1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * a allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 }; 308 309 struct pending_dir_move { 310 struct rb_node node; 311 struct list_head list; 312 u64 parent_ino; 313 u64 ino; 314 u64 gen; 315 struct list_head update_refs; 316 }; 317 318 struct waiting_dir_move { 319 struct rb_node node; 320 u64 ino; 321 /* 322 * There might be some directory that could not be removed because it 323 * was waiting for this directory inode to be moved first. Therefore 324 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 325 */ 326 u64 rmdir_ino; 327 u64 rmdir_gen; 328 bool orphanized; 329 }; 330 331 struct orphan_dir_info { 332 struct rb_node node; 333 u64 ino; 334 u64 gen; 335 u64 last_dir_index_offset; 336 u64 dir_high_seq_ino; 337 }; 338 339 struct name_cache_entry { 340 /* 341 * The key in the entry is an inode number, and the generation matches 342 * the inode's generation. 343 */ 344 struct btrfs_lru_cache_entry entry; 345 u64 parent_ino; 346 u64 parent_gen; 347 int ret; 348 int need_later_update; 349 int name_len; 350 char name[]; 351 }; 352 353 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 354 static_assert(offsetof(struct name_cache_entry, entry) == 0); 355 356 #define ADVANCE 1 357 #define ADVANCE_ONLY_NEXT -1 358 359 enum btrfs_compare_tree_result { 360 BTRFS_COMPARE_TREE_NEW, 361 BTRFS_COMPARE_TREE_DELETED, 362 BTRFS_COMPARE_TREE_CHANGED, 363 BTRFS_COMPARE_TREE_SAME, 364 }; 365 366 __cold 367 static void inconsistent_snapshot_error(struct send_ctx *sctx, 368 enum btrfs_compare_tree_result result, 369 const char *what) 370 { 371 const char *result_string; 372 373 switch (result) { 374 case BTRFS_COMPARE_TREE_NEW: 375 result_string = "new"; 376 break; 377 case BTRFS_COMPARE_TREE_DELETED: 378 result_string = "deleted"; 379 break; 380 case BTRFS_COMPARE_TREE_CHANGED: 381 result_string = "updated"; 382 break; 383 case BTRFS_COMPARE_TREE_SAME: 384 ASSERT(0); 385 result_string = "unchanged"; 386 break; 387 default: 388 ASSERT(0); 389 result_string = "unexpected"; 390 } 391 392 btrfs_err(sctx->send_root->fs_info, 393 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 394 result_string, what, sctx->cmp_key->objectid, 395 btrfs_root_id(sctx->send_root), 396 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 397 } 398 399 __maybe_unused 400 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 401 { 402 switch (sctx->proto) { 403 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 404 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 405 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 406 default: return false; 407 } 408 } 409 410 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 411 412 static struct waiting_dir_move * 413 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 414 415 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 416 417 static int need_send_hole(struct send_ctx *sctx) 418 { 419 return (sctx->parent_root && !sctx->cur_inode_new && 420 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 421 S_ISREG(sctx->cur_inode_mode)); 422 } 423 424 static void fs_path_reset(struct fs_path *p) 425 { 426 if (p->reversed) { 427 p->start = p->buf + p->buf_len - 1; 428 p->end = p->start; 429 *p->start = 0; 430 } else { 431 p->start = p->buf; 432 p->end = p->start; 433 *p->start = 0; 434 } 435 } 436 437 static struct fs_path *fs_path_alloc(void) 438 { 439 struct fs_path *p; 440 441 p = kmalloc(sizeof(*p), GFP_KERNEL); 442 if (!p) 443 return NULL; 444 p->reversed = 0; 445 p->buf = p->inline_buf; 446 p->buf_len = FS_PATH_INLINE_SIZE; 447 fs_path_reset(p); 448 return p; 449 } 450 451 static struct fs_path *fs_path_alloc_reversed(void) 452 { 453 struct fs_path *p; 454 455 p = fs_path_alloc(); 456 if (!p) 457 return NULL; 458 p->reversed = 1; 459 fs_path_reset(p); 460 return p; 461 } 462 463 static void fs_path_free(struct fs_path *p) 464 { 465 if (!p) 466 return; 467 if (p->buf != p->inline_buf) 468 kfree(p->buf); 469 kfree(p); 470 } 471 472 static int fs_path_len(struct fs_path *p) 473 { 474 return p->end - p->start; 475 } 476 477 static int fs_path_ensure_buf(struct fs_path *p, int len) 478 { 479 char *tmp_buf; 480 int path_len; 481 int old_buf_len; 482 483 len++; 484 485 if (p->buf_len >= len) 486 return 0; 487 488 if (len > PATH_MAX) { 489 WARN_ON(1); 490 return -ENOMEM; 491 } 492 493 path_len = p->end - p->start; 494 old_buf_len = p->buf_len; 495 496 /* 497 * Allocate to the next largest kmalloc bucket size, to let 498 * the fast path happen most of the time. 499 */ 500 len = kmalloc_size_roundup(len); 501 /* 502 * First time the inline_buf does not suffice 503 */ 504 if (p->buf == p->inline_buf) { 505 tmp_buf = kmalloc(len, GFP_KERNEL); 506 if (tmp_buf) 507 memcpy(tmp_buf, p->buf, old_buf_len); 508 } else { 509 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 510 } 511 if (!tmp_buf) 512 return -ENOMEM; 513 p->buf = tmp_buf; 514 p->buf_len = len; 515 516 if (p->reversed) { 517 tmp_buf = p->buf + old_buf_len - path_len - 1; 518 p->end = p->buf + p->buf_len - 1; 519 p->start = p->end - path_len; 520 memmove(p->start, tmp_buf, path_len + 1); 521 } else { 522 p->start = p->buf; 523 p->end = p->start + path_len; 524 } 525 return 0; 526 } 527 528 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 529 char **prepared) 530 { 531 int ret; 532 int new_len; 533 534 new_len = p->end - p->start + name_len; 535 if (p->start != p->end) 536 new_len++; 537 ret = fs_path_ensure_buf(p, new_len); 538 if (ret < 0) 539 goto out; 540 541 if (p->reversed) { 542 if (p->start != p->end) 543 *--p->start = '/'; 544 p->start -= name_len; 545 *prepared = p->start; 546 } else { 547 if (p->start != p->end) 548 *p->end++ = '/'; 549 *prepared = p->end; 550 p->end += name_len; 551 *p->end = 0; 552 } 553 554 out: 555 return ret; 556 } 557 558 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 559 { 560 int ret; 561 char *prepared; 562 563 ret = fs_path_prepare_for_add(p, name_len, &prepared); 564 if (ret < 0) 565 goto out; 566 memcpy(prepared, name, name_len); 567 568 out: 569 return ret; 570 } 571 572 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 573 { 574 int ret; 575 char *prepared; 576 577 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 578 if (ret < 0) 579 goto out; 580 memcpy(prepared, p2->start, p2->end - p2->start); 581 582 out: 583 return ret; 584 } 585 586 static int fs_path_add_from_extent_buffer(struct fs_path *p, 587 struct extent_buffer *eb, 588 unsigned long off, int len) 589 { 590 int ret; 591 char *prepared; 592 593 ret = fs_path_prepare_for_add(p, len, &prepared); 594 if (ret < 0) 595 goto out; 596 597 read_extent_buffer(eb, prepared, off, len); 598 599 out: 600 return ret; 601 } 602 603 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 604 { 605 p->reversed = from->reversed; 606 fs_path_reset(p); 607 608 return fs_path_add_path(p, from); 609 } 610 611 static void fs_path_unreverse(struct fs_path *p) 612 { 613 char *tmp; 614 int len; 615 616 if (!p->reversed) 617 return; 618 619 tmp = p->start; 620 len = p->end - p->start; 621 p->start = p->buf; 622 p->end = p->start + len; 623 memmove(p->start, tmp, len + 1); 624 p->reversed = 0; 625 } 626 627 static struct btrfs_path *alloc_path_for_send(void) 628 { 629 struct btrfs_path *path; 630 631 path = btrfs_alloc_path(); 632 if (!path) 633 return NULL; 634 path->search_commit_root = 1; 635 path->skip_locking = 1; 636 path->need_commit_sem = 1; 637 return path; 638 } 639 640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 641 { 642 int ret; 643 u32 pos = 0; 644 645 while (pos < len) { 646 ret = kernel_write(filp, buf + pos, len - pos, off); 647 if (ret < 0) 648 return ret; 649 if (ret == 0) 650 return -EIO; 651 pos += ret; 652 } 653 654 return 0; 655 } 656 657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 658 { 659 struct btrfs_tlv_header *hdr; 660 int total_len = sizeof(*hdr) + len; 661 int left = sctx->send_max_size - sctx->send_size; 662 663 if (WARN_ON_ONCE(sctx->put_data)) 664 return -EINVAL; 665 666 if (unlikely(left < total_len)) 667 return -EOVERFLOW; 668 669 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 670 put_unaligned_le16(attr, &hdr->tlv_type); 671 put_unaligned_le16(len, &hdr->tlv_len); 672 memcpy(hdr + 1, data, len); 673 sctx->send_size += total_len; 674 675 return 0; 676 } 677 678 #define TLV_PUT_DEFINE_INT(bits) \ 679 static int tlv_put_u##bits(struct send_ctx *sctx, \ 680 u##bits attr, u##bits value) \ 681 { \ 682 __le##bits __tmp = cpu_to_le##bits(value); \ 683 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 684 } 685 686 TLV_PUT_DEFINE_INT(8) 687 TLV_PUT_DEFINE_INT(32) 688 TLV_PUT_DEFINE_INT(64) 689 690 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 691 const char *str, int len) 692 { 693 if (len == -1) 694 len = strlen(str); 695 return tlv_put(sctx, attr, str, len); 696 } 697 698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 699 const u8 *uuid) 700 { 701 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 702 } 703 704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 705 struct extent_buffer *eb, 706 struct btrfs_timespec *ts) 707 { 708 struct btrfs_timespec bts; 709 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 710 return tlv_put(sctx, attr, &bts, sizeof(bts)); 711 } 712 713 714 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 715 do { \ 716 ret = tlv_put(sctx, attrtype, data, attrlen); \ 717 if (ret < 0) \ 718 goto tlv_put_failure; \ 719 } while (0) 720 721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 722 do { \ 723 ret = tlv_put_u##bits(sctx, attrtype, value); \ 724 if (ret < 0) \ 725 goto tlv_put_failure; \ 726 } while (0) 727 728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 733 do { \ 734 ret = tlv_put_string(sctx, attrtype, str, len); \ 735 if (ret < 0) \ 736 goto tlv_put_failure; \ 737 } while (0) 738 #define TLV_PUT_PATH(sctx, attrtype, p) \ 739 do { \ 740 ret = tlv_put_string(sctx, attrtype, p->start, \ 741 p->end - p->start); \ 742 if (ret < 0) \ 743 goto tlv_put_failure; \ 744 } while(0) 745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 746 do { \ 747 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 748 if (ret < 0) \ 749 goto tlv_put_failure; \ 750 } while (0) 751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 752 do { \ 753 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 754 if (ret < 0) \ 755 goto tlv_put_failure; \ 756 } while (0) 757 758 static int send_header(struct send_ctx *sctx) 759 { 760 struct btrfs_stream_header hdr; 761 762 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 763 hdr.version = cpu_to_le32(sctx->proto); 764 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 765 &sctx->send_off); 766 } 767 768 /* 769 * For each command/item we want to send to userspace, we call this function. 770 */ 771 static int begin_cmd(struct send_ctx *sctx, int cmd) 772 { 773 struct btrfs_cmd_header *hdr; 774 775 if (WARN_ON(!sctx->send_buf)) 776 return -EINVAL; 777 778 if (unlikely(sctx->send_size != 0)) { 779 btrfs_err(sctx->send_root->fs_info, 780 "send: command header buffer not empty cmd %d offset %llu", 781 cmd, sctx->send_off); 782 return -EINVAL; 783 } 784 785 sctx->send_size += sizeof(*hdr); 786 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 787 put_unaligned_le16(cmd, &hdr->cmd); 788 789 return 0; 790 } 791 792 static int send_cmd(struct send_ctx *sctx) 793 { 794 int ret; 795 struct btrfs_cmd_header *hdr; 796 u32 crc; 797 798 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 799 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 800 put_unaligned_le32(0, &hdr->crc); 801 802 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 803 put_unaligned_le32(crc, &hdr->crc); 804 805 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 806 &sctx->send_off); 807 808 sctx->send_size = 0; 809 sctx->put_data = false; 810 811 return ret; 812 } 813 814 /* 815 * Sends a move instruction to user space 816 */ 817 static int send_rename(struct send_ctx *sctx, 818 struct fs_path *from, struct fs_path *to) 819 { 820 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 821 int ret; 822 823 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 824 825 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 826 if (ret < 0) 827 goto out; 828 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 831 832 ret = send_cmd(sctx); 833 834 tlv_put_failure: 835 out: 836 return ret; 837 } 838 839 /* 840 * Sends a link instruction to user space 841 */ 842 static int send_link(struct send_ctx *sctx, 843 struct fs_path *path, struct fs_path *lnk) 844 { 845 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 846 int ret; 847 848 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 849 850 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 851 if (ret < 0) 852 goto out; 853 854 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 856 857 ret = send_cmd(sctx); 858 859 tlv_put_failure: 860 out: 861 return ret; 862 } 863 864 /* 865 * Sends an unlink instruction to user space 866 */ 867 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 868 { 869 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 870 int ret; 871 872 btrfs_debug(fs_info, "send_unlink %s", path->start); 873 874 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 875 if (ret < 0) 876 goto out; 877 878 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 879 880 ret = send_cmd(sctx); 881 882 tlv_put_failure: 883 out: 884 return ret; 885 } 886 887 /* 888 * Sends a rmdir instruction to user space 889 */ 890 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 891 { 892 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 893 int ret; 894 895 btrfs_debug(fs_info, "send_rmdir %s", path->start); 896 897 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 898 if (ret < 0) 899 goto out; 900 901 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 902 903 ret = send_cmd(sctx); 904 905 tlv_put_failure: 906 out: 907 return ret; 908 } 909 910 struct btrfs_inode_info { 911 u64 size; 912 u64 gen; 913 u64 mode; 914 u64 uid; 915 u64 gid; 916 u64 rdev; 917 u64 fileattr; 918 u64 nlink; 919 }; 920 921 /* 922 * Helper function to retrieve some fields from an inode item. 923 */ 924 static int get_inode_info(struct btrfs_root *root, u64 ino, 925 struct btrfs_inode_info *info) 926 { 927 int ret; 928 struct btrfs_path *path; 929 struct btrfs_inode_item *ii; 930 struct btrfs_key key; 931 932 path = alloc_path_for_send(); 933 if (!path) 934 return -ENOMEM; 935 936 key.objectid = ino; 937 key.type = BTRFS_INODE_ITEM_KEY; 938 key.offset = 0; 939 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 940 if (ret) { 941 if (ret > 0) 942 ret = -ENOENT; 943 goto out; 944 } 945 946 if (!info) 947 goto out; 948 949 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 950 struct btrfs_inode_item); 951 info->size = btrfs_inode_size(path->nodes[0], ii); 952 info->gen = btrfs_inode_generation(path->nodes[0], ii); 953 info->mode = btrfs_inode_mode(path->nodes[0], ii); 954 info->uid = btrfs_inode_uid(path->nodes[0], ii); 955 info->gid = btrfs_inode_gid(path->nodes[0], ii); 956 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 957 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 958 /* 959 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 960 * otherwise logically split to 32/32 parts. 961 */ 962 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 963 964 out: 965 btrfs_free_path(path); 966 return ret; 967 } 968 969 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 970 { 971 int ret; 972 struct btrfs_inode_info info = { 0 }; 973 974 ASSERT(gen); 975 976 ret = get_inode_info(root, ino, &info); 977 *gen = info.gen; 978 return ret; 979 } 980 981 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 982 struct fs_path *p, 983 void *ctx); 984 985 /* 986 * Helper function to iterate the entries in ONE btrfs_inode_ref or 987 * btrfs_inode_extref. 988 * The iterate callback may return a non zero value to stop iteration. This can 989 * be a negative value for error codes or 1 to simply stop it. 990 * 991 * path must point to the INODE_REF or INODE_EXTREF when called. 992 */ 993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 994 struct btrfs_key *found_key, int resolve, 995 iterate_inode_ref_t iterate, void *ctx) 996 { 997 struct extent_buffer *eb = path->nodes[0]; 998 struct btrfs_inode_ref *iref; 999 struct btrfs_inode_extref *extref; 1000 struct btrfs_path *tmp_path; 1001 struct fs_path *p; 1002 u32 cur = 0; 1003 u32 total; 1004 int slot = path->slots[0]; 1005 u32 name_len; 1006 char *start; 1007 int ret = 0; 1008 int num = 0; 1009 int index; 1010 u64 dir; 1011 unsigned long name_off; 1012 unsigned long elem_size; 1013 unsigned long ptr; 1014 1015 p = fs_path_alloc_reversed(); 1016 if (!p) 1017 return -ENOMEM; 1018 1019 tmp_path = alloc_path_for_send(); 1020 if (!tmp_path) { 1021 fs_path_free(p); 1022 return -ENOMEM; 1023 } 1024 1025 1026 if (found_key->type == BTRFS_INODE_REF_KEY) { 1027 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1028 struct btrfs_inode_ref); 1029 total = btrfs_item_size(eb, slot); 1030 elem_size = sizeof(*iref); 1031 } else { 1032 ptr = btrfs_item_ptr_offset(eb, slot); 1033 total = btrfs_item_size(eb, slot); 1034 elem_size = sizeof(*extref); 1035 } 1036 1037 while (cur < total) { 1038 fs_path_reset(p); 1039 1040 if (found_key->type == BTRFS_INODE_REF_KEY) { 1041 iref = (struct btrfs_inode_ref *)(ptr + cur); 1042 name_len = btrfs_inode_ref_name_len(eb, iref); 1043 name_off = (unsigned long)(iref + 1); 1044 index = btrfs_inode_ref_index(eb, iref); 1045 dir = found_key->offset; 1046 } else { 1047 extref = (struct btrfs_inode_extref *)(ptr + cur); 1048 name_len = btrfs_inode_extref_name_len(eb, extref); 1049 name_off = (unsigned long)&extref->name; 1050 index = btrfs_inode_extref_index(eb, extref); 1051 dir = btrfs_inode_extref_parent(eb, extref); 1052 } 1053 1054 if (resolve) { 1055 start = btrfs_ref_to_path(root, tmp_path, name_len, 1056 name_off, eb, dir, 1057 p->buf, p->buf_len); 1058 if (IS_ERR(start)) { 1059 ret = PTR_ERR(start); 1060 goto out; 1061 } 1062 if (start < p->buf) { 1063 /* overflow , try again with larger buffer */ 1064 ret = fs_path_ensure_buf(p, 1065 p->buf_len + p->buf - start); 1066 if (ret < 0) 1067 goto out; 1068 start = btrfs_ref_to_path(root, tmp_path, 1069 name_len, name_off, 1070 eb, dir, 1071 p->buf, p->buf_len); 1072 if (IS_ERR(start)) { 1073 ret = PTR_ERR(start); 1074 goto out; 1075 } 1076 if (unlikely(start < p->buf)) { 1077 btrfs_err(root->fs_info, 1078 "send: path ref buffer underflow for key (%llu %u %llu)", 1079 found_key->objectid, 1080 found_key->type, 1081 found_key->offset); 1082 ret = -EINVAL; 1083 goto out; 1084 } 1085 } 1086 p->start = start; 1087 } else { 1088 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1089 name_len); 1090 if (ret < 0) 1091 goto out; 1092 } 1093 1094 cur += elem_size + name_len; 1095 ret = iterate(num, dir, index, p, ctx); 1096 if (ret) 1097 goto out; 1098 num++; 1099 } 1100 1101 out: 1102 btrfs_free_path(tmp_path); 1103 fs_path_free(p); 1104 return ret; 1105 } 1106 1107 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1108 const char *name, int name_len, 1109 const char *data, int data_len, 1110 void *ctx); 1111 1112 /* 1113 * Helper function to iterate the entries in ONE btrfs_dir_item. 1114 * The iterate callback may return a non zero value to stop iteration. This can 1115 * be a negative value for error codes or 1 to simply stop it. 1116 * 1117 * path must point to the dir item when called. 1118 */ 1119 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1120 iterate_dir_item_t iterate, void *ctx) 1121 { 1122 int ret = 0; 1123 struct extent_buffer *eb; 1124 struct btrfs_dir_item *di; 1125 struct btrfs_key di_key; 1126 char *buf = NULL; 1127 int buf_len; 1128 u32 name_len; 1129 u32 data_len; 1130 u32 cur; 1131 u32 len; 1132 u32 total; 1133 int slot; 1134 int num; 1135 1136 /* 1137 * Start with a small buffer (1 page). If later we end up needing more 1138 * space, which can happen for xattrs on a fs with a leaf size greater 1139 * then the page size, attempt to increase the buffer. Typically xattr 1140 * values are small. 1141 */ 1142 buf_len = PATH_MAX; 1143 buf = kmalloc(buf_len, GFP_KERNEL); 1144 if (!buf) { 1145 ret = -ENOMEM; 1146 goto out; 1147 } 1148 1149 eb = path->nodes[0]; 1150 slot = path->slots[0]; 1151 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1152 cur = 0; 1153 len = 0; 1154 total = btrfs_item_size(eb, slot); 1155 1156 num = 0; 1157 while (cur < total) { 1158 name_len = btrfs_dir_name_len(eb, di); 1159 data_len = btrfs_dir_data_len(eb, di); 1160 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1161 1162 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1163 if (name_len > XATTR_NAME_MAX) { 1164 ret = -ENAMETOOLONG; 1165 goto out; 1166 } 1167 if (name_len + data_len > 1168 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1169 ret = -E2BIG; 1170 goto out; 1171 } 1172 } else { 1173 /* 1174 * Path too long 1175 */ 1176 if (name_len + data_len > PATH_MAX) { 1177 ret = -ENAMETOOLONG; 1178 goto out; 1179 } 1180 } 1181 1182 if (name_len + data_len > buf_len) { 1183 buf_len = name_len + data_len; 1184 if (is_vmalloc_addr(buf)) { 1185 vfree(buf); 1186 buf = NULL; 1187 } else { 1188 char *tmp = krealloc(buf, buf_len, 1189 GFP_KERNEL | __GFP_NOWARN); 1190 1191 if (!tmp) 1192 kfree(buf); 1193 buf = tmp; 1194 } 1195 if (!buf) { 1196 buf = kvmalloc(buf_len, GFP_KERNEL); 1197 if (!buf) { 1198 ret = -ENOMEM; 1199 goto out; 1200 } 1201 } 1202 } 1203 1204 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1205 name_len + data_len); 1206 1207 len = sizeof(*di) + name_len + data_len; 1208 di = (struct btrfs_dir_item *)((char *)di + len); 1209 cur += len; 1210 1211 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1212 data_len, ctx); 1213 if (ret < 0) 1214 goto out; 1215 if (ret) { 1216 ret = 0; 1217 goto out; 1218 } 1219 1220 num++; 1221 } 1222 1223 out: 1224 kvfree(buf); 1225 return ret; 1226 } 1227 1228 static int __copy_first_ref(int num, u64 dir, int index, 1229 struct fs_path *p, void *ctx) 1230 { 1231 int ret; 1232 struct fs_path *pt = ctx; 1233 1234 ret = fs_path_copy(pt, p); 1235 if (ret < 0) 1236 return ret; 1237 1238 /* we want the first only */ 1239 return 1; 1240 } 1241 1242 /* 1243 * Retrieve the first path of an inode. If an inode has more then one 1244 * ref/hardlink, this is ignored. 1245 */ 1246 static int get_inode_path(struct btrfs_root *root, 1247 u64 ino, struct fs_path *path) 1248 { 1249 int ret; 1250 struct btrfs_key key, found_key; 1251 struct btrfs_path *p; 1252 1253 p = alloc_path_for_send(); 1254 if (!p) 1255 return -ENOMEM; 1256 1257 fs_path_reset(path); 1258 1259 key.objectid = ino; 1260 key.type = BTRFS_INODE_REF_KEY; 1261 key.offset = 0; 1262 1263 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1264 if (ret < 0) 1265 goto out; 1266 if (ret) { 1267 ret = 1; 1268 goto out; 1269 } 1270 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1271 if (found_key.objectid != ino || 1272 (found_key.type != BTRFS_INODE_REF_KEY && 1273 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1274 ret = -ENOENT; 1275 goto out; 1276 } 1277 1278 ret = iterate_inode_ref(root, p, &found_key, 1, 1279 __copy_first_ref, path); 1280 if (ret < 0) 1281 goto out; 1282 ret = 0; 1283 1284 out: 1285 btrfs_free_path(p); 1286 return ret; 1287 } 1288 1289 struct backref_ctx { 1290 struct send_ctx *sctx; 1291 1292 /* number of total found references */ 1293 u64 found; 1294 1295 /* 1296 * used for clones found in send_root. clones found behind cur_objectid 1297 * and cur_offset are not considered as allowed clones. 1298 */ 1299 u64 cur_objectid; 1300 u64 cur_offset; 1301 1302 /* may be truncated in case it's the last extent in a file */ 1303 u64 extent_len; 1304 1305 /* The bytenr the file extent item we are processing refers to. */ 1306 u64 bytenr; 1307 /* The owner (root id) of the data backref for the current extent. */ 1308 u64 backref_owner; 1309 /* The offset of the data backref for the current extent. */ 1310 u64 backref_offset; 1311 }; 1312 1313 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1314 { 1315 u64 root = (u64)(uintptr_t)key; 1316 const struct clone_root *cr = elt; 1317 1318 if (root < btrfs_root_id(cr->root)) 1319 return -1; 1320 if (root > btrfs_root_id(cr->root)) 1321 return 1; 1322 return 0; 1323 } 1324 1325 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1326 { 1327 const struct clone_root *cr1 = e1; 1328 const struct clone_root *cr2 = e2; 1329 1330 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1331 return -1; 1332 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1333 return 1; 1334 return 0; 1335 } 1336 1337 /* 1338 * Called for every backref that is found for the current extent. 1339 * Results are collected in sctx->clone_roots->ino/offset. 1340 */ 1341 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1342 void *ctx_) 1343 { 1344 struct backref_ctx *bctx = ctx_; 1345 struct clone_root *clone_root; 1346 1347 /* First check if the root is in the list of accepted clone sources */ 1348 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1349 bctx->sctx->clone_roots_cnt, 1350 sizeof(struct clone_root), 1351 __clone_root_cmp_bsearch); 1352 if (!clone_root) 1353 return 0; 1354 1355 /* This is our own reference, bail out as we can't clone from it. */ 1356 if (clone_root->root == bctx->sctx->send_root && 1357 ino == bctx->cur_objectid && 1358 offset == bctx->cur_offset) 1359 return 0; 1360 1361 /* 1362 * Make sure we don't consider clones from send_root that are 1363 * behind the current inode/offset. 1364 */ 1365 if (clone_root->root == bctx->sctx->send_root) { 1366 /* 1367 * If the source inode was not yet processed we can't issue a 1368 * clone operation, as the source extent does not exist yet at 1369 * the destination of the stream. 1370 */ 1371 if (ino > bctx->cur_objectid) 1372 return 0; 1373 /* 1374 * We clone from the inode currently being sent as long as the 1375 * source extent is already processed, otherwise we could try 1376 * to clone from an extent that does not exist yet at the 1377 * destination of the stream. 1378 */ 1379 if (ino == bctx->cur_objectid && 1380 offset + bctx->extent_len > 1381 bctx->sctx->cur_inode_next_write_offset) 1382 return 0; 1383 } 1384 1385 bctx->found++; 1386 clone_root->found_ref = true; 1387 1388 /* 1389 * If the given backref refers to a file extent item with a larger 1390 * number of bytes than what we found before, use the new one so that 1391 * we clone more optimally and end up doing less writes and getting 1392 * less exclusive, non-shared extents at the destination. 1393 */ 1394 if (num_bytes > clone_root->num_bytes) { 1395 clone_root->ino = ino; 1396 clone_root->offset = offset; 1397 clone_root->num_bytes = num_bytes; 1398 1399 /* 1400 * Found a perfect candidate, so there's no need to continue 1401 * backref walking. 1402 */ 1403 if (num_bytes >= bctx->extent_len) 1404 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1405 } 1406 1407 return 0; 1408 } 1409 1410 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1411 const u64 **root_ids_ret, int *root_count_ret) 1412 { 1413 struct backref_ctx *bctx = ctx; 1414 struct send_ctx *sctx = bctx->sctx; 1415 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1416 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1417 struct btrfs_lru_cache_entry *raw_entry; 1418 struct backref_cache_entry *entry; 1419 1420 if (sctx->backref_cache.size == 0) 1421 return false; 1422 1423 /* 1424 * If relocation happened since we first filled the cache, then we must 1425 * empty the cache and can not use it, because even though we operate on 1426 * read-only roots, their leaves and nodes may have been reallocated and 1427 * now be used for different nodes/leaves of the same tree or some other 1428 * tree. 1429 * 1430 * We are called from iterate_extent_inodes() while either holding a 1431 * transaction handle or holding fs_info->commit_root_sem, so no need 1432 * to take any lock here. 1433 */ 1434 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1435 btrfs_lru_cache_clear(&sctx->backref_cache); 1436 return false; 1437 } 1438 1439 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1440 if (!raw_entry) 1441 return false; 1442 1443 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1444 *root_ids_ret = entry->root_ids; 1445 *root_count_ret = entry->num_roots; 1446 1447 return true; 1448 } 1449 1450 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1451 void *ctx) 1452 { 1453 struct backref_ctx *bctx = ctx; 1454 struct send_ctx *sctx = bctx->sctx; 1455 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1456 struct backref_cache_entry *new_entry; 1457 struct ulist_iterator uiter; 1458 struct ulist_node *node; 1459 int ret; 1460 1461 /* 1462 * We're called while holding a transaction handle or while holding 1463 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1464 * NOFS allocation. 