1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "xattr.h" 29 #include "print-tree.h" 30 #include "accessors.h" 31 #include "dir-item.h" 32 #include "file-item.h" 33 #include "ioctl.h" 34 #include "verity.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * a allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 84 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 85 86 /* 87 * Limit the root_ids array of struct backref_cache_entry to 12 elements. 88 * This makes the size of a cache entry to be exactly 128 bytes on x86_64. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 11 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 12. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 12 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, the size in bytes, excluding 99 * maple tree's internal nodes, is 16K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 /* List to link to the cache's lru list. */ 111 struct list_head list; 112 /* The key for this entry in the cache. */ 113 u64 key; 114 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 115 /* Number of valid elements in the root_ids array. */ 116 int num_roots; 117 }; 118 119 struct send_ctx { 120 struct file *send_filp; 121 loff_t send_off; 122 char *send_buf; 123 u32 send_size; 124 u32 send_max_size; 125 /* 126 * Whether BTRFS_SEND_A_DATA attribute was already added to current 127 * command (since protocol v2, data must be the last attribute). 128 */ 129 bool put_data; 130 struct page **send_buf_pages; 131 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 132 /* Protocol version compatibility requested */ 133 u32 proto; 134 135 struct btrfs_root *send_root; 136 struct btrfs_root *parent_root; 137 struct clone_root *clone_roots; 138 int clone_roots_cnt; 139 140 /* current state of the compare_tree call */ 141 struct btrfs_path *left_path; 142 struct btrfs_path *right_path; 143 struct btrfs_key *cmp_key; 144 145 /* 146 * Keep track of the generation of the last transaction that was used 147 * for relocating a block group. This is periodically checked in order 148 * to detect if a relocation happened since the last check, so that we 149 * don't operate on stale extent buffers for nodes (level >= 1) or on 150 * stale disk_bytenr values of file extent items. 151 */ 152 u64 last_reloc_trans; 153 154 /* 155 * infos of the currently processed inode. In case of deleted inodes, 156 * these are the values from the deleted inode. 157 */ 158 u64 cur_ino; 159 u64 cur_inode_gen; 160 u64 cur_inode_size; 161 u64 cur_inode_mode; 162 u64 cur_inode_rdev; 163 u64 cur_inode_last_extent; 164 u64 cur_inode_next_write_offset; 165 bool cur_inode_new; 166 bool cur_inode_new_gen; 167 bool cur_inode_deleted; 168 bool ignore_cur_inode; 169 bool cur_inode_needs_verity; 170 void *verity_descriptor; 171 172 u64 send_progress; 173 174 struct list_head new_refs; 175 struct list_head deleted_refs; 176 177 struct radix_tree_root name_cache; 178 struct list_head name_cache_list; 179 int name_cache_size; 180 181 /* 182 * The inode we are currently processing. It's not NULL only when we 183 * need to issue write commands for data extents from this inode. 184 */ 185 struct inode *cur_inode; 186 struct file_ra_state ra; 187 u64 page_cache_clear_start; 188 bool clean_page_cache; 189 190 /* 191 * We process inodes by their increasing order, so if before an 192 * incremental send we reverse the parent/child relationship of 193 * directories such that a directory with a lower inode number was 194 * the parent of a directory with a higher inode number, and the one 195 * becoming the new parent got renamed too, we can't rename/move the 196 * directory with lower inode number when we finish processing it - we 197 * must process the directory with higher inode number first, then 198 * rename/move it and then rename/move the directory with lower inode 199 * number. Example follows. 200 * 201 * Tree state when the first send was performed: 202 * 203 * . 204 * |-- a (ino 257) 205 * |-- b (ino 258) 206 * | 207 * | 208 * |-- c (ino 259) 209 * | |-- d (ino 260) 210 * | 211 * |-- c2 (ino 261) 212 * 213 * Tree state when the second (incremental) send is performed: 214 * 215 * . 216 * |-- a (ino 257) 217 * |-- b (ino 258) 218 * |-- c2 (ino 261) 219 * |-- d2 (ino 260) 220 * |-- cc (ino 259) 221 * 222 * The sequence of steps that lead to the second state was: 223 * 224 * mv /a/b/c/d /a/b/c2/d2 225 * mv /a/b/c /a/b/c2/d2/cc 226 * 227 * "c" has lower inode number, but we can't move it (2nd mv operation) 228 * before we move "d", which has higher inode number. 229 * 230 * So we just memorize which move/rename operations must be performed 231 * later when their respective parent is processed and moved/renamed. 232 */ 233 234 /* Indexed by parent directory inode number. */ 235 struct rb_root pending_dir_moves; 236 237 /* 238 * Reverse index, indexed by the inode number of a directory that 239 * is waiting for the move/rename of its immediate parent before its 240 * own move/rename can be performed. 241 */ 242 struct rb_root waiting_dir_moves; 243 244 /* 245 * A directory that is going to be rm'ed might have a child directory 246 * which is in the pending directory moves index above. In this case, 247 * the directory can only be removed after the move/rename of its child 248 * is performed. Example: 249 * 250 * Parent snapshot: 251 * 252 * . (ino 256) 253 * |-- a/ (ino 257) 254 * |-- b/ (ino 258) 255 * |-- c/ (ino 259) 256 * | |-- x/ (ino 260) 257 * | 258 * |-- y/ (ino 261) 259 * 260 * Send snapshot: 261 * 262 * . (ino 256) 263 * |-- a/ (ino 257) 264 * |-- b/ (ino 258) 265 * |-- YY/ (ino 261) 266 * |-- x/ (ino 260) 267 * 268 * Sequence of steps that lead to the send snapshot: 269 * rm -f /a/b/c/foo.txt 270 * mv /a/b/y /a/b/YY 271 * mv /a/b/c/x /a/b/YY 272 * rmdir /a/b/c 273 * 274 * When the child is processed, its move/rename is delayed until its 275 * parent is processed (as explained above), but all other operations 276 * like update utimes, chown, chgrp, etc, are performed and the paths 277 * that it uses for those operations must use the orphanized name of 278 * its parent (the directory we're going to rm later), so we need to 279 * memorize that name. 280 * 281 * Indexed by the inode number of the directory to be deleted. 282 */ 283 struct rb_root orphan_dirs; 284 285 struct rb_root rbtree_new_refs; 286 struct rb_root rbtree_deleted_refs; 287 288 struct { 289 u64 last_reloc_trans; 290 struct list_head lru_list; 291 struct maple_tree entries; 292 /* Number of entries stored in the cache. */ 293 int size; 294 } backref_cache; 295 }; 296 297 struct pending_dir_move { 298 struct rb_node node; 299 struct list_head list; 300 u64 parent_ino; 301 u64 ino; 302 u64 gen; 303 struct list_head update_refs; 304 }; 305 306 struct waiting_dir_move { 307 struct rb_node node; 308 u64 ino; 309 /* 310 * There might be some directory that could not be removed because it 311 * was waiting for this directory inode to be moved first. Therefore 312 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 313 */ 314 u64 rmdir_ino; 315 u64 rmdir_gen; 316 bool orphanized; 317 }; 318 319 struct orphan_dir_info { 320 struct rb_node node; 321 u64 ino; 322 u64 gen; 323 u64 last_dir_index_offset; 324 }; 325 326 struct name_cache_entry { 327 struct list_head list; 328 /* 329 * radix_tree has only 32bit entries but we need to handle 64bit inums. 330 * We use the lower 32bit of the 64bit inum to store it in the tree. If 331 * more then one inum would fall into the same entry, we use radix_list 332 * to store the additional entries. radix_list is also used to store 333 * entries where two entries have the same inum but different 334 * generations. 335 */ 336 struct list_head radix_list; 337 u64 ino; 338 u64 gen; 339 u64 parent_ino; 340 u64 parent_gen; 341 int ret; 342 int need_later_update; 343 int name_len; 344 char name[]; 345 }; 346 347 #define ADVANCE 1 348 #define ADVANCE_ONLY_NEXT -1 349 350 enum btrfs_compare_tree_result { 351 BTRFS_COMPARE_TREE_NEW, 352 BTRFS_COMPARE_TREE_DELETED, 353 BTRFS_COMPARE_TREE_CHANGED, 354 BTRFS_COMPARE_TREE_SAME, 355 }; 356 357 __cold 358 static void inconsistent_snapshot_error(struct send_ctx *sctx, 359 enum btrfs_compare_tree_result result, 360 const char *what) 361 { 362 const char *result_string; 363 364 switch (result) { 365 case BTRFS_COMPARE_TREE_NEW: 366 result_string = "new"; 367 break; 368 case BTRFS_COMPARE_TREE_DELETED: 369 result_string = "deleted"; 370 break; 371 case BTRFS_COMPARE_TREE_CHANGED: 372 result_string = "updated"; 373 break; 374 case BTRFS_COMPARE_TREE_SAME: 375 ASSERT(0); 376 result_string = "unchanged"; 377 break; 378 default: 379 ASSERT(0); 380 result_string = "unexpected"; 381 } 382 383 btrfs_err(sctx->send_root->fs_info, 384 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 385 result_string, what, sctx->cmp_key->objectid, 386 sctx->send_root->root_key.objectid, 387 (sctx->parent_root ? 388 sctx->parent_root->root_key.objectid : 0)); 389 } 390 391 __maybe_unused 392 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 393 { 394 switch (sctx->proto) { 395 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 396 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 397 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 398 default: return false; 399 } 400 } 401 402 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 403 404 static struct waiting_dir_move * 405 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 406 407 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 408 409 static int need_send_hole(struct send_ctx *sctx) 410 { 411 return (sctx->parent_root && !sctx->cur_inode_new && 412 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 413 S_ISREG(sctx->cur_inode_mode)); 414 } 415 416 static void fs_path_reset(struct fs_path *p) 417 { 418 if (p->reversed) { 419 p->start = p->buf + p->buf_len - 1; 420 p->end = p->start; 421 *p->start = 0; 422 } else { 423 p->start = p->buf; 424 p->end = p->start; 425 *p->start = 0; 426 } 427 } 428 429 static struct fs_path *fs_path_alloc(void) 430 { 431 struct fs_path *p; 432 433 p = kmalloc(sizeof(*p), GFP_KERNEL); 434 if (!p) 435 return NULL; 436 p->reversed = 0; 437 p->buf = p->inline_buf; 438 p->buf_len = FS_PATH_INLINE_SIZE; 439 fs_path_reset(p); 440 return p; 441 } 442 443 static struct fs_path *fs_path_alloc_reversed(void) 444 { 445 struct fs_path *p; 446 447 p = fs_path_alloc(); 448 if (!p) 449 return NULL; 450 p->reversed = 1; 451 fs_path_reset(p); 452 return p; 453 } 454 455 static void fs_path_free(struct fs_path *p) 456 { 457 if (!p) 458 return; 459 if (p->buf != p->inline_buf) 460 kfree(p->buf); 461 kfree(p); 462 } 463 464 static int fs_path_len(struct fs_path *p) 465 { 466 return p->end - p->start; 467 } 468 469 static int fs_path_ensure_buf(struct fs_path *p, int len) 470 { 471 char *tmp_buf; 472 int path_len; 473 int old_buf_len; 474 475 len++; 476 477 if (p->buf_len >= len) 478 return 0; 479 480 if (len > PATH_MAX) { 481 WARN_ON(1); 482 return -ENOMEM; 483 } 484 485 path_len = p->end - p->start; 486 old_buf_len = p->buf_len; 487 488 /* 489 * First time the inline_buf does not suffice 490 */ 491 if (p->buf == p->inline_buf) { 492 tmp_buf = kmalloc(len, GFP_KERNEL); 493 if (tmp_buf) 494 memcpy(tmp_buf, p->buf, old_buf_len); 495 } else { 496 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 497 } 498 if (!tmp_buf) 499 return -ENOMEM; 500 p->buf = tmp_buf; 501 /* 502 * The real size of the buffer is bigger, this will let the fast path 503 * happen most of the time 504 */ 505 p->buf_len = ksize(p->buf); 506 507 if (p->reversed) { 508 tmp_buf = p->buf + old_buf_len - path_len - 1; 509 p->end = p->buf + p->buf_len - 1; 510 p->start = p->end - path_len; 511 memmove(p->start, tmp_buf, path_len + 1); 512 } else { 513 p->start = p->buf; 514 p->end = p->start + path_len; 515 } 516 return 0; 517 } 518 519 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 520 char **prepared) 521 { 522 int ret; 523 int new_len; 524 525 new_len = p->end - p->start + name_len; 526 if (p->start != p->end) 527 new_len++; 528 ret = fs_path_ensure_buf(p, new_len); 529 if (ret < 0) 530 goto out; 531 532 if (p->reversed) { 533 if (p->start != p->end) 534 *--p->start = '/'; 535 p->start -= name_len; 536 *prepared = p->start; 537 } else { 538 if (p->start != p->end) 539 *p->end++ = '/'; 540 *prepared = p->end; 541 p->end += name_len; 542 *p->end = 0; 543 } 544 545 out: 546 return ret; 547 } 548 549 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 550 { 551 int ret; 552 char *prepared; 553 554 ret = fs_path_prepare_for_add(p, name_len, &prepared); 555 if (ret < 0) 556 goto out; 557 memcpy(prepared, name, name_len); 558 559 out: 560 return ret; 561 } 562 563 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 564 { 565 int ret; 566 char *prepared; 567 568 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 569 if (ret < 0) 570 goto out; 571 memcpy(prepared, p2->start, p2->end - p2->start); 572 573 out: 574 return ret; 575 } 576 577 static int fs_path_add_from_extent_buffer(struct fs_path *p, 578 struct extent_buffer *eb, 579 unsigned long off, int len) 580 { 581 int ret; 582 char *prepared; 583 584 ret = fs_path_prepare_for_add(p, len, &prepared); 585 if (ret < 0) 586 goto out; 587 588 read_extent_buffer(eb, prepared, off, len); 589 590 out: 591 return ret; 592 } 593 594 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 595 { 596 p->reversed = from->reversed; 597 fs_path_reset(p); 598 599 return fs_path_add_path(p, from); 600 } 601 602 static void fs_path_unreverse(struct fs_path *p) 603 { 604 char *tmp; 605 int len; 606 607 if (!p->reversed) 608 return; 609 610 tmp = p->start; 611 len = p->end - p->start; 612 p->start = p->buf; 613 p->end = p->start + len; 614 memmove(p->start, tmp, len + 1); 615 p->reversed = 0; 616 } 617 618 static struct btrfs_path *alloc_path_for_send(void) 619 { 620 struct btrfs_path *path; 621 622 path = btrfs_alloc_path(); 623 if (!path) 624 return NULL; 625 path->search_commit_root = 1; 626 path->skip_locking = 1; 627 path->need_commit_sem = 1; 628 return path; 629 } 630 631 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 632 { 633 int ret; 634 u32 pos = 0; 635 636 while (pos < len) { 637 ret = kernel_write(filp, buf + pos, len - pos, off); 638 if (ret < 0) 639 return ret; 640 if (ret == 0) 641 return -EIO; 642 pos += ret; 643 } 644 645 return 0; 646 } 647 648 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 649 { 650 struct btrfs_tlv_header *hdr; 651 int total_len = sizeof(*hdr) + len; 652 int left = sctx->send_max_size - sctx->send_size; 653 654 if (WARN_ON_ONCE(sctx->put_data)) 655 return -EINVAL; 656 657 if (unlikely(left < total_len)) 658 return -EOVERFLOW; 659 660 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 661 put_unaligned_le16(attr, &hdr->tlv_type); 662 put_unaligned_le16(len, &hdr->tlv_len); 663 memcpy(hdr + 1, data, len); 664 sctx->send_size += total_len; 665 666 return 0; 667 } 668 669 #define TLV_PUT_DEFINE_INT(bits) \ 670 static int tlv_put_u##bits(struct send_ctx *sctx, \ 671 u##bits attr, u##bits value) \ 672 { \ 673 __le##bits __tmp = cpu_to_le##bits(value); \ 674 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 675 } 676 677 TLV_PUT_DEFINE_INT(8) 678 TLV_PUT_DEFINE_INT(32) 679 TLV_PUT_DEFINE_INT(64) 680 681 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 682 const char *str, int len) 683 { 684 if (len == -1) 685 len = strlen(str); 686 return tlv_put(sctx, attr, str, len); 687 } 688 689 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 690 const u8 *uuid) 691 { 692 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 693 } 694 695 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 696 struct extent_buffer *eb, 697 struct btrfs_timespec *ts) 698 { 699 struct btrfs_timespec bts; 700 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 701 return tlv_put(sctx, attr, &bts, sizeof(bts)); 702 } 703 704 705 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 706 do { \ 707 ret = tlv_put(sctx, attrtype, data, attrlen); \ 708 if (ret < 0) \ 709 goto tlv_put_failure; \ 710 } while (0) 711 712 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 713 do { \ 714 ret = tlv_put_u##bits(sctx, attrtype, value); \ 715 if (ret < 0) \ 716 goto tlv_put_failure; \ 717 } while (0) 718 719 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 720 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 721 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 722 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 723 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 724 do { \ 725 ret = tlv_put_string(sctx, attrtype, str, len); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 #define TLV_PUT_PATH(sctx, attrtype, p) \ 730 do { \ 731 ret = tlv_put_string(sctx, attrtype, p->start, \ 732 p->end - p->start); \ 733 if (ret < 0) \ 734 goto tlv_put_failure; \ 735 } while(0) 736 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 737 do { \ 738 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 739 if (ret < 0) \ 740 goto tlv_put_failure; \ 741 } while (0) 742 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 743 do { \ 744 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 745 if (ret < 0) \ 746 goto tlv_put_failure; \ 747 } while (0) 748 749 static int send_header(struct send_ctx *sctx) 750 { 751 struct btrfs_stream_header hdr; 752 753 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 754 hdr.version = cpu_to_le32(sctx->proto); 755 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 756 &sctx->send_off); 757 } 758 759 /* 760 * For each command/item we want to send to userspace, we call this function. 761 */ 762 static int begin_cmd(struct send_ctx *sctx, int cmd) 763 { 764 struct btrfs_cmd_header *hdr; 765 766 if (WARN_ON(!sctx->send_buf)) 767 return -EINVAL; 768 769 BUG_ON(sctx->send_size); 770 771 sctx->send_size += sizeof(*hdr); 772 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 773 put_unaligned_le16(cmd, &hdr->cmd); 774 775 return 0; 776 } 777 778 static int send_cmd(struct send_ctx *sctx) 779 { 780 int ret; 781 struct btrfs_cmd_header *hdr; 782 u32 crc; 783 784 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 785 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 786 put_unaligned_le32(0, &hdr->crc); 787 788 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 789 put_unaligned_le32(crc, &hdr->crc); 790 791 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 792 &sctx->send_off); 793 794 sctx->send_size = 0; 795 sctx->put_data = false; 796 797 return ret; 798 } 799 800 /* 801 * Sends a move instruction to user space 802 */ 803 static int send_rename(struct send_ctx *sctx, 804 struct fs_path *from, struct fs_path *to) 805 { 806 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 807 int ret; 808 809 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 810 811 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 812 if (ret < 0) 813 goto out; 814 815 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 816 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 817 818 ret = send_cmd(sctx); 819 820 tlv_put_failure: 821 out: 822 return ret; 823 } 824 825 /* 826 * Sends a link instruction to user space 827 */ 828 static int send_link(struct send_ctx *sctx, 829 struct fs_path *path, struct fs_path *lnk) 830 { 831 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 832 int ret; 833 834 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 835 836 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 837 if (ret < 0) 838 goto out; 839 840 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 842 843 ret = send_cmd(sctx); 844 845 tlv_put_failure: 846 out: 847 return ret; 848 } 849 850 /* 851 * Sends an unlink instruction to user space 852 */ 853 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 854 { 855 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 856 int ret; 857 858 btrfs_debug(fs_info, "send_unlink %s", path->start); 859 860 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 861 if (ret < 0) 862 goto out; 863 864 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 865 866 ret = send_cmd(sctx); 867 868 tlv_put_failure: 869 out: 870 return ret; 871 } 872 873 /* 874 * Sends a rmdir instruction to user space 875 */ 876 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 877 { 878 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 879 int ret; 880 881 btrfs_debug(fs_info, "send_rmdir %s", path->start); 882 883 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 884 if (ret < 0) 885 goto out; 886 887 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 888 889 ret = send_cmd(sctx); 890 891 tlv_put_failure: 892 out: 893 return ret; 894 } 895 896 struct btrfs_inode_info { 897 u64 size; 898 u64 gen; 899 u64 mode; 900 u64 uid; 901 u64 gid; 902 u64 rdev; 903 u64 fileattr; 904 u64 nlink; 905 }; 906 907 /* 908 * Helper function to retrieve some fields from an inode item. 909 */ 910 static int get_inode_info(struct btrfs_root *root, u64 ino, 911 struct btrfs_inode_info *info) 912 { 913 int ret; 914 struct btrfs_path *path; 915 struct btrfs_inode_item *ii; 916 struct btrfs_key key; 917 918 path = alloc_path_for_send(); 919 if (!path) 920 return -ENOMEM; 921 922 key.objectid = ino; 923 key.type = BTRFS_INODE_ITEM_KEY; 924 key.offset = 0; 925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 926 if (ret) { 927 if (ret > 0) 928 ret = -ENOENT; 929 goto out; 930 } 931 932 if (!info) 933 goto out; 934 935 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 936 struct btrfs_inode_item); 937 info->size = btrfs_inode_size(path->nodes[0], ii); 938 info->gen = btrfs_inode_generation(path->nodes[0], ii); 939 info->mode = btrfs_inode_mode(path->nodes[0], ii); 940 info->uid = btrfs_inode_uid(path->nodes[0], ii); 941 info->gid = btrfs_inode_gid(path->nodes[0], ii); 942 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 943 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 944 /* 945 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 946 * otherwise logically split to 32/32 parts. 947 */ 948 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 949 950 out: 951 btrfs_free_path(path); 952 return ret; 953 } 954 955 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 956 { 957 int ret; 958 struct btrfs_inode_info info; 959 960 if (!gen) 961 return -EPERM; 962 963 ret = get_inode_info(root, ino, &info); 964 if (!ret) 965 *gen = info.gen; 966 return ret; 967 } 968 969 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 970 struct fs_path *p, 971 void *ctx); 972 973 /* 974 * Helper function to iterate the entries in ONE btrfs_inode_ref or 975 * btrfs_inode_extref. 976 * The iterate callback may return a non zero value to stop iteration. This can 977 * be a negative value for error codes or 1 to simply stop it. 978 * 979 * path must point to the INODE_REF or INODE_EXTREF when called. 980 */ 981 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 982 struct btrfs_key *found_key, int resolve, 983 iterate_inode_ref_t iterate, void *ctx) 984 { 985 struct extent_buffer *eb = path->nodes[0]; 986 struct btrfs_inode_ref *iref; 987 struct btrfs_inode_extref *extref; 988 struct btrfs_path *tmp_path; 989 struct fs_path *p; 990 u32 cur = 0; 991 u32 total; 992 int slot = path->slots[0]; 993 u32 name_len; 994 char *start; 995 int ret = 0; 996 int num = 0; 997 int index; 998 u64 dir; 999 unsigned long name_off; 1000 unsigned long elem_size; 1001 unsigned long ptr; 1002 1003 p = fs_path_alloc_reversed(); 1004 if (!p) 1005 return -ENOMEM; 1006 1007 tmp_path = alloc_path_for_send(); 1008 if (!tmp_path) { 1009 fs_path_free(p); 1010 return -ENOMEM; 1011 } 1012 1013 1014 if (found_key->type == BTRFS_INODE_REF_KEY) { 1015 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1016 struct btrfs_inode_ref); 1017 total = btrfs_item_size(eb, slot); 1018 elem_size = sizeof(*iref); 1019 } else { 1020 ptr = btrfs_item_ptr_offset(eb, slot); 1021 total = btrfs_item_size(eb, slot); 1022 elem_size = sizeof(*extref); 1023 } 1024 1025 while (cur < total) { 1026 fs_path_reset(p); 1027 1028 if (found_key->type == BTRFS_INODE_REF_KEY) { 1029 iref = (struct btrfs_inode_ref *)(ptr + cur); 1030 name_len = btrfs_inode_ref_name_len(eb, iref); 1031 name_off = (unsigned long)(iref + 1); 1032 index = btrfs_inode_ref_index(eb, iref); 1033 dir = found_key->offset; 1034 } else { 1035 extref = (struct btrfs_inode_extref *)(ptr + cur); 1036 name_len = btrfs_inode_extref_name_len(eb, extref); 1037 name_off = (unsigned long)&extref->name; 1038 index = btrfs_inode_extref_index(eb, extref); 1039 dir = btrfs_inode_extref_parent(eb, extref); 1040 } 1041 1042 if (resolve) { 1043 start = btrfs_ref_to_path(root, tmp_path, name_len, 1044 name_off, eb, dir, 1045 p->buf, p->buf_len); 1046 if (IS_ERR(start)) { 1047 ret = PTR_ERR(start); 1048 goto out; 1049 } 1050 if (start < p->buf) { 1051 /* overflow , try again with larger buffer */ 1052 ret = fs_path_ensure_buf(p, 1053 p->buf_len + p->buf - start); 1054 if (ret < 0) 1055 goto out; 1056 start = btrfs_ref_to_path(root, tmp_path, 1057 name_len, name_off, 1058 eb, dir, 1059 p->buf, p->buf_len); 1060 if (IS_ERR(start)) { 1061 ret = PTR_ERR(start); 1062 goto out; 1063 } 1064 BUG_ON(start < p->buf); 1065 } 1066 p->start = start; 1067 } else { 1068 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1069 name_len); 1070 if (ret < 0) 1071 goto out; 1072 } 1073 1074 cur += elem_size + name_len; 1075 ret = iterate(num, dir, index, p, ctx); 1076 if (ret) 1077 goto out; 1078 num++; 1079 } 1080 1081 out: 1082 btrfs_free_path(tmp_path); 1083 fs_path_free(p); 1084 return ret; 1085 } 1086 1087 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1088 const char *name, int name_len, 1089 const char *data, int data_len, 1090 void *ctx); 1091 1092 /* 1093 * Helper function to iterate the entries in ONE btrfs_dir_item. 1094 * The iterate callback may return a non zero value to stop iteration. This can 1095 * be a negative value for error codes or 1 to simply stop it. 1096 * 1097 * path must point to the dir item when called. 1098 */ 1099 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1100 iterate_dir_item_t iterate, void *ctx) 1101 { 1102 int ret = 0; 1103 struct extent_buffer *eb; 1104 struct btrfs_dir_item *di; 1105 struct btrfs_key di_key; 1106 char *buf = NULL; 1107 int buf_len; 1108 u32 name_len; 1109 u32 data_len; 1110 u32 cur; 1111 u32 len; 1112 u32 total; 1113 int slot; 1114 int num; 1115 1116 /* 1117 * Start with a small buffer (1 page). If later we end up needing more 1118 * space, which can happen for xattrs on a fs with a leaf size greater 1119 * then the page size, attempt to increase the buffer. Typically xattr 1120 * values are small. 1121 */ 1122 buf_len = PATH_MAX; 1123 buf = kmalloc(buf_len, GFP_KERNEL); 1124 if (!buf) { 1125 ret = -ENOMEM; 1126 goto out; 1127 } 1128 1129 eb = path->nodes[0]; 1130 slot = path->slots[0]; 1131 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1132 cur = 0; 1133 len = 0; 1134 total = btrfs_item_size(eb, slot); 1135 1136 num = 0; 1137 while (cur < total) { 1138 name_len = btrfs_dir_name_len(eb, di); 1139 data_len = btrfs_dir_data_len(eb, di); 1140 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1141 1142 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1143 if (name_len > XATTR_NAME_MAX) { 1144 ret = -ENAMETOOLONG; 1145 goto out; 1146 } 1147 if (name_len + data_len > 1148 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1149 ret = -E2BIG; 1150 goto out; 1151 } 1152 } else { 1153 /* 1154 * Path too long 1155 */ 1156 if (name_len + data_len > PATH_MAX) { 1157 ret = -ENAMETOOLONG; 1158 goto out; 1159 } 1160 } 1161 1162 if (name_len + data_len > buf_len) { 1163 buf_len = name_len + data_len; 1164 if (is_vmalloc_addr(buf)) { 1165 vfree(buf); 1166 buf = NULL; 1167 } else { 1168 char *tmp = krealloc(buf, buf_len, 1169 GFP_KERNEL | __GFP_NOWARN); 1170 1171 if (!tmp) 1172 kfree(buf); 1173 buf = tmp; 1174 } 1175 if (!buf) { 1176 buf = kvmalloc(buf_len, GFP_KERNEL); 1177 if (!buf) { 1178 ret = -ENOMEM; 1179 goto out; 1180 } 1181 } 1182 } 1183 1184 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1185 name_len + data_len); 1186 1187 len = sizeof(*di) + name_len + data_len; 1188 di = (struct btrfs_dir_item *)((char *)di + len); 1189 cur += len; 1190 1191 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1192 data_len, ctx); 1193 if (ret < 0) 1194 goto out; 1195 if (ret) { 1196 ret = 0; 1197 goto out; 1198 } 1199 1200 num++; 1201 } 1202 1203 out: 1204 kvfree(buf); 1205 return ret; 1206 } 1207 1208 static int __copy_first_ref(int num, u64 dir, int index, 1209 struct fs_path *p, void *ctx) 1210 { 1211 int ret; 1212 struct fs_path *pt = ctx; 1213 1214 ret = fs_path_copy(pt, p); 1215 if (ret < 0) 1216 return ret; 1217 1218 /* we want the first only */ 1219 return 1; 1220 } 1221 1222 /* 1223 * Retrieve the first path of an inode. If an inode has more then one 1224 * ref/hardlink, this is ignored. 