_t iterate, void *ctx)
1006 {
1007 	int ret = 0;
1008 	struct extent_buffer *eb;
1009 	struct btrfs_item *item;
1010 	struct btrfs_dir_item *di;
1011 	struct btrfs_key di_key;
1012 	char *buf = NULL;
1013 	int buf_len;
1014 	u32 name_len;
1015 	u32 data_len;
1016 	u32 cur;
1017 	u32 len;
1018 	u32 total;
1019 	int slot;
1020 	int num;
1021 	u8 type;
1022 
1023 	/*
1024 	 * Start with a small buffer (1 page). If later we end up needing more
1025 	 * space, which can happen for xattrs on a fs with a leaf size greater
1026 	 * then the page size, attempt to increase the buffer. Typically xattr
1027 	 * values are small.
1028 	 */
1029 	buf_len = PATH_MAX;
1030 	buf = kmalloc(buf_len, GFP_KERNEL);
1031 	if (!buf) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	eb = path->nodes[0];
1037 	slot = path->slots[0];
1038 	item = btrfs_item_nr(slot);
1039 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1040 	cur = 0;
1041 	len = 0;
1042 	total = btrfs_item_size(eb, item);
1043 
1044 	num = 0;
1045 	while (cur < total) {
1046 		name_len = btrfs_dir_name_len(eb, di);
1047 		data_len = btrfs_dir_data_len(eb, di);
1048 		type = btrfs_dir_type(eb, di);
1049 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1050 
1051 		if (type == BTRFS_FT_XATTR) {
1052 			if (name_len > XATTR_NAME_MAX) {
1053 				ret = -ENAMETOOLONG;
1054 				goto out;
1055 			}
1056 			if (name_len + data_len >
1057 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1058 				ret = -E2BIG;
1059 				goto out;
1060 			}
1061 		} else {
1062 			/*
1063 			 * Path too long
1064 			 */
1065 			if (name_len + data_len > PATH_MAX) {
1066 				ret = -ENAMETOOLONG;
1067 				goto out;
1068 			}
1069 		}
1070 
1071 		if (name_len + data_len > buf_len) {
1072 			buf_len = name_len + data_len;
1073 			if (is_vmalloc_addr(buf)) {
1074 				vfree(buf);
1075 				buf = NULL;
1076 			} else {
1077 				char *tmp = krealloc(buf, buf_len,
1078 						GFP_KERNEL | __GFP_NOWARN);
1079 
1080 				if (!tmp)
1081 					kfree(buf);
1082 				buf = tmp;
1083 			}
1084 			if (!buf) {
1085 				buf = kvmalloc(buf_len, GFP_KERNEL);
1086 				if (!buf) {
1087 					ret = -ENOMEM;
1088 					goto out;
1089 				}
1090 			}
1091 		}
1092 
1093 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1094 				name_len + data_len);
1095 
1096 		len = sizeof(*di) + name_len + data_len;
1097 		di = (struct btrfs_dir_item *)((char *)di + len);
1098 		cur += len;
1099 
1100 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1101 				data_len, type, ctx);
1102 		if (ret < 0)
1103 			goto out;
1104 		if (ret) {
1105 			ret = 0;
1106 			goto out;
1107 		}
1108 
1109 		num++;
1110 	}
1111 
1112 out:
1113 	kvfree(buf);
1114 	return ret;
1115 }
1116 
1117 static int __copy_first_ref(int num, u64 dir, int index,
1118 			    struct fs_path *p, void *ctx)
1119 {
1120 	int ret;
1121 	struct fs_path *pt = ctx;
1122 
1123 	ret = fs_path_copy(pt, p);
1124 	if (ret < 0)
1125 		return ret;
1126 
1127 	/* we want the first only */
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Retrieve the first path of an inode. If an inode has more then one
1133  * ref/hardlink, this is ignored.
1134  */
1135 static int get_inode_path(struct btrfs_root *root,
1136 			  u64 ino, struct fs_path *path)
1137 {
1138 	int ret;
1139 	struct btrfs_key key, found_key;
1140 	struct btrfs_path *p;
1141 
1142 	p = alloc_path_for_send();
1143 	if (!p)
1144 		return -ENOMEM;
1145 
1146 	fs_path_reset(path);
1147 
1148 	key.objectid = ino;
1149 	key.type = BTRFS_INODE_REF_KEY;
1150 	key.offset = 0;
1151 
1152 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1153 	if (ret < 0)
1154 		goto out;
1155 	if (ret) {
1156 		ret = 1;
1157 		goto out;
1158 	}
1159 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1160 	if (found_key.objectid != ino ||
1161 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1162 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1163 		ret = -ENOENT;
1164 		goto out;
1165 	}
1166 
1167 	ret = iterate_inode_ref(root, p, &found_key, 1,
1168 				__copy_first_ref, path);
1169 	if (ret < 0)
1170 		goto out;
1171 	ret = 0;
1172 
1173 out:
1174 	btrfs_free_path(p);
1175 	return ret;
1176 }
1177 
1178 struct backref_ctx {
1179 	struct send_ctx *sctx;
1180 
1181 	/* number of total found references */
1182 	u64 found;
1183 
1184 	/*
1185 	 * used for clones found in send_root. clones found behind cur_objectid
1186 	 * and cur_offset are not considered as allowed clones.
1187 	 */
1188 	u64 cur_objectid;
1189 	u64 cur_offset;
1190 
1191 	/* may be truncated in case it's the last extent in a file */
1192 	u64 extent_len;
1193 
1194 	/* Just to check for bugs in backref resolving */
1195 	int found_itself;
1196 };
1197 
1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1199 {
1200 	u64 root = (u64)(uintptr_t)key;
1201 	struct clone_root *cr = (struct clone_root *)elt;
1202 
1203 	if (root < cr->root->root_key.objectid)
1204 		return -1;
1205 	if (root > cr->root->root_key.objectid)
1206 		return 1;
1207 	return 0;
1208 }
1209 
1210 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1211 {
1212 	struct clone_root *cr1 = (struct clone_root *)e1;
1213 	struct clone_root *cr2 = (struct clone_root *)e2;
1214 
1215 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216 		return -1;
1217 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218 		return 1;
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Called for every backref that is found for the current extent.
1224  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225  */
1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1227 {
1228 	struct backref_ctx *bctx = ctx_;
1229 	struct clone_root *found;
1230 
1231 	/* First check if the root is in the list of accepted clone sources */
1232 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233 			bctx->sctx->clone_roots_cnt,
1234 			sizeof(struct clone_root),
1235 			__clone_root_cmp_bsearch);
1236 	if (!found)
1237 		return 0;
1238 
1239 	if (found->root == bctx->sctx->send_root &&
1240 	    ino == bctx->cur_objectid &&
1241 	    offset == bctx->cur_offset) {
1242 		bctx->found_itself = 1;
1243 	}
1244 
1245 	/*
1246 	 * Make sure we don't consider clones from send_root that are
1247 	 * behind the current inode/offset.
1248 	 */
1249 	if (found->root == bctx->sctx->send_root) {
1250 		/*
1251 		 * If the source inode was not yet processed we can't issue a
1252 		 * clone operation, as the source extent does not exist yet at
1253 		 * the destination of the stream.
1254 		 */
1255 		if (ino > bctx->cur_objectid)
1256 			return 0;
1257 		/*
1258 		 * We clone from the inode currently being sent as long as the
1259 		 * source extent is already processed, otherwise we could try
1260 		 * to clone from an extent that does not exist yet at the
1261 		 * destination of the stream.
1262 		 */
1263 		if (ino == bctx->cur_objectid &&
1264 		    offset + bctx->extent_len >
1265 		    bctx->sctx->cur_inode_next_write_offset)
1266 			return 0;
1267 	}
1268 
1269 	bctx->found++;
1270 	found->found_refs++;
1271 	if (ino < found->ino) {
1272 		found->ino = ino;
1273 		found->offset = offset;
1274 	} else if (found->ino == ino) {
1275 		/*
1276 		 * same extent found more then once in the same file.
1277 		 */
1278 		if (found->offset > offset + bctx->extent_len)
1279 			found->offset = offset;
1280 	}
1281 
1282 	return 0;
1283 }
1284 
1285 /*
1286  * Given an inode, offset and extent item, it finds a good clone for a clone
1287  * instruction. Returns -ENOENT when none could be found. The function makes
1288  * sure that the returned clone is usable at the point where sending is at the
1289  * moment. This means, that no clones are accepted which lie behind the current
1290  * inode+offset.
1291  *
1292  * path must point to the extent item when called.
1293  */
1294 static int find_extent_clone(struct send_ctx *sctx,
1295 			     struct btrfs_path *path,
1296 			     u64 ino, u64 data_offset,
1297 			     u64 ino_size,
1298 			     struct clone_root **found)
1299 {
1300 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1301 	int ret;
1302 	int extent_type;
1303 	u64 logical;
1304 	u64 disk_byte;
1305 	u64 num_bytes;
1306 	u64 extent_item_pos;
1307 	u64 flags = 0;
1308 	struct btrfs_file_extent_item *fi;
1309 	struct extent_buffer *eb = path->nodes[0];
1310 	struct backref_ctx *backref_ctx = NULL;
1311 	struct clone_root *cur_clone_root;
1312 	struct btrfs_key found_key;
1313 	struct btrfs_path *tmp_path;
1314 	struct btrfs_extent_item *ei;
1315 	int compressed;
1316 	u32 i;
1317 
1318 	tmp_path = alloc_path_for_send();
1319 	if (!tmp_path)
1320 		return -ENOMEM;
1321 
1322 	/* We only use this path under the commit sem */
1323 	tmp_path->need_commit_sem = 0;
1324 
1325 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1326 	if (!backref_ctx) {
1327 		ret = -ENOMEM;
1328 		goto out;
1329 	}
1330 
1331 	if (data_offset >= ino_size) {
1332 		/*
1333 		 * There may be extents that lie behind the file's size.
1334 		 * I at least had this in combination with snapshotting while
1335 		 * writing large files.
1336 		 */
1337 		ret = 0;
1338 		goto out;
1339 	}
1340 
1341 	fi = btrfs_item_ptr(eb, path->slots[0],
1342 			struct btrfs_file_extent_item);
1343 	extent_type = btrfs_file_extent_type(eb, fi);
1344 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1345 		ret = -ENOENT;
1346 		goto out;
1347 	}
1348 	compressed = btrfs_file_extent_compression(eb, fi);
1349 
1350 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1351 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1352 	if (disk_byte == 0) {
1353 		ret = -ENOENT;
1354 		goto out;
1355 	}
1356 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1357 
1358 	down_read(&fs_info->commit_root_sem);
1359 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1360 				  &found_key, &flags);
1361 	up_read(&fs_info->commit_root_sem);
1362 
1363 	if (ret < 0)
1364 		goto out;
1365 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1366 		ret = -EIO;
1367 		goto out;
1368 	}
1369 
1370 	ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1371 			    struct btrfs_extent_item);
1372 	/*
1373 	 * Backreference walking (iterate_extent_inodes() below) is currently
1374 	 * too expensive when an extent has a large number of references, both
1375 	 * in time spent and used memory. So for now just fallback to write
1376 	 * operations instead of clone operations when an extent has more than
1377 	 * a certain amount of references.
1378 	 */
1379 	if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1380 		ret = -ENOENT;
1381 		goto out;
1382 	}
1383 	btrfs_release_path(tmp_path);
1384 
1385 	/*
1386 	 * Setup the clone roots.
1387 	 */
1388 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1389 		cur_clone_root = sctx->clone_roots + i;
1390 		cur_clone_root->ino = (u64)-1;
1391 		cur_clone_root->offset = 0;
1392 		cur_clone_root->found_refs = 0;
1393 	}
1394 
1395 	backref_ctx->sctx = sctx;
1396 	backref_ctx->found = 0;
1397 	backref_ctx->cur_objectid = ino;
1398 	backref_ctx->cur_offset = data_offset;
1399 	backref_ctx->found_itself = 0;
1400 	backref_ctx->extent_len = num_bytes;
1401 
1402 	/*
1403 	 * The last extent of a file may be too large due to page alignment.
1404 	 * We need to adjust extent_len in this case so that the checks in
1405 	 * __iterate_backrefs work.
1406 	 */
1407 	if (data_offset + num_bytes >= ino_size)
1408 		backref_ctx->extent_len = ino_size - data_offset;
1409 
1410 	/*
1411 	 * Now collect all backrefs.
1412 	 */
1413 	if (compressed == BTRFS_COMPRESS_NONE)
1414 		extent_item_pos = logical - found_key.objectid;
1415 	else
1416 		extent_item_pos = 0;
1417 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1418 				    extent_item_pos, 1, __iterate_backrefs,
1419 				    backref_ctx, false);
1420 
1421 	if (ret < 0)
1422 		goto out;
1423 
1424 	if (!backref_ctx->found_itself) {
1425 		/* found a bug in backref code? */
1426 		ret = -EIO;
1427 		btrfs_err(fs_info,
1428 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1429 			  ino, data_offset, disk_byte, found_key.objectid);
1430 		goto out;
1431 	}
1432 
1433 	btrfs_debug(fs_info,
1434 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1435 		    data_offset, ino, num_bytes, logical);
1436 
1437 	if (!backref_ctx->found)
1438 		btrfs_debug(fs_info, "no clones found");
1439 
1440 	cur_clone_root = NULL;
1441 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1442 		if (sctx->clone_roots[i].found_refs) {
1443 			if (!cur_clone_root)
1444 				cur_clone_root = sctx->clone_roots + i;
1445 			else if (sctx->clone_roots[i].root == sctx->send_root)
1446 				/* prefer clones from send_root over others */
1447 				cur_clone_root = sctx->clone_roots + i;
1448 		}
1449 
1450 	}
1451 
1452 	if (cur_clone_root) {
1453 		*found = cur_clone_root;
1454 		ret = 0;
1455 	} else {
1456 		ret = -ENOENT;
1457 	}
1458 
1459 out:
1460 	btrfs_free_path(tmp_path);
1461 	kfree(backref_ctx);
1462 	return ret;
1463 }
1464 
1465 static int read_symlink(struct btrfs_root *root,
1466 			u64 ino,
1467 			struct fs_path *dest)
1468 {
1469 	int ret;
1470 	struct btrfs_path *path;
1471 	struct btrfs_key key;
1472 	struct btrfs_file_extent_item *ei;
1473 	u8 type;
1474 	u8 compression;
1475 	unsigned long off;
1476 	int len;
1477 
1478 	path = alloc_path_for_send();
1479 	if (!path)
1480 		return -ENOMEM;
1481 
1482 	key.objectid = ino;
1483 	key.type = BTRFS_EXTENT_DATA_KEY;
1484 	key.offset = 0;
1485 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1486 	if (ret < 0)
1487 		goto out;
1488 	if (ret) {
1489 		/*
1490 		 * An empty symlink inode. Can happen in rare error paths when
1491 		 * creating a symlink (transaction committed before the inode
1492 		 * eviction handler removed the symlink inode items and a crash
1493 		 * happened in between or the subvol was snapshoted in between).
1494 		 * Print an informative message to dmesg/syslog so that the user
1495 		 * can delete the symlink.
1496 		 */
1497 		btrfs_err(root->fs_info,
1498 			  "Found empty symlink inode %llu at root %llu",
1499 			  ino, root->root_key.objectid);
1500 		ret = -EIO;
1501 		goto out;
1502 	}
1503 
1504 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1505 			struct btrfs_file_extent_item);
1506 	type = btrfs_file_extent_type(path->nodes[0], ei);
1507 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1508 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1509 	BUG_ON(compression);
1510 
1511 	off = btrfs_file_extent_inline_start(ei);
1512 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1513 
1514 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1515 
1516 out:
1517 	btrfs_free_path(path);
1518 	return ret;
1519 }
1520 
1521 /*
1522  * Helper function to generate a file name that is unique in the root of
1523  * send_root and parent_root. This is used to generate names for orphan inodes.
1524  */
1525 static int gen_unique_name(struct send_ctx *sctx,
1526 			   u64 ino, u64 gen,
1527 			   struct fs_path *dest)
1528 {
1529 	int ret = 0;
1530 	struct btrfs_path *path;
1531 	struct btrfs_dir_item *di;
1532 	char tmp[64];
1533 	int len;
1534 	u64 idx = 0;
1535 
1536 	path = alloc_path_for_send();
1537 	if (!path)
1538 		return -ENOMEM;
1539 
1540 	while (1) {
1541 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1542 				ino, gen, idx);
1543 		ASSERT(len < sizeof(tmp));
1544 
1545 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1546 				path, BTRFS_FIRST_FREE_OBJECTID,
1547 				tmp, strlen(tmp), 0);
1548 		btrfs_release_path(path);
1549 		if (IS_ERR(di)) {
1550 			ret = PTR_ERR(di);
1551 			goto out;
1552 		}
1553 		if (di) {
1554 			/* not unique, try again */
1555 			idx++;
1556 			continue;
1557 		}
1558 
1559 		if (!sctx->parent_root) {
1560 			/* unique */
1561 			ret = 0;
1562 			break;
1563 		}
1564 
1565 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1566 				path, BTRFS_FIRST_FREE_OBJECTID,
1567 				tmp, strlen(tmp), 0);
1568 		btrfs_release_path(path);
1569 		if (IS_ERR(di)) {
1570 			ret = PTR_ERR(di);
1571 			goto out;
1572 		}
1573 		if (di) {
1574 			/* not unique, try again */
1575 			idx++;
1576 			continue;
1577 		}
1578 		/* unique */
1579 		break;
1580 	}
1581 
1582 	ret = fs_path_add(dest, tmp, strlen(tmp));
1583 
1584 out:
1585 	btrfs_free_path(path);
1586 	return ret;
1587 }
1588 
1589 enum inode_state {
1590 	inode_state_no_change,
1591 	inode_state_will_create,
1592 	inode_state_did_create,
1593 	inode_state_will_delete,
1594 	inode_state_did_delete,
1595 };
1596 
1597 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1598 {
1599 	int ret;
1600 	int left_ret;
1601 	int right_ret;
1602 	u64 left_gen;
1603 	u64 right_gen;
1604 
1605 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1606 			NULL, NULL);
1607 	if (ret < 0 && ret != -ENOENT)
1608 		goto out;
1609 	left_ret = ret;
1610 
1611 	if (!sctx->parent_root) {
1612 		right_ret = -ENOENT;
1613 	} else {
1614 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1615 				NULL, NULL, NULL, NULL);
1616 		if (ret < 0 && ret != -ENOENT)
1617 			goto out;
1618 		right_ret = ret;
1619 	}
1620 
1621 	if (!left_ret && !right_ret) {
1622 		if (left_gen == gen && right_gen == gen) {
1623 			ret = inode_state_no_change;
1624 		} else if (left_gen == gen) {
1625 			if (ino < sctx->send_progress)
1626 				ret = inode_state_did_create;
1627 			else
1628 				ret = inode_state_will_create;
1629 		} else if (right_gen == gen) {
1630 			if (ino < sctx->send_progress)
1631 				ret = inode_state_did_delete;
1632 			else
1633 				ret = inode_state_will_delete;
1634 		} else  {
1635 			ret = -ENOENT;
1636 		}
1637 	} else if (!left_ret) {
1638 		if (left_gen == gen) {
1639 			if (ino < sctx->send_progress)
1640 				ret = inode_state_did_create;
1641 			else
1642 				ret = inode_state_will_create;
1643 		} else {
1644 			ret = -ENOENT;
1645 		}
1646 	} else if (!right_ret) {
1647 		if (right_gen == gen) {
1648 			if (ino < sctx->send_progress)
1649 				ret = inode_state_did_delete;
1650 			else
1651 				ret = inode_state_will_delete;
1652 		} else {
1653 			ret = -ENOENT;
1654 		}
1655 	} else {
1656 		ret = -ENOENT;
1657 	}
1658 
1659 out:
1660 	return ret;
1661 }
1662 
1663 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1664 {
1665 	int ret;
1666 
1667 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1668 		return 1;
1669 
1670 	ret = get_cur_inode_state(sctx, ino, gen);
1671 	if (ret < 0)
1672 		goto out;
1673 
1674 	if (ret == inode_state_no_change ||
1675 	    ret == inode_state_did_create ||
1676 	    ret == inode_state_will_delete)
1677 		ret = 1;
1678 	else
1679 		ret = 0;
1680 
1681 out:
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Helper function to lookup a dir item in a dir.
1687  */
1688 static int lookup_dir_item_inode(struct btrfs_root *root,
1689 				 u64 dir, const char *name, int name_len,
1690 				 u64 *found_inode,
1691 				 u8 *found_type)
1692 {
1693 	int ret = 0;
1694 	struct btrfs_dir_item *di;
1695 	struct btrfs_key key;
1696 	struct btrfs_path *path;
1697 
1698 	path = alloc_path_for_send();
1699 	if (!path)
1700 		return -ENOMEM;
1701 
1702 	di = btrfs_lookup_dir_item(NULL, root, path,
1703 			dir, name, name_len, 0);
1704 	if (IS_ERR_OR_NULL(di)) {
1705 		ret = di ? PTR_ERR(di) : -ENOENT;
1706 		goto out;
1707 	}
1708 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1709 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1710 		ret = -ENOENT;
1711 		goto out;
1712 	}
1713 	*found_inode = key.objectid;
1714 	*found_type = btrfs_dir_type(path->nodes[0], di);
1715 
1716 out:
1717 	btrfs_free_path(path);
1718 	return ret;
1719 }
1720 
1721 /*
1722  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1723  * generation of the parent dir and the name of the dir entry.
1724  */
1725 static int get_first_ref(struct btrfs_root *root, u64 ino,
1726 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1727 {
1728 	int ret;
1729 	struct btrfs_key key;
1730 	struct btrfs_key found_key;
1731 	struct btrfs_path *path;
1732 	int len;
1733 	u64 parent_dir;
1734 
1735 	path = alloc_path_for_send();
1736 	if (!path)
1737 		return -ENOMEM;
1738 
1739 	key.objectid = ino;
1740 	key.type = BTRFS_INODE_REF_KEY;
1741 	key.offset = 0;
1742 
1743 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1744 	if (ret < 0)
1745 		goto out;
1746 	if (!ret)
1747 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1748 				path->slots[0]);
1749 	if (ret || found_key.objectid != ino ||
1750 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1751 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1752 		ret = -ENOENT;
1753 		goto out;
1754 	}
1755 
1756 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1757 		struct btrfs_inode_ref *iref;
1758 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759 				      struct btrfs_inode_ref);
1760 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1761 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1762 						     (unsigned long)(iref + 1),
1763 						     len);
1764 		parent_dir = found_key.offset;
1765 	} else {
1766 		struct btrfs_inode_extref *extref;
1767 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1768 					struct btrfs_inode_extref);
1769 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1770 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1771 					(unsigned long)&extref->name, len);
1772 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1773 	}
1774 	if (ret < 0)
1775 		goto out;
1776 	btrfs_release_path(path);
1777 
1778 	if (dir_gen) {
1779 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1780 				     NULL, NULL, NULL);
1781 		if (ret < 0)
1782 			goto out;
1783 	}
1784 
1785 	*dir = parent_dir;
1786 
1787 out:
1788 	btrfs_free_path(path);
1789 	return ret;
1790 }
1791 
1792 static int is_first_ref(struct btrfs_root *root,
1793 			u64 ino, u64 dir,
1794 			const char *name, int name_len)
1795 {
1796 	int ret;
1797 	struct fs_path *tmp_name;
1798 	u64 tmp_dir;
1799 
1800 	tmp_name = fs_path_alloc();
1801 	if (!tmp_name)
1802 		return -ENOMEM;
1803 
1804 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1805 	if (ret < 0)
1806 		goto out;
1807 
1808 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1809 		ret = 0;
1810 		goto out;
1811 	}
1812 
1813 	ret = !memcmp(tmp_name->start, name, name_len);
1814 
1815 out:
1816 	fs_path_free(tmp_name);
1817 	return ret;
1818 }
1819 
1820 /*
1821  * Used by process_recorded_refs to determine if a new ref would overwrite an
1822  * already existing ref. In case it detects an overwrite, it returns the
1823  * inode/gen in who_ino/who_gen.
1824  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1825  * to make sure later references to the overwritten inode are possible.
1826  * Orphanizing is however only required for the first ref of an inode.
1827  * process_recorded_refs does an additional is_first_ref check to see if
1828  * orphanizing is really required.
1829  */
1830 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1831 			      const char *name, int name_len,
1832 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1833 {
1834 	int ret = 0;
1835 	u64 gen;
1836 	u64 other_inode = 0;
1837 	u8 other_type = 0;
1838 
1839 	if (!sctx->parent_root)
1840 		goto out;
1841 
1842 	ret = is_inode_existent(sctx, dir, dir_gen);
1843 	if (ret <= 0)
1844 		goto out;
1845 
1846 	/*
1847 	 * If we have a parent root we need to verify that the parent dir was
1848 	 * not deleted and then re-created, if it was then we have no overwrite
1849 	 * and we can just unlink this entry.