1465 */ 1466 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1467 /* No worries, cache is optional. */ 1468 if (!new_entry) 1469 return; 1470 1471 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1472 new_entry->entry.gen = 0; 1473 new_entry->num_roots = 0; 1474 ULIST_ITER_INIT(&uiter); 1475 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1476 const u64 root_id = node->val; 1477 struct clone_root *root; 1478 1479 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1480 sctx->clone_roots_cnt, sizeof(struct clone_root), 1481 __clone_root_cmp_bsearch); 1482 if (!root) 1483 continue; 1484 1485 /* Too many roots, just exit, no worries as caching is optional. */ 1486 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1487 kfree(new_entry); 1488 return; 1489 } 1490 1491 new_entry->root_ids[new_entry->num_roots] = root_id; 1492 new_entry->num_roots++; 1493 } 1494 1495 /* 1496 * We may have not added any roots to the new cache entry, which means 1497 * none of the roots is part of the list of roots from which we are 1498 * allowed to clone. Cache the new entry as it's still useful to avoid 1499 * backref walking to determine which roots have a path to the leaf. 1500 * 1501 * Also use GFP_NOFS because we're called while holding a transaction 1502 * handle or while holding fs_info->commit_root_sem. 1503 */ 1504 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1505 GFP_NOFS); 1506 ASSERT(ret == 0 || ret == -ENOMEM); 1507 if (ret) { 1508 /* Caching is optional, no worries. */ 1509 kfree(new_entry); 1510 return; 1511 } 1512 1513 /* 1514 * We are called from iterate_extent_inodes() while either holding a 1515 * transaction handle or holding fs_info->commit_root_sem, so no need 1516 * to take any lock here. 1517 */ 1518 if (sctx->backref_cache.size == 1) 1519 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1520 } 1521 1522 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1523 const struct extent_buffer *leaf, void *ctx) 1524 { 1525 const u64 refs = btrfs_extent_refs(leaf, ei); 1526 const struct backref_ctx *bctx = ctx; 1527 const struct send_ctx *sctx = bctx->sctx; 1528 1529 if (bytenr == bctx->bytenr) { 1530 const u64 flags = btrfs_extent_flags(leaf, ei); 1531 1532 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1533 return -EUCLEAN; 1534 1535 /* 1536 * If we have only one reference and only the send root as a 1537 * clone source - meaning no clone roots were given in the 1538 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1539 * it's our reference and there's no point in doing backref 1540 * walking which is expensive, so exit early. 1541 */ 1542 if (refs == 1 && sctx->clone_roots_cnt == 1) 1543 return -ENOENT; 1544 } 1545 1546 /* 1547 * Backreference walking (iterate_extent_inodes() below) is currently 1548 * too expensive when an extent has a large number of references, both 1549 * in time spent and used memory. So for now just fallback to write 1550 * operations instead of clone operations when an extent has more than 1551 * a certain amount of references. 1552 */ 1553 if (refs > SEND_MAX_EXTENT_REFS) 1554 return -ENOENT; 1555 1556 return 0; 1557 } 1558 1559 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1560 { 1561 const struct backref_ctx *bctx = ctx; 1562 1563 if (ino == bctx->cur_objectid && 1564 root == bctx->backref_owner && 1565 offset == bctx->backref_offset) 1566 return true; 1567 1568 return false; 1569 } 1570 1571 /* 1572 * Given an inode, offset and extent item, it finds a good clone for a clone 1573 * instruction. Returns -ENOENT when none could be found. The function makes 1574 * sure that the returned clone is usable at the point where sending is at the 1575 * moment. This means, that no clones are accepted which lie behind the current 1576 * inode+offset. 1577 * 1578 * path must point to the extent item when called. 1579 */ 1580 static int find_extent_clone(struct send_ctx *sctx, 1581 struct btrfs_path *path, 1582 u64 ino, u64 data_offset, 1583 u64 ino_size, 1584 struct clone_root **found) 1585 { 1586 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1587 int ret; 1588 int extent_type; 1589 u64 logical; 1590 u64 disk_byte; 1591 u64 num_bytes; 1592 struct btrfs_file_extent_item *fi; 1593 struct extent_buffer *eb = path->nodes[0]; 1594 struct backref_ctx backref_ctx = { 0 }; 1595 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1596 struct clone_root *cur_clone_root; 1597 int compressed; 1598 u32 i; 1599 1600 /* 1601 * With fallocate we can get prealloc extents beyond the inode's i_size, 1602 * so we don't do anything here because clone operations can not clone 1603 * to a range beyond i_size without increasing the i_size of the 1604 * destination inode. 1605 */ 1606 if (data_offset >= ino_size) 1607 return 0; 1608 1609 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1610 extent_type = btrfs_file_extent_type(eb, fi); 1611 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1612 return -ENOENT; 1613 1614 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1615 if (disk_byte == 0) 1616 return -ENOENT; 1617 1618 compressed = btrfs_file_extent_compression(eb, fi); 1619 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1620 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1621 1622 /* 1623 * Setup the clone roots. 1624 */ 1625 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1626 cur_clone_root = sctx->clone_roots + i; 1627 cur_clone_root->ino = (u64)-1; 1628 cur_clone_root->offset = 0; 1629 cur_clone_root->num_bytes = 0; 1630 cur_clone_root->found_ref = false; 1631 } 1632 1633 backref_ctx.sctx = sctx; 1634 backref_ctx.cur_objectid = ino; 1635 backref_ctx.cur_offset = data_offset; 1636 backref_ctx.bytenr = disk_byte; 1637 /* 1638 * Use the header owner and not the send root's id, because in case of a 1639 * snapshot we can have shared subtrees. 1640 */ 1641 backref_ctx.backref_owner = btrfs_header_owner(eb); 1642 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1643 1644 /* 1645 * The last extent of a file may be too large due to page alignment. 1646 * We need to adjust extent_len in this case so that the checks in 1647 * iterate_backrefs() work. 1648 */ 1649 if (data_offset + num_bytes >= ino_size) 1650 backref_ctx.extent_len = ino_size - data_offset; 1651 else 1652 backref_ctx.extent_len = num_bytes; 1653 1654 /* 1655 * Now collect all backrefs. 1656 */ 1657 backref_walk_ctx.bytenr = disk_byte; 1658 if (compressed == BTRFS_COMPRESS_NONE) 1659 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1660 backref_walk_ctx.fs_info = fs_info; 1661 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1662 backref_walk_ctx.cache_store = store_backref_cache; 1663 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1664 backref_walk_ctx.check_extent_item = check_extent_item; 1665 backref_walk_ctx.user_ctx = &backref_ctx; 1666 1667 /* 1668 * If have a single clone root, then it's the send root and we can tell 1669 * the backref walking code to skip our own backref and not resolve it, 1670 * since we can not use it for cloning - the source and destination 1671 * ranges can't overlap and in case the leaf is shared through a subtree 1672 * due to snapshots, we can't use those other roots since they are not 1673 * in the list of clone roots. 1674 */ 1675 if (sctx->clone_roots_cnt == 1) 1676 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1677 1678 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1679 &backref_ctx); 1680 if (ret < 0) 1681 return ret; 1682 1683 down_read(&fs_info->commit_root_sem); 1684 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1685 /* 1686 * A transaction commit for a transaction in which block group 1687 * relocation was done just happened. 1688 * The disk_bytenr of the file extent item we processed is 1689 * possibly stale, referring to the extent's location before 1690 * relocation. So act as if we haven't found any clone sources 1691 * and fallback to write commands, which will read the correct 1692 * data from the new extent location. Otherwise we will fail 1693 * below because we haven't found our own back reference or we 1694 * could be getting incorrect sources in case the old extent 1695 * was already reallocated after the relocation. 1696 */ 1697 up_read(&fs_info->commit_root_sem); 1698 return -ENOENT; 1699 } 1700 up_read(&fs_info->commit_root_sem); 1701 1702 btrfs_debug(fs_info, 1703 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1704 data_offset, ino, num_bytes, logical); 1705 1706 if (!backref_ctx.found) { 1707 btrfs_debug(fs_info, "no clones found"); 1708 return -ENOENT; 1709 } 1710 1711 cur_clone_root = NULL; 1712 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1713 struct clone_root *clone_root = &sctx->clone_roots[i]; 1714 1715 if (!clone_root->found_ref) 1716 continue; 1717 1718 /* 1719 * Choose the root from which we can clone more bytes, to 1720 * minimize write operations and therefore have more extent 1721 * sharing at the destination (the same as in the source). 1722 */ 1723 if (!cur_clone_root || 1724 clone_root->num_bytes > cur_clone_root->num_bytes) { 1725 cur_clone_root = clone_root; 1726 1727 /* 1728 * We found an optimal clone candidate (any inode from 1729 * any root is fine), so we're done. 1730 */ 1731 if (clone_root->num_bytes >= backref_ctx.extent_len) 1732 break; 1733 } 1734 } 1735 1736 if (cur_clone_root) { 1737 *found = cur_clone_root; 1738 ret = 0; 1739 } else { 1740 ret = -ENOENT; 1741 } 1742 1743 return ret; 1744 } 1745 1746 static int read_symlink(struct btrfs_root *root, 1747 u64 ino, 1748 struct fs_path *dest) 1749 { 1750 int ret; 1751 struct btrfs_path *path; 1752 struct btrfs_key key; 1753 struct btrfs_file_extent_item *ei; 1754 u8 type; 1755 u8 compression; 1756 unsigned long off; 1757 int len; 1758 1759 path = alloc_path_for_send(); 1760 if (!path) 1761 return -ENOMEM; 1762 1763 key.objectid = ino; 1764 key.type = BTRFS_EXTENT_DATA_KEY; 1765 key.offset = 0; 1766 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1767 if (ret < 0) 1768 goto out; 1769 if (ret) { 1770 /* 1771 * An empty symlink inode. Can happen in rare error paths when 1772 * creating a symlink (transaction committed before the inode 1773 * eviction handler removed the symlink inode items and a crash 1774 * happened in between or the subvol was snapshoted in between). 1775 * Print an informative message to dmesg/syslog so that the user 1776 * can delete the symlink. 1777 */ 1778 btrfs_err(root->fs_info, 1779 "Found empty symlink inode %llu at root %llu", 1780 ino, btrfs_root_id(root)); 1781 ret = -EIO; 1782 goto out; 1783 } 1784 1785 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1786 struct btrfs_file_extent_item); 1787 type = btrfs_file_extent_type(path->nodes[0], ei); 1788 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1789 ret = -EUCLEAN; 1790 btrfs_crit(root->fs_info, 1791 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1792 ino, btrfs_root_id(root), type); 1793 goto out; 1794 } 1795 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1796 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1797 ret = -EUCLEAN; 1798 btrfs_crit(root->fs_info, 1799 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1800 ino, btrfs_root_id(root), compression); 1801 goto out; 1802 } 1803 1804 off = btrfs_file_extent_inline_start(ei); 1805 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1806 1807 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1808 1809 out: 1810 btrfs_free_path(path); 1811 return ret; 1812 } 1813 1814 /* 1815 * Helper function to generate a file name that is unique in the root of 1816 * send_root and parent_root. This is used to generate names for orphan inodes. 1817 */ 1818 static int gen_unique_name(struct send_ctx *sctx, 1819 u64 ino, u64 gen, 1820 struct fs_path *dest) 1821 { 1822 int ret = 0; 1823 struct btrfs_path *path; 1824 struct btrfs_dir_item *di; 1825 char tmp[64]; 1826 int len; 1827 u64 idx = 0; 1828 1829 path = alloc_path_for_send(); 1830 if (!path) 1831 return -ENOMEM; 1832 1833 while (1) { 1834 struct fscrypt_str tmp_name; 1835 1836 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1837 ino, gen, idx); 1838 ASSERT(len < sizeof(tmp)); 1839 tmp_name.name = tmp; 1840 tmp_name.len = strlen(tmp); 1841 1842 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1843 path, BTRFS_FIRST_FREE_OBJECTID, 1844 &tmp_name, 0); 1845 btrfs_release_path(path); 1846 if (IS_ERR(di)) { 1847 ret = PTR_ERR(di); 1848 goto out; 1849 } 1850 if (di) { 1851 /* not unique, try again */ 1852 idx++; 1853 continue; 1854 } 1855 1856 if (!sctx->parent_root) { 1857 /* unique */ 1858 ret = 0; 1859 break; 1860 } 1861 1862 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1863 path, BTRFS_FIRST_FREE_OBJECTID, 1864 &tmp_name, 0); 1865 btrfs_release_path(path); 1866 if (IS_ERR(di)) { 1867 ret = PTR_ERR(di); 1868 goto out; 1869 } 1870 if (di) { 1871 /* not unique, try again */ 1872 idx++; 1873 continue; 1874 } 1875 /* unique */ 1876 break; 1877 } 1878 1879 ret = fs_path_add(dest, tmp, strlen(tmp)); 1880 1881 out: 1882 btrfs_free_path(path); 1883 return ret; 1884 } 1885 1886 enum inode_state { 1887 inode_state_no_change, 1888 inode_state_will_create, 1889 inode_state_did_create, 1890 inode_state_will_delete, 1891 inode_state_did_delete, 1892 }; 1893 1894 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1895 u64 *send_gen, u64 *parent_gen) 1896 { 1897 int ret; 1898 int left_ret; 1899 int right_ret; 1900 u64 left_gen; 1901 u64 right_gen = 0; 1902 struct btrfs_inode_info info; 1903 1904 ret = get_inode_info(sctx->send_root, ino, &info); 1905 if (ret < 0 && ret != -ENOENT) 1906 goto out; 1907 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1908 left_gen = info.gen; 1909 if (send_gen) 1910 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1911 1912 if (!sctx->parent_root) { 1913 right_ret = -ENOENT; 1914 } else { 1915 ret = get_inode_info(sctx->parent_root, ino, &info); 1916 if (ret < 0 && ret != -ENOENT) 1917 goto out; 1918 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1919 right_gen = info.gen; 1920 if (parent_gen) 1921 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1922 } 1923 1924 if (!left_ret && !right_ret) { 1925 if (left_gen == gen && right_gen == gen) { 1926 ret = inode_state_no_change; 1927 } else if (left_gen == gen) { 1928 if (ino < sctx->send_progress) 1929 ret = inode_state_did_create; 1930 else 1931 ret = inode_state_will_create; 1932 } else if (right_gen == gen) { 1933 if (ino < sctx->send_progress) 1934 ret = inode_state_did_delete; 1935 else 1936 ret = inode_state_will_delete; 1937 } else { 1938 ret = -ENOENT; 1939 } 1940 } else if (!left_ret) { 1941 if (left_gen == gen) { 1942 if (ino < sctx->send_progress) 1943 ret = inode_state_did_create; 1944 else 1945 ret = inode_state_will_create; 1946 } else { 1947 ret = -ENOENT; 1948 } 1949 } else if (!right_ret) { 1950 if (right_gen == gen) { 1951 if (ino < sctx->send_progress) 1952 ret = inode_state_did_delete; 1953 else 1954 ret = inode_state_will_delete; 1955 } else { 1956 ret = -ENOENT; 1957 } 1958 } else { 1959 ret = -ENOENT; 1960 } 1961 1962 out: 1963 return ret; 1964 } 1965 1966 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1967 u64 *send_gen, u64 *parent_gen) 1968 { 1969 int ret; 1970 1971 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1972 return 1; 1973 1974 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1975 if (ret < 0) 1976 goto out; 1977 1978 if (ret == inode_state_no_change || 1979 ret == inode_state_did_create || 1980 ret == inode_state_will_delete) 1981 ret = 1; 1982 else 1983 ret = 0; 1984 1985 out: 1986 return ret; 1987 } 1988 1989 /* 1990 * Helper function to lookup a dir item in a dir. 1991 */ 1992 static int lookup_dir_item_inode(struct btrfs_root *root, 1993 u64 dir, const char *name, int name_len, 1994 u64 *found_inode) 1995 { 1996 int ret = 0; 1997 struct btrfs_dir_item *di; 1998 struct btrfs_key key; 1999 struct btrfs_path *path; 2000 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 2001 2002 path = alloc_path_for_send(); 2003 if (!path) 2004 return -ENOMEM; 2005 2006 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 2007 if (IS_ERR_OR_NULL(di)) { 2008 ret = di ? PTR_ERR(di) : -ENOENT; 2009 goto out; 2010 } 2011 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2012 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2013 ret = -ENOENT; 2014 goto out; 2015 } 2016 *found_inode = key.objectid; 2017 2018 out: 2019 btrfs_free_path(path); 2020 return ret; 2021 } 2022 2023 /* 2024 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2025 * generation of the parent dir and the name of the dir entry. 2026 */ 2027 static int get_first_ref(struct btrfs_root *root, u64 ino, 2028 u64 *dir, u64 *dir_gen, struct fs_path *name) 2029 { 2030 int ret; 2031 struct btrfs_key key; 2032 struct btrfs_key found_key; 2033 struct btrfs_path *path; 2034 int len; 2035 u64 parent_dir; 2036 2037 path = alloc_path_for_send(); 2038 if (!path) 2039 return -ENOMEM; 2040 2041 key.objectid = ino; 2042 key.type = BTRFS_INODE_REF_KEY; 2043 key.offset = 0; 2044 2045 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2046 if (ret < 0) 2047 goto out; 2048 if (!ret) 2049 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2050 path->slots[0]); 2051 if (ret || found_key.objectid != ino || 2052 (found_key.type != BTRFS_INODE_REF_KEY && 2053 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2054 ret = -ENOENT; 2055 goto out; 2056 } 2057 2058 if (found_key.type == BTRFS_INODE_REF_KEY) { 2059 struct btrfs_inode_ref *iref; 2060 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2061 struct btrfs_inode_ref); 2062 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2063 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2064 (unsigned long)(iref + 1), 2065 len); 2066 parent_dir = found_key.offset; 2067 } else { 2068 struct btrfs_inode_extref *extref; 2069 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2070 struct btrfs_inode_extref); 2071 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2072 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2073 (unsigned long)&extref->name, len); 2074 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2075 } 2076 if (ret < 0) 2077 goto out; 2078 btrfs_release_path(path); 2079 2080 if (dir_gen) { 2081 ret = get_inode_gen(root, parent_dir, dir_gen); 2082 if (ret < 0) 2083 goto out; 2084 } 2085 2086 *dir = parent_dir; 2087 2088 out: 2089 btrfs_free_path(path); 2090 return ret; 2091 } 2092 2093 static int is_first_ref(struct btrfs_root *root, 2094 u64 ino, u64 dir, 2095 const char *name, int name_len) 2096 { 2097 int ret; 2098 struct fs_path *tmp_name; 2099 u64 tmp_dir; 2100 2101 tmp_name = fs_path_alloc(); 2102 if (!tmp_name) 2103 return -ENOMEM; 2104 2105 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2106 if (ret < 0) 2107 goto out; 2108 2109 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2110 ret = 0; 2111 goto out; 2112 } 2113 2114 ret = !memcmp(tmp_name->start, name, name_len); 2115 2116 out: 2117 fs_path_free(tmp_name); 2118 return ret; 2119 } 2120 2121 /* 2122 * Used by process_recorded_refs to determine if a new ref would overwrite an 2123 * already existing ref. In case it detects an overwrite, it returns the 2124 * inode/gen in who_ino/who_gen. 2125 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2126 * to make sure later references to the overwritten inode are possible. 2127 * Orphanizing is however only required for the first ref of an inode. 2128 * process_recorded_refs does an additional is_first_ref check to see if 2129 * orphanizing is really required. 2130 */ 2131 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2132 const char *name, int name_len, 2133 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2134 { 2135 int ret; 2136 u64 parent_root_dir_gen; 2137 u64 other_inode = 0; 2138 struct btrfs_inode_info info; 2139 2140 if (!sctx->parent_root) 2141 return 0; 2142 2143 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2144 if (ret <= 0) 2145 return 0; 2146 2147 /* 2148 * If we have a parent root we need to verify that the parent dir was 2149 * not deleted and then re-created, if it was then we have no overwrite 2150 * and we can just unlink this entry. 2151 * 2152 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2153 * parent root. 2154 */ 2155 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2156 parent_root_dir_gen != dir_gen) 2157 return 0; 2158 2159 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2160 &other_inode); 2161 if (ret == -ENOENT) 2162 return 0; 2163 else if (ret < 0) 2164 return ret; 2165 2166 /* 2167 * Check if the overwritten ref was already processed. If yes, the ref 2168 * was already unlinked/moved, so we can safely assume that we will not 2169 * overwrite anything at this point in time. 2170 */ 2171 if (other_inode > sctx->send_progress || 2172 is_waiting_for_move(sctx, other_inode)) { 2173 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2174 if (ret < 0) 2175 return ret; 2176 2177 *who_ino = other_inode; 2178 *who_gen = info.gen; 2179 *who_mode = info.mode; 2180 return 1; 2181 } 2182 2183 return 0; 2184 } 2185 2186 /* 2187 * Checks if the ref was overwritten by an already processed inode. This is 2188 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2189 * thus the orphan name needs be used. 2190 * process_recorded_refs also uses it to avoid unlinking of refs that were 2191 * overwritten. 2192 */ 2193 static int did_overwrite_ref(struct send_ctx *sctx, 2194 u64 dir, u64 dir_gen, 2195 u64 ino, u64 ino_gen, 2196 const char *name, int name_len) 2197 { 2198 int ret; 2199 u64 ow_inode; 2200 u64 ow_gen = 0; 2201 u64 send_root_dir_gen; 2202 2203 if (!sctx->parent_root) 2204 return 0; 2205 2206 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2207 if (ret <= 0) 2208 return ret; 2209 2210 /* 2211 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2212 * send root. 2213 */ 2214 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2215 return 0; 2216 2217 /* check if the ref was overwritten by another ref */ 2218 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2219 &ow_inode); 2220 if (ret == -ENOENT) { 2221 /* was never and will never be overwritten */ 2222 return 0; 2223 } else if (ret < 0) { 2224 return ret; 2225 } 2226 2227 if (ow_inode == ino) { 2228 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2229 if (ret < 0) 2230 return ret; 2231 2232 /* It's the same inode, so no overwrite happened. */ 2233 if (ow_gen == ino_gen) 2234 return 0; 2235 } 2236 2237 /* 2238 * We know that it is or will be overwritten. Check this now. 2239 * The current inode being processed might have been the one that caused 2240 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2241 * the current inode being processed. 2242 */ 2243 if (ow_inode < sctx->send_progress) 2244 return 1; 2245 2246 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2247 if (ow_gen == 0) { 2248 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2249 if (ret < 0) 2250 return ret; 2251 } 2252 if (ow_gen == sctx->cur_inode_gen) 2253 return 1; 2254 } 2255 2256 return 0; 2257 } 2258 2259 /* 2260 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2261 * that got overwritten. This is used by process_recorded_refs to determine 2262 * if it has to use the path as returned by get_cur_path or the orphan name. 2263 */ 2264 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2265 { 2266 int ret = 0; 2267 struct fs_path *name = NULL; 2268 u64 dir; 2269 u64 dir_gen; 2270 2271 if (!sctx->parent_root) 2272 goto out; 2273 2274 name = fs_path_alloc(); 2275 if (!name) 2276 return -ENOMEM; 2277 2278 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2279 if (ret < 0) 2280 goto out; 2281 2282 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2283 name->start, fs_path_len(name)); 2284 2285 out: 2286 fs_path_free(name); 2287 return ret; 2288 } 2289 2290 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2291 u64 ino, u64 gen) 2292 { 2293 struct btrfs_lru_cache_entry *entry; 2294 2295 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2296 if (!entry) 2297 return NULL; 2298 2299 return container_of(entry, struct name_cache_entry, entry); 2300 } 2301 2302 /* 2303 * Used by get_cur_path for each ref up to the root. 2304 * Returns 0 if it succeeded. 2305 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2306 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2307 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2308 * Returns <0 in case of error. 2309 */ 2310 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2311 u64 ino, u64 gen, 2312 u64 *parent_ino, 2313 u64 *parent_gen, 2314 struct fs_path *dest) 2315 { 2316 int ret; 2317 int nce_ret; 2318 struct name_cache_entry *nce; 2319 2320 /* 2321 * First check if we already did a call to this function with the same 2322 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2323 * return the cached result. 2324 */ 2325 nce = name_cache_search(sctx, ino, gen); 2326 if (nce) { 2327 if (ino < sctx->send_progress && nce->need_later_update) { 2328 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2329 nce = NULL; 2330 } else { 2331 *parent_ino = nce->parent_ino; 2332 *parent_gen = nce->parent_gen; 2333 ret = fs_path_add(dest, nce->name, nce->name_len); 2334 if (ret < 0) 2335 goto out; 2336 ret = nce->ret; 2337 goto out; 2338 } 2339 } 2340 2341 /* 2342 * If the inode is not existent yet, add the orphan name and return 1. 2343 * This should only happen for the parent dir that we determine in 2344 * record_new_ref_if_needed(). 2345 */ 2346 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2347 if (ret < 0) 2348 goto out; 2349 2350 if (!ret) { 2351 ret = gen_unique_name(sctx, ino, gen, dest); 2352 if (ret < 0) 2353 goto out; 2354 ret = 1; 2355 goto out_cache; 2356 } 2357 2358 /* 2359 * Depending on whether the inode was already processed or not, use 2360 * send_root or parent_root for ref lookup. 2361 */ 2362 if (ino < sctx->send_progress) 2363 ret = get_first_ref(sctx->send_root, ino, 2364 parent_ino, parent_gen, dest); 2365 else 2366 ret = get_first_ref(sctx->parent_root, ino, 2367 parent_ino, parent_gen, dest); 2368 if (ret < 0) 2369 goto out; 2370 2371 /* 2372 * Check if the ref was overwritten by an inode's ref that was processed 2373 * earlier. If yes, treat as orphan and return 1. 2374 */ 2375 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2376 dest->start, dest->end - dest->start); 2377 if (ret < 0) 2378 goto out; 2379 if (ret) { 2380 fs_path_reset(dest); 2381 ret = gen_unique_name(sctx, ino, gen, dest); 2382 if (ret < 0) 2383 goto out; 2384 ret = 1; 2385 } 2386 2387 out_cache: 2388 /* 2389 * Store the result of the lookup in the name cache. 2390 */ 2391 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2392 if (!nce) { 2393 ret = -ENOMEM; 2394 goto out; 2395 } 2396 2397 nce->entry.key = ino; 2398 nce->entry.gen = gen; 2399 nce->parent_ino = *parent_ino; 2400 nce->parent_gen = *parent_gen; 2401 nce->name_len = fs_path_len(dest); 2402 nce->ret = ret; 2403 strcpy(nce->name, dest->start); 2404 2405 if (ino < sctx->send_progress) 2406 nce->need_later_update = 0; 2407 else 2408 nce->need_later_update = 1; 2409 2410 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2411 if (nce_ret < 0) { 2412 kfree(nce); 2413 ret = nce_ret; 2414 } 2415 2416 out: 2417 return ret; 2418 } 2419 2420 /* 2421 * Magic happens here. This function returns the first ref to an inode as it 2422 * would look like while receiving the stream at this point in time. 2423 * We walk the path up to the root. For every inode in between, we check if it 2424 * was already processed/sent. If yes, we continue with the parent as found 2425 * in send_root. If not, we continue with the parent as found in parent_root. 2426 * If we encounter an inode that was deleted at this point in time, we use the 2427 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2428 * that were not created yet and overwritten inodes/refs. 2429 * 2430 * When do we have orphan inodes: 2431 * 1. When an inode is freshly created and thus no valid refs are available yet 2432 * 2. When a directory lost all it's refs (deleted) but still has dir items 2433 * inside which were not processed yet (pending for move/delete). If anyone 2434 * tried to get the path to the dir items, it would get a path inside that 2435 * orphan directory. 2436 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2437 * of an unprocessed inode. If in that case the first ref would be 2438 * overwritten, the overwritten inode gets "orphanized". Later when we 2439 * process this overwritten inode, it is restored at a new place by moving 2440 * the orphan inode. 