1225 */ 1226 static int get_inode_path(struct btrfs_root *root, 1227 u64 ino, struct fs_path *path) 1228 { 1229 int ret; 1230 struct btrfs_key key, found_key; 1231 struct btrfs_path *p; 1232 1233 p = alloc_path_for_send(); 1234 if (!p) 1235 return -ENOMEM; 1236 1237 fs_path_reset(path); 1238 1239 key.objectid = ino; 1240 key.type = BTRFS_INODE_REF_KEY; 1241 key.offset = 0; 1242 1243 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1244 if (ret < 0) 1245 goto out; 1246 if (ret) { 1247 ret = 1; 1248 goto out; 1249 } 1250 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1251 if (found_key.objectid != ino || 1252 (found_key.type != BTRFS_INODE_REF_KEY && 1253 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1254 ret = -ENOENT; 1255 goto out; 1256 } 1257 1258 ret = iterate_inode_ref(root, p, &found_key, 1, 1259 __copy_first_ref, path); 1260 if (ret < 0) 1261 goto out; 1262 ret = 0; 1263 1264 out: 1265 btrfs_free_path(p); 1266 return ret; 1267 } 1268 1269 struct backref_ctx { 1270 struct send_ctx *sctx; 1271 1272 /* number of total found references */ 1273 u64 found; 1274 1275 /* 1276 * used for clones found in send_root. clones found behind cur_objectid 1277 * and cur_offset are not considered as allowed clones. 1278 */ 1279 u64 cur_objectid; 1280 u64 cur_offset; 1281 1282 /* may be truncated in case it's the last extent in a file */ 1283 u64 extent_len; 1284 1285 /* The bytenr the file extent item we are processing refers to. */ 1286 u64 bytenr; 1287 /* The owner (root id) of the data backref for the current extent. */ 1288 u64 backref_owner; 1289 /* The offset of the data backref for the current extent. */ 1290 u64 backref_offset; 1291 }; 1292 1293 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1294 { 1295 u64 root = (u64)(uintptr_t)key; 1296 const struct clone_root *cr = elt; 1297 1298 if (root < cr->root->root_key.objectid) 1299 return -1; 1300 if (root > cr->root->root_key.objectid) 1301 return 1; 1302 return 0; 1303 } 1304 1305 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1306 { 1307 const struct clone_root *cr1 = e1; 1308 const struct clone_root *cr2 = e2; 1309 1310 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1311 return -1; 1312 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1313 return 1; 1314 return 0; 1315 } 1316 1317 /* 1318 * Called for every backref that is found for the current extent. 1319 * Results are collected in sctx->clone_roots->ino/offset. 1320 */ 1321 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1322 void *ctx_) 1323 { 1324 struct backref_ctx *bctx = ctx_; 1325 struct clone_root *clone_root; 1326 1327 /* First check if the root is in the list of accepted clone sources */ 1328 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1329 bctx->sctx->clone_roots_cnt, 1330 sizeof(struct clone_root), 1331 __clone_root_cmp_bsearch); 1332 if (!clone_root) 1333 return 0; 1334 1335 /* This is our own reference, bail out as we can't clone from it. */ 1336 if (clone_root->root == bctx->sctx->send_root && 1337 ino == bctx->cur_objectid && 1338 offset == bctx->cur_offset) 1339 return 0; 1340 1341 /* 1342 * Make sure we don't consider clones from send_root that are 1343 * behind the current inode/offset. 1344 */ 1345 if (clone_root->root == bctx->sctx->send_root) { 1346 /* 1347 * If the source inode was not yet processed we can't issue a 1348 * clone operation, as the source extent does not exist yet at 1349 * the destination of the stream. 1350 */ 1351 if (ino > bctx->cur_objectid) 1352 return 0; 1353 /* 1354 * We clone from the inode currently being sent as long as the 1355 * source extent is already processed, otherwise we could try 1356 * to clone from an extent that does not exist yet at the 1357 * destination of the stream. 1358 */ 1359 if (ino == bctx->cur_objectid && 1360 offset + bctx->extent_len > 1361 bctx->sctx->cur_inode_next_write_offset) 1362 return 0; 1363 } 1364 1365 bctx->found++; 1366 clone_root->found_ref = true; 1367 1368 /* 1369 * If the given backref refers to a file extent item with a larger 1370 * number of bytes than what we found before, use the new one so that 1371 * we clone more optimally and end up doing less writes and getting 1372 * less exclusive, non-shared extents at the destination. 1373 */ 1374 if (num_bytes > clone_root->num_bytes) { 1375 clone_root->ino = ino; 1376 clone_root->offset = offset; 1377 clone_root->num_bytes = num_bytes; 1378 1379 /* 1380 * Found a perfect candidate, so there's no need to continue 1381 * backref walking. 1382 */ 1383 if (num_bytes >= bctx->extent_len) 1384 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static void empty_backref_cache(struct send_ctx *sctx) 1391 { 1392 struct backref_cache_entry *entry; 1393 struct backref_cache_entry *tmp; 1394 1395 list_for_each_entry_safe(entry, tmp, &sctx->backref_cache.lru_list, list) 1396 kfree(entry); 1397 1398 INIT_LIST_HEAD(&sctx->backref_cache.lru_list); 1399 mtree_destroy(&sctx->backref_cache.entries); 1400 sctx->backref_cache.size = 0; 1401 } 1402 1403 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1404 const u64 **root_ids_ret, int *root_count_ret) 1405 { 1406 struct backref_ctx *bctx = ctx; 1407 struct send_ctx *sctx = bctx->sctx; 1408 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1409 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1410 struct backref_cache_entry *entry; 1411 1412 if (sctx->backref_cache.size == 0) 1413 return false; 1414 1415 /* 1416 * If relocation happened since we first filled the cache, then we must 1417 * empty the cache and can not use it, because even though we operate on 1418 * read-only roots, their leaves and nodes may have been reallocated and 1419 * now be used for different nodes/leaves of the same tree or some other 1420 * tree. 1421 * 1422 * We are called from iterate_extent_inodes() while either holding a 1423 * transaction handle or holding fs_info->commit_root_sem, so no need 1424 * to take any lock here. 1425 */ 1426 if (fs_info->last_reloc_trans > sctx->backref_cache.last_reloc_trans) { 1427 empty_backref_cache(sctx); 1428 return false; 1429 } 1430 1431 entry = mtree_load(&sctx->backref_cache.entries, key); 1432 if (!entry) 1433 return false; 1434 1435 *root_ids_ret = entry->root_ids; 1436 *root_count_ret = entry->num_roots; 1437 list_move_tail(&entry->list, &sctx->backref_cache.lru_list); 1438 1439 return true; 1440 } 1441 1442 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1443 void *ctx) 1444 { 1445 struct backref_ctx *bctx = ctx; 1446 struct send_ctx *sctx = bctx->sctx; 1447 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1448 struct backref_cache_entry *new_entry; 1449 struct ulist_iterator uiter; 1450 struct ulist_node *node; 1451 int ret; 1452 1453 /* 1454 * We're called while holding a transaction handle or while holding 1455 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1456 * NOFS allocation. 1457 */ 1458 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1459 /* No worries, cache is optional. */ 1460 if (!new_entry) 1461 return; 1462 1463 new_entry->key = leaf_bytenr >> fs_info->sectorsize_bits; 1464 new_entry->num_roots = 0; 1465 ULIST_ITER_INIT(&uiter); 1466 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1467 const u64 root_id = node->val; 1468 struct clone_root *root; 1469 1470 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1471 sctx->clone_roots_cnt, sizeof(struct clone_root), 1472 __clone_root_cmp_bsearch); 1473 if (!root) 1474 continue; 1475 1476 /* Too many roots, just exit, no worries as caching is optional. */ 1477 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1478 kfree(new_entry); 1479 return; 1480 } 1481 1482 new_entry->root_ids[new_entry->num_roots] = root_id; 1483 new_entry->num_roots++; 1484 } 1485 1486 /* 1487 * We may have not added any roots to the new cache entry, which means 1488 * none of the roots is part of the list of roots from which we are 1489 * allowed to clone. Cache the new entry as it's still useful to avoid 1490 * backref walking to determine which roots have a path to the leaf. 1491 */ 1492 1493 if (sctx->backref_cache.size >= SEND_MAX_BACKREF_CACHE_SIZE) { 1494 struct backref_cache_entry *lru_entry; 1495 struct backref_cache_entry *mt_entry; 1496 1497 lru_entry = list_first_entry(&sctx->backref_cache.lru_list, 1498 struct backref_cache_entry, list); 1499 mt_entry = mtree_erase(&sctx->backref_cache.entries, lru_entry->key); 1500 ASSERT(mt_entry == lru_entry); 1501 list_del(&mt_entry->list); 1502 kfree(mt_entry); 1503 sctx->backref_cache.size--; 1504 } 1505 1506 ret = mtree_insert(&sctx->backref_cache.entries, new_entry->key, 1507 new_entry, GFP_NOFS); 1508 ASSERT(ret == 0 || ret == -ENOMEM); 1509 if (ret) { 1510 /* Caching is optional, no worries. */ 1511 kfree(new_entry); 1512 return; 1513 } 1514 1515 list_add_tail(&new_entry->list, &sctx->backref_cache.lru_list); 1516 1517 /* 1518 * We are called from iterate_extent_inodes() while either holding a 1519 * transaction handle or holding fs_info->commit_root_sem, so no need 1520 * to take any lock here. 1521 */ 1522 if (sctx->backref_cache.size == 0) 1523 sctx->backref_cache.last_reloc_trans = fs_info->last_reloc_trans; 1524 1525 sctx->backref_cache.size++; 1526 } 1527 1528 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1529 const struct extent_buffer *leaf, void *ctx) 1530 { 1531 const u64 refs = btrfs_extent_refs(leaf, ei); 1532 const struct backref_ctx *bctx = ctx; 1533 const struct send_ctx *sctx = bctx->sctx; 1534 1535 if (bytenr == bctx->bytenr) { 1536 const u64 flags = btrfs_extent_flags(leaf, ei); 1537 1538 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1539 return -EUCLEAN; 1540 1541 /* 1542 * If we have only one reference and only the send root as a 1543 * clone source - meaning no clone roots were given in the 1544 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1545 * it's our reference and there's no point in doing backref 1546 * walking which is expensive, so exit early. 1547 */ 1548 if (refs == 1 && sctx->clone_roots_cnt == 1) 1549 return -ENOENT; 1550 } 1551 1552 /* 1553 * Backreference walking (iterate_extent_inodes() below) is currently 1554 * too expensive when an extent has a large number of references, both 1555 * in time spent and used memory. So for now just fallback to write 1556 * operations instead of clone operations when an extent has more than 1557 * a certain amount of references. 1558 */ 1559 if (refs > SEND_MAX_EXTENT_REFS) 1560 return -ENOENT; 1561 1562 return 0; 1563 } 1564 1565 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1566 { 1567 const struct backref_ctx *bctx = ctx; 1568 1569 if (ino == bctx->cur_objectid && 1570 root == bctx->backref_owner && 1571 offset == bctx->backref_offset) 1572 return true; 1573 1574 return false; 1575 } 1576 1577 /* 1578 * Given an inode, offset and extent item, it finds a good clone for a clone 1579 * instruction. Returns -ENOENT when none could be found. The function makes 1580 * sure that the returned clone is usable at the point where sending is at the 1581 * moment. This means, that no clones are accepted which lie behind the current 1582 * inode+offset. 1583 * 1584 * path must point to the extent item when called. 1585 */ 1586 static int find_extent_clone(struct send_ctx *sctx, 1587 struct btrfs_path *path, 1588 u64 ino, u64 data_offset, 1589 u64 ino_size, 1590 struct clone_root **found) 1591 { 1592 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1593 int ret; 1594 int extent_type; 1595 u64 logical; 1596 u64 disk_byte; 1597 u64 num_bytes; 1598 struct btrfs_file_extent_item *fi; 1599 struct extent_buffer *eb = path->nodes[0]; 1600 struct backref_ctx backref_ctx = { 0 }; 1601 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1602 struct clone_root *cur_clone_root; 1603 int compressed; 1604 u32 i; 1605 1606 /* 1607 * With fallocate we can get prealloc extents beyond the inode's i_size, 1608 * so we don't do anything here because clone operations can not clone 1609 * to a range beyond i_size without increasing the i_size of the 1610 * destination inode. 1611 */ 1612 if (data_offset >= ino_size) 1613 return 0; 1614 1615 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1616 extent_type = btrfs_file_extent_type(eb, fi); 1617 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1618 return -ENOENT; 1619 1620 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1621 if (disk_byte == 0) 1622 return -ENOENT; 1623 1624 compressed = btrfs_file_extent_compression(eb, fi); 1625 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1626 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1627 1628 /* 1629 * Setup the clone roots. 1630 */ 1631 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1632 cur_clone_root = sctx->clone_roots + i; 1633 cur_clone_root->ino = (u64)-1; 1634 cur_clone_root->offset = 0; 1635 cur_clone_root->num_bytes = 0; 1636 cur_clone_root->found_ref = false; 1637 } 1638 1639 backref_ctx.sctx = sctx; 1640 backref_ctx.cur_objectid = ino; 1641 backref_ctx.cur_offset = data_offset; 1642 backref_ctx.bytenr = disk_byte; 1643 /* 1644 * Use the header owner and not the send root's id, because in case of a 1645 * snapshot we can have shared subtrees. 1646 */ 1647 backref_ctx.backref_owner = btrfs_header_owner(eb); 1648 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1649 1650 /* 1651 * The last extent of a file may be too large due to page alignment. 1652 * We need to adjust extent_len in this case so that the checks in 1653 * iterate_backrefs() work. 1654 */ 1655 if (data_offset + num_bytes >= ino_size) 1656 backref_ctx.extent_len = ino_size - data_offset; 1657 else 1658 backref_ctx.extent_len = num_bytes; 1659 1660 /* 1661 * Now collect all backrefs. 1662 */ 1663 backref_walk_ctx.bytenr = disk_byte; 1664 if (compressed == BTRFS_COMPRESS_NONE) 1665 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1666 backref_walk_ctx.fs_info = fs_info; 1667 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1668 backref_walk_ctx.cache_store = store_backref_cache; 1669 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1670 backref_walk_ctx.check_extent_item = check_extent_item; 1671 backref_walk_ctx.user_ctx = &backref_ctx; 1672 1673 /* 1674 * If have a single clone root, then it's the send root and we can tell 1675 * the backref walking code to skip our own backref and not resolve it, 1676 * since we can not use it for cloning - the source and destination 1677 * ranges can't overlap and in case the leaf is shared through a subtree 1678 * due to snapshots, we can't use those other roots since they are not 1679 * in the list of clone roots. 1680 */ 1681 if (sctx->clone_roots_cnt == 1) 1682 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1683 1684 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1685 &backref_ctx); 1686 if (ret < 0) 1687 return ret; 1688 1689 down_read(&fs_info->commit_root_sem); 1690 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1691 /* 1692 * A transaction commit for a transaction in which block group 1693 * relocation was done just happened. 1694 * The disk_bytenr of the file extent item we processed is 1695 * possibly stale, referring to the extent's location before 1696 * relocation. So act as if we haven't found any clone sources 1697 * and fallback to write commands, which will read the correct 1698 * data from the new extent location. Otherwise we will fail 1699 * below because we haven't found our own back reference or we 1700 * could be getting incorrect sources in case the old extent 1701 * was already reallocated after the relocation. 1702 */ 1703 up_read(&fs_info->commit_root_sem); 1704 return -ENOENT; 1705 } 1706 up_read(&fs_info->commit_root_sem); 1707 1708 btrfs_debug(fs_info, 1709 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1710 data_offset, ino, num_bytes, logical); 1711 1712 if (!backref_ctx.found) { 1713 btrfs_debug(fs_info, "no clones found"); 1714 return -ENOENT; 1715 } 1716 1717 cur_clone_root = NULL; 1718 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1719 struct clone_root *clone_root = &sctx->clone_roots[i]; 1720 1721 if (!clone_root->found_ref) 1722 continue; 1723 1724 /* 1725 * Choose the root from which we can clone more bytes, to 1726 * minimize write operations and therefore have more extent 1727 * sharing at the destination (the same as in the source). 1728 */ 1729 if (!cur_clone_root || 1730 clone_root->num_bytes > cur_clone_root->num_bytes) { 1731 cur_clone_root = clone_root; 1732 1733 /* 1734 * We found an optimal clone candidate (any inode from 1735 * any root is fine), so we're done. 1736 */ 1737 if (clone_root->num_bytes >= backref_ctx.extent_len) 1738 break; 1739 } 1740 } 1741 1742 if (cur_clone_root) { 1743 *found = cur_clone_root; 1744 ret = 0; 1745 } else { 1746 ret = -ENOENT; 1747 } 1748 1749 return ret; 1750 } 1751 1752 static int read_symlink(struct btrfs_root *root, 1753 u64 ino, 1754 struct fs_path *dest) 1755 { 1756 int ret; 1757 struct btrfs_path *path; 1758 struct btrfs_key key; 1759 struct btrfs_file_extent_item *ei; 1760 u8 type; 1761 u8 compression; 1762 unsigned long off; 1763 int len; 1764 1765 path = alloc_path_for_send(); 1766 if (!path) 1767 return -ENOMEM; 1768 1769 key.objectid = ino; 1770 key.type = BTRFS_EXTENT_DATA_KEY; 1771 key.offset = 0; 1772 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1773 if (ret < 0) 1774 goto out; 1775 if (ret) { 1776 /* 1777 * An empty symlink inode. Can happen in rare error paths when 1778 * creating a symlink (transaction committed before the inode 1779 * eviction handler removed the symlink inode items and a crash 1780 * happened in between or the subvol was snapshoted in between). 1781 * Print an informative message to dmesg/syslog so that the user 1782 * can delete the symlink. 1783 */ 1784 btrfs_err(root->fs_info, 1785 "Found empty symlink inode %llu at root %llu", 1786 ino, root->root_key.objectid); 1787 ret = -EIO; 1788 goto out; 1789 } 1790 1791 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1792 struct btrfs_file_extent_item); 1793 type = btrfs_file_extent_type(path->nodes[0], ei); 1794 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1795 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1796 BUG_ON(compression); 1797 1798 off = btrfs_file_extent_inline_start(ei); 1799 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1800 1801 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1802 1803 out: 1804 btrfs_free_path(path); 1805 return ret; 1806 } 1807 1808 /* 1809 * Helper function to generate a file name that is unique in the root of 1810 * send_root and parent_root. This is used to generate names for orphan inodes. 1811 */ 1812 static int gen_unique_name(struct send_ctx *sctx, 1813 u64 ino, u64 gen, 1814 struct fs_path *dest) 1815 { 1816 int ret = 0; 1817 struct btrfs_path *path; 1818 struct btrfs_dir_item *di; 1819 char tmp[64]; 1820 int len; 1821 u64 idx = 0; 1822 1823 path = alloc_path_for_send(); 1824 if (!path) 1825 return -ENOMEM; 1826 1827 while (1) { 1828 struct fscrypt_str tmp_name; 1829 1830 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1831 ino, gen, idx); 1832 ASSERT(len < sizeof(tmp)); 1833 tmp_name.name = tmp; 1834 tmp_name.len = strlen(tmp); 1835 1836 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1837 path, BTRFS_FIRST_FREE_OBJECTID, 1838 &tmp_name, 0); 1839 btrfs_release_path(path); 1840 if (IS_ERR(di)) { 1841 ret = PTR_ERR(di); 1842 goto out; 1843 } 1844 if (di) { 1845 /* not unique, try again */ 1846 idx++; 1847 continue; 1848 } 1849 1850 if (!sctx->parent_root) { 1851 /* unique */ 1852 ret = 0; 1853 break; 1854 } 1855 1856 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1857 path, BTRFS_FIRST_FREE_OBJECTID, 1858 &tmp_name, 0); 1859 btrfs_release_path(path); 1860 if (IS_ERR(di)) { 1861 ret = PTR_ERR(di); 1862 goto out; 1863 } 1864 if (di) { 1865 /* not unique, try again */ 1866 idx++; 1867 continue; 1868 } 1869 /* unique */ 1870 break; 1871 } 1872 1873 ret = fs_path_add(dest, tmp, strlen(tmp)); 1874 1875 out: 1876 btrfs_free_path(path); 1877 return ret; 1878 } 1879 1880 enum inode_state { 1881 inode_state_no_change, 1882 inode_state_will_create, 1883 inode_state_did_create, 1884 inode_state_will_delete, 1885 inode_state_did_delete, 1886 }; 1887 1888 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1889 { 1890 int ret; 1891 int left_ret; 1892 int right_ret; 1893 u64 left_gen; 1894 u64 right_gen; 1895 struct btrfs_inode_info info; 1896 1897 ret = get_inode_info(sctx->send_root, ino, &info); 1898 if (ret < 0 && ret != -ENOENT) 1899 goto out; 1900 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1901 left_gen = info.gen; 1902 1903 if (!sctx->parent_root) { 1904 right_ret = -ENOENT; 1905 } else { 1906 ret = get_inode_info(sctx->parent_root, ino, &info); 1907 if (ret < 0 && ret != -ENOENT) 1908 goto out; 1909 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1910 right_gen = info.gen; 1911 } 1912 1913 if (!left_ret && !right_ret) { 1914 if (left_gen == gen && right_gen == gen) { 1915 ret = inode_state_no_change; 1916 } else if (left_gen == gen) { 1917 if (ino < sctx->send_progress) 1918 ret = inode_state_did_create; 1919 else 1920 ret = inode_state_will_create; 1921 } else if (right_gen == gen) { 1922 if (ino < sctx->send_progress) 1923 ret = inode_state_did_delete; 1924 else 1925 ret = inode_state_will_delete; 1926 } else { 1927 ret = -ENOENT; 1928 } 1929 } else if (!left_ret) { 1930 if (left_gen == gen) { 1931 if (ino < sctx->send_progress) 1932 ret = inode_state_did_create; 1933 else 1934 ret = inode_state_will_create; 1935 } else { 1936 ret = -ENOENT; 1937 } 1938 } else if (!right_ret) { 1939 if (right_gen == gen) { 1940 if (ino < sctx->send_progress) 1941 ret = inode_state_did_delete; 1942 else 1943 ret = inode_state_will_delete; 1944 } else { 1945 ret = -ENOENT; 1946 } 1947 } else { 1948 ret = -ENOENT; 1949 } 1950 1951 out: 1952 return ret; 1953 } 1954 1955 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1956 { 1957 int ret; 1958 1959 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1960 return 1; 1961 1962 ret = get_cur_inode_state(sctx, ino, gen); 1963 if (ret < 0) 1964 goto out; 1965 1966 if (ret == inode_state_no_change || 1967 ret == inode_state_did_create || 1968 ret == inode_state_will_delete) 1969 ret = 1; 1970 else 1971 ret = 0; 1972 1973 out: 1974 return ret; 1975 } 1976 1977 /* 1978 * Helper function to lookup a dir item in a dir. 1979 */ 1980 static int lookup_dir_item_inode(struct btrfs_root *root, 1981 u64 dir, const char *name, int name_len, 1982 u64 *found_inode) 1983 { 1984 int ret = 0; 1985 struct btrfs_dir_item *di; 1986 struct btrfs_key key; 1987 struct btrfs_path *path; 1988 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1989 1990 path = alloc_path_for_send(); 1991 if (!path) 1992 return -ENOMEM; 1993 1994 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1995 if (IS_ERR_OR_NULL(di)) { 1996 ret = di ? PTR_ERR(di) : -ENOENT; 1997 goto out; 1998 } 1999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2000 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2001 ret = -ENOENT; 2002 goto out; 2003 } 2004 *found_inode = key.objectid; 2005 2006 out: 2007 btrfs_free_path(path); 2008 return ret; 2009 } 2010 2011 /* 2012 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2013 * generation of the parent dir and the name of the dir entry. 2014 */ 2015 static int get_first_ref(struct btrfs_root *root, u64 ino, 2016 u64 *dir, u64 *dir_gen, struct fs_path *name) 2017 { 2018 int ret; 2019 struct btrfs_key key; 2020 struct btrfs_key found_key; 2021 struct btrfs_path *path; 2022 int len; 2023 u64 parent_dir; 2024 2025 path = alloc_path_for_send(); 2026 if (!path) 2027 return -ENOMEM; 2028 2029 key.objectid = ino; 2030 key.type = BTRFS_INODE_REF_KEY; 2031 key.offset = 0; 2032 2033 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2034 if (ret < 0) 2035 goto out; 2036 if (!ret) 2037 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2038 path->slots[0]); 2039 if (ret || found_key.objectid != ino || 2040 (found_key.type != BTRFS_INODE_REF_KEY && 2041 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2042 ret = -ENOENT; 2043 goto out; 2044 } 2045 2046 if (found_key.type == BTRFS_INODE_REF_KEY) { 2047 struct btrfs_inode_ref *iref; 2048 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2049 struct btrfs_inode_ref); 2050 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2051 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2052 (unsigned long)(iref + 1), 2053 len); 2054 parent_dir = found_key.offset; 2055 } else { 2056 struct btrfs_inode_extref *extref; 2057 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2058 struct btrfs_inode_extref); 2059 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2060 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2061 (unsigned long)&extref->name, len); 2062 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2063 } 2064 if (ret < 0) 2065 goto out; 2066 btrfs_release_path(path); 2067 2068 if (dir_gen) { 2069 ret = get_inode_gen(root, parent_dir, dir_gen); 2070 if (ret < 0) 2071 goto out; 2072 } 2073 2074 *dir = parent_dir; 2075 2076 out: 2077 btrfs_free_path(path); 2078 return ret; 2079 } 2080 2081 static int is_first_ref(struct btrfs_root *root, 2082 u64 ino, u64 dir, 2083 const char *name, int name_len) 2084 { 2085 int ret; 2086 struct fs_path *tmp_name; 2087 u64 tmp_dir; 2088 2089 tmp_name = fs_path_alloc(); 2090 if (!tmp_name) 2091 return -ENOMEM; 2092 2093 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2094 if (ret < 0) 2095 goto out; 2096 2097 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2098 ret = 0; 2099 goto out; 2100 } 2101 2102 ret = !memcmp(tmp_name->start, name, name_len); 2103 2104 out: 2105 fs_path_free(tmp_name); 2106 return ret; 2107 } 2108 2109 /* 2110 * Used by process_recorded_refs to determine if a new ref would overwrite an 2111 * already existing ref. In case it detects an overwrite, it returns the 2112 * inode/gen in who_ino/who_gen. 2113 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2114 * to make sure later references to the overwritten inode are possible. 2115 * Orphanizing is however only required for the first ref of an inode. 2116 * process_recorded_refs does an additional is_first_ref check to see if 2117 * orphanizing is really required. 2118 */ 2119 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2120 const char *name, int name_len, 2121 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2122 { 2123 int ret = 0; 2124 u64 gen; 2125 u64 other_inode = 0; 2126 struct btrfs_inode_info info; 2127 2128 if (!sctx->parent_root) 2129 goto out; 2130 2131 ret = is_inode_existent(sctx, dir, dir_gen); 2132 if (ret <= 0) 2133 goto out; 2134 2135 /* 2136 * If we have a parent root we need to verify that the parent dir was 2137 * not deleted and then re-created, if it was then we have no overwrite 2138 * and we can just unlink this entry. 2139 */ 2140 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 2141 ret = get_inode_gen(sctx->parent_root, dir, &gen); 2142 if (ret < 0 && ret != -ENOENT) 2143 goto out; 2144 if (ret) { 2145 ret = 0; 2146 goto out; 2147 } 2148 if (gen != dir_gen) 2149 goto out; 2150 } 2151 2152 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2153 &other_inode); 2154 if (ret < 0 && ret != -ENOENT) 2155 goto out; 2156 if (ret) { 2157 ret = 0; 2158 goto out; 2159 } 2160 2161 /* 2162 * Check if the overwritten ref was already processed. If yes, the ref 2163 * was already unlinked/moved, so we can safely assume that we will not 2164 * overwrite anything at this point in time. 2165 */ 2166 if (other_inode > sctx->send_progress || 2167 is_waiting_for_move(sctx, other_inode)) { 2168 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2169 if (ret < 0) 2170 goto out; 2171 2172 ret = 1; 2173 *who_ino = other_inode; 2174 *who_gen = info.gen; 2175 *who_mode = info.mode; 2176 } else { 2177 ret = 0; 2178 } 2179 2180 out: 2181 return ret; 2182 } 2183 2184 /* 2185 * Checks if the ref was overwritten by an already processed inode. This is 2186 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2187 * thus the orphan name needs be used. 2188 * process_recorded_refs also uses it to avoid unlinking of refs that were 2189 * overwritten. 2190 */ 2191 static int did_overwrite_ref(struct send_ctx *sctx, 2192 u64 dir, u64 dir_gen, 2193 u64 ino, u64 ino_gen, 2194 const char *name, int name_len) 2195 { 2196 int ret = 0; 2197 u64 gen; 2198 u64 ow_inode; 2199 2200 if (!sctx->parent_root) 2201 goto out; 2202 2203 ret = is_inode_existent(sctx, dir, dir_gen); 2204 if (ret <= 0) 2205 goto out; 2206 2207 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 2208 ret = get_inode_gen(sctx->send_root, dir, &gen); 2209 if (ret < 0 && ret != -ENOENT) 2210 goto out; 2211 if (ret) { 2212 ret = 0; 2213 goto out; 2214 } 2215 if (gen != dir_gen) 2216 goto out; 2217 } 2218 2219 /* check if the ref was overwritten by another ref */ 2220 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2221 &ow_inode); 2222 if (ret < 0 && ret != -ENOENT) 2223 goto out; 2224 if (ret) { 2225 /* was never and will never be overwritten */ 2226 ret = 0; 2227 goto out; 2228 } 2229 2230 ret = get_inode_gen(sctx->send_root, ow_inode, &gen); 2231 if (ret < 0) 2232 goto out; 2233 2234 if (ow_inode == ino && gen == ino_gen) { 2235 ret = 0; 2236 goto out; 2237 } 2238 2239 /* 2240 * We know that it is or will be overwritten. Check this now. 2241 * The current inode being processed might have been the one that caused 2242 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2243 * the current inode being processed. 