1850 	 */
1851 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1852 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1853 				     NULL, NULL, NULL);
1854 		if (ret < 0 && ret != -ENOENT)
1855 			goto out;
1856 		if (ret) {
1857 			ret = 0;
1858 			goto out;
1859 		}
1860 		if (gen != dir_gen)
1861 			goto out;
1862 	}
1863 
1864 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1865 			&other_inode, &other_type);
1866 	if (ret < 0 && ret != -ENOENT)
1867 		goto out;
1868 	if (ret) {
1869 		ret = 0;
1870 		goto out;
1871 	}
1872 
1873 	/*
1874 	 * Check if the overwritten ref was already processed. If yes, the ref
1875 	 * was already unlinked/moved, so we can safely assume that we will not
1876 	 * overwrite anything at this point in time.
1877 	 */
1878 	if (other_inode > sctx->send_progress ||
1879 	    is_waiting_for_move(sctx, other_inode)) {
1880 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1881 				who_gen, who_mode, NULL, NULL, NULL);
1882 		if (ret < 0)
1883 			goto out;
1884 
1885 		ret = 1;
1886 		*who_ino = other_inode;
1887 	} else {
1888 		ret = 0;
1889 	}
1890 
1891 out:
1892 	return ret;
1893 }
1894 
1895 /*
1896  * Checks if the ref was overwritten by an already processed inode. This is
1897  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1898  * thus the orphan name needs be used.
1899  * process_recorded_refs also uses it to avoid unlinking of refs that were
1900  * overwritten.
1901  */
1902 static int did_overwrite_ref(struct send_ctx *sctx,
1903 			    u64 dir, u64 dir_gen,
1904 			    u64 ino, u64 ino_gen,
1905 			    const char *name, int name_len)
1906 {
1907 	int ret = 0;
1908 	u64 gen;
1909 	u64 ow_inode;
1910 	u8 other_type;
1911 
1912 	if (!sctx->parent_root)
1913 		goto out;
1914 
1915 	ret = is_inode_existent(sctx, dir, dir_gen);
1916 	if (ret <= 0)
1917 		goto out;
1918 
1919 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1920 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1921 				     NULL, NULL, NULL);
1922 		if (ret < 0 && ret != -ENOENT)
1923 			goto out;
1924 		if (ret) {
1925 			ret = 0;
1926 			goto out;
1927 		}
1928 		if (gen != dir_gen)
1929 			goto out;
1930 	}
1931 
1932 	/* check if the ref was overwritten by another ref */
1933 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1934 			&ow_inode, &other_type);
1935 	if (ret < 0 && ret != -ENOENT)
1936 		goto out;
1937 	if (ret) {
1938 		/* was never and will never be overwritten */
1939 		ret = 0;
1940 		goto out;
1941 	}
1942 
1943 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1944 			NULL, NULL);
1945 	if (ret < 0)
1946 		goto out;
1947 
1948 	if (ow_inode == ino && gen == ino_gen) {
1949 		ret = 0;
1950 		goto out;
1951 	}
1952 
1953 	/*
1954 	 * We know that it is or will be overwritten. Check this now.
1955 	 * The current inode being processed might have been the one that caused
1956 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1957 	 * the current inode being processed.
1958 	 */
1959 	if ((ow_inode < sctx->send_progress) ||
1960 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1961 	     gen == sctx->cur_inode_gen))
1962 		ret = 1;
1963 	else
1964 		ret = 0;
1965 
1966 out:
1967 	return ret;
1968 }
1969 
1970 /*
1971  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1972  * that got overwritten. This is used by process_recorded_refs to determine
1973  * if it has to use the path as returned by get_cur_path or the orphan name.
1974  */
1975 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1976 {
1977 	int ret = 0;
1978 	struct fs_path *name = NULL;
1979 	u64 dir;
1980 	u64 dir_gen;
1981 
1982 	if (!sctx->parent_root)
1983 		goto out;
1984 
1985 	name = fs_path_alloc();
1986 	if (!name)
1987 		return -ENOMEM;
1988 
1989 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1990 	if (ret < 0)
1991 		goto out;
1992 
1993 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1994 			name->start, fs_path_len(name));
1995 
1996 out:
1997 	fs_path_free(name);
1998 	return ret;
1999 }
2000 
2001 /*
2002  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2003  * so we need to do some special handling in case we have clashes. This function
2004  * takes care of this with the help of name_cache_entry::radix_list.
2005  * In case of error, nce is kfreed.
2006  */
2007 static int name_cache_insert(struct send_ctx *sctx,
2008 			     struct name_cache_entry *nce)
2009 {
2010 	int ret = 0;
2011 	struct list_head *nce_head;
2012 
2013 	nce_head = radix_tree_lookup(&sctx->name_cache,
2014 			(unsigned long)nce->ino);
2015 	if (!nce_head) {
2016 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2017 		if (!nce_head) {
2018 			kfree(nce);
2019 			return -ENOMEM;
2020 		}
2021 		INIT_LIST_HEAD(nce_head);
2022 
2023 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2024 		if (ret < 0) {
2025 			kfree(nce_head);
2026 			kfree(nce);
2027 			return ret;
2028 		}
2029 	}
2030 	list_add_tail(&nce->radix_list, nce_head);
2031 	list_add_tail(&nce->list, &sctx->name_cache_list);
2032 	sctx->name_cache_size++;
2033 
2034 	return ret;
2035 }
2036 
2037 static void name_cache_delete(struct send_ctx *sctx,
2038 			      struct name_cache_entry *nce)
2039 {
2040 	struct list_head *nce_head;
2041 
2042 	nce_head = radix_tree_lookup(&sctx->name_cache,
2043 			(unsigned long)nce->ino);
2044 	if (!nce_head) {
2045 		btrfs_err(sctx->send_root->fs_info,
2046 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2047 			nce->ino, sctx->name_cache_size);
2048 	}
2049 
2050 	list_del(&nce->radix_list);
2051 	list_del(&nce->list);
2052 	sctx->name_cache_size--;
2053 
2054 	/*
2055 	 * We may not get to the final release of nce_head if the lookup fails
2056 	 */
2057 	if (nce_head && list_empty(nce_head)) {
2058 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2059 		kfree(nce_head);
2060 	}
2061 }
2062 
2063 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2064 						    u64 ino, u64 gen)
2065 {
2066 	struct list_head *nce_head;
2067 	struct name_cache_entry *cur;
2068 
2069 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2070 	if (!nce_head)
2071 		return NULL;
2072 
2073 	list_for_each_entry(cur, nce_head, radix_list) {
2074 		if (cur->ino == ino && cur->gen == gen)
2075 			return cur;
2076 	}
2077 	return NULL;
2078 }
2079 
2080 /*
2081  * Remove some entries from the beginning of name_cache_list.
2082  */
2083 static void name_cache_clean_unused(struct send_ctx *sctx)
2084 {
2085 	struct name_cache_entry *nce;
2086 
2087 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2088 		return;
2089 
2090 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2091 		nce = list_entry(sctx->name_cache_list.next,
2092 				struct name_cache_entry, list);
2093 		name_cache_delete(sctx, nce);
2094 		kfree(nce);
2095 	}
2096 }
2097 
2098 static void name_cache_free(struct send_ctx *sctx)
2099 {
2100 	struct name_cache_entry *nce;
2101 
2102 	while (!list_empty(&sctx->name_cache_list)) {
2103 		nce = list_entry(sctx->name_cache_list.next,
2104 				struct name_cache_entry, list);
2105 		name_cache_delete(sctx, nce);
2106 		kfree(nce);
2107 	}
2108 }
2109 
2110 /*
2111  * Used by get_cur_path for each ref up to the root.
2112  * Returns 0 if it succeeded.
2113  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2114  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2115  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2116  * Returns <0 in case of error.
2117  */
2118 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2119 				     u64 ino, u64 gen,
2120 				     u64 *parent_ino,
2121 				     u64 *parent_gen,
2122 				     struct fs_path *dest)
2123 {
2124 	int ret;
2125 	int nce_ret;
2126 	struct name_cache_entry *nce = NULL;
2127 
2128 	/*
2129 	 * First check if we already did a call to this function with the same
2130 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2131 	 * return the cached result.
2132 	 */
2133 	nce = name_cache_search(sctx, ino, gen);
2134 	if (nce) {
2135 		if (ino < sctx->send_progress && nce->need_later_update) {
2136 			name_cache_delete(sctx, nce);
2137 			kfree(nce);
2138 			nce = NULL;
2139 		} else {
2140 			/*
2141 			 * Removes the entry from the list and adds it back to
2142 			 * the end.  This marks the entry as recently used so
2143 			 * that name_cache_clean_unused does not remove it.
2144 			 */
2145 			list_move_tail(&nce->list, &sctx->name_cache_list);
2146 
2147 			*parent_ino = nce->parent_ino;
2148 			*parent_gen = nce->parent_gen;
2149 			ret = fs_path_add(dest, nce->name, nce->name_len);
2150 			if (ret < 0)
2151 				goto out;
2152 			ret = nce->ret;
2153 			goto out;
2154 		}
2155 	}
2156 
2157 	/*
2158 	 * If the inode is not existent yet, add the orphan name and return 1.
2159 	 * This should only happen for the parent dir that we determine in
2160 	 * __record_new_ref
2161 	 */
2162 	ret = is_inode_existent(sctx, ino, gen);
2163 	if (ret < 0)
2164 		goto out;
2165 
2166 	if (!ret) {
2167 		ret = gen_unique_name(sctx, ino, gen, dest);
2168 		if (ret < 0)
2169 			goto out;
2170 		ret = 1;
2171 		goto out_cache;
2172 	}
2173 
2174 	/*
2175 	 * Depending on whether the inode was already processed or not, use
2176 	 * send_root or parent_root for ref lookup.
2177 	 */
2178 	if (ino < sctx->send_progress)
2179 		ret = get_first_ref(sctx->send_root, ino,
2180 				    parent_ino, parent_gen, dest);
2181 	else
2182 		ret = get_first_ref(sctx->parent_root, ino,
2183 				    parent_ino, parent_gen, dest);
2184 	if (ret < 0)
2185 		goto out;
2186 
2187 	/*
2188 	 * Check if the ref was overwritten by an inode's ref that was processed
2189 	 * earlier. If yes, treat as orphan and return 1.
2190 	 */
2191 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2192 			dest->start, dest->end - dest->start);
2193 	if (ret < 0)
2194 		goto out;
2195 	if (ret) {
2196 		fs_path_reset(dest);
2197 		ret = gen_unique_name(sctx, ino, gen, dest);
2198 		if (ret < 0)
2199 			goto out;
2200 		ret = 1;
2201 	}
2202 
2203 out_cache:
2204 	/*
2205 	 * Store the result of the lookup in the name cache.
2206 	 */
2207 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2208 	if (!nce) {
2209 		ret = -ENOMEM;
2210 		goto out;
2211 	}
2212 
2213 	nce->ino = ino;
2214 	nce->gen = gen;
2215 	nce->parent_ino = *parent_ino;
2216 	nce->parent_gen = *parent_gen;
2217 	nce->name_len = fs_path_len(dest);
2218 	nce->ret = ret;
2219 	strcpy(nce->name, dest->start);
2220 
2221 	if (ino < sctx->send_progress)
2222 		nce->need_later_update = 0;
2223 	else
2224 		nce->need_later_update = 1;
2225 
2226 	nce_ret = name_cache_insert(sctx, nce);
2227 	if (nce_ret < 0)
2228 		ret = nce_ret;
2229 	name_cache_clean_unused(sctx);
2230 
2231 out:
2232 	return ret;
2233 }
2234 
2235 /*
2236  * Magic happens here. This function returns the first ref to an inode as it
2237  * would look like while receiving the stream at this point in time.
2238  * We walk the path up to the root. For every inode in between, we check if it
2239  * was already processed/sent. If yes, we continue with the parent as found
2240  * in send_root. If not, we continue with the parent as found in parent_root.
2241  * If we encounter an inode that was deleted at this point in time, we use the
2242  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2243  * that were not created yet and overwritten inodes/refs.
2244  *
2245  * When do we have orphan inodes:
2246  * 1. When an inode is freshly created and thus no valid refs are available yet
2247  * 2. When a directory lost all it's refs (deleted) but still has dir items
2248  *    inside which were not processed yet (pending for move/delete). If anyone
2249  *    tried to get the path to the dir items, it would get a path inside that
2250  *    orphan directory.
2251  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2252  *    of an unprocessed inode. If in that case the first ref would be
2253  *    overwritten, the overwritten inode gets "orphanized". Later when we
2254  *    process this overwritten inode, it is restored at a new place by moving
2255  *    the orphan inode.
2256  *
2257  * sctx->send_progress tells this function at which point in time receiving
2258  * would be.
2259  */
2260 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2261 			struct fs_path *dest)
2262 {
2263 	int ret = 0;
2264 	struct fs_path *name = NULL;
2265 	u64 parent_inode = 0;
2266 	u64 parent_gen = 0;
2267 	int stop = 0;
2268 
2269 	name = fs_path_alloc();
2270 	if (!name) {
2271 		ret = -ENOMEM;
2272 		goto out;
2273 	}
2274 
2275 	dest->reversed = 1;
2276 	fs_path_reset(dest);
2277 
2278 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2279 		struct waiting_dir_move *wdm;
2280 
2281 		fs_path_reset(name);
2282 
2283 		if (is_waiting_for_rm(sctx, ino, gen)) {
2284 			ret = gen_unique_name(sctx, ino, gen, name);
2285 			if (ret < 0)
2286 				goto out;
2287 			ret = fs_path_add_path(dest, name);
2288 			break;
2289 		}
2290 
2291 		wdm = get_waiting_dir_move(sctx, ino);
2292 		if (wdm && wdm->orphanized) {
2293 			ret = gen_unique_name(sctx, ino, gen, name);
2294 			stop = 1;
2295 		} else if (wdm) {
2296 			ret = get_first_ref(sctx->parent_root, ino,
2297 					    &parent_inode, &parent_gen, name);
2298 		} else {
2299 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2300 							&parent_inode,
2301 							&parent_gen, name);
2302 			if (ret)
2303 				stop = 1;
2304 		}
2305 
2306 		if (ret < 0)
2307 			goto out;
2308 
2309 		ret = fs_path_add_path(dest, name);
2310 		if (ret < 0)
2311 			goto out;
2312 
2313 		ino = parent_inode;
2314 		gen = parent_gen;
2315 	}
2316 
2317 out:
2318 	fs_path_free(name);
2319 	if (!ret)
2320 		fs_path_unreverse(dest);
2321 	return ret;
2322 }
2323 
2324 /*
2325  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2326  */
2327 static int send_subvol_begin(struct send_ctx *sctx)
2328 {
2329 	int ret;
2330 	struct btrfs_root *send_root = sctx->send_root;
2331 	struct btrfs_root *parent_root = sctx->parent_root;
2332 	struct btrfs_path *path;
2333 	struct btrfs_key key;
2334 	struct btrfs_root_ref *ref;
2335 	struct extent_buffer *leaf;
2336 	char *name = NULL;
2337 	int namelen;
2338 
2339 	path = btrfs_alloc_path();
2340 	if (!path)
2341 		return -ENOMEM;
2342 
2343 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2344 	if (!name) {
2345 		btrfs_free_path(path);
2346 		return -ENOMEM;
2347 	}
2348 
2349 	key.objectid = send_root->root_key.objectid;
2350 	key.type = BTRFS_ROOT_BACKREF_KEY;
2351 	key.offset = 0;
2352 
2353 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2354 				&key, path, 1, 0);
2355 	if (ret < 0)
2356 		goto out;
2357 	if (ret) {
2358 		ret = -ENOENT;
2359 		goto out;
2360 	}
2361 
2362 	leaf = path->nodes[0];
2363 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2365 	    key.objectid != send_root->root_key.objectid) {
2366 		ret = -ENOENT;
2367 		goto out;
2368 	}
2369 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2370 	namelen = btrfs_root_ref_name_len(leaf, ref);
2371 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2372 	btrfs_release_path(path);
2373 
2374 	if (parent_root) {
2375 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2376 		if (ret < 0)
2377 			goto out;
2378 	} else {
2379 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2380 		if (ret < 0)
2381 			goto out;
2382 	}
2383 
2384 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2385 
2386 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2387 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2388 			    sctx->send_root->root_item.received_uuid);
2389 	else
2390 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2391 			    sctx->send_root->root_item.uuid);
2392 
2393 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2394 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2395 	if (parent_root) {
2396 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2397 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2398 				     parent_root->root_item.received_uuid);
2399 		else
2400 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2401 				     parent_root->root_item.uuid);
2402 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2403 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2404 	}
2405 
2406 	ret = send_cmd(sctx);
2407 
2408 tlv_put_failure:
2409 out:
2410 	btrfs_free_path(path);
2411 	kfree(name);
2412 	return ret;
2413 }
2414 
2415 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2416 {
2417 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2418 	int ret = 0;
2419 	struct fs_path *p;
2420 
2421 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2422 
2423 	p = fs_path_alloc();
2424 	if (!p)
2425 		return -ENOMEM;
2426 
2427 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2428 	if (ret < 0)
2429 		goto out;
2430 
2431 	ret = get_cur_path(sctx, ino, gen, p);
2432 	if (ret < 0)
2433 		goto out;
2434 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2435 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2436 
2437 	ret = send_cmd(sctx);
2438 
2439 tlv_put_failure:
2440 out:
2441 	fs_path_free(p);
2442 	return ret;
2443 }
2444 
2445 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2446 {
2447 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2448 	int ret = 0;
2449 	struct fs_path *p;
2450 
2451 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2452 
2453 	p = fs_path_alloc();
2454 	if (!p)
2455 		return -ENOMEM;
2456 
2457 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2458 	if (ret < 0)
2459 		goto out;
2460 
2461 	ret = get_cur_path(sctx, ino, gen, p);
2462 	if (ret < 0)
2463 		goto out;
2464 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2465 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2466 
2467 	ret = send_cmd(sctx);
2468 
2469 tlv_put_failure:
2470 out:
2471 	fs_path_free(p);
2472 	return ret;
2473 }
2474 
2475 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2476 {
2477 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2478 	int ret = 0;
2479 	struct fs_path *p;
2480 
2481 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2482 		    ino, uid, gid);
2483 
2484 	p = fs_path_alloc();
2485 	if (!p)
2486 		return -ENOMEM;
2487 
2488 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2489 	if (ret < 0)
2490 		goto out;
2491 
2492 	ret = get_cur_path(sctx, ino, gen, p);
2493 	if (ret < 0)
2494 		goto out;
2495 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2496 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2497 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2498 
2499 	ret = send_cmd(sctx);
2500 
2501 tlv_put_failure:
2502 out:
2503 	fs_path_free(p);
2504 	return ret;
2505 }
2506 
2507 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2508 {
2509 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2510 	int ret = 0;
2511 	struct fs_path *p = NULL;
2512 	struct btrfs_inode_item *ii;
2513 	struct btrfs_path *path = NULL;
2514 	struct extent_buffer *eb;
2515 	struct btrfs_key key;
2516 	int slot;
2517 
2518 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2519 
2520 	p = fs_path_alloc();
2521 	if (!p)
2522 		return -ENOMEM;
2523 
2524 	path = alloc_path_for_send();
2525 	if (!path) {
2526 		ret = -ENOMEM;
2527 		goto out;
2528 	}
2529 
2530 	key.objectid = ino;
2531 	key.type = BTRFS_INODE_ITEM_KEY;
2532 	key.offset = 0;
2533 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2534 	if (ret > 0)
2535 		ret = -ENOENT;
2536 	if (ret < 0)
2537 		goto out;
2538 
2539 	eb = path->nodes[0];
2540 	slot = path->slots[0];
2541 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2542 
2543 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2544 	if (ret < 0)
2545 		goto out;
2546 
2547 	ret = get_cur_path(sctx, ino, gen, p);
2548 	if (ret < 0)
2549 		goto out;
2550 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2552 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2553 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2554 	/* TODO Add otime support when the otime patches get into upstream */
2555 
2556 	ret = send_cmd(sctx);
2557 
2558 tlv_put_failure:
2559 out:
2560 	fs_path_free(p);
2561 	btrfs_free_path(path);
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2567  * a valid path yet because we did not process the refs yet. So, the inode
2568  * is created as orphan.
2569  */
2570 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2571 {
2572 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2573 	int ret = 0;
2574 	struct fs_path *p;
2575 	int cmd;
2576 	u64 gen;
2577 	u64 mode;
2578 	u64 rdev;
2579 
2580 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2581 
2582 	p = fs_path_alloc();
2583 	if (!p)
2584 		return -ENOMEM;
2585 
2586 	if (ino != sctx->cur_ino) {
2587 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2588 				     NULL, NULL, &rdev);
2589 		if (ret < 0)
2590 			goto out;
2591 	} else {
2592 		gen = sctx->cur_inode_gen;
2593 		mode = sctx->cur_inode_mode;
2594 		rdev = sctx->cur_inode_rdev;
2595 	}
2596 
2597 	if (S_ISREG(mode)) {
2598 		cmd = BTRFS_SEND_C_MKFILE;
2599 	} else if (S_ISDIR(mode)) {
2600 		cmd = BTRFS_SEND_C_MKDIR;
2601 	} else if (S_ISLNK(mode)) {
2602 		cmd = BTRFS_SEND_C_SYMLINK;
2603 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2604 		cmd = BTRFS_SEND_C_MKNOD;
2605 	} else if (S_ISFIFO(mode)) {
2606 		cmd = BTRFS_SEND_C_MKFIFO;
2607 	} else if (S_ISSOCK(mode)) {
2608 		cmd = BTRFS_SEND_C_MKSOCK;
2609 	} else {
2610 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2611 				(int)(mode & S_IFMT));
2612 		ret = -EOPNOTSUPP;
2613 		goto out;
2614 	}
2615 
2616 	ret = begin_cmd(sctx, cmd);
2617 	if (ret < 0)
2618 		goto out;
2619 
2620 	ret = gen_unique_name(sctx, ino, gen, p);
2621 	if (ret < 0)
2622 		goto out;
2623 
2624 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2625 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2626 
2627 	if (S_ISLNK(mode)) {
2628 		fs_path_reset(p);
2629 		ret = read_symlink(sctx->send_root, ino, p);
2630 		if (ret < 0)
2631 			goto out;
2632 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2633 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2634 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2635 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2636 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2637 	}
2638 
2639 	ret = send_cmd(sctx);
2640 	if (ret < 0)
2641 		goto out;
2642 
2643 
2644 tlv_put_failure:
2645 out:
2646 	fs_path_free(p);
2647 	return ret;
2648 }
2649 
2650 /*
2651  * We need some special handling for inodes that get processed before the parent
2652  * directory got created. See process_recorded_refs for details.
2653  * This function does the check if we already created the dir out of order.
2654  */
2655 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2656 {
2657 	int ret = 0;
2658 	struct btrfs_path *path = NULL;
2659 	struct btrfs_key key;
2660 	struct btrfs_key found_key;
2661 	struct btrfs_key di_key;
2662 	struct extent_buffer *eb;
2663 	struct btrfs_dir_item *di;
2664 	int slot;
2665 
2666 	path = alloc_path_for_send();
2667 	if (!path) {
2668 		ret = -ENOMEM;
2669 		goto out;
2670 	}
2671 
2672 	key.objectid = dir;
2673 	key.type = BTRFS_DIR_INDEX_KEY;
2674 	key.offset = 0;
2675 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2676 	if (ret < 0)
2677 		goto out;
2678 
2679 	while (1) {
2680 		eb = path->nodes[0];
2681 		slot = path->slots[0];
2682 		if (slot >= btrfs_header_nritems(eb)) {
2683 			ret = btrfs_next_leaf(sctx->send_root, path);
2684 			if (ret < 0) {
2685 				goto out;
2686 			} else if (ret > 0) {
2687 				ret = 0;
2688 				break;
2689 			}
2690 			continue;
2691 		}
2692 
2693 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2694 		if (found_key.objectid != key.objectid ||
2695 		    found_key.type != key.type) {
2696 			ret = 0;
2697 			goto out;
2698 		}
2699 
2700 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2701 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2702 
2703 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2704 		    di_key.objectid < sctx->send_progress) {
2705 			ret = 1;
2706 			goto out;
2707 		}
2708 
2709 		path->slots[0]++;
2710 	}
2711 
2712 out:
2713 	btrfs_free_path(path);
2714 	return ret;
2715 }
2716 
2717 /*
2718  * Only creates the inode if it is:
2719  * 1. Not a directory
2720  * 2. Or a directory which was not created already due to out of order
2721  *    directories. See did_create_dir and process_recorded_refs for details.