2441 * 2442 * sctx->send_progress tells this function at which point in time receiving 2443 * would be. 2444 */ 2445 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2446 struct fs_path *dest) 2447 { 2448 int ret = 0; 2449 struct fs_path *name = NULL; 2450 u64 parent_inode = 0; 2451 u64 parent_gen = 0; 2452 int stop = 0; 2453 2454 name = fs_path_alloc(); 2455 if (!name) { 2456 ret = -ENOMEM; 2457 goto out; 2458 } 2459 2460 dest->reversed = 1; 2461 fs_path_reset(dest); 2462 2463 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2464 struct waiting_dir_move *wdm; 2465 2466 fs_path_reset(name); 2467 2468 if (is_waiting_for_rm(sctx, ino, gen)) { 2469 ret = gen_unique_name(sctx, ino, gen, name); 2470 if (ret < 0) 2471 goto out; 2472 ret = fs_path_add_path(dest, name); 2473 break; 2474 } 2475 2476 wdm = get_waiting_dir_move(sctx, ino); 2477 if (wdm && wdm->orphanized) { 2478 ret = gen_unique_name(sctx, ino, gen, name); 2479 stop = 1; 2480 } else if (wdm) { 2481 ret = get_first_ref(sctx->parent_root, ino, 2482 &parent_inode, &parent_gen, name); 2483 } else { 2484 ret = __get_cur_name_and_parent(sctx, ino, gen, 2485 &parent_inode, 2486 &parent_gen, name); 2487 if (ret) 2488 stop = 1; 2489 } 2490 2491 if (ret < 0) 2492 goto out; 2493 2494 ret = fs_path_add_path(dest, name); 2495 if (ret < 0) 2496 goto out; 2497 2498 ino = parent_inode; 2499 gen = parent_gen; 2500 } 2501 2502 out: 2503 fs_path_free(name); 2504 if (!ret) 2505 fs_path_unreverse(dest); 2506 return ret; 2507 } 2508 2509 /* 2510 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2511 */ 2512 static int send_subvol_begin(struct send_ctx *sctx) 2513 { 2514 int ret; 2515 struct btrfs_root *send_root = sctx->send_root; 2516 struct btrfs_root *parent_root = sctx->parent_root; 2517 struct btrfs_path *path; 2518 struct btrfs_key key; 2519 struct btrfs_root_ref *ref; 2520 struct extent_buffer *leaf; 2521 char *name = NULL; 2522 int namelen; 2523 2524 path = btrfs_alloc_path(); 2525 if (!path) 2526 return -ENOMEM; 2527 2528 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2529 if (!name) { 2530 btrfs_free_path(path); 2531 return -ENOMEM; 2532 } 2533 2534 key.objectid = btrfs_root_id(send_root); 2535 key.type = BTRFS_ROOT_BACKREF_KEY; 2536 key.offset = 0; 2537 2538 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2539 &key, path, 1, 0); 2540 if (ret < 0) 2541 goto out; 2542 if (ret) { 2543 ret = -ENOENT; 2544 goto out; 2545 } 2546 2547 leaf = path->nodes[0]; 2548 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2549 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2550 key.objectid != btrfs_root_id(send_root)) { 2551 ret = -ENOENT; 2552 goto out; 2553 } 2554 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2555 namelen = btrfs_root_ref_name_len(leaf, ref); 2556 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2557 btrfs_release_path(path); 2558 2559 if (parent_root) { 2560 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2561 if (ret < 0) 2562 goto out; 2563 } else { 2564 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2565 if (ret < 0) 2566 goto out; 2567 } 2568 2569 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2570 2571 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2572 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2573 sctx->send_root->root_item.received_uuid); 2574 else 2575 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2576 sctx->send_root->root_item.uuid); 2577 2578 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2579 btrfs_root_ctransid(&sctx->send_root->root_item)); 2580 if (parent_root) { 2581 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2582 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2583 parent_root->root_item.received_uuid); 2584 else 2585 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2586 parent_root->root_item.uuid); 2587 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2588 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2589 } 2590 2591 ret = send_cmd(sctx); 2592 2593 tlv_put_failure: 2594 out: 2595 btrfs_free_path(path); 2596 kfree(name); 2597 return ret; 2598 } 2599 2600 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2601 { 2602 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2603 int ret = 0; 2604 struct fs_path *p; 2605 2606 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2607 2608 p = fs_path_alloc(); 2609 if (!p) 2610 return -ENOMEM; 2611 2612 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2613 if (ret < 0) 2614 goto out; 2615 2616 ret = get_cur_path(sctx, ino, gen, p); 2617 if (ret < 0) 2618 goto out; 2619 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2620 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2621 2622 ret = send_cmd(sctx); 2623 2624 tlv_put_failure: 2625 out: 2626 fs_path_free(p); 2627 return ret; 2628 } 2629 2630 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2631 { 2632 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2633 int ret = 0; 2634 struct fs_path *p; 2635 2636 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2637 2638 p = fs_path_alloc(); 2639 if (!p) 2640 return -ENOMEM; 2641 2642 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2643 if (ret < 0) 2644 goto out; 2645 2646 ret = get_cur_path(sctx, ino, gen, p); 2647 if (ret < 0) 2648 goto out; 2649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2651 2652 ret = send_cmd(sctx); 2653 2654 tlv_put_failure: 2655 out: 2656 fs_path_free(p); 2657 return ret; 2658 } 2659 2660 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2661 { 2662 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2663 int ret = 0; 2664 struct fs_path *p; 2665 2666 if (sctx->proto < 2) 2667 return 0; 2668 2669 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2670 2671 p = fs_path_alloc(); 2672 if (!p) 2673 return -ENOMEM; 2674 2675 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2676 if (ret < 0) 2677 goto out; 2678 2679 ret = get_cur_path(sctx, ino, gen, p); 2680 if (ret < 0) 2681 goto out; 2682 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2683 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2684 2685 ret = send_cmd(sctx); 2686 2687 tlv_put_failure: 2688 out: 2689 fs_path_free(p); 2690 return ret; 2691 } 2692 2693 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2694 { 2695 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2696 int ret = 0; 2697 struct fs_path *p; 2698 2699 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2700 ino, uid, gid); 2701 2702 p = fs_path_alloc(); 2703 if (!p) 2704 return -ENOMEM; 2705 2706 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2707 if (ret < 0) 2708 goto out; 2709 2710 ret = get_cur_path(sctx, ino, gen, p); 2711 if (ret < 0) 2712 goto out; 2713 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2714 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2715 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2716 2717 ret = send_cmd(sctx); 2718 2719 tlv_put_failure: 2720 out: 2721 fs_path_free(p); 2722 return ret; 2723 } 2724 2725 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2726 { 2727 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2728 int ret = 0; 2729 struct fs_path *p = NULL; 2730 struct btrfs_inode_item *ii; 2731 struct btrfs_path *path = NULL; 2732 struct extent_buffer *eb; 2733 struct btrfs_key key; 2734 int slot; 2735 2736 btrfs_debug(fs_info, "send_utimes %llu", ino); 2737 2738 p = fs_path_alloc(); 2739 if (!p) 2740 return -ENOMEM; 2741 2742 path = alloc_path_for_send(); 2743 if (!path) { 2744 ret = -ENOMEM; 2745 goto out; 2746 } 2747 2748 key.objectid = ino; 2749 key.type = BTRFS_INODE_ITEM_KEY; 2750 key.offset = 0; 2751 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2752 if (ret > 0) 2753 ret = -ENOENT; 2754 if (ret < 0) 2755 goto out; 2756 2757 eb = path->nodes[0]; 2758 slot = path->slots[0]; 2759 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2760 2761 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2762 if (ret < 0) 2763 goto out; 2764 2765 ret = get_cur_path(sctx, ino, gen, p); 2766 if (ret < 0) 2767 goto out; 2768 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2769 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2770 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2772 if (sctx->proto >= 2) 2773 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2774 2775 ret = send_cmd(sctx); 2776 2777 tlv_put_failure: 2778 out: 2779 fs_path_free(p); 2780 btrfs_free_path(path); 2781 return ret; 2782 } 2783 2784 /* 2785 * If the cache is full, we can't remove entries from it and do a call to 2786 * send_utimes() for each respective inode, because we might be finishing 2787 * processing an inode that is a directory and it just got renamed, and existing 2788 * entries in the cache may refer to inodes that have the directory in their 2789 * full path - in which case we would generate outdated paths (pre-rename) 2790 * for the inodes that the cache entries point to. Instead of prunning the 2791 * cache when inserting, do it after we finish processing each inode at 2792 * finish_inode_if_needed(). 2793 */ 2794 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2795 { 2796 struct btrfs_lru_cache_entry *entry; 2797 int ret; 2798 2799 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2800 if (entry != NULL) 2801 return 0; 2802 2803 /* Caching is optional, don't fail if we can't allocate memory. */ 2804 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2805 if (!entry) 2806 return send_utimes(sctx, dir, gen); 2807 2808 entry->key = dir; 2809 entry->gen = gen; 2810 2811 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2812 ASSERT(ret != -EEXIST); 2813 if (ret) { 2814 kfree(entry); 2815 return send_utimes(sctx, dir, gen); 2816 } 2817 2818 return 0; 2819 } 2820 2821 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2822 { 2823 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2824 struct btrfs_lru_cache_entry *lru; 2825 int ret; 2826 2827 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2828 ASSERT(lru != NULL); 2829 2830 ret = send_utimes(sctx, lru->key, lru->gen); 2831 if (ret) 2832 return ret; 2833 2834 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2835 } 2836 2837 return 0; 2838 } 2839 2840 /* 2841 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2842 * a valid path yet because we did not process the refs yet. So, the inode 2843 * is created as orphan. 2844 */ 2845 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2846 { 2847 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2848 int ret = 0; 2849 struct fs_path *p; 2850 int cmd; 2851 struct btrfs_inode_info info; 2852 u64 gen; 2853 u64 mode; 2854 u64 rdev; 2855 2856 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2857 2858 p = fs_path_alloc(); 2859 if (!p) 2860 return -ENOMEM; 2861 2862 if (ino != sctx->cur_ino) { 2863 ret = get_inode_info(sctx->send_root, ino, &info); 2864 if (ret < 0) 2865 goto out; 2866 gen = info.gen; 2867 mode = info.mode; 2868 rdev = info.rdev; 2869 } else { 2870 gen = sctx->cur_inode_gen; 2871 mode = sctx->cur_inode_mode; 2872 rdev = sctx->cur_inode_rdev; 2873 } 2874 2875 if (S_ISREG(mode)) { 2876 cmd = BTRFS_SEND_C_MKFILE; 2877 } else if (S_ISDIR(mode)) { 2878 cmd = BTRFS_SEND_C_MKDIR; 2879 } else if (S_ISLNK(mode)) { 2880 cmd = BTRFS_SEND_C_SYMLINK; 2881 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2882 cmd = BTRFS_SEND_C_MKNOD; 2883 } else if (S_ISFIFO(mode)) { 2884 cmd = BTRFS_SEND_C_MKFIFO; 2885 } else if (S_ISSOCK(mode)) { 2886 cmd = BTRFS_SEND_C_MKSOCK; 2887 } else { 2888 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2889 (int)(mode & S_IFMT)); 2890 ret = -EOPNOTSUPP; 2891 goto out; 2892 } 2893 2894 ret = begin_cmd(sctx, cmd); 2895 if (ret < 0) 2896 goto out; 2897 2898 ret = gen_unique_name(sctx, ino, gen, p); 2899 if (ret < 0) 2900 goto out; 2901 2902 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2903 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2904 2905 if (S_ISLNK(mode)) { 2906 fs_path_reset(p); 2907 ret = read_symlink(sctx->send_root, ino, p); 2908 if (ret < 0) 2909 goto out; 2910 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2911 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2912 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2913 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2914 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2915 } 2916 2917 ret = send_cmd(sctx); 2918 if (ret < 0) 2919 goto out; 2920 2921 2922 tlv_put_failure: 2923 out: 2924 fs_path_free(p); 2925 return ret; 2926 } 2927 2928 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2929 { 2930 struct btrfs_lru_cache_entry *entry; 2931 int ret; 2932 2933 /* Caching is optional, ignore any failures. */ 2934 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2935 if (!entry) 2936 return; 2937 2938 entry->key = dir; 2939 entry->gen = 0; 2940 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2941 if (ret < 0) 2942 kfree(entry); 2943 } 2944 2945 /* 2946 * We need some special handling for inodes that get processed before the parent 2947 * directory got created. See process_recorded_refs for details. 2948 * This function does the check if we already created the dir out of order. 2949 */ 2950 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2951 { 2952 int ret = 0; 2953 int iter_ret = 0; 2954 struct btrfs_path *path = NULL; 2955 struct btrfs_key key; 2956 struct btrfs_key found_key; 2957 struct btrfs_key di_key; 2958 struct btrfs_dir_item *di; 2959 2960 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2961 return 1; 2962 2963 path = alloc_path_for_send(); 2964 if (!path) 2965 return -ENOMEM; 2966 2967 key.objectid = dir; 2968 key.type = BTRFS_DIR_INDEX_KEY; 2969 key.offset = 0; 2970 2971 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2972 struct extent_buffer *eb = path->nodes[0]; 2973 2974 if (found_key.objectid != key.objectid || 2975 found_key.type != key.type) { 2976 ret = 0; 2977 break; 2978 } 2979 2980 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2981 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2982 2983 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2984 di_key.objectid < sctx->send_progress) { 2985 ret = 1; 2986 cache_dir_created(sctx, dir); 2987 break; 2988 } 2989 } 2990 /* Catch error found during iteration */ 2991 if (iter_ret < 0) 2992 ret = iter_ret; 2993 2994 btrfs_free_path(path); 2995 return ret; 2996 } 2997 2998 /* 2999 * Only creates the inode if it is: 3000 * 1. Not a directory 3001 * 2. Or a directory which was not created already due to out of order 3002 * directories. See did_create_dir and process_recorded_refs for details. 3003 */ 3004 static int send_create_inode_if_needed(struct send_ctx *sctx) 3005 { 3006 int ret; 3007 3008 if (S_ISDIR(sctx->cur_inode_mode)) { 3009 ret = did_create_dir(sctx, sctx->cur_ino); 3010 if (ret < 0) 3011 return ret; 3012 else if (ret > 0) 3013 return 0; 3014 } 3015 3016 ret = send_create_inode(sctx, sctx->cur_ino); 3017 3018 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3019 cache_dir_created(sctx, sctx->cur_ino); 3020 3021 return ret; 3022 } 3023 3024 struct recorded_ref { 3025 struct list_head list; 3026 char *name; 3027 struct fs_path *full_path; 3028 u64 dir; 3029 u64 dir_gen; 3030 int name_len; 3031 struct rb_node node; 3032 struct rb_root *root; 3033 }; 3034 3035 static struct recorded_ref *recorded_ref_alloc(void) 3036 { 3037 struct recorded_ref *ref; 3038 3039 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3040 if (!ref) 3041 return NULL; 3042 RB_CLEAR_NODE(&ref->node); 3043 INIT_LIST_HEAD(&ref->list); 3044 return ref; 3045 } 3046 3047 static void recorded_ref_free(struct recorded_ref *ref) 3048 { 3049 if (!ref) 3050 return; 3051 if (!RB_EMPTY_NODE(&ref->node)) 3052 rb_erase(&ref->node, ref->root); 3053 list_del(&ref->list); 3054 fs_path_free(ref->full_path); 3055 kfree(ref); 3056 } 3057 3058 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3059 { 3060 ref->full_path = path; 3061 ref->name = (char *)kbasename(ref->full_path->start); 3062 ref->name_len = ref->full_path->end - ref->name; 3063 } 3064 3065 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3066 { 3067 struct recorded_ref *new; 3068 3069 new = recorded_ref_alloc(); 3070 if (!new) 3071 return -ENOMEM; 3072 3073 new->dir = ref->dir; 3074 new->dir_gen = ref->dir_gen; 3075 list_add_tail(&new->list, list); 3076 return 0; 3077 } 3078 3079 static void __free_recorded_refs(struct list_head *head) 3080 { 3081 struct recorded_ref *cur; 3082 3083 while (!list_empty(head)) { 3084 cur = list_entry(head->next, struct recorded_ref, list); 3085 recorded_ref_free(cur); 3086 } 3087 } 3088 3089 static void free_recorded_refs(struct send_ctx *sctx) 3090 { 3091 __free_recorded_refs(&sctx->new_refs); 3092 __free_recorded_refs(&sctx->deleted_refs); 3093 } 3094 3095 /* 3096 * Renames/moves a file/dir to its orphan name. Used when the first 3097 * ref of an unprocessed inode gets overwritten and for all non empty 3098 * directories. 3099 */ 3100 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3101 struct fs_path *path) 3102 { 3103 int ret; 3104 struct fs_path *orphan; 3105 3106 orphan = fs_path_alloc(); 3107 if (!orphan) 3108 return -ENOMEM; 3109 3110 ret = gen_unique_name(sctx, ino, gen, orphan); 3111 if (ret < 0) 3112 goto out; 3113 3114 ret = send_rename(sctx, path, orphan); 3115 3116 out: 3117 fs_path_free(orphan); 3118 return ret; 3119 } 3120 3121 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3122 u64 dir_ino, u64 dir_gen) 3123 { 3124 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3125 struct rb_node *parent = NULL; 3126 struct orphan_dir_info *entry, *odi; 3127 3128 while (*p) { 3129 parent = *p; 3130 entry = rb_entry(parent, struct orphan_dir_info, node); 3131 if (dir_ino < entry->ino) 3132 p = &(*p)->rb_left; 3133 else if (dir_ino > entry->ino) 3134 p = &(*p)->rb_right; 3135 else if (dir_gen < entry->gen) 3136 p = &(*p)->rb_left; 3137 else if (dir_gen > entry->gen) 3138 p = &(*p)->rb_right; 3139 else 3140 return entry; 3141 } 3142 3143 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3144 if (!odi) 3145 return ERR_PTR(-ENOMEM); 3146 odi->ino = dir_ino; 3147 odi->gen = dir_gen; 3148 odi->last_dir_index_offset = 0; 3149 odi->dir_high_seq_ino = 0; 3150 3151 rb_link_node(&odi->node, parent, p); 3152 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3153 return odi; 3154 } 3155 3156 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3157 u64 dir_ino, u64 gen) 3158 { 3159 struct rb_node *n = sctx->orphan_dirs.rb_node; 3160 struct orphan_dir_info *entry; 3161 3162 while (n) { 3163 entry = rb_entry(n, struct orphan_dir_info, node); 3164 if (dir_ino < entry->ino) 3165 n = n->rb_left; 3166 else if (dir_ino > entry->ino) 3167 n = n->rb_right; 3168 else if (gen < entry->gen) 3169 n = n->rb_left; 3170 else if (gen > entry->gen) 3171 n = n->rb_right; 3172 else 3173 return entry; 3174 } 3175 return NULL; 3176 } 3177 3178 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3179 { 3180 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3181 3182 return odi != NULL; 3183 } 3184 3185 static void free_orphan_dir_info(struct send_ctx *sctx, 3186 struct orphan_dir_info *odi) 3187 { 3188 if (!odi) 3189 return; 3190 rb_erase(&odi->node, &sctx->orphan_dirs); 3191 kfree(odi); 3192 } 3193 3194 /* 3195 * Returns 1 if a directory can be removed at this point in time. 3196 * We check this by iterating all dir items and checking if the inode behind 3197 * the dir item was already processed. 3198 */ 3199 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3200 { 3201 int ret = 0; 3202 int iter_ret = 0; 3203 struct btrfs_root *root = sctx->parent_root; 3204 struct btrfs_path *path; 3205 struct btrfs_key key; 3206 struct btrfs_key found_key; 3207 struct btrfs_key loc; 3208 struct btrfs_dir_item *di; 3209 struct orphan_dir_info *odi = NULL; 3210 u64 dir_high_seq_ino = 0; 3211 u64 last_dir_index_offset = 0; 3212 3213 /* 3214 * Don't try to rmdir the top/root subvolume dir. 3215 */ 3216 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3217 return 0; 3218 3219 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3220 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3221 return 0; 3222 3223 path = alloc_path_for_send(); 3224 if (!path) 3225 return -ENOMEM; 3226 3227 if (!odi) { 3228 /* 3229 * Find the inode number associated with the last dir index 3230 * entry. This is very likely the inode with the highest number 3231 * of all inodes that have an entry in the directory. We can 3232 * then use it to avoid future calls to can_rmdir(), when 3233 * processing inodes with a lower number, from having to search 3234 * the parent root b+tree for dir index keys. 3235 */ 3236 key.objectid = dir; 3237 key.type = BTRFS_DIR_INDEX_KEY; 3238 key.offset = (u64)-1; 3239 3240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3241 if (ret < 0) { 3242 goto out; 3243 } else if (ret > 0) { 3244 /* Can't happen, the root is never empty. */ 3245 ASSERT(path->slots[0] > 0); 3246 if (WARN_ON(path->slots[0] == 0)) { 3247 ret = -EUCLEAN; 3248 goto out; 3249 } 3250 path->slots[0]--; 3251 } 3252 3253 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3254 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3255 /* No index keys, dir can be removed. */ 3256 ret = 1; 3257 goto out; 3258 } 3259 3260 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3261 struct btrfs_dir_item); 3262 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3263 dir_high_seq_ino = loc.objectid; 3264 if (sctx->cur_ino < dir_high_seq_ino) { 3265 ret = 0; 3266 goto out; 3267 } 3268 3269 btrfs_release_path(path); 3270 } 3271 3272 key.objectid = dir; 3273 key.type = BTRFS_DIR_INDEX_KEY; 3274 key.offset = (odi ? odi->last_dir_index_offset : 0); 3275 3276 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3277 struct waiting_dir_move *dm; 3278 3279 if (found_key.objectid != key.objectid || 3280 found_key.type != key.type) 3281 break; 3282 3283 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3284 struct btrfs_dir_item); 3285 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3286 3287 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3288 last_dir_index_offset = found_key.offset; 3289 3290 dm = get_waiting_dir_move(sctx, loc.objectid); 3291 if (dm) { 3292 dm->rmdir_ino = dir; 3293 dm->rmdir_gen = dir_gen; 3294 ret = 0; 3295 goto out; 3296 } 3297 3298 if (loc.objectid > sctx->cur_ino) { 3299 ret = 0; 3300 goto out; 3301 } 3302 } 3303 if (iter_ret < 0) { 3304 ret = iter_ret; 3305 goto out; 3306 } 3307 free_orphan_dir_info(sctx, odi); 3308 3309 ret = 1; 3310 3311 out: 3312 btrfs_free_path(path); 3313 3314 if (ret) 3315 return ret; 3316 3317 if (!odi) { 3318 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3319 if (IS_ERR(odi)) 3320 return PTR_ERR(odi); 3321 3322 odi->gen = dir_gen; 3323 } 3324 3325 odi->last_dir_index_offset = last_dir_index_offset; 3326 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3327 3328 return 0; 3329 } 3330 3331 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3332 { 3333 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3334 3335 return entry != NULL; 3336 } 3337 3338 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3339 { 3340 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3341 struct rb_node *parent = NULL; 3342 struct waiting_dir_move *entry, *dm; 3343 3344 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3345 if (!dm) 3346 return -ENOMEM; 3347 dm->ino = ino; 3348 dm->rmdir_ino = 0; 3349 dm->rmdir_gen = 0; 3350 dm->orphanized = orphanized; 3351 3352 while (*p) { 3353 parent = *p; 3354 entry = rb_entry(parent, struct waiting_dir_move, node); 3355 if (ino < entry->ino) { 3356 p = &(*p)->rb_left; 3357 } else if (ino > entry->ino) { 3358 p = &(*p)->rb_right; 3359 } else { 3360 kfree(dm); 3361 return -EEXIST; 3362 } 3363 } 3364 3365 rb_link_node(&dm->node, parent, p); 3366 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3367 return 0; 3368 } 3369 3370 static struct waiting_dir_move * 3371 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3372 { 3373 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3374 struct waiting_dir_move *entry; 3375 3376 while (n) { 3377 entry = rb_entry(n, struct waiting_dir_move, node); 3378 if (ino < entry->ino) 3379 n = n->rb_left; 3380 else if (ino > entry->ino) 3381 n = n->rb_right; 3382 else 3383 return entry; 3384 } 3385 return NULL; 3386 } 3387 3388 static void free_waiting_dir_move(struct send_ctx *sctx, 3389 struct waiting_dir_move *dm) 3390 { 3391 if (!dm) 3392 return; 3393 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3394 kfree(dm); 3395 } 3396 3397 static int add_pending_dir_move(struct send_ctx *sctx, 3398 u64 ino, 3399 u64 ino_gen, 3400 u64 parent_ino, 3401 struct list_head *new_refs, 3402 struct list_head *deleted_refs, 3403 const bool is_orphan) 3404 { 3405 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3406 struct rb_node *parent = NULL; 3407 struct pending_dir_move *entry = NULL, *pm; 3408 struct recorded_ref *cur; 3409 int exists = 0; 3410 int ret; 3411 3412 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3413 if (!pm) 3414 return -ENOMEM; 3415 pm->parent_ino = parent_ino; 3416 pm->ino = ino; 3417 pm->gen = ino_gen; 3418 INIT_LIST_HEAD(&pm->list); 3419 INIT_LIST_HEAD(&pm->update_refs); 3420 RB_CLEAR_NODE(&pm->node); 3421 3422 while (*p) { 3423 parent = *p; 3424 entry = rb_entry(parent, struct pending_dir_move, node); 3425 if (parent_ino < entry->parent_ino) { 3426 p = &(*p)->rb_left; 3427 } else if (parent_ino > entry->parent_ino) { 3428 p = &(*p)->rb_right; 3429 } else { 3430 exists = 1; 3431 break; 3432 } 3433 } 3434 3435 list_for_each_entry(cur, deleted_refs, list) { 3436 ret = dup_ref(cur, &pm->update_refs); 3437 if (ret < 0) 3438 goto out; 3439 } 3440 list_for_each_entry(cur, new_refs, list) { 3441 ret = dup_ref(cur, &pm->update_refs); 3442 if (ret < 0) 3443 goto out; 3444 } 3445 3446 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3447 if (ret) 3448 goto out; 3449 3450 if (exists) { 3451 list_add_tail(&pm->list, &entry->list); 3452 } else { 3453 rb_link_node(&pm->node, parent, p); 3454 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3455 } 3456 ret = 0; 3457 out: 3458 if (ret) { 3459 __free_recorded_refs(&pm->update_refs); 3460 kfree(pm); 3461 } 3462 return ret; 3463 } 3464 3465 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3466 u64 parent_ino) 3467 { 3468 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3469 struct pending_dir_move *entry; 3470 3471 while (n) { 3472 entry = rb_entry(n, struct pending_dir_move, node); 3473 if (parent_ino < entry->parent_ino) 3474 n = n->rb_left; 3475 else if (parent_ino > entry->parent_ino) 3476 n = n->rb_right; 3477 else 3478 return entry; 3479 } 3480 return NULL; 3481 } 3482 3483 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3484 u64 ino, u64 gen, u64 *ancestor_ino) 3485 { 3486 int ret = 0; 3487 u64 parent_inode = 0; 3488 u64 parent_gen = 0; 3489 u64 start_ino = ino; 3490 3491 *ancestor_ino = 0; 3492 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3493 fs_path_reset(name); 3494 3495 if (is_waiting_for_rm(sctx, ino, gen)) 3496 break; 3497 if (is_waiting_for_move(sctx, ino)) { 3498 if (*ancestor_ino == 0) 3499 *ancestor_ino = ino; 3500 ret = get_first_ref(sctx->parent_root, ino, 3501 &parent_inode, &parent_gen, name); 3502 } else { 3503 ret = __get_cur_name_and_parent(sctx, ino, gen, 3504 &parent_inode, 3505 &parent_gen, name); 3506 if (ret > 0) { 3507 ret = 0; 3508 break; 3509 } 3510 } 3511 if (ret < 0) 3512 break; 3513 if (parent_inode == start_ino) { 3514 ret = 1; 3515 if (*ancestor_ino == 0) 3516 *ancestor_ino = ino; 3517 break; 3518 } 3519 ino = parent_inode; 3520 gen = parent_gen; 3521 } 3522 return ret; 3523 } 3524 3525 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3526 { 3527 struct fs_path *from_path = NULL; 3528 struct fs_path *to_path = NULL; 3529 struct fs_path *name = NULL; 3530 u64 orig_progress = sctx->send_progress; 3531 struct recorded_ref *cur; 3532 u64 parent_ino, parent_gen; 3533 struct waiting_dir_move *dm = NULL; 3534 u64 rmdir_ino = 0; 3535 u64 rmdir_gen; 3536 u64 ancestor; 3537 bool is_orphan; 3538 int ret; 3539 3540 name = fs_path_alloc(); 3541 from_path = fs_path_alloc(); 3542 if (!name || !from_path) { 3543 ret = -ENOMEM; 3544 goto out; 3545 } 3546 3547 dm = get_waiting_dir_move(sctx, pm->ino); 3548 ASSERT(dm); 3549 rmdir_ino = dm->rmdir_ino; 3550 rmdir_gen = dm->rmdir_gen; 3551 is_orphan = dm->orphanized; 3552 free_waiting_dir_move(sctx, dm); 3553 3554 if (is_orphan) { 3555 ret = gen_unique_name(sctx, pm->ino, 3556 pm->gen, from_path); 3557 } else { 3558 ret = get_first_ref(sctx->parent_root, pm->ino, 3559 &parent_ino, &parent_gen, name); 3560 if (ret < 0) 3561 goto out; 3562 ret = get_cur_path(sctx, parent_ino, parent_gen, 3563 from_path); 3564 if (ret < 0) 3565 goto out; 3566 ret = fs_path_add_path(from_path, name); 3567 } 3568 if (ret < 0) 3569 goto out; 3570 3571 sctx->send_progress = sctx->cur_ino + 1; 3572 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3573 if (ret < 0) 3574 goto out; 3575 if (ret) { 3576 LIST_HEAD(deleted_refs); 3577 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3578 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3579 &pm->update_refs, &deleted_refs, 3580 is_orphan); 3581 if (ret < 0) 3582 goto out; 3583 if (rmdir_ino) { 3584 dm = get_waiting_dir_move(sctx, pm->ino); 3585 ASSERT(dm); 3586 dm->rmdir_ino = rmdir_ino; 3587 dm->rmdir_gen = rmdir_gen; 3588 } 3589 goto out; 3590 } 3591 fs_path_reset(name); 3592 to_path = name; 3593 name = NULL; 3594 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3595 if (ret < 0) 3596 goto out; 3597 3598 ret = send_rename(sctx, from_path, to_path); 3599 if (ret < 0) 3600 goto out; 3601 3602 if (rmdir_ino) { 3603 struct orphan_dir_info *odi; 3604 u64 gen; 3605 3606 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3607 if (!odi) { 3608 /* already deleted */ 3609 goto finish; 3610 } 3611 gen = odi->gen; 3612 3613 ret = can_rmdir(sctx, rmdir_ino, gen); 3614 if (ret < 0) 3615 goto out; 3616 if (!ret) 3617 goto finish; 3618 3619 name = fs_path_alloc(); 3620 if (!name) { 3621 ret = -ENOMEM; 3622 goto out; 3623 } 3624 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3625 if (ret < 0) 3626 goto out; 3627 ret = send_rmdir(sctx, name); 3628 if (ret < 0) 3629 goto out; 3630 } 3631 3632 finish: 3633 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3634 if (ret < 0) 3635 goto out; 3636 3637 /* 3638 * After rename/move, need to update the utimes of both new parent(s) 3639 * and old parent(s). 