2244 */ 2245 if ((ow_inode < sctx->send_progress) || 2246 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 2247 gen == sctx->cur_inode_gen)) 2248 ret = 1; 2249 else 2250 ret = 0; 2251 2252 out: 2253 return ret; 2254 } 2255 2256 /* 2257 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2258 * that got overwritten. This is used by process_recorded_refs to determine 2259 * if it has to use the path as returned by get_cur_path or the orphan name. 2260 */ 2261 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2262 { 2263 int ret = 0; 2264 struct fs_path *name = NULL; 2265 u64 dir; 2266 u64 dir_gen; 2267 2268 if (!sctx->parent_root) 2269 goto out; 2270 2271 name = fs_path_alloc(); 2272 if (!name) 2273 return -ENOMEM; 2274 2275 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2276 if (ret < 0) 2277 goto out; 2278 2279 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2280 name->start, fs_path_len(name)); 2281 2282 out: 2283 fs_path_free(name); 2284 return ret; 2285 } 2286 2287 /* 2288 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2289 * so we need to do some special handling in case we have clashes. This function 2290 * takes care of this with the help of name_cache_entry::radix_list. 2291 * In case of error, nce is kfreed. 2292 */ 2293 static int name_cache_insert(struct send_ctx *sctx, 2294 struct name_cache_entry *nce) 2295 { 2296 int ret = 0; 2297 struct list_head *nce_head; 2298 2299 nce_head = radix_tree_lookup(&sctx->name_cache, 2300 (unsigned long)nce->ino); 2301 if (!nce_head) { 2302 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2303 if (!nce_head) { 2304 kfree(nce); 2305 return -ENOMEM; 2306 } 2307 INIT_LIST_HEAD(nce_head); 2308 2309 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2310 if (ret < 0) { 2311 kfree(nce_head); 2312 kfree(nce); 2313 return ret; 2314 } 2315 } 2316 list_add_tail(&nce->radix_list, nce_head); 2317 list_add_tail(&nce->list, &sctx->name_cache_list); 2318 sctx->name_cache_size++; 2319 2320 return ret; 2321 } 2322 2323 static void name_cache_delete(struct send_ctx *sctx, 2324 struct name_cache_entry *nce) 2325 { 2326 struct list_head *nce_head; 2327 2328 nce_head = radix_tree_lookup(&sctx->name_cache, 2329 (unsigned long)nce->ino); 2330 if (!nce_head) { 2331 btrfs_err(sctx->send_root->fs_info, 2332 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2333 nce->ino, sctx->name_cache_size); 2334 } 2335 2336 list_del(&nce->radix_list); 2337 list_del(&nce->list); 2338 sctx->name_cache_size--; 2339 2340 /* 2341 * We may not get to the final release of nce_head if the lookup fails 2342 */ 2343 if (nce_head && list_empty(nce_head)) { 2344 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2345 kfree(nce_head); 2346 } 2347 } 2348 2349 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2350 u64 ino, u64 gen) 2351 { 2352 struct list_head *nce_head; 2353 struct name_cache_entry *cur; 2354 2355 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2356 if (!nce_head) 2357 return NULL; 2358 2359 list_for_each_entry(cur, nce_head, radix_list) { 2360 if (cur->ino == ino && cur->gen == gen) 2361 return cur; 2362 } 2363 return NULL; 2364 } 2365 2366 /* 2367 * Remove some entries from the beginning of name_cache_list. 2368 */ 2369 static void name_cache_clean_unused(struct send_ctx *sctx) 2370 { 2371 struct name_cache_entry *nce; 2372 2373 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2374 return; 2375 2376 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2377 nce = list_entry(sctx->name_cache_list.next, 2378 struct name_cache_entry, list); 2379 name_cache_delete(sctx, nce); 2380 kfree(nce); 2381 } 2382 } 2383 2384 static void name_cache_free(struct send_ctx *sctx) 2385 { 2386 struct name_cache_entry *nce; 2387 2388 while (!list_empty(&sctx->name_cache_list)) { 2389 nce = list_entry(sctx->name_cache_list.next, 2390 struct name_cache_entry, list); 2391 name_cache_delete(sctx, nce); 2392 kfree(nce); 2393 } 2394 } 2395 2396 /* 2397 * Used by get_cur_path for each ref up to the root. 2398 * Returns 0 if it succeeded. 2399 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2400 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2401 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2402 * Returns <0 in case of error. 2403 */ 2404 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2405 u64 ino, u64 gen, 2406 u64 *parent_ino, 2407 u64 *parent_gen, 2408 struct fs_path *dest) 2409 { 2410 int ret; 2411 int nce_ret; 2412 struct name_cache_entry *nce = NULL; 2413 2414 /* 2415 * First check if we already did a call to this function with the same 2416 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2417 * return the cached result. 2418 */ 2419 nce = name_cache_search(sctx, ino, gen); 2420 if (nce) { 2421 if (ino < sctx->send_progress && nce->need_later_update) { 2422 name_cache_delete(sctx, nce); 2423 kfree(nce); 2424 nce = NULL; 2425 } else { 2426 /* 2427 * Removes the entry from the list and adds it back to 2428 * the end. This marks the entry as recently used so 2429 * that name_cache_clean_unused does not remove it. 2430 */ 2431 list_move_tail(&nce->list, &sctx->name_cache_list); 2432 2433 *parent_ino = nce->parent_ino; 2434 *parent_gen = nce->parent_gen; 2435 ret = fs_path_add(dest, nce->name, nce->name_len); 2436 if (ret < 0) 2437 goto out; 2438 ret = nce->ret; 2439 goto out; 2440 } 2441 } 2442 2443 /* 2444 * If the inode is not existent yet, add the orphan name and return 1. 2445 * This should only happen for the parent dir that we determine in 2446 * record_new_ref_if_needed(). 2447 */ 2448 ret = is_inode_existent(sctx, ino, gen); 2449 if (ret < 0) 2450 goto out; 2451 2452 if (!ret) { 2453 ret = gen_unique_name(sctx, ino, gen, dest); 2454 if (ret < 0) 2455 goto out; 2456 ret = 1; 2457 goto out_cache; 2458 } 2459 2460 /* 2461 * Depending on whether the inode was already processed or not, use 2462 * send_root or parent_root for ref lookup. 2463 */ 2464 if (ino < sctx->send_progress) 2465 ret = get_first_ref(sctx->send_root, ino, 2466 parent_ino, parent_gen, dest); 2467 else 2468 ret = get_first_ref(sctx->parent_root, ino, 2469 parent_ino, parent_gen, dest); 2470 if (ret < 0) 2471 goto out; 2472 2473 /* 2474 * Check if the ref was overwritten by an inode's ref that was processed 2475 * earlier. If yes, treat as orphan and return 1. 2476 */ 2477 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2478 dest->start, dest->end - dest->start); 2479 if (ret < 0) 2480 goto out; 2481 if (ret) { 2482 fs_path_reset(dest); 2483 ret = gen_unique_name(sctx, ino, gen, dest); 2484 if (ret < 0) 2485 goto out; 2486 ret = 1; 2487 } 2488 2489 out_cache: 2490 /* 2491 * Store the result of the lookup in the name cache. 2492 */ 2493 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2494 if (!nce) { 2495 ret = -ENOMEM; 2496 goto out; 2497 } 2498 2499 nce->ino = ino; 2500 nce->gen = gen; 2501 nce->parent_ino = *parent_ino; 2502 nce->parent_gen = *parent_gen; 2503 nce->name_len = fs_path_len(dest); 2504 nce->ret = ret; 2505 strcpy(nce->name, dest->start); 2506 2507 if (ino < sctx->send_progress) 2508 nce->need_later_update = 0; 2509 else 2510 nce->need_later_update = 1; 2511 2512 nce_ret = name_cache_insert(sctx, nce); 2513 if (nce_ret < 0) 2514 ret = nce_ret; 2515 name_cache_clean_unused(sctx); 2516 2517 out: 2518 return ret; 2519 } 2520 2521 /* 2522 * Magic happens here. This function returns the first ref to an inode as it 2523 * would look like while receiving the stream at this point in time. 2524 * We walk the path up to the root. For every inode in between, we check if it 2525 * was already processed/sent. If yes, we continue with the parent as found 2526 * in send_root. If not, we continue with the parent as found in parent_root. 2527 * If we encounter an inode that was deleted at this point in time, we use the 2528 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2529 * that were not created yet and overwritten inodes/refs. 2530 * 2531 * When do we have orphan inodes: 2532 * 1. When an inode is freshly created and thus no valid refs are available yet 2533 * 2. When a directory lost all it's refs (deleted) but still has dir items 2534 * inside which were not processed yet (pending for move/delete). If anyone 2535 * tried to get the path to the dir items, it would get a path inside that 2536 * orphan directory. 2537 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2538 * of an unprocessed inode. If in that case the first ref would be 2539 * overwritten, the overwritten inode gets "orphanized". Later when we 2540 * process this overwritten inode, it is restored at a new place by moving 2541 * the orphan inode. 2542 * 2543 * sctx->send_progress tells this function at which point in time receiving 2544 * would be. 2545 */ 2546 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2547 struct fs_path *dest) 2548 { 2549 int ret = 0; 2550 struct fs_path *name = NULL; 2551 u64 parent_inode = 0; 2552 u64 parent_gen = 0; 2553 int stop = 0; 2554 2555 name = fs_path_alloc(); 2556 if (!name) { 2557 ret = -ENOMEM; 2558 goto out; 2559 } 2560 2561 dest->reversed = 1; 2562 fs_path_reset(dest); 2563 2564 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2565 struct waiting_dir_move *wdm; 2566 2567 fs_path_reset(name); 2568 2569 if (is_waiting_for_rm(sctx, ino, gen)) { 2570 ret = gen_unique_name(sctx, ino, gen, name); 2571 if (ret < 0) 2572 goto out; 2573 ret = fs_path_add_path(dest, name); 2574 break; 2575 } 2576 2577 wdm = get_waiting_dir_move(sctx, ino); 2578 if (wdm && wdm->orphanized) { 2579 ret = gen_unique_name(sctx, ino, gen, name); 2580 stop = 1; 2581 } else if (wdm) { 2582 ret = get_first_ref(sctx->parent_root, ino, 2583 &parent_inode, &parent_gen, name); 2584 } else { 2585 ret = __get_cur_name_and_parent(sctx, ino, gen, 2586 &parent_inode, 2587 &parent_gen, name); 2588 if (ret) 2589 stop = 1; 2590 } 2591 2592 if (ret < 0) 2593 goto out; 2594 2595 ret = fs_path_add_path(dest, name); 2596 if (ret < 0) 2597 goto out; 2598 2599 ino = parent_inode; 2600 gen = parent_gen; 2601 } 2602 2603 out: 2604 fs_path_free(name); 2605 if (!ret) 2606 fs_path_unreverse(dest); 2607 return ret; 2608 } 2609 2610 /* 2611 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2612 */ 2613 static int send_subvol_begin(struct send_ctx *sctx) 2614 { 2615 int ret; 2616 struct btrfs_root *send_root = sctx->send_root; 2617 struct btrfs_root *parent_root = sctx->parent_root; 2618 struct btrfs_path *path; 2619 struct btrfs_key key; 2620 struct btrfs_root_ref *ref; 2621 struct extent_buffer *leaf; 2622 char *name = NULL; 2623 int namelen; 2624 2625 path = btrfs_alloc_path(); 2626 if (!path) 2627 return -ENOMEM; 2628 2629 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2630 if (!name) { 2631 btrfs_free_path(path); 2632 return -ENOMEM; 2633 } 2634 2635 key.objectid = send_root->root_key.objectid; 2636 key.type = BTRFS_ROOT_BACKREF_KEY; 2637 key.offset = 0; 2638 2639 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2640 &key, path, 1, 0); 2641 if (ret < 0) 2642 goto out; 2643 if (ret) { 2644 ret = -ENOENT; 2645 goto out; 2646 } 2647 2648 leaf = path->nodes[0]; 2649 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2650 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2651 key.objectid != send_root->root_key.objectid) { 2652 ret = -ENOENT; 2653 goto out; 2654 } 2655 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2656 namelen = btrfs_root_ref_name_len(leaf, ref); 2657 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2658 btrfs_release_path(path); 2659 2660 if (parent_root) { 2661 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2662 if (ret < 0) 2663 goto out; 2664 } else { 2665 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2666 if (ret < 0) 2667 goto out; 2668 } 2669 2670 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2671 2672 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2673 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2674 sctx->send_root->root_item.received_uuid); 2675 else 2676 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2677 sctx->send_root->root_item.uuid); 2678 2679 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2680 btrfs_root_ctransid(&sctx->send_root->root_item)); 2681 if (parent_root) { 2682 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2683 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2684 parent_root->root_item.received_uuid); 2685 else 2686 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2687 parent_root->root_item.uuid); 2688 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2689 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2690 } 2691 2692 ret = send_cmd(sctx); 2693 2694 tlv_put_failure: 2695 out: 2696 btrfs_free_path(path); 2697 kfree(name); 2698 return ret; 2699 } 2700 2701 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2702 { 2703 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2704 int ret = 0; 2705 struct fs_path *p; 2706 2707 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2708 2709 p = fs_path_alloc(); 2710 if (!p) 2711 return -ENOMEM; 2712 2713 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2714 if (ret < 0) 2715 goto out; 2716 2717 ret = get_cur_path(sctx, ino, gen, p); 2718 if (ret < 0) 2719 goto out; 2720 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2721 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2722 2723 ret = send_cmd(sctx); 2724 2725 tlv_put_failure: 2726 out: 2727 fs_path_free(p); 2728 return ret; 2729 } 2730 2731 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2732 { 2733 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2734 int ret = 0; 2735 struct fs_path *p; 2736 2737 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2738 2739 p = fs_path_alloc(); 2740 if (!p) 2741 return -ENOMEM; 2742 2743 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2744 if (ret < 0) 2745 goto out; 2746 2747 ret = get_cur_path(sctx, ino, gen, p); 2748 if (ret < 0) 2749 goto out; 2750 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2751 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2752 2753 ret = send_cmd(sctx); 2754 2755 tlv_put_failure: 2756 out: 2757 fs_path_free(p); 2758 return ret; 2759 } 2760 2761 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2762 { 2763 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2764 int ret = 0; 2765 struct fs_path *p; 2766 2767 if (sctx->proto < 2) 2768 return 0; 2769 2770 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2771 2772 p = fs_path_alloc(); 2773 if (!p) 2774 return -ENOMEM; 2775 2776 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2777 if (ret < 0) 2778 goto out; 2779 2780 ret = get_cur_path(sctx, ino, gen, p); 2781 if (ret < 0) 2782 goto out; 2783 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2784 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2785 2786 ret = send_cmd(sctx); 2787 2788 tlv_put_failure: 2789 out: 2790 fs_path_free(p); 2791 return ret; 2792 } 2793 2794 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2795 { 2796 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2797 int ret = 0; 2798 struct fs_path *p; 2799 2800 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2801 ino, uid, gid); 2802 2803 p = fs_path_alloc(); 2804 if (!p) 2805 return -ENOMEM; 2806 2807 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2808 if (ret < 0) 2809 goto out; 2810 2811 ret = get_cur_path(sctx, ino, gen, p); 2812 if (ret < 0) 2813 goto out; 2814 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2815 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2816 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2817 2818 ret = send_cmd(sctx); 2819 2820 tlv_put_failure: 2821 out: 2822 fs_path_free(p); 2823 return ret; 2824 } 2825 2826 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2827 { 2828 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2829 int ret = 0; 2830 struct fs_path *p = NULL; 2831 struct btrfs_inode_item *ii; 2832 struct btrfs_path *path = NULL; 2833 struct extent_buffer *eb; 2834 struct btrfs_key key; 2835 int slot; 2836 2837 btrfs_debug(fs_info, "send_utimes %llu", ino); 2838 2839 p = fs_path_alloc(); 2840 if (!p) 2841 return -ENOMEM; 2842 2843 path = alloc_path_for_send(); 2844 if (!path) { 2845 ret = -ENOMEM; 2846 goto out; 2847 } 2848 2849 key.objectid = ino; 2850 key.type = BTRFS_INODE_ITEM_KEY; 2851 key.offset = 0; 2852 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2853 if (ret > 0) 2854 ret = -ENOENT; 2855 if (ret < 0) 2856 goto out; 2857 2858 eb = path->nodes[0]; 2859 slot = path->slots[0]; 2860 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2861 2862 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2863 if (ret < 0) 2864 goto out; 2865 2866 ret = get_cur_path(sctx, ino, gen, p); 2867 if (ret < 0) 2868 goto out; 2869 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2870 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2871 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2872 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2873 if (sctx->proto >= 2) 2874 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2875 2876 ret = send_cmd(sctx); 2877 2878 tlv_put_failure: 2879 out: 2880 fs_path_free(p); 2881 btrfs_free_path(path); 2882 return ret; 2883 } 2884 2885 /* 2886 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2887 * a valid path yet because we did not process the refs yet. So, the inode 2888 * is created as orphan. 2889 */ 2890 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2891 { 2892 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2893 int ret = 0; 2894 struct fs_path *p; 2895 int cmd; 2896 struct btrfs_inode_info info; 2897 u64 gen; 2898 u64 mode; 2899 u64 rdev; 2900 2901 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2902 2903 p = fs_path_alloc(); 2904 if (!p) 2905 return -ENOMEM; 2906 2907 if (ino != sctx->cur_ino) { 2908 ret = get_inode_info(sctx->send_root, ino, &info); 2909 if (ret < 0) 2910 goto out; 2911 gen = info.gen; 2912 mode = info.mode; 2913 rdev = info.rdev; 2914 } else { 2915 gen = sctx->cur_inode_gen; 2916 mode = sctx->cur_inode_mode; 2917 rdev = sctx->cur_inode_rdev; 2918 } 2919 2920 if (S_ISREG(mode)) { 2921 cmd = BTRFS_SEND_C_MKFILE; 2922 } else if (S_ISDIR(mode)) { 2923 cmd = BTRFS_SEND_C_MKDIR; 2924 } else if (S_ISLNK(mode)) { 2925 cmd = BTRFS_SEND_C_SYMLINK; 2926 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2927 cmd = BTRFS_SEND_C_MKNOD; 2928 } else if (S_ISFIFO(mode)) { 2929 cmd = BTRFS_SEND_C_MKFIFO; 2930 } else if (S_ISSOCK(mode)) { 2931 cmd = BTRFS_SEND_C_MKSOCK; 2932 } else { 2933 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2934 (int)(mode & S_IFMT)); 2935 ret = -EOPNOTSUPP; 2936 goto out; 2937 } 2938 2939 ret = begin_cmd(sctx, cmd); 2940 if (ret < 0) 2941 goto out; 2942 2943 ret = gen_unique_name(sctx, ino, gen, p); 2944 if (ret < 0) 2945 goto out; 2946 2947 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2948 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2949 2950 if (S_ISLNK(mode)) { 2951 fs_path_reset(p); 2952 ret = read_symlink(sctx->send_root, ino, p); 2953 if (ret < 0) 2954 goto out; 2955 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2956 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2957 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2958 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2959 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2960 } 2961 2962 ret = send_cmd(sctx); 2963 if (ret < 0) 2964 goto out; 2965 2966 2967 tlv_put_failure: 2968 out: 2969 fs_path_free(p); 2970 return ret; 2971 } 2972 2973 /* 2974 * We need some special handling for inodes that get processed before the parent 2975 * directory got created. See process_recorded_refs for details. 2976 * This function does the check if we already created the dir out of order. 2977 */ 2978 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2979 { 2980 int ret = 0; 2981 int iter_ret = 0; 2982 struct btrfs_path *path = NULL; 2983 struct btrfs_key key; 2984 struct btrfs_key found_key; 2985 struct btrfs_key di_key; 2986 struct btrfs_dir_item *di; 2987 2988 path = alloc_path_for_send(); 2989 if (!path) 2990 return -ENOMEM; 2991 2992 key.objectid = dir; 2993 key.type = BTRFS_DIR_INDEX_KEY; 2994 key.offset = 0; 2995 2996 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2997 struct extent_buffer *eb = path->nodes[0]; 2998 2999 if (found_key.objectid != key.objectid || 3000 found_key.type != key.type) { 3001 ret = 0; 3002 break; 3003 } 3004 3005 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 3006 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 3007 3008 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 3009 di_key.objectid < sctx->send_progress) { 3010 ret = 1; 3011 break; 3012 } 3013 } 3014 /* Catch error found during iteration */ 3015 if (iter_ret < 0) 3016 ret = iter_ret; 3017 3018 btrfs_free_path(path); 3019 return ret; 3020 } 3021 3022 /* 3023 * Only creates the inode if it is: 3024 * 1. Not a directory 3025 * 2. Or a directory which was not created already due to out of order 3026 * directories. See did_create_dir and process_recorded_refs for details. 3027 */ 3028 static int send_create_inode_if_needed(struct send_ctx *sctx) 3029 { 3030 int ret; 3031 3032 if (S_ISDIR(sctx->cur_inode_mode)) { 3033 ret = did_create_dir(sctx, sctx->cur_ino); 3034 if (ret < 0) 3035 return ret; 3036 else if (ret > 0) 3037 return 0; 3038 } 3039 3040 return send_create_inode(sctx, sctx->cur_ino); 3041 } 3042 3043 struct recorded_ref { 3044 struct list_head list; 3045 char *name; 3046 struct fs_path *full_path; 3047 u64 dir; 3048 u64 dir_gen; 3049 int name_len; 3050 struct rb_node node; 3051 struct rb_root *root; 3052 }; 3053 3054 static struct recorded_ref *recorded_ref_alloc(void) 3055 { 3056 struct recorded_ref *ref; 3057 3058 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3059 if (!ref) 3060 return NULL; 3061 RB_CLEAR_NODE(&ref->node); 3062 INIT_LIST_HEAD(&ref->list); 3063 return ref; 3064 } 3065 3066 static void recorded_ref_free(struct recorded_ref *ref) 3067 { 3068 if (!ref) 3069 return; 3070 if (!RB_EMPTY_NODE(&ref->node)) 3071 rb_erase(&ref->node, ref->root); 3072 list_del(&ref->list); 3073 fs_path_free(ref->full_path); 3074 kfree(ref); 3075 } 3076 3077 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3078 { 3079 ref->full_path = path; 3080 ref->name = (char *)kbasename(ref->full_path->start); 3081 ref->name_len = ref->full_path->end - ref->name; 3082 } 3083 3084 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3085 { 3086 struct recorded_ref *new; 3087 3088 new = recorded_ref_alloc(); 3089 if (!new) 3090 return -ENOMEM; 3091 3092 new->dir = ref->dir; 3093 new->dir_gen = ref->dir_gen; 3094 list_add_tail(&new->list, list); 3095 return 0; 3096 } 3097 3098 static void __free_recorded_refs(struct list_head *head) 3099 { 3100 struct recorded_ref *cur; 3101 3102 while (!list_empty(head)) { 3103 cur = list_entry(head->next, struct recorded_ref, list); 3104 recorded_ref_free(cur); 3105 } 3106 } 3107 3108 static void free_recorded_refs(struct send_ctx *sctx) 3109 { 3110 __free_recorded_refs(&sctx->new_refs); 3111 __free_recorded_refs(&sctx->deleted_refs); 3112 } 3113 3114 /* 3115 * Renames/moves a file/dir to its orphan name. Used when the first 3116 * ref of an unprocessed inode gets overwritten and for all non empty 3117 * directories. 3118 */ 3119 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3120 struct fs_path *path) 3121 { 3122 int ret; 3123 struct fs_path *orphan; 3124 3125 orphan = fs_path_alloc(); 3126 if (!orphan) 3127 return -ENOMEM; 3128 3129 ret = gen_unique_name(sctx, ino, gen, orphan); 3130 if (ret < 0) 3131 goto out; 3132 3133 ret = send_rename(sctx, path, orphan); 3134 3135 out: 3136 fs_path_free(orphan); 3137 return ret; 3138 } 3139 3140 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3141 u64 dir_ino, u64 dir_gen) 3142 { 3143 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3144 struct rb_node *parent = NULL; 3145 struct orphan_dir_info *entry, *odi; 3146 3147 while (*p) { 3148 parent = *p; 3149 entry = rb_entry(parent, struct orphan_dir_info, node); 3150 if (dir_ino < entry->ino) 3151 p = &(*p)->rb_left; 3152 else if (dir_ino > entry->ino) 3153 p = &(*p)->rb_right; 3154 else if (dir_gen < entry->gen) 3155 p = &(*p)->rb_left; 3156 else if (dir_gen > entry->gen) 3157 p = &(*p)->rb_right; 3158 else 3159 return entry; 3160 } 3161 3162 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3163 if (!odi) 3164 return ERR_PTR(-ENOMEM); 3165 odi->ino = dir_ino; 3166 odi->gen = dir_gen; 3167 odi->last_dir_index_offset = 0; 3168 3169 rb_link_node(&odi->node, parent, p); 3170 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3171 return odi; 3172 } 3173 3174 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3175 u64 dir_ino, u64 gen) 3176 { 3177 struct rb_node *n = sctx->orphan_dirs.rb_node; 3178 struct orphan_dir_info *entry; 3179 3180 while (n) { 3181 entry = rb_entry(n, struct orphan_dir_info, node); 3182 if (dir_ino < entry->ino) 3183 n = n->rb_left; 3184 else if (dir_ino > entry->ino) 3185 n = n->rb_right; 3186 else if (gen < entry->gen) 3187 n = n->rb_left; 3188 else if (gen > entry->gen) 3189 n = n->rb_right; 3190 else 3191 return entry; 3192 } 3193 return NULL; 3194 } 3195 3196 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3197 { 3198 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3199 3200 return odi != NULL; 3201 } 3202 3203 static void free_orphan_dir_info(struct send_ctx *sctx, 3204 struct orphan_dir_info *odi) 3205 { 3206 if (!odi) 3207 return; 3208 rb_erase(&odi->node, &sctx->orphan_dirs); 3209 kfree(odi); 3210 } 3211 3212 /* 3213 * Returns 1 if a directory can be removed at this point in time. 3214 * We check this by iterating all dir items and checking if the inode behind 3215 * the dir item was already processed. 