1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 #include "xattr.h" 27 28 /* 29 * Maximum number of references an extent can have in order for us to attempt to 30 * issue clone operations instead of write operations. This currently exists to 31 * avoid hitting limitations of the backreference walking code (taking a lot of 32 * time and using too much memory for extents with large number of references). 33 */ 34 #define SEND_MAX_EXTENT_REFS 64 35 36 /* 37 * A fs_path is a helper to dynamically build path names with unknown size. 38 * It reallocates the internal buffer on demand. 39 * It allows fast adding of path elements on the right side (normal path) and 40 * fast adding to the left side (reversed path). A reversed path can also be 41 * unreversed if needed. 42 */ 43 struct fs_path { 44 union { 45 struct { 46 char *start; 47 char *end; 48 49 char *buf; 50 unsigned short buf_len:15; 51 unsigned short reversed:1; 52 char inline_buf[]; 53 }; 54 /* 55 * Average path length does not exceed 200 bytes, we'll have 56 * better packing in the slab and higher chance to satisfy 57 * a allocation later during send. 58 */ 59 char pad[256]; 60 }; 61 }; 62 #define FS_PATH_INLINE_SIZE \ 63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 64 65 66 /* reused for each extent */ 67 struct clone_root { 68 struct btrfs_root *root; 69 u64 ino; 70 u64 offset; 71 72 u64 found_refs; 73 }; 74 75 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 76 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 77 78 struct send_ctx { 79 struct file *send_filp; 80 loff_t send_off; 81 char *send_buf; 82 u32 send_size; 83 u32 send_max_size; 84 u64 total_send_size; 85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 87 88 struct btrfs_root *send_root; 89 struct btrfs_root *parent_root; 90 struct clone_root *clone_roots; 91 int clone_roots_cnt; 92 93 /* current state of the compare_tree call */ 94 struct btrfs_path *left_path; 95 struct btrfs_path *right_path; 96 struct btrfs_key *cmp_key; 97 98 /* 99 * infos of the currently processed inode. In case of deleted inodes, 100 * these are the values from the deleted inode. 101 */ 102 u64 cur_ino; 103 u64 cur_inode_gen; 104 int cur_inode_new; 105 int cur_inode_new_gen; 106 int cur_inode_deleted; 107 u64 cur_inode_size; 108 u64 cur_inode_mode; 109 u64 cur_inode_rdev; 110 u64 cur_inode_last_extent; 111 u64 cur_inode_next_write_offset; 112 bool ignore_cur_inode; 113 114 u64 send_progress; 115 116 struct list_head new_refs; 117 struct list_head deleted_refs; 118 119 struct radix_tree_root name_cache; 120 struct list_head name_cache_list; 121 int name_cache_size; 122 123 struct file_ra_state ra; 124 125 /* 126 * We process inodes by their increasing order, so if before an 127 * incremental send we reverse the parent/child relationship of 128 * directories such that a directory with a lower inode number was 129 * the parent of a directory with a higher inode number, and the one 130 * becoming the new parent got renamed too, we can't rename/move the 131 * directory with lower inode number when we finish processing it - we 132 * must process the directory with higher inode number first, then 133 * rename/move it and then rename/move the directory with lower inode 134 * number. Example follows. 135 * 136 * Tree state when the first send was performed: 137 * 138 * . 139 * |-- a (ino 257) 140 * |-- b (ino 258) 141 * | 142 * | 143 * |-- c (ino 259) 144 * | |-- d (ino 260) 145 * | 146 * |-- c2 (ino 261) 147 * 148 * Tree state when the second (incremental) send is performed: 149 * 150 * . 