2722  */
2723 static int send_create_inode_if_needed(struct send_ctx *sctx)
2724 {
2725 	int ret;
2726 
2727 	if (S_ISDIR(sctx->cur_inode_mode)) {
2728 		ret = did_create_dir(sctx, sctx->cur_ino);
2729 		if (ret < 0)
2730 			goto out;
2731 		if (ret) {
2732 			ret = 0;
2733 			goto out;
2734 		}
2735 	}
2736 
2737 	ret = send_create_inode(sctx, sctx->cur_ino);
2738 	if (ret < 0)
2739 		goto out;
2740 
2741 out:
2742 	return ret;
2743 }
2744 
2745 struct recorded_ref {
2746 	struct list_head list;
2747 	char *name;
2748 	struct fs_path *full_path;
2749 	u64 dir;
2750 	u64 dir_gen;
2751 	int name_len;
2752 };
2753 
2754 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2755 {
2756 	ref->full_path = path;
2757 	ref->name = (char *)kbasename(ref->full_path->start);
2758 	ref->name_len = ref->full_path->end - ref->name;
2759 }
2760 
2761 /*
2762  * We need to process new refs before deleted refs, but compare_tree gives us
2763  * everything mixed. So we first record all refs and later process them.
2764  * This function is a helper to record one ref.
2765  */
2766 static int __record_ref(struct list_head *head, u64 dir,
2767 		      u64 dir_gen, struct fs_path *path)
2768 {
2769 	struct recorded_ref *ref;
2770 
2771 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2772 	if (!ref)
2773 		return -ENOMEM;
2774 
2775 	ref->dir = dir;
2776 	ref->dir_gen = dir_gen;
2777 	set_ref_path(ref, path);
2778 	list_add_tail(&ref->list, head);
2779 	return 0;
2780 }
2781 
2782 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2783 {
2784 	struct recorded_ref *new;
2785 
2786 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2787 	if (!new)
2788 		return -ENOMEM;
2789 
2790 	new->dir = ref->dir;
2791 	new->dir_gen = ref->dir_gen;
2792 	new->full_path = NULL;
2793 	INIT_LIST_HEAD(&new->list);
2794 	list_add_tail(&new->list, list);
2795 	return 0;
2796 }
2797 
2798 static void __free_recorded_refs(struct list_head *head)
2799 {
2800 	struct recorded_ref *cur;
2801 
2802 	while (!list_empty(head)) {
2803 		cur = list_entry(head->next, struct recorded_ref, list);
2804 		fs_path_free(cur->full_path);
2805 		list_del(&cur->list);
2806 		kfree(cur);
2807 	}
2808 }
2809 
2810 static void free_recorded_refs(struct send_ctx *sctx)
2811 {
2812 	__free_recorded_refs(&sctx->new_refs);
2813 	__free_recorded_refs(&sctx->deleted_refs);
2814 }
2815 
2816 /*
2817  * Renames/moves a file/dir to its orphan name. Used when the first
2818  * ref of an unprocessed inode gets overwritten and for all non empty
2819  * directories.
2820  */
2821 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2822 			  struct fs_path *path)
2823 {
2824 	int ret;
2825 	struct fs_path *orphan;
2826 
2827 	orphan = fs_path_alloc();
2828 	if (!orphan)
2829 		return -ENOMEM;
2830 
2831 	ret = gen_unique_name(sctx, ino, gen, orphan);
2832 	if (ret < 0)
2833 		goto out;
2834 
2835 	ret = send_rename(sctx, path, orphan);
2836 
2837 out:
2838 	fs_path_free(orphan);
2839 	return ret;
2840 }
2841 
2842 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2843 						   u64 dir_ino, u64 dir_gen)
2844 {
2845 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2846 	struct rb_node *parent = NULL;
2847 	struct orphan_dir_info *entry, *odi;
2848 
2849 	while (*p) {
2850 		parent = *p;
2851 		entry = rb_entry(parent, struct orphan_dir_info, node);
2852 		if (dir_ino < entry->ino)
2853 			p = &(*p)->rb_left;
2854 		else if (dir_ino > entry->ino)
2855 			p = &(*p)->rb_right;
2856 		else if (dir_gen < entry->gen)
2857 			p = &(*p)->rb_left;
2858 		else if (dir_gen > entry->gen)
2859 			p = &(*p)->rb_right;
2860 		else
2861 			return entry;
2862 	}
2863 
2864 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2865 	if (!odi)
2866 		return ERR_PTR(-ENOMEM);
2867 	odi->ino = dir_ino;
2868 	odi->gen = dir_gen;
2869 	odi->last_dir_index_offset = 0;
2870 
2871 	rb_link_node(&odi->node, parent, p);
2872 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2873 	return odi;
2874 }
2875 
2876 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2877 						   u64 dir_ino, u64 gen)
2878 {
2879 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2880 	struct orphan_dir_info *entry;
2881 
2882 	while (n) {
2883 		entry = rb_entry(n, struct orphan_dir_info, node);
2884 		if (dir_ino < entry->ino)
2885 			n = n->rb_left;
2886 		else if (dir_ino > entry->ino)
2887 			n = n->rb_right;
2888 		else if (gen < entry->gen)
2889 			n = n->rb_left;
2890 		else if (gen > entry->gen)
2891 			n = n->rb_right;
2892 		else
2893 			return entry;
2894 	}
2895 	return NULL;
2896 }
2897 
2898 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2899 {
2900 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2901 
2902 	return odi != NULL;
2903 }
2904 
2905 static void free_orphan_dir_info(struct send_ctx *sctx,
2906 				 struct orphan_dir_info *odi)
2907 {
2908 	if (!odi)
2909 		return;
2910 	rb_erase(&odi->node, &sctx->orphan_dirs);
2911 	kfree(odi);
2912 }
2913 
2914 /*
2915  * Returns 1 if a directory can be removed at this point in time.
2916  * We check this by iterating all dir items and checking if the inode behind
2917  * the dir item was already processed.
2918  */
2919 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2920 		     u64 send_progress)
2921 {
2922 	int ret = 0;
2923 	struct btrfs_root *root = sctx->parent_root;
2924 	struct btrfs_path *path;
2925 	struct btrfs_key key;
2926 	struct btrfs_key found_key;
2927 	struct btrfs_key loc;
2928 	struct btrfs_dir_item *di;
2929 	struct orphan_dir_info *odi = NULL;
2930 
2931 	/*
2932 	 * Don't try to rmdir the top/root subvolume dir.
2933 	 */
2934 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2935 		return 0;
2936 
2937 	path = alloc_path_for_send();
2938 	if (!path)
2939 		return -ENOMEM;
2940 
2941 	key.objectid = dir;
2942 	key.type = BTRFS_DIR_INDEX_KEY;
2943 	key.offset = 0;
2944 
2945 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
2946 	if (odi)
2947 		key.offset = odi->last_dir_index_offset;
2948 
2949 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2950 	if (ret < 0)
2951 		goto out;
2952 
2953 	while (1) {
2954 		struct waiting_dir_move *dm;
2955 
2956 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2957 			ret = btrfs_next_leaf(root, path);
2958 			if (ret < 0)
2959 				goto out;
2960 			else if (ret > 0)
2961 				break;
2962 			continue;
2963 		}
2964 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2965 				      path->slots[0]);
2966 		if (found_key.objectid != key.objectid ||
2967 		    found_key.type != key.type)
2968 			break;
2969 
2970 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2971 				struct btrfs_dir_item);
2972 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2973 
2974 		dm = get_waiting_dir_move(sctx, loc.objectid);
2975 		if (dm) {
2976 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2977 			if (IS_ERR(odi)) {
2978 				ret = PTR_ERR(odi);
2979 				goto out;
2980 			}
2981 			odi->gen = dir_gen;
2982 			odi->last_dir_index_offset = found_key.offset;
2983 			dm->rmdir_ino = dir;
2984 			dm->rmdir_gen = dir_gen;
2985 			ret = 0;
2986 			goto out;
2987 		}
2988 
2989 		if (loc.objectid > send_progress) {
2990 			odi = add_orphan_dir_info(sctx, dir, dir_gen);
2991 			if (IS_ERR(odi)) {
2992 				ret = PTR_ERR(odi);
2993 				goto out;
2994 			}
2995 			odi->gen = dir_gen;
2996 			odi->last_dir_index_offset = found_key.offset;
2997 			ret = 0;
2998 			goto out;
2999 		}
3000 
3001 		path->slots[0]++;
3002 	}
3003 	free_orphan_dir_info(sctx, odi);
3004 
3005 	ret = 1;
3006 
3007 out:
3008 	btrfs_free_path(path);
3009 	return ret;
3010 }
3011 
3012 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3013 {
3014 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3015 
3016 	return entry != NULL;
3017 }
3018 
3019 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3020 {
3021 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3022 	struct rb_node *parent = NULL;
3023 	struct waiting_dir_move *entry, *dm;
3024 
3025 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3026 	if (!dm)
3027 		return -ENOMEM;
3028 	dm->ino = ino;
3029 	dm->rmdir_ino = 0;
3030 	dm->rmdir_gen = 0;
3031 	dm->orphanized = orphanized;
3032 
3033 	while (*p) {
3034 		parent = *p;
3035 		entry = rb_entry(parent, struct waiting_dir_move, node);
3036 		if (ino < entry->ino) {
3037 			p = &(*p)->rb_left;
3038 		} else if (ino > entry->ino) {
3039 			p = &(*p)->rb_right;
3040 		} else {
3041 			kfree(dm);
3042 			return -EEXIST;
3043 		}
3044 	}
3045 
3046 	rb_link_node(&dm->node, parent, p);
3047 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3048 	return 0;
3049 }
3050 
3051 static struct waiting_dir_move *
3052 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3053 {
3054 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3055 	struct waiting_dir_move *entry;
3056 
3057 	while (n) {
3058 		entry = rb_entry(n, struct waiting_dir_move, node);
3059 		if (ino < entry->ino)
3060 			n = n->rb_left;
3061 		else if (ino > entry->ino)
3062 			n = n->rb_right;
3063 		else
3064 			return entry;
3065 	}
3066 	return NULL;
3067 }
3068 
3069 static void free_waiting_dir_move(struct send_ctx *sctx,
3070 				  struct waiting_dir_move *dm)
3071 {
3072 	if (!dm)
3073 		return;
3074 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3075 	kfree(dm);
3076 }
3077 
3078 static int add_pending_dir_move(struct send_ctx *sctx,
3079 				u64 ino,
3080 				u64 ino_gen,
3081 				u64 parent_ino,
3082 				struct list_head *new_refs,
3083 				struct list_head *deleted_refs,
3084 				const bool is_orphan)
3085 {
3086 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3087 	struct rb_node *parent = NULL;
3088 	struct pending_dir_move *entry = NULL, *pm;
3089 	struct recorded_ref *cur;
3090 	int exists = 0;
3091 	int ret;
3092 
3093 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3094 	if (!pm)
3095 		return -ENOMEM;
3096 	pm->parent_ino = parent_ino;
3097 	pm->ino = ino;
3098 	pm->gen = ino_gen;
3099 	INIT_LIST_HEAD(&pm->list);
3100 	INIT_LIST_HEAD(&pm->update_refs);
3101 	RB_CLEAR_NODE(&pm->node);
3102 
3103 	while (*p) {
3104 		parent = *p;
3105 		entry = rb_entry(parent, struct pending_dir_move, node);
3106 		if (parent_ino < entry->parent_ino) {
3107 			p = &(*p)->rb_left;
3108 		} else if (parent_ino > entry->parent_ino) {
3109 			p = &(*p)->rb_right;
3110 		} else {
3111 			exists = 1;
3112 			break;
3113 		}
3114 	}
3115 
3116 	list_for_each_entry(cur, deleted_refs, list) {
3117 		ret = dup_ref(cur, &pm->update_refs);
3118 		if (ret < 0)
3119 			goto out;
3120 	}
3121 	list_for_each_entry(cur, new_refs, list) {
3122 		ret = dup_ref(cur, &pm->update_refs);
3123 		if (ret < 0)
3124 			goto out;
3125 	}
3126 
3127 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3128 	if (ret)
3129 		goto out;
3130 
3131 	if (exists) {
3132 		list_add_tail(&pm->list, &entry->list);
3133 	} else {
3134 		rb_link_node(&pm->node, parent, p);
3135 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3136 	}
3137 	ret = 0;
3138 out:
3139 	if (ret) {
3140 		__free_recorded_refs(&pm->update_refs);
3141 		kfree(pm);
3142 	}
3143 	return ret;
3144 }
3145 
3146 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3147 						      u64 parent_ino)
3148 {
3149 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3150 	struct pending_dir_move *entry;
3151 
3152 	while (n) {
3153 		entry = rb_entry(n, struct pending_dir_move, node);
3154 		if (parent_ino < entry->parent_ino)
3155 			n = n->rb_left;
3156 		else if (parent_ino > entry->parent_ino)
3157 			n = n->rb_right;
3158 		else
3159 			return entry;
3160 	}
3161 	return NULL;
3162 }
3163 
3164 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3165 		     u64 ino, u64 gen, u64 *ancestor_ino)
3166 {
3167 	int ret = 0;
3168 	u64 parent_inode = 0;
3169 	u64 parent_gen = 0;
3170 	u64 start_ino = ino;
3171 
3172 	*ancestor_ino = 0;
3173 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3174 		fs_path_reset(name);
3175 
3176 		if (is_waiting_for_rm(sctx, ino, gen))
3177 			break;
3178 		if (is_waiting_for_move(sctx, ino)) {
3179 			if (*ancestor_ino == 0)
3180 				*ancestor_ino = ino;
3181 			ret = get_first_ref(sctx->parent_root, ino,
3182 					    &parent_inode, &parent_gen, name);
3183 		} else {
3184 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3185 							&parent_inode,
3186 							&parent_gen, name);
3187 			if (ret > 0) {
3188 				ret = 0;
3189 				break;
3190 			}
3191 		}
3192 		if (ret < 0)
3193 			break;
3194 		if (parent_inode == start_ino) {
3195 			ret = 1;
3196 			if (*ancestor_ino == 0)
3197 				*ancestor_ino = ino;
3198 			break;
3199 		}
3200 		ino = parent_inode;
3201 		gen = parent_gen;
3202 	}
3203 	return ret;
3204 }
3205 
3206 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3207 {
3208 	struct fs_path *from_path = NULL;
3209 	struct fs_path *to_path = NULL;
3210 	struct fs_path *name = NULL;
3211 	u64 orig_progress = sctx->send_progress;
3212 	struct recorded_ref *cur;
3213 	u64 parent_ino, parent_gen;
3214 	struct waiting_dir_move *dm = NULL;
3215 	u64 rmdir_ino = 0;
3216 	u64 rmdir_gen;
3217 	u64 ancestor;
3218 	bool is_orphan;
3219 	int ret;
3220 
3221 	name = fs_path_alloc();
3222 	from_path = fs_path_alloc();
3223 	if (!name || !from_path) {
3224 		ret = -ENOMEM;
3225 		goto out;
3226 	}
3227 
3228 	dm = get_waiting_dir_move(sctx, pm->ino);
3229 	ASSERT(dm);
3230 	rmdir_ino = dm->rmdir_ino;
3231 	rmdir_gen = dm->rmdir_gen;
3232 	is_orphan = dm->orphanized;
3233 	free_waiting_dir_move(sctx, dm);
3234 
3235 	if (is_orphan) {
3236 		ret = gen_unique_name(sctx, pm->ino,
3237 				      pm->gen, from_path);
3238 	} else {
3239 		ret = get_first_ref(sctx->parent_root, pm->ino,
3240 				    &parent_ino, &parent_gen, name);
3241 		if (ret < 0)
3242 			goto out;
3243 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3244 				   from_path);
3245 		if (ret < 0)
3246 			goto out;
3247 		ret = fs_path_add_path(from_path, name);
3248 	}
3249 	if (ret < 0)
3250 		goto out;
3251 
3252 	sctx->send_progress = sctx->cur_ino + 1;
3253 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3254 	if (ret < 0)
3255 		goto out;
3256 	if (ret) {
3257 		LIST_HEAD(deleted_refs);
3258 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3259 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3260 					   &pm->update_refs, &deleted_refs,
3261 					   is_orphan);
3262 		if (ret < 0)
3263 			goto out;
3264 		if (rmdir_ino) {
3265 			dm = get_waiting_dir_move(sctx, pm->ino);
3266 			ASSERT(dm);
3267 			dm->rmdir_ino = rmdir_ino;
3268 			dm->rmdir_gen = rmdir_gen;
3269 		}
3270 		goto out;
3271 	}
3272 	fs_path_reset(name);
3273 	to_path = name;
3274 	name = NULL;
3275 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3276 	if (ret < 0)
3277 		goto out;
3278 
3279 	ret = send_rename(sctx, from_path, to_path);
3280 	if (ret < 0)
3281 		goto out;
3282 
3283 	if (rmdir_ino) {
3284 		struct orphan_dir_info *odi;
3285 		u64 gen;
3286 
3287 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3288 		if (!odi) {
3289 			/* already deleted */
3290 			goto finish;
3291 		}
3292 		gen = odi->gen;
3293 
3294 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3295 		if (ret < 0)
3296 			goto out;
3297 		if (!ret)
3298 			goto finish;
3299 
3300 		name = fs_path_alloc();
3301 		if (!name) {
3302 			ret = -ENOMEM;
3303 			goto out;
3304 		}
3305 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3306 		if (ret < 0)
3307 			goto out;
3308 		ret = send_rmdir(sctx, name);
3309 		if (ret < 0)
3310 			goto out;
3311 	}
3312 
3313 finish:
3314 	ret = send_utimes(sctx, pm->ino, pm->gen);
3315 	if (ret < 0)
3316 		goto out;
3317 
3318 	/*
3319 	 * After rename/move, need to update the utimes of both new parent(s)
3320 	 * and old parent(s).
3321 	 */
3322 	list_for_each_entry(cur, &pm->update_refs, list) {
3323 		/*
3324 		 * The parent inode might have been deleted in the send snapshot
3325 		 */
3326 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3327 				     NULL, NULL, NULL, NULL, NULL);
3328 		if (ret == -ENOENT) {
3329 			ret = 0;
3330 			continue;
3331 		}
3332 		if (ret < 0)
3333 			goto out;
3334 
3335 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3336 		if (ret < 0)
3337 			goto out;
3338 	}
3339 
3340 out:
3341 	fs_path_free(name);
3342 	fs_path_free(from_path);
3343 	fs_path_free(to_path);
3344 	sctx->send_progress = orig_progress;
3345 
3346 	return ret;
3347 }
3348 
3349 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3350 {
3351 	if (!list_empty(&m->list))
3352 		list_del(&m->list);
3353 	if (!RB_EMPTY_NODE(&m->node))
3354 		rb_erase(&m->node, &sctx->pending_dir_moves);
3355 	__free_recorded_refs(&m->update_refs);
3356 	kfree(m);
3357 }
3358 
3359 static void tail_append_pending_moves(struct send_ctx *sctx,
3360 				      struct pending_dir_move *moves,
3361 				      struct list_head *stack)
3362 {
3363 	if (list_empty(&moves->list)) {
3364 		list_add_tail(&moves->list, stack);
3365 	} else {
3366 		LIST_HEAD(list);
3367 		list_splice_init(&moves->list, &list);
3368 		list_add_tail(&moves->list, stack);
3369 		list_splice_tail(&list, stack);
3370 	}
3371 	if (!RB_EMPTY_NODE(&moves->node)) {
3372 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3373 		RB_CLEAR_NODE(&moves->node);
3374 	}
3375 }
3376 
3377 static int apply_children_dir_moves(struct send_ctx *sctx)
3378 {
3379 	struct pending_dir_move *pm;
3380 	struct list_head stack;
3381 	u64 parent_ino = sctx->cur_ino;
3382 	int ret = 0;
3383 
3384 	pm = get_pending_dir_moves(sctx, parent_ino);
3385 	if (!pm)
3386 		return 0;
3387 
3388 	INIT_LIST_HEAD(&stack);
3389 	tail_append_pending_moves(sctx, pm, &stack);
3390 
3391 	while (!list_empty(&stack)) {
3392 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3393 		parent_ino = pm->ino;
3394 		ret = apply_dir_move(sctx, pm);
3395 		free_pending_move(sctx, pm);
3396 		if (ret)
3397 			goto out;
3398 		pm = get_pending_dir_moves(sctx, parent_ino);
3399 		if (pm)
3400 			tail_append_pending_moves(sctx, pm, &stack);
3401 	}
3402 	return 0;
3403 
3404 out:
3405 	while (!list_empty(&stack)) {
3406 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3407 		free_pending_move(sctx, pm);
3408 	}
3409 	return ret;
3410 }
3411 
3412 /*
3413  * We might need to delay a directory rename even when no ancestor directory
3414  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3415  * renamed. This happens when we rename a directory to the old name (the name
3416  * in the parent root) of some other unrelated directory that got its rename
3417  * delayed due to some ancestor with higher number that got renamed.
3418  *
3419  * Example:
3420  *
3421  * Parent snapshot:
3422  * .                                       (ino 256)
3423  * |---- a/                                (ino 257)
3424  * |     |---- file                        (ino 260)
3425  * |
3426  * |---- b/                                (ino 258)
3427  * |---- c/                                (ino 259)
3428  *
3429  * Send snapshot:
3430  * .                                       (ino 256)
3431  * |---- a/                                (ino 258)
3432  * |---- x/                                (ino 259)
3433  *       |---- y/                          (ino 257)
3434  *             |----- file                 (ino 260)
3435  *
3436  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3437  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3438  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3439  * must issue is:
3440  *
3441  * 1 - rename 259 from 'c' to 'x'
3442  * 2 - rename 257 from 'a' to 'x/y'
3443  * 3 - rename 258 from 'b' to 'a'
3444  *
3445  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3446  * be done right away and < 0 on error.
3447  */
3448 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3449 				  struct recorded_ref *parent_ref,
3450 				  const bool is_orphan)
3451 {
3452 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3453 	struct btrfs_path *path;
3454 	struct btrfs_key key;
3455 	struct btrfs_key di_key;
3456 	struct btrfs_dir_item *di;
3457 	u64 left_gen;
3458 	u64 right_gen;
3459 	int ret = 0;
3460 	struct waiting_dir_move *wdm;
3461 
3462 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3463 		return 0;
3464 
3465 	path = alloc_path_for_send();
3466 	if (!path)
3467 		return -ENOMEM;
3468 
3469 	key.objectid = parent_ref->dir;
3470 	key.type = BTRFS_DIR_ITEM_KEY;
3471 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3472 
3473 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3474 	if (ret < 0) {
3475 		goto out;
3476 	} else if (ret > 0) {
3477 		ret = 0;
3478 		goto out;
3479 	}
3480 
3481 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3482 				       parent_ref->name_len);
3483 	if (!di) {
3484 		ret = 0;
3485 		goto out;
3486 	}
3487 	/*
3488 	 * di_key.objectid has the number of the inode that has a dentry in the
3489 	 * parent directory with the same name that sctx->cur_ino is being
3490 	 * renamed to. We need to check if that inode is in the send root as
3491 	 * well and if it is currently marked as an inode with a pending rename,
3492 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3493 	 * that it happens after that other inode is renamed.
3494 	 */
3495 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3496 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3497 		ret = 0;
3498 		goto out;
3499 	}
3500 
3501 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3502 			     &left_gen, NULL, NULL, NULL, NULL);
3503 	if (ret < 0)
3504 		goto out;
3505 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3506 			     &right_gen, NULL, NULL, NULL, NULL);
3507 	if (ret < 0) {
3508 		if (ret == -ENOENT)
3509 			ret = 0;
3510 		goto out;
3511 	}
3512 
3513 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3514 	if (right_gen != left_gen) {
3515 		ret = 0;
3516 		goto out;
3517 	}
3518 
3519 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3520 	if (wdm && !wdm->orphanized) {
3521 		ret = add_pending_dir_move(sctx,
3522 					   sctx->cur_ino,
3523 					   sctx->cur_inode_gen,
3524 					   di_key.objectid,
3525 					   &sctx->new_refs,
3526 					   &sctx->deleted_refs,
3527 					   is_orphan);
3528 		if (!ret)
3529 			ret = 1;
3530 	}
3531 out:
3532 	btrfs_free_path(path);
3533 	return ret;
3534 }
3535 
3536 /*
3537  * Check if inode ino2, or any of its ancestors, is inode ino1.
3538  * Return 1 if true, 0 if false and < 0 on error.
3539  */
3540 static int check_ino_in_path(struct btrfs_root *root,
3541 			     const u64 ino1,
3542 			     const u64 ino1_gen,
3543 			     const u64 ino2,
3544 			     const u64 ino2_gen,
3545 			     struct fs_path *fs_path)
3546 {
3547 	u64 ino = ino2;
3548 
3549 	if (ino1 == ino2)
3550 		return ino1_gen == ino2_gen;
3551 
3552 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3553 		u64 parent;
3554 		u64 parent_gen;
3555 		int ret;
3556 
3557 		fs_path_reset(fs_path);
3558 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3559 		if (ret < 0)
3560 			return ret;
3561 		if (parent == ino1)
3562 			return parent_gen == ino1_gen;
3563 		ino = parent;
3564 	}
3565 	return 0;
3566 }
3567 
3568 /*
3569  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3570  * possible path (in case ino2 is not a directory and has multiple hard links).