3216 */ 3217 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 3218 u64 send_progress) 3219 { 3220 int ret = 0; 3221 int iter_ret = 0; 3222 struct btrfs_root *root = sctx->parent_root; 3223 struct btrfs_path *path; 3224 struct btrfs_key key; 3225 struct btrfs_key found_key; 3226 struct btrfs_key loc; 3227 struct btrfs_dir_item *di; 3228 struct orphan_dir_info *odi = NULL; 3229 3230 /* 3231 * Don't try to rmdir the top/root subvolume dir. 3232 */ 3233 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3234 return 0; 3235 3236 path = alloc_path_for_send(); 3237 if (!path) 3238 return -ENOMEM; 3239 3240 key.objectid = dir; 3241 key.type = BTRFS_DIR_INDEX_KEY; 3242 key.offset = 0; 3243 3244 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3245 if (odi) 3246 key.offset = odi->last_dir_index_offset; 3247 3248 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3249 struct waiting_dir_move *dm; 3250 3251 if (found_key.objectid != key.objectid || 3252 found_key.type != key.type) 3253 break; 3254 3255 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3256 struct btrfs_dir_item); 3257 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3258 3259 dm = get_waiting_dir_move(sctx, loc.objectid); 3260 if (dm) { 3261 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3262 if (IS_ERR(odi)) { 3263 ret = PTR_ERR(odi); 3264 goto out; 3265 } 3266 odi->gen = dir_gen; 3267 odi->last_dir_index_offset = found_key.offset; 3268 dm->rmdir_ino = dir; 3269 dm->rmdir_gen = dir_gen; 3270 ret = 0; 3271 goto out; 3272 } 3273 3274 if (loc.objectid > send_progress) { 3275 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3276 if (IS_ERR(odi)) { 3277 ret = PTR_ERR(odi); 3278 goto out; 3279 } 3280 odi->gen = dir_gen; 3281 odi->last_dir_index_offset = found_key.offset; 3282 ret = 0; 3283 goto out; 3284 } 3285 } 3286 if (iter_ret < 0) { 3287 ret = iter_ret; 3288 goto out; 3289 } 3290 free_orphan_dir_info(sctx, odi); 3291 3292 ret = 1; 3293 3294 out: 3295 btrfs_free_path(path); 3296 return ret; 3297 } 3298 3299 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3300 { 3301 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3302 3303 return entry != NULL; 3304 } 3305 3306 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3307 { 3308 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3309 struct rb_node *parent = NULL; 3310 struct waiting_dir_move *entry, *dm; 3311 3312 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3313 if (!dm) 3314 return -ENOMEM; 3315 dm->ino = ino; 3316 dm->rmdir_ino = 0; 3317 dm->rmdir_gen = 0; 3318 dm->orphanized = orphanized; 3319 3320 while (*p) { 3321 parent = *p; 3322 entry = rb_entry(parent, struct waiting_dir_move, node); 3323 if (ino < entry->ino) { 3324 p = &(*p)->rb_left; 3325 } else if (ino > entry->ino) { 3326 p = &(*p)->rb_right; 3327 } else { 3328 kfree(dm); 3329 return -EEXIST; 3330 } 3331 } 3332 3333 rb_link_node(&dm->node, parent, p); 3334 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3335 return 0; 3336 } 3337 3338 static struct waiting_dir_move * 3339 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3340 { 3341 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3342 struct waiting_dir_move *entry; 3343 3344 while (n) { 3345 entry = rb_entry(n, struct waiting_dir_move, node); 3346 if (ino < entry->ino) 3347 n = n->rb_left; 3348 else if (ino > entry->ino) 3349 n = n->rb_right; 3350 else 3351 return entry; 3352 } 3353 return NULL; 3354 } 3355 3356 static void free_waiting_dir_move(struct send_ctx *sctx, 3357 struct waiting_dir_move *dm) 3358 { 3359 if (!dm) 3360 return; 3361 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3362 kfree(dm); 3363 } 3364 3365 static int add_pending_dir_move(struct send_ctx *sctx, 3366 u64 ino, 3367 u64 ino_gen, 3368 u64 parent_ino, 3369 struct list_head *new_refs, 3370 struct list_head *deleted_refs, 3371 const bool is_orphan) 3372 { 3373 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3374 struct rb_node *parent = NULL; 3375 struct pending_dir_move *entry = NULL, *pm; 3376 struct recorded_ref *cur; 3377 int exists = 0; 3378 int ret; 3379 3380 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3381 if (!pm) 3382 return -ENOMEM; 3383 pm->parent_ino = parent_ino; 3384 pm->ino = ino; 3385 pm->gen = ino_gen; 3386 INIT_LIST_HEAD(&pm->list); 3387 INIT_LIST_HEAD(&pm->update_refs); 3388 RB_CLEAR_NODE(&pm->node); 3389 3390 while (*p) { 3391 parent = *p; 3392 entry = rb_entry(parent, struct pending_dir_move, node); 3393 if (parent_ino < entry->parent_ino) { 3394 p = &(*p)->rb_left; 3395 } else if (parent_ino > entry->parent_ino) { 3396 p = &(*p)->rb_right; 3397 } else { 3398 exists = 1; 3399 break; 3400 } 3401 } 3402 3403 list_for_each_entry(cur, deleted_refs, list) { 3404 ret = dup_ref(cur, &pm->update_refs); 3405 if (ret < 0) 3406 goto out; 3407 } 3408 list_for_each_entry(cur, new_refs, list) { 3409 ret = dup_ref(cur, &pm->update_refs); 3410 if (ret < 0) 3411 goto out; 3412 } 3413 3414 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3415 if (ret) 3416 goto out; 3417 3418 if (exists) { 3419 list_add_tail(&pm->list, &entry->list); 3420 } else { 3421 rb_link_node(&pm->node, parent, p); 3422 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3423 } 3424 ret = 0; 3425 out: 3426 if (ret) { 3427 __free_recorded_refs(&pm->update_refs); 3428 kfree(pm); 3429 } 3430 return ret; 3431 } 3432 3433 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3434 u64 parent_ino) 3435 { 3436 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3437 struct pending_dir_move *entry; 3438 3439 while (n) { 3440 entry = rb_entry(n, struct pending_dir_move, node); 3441 if (parent_ino < entry->parent_ino) 3442 n = n->rb_left; 3443 else if (parent_ino > entry->parent_ino) 3444 n = n->rb_right; 3445 else 3446 return entry; 3447 } 3448 return NULL; 3449 } 3450 3451 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3452 u64 ino, u64 gen, u64 *ancestor_ino) 3453 { 3454 int ret = 0; 3455 u64 parent_inode = 0; 3456 u64 parent_gen = 0; 3457 u64 start_ino = ino; 3458 3459 *ancestor_ino = 0; 3460 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3461 fs_path_reset(name); 3462 3463 if (is_waiting_for_rm(sctx, ino, gen)) 3464 break; 3465 if (is_waiting_for_move(sctx, ino)) { 3466 if (*ancestor_ino == 0) 3467 *ancestor_ino = ino; 3468 ret = get_first_ref(sctx->parent_root, ino, 3469 &parent_inode, &parent_gen, name); 3470 } else { 3471 ret = __get_cur_name_and_parent(sctx, ino, gen, 3472 &parent_inode, 3473 &parent_gen, name); 3474 if (ret > 0) { 3475 ret = 0; 3476 break; 3477 } 3478 } 3479 if (ret < 0) 3480 break; 3481 if (parent_inode == start_ino) { 3482 ret = 1; 3483 if (*ancestor_ino == 0) 3484 *ancestor_ino = ino; 3485 break; 3486 } 3487 ino = parent_inode; 3488 gen = parent_gen; 3489 } 3490 return ret; 3491 } 3492 3493 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3494 { 3495 struct fs_path *from_path = NULL; 3496 struct fs_path *to_path = NULL; 3497 struct fs_path *name = NULL; 3498 u64 orig_progress = sctx->send_progress; 3499 struct recorded_ref *cur; 3500 u64 parent_ino, parent_gen; 3501 struct waiting_dir_move *dm = NULL; 3502 u64 rmdir_ino = 0; 3503 u64 rmdir_gen; 3504 u64 ancestor; 3505 bool is_orphan; 3506 int ret; 3507 3508 name = fs_path_alloc(); 3509 from_path = fs_path_alloc(); 3510 if (!name || !from_path) { 3511 ret = -ENOMEM; 3512 goto out; 3513 } 3514 3515 dm = get_waiting_dir_move(sctx, pm->ino); 3516 ASSERT(dm); 3517 rmdir_ino = dm->rmdir_ino; 3518 rmdir_gen = dm->rmdir_gen; 3519 is_orphan = dm->orphanized; 3520 free_waiting_dir_move(sctx, dm); 3521 3522 if (is_orphan) { 3523 ret = gen_unique_name(sctx, pm->ino, 3524 pm->gen, from_path); 3525 } else { 3526 ret = get_first_ref(sctx->parent_root, pm->ino, 3527 &parent_ino, &parent_gen, name); 3528 if (ret < 0) 3529 goto out; 3530 ret = get_cur_path(sctx, parent_ino, parent_gen, 3531 from_path); 3532 if (ret < 0) 3533 goto out; 3534 ret = fs_path_add_path(from_path, name); 3535 } 3536 if (ret < 0) 3537 goto out; 3538 3539 sctx->send_progress = sctx->cur_ino + 1; 3540 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3541 if (ret < 0) 3542 goto out; 3543 if (ret) { 3544 LIST_HEAD(deleted_refs); 3545 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3546 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3547 &pm->update_refs, &deleted_refs, 3548 is_orphan); 3549 if (ret < 0) 3550 goto out; 3551 if (rmdir_ino) { 3552 dm = get_waiting_dir_move(sctx, pm->ino); 3553 ASSERT(dm); 3554 dm->rmdir_ino = rmdir_ino; 3555 dm->rmdir_gen = rmdir_gen; 3556 } 3557 goto out; 3558 } 3559 fs_path_reset(name); 3560 to_path = name; 3561 name = NULL; 3562 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3563 if (ret < 0) 3564 goto out; 3565 3566 ret = send_rename(sctx, from_path, to_path); 3567 if (ret < 0) 3568 goto out; 3569 3570 if (rmdir_ino) { 3571 struct orphan_dir_info *odi; 3572 u64 gen; 3573 3574 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3575 if (!odi) { 3576 /* already deleted */ 3577 goto finish; 3578 } 3579 gen = odi->gen; 3580 3581 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3582 if (ret < 0) 3583 goto out; 3584 if (!ret) 3585 goto finish; 3586 3587 name = fs_path_alloc(); 3588 if (!name) { 3589 ret = -ENOMEM; 3590 goto out; 3591 } 3592 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3593 if (ret < 0) 3594 goto out; 3595 ret = send_rmdir(sctx, name); 3596 if (ret < 0) 3597 goto out; 3598 } 3599 3600 finish: 3601 ret = send_utimes(sctx, pm->ino, pm->gen); 3602 if (ret < 0) 3603 goto out; 3604 3605 /* 3606 * After rename/move, need to update the utimes of both new parent(s) 3607 * and old parent(s). 3608 */ 3609 list_for_each_entry(cur, &pm->update_refs, list) { 3610 /* 3611 * The parent inode might have been deleted in the send snapshot 3612 */ 3613 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3614 if (ret == -ENOENT) { 3615 ret = 0; 3616 continue; 3617 } 3618 if (ret < 0) 3619 goto out; 3620 3621 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3622 if (ret < 0) 3623 goto out; 3624 } 3625 3626 out: 3627 fs_path_free(name); 3628 fs_path_free(from_path); 3629 fs_path_free(to_path); 3630 sctx->send_progress = orig_progress; 3631 3632 return ret; 3633 } 3634 3635 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3636 { 3637 if (!list_empty(&m->list)) 3638 list_del(&m->list); 3639 if (!RB_EMPTY_NODE(&m->node)) 3640 rb_erase(&m->node, &sctx->pending_dir_moves); 3641 __free_recorded_refs(&m->update_refs); 3642 kfree(m); 3643 } 3644 3645 static void tail_append_pending_moves(struct send_ctx *sctx, 3646 struct pending_dir_move *moves, 3647 struct list_head *stack) 3648 { 3649 if (list_empty(&moves->list)) { 3650 list_add_tail(&moves->list, stack); 3651 } else { 3652 LIST_HEAD(list); 3653 list_splice_init(&moves->list, &list); 3654 list_add_tail(&moves->list, stack); 3655 list_splice_tail(&list, stack); 3656 } 3657 if (!RB_EMPTY_NODE(&moves->node)) { 3658 rb_erase(&moves->node, &sctx->pending_dir_moves); 3659 RB_CLEAR_NODE(&moves->node); 3660 } 3661 } 3662 3663 static int apply_children_dir_moves(struct send_ctx *sctx) 3664 { 3665 struct pending_dir_move *pm; 3666 struct list_head stack; 3667 u64 parent_ino = sctx->cur_ino; 3668 int ret = 0; 3669 3670 pm = get_pending_dir_moves(sctx, parent_ino); 3671 if (!pm) 3672 return 0; 3673 3674 INIT_LIST_HEAD(&stack); 3675 tail_append_pending_moves(sctx, pm, &stack); 3676 3677 while (!list_empty(&stack)) { 3678 pm = list_first_entry(&stack, struct pending_dir_move, list); 3679 parent_ino = pm->ino; 3680 ret = apply_dir_move(sctx, pm); 3681 free_pending_move(sctx, pm); 3682 if (ret) 3683 goto out; 3684 pm = get_pending_dir_moves(sctx, parent_ino); 3685 if (pm) 3686 tail_append_pending_moves(sctx, pm, &stack); 3687 } 3688 return 0; 3689 3690 out: 3691 while (!list_empty(&stack)) { 3692 pm = list_first_entry(&stack, struct pending_dir_move, list); 3693 free_pending_move(sctx, pm); 3694 } 3695 return ret; 3696 } 3697 3698 /* 3699 * We might need to delay a directory rename even when no ancestor directory 3700 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3701 * renamed. This happens when we rename a directory to the old name (the name 3702 * in the parent root) of some other unrelated directory that got its rename 3703 * delayed due to some ancestor with higher number that got renamed. 3704 * 3705 * Example: 3706 * 3707 * Parent snapshot: 3708 * . (ino 256) 3709 * |---- a/ (ino 257) 3710 * | |---- file (ino 260) 3711 * | 3712 * |---- b/ (ino 258) 3713 * |---- c/ (ino 259) 3714 * 3715 * Send snapshot: 3716 * . (ino 256) 3717 * |---- a/ (ino 258) 3718 * |---- x/ (ino 259) 3719 * |---- y/ (ino 257) 3720 * |----- file (ino 260) 3721 * 3722 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3723 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3724 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3725 * must issue is: 3726 * 3727 * 1 - rename 259 from 'c' to 'x' 3728 * 2 - rename 257 from 'a' to 'x/y' 3729 * 3 - rename 258 from 'b' to 'a' 3730 * 3731 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3732 * be done right away and < 0 on error. 3733 */ 3734 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3735 struct recorded_ref *parent_ref, 3736 const bool is_orphan) 3737 { 3738 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3739 struct btrfs_path *path; 3740 struct btrfs_key key; 3741 struct btrfs_key di_key; 3742 struct btrfs_dir_item *di; 3743 u64 left_gen; 3744 u64 right_gen; 3745 int ret = 0; 3746 struct waiting_dir_move *wdm; 3747 3748 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3749 return 0; 3750 3751 path = alloc_path_for_send(); 3752 if (!path) 3753 return -ENOMEM; 3754 3755 key.objectid = parent_ref->dir; 3756 key.type = BTRFS_DIR_ITEM_KEY; 3757 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3758 3759 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3760 if (ret < 0) { 3761 goto out; 3762 } else if (ret > 0) { 3763 ret = 0; 3764 goto out; 3765 } 3766 3767 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3768 parent_ref->name_len); 3769 if (!di) { 3770 ret = 0; 3771 goto out; 3772 } 3773 /* 3774 * di_key.objectid has the number of the inode that has a dentry in the 3775 * parent directory with the same name that sctx->cur_ino is being 3776 * renamed to. We need to check if that inode is in the send root as 3777 * well and if it is currently marked as an inode with a pending rename, 3778 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3779 * that it happens after that other inode is renamed. 3780 */ 3781 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3782 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3783 ret = 0; 3784 goto out; 3785 } 3786 3787 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3788 if (ret < 0) 3789 goto out; 3790 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3791 if (ret < 0) { 3792 if (ret == -ENOENT) 3793 ret = 0; 3794 goto out; 3795 } 3796 3797 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3798 if (right_gen != left_gen) { 3799 ret = 0; 3800 goto out; 3801 } 3802 3803 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3804 if (wdm && !wdm->orphanized) { 3805 ret = add_pending_dir_move(sctx, 3806 sctx->cur_ino, 3807 sctx->cur_inode_gen, 3808 di_key.objectid, 3809 &sctx->new_refs, 3810 &sctx->deleted_refs, 3811 is_orphan); 3812 if (!ret) 3813 ret = 1; 3814 } 3815 out: 3816 btrfs_free_path(path); 3817 return ret; 3818 } 3819 3820 /* 3821 * Check if inode ino2, or any of its ancestors, is inode ino1. 3822 * Return 1 if true, 0 if false and < 0 on error. 3823 */ 3824 static int check_ino_in_path(struct btrfs_root *root, 3825 const u64 ino1, 3826 const u64 ino1_gen, 3827 const u64 ino2, 3828 const u64 ino2_gen, 3829 struct fs_path *fs_path) 3830 { 3831 u64 ino = ino2; 3832 3833 if (ino1 == ino2) 3834 return ino1_gen == ino2_gen; 3835 3836 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3837 u64 parent; 3838 u64 parent_gen; 3839 int ret; 3840 3841 fs_path_reset(fs_path); 3842 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3843 if (ret < 0) 3844 return ret; 3845 if (parent == ino1) 3846 return parent_gen == ino1_gen; 3847 ino = parent; 3848 } 3849 return 0; 3850 } 3851 3852 /* 3853 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3854 * possible path (in case ino2 is not a directory and has multiple hard links). 3855 * Return 1 if true, 0 if false and < 0 on error. 3856 */ 3857 static int is_ancestor(struct btrfs_root *root, 3858 const u64 ino1, 3859 const u64 ino1_gen, 3860 const u64 ino2, 3861 struct fs_path *fs_path) 3862 { 3863 bool free_fs_path = false; 3864 int ret = 0; 3865 int iter_ret = 0; 3866 struct btrfs_path *path = NULL; 3867 struct btrfs_key key; 3868 3869 if (!fs_path) { 3870 fs_path = fs_path_alloc(); 3871 if (!fs_path) 3872 return -ENOMEM; 3873 free_fs_path = true; 3874 } 3875 3876 path = alloc_path_for_send(); 3877 if (!path) { 3878 ret = -ENOMEM; 3879 goto out; 3880 } 3881 3882 key.objectid = ino2; 3883 key.type = BTRFS_INODE_REF_KEY; 3884 key.offset = 0; 3885 3886 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3887 struct extent_buffer *leaf = path->nodes[0]; 3888 int slot = path->slots[0]; 3889 u32 cur_offset = 0; 3890 u32 item_size; 3891 3892 if (key.objectid != ino2) 3893 break; 3894 if (key.type != BTRFS_INODE_REF_KEY && 3895 key.type != BTRFS_INODE_EXTREF_KEY) 3896 break; 3897 3898 item_size = btrfs_item_size(leaf, slot); 3899 while (cur_offset < item_size) { 3900 u64 parent; 3901 u64 parent_gen; 3902 3903 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3904 unsigned long ptr; 3905 struct btrfs_inode_extref *extref; 3906 3907 ptr = btrfs_item_ptr_offset(leaf, slot); 3908 extref = (struct btrfs_inode_extref *) 3909 (ptr + cur_offset); 3910 parent = btrfs_inode_extref_parent(leaf, 3911 extref); 3912 cur_offset += sizeof(*extref); 3913 cur_offset += btrfs_inode_extref_name_len(leaf, 3914 extref); 3915 } else { 3916 parent = key.offset; 3917 cur_offset = item_size; 3918 } 3919 3920 ret = get_inode_gen(root, parent, &parent_gen); 3921 if (ret < 0) 3922 goto out; 3923 ret = check_ino_in_path(root, ino1, ino1_gen, 3924 parent, parent_gen, fs_path); 3925 if (ret) 3926 goto out; 3927 } 3928 } 3929 ret = 0; 3930 if (iter_ret < 0) 3931 ret = iter_ret; 3932 3933 out: 3934 btrfs_free_path(path); 3935 if (free_fs_path) 3936 fs_path_free(fs_path); 3937 return ret; 3938 } 3939 3940 static int wait_for_parent_move(struct send_ctx *sctx, 3941 struct recorded_ref *parent_ref, 3942 const bool is_orphan) 3943 { 3944 int ret = 0; 3945 u64 ino = parent_ref->dir; 3946 u64 ino_gen = parent_ref->dir_gen; 3947 u64 parent_ino_before, parent_ino_after; 3948 struct fs_path *path_before = NULL; 3949 struct fs_path *path_after = NULL; 3950 int len1, len2; 3951 3952 path_after = fs_path_alloc(); 3953 path_before = fs_path_alloc(); 3954 if (!path_after || !path_before) { 3955 ret = -ENOMEM; 3956 goto out; 3957 } 3958 3959 /* 3960 * Our current directory inode may not yet be renamed/moved because some 3961 * ancestor (immediate or not) has to be renamed/moved first. So find if 3962 * such ancestor exists and make sure our own rename/move happens after 3963 * that ancestor is processed to avoid path build infinite loops (done 3964 * at get_cur_path()). 3965 */ 3966 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3967 u64 parent_ino_after_gen; 3968 3969 if (is_waiting_for_move(sctx, ino)) { 3970 /* 3971 * If the current inode is an ancestor of ino in the 3972 * parent root, we need to delay the rename of the 3973 * current inode, otherwise don't delayed the rename 3974 * because we can end up with a circular dependency 3975 * of renames, resulting in some directories never 3976 * getting the respective rename operations issued in 3977 * the send stream or getting into infinite path build 3978 * loops. 3979 */ 3980 ret = is_ancestor(sctx->parent_root, 3981 sctx->cur_ino, sctx->cur_inode_gen, 3982 ino, path_before); 3983 if (ret) 3984 break; 3985 } 3986 3987 fs_path_reset(path_before); 3988 fs_path_reset(path_after); 3989 3990 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3991 &parent_ino_after_gen, path_after); 3992 if (ret < 0) 3993 goto out; 3994 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3995 NULL, path_before); 3996 if (ret < 0 && ret != -ENOENT) { 3997 goto out; 3998 } else if (ret == -ENOENT) { 3999 ret = 0; 4000 break; 4001 } 4002 4003 len1 = fs_path_len(path_before); 4004 len2 = fs_path_len(path_after); 4005 if (ino > sctx->cur_ino && 4006 (parent_ino_before != parent_ino_after || len1 != len2 || 4007 memcmp(path_before->start, path_after->start, len1))) { 4008 u64 parent_ino_gen; 4009 4010 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4011 if (ret < 0) 4012 goto out; 4013 if (ino_gen == parent_ino_gen) { 4014 ret = 1; 4015 break; 4016 } 4017 } 4018 ino = parent_ino_after; 4019 ino_gen = parent_ino_after_gen; 4020 } 4021 4022 out: 4023 fs_path_free(path_before); 4024 fs_path_free(path_after); 4025 4026 if (ret == 1) { 4027 ret = add_pending_dir_move(sctx, 4028 sctx->cur_ino, 4029 sctx->cur_inode_gen, 4030 ino, 4031 &sctx->new_refs, 4032 &sctx->deleted_refs, 4033 is_orphan); 4034 if (!ret) 4035 ret = 1; 4036 } 4037 4038 return ret; 4039 } 4040 4041 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4042 { 4043 int ret; 4044 struct fs_path *new_path; 4045 4046 /* 4047 * Our reference's name member points to its full_path member string, so 4048 * we use here a new path. 4049 */ 4050 new_path = fs_path_alloc(); 4051 if (!new_path) 4052 return -ENOMEM; 4053 4054 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4055 if (ret < 0) { 4056 fs_path_free(new_path); 4057 return ret; 4058 } 4059 ret = fs_path_add(new_path, ref->name, ref->name_len); 4060 if (ret < 0) { 4061 fs_path_free(new_path); 4062 return ret; 4063 } 4064 4065 fs_path_free(ref->full_path); 4066 set_ref_path(ref, new_path); 4067 4068 return 0; 4069 } 4070 4071 /* 4072 * When processing the new references for an inode we may orphanize an existing 4073 * directory inode because its old name conflicts with one of the new references 4074 * of the current inode. Later, when processing another new reference of our 4075 * inode, we might need to orphanize another inode, but the path we have in the 4076 * reference reflects the pre-orphanization name of the directory we previously 4077 * orphanized. For example: 4078 * 4079 * parent snapshot looks like: 4080 * 4081 * . (ino 256) 4082 * |----- f1 (ino 257) 4083 * |----- f2 (ino 258) 4084 * |----- d1/ (ino 259) 4085 * |----- d2/ (ino 260) 4086 * 4087 * send snapshot looks like: 4088 * 4089 * . (ino 256) 4090 * |----- d1 (ino 258) 4091 * |----- f2/ (ino 259) 4092 * |----- f2_link/ (ino 260) 4093 * | |----- f1 (ino 257) 4094 * | 4095 * |----- d2 (ino 258) 4096 * 4097 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4098 * cache it in the name cache. Later when we start processing inode 258, when 4099 * collecting all its new references we set a full path of "d1/d2" for its new 4100 * reference with name "d2". When we start processing the new references we 4101 * start by processing the new reference with name "d1", and this results in 4102 * orphanizing inode 259, since its old reference causes a conflict. Then we 4103 * move on the next new reference, with name "d2", and we find out we must 4104 * orphanize inode 260, as its old reference conflicts with ours - but for the 4105 * orphanization we use a source path corresponding to the path we stored in the 4106 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4107 * receiver fail since the path component "d1/" no longer exists, it was renamed 4108 * to "o259-6-0/" when processing the previous new reference. So in this case we 4109 * must recompute the path in the new reference and use it for the new 4110 * orphanization operation. 4111 */ 4112 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4113 { 4114 char *name; 4115 int ret; 4116 4117 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4118 if (!name) 4119 return -ENOMEM; 4120 4121 fs_path_reset(ref->full_path); 4122 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4123 if (ret < 0) 4124 goto out; 4125 4126 ret = fs_path_add(ref->full_path, name, ref->name_len); 4127 if (ret < 0) 4128 goto out; 4129 4130 /* Update the reference's base name pointer. */ 4131 set_ref_path(ref, ref->full_path); 4132 out: 4133 kfree(name); 4134 return ret; 4135 } 4136 4137 /* 4138 * This does all the move/link/unlink/rmdir magic. 4139 */ 4140 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4141 { 4142 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4143 int ret = 0; 4144 struct recorded_ref *cur; 4145 struct recorded_ref *cur2; 4146 struct list_head check_dirs; 4147 struct fs_path *valid_path = NULL; 4148 u64 ow_inode = 0; 4149 u64 ow_gen; 4150 u64 ow_mode; 4151 int did_overwrite = 0; 4152 int is_orphan = 0; 4153 u64 last_dir_ino_rm = 0; 4154 bool can_rename = true; 4155 bool orphanized_dir = false; 4156 bool orphanized_ancestor = false; 4157 4158 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4159 4160 /* 4161 * This should never happen as the root dir always has the same ref 4162 * which is always '..' 4163 */ 4164 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 4165 INIT_LIST_HEAD(&check_dirs); 4166 4167 valid_path = fs_path_alloc(); 4168 if (!valid_path) { 4169 ret = -ENOMEM; 4170 goto out; 4171 } 4172 4173 /* 4174 * First, check if the first ref of the current inode was overwritten 4175 * before. If yes, we know that the current inode was already orphanized 4176 * and thus use the orphan name. If not, we can use get_cur_path to 4177 * get the path of the first ref as it would like while receiving at 4178 * this point in time. 4179 * New inodes are always orphan at the beginning, so force to use the 4180 * orphan name in this case. 4181 * The first ref is stored in valid_path and will be updated if it 4182 * gets moved around. 4183 */ 4184 if (!sctx->cur_inode_new) { 4185 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4186 sctx->cur_inode_gen); 4187 if (ret < 0) 4188 goto out; 4189 if (ret) 4190 did_overwrite = 1; 4191 } 4192 if (sctx->cur_inode_new || did_overwrite) { 4193 ret = gen_unique_name(sctx, sctx->cur_ino, 4194 sctx->cur_inode_gen, valid_path); 4195 if (ret < 0) 4196 goto out; 4197 is_orphan = 1; 4198 } else { 4199 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4200 valid_path); 4201 if (ret < 0) 4202 goto out; 4203 } 4204 4205 /* 4206 * Before doing any rename and link operations, do a first pass on the 4207 * new references to orphanize any unprocessed inodes that may have a 4208 * reference that conflicts with one of the new references of the current 4209 * inode. This needs to happen first because a new reference may conflict 4210 * with the old reference of a parent directory, so we must make sure 4211 * that the path used for link and rename commands don't use an 4212 * orphanized name when an ancestor was not yet orphanized. 4213 * 4214 * Example: 4215 * 4216 * Parent snapshot: 4217 * 4218 * . (ino 256) 4219 * |----- testdir/ (ino 259) 4220 * | |----- a (ino 257) 4221 * | 4222 * |----- b (ino 258) 4223 * 4224 * Send snapshot: 4225 * 4226 * . (ino 256) 4227 * |----- testdir_2/ (ino 259) 4228 * | |----- a (ino 260) 4229 * | 4230 * |----- testdir (ino 257) 4231 * |----- b (ino 257) 4232 * |----- b2 (ino 258) 4233 * 4234 * Processing the new reference for inode 257 with name "b" may happen 4235 * before processing the new reference with name "testdir". If so, we 4236 * must make sure that by the time we send a link command to create the 4237 * hard link "b", inode 259 was already orphanized, since the generated 4238 * path in "valid_path" already contains the orphanized name for 259. 4239 * We are processing inode 257, so only later when processing 259 we do 4240 * the rename operation to change its temporary (orphanized) name to 4241 * "testdir_2". 4242 */ 4243 list_for_each_entry(cur, &sctx->new_refs, list) { 4244 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4245 if (ret < 0) 4246 goto out; 4247 if (ret == inode_state_will_create) 4248 continue; 4249 4250 /* 4251 * Check if this new ref would overwrite the first ref of another 4252 * unprocessed inode. If yes, orphanize the overwritten inode. 4253 * If we find an overwritten ref that is not the first ref, 4254 * simply unlink it. 4255 */ 4256 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4257 cur->name, cur->name_len, 4258 &ow_inode, &ow_gen, &ow_mode); 4259 if (ret < 0) 4260 goto out; 4261 if (ret) { 4262 ret = is_first_ref(sctx->parent_root, 4263 ow_inode, cur->dir, cur->name, 4264 cur->name_len); 4265 if (ret < 0) 4266 goto out; 4267 if (ret) { 4268 struct name_cache_entry *nce; 4269 struct waiting_dir_move *wdm; 4270 4271 if (orphanized_dir) { 4272 ret = refresh_ref_path(sctx, cur); 4273 if (ret < 0) 4274 goto out; 4275 } 4276 4277 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4278 cur->full_path); 4279 if (ret < 0) 4280 goto out; 4281 if (S_ISDIR(ow_mode)) 4282 orphanized_dir = true; 4283 4284 /* 4285 * If ow_inode has its rename operation delayed 4286 * make sure that its orphanized name is used in 4287 * the source path when performing its rename 4288 * operation. 4289 */ 4290 if (is_waiting_for_move(sctx, ow_inode)) { 4291 wdm = get_waiting_dir_move(sctx, 4292 ow_inode); 4293 ASSERT(wdm); 4294 wdm->orphanized = true; 4295 } 4296 4297 /* 4298 * Make sure we clear our orphanized inode's 4299 * name from the name cache. This is because the 4300 * inode ow_inode might be an ancestor of some 4301 * other inode that will be orphanized as well 4302 * later and has an inode number greater than 4303 * sctx->send_progress. We need to prevent 4304 * future name lookups from using the old name 4305 * and get instead the orphan name. 4306 */ 4307 nce = name_cache_search(sctx, ow_inode, ow_gen); 4308 if (nce) { 4309 name_cache_delete(sctx, nce); 4310 kfree(nce); 4311 } 4312 4313 /* 4314 * ow_inode might currently be an ancestor of 4315 * cur_ino, therefore compute valid_path (the 4316 * current path of cur_ino) again because it 4317 * might contain the pre-orphanization name of 4318 * ow_inode, which is no longer valid. 4319 */ 4320 ret = is_ancestor(sctx->parent_root, 4321 ow_inode, ow_gen, 4322 sctx->cur_ino, NULL); 4323 if (ret > 0) { 4324 orphanized_ancestor = true; 4325 fs_path_reset(valid_path); 4326 ret = get_cur_path(sctx, sctx->cur_ino, 4327 sctx->cur_inode_gen, 4328 valid_path); 4329 } 4330 if (ret < 0) 4331 goto out; 4332 } else { 4333 /* 4334 * If we previously orphanized a directory that 4335 * collided with a new reference that we already 4336 * processed, recompute the current path because 4337 * that directory may be part of the path. 4338 */ 4339 if (orphanized_dir) { 4340 ret = refresh_ref_path(sctx, cur); 4341 if (ret < 0) 4342 goto out; 4343 } 4344 ret = send_unlink(sctx, cur->full_path); 4345 if (ret < 0) 4346 goto out; 4347 } 4348 } 4349 4350 } 4351 4352 list_for_each_entry(cur, &sctx->new_refs, list) { 4353 /* 4354 * We may have refs where the parent directory does not exist 4355 * yet. This happens if the parent directories inum is higher 4356 * than the current inum. To handle this case, we create the 4357 * parent directory out of order. But we need to check if this 4358 * did already happen before due to other refs in the same dir. 4359 */ 4360 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4361 if (ret < 0) 4362 goto out; 4363 if (ret == inode_state_will_create) { 4364 ret = 0; 4365 /* 4366 * First check if any of the current inodes refs did 4367 * already create the dir. 4368 */ 4369 list_for_each_entry(cur2, &sctx->new_refs, list) { 4370 if (cur == cur2) 4371 break; 4372 if (cur2->dir == cur->dir) { 4373 ret = 1; 4374 break; 4375 } 4376 } 4377 4378 /* 4379 * If that did not happen, check if a previous inode 4380 * did already create the dir. 4381 */ 4382 if (!ret) 4383 ret = did_create_dir(sctx, cur->dir); 4384 if (ret < 0) 4385 goto out; 4386 if (!ret) { 4387 ret = send_create_inode(sctx, cur->dir); 4388 if (ret < 0) 4389 goto out; 4390 } 4391 } 4392 4393 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4394 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4395 if (ret < 0) 4396 goto out; 4397 if (ret == 1) { 4398 can_rename = false; 4399 *pending_move = 1; 4400 } 4401 } 4402 4403 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4404 can_rename) { 4405 ret = wait_for_parent_move(sctx, cur, is_orphan); 4406 if (ret < 0) 4407 goto out; 4408 if (ret == 1) { 4409 can_rename = false; 4410 *pending_move = 1; 4411 } 4412 } 4413 4414 /* 4415 * link/move the ref to the new place. If we have an orphan 4416 * inode, move it and update valid_path. If not, link or move 4417 * it depending on the inode mode. 4418 */ 4419 if (is_orphan && can_rename) { 4420 ret = send_rename(sctx, valid_path, cur->full_path); 4421 if (ret < 0) 4422 goto out; 4423 is_orphan = 0; 4424 ret = fs_path_copy(valid_path, cur->full_path); 4425 if (ret < 0) 4426 goto out; 4427 } else if (can_rename) { 4428 if (S_ISDIR(sctx->cur_inode_mode)) { 4429 /* 4430 * Dirs can't be linked, so move it. For moved 4431 * dirs, we always have one new and one deleted 4432 * ref. The deleted ref is ignored later. 