1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/crc32c.h> 28 #include <linux/vmalloc.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "locking.h" 33 #include "disk-io.h" 34 #include "btrfs_inode.h" 35 #include "transaction.h" 36 37 static int g_verbose = 0; 38 39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 40 41 /* 42 * A fs_path is a helper to dynamically build path names with unknown size. 43 * It reallocates the internal buffer on demand. 44 * It allows fast adding of path elements on the right side (normal path) and 45 * fast adding to the left side (reversed path). A reversed path can also be 46 * unreversed if needed. 47 */ 48 struct fs_path { 49 union { 50 struct { 51 char *start; 52 char *end; 53 char *prepared; 54 55 char *buf; 56 int buf_len; 57 int reversed:1; 58 int virtual_mem:1; 59 char inline_buf[]; 60 }; 61 char pad[PAGE_SIZE]; 62 }; 63 }; 64 #define FS_PATH_INLINE_SIZE \ 65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 66 67 68 /* reused for each extent */ 69 struct clone_root { 70 struct btrfs_root *root; 71 u64 ino; 72 u64 offset; 73 74 u64 found_refs; 75 }; 76 77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 79 80 struct send_ctx { 81 struct file *send_filp; 82 loff_t send_off; 83 char *send_buf; 84 u32 send_size; 85 u32 send_max_size; 86 u64 total_send_size; 87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 88 89 struct vfsmount *mnt; 90 91 struct btrfs_root *send_root; 92 struct btrfs_root *parent_root; 93 struct clone_root *clone_roots; 94 int clone_roots_cnt; 95 96 /* current state of the compare_tree call */ 97 struct btrfs_path *left_path; 98 struct btrfs_path *right_path; 99 struct btrfs_key *cmp_key; 100 101 /* 102 * infos of the currently processed inode. In case of deleted inodes, 103 * these are the values from the deleted inode. 104 */ 105 u64 cur_ino; 106 u64 cur_inode_gen; 107 int cur_inode_new; 108 int cur_inode_new_gen; 109 int cur_inode_deleted; 110 u64 cur_inode_size; 111 u64 cur_inode_mode; 112 113 u64 send_progress; 114 115 struct list_head new_refs; 116 struct list_head deleted_refs; 117 118 struct radix_tree_root name_cache; 119 struct list_head name_cache_list; 120 int name_cache_size; 121 122 struct file *cur_inode_filp; 123 char *read_buf; 124 }; 125 126 struct name_cache_entry { 127 struct list_head list; 128 /* 129 * radix_tree has only 32bit entries but we need to handle 64bit inums. 130 * We use the lower 32bit of the 64bit inum to store it in the tree. If 131 * more then one inum would fall into the same entry, we use radix_list 132 * to store the additional entries. radix_list is also used to store 133 * entries where two entries have the same inum but different 134 * generations. 135 */ 136 struct list_head radix_list; 137 u64 ino; 138 u64 gen; 139 u64 parent_ino; 140 u64 parent_gen; 141 int ret; 142 int need_later_update; 143 int name_len; 144 char name[]; 145 }; 146 147 static void fs_path_reset(struct fs_path *p) 148 { 149 if (p->reversed) { 150 p->start = p->buf + p->buf_len - 1; 151 p->end = p->start; 152 *p->start = 0; 153 } else { 154 p->start = p->buf; 155 p->end = p->start; 156 *p->start = 0; 157 } 158 } 159 160 static struct fs_path *fs_path_alloc(struct send_ctx *sctx) 161 { 162 struct fs_path *p; 163 164 p = kmalloc(sizeof(*p), GFP_NOFS); 165 if (!p) 166 return NULL; 167 p->reversed = 0; 168 p->virtual_mem = 0; 169 p->buf = p->inline_buf; 170 p->buf_len = FS_PATH_INLINE_SIZE; 171 fs_path_reset(p); 172 return p; 173 } 174 175 static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx) 176 { 177 struct fs_path *p; 178 179 p = fs_path_alloc(sctx); 180 if (!p) 181 return NULL; 182 p->reversed = 1; 183 fs_path_reset(p); 184 return p; 185 } 186 187 static void fs_path_free(struct send_ctx *sctx, struct fs_path *p) 188 { 189 if (!p) 190 return; 191 if (p->buf != p->inline_buf) { 192 if (p->virtual_mem) 193 vfree(p->buf); 194 else 195 kfree(p->buf); 196 } 197 kfree(p); 198 } 199 200 static int fs_path_len(struct fs_path *p) 201 { 202 return p->end - p->start; 203 } 204 205 static int fs_path_ensure_buf(struct fs_path *p, int len) 206 { 207 char *tmp_buf; 208 int path_len; 209 int old_buf_len; 210 211 len++; 212 213 if (p->buf_len >= len) 214 return 0; 215 216 path_len = p->end - p->start; 217 old_buf_len = p->buf_len; 218 len = PAGE_ALIGN(len); 219 220 if (p->buf == p->inline_buf) { 221 tmp_buf = kmalloc(len, GFP_NOFS); 222 if (!tmp_buf) { 223 tmp_buf = vmalloc(len); 224 if (!tmp_buf) 225 return -ENOMEM; 226 p->virtual_mem = 1; 227 } 228 memcpy(tmp_buf, p->buf, p->buf_len); 229 p->buf = tmp_buf; 230 p->buf_len = len; 231 } else { 232 if (p->virtual_mem) { 233 tmp_buf = vmalloc(len); 234 if (!tmp_buf) 235 return -ENOMEM; 236 memcpy(tmp_buf, p->buf, p->buf_len); 237 vfree(p->buf); 238 } else { 239 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 240 if (!tmp_buf) { 241 tmp_buf = vmalloc(len); 242 if (!tmp_buf) 243 return -ENOMEM; 244 memcpy(tmp_buf, p->buf, p->buf_len); 245 kfree(p->buf); 246 p->virtual_mem = 1; 247 } 248 } 249 p->buf = tmp_buf; 250 p->buf_len = len; 251 } 252 if (p->reversed) { 253 tmp_buf = p->buf + old_buf_len - path_len - 1; 254 p->end = p->buf + p->buf_len - 1; 255 p->start = p->end - path_len; 256 memmove(p->start, tmp_buf, path_len + 1); 257 } else { 258 p->start = p->buf; 259 p->end = p->start + path_len; 260 } 261 return 0; 262 } 263 264 static int fs_path_prepare_for_add(struct fs_path *p, int name_len) 265 { 266 int ret; 267 int new_len; 268 269 new_len = p->end - p->start + name_len; 270 if (p->start != p->end) 271 new_len++; 272 ret = fs_path_ensure_buf(p, new_len); 273 if (ret < 0) 274 goto out; 275 276 if (p->reversed) { 277 if (p->start != p->end) 278 *--p->start = '/'; 279 p->start -= name_len; 280 p->prepared = p->start; 281 } else { 282 if (p->start != p->end) 283 *p->end++ = '/'; 284 p->prepared = p->end; 285 p->end += name_len; 286 *p->end = 0; 287 } 288 289 out: 290 return ret; 291 } 292 293 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 294 { 295 int ret; 296 297 ret = fs_path_prepare_for_add(p, name_len); 298 if (ret < 0) 299 goto out; 300 memcpy(p->prepared, name, name_len); 301 p->prepared = NULL; 302 303 out: 304 return ret; 305 } 306 307 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 308 { 309 int ret; 310 311 ret = fs_path_prepare_for_add(p, p2->end - p2->start); 312 if (ret < 0) 313 goto out; 314 memcpy(p->prepared, p2->start, p2->end - p2->start); 315 p->prepared = NULL; 316 317 out: 318 return ret; 319 } 320 321 static int fs_path_add_from_extent_buffer(struct fs_path *p, 322 struct extent_buffer *eb, 323 unsigned long off, int len) 324 { 325 int ret; 326 327 ret = fs_path_prepare_for_add(p, len); 328 if (ret < 0) 329 goto out; 330 331 read_extent_buffer(eb, p->prepared, off, len); 332 p->prepared = NULL; 333 334 out: 335 return ret; 336 } 337 338 #if 0 339 static void fs_path_remove(struct fs_path *p) 340 { 341 BUG_ON(p->reversed); 342 while (p->start != p->end && *p->end != '/') 343 p->end--; 344 *p->end = 0; 345 } 346 #endif 347 348 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 349 { 350 int ret; 351 352 p->reversed = from->reversed; 353 fs_path_reset(p); 354 355 ret = fs_path_add_path(p, from); 356 357 return ret; 358 } 359 360 361 static void fs_path_unreverse(struct fs_path *p) 362 { 363 char *tmp; 364 int len; 365 366 if (!p->reversed) 367 return; 368 369 tmp = p->start; 370 len = p->end - p->start; 371 p->start = p->buf; 372 p->end = p->start + len; 373 memmove(p->start, tmp, len + 1); 374 p->reversed = 0; 375 } 376 377 static struct btrfs_path *alloc_path_for_send(void) 378 { 379 struct btrfs_path *path; 380 381 path = btrfs_alloc_path(); 382 if (!path) 383 return NULL; 384 path->search_commit_root = 1; 385 path->skip_locking = 1; 386 return path; 387 } 388 389 int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 390 { 391 int ret; 392 mm_segment_t old_fs; 393 u32 pos = 0; 394 395 old_fs = get_fs(); 396 set_fs(KERNEL_DS); 397 398 while (pos < len) { 399 ret = vfs_write(filp, (char *)buf + pos, len - pos, off); 400 /* TODO handle that correctly */ 401 /*if (ret == -ERESTARTSYS) { 402 continue; 403 }*/ 404 if (ret < 0) 405 goto out; 406 if (ret == 0) { 407 ret = -EIO; 408 goto out; 409 } 410 pos += ret; 411 } 412 413 ret = 0; 414 415 out: 416 set_fs(old_fs); 417 return ret; 418 } 419 420 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 421 { 422 struct btrfs_tlv_header *hdr; 423 int total_len = sizeof(*hdr) + len; 424 int left = sctx->send_max_size - sctx->send_size; 425 426 if (unlikely(left < total_len)) 427 return -EOVERFLOW; 428 429 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 430 hdr->tlv_type = cpu_to_le16(attr); 431 hdr->tlv_len = cpu_to_le16(len); 432 memcpy(hdr + 1, data, len); 433 sctx->send_size += total_len; 434 435 return 0; 436 } 437 438 #if 0 439 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value) 440 { 441 return tlv_put(sctx, attr, &value, sizeof(value)); 442 } 443 444 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value) 445 { 446 __le16 tmp = cpu_to_le16(value); 447 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 448 } 449 450 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value) 451 { 452 __le32 tmp = cpu_to_le32(value); 453 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 454 } 455 #endif 456 457 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value) 458 { 459 __le64 tmp = cpu_to_le64(value); 460 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 461 } 462 463 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 464 const char *str, int len) 465 { 466 if (len == -1) 467 len = strlen(str); 468 return tlv_put(sctx, attr, str, len); 469 } 470 471 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 472 const u8 *uuid) 473 { 474 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 475 } 476 477 #if 0 478 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr, 479 struct timespec *ts) 480 { 481 struct btrfs_timespec bts; 482 bts.sec = cpu_to_le64(ts->tv_sec); 483 bts.nsec = cpu_to_le32(ts->tv_nsec); 484 return tlv_put(sctx, attr, &bts, sizeof(bts)); 485 } 486 #endif 487 488 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 489 struct extent_buffer *eb, 490 struct btrfs_timespec *ts) 491 { 492 struct btrfs_timespec bts; 493 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 494 return tlv_put(sctx, attr, &bts, sizeof(bts)); 495 } 496 497 498 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 499 do { \ 500 ret = tlv_put(sctx, attrtype, attrlen, data); \ 501 if (ret < 0) \ 502 goto tlv_put_failure; \ 503 } while (0) 504 505 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 506 do { \ 507 ret = tlv_put_u##bits(sctx, attrtype, value); \ 508 if (ret < 0) \ 509 goto tlv_put_failure; \ 510 } while (0) 511 512 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 513 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 514 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 515 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 516 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 517 do { \ 518 ret = tlv_put_string(sctx, attrtype, str, len); \ 519 if (ret < 0) \ 520 goto tlv_put_failure; \ 521 } while (0) 522 #define TLV_PUT_PATH(sctx, attrtype, p) \ 523 do { \ 524 ret = tlv_put_string(sctx, attrtype, p->start, \ 525 p->end - p->start); \ 526 if (ret < 0) \ 527 goto tlv_put_failure; \ 528 } while(0) 529 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 530 do { \ 531 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 532 if (ret < 0) \ 533 goto tlv_put_failure; \ 534 } while (0) 535 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \ 536 do { \ 537 ret = tlv_put_timespec(sctx, attrtype, ts); \ 538 if (ret < 0) \ 539 goto tlv_put_failure; \ 540 } while (0) 541 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 542 do { \ 543 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 544 if (ret < 0) \ 545 goto tlv_put_failure; \ 546 } while (0) 547 548 static int send_header(struct send_ctx *sctx) 549 { 550 struct btrfs_stream_header hdr; 551 552 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 553 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 554 555 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 556 &sctx->send_off); 557 } 558 559 /* 560 * For each command/item we want to send to userspace, we call this function. 561 */ 562 static int begin_cmd(struct send_ctx *sctx, int cmd) 563 { 564 struct btrfs_cmd_header *hdr; 565 566 if (!sctx->send_buf) { 567 WARN_ON(1); 568 return -EINVAL; 569 } 570 571 BUG_ON(sctx->send_size); 572 573 sctx->send_size += sizeof(*hdr); 574 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 575 hdr->cmd = cpu_to_le16(cmd); 576 577 return 0; 578 } 579 580 static int send_cmd(struct send_ctx *sctx) 581 { 582 int ret; 583 struct btrfs_cmd_header *hdr; 584 u32 crc; 585 586 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 587 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 588 hdr->crc = 0; 589 590 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 591 hdr->crc = cpu_to_le32(crc); 592 593 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 594 &sctx->send_off); 595 596 sctx->total_send_size += sctx->send_size; 597 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 598 sctx->send_size = 0; 599 600 return ret; 601 } 602 603 /* 604 * Sends a move instruction to user space 605 */ 606 static int send_rename(struct send_ctx *sctx, 607 struct fs_path *from, struct fs_path *to) 608 { 609 int ret; 610 611 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 612 613 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 614 if (ret < 0) 615 goto out; 616 617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 619 620 ret = send_cmd(sctx); 621 622 tlv_put_failure: 623 out: 624 return ret; 625 } 626 627 /* 628 * Sends a link instruction to user space 629 */ 630 static int send_link(struct send_ctx *sctx, 631 struct fs_path *path, struct fs_path *lnk) 632 { 633 int ret; 634 635 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 636 637 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 638 if (ret < 0) 639 goto out; 640 641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 643 644 ret = send_cmd(sctx); 645 646 tlv_put_failure: 647 out: 648 return ret; 649 } 650 651 /* 652 * Sends an unlink instruction to user space 653 */ 654 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 655 { 656 int ret; 657 658 verbose_printk("btrfs: send_unlink %s\n", path->start); 659 660 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 661 if (ret < 0) 662 goto out; 663 664 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 665 666 ret = send_cmd(sctx); 667 668 tlv_put_failure: 669 out: 670 return ret; 671 } 672 673 /* 674 * Sends a rmdir instruction to user space 675 */ 676 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 677 { 678 int ret; 679 680 verbose_printk("btrfs: send_rmdir %s\n", path->start); 681 682 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 683 if (ret < 0) 684 goto out; 685 686 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 687 688 ret = send_cmd(sctx); 689 690 tlv_put_failure: 691 out: 692 return ret; 693 } 694 695 /* 696 * Helper function to retrieve some fields from an inode item. 697 */ 698 static int get_inode_info(struct btrfs_root *root, 699 u64 ino, u64 *size, u64 *gen, 700 u64 *mode, u64 *uid, u64 *gid, 701 u64 *rdev) 702 { 703 int ret; 704 struct btrfs_inode_item *ii; 705 struct btrfs_key key; 706 struct btrfs_path *path; 707 708 path = alloc_path_for_send(); 709 if (!path) 710 return -ENOMEM; 711 712 key.objectid = ino; 713 key.type = BTRFS_INODE_ITEM_KEY; 714 key.offset = 0; 715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 716 if (ret < 0) 717 goto out; 718 if (ret) { 719 ret = -ENOENT; 720 goto out; 721 } 722 723 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 724 struct btrfs_inode_item); 725 if (size) 726 *size = btrfs_inode_size(path->nodes[0], ii); 727 if (gen) 728 *gen = btrfs_inode_generation(path->nodes[0], ii); 729 if (mode) 730 *mode = btrfs_inode_mode(path->nodes[0], ii); 731 if (uid) 732 *uid = btrfs_inode_uid(path->nodes[0], ii); 733 if (gid) 734 *gid = btrfs_inode_gid(path->nodes[0], ii); 735 if (rdev) 736 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 737 738 out: 739 btrfs_free_path(path); 740 return ret; 741 } 742 743 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 744 struct fs_path *p, 745 void *ctx); 746 747 /* 748 * Helper function to iterate the entries in ONE btrfs_inode_ref or 749 * btrfs_inode_extref. 