3640 */ 3641 list_for_each_entry(cur, &pm->update_refs, list) { 3642 /* 3643 * The parent inode might have been deleted in the send snapshot 3644 */ 3645 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3646 if (ret == -ENOENT) { 3647 ret = 0; 3648 continue; 3649 } 3650 if (ret < 0) 3651 goto out; 3652 3653 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3654 if (ret < 0) 3655 goto out; 3656 } 3657 3658 out: 3659 fs_path_free(name); 3660 fs_path_free(from_path); 3661 fs_path_free(to_path); 3662 sctx->send_progress = orig_progress; 3663 3664 return ret; 3665 } 3666 3667 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3668 { 3669 if (!list_empty(&m->list)) 3670 list_del(&m->list); 3671 if (!RB_EMPTY_NODE(&m->node)) 3672 rb_erase(&m->node, &sctx->pending_dir_moves); 3673 __free_recorded_refs(&m->update_refs); 3674 kfree(m); 3675 } 3676 3677 static void tail_append_pending_moves(struct send_ctx *sctx, 3678 struct pending_dir_move *moves, 3679 struct list_head *stack) 3680 { 3681 if (list_empty(&moves->list)) { 3682 list_add_tail(&moves->list, stack); 3683 } else { 3684 LIST_HEAD(list); 3685 list_splice_init(&moves->list, &list); 3686 list_add_tail(&moves->list, stack); 3687 list_splice_tail(&list, stack); 3688 } 3689 if (!RB_EMPTY_NODE(&moves->node)) { 3690 rb_erase(&moves->node, &sctx->pending_dir_moves); 3691 RB_CLEAR_NODE(&moves->node); 3692 } 3693 } 3694 3695 static int apply_children_dir_moves(struct send_ctx *sctx) 3696 { 3697 struct pending_dir_move *pm; 3698 LIST_HEAD(stack); 3699 u64 parent_ino = sctx->cur_ino; 3700 int ret = 0; 3701 3702 pm = get_pending_dir_moves(sctx, parent_ino); 3703 if (!pm) 3704 return 0; 3705 3706 tail_append_pending_moves(sctx, pm, &stack); 3707 3708 while (!list_empty(&stack)) { 3709 pm = list_first_entry(&stack, struct pending_dir_move, list); 3710 parent_ino = pm->ino; 3711 ret = apply_dir_move(sctx, pm); 3712 free_pending_move(sctx, pm); 3713 if (ret) 3714 goto out; 3715 pm = get_pending_dir_moves(sctx, parent_ino); 3716 if (pm) 3717 tail_append_pending_moves(sctx, pm, &stack); 3718 } 3719 return 0; 3720 3721 out: 3722 while (!list_empty(&stack)) { 3723 pm = list_first_entry(&stack, struct pending_dir_move, list); 3724 free_pending_move(sctx, pm); 3725 } 3726 return ret; 3727 } 3728 3729 /* 3730 * We might need to delay a directory rename even when no ancestor directory 3731 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3732 * renamed. This happens when we rename a directory to the old name (the name 3733 * in the parent root) of some other unrelated directory that got its rename 3734 * delayed due to some ancestor with higher number that got renamed. 3735 * 3736 * Example: 3737 * 3738 * Parent snapshot: 3739 * . (ino 256) 3740 * |---- a/ (ino 257) 3741 * | |---- file (ino 260) 3742 * | 3743 * |---- b/ (ino 258) 3744 * |---- c/ (ino 259) 3745 * 3746 * Send snapshot: 3747 * . (ino 256) 3748 * |---- a/ (ino 258) 3749 * |---- x/ (ino 259) 3750 * |---- y/ (ino 257) 3751 * |----- file (ino 260) 3752 * 3753 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3754 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3755 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3756 * must issue is: 3757 * 3758 * 1 - rename 259 from 'c' to 'x' 3759 * 2 - rename 257 from 'a' to 'x/y' 3760 * 3 - rename 258 from 'b' to 'a' 3761 * 3762 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3763 * be done right away and < 0 on error. 3764 */ 3765 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3766 struct recorded_ref *parent_ref, 3767 const bool is_orphan) 3768 { 3769 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3770 struct btrfs_path *path; 3771 struct btrfs_key key; 3772 struct btrfs_key di_key; 3773 struct btrfs_dir_item *di; 3774 u64 left_gen; 3775 u64 right_gen; 3776 int ret = 0; 3777 struct waiting_dir_move *wdm; 3778 3779 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3780 return 0; 3781 3782 path = alloc_path_for_send(); 3783 if (!path) 3784 return -ENOMEM; 3785 3786 key.objectid = parent_ref->dir; 3787 key.type = BTRFS_DIR_ITEM_KEY; 3788 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3789 3790 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3791 if (ret < 0) { 3792 goto out; 3793 } else if (ret > 0) { 3794 ret = 0; 3795 goto out; 3796 } 3797 3798 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3799 parent_ref->name_len); 3800 if (!di) { 3801 ret = 0; 3802 goto out; 3803 } 3804 /* 3805 * di_key.objectid has the number of the inode that has a dentry in the 3806 * parent directory with the same name that sctx->cur_ino is being 3807 * renamed to. We need to check if that inode is in the send root as 3808 * well and if it is currently marked as an inode with a pending rename, 3809 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3810 * that it happens after that other inode is renamed. 3811 */ 3812 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3813 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3814 ret = 0; 3815 goto out; 3816 } 3817 3818 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3819 if (ret < 0) 3820 goto out; 3821 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3822 if (ret < 0) { 3823 if (ret == -ENOENT) 3824 ret = 0; 3825 goto out; 3826 } 3827 3828 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3829 if (right_gen != left_gen) { 3830 ret = 0; 3831 goto out; 3832 } 3833 3834 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3835 if (wdm && !wdm->orphanized) { 3836 ret = add_pending_dir_move(sctx, 3837 sctx->cur_ino, 3838 sctx->cur_inode_gen, 3839 di_key.objectid, 3840 &sctx->new_refs, 3841 &sctx->deleted_refs, 3842 is_orphan); 3843 if (!ret) 3844 ret = 1; 3845 } 3846 out: 3847 btrfs_free_path(path); 3848 return ret; 3849 } 3850 3851 /* 3852 * Check if inode ino2, or any of its ancestors, is inode ino1. 3853 * Return 1 if true, 0 if false and < 0 on error. 3854 */ 3855 static int check_ino_in_path(struct btrfs_root *root, 3856 const u64 ino1, 3857 const u64 ino1_gen, 3858 const u64 ino2, 3859 const u64 ino2_gen, 3860 struct fs_path *fs_path) 3861 { 3862 u64 ino = ino2; 3863 3864 if (ino1 == ino2) 3865 return ino1_gen == ino2_gen; 3866 3867 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3868 u64 parent; 3869 u64 parent_gen; 3870 int ret; 3871 3872 fs_path_reset(fs_path); 3873 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3874 if (ret < 0) 3875 return ret; 3876 if (parent == ino1) 3877 return parent_gen == ino1_gen; 3878 ino = parent; 3879 } 3880 return 0; 3881 } 3882 3883 /* 3884 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3885 * possible path (in case ino2 is not a directory and has multiple hard links). 3886 * Return 1 if true, 0 if false and < 0 on error. 3887 */ 3888 static int is_ancestor(struct btrfs_root *root, 3889 const u64 ino1, 3890 const u64 ino1_gen, 3891 const u64 ino2, 3892 struct fs_path *fs_path) 3893 { 3894 bool free_fs_path = false; 3895 int ret = 0; 3896 int iter_ret = 0; 3897 struct btrfs_path *path = NULL; 3898 struct btrfs_key key; 3899 3900 if (!fs_path) { 3901 fs_path = fs_path_alloc(); 3902 if (!fs_path) 3903 return -ENOMEM; 3904 free_fs_path = true; 3905 } 3906 3907 path = alloc_path_for_send(); 3908 if (!path) { 3909 ret = -ENOMEM; 3910 goto out; 3911 } 3912 3913 key.objectid = ino2; 3914 key.type = BTRFS_INODE_REF_KEY; 3915 key.offset = 0; 3916 3917 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3918 struct extent_buffer *leaf = path->nodes[0]; 3919 int slot = path->slots[0]; 3920 u32 cur_offset = 0; 3921 u32 item_size; 3922 3923 if (key.objectid != ino2) 3924 break; 3925 if (key.type != BTRFS_INODE_REF_KEY && 3926 key.type != BTRFS_INODE_EXTREF_KEY) 3927 break; 3928 3929 item_size = btrfs_item_size(leaf, slot); 3930 while (cur_offset < item_size) { 3931 u64 parent; 3932 u64 parent_gen; 3933 3934 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3935 unsigned long ptr; 3936 struct btrfs_inode_extref *extref; 3937 3938 ptr = btrfs_item_ptr_offset(leaf, slot); 3939 extref = (struct btrfs_inode_extref *) 3940 (ptr + cur_offset); 3941 parent = btrfs_inode_extref_parent(leaf, 3942 extref); 3943 cur_offset += sizeof(*extref); 3944 cur_offset += btrfs_inode_extref_name_len(leaf, 3945 extref); 3946 } else { 3947 parent = key.offset; 3948 cur_offset = item_size; 3949 } 3950 3951 ret = get_inode_gen(root, parent, &parent_gen); 3952 if (ret < 0) 3953 goto out; 3954 ret = check_ino_in_path(root, ino1, ino1_gen, 3955 parent, parent_gen, fs_path); 3956 if (ret) 3957 goto out; 3958 } 3959 } 3960 ret = 0; 3961 if (iter_ret < 0) 3962 ret = iter_ret; 3963 3964 out: 3965 btrfs_free_path(path); 3966 if (free_fs_path) 3967 fs_path_free(fs_path); 3968 return ret; 3969 } 3970 3971 static int wait_for_parent_move(struct send_ctx *sctx, 3972 struct recorded_ref *parent_ref, 3973 const bool is_orphan) 3974 { 3975 int ret = 0; 3976 u64 ino = parent_ref->dir; 3977 u64 ino_gen = parent_ref->dir_gen; 3978 u64 parent_ino_before, parent_ino_after; 3979 struct fs_path *path_before = NULL; 3980 struct fs_path *path_after = NULL; 3981 int len1, len2; 3982 3983 path_after = fs_path_alloc(); 3984 path_before = fs_path_alloc(); 3985 if (!path_after || !path_before) { 3986 ret = -ENOMEM; 3987 goto out; 3988 } 3989 3990 /* 3991 * Our current directory inode may not yet be renamed/moved because some 3992 * ancestor (immediate or not) has to be renamed/moved first. So find if 3993 * such ancestor exists and make sure our own rename/move happens after 3994 * that ancestor is processed to avoid path build infinite loops (done 3995 * at get_cur_path()). 3996 */ 3997 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3998 u64 parent_ino_after_gen; 3999 4000 if (is_waiting_for_move(sctx, ino)) { 4001 /* 4002 * If the current inode is an ancestor of ino in the 4003 * parent root, we need to delay the rename of the 4004 * current inode, otherwise don't delayed the rename 4005 * because we can end up with a circular dependency 4006 * of renames, resulting in some directories never 4007 * getting the respective rename operations issued in 4008 * the send stream or getting into infinite path build 4009 * loops. 4010 */ 4011 ret = is_ancestor(sctx->parent_root, 4012 sctx->cur_ino, sctx->cur_inode_gen, 4013 ino, path_before); 4014 if (ret) 4015 break; 4016 } 4017 4018 fs_path_reset(path_before); 4019 fs_path_reset(path_after); 4020 4021 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4022 &parent_ino_after_gen, path_after); 4023 if (ret < 0) 4024 goto out; 4025 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4026 NULL, path_before); 4027 if (ret < 0 && ret != -ENOENT) { 4028 goto out; 4029 } else if (ret == -ENOENT) { 4030 ret = 0; 4031 break; 4032 } 4033 4034 len1 = fs_path_len(path_before); 4035 len2 = fs_path_len(path_after); 4036 if (ino > sctx->cur_ino && 4037 (parent_ino_before != parent_ino_after || len1 != len2 || 4038 memcmp(path_before->start, path_after->start, len1))) { 4039 u64 parent_ino_gen; 4040 4041 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4042 if (ret < 0) 4043 goto out; 4044 if (ino_gen == parent_ino_gen) { 4045 ret = 1; 4046 break; 4047 } 4048 } 4049 ino = parent_ino_after; 4050 ino_gen = parent_ino_after_gen; 4051 } 4052 4053 out: 4054 fs_path_free(path_before); 4055 fs_path_free(path_after); 4056 4057 if (ret == 1) { 4058 ret = add_pending_dir_move(sctx, 4059 sctx->cur_ino, 4060 sctx->cur_inode_gen, 4061 ino, 4062 &sctx->new_refs, 4063 &sctx->deleted_refs, 4064 is_orphan); 4065 if (!ret) 4066 ret = 1; 4067 } 4068 4069 return ret; 4070 } 4071 4072 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4073 { 4074 int ret; 4075 struct fs_path *new_path; 4076 4077 /* 4078 * Our reference's name member points to its full_path member string, so 4079 * we use here a new path. 4080 */ 4081 new_path = fs_path_alloc(); 4082 if (!new_path) 4083 return -ENOMEM; 4084 4085 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4086 if (ret < 0) { 4087 fs_path_free(new_path); 4088 return ret; 4089 } 4090 ret = fs_path_add(new_path, ref->name, ref->name_len); 4091 if (ret < 0) { 4092 fs_path_free(new_path); 4093 return ret; 4094 } 4095 4096 fs_path_free(ref->full_path); 4097 set_ref_path(ref, new_path); 4098 4099 return 0; 4100 } 4101 4102 /* 4103 * When processing the new references for an inode we may orphanize an existing 4104 * directory inode because its old name conflicts with one of the new references 4105 * of the current inode. Later, when processing another new reference of our 4106 * inode, we might need to orphanize another inode, but the path we have in the 4107 * reference reflects the pre-orphanization name of the directory we previously 4108 * orphanized. For example: 4109 * 4110 * parent snapshot looks like: 4111 * 4112 * . (ino 256) 4113 * |----- f1 (ino 257) 4114 * |----- f2 (ino 258) 4115 * |----- d1/ (ino 259) 4116 * |----- d2/ (ino 260) 4117 * 4118 * send snapshot looks like: 4119 * 4120 * . (ino 256) 4121 * |----- d1 (ino 258) 4122 * |----- f2/ (ino 259) 4123 * |----- f2_link/ (ino 260) 4124 * | |----- f1 (ino 257) 4125 * | 4126 * |----- d2 (ino 258) 4127 * 4128 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4129 * cache it in the name cache. Later when we start processing inode 258, when 4130 * collecting all its new references we set a full path of "d1/d2" for its new 4131 * reference with name "d2". When we start processing the new references we 4132 * start by processing the new reference with name "d1", and this results in 4133 * orphanizing inode 259, since its old reference causes a conflict. Then we 4134 * move on the next new reference, with name "d2", and we find out we must 4135 * orphanize inode 260, as its old reference conflicts with ours - but for the 4136 * orphanization we use a source path corresponding to the path we stored in the 4137 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4138 * receiver fail since the path component "d1/" no longer exists, it was renamed 4139 * to "o259-6-0/" when processing the previous new reference. So in this case we 4140 * must recompute the path in the new reference and use it for the new 4141 * orphanization operation. 4142 */ 4143 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4144 { 4145 char *name; 4146 int ret; 4147 4148 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4149 if (!name) 4150 return -ENOMEM; 4151 4152 fs_path_reset(ref->full_path); 4153 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4154 if (ret < 0) 4155 goto out; 4156 4157 ret = fs_path_add(ref->full_path, name, ref->name_len); 4158 if (ret < 0) 4159 goto out; 4160 4161 /* Update the reference's base name pointer. */ 4162 set_ref_path(ref, ref->full_path); 4163 out: 4164 kfree(name); 4165 return ret; 4166 } 4167 4168 /* 4169 * This does all the move/link/unlink/rmdir magic. 4170 */ 4171 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4172 { 4173 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4174 int ret = 0; 4175 struct recorded_ref *cur; 4176 struct recorded_ref *cur2; 4177 LIST_HEAD(check_dirs); 4178 struct fs_path *valid_path = NULL; 4179 u64 ow_inode = 0; 4180 u64 ow_gen; 4181 u64 ow_mode; 4182 int did_overwrite = 0; 4183 int is_orphan = 0; 4184 u64 last_dir_ino_rm = 0; 4185 bool can_rename = true; 4186 bool orphanized_dir = false; 4187 bool orphanized_ancestor = false; 4188 4189 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4190 4191 /* 4192 * This should never happen as the root dir always has the same ref 4193 * which is always '..' 4194 */ 4195 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4196 btrfs_err(fs_info, 4197 "send: unexpected inode %llu in process_recorded_refs()", 4198 sctx->cur_ino); 4199 ret = -EINVAL; 4200 goto out; 4201 } 4202 4203 valid_path = fs_path_alloc(); 4204 if (!valid_path) { 4205 ret = -ENOMEM; 4206 goto out; 4207 } 4208 4209 /* 4210 * First, check if the first ref of the current inode was overwritten 4211 * before. If yes, we know that the current inode was already orphanized 4212 * and thus use the orphan name. If not, we can use get_cur_path to 4213 * get the path of the first ref as it would like while receiving at 4214 * this point in time. 4215 * New inodes are always orphan at the beginning, so force to use the 4216 * orphan name in this case. 4217 * The first ref is stored in valid_path and will be updated if it 4218 * gets moved around. 4219 */ 4220 if (!sctx->cur_inode_new) { 4221 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4222 sctx->cur_inode_gen); 4223 if (ret < 0) 4224 goto out; 4225 if (ret) 4226 did_overwrite = 1; 4227 } 4228 if (sctx->cur_inode_new || did_overwrite) { 4229 ret = gen_unique_name(sctx, sctx->cur_ino, 4230 sctx->cur_inode_gen, valid_path); 4231 if (ret < 0) 4232 goto out; 4233 is_orphan = 1; 4234 } else { 4235 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4236 valid_path); 4237 if (ret < 0) 4238 goto out; 4239 } 4240 4241 /* 4242 * Before doing any rename and link operations, do a first pass on the 4243 * new references to orphanize any unprocessed inodes that may have a 4244 * reference that conflicts with one of the new references of the current 4245 * inode. This needs to happen first because a new reference may conflict 4246 * with the old reference of a parent directory, so we must make sure 4247 * that the path used for link and rename commands don't use an 4248 * orphanized name when an ancestor was not yet orphanized. 4249 * 4250 * Example: 4251 * 4252 * Parent snapshot: 4253 * 4254 * . (ino 256) 4255 * |----- testdir/ (ino 259) 4256 * | |----- a (ino 257) 4257 * | 4258 * |----- b (ino 258) 4259 * 4260 * Send snapshot: 4261 * 4262 * . (ino 256) 4263 * |----- testdir_2/ (ino 259) 4264 * | |----- a (ino 260) 4265 * | 4266 * |----- testdir (ino 257) 4267 * |----- b (ino 257) 4268 * |----- b2 (ino 258) 4269 * 4270 * Processing the new reference for inode 257 with name "b" may happen 4271 * before processing the new reference with name "testdir". If so, we 4272 * must make sure that by the time we send a link command to create the 4273 * hard link "b", inode 259 was already orphanized, since the generated 4274 * path in "valid_path" already contains the orphanized name for 259. 4275 * We are processing inode 257, so only later when processing 259 we do 4276 * the rename operation to change its temporary (orphanized) name to 4277 * "testdir_2". 4278 */ 4279 list_for_each_entry(cur, &sctx->new_refs, list) { 4280 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4281 if (ret < 0) 4282 goto out; 4283 if (ret == inode_state_will_create) 4284 continue; 4285 4286 /* 4287 * Check if this new ref would overwrite the first ref of another 4288 * unprocessed inode. If yes, orphanize the overwritten inode. 4289 * If we find an overwritten ref that is not the first ref, 4290 * simply unlink it. 4291 */ 4292 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4293 cur->name, cur->name_len, 4294 &ow_inode, &ow_gen, &ow_mode); 4295 if (ret < 0) 4296 goto out; 4297 if (ret) { 4298 ret = is_first_ref(sctx->parent_root, 4299 ow_inode, cur->dir, cur->name, 4300 cur->name_len); 4301 if (ret < 0) 4302 goto out; 4303 if (ret) { 4304 struct name_cache_entry *nce; 4305 struct waiting_dir_move *wdm; 4306 4307 if (orphanized_dir) { 4308 ret = refresh_ref_path(sctx, cur); 4309 if (ret < 0) 4310 goto out; 4311 } 4312 4313 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4314 cur->full_path); 4315 if (ret < 0) 4316 goto out; 4317 if (S_ISDIR(ow_mode)) 4318 orphanized_dir = true; 4319 4320 /* 4321 * If ow_inode has its rename operation delayed 4322 * make sure that its orphanized name is used in 4323 * the source path when performing its rename 4324 * operation. 4325 */ 4326 wdm = get_waiting_dir_move(sctx, ow_inode); 4327 if (wdm) 4328 wdm->orphanized = true; 4329 4330 /* 4331 * Make sure we clear our orphanized inode's 4332 * name from the name cache. This is because the 4333 * inode ow_inode might be an ancestor of some 4334 * other inode that will be orphanized as well 4335 * later and has an inode number greater than 4336 * sctx->send_progress. We need to prevent 4337 * future name lookups from using the old name 4338 * and get instead the orphan name. 4339 */ 4340 nce = name_cache_search(sctx, ow_inode, ow_gen); 4341 if (nce) 4342 btrfs_lru_cache_remove(&sctx->name_cache, 4343 &nce->entry); 4344 4345 /* 4346 * ow_inode might currently be an ancestor of 4347 * cur_ino, therefore compute valid_path (the 4348 * current path of cur_ino) again because it 4349 * might contain the pre-orphanization name of 4350 * ow_inode, which is no longer valid. 4351 */ 4352 ret = is_ancestor(sctx->parent_root, 4353 ow_inode, ow_gen, 4354 sctx->cur_ino, NULL); 4355 if (ret > 0) { 4356 orphanized_ancestor = true; 4357 fs_path_reset(valid_path); 4358 ret = get_cur_path(sctx, sctx->cur_ino, 4359 sctx->cur_inode_gen, 4360 valid_path); 4361 } 4362 if (ret < 0) 4363 goto out; 4364 } else { 4365 /* 4366 * If we previously orphanized a directory that 4367 * collided with a new reference that we already 4368 * processed, recompute the current path because 4369 * that directory may be part of the path. 4370 */ 4371 if (orphanized_dir) { 4372 ret = refresh_ref_path(sctx, cur); 4373 if (ret < 0) 4374 goto out; 4375 } 4376 ret = send_unlink(sctx, cur->full_path); 4377 if (ret < 0) 4378 goto out; 4379 } 4380 } 4381 4382 } 4383 4384 list_for_each_entry(cur, &sctx->new_refs, list) { 4385 /* 4386 * We may have refs where the parent directory does not exist 4387 * yet. This happens if the parent directories inum is higher 4388 * than the current inum. To handle this case, we create the 4389 * parent directory out of order. But we need to check if this 4390 * did already happen before due to other refs in the same dir. 4391 */ 4392 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4393 if (ret < 0) 4394 goto out; 4395 if (ret == inode_state_will_create) { 4396 ret = 0; 4397 /* 4398 * First check if any of the current inodes refs did 4399 * already create the dir. 4400 */ 4401 list_for_each_entry(cur2, &sctx->new_refs, list) { 4402 if (cur == cur2) 4403 break; 4404 if (cur2->dir == cur->dir) { 4405 ret = 1; 4406 break; 4407 } 4408 } 4409 4410 /* 4411 * If that did not happen, check if a previous inode 4412 * did already create the dir. 4413 */ 4414 if (!ret) 4415 ret = did_create_dir(sctx, cur->dir); 4416 if (ret < 0) 4417 goto out; 4418 if (!ret) { 4419 ret = send_create_inode(sctx, cur->dir); 4420 if (ret < 0) 4421 goto out; 4422 cache_dir_created(sctx, cur->dir); 4423 } 4424 } 4425 4426 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4427 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4428 if (ret < 0) 4429 goto out; 4430 if (ret == 1) { 4431 can_rename = false; 4432 *pending_move = 1; 4433 } 4434 } 4435 4436 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4437 can_rename) { 4438 ret = wait_for_parent_move(sctx, cur, is_orphan); 4439 if (ret < 0) 4440 goto out; 4441 if (ret == 1) { 4442 can_rename = false; 4443 *pending_move = 1; 4444 } 4445 } 4446 4447 /* 4448 * link/move the ref to the new place. If we have an orphan 4449 * inode, move it and update valid_path. If not, link or move 4450 * it depending on the inode mode. 4451 */ 4452 if (is_orphan && can_rename) { 4453 ret = send_rename(sctx, valid_path, cur->full_path); 4454 if (ret < 0) 4455 goto out; 4456 is_orphan = 0; 4457 ret = fs_path_copy(valid_path, cur->full_path); 4458 if (ret < 0) 4459 goto out; 4460 } else if (can_rename) { 4461 if (S_ISDIR(sctx->cur_inode_mode)) { 4462 /* 4463 * Dirs can't be linked, so move it. For moved 4464 * dirs, we always have one new and one deleted 4465 * ref. The deleted ref is ignored later. 4466 */ 4467 ret = send_rename(sctx, valid_path, 4468 cur->full_path); 4469 if (!ret) 4470 ret = fs_path_copy(valid_path, 4471 cur->full_path); 4472 if (ret < 0) 4473 goto out; 4474 } else { 4475 /* 4476 * We might have previously orphanized an inode 4477 * which is an ancestor of our current inode, 4478 * so our reference's full path, which was 4479 * computed before any such orphanizations, must 4480 * be updated. 4481 */ 4482 if (orphanized_dir) { 4483 ret = update_ref_path(sctx, cur); 4484 if (ret < 0) 4485 goto out; 4486 } 4487 ret = send_link(sctx, cur->full_path, 4488 valid_path); 4489 if (ret < 0) 4490 goto out; 4491 } 4492 } 4493 ret = dup_ref(cur, &check_dirs); 4494 if (ret < 0) 4495 goto out; 4496 } 4497 4498 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4499 /* 4500 * Check if we can already rmdir the directory. If not, 4501 * orphanize it. For every dir item inside that gets deleted 4502 * later, we do this check again and rmdir it then if possible. 4503 * See the use of check_dirs for more details. 4504 */ 4505 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4506 if (ret < 0) 4507 goto out; 4508 if (ret) { 4509 ret = send_rmdir(sctx, valid_path); 4510 if (ret < 0) 4511 goto out; 4512 } else if (!is_orphan) { 4513 ret = orphanize_inode(sctx, sctx->cur_ino, 4514 sctx->cur_inode_gen, valid_path); 4515 if (ret < 0) 4516 goto out; 4517 is_orphan = 1; 4518 } 4519 4520 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4521 ret = dup_ref(cur, &check_dirs); 4522 if (ret < 0) 4523 goto out; 4524 } 4525 } else if (S_ISDIR(sctx->cur_inode_mode) && 4526 !list_empty(&sctx->deleted_refs)) { 4527 /* 4528 * We have a moved dir. Add the old parent to check_dirs 4529 */ 4530 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4531 list); 4532 ret = dup_ref(cur, &check_dirs); 4533 if (ret < 0) 4534 goto out; 4535 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4536 /* 4537 * We have a non dir inode. Go through all deleted refs and 4538 * unlink them if they were not already overwritten by other 4539 * inodes. 4540 */ 4541 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4542 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4543 sctx->cur_ino, sctx->cur_inode_gen, 4544 cur->name, cur->name_len); 4545 if (ret < 0) 4546 goto out; 4547 if (!ret) { 4548 /* 4549 * If we orphanized any ancestor before, we need 4550 * to recompute the full path for deleted names, 4551 * since any such path was computed before we 4552 * processed any references and orphanized any 4553 * ancestor inode. 4554 */ 4555 if (orphanized_ancestor) { 4556 ret = update_ref_path(sctx, cur); 4557 if (ret < 0) 4558 goto out; 4559 } 4560 ret = send_unlink(sctx, cur->full_path); 4561 if (ret < 0) 4562 goto out; 4563 } 4564 ret = dup_ref(cur, &check_dirs); 4565 if (ret < 0) 4566 goto out; 4567 } 4568 /* 4569 * If the inode is still orphan, unlink the orphan. This may 4570 * happen when a previous inode did overwrite the first ref 4571 * of this inode and no new refs were added for the current 4572 * inode. Unlinking does not mean that the inode is deleted in 4573 * all cases. There may still be links to this inode in other 4574 * places. 4575 */ 4576 if (is_orphan) { 4577 ret = send_unlink(sctx, valid_path); 4578 if (ret < 0) 4579 goto out; 4580 } 4581 } 4582 4583 /* 4584 * We did collect all parent dirs where cur_inode was once located. We 4585 * now go through all these dirs and check if they are pending for 4586 * deletion and if it's finally possible to perform the rmdir now. 4587 * We also update the inode stats of the parent dirs here. 4588 */ 4589 list_for_each_entry(cur, &check_dirs, list) { 4590 /* 4591 * In case we had refs into dirs that were not processed yet, 4592 * we don't need to do the utime and rmdir logic for these dirs. 4593 * The dir will be processed later. 