4433 */ 4434 ret = send_rename(sctx, valid_path, 4435 cur->full_path); 4436 if (!ret) 4437 ret = fs_path_copy(valid_path, 4438 cur->full_path); 4439 if (ret < 0) 4440 goto out; 4441 } else { 4442 /* 4443 * We might have previously orphanized an inode 4444 * which is an ancestor of our current inode, 4445 * so our reference's full path, which was 4446 * computed before any such orphanizations, must 4447 * be updated. 4448 */ 4449 if (orphanized_dir) { 4450 ret = update_ref_path(sctx, cur); 4451 if (ret < 0) 4452 goto out; 4453 } 4454 ret = send_link(sctx, cur->full_path, 4455 valid_path); 4456 if (ret < 0) 4457 goto out; 4458 } 4459 } 4460 ret = dup_ref(cur, &check_dirs); 4461 if (ret < 0) 4462 goto out; 4463 } 4464 4465 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4466 /* 4467 * Check if we can already rmdir the directory. If not, 4468 * orphanize it. For every dir item inside that gets deleted 4469 * later, we do this check again and rmdir it then if possible. 4470 * See the use of check_dirs for more details. 4471 */ 4472 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4473 sctx->cur_ino); 4474 if (ret < 0) 4475 goto out; 4476 if (ret) { 4477 ret = send_rmdir(sctx, valid_path); 4478 if (ret < 0) 4479 goto out; 4480 } else if (!is_orphan) { 4481 ret = orphanize_inode(sctx, sctx->cur_ino, 4482 sctx->cur_inode_gen, valid_path); 4483 if (ret < 0) 4484 goto out; 4485 is_orphan = 1; 4486 } 4487 4488 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4489 ret = dup_ref(cur, &check_dirs); 4490 if (ret < 0) 4491 goto out; 4492 } 4493 } else if (S_ISDIR(sctx->cur_inode_mode) && 4494 !list_empty(&sctx->deleted_refs)) { 4495 /* 4496 * We have a moved dir. Add the old parent to check_dirs 4497 */ 4498 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4499 list); 4500 ret = dup_ref(cur, &check_dirs); 4501 if (ret < 0) 4502 goto out; 4503 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4504 /* 4505 * We have a non dir inode. Go through all deleted refs and 4506 * unlink them if they were not already overwritten by other 4507 * inodes. 4508 */ 4509 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4510 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4511 sctx->cur_ino, sctx->cur_inode_gen, 4512 cur->name, cur->name_len); 4513 if (ret < 0) 4514 goto out; 4515 if (!ret) { 4516 /* 4517 * If we orphanized any ancestor before, we need 4518 * to recompute the full path for deleted names, 4519 * since any such path was computed before we 4520 * processed any references and orphanized any 4521 * ancestor inode. 4522 */ 4523 if (orphanized_ancestor) { 4524 ret = update_ref_path(sctx, cur); 4525 if (ret < 0) 4526 goto out; 4527 } 4528 ret = send_unlink(sctx, cur->full_path); 4529 if (ret < 0) 4530 goto out; 4531 } 4532 ret = dup_ref(cur, &check_dirs); 4533 if (ret < 0) 4534 goto out; 4535 } 4536 /* 4537 * If the inode is still orphan, unlink the orphan. This may 4538 * happen when a previous inode did overwrite the first ref 4539 * of this inode and no new refs were added for the current 4540 * inode. Unlinking does not mean that the inode is deleted in 4541 * all cases. There may still be links to this inode in other 4542 * places. 4543 */ 4544 if (is_orphan) { 4545 ret = send_unlink(sctx, valid_path); 4546 if (ret < 0) 4547 goto out; 4548 } 4549 } 4550 4551 /* 4552 * We did collect all parent dirs where cur_inode was once located. We 4553 * now go through all these dirs and check if they are pending for 4554 * deletion and if it's finally possible to perform the rmdir now. 4555 * We also update the inode stats of the parent dirs here. 4556 */ 4557 list_for_each_entry(cur, &check_dirs, list) { 4558 /* 4559 * In case we had refs into dirs that were not processed yet, 4560 * we don't need to do the utime and rmdir logic for these dirs. 4561 * The dir will be processed later. 4562 */ 4563 if (cur->dir > sctx->cur_ino) 4564 continue; 4565 4566 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4567 if (ret < 0) 4568 goto out; 4569 4570 if (ret == inode_state_did_create || 4571 ret == inode_state_no_change) { 4572 /* TODO delayed utimes */ 4573 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4574 if (ret < 0) 4575 goto out; 4576 } else if (ret == inode_state_did_delete && 4577 cur->dir != last_dir_ino_rm) { 4578 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4579 sctx->cur_ino); 4580 if (ret < 0) 4581 goto out; 4582 if (ret) { 4583 ret = get_cur_path(sctx, cur->dir, 4584 cur->dir_gen, valid_path); 4585 if (ret < 0) 4586 goto out; 4587 ret = send_rmdir(sctx, valid_path); 4588 if (ret < 0) 4589 goto out; 4590 last_dir_ino_rm = cur->dir; 4591 } 4592 } 4593 } 4594 4595 ret = 0; 4596 4597 out: 4598 __free_recorded_refs(&check_dirs); 4599 free_recorded_refs(sctx); 4600 fs_path_free(valid_path); 4601 return ret; 4602 } 4603 4604 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4605 { 4606 const struct recorded_ref *data = k; 4607 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4608 int result; 4609 4610 if (data->dir > ref->dir) 4611 return 1; 4612 if (data->dir < ref->dir) 4613 return -1; 4614 if (data->dir_gen > ref->dir_gen) 4615 return 1; 4616 if (data->dir_gen < ref->dir_gen) 4617 return -1; 4618 if (data->name_len > ref->name_len) 4619 return 1; 4620 if (data->name_len < ref->name_len) 4621 return -1; 4622 result = strcmp(data->name, ref->name); 4623 if (result > 0) 4624 return 1; 4625 if (result < 0) 4626 return -1; 4627 return 0; 4628 } 4629 4630 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4631 { 4632 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4633 4634 return rbtree_ref_comp(entry, parent) < 0; 4635 } 4636 4637 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4638 struct fs_path *name, u64 dir, u64 dir_gen, 4639 struct send_ctx *sctx) 4640 { 4641 int ret = 0; 4642 struct fs_path *path = NULL; 4643 struct recorded_ref *ref = NULL; 4644 4645 path = fs_path_alloc(); 4646 if (!path) { 4647 ret = -ENOMEM; 4648 goto out; 4649 } 4650 4651 ref = recorded_ref_alloc(); 4652 if (!ref) { 4653 ret = -ENOMEM; 4654 goto out; 4655 } 4656 4657 ret = get_cur_path(sctx, dir, dir_gen, path); 4658 if (ret < 0) 4659 goto out; 4660 ret = fs_path_add_path(path, name); 4661 if (ret < 0) 4662 goto out; 4663 4664 ref->dir = dir; 4665 ref->dir_gen = dir_gen; 4666 set_ref_path(ref, path); 4667 list_add_tail(&ref->list, refs); 4668 rb_add(&ref->node, root, rbtree_ref_less); 4669 ref->root = root; 4670 out: 4671 if (ret) { 4672 if (path && (!ref || !ref->full_path)) 4673 fs_path_free(path); 4674 recorded_ref_free(ref); 4675 } 4676 return ret; 4677 } 4678 4679 static int record_new_ref_if_needed(int num, u64 dir, int index, 4680 struct fs_path *name, void *ctx) 4681 { 4682 int ret = 0; 4683 struct send_ctx *sctx = ctx; 4684 struct rb_node *node = NULL; 4685 struct recorded_ref data; 4686 struct recorded_ref *ref; 4687 u64 dir_gen; 4688 4689 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4690 if (ret < 0) 4691 goto out; 4692 4693 data.dir = dir; 4694 data.dir_gen = dir_gen; 4695 set_ref_path(&data, name); 4696 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4697 if (node) { 4698 ref = rb_entry(node, struct recorded_ref, node); 4699 recorded_ref_free(ref); 4700 } else { 4701 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4702 &sctx->new_refs, name, dir, dir_gen, 4703 sctx); 4704 } 4705 out: 4706 return ret; 4707 } 4708 4709 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4710 struct fs_path *name, void *ctx) 4711 { 4712 int ret = 0; 4713 struct send_ctx *sctx = ctx; 4714 struct rb_node *node = NULL; 4715 struct recorded_ref data; 4716 struct recorded_ref *ref; 4717 u64 dir_gen; 4718 4719 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4720 if (ret < 0) 4721 goto out; 4722 4723 data.dir = dir; 4724 data.dir_gen = dir_gen; 4725 set_ref_path(&data, name); 4726 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4727 if (node) { 4728 ref = rb_entry(node, struct recorded_ref, node); 4729 recorded_ref_free(ref); 4730 } else { 4731 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4732 &sctx->deleted_refs, name, dir, 4733 dir_gen, sctx); 4734 } 4735 out: 4736 return ret; 4737 } 4738 4739 static int record_new_ref(struct send_ctx *sctx) 4740 { 4741 int ret; 4742 4743 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4744 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4745 if (ret < 0) 4746 goto out; 4747 ret = 0; 4748 4749 out: 4750 return ret; 4751 } 4752 4753 static int record_deleted_ref(struct send_ctx *sctx) 4754 { 4755 int ret; 4756 4757 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4758 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4759 sctx); 4760 if (ret < 0) 4761 goto out; 4762 ret = 0; 4763 4764 out: 4765 return ret; 4766 } 4767 4768 static int record_changed_ref(struct send_ctx *sctx) 4769 { 4770 int ret = 0; 4771 4772 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4773 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4774 if (ret < 0) 4775 goto out; 4776 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4777 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4778 if (ret < 0) 4779 goto out; 4780 ret = 0; 4781 4782 out: 4783 return ret; 4784 } 4785 4786 /* 4787 * Record and process all refs at once. Needed when an inode changes the 4788 * generation number, which means that it was deleted and recreated. 4789 */ 4790 static int process_all_refs(struct send_ctx *sctx, 4791 enum btrfs_compare_tree_result cmd) 4792 { 4793 int ret = 0; 4794 int iter_ret = 0; 4795 struct btrfs_root *root; 4796 struct btrfs_path *path; 4797 struct btrfs_key key; 4798 struct btrfs_key found_key; 4799 iterate_inode_ref_t cb; 4800 int pending_move = 0; 4801 4802 path = alloc_path_for_send(); 4803 if (!path) 4804 return -ENOMEM; 4805 4806 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4807 root = sctx->send_root; 4808 cb = record_new_ref_if_needed; 4809 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4810 root = sctx->parent_root; 4811 cb = record_deleted_ref_if_needed; 4812 } else { 4813 btrfs_err(sctx->send_root->fs_info, 4814 "Wrong command %d in process_all_refs", cmd); 4815 ret = -EINVAL; 4816 goto out; 4817 } 4818 4819 key.objectid = sctx->cmp_key->objectid; 4820 key.type = BTRFS_INODE_REF_KEY; 4821 key.offset = 0; 4822 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4823 if (found_key.objectid != key.objectid || 4824 (found_key.type != BTRFS_INODE_REF_KEY && 4825 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4826 break; 4827 4828 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4829 if (ret < 0) 4830 goto out; 4831 } 4832 /* Catch error found during iteration */ 4833 if (iter_ret < 0) { 4834 ret = iter_ret; 4835 goto out; 4836 } 4837 btrfs_release_path(path); 4838 4839 /* 4840 * We don't actually care about pending_move as we are simply 4841 * re-creating this inode and will be rename'ing it into place once we 4842 * rename the parent directory. 4843 */ 4844 ret = process_recorded_refs(sctx, &pending_move); 4845 out: 4846 btrfs_free_path(path); 4847 return ret; 4848 } 4849 4850 static int send_set_xattr(struct send_ctx *sctx, 4851 struct fs_path *path, 4852 const char *name, int name_len, 4853 const char *data, int data_len) 4854 { 4855 int ret = 0; 4856 4857 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4858 if (ret < 0) 4859 goto out; 4860 4861 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4862 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4863 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4864 4865 ret = send_cmd(sctx); 4866 4867 tlv_put_failure: 4868 out: 4869 return ret; 4870 } 4871 4872 static int send_remove_xattr(struct send_ctx *sctx, 4873 struct fs_path *path, 4874 const char *name, int name_len) 4875 { 4876 int ret = 0; 4877 4878 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4879 if (ret < 0) 4880 goto out; 4881 4882 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4883 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4884 4885 ret = send_cmd(sctx); 4886 4887 tlv_put_failure: 4888 out: 4889 return ret; 4890 } 4891 4892 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4893 const char *name, int name_len, const char *data, 4894 int data_len, void *ctx) 4895 { 4896 int ret; 4897 struct send_ctx *sctx = ctx; 4898 struct fs_path *p; 4899 struct posix_acl_xattr_header dummy_acl; 4900 4901 /* Capabilities are emitted by finish_inode_if_needed */ 4902 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4903 return 0; 4904 4905 p = fs_path_alloc(); 4906 if (!p) 4907 return -ENOMEM; 4908 4909 /* 4910 * This hack is needed because empty acls are stored as zero byte 4911 * data in xattrs. Problem with that is, that receiving these zero byte 4912 * acls will fail later. To fix this, we send a dummy acl list that 4913 * only contains the version number and no entries. 4914 */ 4915 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4916 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4917 if (data_len == 0) { 4918 dummy_acl.a_version = 4919 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4920 data = (char *)&dummy_acl; 4921 data_len = sizeof(dummy_acl); 4922 } 4923 } 4924 4925 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4926 if (ret < 0) 4927 goto out; 4928 4929 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4930 4931 out: 4932 fs_path_free(p); 4933 return ret; 4934 } 4935 4936 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4937 const char *name, int name_len, 4938 const char *data, int data_len, void *ctx) 4939 { 4940 int ret; 4941 struct send_ctx *sctx = ctx; 4942 struct fs_path *p; 4943 4944 p = fs_path_alloc(); 4945 if (!p) 4946 return -ENOMEM; 4947 4948 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4949 if (ret < 0) 4950 goto out; 4951 4952 ret = send_remove_xattr(sctx, p, name, name_len); 4953 4954 out: 4955 fs_path_free(p); 4956 return ret; 4957 } 4958 4959 static int process_new_xattr(struct send_ctx *sctx) 4960 { 4961 int ret = 0; 4962 4963 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4964 __process_new_xattr, sctx); 4965 4966 return ret; 4967 } 4968 4969 static int process_deleted_xattr(struct send_ctx *sctx) 4970 { 4971 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4972 __process_deleted_xattr, sctx); 4973 } 4974 4975 struct find_xattr_ctx { 4976 const char *name; 4977 int name_len; 4978 int found_idx; 4979 char *found_data; 4980 int found_data_len; 4981 }; 4982 4983 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4984 int name_len, const char *data, int data_len, void *vctx) 4985 { 4986 struct find_xattr_ctx *ctx = vctx; 4987 4988 if (name_len == ctx->name_len && 4989 strncmp(name, ctx->name, name_len) == 0) { 4990 ctx->found_idx = num; 4991 ctx->found_data_len = data_len; 4992 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4993 if (!ctx->found_data) 4994 return -ENOMEM; 4995 return 1; 4996 } 4997 return 0; 4998 } 4999 5000 static int find_xattr(struct btrfs_root *root, 5001 struct btrfs_path *path, 5002 struct btrfs_key *key, 5003 const char *name, int name_len, 5004 char **data, int *data_len) 5005 { 5006 int ret; 5007 struct find_xattr_ctx ctx; 5008 5009 ctx.name = name; 5010 ctx.name_len = name_len; 5011 ctx.found_idx = -1; 5012 ctx.found_data = NULL; 5013 ctx.found_data_len = 0; 5014 5015 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5016 if (ret < 0) 5017 return ret; 5018 5019 if (ctx.found_idx == -1) 5020 return -ENOENT; 5021 if (data) { 5022 *data = ctx.found_data; 5023 *data_len = ctx.found_data_len; 5024 } else { 5025 kfree(ctx.found_data); 5026 } 5027 return ctx.found_idx; 5028 } 5029 5030 5031 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5032 const char *name, int name_len, 5033 const char *data, int data_len, 5034 void *ctx) 5035 { 5036 int ret; 5037 struct send_ctx *sctx = ctx; 5038 char *found_data = NULL; 5039 int found_data_len = 0; 5040 5041 ret = find_xattr(sctx->parent_root, sctx->right_path, 5042 sctx->cmp_key, name, name_len, &found_data, 5043 &found_data_len); 5044 if (ret == -ENOENT) { 5045 ret = __process_new_xattr(num, di_key, name, name_len, data, 5046 data_len, ctx); 5047 } else if (ret >= 0) { 5048 if (data_len != found_data_len || 5049 memcmp(data, found_data, data_len)) { 5050 ret = __process_new_xattr(num, di_key, name, name_len, 5051 data, data_len, ctx); 5052 } else { 5053 ret = 0; 5054 } 5055 } 5056 5057 kfree(found_data); 5058 return ret; 5059 } 5060 5061 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5062 const char *name, int name_len, 5063 const char *data, int data_len, 5064 void *ctx) 5065 { 5066 int ret; 5067 struct send_ctx *sctx = ctx; 5068 5069 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5070 name, name_len, NULL, NULL); 5071 if (ret == -ENOENT) 5072 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5073 data_len, ctx); 5074 else if (ret >= 0) 5075 ret = 0; 5076 5077 return ret; 5078 } 5079 5080 static int process_changed_xattr(struct send_ctx *sctx) 5081 { 5082 int ret = 0; 5083 5084 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5085 __process_changed_new_xattr, sctx); 5086 if (ret < 0) 5087 goto out; 5088 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5089 __process_changed_deleted_xattr, sctx); 5090 5091 out: 5092 return ret; 5093 } 5094 5095 static int process_all_new_xattrs(struct send_ctx *sctx) 5096 { 5097 int ret = 0; 5098 int iter_ret = 0; 5099 struct btrfs_root *root; 5100 struct btrfs_path *path; 5101 struct btrfs_key key; 5102 struct btrfs_key found_key; 5103 5104 path = alloc_path_for_send(); 5105 if (!path) 5106 return -ENOMEM; 5107 5108 root = sctx->send_root; 5109 5110 key.objectid = sctx->cmp_key->objectid; 5111 key.type = BTRFS_XATTR_ITEM_KEY; 5112 key.offset = 0; 5113 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5114 if (found_key.objectid != key.objectid || 5115 found_key.type != key.type) { 5116 ret = 0; 5117 break; 5118 } 5119 5120 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5121 if (ret < 0) 5122 break; 5123 } 5124 /* Catch error found during iteration */ 5125 if (iter_ret < 0) 5126 ret = iter_ret; 5127 5128 btrfs_free_path(path); 5129 return ret; 5130 } 5131 5132 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5133 struct fsverity_descriptor *desc) 5134 { 5135 int ret; 5136 5137 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5138 if (ret < 0) 5139 goto out; 5140 5141 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5142 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5143 le8_to_cpu(desc->hash_algorithm)); 5144 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5145 1U << le8_to_cpu(desc->log_blocksize)); 5146 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5147 le8_to_cpu(desc->salt_size)); 5148 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5149 le32_to_cpu(desc->sig_size)); 5150 5151 ret = send_cmd(sctx); 5152 5153 tlv_put_failure: 5154 out: 5155 return ret; 5156 } 5157 5158 static int process_verity(struct send_ctx *sctx) 5159 { 5160 int ret = 0; 5161 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5162 struct inode *inode; 5163 struct fs_path *p; 5164 5165 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 5166 if (IS_ERR(inode)) 5167 return PTR_ERR(inode); 5168 5169 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5170 if (ret < 0) 5171 goto iput; 5172 5173 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5174 ret = -EMSGSIZE; 5175 goto iput; 5176 } 5177 if (!sctx->verity_descriptor) { 5178 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5179 GFP_KERNEL); 5180 if (!sctx->verity_descriptor) { 5181 ret = -ENOMEM; 5182 goto iput; 5183 } 5184 } 5185 5186 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5187 if (ret < 0) 5188 goto iput; 5189 5190 p = fs_path_alloc(); 5191 if (!p) { 5192 ret = -ENOMEM; 5193 goto iput; 5194 } 5195 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5196 if (ret < 0) 5197 goto free_path; 5198 5199 ret = send_verity(sctx, p, sctx->verity_descriptor); 5200 if (ret < 0) 5201 goto free_path; 5202 5203 free_path: 5204 fs_path_free(p); 5205 iput: 5206 iput(inode); 5207 return ret; 5208 } 5209 5210 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5211 { 5212 return sctx->send_max_size - SZ_16K; 5213 } 5214 5215 static int put_data_header(struct send_ctx *sctx, u32 len) 5216 { 5217 if (WARN_ON_ONCE(sctx->put_data)) 5218 return -EINVAL; 5219 sctx->put_data = true; 5220 if (sctx->proto >= 2) { 5221 /* 5222 * Since v2, the data attribute header doesn't include a length, 5223 * it is implicitly to the end of the command. 5224 */ 5225 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5226 return -EOVERFLOW; 5227 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5228 sctx->send_size += sizeof(__le16); 5229 } else { 5230 struct btrfs_tlv_header *hdr; 5231 5232 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5233 return -EOVERFLOW; 5234 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5235 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5236 put_unaligned_le16(len, &hdr->tlv_len); 5237 sctx->send_size += sizeof(*hdr); 5238 } 5239 return 0; 5240 } 5241 5242 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5243 { 5244 struct btrfs_root *root = sctx->send_root; 5245 struct btrfs_fs_info *fs_info = root->fs_info; 5246 struct page *page; 5247 pgoff_t index = offset >> PAGE_SHIFT; 5248 pgoff_t last_index; 5249 unsigned pg_offset = offset_in_page(offset); 5250 int ret; 5251 5252 ret = put_data_header(sctx, len); 5253 if (ret) 5254 return ret; 5255 5256 last_index = (offset + len - 1) >> PAGE_SHIFT; 5257 5258 while (index <= last_index) { 5259 unsigned cur_len = min_t(unsigned, len, 5260 PAGE_SIZE - pg_offset); 5261 5262 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5263 if (!page) { 5264 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5265 &sctx->ra, NULL, index, 5266 last_index + 1 - index); 5267 5268 page = find_or_create_page(sctx->cur_inode->i_mapping, 5269 index, GFP_KERNEL); 5270 if (!page) { 5271 ret = -ENOMEM; 5272 break; 5273 } 5274 } 5275 5276 if (PageReadahead(page)) 5277 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5278 &sctx->ra, NULL, page_folio(page), 5279 index, last_index + 1 - index); 5280 5281 if (!PageUptodate(page)) { 5282 btrfs_read_folio(NULL, page_folio(page)); 5283 lock_page(page); 5284 if (!PageUptodate(page)) { 5285 unlock_page(page); 5286 btrfs_err(fs_info, 5287 "send: IO error at offset %llu for inode %llu root %llu", 5288 page_offset(page), sctx->cur_ino, 5289 sctx->send_root->root_key.objectid); 5290 put_page(page); 5291 ret = -EIO; 5292 break; 5293 } 5294 } 5295 5296 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5297 pg_offset, cur_len); 5298 unlock_page(page); 5299 put_page(page); 5300 index++; 5301 pg_offset = 0; 5302 len -= cur_len; 5303 sctx->send_size += cur_len; 5304 } 5305 5306 return ret; 5307 } 5308 5309 /* 5310 * Read some bytes from the current inode/file and send a write command to 5311 * user space. 5312 */ 5313 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5314 { 5315 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5316 int ret = 0; 5317 struct fs_path *p; 5318 5319 p = fs_path_alloc(); 5320 if (!p) 5321 return -ENOMEM; 5322 5323 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5324 5325 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5326 if (ret < 0) 5327 goto out; 5328 5329 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5330 if (ret < 0) 5331 goto out; 5332 5333 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5334 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5335 ret = put_file_data(sctx, offset, len); 5336 if (ret < 0) 5337 goto out; 5338 5339 ret = send_cmd(sctx); 5340 5341 tlv_put_failure: 5342 out: 5343 fs_path_free(p); 5344 return ret; 5345 } 5346 5347 /* 5348 * Send a clone command to user space. 5349 */ 5350 static int send_clone(struct send_ctx *sctx, 5351 u64 offset, u32 len, 5352 struct clone_root *clone_root) 5353 { 5354 int ret = 0; 5355 struct fs_path *p; 5356 u64 gen; 5357 5358 btrfs_debug(sctx->send_root->fs_info, 5359 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5360 offset, len, clone_root->root->root_key.objectid, 5361 clone_root->ino, clone_root->offset); 5362 5363 p = fs_path_alloc(); 5364 if (!p) 5365 return -ENOMEM; 5366 5367 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5368 if (ret < 0) 5369 goto out; 5370 5371 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5372 if (ret < 0) 5373 goto out; 5374 5375 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5376 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5377 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5378 5379 if (clone_root->root == sctx->send_root) { 5380 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5381 if (ret < 0) 5382 goto out; 5383 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5384 } else { 5385 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5386 } 5387 if (ret < 0) 5388 goto out; 5389 5390 /* 5391 * If the parent we're using has a received_uuid set then use that as 5392 * our clone source as that is what we will look for when doing a 5393 * receive. 5394 * 5395 * This covers the case that we create a snapshot off of a received 5396 * subvolume and then use that as the parent and try to receive on a 5397 * different host. 5398 */ 5399 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5400 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5401 clone_root->root->root_item.received_uuid); 5402 else 5403 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5404 clone_root->root->root_item.uuid); 5405 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5406 btrfs_root_ctransid(&clone_root->root->root_item)); 5407 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5409 clone_root->offset); 5410 5411 ret = send_cmd(sctx); 5412 5413 tlv_put_failure: 5414 out: 5415 fs_path_free(p); 5416 return ret; 5417 } 5418 5419 /* 5420 * Send an update extent command to user space. 5421 */ 5422 static int send_update_extent(struct send_ctx *sctx, 5423 u64 offset, u32 len) 5424 { 5425 int ret = 0; 5426 struct fs_path *p; 5427 5428 p = fs_path_alloc(); 5429 if (!p) 5430 return -ENOMEM; 5431 5432 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5433 if (ret < 0) 5434 goto out; 5435 5436 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5437 if (ret < 0) 5438 goto out; 5439 5440 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5441 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5442 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5443 5444 ret = send_cmd(sctx); 5445 5446 tlv_put_failure: 5447 out: 5448 fs_path_free(p); 5449 return ret; 5450 } 5451 5452 static int send_hole(struct send_ctx *sctx, u64 end) 5453 { 5454 struct fs_path *p = NULL; 5455 u64 read_size = max_send_read_size(sctx); 5456 u64 offset = sctx->cur_inode_last_extent; 5457 int ret = 0; 5458 5459 /* 5460 * A hole that starts at EOF or beyond it. Since we do not yet support 5461 * fallocate (for extent preallocation and hole punching), sending a 5462 * write of zeroes starting at EOF or beyond would later require issuing 5463 * a truncate operation which would undo the write and achieve nothing. 