151 * |-- a (ino 257) 152 * |-- b (ino 258) 153 * |-- c2 (ino 261) 154 * |-- d2 (ino 260) 155 * |-- cc (ino 259) 156 * 157 * The sequence of steps that lead to the second state was: 158 * 159 * mv /a/b/c/d /a/b/c2/d2 160 * mv /a/b/c /a/b/c2/d2/cc 161 * 162 * "c" has lower inode number, but we can't move it (2nd mv operation) 163 * before we move "d", which has higher inode number. 164 * 165 * So we just memorize which move/rename operations must be performed 166 * later when their respective parent is processed and moved/renamed. 167 */ 168 169 /* Indexed by parent directory inode number. */ 170 struct rb_root pending_dir_moves; 171 172 /* 173 * Reverse index, indexed by the inode number of a directory that 174 * is waiting for the move/rename of its immediate parent before its 175 * own move/rename can be performed. 176 */ 177 struct rb_root waiting_dir_moves; 178 179 /* 180 * A directory that is going to be rm'ed might have a child directory 181 * which is in the pending directory moves index above. In this case, 182 * the directory can only be removed after the move/rename of its child 183 * is performed. Example: 184 * 185 * Parent snapshot: 186 * 187 * . (ino 256) 188 * |-- a/ (ino 257) 189 * |-- b/ (ino 258) 190 * |-- c/ (ino 259) 191 * | |-- x/ (ino 260) 192 * | 193 * |-- y/ (ino 261) 194 * 195 * Send snapshot: 196 * 197 * . (ino 256) 198 * |-- a/ (ino 257) 199 * |-- b/ (ino 258) 200 * |-- YY/ (ino 261) 201 * |-- x/ (ino 260) 202 * 203 * Sequence of steps that lead to the send snapshot: 204 * rm -f /a/b/c/foo.txt 205 * mv /a/b/y /a/b/YY 206 * mv /a/b/c/x /a/b/YY 207 * rmdir /a/b/c 208 * 209 * When the child is processed, its move/rename is delayed until its 210 * parent is processed (as explained above), but all other operations 211 * like update utimes, chown, chgrp, etc, are performed and the paths 212 * that it uses for those operations must use the orphanized name of 213 * its parent (the directory we're going to rm later), so we need to 214 * memorize that name. 215 * 216 * Indexed by the inode number of the directory to be deleted. 217 */ 218 struct rb_root orphan_dirs; 219 }; 220 221 struct pending_dir_move { 222 struct rb_node node; 223 struct list_head list; 224 u64 parent_ino; 225 u64 ino; 226 u64 gen; 227 struct list_head update_refs; 228 }; 229 230 struct waiting_dir_move { 231 struct rb_node node; 232 u64 ino; 233 /* 234 * There might be some directory that could not be removed because it 235 * was waiting for this directory inode to be moved first. Therefore 236 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 237 */ 238 u64 rmdir_ino; 239 u64 rmdir_gen; 240 bool orphanized; 241 }; 242 243 struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248 }; 249 250 struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269 }; 270 271 #define ADVANCE 1 272 #define ADVANCE_ONLY_NEXT -1 273 274 enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279 }; 280 281 __cold 282 static void inconsistent_snapshot_error(struct send_ctx *sctx, 283 enum btrfs_compare_tree_result result, 284 const char *what) 285 { 286 const char *result_string; 287 288 switch (result) { 289 case BTRFS_COMPARE_TREE_NEW: 290 result_string = "new"; 291 break; 292 case BTRFS_COMPARE_TREE_DELETED: 293 result_string = "deleted"; 294 break; 295 case BTRFS_COMPARE_TREE_CHANGED: 296 result_string = "updated"; 297 break; 298 case BTRFS_COMPARE_TREE_SAME: 299 ASSERT(0); 300 result_string = "unchanged"; 301 break; 302 default: 303 ASSERT(0); 304 result_string = "unexpected"; 305 } 306 307 btrfs_err(sctx->send_root->fs_info, 308 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 309 result_string, what, sctx->cmp_key->objectid, 310 sctx->send_root->root_key.objectid, 311 (sctx->parent_root ? 