4594 */ 4595 if (cur->dir > sctx->cur_ino) 4596 continue; 4597 4598 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4599 if (ret < 0) 4600 goto out; 4601 4602 if (ret == inode_state_did_create || 4603 ret == inode_state_no_change) { 4604 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4605 if (ret < 0) 4606 goto out; 4607 } else if (ret == inode_state_did_delete && 4608 cur->dir != last_dir_ino_rm) { 4609 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4610 if (ret < 0) 4611 goto out; 4612 if (ret) { 4613 ret = get_cur_path(sctx, cur->dir, 4614 cur->dir_gen, valid_path); 4615 if (ret < 0) 4616 goto out; 4617 ret = send_rmdir(sctx, valid_path); 4618 if (ret < 0) 4619 goto out; 4620 last_dir_ino_rm = cur->dir; 4621 } 4622 } 4623 } 4624 4625 ret = 0; 4626 4627 out: 4628 __free_recorded_refs(&check_dirs); 4629 free_recorded_refs(sctx); 4630 fs_path_free(valid_path); 4631 return ret; 4632 } 4633 4634 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4635 { 4636 const struct recorded_ref *data = k; 4637 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4638 int result; 4639 4640 if (data->dir > ref->dir) 4641 return 1; 4642 if (data->dir < ref->dir) 4643 return -1; 4644 if (data->dir_gen > ref->dir_gen) 4645 return 1; 4646 if (data->dir_gen < ref->dir_gen) 4647 return -1; 4648 if (data->name_len > ref->name_len) 4649 return 1; 4650 if (data->name_len < ref->name_len) 4651 return -1; 4652 result = strcmp(data->name, ref->name); 4653 if (result > 0) 4654 return 1; 4655 if (result < 0) 4656 return -1; 4657 return 0; 4658 } 4659 4660 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4661 { 4662 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4663 4664 return rbtree_ref_comp(entry, parent) < 0; 4665 } 4666 4667 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4668 struct fs_path *name, u64 dir, u64 dir_gen, 4669 struct send_ctx *sctx) 4670 { 4671 int ret = 0; 4672 struct fs_path *path = NULL; 4673 struct recorded_ref *ref = NULL; 4674 4675 path = fs_path_alloc(); 4676 if (!path) { 4677 ret = -ENOMEM; 4678 goto out; 4679 } 4680 4681 ref = recorded_ref_alloc(); 4682 if (!ref) { 4683 ret = -ENOMEM; 4684 goto out; 4685 } 4686 4687 ret = get_cur_path(sctx, dir, dir_gen, path); 4688 if (ret < 0) 4689 goto out; 4690 ret = fs_path_add_path(path, name); 4691 if (ret < 0) 4692 goto out; 4693 4694 ref->dir = dir; 4695 ref->dir_gen = dir_gen; 4696 set_ref_path(ref, path); 4697 list_add_tail(&ref->list, refs); 4698 rb_add(&ref->node, root, rbtree_ref_less); 4699 ref->root = root; 4700 out: 4701 if (ret) { 4702 if (path && (!ref || !ref->full_path)) 4703 fs_path_free(path); 4704 recorded_ref_free(ref); 4705 } 4706 return ret; 4707 } 4708 4709 static int record_new_ref_if_needed(int num, u64 dir, int index, 4710 struct fs_path *name, void *ctx) 4711 { 4712 int ret = 0; 4713 struct send_ctx *sctx = ctx; 4714 struct rb_node *node = NULL; 4715 struct recorded_ref data; 4716 struct recorded_ref *ref; 4717 u64 dir_gen; 4718 4719 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4720 if (ret < 0) 4721 goto out; 4722 4723 data.dir = dir; 4724 data.dir_gen = dir_gen; 4725 set_ref_path(&data, name); 4726 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4727 if (node) { 4728 ref = rb_entry(node, struct recorded_ref, node); 4729 recorded_ref_free(ref); 4730 } else { 4731 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4732 &sctx->new_refs, name, dir, dir_gen, 4733 sctx); 4734 } 4735 out: 4736 return ret; 4737 } 4738 4739 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4740 struct fs_path *name, void *ctx) 4741 { 4742 int ret = 0; 4743 struct send_ctx *sctx = ctx; 4744 struct rb_node *node = NULL; 4745 struct recorded_ref data; 4746 struct recorded_ref *ref; 4747 u64 dir_gen; 4748 4749 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4750 if (ret < 0) 4751 goto out; 4752 4753 data.dir = dir; 4754 data.dir_gen = dir_gen; 4755 set_ref_path(&data, name); 4756 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4757 if (node) { 4758 ref = rb_entry(node, struct recorded_ref, node); 4759 recorded_ref_free(ref); 4760 } else { 4761 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4762 &sctx->deleted_refs, name, dir, 4763 dir_gen, sctx); 4764 } 4765 out: 4766 return ret; 4767 } 4768 4769 static int record_new_ref(struct send_ctx *sctx) 4770 { 4771 int ret; 4772 4773 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4774 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4775 if (ret < 0) 4776 goto out; 4777 ret = 0; 4778 4779 out: 4780 return ret; 4781 } 4782 4783 static int record_deleted_ref(struct send_ctx *sctx) 4784 { 4785 int ret; 4786 4787 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4788 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4789 sctx); 4790 if (ret < 0) 4791 goto out; 4792 ret = 0; 4793 4794 out: 4795 return ret; 4796 } 4797 4798 static int record_changed_ref(struct send_ctx *sctx) 4799 { 4800 int ret = 0; 4801 4802 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4803 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4804 if (ret < 0) 4805 goto out; 4806 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4807 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4808 if (ret < 0) 4809 goto out; 4810 ret = 0; 4811 4812 out: 4813 return ret; 4814 } 4815 4816 /* 4817 * Record and process all refs at once. Needed when an inode changes the 4818 * generation number, which means that it was deleted and recreated. 4819 */ 4820 static int process_all_refs(struct send_ctx *sctx, 4821 enum btrfs_compare_tree_result cmd) 4822 { 4823 int ret = 0; 4824 int iter_ret = 0; 4825 struct btrfs_root *root; 4826 struct btrfs_path *path; 4827 struct btrfs_key key; 4828 struct btrfs_key found_key; 4829 iterate_inode_ref_t cb; 4830 int pending_move = 0; 4831 4832 path = alloc_path_for_send(); 4833 if (!path) 4834 return -ENOMEM; 4835 4836 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4837 root = sctx->send_root; 4838 cb = record_new_ref_if_needed; 4839 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4840 root = sctx->parent_root; 4841 cb = record_deleted_ref_if_needed; 4842 } else { 4843 btrfs_err(sctx->send_root->fs_info, 4844 "Wrong command %d in process_all_refs", cmd); 4845 ret = -EINVAL; 4846 goto out; 4847 } 4848 4849 key.objectid = sctx->cmp_key->objectid; 4850 key.type = BTRFS_INODE_REF_KEY; 4851 key.offset = 0; 4852 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4853 if (found_key.objectid != key.objectid || 4854 (found_key.type != BTRFS_INODE_REF_KEY && 4855 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4856 break; 4857 4858 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4859 if (ret < 0) 4860 goto out; 4861 } 4862 /* Catch error found during iteration */ 4863 if (iter_ret < 0) { 4864 ret = iter_ret; 4865 goto out; 4866 } 4867 btrfs_release_path(path); 4868 4869 /* 4870 * We don't actually care about pending_move as we are simply 4871 * re-creating this inode and will be rename'ing it into place once we 4872 * rename the parent directory. 4873 */ 4874 ret = process_recorded_refs(sctx, &pending_move); 4875 out: 4876 btrfs_free_path(path); 4877 return ret; 4878 } 4879 4880 static int send_set_xattr(struct send_ctx *sctx, 4881 struct fs_path *path, 4882 const char *name, int name_len, 4883 const char *data, int data_len) 4884 { 4885 int ret = 0; 4886 4887 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4888 if (ret < 0) 4889 goto out; 4890 4891 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4892 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4893 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4894 4895 ret = send_cmd(sctx); 4896 4897 tlv_put_failure: 4898 out: 4899 return ret; 4900 } 4901 4902 static int send_remove_xattr(struct send_ctx *sctx, 4903 struct fs_path *path, 4904 const char *name, int name_len) 4905 { 4906 int ret = 0; 4907 4908 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4909 if (ret < 0) 4910 goto out; 4911 4912 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4913 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4914 4915 ret = send_cmd(sctx); 4916 4917 tlv_put_failure: 4918 out: 4919 return ret; 4920 } 4921 4922 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4923 const char *name, int name_len, const char *data, 4924 int data_len, void *ctx) 4925 { 4926 int ret; 4927 struct send_ctx *sctx = ctx; 4928 struct fs_path *p; 4929 struct posix_acl_xattr_header dummy_acl; 4930 4931 /* Capabilities are emitted by finish_inode_if_needed */ 4932 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4933 return 0; 4934 4935 p = fs_path_alloc(); 4936 if (!p) 4937 return -ENOMEM; 4938 4939 /* 4940 * This hack is needed because empty acls are stored as zero byte 4941 * data in xattrs. Problem with that is, that receiving these zero byte 4942 * acls will fail later. To fix this, we send a dummy acl list that 4943 * only contains the version number and no entries. 4944 */ 4945 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4946 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4947 if (data_len == 0) { 4948 dummy_acl.a_version = 4949 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4950 data = (char *)&dummy_acl; 4951 data_len = sizeof(dummy_acl); 4952 } 4953 } 4954 4955 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4956 if (ret < 0) 4957 goto out; 4958 4959 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4960 4961 out: 4962 fs_path_free(p); 4963 return ret; 4964 } 4965 4966 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4967 const char *name, int name_len, 4968 const char *data, int data_len, void *ctx) 4969 { 4970 int ret; 4971 struct send_ctx *sctx = ctx; 4972 struct fs_path *p; 4973 4974 p = fs_path_alloc(); 4975 if (!p) 4976 return -ENOMEM; 4977 4978 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4979 if (ret < 0) 4980 goto out; 4981 4982 ret = send_remove_xattr(sctx, p, name, name_len); 4983 4984 out: 4985 fs_path_free(p); 4986 return ret; 4987 } 4988 4989 static int process_new_xattr(struct send_ctx *sctx) 4990 { 4991 int ret = 0; 4992 4993 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4994 __process_new_xattr, sctx); 4995 4996 return ret; 4997 } 4998 4999 static int process_deleted_xattr(struct send_ctx *sctx) 5000 { 5001 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5002 __process_deleted_xattr, sctx); 5003 } 5004 5005 struct find_xattr_ctx { 5006 const char *name; 5007 int name_len; 5008 int found_idx; 5009 char *found_data; 5010 int found_data_len; 5011 }; 5012 5013 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5014 int name_len, const char *data, int data_len, void *vctx) 5015 { 5016 struct find_xattr_ctx *ctx = vctx; 5017 5018 if (name_len == ctx->name_len && 5019 strncmp(name, ctx->name, name_len) == 0) { 5020 ctx->found_idx = num; 5021 ctx->found_data_len = data_len; 5022 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5023 if (!ctx->found_data) 5024 return -ENOMEM; 5025 return 1; 5026 } 5027 return 0; 5028 } 5029 5030 static int find_xattr(struct btrfs_root *root, 5031 struct btrfs_path *path, 5032 struct btrfs_key *key, 5033 const char *name, int name_len, 5034 char **data, int *data_len) 5035 { 5036 int ret; 5037 struct find_xattr_ctx ctx; 5038 5039 ctx.name = name; 5040 ctx.name_len = name_len; 5041 ctx.found_idx = -1; 5042 ctx.found_data = NULL; 5043 ctx.found_data_len = 0; 5044 5045 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5046 if (ret < 0) 5047 return ret; 5048 5049 if (ctx.found_idx == -1) 5050 return -ENOENT; 5051 if (data) { 5052 *data = ctx.found_data; 5053 *data_len = ctx.found_data_len; 5054 } else { 5055 kfree(ctx.found_data); 5056 } 5057 return ctx.found_idx; 5058 } 5059 5060 5061 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5062 const char *name, int name_len, 5063 const char *data, int data_len, 5064 void *ctx) 5065 { 5066 int ret; 5067 struct send_ctx *sctx = ctx; 5068 char *found_data = NULL; 5069 int found_data_len = 0; 5070 5071 ret = find_xattr(sctx->parent_root, sctx->right_path, 5072 sctx->cmp_key, name, name_len, &found_data, 5073 &found_data_len); 5074 if (ret == -ENOENT) { 5075 ret = __process_new_xattr(num, di_key, name, name_len, data, 5076 data_len, ctx); 5077 } else if (ret >= 0) { 5078 if (data_len != found_data_len || 5079 memcmp(data, found_data, data_len)) { 5080 ret = __process_new_xattr(num, di_key, name, name_len, 5081 data, data_len, ctx); 5082 } else { 5083 ret = 0; 5084 } 5085 } 5086 5087 kfree(found_data); 5088 return ret; 5089 } 5090 5091 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5092 const char *name, int name_len, 5093 const char *data, int data_len, 5094 void *ctx) 5095 { 5096 int ret; 5097 struct send_ctx *sctx = ctx; 5098 5099 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5100 name, name_len, NULL, NULL); 5101 if (ret == -ENOENT) 5102 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5103 data_len, ctx); 5104 else if (ret >= 0) 5105 ret = 0; 5106 5107 return ret; 5108 } 5109 5110 static int process_changed_xattr(struct send_ctx *sctx) 5111 { 5112 int ret = 0; 5113 5114 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5115 __process_changed_new_xattr, sctx); 5116 if (ret < 0) 5117 goto out; 5118 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5119 __process_changed_deleted_xattr, sctx); 5120 5121 out: 5122 return ret; 5123 } 5124 5125 static int process_all_new_xattrs(struct send_ctx *sctx) 5126 { 5127 int ret = 0; 5128 int iter_ret = 0; 5129 struct btrfs_root *root; 5130 struct btrfs_path *path; 5131 struct btrfs_key key; 5132 struct btrfs_key found_key; 5133 5134 path = alloc_path_for_send(); 5135 if (!path) 5136 return -ENOMEM; 5137 5138 root = sctx->send_root; 5139 5140 key.objectid = sctx->cmp_key->objectid; 5141 key.type = BTRFS_XATTR_ITEM_KEY; 5142 key.offset = 0; 5143 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5144 if (found_key.objectid != key.objectid || 5145 found_key.type != key.type) { 5146 ret = 0; 5147 break; 5148 } 5149 5150 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5151 if (ret < 0) 5152 break; 5153 } 5154 /* Catch error found during iteration */ 5155 if (iter_ret < 0) 5156 ret = iter_ret; 5157 5158 btrfs_free_path(path); 5159 return ret; 5160 } 5161 5162 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5163 struct fsverity_descriptor *desc) 5164 { 5165 int ret; 5166 5167 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5168 if (ret < 0) 5169 goto out; 5170 5171 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5172 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5173 le8_to_cpu(desc->hash_algorithm)); 5174 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5175 1U << le8_to_cpu(desc->log_blocksize)); 5176 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5177 le8_to_cpu(desc->salt_size)); 5178 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5179 le32_to_cpu(desc->sig_size)); 5180 5181 ret = send_cmd(sctx); 5182 5183 tlv_put_failure: 5184 out: 5185 return ret; 5186 } 5187 5188 static int process_verity(struct send_ctx *sctx) 5189 { 5190 int ret = 0; 5191 struct inode *inode; 5192 struct fs_path *p; 5193 5194 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5195 if (IS_ERR(inode)) 5196 return PTR_ERR(inode); 5197 5198 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5199 if (ret < 0) 5200 goto iput; 5201 5202 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5203 ret = -EMSGSIZE; 5204 goto iput; 5205 } 5206 if (!sctx->verity_descriptor) { 5207 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5208 GFP_KERNEL); 5209 if (!sctx->verity_descriptor) { 5210 ret = -ENOMEM; 5211 goto iput; 5212 } 5213 } 5214 5215 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5216 if (ret < 0) 5217 goto iput; 5218 5219 p = fs_path_alloc(); 5220 if (!p) { 5221 ret = -ENOMEM; 5222 goto iput; 5223 } 5224 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5225 if (ret < 0) 5226 goto free_path; 5227 5228 ret = send_verity(sctx, p, sctx->verity_descriptor); 5229 if (ret < 0) 5230 goto free_path; 5231 5232 free_path: 5233 fs_path_free(p); 5234 iput: 5235 iput(inode); 5236 return ret; 5237 } 5238 5239 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5240 { 5241 return sctx->send_max_size - SZ_16K; 5242 } 5243 5244 static int put_data_header(struct send_ctx *sctx, u32 len) 5245 { 5246 if (WARN_ON_ONCE(sctx->put_data)) 5247 return -EINVAL; 5248 sctx->put_data = true; 5249 if (sctx->proto >= 2) { 5250 /* 5251 * Since v2, the data attribute header doesn't include a length, 5252 * it is implicitly to the end of the command. 5253 */ 5254 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5255 return -EOVERFLOW; 5256 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5257 sctx->send_size += sizeof(__le16); 5258 } else { 5259 struct btrfs_tlv_header *hdr; 5260 5261 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5262 return -EOVERFLOW; 5263 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5264 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5265 put_unaligned_le16(len, &hdr->tlv_len); 5266 sctx->send_size += sizeof(*hdr); 5267 } 5268 return 0; 5269 } 5270 5271 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5272 { 5273 struct btrfs_root *root = sctx->send_root; 5274 struct btrfs_fs_info *fs_info = root->fs_info; 5275 struct folio *folio; 5276 pgoff_t index = offset >> PAGE_SHIFT; 5277 pgoff_t last_index; 5278 unsigned pg_offset = offset_in_page(offset); 5279 struct address_space *mapping = sctx->cur_inode->i_mapping; 5280 int ret; 5281 5282 ret = put_data_header(sctx, len); 5283 if (ret) 5284 return ret; 5285 5286 last_index = (offset + len - 1) >> PAGE_SHIFT; 5287 5288 while (index <= last_index) { 5289 unsigned cur_len = min_t(unsigned, len, 5290 PAGE_SIZE - pg_offset); 5291 5292 folio = filemap_lock_folio(mapping, index); 5293 if (IS_ERR(folio)) { 5294 page_cache_sync_readahead(mapping, 5295 &sctx->ra, NULL, index, 5296 last_index + 1 - index); 5297 5298 folio = filemap_grab_folio(mapping, index); 5299 if (IS_ERR(folio)) { 5300 ret = PTR_ERR(folio); 5301 break; 5302 } 5303 } 5304 5305 WARN_ON(folio_order(folio)); 5306 5307 if (folio_test_readahead(folio)) 5308 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5309 last_index + 1 - index); 5310 5311 if (!folio_test_uptodate(folio)) { 5312 btrfs_read_folio(NULL, folio); 5313 folio_lock(folio); 5314 if (!folio_test_uptodate(folio)) { 5315 folio_unlock(folio); 5316 btrfs_err(fs_info, 5317 "send: IO error at offset %llu for inode %llu root %llu", 5318 folio_pos(folio), sctx->cur_ino, 5319 btrfs_root_id(sctx->send_root)); 5320 folio_put(folio); 5321 ret = -EIO; 5322 break; 5323 } 5324 } 5325 5326 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5327 pg_offset, cur_len); 5328 folio_unlock(folio); 5329 folio_put(folio); 5330 index++; 5331 pg_offset = 0; 5332 len -= cur_len; 5333 sctx->send_size += cur_len; 5334 } 5335 5336 return ret; 5337 } 5338 5339 /* 5340 * Read some bytes from the current inode/file and send a write command to 5341 * user space. 5342 */ 5343 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5344 { 5345 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5346 int ret = 0; 5347 struct fs_path *p; 5348 5349 p = fs_path_alloc(); 5350 if (!p) 5351 return -ENOMEM; 5352 5353 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5354 5355 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5356 if (ret < 0) 5357 goto out; 5358 5359 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5360 if (ret < 0) 5361 goto out; 5362 5363 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5364 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5365 ret = put_file_data(sctx, offset, len); 5366 if (ret < 0) 5367 goto out; 5368 5369 ret = send_cmd(sctx); 5370 5371 tlv_put_failure: 5372 out: 5373 fs_path_free(p); 5374 return ret; 5375 } 5376 5377 /* 5378 * Send a clone command to user space. 5379 */ 5380 static int send_clone(struct send_ctx *sctx, 5381 u64 offset, u32 len, 5382 struct clone_root *clone_root) 5383 { 5384 int ret = 0; 5385 struct fs_path *p; 5386 u64 gen; 5387 5388 btrfs_debug(sctx->send_root->fs_info, 5389 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5390 offset, len, btrfs_root_id(clone_root->root), 5391 clone_root->ino, clone_root->offset); 5392 5393 p = fs_path_alloc(); 5394 if (!p) 5395 return -ENOMEM; 5396 5397 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5398 if (ret < 0) 5399 goto out; 5400 5401 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5402 if (ret < 0) 5403 goto out; 5404 5405 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5406 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5407 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5408 5409 if (clone_root->root == sctx->send_root) { 5410 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5411 if (ret < 0) 5412 goto out; 5413 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5414 } else { 5415 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5416 } 5417 if (ret < 0) 5418 goto out; 5419 5420 /* 5421 * If the parent we're using has a received_uuid set then use that as 5422 * our clone source as that is what we will look for when doing a 5423 * receive. 5424 * 5425 * This covers the case that we create a snapshot off of a received 5426 * subvolume and then use that as the parent and try to receive on a 5427 * different host. 5428 */ 5429 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5430 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5431 clone_root->root->root_item.received_uuid); 5432 else 5433 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5434 clone_root->root->root_item.uuid); 5435 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5436 btrfs_root_ctransid(&clone_root->root->root_item)); 5437 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5438 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5439 clone_root->offset); 5440 5441 ret = send_cmd(sctx); 5442 5443 tlv_put_failure: 5444 out: 5445 fs_path_free(p); 5446 return ret; 5447 } 5448 5449 /* 5450 * Send an update extent command to user space. 5451 */ 5452 static int send_update_extent(struct send_ctx *sctx, 5453 u64 offset, u32 len) 5454 { 5455 int ret = 0; 5456 struct fs_path *p; 5457 5458 p = fs_path_alloc(); 5459 if (!p) 5460 return -ENOMEM; 5461 5462 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5463 if (ret < 0) 5464 goto out; 5465 5466 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5467 if (ret < 0) 5468 goto out; 5469 5470 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5471 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5472 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5473 5474 ret = send_cmd(sctx); 5475 5476 tlv_put_failure: 5477 out: 5478 fs_path_free(p); 5479 return ret; 5480 } 5481 5482 static int send_hole(struct send_ctx *sctx, u64 end) 5483 { 5484 struct fs_path *p = NULL; 5485 u64 read_size = max_send_read_size(sctx); 5486 u64 offset = sctx->cur_inode_last_extent; 5487 int ret = 0; 5488 5489 /* 5490 * A hole that starts at EOF or beyond it. Since we do not yet support 5491 * fallocate (for extent preallocation and hole punching), sending a 5492 * write of zeroes starting at EOF or beyond would later require issuing 5493 * a truncate operation which would undo the write and achieve nothing. 5494 */ 5495 if (offset >= sctx->cur_inode_size) 5496 return 0; 5497 5498 /* 5499 * Don't go beyond the inode's i_size due to prealloc extents that start 5500 * after the i_size. 5501 */ 5502 end = min_t(u64, end, sctx->cur_inode_size); 5503 5504 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5505 return send_update_extent(sctx, offset, end - offset); 5506 5507 p = fs_path_alloc(); 5508 if (!p) 5509 return -ENOMEM; 5510 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5511 if (ret < 0) 5512 goto tlv_put_failure; 5513 while (offset < end) { 5514 u64 len = min(end - offset, read_size); 5515 5516 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5517 if (ret < 0) 5518 break; 5519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5520 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5521 ret = put_data_header(sctx, len); 5522 if (ret < 0) 5523 break; 5524 memset(sctx->send_buf + sctx->send_size, 0, len); 5525 sctx->send_size += len; 5526 ret = send_cmd(sctx); 5527 if (ret < 0) 5528 break; 5529 offset += len; 5530 } 5531 sctx->cur_inode_next_write_offset = offset; 5532 tlv_put_failure: 5533 fs_path_free(p); 5534 return ret; 5535 } 5536 5537 static int send_encoded_inline_extent(struct send_ctx *sctx, 5538 struct btrfs_path *path, u64 offset, 5539 u64 len) 5540 { 5541 struct btrfs_root *root = sctx->send_root; 5542 struct btrfs_fs_info *fs_info = root->fs_info; 5543 struct inode *inode; 5544 struct fs_path *fspath; 5545 struct extent_buffer *leaf = path->nodes[0]; 5546 struct btrfs_key key; 5547 struct btrfs_file_extent_item *ei; 5548 u64 ram_bytes; 5549 size_t inline_size; 5550 int ret; 5551 5552 inode = btrfs_iget(sctx->cur_ino, root); 5553 if (IS_ERR(inode)) 5554 return PTR_ERR(inode); 5555 5556 fspath = fs_path_alloc(); 5557 if (!fspath) { 5558 ret = -ENOMEM; 5559 goto out; 5560 } 5561 5562 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5563 if (ret < 0) 5564 goto out; 5565 5566 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5567 if (ret < 0) 5568 goto out; 5569 5570 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5571 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5572 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5573 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5574 5575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5576 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5577 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5578 min(key.offset + ram_bytes - offset, len)); 5579 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5581 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5582 btrfs_file_extent_compression(leaf, ei)); 5583 if (ret < 0) 5584 goto out; 5585 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5586 5587 ret = put_data_header(sctx, inline_size); 5588 if (ret < 0) 5589 goto out; 5590 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5591 btrfs_file_extent_inline_start(ei), inline_size); 5592 sctx->send_size += inline_size; 5593 5594 ret = send_cmd(sctx); 5595 5596 tlv_put_failure: 5597 out: 5598 fs_path_free(fspath); 5599 iput(inode); 5600 return ret; 5601 } 5602 5603 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5604 u64 offset, u64 len) 5605 { 5606 struct btrfs_root *root = sctx->send_root; 5607 struct btrfs_fs_info *fs_info = root->fs_info; 5608 struct inode *inode; 5609 struct fs_path *fspath; 5610 struct extent_buffer *leaf = path->nodes[0]; 5611 struct btrfs_key key; 5612 struct btrfs_file_extent_item *ei; 5613 u64 disk_bytenr, disk_num_bytes; 5614 u32 data_offset; 5615 struct btrfs_cmd_header *hdr; 5616 u32 crc; 5617 int ret; 5618 5619 inode = btrfs_iget(sctx->cur_ino, root); 5620 if (IS_ERR(inode)) 5621 return PTR_ERR(inode); 5622 5623 fspath = fs_path_alloc(); 5624 if (!fspath) { 5625 ret = -ENOMEM; 5626 goto out; 5627 } 5628 5629 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5630 if (ret < 0) 5631 goto out; 5632 5633 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5634 if (ret < 0) 5635 goto out; 5636 5637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5639 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5640 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5641 5642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5643 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5645 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5646 len)); 5647 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5648 btrfs_file_extent_ram_bytes(leaf, ei)); 5649 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5650 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5651 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5652 btrfs_file_extent_compression(leaf, ei)); 5653 if (ret < 0) 5654 goto out; 5655 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5656 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5657 5658 ret = put_data_header(sctx, disk_num_bytes); 5659 if (ret < 0) 5660 goto out; 5661 5662 /* 5663 * We want to do I/O directly into the send buffer, so get the next page 5664 * boundary in the send buffer. This means that there may be a gap 5665 * between the beginning of the command and the file data. 5666 */ 5667 data_offset = PAGE_ALIGN(sctx->send_size); 5668 if (data_offset > sctx->send_max_size || 5669 sctx->send_max_size - data_offset < disk_num_bytes) { 5670 ret = -EOVERFLOW; 5671 goto out; 5672 } 5673 5674 /* 5675 * Note that send_buf is a mapping of send_buf_pages, so this is really 5676 * reading into send_buf. 5677 */ 5678 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5679 disk_bytenr, disk_num_bytes, 5680 sctx->send_buf_pages + 5681 (data_offset >> PAGE_SHIFT)); 5682 if (ret) 5683 goto out; 5684 5685 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5686 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5687 hdr->crc = 0; 5688 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5689 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5690 hdr->crc = cpu_to_le32(crc); 5691 5692 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5693 &sctx->send_off); 5694 if (!ret) { 5695 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5696 disk_num_bytes, &sctx->send_off); 5697 } 5698 sctx->send_size = 0; 5699 sctx->put_data = false; 5700 5701 tlv_put_failure: 5702 out: 5703 fs_path_free(fspath); 5704 iput(inode); 5705 return ret; 5706 } 5707 5708 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5709 const u64 offset, const u64 len) 5710 { 5711 const u64 end = offset + len; 5712 struct extent_buffer *leaf = path->nodes[0]; 5713 struct btrfs_file_extent_item *ei; 5714 u64 read_size = max_send_read_size(sctx); 5715 u64 sent = 0; 5716 5717 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5718 return send_update_extent(sctx, offset, len); 5719 5720 ei = btrfs_item_ptr(leaf, path->slots[0], 5721 struct btrfs_file_extent_item); 5722 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5723 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5724 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5725 BTRFS_FILE_EXTENT_INLINE); 5726 5727 /* 5728 * Send the compressed extent unless the compressed data is 5729 * larger than the decompressed data. This can happen if we're 5730 * not sending the entire extent, either because it has been 5731 * partially overwritten/truncated or because this is a part of 5732 * the extent that we couldn't clone in clone_range(). 