750 * The iterate callback may return a non zero value to stop iteration. This can 751 * be a negative value for error codes or 1 to simply stop it. 752 * 753 * path must point to the INODE_REF or INODE_EXTREF when called. 754 */ 755 static int iterate_inode_ref(struct send_ctx *sctx, 756 struct btrfs_root *root, struct btrfs_path *path, 757 struct btrfs_key *found_key, int resolve, 758 iterate_inode_ref_t iterate, void *ctx) 759 { 760 struct extent_buffer *eb = path->nodes[0]; 761 struct btrfs_item *item; 762 struct btrfs_inode_ref *iref; 763 struct btrfs_inode_extref *extref; 764 struct btrfs_path *tmp_path; 765 struct fs_path *p; 766 u32 cur = 0; 767 u32 total; 768 int slot = path->slots[0]; 769 u32 name_len; 770 char *start; 771 int ret = 0; 772 int num = 0; 773 int index; 774 u64 dir; 775 unsigned long name_off; 776 unsigned long elem_size; 777 unsigned long ptr; 778 779 p = fs_path_alloc_reversed(sctx); 780 if (!p) 781 return -ENOMEM; 782 783 tmp_path = alloc_path_for_send(); 784 if (!tmp_path) { 785 fs_path_free(sctx, p); 786 return -ENOMEM; 787 } 788 789 790 if (found_key->type == BTRFS_INODE_REF_KEY) { 791 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 792 struct btrfs_inode_ref); 793 item = btrfs_item_nr(eb, slot); 794 total = btrfs_item_size(eb, item); 795 elem_size = sizeof(*iref); 796 } else { 797 ptr = btrfs_item_ptr_offset(eb, slot); 798 total = btrfs_item_size_nr(eb, slot); 799 elem_size = sizeof(*extref); 800 } 801 802 while (cur < total) { 803 fs_path_reset(p); 804 805 if (found_key->type == BTRFS_INODE_REF_KEY) { 806 iref = (struct btrfs_inode_ref *)(ptr + cur); 807 name_len = btrfs_inode_ref_name_len(eb, iref); 808 name_off = (unsigned long)(iref + 1); 809 index = btrfs_inode_ref_index(eb, iref); 810 dir = found_key->offset; 811 } else { 812 extref = (struct btrfs_inode_extref *)(ptr + cur); 813 name_len = btrfs_inode_extref_name_len(eb, extref); 814 name_off = (unsigned long)&extref->name; 815 index = btrfs_inode_extref_index(eb, extref); 816 dir = btrfs_inode_extref_parent(eb, extref); 817 } 818 819 if (resolve) { 820 start = btrfs_ref_to_path(root, tmp_path, name_len, 821 name_off, eb, dir, 822 p->buf, p->buf_len); 823 if (IS_ERR(start)) { 824 ret = PTR_ERR(start); 825 goto out; 826 } 827 if (start < p->buf) { 828 /* overflow , try again with larger buffer */ 829 ret = fs_path_ensure_buf(p, 830 p->buf_len + p->buf - start); 831 if (ret < 0) 832 goto out; 833 start = btrfs_ref_to_path(root, tmp_path, 834 name_len, name_off, 835 eb, dir, 836 p->buf, p->buf_len); 837 if (IS_ERR(start)) { 838 ret = PTR_ERR(start); 839 goto out; 840 } 841 BUG_ON(start < p->buf); 842 } 843 p->start = start; 844 } else { 845 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 846 name_len); 847 if (ret < 0) 848 goto out; 849 } 850 851 cur += elem_size + name_len; 852 ret = iterate(num, dir, index, p, ctx); 853 if (ret) 854 goto out; 855 num++; 856 } 857 858 out: 859 btrfs_free_path(tmp_path); 860 fs_path_free(sctx, p); 861 return ret; 862 } 863 864 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 865 const char *name, int name_len, 866 const char *data, int data_len, 867 u8 type, void *ctx); 868 869 /* 870 * Helper function to iterate the entries in ONE btrfs_dir_item. 871 * The iterate callback may return a non zero value to stop iteration. This can 872 * be a negative value for error codes or 1 to simply stop it. 873 * 874 * path must point to the dir item when called. 875 */ 876 static int iterate_dir_item(struct send_ctx *sctx, 877 struct btrfs_root *root, struct btrfs_path *path, 878 struct btrfs_key *found_key, 879 iterate_dir_item_t iterate, void *ctx) 880 { 881 int ret = 0; 882 struct extent_buffer *eb; 883 struct btrfs_item *item; 884 struct btrfs_dir_item *di; 885 struct btrfs_key di_key; 886 char *buf = NULL; 887 char *buf2 = NULL; 888 int buf_len; 889 int buf_virtual = 0; 890 u32 name_len; 891 u32 data_len; 892 u32 cur; 893 u32 len; 894 u32 total; 895 int slot; 896 int num; 897 u8 type; 898 899 buf_len = PAGE_SIZE; 900 buf = kmalloc(buf_len, GFP_NOFS); 901 if (!buf) { 902 ret = -ENOMEM; 903 goto out; 904 } 905 906 eb = path->nodes[0]; 907 slot = path->slots[0]; 908 item = btrfs_item_nr(eb, slot); 909 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 910 cur = 0; 911 len = 0; 912 total = btrfs_item_size(eb, item); 913 914 num = 0; 915 while (cur < total) { 916 name_len = btrfs_dir_name_len(eb, di); 917 data_len = btrfs_dir_data_len(eb, di); 918 type = btrfs_dir_type(eb, di); 919 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 920 921 if (name_len + data_len > buf_len) { 922 buf_len = PAGE_ALIGN(name_len + data_len); 923 if (buf_virtual) { 924 buf2 = vmalloc(buf_len); 925 if (!buf2) { 926 ret = -ENOMEM; 927 goto out; 928 } 929 vfree(buf); 930 } else { 931 buf2 = krealloc(buf, buf_len, GFP_NOFS); 932 if (!buf2) { 933 buf2 = vmalloc(buf_len); 934 if (!buf2) { 935 ret = -ENOMEM; 936 goto out; 937 } 938 kfree(buf); 939 buf_virtual = 1; 940 } 941 } 942 943 buf = buf2; 944 buf2 = NULL; 945 } 946 947 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 948 name_len + data_len); 949 950 len = sizeof(*di) + name_len + data_len; 951 di = (struct btrfs_dir_item *)((char *)di + len); 952 cur += len; 953 954 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 955 data_len, type, ctx); 956 if (ret < 0) 957 goto out; 958 if (ret) { 959 ret = 0; 960 goto out; 961 } 962 963 num++; 964 } 965 966 out: 967 if (buf_virtual) 968 vfree(buf); 969 else 970 kfree(buf); 971 return ret; 972 } 973 974 static int __copy_first_ref(int num, u64 dir, int index, 975 struct fs_path *p, void *ctx) 976 { 977 int ret; 978 struct fs_path *pt = ctx; 979 980 ret = fs_path_copy(pt, p); 981 if (ret < 0) 982 return ret; 983 984 /* we want the first only */ 985 return 1; 986 } 987 988 /* 989 * Retrieve the first path of an inode. If an inode has more then one 990 * ref/hardlink, this is ignored. 991 */ 992 static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root, 993 u64 ino, struct fs_path *path) 994 { 995 int ret; 996 struct btrfs_key key, found_key; 997 struct btrfs_path *p; 998 999 p = alloc_path_for_send(); 1000 if (!p) 1001 return -ENOMEM; 1002 1003 fs_path_reset(path); 1004 1005 key.objectid = ino; 1006 key.type = BTRFS_INODE_REF_KEY; 1007 key.offset = 0; 1008 1009 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1010 if (ret < 0) 1011 goto out; 1012 if (ret) { 1013 ret = 1; 1014 goto out; 1015 } 1016 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1017 if (found_key.objectid != ino || 1018 (found_key.type != BTRFS_INODE_REF_KEY && 1019 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1020 ret = -ENOENT; 1021 goto out; 1022 } 1023 1024 ret = iterate_inode_ref(sctx, root, p, &found_key, 1, 1025 __copy_first_ref, path); 1026 if (ret < 0) 1027 goto out; 1028 ret = 0; 1029 1030 out: 1031 btrfs_free_path(p); 1032 return ret; 1033 } 1034 1035 struct backref_ctx { 1036 struct send_ctx *sctx; 1037 1038 /* number of total found references */ 1039 u64 found; 1040 1041 /* 1042 * used for clones found in send_root. clones found behind cur_objectid 1043 * and cur_offset are not considered as allowed clones. 1044 */ 1045 u64 cur_objectid; 1046 u64 cur_offset; 1047 1048 /* may be truncated in case it's the last extent in a file */ 1049 u64 extent_len; 1050 1051 /* Just to check for bugs in backref resolving */ 1052 int found_itself; 1053 }; 1054 1055 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1056 { 1057 u64 root = (u64)(uintptr_t)key; 1058 struct clone_root *cr = (struct clone_root *)elt; 1059 1060 if (root < cr->root->objectid) 1061 return -1; 1062 if (root > cr->root->objectid) 1063 return 1; 1064 return 0; 1065 } 1066 1067 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1068 { 1069 struct clone_root *cr1 = (struct clone_root *)e1; 1070 struct clone_root *cr2 = (struct clone_root *)e2; 1071 1072 if (cr1->root->objectid < cr2->root->objectid) 1073 return -1; 1074 if (cr1->root->objectid > cr2->root->objectid) 1075 return 1; 1076 return 0; 1077 } 1078 1079 /* 1080 * Called for every backref that is found for the current extent. 1081 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1082 */ 1083 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1084 { 1085 struct backref_ctx *bctx = ctx_; 1086 struct clone_root *found; 1087 int ret; 1088 u64 i_size; 1089 1090 /* First check if the root is in the list of accepted clone sources */ 1091 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1092 bctx->sctx->clone_roots_cnt, 1093 sizeof(struct clone_root), 1094 __clone_root_cmp_bsearch); 1095 if (!found) 1096 return 0; 1097 1098 if (found->root == bctx->sctx->send_root && 1099 ino == bctx->cur_objectid && 1100 offset == bctx->cur_offset) { 1101 bctx->found_itself = 1; 1102 } 1103 1104 /* 1105 * There are inodes that have extents that lie behind its i_size. Don't 1106 * accept clones from these extents. 1107 */ 1108 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL, 1109 NULL); 1110 if (ret < 0) 1111 return ret; 1112 1113 if (offset + bctx->extent_len > i_size) 1114 return 0; 1115 1116 /* 1117 * Make sure we don't consider clones from send_root that are 1118 * behind the current inode/offset. 1119 */ 1120 if (found->root == bctx->sctx->send_root) { 1121 /* 1122 * TODO for the moment we don't accept clones from the inode 1123 * that is currently send. We may change this when 1124 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1125 * file. 1126 */ 1127 if (ino >= bctx->cur_objectid) 1128 return 0; 1129 #if 0 1130 if (ino > bctx->cur_objectid) 1131 return 0; 1132 if (offset + bctx->extent_len > bctx->cur_offset) 1133 return 0; 1134 #endif 1135 } 1136 1137 bctx->found++; 1138 found->found_refs++; 1139 if (ino < found->ino) { 1140 found->ino = ino; 1141 found->offset = offset; 1142 } else if (found->ino == ino) { 1143 /* 1144 * same extent found more then once in the same file. 1145 */ 1146 if (found->offset > offset + bctx->extent_len) 1147 found->offset = offset; 1148 } 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * Given an inode, offset and extent item, it finds a good clone for a clone 1155 * instruction. Returns -ENOENT when none could be found. The function makes 1156 * sure that the returned clone is usable at the point where sending is at the 1157 * moment. This means, that no clones are accepted which lie behind the current 1158 * inode+offset. 1159 * 1160 * path must point to the extent item when called. 1161 */ 1162 static int find_extent_clone(struct send_ctx *sctx, 1163 struct btrfs_path *path, 1164 u64 ino, u64 data_offset, 1165 u64 ino_size, 1166 struct clone_root **found) 1167 { 1168 int ret; 1169 int extent_type; 1170 u64 logical; 1171 u64 disk_byte; 1172 u64 num_bytes; 1173 u64 extent_item_pos; 1174 u64 flags = 0; 1175 struct btrfs_file_extent_item *fi; 1176 struct extent_buffer *eb = path->nodes[0]; 1177 struct backref_ctx *backref_ctx = NULL; 1178 struct clone_root *cur_clone_root; 1179 struct btrfs_key found_key; 1180 struct btrfs_path *tmp_path; 1181 int compressed; 1182 u32 i; 1183 1184 tmp_path = alloc_path_for_send(); 1185 if (!tmp_path) 1186 return -ENOMEM; 1187 1188 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1189 if (!backref_ctx) { 1190 ret = -ENOMEM; 1191 goto out; 1192 } 1193 1194 if (data_offset >= ino_size) { 1195 /* 1196 * There may be extents that lie behind the file's size. 1197 * I at least had this in combination with snapshotting while 1198 * writing large files. 1199 */ 1200 ret = 0; 1201 goto out; 1202 } 1203 1204 fi = btrfs_item_ptr(eb, path->slots[0], 1205 struct btrfs_file_extent_item); 1206 extent_type = btrfs_file_extent_type(eb, fi); 1207 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1208 ret = -ENOENT; 1209 goto out; 1210 } 1211 compressed = btrfs_file_extent_compression(eb, fi); 1212 1213 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1214 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1215 if (disk_byte == 0) { 1216 ret = -ENOENT; 1217 goto out; 1218 } 1219 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1220 1221 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1222 &found_key, &flags); 1223 btrfs_release_path(tmp_path); 1224 1225 if (ret < 0) 1226 goto out; 1227 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1228 ret = -EIO; 1229 goto out; 1230 } 1231 1232 /* 1233 * Setup the clone roots. 1234 */ 1235 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1236 cur_clone_root = sctx->clone_roots + i; 1237 cur_clone_root->ino = (u64)-1; 1238 cur_clone_root->offset = 0; 1239 cur_clone_root->found_refs = 0; 1240 } 1241 1242 backref_ctx->sctx = sctx; 1243 backref_ctx->found = 0; 1244 backref_ctx->cur_objectid = ino; 1245 backref_ctx->cur_offset = data_offset; 1246 backref_ctx->found_itself = 0; 1247 backref_ctx->extent_len = num_bytes; 1248 1249 /* 1250 * The last extent of a file may be too large due to page alignment. 1251 * We need to adjust extent_len in this case so that the checks in 1252 * __iterate_backrefs work. 1253 */ 1254 if (data_offset + num_bytes >= ino_size) 1255 backref_ctx->extent_len = ino_size - data_offset; 1256 1257 /* 1258 * Now collect all backrefs. 