3571  * Return 1 if true, 0 if false and < 0 on error.
3572  */
3573 static int is_ancestor(struct btrfs_root *root,
3574 		       const u64 ino1,
3575 		       const u64 ino1_gen,
3576 		       const u64 ino2,
3577 		       struct fs_path *fs_path)
3578 {
3579 	bool free_fs_path = false;
3580 	int ret = 0;
3581 	struct btrfs_path *path = NULL;
3582 	struct btrfs_key key;
3583 
3584 	if (!fs_path) {
3585 		fs_path = fs_path_alloc();
3586 		if (!fs_path)
3587 			return -ENOMEM;
3588 		free_fs_path = true;
3589 	}
3590 
3591 	path = alloc_path_for_send();
3592 	if (!path) {
3593 		ret = -ENOMEM;
3594 		goto out;
3595 	}
3596 
3597 	key.objectid = ino2;
3598 	key.type = BTRFS_INODE_REF_KEY;
3599 	key.offset = 0;
3600 
3601 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3602 	if (ret < 0)
3603 		goto out;
3604 
3605 	while (true) {
3606 		struct extent_buffer *leaf = path->nodes[0];
3607 		int slot = path->slots[0];
3608 		u32 cur_offset = 0;
3609 		u32 item_size;
3610 
3611 		if (slot >= btrfs_header_nritems(leaf)) {
3612 			ret = btrfs_next_leaf(root, path);
3613 			if (ret < 0)
3614 				goto out;
3615 			if (ret > 0)
3616 				break;
3617 			continue;
3618 		}
3619 
3620 		btrfs_item_key_to_cpu(leaf, &key, slot);
3621 		if (key.objectid != ino2)
3622 			break;
3623 		if (key.type != BTRFS_INODE_REF_KEY &&
3624 		    key.type != BTRFS_INODE_EXTREF_KEY)
3625 			break;
3626 
3627 		item_size = btrfs_item_size_nr(leaf, slot);
3628 		while (cur_offset < item_size) {
3629 			u64 parent;
3630 			u64 parent_gen;
3631 
3632 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3633 				unsigned long ptr;
3634 				struct btrfs_inode_extref *extref;
3635 
3636 				ptr = btrfs_item_ptr_offset(leaf, slot);
3637 				extref = (struct btrfs_inode_extref *)
3638 					(ptr + cur_offset);
3639 				parent = btrfs_inode_extref_parent(leaf,
3640 								   extref);
3641 				cur_offset += sizeof(*extref);
3642 				cur_offset += btrfs_inode_extref_name_len(leaf,
3643 								  extref);
3644 			} else {
3645 				parent = key.offset;
3646 				cur_offset = item_size;
3647 			}
3648 
3649 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3650 					     NULL, NULL, NULL, NULL);
3651 			if (ret < 0)
3652 				goto out;
3653 			ret = check_ino_in_path(root, ino1, ino1_gen,
3654 						parent, parent_gen, fs_path);
3655 			if (ret)
3656 				goto out;
3657 		}
3658 		path->slots[0]++;
3659 	}
3660 	ret = 0;
3661  out:
3662 	btrfs_free_path(path);
3663 	if (free_fs_path)
3664 		fs_path_free(fs_path);
3665 	return ret;
3666 }
3667 
3668 static int wait_for_parent_move(struct send_ctx *sctx,
3669 				struct recorded_ref *parent_ref,
3670 				const bool is_orphan)
3671 {
3672 	int ret = 0;
3673 	u64 ino = parent_ref->dir;
3674 	u64 ino_gen = parent_ref->dir_gen;
3675 	u64 parent_ino_before, parent_ino_after;
3676 	struct fs_path *path_before = NULL;
3677 	struct fs_path *path_after = NULL;
3678 	int len1, len2;
3679 
3680 	path_after = fs_path_alloc();
3681 	path_before = fs_path_alloc();
3682 	if (!path_after || !path_before) {
3683 		ret = -ENOMEM;
3684 		goto out;
3685 	}
3686 
3687 	/*
3688 	 * Our current directory inode may not yet be renamed/moved because some
3689 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3690 	 * such ancestor exists and make sure our own rename/move happens after
3691 	 * that ancestor is processed to avoid path build infinite loops (done
3692 	 * at get_cur_path()).
3693 	 */
3694 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3695 		u64 parent_ino_after_gen;
3696 
3697 		if (is_waiting_for_move(sctx, ino)) {
3698 			/*
3699 			 * If the current inode is an ancestor of ino in the
3700 			 * parent root, we need to delay the rename of the
3701 			 * current inode, otherwise don't delayed the rename
3702 			 * because we can end up with a circular dependency
3703 			 * of renames, resulting in some directories never
3704 			 * getting the respective rename operations issued in
3705 			 * the send stream or getting into infinite path build
3706 			 * loops.
3707 			 */
3708 			ret = is_ancestor(sctx->parent_root,
3709 					  sctx->cur_ino, sctx->cur_inode_gen,
3710 					  ino, path_before);
3711 			if (ret)
3712 				break;
3713 		}
3714 
3715 		fs_path_reset(path_before);
3716 		fs_path_reset(path_after);
3717 
3718 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3719 				    &parent_ino_after_gen, path_after);
3720 		if (ret < 0)
3721 			goto out;
3722 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3723 				    NULL, path_before);
3724 		if (ret < 0 && ret != -ENOENT) {
3725 			goto out;
3726 		} else if (ret == -ENOENT) {
3727 			ret = 0;
3728 			break;
3729 		}
3730 
3731 		len1 = fs_path_len(path_before);
3732 		len2 = fs_path_len(path_after);
3733 		if (ino > sctx->cur_ino &&
3734 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3735 		     memcmp(path_before->start, path_after->start, len1))) {
3736 			u64 parent_ino_gen;
3737 
3738 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3739 					     &parent_ino_gen, NULL, NULL, NULL,
3740 					     NULL);
3741 			if (ret < 0)
3742 				goto out;
3743 			if (ino_gen == parent_ino_gen) {
3744 				ret = 1;
3745 				break;
3746 			}
3747 		}
3748 		ino = parent_ino_after;
3749 		ino_gen = parent_ino_after_gen;
3750 	}
3751 
3752 out:
3753 	fs_path_free(path_before);
3754 	fs_path_free(path_after);
3755 
3756 	if (ret == 1) {
3757 		ret = add_pending_dir_move(sctx,
3758 					   sctx->cur_ino,
3759 					   sctx->cur_inode_gen,
3760 					   ino,
3761 					   &sctx->new_refs,
3762 					   &sctx->deleted_refs,
3763 					   is_orphan);
3764 		if (!ret)
3765 			ret = 1;
3766 	}
3767 
3768 	return ret;
3769 }
3770 
3771 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3772 {
3773 	int ret;
3774 	struct fs_path *new_path;
3775 
3776 	/*
3777 	 * Our reference's name member points to its full_path member string, so
3778 	 * we use here a new path.
3779 	 */
3780 	new_path = fs_path_alloc();
3781 	if (!new_path)
3782 		return -ENOMEM;
3783 
3784 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3785 	if (ret < 0) {
3786 		fs_path_free(new_path);
3787 		return ret;
3788 	}
3789 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3790 	if (ret < 0) {
3791 		fs_path_free(new_path);
3792 		return ret;
3793 	}
3794 
3795 	fs_path_free(ref->full_path);
3796 	set_ref_path(ref, new_path);
3797 
3798 	return 0;
3799 }
3800 
3801 /*
3802  * When processing the new references for an inode we may orphanize an existing
3803  * directory inode because its old name conflicts with one of the new references
3804  * of the current inode. Later, when processing another new reference of our
3805  * inode, we might need to orphanize another inode, but the path we have in the
3806  * reference reflects the pre-orphanization name of the directory we previously
3807  * orphanized. For example:
3808  *
3809  * parent snapshot looks like:
3810  *
3811  * .                                     (ino 256)
3812  * |----- f1                             (ino 257)
3813  * |----- f2                             (ino 258)
3814  * |----- d1/                            (ino 259)
3815  *        |----- d2/                     (ino 260)
3816  *
3817  * send snapshot looks like:
3818  *
3819  * .                                     (ino 256)
3820  * |----- d1                             (ino 258)
3821  * |----- f2/                            (ino 259)
3822  *        |----- f2_link/                (ino 260)
3823  *        |       |----- f1              (ino 257)
3824  *        |
3825  *        |----- d2                      (ino 258)
3826  *
3827  * When processing inode 257 we compute the name for inode 259 as "d1", and we
3828  * cache it in the name cache. Later when we start processing inode 258, when
3829  * collecting all its new references we set a full path of "d1/d2" for its new
3830  * reference with name "d2". When we start processing the new references we
3831  * start by processing the new reference with name "d1", and this results in
3832  * orphanizing inode 259, since its old reference causes a conflict. Then we
3833  * move on the next new reference, with name "d2", and we find out we must
3834  * orphanize inode 260, as its old reference conflicts with ours - but for the
3835  * orphanization we use a source path corresponding to the path we stored in the
3836  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3837  * receiver fail since the path component "d1/" no longer exists, it was renamed
3838  * to "o259-6-0/" when processing the previous new reference. So in this case we
3839  * must recompute the path in the new reference and use it for the new
3840  * orphanization operation.
3841  */
3842 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3843 {
3844 	char *name;
3845 	int ret;
3846 
3847 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3848 	if (!name)
3849 		return -ENOMEM;
3850 
3851 	fs_path_reset(ref->full_path);
3852 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3853 	if (ret < 0)
3854 		goto out;
3855 
3856 	ret = fs_path_add(ref->full_path, name, ref->name_len);
3857 	if (ret < 0)
3858 		goto out;
3859 
3860 	/* Update the reference's base name pointer. */
3861 	set_ref_path(ref, ref->full_path);
3862 out:
3863 	kfree(name);
3864 	return ret;
3865 }
3866 
3867 /*
3868  * This does all the move/link/unlink/rmdir magic.
3869  */
3870 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3871 {
3872 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3873 	int ret = 0;
3874 	struct recorded_ref *cur;
3875 	struct recorded_ref *cur2;
3876 	struct list_head check_dirs;
3877 	struct fs_path *valid_path = NULL;
3878 	u64 ow_inode = 0;
3879 	u64 ow_gen;
3880 	u64 ow_mode;
3881 	int did_overwrite = 0;
3882 	int is_orphan = 0;
3883 	u64 last_dir_ino_rm = 0;
3884 	bool can_rename = true;
3885 	bool orphanized_dir = false;
3886 	bool orphanized_ancestor = false;
3887 
3888 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3889 
3890 	/*
3891 	 * This should never happen as the root dir always has the same ref
3892 	 * which is always '..'
3893 	 */
3894 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3895 	INIT_LIST_HEAD(&check_dirs);
3896 
3897 	valid_path = fs_path_alloc();
3898 	if (!valid_path) {
3899 		ret = -ENOMEM;
3900 		goto out;
3901 	}
3902 
3903 	/*
3904 	 * First, check if the first ref of the current inode was overwritten
3905 	 * before. If yes, we know that the current inode was already orphanized
3906 	 * and thus use the orphan name. If not, we can use get_cur_path to
3907 	 * get the path of the first ref as it would like while receiving at
3908 	 * this point in time.
3909 	 * New inodes are always orphan at the beginning, so force to use the
3910 	 * orphan name in this case.
3911 	 * The first ref is stored in valid_path and will be updated if it
3912 	 * gets moved around.
3913 	 */
3914 	if (!sctx->cur_inode_new) {
3915 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3916 				sctx->cur_inode_gen);
3917 		if (ret < 0)
3918 			goto out;
3919 		if (ret)
3920 			did_overwrite = 1;
3921 	}
3922 	if (sctx->cur_inode_new || did_overwrite) {
3923 		ret = gen_unique_name(sctx, sctx->cur_ino,
3924 				sctx->cur_inode_gen, valid_path);
3925 		if (ret < 0)
3926 			goto out;
3927 		is_orphan = 1;
3928 	} else {
3929 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3930 				valid_path);
3931 		if (ret < 0)
3932 			goto out;
3933 	}
3934 
3935 	/*
3936 	 * Before doing any rename and link operations, do a first pass on the
3937 	 * new references to orphanize any unprocessed inodes that may have a
3938 	 * reference that conflicts with one of the new references of the current
3939 	 * inode. This needs to happen first because a new reference may conflict
3940 	 * with the old reference of a parent directory, so we must make sure
3941 	 * that the path used for link and rename commands don't use an
3942 	 * orphanized name when an ancestor was not yet orphanized.
3943 	 *
3944 	 * Example:
3945 	 *
3946 	 * Parent snapshot:
3947 	 *
3948 	 * .                                                      (ino 256)
3949 	 * |----- testdir/                                        (ino 259)
3950 	 * |          |----- a                                    (ino 257)
3951 	 * |
3952 	 * |----- b                                               (ino 258)
3953 	 *
3954 	 * Send snapshot:
3955 	 *
3956 	 * .                                                      (ino 256)
3957 	 * |----- testdir_2/                                      (ino 259)
3958 	 * |          |----- a                                    (ino 260)
3959 	 * |
3960 	 * |----- testdir                                         (ino 257)
3961 	 * |----- b                                               (ino 257)
3962 	 * |----- b2                                              (ino 258)
3963 	 *
3964 	 * Processing the new reference for inode 257 with name "b" may happen
3965 	 * before processing the new reference with name "testdir". If so, we
3966 	 * must make sure that by the time we send a link command to create the
3967 	 * hard link "b", inode 259 was already orphanized, since the generated
3968 	 * path in "valid_path" already contains the orphanized name for 259.
3969 	 * We are processing inode 257, so only later when processing 259 we do
3970 	 * the rename operation to change its temporary (orphanized) name to
3971 	 * "testdir_2".
3972 	 */
3973 	list_for_each_entry(cur, &sctx->new_refs, list) {
3974 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3975 		if (ret < 0)
3976 			goto out;
3977 		if (ret == inode_state_will_create)
3978 			continue;
3979 
3980 		/*
3981 		 * Check if this new ref would overwrite the first ref of another
3982 		 * unprocessed inode. If yes, orphanize the overwritten inode.
3983 		 * If we find an overwritten ref that is not the first ref,
3984 		 * simply unlink it.
3985 		 */
3986 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3987 				cur->name, cur->name_len,
3988 				&ow_inode, &ow_gen, &ow_mode);
3989 		if (ret < 0)
3990 			goto out;
3991 		if (ret) {
3992 			ret = is_first_ref(sctx->parent_root,
3993 					   ow_inode, cur->dir, cur->name,
3994 					   cur->name_len);
3995 			if (ret < 0)
3996 				goto out;
3997 			if (ret) {
3998 				struct name_cache_entry *nce;
3999 				struct waiting_dir_move *wdm;
4000 
4001 				if (orphanized_dir) {
4002 					ret = refresh_ref_path(sctx, cur);
4003 					if (ret < 0)
4004 						goto out;
4005 				}
4006 
4007 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4008 						cur->full_path);
4009 				if (ret < 0)
4010 					goto out;
4011 				if (S_ISDIR(ow_mode))
4012 					orphanized_dir = true;
4013 
4014 				/*
4015 				 * If ow_inode has its rename operation delayed
4016 				 * make sure that its orphanized name is used in
4017 				 * the source path when performing its rename
4018 				 * operation.
4019 				 */
4020 				if (is_waiting_for_move(sctx, ow_inode)) {
4021 					wdm = get_waiting_dir_move(sctx,
4022 								   ow_inode);
4023 					ASSERT(wdm);
4024 					wdm->orphanized = true;
4025 				}
4026 
4027 				/*
4028 				 * Make sure we clear our orphanized inode's
4029 				 * name from the name cache. This is because the
4030 				 * inode ow_inode might be an ancestor of some
4031 				 * other inode that will be orphanized as well
4032 				 * later and has an inode number greater than
4033 				 * sctx->send_progress. We need to prevent
4034 				 * future name lookups from using the old name
4035 				 * and get instead the orphan name.
4036 				 */
4037 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4038 				if (nce) {
4039 					name_cache_delete(sctx, nce);
4040 					kfree(nce);
4041 				}
4042 
4043 				/*
4044 				 * ow_inode might currently be an ancestor of
4045 				 * cur_ino, therefore compute valid_path (the
4046 				 * current path of cur_ino) again because it
4047 				 * might contain the pre-orphanization name of
4048 				 * ow_inode, which is no longer valid.
4049 				 */
4050 				ret = is_ancestor(sctx->parent_root,
4051 						  ow_inode, ow_gen,
4052 						  sctx->cur_ino, NULL);
4053 				if (ret > 0) {
4054 					orphanized_ancestor = true;
4055 					fs_path_reset(valid_path);
4056 					ret = get_cur_path(sctx, sctx->cur_ino,
4057 							   sctx->cur_inode_gen,
4058 							   valid_path);
4059 				}
4060 				if (ret < 0)
4061 					goto out;
4062 			} else {
4063 				/*
4064 				 * If we previously orphanized a directory that
4065 				 * collided with a new reference that we already
4066 				 * processed, recompute the current path because
4067 				 * that directory may be part of the path.
4068 				 */
4069 				if (orphanized_dir) {
4070 					ret = refresh_ref_path(sctx, cur);
4071 					if (ret < 0)
4072 						goto out;
4073 				}
4074 				ret = send_unlink(sctx, cur->full_path);
4075 				if (ret < 0)
4076 					goto out;
4077 			}
4078 		}
4079 
4080 	}
4081 
4082 	list_for_each_entry(cur, &sctx->new_refs, list) {
4083 		/*
4084 		 * We may have refs where the parent directory does not exist
4085 		 * yet. This happens if the parent directories inum is higher
4086 		 * than the current inum. To handle this case, we create the
4087 		 * parent directory out of order. But we need to check if this
4088 		 * did already happen before due to other refs in the same dir.
4089 		 */
4090 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4091 		if (ret < 0)
4092 			goto out;
4093 		if (ret == inode_state_will_create) {
4094 			ret = 0;
4095 			/*
4096 			 * First check if any of the current inodes refs did
4097 			 * already create the dir.
4098 			 */
4099 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4100 				if (cur == cur2)
4101 					break;
4102 				if (cur2->dir == cur->dir) {
4103 					ret = 1;
4104 					break;
4105 				}
4106 			}
4107 
4108 			/*
4109 			 * If that did not happen, check if a previous inode
4110 			 * did already create the dir.
4111 			 */
4112 			if (!ret)
4113 				ret = did_create_dir(sctx, cur->dir);
4114 			if (ret < 0)
4115 				goto out;
4116 			if (!ret) {
4117 				ret = send_create_inode(sctx, cur->dir);
4118 				if (ret < 0)
4119 					goto out;
4120 			}
4121 		}
4122 
4123 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4124 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4125 			if (ret < 0)
4126 				goto out;
4127 			if (ret == 1) {
4128 				can_rename = false;
4129 				*pending_move = 1;
4130 			}
4131 		}
4132 
4133 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4134 		    can_rename) {
4135 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4136 			if (ret < 0)
4137 				goto out;
4138 			if (ret == 1) {
4139 				can_rename = false;
4140 				*pending_move = 1;
4141 			}
4142 		}
4143 
4144 		/*
4145 		 * link/move the ref to the new place. If we have an orphan
4146 		 * inode, move it and update valid_path. If not, link or move
4147 		 * it depending on the inode mode.
4148 		 */
4149 		if (is_orphan && can_rename) {
4150 			ret = send_rename(sctx, valid_path, cur->full_path);
4151 			if (ret < 0)
4152 				goto out;
4153 			is_orphan = 0;
4154 			ret = fs_path_copy(valid_path, cur->full_path);
4155 			if (ret < 0)
4156 				goto out;
4157 		} else if (can_rename) {
4158 			if (S_ISDIR(sctx->cur_inode_mode)) {
4159 				/*
4160 				 * Dirs can't be linked, so move it. For moved
4161 				 * dirs, we always have one new and one deleted
4162 				 * ref. The deleted ref is ignored later.
4163 				 */
4164 				ret = send_rename(sctx, valid_path,
4165 						  cur->full_path);
4166 				if (!ret)
4167 					ret = fs_path_copy(valid_path,
4168 							   cur->full_path);
4169 				if (ret < 0)
4170 					goto out;
4171 			} else {
4172 				/*
4173 				 * We might have previously orphanized an inode
4174 				 * which is an ancestor of our current inode,
4175 				 * so our reference's full path, which was
4176 				 * computed before any such orphanizations, must
4177 				 * be updated.
4178 				 */
4179 				if (orphanized_dir) {
4180 					ret = update_ref_path(sctx, cur);
4181 					if (ret < 0)
4182 						goto out;
4183 				}
4184 				ret = send_link(sctx, cur->full_path,
4185 						valid_path);
4186 				if (ret < 0)
4187 					goto out;
4188 			}
4189 		}
4190 		ret = dup_ref(cur, &check_dirs);
4191 		if (ret < 0)
4192 			goto out;
4193 	}
4194 
4195 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4196 		/*
4197 		 * Check if we can already rmdir the directory. If not,
4198 		 * orphanize it. For every dir item inside that gets deleted
4199 		 * later, we do this check again and rmdir it then if possible.
4200 		 * See the use of check_dirs for more details.
4201 		 */
4202 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4203 				sctx->cur_ino);
4204 		if (ret < 0)
4205 			goto out;
4206 		if (ret) {
4207 			ret = send_rmdir(sctx, valid_path);
4208 			if (ret < 0)
4209 				goto out;
4210 		} else if (!is_orphan) {
4211 			ret = orphanize_inode(sctx, sctx->cur_ino,
4212 					sctx->cur_inode_gen, valid_path);
4213 			if (ret < 0)
4214 				goto out;
4215 			is_orphan = 1;
4216 		}
4217 
4218 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4219 			ret = dup_ref(cur, &check_dirs);
4220 			if (ret < 0)
4221 				goto out;
4222 		}
4223 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4224 		   !list_empty(&sctx->deleted_refs)) {
4225 		/*
4226 		 * We have a moved dir. Add the old parent to check_dirs
4227 		 */
4228 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4229 				list);
4230 		ret = dup_ref(cur, &check_dirs);
4231 		if (ret < 0)
4232 			goto out;
4233 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4234 		/*
4235 		 * We have a non dir inode. Go through all deleted refs and
4236 		 * unlink them if they were not already overwritten by other
4237 		 * inodes.
4238 		 */
4239 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4240 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4241 					sctx->cur_ino, sctx->cur_inode_gen,
4242 					cur->name, cur->name_len);
4243 			if (ret < 0)
4244 				goto out;
4245 			if (!ret) {
4246 				/*
4247 				 * If we orphanized any ancestor before, we need
4248 				 * to recompute the full path for deleted names,
4249 				 * since any such path was computed before we
4250 				 * processed any references and orphanized any
4251 				 * ancestor inode.
4252 				 */
4253 				if (orphanized_ancestor) {
4254 					ret = update_ref_path(sctx, cur);
4255 					if (ret < 0)
4256 						goto out;
4257 				}
4258 				ret = send_unlink(sctx, cur->full_path);
4259 				if (ret < 0)
4260 					goto out;
4261 			}
4262 			ret = dup_ref(cur, &check_dirs);
4263 			if (ret < 0)
4264 				goto out;
4265 		}
4266 		/*
4267 		 * If the inode is still orphan, unlink the orphan. This may
4268 		 * happen when a previous inode did overwrite the first ref
4269 		 * of this inode and no new refs were added for the current
4270 		 * inode. Unlinking does not mean that the inode is deleted in
4271 		 * all cases. There may still be links to this inode in other
4272 		 * places.
4273 		 */
4274 		if (is_orphan) {
4275 			ret = send_unlink(sctx, valid_path);
4276 			if (ret < 0)
4277 				goto out;
4278 		}
4279 	}
4280 
4281 	/*
4282 	 * We did collect all parent dirs where cur_inode was once located. We
4283 	 * now go through all these dirs and check if they are pending for
4284 	 * deletion and if it's finally possible to perform the rmdir now.
4285 	 * We also update the inode stats of the parent dirs here.
4286 	 */
4287 	list_for_each_entry(cur, &check_dirs, list) {
4288 		/*
4289 		 * In case we had refs into dirs that were not processed yet,
4290 		 * we don't need to do the utime and rmdir logic for these dirs.
4291 		 * The dir will be processed later.