5733 */ 5734 if (is_inline && 5735 btrfs_file_extent_inline_item_len(leaf, 5736 path->slots[0]) <= len) { 5737 return send_encoded_inline_extent(sctx, path, offset, 5738 len); 5739 } else if (!is_inline && 5740 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5741 return send_encoded_extent(sctx, path, offset, len); 5742 } 5743 } 5744 5745 if (sctx->cur_inode == NULL) { 5746 struct btrfs_root *root = sctx->send_root; 5747 5748 sctx->cur_inode = btrfs_iget(sctx->cur_ino, root); 5749 if (IS_ERR(sctx->cur_inode)) { 5750 int err = PTR_ERR(sctx->cur_inode); 5751 5752 sctx->cur_inode = NULL; 5753 return err; 5754 } 5755 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5756 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5757 5758 /* 5759 * It's very likely there are no pages from this inode in the page 5760 * cache, so after reading extents and sending their data, we clean 5761 * the page cache to avoid trashing the page cache (adding pressure 5762 * to the page cache and forcing eviction of other data more useful 5763 * for applications). 5764 * 5765 * We decide if we should clean the page cache simply by checking 5766 * if the inode's mapping nrpages is 0 when we first open it, and 5767 * not by using something like filemap_range_has_page() before 5768 * reading an extent because when we ask the readahead code to 5769 * read a given file range, it may (and almost always does) read 5770 * pages from beyond that range (see the documentation for 5771 * page_cache_sync_readahead()), so it would not be reliable, 5772 * because after reading the first extent future calls to 5773 * filemap_range_has_page() would return true because the readahead 5774 * on the previous extent resulted in reading pages of the current 5775 * extent as well. 5776 */ 5777 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5778 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5779 } 5780 5781 while (sent < len) { 5782 u64 size = min(len - sent, read_size); 5783 int ret; 5784 5785 ret = send_write(sctx, offset + sent, size); 5786 if (ret < 0) 5787 return ret; 5788 sent += size; 5789 } 5790 5791 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5792 /* 5793 * Always operate only on ranges that are a multiple of the page 5794 * size. This is not only to prevent zeroing parts of a page in 5795 * the case of subpage sector size, but also to guarantee we evict 5796 * pages, as passing a range that is smaller than page size does 5797 * not evict the respective page (only zeroes part of its content). 5798 * 5799 * Always start from the end offset of the last range cleared. 5800 * This is because the readahead code may (and very often does) 5801 * reads pages beyond the range we request for readahead. So if 5802 * we have an extent layout like this: 5803 * 5804 * [ extent A ] [ extent B ] [ extent C ] 5805 * 5806 * When we ask page_cache_sync_readahead() to read extent A, it 5807 * may also trigger reads for pages of extent B. If we are doing 5808 * an incremental send and extent B has not changed between the 5809 * parent and send snapshots, some or all of its pages may end 5810 * up being read and placed in the page cache. So when truncating 5811 * the page cache we always start from the end offset of the 5812 * previously processed extent up to the end of the current 5813 * extent. 5814 */ 5815 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5816 sctx->page_cache_clear_start, 5817 end - 1); 5818 sctx->page_cache_clear_start = end; 5819 } 5820 5821 return 0; 5822 } 5823 5824 /* 5825 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5826 * found, call send_set_xattr function to emit it. 5827 * 5828 * Return 0 if there isn't a capability, or when the capability was emitted 5829 * successfully, or < 0 if an error occurred. 5830 */ 5831 static int send_capabilities(struct send_ctx *sctx) 5832 { 5833 struct fs_path *fspath = NULL; 5834 struct btrfs_path *path; 5835 struct btrfs_dir_item *di; 5836 struct extent_buffer *leaf; 5837 unsigned long data_ptr; 5838 char *buf = NULL; 5839 int buf_len; 5840 int ret = 0; 5841 5842 path = alloc_path_for_send(); 5843 if (!path) 5844 return -ENOMEM; 5845 5846 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5847 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5848 if (!di) { 5849 /* There is no xattr for this inode */ 5850 goto out; 5851 } else if (IS_ERR(di)) { 5852 ret = PTR_ERR(di); 5853 goto out; 5854 } 5855 5856 leaf = path->nodes[0]; 5857 buf_len = btrfs_dir_data_len(leaf, di); 5858 5859 fspath = fs_path_alloc(); 5860 buf = kmalloc(buf_len, GFP_KERNEL); 5861 if (!fspath || !buf) { 5862 ret = -ENOMEM; 5863 goto out; 5864 } 5865 5866 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5867 if (ret < 0) 5868 goto out; 5869 5870 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5871 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5872 5873 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5874 strlen(XATTR_NAME_CAPS), buf, buf_len); 5875 out: 5876 kfree(buf); 5877 fs_path_free(fspath); 5878 btrfs_free_path(path); 5879 return ret; 5880 } 5881 5882 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5883 struct clone_root *clone_root, const u64 disk_byte, 5884 u64 data_offset, u64 offset, u64 len) 5885 { 5886 struct btrfs_path *path; 5887 struct btrfs_key key; 5888 int ret; 5889 struct btrfs_inode_info info; 5890 u64 clone_src_i_size = 0; 5891 5892 /* 5893 * Prevent cloning from a zero offset with a length matching the sector 5894 * size because in some scenarios this will make the receiver fail. 5895 * 5896 * For example, if in the source filesystem the extent at offset 0 5897 * has a length of sectorsize and it was written using direct IO, then 5898 * it can never be an inline extent (even if compression is enabled). 5899 * Then this extent can be cloned in the original filesystem to a non 5900 * zero file offset, but it may not be possible to clone in the 5901 * destination filesystem because it can be inlined due to compression 5902 * on the destination filesystem (as the receiver's write operations are 5903 * always done using buffered IO). The same happens when the original 5904 * filesystem does not have compression enabled but the destination 5905 * filesystem has. 5906 */ 5907 if (clone_root->offset == 0 && 5908 len == sctx->send_root->fs_info->sectorsize) 5909 return send_extent_data(sctx, dst_path, offset, len); 5910 5911 path = alloc_path_for_send(); 5912 if (!path) 5913 return -ENOMEM; 5914 5915 /* 5916 * There are inodes that have extents that lie behind its i_size. Don't 5917 * accept clones from these extents. 5918 */ 5919 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5920 btrfs_release_path(path); 5921 if (ret < 0) 5922 goto out; 5923 clone_src_i_size = info.size; 5924 5925 /* 5926 * We can't send a clone operation for the entire range if we find 5927 * extent items in the respective range in the source file that 5928 * refer to different extents or if we find holes. 5929 * So check for that and do a mix of clone and regular write/copy 5930 * operations if needed. 5931 * 5932 * Example: 5933 * 5934 * mkfs.btrfs -f /dev/sda 5935 * mount /dev/sda /mnt 5936 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5937 * cp --reflink=always /mnt/foo /mnt/bar 5938 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5939 * btrfs subvolume snapshot -r /mnt /mnt/snap 5940 * 5941 * If when we send the snapshot and we are processing file bar (which 5942 * has a higher inode number than foo) we blindly send a clone operation 5943 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5944 * a file bar that matches the content of file foo - iow, doesn't match 5945 * the content from bar in the original filesystem. 5946 */ 5947 key.objectid = clone_root->ino; 5948 key.type = BTRFS_EXTENT_DATA_KEY; 5949 key.offset = clone_root->offset; 5950 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5951 if (ret < 0) 5952 goto out; 5953 if (ret > 0 && path->slots[0] > 0) { 5954 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5955 if (key.objectid == clone_root->ino && 5956 key.type == BTRFS_EXTENT_DATA_KEY) 5957 path->slots[0]--; 5958 } 5959 5960 while (true) { 5961 struct extent_buffer *leaf = path->nodes[0]; 5962 int slot = path->slots[0]; 5963 struct btrfs_file_extent_item *ei; 5964 u8 type; 5965 u64 ext_len; 5966 u64 clone_len; 5967 u64 clone_data_offset; 5968 bool crossed_src_i_size = false; 5969 5970 if (slot >= btrfs_header_nritems(leaf)) { 5971 ret = btrfs_next_leaf(clone_root->root, path); 5972 if (ret < 0) 5973 goto out; 5974 else if (ret > 0) 5975 break; 5976 continue; 5977 } 5978 5979 btrfs_item_key_to_cpu(leaf, &key, slot); 5980 5981 /* 5982 * We might have an implicit trailing hole (NO_HOLES feature 5983 * enabled). We deal with it after leaving this loop. 5984 */ 5985 if (key.objectid != clone_root->ino || 5986 key.type != BTRFS_EXTENT_DATA_KEY) 5987 break; 5988 5989 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5990 type = btrfs_file_extent_type(leaf, ei); 5991 if (type == BTRFS_FILE_EXTENT_INLINE) { 5992 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5993 ext_len = PAGE_ALIGN(ext_len); 5994 } else { 5995 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5996 } 5997 5998 if (key.offset + ext_len <= clone_root->offset) 5999 goto next; 6000 6001 if (key.offset > clone_root->offset) { 6002 /* Implicit hole, NO_HOLES feature enabled. */ 6003 u64 hole_len = key.offset - clone_root->offset; 6004 6005 if (hole_len > len) 6006 hole_len = len; 6007 ret = send_extent_data(sctx, dst_path, offset, 6008 hole_len); 6009 if (ret < 0) 6010 goto out; 6011 6012 len -= hole_len; 6013 if (len == 0) 6014 break; 6015 offset += hole_len; 6016 clone_root->offset += hole_len; 6017 data_offset += hole_len; 6018 } 6019 6020 if (key.offset >= clone_root->offset + len) 6021 break; 6022 6023 if (key.offset >= clone_src_i_size) 6024 break; 6025 6026 if (key.offset + ext_len > clone_src_i_size) { 6027 ext_len = clone_src_i_size - key.offset; 6028 crossed_src_i_size = true; 6029 } 6030 6031 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6032 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6033 clone_root->offset = key.offset; 6034 if (clone_data_offset < data_offset && 6035 clone_data_offset + ext_len > data_offset) { 6036 u64 extent_offset; 6037 6038 extent_offset = data_offset - clone_data_offset; 6039 ext_len -= extent_offset; 6040 clone_data_offset += extent_offset; 6041 clone_root->offset += extent_offset; 6042 } 6043 } 6044 6045 clone_len = min_t(u64, ext_len, len); 6046 6047 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6048 clone_data_offset == data_offset) { 6049 const u64 src_end = clone_root->offset + clone_len; 6050 const u64 sectorsize = SZ_64K; 6051 6052 /* 6053 * We can't clone the last block, when its size is not 6054 * sector size aligned, into the middle of a file. If we 6055 * do so, the receiver will get a failure (-EINVAL) when 6056 * trying to clone or will silently corrupt the data in 6057 * the destination file if it's on a kernel without the 6058 * fix introduced by commit ac765f83f1397646 6059 * ("Btrfs: fix data corruption due to cloning of eof 6060 * block). 6061 * 6062 * So issue a clone of the aligned down range plus a 6063 * regular write for the eof block, if we hit that case. 6064 * 6065 * Also, we use the maximum possible sector size, 64K, 6066 * because we don't know what's the sector size of the 6067 * filesystem that receives the stream, so we have to 6068 * assume the largest possible sector size. 6069 */ 6070 if (src_end == clone_src_i_size && 6071 !IS_ALIGNED(src_end, sectorsize) && 6072 offset + clone_len < sctx->cur_inode_size) { 6073 u64 slen; 6074 6075 slen = ALIGN_DOWN(src_end - clone_root->offset, 6076 sectorsize); 6077 if (slen > 0) { 6078 ret = send_clone(sctx, offset, slen, 6079 clone_root); 6080 if (ret < 0) 6081 goto out; 6082 } 6083 ret = send_extent_data(sctx, dst_path, 6084 offset + slen, 6085 clone_len - slen); 6086 } else { 6087 ret = send_clone(sctx, offset, clone_len, 6088 clone_root); 6089 } 6090 } else if (crossed_src_i_size && clone_len < len) { 6091 /* 6092 * If we are at i_size of the clone source inode and we 6093 * can not clone from it, terminate the loop. This is 6094 * to avoid sending two write operations, one with a 6095 * length matching clone_len and the final one after 6096 * this loop with a length of len - clone_len. 6097 * 6098 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6099 * was passed to the send ioctl), this helps avoid 6100 * sending an encoded write for an offset that is not 6101 * sector size aligned, in case the i_size of the source 6102 * inode is not sector size aligned. That will make the 6103 * receiver fallback to decompression of the data and 6104 * writing it using regular buffered IO, therefore while 6105 * not incorrect, it's not optimal due decompression and 6106 * possible re-compression at the receiver. 6107 */ 6108 break; 6109 } else { 6110 ret = send_extent_data(sctx, dst_path, offset, 6111 clone_len); 6112 } 6113 6114 if (ret < 0) 6115 goto out; 6116 6117 len -= clone_len; 6118 if (len == 0) 6119 break; 6120 offset += clone_len; 6121 clone_root->offset += clone_len; 6122 6123 /* 6124 * If we are cloning from the file we are currently processing, 6125 * and using the send root as the clone root, we must stop once 6126 * the current clone offset reaches the current eof of the file 6127 * at the receiver, otherwise we would issue an invalid clone 6128 * operation (source range going beyond eof) and cause the 6129 * receiver to fail. So if we reach the current eof, bail out 6130 * and fallback to a regular write. 6131 */ 6132 if (clone_root->root == sctx->send_root && 6133 clone_root->ino == sctx->cur_ino && 6134 clone_root->offset >= sctx->cur_inode_next_write_offset) 6135 break; 6136 6137 data_offset += clone_len; 6138 next: 6139 path->slots[0]++; 6140 } 6141 6142 if (len > 0) 6143 ret = send_extent_data(sctx, dst_path, offset, len); 6144 else 6145 ret = 0; 6146 out: 6147 btrfs_free_path(path); 6148 return ret; 6149 } 6150 6151 static int send_write_or_clone(struct send_ctx *sctx, 6152 struct btrfs_path *path, 6153 struct btrfs_key *key, 6154 struct clone_root *clone_root) 6155 { 6156 int ret = 0; 6157 u64 offset = key->offset; 6158 u64 end; 6159 u64 bs = sctx->send_root->fs_info->sectorsize; 6160 struct btrfs_file_extent_item *ei; 6161 u64 disk_byte; 6162 u64 data_offset; 6163 u64 num_bytes; 6164 struct btrfs_inode_info info = { 0 }; 6165 6166 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6167 if (offset >= end) 6168 return 0; 6169 6170 num_bytes = end - offset; 6171 6172 if (!clone_root) 6173 goto write_data; 6174 6175 if (IS_ALIGNED(end, bs)) 6176 goto clone_data; 6177 6178 /* 6179 * If the extent end is not aligned, we can clone if the extent ends at 6180 * the i_size of the inode and the clone range ends at the i_size of the 6181 * source inode, otherwise the clone operation fails with -EINVAL. 6182 */ 6183 if (end != sctx->cur_inode_size) 6184 goto write_data; 6185 6186 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6187 if (ret < 0) 6188 return ret; 6189 6190 if (clone_root->offset + num_bytes == info.size) 6191 goto clone_data; 6192 6193 write_data: 6194 ret = send_extent_data(sctx, path, offset, num_bytes); 6195 sctx->cur_inode_next_write_offset = end; 6196 return ret; 6197 6198 clone_data: 6199 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6200 struct btrfs_file_extent_item); 6201 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6202 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6203 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6204 num_bytes); 6205 sctx->cur_inode_next_write_offset = end; 6206 return ret; 6207 } 6208 6209 static int is_extent_unchanged(struct send_ctx *sctx, 6210 struct btrfs_path *left_path, 6211 struct btrfs_key *ekey) 6212 { 6213 int ret = 0; 6214 struct btrfs_key key; 6215 struct btrfs_path *path = NULL; 6216 struct extent_buffer *eb; 6217 int slot; 6218 struct btrfs_key found_key; 6219 struct btrfs_file_extent_item *ei; 6220 u64 left_disknr; 6221 u64 right_disknr; 6222 u64 left_offset; 6223 u64 right_offset; 6224 u64 left_offset_fixed; 6225 u64 left_len; 6226 u64 right_len; 6227 u64 left_gen; 6228 u64 right_gen; 6229 u8 left_type; 6230 u8 right_type; 6231 6232 path = alloc_path_for_send(); 6233 if (!path) 6234 return -ENOMEM; 6235 6236 eb = left_path->nodes[0]; 6237 slot = left_path->slots[0]; 6238 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6239 left_type = btrfs_file_extent_type(eb, ei); 6240 6241 if (left_type != BTRFS_FILE_EXTENT_REG) { 6242 ret = 0; 6243 goto out; 6244 } 6245 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6246 left_len = btrfs_file_extent_num_bytes(eb, ei); 6247 left_offset = btrfs_file_extent_offset(eb, ei); 6248 left_gen = btrfs_file_extent_generation(eb, ei); 6249 6250 /* 6251 * Following comments will refer to these graphics. L is the left 6252 * extents which we are checking at the moment. 1-8 are the right 6253 * extents that we iterate. 6254 * 6255 * |-----L-----| 6256 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6257 * 6258 * |-----L-----| 6259 * |--1--|-2b-|...(same as above) 6260 * 6261 * Alternative situation. Happens on files where extents got split. 6262 * |-----L-----| 6263 * |-----------7-----------|-6-| 6264 * 6265 * Alternative situation. Happens on files which got larger. 6266 * |-----L-----| 6267 * |-8-| 6268 * Nothing follows after 8. 6269 */ 6270 6271 key.objectid = ekey->objectid; 6272 key.type = BTRFS_EXTENT_DATA_KEY; 6273 key.offset = ekey->offset; 6274 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6275 if (ret < 0) 6276 goto out; 6277 if (ret) { 6278 ret = 0; 6279 goto out; 6280 } 6281 6282 /* 6283 * Handle special case where the right side has no extents at all. 6284 */ 6285 eb = path->nodes[0]; 6286 slot = path->slots[0]; 6287 btrfs_item_key_to_cpu(eb, &found_key, slot); 6288 if (found_key.objectid != key.objectid || 6289 found_key.type != key.type) { 6290 /* If we're a hole then just pretend nothing changed */ 6291 ret = (left_disknr) ? 0 : 1; 6292 goto out; 6293 } 6294 6295 /* 6296 * We're now on 2a, 2b or 7. 6297 */ 6298 key = found_key; 6299 while (key.offset < ekey->offset + left_len) { 6300 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6301 right_type = btrfs_file_extent_type(eb, ei); 6302 if (right_type != BTRFS_FILE_EXTENT_REG && 6303 right_type != BTRFS_FILE_EXTENT_INLINE) { 6304 ret = 0; 6305 goto out; 6306 } 6307 6308 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6309 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6310 right_len = PAGE_ALIGN(right_len); 6311 } else { 6312 right_len = btrfs_file_extent_num_bytes(eb, ei); 6313 } 6314 6315 /* 6316 * Are we at extent 8? If yes, we know the extent is changed. 6317 * This may only happen on the first iteration. 6318 */ 6319 if (found_key.offset + right_len <= ekey->offset) { 6320 /* If we're a hole just pretend nothing changed */ 6321 ret = (left_disknr) ? 0 : 1; 6322 goto out; 6323 } 6324 6325 /* 6326 * We just wanted to see if when we have an inline extent, what 6327 * follows it is a regular extent (wanted to check the above 6328 * condition for inline extents too). This should normally not 6329 * happen but it's possible for example when we have an inline 6330 * compressed extent representing data with a size matching 6331 * the page size (currently the same as sector size). 6332 */ 6333 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6334 ret = 0; 6335 goto out; 6336 } 6337 6338 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6339 right_offset = btrfs_file_extent_offset(eb, ei); 6340 right_gen = btrfs_file_extent_generation(eb, ei); 6341 6342 left_offset_fixed = left_offset; 6343 if (key.offset < ekey->offset) { 6344 /* Fix the right offset for 2a and 7. */ 6345 right_offset += ekey->offset - key.offset; 6346 } else { 6347 /* Fix the left offset for all behind 2a and 2b */ 6348 left_offset_fixed += key.offset - ekey->offset; 6349 } 6350 6351 /* 6352 * Check if we have the same extent. 6353 */ 6354 if (left_disknr != right_disknr || 6355 left_offset_fixed != right_offset || 6356 left_gen != right_gen) { 6357 ret = 0; 6358 goto out; 6359 } 6360 6361 /* 6362 * Go to the next extent. 6363 */ 6364 ret = btrfs_next_item(sctx->parent_root, path); 6365 if (ret < 0) 6366 goto out; 6367 if (!ret) { 6368 eb = path->nodes[0]; 6369 slot = path->slots[0]; 6370 btrfs_item_key_to_cpu(eb, &found_key, slot); 6371 } 6372 if (ret || found_key.objectid != key.objectid || 6373 found_key.type != key.type) { 6374 key.offset += right_len; 6375 break; 6376 } 6377 if (found_key.offset != key.offset + right_len) { 6378 ret = 0; 6379 goto out; 6380 } 6381 key = found_key; 6382 } 6383 6384 /* 6385 * We're now behind the left extent (treat as unchanged) or at the end 6386 * of the right side (treat as changed). 6387 */ 6388 if (key.offset >= ekey->offset + left_len) 6389 ret = 1; 6390 else 6391 ret = 0; 6392 6393 6394 out: 6395 btrfs_free_path(path); 6396 return ret; 6397 } 6398 6399 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6400 { 6401 struct btrfs_path *path; 6402 struct btrfs_root *root = sctx->send_root; 6403 struct btrfs_key key; 6404 int ret; 6405 6406 path = alloc_path_for_send(); 6407 if (!path) 6408 return -ENOMEM; 6409 6410 sctx->cur_inode_last_extent = 0; 6411 6412 key.objectid = sctx->cur_ino; 6413 key.type = BTRFS_EXTENT_DATA_KEY; 6414 key.offset = offset; 6415 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6416 if (ret < 0) 6417 goto out; 6418 ret = 0; 6419 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6420 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6421 goto out; 6422 6423 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6424 out: 6425 btrfs_free_path(path); 6426 return ret; 6427 } 6428 6429 static int range_is_hole_in_parent(struct send_ctx *sctx, 6430 const u64 start, 6431 const u64 end) 6432 { 6433 struct btrfs_path *path; 6434 struct btrfs_key key; 6435 struct btrfs_root *root = sctx->parent_root; 6436 u64 search_start = start; 6437 int ret; 6438 6439 path = alloc_path_for_send(); 6440 if (!path) 6441 return -ENOMEM; 6442 6443 key.objectid = sctx->cur_ino; 6444 key.type = BTRFS_EXTENT_DATA_KEY; 6445 key.offset = search_start; 6446 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6447 if (ret < 0) 6448 goto out; 6449 if (ret > 0 && path->slots[0] > 0) 6450 path->slots[0]--; 6451 6452 while (search_start < end) { 6453 struct extent_buffer *leaf = path->nodes[0]; 6454 int slot = path->slots[0]; 6455 struct btrfs_file_extent_item *fi; 6456 u64 extent_end; 6457 6458 if (slot >= btrfs_header_nritems(leaf)) { 6459 ret = btrfs_next_leaf(root, path); 6460 if (ret < 0) 6461 goto out; 6462 else if (ret > 0) 6463 break; 6464 continue; 6465 } 6466 6467 btrfs_item_key_to_cpu(leaf, &key, slot); 6468 if (key.objectid < sctx->cur_ino || 6469 key.type < BTRFS_EXTENT_DATA_KEY) 6470 goto next; 6471 if (key.objectid > sctx->cur_ino || 6472 key.type > BTRFS_EXTENT_DATA_KEY || 6473 key.offset >= end) 6474 break; 6475 6476 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6477 extent_end = btrfs_file_extent_end(path); 6478 if (extent_end <= start) 6479 goto next; 6480 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6481 search_start = extent_end; 6482 goto next; 6483 } 6484 ret = 0; 6485 goto out; 6486 next: 6487 path->slots[0]++; 6488 } 6489 ret = 1; 6490 out: 6491 btrfs_free_path(path); 6492 return ret; 6493 } 6494 6495 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6496 struct btrfs_key *key) 6497 { 6498 int ret = 0; 6499 6500 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6501 return 0; 6502 6503 /* 6504 * Get last extent's end offset (exclusive) if we haven't determined it 6505 * yet (we're processing the first file extent item that is new), or if 6506 * we're at the first slot of a leaf and the last extent's end is less 6507 * than the current extent's offset, because we might have skipped 6508 * entire leaves that contained only file extent items for our current 6509 * inode. These leaves have a generation number smaller (older) than the 6510 * one in the current leaf and the leaf our last extent came from, and 6511 * are located between these 2 leaves. 6512 */ 6513 if ((sctx->cur_inode_last_extent == (u64)-1) || 6514 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6515 ret = get_last_extent(sctx, key->offset - 1); 6516 if (ret) 6517 return ret; 6518 } 6519 6520 if (sctx->cur_inode_last_extent < key->offset) { 6521 ret = range_is_hole_in_parent(sctx, 6522 sctx->cur_inode_last_extent, 6523 key->offset); 6524 if (ret < 0) 6525 return ret; 6526 else if (ret == 0) 6527 ret = send_hole(sctx, key->offset); 6528 else 6529 ret = 0; 6530 } 6531 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6532 return ret; 6533 } 6534 6535 static int process_extent(struct send_ctx *sctx, 6536 struct btrfs_path *path, 6537 struct btrfs_key *key) 6538 { 6539 struct clone_root *found_clone = NULL; 6540 int ret = 0; 6541 6542 if (S_ISLNK(sctx->cur_inode_mode)) 6543 return 0; 6544 6545 if (sctx->parent_root && !sctx->cur_inode_new) { 6546 ret = is_extent_unchanged(sctx, path, key); 6547 if (ret < 0) 6548 goto out; 6549 if (ret) { 6550 ret = 0; 6551 goto out_hole; 6552 } 6553 } else { 6554 struct btrfs_file_extent_item *ei; 6555 u8 type; 6556 6557 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6558 struct btrfs_file_extent_item); 6559 type = btrfs_file_extent_type(path->nodes[0], ei); 6560 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6561 type == BTRFS_FILE_EXTENT_REG) { 6562 /* 6563 * The send spec does not have a prealloc command yet, 6564 * so just leave a hole for prealloc'ed extents until 6565 * we have enough commands queued up to justify rev'ing 6566 * the send spec. 6567 */ 6568 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6569 ret = 0; 6570 goto out; 6571 } 6572 6573 /* Have a hole, just skip it. */ 6574 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6575 ret = 0; 6576 goto out; 6577 } 6578 } 6579 } 6580 6581 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6582 sctx->cur_inode_size, &found_clone); 6583 if (ret != -ENOENT && ret < 0) 6584 goto out; 6585 6586 ret = send_write_or_clone(sctx, path, key, found_clone); 6587 if (ret) 6588 goto out; 6589 out_hole: 6590 ret = maybe_send_hole(sctx, path, key); 6591 out: 6592 return ret; 6593 } 6594 6595 static int process_all_extents(struct send_ctx *sctx) 6596 { 6597 int ret = 0; 6598 int iter_ret = 0; 6599 struct btrfs_root *root; 6600 struct btrfs_path *path; 6601 struct btrfs_key key; 6602 struct btrfs_key found_key; 6603 6604 root = sctx->send_root; 6605 path = alloc_path_for_send(); 6606 if (!path) 6607 return -ENOMEM; 6608 6609 key.objectid = sctx->cmp_key->objectid; 6610 key.type = BTRFS_EXTENT_DATA_KEY; 6611 key.offset = 0; 6612 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6613 if (found_key.objectid != key.objectid || 6614 found_key.type != key.type) { 6615 ret = 0; 6616 break; 6617 } 6618 6619 ret = process_extent(sctx, path, &found_key); 6620 if (ret < 0) 6621 break; 6622 } 6623 /* Catch error found during iteration */ 6624 if (iter_ret < 0) 6625 ret = iter_ret; 6626 6627 btrfs_free_path(path); 6628 return ret; 6629 } 6630 6631 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6632 int *pending_move, 6633 int *refs_processed) 6634 { 6635 int ret = 0; 6636 6637 if (sctx->cur_ino == 0) 6638 goto out; 6639 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6640 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6641 goto out; 6642 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6643 goto out; 6644 6645 ret = process_recorded_refs(sctx, pending_move); 6646 if (ret < 0) 6647 goto out; 6648 6649 *refs_processed = 1; 6650 out: 6651 return ret; 6652 } 6653 6654 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6655 { 6656 int ret = 0; 6657 struct btrfs_inode_info info; 6658 u64 left_mode; 6659 u64 left_uid; 6660 u64 left_gid; 6661 u64 left_fileattr; 6662 u64 right_mode; 6663 u64 right_uid; 6664 u64 right_gid; 6665 u64 right_fileattr; 6666 int need_chmod = 0; 6667 int need_chown = 0; 6668 bool need_fileattr = false; 6669 int need_truncate = 1; 6670 int pending_move = 0; 6671 int refs_processed = 0; 6672 6673 if (sctx->ignore_cur_inode) 6674 return 0; 6675 6676 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6677 &refs_processed); 6678 if (ret < 0) 6679 goto out; 6680 6681 /* 6682 * We have processed the refs and thus need to advance send_progress. 