1259 */ 1260 if (compressed == BTRFS_COMPRESS_NONE) 1261 extent_item_pos = logical - found_key.objectid; 1262 else 1263 extent_item_pos = 0; 1264 1265 extent_item_pos = logical - found_key.objectid; 1266 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1267 found_key.objectid, extent_item_pos, 1, 1268 __iterate_backrefs, backref_ctx); 1269 1270 if (ret < 0) 1271 goto out; 1272 1273 if (!backref_ctx->found_itself) { 1274 /* found a bug in backref code? */ 1275 ret = -EIO; 1276 printk(KERN_ERR "btrfs: ERROR did not find backref in " 1277 "send_root. inode=%llu, offset=%llu, " 1278 "disk_byte=%llu found extent=%llu\n", 1279 ino, data_offset, disk_byte, found_key.objectid); 1280 goto out; 1281 } 1282 1283 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1284 "ino=%llu, " 1285 "num_bytes=%llu, logical=%llu\n", 1286 data_offset, ino, num_bytes, logical); 1287 1288 if (!backref_ctx->found) 1289 verbose_printk("btrfs: no clones found\n"); 1290 1291 cur_clone_root = NULL; 1292 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1293 if (sctx->clone_roots[i].found_refs) { 1294 if (!cur_clone_root) 1295 cur_clone_root = sctx->clone_roots + i; 1296 else if (sctx->clone_roots[i].root == sctx->send_root) 1297 /* prefer clones from send_root over others */ 1298 cur_clone_root = sctx->clone_roots + i; 1299 } 1300 1301 } 1302 1303 if (cur_clone_root) { 1304 *found = cur_clone_root; 1305 ret = 0; 1306 } else { 1307 ret = -ENOENT; 1308 } 1309 1310 out: 1311 btrfs_free_path(tmp_path); 1312 kfree(backref_ctx); 1313 return ret; 1314 } 1315 1316 static int read_symlink(struct send_ctx *sctx, 1317 struct btrfs_root *root, 1318 u64 ino, 1319 struct fs_path *dest) 1320 { 1321 int ret; 1322 struct btrfs_path *path; 1323 struct btrfs_key key; 1324 struct btrfs_file_extent_item *ei; 1325 u8 type; 1326 u8 compression; 1327 unsigned long off; 1328 int len; 1329 1330 path = alloc_path_for_send(); 1331 if (!path) 1332 return -ENOMEM; 1333 1334 key.objectid = ino; 1335 key.type = BTRFS_EXTENT_DATA_KEY; 1336 key.offset = 0; 1337 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1338 if (ret < 0) 1339 goto out; 1340 BUG_ON(ret); 1341 1342 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1343 struct btrfs_file_extent_item); 1344 type = btrfs_file_extent_type(path->nodes[0], ei); 1345 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1346 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1347 BUG_ON(compression); 1348 1349 off = btrfs_file_extent_inline_start(ei); 1350 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 1351 1352 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1353 1354 out: 1355 btrfs_free_path(path); 1356 return ret; 1357 } 1358 1359 /* 1360 * Helper function to generate a file name that is unique in the root of 1361 * send_root and parent_root. This is used to generate names for orphan inodes. 1362 */ 1363 static int gen_unique_name(struct send_ctx *sctx, 1364 u64 ino, u64 gen, 1365 struct fs_path *dest) 1366 { 1367 int ret = 0; 1368 struct btrfs_path *path; 1369 struct btrfs_dir_item *di; 1370 char tmp[64]; 1371 int len; 1372 u64 idx = 0; 1373 1374 path = alloc_path_for_send(); 1375 if (!path) 1376 return -ENOMEM; 1377 1378 while (1) { 1379 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu", 1380 ino, gen, idx); 1381 if (len >= sizeof(tmp)) { 1382 /* should really not happen */ 1383 ret = -EOVERFLOW; 1384 goto out; 1385 } 1386 1387 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1388 path, BTRFS_FIRST_FREE_OBJECTID, 1389 tmp, strlen(tmp), 0); 1390 btrfs_release_path(path); 1391 if (IS_ERR(di)) { 1392 ret = PTR_ERR(di); 1393 goto out; 1394 } 1395 if (di) { 1396 /* not unique, try again */ 1397 idx++; 1398 continue; 1399 } 1400 1401 if (!sctx->parent_root) { 1402 /* unique */ 1403 ret = 0; 1404 break; 1405 } 1406 1407 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1408 path, BTRFS_FIRST_FREE_OBJECTID, 1409 tmp, strlen(tmp), 0); 1410 btrfs_release_path(path); 1411 if (IS_ERR(di)) { 1412 ret = PTR_ERR(di); 1413 goto out; 1414 } 1415 if (di) { 1416 /* not unique, try again */ 1417 idx++; 1418 continue; 1419 } 1420 /* unique */ 1421 break; 1422 } 1423 1424 ret = fs_path_add(dest, tmp, strlen(tmp)); 1425 1426 out: 1427 btrfs_free_path(path); 1428 return ret; 1429 } 1430 1431 enum inode_state { 1432 inode_state_no_change, 1433 inode_state_will_create, 1434 inode_state_did_create, 1435 inode_state_will_delete, 1436 inode_state_did_delete, 1437 }; 1438 1439 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1440 { 1441 int ret; 1442 int left_ret; 1443 int right_ret; 1444 u64 left_gen; 1445 u64 right_gen; 1446 1447 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1448 NULL, NULL); 1449 if (ret < 0 && ret != -ENOENT) 1450 goto out; 1451 left_ret = ret; 1452 1453 if (!sctx->parent_root) { 1454 right_ret = -ENOENT; 1455 } else { 1456 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1457 NULL, NULL, NULL, NULL); 1458 if (ret < 0 && ret != -ENOENT) 1459 goto out; 1460 right_ret = ret; 1461 } 1462 1463 if (!left_ret && !right_ret) { 1464 if (left_gen == gen && right_gen == gen) { 1465 ret = inode_state_no_change; 1466 } else if (left_gen == gen) { 1467 if (ino < sctx->send_progress) 1468 ret = inode_state_did_create; 1469 else 1470 ret = inode_state_will_create; 1471 } else if (right_gen == gen) { 1472 if (ino < sctx->send_progress) 1473 ret = inode_state_did_delete; 1474 else 1475 ret = inode_state_will_delete; 1476 } else { 1477 ret = -ENOENT; 1478 } 1479 } else if (!left_ret) { 1480 if (left_gen == gen) { 1481 if (ino < sctx->send_progress) 1482 ret = inode_state_did_create; 1483 else 1484 ret = inode_state_will_create; 1485 } else { 1486 ret = -ENOENT; 1487 } 1488 } else if (!right_ret) { 1489 if (right_gen == gen) { 1490 if (ino < sctx->send_progress) 1491 ret = inode_state_did_delete; 1492 else 1493 ret = inode_state_will_delete; 1494 } else { 1495 ret = -ENOENT; 1496 } 1497 } else { 1498 ret = -ENOENT; 1499 } 1500 1501 out: 1502 return ret; 1503 } 1504 1505 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1506 { 1507 int ret; 1508 1509 ret = get_cur_inode_state(sctx, ino, gen); 1510 if (ret < 0) 1511 goto out; 1512 1513 if (ret == inode_state_no_change || 1514 ret == inode_state_did_create || 1515 ret == inode_state_will_delete) 1516 ret = 1; 1517 else 1518 ret = 0; 1519 1520 out: 1521 return ret; 1522 } 1523 1524 /* 1525 * Helper function to lookup a dir item in a dir. 1526 */ 1527 static int lookup_dir_item_inode(struct btrfs_root *root, 1528 u64 dir, const char *name, int name_len, 1529 u64 *found_inode, 1530 u8 *found_type) 1531 { 1532 int ret = 0; 1533 struct btrfs_dir_item *di; 1534 struct btrfs_key key; 1535 struct btrfs_path *path; 1536 1537 path = alloc_path_for_send(); 1538 if (!path) 1539 return -ENOMEM; 1540 1541 di = btrfs_lookup_dir_item(NULL, root, path, 1542 dir, name, name_len, 0); 1543 if (!di) { 1544 ret = -ENOENT; 1545 goto out; 1546 } 1547 if (IS_ERR(di)) { 1548 ret = PTR_ERR(di); 1549 goto out; 1550 } 1551 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1552 *found_inode = key.objectid; 1553 *found_type = btrfs_dir_type(path->nodes[0], di); 1554 1555 out: 1556 btrfs_free_path(path); 1557 return ret; 1558 } 1559 1560 /* 1561 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1562 * generation of the parent dir and the name of the dir entry. 1563 */ 1564 static int get_first_ref(struct send_ctx *sctx, 1565 struct btrfs_root *root, u64 ino, 1566 u64 *dir, u64 *dir_gen, struct fs_path *name) 1567 { 1568 int ret; 1569 struct btrfs_key key; 1570 struct btrfs_key found_key; 1571 struct btrfs_path *path; 1572 int len; 1573 u64 parent_dir; 1574 1575 path = alloc_path_for_send(); 1576 if (!path) 1577 return -ENOMEM; 1578 1579 key.objectid = ino; 1580 key.type = BTRFS_INODE_REF_KEY; 1581 key.offset = 0; 1582 1583 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1584 if (ret < 0) 1585 goto out; 1586 if (!ret) 1587 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1588 path->slots[0]); 1589 if (ret || found_key.objectid != ino || 1590 (found_key.type != BTRFS_INODE_REF_KEY && 1591 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1592 ret = -ENOENT; 1593 goto out; 1594 } 1595 1596 if (key.type == BTRFS_INODE_REF_KEY) { 1597 struct btrfs_inode_ref *iref; 1598 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1599 struct btrfs_inode_ref); 1600 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1601 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1602 (unsigned long)(iref + 1), 1603 len); 1604 parent_dir = found_key.offset; 1605 } else { 1606 struct btrfs_inode_extref *extref; 1607 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1608 struct btrfs_inode_extref); 1609 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1610 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1611 (unsigned long)&extref->name, len); 1612 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1613 } 1614 if (ret < 0) 1615 goto out; 1616 btrfs_release_path(path); 1617 1618 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL, 1619 NULL, NULL); 1620 if (ret < 0) 1621 goto out; 1622 1623 *dir = parent_dir; 1624 1625 out: 1626 btrfs_free_path(path); 1627 return ret; 1628 } 1629 1630 static int is_first_ref(struct send_ctx *sctx, 1631 struct btrfs_root *root, 1632 u64 ino, u64 dir, 1633 const char *name, int name_len) 1634 { 1635 int ret; 1636 struct fs_path *tmp_name; 1637 u64 tmp_dir; 1638 u64 tmp_dir_gen; 1639 1640 tmp_name = fs_path_alloc(sctx); 1641 if (!tmp_name) 1642 return -ENOMEM; 1643 1644 ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name); 1645 if (ret < 0) 1646 goto out; 1647 1648 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1649 ret = 0; 1650 goto out; 1651 } 1652 1653 ret = !memcmp(tmp_name->start, name, name_len); 1654 1655 out: 1656 fs_path_free(sctx, tmp_name); 1657 return ret; 1658 } 1659 1660 /* 1661 * Used by process_recorded_refs to determine if a new ref would overwrite an 1662 * already existing ref. In case it detects an overwrite, it returns the 1663 * inode/gen in who_ino/who_gen. 1664 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1665 * to make sure later references to the overwritten inode are possible. 1666 * Orphanizing is however only required for the first ref of an inode. 1667 * process_recorded_refs does an additional is_first_ref check to see if 1668 * orphanizing is really required. 1669 */ 1670 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1671 const char *name, int name_len, 1672 u64 *who_ino, u64 *who_gen) 1673 { 1674 int ret = 0; 1675 u64 other_inode = 0; 1676 u8 other_type = 0; 1677 1678 if (!sctx->parent_root) 1679 goto out; 1680 1681 ret = is_inode_existent(sctx, dir, dir_gen); 1682 if (ret <= 0) 1683 goto out; 1684 1685 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1686 &other_inode, &other_type); 1687 if (ret < 0 && ret != -ENOENT) 1688 goto out; 1689 if (ret) { 1690 ret = 0; 1691 goto out; 1692 } 1693 1694 /* 1695 * Check if the overwritten ref was already processed. If yes, the ref 1696 * was already unlinked/moved, so we can safely assume that we will not 1697 * overwrite anything at this point in time. 1698 */ 1699 if (other_inode > sctx->send_progress) { 1700 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1701 who_gen, NULL, NULL, NULL, NULL); 1702 if (ret < 0) 1703 goto out; 1704 1705 ret = 1; 1706 *who_ino = other_inode; 1707 } else { 1708 ret = 0; 1709 } 1710 1711 out: 1712 return ret; 1713 } 1714 1715 /* 1716 * Checks if the ref was overwritten by an already processed inode. This is 1717 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1718 * thus the orphan name needs be used. 1719 * process_recorded_refs also uses it to avoid unlinking of refs that were 1720 * overwritten. 1721 */ 1722 static int did_overwrite_ref(struct send_ctx *sctx, 1723 u64 dir, u64 dir_gen, 1724 u64 ino, u64 ino_gen, 1725 const char *name, int name_len) 1726 { 1727 int ret = 0; 1728 u64 gen; 1729 u64 ow_inode; 1730 u8 other_type; 1731 1732 if (!sctx->parent_root) 1733 goto out; 1734 1735 ret = is_inode_existent(sctx, dir, dir_gen); 1736 if (ret <= 0) 1737 goto out; 1738 1739 /* check if the ref was overwritten by another ref */ 1740 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1741 &ow_inode, &other_type); 1742 if (ret < 0 && ret != -ENOENT) 1743 goto out; 1744 if (ret) { 1745 /* was never and will never be overwritten */ 1746 ret = 0; 1747 goto out; 1748 } 1749 1750 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1751 NULL, NULL); 1752 if (ret < 0) 1753 goto out; 1754 1755 if (ow_inode == ino && gen == ino_gen) { 1756 ret = 0; 1757 goto out; 1758 } 1759 1760 /* we know that it is or will be overwritten. check this now */ 1761 if (ow_inode < sctx->send_progress) 1762 ret = 1; 1763 else 1764 ret = 0; 1765 1766 out: 1767 return ret; 1768 } 1769 1770 /* 1771 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1772 * that got overwritten. This is used by process_recorded_refs to determine 1773 * if it has to use the path as returned by get_cur_path or the orphan name. 1774 */ 1775 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1776 { 1777 int ret = 0; 1778 struct fs_path *name = NULL; 1779 u64 dir; 1780 u64 dir_gen; 1781 1782 if (!sctx->parent_root) 1783 goto out; 1784 1785 name = fs_path_alloc(sctx); 1786 if (!name) 1787 return -ENOMEM; 1788 1789 ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name); 1790 if (ret < 0) 1791 goto out; 1792 1793 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1794 name->start, fs_path_len(name)); 1795 1796 out: 1797 fs_path_free(sctx, name); 1798 return ret; 1799 } 1800 1801 /* 1802 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1803 * so we need to do some special handling in case we have clashes. This function 1804 * takes care of this with the help of name_cache_entry::radix_list. 1805 * In case of error, nce is kfreed. 