4292 		 */
4293 		if (cur->dir > sctx->cur_ino)
4294 			continue;
4295 
4296 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4297 		if (ret < 0)
4298 			goto out;
4299 
4300 		if (ret == inode_state_did_create ||
4301 		    ret == inode_state_no_change) {
4302 			/* TODO delayed utimes */
4303 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4304 			if (ret < 0)
4305 				goto out;
4306 		} else if (ret == inode_state_did_delete &&
4307 			   cur->dir != last_dir_ino_rm) {
4308 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4309 					sctx->cur_ino);
4310 			if (ret < 0)
4311 				goto out;
4312 			if (ret) {
4313 				ret = get_cur_path(sctx, cur->dir,
4314 						   cur->dir_gen, valid_path);
4315 				if (ret < 0)
4316 					goto out;
4317 				ret = send_rmdir(sctx, valid_path);
4318 				if (ret < 0)
4319 					goto out;
4320 				last_dir_ino_rm = cur->dir;
4321 			}
4322 		}
4323 	}
4324 
4325 	ret = 0;
4326 
4327 out:
4328 	__free_recorded_refs(&check_dirs);
4329 	free_recorded_refs(sctx);
4330 	fs_path_free(valid_path);
4331 	return ret;
4332 }
4333 
4334 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4335 		      void *ctx, struct list_head *refs)
4336 {
4337 	int ret = 0;
4338 	struct send_ctx *sctx = ctx;
4339 	struct fs_path *p;
4340 	u64 gen;
4341 
4342 	p = fs_path_alloc();
4343 	if (!p)
4344 		return -ENOMEM;
4345 
4346 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4347 			NULL, NULL);
4348 	if (ret < 0)
4349 		goto out;
4350 
4351 	ret = get_cur_path(sctx, dir, gen, p);
4352 	if (ret < 0)
4353 		goto out;
4354 	ret = fs_path_add_path(p, name);
4355 	if (ret < 0)
4356 		goto out;
4357 
4358 	ret = __record_ref(refs, dir, gen, p);
4359 
4360 out:
4361 	if (ret)
4362 		fs_path_free(p);
4363 	return ret;
4364 }
4365 
4366 static int __record_new_ref(int num, u64 dir, int index,
4367 			    struct fs_path *name,
4368 			    void *ctx)
4369 {
4370 	struct send_ctx *sctx = ctx;
4371 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4372 }
4373 
4374 
4375 static int __record_deleted_ref(int num, u64 dir, int index,
4376 				struct fs_path *name,
4377 				void *ctx)
4378 {
4379 	struct send_ctx *sctx = ctx;
4380 	return record_ref(sctx->parent_root, dir, name, ctx,
4381 			  &sctx->deleted_refs);
4382 }
4383 
4384 static int record_new_ref(struct send_ctx *sctx)
4385 {
4386 	int ret;
4387 
4388 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4389 				sctx->cmp_key, 0, __record_new_ref, sctx);
4390 	if (ret < 0)
4391 		goto out;
4392 	ret = 0;
4393 
4394 out:
4395 	return ret;
4396 }
4397 
4398 static int record_deleted_ref(struct send_ctx *sctx)
4399 {
4400 	int ret;
4401 
4402 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4403 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4404 	if (ret < 0)
4405 		goto out;
4406 	ret = 0;
4407 
4408 out:
4409 	return ret;
4410 }
4411 
4412 struct find_ref_ctx {
4413 	u64 dir;
4414 	u64 dir_gen;
4415 	struct btrfs_root *root;
4416 	struct fs_path *name;
4417 	int found_idx;
4418 };
4419 
4420 static int __find_iref(int num, u64 dir, int index,
4421 		       struct fs_path *name,
4422 		       void *ctx_)
4423 {
4424 	struct find_ref_ctx *ctx = ctx_;
4425 	u64 dir_gen;
4426 	int ret;
4427 
4428 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4429 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4430 		/*
4431 		 * To avoid doing extra lookups we'll only do this if everything
4432 		 * else matches.
4433 		 */
4434 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4435 				     NULL, NULL, NULL);
4436 		if (ret)
4437 			return ret;
4438 		if (dir_gen != ctx->dir_gen)
4439 			return 0;
4440 		ctx->found_idx = num;
4441 		return 1;
4442 	}
4443 	return 0;
4444 }
4445 
4446 static int find_iref(struct btrfs_root *root,
4447 		     struct btrfs_path *path,
4448 		     struct btrfs_key *key,
4449 		     u64 dir, u64 dir_gen, struct fs_path *name)
4450 {
4451 	int ret;
4452 	struct find_ref_ctx ctx;
4453 
4454 	ctx.dir = dir;
4455 	ctx.name = name;
4456 	ctx.dir_gen = dir_gen;
4457 	ctx.found_idx = -1;
4458 	ctx.root = root;
4459 
4460 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4461 	if (ret < 0)
4462 		return ret;
4463 
4464 	if (ctx.found_idx == -1)
4465 		return -ENOENT;
4466 
4467 	return ctx.found_idx;
4468 }
4469 
4470 static int __record_changed_new_ref(int num, u64 dir, int index,
4471 				    struct fs_path *name,
4472 				    void *ctx)
4473 {
4474 	u64 dir_gen;
4475 	int ret;
4476 	struct send_ctx *sctx = ctx;
4477 
4478 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4479 			     NULL, NULL, NULL);
4480 	if (ret)
4481 		return ret;
4482 
4483 	ret = find_iref(sctx->parent_root, sctx->right_path,
4484 			sctx->cmp_key, dir, dir_gen, name);
4485 	if (ret == -ENOENT)
4486 		ret = __record_new_ref(num, dir, index, name, sctx);
4487 	else if (ret > 0)
4488 		ret = 0;
4489 
4490 	return ret;
4491 }
4492 
4493 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4494 					struct fs_path *name,
4495 					void *ctx)
4496 {
4497 	u64 dir_gen;
4498 	int ret;
4499 	struct send_ctx *sctx = ctx;
4500 
4501 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4502 			     NULL, NULL, NULL);
4503 	if (ret)
4504 		return ret;
4505 
4506 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4507 			dir, dir_gen, name);
4508 	if (ret == -ENOENT)
4509 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4510 	else if (ret > 0)
4511 		ret = 0;
4512 
4513 	return ret;
4514 }
4515 
4516 static int record_changed_ref(struct send_ctx *sctx)
4517 {
4518 	int ret = 0;
4519 
4520 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4521 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4522 	if (ret < 0)
4523 		goto out;
4524 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4525 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4526 	if (ret < 0)
4527 		goto out;
4528 	ret = 0;
4529 
4530 out:
4531 	return ret;
4532 }
4533 
4534 /*
4535  * Record and process all refs at once. Needed when an inode changes the
4536  * generation number, which means that it was deleted and recreated.
4537  */
4538 static int process_all_refs(struct send_ctx *sctx,
4539 			    enum btrfs_compare_tree_result cmd)
4540 {
4541 	int ret;
4542 	struct btrfs_root *root;
4543 	struct btrfs_path *path;
4544 	struct btrfs_key key;
4545 	struct btrfs_key found_key;
4546 	struct extent_buffer *eb;
4547 	int slot;
4548 	iterate_inode_ref_t cb;
4549 	int pending_move = 0;
4550 
4551 	path = alloc_path_for_send();
4552 	if (!path)
4553 		return -ENOMEM;
4554 
4555 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4556 		root = sctx->send_root;
4557 		cb = __record_new_ref;
4558 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4559 		root = sctx->parent_root;
4560 		cb = __record_deleted_ref;
4561 	} else {
4562 		btrfs_err(sctx->send_root->fs_info,
4563 				"Wrong command %d in process_all_refs", cmd);
4564 		ret = -EINVAL;
4565 		goto out;
4566 	}
4567 
4568 	key.objectid = sctx->cmp_key->objectid;
4569 	key.type = BTRFS_INODE_REF_KEY;
4570 	key.offset = 0;
4571 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4572 	if (ret < 0)
4573 		goto out;
4574 
4575 	while (1) {
4576 		eb = path->nodes[0];
4577 		slot = path->slots[0];
4578 		if (slot >= btrfs_header_nritems(eb)) {
4579 			ret = btrfs_next_leaf(root, path);
4580 			if (ret < 0)
4581 				goto out;
4582 			else if (ret > 0)
4583 				break;
4584 			continue;
4585 		}
4586 
4587 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4588 
4589 		if (found_key.objectid != key.objectid ||
4590 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4591 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4592 			break;
4593 
4594 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4595 		if (ret < 0)
4596 			goto out;
4597 
4598 		path->slots[0]++;
4599 	}
4600 	btrfs_release_path(path);
4601 
4602 	/*
4603 	 * We don't actually care about pending_move as we are simply
4604 	 * re-creating this inode and will be rename'ing it into place once we
4605 	 * rename the parent directory.
4606 	 */
4607 	ret = process_recorded_refs(sctx, &pending_move);
4608 out:
4609 	btrfs_free_path(path);
4610 	return ret;
4611 }
4612 
4613 static int send_set_xattr(struct send_ctx *sctx,
4614 			  struct fs_path *path,
4615 			  const char *name, int name_len,
4616 			  const char *data, int data_len)
4617 {
4618 	int ret = 0;
4619 
4620 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4621 	if (ret < 0)
4622 		goto out;
4623 
4624 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4625 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4626 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4627 
4628 	ret = send_cmd(sctx);
4629 
4630 tlv_put_failure:
4631 out:
4632 	return ret;
4633 }
4634 
4635 static int send_remove_xattr(struct send_ctx *sctx,
4636 			  struct fs_path *path,
4637 			  const char *name, int name_len)
4638 {
4639 	int ret = 0;
4640 
4641 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4642 	if (ret < 0)
4643 		goto out;
4644 
4645 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4646 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4647 
4648 	ret = send_cmd(sctx);
4649 
4650 tlv_put_failure:
4651 out:
4652 	return ret;
4653 }
4654 
4655 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4656 			       const char *name, int name_len,
4657 			       const char *data, int data_len,
4658 			       u8 type, void *ctx)
4659 {
4660 	int ret;
4661 	struct send_ctx *sctx = ctx;
4662 	struct fs_path *p;
4663 	struct posix_acl_xattr_header dummy_acl;
4664 
4665 	/* Capabilities are emitted by finish_inode_if_needed */
4666 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4667 		return 0;
4668 
4669 	p = fs_path_alloc();
4670 	if (!p)
4671 		return -ENOMEM;
4672 
4673 	/*
4674 	 * This hack is needed because empty acls are stored as zero byte
4675 	 * data in xattrs. Problem with that is, that receiving these zero byte
4676 	 * acls will fail later. To fix this, we send a dummy acl list that
4677 	 * only contains the version number and no entries.
4678 	 */
4679 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4680 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4681 		if (data_len == 0) {
4682 			dummy_acl.a_version =
4683 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4684 			data = (char *)&dummy_acl;
4685 			data_len = sizeof(dummy_acl);
4686 		}
4687 	}
4688 
4689 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4690 	if (ret < 0)
4691 		goto out;
4692 
4693 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4694 
4695 out:
4696 	fs_path_free(p);
4697 	return ret;
4698 }
4699 
4700 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4701 				   const char *name, int name_len,
4702 				   const char *data, int data_len,
4703 				   u8 type, void *ctx)
4704 {
4705 	int ret;
4706 	struct send_ctx *sctx = ctx;
4707 	struct fs_path *p;
4708 
4709 	p = fs_path_alloc();
4710 	if (!p)
4711 		return -ENOMEM;
4712 
4713 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4714 	if (ret < 0)
4715 		goto out;
4716 
4717 	ret = send_remove_xattr(sctx, p, name, name_len);
4718 
4719 out:
4720 	fs_path_free(p);
4721 	return ret;
4722 }
4723 
4724 static int process_new_xattr(struct send_ctx *sctx)
4725 {
4726 	int ret = 0;
4727 
4728 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4729 			       __process_new_xattr, sctx);
4730 
4731 	return ret;
4732 }
4733 
4734 static int process_deleted_xattr(struct send_ctx *sctx)
4735 {
4736 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4737 				__process_deleted_xattr, sctx);
4738 }
4739 
4740 struct find_xattr_ctx {
4741 	const char *name;
4742 	int name_len;
4743 	int found_idx;
4744 	char *found_data;
4745 	int found_data_len;
4746 };
4747 
4748 static int __find_xattr(int num, struct btrfs_key *di_key,
4749 			const char *name, int name_len,
4750 			const char *data, int data_len,
4751 			u8 type, void *vctx)
4752 {
4753 	struct find_xattr_ctx *ctx = vctx;
4754 
4755 	if (name_len == ctx->name_len &&
4756 	    strncmp(name, ctx->name, name_len) == 0) {
4757 		ctx->found_idx = num;
4758 		ctx->found_data_len = data_len;
4759 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4760 		if (!ctx->found_data)
4761 			return -ENOMEM;
4762 		return 1;
4763 	}
4764 	return 0;
4765 }
4766 
4767 static int find_xattr(struct btrfs_root *root,
4768 		      struct btrfs_path *path,
4769 		      struct btrfs_key *key,
4770 		      const char *name, int name_len,
4771 		      char **data, int *data_len)
4772 {
4773 	int ret;
4774 	struct find_xattr_ctx ctx;
4775 
4776 	ctx.name = name;
4777 	ctx.name_len = name_len;
4778 	ctx.found_idx = -1;
4779 	ctx.found_data = NULL;
4780 	ctx.found_data_len = 0;
4781 
4782 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4783 	if (ret < 0)
4784 		return ret;
4785 
4786 	if (ctx.found_idx == -1)
4787 		return -ENOENT;
4788 	if (data) {
4789 		*data = ctx.found_data;
4790 		*data_len = ctx.found_data_len;
4791 	} else {
4792 		kfree(ctx.found_data);
4793 	}
4794 	return ctx.found_idx;
4795 }
4796 
4797 
4798 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4799 				       const char *name, int name_len,
4800 				       const char *data, int data_len,
4801 				       u8 type, void *ctx)
4802 {
4803 	int ret;
4804 	struct send_ctx *sctx = ctx;
4805 	char *found_data = NULL;
4806 	int found_data_len  = 0;
4807 
4808 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4809 			 sctx->cmp_key, name, name_len, &found_data,
4810 			 &found_data_len);
4811 	if (ret == -ENOENT) {
4812 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4813 				data_len, type, ctx);
4814 	} else if (ret >= 0) {
4815 		if (data_len != found_data_len ||
4816 		    memcmp(data, found_data, data_len)) {
4817 			ret = __process_new_xattr(num, di_key, name, name_len,
4818 					data, data_len, type, ctx);
4819 		} else {
4820 			ret = 0;
4821 		}
4822 	}
4823 
4824 	kfree(found_data);
4825 	return ret;
4826 }
4827 
4828 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4829 					   const char *name, int name_len,
4830 					   const char *data, int data_len,
4831 					   u8 type, void *ctx)
4832 {
4833 	int ret;
4834 	struct send_ctx *sctx = ctx;
4835 
4836 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4837 			 name, name_len, NULL, NULL);
4838 	if (ret == -ENOENT)
4839 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4840 				data_len, type, ctx);
4841 	else if (ret >= 0)
4842 		ret = 0;
4843 
4844 	return ret;
4845 }
4846 
4847 static int process_changed_xattr(struct send_ctx *sctx)
4848 {
4849 	int ret = 0;
4850 
4851 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4852 			__process_changed_new_xattr, sctx);
4853 	if (ret < 0)
4854 		goto out;
4855 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4856 			__process_changed_deleted_xattr, sctx);
4857 
4858 out:
4859 	return ret;
4860 }
4861 
4862 static int process_all_new_xattrs(struct send_ctx *sctx)
4863 {
4864 	int ret;
4865 	struct btrfs_root *root;
4866 	struct btrfs_path *path;
4867 	struct btrfs_key key;
4868 	struct btrfs_key found_key;
4869 	struct extent_buffer *eb;
4870 	int slot;
4871 
4872 	path = alloc_path_for_send();
4873 	if (!path)
4874 		return -ENOMEM;
4875 
4876 	root = sctx->send_root;
4877 
4878 	key.objectid = sctx->cmp_key->objectid;
4879 	key.type = BTRFS_XATTR_ITEM_KEY;
4880 	key.offset = 0;
4881 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4882 	if (ret < 0)
4883 		goto out;
4884 
4885 	while (1) {
4886 		eb = path->nodes[0];
4887 		slot = path->slots[0];
4888 		if (slot >= btrfs_header_nritems(eb)) {
4889 			ret = btrfs_next_leaf(root, path);
4890 			if (ret < 0) {
4891 				goto out;
4892 			} else if (ret > 0) {
4893 				ret = 0;
4894 				break;
4895 			}
4896 			continue;
4897 		}
4898 
4899 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4900 		if (found_key.objectid != key.objectid ||
4901 		    found_key.type != key.type) {
4902 			ret = 0;
4903 			goto out;
4904 		}
4905 
4906 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4907 		if (ret < 0)
4908 			goto out;
4909 
4910 		path->slots[0]++;
4911 	}
4912 
4913 out:
4914 	btrfs_free_path(path);
4915 	return ret;
4916 }
4917 
4918 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4919 {
4920 	return sctx->send_max_size - SZ_16K;
4921 }
4922 
4923 static int put_data_header(struct send_ctx *sctx, u32 len)
4924 {
4925 	struct btrfs_tlv_header *hdr;
4926 
4927 	if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4928 		return -EOVERFLOW;
4929 	hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4930 	put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4931 	put_unaligned_le16(len, &hdr->tlv_len);
4932 	sctx->send_size += sizeof(*hdr);
4933 	return 0;
4934 }
4935 
4936 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
4937 {
4938 	struct btrfs_root *root = sctx->send_root;
4939 	struct btrfs_fs_info *fs_info = root->fs_info;
4940 	struct inode *inode;
4941 	struct page *page;
4942 	pgoff_t index = offset >> PAGE_SHIFT;
4943 	pgoff_t last_index;
4944 	unsigned pg_offset = offset_in_page(offset);
4945 	int ret;
4946 
4947 	ret = put_data_header(sctx, len);
4948 	if (ret)
4949 		return ret;
4950 
4951 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
4952 	if (IS_ERR(inode))
4953 		return PTR_ERR(inode);
4954 
4955 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4956 
4957 	/* initial readahead */
4958 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4959 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4960 
4961 	while (index <= last_index) {
4962 		unsigned cur_len = min_t(unsigned, len,
4963 					 PAGE_SIZE - pg_offset);
4964 
4965 		page = find_lock_page(inode->i_mapping, index);
4966 		if (!page) {
4967 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4968 				NULL, index, last_index + 1 - index);
4969 
4970 			page = find_or_create_page(inode->i_mapping, index,
4971 					GFP_KERNEL);
4972 			if (!page) {
4973 				ret = -ENOMEM;
4974 				break;
4975 			}
4976 		}
4977 
4978 		if (PageReadahead(page)) {
4979 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4980 				NULL, page, index, last_index + 1 - index);
4981 		}
4982 
4983 		if (!PageUptodate(page)) {
4984 			btrfs_readpage(NULL, page);
4985 			lock_page(page);
4986 			if (!PageUptodate(page)) {
4987 				unlock_page(page);
4988 				put_page(page);
4989 				ret = -EIO;
4990 				break;
4991 			}
4992 		}
4993 
4994 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
4995 				 pg_offset, cur_len);
4996 		unlock_page(page);
4997 		put_page(page);
4998 		index++;
4999 		pg_offset = 0;
5000 		len -= cur_len;
5001 		sctx->send_size += cur_len;
5002 	}
5003 	iput(inode);
5004 	return ret;
5005 }
5006 
5007 /*
5008  * Read some bytes from the current inode/file and send a write command to
5009  * user space.
5010  */
5011 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5012 {
5013 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5014 	int ret = 0;
5015 	struct fs_path *p;
5016 
5017 	p = fs_path_alloc();
5018 	if (!p)
5019 		return -ENOMEM;
5020 
5021 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5022 
5023 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5024 	if (ret < 0)
5025 		goto out;
5026 
5027 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5028 	if (ret < 0)
5029 		goto out;
5030 
5031 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5032 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5033 	ret = put_file_data(sctx, offset, len);
5034 	if (ret < 0)
5035 		goto out;
5036 
5037 	ret = send_cmd(sctx);
5038 
5039 tlv_put_failure:
5040 out:
5041 	fs_path_free(p);
5042 	return ret;
5043 }
5044 
5045 /*
5046  * Send a clone command to user space.
5047  */
5048 static int send_clone(struct send_ctx *sctx,
5049 		      u64 offset, u32 len,
5050 		      struct clone_root *clone_root)
5051 {
5052 	int ret = 0;
5053 	struct fs_path *p;
5054 	u64 gen;
5055 
5056 	btrfs_debug(sctx->send_root->fs_info,
5057 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5058 		    offset, len, clone_root->root->root_key.objectid,
5059 		    clone_root->ino, clone_root->offset);
5060 
5061 	p = fs_path_alloc();
5062 	if (!p)
5063 		return -ENOMEM;
5064 
5065 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5066 	if (ret < 0)
5067 		goto out;
5068 
5069 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5070 	if (ret < 0)
5071 		goto out;
5072 
5073 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5074 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5075 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5076 
5077 	if (clone_root->root == sctx->send_root) {
5078 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
5079 				&gen, NULL, NULL, NULL, NULL);
5080 		if (ret < 0)
5081 			goto out;
5082 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5083 	} else {
5084 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5085 	}
5086 	if (ret < 0)
5087 		goto out;
5088 
5089 	/*
5090 	 * If the parent we're using has a received_uuid set then use that as
5091 	 * our clone source as that is what we will look for when doing a
5092 	 * receive.
5093 	 *
5094 	 * This covers the case that we create a snapshot off of a received
5095 	 * subvolume and then use that as the parent and try to receive on a
5096 	 * different host.
5097 	 */
5098 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5099 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5100 			     clone_root->root->root_item.received_uuid);
5101 	else
5102 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5103 			     clone_root->root->root_item.uuid);
5104 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5105 		    btrfs_root_ctransid(&clone_root->root->root_item));
5106 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5107 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5108 			clone_root->offset);
5109 
5110 	ret = send_cmd(sctx);
5111 
5112 tlv_put_failure:
5113 out:
5114 	fs_path_free(p);
5115 	return ret;
5116 }
5117 
5118 /*
5119  * Send an update extent command to user space.
5120  */
5121 static int send_update_extent(struct send_ctx *sctx,
5122 			      u64 offset, u32 len)
5123 {
5124 	int ret = 0;
5125 	struct fs_path *p;
5126 
5127 	p = fs_path_alloc();
5128 	if (!p)
5129 		return -ENOMEM;
5130 
5131 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5132 	if (ret < 0)
5133 		goto out;
5134 
5135 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5136 	if (ret < 0)
5137 		goto out;
5138 
5139 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5140 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5141 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5142 
5143 	ret = send_cmd(sctx);
5144 
5145 tlv_put_failure:
5146 out:
5147 	fs_path_free(p);
5148 	return ret;
5149 }
5150 
5151 static int send_hole(struct send_ctx *sctx, u64 end)
5152 {
5153 	struct fs_path *p = NULL;
5154 	u64 read_size = max_send_read_size(sctx);
5155 	u64 offset = sctx->cur_inode_last_extent;
5156 	int ret = 0;
5157 
5158 	/*
5159 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5160 	 * fallocate (for extent preallocation and hole punching), sending a
5161 	 * write of zeroes starting at EOF or beyond would later require issuing
5162 	 * a truncate operation which would undo the write and achieve nothing.
5163 	 */
5164 	if (offset >= sctx->cur_inode_size)
5165 		return 0;
5166 
5167 	/*
5168 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5169 	 * after the i_size.
5170 	 */
5171 	end = min_t(u64, end, sctx->cur_inode_size);
5172 
5173 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5174 		return send_update_extent(sctx, offset, end - offset);
5175 
5176 	p = fs_path_alloc();
5177 	if (!p)
5178 		return -ENOMEM;
5179 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5180 	if (ret < 0)
5181 		goto tlv_put_failure;
5182 	while (offset < end) {
5183 		u64 len = min(end - offset, read_size);
5184 
5185 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5186 		if (ret < 0)
5187 			break;
5188 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5189 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5190 		ret = put_data_header(sctx, len);
5191 		if (ret < 0)
5192 			break;
5193 		memset(sctx->send_buf + sctx->send_size, 0, len);
5194 		sctx->send_size += len;
5195 		ret = send_cmd(sctx);
5196 		if (ret < 0)
5197 			break;
5198 		offset += len;
5199 	}
5200 	sctx->cur_inode_next_write_offset = offset;
5201 tlv_put_failure:
5202 	fs_path_free(p);
5203 	return ret;
5204 }
5205 
5206 static int send_extent_data(struct send_ctx *sctx,
5207 			    const u64 offset,
5208 			    const u64 len)
5209 {
5210 	u64 read_size = max_send_read_size(sctx);
5211 	u64 sent = 0;
5212 
5213 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5214 		return send_update_extent(sctx, offset, len);
5215 
5216 	while (sent < len) {
5217 		u64 size = min(len - sent, read_size);
5218 		int ret;
5219 
5220 		ret = send_write(sctx, offset + sent, size);
5221 		if (ret < 0)
5222 			return ret;
5223 		sent += size;
5224 	}
5225 	return 0;
5226 }
5227 
5228 /*
5229  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5230  * found, call send_set_xattr function to emit it.