5464 */ 5465 if (offset >= sctx->cur_inode_size) 5466 return 0; 5467 5468 /* 5469 * Don't go beyond the inode's i_size due to prealloc extents that start 5470 * after the i_size. 5471 */ 5472 end = min_t(u64, end, sctx->cur_inode_size); 5473 5474 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5475 return send_update_extent(sctx, offset, end - offset); 5476 5477 p = fs_path_alloc(); 5478 if (!p) 5479 return -ENOMEM; 5480 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5481 if (ret < 0) 5482 goto tlv_put_failure; 5483 while (offset < end) { 5484 u64 len = min(end - offset, read_size); 5485 5486 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5487 if (ret < 0) 5488 break; 5489 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5490 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5491 ret = put_data_header(sctx, len); 5492 if (ret < 0) 5493 break; 5494 memset(sctx->send_buf + sctx->send_size, 0, len); 5495 sctx->send_size += len; 5496 ret = send_cmd(sctx); 5497 if (ret < 0) 5498 break; 5499 offset += len; 5500 } 5501 sctx->cur_inode_next_write_offset = offset; 5502 tlv_put_failure: 5503 fs_path_free(p); 5504 return ret; 5505 } 5506 5507 static int send_encoded_inline_extent(struct send_ctx *sctx, 5508 struct btrfs_path *path, u64 offset, 5509 u64 len) 5510 { 5511 struct btrfs_root *root = sctx->send_root; 5512 struct btrfs_fs_info *fs_info = root->fs_info; 5513 struct inode *inode; 5514 struct fs_path *fspath; 5515 struct extent_buffer *leaf = path->nodes[0]; 5516 struct btrfs_key key; 5517 struct btrfs_file_extent_item *ei; 5518 u64 ram_bytes; 5519 size_t inline_size; 5520 int ret; 5521 5522 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5523 if (IS_ERR(inode)) 5524 return PTR_ERR(inode); 5525 5526 fspath = fs_path_alloc(); 5527 if (!fspath) { 5528 ret = -ENOMEM; 5529 goto out; 5530 } 5531 5532 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5533 if (ret < 0) 5534 goto out; 5535 5536 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5537 if (ret < 0) 5538 goto out; 5539 5540 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5541 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5542 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5543 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5544 5545 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5546 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5547 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5548 min(key.offset + ram_bytes - offset, len)); 5549 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5550 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5551 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5552 btrfs_file_extent_compression(leaf, ei)); 5553 if (ret < 0) 5554 goto out; 5555 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5556 5557 ret = put_data_header(sctx, inline_size); 5558 if (ret < 0) 5559 goto out; 5560 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5561 btrfs_file_extent_inline_start(ei), inline_size); 5562 sctx->send_size += inline_size; 5563 5564 ret = send_cmd(sctx); 5565 5566 tlv_put_failure: 5567 out: 5568 fs_path_free(fspath); 5569 iput(inode); 5570 return ret; 5571 } 5572 5573 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5574 u64 offset, u64 len) 5575 { 5576 struct btrfs_root *root = sctx->send_root; 5577 struct btrfs_fs_info *fs_info = root->fs_info; 5578 struct inode *inode; 5579 struct fs_path *fspath; 5580 struct extent_buffer *leaf = path->nodes[0]; 5581 struct btrfs_key key; 5582 struct btrfs_file_extent_item *ei; 5583 u64 disk_bytenr, disk_num_bytes; 5584 u32 data_offset; 5585 struct btrfs_cmd_header *hdr; 5586 u32 crc; 5587 int ret; 5588 5589 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5590 if (IS_ERR(inode)) 5591 return PTR_ERR(inode); 5592 5593 fspath = fs_path_alloc(); 5594 if (!fspath) { 5595 ret = -ENOMEM; 5596 goto out; 5597 } 5598 5599 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5600 if (ret < 0) 5601 goto out; 5602 5603 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5604 if (ret < 0) 5605 goto out; 5606 5607 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5608 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5609 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5610 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5611 5612 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5613 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5614 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5615 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5616 len)); 5617 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5618 btrfs_file_extent_ram_bytes(leaf, ei)); 5619 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5620 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5621 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5622 btrfs_file_extent_compression(leaf, ei)); 5623 if (ret < 0) 5624 goto out; 5625 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5626 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5627 5628 ret = put_data_header(sctx, disk_num_bytes); 5629 if (ret < 0) 5630 goto out; 5631 5632 /* 5633 * We want to do I/O directly into the send buffer, so get the next page 5634 * boundary in the send buffer. This means that there may be a gap 5635 * between the beginning of the command and the file data. 5636 */ 5637 data_offset = ALIGN(sctx->send_size, PAGE_SIZE); 5638 if (data_offset > sctx->send_max_size || 5639 sctx->send_max_size - data_offset < disk_num_bytes) { 5640 ret = -EOVERFLOW; 5641 goto out; 5642 } 5643 5644 /* 5645 * Note that send_buf is a mapping of send_buf_pages, so this is really 5646 * reading into send_buf. 5647 */ 5648 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5649 disk_bytenr, disk_num_bytes, 5650 sctx->send_buf_pages + 5651 (data_offset >> PAGE_SHIFT)); 5652 if (ret) 5653 goto out; 5654 5655 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5656 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5657 hdr->crc = 0; 5658 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size); 5659 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5660 hdr->crc = cpu_to_le32(crc); 5661 5662 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5663 &sctx->send_off); 5664 if (!ret) { 5665 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5666 disk_num_bytes, &sctx->send_off); 5667 } 5668 sctx->send_size = 0; 5669 sctx->put_data = false; 5670 5671 tlv_put_failure: 5672 out: 5673 fs_path_free(fspath); 5674 iput(inode); 5675 return ret; 5676 } 5677 5678 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5679 const u64 offset, const u64 len) 5680 { 5681 const u64 end = offset + len; 5682 struct extent_buffer *leaf = path->nodes[0]; 5683 struct btrfs_file_extent_item *ei; 5684 u64 read_size = max_send_read_size(sctx); 5685 u64 sent = 0; 5686 5687 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5688 return send_update_extent(sctx, offset, len); 5689 5690 ei = btrfs_item_ptr(leaf, path->slots[0], 5691 struct btrfs_file_extent_item); 5692 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5693 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5694 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5695 BTRFS_FILE_EXTENT_INLINE); 5696 5697 /* 5698 * Send the compressed extent unless the compressed data is 5699 * larger than the decompressed data. This can happen if we're 5700 * not sending the entire extent, either because it has been 5701 * partially overwritten/truncated or because this is a part of 5702 * the extent that we couldn't clone in clone_range(). 5703 */ 5704 if (is_inline && 5705 btrfs_file_extent_inline_item_len(leaf, 5706 path->slots[0]) <= len) { 5707 return send_encoded_inline_extent(sctx, path, offset, 5708 len); 5709 } else if (!is_inline && 5710 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5711 return send_encoded_extent(sctx, path, offset, len); 5712 } 5713 } 5714 5715 if (sctx->cur_inode == NULL) { 5716 struct btrfs_root *root = sctx->send_root; 5717 5718 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5719 if (IS_ERR(sctx->cur_inode)) { 5720 int err = PTR_ERR(sctx->cur_inode); 5721 5722 sctx->cur_inode = NULL; 5723 return err; 5724 } 5725 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5726 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5727 5728 /* 5729 * It's very likely there are no pages from this inode in the page 5730 * cache, so after reading extents and sending their data, we clean 5731 * the page cache to avoid trashing the page cache (adding pressure 5732 * to the page cache and forcing eviction of other data more useful 5733 * for applications). 5734 * 5735 * We decide if we should clean the page cache simply by checking 5736 * if the inode's mapping nrpages is 0 when we first open it, and 5737 * not by using something like filemap_range_has_page() before 5738 * reading an extent because when we ask the readahead code to 5739 * read a given file range, it may (and almost always does) read 5740 * pages from beyond that range (see the documentation for 5741 * page_cache_sync_readahead()), so it would not be reliable, 5742 * because after reading the first extent future calls to 5743 * filemap_range_has_page() would return true because the readahead 5744 * on the previous extent resulted in reading pages of the current 5745 * extent as well. 5746 */ 5747 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5748 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5749 } 5750 5751 while (sent < len) { 5752 u64 size = min(len - sent, read_size); 5753 int ret; 5754 5755 ret = send_write(sctx, offset + sent, size); 5756 if (ret < 0) 5757 return ret; 5758 sent += size; 5759 } 5760 5761 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) { 5762 /* 5763 * Always operate only on ranges that are a multiple of the page 5764 * size. This is not only to prevent zeroing parts of a page in 5765 * the case of subpage sector size, but also to guarantee we evict 5766 * pages, as passing a range that is smaller than page size does 5767 * not evict the respective page (only zeroes part of its content). 5768 * 5769 * Always start from the end offset of the last range cleared. 5770 * This is because the readahead code may (and very often does) 5771 * reads pages beyond the range we request for readahead. So if 5772 * we have an extent layout like this: 5773 * 5774 * [ extent A ] [ extent B ] [ extent C ] 5775 * 5776 * When we ask page_cache_sync_readahead() to read extent A, it 5777 * may also trigger reads for pages of extent B. If we are doing 5778 * an incremental send and extent B has not changed between the 5779 * parent and send snapshots, some or all of its pages may end 5780 * up being read and placed in the page cache. So when truncating 5781 * the page cache we always start from the end offset of the 5782 * previously processed extent up to the end of the current 5783 * extent. 5784 */ 5785 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5786 sctx->page_cache_clear_start, 5787 end - 1); 5788 sctx->page_cache_clear_start = end; 5789 } 5790 5791 return 0; 5792 } 5793 5794 /* 5795 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5796 * found, call send_set_xattr function to emit it. 5797 * 5798 * Return 0 if there isn't a capability, or when the capability was emitted 5799 * successfully, or < 0 if an error occurred. 5800 */ 5801 static int send_capabilities(struct send_ctx *sctx) 5802 { 5803 struct fs_path *fspath = NULL; 5804 struct btrfs_path *path; 5805 struct btrfs_dir_item *di; 5806 struct extent_buffer *leaf; 5807 unsigned long data_ptr; 5808 char *buf = NULL; 5809 int buf_len; 5810 int ret = 0; 5811 5812 path = alloc_path_for_send(); 5813 if (!path) 5814 return -ENOMEM; 5815 5816 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5817 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5818 if (!di) { 5819 /* There is no xattr for this inode */ 5820 goto out; 5821 } else if (IS_ERR(di)) { 5822 ret = PTR_ERR(di); 5823 goto out; 5824 } 5825 5826 leaf = path->nodes[0]; 5827 buf_len = btrfs_dir_data_len(leaf, di); 5828 5829 fspath = fs_path_alloc(); 5830 buf = kmalloc(buf_len, GFP_KERNEL); 5831 if (!fspath || !buf) { 5832 ret = -ENOMEM; 5833 goto out; 5834 } 5835 5836 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5837 if (ret < 0) 5838 goto out; 5839 5840 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5841 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5842 5843 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5844 strlen(XATTR_NAME_CAPS), buf, buf_len); 5845 out: 5846 kfree(buf); 5847 fs_path_free(fspath); 5848 btrfs_free_path(path); 5849 return ret; 5850 } 5851 5852 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5853 struct clone_root *clone_root, const u64 disk_byte, 5854 u64 data_offset, u64 offset, u64 len) 5855 { 5856 struct btrfs_path *path; 5857 struct btrfs_key key; 5858 int ret; 5859 struct btrfs_inode_info info; 5860 u64 clone_src_i_size = 0; 5861 5862 /* 5863 * Prevent cloning from a zero offset with a length matching the sector 5864 * size because in some scenarios this will make the receiver fail. 5865 * 5866 * For example, if in the source filesystem the extent at offset 0 5867 * has a length of sectorsize and it was written using direct IO, then 5868 * it can never be an inline extent (even if compression is enabled). 5869 * Then this extent can be cloned in the original filesystem to a non 5870 * zero file offset, but it may not be possible to clone in the 5871 * destination filesystem because it can be inlined due to compression 5872 * on the destination filesystem (as the receiver's write operations are 5873 * always done using buffered IO). The same happens when the original 5874 * filesystem does not have compression enabled but the destination 5875 * filesystem has. 5876 */ 5877 if (clone_root->offset == 0 && 5878 len == sctx->send_root->fs_info->sectorsize) 5879 return send_extent_data(sctx, dst_path, offset, len); 5880 5881 path = alloc_path_for_send(); 5882 if (!path) 5883 return -ENOMEM; 5884 5885 /* 5886 * There are inodes that have extents that lie behind its i_size. Don't 5887 * accept clones from these extents. 5888 */ 5889 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5890 btrfs_release_path(path); 5891 if (ret < 0) 5892 goto out; 5893 clone_src_i_size = info.size; 5894 5895 /* 5896 * We can't send a clone operation for the entire range if we find 5897 * extent items in the respective range in the source file that 5898 * refer to different extents or if we find holes. 5899 * So check for that and do a mix of clone and regular write/copy 5900 * operations if needed. 5901 * 5902 * Example: 5903 * 5904 * mkfs.btrfs -f /dev/sda 5905 * mount /dev/sda /mnt 5906 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5907 * cp --reflink=always /mnt/foo /mnt/bar 5908 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5909 * btrfs subvolume snapshot -r /mnt /mnt/snap 5910 * 5911 * If when we send the snapshot and we are processing file bar (which 5912 * has a higher inode number than foo) we blindly send a clone operation 5913 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5914 * a file bar that matches the content of file foo - iow, doesn't match 5915 * the content from bar in the original filesystem. 5916 */ 5917 key.objectid = clone_root->ino; 5918 key.type = BTRFS_EXTENT_DATA_KEY; 5919 key.offset = clone_root->offset; 5920 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5921 if (ret < 0) 5922 goto out; 5923 if (ret > 0 && path->slots[0] > 0) { 5924 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5925 if (key.objectid == clone_root->ino && 5926 key.type == BTRFS_EXTENT_DATA_KEY) 5927 path->slots[0]--; 5928 } 5929 5930 while (true) { 5931 struct extent_buffer *leaf = path->nodes[0]; 5932 int slot = path->slots[0]; 5933 struct btrfs_file_extent_item *ei; 5934 u8 type; 5935 u64 ext_len; 5936 u64 clone_len; 5937 u64 clone_data_offset; 5938 bool crossed_src_i_size = false; 5939 5940 if (slot >= btrfs_header_nritems(leaf)) { 5941 ret = btrfs_next_leaf(clone_root->root, path); 5942 if (ret < 0) 5943 goto out; 5944 else if (ret > 0) 5945 break; 5946 continue; 5947 } 5948 5949 btrfs_item_key_to_cpu(leaf, &key, slot); 5950 5951 /* 5952 * We might have an implicit trailing hole (NO_HOLES feature 5953 * enabled). We deal with it after leaving this loop. 5954 */ 5955 if (key.objectid != clone_root->ino || 5956 key.type != BTRFS_EXTENT_DATA_KEY) 5957 break; 5958 5959 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5960 type = btrfs_file_extent_type(leaf, ei); 5961 if (type == BTRFS_FILE_EXTENT_INLINE) { 5962 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5963 ext_len = PAGE_ALIGN(ext_len); 5964 } else { 5965 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5966 } 5967 5968 if (key.offset + ext_len <= clone_root->offset) 5969 goto next; 5970 5971 if (key.offset > clone_root->offset) { 5972 /* Implicit hole, NO_HOLES feature enabled. */ 5973 u64 hole_len = key.offset - clone_root->offset; 5974 5975 if (hole_len > len) 5976 hole_len = len; 5977 ret = send_extent_data(sctx, dst_path, offset, 5978 hole_len); 5979 if (ret < 0) 5980 goto out; 5981 5982 len -= hole_len; 5983 if (len == 0) 5984 break; 5985 offset += hole_len; 5986 clone_root->offset += hole_len; 5987 data_offset += hole_len; 5988 } 5989 5990 if (key.offset >= clone_root->offset + len) 5991 break; 5992 5993 if (key.offset >= clone_src_i_size) 5994 break; 5995 5996 if (key.offset + ext_len > clone_src_i_size) { 5997 ext_len = clone_src_i_size - key.offset; 5998 crossed_src_i_size = true; 5999 } 6000 6001 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6002 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6003 clone_root->offset = key.offset; 6004 if (clone_data_offset < data_offset && 6005 clone_data_offset + ext_len > data_offset) { 6006 u64 extent_offset; 6007 6008 extent_offset = data_offset - clone_data_offset; 6009 ext_len -= extent_offset; 6010 clone_data_offset += extent_offset; 6011 clone_root->offset += extent_offset; 6012 } 6013 } 6014 6015 clone_len = min_t(u64, ext_len, len); 6016 6017 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6018 clone_data_offset == data_offset) { 6019 const u64 src_end = clone_root->offset + clone_len; 6020 const u64 sectorsize = SZ_64K; 6021 6022 /* 6023 * We can't clone the last block, when its size is not 6024 * sector size aligned, into the middle of a file. If we 6025 * do so, the receiver will get a failure (-EINVAL) when 6026 * trying to clone or will silently corrupt the data in 6027 * the destination file if it's on a kernel without the 6028 * fix introduced by commit ac765f83f1397646 6029 * ("Btrfs: fix data corruption due to cloning of eof 6030 * block). 6031 * 6032 * So issue a clone of the aligned down range plus a 6033 * regular write for the eof block, if we hit that case. 6034 * 6035 * Also, we use the maximum possible sector size, 64K, 6036 * because we don't know what's the sector size of the 6037 * filesystem that receives the stream, so we have to 6038 * assume the largest possible sector size. 6039 */ 6040 if (src_end == clone_src_i_size && 6041 !IS_ALIGNED(src_end, sectorsize) && 6042 offset + clone_len < sctx->cur_inode_size) { 6043 u64 slen; 6044 6045 slen = ALIGN_DOWN(src_end - clone_root->offset, 6046 sectorsize); 6047 if (slen > 0) { 6048 ret = send_clone(sctx, offset, slen, 6049 clone_root); 6050 if (ret < 0) 6051 goto out; 6052 } 6053 ret = send_extent_data(sctx, dst_path, 6054 offset + slen, 6055 clone_len - slen); 6056 } else { 6057 ret = send_clone(sctx, offset, clone_len, 6058 clone_root); 6059 } 6060 } else if (crossed_src_i_size && clone_len < len) { 6061 /* 6062 * If we are at i_size of the clone source inode and we 6063 * can not clone from it, terminate the loop. This is 6064 * to avoid sending two write operations, one with a 6065 * length matching clone_len and the final one after 6066 * this loop with a length of len - clone_len. 6067 * 6068 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6069 * was passed to the send ioctl), this helps avoid 6070 * sending an encoded write for an offset that is not 6071 * sector size aligned, in case the i_size of the source 6072 * inode is not sector size aligned. That will make the 6073 * receiver fallback to decompression of the data and 6074 * writing it using regular buffered IO, therefore while 6075 * not incorrect, it's not optimal due decompression and 6076 * possible re-compression at the receiver. 6077 */ 6078 break; 6079 } else { 6080 ret = send_extent_data(sctx, dst_path, offset, 6081 clone_len); 6082 } 6083 6084 if (ret < 0) 6085 goto out; 6086 6087 len -= clone_len; 6088 if (len == 0) 6089 break; 6090 offset += clone_len; 6091 clone_root->offset += clone_len; 6092 6093 /* 6094 * If we are cloning from the file we are currently processing, 6095 * and using the send root as the clone root, we must stop once 6096 * the current clone offset reaches the current eof of the file 6097 * at the receiver, otherwise we would issue an invalid clone 6098 * operation (source range going beyond eof) and cause the 6099 * receiver to fail. So if we reach the current eof, bail out 6100 * and fallback to a regular write. 6101 */ 6102 if (clone_root->root == sctx->send_root && 6103 clone_root->ino == sctx->cur_ino && 6104 clone_root->offset >= sctx->cur_inode_next_write_offset) 6105 break; 6106 6107 data_offset += clone_len; 6108 next: 6109 path->slots[0]++; 6110 } 6111 6112 if (len > 0) 6113 ret = send_extent_data(sctx, dst_path, offset, len); 6114 else 6115 ret = 0; 6116 out: 6117 btrfs_free_path(path); 6118 return ret; 6119 } 6120 6121 static int send_write_or_clone(struct send_ctx *sctx, 6122 struct btrfs_path *path, 6123 struct btrfs_key *key, 6124 struct clone_root *clone_root) 6125 { 6126 int ret = 0; 6127 u64 offset = key->offset; 6128 u64 end; 6129 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 6130 6131 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6132 if (offset >= end) 6133 return 0; 6134 6135 if (clone_root && IS_ALIGNED(end, bs)) { 6136 struct btrfs_file_extent_item *ei; 6137 u64 disk_byte; 6138 u64 data_offset; 6139 6140 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6141 struct btrfs_file_extent_item); 6142 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6143 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6144 ret = clone_range(sctx, path, clone_root, disk_byte, 6145 data_offset, offset, end - offset); 6146 } else { 6147 ret = send_extent_data(sctx, path, offset, end - offset); 6148 } 6149 sctx->cur_inode_next_write_offset = end; 6150 return ret; 6151 } 6152 6153 static int is_extent_unchanged(struct send_ctx *sctx, 6154 struct btrfs_path *left_path, 6155 struct btrfs_key *ekey) 6156 { 6157 int ret = 0; 6158 struct btrfs_key key; 6159 struct btrfs_path *path = NULL; 6160 struct extent_buffer *eb; 6161 int slot; 6162 struct btrfs_key found_key; 6163 struct btrfs_file_extent_item *ei; 6164 u64 left_disknr; 6165 u64 right_disknr; 6166 u64 left_offset; 6167 u64 right_offset; 6168 u64 left_offset_fixed; 6169 u64 left_len; 6170 u64 right_len; 6171 u64 left_gen; 6172 u64 right_gen; 6173 u8 left_type; 6174 u8 right_type; 6175 6176 path = alloc_path_for_send(); 6177 if (!path) 6178 return -ENOMEM; 6179 6180 eb = left_path->nodes[0]; 6181 slot = left_path->slots[0]; 6182 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6183 left_type = btrfs_file_extent_type(eb, ei); 6184 6185 if (left_type != BTRFS_FILE_EXTENT_REG) { 6186 ret = 0; 6187 goto out; 6188 } 6189 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6190 left_len = btrfs_file_extent_num_bytes(eb, ei); 6191 left_offset = btrfs_file_extent_offset(eb, ei); 6192 left_gen = btrfs_file_extent_generation(eb, ei); 6193 6194 /* 6195 * Following comments will refer to these graphics. L is the left 6196 * extents which we are checking at the moment. 1-8 are the right 6197 * extents that we iterate. 6198 * 6199 * |-----L-----| 6200 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6201 * 6202 * |-----L-----| 6203 * |--1--|-2b-|...(same as above) 6204 * 6205 * Alternative situation. Happens on files where extents got split. 6206 * |-----L-----| 6207 * |-----------7-----------|-6-| 6208 * 6209 * Alternative situation. Happens on files which got larger. 6210 * |-----L-----| 6211 * |-8-| 6212 * Nothing follows after 8. 6213 */ 6214 6215 key.objectid = ekey->objectid; 6216 key.type = BTRFS_EXTENT_DATA_KEY; 6217 key.offset = ekey->offset; 6218 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6219 if (ret < 0) 6220 goto out; 6221 if (ret) { 6222 ret = 0; 6223 goto out; 6224 } 6225 6226 /* 6227 * Handle special case where the right side has no extents at all. 6228 */ 6229 eb = path->nodes[0]; 6230 slot = path->slots[0]; 6231 btrfs_item_key_to_cpu(eb, &found_key, slot); 6232 if (found_key.objectid != key.objectid || 6233 found_key.type != key.type) { 6234 /* If we're a hole then just pretend nothing changed */ 6235 ret = (left_disknr) ? 0 : 1; 6236 goto out; 6237 } 6238 6239 /* 6240 * We're now on 2a, 2b or 7. 6241 */ 6242 key = found_key; 6243 while (key.offset < ekey->offset + left_len) { 6244 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6245 right_type = btrfs_file_extent_type(eb, ei); 6246 if (right_type != BTRFS_FILE_EXTENT_REG && 6247 right_type != BTRFS_FILE_EXTENT_INLINE) { 6248 ret = 0; 6249 goto out; 6250 } 6251 6252 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6253 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6254 right_len = PAGE_ALIGN(right_len); 6255 } else { 6256 right_len = btrfs_file_extent_num_bytes(eb, ei); 6257 } 6258 6259 /* 6260 * Are we at extent 8? If yes, we know the extent is changed. 6261 * This may only happen on the first iteration. 6262 */ 6263 if (found_key.offset + right_len <= ekey->offset) { 6264 /* If we're a hole just pretend nothing changed */ 6265 ret = (left_disknr) ? 0 : 1; 6266 goto out; 6267 } 6268 6269 /* 6270 * We just wanted to see if when we have an inline extent, what 6271 * follows it is a regular extent (wanted to check the above 6272 * condition for inline extents too). This should normally not 6273 * happen but it's possible for example when we have an inline 6274 * compressed extent representing data with a size matching 6275 * the page size (currently the same as sector size). 6276 */ 6277 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6278 ret = 0; 6279 goto out; 6280 } 6281 6282 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6283 right_offset = btrfs_file_extent_offset(eb, ei); 6284 right_gen = btrfs_file_extent_generation(eb, ei); 6285 6286 left_offset_fixed = left_offset; 6287 if (key.offset < ekey->offset) { 6288 /* Fix the right offset for 2a and 7. */ 6289 right_offset += ekey->offset - key.offset; 6290 } else { 6291 /* Fix the left offset for all behind 2a and 2b */ 6292 left_offset_fixed += key.offset - ekey->offset; 6293 } 6294 6295 /* 6296 * Check if we have the same extent. 6297 */ 6298 if (left_disknr != right_disknr || 6299 left_offset_fixed != right_offset || 6300 left_gen != right_gen) { 6301 ret = 0; 6302 goto out; 6303 } 6304 6305 /* 6306 * Go to the next extent. 6307 */ 6308 ret = btrfs_next_item(sctx->parent_root, path); 6309 if (ret < 0) 6310 goto out; 6311 if (!ret) { 6312 eb = path->nodes[0]; 6313 slot = path->slots[0]; 6314 btrfs_item_key_to_cpu(eb, &found_key, slot); 6315 } 6316 if (ret || found_key.objectid != key.objectid || 6317 found_key.type != key.type) { 6318 key.offset += right_len; 6319 break; 6320 } 6321 if (found_key.offset != key.offset + right_len) { 6322 ret = 0; 6323 goto out; 6324 } 6325 key = found_key; 6326 } 6327 6328 /* 6329 * We're now behind the left extent (treat as unchanged) or at the end 6330 * of the right side (treat as changed). 6331 */ 6332 if (key.offset >= ekey->offset + left_len) 6333 ret = 1; 6334 else 6335 ret = 0; 6336 6337 6338 out: 6339 btrfs_free_path(path); 6340 return ret; 6341 } 6342 6343 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6344 { 6345 struct btrfs_path *path; 6346 struct btrfs_root *root = sctx->send_root; 6347 struct btrfs_key key; 6348 int ret; 6349 6350 path = alloc_path_for_send(); 6351 if (!path) 6352 return -ENOMEM; 6353 6354 sctx->cur_inode_last_extent = 0; 6355 6356 key.objectid = sctx->cur_ino; 6357 key.type = BTRFS_EXTENT_DATA_KEY; 6358 key.offset = offset; 6359 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6360 if (ret < 0) 6361 goto out; 6362 ret = 0; 6363 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6364 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6365 goto out; 6366 6367 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6368 out: 6369 btrfs_free_path(path); 6370 return ret; 6371 } 6372 6373 static int range_is_hole_in_parent(struct send_ctx *sctx, 6374 const u64 start, 6375 const u64 end) 6376 { 6377 struct btrfs_path *path; 6378 struct btrfs_key key; 6379 struct btrfs_root *root = sctx->parent_root; 6380 u64 search_start = start; 6381 int ret; 6382 6383 path = alloc_path_for_send(); 6384 if (!path) 6385 return -ENOMEM; 6386 6387 key.objectid = sctx->cur_ino; 6388 key.type = BTRFS_EXTENT_DATA_KEY; 6389 key.offset = search_start; 6390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6391 if (ret < 0) 6392 goto out; 6393 if (ret > 0 && path->slots[0] > 0) 6394 path->slots[0]--; 6395 6396 while (search_start < end) { 6397 struct extent_buffer *leaf = path->nodes[0]; 6398 int slot = path->slots[0]; 6399 struct btrfs_file_extent_item *fi; 6400 u64 extent_end; 6401 6402 if (slot >= btrfs_header_nritems(leaf)) { 6403 ret = btrfs_next_leaf(root, path); 6404 if (ret < 0) 6405 goto out; 6406 else if (ret > 0) 6407 break; 6408 continue; 6409 } 6410 6411 btrfs_item_key_to_cpu(leaf, &key, slot); 6412 if (key.objectid < sctx->cur_ino || 6413 key.type < BTRFS_EXTENT_DATA_KEY) 6414 goto next; 6415 if (key.objectid > sctx->cur_ino || 6416 key.type > BTRFS_EXTENT_DATA_KEY || 6417 key.offset >= end) 6418 break; 6419 6420 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6421 extent_end = btrfs_file_extent_end(path); 6422 if (extent_end <= start) 6423 goto next; 6424 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6425 search_start = extent_end; 6426 goto next; 6427 } 6428 ret = 0; 6429 goto out; 6430 next: 6431 path->slots[0]++; 6432 } 6433 ret = 1; 6434 out: 6435 btrfs_free_path(path); 6436 return ret; 6437 } 6438 6439 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6440 struct btrfs_key *key) 6441 { 6442 int ret = 0; 6443 6444 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6445 return 0; 6446 6447 if (sctx->cur_inode_last_extent == (u64)-1) { 6448 ret = get_last_extent(sctx, key->offset - 1); 6449 if (ret) 6450 return ret; 6451 } 6452 6453 if (path->slots[0] == 0 && 6454 sctx->cur_inode_last_extent < key->offset) { 6455 /* 6456 * We might have skipped entire leafs that contained only 6457 * file extent items for our current inode. These leafs have 6458 * a generation number smaller (older) than the one in the 6459 * current leaf and the leaf our last extent came from, and 6460 * are located between these 2 leafs. 