1806 */ 1807 static int name_cache_insert(struct send_ctx *sctx, 1808 struct name_cache_entry *nce) 1809 { 1810 int ret = 0; 1811 struct list_head *nce_head; 1812 1813 nce_head = radix_tree_lookup(&sctx->name_cache, 1814 (unsigned long)nce->ino); 1815 if (!nce_head) { 1816 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1817 if (!nce_head) 1818 return -ENOMEM; 1819 INIT_LIST_HEAD(nce_head); 1820 1821 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1822 if (ret < 0) { 1823 kfree(nce_head); 1824 kfree(nce); 1825 return ret; 1826 } 1827 } 1828 list_add_tail(&nce->radix_list, nce_head); 1829 list_add_tail(&nce->list, &sctx->name_cache_list); 1830 sctx->name_cache_size++; 1831 1832 return ret; 1833 } 1834 1835 static void name_cache_delete(struct send_ctx *sctx, 1836 struct name_cache_entry *nce) 1837 { 1838 struct list_head *nce_head; 1839 1840 nce_head = radix_tree_lookup(&sctx->name_cache, 1841 (unsigned long)nce->ino); 1842 BUG_ON(!nce_head); 1843 1844 list_del(&nce->radix_list); 1845 list_del(&nce->list); 1846 sctx->name_cache_size--; 1847 1848 if (list_empty(nce_head)) { 1849 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 1850 kfree(nce_head); 1851 } 1852 } 1853 1854 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 1855 u64 ino, u64 gen) 1856 { 1857 struct list_head *nce_head; 1858 struct name_cache_entry *cur; 1859 1860 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 1861 if (!nce_head) 1862 return NULL; 1863 1864 list_for_each_entry(cur, nce_head, radix_list) { 1865 if (cur->ino == ino && cur->gen == gen) 1866 return cur; 1867 } 1868 return NULL; 1869 } 1870 1871 /* 1872 * Removes the entry from the list and adds it back to the end. This marks the 1873 * entry as recently used so that name_cache_clean_unused does not remove it. 1874 */ 1875 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 1876 { 1877 list_del(&nce->list); 1878 list_add_tail(&nce->list, &sctx->name_cache_list); 1879 } 1880 1881 /* 1882 * Remove some entries from the beginning of name_cache_list. 1883 */ 1884 static void name_cache_clean_unused(struct send_ctx *sctx) 1885 { 1886 struct name_cache_entry *nce; 1887 1888 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 1889 return; 1890 1891 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 1892 nce = list_entry(sctx->name_cache_list.next, 1893 struct name_cache_entry, list); 1894 name_cache_delete(sctx, nce); 1895 kfree(nce); 1896 } 1897 } 1898 1899 static void name_cache_free(struct send_ctx *sctx) 1900 { 1901 struct name_cache_entry *nce; 1902 1903 while (!list_empty(&sctx->name_cache_list)) { 1904 nce = list_entry(sctx->name_cache_list.next, 1905 struct name_cache_entry, list); 1906 name_cache_delete(sctx, nce); 1907 kfree(nce); 1908 } 1909 } 1910 1911 /* 1912 * Used by get_cur_path for each ref up to the root. 1913 * Returns 0 if it succeeded. 1914 * Returns 1 if the inode is not existent or got overwritten. In that case, the 1915 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 1916 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 1917 * Returns <0 in case of error. 1918 */ 1919 static int __get_cur_name_and_parent(struct send_ctx *sctx, 1920 u64 ino, u64 gen, 1921 u64 *parent_ino, 1922 u64 *parent_gen, 1923 struct fs_path *dest) 1924 { 1925 int ret; 1926 int nce_ret; 1927 struct btrfs_path *path = NULL; 1928 struct name_cache_entry *nce = NULL; 1929 1930 /* 1931 * First check if we already did a call to this function with the same 1932 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 1933 * return the cached result. 1934 */ 1935 nce = name_cache_search(sctx, ino, gen); 1936 if (nce) { 1937 if (ino < sctx->send_progress && nce->need_later_update) { 1938 name_cache_delete(sctx, nce); 1939 kfree(nce); 1940 nce = NULL; 1941 } else { 1942 name_cache_used(sctx, nce); 1943 *parent_ino = nce->parent_ino; 1944 *parent_gen = nce->parent_gen; 1945 ret = fs_path_add(dest, nce->name, nce->name_len); 1946 if (ret < 0) 1947 goto out; 1948 ret = nce->ret; 1949 goto out; 1950 } 1951 } 1952 1953 path = alloc_path_for_send(); 1954 if (!path) 1955 return -ENOMEM; 1956 1957 /* 1958 * If the inode is not existent yet, add the orphan name and return 1. 1959 * This should only happen for the parent dir that we determine in 1960 * __record_new_ref 1961 */ 1962 ret = is_inode_existent(sctx, ino, gen); 1963 if (ret < 0) 1964 goto out; 1965 1966 if (!ret) { 1967 ret = gen_unique_name(sctx, ino, gen, dest); 1968 if (ret < 0) 1969 goto out; 1970 ret = 1; 1971 goto out_cache; 1972 } 1973 1974 /* 1975 * Depending on whether the inode was already processed or not, use 1976 * send_root or parent_root for ref lookup. 1977 */ 1978 if (ino < sctx->send_progress) 1979 ret = get_first_ref(sctx, sctx->send_root, ino, 1980 parent_ino, parent_gen, dest); 1981 else 1982 ret = get_first_ref(sctx, sctx->parent_root, ino, 1983 parent_ino, parent_gen, dest); 1984 if (ret < 0) 1985 goto out; 1986 1987 /* 1988 * Check if the ref was overwritten by an inode's ref that was processed 1989 * earlier. If yes, treat as orphan and return 1. 1990 */ 1991 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 1992 dest->start, dest->end - dest->start); 1993 if (ret < 0) 1994 goto out; 1995 if (ret) { 1996 fs_path_reset(dest); 1997 ret = gen_unique_name(sctx, ino, gen, dest); 1998 if (ret < 0) 1999 goto out; 2000 ret = 1; 2001 } 2002 2003 out_cache: 2004 /* 2005 * Store the result of the lookup in the name cache. 2006 */ 2007 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 2008 if (!nce) { 2009 ret = -ENOMEM; 2010 goto out; 2011 } 2012 2013 nce->ino = ino; 2014 nce->gen = gen; 2015 nce->parent_ino = *parent_ino; 2016 nce->parent_gen = *parent_gen; 2017 nce->name_len = fs_path_len(dest); 2018 nce->ret = ret; 2019 strcpy(nce->name, dest->start); 2020 2021 if (ino < sctx->send_progress) 2022 nce->need_later_update = 0; 2023 else 2024 nce->need_later_update = 1; 2025 2026 nce_ret = name_cache_insert(sctx, nce); 2027 if (nce_ret < 0) 2028 ret = nce_ret; 2029 name_cache_clean_unused(sctx); 2030 2031 out: 2032 btrfs_free_path(path); 2033 return ret; 2034 } 2035 2036 /* 2037 * Magic happens here. This function returns the first ref to an inode as it 2038 * would look like while receiving the stream at this point in time. 2039 * We walk the path up to the root. For every inode in between, we check if it 2040 * was already processed/sent. If yes, we continue with the parent as found 2041 * in send_root. If not, we continue with the parent as found in parent_root. 2042 * If we encounter an inode that was deleted at this point in time, we use the 2043 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2044 * that were not created yet and overwritten inodes/refs. 2045 * 2046 * When do we have have orphan inodes: 2047 * 1. When an inode is freshly created and thus no valid refs are available yet 2048 * 2. When a directory lost all it's refs (deleted) but still has dir items 2049 * inside which were not processed yet (pending for move/delete). If anyone 2050 * tried to get the path to the dir items, it would get a path inside that 2051 * orphan directory. 2052 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2053 * of an unprocessed inode. If in that case the first ref would be 2054 * overwritten, the overwritten inode gets "orphanized". Later when we 2055 * process this overwritten inode, it is restored at a new place by moving 2056 * the orphan inode. 2057 * 2058 * sctx->send_progress tells this function at which point in time receiving 2059 * would be. 2060 */ 2061 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2062 struct fs_path *dest) 2063 { 2064 int ret = 0; 2065 struct fs_path *name = NULL; 2066 u64 parent_inode = 0; 2067 u64 parent_gen = 0; 2068 int stop = 0; 2069 2070 name = fs_path_alloc(sctx); 2071 if (!name) { 2072 ret = -ENOMEM; 2073 goto out; 2074 } 2075 2076 dest->reversed = 1; 2077 fs_path_reset(dest); 2078 2079 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2080 fs_path_reset(name); 2081 2082 ret = __get_cur_name_and_parent(sctx, ino, gen, 2083 &parent_inode, &parent_gen, name); 2084 if (ret < 0) 2085 goto out; 2086 if (ret) 2087 stop = 1; 2088 2089 ret = fs_path_add_path(dest, name); 2090 if (ret < 0) 2091 goto out; 2092 2093 ino = parent_inode; 2094 gen = parent_gen; 2095 } 2096 2097 out: 2098 fs_path_free(sctx, name); 2099 if (!ret) 2100 fs_path_unreverse(dest); 2101 return ret; 2102 } 2103 2104 /* 2105 * Called for regular files when sending extents data. Opens a struct file 2106 * to read from the file. 2107 */ 2108 static int open_cur_inode_file(struct send_ctx *sctx) 2109 { 2110 int ret = 0; 2111 struct btrfs_key key; 2112 struct path path; 2113 struct inode *inode; 2114 struct dentry *dentry; 2115 struct file *filp; 2116 int new = 0; 2117 2118 if (sctx->cur_inode_filp) 2119 goto out; 2120 2121 key.objectid = sctx->cur_ino; 2122 key.type = BTRFS_INODE_ITEM_KEY; 2123 key.offset = 0; 2124 2125 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root, 2126 &new); 2127 if (IS_ERR(inode)) { 2128 ret = PTR_ERR(inode); 2129 goto out; 2130 } 2131 2132 dentry = d_obtain_alias(inode); 2133 inode = NULL; 2134 if (IS_ERR(dentry)) { 2135 ret = PTR_ERR(dentry); 2136 goto out; 2137 } 2138 2139 path.mnt = sctx->mnt; 2140 path.dentry = dentry; 2141 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred()); 2142 dput(dentry); 2143 dentry = NULL; 2144 if (IS_ERR(filp)) { 2145 ret = PTR_ERR(filp); 2146 goto out; 2147 } 2148 sctx->cur_inode_filp = filp; 2149 2150 out: 2151 /* 2152 * no xxxput required here as every vfs op 2153 * does it by itself on failure 2154 */ 2155 return ret; 2156 } 2157 2158 /* 2159 * Closes the struct file that was created in open_cur_inode_file 2160 */ 2161 static int close_cur_inode_file(struct send_ctx *sctx) 2162 { 2163 int ret = 0; 2164 2165 if (!sctx->cur_inode_filp) 2166 goto out; 2167 2168 ret = filp_close(sctx->cur_inode_filp, NULL); 2169 sctx->cur_inode_filp = NULL; 2170 2171 out: 2172 return ret; 2173 } 2174 2175 /* 2176 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2177 */ 2178 static int send_subvol_begin(struct send_ctx *sctx) 2179 { 2180 int ret; 2181 struct btrfs_root *send_root = sctx->send_root; 2182 struct btrfs_root *parent_root = sctx->parent_root; 2183 struct btrfs_path *path; 2184 struct btrfs_key key; 2185 struct btrfs_root_ref *ref; 2186 struct extent_buffer *leaf; 2187 char *name = NULL; 2188 int namelen; 2189 2190 path = alloc_path_for_send(); 2191 if (!path) 2192 return -ENOMEM; 2193 2194 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2195 if (!name) { 2196 btrfs_free_path(path); 2197 return -ENOMEM; 2198 } 2199 2200 key.objectid = send_root->objectid; 2201 key.type = BTRFS_ROOT_BACKREF_KEY; 2202 key.offset = 0; 2203 2204 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2205 &key, path, 1, 0); 2206 if (ret < 0) 2207 goto out; 2208 if (ret) { 2209 ret = -ENOENT; 2210 goto out; 2211 } 2212 2213 leaf = path->nodes[0]; 2214 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2215 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2216 key.objectid != send_root->objectid) { 2217 ret = -ENOENT; 2218 goto out; 2219 } 2220 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2221 namelen = btrfs_root_ref_name_len(leaf, ref); 2222 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2223 btrfs_release_path(path); 2224 2225 if (parent_root) { 2226 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2227 if (ret < 0) 2228 goto out; 2229 } else { 2230 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2231 if (ret < 0) 2232 goto out; 2233 } 2234 2235 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2236 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2237 sctx->send_root->root_item.uuid); 2238 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2239 sctx->send_root->root_item.ctransid); 2240 if (parent_root) { 2241 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2242 sctx->parent_root->root_item.uuid); 2243 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2244 sctx->parent_root->root_item.ctransid); 2245 } 2246 2247 ret = send_cmd(sctx); 2248 2249 tlv_put_failure: 2250 out: 2251 btrfs_free_path(path); 2252 kfree(name); 2253 return ret; 2254 } 2255 2256 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2257 { 2258 int ret = 0; 2259 struct fs_path *p; 2260 2261 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2262 2263 p = fs_path_alloc(sctx); 2264 if (!p) 2265 return -ENOMEM; 2266 2267 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2268 if (ret < 0) 2269 goto out; 2270 2271 ret = get_cur_path(sctx, ino, gen, p); 2272 if (ret < 0) 2273 goto out; 2274 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2275 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2276 2277 ret = send_cmd(sctx); 2278 2279 tlv_put_failure: 2280 out: 2281 fs_path_free(sctx, p); 2282 return ret; 2283 } 2284 2285 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2286 { 2287 int ret = 0; 2288 struct fs_path *p; 2289 2290 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2291 2292 p = fs_path_alloc(sctx); 2293 if (!p) 2294 return -ENOMEM; 2295 2296 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2297 if (ret < 0) 2298 goto out; 2299 2300 ret = get_cur_path(sctx, ino, gen, p); 2301 if (ret < 0) 2302 goto out; 2303 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2304 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2305 2306 ret = send_cmd(sctx); 2307 2308 tlv_put_failure: 2309 out: 2310 fs_path_free(sctx, p); 2311 return ret; 2312 } 2313 2314 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2315 { 2316 int ret = 0; 2317 struct fs_path *p; 2318 2319 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2320 2321 p = fs_path_alloc(sctx); 2322 if (!p) 2323 return -ENOMEM; 2324 2325 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2326 if (ret < 0) 2327 goto out; 2328 2329 ret = get_cur_path(sctx, ino, gen, p); 2330 if (ret < 0) 2331 goto out; 2332 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2333 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2334 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2335 2336 ret = send_cmd(sctx); 2337 2338 tlv_put_failure: 2339 out: 2340 fs_path_free(sctx, p); 2341 return ret; 2342 } 2343 2344 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2345 { 2346 int ret = 0; 2347 struct fs_path *p = NULL; 2348 struct btrfs_inode_item *ii; 2349 struct btrfs_path *path = NULL; 2350 struct extent_buffer *eb; 2351 struct btrfs_key key; 2352 int slot; 2353 2354 verbose_printk("btrfs: send_utimes %llu\n", ino); 2355 2356 p = fs_path_alloc(sctx); 2357 if (!p) 2358 return -ENOMEM; 2359 2360 path = alloc_path_for_send(); 2361 if (!path) { 2362 ret = -ENOMEM; 2363 goto out; 2364 } 2365 2366 key.objectid = ino; 2367 key.type = BTRFS_INODE_ITEM_KEY; 2368 key.offset = 0; 2369 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2370 if (ret < 0) 2371 goto out; 2372 2373 eb = path->nodes[0]; 2374 slot = path->slots[0]; 2375 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2376 2377 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2378 if (ret < 0) 2379 goto out; 2380 2381 ret = get_cur_path(sctx, ino, gen, p); 2382 if (ret < 0) 2383 goto out; 2384 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2385 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, 2386 btrfs_inode_atime(ii)); 2387 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, 2388 btrfs_inode_mtime(ii)); 2389 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, 2390 btrfs_inode_ctime(ii)); 2391 /* TODO Add otime support when the otime patches get into upstream */ 2392 2393 ret = send_cmd(sctx); 2394 2395 tlv_put_failure: 2396 out: 2397 fs_path_free(sctx, p); 2398 btrfs_free_path(path); 2399 return ret; 2400 } 2401 2402 /* 2403 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2404 * a valid path yet because we did not process the refs yet. So, the inode 2405 * is created as orphan. 