6683 * Now, calls to get_cur_xxx will take the updated refs of the current 6684 * inode into account. 6685 * 6686 * On the other hand, if our current inode is a directory and couldn't 6687 * be moved/renamed because its parent was renamed/moved too and it has 6688 * a higher inode number, we can only move/rename our current inode 6689 * after we moved/renamed its parent. Therefore in this case operate on 6690 * the old path (pre move/rename) of our current inode, and the 6691 * move/rename will be performed later. 6692 */ 6693 if (refs_processed && !pending_move) 6694 sctx->send_progress = sctx->cur_ino + 1; 6695 6696 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6697 goto out; 6698 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6699 goto out; 6700 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6701 if (ret < 0) 6702 goto out; 6703 left_mode = info.mode; 6704 left_uid = info.uid; 6705 left_gid = info.gid; 6706 left_fileattr = info.fileattr; 6707 6708 if (!sctx->parent_root || sctx->cur_inode_new) { 6709 need_chown = 1; 6710 if (!S_ISLNK(sctx->cur_inode_mode)) 6711 need_chmod = 1; 6712 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6713 need_truncate = 0; 6714 } else { 6715 u64 old_size; 6716 6717 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6718 if (ret < 0) 6719 goto out; 6720 old_size = info.size; 6721 right_mode = info.mode; 6722 right_uid = info.uid; 6723 right_gid = info.gid; 6724 right_fileattr = info.fileattr; 6725 6726 if (left_uid != right_uid || left_gid != right_gid) 6727 need_chown = 1; 6728 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6729 need_chmod = 1; 6730 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6731 need_fileattr = true; 6732 if ((old_size == sctx->cur_inode_size) || 6733 (sctx->cur_inode_size > old_size && 6734 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6735 need_truncate = 0; 6736 } 6737 6738 if (S_ISREG(sctx->cur_inode_mode)) { 6739 if (need_send_hole(sctx)) { 6740 if (sctx->cur_inode_last_extent == (u64)-1 || 6741 sctx->cur_inode_last_extent < 6742 sctx->cur_inode_size) { 6743 ret = get_last_extent(sctx, (u64)-1); 6744 if (ret) 6745 goto out; 6746 } 6747 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6748 ret = range_is_hole_in_parent(sctx, 6749 sctx->cur_inode_last_extent, 6750 sctx->cur_inode_size); 6751 if (ret < 0) { 6752 goto out; 6753 } else if (ret == 0) { 6754 ret = send_hole(sctx, sctx->cur_inode_size); 6755 if (ret < 0) 6756 goto out; 6757 } else { 6758 /* Range is already a hole, skip. */ 6759 ret = 0; 6760 } 6761 } 6762 } 6763 if (need_truncate) { 6764 ret = send_truncate(sctx, sctx->cur_ino, 6765 sctx->cur_inode_gen, 6766 sctx->cur_inode_size); 6767 if (ret < 0) 6768 goto out; 6769 } 6770 } 6771 6772 if (need_chown) { 6773 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6774 left_uid, left_gid); 6775 if (ret < 0) 6776 goto out; 6777 } 6778 if (need_chmod) { 6779 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6780 left_mode); 6781 if (ret < 0) 6782 goto out; 6783 } 6784 if (need_fileattr) { 6785 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6786 left_fileattr); 6787 if (ret < 0) 6788 goto out; 6789 } 6790 6791 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6792 && sctx->cur_inode_needs_verity) { 6793 ret = process_verity(sctx); 6794 if (ret < 0) 6795 goto out; 6796 } 6797 6798 ret = send_capabilities(sctx); 6799 if (ret < 0) 6800 goto out; 6801 6802 /* 6803 * If other directory inodes depended on our current directory 6804 * inode's move/rename, now do their move/rename operations. 6805 */ 6806 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6807 ret = apply_children_dir_moves(sctx); 6808 if (ret) 6809 goto out; 6810 /* 6811 * Need to send that every time, no matter if it actually 6812 * changed between the two trees as we have done changes to 6813 * the inode before. If our inode is a directory and it's 6814 * waiting to be moved/renamed, we will send its utimes when 6815 * it's moved/renamed, therefore we don't need to do it here. 6816 */ 6817 sctx->send_progress = sctx->cur_ino + 1; 6818 6819 /* 6820 * If the current inode is a non-empty directory, delay issuing 6821 * the utimes command for it, as it's very likely we have inodes 6822 * with an higher number inside it. We want to issue the utimes 6823 * command only after adding all dentries to it. 6824 */ 6825 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6826 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6827 else 6828 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6829 6830 if (ret < 0) 6831 goto out; 6832 } 6833 6834 out: 6835 if (!ret) 6836 ret = trim_dir_utimes_cache(sctx); 6837 6838 return ret; 6839 } 6840 6841 static void close_current_inode(struct send_ctx *sctx) 6842 { 6843 u64 i_size; 6844 6845 if (sctx->cur_inode == NULL) 6846 return; 6847 6848 i_size = i_size_read(sctx->cur_inode); 6849 6850 /* 6851 * If we are doing an incremental send, we may have extents between the 6852 * last processed extent and the i_size that have not been processed 6853 * because they haven't changed but we may have read some of their pages 6854 * through readahead, see the comments at send_extent_data(). 6855 */ 6856 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6857 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6858 sctx->page_cache_clear_start, 6859 round_up(i_size, PAGE_SIZE) - 1); 6860 6861 iput(sctx->cur_inode); 6862 sctx->cur_inode = NULL; 6863 } 6864 6865 static int changed_inode(struct send_ctx *sctx, 6866 enum btrfs_compare_tree_result result) 6867 { 6868 int ret = 0; 6869 struct btrfs_key *key = sctx->cmp_key; 6870 struct btrfs_inode_item *left_ii = NULL; 6871 struct btrfs_inode_item *right_ii = NULL; 6872 u64 left_gen = 0; 6873 u64 right_gen = 0; 6874 6875 close_current_inode(sctx); 6876 6877 sctx->cur_ino = key->objectid; 6878 sctx->cur_inode_new_gen = false; 6879 sctx->cur_inode_last_extent = (u64)-1; 6880 sctx->cur_inode_next_write_offset = 0; 6881 sctx->ignore_cur_inode = false; 6882 6883 /* 6884 * Set send_progress to current inode. This will tell all get_cur_xxx 6885 * functions that the current inode's refs are not updated yet. Later, 6886 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6887 */ 6888 sctx->send_progress = sctx->cur_ino; 6889 6890 if (result == BTRFS_COMPARE_TREE_NEW || 6891 result == BTRFS_COMPARE_TREE_CHANGED) { 6892 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6893 sctx->left_path->slots[0], 6894 struct btrfs_inode_item); 6895 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6896 left_ii); 6897 } else { 6898 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6899 sctx->right_path->slots[0], 6900 struct btrfs_inode_item); 6901 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6902 right_ii); 6903 } 6904 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6905 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6906 sctx->right_path->slots[0], 6907 struct btrfs_inode_item); 6908 6909 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6910 right_ii); 6911 6912 /* 6913 * The cur_ino = root dir case is special here. We can't treat 6914 * the inode as deleted+reused because it would generate a 6915 * stream that tries to delete/mkdir the root dir. 6916 */ 6917 if (left_gen != right_gen && 6918 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6919 sctx->cur_inode_new_gen = true; 6920 } 6921 6922 /* 6923 * Normally we do not find inodes with a link count of zero (orphans) 6924 * because the most common case is to create a snapshot and use it 6925 * for a send operation. However other less common use cases involve 6926 * using a subvolume and send it after turning it to RO mode just 6927 * after deleting all hard links of a file while holding an open 6928 * file descriptor against it or turning a RO snapshot into RW mode, 6929 * keep an open file descriptor against a file, delete it and then 6930 * turn the snapshot back to RO mode before using it for a send 6931 * operation. The former is what the receiver operation does. 6932 * Therefore, if we want to send these snapshots soon after they're 6933 * received, we need to handle orphan inodes as well. Moreover, orphans 6934 * can appear not only in the send snapshot but also in the parent 6935 * snapshot. Here are several cases: 6936 * 6937 * Case 1: BTRFS_COMPARE_TREE_NEW 6938 * | send snapshot | action 6939 * -------------------------------- 6940 * nlink | 0 | ignore 6941 * 6942 * Case 2: BTRFS_COMPARE_TREE_DELETED 6943 * | parent snapshot | action 6944 * ---------------------------------- 6945 * nlink | 0 | as usual 6946 * Note: No unlinks will be sent because there're no paths for it. 6947 * 6948 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6949 * | | parent snapshot | send snapshot | action 6950 * ----------------------------------------------------------------------- 6951 * subcase 1 | nlink | 0 | 0 | ignore 6952 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6953 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6954 * 6955 */ 6956 if (result == BTRFS_COMPARE_TREE_NEW) { 6957 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6958 sctx->ignore_cur_inode = true; 6959 goto out; 6960 } 6961 sctx->cur_inode_gen = left_gen; 6962 sctx->cur_inode_new = true; 6963 sctx->cur_inode_deleted = false; 6964 sctx->cur_inode_size = btrfs_inode_size( 6965 sctx->left_path->nodes[0], left_ii); 6966 sctx->cur_inode_mode = btrfs_inode_mode( 6967 sctx->left_path->nodes[0], left_ii); 6968 sctx->cur_inode_rdev = btrfs_inode_rdev( 6969 sctx->left_path->nodes[0], left_ii); 6970 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6971 ret = send_create_inode_if_needed(sctx); 6972 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6973 sctx->cur_inode_gen = right_gen; 6974 sctx->cur_inode_new = false; 6975 sctx->cur_inode_deleted = true; 6976 sctx->cur_inode_size = btrfs_inode_size( 6977 sctx->right_path->nodes[0], right_ii); 6978 sctx->cur_inode_mode = btrfs_inode_mode( 6979 sctx->right_path->nodes[0], right_ii); 6980 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6981 u32 new_nlinks, old_nlinks; 6982 6983 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6984 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6985 if (new_nlinks == 0 && old_nlinks == 0) { 6986 sctx->ignore_cur_inode = true; 6987 goto out; 6988 } else if (new_nlinks == 0 || old_nlinks == 0) { 6989 sctx->cur_inode_new_gen = 1; 6990 } 6991 /* 6992 * We need to do some special handling in case the inode was 6993 * reported as changed with a changed generation number. This 6994 * means that the original inode was deleted and new inode 6995 * reused the same inum. So we have to treat the old inode as 6996 * deleted and the new one as new. 6997 */ 6998 if (sctx->cur_inode_new_gen) { 6999 /* 7000 * First, process the inode as if it was deleted. 7001 */ 7002 if (old_nlinks > 0) { 7003 sctx->cur_inode_gen = right_gen; 7004 sctx->cur_inode_new = false; 7005 sctx->cur_inode_deleted = true; 7006 sctx->cur_inode_size = btrfs_inode_size( 7007 sctx->right_path->nodes[0], right_ii); 7008 sctx->cur_inode_mode = btrfs_inode_mode( 7009 sctx->right_path->nodes[0], right_ii); 7010 ret = process_all_refs(sctx, 7011 BTRFS_COMPARE_TREE_DELETED); 7012 if (ret < 0) 7013 goto out; 7014 } 7015 7016 /* 7017 * Now process the inode as if it was new. 7018 */ 7019 if (new_nlinks > 0) { 7020 sctx->cur_inode_gen = left_gen; 7021 sctx->cur_inode_new = true; 7022 sctx->cur_inode_deleted = false; 7023 sctx->cur_inode_size = btrfs_inode_size( 7024 sctx->left_path->nodes[0], 7025 left_ii); 7026 sctx->cur_inode_mode = btrfs_inode_mode( 7027 sctx->left_path->nodes[0], 7028 left_ii); 7029 sctx->cur_inode_rdev = btrfs_inode_rdev( 7030 sctx->left_path->nodes[0], 7031 left_ii); 7032 ret = send_create_inode_if_needed(sctx); 7033 if (ret < 0) 7034 goto out; 7035 7036 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7037 if (ret < 0) 7038 goto out; 7039 /* 7040 * Advance send_progress now as we did not get 7041 * into process_recorded_refs_if_needed in the 7042 * new_gen case. 7043 */ 7044 sctx->send_progress = sctx->cur_ino + 1; 7045 7046 /* 7047 * Now process all extents and xattrs of the 7048 * inode as if they were all new. 7049 */ 7050 ret = process_all_extents(sctx); 7051 if (ret < 0) 7052 goto out; 7053 ret = process_all_new_xattrs(sctx); 7054 if (ret < 0) 7055 goto out; 7056 } 7057 } else { 7058 sctx->cur_inode_gen = left_gen; 7059 sctx->cur_inode_new = false; 7060 sctx->cur_inode_new_gen = false; 7061 sctx->cur_inode_deleted = false; 7062 sctx->cur_inode_size = btrfs_inode_size( 7063 sctx->left_path->nodes[0], left_ii); 7064 sctx->cur_inode_mode = btrfs_inode_mode( 7065 sctx->left_path->nodes[0], left_ii); 7066 } 7067 } 7068 7069 out: 7070 return ret; 7071 } 7072 7073 /* 7074 * We have to process new refs before deleted refs, but compare_trees gives us 7075 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7076 * first and later process them in process_recorded_refs. 7077 * For the cur_inode_new_gen case, we skip recording completely because 7078 * changed_inode did already initiate processing of refs. The reason for this is 7079 * that in this case, compare_tree actually compares the refs of 2 different 7080 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7081 * refs of the right tree as deleted and all refs of the left tree as new. 7082 */ 7083 static int changed_ref(struct send_ctx *sctx, 7084 enum btrfs_compare_tree_result result) 7085 { 7086 int ret = 0; 7087 7088 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7089 inconsistent_snapshot_error(sctx, result, "reference"); 7090 return -EIO; 7091 } 7092 7093 if (!sctx->cur_inode_new_gen && 7094 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7095 if (result == BTRFS_COMPARE_TREE_NEW) 7096 ret = record_new_ref(sctx); 7097 else if (result == BTRFS_COMPARE_TREE_DELETED) 7098 ret = record_deleted_ref(sctx); 7099 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7100 ret = record_changed_ref(sctx); 7101 } 7102 7103 return ret; 7104 } 7105 7106 /* 7107 * Process new/deleted/changed xattrs. We skip processing in the 7108 * cur_inode_new_gen case because changed_inode did already initiate processing 7109 * of xattrs. The reason is the same as in changed_ref 7110 */ 7111 static int changed_xattr(struct send_ctx *sctx, 7112 enum btrfs_compare_tree_result result) 7113 { 7114 int ret = 0; 7115 7116 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7117 inconsistent_snapshot_error(sctx, result, "xattr"); 7118 return -EIO; 7119 } 7120 7121 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7122 if (result == BTRFS_COMPARE_TREE_NEW) 7123 ret = process_new_xattr(sctx); 7124 else if (result == BTRFS_COMPARE_TREE_DELETED) 7125 ret = process_deleted_xattr(sctx); 7126 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7127 ret = process_changed_xattr(sctx); 7128 } 7129 7130 return ret; 7131 } 7132 7133 /* 7134 * Process new/deleted/changed extents. We skip processing in the 7135 * cur_inode_new_gen case because changed_inode did already initiate processing 7136 * of extents. The reason is the same as in changed_ref 7137 */ 7138 static int changed_extent(struct send_ctx *sctx, 7139 enum btrfs_compare_tree_result result) 7140 { 7141 int ret = 0; 7142 7143 /* 7144 * We have found an extent item that changed without the inode item 7145 * having changed. This can happen either after relocation (where the 7146 * disk_bytenr of an extent item is replaced at 7147 * relocation.c:replace_file_extents()) or after deduplication into a 7148 * file in both the parent and send snapshots (where an extent item can 7149 * get modified or replaced with a new one). Note that deduplication 7150 * updates the inode item, but it only changes the iversion (sequence 7151 * field in the inode item) of the inode, so if a file is deduplicated 7152 * the same amount of times in both the parent and send snapshots, its 7153 * iversion becomes the same in both snapshots, whence the inode item is 7154 * the same on both snapshots. 7155 */ 7156 if (sctx->cur_ino != sctx->cmp_key->objectid) 7157 return 0; 7158 7159 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7160 if (result != BTRFS_COMPARE_TREE_DELETED) 7161 ret = process_extent(sctx, sctx->left_path, 7162 sctx->cmp_key); 7163 } 7164 7165 return ret; 7166 } 7167 7168 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7169 { 7170 int ret = 0; 7171 7172 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7173 if (result == BTRFS_COMPARE_TREE_NEW) 7174 sctx->cur_inode_needs_verity = true; 7175 } 7176 return ret; 7177 } 7178 7179 static int dir_changed(struct send_ctx *sctx, u64 dir) 7180 { 7181 u64 orig_gen, new_gen; 7182 int ret; 7183 7184 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7185 if (ret) 7186 return ret; 7187 7188 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7189 if (ret) 7190 return ret; 7191 7192 return (orig_gen != new_gen) ? 1 : 0; 7193 } 7194 7195 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7196 struct btrfs_key *key) 7197 { 7198 struct btrfs_inode_extref *extref; 7199 struct extent_buffer *leaf; 7200 u64 dirid = 0, last_dirid = 0; 7201 unsigned long ptr; 7202 u32 item_size; 7203 u32 cur_offset = 0; 7204 int ref_name_len; 7205 int ret = 0; 7206 7207 /* Easy case, just check this one dirid */ 7208 if (key->type == BTRFS_INODE_REF_KEY) { 7209 dirid = key->offset; 7210 7211 ret = dir_changed(sctx, dirid); 7212 goto out; 7213 } 7214 7215 leaf = path->nodes[0]; 7216 item_size = btrfs_item_size(leaf, path->slots[0]); 7217 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7218 while (cur_offset < item_size) { 7219 extref = (struct btrfs_inode_extref *)(ptr + 7220 cur_offset); 7221 dirid = btrfs_inode_extref_parent(leaf, extref); 7222 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7223 cur_offset += ref_name_len + sizeof(*extref); 7224 if (dirid == last_dirid) 7225 continue; 7226 ret = dir_changed(sctx, dirid); 7227 if (ret) 7228 break; 7229 last_dirid = dirid; 7230 } 7231 out: 7232 return ret; 7233 } 7234 7235 /* 7236 * Updates compare related fields in sctx and simply forwards to the actual 7237 * changed_xxx functions. 7238 */ 7239 static int changed_cb(struct btrfs_path *left_path, 7240 struct btrfs_path *right_path, 7241 struct btrfs_key *key, 7242 enum btrfs_compare_tree_result result, 7243 struct send_ctx *sctx) 7244 { 7245 int ret = 0; 7246 7247 /* 7248 * We can not hold the commit root semaphore here. This is because in 7249 * the case of sending and receiving to the same filesystem, using a 7250 * pipe, could result in a deadlock: 7251 * 7252 * 1) The task running send blocks on the pipe because it's full; 7253 * 7254 * 2) The task running receive, which is the only consumer of the pipe, 7255 * is waiting for a transaction commit (for example due to a space 7256 * reservation when doing a write or triggering a transaction commit 7257 * when creating a subvolume); 7258 * 7259 * 3) The transaction is waiting to write lock the commit root semaphore, 7260 * but can not acquire it since it's being held at 1). 7261 * 7262 * Down this call chain we write to the pipe through kernel_write(). 7263 * The same type of problem can also happen when sending to a file that 7264 * is stored in the same filesystem - when reserving space for a write 7265 * into the file, we can trigger a transaction commit. 7266 * 7267 * Our caller has supplied us with clones of leaves from the send and 7268 * parent roots, so we're safe here from a concurrent relocation and 7269 * further reallocation of metadata extents while we are here. Below we 7270 * also assert that the leaves are clones. 7271 */ 7272 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7273 7274 /* 7275 * We always have a send root, so left_path is never NULL. We will not 7276 * have a leaf when we have reached the end of the send root but have 7277 * not yet reached the end of the parent root. 7278 */ 7279 if (left_path->nodes[0]) 7280 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7281 &left_path->nodes[0]->bflags)); 7282 /* 7283 * When doing a full send we don't have a parent root, so right_path is 7284 * NULL. When doing an incremental send, we may have reached the end of 7285 * the parent root already, so we don't have a leaf at right_path. 7286 */ 7287 if (right_path && right_path->nodes[0]) 7288 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7289 &right_path->nodes[0]->bflags)); 7290 7291 if (result == BTRFS_COMPARE_TREE_SAME) { 7292 if (key->type == BTRFS_INODE_REF_KEY || 7293 key->type == BTRFS_INODE_EXTREF_KEY) { 7294 ret = compare_refs(sctx, left_path, key); 7295 if (!ret) 7296 return 0; 7297 if (ret < 0) 7298 return ret; 7299 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7300 return maybe_send_hole(sctx, left_path, key); 7301 } else { 7302 return 0; 7303 } 7304 result = BTRFS_COMPARE_TREE_CHANGED; 7305 ret = 0; 7306 } 7307 7308 sctx->left_path = left_path; 7309 sctx->right_path = right_path; 7310 sctx->cmp_key = key; 7311 7312 ret = finish_inode_if_needed(sctx, 0); 7313 if (ret < 0) 7314 goto out; 7315 7316 /* Ignore non-FS objects */ 7317 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7318 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7319 goto out; 7320 7321 if (key->type == BTRFS_INODE_ITEM_KEY) { 7322 ret = changed_inode(sctx, result); 7323 } else if (!sctx->ignore_cur_inode) { 7324 if (key->type == BTRFS_INODE_REF_KEY || 7325 key->type == BTRFS_INODE_EXTREF_KEY) 7326 ret = changed_ref(sctx, result); 7327 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7328 ret = changed_xattr(sctx, result); 7329 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7330 ret = changed_extent(sctx, result); 7331 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7332 key->offset == 0) 7333 ret = changed_verity(sctx, result); 7334 } 7335 7336 out: 7337 return ret; 7338 } 7339 7340 static int search_key_again(const struct send_ctx *sctx, 7341 struct btrfs_root *root, 7342 struct btrfs_path *path, 7343 const struct btrfs_key *key) 7344 { 7345 int ret; 7346 7347 if (!path->need_commit_sem) 7348 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7349 7350 /* 7351 * Roots used for send operations are readonly and no one can add, 7352 * update or remove keys from them, so we should be able to find our 7353 * key again. The only exception is deduplication, which can operate on 7354 * readonly roots and add, update or remove keys to/from them - but at 7355 * the moment we don't allow it to run in parallel with send. 7356 */ 7357 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7358 ASSERT(ret <= 0); 7359 if (ret > 0) { 7360 btrfs_print_tree(path->nodes[path->lowest_level], false); 7361 btrfs_err(root->fs_info, 7362 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7363 key->objectid, key->type, key->offset, 7364 (root == sctx->parent_root ? "parent" : "send"), 7365 btrfs_root_id(root), path->lowest_level, 7366 path->slots[path->lowest_level]); 7367 return -EUCLEAN; 7368 } 7369 7370 return ret; 7371 } 7372 7373 static int full_send_tree(struct send_ctx *sctx) 7374 { 7375 int ret; 7376 struct btrfs_root *send_root = sctx->send_root; 7377 struct btrfs_key key; 7378 struct btrfs_fs_info *fs_info = send_root->fs_info; 7379 struct btrfs_path *path; 7380 7381 path = alloc_path_for_send(); 7382 if (!path) 7383 return -ENOMEM; 7384 path->reada = READA_FORWARD_ALWAYS; 7385 7386 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7387 key.type = BTRFS_INODE_ITEM_KEY; 7388 key.offset = 0; 7389 7390 down_read(&fs_info->commit_root_sem); 7391 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7392 up_read(&fs_info->commit_root_sem); 7393 7394 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7395 if (ret < 0) 7396 goto out; 7397 if (ret) 7398 goto out_finish; 7399 7400 while (1) { 7401 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7402 7403 ret = changed_cb(path, NULL, &key, 7404 BTRFS_COMPARE_TREE_NEW, sctx); 7405 if (ret < 0) 7406 goto out; 7407 7408 down_read(&fs_info->commit_root_sem); 7409 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7410 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7411 up_read(&fs_info->commit_root_sem); 7412 /* 7413 * A transaction used for relocating a block group was 7414 * committed or is about to finish its commit. Release 7415 * our path (leaf) and restart the search, so that we 7416 * avoid operating on any file extent items that are 7417 * stale, with a disk_bytenr that reflects a pre 7418 * relocation value. This way we avoid as much as 7419 * possible to fallback to regular writes when checking 7420 * if we can clone file ranges. 7421 */ 7422 btrfs_release_path(path); 7423 ret = search_key_again(sctx, send_root, path, &key); 7424 if (ret < 0) 7425 goto out; 7426 } else { 7427 up_read(&fs_info->commit_root_sem); 7428 } 7429 7430 ret = btrfs_next_item(send_root, path); 7431 if (ret < 0) 7432 goto out; 7433 if (ret) { 7434 ret = 0; 7435 break; 7436 } 7437 } 7438 7439 out_finish: 7440 ret = finish_inode_if_needed(sctx, 1); 7441 7442 out: 7443 btrfs_free_path(path); 7444 return ret; 7445 } 7446 7447 static int replace_node_with_clone(struct btrfs_path *path, int level) 7448 { 7449 struct extent_buffer *clone; 7450 7451 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7452 if (!clone) 7453 return -ENOMEM; 7454 7455 free_extent_buffer(path->nodes[level]); 7456 path->nodes[level] = clone; 7457 7458 return 0; 7459 } 7460 7461 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7462 { 7463 struct extent_buffer *eb; 7464 struct extent_buffer *parent = path->nodes[*level]; 7465 int slot = path->slots[*level]; 7466 const int nritems = btrfs_header_nritems(parent); 7467 u64 reada_max; 7468 u64 reada_done = 0; 7469 7470 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7471 ASSERT(*level != 0); 7472 7473 eb = btrfs_read_node_slot(parent, slot); 7474 if (IS_ERR(eb)) 7475 return PTR_ERR(eb); 7476 7477 /* 7478 * Trigger readahead for the next leaves we will process, so that it is 7479 * very likely that when we need them they are already in memory and we 7480 * will not block on disk IO. For nodes we only do readahead for one, 7481 * since the time window between processing nodes is typically larger. 