6461 */ 6462 ret = get_last_extent(sctx, key->offset - 1); 6463 if (ret) 6464 return ret; 6465 } 6466 6467 if (sctx->cur_inode_last_extent < key->offset) { 6468 ret = range_is_hole_in_parent(sctx, 6469 sctx->cur_inode_last_extent, 6470 key->offset); 6471 if (ret < 0) 6472 return ret; 6473 else if (ret == 0) 6474 ret = send_hole(sctx, key->offset); 6475 else 6476 ret = 0; 6477 } 6478 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6479 return ret; 6480 } 6481 6482 static int process_extent(struct send_ctx *sctx, 6483 struct btrfs_path *path, 6484 struct btrfs_key *key) 6485 { 6486 struct clone_root *found_clone = NULL; 6487 int ret = 0; 6488 6489 if (S_ISLNK(sctx->cur_inode_mode)) 6490 return 0; 6491 6492 if (sctx->parent_root && !sctx->cur_inode_new) { 6493 ret = is_extent_unchanged(sctx, path, key); 6494 if (ret < 0) 6495 goto out; 6496 if (ret) { 6497 ret = 0; 6498 goto out_hole; 6499 } 6500 } else { 6501 struct btrfs_file_extent_item *ei; 6502 u8 type; 6503 6504 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6505 struct btrfs_file_extent_item); 6506 type = btrfs_file_extent_type(path->nodes[0], ei); 6507 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6508 type == BTRFS_FILE_EXTENT_REG) { 6509 /* 6510 * The send spec does not have a prealloc command yet, 6511 * so just leave a hole for prealloc'ed extents until 6512 * we have enough commands queued up to justify rev'ing 6513 * the send spec. 6514 */ 6515 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6516 ret = 0; 6517 goto out; 6518 } 6519 6520 /* Have a hole, just skip it. */ 6521 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6522 ret = 0; 6523 goto out; 6524 } 6525 } 6526 } 6527 6528 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6529 sctx->cur_inode_size, &found_clone); 6530 if (ret != -ENOENT && ret < 0) 6531 goto out; 6532 6533 ret = send_write_or_clone(sctx, path, key, found_clone); 6534 if (ret) 6535 goto out; 6536 out_hole: 6537 ret = maybe_send_hole(sctx, path, key); 6538 out: 6539 return ret; 6540 } 6541 6542 static int process_all_extents(struct send_ctx *sctx) 6543 { 6544 int ret = 0; 6545 int iter_ret = 0; 6546 struct btrfs_root *root; 6547 struct btrfs_path *path; 6548 struct btrfs_key key; 6549 struct btrfs_key found_key; 6550 6551 root = sctx->send_root; 6552 path = alloc_path_for_send(); 6553 if (!path) 6554 return -ENOMEM; 6555 6556 key.objectid = sctx->cmp_key->objectid; 6557 key.type = BTRFS_EXTENT_DATA_KEY; 6558 key.offset = 0; 6559 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6560 if (found_key.objectid != key.objectid || 6561 found_key.type != key.type) { 6562 ret = 0; 6563 break; 6564 } 6565 6566 ret = process_extent(sctx, path, &found_key); 6567 if (ret < 0) 6568 break; 6569 } 6570 /* Catch error found during iteration */ 6571 if (iter_ret < 0) 6572 ret = iter_ret; 6573 6574 btrfs_free_path(path); 6575 return ret; 6576 } 6577 6578 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6579 int *pending_move, 6580 int *refs_processed) 6581 { 6582 int ret = 0; 6583 6584 if (sctx->cur_ino == 0) 6585 goto out; 6586 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6587 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6588 goto out; 6589 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6590 goto out; 6591 6592 ret = process_recorded_refs(sctx, pending_move); 6593 if (ret < 0) 6594 goto out; 6595 6596 *refs_processed = 1; 6597 out: 6598 return ret; 6599 } 6600 6601 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6602 { 6603 int ret = 0; 6604 struct btrfs_inode_info info; 6605 u64 left_mode; 6606 u64 left_uid; 6607 u64 left_gid; 6608 u64 left_fileattr; 6609 u64 right_mode; 6610 u64 right_uid; 6611 u64 right_gid; 6612 u64 right_fileattr; 6613 int need_chmod = 0; 6614 int need_chown = 0; 6615 bool need_fileattr = false; 6616 int need_truncate = 1; 6617 int pending_move = 0; 6618 int refs_processed = 0; 6619 6620 if (sctx->ignore_cur_inode) 6621 return 0; 6622 6623 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6624 &refs_processed); 6625 if (ret < 0) 6626 goto out; 6627 6628 /* 6629 * We have processed the refs and thus need to advance send_progress. 6630 * Now, calls to get_cur_xxx will take the updated refs of the current 6631 * inode into account. 6632 * 6633 * On the other hand, if our current inode is a directory and couldn't 6634 * be moved/renamed because its parent was renamed/moved too and it has 6635 * a higher inode number, we can only move/rename our current inode 6636 * after we moved/renamed its parent. Therefore in this case operate on 6637 * the old path (pre move/rename) of our current inode, and the 6638 * move/rename will be performed later. 6639 */ 6640 if (refs_processed && !pending_move) 6641 sctx->send_progress = sctx->cur_ino + 1; 6642 6643 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6644 goto out; 6645 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6646 goto out; 6647 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6648 if (ret < 0) 6649 goto out; 6650 left_mode = info.mode; 6651 left_uid = info.uid; 6652 left_gid = info.gid; 6653 left_fileattr = info.fileattr; 6654 6655 if (!sctx->parent_root || sctx->cur_inode_new) { 6656 need_chown = 1; 6657 if (!S_ISLNK(sctx->cur_inode_mode)) 6658 need_chmod = 1; 6659 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6660 need_truncate = 0; 6661 } else { 6662 u64 old_size; 6663 6664 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6665 if (ret < 0) 6666 goto out; 6667 old_size = info.size; 6668 right_mode = info.mode; 6669 right_uid = info.uid; 6670 right_gid = info.gid; 6671 right_fileattr = info.fileattr; 6672 6673 if (left_uid != right_uid || left_gid != right_gid) 6674 need_chown = 1; 6675 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6676 need_chmod = 1; 6677 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6678 need_fileattr = true; 6679 if ((old_size == sctx->cur_inode_size) || 6680 (sctx->cur_inode_size > old_size && 6681 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6682 need_truncate = 0; 6683 } 6684 6685 if (S_ISREG(sctx->cur_inode_mode)) { 6686 if (need_send_hole(sctx)) { 6687 if (sctx->cur_inode_last_extent == (u64)-1 || 6688 sctx->cur_inode_last_extent < 6689 sctx->cur_inode_size) { 6690 ret = get_last_extent(sctx, (u64)-1); 6691 if (ret) 6692 goto out; 6693 } 6694 if (sctx->cur_inode_last_extent < 6695 sctx->cur_inode_size) { 6696 ret = send_hole(sctx, sctx->cur_inode_size); 6697 if (ret) 6698 goto out; 6699 } 6700 } 6701 if (need_truncate) { 6702 ret = send_truncate(sctx, sctx->cur_ino, 6703 sctx->cur_inode_gen, 6704 sctx->cur_inode_size); 6705 if (ret < 0) 6706 goto out; 6707 } 6708 } 6709 6710 if (need_chown) { 6711 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6712 left_uid, left_gid); 6713 if (ret < 0) 6714 goto out; 6715 } 6716 if (need_chmod) { 6717 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6718 left_mode); 6719 if (ret < 0) 6720 goto out; 6721 } 6722 if (need_fileattr) { 6723 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6724 left_fileattr); 6725 if (ret < 0) 6726 goto out; 6727 } 6728 6729 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6730 && sctx->cur_inode_needs_verity) { 6731 ret = process_verity(sctx); 6732 if (ret < 0) 6733 goto out; 6734 } 6735 6736 ret = send_capabilities(sctx); 6737 if (ret < 0) 6738 goto out; 6739 6740 /* 6741 * If other directory inodes depended on our current directory 6742 * inode's move/rename, now do their move/rename operations. 6743 */ 6744 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6745 ret = apply_children_dir_moves(sctx); 6746 if (ret) 6747 goto out; 6748 /* 6749 * Need to send that every time, no matter if it actually 6750 * changed between the two trees as we have done changes to 6751 * the inode before. If our inode is a directory and it's 6752 * waiting to be moved/renamed, we will send its utimes when 6753 * it's moved/renamed, therefore we don't need to do it here. 6754 */ 6755 sctx->send_progress = sctx->cur_ino + 1; 6756 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6757 if (ret < 0) 6758 goto out; 6759 } 6760 6761 out: 6762 return ret; 6763 } 6764 6765 static void close_current_inode(struct send_ctx *sctx) 6766 { 6767 u64 i_size; 6768 6769 if (sctx->cur_inode == NULL) 6770 return; 6771 6772 i_size = i_size_read(sctx->cur_inode); 6773 6774 /* 6775 * If we are doing an incremental send, we may have extents between the 6776 * last processed extent and the i_size that have not been processed 6777 * because they haven't changed but we may have read some of their pages 6778 * through readahead, see the comments at send_extent_data(). 6779 */ 6780 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6781 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6782 sctx->page_cache_clear_start, 6783 round_up(i_size, PAGE_SIZE) - 1); 6784 6785 iput(sctx->cur_inode); 6786 sctx->cur_inode = NULL; 6787 } 6788 6789 static int changed_inode(struct send_ctx *sctx, 6790 enum btrfs_compare_tree_result result) 6791 { 6792 int ret = 0; 6793 struct btrfs_key *key = sctx->cmp_key; 6794 struct btrfs_inode_item *left_ii = NULL; 6795 struct btrfs_inode_item *right_ii = NULL; 6796 u64 left_gen = 0; 6797 u64 right_gen = 0; 6798 6799 close_current_inode(sctx); 6800 6801 sctx->cur_ino = key->objectid; 6802 sctx->cur_inode_new_gen = false; 6803 sctx->cur_inode_last_extent = (u64)-1; 6804 sctx->cur_inode_next_write_offset = 0; 6805 sctx->ignore_cur_inode = false; 6806 6807 /* 6808 * Set send_progress to current inode. This will tell all get_cur_xxx 6809 * functions that the current inode's refs are not updated yet. Later, 6810 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6811 */ 6812 sctx->send_progress = sctx->cur_ino; 6813 6814 if (result == BTRFS_COMPARE_TREE_NEW || 6815 result == BTRFS_COMPARE_TREE_CHANGED) { 6816 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6817 sctx->left_path->slots[0], 6818 struct btrfs_inode_item); 6819 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6820 left_ii); 6821 } else { 6822 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6823 sctx->right_path->slots[0], 6824 struct btrfs_inode_item); 6825 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6826 right_ii); 6827 } 6828 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6829 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6830 sctx->right_path->slots[0], 6831 struct btrfs_inode_item); 6832 6833 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6834 right_ii); 6835 6836 /* 6837 * The cur_ino = root dir case is special here. We can't treat 6838 * the inode as deleted+reused because it would generate a 6839 * stream that tries to delete/mkdir the root dir. 6840 */ 6841 if (left_gen != right_gen && 6842 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6843 sctx->cur_inode_new_gen = true; 6844 } 6845 6846 /* 6847 * Normally we do not find inodes with a link count of zero (orphans) 6848 * because the most common case is to create a snapshot and use it 6849 * for a send operation. However other less common use cases involve 6850 * using a subvolume and send it after turning it to RO mode just 6851 * after deleting all hard links of a file while holding an open 6852 * file descriptor against it or turning a RO snapshot into RW mode, 6853 * keep an open file descriptor against a file, delete it and then 6854 * turn the snapshot back to RO mode before using it for a send 6855 * operation. The former is what the receiver operation does. 6856 * Therefore, if we want to send these snapshots soon after they're 6857 * received, we need to handle orphan inodes as well. Moreover, orphans 6858 * can appear not only in the send snapshot but also in the parent 6859 * snapshot. Here are several cases: 6860 * 6861 * Case 1: BTRFS_COMPARE_TREE_NEW 6862 * | send snapshot | action 6863 * -------------------------------- 6864 * nlink | 0 | ignore 6865 * 6866 * Case 2: BTRFS_COMPARE_TREE_DELETED 6867 * | parent snapshot | action 6868 * ---------------------------------- 6869 * nlink | 0 | as usual 6870 * Note: No unlinks will be sent because there're no paths for it. 6871 * 6872 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6873 * | | parent snapshot | send snapshot | action 6874 * ----------------------------------------------------------------------- 6875 * subcase 1 | nlink | 0 | 0 | ignore 6876 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6877 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6878 * 6879 */ 6880 if (result == BTRFS_COMPARE_TREE_NEW) { 6881 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6882 sctx->ignore_cur_inode = true; 6883 goto out; 6884 } 6885 sctx->cur_inode_gen = left_gen; 6886 sctx->cur_inode_new = true; 6887 sctx->cur_inode_deleted = false; 6888 sctx->cur_inode_size = btrfs_inode_size( 6889 sctx->left_path->nodes[0], left_ii); 6890 sctx->cur_inode_mode = btrfs_inode_mode( 6891 sctx->left_path->nodes[0], left_ii); 6892 sctx->cur_inode_rdev = btrfs_inode_rdev( 6893 sctx->left_path->nodes[0], left_ii); 6894 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6895 ret = send_create_inode_if_needed(sctx); 6896 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6897 sctx->cur_inode_gen = right_gen; 6898 sctx->cur_inode_new = false; 6899 sctx->cur_inode_deleted = true; 6900 sctx->cur_inode_size = btrfs_inode_size( 6901 sctx->right_path->nodes[0], right_ii); 6902 sctx->cur_inode_mode = btrfs_inode_mode( 6903 sctx->right_path->nodes[0], right_ii); 6904 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6905 u32 new_nlinks, old_nlinks; 6906 6907 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6908 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6909 if (new_nlinks == 0 && old_nlinks == 0) { 6910 sctx->ignore_cur_inode = true; 6911 goto out; 6912 } else if (new_nlinks == 0 || old_nlinks == 0) { 6913 sctx->cur_inode_new_gen = 1; 6914 } 6915 /* 6916 * We need to do some special handling in case the inode was 6917 * reported as changed with a changed generation number. This 6918 * means that the original inode was deleted and new inode 6919 * reused the same inum. So we have to treat the old inode as 6920 * deleted and the new one as new. 6921 */ 6922 if (sctx->cur_inode_new_gen) { 6923 /* 6924 * First, process the inode as if it was deleted. 6925 */ 6926 if (old_nlinks > 0) { 6927 sctx->cur_inode_gen = right_gen; 6928 sctx->cur_inode_new = false; 6929 sctx->cur_inode_deleted = true; 6930 sctx->cur_inode_size = btrfs_inode_size( 6931 sctx->right_path->nodes[0], right_ii); 6932 sctx->cur_inode_mode = btrfs_inode_mode( 6933 sctx->right_path->nodes[0], right_ii); 6934 ret = process_all_refs(sctx, 6935 BTRFS_COMPARE_TREE_DELETED); 6936 if (ret < 0) 6937 goto out; 6938 } 6939 6940 /* 6941 * Now process the inode as if it was new. 6942 */ 6943 if (new_nlinks > 0) { 6944 sctx->cur_inode_gen = left_gen; 6945 sctx->cur_inode_new = true; 6946 sctx->cur_inode_deleted = false; 6947 sctx->cur_inode_size = btrfs_inode_size( 6948 sctx->left_path->nodes[0], 6949 left_ii); 6950 sctx->cur_inode_mode = btrfs_inode_mode( 6951 sctx->left_path->nodes[0], 6952 left_ii); 6953 sctx->cur_inode_rdev = btrfs_inode_rdev( 6954 sctx->left_path->nodes[0], 6955 left_ii); 6956 ret = send_create_inode_if_needed(sctx); 6957 if (ret < 0) 6958 goto out; 6959 6960 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6961 if (ret < 0) 6962 goto out; 6963 /* 6964 * Advance send_progress now as we did not get 6965 * into process_recorded_refs_if_needed in the 6966 * new_gen case. 6967 */ 6968 sctx->send_progress = sctx->cur_ino + 1; 6969 6970 /* 6971 * Now process all extents and xattrs of the 6972 * inode as if they were all new. 6973 */ 6974 ret = process_all_extents(sctx); 6975 if (ret < 0) 6976 goto out; 6977 ret = process_all_new_xattrs(sctx); 6978 if (ret < 0) 6979 goto out; 6980 } 6981 } else { 6982 sctx->cur_inode_gen = left_gen; 6983 sctx->cur_inode_new = false; 6984 sctx->cur_inode_new_gen = false; 6985 sctx->cur_inode_deleted = false; 6986 sctx->cur_inode_size = btrfs_inode_size( 6987 sctx->left_path->nodes[0], left_ii); 6988 sctx->cur_inode_mode = btrfs_inode_mode( 6989 sctx->left_path->nodes[0], left_ii); 6990 } 6991 } 6992 6993 out: 6994 return ret; 6995 } 6996 6997 /* 6998 * We have to process new refs before deleted refs, but compare_trees gives us 6999 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7000 * first and later process them in process_recorded_refs. 7001 * For the cur_inode_new_gen case, we skip recording completely because 7002 * changed_inode did already initiate processing of refs. The reason for this is 7003 * that in this case, compare_tree actually compares the refs of 2 different 7004 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7005 * refs of the right tree as deleted and all refs of the left tree as new. 7006 */ 7007 static int changed_ref(struct send_ctx *sctx, 7008 enum btrfs_compare_tree_result result) 7009 { 7010 int ret = 0; 7011 7012 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7013 inconsistent_snapshot_error(sctx, result, "reference"); 7014 return -EIO; 7015 } 7016 7017 if (!sctx->cur_inode_new_gen && 7018 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7019 if (result == BTRFS_COMPARE_TREE_NEW) 7020 ret = record_new_ref(sctx); 7021 else if (result == BTRFS_COMPARE_TREE_DELETED) 7022 ret = record_deleted_ref(sctx); 7023 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7024 ret = record_changed_ref(sctx); 7025 } 7026 7027 return ret; 7028 } 7029 7030 /* 7031 * Process new/deleted/changed xattrs. We skip processing in the 7032 * cur_inode_new_gen case because changed_inode did already initiate processing 7033 * of xattrs. The reason is the same as in changed_ref 7034 */ 7035 static int changed_xattr(struct send_ctx *sctx, 7036 enum btrfs_compare_tree_result result) 7037 { 7038 int ret = 0; 7039 7040 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7041 inconsistent_snapshot_error(sctx, result, "xattr"); 7042 return -EIO; 7043 } 7044 7045 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7046 if (result == BTRFS_COMPARE_TREE_NEW) 7047 ret = process_new_xattr(sctx); 7048 else if (result == BTRFS_COMPARE_TREE_DELETED) 7049 ret = process_deleted_xattr(sctx); 7050 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7051 ret = process_changed_xattr(sctx); 7052 } 7053 7054 return ret; 7055 } 7056 7057 /* 7058 * Process new/deleted/changed extents. We skip processing in the 7059 * cur_inode_new_gen case because changed_inode did already initiate processing 7060 * of extents. The reason is the same as in changed_ref 7061 */ 7062 static int changed_extent(struct send_ctx *sctx, 7063 enum btrfs_compare_tree_result result) 7064 { 7065 int ret = 0; 7066 7067 /* 7068 * We have found an extent item that changed without the inode item 7069 * having changed. This can happen either after relocation (where the 7070 * disk_bytenr of an extent item is replaced at 7071 * relocation.c:replace_file_extents()) or after deduplication into a 7072 * file in both the parent and send snapshots (where an extent item can 7073 * get modified or replaced with a new one). Note that deduplication 7074 * updates the inode item, but it only changes the iversion (sequence 7075 * field in the inode item) of the inode, so if a file is deduplicated 7076 * the same amount of times in both the parent and send snapshots, its 7077 * iversion becomes the same in both snapshots, whence the inode item is 7078 * the same on both snapshots. 7079 */ 7080 if (sctx->cur_ino != sctx->cmp_key->objectid) 7081 return 0; 7082 7083 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7084 if (result != BTRFS_COMPARE_TREE_DELETED) 7085 ret = process_extent(sctx, sctx->left_path, 7086 sctx->cmp_key); 7087 } 7088 7089 return ret; 7090 } 7091 7092 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7093 { 7094 int ret = 0; 7095 7096 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7097 if (result == BTRFS_COMPARE_TREE_NEW) 7098 sctx->cur_inode_needs_verity = true; 7099 } 7100 return ret; 7101 } 7102 7103 static int dir_changed(struct send_ctx *sctx, u64 dir) 7104 { 7105 u64 orig_gen, new_gen; 7106 int ret; 7107 7108 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7109 if (ret) 7110 return ret; 7111 7112 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7113 if (ret) 7114 return ret; 7115 7116 return (orig_gen != new_gen) ? 1 : 0; 7117 } 7118 7119 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7120 struct btrfs_key *key) 7121 { 7122 struct btrfs_inode_extref *extref; 7123 struct extent_buffer *leaf; 7124 u64 dirid = 0, last_dirid = 0; 7125 unsigned long ptr; 7126 u32 item_size; 7127 u32 cur_offset = 0; 7128 int ref_name_len; 7129 int ret = 0; 7130 7131 /* Easy case, just check this one dirid */ 7132 if (key->type == BTRFS_INODE_REF_KEY) { 7133 dirid = key->offset; 7134 7135 ret = dir_changed(sctx, dirid); 7136 goto out; 7137 } 7138 7139 leaf = path->nodes[0]; 7140 item_size = btrfs_item_size(leaf, path->slots[0]); 7141 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7142 while (cur_offset < item_size) { 7143 extref = (struct btrfs_inode_extref *)(ptr + 7144 cur_offset); 7145 dirid = btrfs_inode_extref_parent(leaf, extref); 7146 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7147 cur_offset += ref_name_len + sizeof(*extref); 7148 if (dirid == last_dirid) 7149 continue; 7150 ret = dir_changed(sctx, dirid); 7151 if (ret) 7152 break; 7153 last_dirid = dirid; 7154 } 7155 out: 7156 return ret; 7157 } 7158 7159 /* 7160 * Updates compare related fields in sctx and simply forwards to the actual 7161 * changed_xxx functions. 7162 */ 7163 static int changed_cb(struct btrfs_path *left_path, 7164 struct btrfs_path *right_path, 7165 struct btrfs_key *key, 7166 enum btrfs_compare_tree_result result, 7167 struct send_ctx *sctx) 7168 { 7169 int ret = 0; 7170 7171 /* 7172 * We can not hold the commit root semaphore here. This is because in 7173 * the case of sending and receiving to the same filesystem, using a 7174 * pipe, could result in a deadlock: 7175 * 7176 * 1) The task running send blocks on the pipe because it's full; 7177 * 7178 * 2) The task running receive, which is the only consumer of the pipe, 7179 * is waiting for a transaction commit (for example due to a space 7180 * reservation when doing a write or triggering a transaction commit 7181 * when creating a subvolume); 7182 * 7183 * 3) The transaction is waiting to write lock the commit root semaphore, 7184 * but can not acquire it since it's being held at 1). 7185 * 7186 * Down this call chain we write to the pipe through kernel_write(). 7187 * The same type of problem can also happen when sending to a file that 7188 * is stored in the same filesystem - when reserving space for a write 7189 * into the file, we can trigger a transaction commit. 7190 * 7191 * Our caller has supplied us with clones of leaves from the send and 7192 * parent roots, so we're safe here from a concurrent relocation and 7193 * further reallocation of metadata extents while we are here. Below we 7194 * also assert that the leaves are clones. 7195 */ 7196 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7197 7198 /* 7199 * We always have a send root, so left_path is never NULL. We will not 7200 * have a leaf when we have reached the end of the send root but have 7201 * not yet reached the end of the parent root. 7202 */ 7203 if (left_path->nodes[0]) 7204 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7205 &left_path->nodes[0]->bflags)); 7206 /* 7207 * When doing a full send we don't have a parent root, so right_path is 7208 * NULL. When doing an incremental send, we may have reached the end of 7209 * the parent root already, so we don't have a leaf at right_path. 7210 */ 7211 if (right_path && right_path->nodes[0]) 7212 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7213 &right_path->nodes[0]->bflags)); 7214 7215 if (result == BTRFS_COMPARE_TREE_SAME) { 7216 if (key->type == BTRFS_INODE_REF_KEY || 7217 key->type == BTRFS_INODE_EXTREF_KEY) { 7218 ret = compare_refs(sctx, left_path, key); 7219 if (!ret) 7220 return 0; 7221 if (ret < 0) 7222 return ret; 7223 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7224 return maybe_send_hole(sctx, left_path, key); 7225 } else { 7226 return 0; 7227 } 7228 result = BTRFS_COMPARE_TREE_CHANGED; 7229 ret = 0; 7230 } 7231 7232 sctx->left_path = left_path; 7233 sctx->right_path = right_path; 7234 sctx->cmp_key = key; 7235 7236 ret = finish_inode_if_needed(sctx, 0); 7237 if (ret < 0) 7238 goto out; 7239 7240 /* Ignore non-FS objects */ 7241 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7242 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7243 goto out; 7244 7245 if (key->type == BTRFS_INODE_ITEM_KEY) { 7246 ret = changed_inode(sctx, result); 7247 } else if (!sctx->ignore_cur_inode) { 7248 if (key->type == BTRFS_INODE_REF_KEY || 7249 key->type == BTRFS_INODE_EXTREF_KEY) 7250 ret = changed_ref(sctx, result); 7251 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7252 ret = changed_xattr(sctx, result); 7253 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7254 ret = changed_extent(sctx, result); 7255 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7256 key->offset == 0) 7257 ret = changed_verity(sctx, result); 7258 } 7259 7260 out: 7261 return ret; 7262 } 7263 7264 static int search_key_again(const struct send_ctx *sctx, 7265 struct btrfs_root *root, 7266 struct btrfs_path *path, 7267 const struct btrfs_key *key) 7268 { 7269 int ret; 7270 7271 if (!path->need_commit_sem) 7272 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7273 7274 /* 7275 * Roots used for send operations are readonly and no one can add, 7276 * update or remove keys from them, so we should be able to find our 7277 * key again. The only exception is deduplication, which can operate on 7278 * readonly roots and add, update or remove keys to/from them - but at 7279 * the moment we don't allow it to run in parallel with send. 7280 */ 7281 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7282 ASSERT(ret <= 0); 7283 if (ret > 0) { 7284 btrfs_print_tree(path->nodes[path->lowest_level], false); 7285 btrfs_err(root->fs_info, 7286 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7287 key->objectid, key->type, key->offset, 7288 (root == sctx->parent_root ? "parent" : "send"), 7289 root->root_key.objectid, path->lowest_level, 7290 path->slots[path->lowest_level]); 7291 return -EUCLEAN; 7292 } 7293 7294 return ret; 7295 } 7296 7297 static int full_send_tree(struct send_ctx *sctx) 7298 { 7299 int ret; 7300 struct btrfs_root *send_root = sctx->send_root; 7301 struct btrfs_key key; 7302 struct btrfs_fs_info *fs_info = send_root->fs_info; 7303 struct btrfs_path *path; 7304 7305 path = alloc_path_for_send(); 7306 if (!path) 7307 return -ENOMEM; 7308 path->reada = READA_FORWARD_ALWAYS; 7309 7310 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7311 key.type = BTRFS_INODE_ITEM_KEY; 7312 key.offset = 0; 7313 7314 down_read(&fs_info->commit_root_sem); 7315 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7316 up_read(&fs_info->commit_root_sem); 7317 7318 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7319 if (ret < 0) 7320 goto out; 7321 if (ret) 7322 goto out_finish; 7323 7324 while (1) { 7325 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7326 7327 ret = changed_cb(path, NULL, &key, 7328 BTRFS_COMPARE_TREE_NEW, sctx); 7329 if (ret < 0) 7330 goto out; 7331 7332 down_read(&fs_info->commit_root_sem); 7333 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7334 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7335 up_read(&fs_info->commit_root_sem); 7336 /* 7337 * A transaction used for relocating a block group was 7338 * committed or is about to finish its commit. Release 7339 * our path (leaf) and restart the search, so that we 7340 * avoid operating on any file extent items that are 7341 * stale, with a disk_bytenr that reflects a pre 7342 * relocation value. This way we avoid as much as 7343 * possible to fallback to regular writes when checking 7344 * if we can clone file ranges. 7345 */ 7346 btrfs_release_path(path); 7347 ret = search_key_again(sctx, send_root, path, &key); 7348 if (ret < 0) 7349 goto out; 7350 } else { 7351 up_read(&fs_info->commit_root_sem); 7352 } 7353 7354 ret = btrfs_next_item(send_root, path); 7355 if (ret < 0) 7356 goto out; 7357 if (ret) { 7358 ret = 0; 7359 break; 7360 } 7361 } 7362 7363 out_finish: 7364 ret = finish_inode_if_needed(sctx, 1); 7365 7366 out: 7367 btrfs_free_path(path); 7368 return ret; 7369 } 7370 7371 static int replace_node_with_clone(struct btrfs_path *path, int level) 7372 { 7373 struct extent_buffer *clone; 7374 7375 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7376 if (!clone) 7377 return -ENOMEM; 7378 7379 free_extent_buffer(path->nodes[level]); 7380 path->nodes[level] = clone; 7381 7382 return 0; 7383 } 7384 7385 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7386 { 7387 struct extent_buffer *eb; 7388 struct extent_buffer *parent = path->nodes[*level]; 7389 int slot = path->slots[*level]; 7390 const int nritems = btrfs_header_nritems(parent); 7391 u64 reada_max; 7392 u64 reada_done = 0; 7393 7394 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7395 7396 BUG_ON(*level == 0); 7397 eb = btrfs_read_node_slot(parent, slot); 7398 if (IS_ERR(eb)) 7399 return PTR_ERR(eb); 7400 7401 /* 7402 * Trigger readahead for the next leaves we will process, so that it is 7403 * very likely that when we need them they are already in memory and we 7404 * will not block on disk IO. For nodes we only do readahead for one, 7405 * since the time window between processing nodes is typically larger. 