2406 */ 2407 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2408 { 2409 int ret = 0; 2410 struct fs_path *p; 2411 int cmd; 2412 u64 gen; 2413 u64 mode; 2414 u64 rdev; 2415 2416 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2417 2418 p = fs_path_alloc(sctx); 2419 if (!p) 2420 return -ENOMEM; 2421 2422 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL, 2423 NULL, &rdev); 2424 if (ret < 0) 2425 goto out; 2426 2427 if (S_ISREG(mode)) { 2428 cmd = BTRFS_SEND_C_MKFILE; 2429 } else if (S_ISDIR(mode)) { 2430 cmd = BTRFS_SEND_C_MKDIR; 2431 } else if (S_ISLNK(mode)) { 2432 cmd = BTRFS_SEND_C_SYMLINK; 2433 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2434 cmd = BTRFS_SEND_C_MKNOD; 2435 } else if (S_ISFIFO(mode)) { 2436 cmd = BTRFS_SEND_C_MKFIFO; 2437 } else if (S_ISSOCK(mode)) { 2438 cmd = BTRFS_SEND_C_MKSOCK; 2439 } else { 2440 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2441 (int)(mode & S_IFMT)); 2442 ret = -ENOTSUPP; 2443 goto out; 2444 } 2445 2446 ret = begin_cmd(sctx, cmd); 2447 if (ret < 0) 2448 goto out; 2449 2450 ret = gen_unique_name(sctx, ino, gen, p); 2451 if (ret < 0) 2452 goto out; 2453 2454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2456 2457 if (S_ISLNK(mode)) { 2458 fs_path_reset(p); 2459 ret = read_symlink(sctx, sctx->send_root, ino, p); 2460 if (ret < 0) 2461 goto out; 2462 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2463 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2464 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2466 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2467 } 2468 2469 ret = send_cmd(sctx); 2470 if (ret < 0) 2471 goto out; 2472 2473 2474 tlv_put_failure: 2475 out: 2476 fs_path_free(sctx, p); 2477 return ret; 2478 } 2479 2480 /* 2481 * We need some special handling for inodes that get processed before the parent 2482 * directory got created. See process_recorded_refs for details. 2483 * This function does the check if we already created the dir out of order. 2484 */ 2485 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2486 { 2487 int ret = 0; 2488 struct btrfs_path *path = NULL; 2489 struct btrfs_key key; 2490 struct btrfs_key found_key; 2491 struct btrfs_key di_key; 2492 struct extent_buffer *eb; 2493 struct btrfs_dir_item *di; 2494 int slot; 2495 2496 path = alloc_path_for_send(); 2497 if (!path) { 2498 ret = -ENOMEM; 2499 goto out; 2500 } 2501 2502 key.objectid = dir; 2503 key.type = BTRFS_DIR_INDEX_KEY; 2504 key.offset = 0; 2505 while (1) { 2506 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path, 2507 1, 0); 2508 if (ret < 0) 2509 goto out; 2510 if (!ret) { 2511 eb = path->nodes[0]; 2512 slot = path->slots[0]; 2513 btrfs_item_key_to_cpu(eb, &found_key, slot); 2514 } 2515 if (ret || found_key.objectid != key.objectid || 2516 found_key.type != key.type) { 2517 ret = 0; 2518 goto out; 2519 } 2520 2521 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2522 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2523 2524 if (di_key.objectid < sctx->send_progress) { 2525 ret = 1; 2526 goto out; 2527 } 2528 2529 key.offset = found_key.offset + 1; 2530 btrfs_release_path(path); 2531 } 2532 2533 out: 2534 btrfs_free_path(path); 2535 return ret; 2536 } 2537 2538 /* 2539 * Only creates the inode if it is: 2540 * 1. Not a directory 2541 * 2. Or a directory which was not created already due to out of order 2542 * directories. See did_create_dir and process_recorded_refs for details. 2543 */ 2544 static int send_create_inode_if_needed(struct send_ctx *sctx) 2545 { 2546 int ret; 2547 2548 if (S_ISDIR(sctx->cur_inode_mode)) { 2549 ret = did_create_dir(sctx, sctx->cur_ino); 2550 if (ret < 0) 2551 goto out; 2552 if (ret) { 2553 ret = 0; 2554 goto out; 2555 } 2556 } 2557 2558 ret = send_create_inode(sctx, sctx->cur_ino); 2559 if (ret < 0) 2560 goto out; 2561 2562 out: 2563 return ret; 2564 } 2565 2566 struct recorded_ref { 2567 struct list_head list; 2568 char *dir_path; 2569 char *name; 2570 struct fs_path *full_path; 2571 u64 dir; 2572 u64 dir_gen; 2573 int dir_path_len; 2574 int name_len; 2575 }; 2576 2577 /* 2578 * We need to process new refs before deleted refs, but compare_tree gives us 2579 * everything mixed. So we first record all refs and later process them. 2580 * This function is a helper to record one ref. 2581 */ 2582 static int record_ref(struct list_head *head, u64 dir, 2583 u64 dir_gen, struct fs_path *path) 2584 { 2585 struct recorded_ref *ref; 2586 char *tmp; 2587 2588 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2589 if (!ref) 2590 return -ENOMEM; 2591 2592 ref->dir = dir; 2593 ref->dir_gen = dir_gen; 2594 ref->full_path = path; 2595 2596 tmp = strrchr(ref->full_path->start, '/'); 2597 if (!tmp) { 2598 ref->name_len = ref->full_path->end - ref->full_path->start; 2599 ref->name = ref->full_path->start; 2600 ref->dir_path_len = 0; 2601 ref->dir_path = ref->full_path->start; 2602 } else { 2603 tmp++; 2604 ref->name_len = ref->full_path->end - tmp; 2605 ref->name = tmp; 2606 ref->dir_path = ref->full_path->start; 2607 ref->dir_path_len = ref->full_path->end - 2608 ref->full_path->start - 1 - ref->name_len; 2609 } 2610 2611 list_add_tail(&ref->list, head); 2612 return 0; 2613 } 2614 2615 static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head) 2616 { 2617 struct recorded_ref *cur; 2618 2619 while (!list_empty(head)) { 2620 cur = list_entry(head->next, struct recorded_ref, list); 2621 fs_path_free(sctx, cur->full_path); 2622 list_del(&cur->list); 2623 kfree(cur); 2624 } 2625 } 2626 2627 static void free_recorded_refs(struct send_ctx *sctx) 2628 { 2629 __free_recorded_refs(sctx, &sctx->new_refs); 2630 __free_recorded_refs(sctx, &sctx->deleted_refs); 2631 } 2632 2633 /* 2634 * Renames/moves a file/dir to its orphan name. Used when the first 2635 * ref of an unprocessed inode gets overwritten and for all non empty 2636 * directories. 2637 */ 2638 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2639 struct fs_path *path) 2640 { 2641 int ret; 2642 struct fs_path *orphan; 2643 2644 orphan = fs_path_alloc(sctx); 2645 if (!orphan) 2646 return -ENOMEM; 2647 2648 ret = gen_unique_name(sctx, ino, gen, orphan); 2649 if (ret < 0) 2650 goto out; 2651 2652 ret = send_rename(sctx, path, orphan); 2653 2654 out: 2655 fs_path_free(sctx, orphan); 2656 return ret; 2657 } 2658 2659 /* 2660 * Returns 1 if a directory can be removed at this point in time. 2661 * We check this by iterating all dir items and checking if the inode behind 2662 * the dir item was already processed. 2663 */ 2664 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress) 2665 { 2666 int ret = 0; 2667 struct btrfs_root *root = sctx->parent_root; 2668 struct btrfs_path *path; 2669 struct btrfs_key key; 2670 struct btrfs_key found_key; 2671 struct btrfs_key loc; 2672 struct btrfs_dir_item *di; 2673 2674 /* 2675 * Don't try to rmdir the top/root subvolume dir. 2676 */ 2677 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2678 return 0; 2679 2680 path = alloc_path_for_send(); 2681 if (!path) 2682 return -ENOMEM; 2683 2684 key.objectid = dir; 2685 key.type = BTRFS_DIR_INDEX_KEY; 2686 key.offset = 0; 2687 2688 while (1) { 2689 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2690 if (ret < 0) 2691 goto out; 2692 if (!ret) { 2693 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2694 path->slots[0]); 2695 } 2696 if (ret || found_key.objectid != key.objectid || 2697 found_key.type != key.type) { 2698 break; 2699 } 2700 2701 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2702 struct btrfs_dir_item); 2703 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2704 2705 if (loc.objectid > send_progress) { 2706 ret = 0; 2707 goto out; 2708 } 2709 2710 btrfs_release_path(path); 2711 key.offset = found_key.offset + 1; 2712 } 2713 2714 ret = 1; 2715 2716 out: 2717 btrfs_free_path(path); 2718 return ret; 2719 } 2720 2721 /* 2722 * This does all the move/link/unlink/rmdir magic. 2723 */ 2724 static int process_recorded_refs(struct send_ctx *sctx) 2725 { 2726 int ret = 0; 2727 struct recorded_ref *cur; 2728 struct recorded_ref *cur2; 2729 struct ulist *check_dirs = NULL; 2730 struct ulist_iterator uit; 2731 struct ulist_node *un; 2732 struct fs_path *valid_path = NULL; 2733 u64 ow_inode = 0; 2734 u64 ow_gen; 2735 int did_overwrite = 0; 2736 int is_orphan = 0; 2737 2738 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 2739 2740 /* 2741 * This should never happen as the root dir always has the same ref 2742 * which is always '..' 2743 */ 2744 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 2745 2746 valid_path = fs_path_alloc(sctx); 2747 if (!valid_path) { 2748 ret = -ENOMEM; 2749 goto out; 2750 } 2751 2752 check_dirs = ulist_alloc(GFP_NOFS); 2753 if (!check_dirs) { 2754 ret = -ENOMEM; 2755 goto out; 2756 } 2757 2758 /* 2759 * First, check if the first ref of the current inode was overwritten 2760 * before. If yes, we know that the current inode was already orphanized 2761 * and thus use the orphan name. If not, we can use get_cur_path to 2762 * get the path of the first ref as it would like while receiving at 2763 * this point in time. 2764 * New inodes are always orphan at the beginning, so force to use the 2765 * orphan name in this case. 2766 * The first ref is stored in valid_path and will be updated if it 2767 * gets moved around. 2768 */ 2769 if (!sctx->cur_inode_new) { 2770 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 2771 sctx->cur_inode_gen); 2772 if (ret < 0) 2773 goto out; 2774 if (ret) 2775 did_overwrite = 1; 2776 } 2777 if (sctx->cur_inode_new || did_overwrite) { 2778 ret = gen_unique_name(sctx, sctx->cur_ino, 2779 sctx->cur_inode_gen, valid_path); 2780 if (ret < 0) 2781 goto out; 2782 is_orphan = 1; 2783 } else { 2784 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2785 valid_path); 2786 if (ret < 0) 2787 goto out; 2788 } 2789 2790 list_for_each_entry(cur, &sctx->new_refs, list) { 2791 /* 2792 * We may have refs where the parent directory does not exist 2793 * yet. This happens if the parent directories inum is higher 2794 * the the current inum. To handle this case, we create the 2795 * parent directory out of order. But we need to check if this 2796 * did already happen before due to other refs in the same dir. 2797 */ 2798 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 2799 if (ret < 0) 2800 goto out; 2801 if (ret == inode_state_will_create) { 2802 ret = 0; 2803 /* 2804 * First check if any of the current inodes refs did 2805 * already create the dir. 2806 */ 2807 list_for_each_entry(cur2, &sctx->new_refs, list) { 2808 if (cur == cur2) 2809 break; 2810 if (cur2->dir == cur->dir) { 2811 ret = 1; 2812 break; 2813 } 2814 } 2815 2816 /* 2817 * If that did not happen, check if a previous inode 2818 * did already create the dir. 2819 */ 2820 if (!ret) 2821 ret = did_create_dir(sctx, cur->dir); 2822 if (ret < 0) 2823 goto out; 2824 if (!ret) { 2825 ret = send_create_inode(sctx, cur->dir); 2826 if (ret < 0) 2827 goto out; 2828 } 2829 } 2830 2831 /* 2832 * Check if this new ref would overwrite the first ref of 2833 * another unprocessed inode. If yes, orphanize the 2834 * overwritten inode. If we find an overwritten ref that is 2835 * not the first ref, simply unlink it. 2836 */ 2837 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2838 cur->name, cur->name_len, 2839 &ow_inode, &ow_gen); 2840 if (ret < 0) 2841 goto out; 2842 if (ret) { 2843 ret = is_first_ref(sctx, sctx->parent_root, 2844 ow_inode, cur->dir, cur->name, 2845 cur->name_len); 2846 if (ret < 0) 2847 goto out; 2848 if (ret) { 2849 ret = orphanize_inode(sctx, ow_inode, ow_gen, 2850 cur->full_path); 2851 if (ret < 0) 2852 goto out; 2853 } else { 2854 ret = send_unlink(sctx, cur->full_path); 2855 if (ret < 0) 2856 goto out; 2857 } 2858 } 2859 2860 /* 2861 * link/move the ref to the new place. If we have an orphan 2862 * inode, move it and update valid_path. If not, link or move 2863 * it depending on the inode mode. 2864 */ 2865 if (is_orphan) { 2866 ret = send_rename(sctx, valid_path, cur->full_path); 2867 if (ret < 0) 2868 goto out; 2869 is_orphan = 0; 2870 ret = fs_path_copy(valid_path, cur->full_path); 2871 if (ret < 0) 2872 goto out; 2873 } else { 2874 if (S_ISDIR(sctx->cur_inode_mode)) { 2875 /* 2876 * Dirs can't be linked, so move it. For moved 2877 * dirs, we always have one new and one deleted 2878 * ref. The deleted ref is ignored later. 2879 */ 2880 ret = send_rename(sctx, valid_path, 2881 cur->full_path); 2882 if (ret < 0) 2883 goto out; 2884 ret = fs_path_copy(valid_path, cur->full_path); 2885 if (ret < 0) 2886 goto out; 2887 } else { 2888 ret = send_link(sctx, cur->full_path, 2889 valid_path); 2890 if (ret < 0) 2891 goto out; 2892 } 2893 } 2894 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2895 GFP_NOFS); 2896 if (ret < 0) 2897 goto out; 2898 } 2899 2900 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 2901 /* 2902 * Check if we can already rmdir the directory. If not, 2903 * orphanize it. For every dir item inside that gets deleted 2904 * later, we do this check again and rmdir it then if possible. 2905 * See the use of check_dirs for more details. 2906 */ 2907 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino); 2908 if (ret < 0) 2909 goto out; 2910 if (ret) { 2911 ret = send_rmdir(sctx, valid_path); 2912 if (ret < 0) 2913 goto out; 2914 } else if (!is_orphan) { 2915 ret = orphanize_inode(sctx, sctx->cur_ino, 2916 sctx->cur_inode_gen, valid_path); 2917 if (ret < 0) 2918 goto out; 2919 is_orphan = 1; 2920 } 2921 2922 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2923 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2924 GFP_NOFS); 2925 if (ret < 0) 2926 goto out; 2927 } 2928 } else if (S_ISDIR(sctx->cur_inode_mode) && 2929 !list_empty(&sctx->deleted_refs)) { 2930 /* 2931 * We have a moved dir. Add the old parent to check_dirs 2932 */ 2933 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 2934 list); 2935 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2936 GFP_NOFS); 2937 if (ret < 0) 2938 goto out; 2939 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 2940 /* 2941 * We have a non dir inode. Go through all deleted refs and 2942 * unlink them if they were not already overwritten by other 2943 * inodes. 2944 */ 2945 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2946 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2947 sctx->cur_ino, sctx->cur_inode_gen, 2948 cur->name, cur->name_len); 2949 if (ret < 0) 2950 goto out; 2951 if (!ret) { 2952 ret = send_unlink(sctx, cur->full_path); 2953 if (ret < 0) 2954 goto out; 2955 } 2956 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2957 GFP_NOFS); 2958 if (ret < 0) 2959 goto out; 2960 } 2961 2962 /* 2963 * If the inode is still orphan, unlink the orphan. This may 2964 * happen when a previous inode did overwrite the first ref 2965 * of this inode and no new refs were added for the current 2966 * inode. Unlinking does not mean that the inode is deleted in 2967 * all cases. There may still be links to this inode in other 2968 * places. 