5231  *
5232  * Return 0 if there isn't a capability, or when the capability was emitted
5233  * successfully, or < 0 if an error occurred.
5234  */
5235 static int send_capabilities(struct send_ctx *sctx)
5236 {
5237 	struct fs_path *fspath = NULL;
5238 	struct btrfs_path *path;
5239 	struct btrfs_dir_item *di;
5240 	struct extent_buffer *leaf;
5241 	unsigned long data_ptr;
5242 	char *buf = NULL;
5243 	int buf_len;
5244 	int ret = 0;
5245 
5246 	path = alloc_path_for_send();
5247 	if (!path)
5248 		return -ENOMEM;
5249 
5250 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5251 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5252 	if (!di) {
5253 		/* There is no xattr for this inode */
5254 		goto out;
5255 	} else if (IS_ERR(di)) {
5256 		ret = PTR_ERR(di);
5257 		goto out;
5258 	}
5259 
5260 	leaf = path->nodes[0];
5261 	buf_len = btrfs_dir_data_len(leaf, di);
5262 
5263 	fspath = fs_path_alloc();
5264 	buf = kmalloc(buf_len, GFP_KERNEL);
5265 	if (!fspath || !buf) {
5266 		ret = -ENOMEM;
5267 		goto out;
5268 	}
5269 
5270 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5271 	if (ret < 0)
5272 		goto out;
5273 
5274 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5275 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5276 
5277 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5278 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5279 out:
5280 	kfree(buf);
5281 	fs_path_free(fspath);
5282 	btrfs_free_path(path);
5283 	return ret;
5284 }
5285 
5286 static int clone_range(struct send_ctx *sctx,
5287 		       struct clone_root *clone_root,
5288 		       const u64 disk_byte,
5289 		       u64 data_offset,
5290 		       u64 offset,
5291 		       u64 len)
5292 {
5293 	struct btrfs_path *path;
5294 	struct btrfs_key key;
5295 	int ret;
5296 	u64 clone_src_i_size = 0;
5297 
5298 	/*
5299 	 * Prevent cloning from a zero offset with a length matching the sector
5300 	 * size because in some scenarios this will make the receiver fail.
5301 	 *
5302 	 * For example, if in the source filesystem the extent at offset 0
5303 	 * has a length of sectorsize and it was written using direct IO, then
5304 	 * it can never be an inline extent (even if compression is enabled).
5305 	 * Then this extent can be cloned in the original filesystem to a non
5306 	 * zero file offset, but it may not be possible to clone in the
5307 	 * destination filesystem because it can be inlined due to compression
5308 	 * on the destination filesystem (as the receiver's write operations are
5309 	 * always done using buffered IO). The same happens when the original
5310 	 * filesystem does not have compression enabled but the destination
5311 	 * filesystem has.
5312 	 */
5313 	if (clone_root->offset == 0 &&
5314 	    len == sctx->send_root->fs_info->sectorsize)
5315 		return send_extent_data(sctx, offset, len);
5316 
5317 	path = alloc_path_for_send();
5318 	if (!path)
5319 		return -ENOMEM;
5320 
5321 	/*
5322 	 * There are inodes that have extents that lie behind its i_size. Don't
5323 	 * accept clones from these extents.
5324 	 */
5325 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5326 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5327 	btrfs_release_path(path);
5328 	if (ret < 0)
5329 		goto out;
5330 
5331 	/*
5332 	 * We can't send a clone operation for the entire range if we find
5333 	 * extent items in the respective range in the source file that
5334 	 * refer to different extents or if we find holes.
5335 	 * So check for that and do a mix of clone and regular write/copy
5336 	 * operations if needed.
5337 	 *
5338 	 * Example:
5339 	 *
5340 	 * mkfs.btrfs -f /dev/sda
5341 	 * mount /dev/sda /mnt
5342 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5343 	 * cp --reflink=always /mnt/foo /mnt/bar
5344 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5345 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5346 	 *
5347 	 * If when we send the snapshot and we are processing file bar (which
5348 	 * has a higher inode number than foo) we blindly send a clone operation
5349 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5350 	 * a file bar that matches the content of file foo - iow, doesn't match
5351 	 * the content from bar in the original filesystem.
5352 	 */
5353 	key.objectid = clone_root->ino;
5354 	key.type = BTRFS_EXTENT_DATA_KEY;
5355 	key.offset = clone_root->offset;
5356 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5357 	if (ret < 0)
5358 		goto out;
5359 	if (ret > 0 && path->slots[0] > 0) {
5360 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5361 		if (key.objectid == clone_root->ino &&
5362 		    key.type == BTRFS_EXTENT_DATA_KEY)
5363 			path->slots[0]--;
5364 	}
5365 
5366 	while (true) {
5367 		struct extent_buffer *leaf = path->nodes[0];
5368 		int slot = path->slots[0];
5369 		struct btrfs_file_extent_item *ei;
5370 		u8 type;
5371 		u64 ext_len;
5372 		u64 clone_len;
5373 		u64 clone_data_offset;
5374 
5375 		if (slot >= btrfs_header_nritems(leaf)) {
5376 			ret = btrfs_next_leaf(clone_root->root, path);
5377 			if (ret < 0)
5378 				goto out;
5379 			else if (ret > 0)
5380 				break;
5381 			continue;
5382 		}
5383 
5384 		btrfs_item_key_to_cpu(leaf, &key, slot);
5385 
5386 		/*
5387 		 * We might have an implicit trailing hole (NO_HOLES feature
5388 		 * enabled). We deal with it after leaving this loop.
5389 		 */
5390 		if (key.objectid != clone_root->ino ||
5391 		    key.type != BTRFS_EXTENT_DATA_KEY)
5392 			break;
5393 
5394 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5395 		type = btrfs_file_extent_type(leaf, ei);
5396 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5397 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5398 			ext_len = PAGE_ALIGN(ext_len);
5399 		} else {
5400 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5401 		}
5402 
5403 		if (key.offset + ext_len <= clone_root->offset)
5404 			goto next;
5405 
5406 		if (key.offset > clone_root->offset) {
5407 			/* Implicit hole, NO_HOLES feature enabled. */
5408 			u64 hole_len = key.offset - clone_root->offset;
5409 
5410 			if (hole_len > len)
5411 				hole_len = len;
5412 			ret = send_extent_data(sctx, offset, hole_len);
5413 			if (ret < 0)
5414 				goto out;
5415 
5416 			len -= hole_len;
5417 			if (len == 0)
5418 				break;
5419 			offset += hole_len;
5420 			clone_root->offset += hole_len;
5421 			data_offset += hole_len;
5422 		}
5423 
5424 		if (key.offset >= clone_root->offset + len)
5425 			break;
5426 
5427 		if (key.offset >= clone_src_i_size)
5428 			break;
5429 
5430 		if (key.offset + ext_len > clone_src_i_size)
5431 			ext_len = clone_src_i_size - key.offset;
5432 
5433 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5434 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5435 			clone_root->offset = key.offset;
5436 			if (clone_data_offset < data_offset &&
5437 				clone_data_offset + ext_len > data_offset) {
5438 				u64 extent_offset;
5439 
5440 				extent_offset = data_offset - clone_data_offset;
5441 				ext_len -= extent_offset;
5442 				clone_data_offset += extent_offset;
5443 				clone_root->offset += extent_offset;
5444 			}
5445 		}
5446 
5447 		clone_len = min_t(u64, ext_len, len);
5448 
5449 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5450 		    clone_data_offset == data_offset) {
5451 			const u64 src_end = clone_root->offset + clone_len;
5452 			const u64 sectorsize = SZ_64K;
5453 
5454 			/*
5455 			 * We can't clone the last block, when its size is not
5456 			 * sector size aligned, into the middle of a file. If we
5457 			 * do so, the receiver will get a failure (-EINVAL) when
5458 			 * trying to clone or will silently corrupt the data in
5459 			 * the destination file if it's on a kernel without the
5460 			 * fix introduced by commit ac765f83f1397646
5461 			 * ("Btrfs: fix data corruption due to cloning of eof
5462 			 * block).
5463 			 *
5464 			 * So issue a clone of the aligned down range plus a
5465 			 * regular write for the eof block, if we hit that case.
5466 			 *
5467 			 * Also, we use the maximum possible sector size, 64K,
5468 			 * because we don't know what's the sector size of the
5469 			 * filesystem that receives the stream, so we have to
5470 			 * assume the largest possible sector size.
5471 			 */
5472 			if (src_end == clone_src_i_size &&
5473 			    !IS_ALIGNED(src_end, sectorsize) &&
5474 			    offset + clone_len < sctx->cur_inode_size) {
5475 				u64 slen;
5476 
5477 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5478 						  sectorsize);
5479 				if (slen > 0) {
5480 					ret = send_clone(sctx, offset, slen,
5481 							 clone_root);
5482 					if (ret < 0)
5483 						goto out;
5484 				}
5485 				ret = send_extent_data(sctx, offset + slen,
5486 						       clone_len - slen);
5487 			} else {
5488 				ret = send_clone(sctx, offset, clone_len,
5489 						 clone_root);
5490 			}
5491 		} else {
5492 			ret = send_extent_data(sctx, offset, clone_len);
5493 		}
5494 
5495 		if (ret < 0)
5496 			goto out;
5497 
5498 		len -= clone_len;
5499 		if (len == 0)
5500 			break;
5501 		offset += clone_len;
5502 		clone_root->offset += clone_len;
5503 
5504 		/*
5505 		 * If we are cloning from the file we are currently processing,
5506 		 * and using the send root as the clone root, we must stop once
5507 		 * the current clone offset reaches the current eof of the file
5508 		 * at the receiver, otherwise we would issue an invalid clone
5509 		 * operation (source range going beyond eof) and cause the
5510 		 * receiver to fail. So if we reach the current eof, bail out
5511 		 * and fallback to a regular write.
5512 		 */
5513 		if (clone_root->root == sctx->send_root &&
5514 		    clone_root->ino == sctx->cur_ino &&
5515 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
5516 			break;
5517 
5518 		data_offset += clone_len;
5519 next:
5520 		path->slots[0]++;
5521 	}
5522 
5523 	if (len > 0)
5524 		ret = send_extent_data(sctx, offset, len);
5525 	else
5526 		ret = 0;
5527 out:
5528 	btrfs_free_path(path);
5529 	return ret;
5530 }
5531 
5532 static int send_write_or_clone(struct send_ctx *sctx,
5533 			       struct btrfs_path *path,
5534 			       struct btrfs_key *key,
5535 			       struct clone_root *clone_root)
5536 {
5537 	int ret = 0;
5538 	u64 offset = key->offset;
5539 	u64 end;
5540 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5541 
5542 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5543 	if (offset >= end)
5544 		return 0;
5545 
5546 	if (clone_root && IS_ALIGNED(end, bs)) {
5547 		struct btrfs_file_extent_item *ei;
5548 		u64 disk_byte;
5549 		u64 data_offset;
5550 
5551 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5552 				    struct btrfs_file_extent_item);
5553 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5554 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5555 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5556 				  offset, end - offset);
5557 	} else {
5558 		ret = send_extent_data(sctx, offset, end - offset);
5559 	}
5560 	sctx->cur_inode_next_write_offset = end;
5561 	return ret;
5562 }
5563 
5564 static int is_extent_unchanged(struct send_ctx *sctx,
5565 			       struct btrfs_path *left_path,
5566 			       struct btrfs_key *ekey)
5567 {
5568 	int ret = 0;
5569 	struct btrfs_key key;
5570 	struct btrfs_path *path = NULL;
5571 	struct extent_buffer *eb;
5572 	int slot;
5573 	struct btrfs_key found_key;
5574 	struct btrfs_file_extent_item *ei;
5575 	u64 left_disknr;
5576 	u64 right_disknr;
5577 	u64 left_offset;
5578 	u64 right_offset;
5579 	u64 left_offset_fixed;
5580 	u64 left_len;
5581 	u64 right_len;
5582 	u64 left_gen;
5583 	u64 right_gen;
5584 	u8 left_type;
5585 	u8 right_type;
5586 
5587 	path = alloc_path_for_send();
5588 	if (!path)
5589 		return -ENOMEM;
5590 
5591 	eb = left_path->nodes[0];
5592 	slot = left_path->slots[0];
5593 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5594 	left_type = btrfs_file_extent_type(eb, ei);
5595 
5596 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5597 		ret = 0;
5598 		goto out;
5599 	}
5600 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5601 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5602 	left_offset = btrfs_file_extent_offset(eb, ei);
5603 	left_gen = btrfs_file_extent_generation(eb, ei);
5604 
5605 	/*
5606 	 * Following comments will refer to these graphics. L is the left
5607 	 * extents which we are checking at the moment. 1-8 are the right
5608 	 * extents that we iterate.
5609 	 *
5610 	 *       |-----L-----|
5611 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5612 	 *
5613 	 *       |-----L-----|
5614 	 * |--1--|-2b-|...(same as above)
5615 	 *
5616 	 * Alternative situation. Happens on files where extents got split.
5617 	 *       |-----L-----|
5618 	 * |-----------7-----------|-6-|
5619 	 *
5620 	 * Alternative situation. Happens on files which got larger.
5621 	 *       |-----L-----|
5622 	 * |-8-|
5623 	 * Nothing follows after 8.
5624 	 */
5625 
5626 	key.objectid = ekey->objectid;
5627 	key.type = BTRFS_EXTENT_DATA_KEY;
5628 	key.offset = ekey->offset;
5629 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5630 	if (ret < 0)
5631 		goto out;
5632 	if (ret) {
5633 		ret = 0;
5634 		goto out;
5635 	}
5636 
5637 	/*
5638 	 * Handle special case where the right side has no extents at all.
5639 	 */
5640 	eb = path->nodes[0];
5641 	slot = path->slots[0];
5642 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5643 	if (found_key.objectid != key.objectid ||
5644 	    found_key.type != key.type) {
5645 		/* If we're a hole then just pretend nothing changed */
5646 		ret = (left_disknr) ? 0 : 1;
5647 		goto out;
5648 	}
5649 
5650 	/*
5651 	 * We're now on 2a, 2b or 7.
5652 	 */
5653 	key = found_key;
5654 	while (key.offset < ekey->offset + left_len) {
5655 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5656 		right_type = btrfs_file_extent_type(eb, ei);
5657 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5658 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5659 			ret = 0;
5660 			goto out;
5661 		}
5662 
5663 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5664 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5665 			right_len = PAGE_ALIGN(right_len);
5666 		} else {
5667 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5668 		}
5669 
5670 		/*
5671 		 * Are we at extent 8? If yes, we know the extent is changed.
5672 		 * This may only happen on the first iteration.
5673 		 */
5674 		if (found_key.offset + right_len <= ekey->offset) {
5675 			/* If we're a hole just pretend nothing changed */
5676 			ret = (left_disknr) ? 0 : 1;
5677 			goto out;
5678 		}
5679 
5680 		/*
5681 		 * We just wanted to see if when we have an inline extent, what
5682 		 * follows it is a regular extent (wanted to check the above
5683 		 * condition for inline extents too). This should normally not
5684 		 * happen but it's possible for example when we have an inline
5685 		 * compressed extent representing data with a size matching
5686 		 * the page size (currently the same as sector size).
5687 		 */
5688 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5689 			ret = 0;
5690 			goto out;
5691 		}
5692 
5693 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5694 		right_offset = btrfs_file_extent_offset(eb, ei);
5695 		right_gen = btrfs_file_extent_generation(eb, ei);
5696 
5697 		left_offset_fixed = left_offset;
5698 		if (key.offset < ekey->offset) {
5699 			/* Fix the right offset for 2a and 7. */
5700 			right_offset += ekey->offset - key.offset;
5701 		} else {
5702 			/* Fix the left offset for all behind 2a and 2b */
5703 			left_offset_fixed += key.offset - ekey->offset;
5704 		}
5705 
5706 		/*
5707 		 * Check if we have the same extent.
5708 		 */
5709 		if (left_disknr != right_disknr ||
5710 		    left_offset_fixed != right_offset ||
5711 		    left_gen != right_gen) {
5712 			ret = 0;
5713 			goto out;
5714 		}
5715 
5716 		/*
5717 		 * Go to the next extent.
5718 		 */
5719 		ret = btrfs_next_item(sctx->parent_root, path);
5720 		if (ret < 0)
5721 			goto out;
5722 		if (!ret) {
5723 			eb = path->nodes[0];
5724 			slot = path->slots[0];
5725 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5726 		}
5727 		if (ret || found_key.objectid != key.objectid ||
5728 		    found_key.type != key.type) {
5729 			key.offset += right_len;
5730 			break;
5731 		}
5732 		if (found_key.offset != key.offset + right_len) {
5733 			ret = 0;
5734 			goto out;
5735 		}
5736 		key = found_key;
5737 	}
5738 
5739 	/*
5740 	 * We're now behind the left extent (treat as unchanged) or at the end
5741 	 * of the right side (treat as changed).
5742 	 */
5743 	if (key.offset >= ekey->offset + left_len)
5744 		ret = 1;
5745 	else
5746 		ret = 0;
5747 
5748 
5749 out:
5750 	btrfs_free_path(path);
5751 	return ret;
5752 }
5753 
5754 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5755 {
5756 	struct btrfs_path *path;
5757 	struct btrfs_root *root = sctx->send_root;
5758 	struct btrfs_key key;
5759 	int ret;
5760 
5761 	path = alloc_path_for_send();
5762 	if (!path)
5763 		return -ENOMEM;
5764 
5765 	sctx->cur_inode_last_extent = 0;
5766 
5767 	key.objectid = sctx->cur_ino;
5768 	key.type = BTRFS_EXTENT_DATA_KEY;
5769 	key.offset = offset;
5770 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5771 	if (ret < 0)
5772 		goto out;
5773 	ret = 0;
5774 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5775 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5776 		goto out;
5777 
5778 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5779 out:
5780 	btrfs_free_path(path);
5781 	return ret;
5782 }
5783 
5784 static int range_is_hole_in_parent(struct send_ctx *sctx,
5785 				   const u64 start,
5786 				   const u64 end)
5787 {
5788 	struct btrfs_path *path;
5789 	struct btrfs_key key;
5790 	struct btrfs_root *root = sctx->parent_root;
5791 	u64 search_start = start;
5792 	int ret;
5793 
5794 	path = alloc_path_for_send();
5795 	if (!path)
5796 		return -ENOMEM;
5797 
5798 	key.objectid = sctx->cur_ino;
5799 	key.type = BTRFS_EXTENT_DATA_KEY;
5800 	key.offset = search_start;
5801 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5802 	if (ret < 0)
5803 		goto out;
5804 	if (ret > 0 && path->slots[0] > 0)
5805 		path->slots[0]--;
5806 
5807 	while (search_start < end) {
5808 		struct extent_buffer *leaf = path->nodes[0];
5809 		int slot = path->slots[0];
5810 		struct btrfs_file_extent_item *fi;
5811 		u64 extent_end;
5812 
5813 		if (slot >= btrfs_header_nritems(leaf)) {
5814 			ret = btrfs_next_leaf(root, path);
5815 			if (ret < 0)
5816 				goto out;
5817 			else if (ret > 0)
5818 				break;
5819 			continue;
5820 		}
5821 
5822 		btrfs_item_key_to_cpu(leaf, &key, slot);
5823 		if (key.objectid < sctx->cur_ino ||
5824 		    key.type < BTRFS_EXTENT_DATA_KEY)
5825 			goto next;
5826 		if (key.objectid > sctx->cur_ino ||
5827 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5828 		    key.offset >= end)
5829 			break;
5830 
5831 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5832 		extent_end = btrfs_file_extent_end(path);
5833 		if (extent_end <= start)
5834 			goto next;
5835 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5836 			search_start = extent_end;
5837 			goto next;
5838 		}
5839 		ret = 0;
5840 		goto out;
5841 next:
5842 		path->slots[0]++;
5843 	}
5844 	ret = 1;
5845 out:
5846 	btrfs_free_path(path);
5847 	return ret;
5848 }
5849 
5850 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5851 			   struct btrfs_key *key)
5852 {
5853 	int ret = 0;
5854 
5855 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5856 		return 0;
5857 
5858 	if (sctx->cur_inode_last_extent == (u64)-1) {
5859 		ret = get_last_extent(sctx, key->offset - 1);
5860 		if (ret)
5861 			return ret;
5862 	}
5863 
5864 	if (path->slots[0] == 0 &&
5865 	    sctx->cur_inode_last_extent < key->offset) {
5866 		/*
5867 		 * We might have skipped entire leafs that contained only
5868 		 * file extent items for our current inode. These leafs have
5869 		 * a generation number smaller (older) than the one in the
5870 		 * current leaf and the leaf our last extent came from, and
5871 		 * are located between these 2 leafs.
5872 		 */
5873 		ret = get_last_extent(sctx, key->offset - 1);
5874 		if (ret)
5875 			return ret;
5876 	}
5877 
5878 	if (sctx->cur_inode_last_extent < key->offset) {
5879 		ret = range_is_hole_in_parent(sctx,
5880 					      sctx->cur_inode_last_extent,
5881 					      key->offset);
5882 		if (ret < 0)
5883 			return ret;
5884 		else if (ret == 0)
5885 			ret = send_hole(sctx, key->offset);
5886 		else
5887 			ret = 0;
5888 	}
5889 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
5890 	return ret;
5891 }
5892 
5893 static int process_extent(struct send_ctx *sctx,
5894 			  struct btrfs_path *path,
5895 			  struct btrfs_key *key)
5896 {
5897 	struct clone_root *found_clone = NULL;
5898 	int ret = 0;
5899 
5900 	if (S_ISLNK(sctx->cur_inode_mode))
5901 		return 0;
5902 
5903 	if (sctx->parent_root && !sctx->cur_inode_new) {
5904 		ret = is_extent_unchanged(sctx, path, key);
5905 		if (ret < 0)
5906 			goto out;
5907 		if (ret) {
5908 			ret = 0;
5909 			goto out_hole;
5910 		}
5911 	} else {
5912 		struct btrfs_file_extent_item *ei;
5913 		u8 type;
5914 
5915 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5916 				    struct btrfs_file_extent_item);
5917 		type = btrfs_file_extent_type(path->nodes[0], ei);
5918 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5919 		    type == BTRFS_FILE_EXTENT_REG) {
5920 			/*
5921 			 * The send spec does not have a prealloc command yet,
5922 			 * so just leave a hole for prealloc'ed extents until
5923 			 * we have enough commands queued up to justify rev'ing
5924 			 * the send spec.
5925 			 */
5926 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5927 				ret = 0;
5928 				goto out;
5929 			}
5930 
5931 			/* Have a hole, just skip it. */
5932 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5933 				ret = 0;
5934 				goto out;
5935 			}
5936 		}
5937 	}
5938 
5939 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5940 			sctx->cur_inode_size, &found_clone);
5941 	if (ret != -ENOENT && ret < 0)
5942 		goto out;
5943 
5944 	ret = send_write_or_clone(sctx, path, key, found_clone);
5945 	if (ret)
5946 		goto out;
5947 out_hole:
5948 	ret = maybe_send_hole(sctx, path, key);
5949 out:
5950 	return ret;
5951 }
5952 
5953 static int process_all_extents(struct send_ctx *sctx)
5954 {
5955 	int ret;
5956 	struct btrfs_root *root;
5957 	struct btrfs_path *path;
5958 	struct btrfs_key key;
5959 	struct btrfs_key found_key;
5960 	struct extent_buffer *eb;
5961 	int slot;
5962 
5963 	root = sctx->send_root;
5964 	path = alloc_path_for_send();
5965 	if (!path)
5966 		return -ENOMEM;
5967 
5968 	key.objectid = sctx->cmp_key->objectid;
5969 	key.type = BTRFS_EXTENT_DATA_KEY;
5970 	key.offset = 0;
5971 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5972 	if (ret < 0)
5973 		goto out;
5974 
5975 	while (1) {
5976 		eb = path->nodes[0];
5977 		slot = path->slots[0];
5978 
5979 		if (slot >= btrfs_header_nritems(eb)) {
5980 			ret = btrfs_next_leaf(root, path);
5981 			if (ret < 0) {
5982 				goto out;
5983 			} else if (ret > 0) {
5984 				ret = 0;
5985 				break;
5986 			}
5987 			continue;
5988 		}
5989 
5990 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5991 
5992 		if (found_key.objectid != key.objectid ||
5993 		    found_key.type != key.type) {
5994 			ret = 0;
5995 			goto out;
5996 		}
5997 
5998 		ret = process_extent(sctx, path, &found_key);
5999 		if (ret < 0)
6000 			goto out;
6001 
6002 		path->slots[0]++;
6003 	}
6004 
6005 out:
6006 	btrfs_free_path(path);
6007 	return ret;
6008 }
6009 
6010 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6011 					   int *pending_move,
6012 					   int *refs_processed)
6013 {
6014 	int ret = 0;
6015 
6016 	if (sctx->cur_ino == 0)
6017 		goto out;
6018 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6019 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6020 		goto out;
6021 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6022 		goto out;
6023 
6024 	ret = process_recorded_refs(sctx, pending_move);
6025 	if (ret < 0)
6026 		goto out;
6027 
6028 	*refs_processed = 1;
6029 out:
6030 	return ret;
6031 }
6032 
6033 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6034 {
6035 	int ret = 0;
6036 	u64 left_mode;
6037 	u64 left_uid;
6038 	u64 left_gid;
6039 	u64 right_mode;
6040 	u64 right_uid;
6041 	u64 right_gid;
6042 	int need_chmod = 0;
6043 	int need_chown = 0;
6044 	int need_truncate = 1;
6045 	int pending_move = 0;
6046 	int refs_processed = 0;
6047 
6048 	if (sctx->ignore_cur_inode)
6049 		return 0;
6050 
6051 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6052 					      &refs_processed);
6053 	if (ret < 0)
6054 		goto out;
6055 
6056 	/*
6057 	 * We have processed the refs and thus need to advance send_progress.