7482 */ 7483 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7484 7485 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7486 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7487 btrfs_readahead_node_child(parent, slot); 7488 reada_done += eb->fs_info->nodesize; 7489 } 7490 } 7491 7492 path->nodes[*level - 1] = eb; 7493 path->slots[*level - 1] = 0; 7494 (*level)--; 7495 7496 if (*level == 0) 7497 return replace_node_with_clone(path, 0); 7498 7499 return 0; 7500 } 7501 7502 static int tree_move_next_or_upnext(struct btrfs_path *path, 7503 int *level, int root_level) 7504 { 7505 int ret = 0; 7506 int nritems; 7507 nritems = btrfs_header_nritems(path->nodes[*level]); 7508 7509 path->slots[*level]++; 7510 7511 while (path->slots[*level] >= nritems) { 7512 if (*level == root_level) { 7513 path->slots[*level] = nritems - 1; 7514 return -1; 7515 } 7516 7517 /* move upnext */ 7518 path->slots[*level] = 0; 7519 free_extent_buffer(path->nodes[*level]); 7520 path->nodes[*level] = NULL; 7521 (*level)++; 7522 path->slots[*level]++; 7523 7524 nritems = btrfs_header_nritems(path->nodes[*level]); 7525 ret = 1; 7526 } 7527 return ret; 7528 } 7529 7530 /* 7531 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7532 * or down. 7533 */ 7534 static int tree_advance(struct btrfs_path *path, 7535 int *level, int root_level, 7536 int allow_down, 7537 struct btrfs_key *key, 7538 u64 reada_min_gen) 7539 { 7540 int ret; 7541 7542 if (*level == 0 || !allow_down) { 7543 ret = tree_move_next_or_upnext(path, level, root_level); 7544 } else { 7545 ret = tree_move_down(path, level, reada_min_gen); 7546 } 7547 7548 /* 7549 * Even if we have reached the end of a tree, ret is -1, update the key 7550 * anyway, so that in case we need to restart due to a block group 7551 * relocation, we can assert that the last key of the root node still 7552 * exists in the tree. 7553 */ 7554 if (*level == 0) 7555 btrfs_item_key_to_cpu(path->nodes[*level], key, 7556 path->slots[*level]); 7557 else 7558 btrfs_node_key_to_cpu(path->nodes[*level], key, 7559 path->slots[*level]); 7560 7561 return ret; 7562 } 7563 7564 static int tree_compare_item(struct btrfs_path *left_path, 7565 struct btrfs_path *right_path, 7566 char *tmp_buf) 7567 { 7568 int cmp; 7569 int len1, len2; 7570 unsigned long off1, off2; 7571 7572 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7573 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7574 if (len1 != len2) 7575 return 1; 7576 7577 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7578 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7579 right_path->slots[0]); 7580 7581 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7582 7583 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7584 if (cmp) 7585 return 1; 7586 return 0; 7587 } 7588 7589 /* 7590 * A transaction used for relocating a block group was committed or is about to 7591 * finish its commit. Release our paths and restart the search, so that we are 7592 * not using stale extent buffers: 7593 * 7594 * 1) For levels > 0, we are only holding references of extent buffers, without 7595 * any locks on them, which does not prevent them from having been relocated 7596 * and reallocated after the last time we released the commit root semaphore. 7597 * The exception are the root nodes, for which we always have a clone, see 7598 * the comment at btrfs_compare_trees(); 7599 * 7600 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7601 * we are safe from the concurrent relocation and reallocation. However they 7602 * can have file extent items with a pre relocation disk_bytenr value, so we 7603 * restart the start from the current commit roots and clone the new leaves so 7604 * that we get the post relocation disk_bytenr values. Not doing so, could 7605 * make us clone the wrong data in case there are new extents using the old 7606 * disk_bytenr that happen to be shared. 7607 */ 7608 static int restart_after_relocation(struct btrfs_path *left_path, 7609 struct btrfs_path *right_path, 7610 const struct btrfs_key *left_key, 7611 const struct btrfs_key *right_key, 7612 int left_level, 7613 int right_level, 7614 const struct send_ctx *sctx) 7615 { 7616 int root_level; 7617 int ret; 7618 7619 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7620 7621 btrfs_release_path(left_path); 7622 btrfs_release_path(right_path); 7623 7624 /* 7625 * Since keys can not be added or removed to/from our roots because they 7626 * are readonly and we do not allow deduplication to run in parallel 7627 * (which can add, remove or change keys), the layout of the trees should 7628 * not change. 7629 */ 7630 left_path->lowest_level = left_level; 7631 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7632 if (ret < 0) 7633 return ret; 7634 7635 right_path->lowest_level = right_level; 7636 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7637 if (ret < 0) 7638 return ret; 7639 7640 /* 7641 * If the lowest level nodes are leaves, clone them so that they can be 7642 * safely used by changed_cb() while not under the protection of the 7643 * commit root semaphore, even if relocation and reallocation happens in 7644 * parallel. 7645 */ 7646 if (left_level == 0) { 7647 ret = replace_node_with_clone(left_path, 0); 7648 if (ret < 0) 7649 return ret; 7650 } 7651 7652 if (right_level == 0) { 7653 ret = replace_node_with_clone(right_path, 0); 7654 if (ret < 0) 7655 return ret; 7656 } 7657 7658 /* 7659 * Now clone the root nodes (unless they happen to be the leaves we have 7660 * already cloned). This is to protect against concurrent snapshotting of 7661 * the send and parent roots (see the comment at btrfs_compare_trees()). 7662 */ 7663 root_level = btrfs_header_level(sctx->send_root->commit_root); 7664 if (root_level > 0) { 7665 ret = replace_node_with_clone(left_path, root_level); 7666 if (ret < 0) 7667 return ret; 7668 } 7669 7670 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7671 if (root_level > 0) { 7672 ret = replace_node_with_clone(right_path, root_level); 7673 if (ret < 0) 7674 return ret; 7675 } 7676 7677 return 0; 7678 } 7679 7680 /* 7681 * This function compares two trees and calls the provided callback for 7682 * every changed/new/deleted item it finds. 7683 * If shared tree blocks are encountered, whole subtrees are skipped, making 7684 * the compare pretty fast on snapshotted subvolumes. 7685 * 7686 * This currently works on commit roots only. As commit roots are read only, 7687 * we don't do any locking. The commit roots are protected with transactions. 7688 * Transactions are ended and rejoined when a commit is tried in between. 7689 * 7690 * This function checks for modifications done to the trees while comparing. 7691 * If it detects a change, it aborts immediately. 7692 */ 7693 static int btrfs_compare_trees(struct btrfs_root *left_root, 7694 struct btrfs_root *right_root, struct send_ctx *sctx) 7695 { 7696 struct btrfs_fs_info *fs_info = left_root->fs_info; 7697 int ret; 7698 int cmp; 7699 struct btrfs_path *left_path = NULL; 7700 struct btrfs_path *right_path = NULL; 7701 struct btrfs_key left_key; 7702 struct btrfs_key right_key; 7703 char *tmp_buf = NULL; 7704 int left_root_level; 7705 int right_root_level; 7706 int left_level; 7707 int right_level; 7708 int left_end_reached = 0; 7709 int right_end_reached = 0; 7710 int advance_left = 0; 7711 int advance_right = 0; 7712 u64 left_blockptr; 7713 u64 right_blockptr; 7714 u64 left_gen; 7715 u64 right_gen; 7716 u64 reada_min_gen; 7717 7718 left_path = btrfs_alloc_path(); 7719 if (!left_path) { 7720 ret = -ENOMEM; 7721 goto out; 7722 } 7723 right_path = btrfs_alloc_path(); 7724 if (!right_path) { 7725 ret = -ENOMEM; 7726 goto out; 7727 } 7728 7729 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7730 if (!tmp_buf) { 7731 ret = -ENOMEM; 7732 goto out; 7733 } 7734 7735 left_path->search_commit_root = 1; 7736 left_path->skip_locking = 1; 7737 right_path->search_commit_root = 1; 7738 right_path->skip_locking = 1; 7739 7740 /* 7741 * Strategy: Go to the first items of both trees. Then do 7742 * 7743 * If both trees are at level 0 7744 * Compare keys of current items 7745 * If left < right treat left item as new, advance left tree 7746 * and repeat 7747 * If left > right treat right item as deleted, advance right tree 7748 * and repeat 7749 * If left == right do deep compare of items, treat as changed if 7750 * needed, advance both trees and repeat 7751 * If both trees are at the same level but not at level 0 7752 * Compare keys of current nodes/leafs 7753 * If left < right advance left tree and repeat 7754 * If left > right advance right tree and repeat 7755 * If left == right compare blockptrs of the next nodes/leafs 7756 * If they match advance both trees but stay at the same level 7757 * and repeat 7758 * If they don't match advance both trees while allowing to go 7759 * deeper and repeat 7760 * If tree levels are different 7761 * Advance the tree that needs it and repeat 7762 * 7763 * Advancing a tree means: 7764 * If we are at level 0, try to go to the next slot. If that's not 7765 * possible, go one level up and repeat. Stop when we found a level 7766 * where we could go to the next slot. We may at this point be on a 7767 * node or a leaf. 7768 * 7769 * If we are not at level 0 and not on shared tree blocks, go one 7770 * level deeper. 7771 * 7772 * If we are not at level 0 and on shared tree blocks, go one slot to 7773 * the right if possible or go up and right. 7774 */ 7775 7776 down_read(&fs_info->commit_root_sem); 7777 left_level = btrfs_header_level(left_root->commit_root); 7778 left_root_level = left_level; 7779 /* 7780 * We clone the root node of the send and parent roots to prevent races 7781 * with snapshot creation of these roots. Snapshot creation COWs the 7782 * root node of a tree, so after the transaction is committed the old 7783 * extent can be reallocated while this send operation is still ongoing. 7784 * So we clone them, under the commit root semaphore, to be race free. 7785 */ 7786 left_path->nodes[left_level] = 7787 btrfs_clone_extent_buffer(left_root->commit_root); 7788 if (!left_path->nodes[left_level]) { 7789 ret = -ENOMEM; 7790 goto out_unlock; 7791 } 7792 7793 right_level = btrfs_header_level(right_root->commit_root); 7794 right_root_level = right_level; 7795 right_path->nodes[right_level] = 7796 btrfs_clone_extent_buffer(right_root->commit_root); 7797 if (!right_path->nodes[right_level]) { 7798 ret = -ENOMEM; 7799 goto out_unlock; 7800 } 7801 /* 7802 * Our right root is the parent root, while the left root is the "send" 7803 * root. We know that all new nodes/leaves in the left root must have 7804 * a generation greater than the right root's generation, so we trigger 7805 * readahead for those nodes and leaves of the left root, as we know we 7806 * will need to read them at some point. 7807 */ 7808 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7809 7810 if (left_level == 0) 7811 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7812 &left_key, left_path->slots[left_level]); 7813 else 7814 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7815 &left_key, left_path->slots[left_level]); 7816 if (right_level == 0) 7817 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7818 &right_key, right_path->slots[right_level]); 7819 else 7820 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7821 &right_key, right_path->slots[right_level]); 7822 7823 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7824 7825 while (1) { 7826 if (need_resched() || 7827 rwsem_is_contended(&fs_info->commit_root_sem)) { 7828 up_read(&fs_info->commit_root_sem); 7829 cond_resched(); 7830 down_read(&fs_info->commit_root_sem); 7831 } 7832 7833 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7834 ret = restart_after_relocation(left_path, right_path, 7835 &left_key, &right_key, 7836 left_level, right_level, 7837 sctx); 7838 if (ret < 0) 7839 goto out_unlock; 7840 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7841 } 7842 7843 if (advance_left && !left_end_reached) { 7844 ret = tree_advance(left_path, &left_level, 7845 left_root_level, 7846 advance_left != ADVANCE_ONLY_NEXT, 7847 &left_key, reada_min_gen); 7848 if (ret == -1) 7849 left_end_reached = ADVANCE; 7850 else if (ret < 0) 7851 goto out_unlock; 7852 advance_left = 0; 7853 } 7854 if (advance_right && !right_end_reached) { 7855 ret = tree_advance(right_path, &right_level, 7856 right_root_level, 7857 advance_right != ADVANCE_ONLY_NEXT, 7858 &right_key, reada_min_gen); 7859 if (ret == -1) 7860 right_end_reached = ADVANCE; 7861 else if (ret < 0) 7862 goto out_unlock; 7863 advance_right = 0; 7864 } 7865 7866 if (left_end_reached && right_end_reached) { 7867 ret = 0; 7868 goto out_unlock; 7869 } else if (left_end_reached) { 7870 if (right_level == 0) { 7871 up_read(&fs_info->commit_root_sem); 7872 ret = changed_cb(left_path, right_path, 7873 &right_key, 7874 BTRFS_COMPARE_TREE_DELETED, 7875 sctx); 7876 if (ret < 0) 7877 goto out; 7878 down_read(&fs_info->commit_root_sem); 7879 } 7880 advance_right = ADVANCE; 7881 continue; 7882 } else if (right_end_reached) { 7883 if (left_level == 0) { 7884 up_read(&fs_info->commit_root_sem); 7885 ret = changed_cb(left_path, right_path, 7886 &left_key, 7887 BTRFS_COMPARE_TREE_NEW, 7888 sctx); 7889 if (ret < 0) 7890 goto out; 7891 down_read(&fs_info->commit_root_sem); 7892 } 7893 advance_left = ADVANCE; 7894 continue; 7895 } 7896 7897 if (left_level == 0 && right_level == 0) { 7898 up_read(&fs_info->commit_root_sem); 7899 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7900 if (cmp < 0) { 7901 ret = changed_cb(left_path, right_path, 7902 &left_key, 7903 BTRFS_COMPARE_TREE_NEW, 7904 sctx); 7905 advance_left = ADVANCE; 7906 } else if (cmp > 0) { 7907 ret = changed_cb(left_path, right_path, 7908 &right_key, 7909 BTRFS_COMPARE_TREE_DELETED, 7910 sctx); 7911 advance_right = ADVANCE; 7912 } else { 7913 enum btrfs_compare_tree_result result; 7914 7915 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7916 ret = tree_compare_item(left_path, right_path, 7917 tmp_buf); 7918 if (ret) 7919 result = BTRFS_COMPARE_TREE_CHANGED; 7920 else 7921 result = BTRFS_COMPARE_TREE_SAME; 7922 ret = changed_cb(left_path, right_path, 7923 &left_key, result, sctx); 7924 advance_left = ADVANCE; 7925 advance_right = ADVANCE; 7926 } 7927 7928 if (ret < 0) 7929 goto out; 7930 down_read(&fs_info->commit_root_sem); 7931 } else if (left_level == right_level) { 7932 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7933 if (cmp < 0) { 7934 advance_left = ADVANCE; 7935 } else if (cmp > 0) { 7936 advance_right = ADVANCE; 7937 } else { 7938 left_blockptr = btrfs_node_blockptr( 7939 left_path->nodes[left_level], 7940 left_path->slots[left_level]); 7941 right_blockptr = btrfs_node_blockptr( 7942 right_path->nodes[right_level], 7943 right_path->slots[right_level]); 7944 left_gen = btrfs_node_ptr_generation( 7945 left_path->nodes[left_level], 7946 left_path->slots[left_level]); 7947 right_gen = btrfs_node_ptr_generation( 7948 right_path->nodes[right_level], 7949 right_path->slots[right_level]); 7950 if (left_blockptr == right_blockptr && 7951 left_gen == right_gen) { 7952 /* 7953 * As we're on a shared block, don't 7954 * allow to go deeper. 7955 */ 7956 advance_left = ADVANCE_ONLY_NEXT; 7957 advance_right = ADVANCE_ONLY_NEXT; 7958 } else { 7959 advance_left = ADVANCE; 7960 advance_right = ADVANCE; 7961 } 7962 } 7963 } else if (left_level < right_level) { 7964 advance_right = ADVANCE; 7965 } else { 7966 advance_left = ADVANCE; 7967 } 7968 } 7969 7970 out_unlock: 7971 up_read(&fs_info->commit_root_sem); 7972 out: 7973 btrfs_free_path(left_path); 7974 btrfs_free_path(right_path); 7975 kvfree(tmp_buf); 7976 return ret; 7977 } 7978 7979 static int send_subvol(struct send_ctx *sctx) 7980 { 7981 int ret; 7982 7983 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7984 ret = send_header(sctx); 7985 if (ret < 0) 7986 goto out; 7987 } 7988 7989 ret = send_subvol_begin(sctx); 7990 if (ret < 0) 7991 goto out; 7992 7993 if (sctx->parent_root) { 7994 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7995 if (ret < 0) 7996 goto out; 7997 ret = finish_inode_if_needed(sctx, 1); 7998 if (ret < 0) 7999 goto out; 8000 } else { 8001 ret = full_send_tree(sctx); 8002 if (ret < 0) 8003 goto out; 8004 } 8005 8006 out: 8007 free_recorded_refs(sctx); 8008 return ret; 8009 } 8010 8011 /* 8012 * If orphan cleanup did remove any orphans from a root, it means the tree 8013 * was modified and therefore the commit root is not the same as the current 8014 * root anymore. This is a problem, because send uses the commit root and 8015 * therefore can see inode items that don't exist in the current root anymore, 8016 * and for example make calls to btrfs_iget, which will do tree lookups based 8017 * on the current root and not on the commit root. Those lookups will fail, 8018 * returning a -ESTALE error, and making send fail with that error. So make 8019 * sure a send does not see any orphans we have just removed, and that it will 8020 * see the same inodes regardless of whether a transaction commit happened 8021 * before it started (meaning that the commit root will be the same as the 8022 * current root) or not. 8023 */ 8024 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 8025 { 8026 struct btrfs_root *root = sctx->parent_root; 8027 8028 if (root && root->node != root->commit_root) 8029 return btrfs_commit_current_transaction(root); 8030 8031 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 8032 root = sctx->clone_roots[i].root; 8033 if (root->node != root->commit_root) 8034 return btrfs_commit_current_transaction(root); 8035 } 8036 8037 return 0; 8038 } 8039 8040 /* 8041 * Make sure any existing dellaloc is flushed for any root used by a send 8042 * operation so that we do not miss any data and we do not race with writeback 8043 * finishing and changing a tree while send is using the tree. This could 8044 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8045 * a send operation then uses the subvolume. 8046 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8047 */ 8048 static int flush_delalloc_roots(struct send_ctx *sctx) 8049 { 8050 struct btrfs_root *root = sctx->parent_root; 8051 int ret; 8052 int i; 8053 8054 if (root) { 8055 ret = btrfs_start_delalloc_snapshot(root, false); 8056 if (ret) 8057 return ret; 8058 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8059 } 8060 8061 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8062 root = sctx->clone_roots[i].root; 8063 ret = btrfs_start_delalloc_snapshot(root, false); 8064 if (ret) 8065 return ret; 8066 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8067 } 8068 8069 return 0; 8070 } 8071 8072 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8073 { 8074 spin_lock(&root->root_item_lock); 8075 root->send_in_progress--; 8076 /* 8077 * Not much left to do, we don't know why it's unbalanced and 8078 * can't blindly reset it to 0. 8079 */ 8080 if (root->send_in_progress < 0) 8081 btrfs_err(root->fs_info, 8082 "send_in_progress unbalanced %d root %llu", 8083 root->send_in_progress, btrfs_root_id(root)); 8084 spin_unlock(&root->root_item_lock); 8085 } 8086 8087 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8088 { 8089 btrfs_warn_rl(root->fs_info, 8090 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8091 btrfs_root_id(root), root->dedupe_in_progress); 8092 } 8093 8094 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg) 8095 { 8096 int ret = 0; 8097 struct btrfs_root *send_root = inode->root; 8098 struct btrfs_fs_info *fs_info = send_root->fs_info; 8099 struct btrfs_root *clone_root; 8100 struct send_ctx *sctx = NULL; 8101 u32 i; 8102 u64 *clone_sources_tmp = NULL; 8103 int clone_sources_to_rollback = 0; 8104 size_t alloc_size; 8105 int sort_clone_roots = 0; 8106 struct btrfs_lru_cache_entry *entry; 8107 struct btrfs_lru_cache_entry *tmp; 8108 8109 if (!capable(CAP_SYS_ADMIN)) 8110 return -EPERM; 8111 8112 /* 8113 * The subvolume must remain read-only during send, protect against 8114 * making it RW. This also protects against deletion. 8115 */ 8116 spin_lock(&send_root->root_item_lock); 8117 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8118 dedupe_in_progress_warn(send_root); 8119 spin_unlock(&send_root->root_item_lock); 8120 return -EAGAIN; 8121 } 8122 send_root->send_in_progress++; 8123 spin_unlock(&send_root->root_item_lock); 8124 8125 /* 8126 * Userspace tools do the checks and warn the user if it's 8127 * not RO. 8128 */ 8129 if (!btrfs_root_readonly(send_root)) { 8130 ret = -EPERM; 8131 goto out; 8132 } 8133 8134 /* 8135 * Check that we don't overflow at later allocations, we request 8136 * clone_sources_count + 1 items, and compare to unsigned long inside 8137 * access_ok. Also set an upper limit for allocation size so this can't 8138 * easily exhaust memory. Max number of clone sources is about 200K. 8139 */ 8140 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8141 ret = -EINVAL; 8142 goto out; 8143 } 8144 8145 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8146 ret = -EOPNOTSUPP; 8147 goto out; 8148 } 8149 8150 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8151 if (!sctx) { 8152 ret = -ENOMEM; 8153 goto out; 8154 } 8155 8156 INIT_LIST_HEAD(&sctx->new_refs); 8157 INIT_LIST_HEAD(&sctx->deleted_refs); 8158 8159 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8160 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8161 btrfs_lru_cache_init(&sctx->dir_created_cache, 8162 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8163 /* 8164 * This cache is periodically trimmed to a fixed size elsewhere, see 8165 * cache_dir_utimes() and trim_dir_utimes_cache(). 8166 */ 8167 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8168 8169 sctx->pending_dir_moves = RB_ROOT; 8170 sctx->waiting_dir_moves = RB_ROOT; 8171 sctx->orphan_dirs = RB_ROOT; 8172 sctx->rbtree_new_refs = RB_ROOT; 8173 sctx->rbtree_deleted_refs = RB_ROOT; 8174 8175 sctx->flags = arg->flags; 8176 8177 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8178 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8179 ret = -EPROTO; 8180 goto out; 8181 } 8182 /* Zero means "use the highest version" */ 8183 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8184 } else { 8185 sctx->proto = 1; 8186 } 8187 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8188 ret = -EINVAL; 8189 goto out; 8190 } 8191 8192 sctx->send_filp = fget(arg->send_fd); 8193 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8194 ret = -EBADF; 8195 goto out; 8196 } 8197 8198 sctx->send_root = send_root; 8199 /* 8200 * Unlikely but possible, if the subvolume is marked for deletion but 8201 * is slow to remove the directory entry, send can still be started 8202 */ 8203 if (btrfs_root_dead(sctx->send_root)) { 8204 ret = -EPERM; 8205 goto out; 8206 } 8207 8208 sctx->clone_roots_cnt = arg->clone_sources_count; 8209 8210 if (sctx->proto >= 2) { 8211 u32 send_buf_num_pages; 8212 8213 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8214 sctx->send_buf = vmalloc(sctx->send_max_size); 8215 if (!sctx->send_buf) { 8216 ret = -ENOMEM; 8217 goto out; 8218 } 8219 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8220 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8221 sizeof(*sctx->send_buf_pages), 8222 GFP_KERNEL); 8223 if (!sctx->send_buf_pages) { 8224 ret = -ENOMEM; 8225 goto out; 8226 } 8227 for (i = 0; i < send_buf_num_pages; i++) { 8228 sctx->send_buf_pages[i] = 8229 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8230 } 8231 } else { 8232 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8233 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8234 } 8235 if (!sctx->send_buf) { 8236 ret = -ENOMEM; 8237 goto out; 8238 } 8239 8240 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8241 sizeof(*sctx->clone_roots), 8242 GFP_KERNEL); 8243 if (!sctx->clone_roots) { 8244 ret = -ENOMEM; 8245 goto out; 8246 } 8247 8248 alloc_size = array_size(sizeof(*arg->clone_sources), 8249 arg->clone_sources_count); 8250 8251 if (arg->clone_sources_count) { 8252 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8253 if (!clone_sources_tmp) { 8254 ret = -ENOMEM; 8255 goto out; 8256 } 8257 8258 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8259 alloc_size); 8260 if (ret) { 8261 ret = -EFAULT; 8262 goto out; 8263 } 8264 8265 for (i = 0; i < arg->clone_sources_count; i++) { 8266 clone_root = btrfs_get_fs_root(fs_info, 8267 clone_sources_tmp[i], true); 8268 if (IS_ERR(clone_root)) { 8269 ret = PTR_ERR(clone_root); 8270 goto out; 8271 } 8272 spin_lock(&clone_root->root_item_lock); 8273 if (!btrfs_root_readonly(clone_root) || 8274 btrfs_root_dead(clone_root)) { 8275 spin_unlock(&clone_root->root_item_lock); 8276 btrfs_put_root(clone_root); 8277 ret = -EPERM; 8278 goto out; 8279 } 8280 if (clone_root->dedupe_in_progress) { 8281 dedupe_in_progress_warn(clone_root); 8282 spin_unlock(&clone_root->root_item_lock); 8283 btrfs_put_root(clone_root); 8284 ret = -EAGAIN; 8285 goto out; 8286 } 8287 clone_root->send_in_progress++; 8288 spin_unlock(&clone_root->root_item_lock); 8289 8290 sctx->clone_roots[i].root = clone_root; 8291 clone_sources_to_rollback = i + 1; 8292 } 8293 kvfree(clone_sources_tmp); 8294 clone_sources_tmp = NULL; 8295 } 8296 8297 if (arg->parent_root) { 8298 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8299 true); 8300 if (IS_ERR(sctx->parent_root)) { 8301 ret = PTR_ERR(sctx->parent_root); 8302 goto out; 8303 } 8304 8305 spin_lock(&sctx->parent_root->root_item_lock); 8306 sctx->parent_root->send_in_progress++; 8307 if (!btrfs_root_readonly(sctx->parent_root) || 8308 btrfs_root_dead(sctx->parent_root)) { 8309 spin_unlock(&sctx->parent_root->root_item_lock); 8310 ret = -EPERM; 8311 goto out; 8312 } 8313 if (sctx->parent_root->dedupe_in_progress) { 8314 dedupe_in_progress_warn(sctx->parent_root); 8315 spin_unlock(&sctx->parent_root->root_item_lock); 8316 ret = -EAGAIN; 8317 goto out; 8318 } 8319 spin_unlock(&sctx->parent_root->root_item_lock); 8320 } 8321 8322 /* 8323 * Clones from send_root are allowed, but only if the clone source 8324 * is behind the current send position. This is checked while searching 8325 * for possible clone sources. 8326 */ 8327 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8328 btrfs_grab_root(sctx->send_root); 8329 8330 /* We do a bsearch later */ 8331 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8332 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8333 NULL); 8334 sort_clone_roots = 1; 8335 8336 ret = flush_delalloc_roots(sctx); 8337 if (ret) 8338 goto out; 8339 8340 ret = ensure_commit_roots_uptodate(sctx); 8341 if (ret) 8342 goto out; 8343 8344 ret = send_subvol(sctx); 8345 if (ret < 0) 8346 goto out; 8347 8348 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8349 ret = send_utimes(sctx, entry->key, entry->gen); 8350 if (ret < 0) 8351 goto out; 8352 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8353 } 8354 8355 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8356 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8357 if (ret < 0) 8358 goto out; 8359 ret = send_cmd(sctx); 8360 if (ret < 0) 8361 goto out; 8362 } 8363 8364 out: 8365 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8366 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8367 struct rb_node *n; 8368 struct pending_dir_move *pm; 8369 8370 n = rb_first(&sctx->pending_dir_moves); 8371 pm = rb_entry(n, struct pending_dir_move, node); 8372 while (!list_empty(&pm->list)) { 8373 struct pending_dir_move *pm2; 8374 8375 pm2 = list_first_entry(&pm->list, 8376 struct pending_dir_move, list); 8377 free_pending_move(sctx, pm2); 8378 } 8379 free_pending_move(sctx, pm); 8380 } 8381 8382 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8383 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8384 struct rb_node *n; 8385 struct waiting_dir_move *dm; 8386 8387 n = rb_first(&sctx->waiting_dir_moves); 8388 dm = rb_entry(n, struct waiting_dir_move, node); 8389 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8390 kfree(dm); 8391 } 8392 8393 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8394 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8395 struct rb_node *n; 8396 struct orphan_dir_info *odi; 8397 8398 n = rb_first(&sctx->orphan_dirs); 8399 odi = rb_entry(n, struct orphan_dir_info, node); 8400 free_orphan_dir_info(sctx, odi); 8401 } 8402 8403 if (sort_clone_roots) { 8404 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8405 btrfs_root_dec_send_in_progress( 8406 sctx->clone_roots[i].root); 8407 btrfs_put_root(sctx->clone_roots[i].root); 8408 } 8409 } else { 8410 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8411 btrfs_root_dec_send_in_progress( 8412 sctx->clone_roots[i].root); 8413 btrfs_put_root(sctx->clone_roots[i].root); 8414 } 8415 8416 btrfs_root_dec_send_in_progress(send_root); 8417 } 8418 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8419 btrfs_root_dec_send_in_progress(sctx->parent_root); 8420 btrfs_put_root(sctx->parent_root); 8421 } 8422 8423 kvfree(clone_sources_tmp); 8424 8425 if (sctx) { 8426 if (sctx->send_filp) 8427 fput(sctx->send_filp); 8428 8429 kvfree(sctx->clone_roots); 8430 kfree(sctx->send_buf_pages); 8431 kvfree(sctx->send_buf); 8432 kvfree(sctx->verity_descriptor); 8433 8434 close_current_inode(sctx); 8435 8436 btrfs_lru_cache_clear(&sctx->name_cache); 8437 btrfs_lru_cache_clear(&sctx->backref_cache); 8438 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8439 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8440 8441 kfree(sctx); 8442 } 8443 8444 return ret; 8445 } 8446