2969 */ 2970 if (is_orphan) { 2971 ret = send_unlink(sctx, valid_path); 2972 if (ret < 0) 2973 goto out; 2974 } 2975 } 2976 2977 /* 2978 * We did collect all parent dirs where cur_inode was once located. We 2979 * now go through all these dirs and check if they are pending for 2980 * deletion and if it's finally possible to perform the rmdir now. 2981 * We also update the inode stats of the parent dirs here. 2982 */ 2983 ULIST_ITER_INIT(&uit); 2984 while ((un = ulist_next(check_dirs, &uit))) { 2985 /* 2986 * In case we had refs into dirs that were not processed yet, 2987 * we don't need to do the utime and rmdir logic for these dirs. 2988 * The dir will be processed later. 2989 */ 2990 if (un->val > sctx->cur_ino) 2991 continue; 2992 2993 ret = get_cur_inode_state(sctx, un->val, un->aux); 2994 if (ret < 0) 2995 goto out; 2996 2997 if (ret == inode_state_did_create || 2998 ret == inode_state_no_change) { 2999 /* TODO delayed utimes */ 3000 ret = send_utimes(sctx, un->val, un->aux); 3001 if (ret < 0) 3002 goto out; 3003 } else if (ret == inode_state_did_delete) { 3004 ret = can_rmdir(sctx, un->val, sctx->cur_ino); 3005 if (ret < 0) 3006 goto out; 3007 if (ret) { 3008 ret = get_cur_path(sctx, un->val, un->aux, 3009 valid_path); 3010 if (ret < 0) 3011 goto out; 3012 ret = send_rmdir(sctx, valid_path); 3013 if (ret < 0) 3014 goto out; 3015 } 3016 } 3017 } 3018 3019 ret = 0; 3020 3021 out: 3022 free_recorded_refs(sctx); 3023 ulist_free(check_dirs); 3024 fs_path_free(sctx, valid_path); 3025 return ret; 3026 } 3027 3028 static int __record_new_ref(int num, u64 dir, int index, 3029 struct fs_path *name, 3030 void *ctx) 3031 { 3032 int ret = 0; 3033 struct send_ctx *sctx = ctx; 3034 struct fs_path *p; 3035 u64 gen; 3036 3037 p = fs_path_alloc(sctx); 3038 if (!p) 3039 return -ENOMEM; 3040 3041 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL, 3042 NULL, NULL); 3043 if (ret < 0) 3044 goto out; 3045 3046 ret = get_cur_path(sctx, dir, gen, p); 3047 if (ret < 0) 3048 goto out; 3049 ret = fs_path_add_path(p, name); 3050 if (ret < 0) 3051 goto out; 3052 3053 ret = record_ref(&sctx->new_refs, dir, gen, p); 3054 3055 out: 3056 if (ret) 3057 fs_path_free(sctx, p); 3058 return ret; 3059 } 3060 3061 static int __record_deleted_ref(int num, u64 dir, int index, 3062 struct fs_path *name, 3063 void *ctx) 3064 { 3065 int ret = 0; 3066 struct send_ctx *sctx = ctx; 3067 struct fs_path *p; 3068 u64 gen; 3069 3070 p = fs_path_alloc(sctx); 3071 if (!p) 3072 return -ENOMEM; 3073 3074 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL, 3075 NULL, NULL); 3076 if (ret < 0) 3077 goto out; 3078 3079 ret = get_cur_path(sctx, dir, gen, p); 3080 if (ret < 0) 3081 goto out; 3082 ret = fs_path_add_path(p, name); 3083 if (ret < 0) 3084 goto out; 3085 3086 ret = record_ref(&sctx->deleted_refs, dir, gen, p); 3087 3088 out: 3089 if (ret) 3090 fs_path_free(sctx, p); 3091 return ret; 3092 } 3093 3094 static int record_new_ref(struct send_ctx *sctx) 3095 { 3096 int ret; 3097 3098 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path, 3099 sctx->cmp_key, 0, __record_new_ref, sctx); 3100 if (ret < 0) 3101 goto out; 3102 ret = 0; 3103 3104 out: 3105 return ret; 3106 } 3107 3108 static int record_deleted_ref(struct send_ctx *sctx) 3109 { 3110 int ret; 3111 3112 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path, 3113 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3114 if (ret < 0) 3115 goto out; 3116 ret = 0; 3117 3118 out: 3119 return ret; 3120 } 3121 3122 struct find_ref_ctx { 3123 u64 dir; 3124 struct fs_path *name; 3125 int found_idx; 3126 }; 3127 3128 static int __find_iref(int num, u64 dir, int index, 3129 struct fs_path *name, 3130 void *ctx_) 3131 { 3132 struct find_ref_ctx *ctx = ctx_; 3133 3134 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3135 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3136 ctx->found_idx = num; 3137 return 1; 3138 } 3139 return 0; 3140 } 3141 3142 static int find_iref(struct send_ctx *sctx, 3143 struct btrfs_root *root, 3144 struct btrfs_path *path, 3145 struct btrfs_key *key, 3146 u64 dir, struct fs_path *name) 3147 { 3148 int ret; 3149 struct find_ref_ctx ctx; 3150 3151 ctx.dir = dir; 3152 ctx.name = name; 3153 ctx.found_idx = -1; 3154 3155 ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx); 3156 if (ret < 0) 3157 return ret; 3158 3159 if (ctx.found_idx == -1) 3160 return -ENOENT; 3161 3162 return ctx.found_idx; 3163 } 3164 3165 static int __record_changed_new_ref(int num, u64 dir, int index, 3166 struct fs_path *name, 3167 void *ctx) 3168 { 3169 int ret; 3170 struct send_ctx *sctx = ctx; 3171 3172 ret = find_iref(sctx, sctx->parent_root, sctx->right_path, 3173 sctx->cmp_key, dir, name); 3174 if (ret == -ENOENT) 3175 ret = __record_new_ref(num, dir, index, name, sctx); 3176 else if (ret > 0) 3177 ret = 0; 3178 3179 return ret; 3180 } 3181 3182 static int __record_changed_deleted_ref(int num, u64 dir, int index, 3183 struct fs_path *name, 3184 void *ctx) 3185 { 3186 int ret; 3187 struct send_ctx *sctx = ctx; 3188 3189 ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key, 3190 dir, name); 3191 if (ret == -ENOENT) 3192 ret = __record_deleted_ref(num, dir, index, name, sctx); 3193 else if (ret > 0) 3194 ret = 0; 3195 3196 return ret; 3197 } 3198 3199 static int record_changed_ref(struct send_ctx *sctx) 3200 { 3201 int ret = 0; 3202 3203 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path, 3204 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3205 if (ret < 0) 3206 goto out; 3207 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path, 3208 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3209 if (ret < 0) 3210 goto out; 3211 ret = 0; 3212 3213 out: 3214 return ret; 3215 } 3216 3217 /* 3218 * Record and process all refs at once. Needed when an inode changes the 3219 * generation number, which means that it was deleted and recreated. 3220 */ 3221 static int process_all_refs(struct send_ctx *sctx, 3222 enum btrfs_compare_tree_result cmd) 3223 { 3224 int ret; 3225 struct btrfs_root *root; 3226 struct btrfs_path *path; 3227 struct btrfs_key key; 3228 struct btrfs_key found_key; 3229 struct extent_buffer *eb; 3230 int slot; 3231 iterate_inode_ref_t cb; 3232 3233 path = alloc_path_for_send(); 3234 if (!path) 3235 return -ENOMEM; 3236 3237 if (cmd == BTRFS_COMPARE_TREE_NEW) { 3238 root = sctx->send_root; 3239 cb = __record_new_ref; 3240 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 3241 root = sctx->parent_root; 3242 cb = __record_deleted_ref; 3243 } else { 3244 BUG(); 3245 } 3246 3247 key.objectid = sctx->cmp_key->objectid; 3248 key.type = BTRFS_INODE_REF_KEY; 3249 key.offset = 0; 3250 while (1) { 3251 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3252 if (ret < 0) 3253 goto out; 3254 if (ret) 3255 break; 3256 3257 eb = path->nodes[0]; 3258 slot = path->slots[0]; 3259 btrfs_item_key_to_cpu(eb, &found_key, slot); 3260 3261 if (found_key.objectid != key.objectid || 3262 (found_key.type != BTRFS_INODE_REF_KEY && 3263 found_key.type != BTRFS_INODE_EXTREF_KEY)) 3264 break; 3265 3266 ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb, 3267 sctx); 3268 btrfs_release_path(path); 3269 if (ret < 0) 3270 goto out; 3271 3272 key.offset = found_key.offset + 1; 3273 } 3274 btrfs_release_path(path); 3275 3276 ret = process_recorded_refs(sctx); 3277 3278 out: 3279 btrfs_free_path(path); 3280 return ret; 3281 } 3282 3283 static int send_set_xattr(struct send_ctx *sctx, 3284 struct fs_path *path, 3285 const char *name, int name_len, 3286 const char *data, int data_len) 3287 { 3288 int ret = 0; 3289 3290 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 3291 if (ret < 0) 3292 goto out; 3293 3294 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3295 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3296 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 3297 3298 ret = send_cmd(sctx); 3299 3300 tlv_put_failure: 3301 out: 3302 return ret; 3303 } 3304 3305 static int send_remove_xattr(struct send_ctx *sctx, 3306 struct fs_path *path, 3307 const char *name, int name_len) 3308 { 3309 int ret = 0; 3310 3311 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 3312 if (ret < 0) 3313 goto out; 3314 3315 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3316 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3317 3318 ret = send_cmd(sctx); 3319 3320 tlv_put_failure: 3321 out: 3322 return ret; 3323 } 3324 3325 static int __process_new_xattr(int num, struct btrfs_key *di_key, 3326 const char *name, int name_len, 3327 const char *data, int data_len, 3328 u8 type, void *ctx) 3329 { 3330 int ret; 3331 struct send_ctx *sctx = ctx; 3332 struct fs_path *p; 3333 posix_acl_xattr_header dummy_acl; 3334 3335 p = fs_path_alloc(sctx); 3336 if (!p) 3337 return -ENOMEM; 3338 3339 /* 3340 * This hack is needed because empty acl's are stored as zero byte 3341 * data in xattrs. Problem with that is, that receiving these zero byte 3342 * acl's will fail later. To fix this, we send a dummy acl list that 3343 * only contains the version number and no entries. 3344 */ 3345 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 3346 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 3347 if (data_len == 0) { 3348 dummy_acl.a_version = 3349 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 3350 data = (char *)&dummy_acl; 3351 data_len = sizeof(dummy_acl); 3352 } 3353 } 3354 3355 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3356 if (ret < 0) 3357 goto out; 3358 3359 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 3360 3361 out: 3362 fs_path_free(sctx, p); 3363 return ret; 3364 } 3365 3366 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 3367 const char *name, int name_len, 3368 const char *data, int data_len, 3369 u8 type, void *ctx) 3370 { 3371 int ret; 3372 struct send_ctx *sctx = ctx; 3373 struct fs_path *p; 3374 3375 p = fs_path_alloc(sctx); 3376 if (!p) 3377 return -ENOMEM; 3378 3379 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3380 if (ret < 0) 3381 goto out; 3382 3383 ret = send_remove_xattr(sctx, p, name, name_len); 3384 3385 out: 3386 fs_path_free(sctx, p); 3387 return ret; 3388 } 3389 3390 static int process_new_xattr(struct send_ctx *sctx) 3391 { 3392 int ret = 0; 3393 3394 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path, 3395 sctx->cmp_key, __process_new_xattr, sctx); 3396 3397 return ret; 3398 } 3399 3400 static int process_deleted_xattr(struct send_ctx *sctx) 3401 { 3402 int ret; 3403 3404 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path, 3405 sctx->cmp_key, __process_deleted_xattr, sctx); 3406 3407 return ret; 3408 } 3409 3410 struct find_xattr_ctx { 3411 const char *name; 3412 int name_len; 3413 int found_idx; 3414 char *found_data; 3415 int found_data_len; 3416 }; 3417 3418 static int __find_xattr(int num, struct btrfs_key *di_key, 3419 const char *name, int name_len, 3420 const char *data, int data_len, 3421 u8 type, void *vctx) 3422 { 3423 struct find_xattr_ctx *ctx = vctx; 3424 3425 if (name_len == ctx->name_len && 3426 strncmp(name, ctx->name, name_len) == 0) { 3427 ctx->found_idx = num; 3428 ctx->found_data_len = data_len; 3429 ctx->found_data = kmalloc(data_len, GFP_NOFS); 3430 if (!ctx->found_data) 3431 return -ENOMEM; 3432 memcpy(ctx->found_data, data, data_len); 3433 return 1; 3434 } 3435 return 0; 3436 } 3437 3438 static int find_xattr(struct send_ctx *sctx, 3439 struct btrfs_root *root, 3440 struct btrfs_path *path, 3441 struct btrfs_key *key, 3442 const char *name, int name_len, 3443 char **data, int *data_len) 3444 { 3445 int ret; 3446 struct find_xattr_ctx ctx; 3447 3448 ctx.name = name; 3449 ctx.name_len = name_len; 3450 ctx.found_idx = -1; 3451 ctx.found_data = NULL; 3452 ctx.found_data_len = 0; 3453 3454 ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx); 3455 if (ret < 0) 3456 return ret; 3457 3458 if (ctx.found_idx == -1) 3459 return -ENOENT; 3460 if (data) { 3461 *data = ctx.found_data; 3462 *data_len = ctx.found_data_len; 3463 } else { 3464 kfree(ctx.found_data); 3465 } 3466 return ctx.found_idx; 3467 } 3468 3469 3470 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 3471 const char *name, int name_len, 3472 const char *data, int data_len, 3473 u8 type, void *ctx) 3474 { 3475 int ret; 3476 struct send_ctx *sctx = ctx; 3477 char *found_data = NULL; 3478 int found_data_len = 0; 3479 struct fs_path *p = NULL; 3480 3481 ret = find_xattr(sctx, sctx->parent_root, sctx->right_path, 3482 sctx->cmp_key, name, name_len, &found_data, 3483 &found_data_len); 3484 if (ret == -ENOENT) { 3485 ret = __process_new_xattr(num, di_key, name, name_len, data, 3486 data_len, type, ctx); 3487 } else if (ret >= 0) { 3488 if (data_len != found_data_len || 3489 memcmp(data, found_data, data_len)) { 3490 ret = __process_new_xattr(num, di_key, name, name_len, 3491 data, data_len, type, ctx); 3492 } else { 3493 ret = 0; 3494 } 3495 } 3496 3497 kfree(found_data); 3498 fs_path_free(sctx, p); 3499 return ret; 3500 } 3501 3502 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 3503 const char *name, int name_len, 3504 const char *data, int data_len, 3505 u8 type, void *ctx) 3506 { 3507 int ret; 3508 struct send_ctx *sctx = ctx; 3509 3510 ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key, 3511 name, name_len, NULL, NULL); 3512 if (ret == -ENOENT) 3513 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 3514 data_len, type, ctx); 3515 else if (ret >= 0) 3516 ret = 0; 3517 3518 return ret; 3519 } 3520 3521 static int process_changed_xattr(struct send_ctx *sctx) 3522 { 3523 int ret = 0; 3524 3525 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path, 3526 sctx->cmp_key, __process_changed_new_xattr, sctx); 3527 if (ret < 0) 3528 goto out; 3529 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path, 3530 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 3531 3532 out: 3533 return ret; 3534 } 3535 3536 static int process_all_new_xattrs(struct send_ctx *sctx) 3537 { 3538 int ret; 3539 struct btrfs_root *root; 3540 struct btrfs_path *path; 3541 struct btrfs_key key; 3542 struct btrfs_key found_key; 3543 struct extent_buffer *eb; 3544 int slot; 3545 3546 path = alloc_path_for_send(); 3547 if (!path) 3548 return -ENOMEM; 3549 3550 root = sctx->send_root; 3551 3552 key.objectid = sctx->cmp_key->objectid; 3553 key.type = BTRFS_XATTR_ITEM_KEY; 3554 key.offset = 0; 3555 while (1) { 3556 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3557 if (ret < 0) 3558 goto out; 3559 if (ret) { 3560 ret = 0; 3561 goto out; 3562 } 3563 3564 eb = path->nodes[0]; 3565 slot = path->slots[0]; 3566 btrfs_item_key_to_cpu(eb, &found_key, slot); 3567 3568 if (found_key.objectid != key.objectid || 3569 found_key.type != key.type) { 3570 ret = 0; 3571 goto out; 3572 } 3573 3574 ret = iterate_dir_item(sctx, root, path, &found_key, 3575 __process_new_xattr, sctx); 3576 if (ret < 0) 3577 goto out; 3578 3579 btrfs_release_path(path); 3580 key.offset = found_key.offset + 1; 3581 } 3582 3583 out: 3584 btrfs_free_path(path); 3585 return ret; 3586 } 3587 3588 /* 3589 * Read some bytes from the current inode/file and send a write command to 3590 * user space. 