6058 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6059 	 * inode into account.
6060 	 *
6061 	 * On the other hand, if our current inode is a directory and couldn't
6062 	 * be moved/renamed because its parent was renamed/moved too and it has
6063 	 * a higher inode number, we can only move/rename our current inode
6064 	 * after we moved/renamed its parent. Therefore in this case operate on
6065 	 * the old path (pre move/rename) of our current inode, and the
6066 	 * move/rename will be performed later.
6067 	 */
6068 	if (refs_processed && !pending_move)
6069 		sctx->send_progress = sctx->cur_ino + 1;
6070 
6071 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6072 		goto out;
6073 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6074 		goto out;
6075 
6076 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
6077 			&left_mode, &left_uid, &left_gid, NULL);
6078 	if (ret < 0)
6079 		goto out;
6080 
6081 	if (!sctx->parent_root || sctx->cur_inode_new) {
6082 		need_chown = 1;
6083 		if (!S_ISLNK(sctx->cur_inode_mode))
6084 			need_chmod = 1;
6085 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6086 			need_truncate = 0;
6087 	} else {
6088 		u64 old_size;
6089 
6090 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
6091 				&old_size, NULL, &right_mode, &right_uid,
6092 				&right_gid, NULL);
6093 		if (ret < 0)
6094 			goto out;
6095 
6096 		if (left_uid != right_uid || left_gid != right_gid)
6097 			need_chown = 1;
6098 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6099 			need_chmod = 1;
6100 		if ((old_size == sctx->cur_inode_size) ||
6101 		    (sctx->cur_inode_size > old_size &&
6102 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6103 			need_truncate = 0;
6104 	}
6105 
6106 	if (S_ISREG(sctx->cur_inode_mode)) {
6107 		if (need_send_hole(sctx)) {
6108 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6109 			    sctx->cur_inode_last_extent <
6110 			    sctx->cur_inode_size) {
6111 				ret = get_last_extent(sctx, (u64)-1);
6112 				if (ret)
6113 					goto out;
6114 			}
6115 			if (sctx->cur_inode_last_extent <
6116 			    sctx->cur_inode_size) {
6117 				ret = send_hole(sctx, sctx->cur_inode_size);
6118 				if (ret)
6119 					goto out;
6120 			}
6121 		}
6122 		if (need_truncate) {
6123 			ret = send_truncate(sctx, sctx->cur_ino,
6124 					    sctx->cur_inode_gen,
6125 					    sctx->cur_inode_size);
6126 			if (ret < 0)
6127 				goto out;
6128 		}
6129 	}
6130 
6131 	if (need_chown) {
6132 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6133 				left_uid, left_gid);
6134 		if (ret < 0)
6135 			goto out;
6136 	}
6137 	if (need_chmod) {
6138 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6139 				left_mode);
6140 		if (ret < 0)
6141 			goto out;
6142 	}
6143 
6144 	ret = send_capabilities(sctx);
6145 	if (ret < 0)
6146 		goto out;
6147 
6148 	/*
6149 	 * If other directory inodes depended on our current directory
6150 	 * inode's move/rename, now do their move/rename operations.
6151 	 */
6152 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6153 		ret = apply_children_dir_moves(sctx);
6154 		if (ret)
6155 			goto out;
6156 		/*
6157 		 * Need to send that every time, no matter if it actually
6158 		 * changed between the two trees as we have done changes to
6159 		 * the inode before. If our inode is a directory and it's
6160 		 * waiting to be moved/renamed, we will send its utimes when
6161 		 * it's moved/renamed, therefore we don't need to do it here.
6162 		 */
6163 		sctx->send_progress = sctx->cur_ino + 1;
6164 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6165 		if (ret < 0)
6166 			goto out;
6167 	}
6168 
6169 out:
6170 	return ret;
6171 }
6172 
6173 struct parent_paths_ctx {
6174 	struct list_head *refs;
6175 	struct send_ctx *sctx;
6176 };
6177 
6178 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6179 			     void *ctx)
6180 {
6181 	struct parent_paths_ctx *ppctx = ctx;
6182 
6183 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6184 			  ppctx->refs);
6185 }
6186 
6187 /*
6188  * Issue unlink operations for all paths of the current inode found in the
6189  * parent snapshot.
6190  */
6191 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6192 {
6193 	LIST_HEAD(deleted_refs);
6194 	struct btrfs_path *path;
6195 	struct btrfs_key key;
6196 	struct parent_paths_ctx ctx;
6197 	int ret;
6198 
6199 	path = alloc_path_for_send();
6200 	if (!path)
6201 		return -ENOMEM;
6202 
6203 	key.objectid = sctx->cur_ino;
6204 	key.type = BTRFS_INODE_REF_KEY;
6205 	key.offset = 0;
6206 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6207 	if (ret < 0)
6208 		goto out;
6209 
6210 	ctx.refs = &deleted_refs;
6211 	ctx.sctx = sctx;
6212 
6213 	while (true) {
6214 		struct extent_buffer *eb = path->nodes[0];
6215 		int slot = path->slots[0];
6216 
6217 		if (slot >= btrfs_header_nritems(eb)) {
6218 			ret = btrfs_next_leaf(sctx->parent_root, path);
6219 			if (ret < 0)
6220 				goto out;
6221 			else if (ret > 0)
6222 				break;
6223 			continue;
6224 		}
6225 
6226 		btrfs_item_key_to_cpu(eb, &key, slot);
6227 		if (key.objectid != sctx->cur_ino)
6228 			break;
6229 		if (key.type != BTRFS_INODE_REF_KEY &&
6230 		    key.type != BTRFS_INODE_EXTREF_KEY)
6231 			break;
6232 
6233 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6234 					record_parent_ref, &ctx);
6235 		if (ret < 0)
6236 			goto out;
6237 
6238 		path->slots[0]++;
6239 	}
6240 
6241 	while (!list_empty(&deleted_refs)) {
6242 		struct recorded_ref *ref;
6243 
6244 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6245 		ret = send_unlink(sctx, ref->full_path);
6246 		if (ret < 0)
6247 			goto out;
6248 		fs_path_free(ref->full_path);
6249 		list_del(&ref->list);
6250 		kfree(ref);
6251 	}
6252 	ret = 0;
6253 out:
6254 	btrfs_free_path(path);
6255 	if (ret)
6256 		__free_recorded_refs(&deleted_refs);
6257 	return ret;
6258 }
6259 
6260 static int changed_inode(struct send_ctx *sctx,
6261 			 enum btrfs_compare_tree_result result)
6262 {
6263 	int ret = 0;
6264 	struct btrfs_key *key = sctx->cmp_key;
6265 	struct btrfs_inode_item *left_ii = NULL;
6266 	struct btrfs_inode_item *right_ii = NULL;
6267 	u64 left_gen = 0;
6268 	u64 right_gen = 0;
6269 
6270 	sctx->cur_ino = key->objectid;
6271 	sctx->cur_inode_new_gen = 0;
6272 	sctx->cur_inode_last_extent = (u64)-1;
6273 	sctx->cur_inode_next_write_offset = 0;
6274 	sctx->ignore_cur_inode = false;
6275 
6276 	/*
6277 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6278 	 * functions that the current inode's refs are not updated yet. Later,
6279 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6280 	 */
6281 	sctx->send_progress = sctx->cur_ino;
6282 
6283 	if (result == BTRFS_COMPARE_TREE_NEW ||
6284 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6285 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6286 				sctx->left_path->slots[0],
6287 				struct btrfs_inode_item);
6288 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6289 				left_ii);
6290 	} else {
6291 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6292 				sctx->right_path->slots[0],
6293 				struct btrfs_inode_item);
6294 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6295 				right_ii);
6296 	}
6297 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6298 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6299 				sctx->right_path->slots[0],
6300 				struct btrfs_inode_item);
6301 
6302 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6303 				right_ii);
6304 
6305 		/*
6306 		 * The cur_ino = root dir case is special here. We can't treat
6307 		 * the inode as deleted+reused because it would generate a
6308 		 * stream that tries to delete/mkdir the root dir.
6309 		 */
6310 		if (left_gen != right_gen &&
6311 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6312 			sctx->cur_inode_new_gen = 1;
6313 	}
6314 
6315 	/*
6316 	 * Normally we do not find inodes with a link count of zero (orphans)
6317 	 * because the most common case is to create a snapshot and use it
6318 	 * for a send operation. However other less common use cases involve
6319 	 * using a subvolume and send it after turning it to RO mode just
6320 	 * after deleting all hard links of a file while holding an open
6321 	 * file descriptor against it or turning a RO snapshot into RW mode,
6322 	 * keep an open file descriptor against a file, delete it and then
6323 	 * turn the snapshot back to RO mode before using it for a send
6324 	 * operation. So if we find such cases, ignore the inode and all its
6325 	 * items completely if it's a new inode, or if it's a changed inode
6326 	 * make sure all its previous paths (from the parent snapshot) are all
6327 	 * unlinked and all other the inode items are ignored.
6328 	 */
6329 	if (result == BTRFS_COMPARE_TREE_NEW ||
6330 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6331 		u32 nlinks;
6332 
6333 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6334 		if (nlinks == 0) {
6335 			sctx->ignore_cur_inode = true;
6336 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6337 				ret = btrfs_unlink_all_paths(sctx);
6338 			goto out;
6339 		}
6340 	}
6341 
6342 	if (result == BTRFS_COMPARE_TREE_NEW) {
6343 		sctx->cur_inode_gen = left_gen;
6344 		sctx->cur_inode_new = 1;
6345 		sctx->cur_inode_deleted = 0;
6346 		sctx->cur_inode_size = btrfs_inode_size(
6347 				sctx->left_path->nodes[0], left_ii);
6348 		sctx->cur_inode_mode = btrfs_inode_mode(
6349 				sctx->left_path->nodes[0], left_ii);
6350 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6351 				sctx->left_path->nodes[0], left_ii);
6352 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6353 			ret = send_create_inode_if_needed(sctx);
6354 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6355 		sctx->cur_inode_gen = right_gen;
6356 		sctx->cur_inode_new = 0;
6357 		sctx->cur_inode_deleted = 1;
6358 		sctx->cur_inode_size = btrfs_inode_size(
6359 				sctx->right_path->nodes[0], right_ii);
6360 		sctx->cur_inode_mode = btrfs_inode_mode(
6361 				sctx->right_path->nodes[0], right_ii);
6362 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6363 		/*
6364 		 * We need to do some special handling in case the inode was
6365 		 * reported as changed with a changed generation number. This
6366 		 * means that the original inode was deleted and new inode
6367 		 * reused the same inum. So we have to treat the old inode as
6368 		 * deleted and the new one as new.
6369 		 */
6370 		if (sctx->cur_inode_new_gen) {
6371 			/*
6372 			 * First, process the inode as if it was deleted.
6373 			 */
6374 			sctx->cur_inode_gen = right_gen;
6375 			sctx->cur_inode_new = 0;
6376 			sctx->cur_inode_deleted = 1;
6377 			sctx->cur_inode_size = btrfs_inode_size(
6378 					sctx->right_path->nodes[0], right_ii);
6379 			sctx->cur_inode_mode = btrfs_inode_mode(
6380 					sctx->right_path->nodes[0], right_ii);
6381 			ret = process_all_refs(sctx,
6382 					BTRFS_COMPARE_TREE_DELETED);
6383 			if (ret < 0)
6384 				goto out;
6385 
6386 			/*
6387 			 * Now process the inode as if it was new.
6388 			 */
6389 			sctx->cur_inode_gen = left_gen;
6390 			sctx->cur_inode_new = 1;
6391 			sctx->cur_inode_deleted = 0;
6392 			sctx->cur_inode_size = btrfs_inode_size(
6393 					sctx->left_path->nodes[0], left_ii);
6394 			sctx->cur_inode_mode = btrfs_inode_mode(
6395 					sctx->left_path->nodes[0], left_ii);
6396 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6397 					sctx->left_path->nodes[0], left_ii);
6398 			ret = send_create_inode_if_needed(sctx);
6399 			if (ret < 0)
6400 				goto out;
6401 
6402 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6403 			if (ret < 0)
6404 				goto out;
6405 			/*
6406 			 * Advance send_progress now as we did not get into
6407 			 * process_recorded_refs_if_needed in the new_gen case.
6408 			 */
6409 			sctx->send_progress = sctx->cur_ino + 1;
6410 
6411 			/*
6412 			 * Now process all extents and xattrs of the inode as if
6413 			 * they were all new.
6414 			 */
6415 			ret = process_all_extents(sctx);
6416 			if (ret < 0)
6417 				goto out;
6418 			ret = process_all_new_xattrs(sctx);
6419 			if (ret < 0)
6420 				goto out;
6421 		} else {
6422 			sctx->cur_inode_gen = left_gen;
6423 			sctx->cur_inode_new = 0;
6424 			sctx->cur_inode_new_gen = 0;
6425 			sctx->cur_inode_deleted = 0;
6426 			sctx->cur_inode_size = btrfs_inode_size(
6427 					sctx->left_path->nodes[0], left_ii);
6428 			sctx->cur_inode_mode = btrfs_inode_mode(
6429 					sctx->left_path->nodes[0], left_ii);
6430 		}
6431 	}
6432 
6433 out:
6434 	return ret;
6435 }
6436 
6437 /*
6438  * We have to process new refs before deleted refs, but compare_trees gives us
6439  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6440  * first and later process them in process_recorded_refs.
6441  * For the cur_inode_new_gen case, we skip recording completely because
6442  * changed_inode did already initiate processing of refs. The reason for this is
6443  * that in this case, compare_tree actually compares the refs of 2 different
6444  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6445  * refs of the right tree as deleted and all refs of the left tree as new.
6446  */
6447 static int changed_ref(struct send_ctx *sctx,
6448 		       enum btrfs_compare_tree_result result)
6449 {
6450 	int ret = 0;
6451 
6452 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6453 		inconsistent_snapshot_error(sctx, result, "reference");
6454 		return -EIO;
6455 	}
6456 
6457 	if (!sctx->cur_inode_new_gen &&
6458 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6459 		if (result == BTRFS_COMPARE_TREE_NEW)
6460 			ret = record_new_ref(sctx);
6461 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6462 			ret = record_deleted_ref(sctx);
6463 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6464 			ret = record_changed_ref(sctx);
6465 	}
6466 
6467 	return ret;
6468 }
6469 
6470 /*
6471  * Process new/deleted/changed xattrs. We skip processing in the
6472  * cur_inode_new_gen case because changed_inode did already initiate processing
6473  * of xattrs. The reason is the same as in changed_ref
6474  */
6475 static int changed_xattr(struct send_ctx *sctx,
6476 			 enum btrfs_compare_tree_result result)
6477 {
6478 	int ret = 0;
6479 
6480 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6481 		inconsistent_snapshot_error(sctx, result, "xattr");
6482 		return -EIO;
6483 	}
6484 
6485 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6486 		if (result == BTRFS_COMPARE_TREE_NEW)
6487 			ret = process_new_xattr(sctx);
6488 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6489 			ret = process_deleted_xattr(sctx);
6490 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6491 			ret = process_changed_xattr(sctx);
6492 	}
6493 
6494 	return ret;
6495 }
6496 
6497 /*
6498  * Process new/deleted/changed extents. We skip processing in the
6499  * cur_inode_new_gen case because changed_inode did already initiate processing
6500  * of extents. The reason is the same as in changed_ref
6501  */
6502 static int changed_extent(struct send_ctx *sctx,
6503 			  enum btrfs_compare_tree_result result)
6504 {
6505 	int ret = 0;
6506 
6507 	/*
6508 	 * We have found an extent item that changed without the inode item
6509 	 * having changed. This can happen either after relocation (where the
6510 	 * disk_bytenr of an extent item is replaced at
6511 	 * relocation.c:replace_file_extents()) or after deduplication into a
6512 	 * file in both the parent and send snapshots (where an extent item can
6513 	 * get modified or replaced with a new one). Note that deduplication
6514 	 * updates the inode item, but it only changes the iversion (sequence
6515 	 * field in the inode item) of the inode, so if a file is deduplicated
6516 	 * the same amount of times in both the parent and send snapshots, its
6517 	 * iversion becomes the same in both snapshots, whence the inode item is
6518 	 * the same on both snapshots.
6519 	 */
6520 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6521 		return 0;
6522 
6523 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6524 		if (result != BTRFS_COMPARE_TREE_DELETED)
6525 			ret = process_extent(sctx, sctx->left_path,
6526 					sctx->cmp_key);
6527 	}
6528 
6529 	return ret;
6530 }
6531 
6532 static int dir_changed(struct send_ctx *sctx, u64 dir)
6533 {
6534 	u64 orig_gen, new_gen;
6535 	int ret;
6536 
6537 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6538 			     NULL, NULL);
6539 	if (ret)
6540 		return ret;
6541 
6542 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6543 			     NULL, NULL, NULL);
6544 	if (ret)
6545 		return ret;
6546 
6547 	return (orig_gen != new_gen) ? 1 : 0;
6548 }
6549 
6550 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6551 			struct btrfs_key *key)
6552 {
6553 	struct btrfs_inode_extref *extref;
6554 	struct extent_buffer *leaf;
6555 	u64 dirid = 0, last_dirid = 0;
6556 	unsigned long ptr;
6557 	u32 item_size;
6558 	u32 cur_offset = 0;
6559 	int ref_name_len;
6560 	int ret = 0;
6561 
6562 	/* Easy case, just check this one dirid */
6563 	if (key->type == BTRFS_INODE_REF_KEY) {
6564 		dirid = key->offset;
6565 
6566 		ret = dir_changed(sctx, dirid);
6567 		goto out;
6568 	}
6569 
6570 	leaf = path->nodes[0];
6571 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6572 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6573 	while (cur_offset < item_size) {
6574 		extref = (struct btrfs_inode_extref *)(ptr +
6575 						       cur_offset);
6576 		dirid = btrfs_inode_extref_parent(leaf, extref);
6577 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6578 		cur_offset += ref_name_len + sizeof(*extref);
6579 		if (dirid == last_dirid)
6580 			continue;
6581 		ret = dir_changed(sctx, dirid);
6582 		if (ret)
6583 			break;
6584 		last_dirid = dirid;
6585 	}
6586 out:
6587 	return ret;
6588 }
6589 
6590 /*
6591  * Updates compare related fields in sctx and simply forwards to the actual
6592  * changed_xxx functions.
6593  */
6594 static int changed_cb(struct btrfs_path *left_path,
6595 		      struct btrfs_path *right_path,
6596 		      struct btrfs_key *key,
6597 		      enum btrfs_compare_tree_result result,
6598 		      struct send_ctx *sctx)
6599 {
6600 	int ret = 0;
6601 
6602 	if (result == BTRFS_COMPARE_TREE_SAME) {
6603 		if (key->type == BTRFS_INODE_REF_KEY ||
6604 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6605 			ret = compare_refs(sctx, left_path, key);
6606 			if (!ret)
6607 				return 0;
6608 			if (ret < 0)
6609 				return ret;
6610 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6611 			return maybe_send_hole(sctx, left_path, key);
6612 		} else {
6613 			return 0;
6614 		}
6615 		result = BTRFS_COMPARE_TREE_CHANGED;
6616 		ret = 0;
6617 	}
6618 
6619 	sctx->left_path = left_path;
6620 	sctx->right_path = right_path;
6621 	sctx->cmp_key = key;
6622 
6623 	ret = finish_inode_if_needed(sctx, 0);
6624 	if (ret < 0)
6625 		goto out;
6626 
6627 	/* Ignore non-FS objects */
6628 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6629 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6630 		goto out;
6631 
6632 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6633 		ret = changed_inode(sctx, result);
6634 	} else if (!sctx->ignore_cur_inode) {
6635 		if (key->type == BTRFS_INODE_REF_KEY ||
6636 		    key->type == BTRFS_INODE_EXTREF_KEY)
6637 			ret = changed_ref(sctx, result);
6638 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6639 			ret = changed_xattr(sctx, result);
6640 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6641 			ret = changed_extent(sctx, result);
6642 	}
6643 
6644 out:
6645 	return ret;
6646 }
6647 
6648 static int full_send_tree(struct send_ctx *sctx)
6649 {
6650 	int ret;
6651 	struct btrfs_root *send_root = sctx->send_root;
6652 	struct btrfs_key key;
6653 	struct btrfs_path *path;
6654 	struct extent_buffer *eb;
6655 	int slot;
6656 
6657 	path = alloc_path_for_send();
6658 	if (!path)
6659 		return -ENOMEM;
6660 	path->reada = READA_FORWARD_ALWAYS;
6661 
6662 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6663 	key.type = BTRFS_INODE_ITEM_KEY;
6664 	key.offset = 0;
6665 
6666 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6667 	if (ret < 0)
6668 		goto out;
6669 	if (ret)
6670 		goto out_finish;
6671 
6672 	while (1) {
6673 		eb = path->nodes[0];
6674 		slot = path->slots[0];
6675 		btrfs_item_key_to_cpu(eb, &key, slot);
6676 
6677 		ret = changed_cb(path, NULL, &key,
6678 				 BTRFS_COMPARE_TREE_NEW, sctx);
6679 		if (ret < 0)
6680 			goto out;
6681 
6682 		ret = btrfs_next_item(send_root, path);
6683 		if (ret < 0)
6684 			goto out;
6685 		if (ret) {
6686 			ret  = 0;
6687 			break;
6688 		}
6689 	}
6690 
6691 out_finish:
6692 	ret = finish_inode_if_needed(sctx, 1);
6693 
6694 out:
6695 	btrfs_free_path(path);
6696 	return ret;
6697 }
6698 
6699 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
6700 {
6701 	struct extent_buffer *eb;
6702 	struct extent_buffer *parent = path->nodes[*level];
6703 	int slot = path->slots[*level];
6704 	const int nritems = btrfs_header_nritems(parent);
6705 	u64 reada_max;
6706 	u64 reada_done = 0;
6707 
6708 	BUG_ON(*level == 0);
6709 	eb = btrfs_read_node_slot(parent, slot);
6710 	if (IS_ERR(eb))
6711 		return PTR_ERR(eb);
6712 
6713 	/*
6714 	 * Trigger readahead for the next leaves we will process, so that it is
6715 	 * very likely that when we need them they are already in memory and we
6716 	 * will not block on disk IO. For nodes we only do readahead for one,
6717 	 * since the time window between processing nodes is typically larger.
6718 	 */
6719 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
6720 
6721 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
6722 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
6723 			btrfs_readahead_node_child(parent, slot);
6724 			reada_done += eb->fs_info->nodesize;
6725 		}
6726 	}
6727 
6728 	path->nodes[*level - 1] = eb;
6729 	path->slots[*level - 1] = 0;
6730 	(*level)--;
6731 	return 0;
6732 }
6733 
6734 static int tree_move_next_or_upnext(struct btrfs_path *path,
6735 				    int *level, int root_level)
6736 {
6737 	int ret = 0;
6738 	int nritems;
6739 	nritems = btrfs_header_nritems(path->nodes[*level]);
6740 
6741 	path->slots[*level]++;
6742 
6743 	while (path->slots[*level] >= nritems) {
6744 		if (*level == root_level)
6745 			return -1;
6746 
6747 		/* move upnext */
6748 		path->slots[*level] = 0;
6749 		free_extent_buffer(path->nodes[*level]);
6750 		path->nodes[*level] = NULL;
6751 		(*level)++;
6752 		path->slots[*level]++;
6753 
6754 		nritems = btrfs_header_nritems(path->nodes[*level]);
6755 		ret = 1;
6756 	}
6757 	return ret;
6758 }
6759 
6760 /*
6761  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6762  * or down.