7406 */ 7407 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7408 7409 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7410 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7411 btrfs_readahead_node_child(parent, slot); 7412 reada_done += eb->fs_info->nodesize; 7413 } 7414 } 7415 7416 path->nodes[*level - 1] = eb; 7417 path->slots[*level - 1] = 0; 7418 (*level)--; 7419 7420 if (*level == 0) 7421 return replace_node_with_clone(path, 0); 7422 7423 return 0; 7424 } 7425 7426 static int tree_move_next_or_upnext(struct btrfs_path *path, 7427 int *level, int root_level) 7428 { 7429 int ret = 0; 7430 int nritems; 7431 nritems = btrfs_header_nritems(path->nodes[*level]); 7432 7433 path->slots[*level]++; 7434 7435 while (path->slots[*level] >= nritems) { 7436 if (*level == root_level) { 7437 path->slots[*level] = nritems - 1; 7438 return -1; 7439 } 7440 7441 /* move upnext */ 7442 path->slots[*level] = 0; 7443 free_extent_buffer(path->nodes[*level]); 7444 path->nodes[*level] = NULL; 7445 (*level)++; 7446 path->slots[*level]++; 7447 7448 nritems = btrfs_header_nritems(path->nodes[*level]); 7449 ret = 1; 7450 } 7451 return ret; 7452 } 7453 7454 /* 7455 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7456 * or down. 7457 */ 7458 static int tree_advance(struct btrfs_path *path, 7459 int *level, int root_level, 7460 int allow_down, 7461 struct btrfs_key *key, 7462 u64 reada_min_gen) 7463 { 7464 int ret; 7465 7466 if (*level == 0 || !allow_down) { 7467 ret = tree_move_next_or_upnext(path, level, root_level); 7468 } else { 7469 ret = tree_move_down(path, level, reada_min_gen); 7470 } 7471 7472 /* 7473 * Even if we have reached the end of a tree, ret is -1, update the key 7474 * anyway, so that in case we need to restart due to a block group 7475 * relocation, we can assert that the last key of the root node still 7476 * exists in the tree. 7477 */ 7478 if (*level == 0) 7479 btrfs_item_key_to_cpu(path->nodes[*level], key, 7480 path->slots[*level]); 7481 else 7482 btrfs_node_key_to_cpu(path->nodes[*level], key, 7483 path->slots[*level]); 7484 7485 return ret; 7486 } 7487 7488 static int tree_compare_item(struct btrfs_path *left_path, 7489 struct btrfs_path *right_path, 7490 char *tmp_buf) 7491 { 7492 int cmp; 7493 int len1, len2; 7494 unsigned long off1, off2; 7495 7496 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7497 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7498 if (len1 != len2) 7499 return 1; 7500 7501 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7502 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7503 right_path->slots[0]); 7504 7505 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7506 7507 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7508 if (cmp) 7509 return 1; 7510 return 0; 7511 } 7512 7513 /* 7514 * A transaction used for relocating a block group was committed or is about to 7515 * finish its commit. Release our paths and restart the search, so that we are 7516 * not using stale extent buffers: 7517 * 7518 * 1) For levels > 0, we are only holding references of extent buffers, without 7519 * any locks on them, which does not prevent them from having been relocated 7520 * and reallocated after the last time we released the commit root semaphore. 7521 * The exception are the root nodes, for which we always have a clone, see 7522 * the comment at btrfs_compare_trees(); 7523 * 7524 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7525 * we are safe from the concurrent relocation and reallocation. However they 7526 * can have file extent items with a pre relocation disk_bytenr value, so we 7527 * restart the start from the current commit roots and clone the new leaves so 7528 * that we get the post relocation disk_bytenr values. Not doing so, could 7529 * make us clone the wrong data in case there are new extents using the old 7530 * disk_bytenr that happen to be shared. 7531 */ 7532 static int restart_after_relocation(struct btrfs_path *left_path, 7533 struct btrfs_path *right_path, 7534 const struct btrfs_key *left_key, 7535 const struct btrfs_key *right_key, 7536 int left_level, 7537 int right_level, 7538 const struct send_ctx *sctx) 7539 { 7540 int root_level; 7541 int ret; 7542 7543 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7544 7545 btrfs_release_path(left_path); 7546 btrfs_release_path(right_path); 7547 7548 /* 7549 * Since keys can not be added or removed to/from our roots because they 7550 * are readonly and we do not allow deduplication to run in parallel 7551 * (which can add, remove or change keys), the layout of the trees should 7552 * not change. 7553 */ 7554 left_path->lowest_level = left_level; 7555 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7556 if (ret < 0) 7557 return ret; 7558 7559 right_path->lowest_level = right_level; 7560 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7561 if (ret < 0) 7562 return ret; 7563 7564 /* 7565 * If the lowest level nodes are leaves, clone them so that they can be 7566 * safely used by changed_cb() while not under the protection of the 7567 * commit root semaphore, even if relocation and reallocation happens in 7568 * parallel. 7569 */ 7570 if (left_level == 0) { 7571 ret = replace_node_with_clone(left_path, 0); 7572 if (ret < 0) 7573 return ret; 7574 } 7575 7576 if (right_level == 0) { 7577 ret = replace_node_with_clone(right_path, 0); 7578 if (ret < 0) 7579 return ret; 7580 } 7581 7582 /* 7583 * Now clone the root nodes (unless they happen to be the leaves we have 7584 * already cloned). This is to protect against concurrent snapshotting of 7585 * the send and parent roots (see the comment at btrfs_compare_trees()). 7586 */ 7587 root_level = btrfs_header_level(sctx->send_root->commit_root); 7588 if (root_level > 0) { 7589 ret = replace_node_with_clone(left_path, root_level); 7590 if (ret < 0) 7591 return ret; 7592 } 7593 7594 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7595 if (root_level > 0) { 7596 ret = replace_node_with_clone(right_path, root_level); 7597 if (ret < 0) 7598 return ret; 7599 } 7600 7601 return 0; 7602 } 7603 7604 /* 7605 * This function compares two trees and calls the provided callback for 7606 * every changed/new/deleted item it finds. 7607 * If shared tree blocks are encountered, whole subtrees are skipped, making 7608 * the compare pretty fast on snapshotted subvolumes. 7609 * 7610 * This currently works on commit roots only. As commit roots are read only, 7611 * we don't do any locking. The commit roots are protected with transactions. 7612 * Transactions are ended and rejoined when a commit is tried in between. 7613 * 7614 * This function checks for modifications done to the trees while comparing. 7615 * If it detects a change, it aborts immediately. 7616 */ 7617 static int btrfs_compare_trees(struct btrfs_root *left_root, 7618 struct btrfs_root *right_root, struct send_ctx *sctx) 7619 { 7620 struct btrfs_fs_info *fs_info = left_root->fs_info; 7621 int ret; 7622 int cmp; 7623 struct btrfs_path *left_path = NULL; 7624 struct btrfs_path *right_path = NULL; 7625 struct btrfs_key left_key; 7626 struct btrfs_key right_key; 7627 char *tmp_buf = NULL; 7628 int left_root_level; 7629 int right_root_level; 7630 int left_level; 7631 int right_level; 7632 int left_end_reached = 0; 7633 int right_end_reached = 0; 7634 int advance_left = 0; 7635 int advance_right = 0; 7636 u64 left_blockptr; 7637 u64 right_blockptr; 7638 u64 left_gen; 7639 u64 right_gen; 7640 u64 reada_min_gen; 7641 7642 left_path = btrfs_alloc_path(); 7643 if (!left_path) { 7644 ret = -ENOMEM; 7645 goto out; 7646 } 7647 right_path = btrfs_alloc_path(); 7648 if (!right_path) { 7649 ret = -ENOMEM; 7650 goto out; 7651 } 7652 7653 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7654 if (!tmp_buf) { 7655 ret = -ENOMEM; 7656 goto out; 7657 } 7658 7659 left_path->search_commit_root = 1; 7660 left_path->skip_locking = 1; 7661 right_path->search_commit_root = 1; 7662 right_path->skip_locking = 1; 7663 7664 /* 7665 * Strategy: Go to the first items of both trees. Then do 7666 * 7667 * If both trees are at level 0 7668 * Compare keys of current items 7669 * If left < right treat left item as new, advance left tree 7670 * and repeat 7671 * If left > right treat right item as deleted, advance right tree 7672 * and repeat 7673 * If left == right do deep compare of items, treat as changed if 7674 * needed, advance both trees and repeat 7675 * If both trees are at the same level but not at level 0 7676 * Compare keys of current nodes/leafs 7677 * If left < right advance left tree and repeat 7678 * If left > right advance right tree and repeat 7679 * If left == right compare blockptrs of the next nodes/leafs 7680 * If they match advance both trees but stay at the same level 7681 * and repeat 7682 * If they don't match advance both trees while allowing to go 7683 * deeper and repeat 7684 * If tree levels are different 7685 * Advance the tree that needs it and repeat 7686 * 7687 * Advancing a tree means: 7688 * If we are at level 0, try to go to the next slot. If that's not 7689 * possible, go one level up and repeat. Stop when we found a level 7690 * where we could go to the next slot. We may at this point be on a 7691 * node or a leaf. 7692 * 7693 * If we are not at level 0 and not on shared tree blocks, go one 7694 * level deeper. 7695 * 7696 * If we are not at level 0 and on shared tree blocks, go one slot to 7697 * the right if possible or go up and right. 7698 */ 7699 7700 down_read(&fs_info->commit_root_sem); 7701 left_level = btrfs_header_level(left_root->commit_root); 7702 left_root_level = left_level; 7703 /* 7704 * We clone the root node of the send and parent roots to prevent races 7705 * with snapshot creation of these roots. Snapshot creation COWs the 7706 * root node of a tree, so after the transaction is committed the old 7707 * extent can be reallocated while this send operation is still ongoing. 7708 * So we clone them, under the commit root semaphore, to be race free. 7709 */ 7710 left_path->nodes[left_level] = 7711 btrfs_clone_extent_buffer(left_root->commit_root); 7712 if (!left_path->nodes[left_level]) { 7713 ret = -ENOMEM; 7714 goto out_unlock; 7715 } 7716 7717 right_level = btrfs_header_level(right_root->commit_root); 7718 right_root_level = right_level; 7719 right_path->nodes[right_level] = 7720 btrfs_clone_extent_buffer(right_root->commit_root); 7721 if (!right_path->nodes[right_level]) { 7722 ret = -ENOMEM; 7723 goto out_unlock; 7724 } 7725 /* 7726 * Our right root is the parent root, while the left root is the "send" 7727 * root. We know that all new nodes/leaves in the left root must have 7728 * a generation greater than the right root's generation, so we trigger 7729 * readahead for those nodes and leaves of the left root, as we know we 7730 * will need to read them at some point. 7731 */ 7732 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7733 7734 if (left_level == 0) 7735 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7736 &left_key, left_path->slots[left_level]); 7737 else 7738 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7739 &left_key, left_path->slots[left_level]); 7740 if (right_level == 0) 7741 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7742 &right_key, right_path->slots[right_level]); 7743 else 7744 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7745 &right_key, right_path->slots[right_level]); 7746 7747 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7748 7749 while (1) { 7750 if (need_resched() || 7751 rwsem_is_contended(&fs_info->commit_root_sem)) { 7752 up_read(&fs_info->commit_root_sem); 7753 cond_resched(); 7754 down_read(&fs_info->commit_root_sem); 7755 } 7756 7757 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7758 ret = restart_after_relocation(left_path, right_path, 7759 &left_key, &right_key, 7760 left_level, right_level, 7761 sctx); 7762 if (ret < 0) 7763 goto out_unlock; 7764 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7765 } 7766 7767 if (advance_left && !left_end_reached) { 7768 ret = tree_advance(left_path, &left_level, 7769 left_root_level, 7770 advance_left != ADVANCE_ONLY_NEXT, 7771 &left_key, reada_min_gen); 7772 if (ret == -1) 7773 left_end_reached = ADVANCE; 7774 else if (ret < 0) 7775 goto out_unlock; 7776 advance_left = 0; 7777 } 7778 if (advance_right && !right_end_reached) { 7779 ret = tree_advance(right_path, &right_level, 7780 right_root_level, 7781 advance_right != ADVANCE_ONLY_NEXT, 7782 &right_key, reada_min_gen); 7783 if (ret == -1) 7784 right_end_reached = ADVANCE; 7785 else if (ret < 0) 7786 goto out_unlock; 7787 advance_right = 0; 7788 } 7789 7790 if (left_end_reached && right_end_reached) { 7791 ret = 0; 7792 goto out_unlock; 7793 } else if (left_end_reached) { 7794 if (right_level == 0) { 7795 up_read(&fs_info->commit_root_sem); 7796 ret = changed_cb(left_path, right_path, 7797 &right_key, 7798 BTRFS_COMPARE_TREE_DELETED, 7799 sctx); 7800 if (ret < 0) 7801 goto out; 7802 down_read(&fs_info->commit_root_sem); 7803 } 7804 advance_right = ADVANCE; 7805 continue; 7806 } else if (right_end_reached) { 7807 if (left_level == 0) { 7808 up_read(&fs_info->commit_root_sem); 7809 ret = changed_cb(left_path, right_path, 7810 &left_key, 7811 BTRFS_COMPARE_TREE_NEW, 7812 sctx); 7813 if (ret < 0) 7814 goto out; 7815 down_read(&fs_info->commit_root_sem); 7816 } 7817 advance_left = ADVANCE; 7818 continue; 7819 } 7820 7821 if (left_level == 0 && right_level == 0) { 7822 up_read(&fs_info->commit_root_sem); 7823 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7824 if (cmp < 0) { 7825 ret = changed_cb(left_path, right_path, 7826 &left_key, 7827 BTRFS_COMPARE_TREE_NEW, 7828 sctx); 7829 advance_left = ADVANCE; 7830 } else if (cmp > 0) { 7831 ret = changed_cb(left_path, right_path, 7832 &right_key, 7833 BTRFS_COMPARE_TREE_DELETED, 7834 sctx); 7835 advance_right = ADVANCE; 7836 } else { 7837 enum btrfs_compare_tree_result result; 7838 7839 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7840 ret = tree_compare_item(left_path, right_path, 7841 tmp_buf); 7842 if (ret) 7843 result = BTRFS_COMPARE_TREE_CHANGED; 7844 else 7845 result = BTRFS_COMPARE_TREE_SAME; 7846 ret = changed_cb(left_path, right_path, 7847 &left_key, result, sctx); 7848 advance_left = ADVANCE; 7849 advance_right = ADVANCE; 7850 } 7851 7852 if (ret < 0) 7853 goto out; 7854 down_read(&fs_info->commit_root_sem); 7855 } else if (left_level == right_level) { 7856 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7857 if (cmp < 0) { 7858 advance_left = ADVANCE; 7859 } else if (cmp > 0) { 7860 advance_right = ADVANCE; 7861 } else { 7862 left_blockptr = btrfs_node_blockptr( 7863 left_path->nodes[left_level], 7864 left_path->slots[left_level]); 7865 right_blockptr = btrfs_node_blockptr( 7866 right_path->nodes[right_level], 7867 right_path->slots[right_level]); 7868 left_gen = btrfs_node_ptr_generation( 7869 left_path->nodes[left_level], 7870 left_path->slots[left_level]); 7871 right_gen = btrfs_node_ptr_generation( 7872 right_path->nodes[right_level], 7873 right_path->slots[right_level]); 7874 if (left_blockptr == right_blockptr && 7875 left_gen == right_gen) { 7876 /* 7877 * As we're on a shared block, don't 7878 * allow to go deeper. 7879 */ 7880 advance_left = ADVANCE_ONLY_NEXT; 7881 advance_right = ADVANCE_ONLY_NEXT; 7882 } else { 7883 advance_left = ADVANCE; 7884 advance_right = ADVANCE; 7885 } 7886 } 7887 } else if (left_level < right_level) { 7888 advance_right = ADVANCE; 7889 } else { 7890 advance_left = ADVANCE; 7891 } 7892 } 7893 7894 out_unlock: 7895 up_read(&fs_info->commit_root_sem); 7896 out: 7897 btrfs_free_path(left_path); 7898 btrfs_free_path(right_path); 7899 kvfree(tmp_buf); 7900 return ret; 7901 } 7902 7903 static int send_subvol(struct send_ctx *sctx) 7904 { 7905 int ret; 7906 7907 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7908 ret = send_header(sctx); 7909 if (ret < 0) 7910 goto out; 7911 } 7912 7913 ret = send_subvol_begin(sctx); 7914 if (ret < 0) 7915 goto out; 7916 7917 if (sctx->parent_root) { 7918 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7919 if (ret < 0) 7920 goto out; 7921 ret = finish_inode_if_needed(sctx, 1); 7922 if (ret < 0) 7923 goto out; 7924 } else { 7925 ret = full_send_tree(sctx); 7926 if (ret < 0) 7927 goto out; 7928 } 7929 7930 out: 7931 free_recorded_refs(sctx); 7932 return ret; 7933 } 7934 7935 /* 7936 * If orphan cleanup did remove any orphans from a root, it means the tree 7937 * was modified and therefore the commit root is not the same as the current 7938 * root anymore. This is a problem, because send uses the commit root and 7939 * therefore can see inode items that don't exist in the current root anymore, 7940 * and for example make calls to btrfs_iget, which will do tree lookups based 7941 * on the current root and not on the commit root. Those lookups will fail, 7942 * returning a -ESTALE error, and making send fail with that error. So make 7943 * sure a send does not see any orphans we have just removed, and that it will 7944 * see the same inodes regardless of whether a transaction commit happened 7945 * before it started (meaning that the commit root will be the same as the 7946 * current root) or not. 7947 */ 7948 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7949 { 7950 int i; 7951 struct btrfs_trans_handle *trans = NULL; 7952 7953 again: 7954 if (sctx->parent_root && 7955 sctx->parent_root->node != sctx->parent_root->commit_root) 7956 goto commit_trans; 7957 7958 for (i = 0; i < sctx->clone_roots_cnt; i++) 7959 if (sctx->clone_roots[i].root->node != 7960 sctx->clone_roots[i].root->commit_root) 7961 goto commit_trans; 7962 7963 if (trans) 7964 return btrfs_end_transaction(trans); 7965 7966 return 0; 7967 7968 commit_trans: 7969 /* Use any root, all fs roots will get their commit roots updated. */ 7970 if (!trans) { 7971 trans = btrfs_join_transaction(sctx->send_root); 7972 if (IS_ERR(trans)) 7973 return PTR_ERR(trans); 7974 goto again; 7975 } 7976 7977 return btrfs_commit_transaction(trans); 7978 } 7979 7980 /* 7981 * Make sure any existing dellaloc is flushed for any root used by a send 7982 * operation so that we do not miss any data and we do not race with writeback 7983 * finishing and changing a tree while send is using the tree. This could 7984 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7985 * a send operation then uses the subvolume. 7986 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7987 */ 7988 static int flush_delalloc_roots(struct send_ctx *sctx) 7989 { 7990 struct btrfs_root *root = sctx->parent_root; 7991 int ret; 7992 int i; 7993 7994 if (root) { 7995 ret = btrfs_start_delalloc_snapshot(root, false); 7996 if (ret) 7997 return ret; 7998 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7999 } 8000 8001 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8002 root = sctx->clone_roots[i].root; 8003 ret = btrfs_start_delalloc_snapshot(root, false); 8004 if (ret) 8005 return ret; 8006 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8007 } 8008 8009 return 0; 8010 } 8011 8012 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8013 { 8014 spin_lock(&root->root_item_lock); 8015 root->send_in_progress--; 8016 /* 8017 * Not much left to do, we don't know why it's unbalanced and 8018 * can't blindly reset it to 0. 8019 */ 8020 if (root->send_in_progress < 0) 8021 btrfs_err(root->fs_info, 8022 "send_in_progress unbalanced %d root %llu", 8023 root->send_in_progress, root->root_key.objectid); 8024 spin_unlock(&root->root_item_lock); 8025 } 8026 8027 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8028 { 8029 btrfs_warn_rl(root->fs_info, 8030 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8031 root->root_key.objectid, root->dedupe_in_progress); 8032 } 8033 8034 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 8035 { 8036 int ret = 0; 8037 struct btrfs_root *send_root = BTRFS_I(inode)->root; 8038 struct btrfs_fs_info *fs_info = send_root->fs_info; 8039 struct btrfs_root *clone_root; 8040 struct send_ctx *sctx = NULL; 8041 u32 i; 8042 u64 *clone_sources_tmp = NULL; 8043 int clone_sources_to_rollback = 0; 8044 size_t alloc_size; 8045 int sort_clone_roots = 0; 8046 8047 if (!capable(CAP_SYS_ADMIN)) 8048 return -EPERM; 8049 8050 /* 8051 * The subvolume must remain read-only during send, protect against 8052 * making it RW. This also protects against deletion. 8053 */ 8054 spin_lock(&send_root->root_item_lock); 8055 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8056 dedupe_in_progress_warn(send_root); 8057 spin_unlock(&send_root->root_item_lock); 8058 return -EAGAIN; 8059 } 8060 send_root->send_in_progress++; 8061 spin_unlock(&send_root->root_item_lock); 8062 8063 /* 8064 * Userspace tools do the checks and warn the user if it's 8065 * not RO. 8066 */ 8067 if (!btrfs_root_readonly(send_root)) { 8068 ret = -EPERM; 8069 goto out; 8070 } 8071 8072 /* 8073 * Check that we don't overflow at later allocations, we request 8074 * clone_sources_count + 1 items, and compare to unsigned long inside 8075 * access_ok. 8076 */ 8077 if (arg->clone_sources_count > 8078 ULONG_MAX / sizeof(struct clone_root) - 1) { 8079 ret = -EINVAL; 8080 goto out; 8081 } 8082 8083 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8084 ret = -EINVAL; 8085 goto out; 8086 } 8087 8088 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8089 if (!sctx) { 8090 ret = -ENOMEM; 8091 goto out; 8092 } 8093 8094 INIT_LIST_HEAD(&sctx->new_refs); 8095 INIT_LIST_HEAD(&sctx->deleted_refs); 8096 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 8097 INIT_LIST_HEAD(&sctx->name_cache_list); 8098 8099 INIT_LIST_HEAD(&sctx->backref_cache.lru_list); 8100 mt_init(&sctx->backref_cache.entries); 8101 8102 sctx->flags = arg->flags; 8103 8104 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8105 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8106 ret = -EPROTO; 8107 goto out; 8108 } 8109 /* Zero means "use the highest version" */ 8110 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8111 } else { 8112 sctx->proto = 1; 8113 } 8114 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8115 ret = -EINVAL; 8116 goto out; 8117 } 8118 8119 sctx->send_filp = fget(arg->send_fd); 8120 if (!sctx->send_filp) { 8121 ret = -EBADF; 8122 goto out; 8123 } 8124 8125 sctx->send_root = send_root; 8126 /* 8127 * Unlikely but possible, if the subvolume is marked for deletion but 8128 * is slow to remove the directory entry, send can still be started 8129 */ 8130 if (btrfs_root_dead(sctx->send_root)) { 8131 ret = -EPERM; 8132 goto out; 8133 } 8134 8135 sctx->clone_roots_cnt = arg->clone_sources_count; 8136 8137 if (sctx->proto >= 2) { 8138 u32 send_buf_num_pages; 8139 8140 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8141 sctx->send_buf = vmalloc(sctx->send_max_size); 8142 if (!sctx->send_buf) { 8143 ret = -ENOMEM; 8144 goto out; 8145 } 8146 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8147 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8148 sizeof(*sctx->send_buf_pages), 8149 GFP_KERNEL); 8150 if (!sctx->send_buf_pages) { 8151 ret = -ENOMEM; 8152 goto out; 8153 } 8154 for (i = 0; i < send_buf_num_pages; i++) { 8155 sctx->send_buf_pages[i] = 8156 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8157 } 8158 } else { 8159 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8160 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8161 } 8162 if (!sctx->send_buf) { 8163 ret = -ENOMEM; 8164 goto out; 8165 } 8166 8167 sctx->pending_dir_moves = RB_ROOT; 8168 sctx->waiting_dir_moves = RB_ROOT; 8169 sctx->orphan_dirs = RB_ROOT; 8170 sctx->rbtree_new_refs = RB_ROOT; 8171 sctx->rbtree_deleted_refs = RB_ROOT; 8172 8173 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 8174 arg->clone_sources_count + 1, 8175 GFP_KERNEL); 8176 if (!sctx->clone_roots) { 8177 ret = -ENOMEM; 8178 goto out; 8179 } 8180 8181 alloc_size = array_size(sizeof(*arg->clone_sources), 8182 arg->clone_sources_count); 8183 8184 if (arg->clone_sources_count) { 8185 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8186 if (!clone_sources_tmp) { 8187 ret = -ENOMEM; 8188 goto out; 8189 } 8190 8191 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8192 alloc_size); 8193 if (ret) { 8194 ret = -EFAULT; 8195 goto out; 8196 } 8197 8198 for (i = 0; i < arg->clone_sources_count; i++) { 8199 clone_root = btrfs_get_fs_root(fs_info, 8200 clone_sources_tmp[i], true); 8201 if (IS_ERR(clone_root)) { 8202 ret = PTR_ERR(clone_root); 8203 goto out; 8204 } 8205 spin_lock(&clone_root->root_item_lock); 8206 if (!btrfs_root_readonly(clone_root) || 8207 btrfs_root_dead(clone_root)) { 8208 spin_unlock(&clone_root->root_item_lock); 8209 btrfs_put_root(clone_root); 8210 ret = -EPERM; 8211 goto out; 8212 } 8213 if (clone_root->dedupe_in_progress) { 8214 dedupe_in_progress_warn(clone_root); 8215 spin_unlock(&clone_root->root_item_lock); 8216 btrfs_put_root(clone_root); 8217 ret = -EAGAIN; 8218 goto out; 8219 } 8220 clone_root->send_in_progress++; 8221 spin_unlock(&clone_root->root_item_lock); 8222 8223 sctx->clone_roots[i].root = clone_root; 8224 clone_sources_to_rollback = i + 1; 8225 } 8226 kvfree(clone_sources_tmp); 8227 clone_sources_tmp = NULL; 8228 } 8229 8230 if (arg->parent_root) { 8231 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8232 true); 8233 if (IS_ERR(sctx->parent_root)) { 8234 ret = PTR_ERR(sctx->parent_root); 8235 goto out; 8236 } 8237 8238 spin_lock(&sctx->parent_root->root_item_lock); 8239 sctx->parent_root->send_in_progress++; 8240 if (!btrfs_root_readonly(sctx->parent_root) || 8241 btrfs_root_dead(sctx->parent_root)) { 8242 spin_unlock(&sctx->parent_root->root_item_lock); 8243 ret = -EPERM; 8244 goto out; 8245 } 8246 if (sctx->parent_root->dedupe_in_progress) { 8247 dedupe_in_progress_warn(sctx->parent_root); 8248 spin_unlock(&sctx->parent_root->root_item_lock); 8249 ret = -EAGAIN; 8250 goto out; 8251 } 8252 spin_unlock(&sctx->parent_root->root_item_lock); 8253 } 8254 8255 /* 8256 * Clones from send_root are allowed, but only if the clone source 8257 * is behind the current send position. This is checked while searching 8258 * for possible clone sources. 8259 */ 8260 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8261 btrfs_grab_root(sctx->send_root); 8262 8263 /* We do a bsearch later */ 8264 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8265 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8266 NULL); 8267 sort_clone_roots = 1; 8268 8269 ret = flush_delalloc_roots(sctx); 8270 if (ret) 8271 goto out; 8272 8273 ret = ensure_commit_roots_uptodate(sctx); 8274 if (ret) 8275 goto out; 8276 8277 ret = send_subvol(sctx); 8278 if (ret < 0) 8279 goto out; 8280 8281 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8282 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8283 if (ret < 0) 8284 goto out; 8285 ret = send_cmd(sctx); 8286 if (ret < 0) 8287 goto out; 8288 } 8289 8290 out: 8291 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8292 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8293 struct rb_node *n; 8294 struct pending_dir_move *pm; 8295 8296 n = rb_first(&sctx->pending_dir_moves); 8297 pm = rb_entry(n, struct pending_dir_move, node); 8298 while (!list_empty(&pm->list)) { 8299 struct pending_dir_move *pm2; 8300 8301 pm2 = list_first_entry(&pm->list, 8302 struct pending_dir_move, list); 8303 free_pending_move(sctx, pm2); 8304 } 8305 free_pending_move(sctx, pm); 8306 } 8307 8308 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8309 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8310 struct rb_node *n; 8311 struct waiting_dir_move *dm; 8312 8313 n = rb_first(&sctx->waiting_dir_moves); 8314 dm = rb_entry(n, struct waiting_dir_move, node); 8315 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8316 kfree(dm); 8317 } 8318 8319 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8320 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8321 struct rb_node *n; 8322 struct orphan_dir_info *odi; 8323 8324 n = rb_first(&sctx->orphan_dirs); 8325 odi = rb_entry(n, struct orphan_dir_info, node); 8326 free_orphan_dir_info(sctx, odi); 8327 } 8328 8329 if (sort_clone_roots) { 8330 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8331 btrfs_root_dec_send_in_progress( 8332 sctx->clone_roots[i].root); 8333 btrfs_put_root(sctx->clone_roots[i].root); 8334 } 8335 } else { 8336 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8337 btrfs_root_dec_send_in_progress( 8338 sctx->clone_roots[i].root); 8339 btrfs_put_root(sctx->clone_roots[i].root); 8340 } 8341 8342 btrfs_root_dec_send_in_progress(send_root); 8343 } 8344 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8345 btrfs_root_dec_send_in_progress(sctx->parent_root); 8346 btrfs_put_root(sctx->parent_root); 8347 } 8348 8349 kvfree(clone_sources_tmp); 8350 8351 if (sctx) { 8352 if (sctx->send_filp) 8353 fput(sctx->send_filp); 8354 8355 kvfree(sctx->clone_roots); 8356 kfree(sctx->send_buf_pages); 8357 kvfree(sctx->send_buf); 8358 kvfree(sctx->verity_descriptor); 8359 8360 name_cache_free(sctx); 8361 8362 close_current_inode(sctx); 8363 8364 empty_backref_cache(sctx); 8365 8366 kfree(sctx); 8367 } 8368 8369 return ret; 8370 } 8371