3591 */ 3592 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 3593 { 3594 int ret = 0; 3595 struct fs_path *p; 3596 loff_t pos = offset; 3597 int num_read = 0; 3598 mm_segment_t old_fs; 3599 3600 p = fs_path_alloc(sctx); 3601 if (!p) 3602 return -ENOMEM; 3603 3604 /* 3605 * vfs normally only accepts user space buffers for security reasons. 3606 * we only read from the file and also only provide the read_buf buffer 3607 * to vfs. As this buffer does not come from a user space call, it's 3608 * ok to temporary allow kernel space buffers. 3609 */ 3610 old_fs = get_fs(); 3611 set_fs(KERNEL_DS); 3612 3613 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 3614 3615 ret = open_cur_inode_file(sctx); 3616 if (ret < 0) 3617 goto out; 3618 3619 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos); 3620 if (ret < 0) 3621 goto out; 3622 num_read = ret; 3623 if (!num_read) 3624 goto out; 3625 3626 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 3627 if (ret < 0) 3628 goto out; 3629 3630 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3631 if (ret < 0) 3632 goto out; 3633 3634 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3635 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3636 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 3637 3638 ret = send_cmd(sctx); 3639 3640 tlv_put_failure: 3641 out: 3642 fs_path_free(sctx, p); 3643 set_fs(old_fs); 3644 if (ret < 0) 3645 return ret; 3646 return num_read; 3647 } 3648 3649 /* 3650 * Send a clone command to user space. 3651 */ 3652 static int send_clone(struct send_ctx *sctx, 3653 u64 offset, u32 len, 3654 struct clone_root *clone_root) 3655 { 3656 int ret = 0; 3657 struct fs_path *p; 3658 u64 gen; 3659 3660 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 3661 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 3662 clone_root->root->objectid, clone_root->ino, 3663 clone_root->offset); 3664 3665 p = fs_path_alloc(sctx); 3666 if (!p) 3667 return -ENOMEM; 3668 3669 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 3670 if (ret < 0) 3671 goto out; 3672 3673 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3674 if (ret < 0) 3675 goto out; 3676 3677 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3678 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 3679 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3680 3681 if (clone_root->root == sctx->send_root) { 3682 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 3683 &gen, NULL, NULL, NULL, NULL); 3684 if (ret < 0) 3685 goto out; 3686 ret = get_cur_path(sctx, clone_root->ino, gen, p); 3687 } else { 3688 ret = get_inode_path(sctx, clone_root->root, 3689 clone_root->ino, p); 3690 } 3691 if (ret < 0) 3692 goto out; 3693 3694 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 3695 clone_root->root->root_item.uuid); 3696 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 3697 clone_root->root->root_item.ctransid); 3698 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 3699 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 3700 clone_root->offset); 3701 3702 ret = send_cmd(sctx); 3703 3704 tlv_put_failure: 3705 out: 3706 fs_path_free(sctx, p); 3707 return ret; 3708 } 3709 3710 static int send_write_or_clone(struct send_ctx *sctx, 3711 struct btrfs_path *path, 3712 struct btrfs_key *key, 3713 struct clone_root *clone_root) 3714 { 3715 int ret = 0; 3716 struct btrfs_file_extent_item *ei; 3717 u64 offset = key->offset; 3718 u64 pos = 0; 3719 u64 len; 3720 u32 l; 3721 u8 type; 3722 3723 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3724 struct btrfs_file_extent_item); 3725 type = btrfs_file_extent_type(path->nodes[0], ei); 3726 if (type == BTRFS_FILE_EXTENT_INLINE) { 3727 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 3728 /* 3729 * it is possible the inline item won't cover the whole page, 3730 * but there may be items after this page. Make 3731 * sure to send the whole thing 3732 */ 3733 len = PAGE_CACHE_ALIGN(len); 3734 } else { 3735 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3736 } 3737 3738 if (offset + len > sctx->cur_inode_size) 3739 len = sctx->cur_inode_size - offset; 3740 if (len == 0) { 3741 ret = 0; 3742 goto out; 3743 } 3744 3745 if (!clone_root) { 3746 while (pos < len) { 3747 l = len - pos; 3748 if (l > BTRFS_SEND_READ_SIZE) 3749 l = BTRFS_SEND_READ_SIZE; 3750 ret = send_write(sctx, pos + offset, l); 3751 if (ret < 0) 3752 goto out; 3753 if (!ret) 3754 break; 3755 pos += ret; 3756 } 3757 ret = 0; 3758 } else { 3759 ret = send_clone(sctx, offset, len, clone_root); 3760 } 3761 3762 out: 3763 return ret; 3764 } 3765 3766 static int is_extent_unchanged(struct send_ctx *sctx, 3767 struct btrfs_path *left_path, 3768 struct btrfs_key *ekey) 3769 { 3770 int ret = 0; 3771 struct btrfs_key key; 3772 struct btrfs_path *path = NULL; 3773 struct extent_buffer *eb; 3774 int slot; 3775 struct btrfs_key found_key; 3776 struct btrfs_file_extent_item *ei; 3777 u64 left_disknr; 3778 u64 right_disknr; 3779 u64 left_offset; 3780 u64 right_offset; 3781 u64 left_offset_fixed; 3782 u64 left_len; 3783 u64 right_len; 3784 u64 left_gen; 3785 u64 right_gen; 3786 u8 left_type; 3787 u8 right_type; 3788 3789 path = alloc_path_for_send(); 3790 if (!path) 3791 return -ENOMEM; 3792 3793 eb = left_path->nodes[0]; 3794 slot = left_path->slots[0]; 3795 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3796 left_type = btrfs_file_extent_type(eb, ei); 3797 3798 if (left_type != BTRFS_FILE_EXTENT_REG) { 3799 ret = 0; 3800 goto out; 3801 } 3802 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3803 left_len = btrfs_file_extent_num_bytes(eb, ei); 3804 left_offset = btrfs_file_extent_offset(eb, ei); 3805 left_gen = btrfs_file_extent_generation(eb, ei); 3806 3807 /* 3808 * Following comments will refer to these graphics. L is the left 3809 * extents which we are checking at the moment. 1-8 are the right 3810 * extents that we iterate. 3811 * 3812 * |-----L-----| 3813 * |-1-|-2a-|-3-|-4-|-5-|-6-| 3814 * 3815 * |-----L-----| 3816 * |--1--|-2b-|...(same as above) 3817 * 3818 * Alternative situation. Happens on files where extents got split. 3819 * |-----L-----| 3820 * |-----------7-----------|-6-| 3821 * 3822 * Alternative situation. Happens on files which got larger. 3823 * |-----L-----| 3824 * |-8-| 3825 * Nothing follows after 8. 3826 */ 3827 3828 key.objectid = ekey->objectid; 3829 key.type = BTRFS_EXTENT_DATA_KEY; 3830 key.offset = ekey->offset; 3831 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 3832 if (ret < 0) 3833 goto out; 3834 if (ret) { 3835 ret = 0; 3836 goto out; 3837 } 3838 3839 /* 3840 * Handle special case where the right side has no extents at all. 3841 */ 3842 eb = path->nodes[0]; 3843 slot = path->slots[0]; 3844 btrfs_item_key_to_cpu(eb, &found_key, slot); 3845 if (found_key.objectid != key.objectid || 3846 found_key.type != key.type) { 3847 ret = 0; 3848 goto out; 3849 } 3850 3851 /* 3852 * We're now on 2a, 2b or 7. 3853 */ 3854 key = found_key; 3855 while (key.offset < ekey->offset + left_len) { 3856 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3857 right_type = btrfs_file_extent_type(eb, ei); 3858 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3859 right_len = btrfs_file_extent_num_bytes(eb, ei); 3860 right_offset = btrfs_file_extent_offset(eb, ei); 3861 right_gen = btrfs_file_extent_generation(eb, ei); 3862 3863 if (right_type != BTRFS_FILE_EXTENT_REG) { 3864 ret = 0; 3865 goto out; 3866 } 3867 3868 /* 3869 * Are we at extent 8? If yes, we know the extent is changed. 3870 * This may only happen on the first iteration. 3871 */ 3872 if (found_key.offset + right_len <= ekey->offset) { 3873 ret = 0; 3874 goto out; 3875 } 3876 3877 left_offset_fixed = left_offset; 3878 if (key.offset < ekey->offset) { 3879 /* Fix the right offset for 2a and 7. */ 3880 right_offset += ekey->offset - key.offset; 3881 } else { 3882 /* Fix the left offset for all behind 2a and 2b */ 3883 left_offset_fixed += key.offset - ekey->offset; 3884 } 3885 3886 /* 3887 * Check if we have the same extent. 3888 */ 3889 if (left_disknr != right_disknr || 3890 left_offset_fixed != right_offset || 3891 left_gen != right_gen) { 3892 ret = 0; 3893 goto out; 3894 } 3895 3896 /* 3897 * Go to the next extent. 3898 */ 3899 ret = btrfs_next_item(sctx->parent_root, path); 3900 if (ret < 0) 3901 goto out; 3902 if (!ret) { 3903 eb = path->nodes[0]; 3904 slot = path->slots[0]; 3905 btrfs_item_key_to_cpu(eb, &found_key, slot); 3906 } 3907 if (ret || found_key.objectid != key.objectid || 3908 found_key.type != key.type) { 3909 key.offset += right_len; 3910 break; 3911 } else { 3912 if (found_key.offset != key.offset + right_len) { 3913 /* Should really not happen */ 3914 ret = -EIO; 3915 goto out; 3916 } 3917 } 3918 key = found_key; 3919 } 3920 3921 /* 3922 * We're now behind the left extent (treat as unchanged) or at the end 3923 * of the right side (treat as changed). 3924 */ 3925 if (key.offset >= ekey->offset + left_len) 3926 ret = 1; 3927 else 3928 ret = 0; 3929 3930 3931 out: 3932 btrfs_free_path(path); 3933 return ret; 3934 } 3935 3936 static int process_extent(struct send_ctx *sctx, 3937 struct btrfs_path *path, 3938 struct btrfs_key *key) 3939 { 3940 int ret = 0; 3941 struct clone_root *found_clone = NULL; 3942 3943 if (S_ISLNK(sctx->cur_inode_mode)) 3944 return 0; 3945 3946 if (sctx->parent_root && !sctx->cur_inode_new) { 3947 ret = is_extent_unchanged(sctx, path, key); 3948 if (ret < 0) 3949 goto out; 3950 if (ret) { 3951 ret = 0; 3952 goto out; 3953 } 3954 } 3955 3956 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 3957 sctx->cur_inode_size, &found_clone); 3958 if (ret != -ENOENT && ret < 0) 3959 goto out; 3960 3961 ret = send_write_or_clone(sctx, path, key, found_clone); 3962 3963 out: 3964 return ret; 3965 } 3966 3967 static int process_all_extents(struct send_ctx *sctx) 3968 { 3969 int ret; 3970 struct btrfs_root *root; 3971 struct btrfs_path *path; 3972 struct btrfs_key key; 3973 struct btrfs_key found_key; 3974 struct extent_buffer *eb; 3975 int slot; 3976 3977 root = sctx->send_root; 3978 path = alloc_path_for_send(); 3979 if (!path) 3980 return -ENOMEM; 3981 3982 key.objectid = sctx->cmp_key->objectid; 3983 key.type = BTRFS_EXTENT_DATA_KEY; 3984 key.offset = 0; 3985 while (1) { 3986 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3987 if (ret < 0) 3988 goto out; 3989 if (ret) { 3990 ret = 0; 3991 goto out; 3992 } 3993 3994 eb = path->nodes[0]; 3995 slot = path->slots[0]; 3996 btrfs_item_key_to_cpu(eb, &found_key, slot); 3997 3998 if (found_key.objectid != key.objectid || 3999 found_key.type != key.type) { 4000 ret = 0; 4001 goto out; 4002 } 4003 4004 ret = process_extent(sctx, path, &found_key); 4005 if (ret < 0) 4006 goto out; 4007 4008 btrfs_release_path(path); 4009 key.offset = found_key.offset + 1; 4010 } 4011 4012 out: 4013 btrfs_free_path(path); 4014 return ret; 4015 } 4016 4017 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end) 4018 { 4019 int ret = 0; 4020 4021 if (sctx->cur_ino == 0) 4022 goto out; 4023 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 4024 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 4025 goto out; 4026 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 4027 goto out; 4028 4029 ret = process_recorded_refs(sctx); 4030 if (ret < 0) 4031 goto out; 4032 4033 /* 4034 * We have processed the refs and thus need to advance send_progress. 4035 * Now, calls to get_cur_xxx will take the updated refs of the current 4036 * inode into account. 4037 */ 4038 sctx->send_progress = sctx->cur_ino + 1; 4039 4040 out: 4041 return ret; 4042 } 4043 4044 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 4045 { 4046 int ret = 0; 4047 u64 left_mode; 4048 u64 left_uid; 4049 u64 left_gid; 4050 u64 right_mode; 4051 u64 right_uid; 4052 u64 right_gid; 4053 int need_chmod = 0; 4054 int need_chown = 0; 4055 4056 ret = process_recorded_refs_if_needed(sctx, at_end); 4057 if (ret < 0) 4058 goto out; 4059 4060 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 4061 goto out; 4062 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 4063 goto out; 4064 4065 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 4066 &left_mode, &left_uid, &left_gid, NULL); 4067 if (ret < 0) 4068 goto out; 4069 4070 if (!sctx->parent_root || sctx->cur_inode_new) { 4071 need_chown = 1; 4072 if (!S_ISLNK(sctx->cur_inode_mode)) 4073 need_chmod = 1; 4074 } else { 4075 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 4076 NULL, NULL, &right_mode, &right_uid, 4077 &right_gid, NULL); 4078 if (ret < 0) 4079 goto out; 4080 4081 if (left_uid != right_uid || left_gid != right_gid) 4082 need_chown = 1; 4083 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 4084 need_chmod = 1; 4085 } 4086 4087 if (S_ISREG(sctx->cur_inode_mode)) { 4088 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4089 sctx->cur_inode_size); 4090 if (ret < 0) 4091 goto out; 4092 } 4093 4094 if (need_chown) { 4095 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4096 left_uid, left_gid); 4097 if (ret < 0) 4098 goto out; 4099 } 4100 if (need_chmod) { 4101 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4102 left_mode); 4103 if (ret < 0) 4104 goto out; 4105 } 4106 4107 /* 4108 * Need to send that every time, no matter if it actually changed 4109 * between the two trees as we have done changes to the inode before. 4110 */ 4111 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4112 if (ret < 0) 4113 goto out; 4114 4115 out: 4116 return ret; 4117 } 4118 4119 static int changed_inode(struct send_ctx *sctx, 4120 enum btrfs_compare_tree_result result) 4121 { 4122 int ret = 0; 4123 struct btrfs_key *key = sctx->cmp_key; 4124 struct btrfs_inode_item *left_ii = NULL; 4125 struct btrfs_inode_item *right_ii = NULL; 4126 u64 left_gen = 0; 4127 u64 right_gen = 0; 4128 4129 ret = close_cur_inode_file(sctx); 4130 if (ret < 0) 4131 goto out; 4132 4133 sctx->cur_ino = key->objectid; 4134 sctx->cur_inode_new_gen = 0; 4135 4136 /* 4137 * Set send_progress to current inode. This will tell all get_cur_xxx 4138 * functions that the current inode's refs are not updated yet. Later, 4139 * when process_recorded_refs is finished, it is set to cur_ino + 1. 