6763  */
6764 static int tree_advance(struct btrfs_path *path,
6765 			int *level, int root_level,
6766 			int allow_down,
6767 			struct btrfs_key *key,
6768 			u64 reada_min_gen)
6769 {
6770 	int ret;
6771 
6772 	if (*level == 0 || !allow_down) {
6773 		ret = tree_move_next_or_upnext(path, level, root_level);
6774 	} else {
6775 		ret = tree_move_down(path, level, reada_min_gen);
6776 	}
6777 	if (ret >= 0) {
6778 		if (*level == 0)
6779 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6780 					path->slots[*level]);
6781 		else
6782 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6783 					path->slots[*level]);
6784 	}
6785 	return ret;
6786 }
6787 
6788 static int tree_compare_item(struct btrfs_path *left_path,
6789 			     struct btrfs_path *right_path,
6790 			     char *tmp_buf)
6791 {
6792 	int cmp;
6793 	int len1, len2;
6794 	unsigned long off1, off2;
6795 
6796 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6797 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6798 	if (len1 != len2)
6799 		return 1;
6800 
6801 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6802 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6803 				right_path->slots[0]);
6804 
6805 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6806 
6807 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6808 	if (cmp)
6809 		return 1;
6810 	return 0;
6811 }
6812 
6813 /*
6814  * This function compares two trees and calls the provided callback for
6815  * every changed/new/deleted item it finds.
6816  * If shared tree blocks are encountered, whole subtrees are skipped, making
6817  * the compare pretty fast on snapshotted subvolumes.
6818  *
6819  * This currently works on commit roots only. As commit roots are read only,
6820  * we don't do any locking. The commit roots are protected with transactions.
6821  * Transactions are ended and rejoined when a commit is tried in between.
6822  *
6823  * This function checks for modifications done to the trees while comparing.
6824  * If it detects a change, it aborts immediately.
6825  */
6826 static int btrfs_compare_trees(struct btrfs_root *left_root,
6827 			struct btrfs_root *right_root, struct send_ctx *sctx)
6828 {
6829 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6830 	int ret;
6831 	int cmp;
6832 	struct btrfs_path *left_path = NULL;
6833 	struct btrfs_path *right_path = NULL;
6834 	struct btrfs_key left_key;
6835 	struct btrfs_key right_key;
6836 	char *tmp_buf = NULL;
6837 	int left_root_level;
6838 	int right_root_level;
6839 	int left_level;
6840 	int right_level;
6841 	int left_end_reached;
6842 	int right_end_reached;
6843 	int advance_left;
6844 	int advance_right;
6845 	u64 left_blockptr;
6846 	u64 right_blockptr;
6847 	u64 left_gen;
6848 	u64 right_gen;
6849 	u64 reada_min_gen;
6850 
6851 	left_path = btrfs_alloc_path();
6852 	if (!left_path) {
6853 		ret = -ENOMEM;
6854 		goto out;
6855 	}
6856 	right_path = btrfs_alloc_path();
6857 	if (!right_path) {
6858 		ret = -ENOMEM;
6859 		goto out;
6860 	}
6861 
6862 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6863 	if (!tmp_buf) {
6864 		ret = -ENOMEM;
6865 		goto out;
6866 	}
6867 
6868 	left_path->search_commit_root = 1;
6869 	left_path->skip_locking = 1;
6870 	right_path->search_commit_root = 1;
6871 	right_path->skip_locking = 1;
6872 
6873 	/*
6874 	 * Strategy: Go to the first items of both trees. Then do
6875 	 *
6876 	 * If both trees are at level 0
6877 	 *   Compare keys of current items
6878 	 *     If left < right treat left item as new, advance left tree
6879 	 *       and repeat
6880 	 *     If left > right treat right item as deleted, advance right tree
6881 	 *       and repeat
6882 	 *     If left == right do deep compare of items, treat as changed if
6883 	 *       needed, advance both trees and repeat
6884 	 * If both trees are at the same level but not at level 0
6885 	 *   Compare keys of current nodes/leafs
6886 	 *     If left < right advance left tree and repeat
6887 	 *     If left > right advance right tree and repeat
6888 	 *     If left == right compare blockptrs of the next nodes/leafs
6889 	 *       If they match advance both trees but stay at the same level
6890 	 *         and repeat
6891 	 *       If they don't match advance both trees while allowing to go
6892 	 *         deeper and repeat
6893 	 * If tree levels are different
6894 	 *   Advance the tree that needs it and repeat
6895 	 *
6896 	 * Advancing a tree means:
6897 	 *   If we are at level 0, try to go to the next slot. If that's not
6898 	 *   possible, go one level up and repeat. Stop when we found a level
6899 	 *   where we could go to the next slot. We may at this point be on a
6900 	 *   node or a leaf.
6901 	 *
6902 	 *   If we are not at level 0 and not on shared tree blocks, go one
6903 	 *   level deeper.
6904 	 *
6905 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6906 	 *   the right if possible or go up and right.
6907 	 */
6908 
6909 	down_read(&fs_info->commit_root_sem);
6910 	left_level = btrfs_header_level(left_root->commit_root);
6911 	left_root_level = left_level;
6912 	left_path->nodes[left_level] =
6913 			btrfs_clone_extent_buffer(left_root->commit_root);
6914 	if (!left_path->nodes[left_level]) {
6915 		up_read(&fs_info->commit_root_sem);
6916 		ret = -ENOMEM;
6917 		goto out;
6918 	}
6919 
6920 	right_level = btrfs_header_level(right_root->commit_root);
6921 	right_root_level = right_level;
6922 	right_path->nodes[right_level] =
6923 			btrfs_clone_extent_buffer(right_root->commit_root);
6924 	if (!right_path->nodes[right_level]) {
6925 		up_read(&fs_info->commit_root_sem);
6926 		ret = -ENOMEM;
6927 		goto out;
6928 	}
6929 	/*
6930 	 * Our right root is the parent root, while the left root is the "send"
6931 	 * root. We know that all new nodes/leaves in the left root must have
6932 	 * a generation greater than the right root's generation, so we trigger
6933 	 * readahead for those nodes and leaves of the left root, as we know we
6934 	 * will need to read them at some point.
6935 	 */
6936 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
6937 	up_read(&fs_info->commit_root_sem);
6938 
6939 	if (left_level == 0)
6940 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6941 				&left_key, left_path->slots[left_level]);
6942 	else
6943 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6944 				&left_key, left_path->slots[left_level]);
6945 	if (right_level == 0)
6946 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6947 				&right_key, right_path->slots[right_level]);
6948 	else
6949 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6950 				&right_key, right_path->slots[right_level]);
6951 
6952 	left_end_reached = right_end_reached = 0;
6953 	advance_left = advance_right = 0;
6954 
6955 	while (1) {
6956 		cond_resched();
6957 		if (advance_left && !left_end_reached) {
6958 			ret = tree_advance(left_path, &left_level,
6959 					left_root_level,
6960 					advance_left != ADVANCE_ONLY_NEXT,
6961 					&left_key, reada_min_gen);
6962 			if (ret == -1)
6963 				left_end_reached = ADVANCE;
6964 			else if (ret < 0)
6965 				goto out;
6966 			advance_left = 0;
6967 		}
6968 		if (advance_right && !right_end_reached) {
6969 			ret = tree_advance(right_path, &right_level,
6970 					right_root_level,
6971 					advance_right != ADVANCE_ONLY_NEXT,
6972 					&right_key, reada_min_gen);
6973 			if (ret == -1)
6974 				right_end_reached = ADVANCE;
6975 			else if (ret < 0)
6976 				goto out;
6977 			advance_right = 0;
6978 		}
6979 
6980 		if (left_end_reached && right_end_reached) {
6981 			ret = 0;
6982 			goto out;
6983 		} else if (left_end_reached) {
6984 			if (right_level == 0) {
6985 				ret = changed_cb(left_path, right_path,
6986 						&right_key,
6987 						BTRFS_COMPARE_TREE_DELETED,
6988 						sctx);
6989 				if (ret < 0)
6990 					goto out;
6991 			}
6992 			advance_right = ADVANCE;
6993 			continue;
6994 		} else if (right_end_reached) {
6995 			if (left_level == 0) {
6996 				ret = changed_cb(left_path, right_path,
6997 						&left_key,
6998 						BTRFS_COMPARE_TREE_NEW,
6999 						sctx);
7000 				if (ret < 0)
7001 					goto out;
7002 			}
7003 			advance_left = ADVANCE;
7004 			continue;
7005 		}
7006 
7007 		if (left_level == 0 && right_level == 0) {
7008 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7009 			if (cmp < 0) {
7010 				ret = changed_cb(left_path, right_path,
7011 						&left_key,
7012 						BTRFS_COMPARE_TREE_NEW,
7013 						sctx);
7014 				if (ret < 0)
7015 					goto out;
7016 				advance_left = ADVANCE;
7017 			} else if (cmp > 0) {
7018 				ret = changed_cb(left_path, right_path,
7019 						&right_key,
7020 						BTRFS_COMPARE_TREE_DELETED,
7021 						sctx);
7022 				if (ret < 0)
7023 					goto out;
7024 				advance_right = ADVANCE;
7025 			} else {
7026 				enum btrfs_compare_tree_result result;
7027 
7028 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7029 				ret = tree_compare_item(left_path, right_path,
7030 							tmp_buf);
7031 				if (ret)
7032 					result = BTRFS_COMPARE_TREE_CHANGED;
7033 				else
7034 					result = BTRFS_COMPARE_TREE_SAME;
7035 				ret = changed_cb(left_path, right_path,
7036 						 &left_key, result, sctx);
7037 				if (ret < 0)
7038 					goto out;
7039 				advance_left = ADVANCE;
7040 				advance_right = ADVANCE;
7041 			}
7042 		} else if (left_level == right_level) {
7043 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7044 			if (cmp < 0) {
7045 				advance_left = ADVANCE;
7046 			} else if (cmp > 0) {
7047 				advance_right = ADVANCE;
7048 			} else {
7049 				left_blockptr = btrfs_node_blockptr(
7050 						left_path->nodes[left_level],
7051 						left_path->slots[left_level]);
7052 				right_blockptr = btrfs_node_blockptr(
7053 						right_path->nodes[right_level],
7054 						right_path->slots[right_level]);
7055 				left_gen = btrfs_node_ptr_generation(
7056 						left_path->nodes[left_level],
7057 						left_path->slots[left_level]);
7058 				right_gen = btrfs_node_ptr_generation(
7059 						right_path->nodes[right_level],
7060 						right_path->slots[right_level]);
7061 				if (left_blockptr == right_blockptr &&
7062 				    left_gen == right_gen) {
7063 					/*
7064 					 * As we're on a shared block, don't
7065 					 * allow to go deeper.
7066 					 */
7067 					advance_left = ADVANCE_ONLY_NEXT;
7068 					advance_right = ADVANCE_ONLY_NEXT;
7069 				} else {
7070 					advance_left = ADVANCE;
7071 					advance_right = ADVANCE;
7072 				}
7073 			}
7074 		} else if (left_level < right_level) {
7075 			advance_right = ADVANCE;
7076 		} else {
7077 			advance_left = ADVANCE;
7078 		}
7079 	}
7080 
7081 out:
7082 	btrfs_free_path(left_path);
7083 	btrfs_free_path(right_path);
7084 	kvfree(tmp_buf);
7085 	return ret;
7086 }
7087 
7088 static int send_subvol(struct send_ctx *sctx)
7089 {
7090 	int ret;
7091 
7092 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7093 		ret = send_header(sctx);
7094 		if (ret < 0)
7095 			goto out;
7096 	}
7097 
7098 	ret = send_subvol_begin(sctx);
7099 	if (ret < 0)
7100 		goto out;
7101 
7102 	if (sctx->parent_root) {
7103 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7104 		if (ret < 0)
7105 			goto out;
7106 		ret = finish_inode_if_needed(sctx, 1);
7107 		if (ret < 0)
7108 			goto out;
7109 	} else {
7110 		ret = full_send_tree(sctx);
7111 		if (ret < 0)
7112 			goto out;
7113 	}
7114 
7115 out:
7116 	free_recorded_refs(sctx);
7117 	return ret;
7118 }
7119 
7120 /*
7121  * If orphan cleanup did remove any orphans from a root, it means the tree
7122  * was modified and therefore the commit root is not the same as the current
7123  * root anymore. This is a problem, because send uses the commit root and
7124  * therefore can see inode items that don't exist in the current root anymore,
7125  * and for example make calls to btrfs_iget, which will do tree lookups based
7126  * on the current root and not on the commit root. Those lookups will fail,
7127  * returning a -ESTALE error, and making send fail with that error. So make
7128  * sure a send does not see any orphans we have just removed, and that it will
7129  * see the same inodes regardless of whether a transaction commit happened
7130  * before it started (meaning that the commit root will be the same as the
7131  * current root) or not.
7132  */
7133 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7134 {
7135 	int i;
7136 	struct btrfs_trans_handle *trans = NULL;
7137 
7138 again:
7139 	if (sctx->parent_root &&
7140 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7141 		goto commit_trans;
7142 
7143 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7144 		if (sctx->clone_roots[i].root->node !=
7145 		    sctx->clone_roots[i].root->commit_root)
7146 			goto commit_trans;
7147 
7148 	if (trans)
7149 		return btrfs_end_transaction(trans);
7150 
7151 	return 0;
7152 
7153 commit_trans:
7154 	/* Use any root, all fs roots will get their commit roots updated. */
7155 	if (!trans) {
7156 		trans = btrfs_join_transaction(sctx->send_root);
7157 		if (IS_ERR(trans))
7158 			return PTR_ERR(trans);
7159 		goto again;
7160 	}
7161 
7162 	return btrfs_commit_transaction(trans);
7163 }
7164 
7165 /*
7166  * Make sure any existing dellaloc is flushed for any root used by a send
7167  * operation so that we do not miss any data and we do not race with writeback
7168  * finishing and changing a tree while send is using the tree. This could
7169  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7170  * a send operation then uses the subvolume.
7171  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7172  */
7173 static int flush_delalloc_roots(struct send_ctx *sctx)
7174 {
7175 	struct btrfs_root *root = sctx->parent_root;
7176 	int ret;
7177 	int i;
7178 
7179 	if (root) {
7180 		ret = btrfs_start_delalloc_snapshot(root, false);
7181 		if (ret)
7182 			return ret;
7183 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7184 	}
7185 
7186 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
7187 		root = sctx->clone_roots[i].root;
7188 		ret = btrfs_start_delalloc_snapshot(root, false);
7189 		if (ret)
7190 			return ret;
7191 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7192 	}
7193 
7194 	return 0;
7195 }
7196 
7197 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7198 {
7199 	spin_lock(&root->root_item_lock);
7200 	root->send_in_progress--;
7201 	/*
7202 	 * Not much left to do, we don't know why it's unbalanced and
7203 	 * can't blindly reset it to 0.
7204 	 */
7205 	if (root->send_in_progress < 0)
7206 		btrfs_err(root->fs_info,
7207 			  "send_in_progress unbalanced %d root %llu",
7208 			  root->send_in_progress, root->root_key.objectid);
7209 	spin_unlock(&root->root_item_lock);
7210 }
7211 
7212 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7213 {
7214 	btrfs_warn_rl(root->fs_info,
7215 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7216 		      root->root_key.objectid, root->dedupe_in_progress);
7217 }
7218 
7219 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7220 {
7221 	int ret = 0;
7222 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7223 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7224 	struct btrfs_root *clone_root;
7225 	struct send_ctx *sctx = NULL;
7226 	u32 i;
7227 	u64 *clone_sources_tmp = NULL;
7228 	int clone_sources_to_rollback = 0;
7229 	size_t alloc_size;
7230 	int sort_clone_roots = 0;
7231 
7232 	if (!capable(CAP_SYS_ADMIN))
7233 		return -EPERM;
7234 
7235 	/*
7236 	 * The subvolume must remain read-only during send, protect against
7237 	 * making it RW. This also protects against deletion.
7238 	 */
7239 	spin_lock(&send_root->root_item_lock);
7240 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7241 		dedupe_in_progress_warn(send_root);
7242 		spin_unlock(&send_root->root_item_lock);
7243 		return -EAGAIN;
7244 	}
7245 	send_root->send_in_progress++;
7246 	spin_unlock(&send_root->root_item_lock);
7247 
7248 	/*
7249 	 * Userspace tools do the checks and warn the user if it's
7250 	 * not RO.
7251 	 */
7252 	if (!btrfs_root_readonly(send_root)) {
7253 		ret = -EPERM;
7254 		goto out;
7255 	}
7256 
7257 	/*
7258 	 * Check that we don't overflow at later allocations, we request
7259 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7260 	 * access_ok.
7261 	 */
7262 	if (arg->clone_sources_count >
7263 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7264 		ret = -EINVAL;
7265 		goto out;
7266 	}
7267 
7268 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7269 		ret = -EINVAL;
7270 		goto out;
7271 	}
7272 
7273 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7274 	if (!sctx) {
7275 		ret = -ENOMEM;
7276 		goto out;
7277 	}
7278 
7279 	INIT_LIST_HEAD(&sctx->new_refs);
7280 	INIT_LIST_HEAD(&sctx->deleted_refs);
7281 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7282 	INIT_LIST_HEAD(&sctx->name_cache_list);
7283 
7284 	sctx->flags = arg->flags;
7285 
7286 	sctx->send_filp = fget(arg->send_fd);
7287 	if (!sctx->send_filp) {
7288 		ret = -EBADF;
7289 		goto out;
7290 	}
7291 
7292 	sctx->send_root = send_root;
7293 	/*
7294 	 * Unlikely but possible, if the subvolume is marked for deletion but
7295 	 * is slow to remove the directory entry, send can still be started
7296 	 */
7297 	if (btrfs_root_dead(sctx->send_root)) {
7298 		ret = -EPERM;
7299 		goto out;
7300 	}
7301 
7302 	sctx->clone_roots_cnt = arg->clone_sources_count;
7303 
7304 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7305 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7306 	if (!sctx->send_buf) {
7307 		ret = -ENOMEM;
7308 		goto out;
7309 	}
7310 
7311 	sctx->pending_dir_moves = RB_ROOT;
7312 	sctx->waiting_dir_moves = RB_ROOT;
7313 	sctx->orphan_dirs = RB_ROOT;
7314 
7315 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7316 				     arg->clone_sources_count + 1,
7317 				     GFP_KERNEL);
7318 	if (!sctx->clone_roots) {
7319 		ret = -ENOMEM;
7320 		goto out;
7321 	}
7322 
7323 	alloc_size = array_size(sizeof(*arg->clone_sources),
7324 				arg->clone_sources_count);
7325 
7326 	if (arg->clone_sources_count) {
7327 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7328 		if (!clone_sources_tmp) {
7329 			ret = -ENOMEM;
7330 			goto out;
7331 		}
7332 
7333 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7334 				alloc_size);
7335 		if (ret) {
7336 			ret = -EFAULT;
7337 			goto out;
7338 		}
7339 
7340 		for (i = 0; i < arg->clone_sources_count; i++) {
7341 			clone_root = btrfs_get_fs_root(fs_info,
7342 						clone_sources_tmp[i], true);
7343 			if (IS_ERR(clone_root)) {
7344 				ret = PTR_ERR(clone_root);
7345 				goto out;
7346 			}
7347 			spin_lock(&clone_root->root_item_lock);
7348 			if (!btrfs_root_readonly(clone_root) ||
7349 			    btrfs_root_dead(clone_root)) {
7350 				spin_unlock(&clone_root->root_item_lock);
7351 				btrfs_put_root(clone_root);
7352 				ret = -EPERM;
7353 				goto out;
7354 			}
7355 			if (clone_root->dedupe_in_progress) {
7356 				dedupe_in_progress_warn(clone_root);
7357 				spin_unlock(&clone_root->root_item_lock);
7358 				btrfs_put_root(clone_root);
7359 				ret = -EAGAIN;
7360 				goto out;
7361 			}
7362 			clone_root->send_in_progress++;
7363 			spin_unlock(&clone_root->root_item_lock);
7364 
7365 			sctx->clone_roots[i].root = clone_root;
7366 			clone_sources_to_rollback = i + 1;
7367 		}
7368 		kvfree(clone_sources_tmp);
7369 		clone_sources_tmp = NULL;
7370 	}
7371 
7372 	if (arg->parent_root) {
7373 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7374 						      true);
7375 		if (IS_ERR(sctx->parent_root)) {
7376 			ret = PTR_ERR(sctx->parent_root);
7377 			goto out;
7378 		}
7379 
7380 		spin_lock(&sctx->parent_root->root_item_lock);
7381 		sctx->parent_root->send_in_progress++;
7382 		if (!btrfs_root_readonly(sctx->parent_root) ||
7383 				btrfs_root_dead(sctx->parent_root)) {
7384 			spin_unlock(&sctx->parent_root->root_item_lock);
7385 			ret = -EPERM;
7386 			goto out;
7387 		}
7388 		if (sctx->parent_root->dedupe_in_progress) {
7389 			dedupe_in_progress_warn(sctx->parent_root);
7390 			spin_unlock(&sctx->parent_root->root_item_lock);
7391 			ret = -EAGAIN;
7392 			goto out;
7393 		}
7394 		spin_unlock(&sctx->parent_root->root_item_lock);
7395 	}
7396 
7397 	/*
7398 	 * Clones from send_root are allowed, but only if the clone source
7399 	 * is behind the current send position. This is checked while searching
7400 	 * for possible clone sources.
7401 	 */
7402 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
7403 		btrfs_grab_root(sctx->send_root);
7404 
7405 	/* We do a bsearch later */
7406 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7407 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7408 			NULL);
7409 	sort_clone_roots = 1;
7410 
7411 	ret = flush_delalloc_roots(sctx);
7412 	if (ret)
7413 		goto out;
7414 
7415 	ret = ensure_commit_roots_uptodate(sctx);
7416 	if (ret)
7417 		goto out;
7418 
7419 	spin_lock(&fs_info->send_reloc_lock);
7420 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
7421 		spin_unlock(&fs_info->send_reloc_lock);
7422 		btrfs_warn_rl(fs_info,
7423 		"cannot run send because a relocation operation is in progress");
7424 		ret = -EAGAIN;
7425 		goto out;
7426 	}
7427 	fs_info->send_in_progress++;
7428 	spin_unlock(&fs_info->send_reloc_lock);
7429 
7430 	ret = send_subvol(sctx);
7431 	spin_lock(&fs_info->send_reloc_lock);
7432 	fs_info->send_in_progress--;
7433 	spin_unlock(&fs_info->send_reloc_lock);
7434 	if (ret < 0)
7435 		goto out;
7436 
7437 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7438 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7439 		if (ret < 0)
7440 			goto out;
7441 		ret = send_cmd(sctx);
7442 		if (ret < 0)
7443 			goto out;
7444 	}
7445 
7446 out:
7447 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7448 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7449 		struct rb_node *n;
7450 		struct pending_dir_move *pm;
7451 
7452 		n = rb_first(&sctx->pending_dir_moves);
7453 		pm = rb_entry(n, struct pending_dir_move, node);
7454 		while (!list_empty(&pm->list)) {
7455 			struct pending_dir_move *pm2;
7456 
7457 			pm2 = list_first_entry(&pm->list,
7458 					       struct pending_dir_move, list);
7459 			free_pending_move(sctx, pm2);
7460 		}
7461 		free_pending_move(sctx, pm);
7462 	}
7463 
7464 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7465 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7466 		struct rb_node *n;
7467 		struct waiting_dir_move *dm;
7468 
7469 		n = rb_first(&sctx->waiting_dir_moves);
7470 		dm = rb_entry(n, struct waiting_dir_move, node);
7471 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7472 		kfree(dm);
7473 	}
7474 
7475 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7476 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7477 		struct rb_node *n;
7478 		struct orphan_dir_info *odi;
7479 
7480 		n = rb_first(&sctx->orphan_dirs);
7481 		odi = rb_entry(n, struct orphan_dir_info, node);
7482 		free_orphan_dir_info(sctx, odi);
7483 	}
7484 
7485 	if (sort_clone_roots) {
7486 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
7487 			btrfs_root_dec_send_in_progress(
7488 					sctx->clone_roots[i].root);
7489 			btrfs_put_root(sctx->clone_roots[i].root);
7490 		}
7491 	} else {
7492 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
7493 			btrfs_root_dec_send_in_progress(
7494 					sctx->clone_roots[i].root);
7495 			btrfs_put_root(sctx->clone_roots[i].root);
7496 		}
7497 
7498 		btrfs_root_dec_send_in_progress(send_root);
7499 	}
7500 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
7501 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7502 		btrfs_put_root(sctx->parent_root);
7503 	}
7504 
7505 	kvfree(clone_sources_tmp);
7506 
7507 	if (sctx) {
7508 		if (sctx->send_filp)
7509 			fput(sctx->send_filp);
7510 
7511 		kvfree(sctx->clone_roots);
7512 		kvfree(sctx->send_buf);
7513 
7514 		name_cache_free(sctx);
7515 
7516 		kfree(sctx);
7517 	}
7518 
7519 	return ret;
7520 }
7521