4140 */ 4141 sctx->send_progress = sctx->cur_ino; 4142 4143 if (result == BTRFS_COMPARE_TREE_NEW || 4144 result == BTRFS_COMPARE_TREE_CHANGED) { 4145 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 4146 sctx->left_path->slots[0], 4147 struct btrfs_inode_item); 4148 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 4149 left_ii); 4150 } else { 4151 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4152 sctx->right_path->slots[0], 4153 struct btrfs_inode_item); 4154 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4155 right_ii); 4156 } 4157 if (result == BTRFS_COMPARE_TREE_CHANGED) { 4158 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4159 sctx->right_path->slots[0], 4160 struct btrfs_inode_item); 4161 4162 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4163 right_ii); 4164 4165 /* 4166 * The cur_ino = root dir case is special here. We can't treat 4167 * the inode as deleted+reused because it would generate a 4168 * stream that tries to delete/mkdir the root dir. 4169 */ 4170 if (left_gen != right_gen && 4171 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4172 sctx->cur_inode_new_gen = 1; 4173 } 4174 4175 if (result == BTRFS_COMPARE_TREE_NEW) { 4176 sctx->cur_inode_gen = left_gen; 4177 sctx->cur_inode_new = 1; 4178 sctx->cur_inode_deleted = 0; 4179 sctx->cur_inode_size = btrfs_inode_size( 4180 sctx->left_path->nodes[0], left_ii); 4181 sctx->cur_inode_mode = btrfs_inode_mode( 4182 sctx->left_path->nodes[0], left_ii); 4183 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4184 ret = send_create_inode_if_needed(sctx); 4185 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 4186 sctx->cur_inode_gen = right_gen; 4187 sctx->cur_inode_new = 0; 4188 sctx->cur_inode_deleted = 1; 4189 sctx->cur_inode_size = btrfs_inode_size( 4190 sctx->right_path->nodes[0], right_ii); 4191 sctx->cur_inode_mode = btrfs_inode_mode( 4192 sctx->right_path->nodes[0], right_ii); 4193 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 4194 /* 4195 * We need to do some special handling in case the inode was 4196 * reported as changed with a changed generation number. This 4197 * means that the original inode was deleted and new inode 4198 * reused the same inum. So we have to treat the old inode as 4199 * deleted and the new one as new. 4200 */ 4201 if (sctx->cur_inode_new_gen) { 4202 /* 4203 * First, process the inode as if it was deleted. 4204 */ 4205 sctx->cur_inode_gen = right_gen; 4206 sctx->cur_inode_new = 0; 4207 sctx->cur_inode_deleted = 1; 4208 sctx->cur_inode_size = btrfs_inode_size( 4209 sctx->right_path->nodes[0], right_ii); 4210 sctx->cur_inode_mode = btrfs_inode_mode( 4211 sctx->right_path->nodes[0], right_ii); 4212 ret = process_all_refs(sctx, 4213 BTRFS_COMPARE_TREE_DELETED); 4214 if (ret < 0) 4215 goto out; 4216 4217 /* 4218 * Now process the inode as if it was new. 4219 */ 4220 sctx->cur_inode_gen = left_gen; 4221 sctx->cur_inode_new = 1; 4222 sctx->cur_inode_deleted = 0; 4223 sctx->cur_inode_size = btrfs_inode_size( 4224 sctx->left_path->nodes[0], left_ii); 4225 sctx->cur_inode_mode = btrfs_inode_mode( 4226 sctx->left_path->nodes[0], left_ii); 4227 ret = send_create_inode_if_needed(sctx); 4228 if (ret < 0) 4229 goto out; 4230 4231 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 4232 if (ret < 0) 4233 goto out; 4234 /* 4235 * Advance send_progress now as we did not get into 4236 * process_recorded_refs_if_needed in the new_gen case. 4237 */ 4238 sctx->send_progress = sctx->cur_ino + 1; 4239 4240 /* 4241 * Now process all extents and xattrs of the inode as if 4242 * they were all new. 4243 */ 4244 ret = process_all_extents(sctx); 4245 if (ret < 0) 4246 goto out; 4247 ret = process_all_new_xattrs(sctx); 4248 if (ret < 0) 4249 goto out; 4250 } else { 4251 sctx->cur_inode_gen = left_gen; 4252 sctx->cur_inode_new = 0; 4253 sctx->cur_inode_new_gen = 0; 4254 sctx->cur_inode_deleted = 0; 4255 sctx->cur_inode_size = btrfs_inode_size( 4256 sctx->left_path->nodes[0], left_ii); 4257 sctx->cur_inode_mode = btrfs_inode_mode( 4258 sctx->left_path->nodes[0], left_ii); 4259 } 4260 } 4261 4262 out: 4263 return ret; 4264 } 4265 4266 /* 4267 * We have to process new refs before deleted refs, but compare_trees gives us 4268 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 4269 * first and later process them in process_recorded_refs. 4270 * For the cur_inode_new_gen case, we skip recording completely because 4271 * changed_inode did already initiate processing of refs. The reason for this is 4272 * that in this case, compare_tree actually compares the refs of 2 different 4273 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 4274 * refs of the right tree as deleted and all refs of the left tree as new. 4275 */ 4276 static int changed_ref(struct send_ctx *sctx, 4277 enum btrfs_compare_tree_result result) 4278 { 4279 int ret = 0; 4280 4281 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4282 4283 if (!sctx->cur_inode_new_gen && 4284 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 4285 if (result == BTRFS_COMPARE_TREE_NEW) 4286 ret = record_new_ref(sctx); 4287 else if (result == BTRFS_COMPARE_TREE_DELETED) 4288 ret = record_deleted_ref(sctx); 4289 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4290 ret = record_changed_ref(sctx); 4291 } 4292 4293 return ret; 4294 } 4295 4296 /* 4297 * Process new/deleted/changed xattrs. We skip processing in the 4298 * cur_inode_new_gen case because changed_inode did already initiate processing 4299 * of xattrs. The reason is the same as in changed_ref 4300 */ 4301 static int changed_xattr(struct send_ctx *sctx, 4302 enum btrfs_compare_tree_result result) 4303 { 4304 int ret = 0; 4305 4306 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4307 4308 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4309 if (result == BTRFS_COMPARE_TREE_NEW) 4310 ret = process_new_xattr(sctx); 4311 else if (result == BTRFS_COMPARE_TREE_DELETED) 4312 ret = process_deleted_xattr(sctx); 4313 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4314 ret = process_changed_xattr(sctx); 4315 } 4316 4317 return ret; 4318 } 4319 4320 /* 4321 * Process new/deleted/changed extents. We skip processing in the 4322 * cur_inode_new_gen case because changed_inode did already initiate processing 4323 * of extents. The reason is the same as in changed_ref 4324 */ 4325 static int changed_extent(struct send_ctx *sctx, 4326 enum btrfs_compare_tree_result result) 4327 { 4328 int ret = 0; 4329 4330 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4331 4332 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4333 if (result != BTRFS_COMPARE_TREE_DELETED) 4334 ret = process_extent(sctx, sctx->left_path, 4335 sctx->cmp_key); 4336 } 4337 4338 return ret; 4339 } 4340 4341 /* 4342 * Updates compare related fields in sctx and simply forwards to the actual 4343 * changed_xxx functions. 4344 */ 4345 static int changed_cb(struct btrfs_root *left_root, 4346 struct btrfs_root *right_root, 4347 struct btrfs_path *left_path, 4348 struct btrfs_path *right_path, 4349 struct btrfs_key *key, 4350 enum btrfs_compare_tree_result result, 4351 void *ctx) 4352 { 4353 int ret = 0; 4354 struct send_ctx *sctx = ctx; 4355 4356 sctx->left_path = left_path; 4357 sctx->right_path = right_path; 4358 sctx->cmp_key = key; 4359 4360 ret = finish_inode_if_needed(sctx, 0); 4361 if (ret < 0) 4362 goto out; 4363 4364 /* Ignore non-FS objects */ 4365 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 4366 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 4367 goto out; 4368 4369 if (key->type == BTRFS_INODE_ITEM_KEY) 4370 ret = changed_inode(sctx, result); 4371 else if (key->type == BTRFS_INODE_REF_KEY || 4372 key->type == BTRFS_INODE_EXTREF_KEY) 4373 ret = changed_ref(sctx, result); 4374 else if (key->type == BTRFS_XATTR_ITEM_KEY) 4375 ret = changed_xattr(sctx, result); 4376 else if (key->type == BTRFS_EXTENT_DATA_KEY) 4377 ret = changed_extent(sctx, result); 4378 4379 out: 4380 return ret; 4381 } 4382 4383 static int full_send_tree(struct send_ctx *sctx) 4384 { 4385 int ret; 4386 struct btrfs_trans_handle *trans = NULL; 4387 struct btrfs_root *send_root = sctx->send_root; 4388 struct btrfs_key key; 4389 struct btrfs_key found_key; 4390 struct btrfs_path *path; 4391 struct extent_buffer *eb; 4392 int slot; 4393 u64 start_ctransid; 4394 u64 ctransid; 4395 4396 path = alloc_path_for_send(); 4397 if (!path) 4398 return -ENOMEM; 4399 4400 spin_lock(&send_root->root_item_lock); 4401 start_ctransid = btrfs_root_ctransid(&send_root->root_item); 4402 spin_unlock(&send_root->root_item_lock); 4403 4404 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 4405 key.type = BTRFS_INODE_ITEM_KEY; 4406 key.offset = 0; 4407 4408 join_trans: 4409 /* 4410 * We need to make sure the transaction does not get committed 4411 * while we do anything on commit roots. Join a transaction to prevent 4412 * this. 4413 */ 4414 trans = btrfs_join_transaction(send_root); 4415 if (IS_ERR(trans)) { 4416 ret = PTR_ERR(trans); 4417 trans = NULL; 4418 goto out; 4419 } 4420 4421 /* 4422 * Make sure the tree has not changed after re-joining. We detect this 4423 * by comparing start_ctransid and ctransid. They should always match. 4424 */ 4425 spin_lock(&send_root->root_item_lock); 4426 ctransid = btrfs_root_ctransid(&send_root->root_item); 4427 spin_unlock(&send_root->root_item_lock); 4428 4429 if (ctransid != start_ctransid) { 4430 WARN(1, KERN_WARNING "btrfs: the root that you're trying to " 4431 "send was modified in between. This is " 4432 "probably a bug.\n"); 4433 ret = -EIO; 4434 goto out; 4435 } 4436 4437 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 4438 if (ret < 0) 4439 goto out; 4440 if (ret) 4441 goto out_finish; 4442 4443 while (1) { 4444 /* 4445 * When someone want to commit while we iterate, end the 4446 * joined transaction and rejoin. 4447 */ 4448 if (btrfs_should_end_transaction(trans, send_root)) { 4449 ret = btrfs_end_transaction(trans, send_root); 4450 trans = NULL; 4451 if (ret < 0) 4452 goto out; 4453 btrfs_release_path(path); 4454 goto join_trans; 4455 } 4456 4457 eb = path->nodes[0]; 4458 slot = path->slots[0]; 4459 btrfs_item_key_to_cpu(eb, &found_key, slot); 4460 4461 ret = changed_cb(send_root, NULL, path, NULL, 4462 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 4463 if (ret < 0) 4464 goto out; 4465 4466 key.objectid = found_key.objectid; 4467 key.type = found_key.type; 4468 key.offset = found_key.offset + 1; 4469 4470 ret = btrfs_next_item(send_root, path); 4471 if (ret < 0) 4472 goto out; 4473 if (ret) { 4474 ret = 0; 4475 break; 4476 } 4477 } 4478 4479 out_finish: 4480 ret = finish_inode_if_needed(sctx, 1); 4481 4482 out: 4483 btrfs_free_path(path); 4484 if (trans) { 4485 if (!ret) 4486 ret = btrfs_end_transaction(trans, send_root); 4487 else 4488 btrfs_end_transaction(trans, send_root); 4489 } 4490 return ret; 4491 } 4492 4493 static int send_subvol(struct send_ctx *sctx) 4494 { 4495 int ret; 4496 4497 ret = send_header(sctx); 4498 if (ret < 0) 4499 goto out; 4500 4501 ret = send_subvol_begin(sctx); 4502 if (ret < 0) 4503 goto out; 4504 4505 if (sctx->parent_root) { 4506 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 4507 changed_cb, sctx); 4508 if (ret < 0) 4509 goto out; 4510 ret = finish_inode_if_needed(sctx, 1); 4511 if (ret < 0) 4512 goto out; 4513 } else { 4514 ret = full_send_tree(sctx); 4515 if (ret < 0) 4516 goto out; 4517 } 4518 4519 out: 4520 if (!ret) 4521 ret = close_cur_inode_file(sctx); 4522 else 4523 close_cur_inode_file(sctx); 4524 4525 free_recorded_refs(sctx); 4526 return ret; 4527 } 4528 4529 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 4530 { 4531 int ret = 0; 4532 struct btrfs_root *send_root; 4533 struct btrfs_root *clone_root; 4534 struct btrfs_fs_info *fs_info; 4535 struct btrfs_ioctl_send_args *arg = NULL; 4536 struct btrfs_key key; 4537 struct file *filp = NULL; 4538 struct send_ctx *sctx = NULL; 4539 u32 i; 4540 u64 *clone_sources_tmp = NULL; 4541 4542 if (!capable(CAP_SYS_ADMIN)) 4543 return -EPERM; 4544 4545 send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root; 4546 fs_info = send_root->fs_info; 4547 4548 arg = memdup_user(arg_, sizeof(*arg)); 4549 if (IS_ERR(arg)) { 4550 ret = PTR_ERR(arg); 4551 arg = NULL; 4552 goto out; 4553 } 4554 4555 if (!access_ok(VERIFY_READ, arg->clone_sources, 4556 sizeof(*arg->clone_sources * 4557 arg->clone_sources_count))) { 4558 ret = -EFAULT; 4559 goto out; 4560 } 4561 4562 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 4563 if (!sctx) { 4564 ret = -ENOMEM; 4565 goto out; 4566 } 4567 4568 INIT_LIST_HEAD(&sctx->new_refs); 4569 INIT_LIST_HEAD(&sctx->deleted_refs); 4570 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 4571 INIT_LIST_HEAD(&sctx->name_cache_list); 4572 4573 sctx->send_filp = fget(arg->send_fd); 4574 if (IS_ERR(sctx->send_filp)) { 4575 ret = PTR_ERR(sctx->send_filp); 4576 goto out; 4577 } 4578 4579 sctx->mnt = mnt_file->f_path.mnt; 4580 4581 sctx->send_root = send_root; 4582 sctx->clone_roots_cnt = arg->clone_sources_count; 4583 4584 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 4585 sctx->send_buf = vmalloc(sctx->send_max_size); 4586 if (!sctx->send_buf) { 4587 ret = -ENOMEM; 4588 goto out; 4589 } 4590 4591 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 4592 if (!sctx->read_buf) { 4593 ret = -ENOMEM; 4594 goto out; 4595 } 4596 4597 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 4598 (arg->clone_sources_count + 1)); 4599 if (!sctx->clone_roots) { 4600 ret = -ENOMEM; 4601 goto out; 4602 } 4603 4604 if (arg->clone_sources_count) { 4605 clone_sources_tmp = vmalloc(arg->clone_sources_count * 4606 sizeof(*arg->clone_sources)); 4607 if (!clone_sources_tmp) { 4608 ret = -ENOMEM; 4609 goto out; 4610 } 4611 4612 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 4613 arg->clone_sources_count * 4614 sizeof(*arg->clone_sources)); 4615 if (ret) { 4616 ret = -EFAULT; 4617 goto out; 4618 } 4619 4620 for (i = 0; i < arg->clone_sources_count; i++) { 4621 key.objectid = clone_sources_tmp[i]; 4622 key.type = BTRFS_ROOT_ITEM_KEY; 4623 key.offset = (u64)-1; 4624 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 4625 if (!clone_root) { 4626 ret = -EINVAL; 4627 goto out; 4628 } 4629 if (IS_ERR(clone_root)) { 4630 ret = PTR_ERR(clone_root); 4631 goto out; 4632 } 4633 sctx->clone_roots[i].root = clone_root; 4634 } 4635 vfree(clone_sources_tmp); 4636 clone_sources_tmp = NULL; 4637 } 4638 4639 if (arg->parent_root) { 4640 key.objectid = arg->parent_root; 4641 key.type = BTRFS_ROOT_ITEM_KEY; 4642 key.offset = (u64)-1; 4643 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 4644 if (!sctx->parent_root) { 4645 ret = -EINVAL; 4646 goto out; 4647 } 4648 } 4649 4650 /* 4651 * Clones from send_root are allowed, but only if the clone source 4652 * is behind the current send position. This is checked while searching 4653 * for possible clone sources. 4654 */ 4655 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 4656 4657 /* We do a bsearch later */ 4658 sort(sctx->clone_roots, sctx->clone_roots_cnt, 4659 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 4660 NULL); 4661 4662 ret = send_subvol(sctx); 4663 if (ret < 0) 4664 goto out; 4665 4666 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 4667 if (ret < 0) 4668 goto out; 4669 ret = send_cmd(sctx); 4670 if (ret < 0) 4671 goto out; 4672 4673 out: 4674 if (filp) 4675 fput(filp); 4676 kfree(arg); 4677 vfree(clone_sources_tmp); 4678 4679 if (sctx) { 4680 if (sctx->send_filp) 4681 fput(sctx->send_filp); 4682 4683 vfree(sctx->clone_roots); 4684 vfree(sctx->send_buf); 4685 vfree(sctx->read_buf); 4686 4687 name_cache_free(sctx); 4688 4689 kfree(sctx); 4690 } 4691 4692 return ret; 4693 } 4694