312 sctx->parent_root->root_key.objectid : 0)); 313 } 314 315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 316 317 static struct waiting_dir_move * 318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 319 320 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 321 322 static int need_send_hole(struct send_ctx *sctx) 323 { 324 return (sctx->parent_root && !sctx->cur_inode_new && 325 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 326 S_ISREG(sctx->cur_inode_mode)); 327 } 328 329 static void fs_path_reset(struct fs_path *p) 330 { 331 if (p->reversed) { 332 p->start = p->buf + p->buf_len - 1; 333 p->end = p->start; 334 *p->start = 0; 335 } else { 336 p->start = p->buf; 337 p->end = p->start; 338 *p->start = 0; 339 } 340 } 341 342 static struct fs_path *fs_path_alloc(void) 343 { 344 struct fs_path *p; 345 346 p = kmalloc(sizeof(*p), GFP_KERNEL); 347 if (!p) 348 return NULL; 349 p->reversed = 0; 350 p->buf = p->inline_buf; 351 p->buf_len = FS_PATH_INLINE_SIZE; 352 fs_path_reset(p); 353 return p; 354 } 355 356 static struct fs_path *fs_path_alloc_reversed(void) 357 { 358 struct fs_path *p; 359 360 p = fs_path_alloc(); 361 if (!p) 362 return NULL; 363 p->reversed = 1; 364 fs_path_reset(p); 365 return p; 366 } 367 368 static void fs_path_free(struct fs_path *p) 369 { 370 if (!p) 371 return; 372 if (p->buf != p->inline_buf) 373 kfree(p->buf); 374 kfree(p); 375 } 376 377 static int fs_path_len(struct fs_path *p) 378 { 379 return p->end - p->start; 380 } 381 382 static int fs_path_ensure_buf(struct fs_path *p, int len) 383 { 384 char *tmp_buf; 385 int path_len; 386 int old_buf_len; 387 388 len++; 389 390 if (p->buf_len >= len) 391 return 0; 392 393 if (len > PATH_MAX) { 394 WARN_ON(1); 395 return -ENOMEM; 396 } 397 398 path_len = p->end - p->start; 399 old_buf_len = p->buf_len; 400 401 /* 402 * First time the inline_buf does not suffice 403 */ 404 if (p->buf == p->inline_buf) { 405 tmp_buf = kmalloc(len, GFP_KERNEL); 406 if (tmp_buf) 407 memcpy(tmp_buf, p->buf, old_buf_len); 408 } else { 409 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 410 } 411 if (!tmp_buf) 412 return -ENOMEM; 413 p->buf = tmp_buf; 414 /* 415 * The real size of the buffer is bigger, this will let the fast path 416 * happen most of the time 417 */ 418 p->buf_len = ksize(p->buf); 419 420 if (p->reversed) { 421 tmp_buf = p->buf + old_buf_len - path_len - 1; 422 p->end = p->buf + p->buf_len - 1; 423 p->start = p->end - path_len; 424 memmove(p->start, tmp_buf, path_len + 1); 425 } else { 426 p->start = p->buf; 427 p->end = p->start + path_len; 428 } 429 return 0; 430 } 431 432 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 433 char **prepared) 434 { 435 int ret; 436 int new_len; 437 438 new_len = p->end - p->start + name_len; 439 if (p->start != p->end) 440 new_len++; 441 ret = fs_path_ensure_buf(p, new_len); 442 if (ret < 0) 443 goto out; 444 445 if (p->reversed) { 446 if (p->start != p->end) 447 *--p->start = '/'; 448 p->start -= name_len; 449 *prepared = p->start; 450 } else { 451 if (p->start != p->end) 452 *p->end++ = '/'; 453 *prepared = p->end; 454 p->end += name_len; 455 *p->end = 0; 456 } 457 458 out: 459 return ret; 460 } 461 462 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 463 { 464 int ret; 465 char *prepared; 466 467 ret = fs_path_prepare_for_add(p, name_len, &prepared); 468 if (ret < 0) 469 goto out; 470 memcpy(prepared, name, name_len); 471 472 out: 473 return ret; 474 } 475 476 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 477 { 478 int ret; 479 char *prepared; 480 481 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 482 if (ret < 0) 483 goto out; 484 memcpy(prepared, p2->start, p2->end - p2->start); 485 486 out: 487 return ret; 488 } 489 490 static int fs_path_add_from_extent_buffer(struct fs_path *p, 491 struct extent_buffer *eb, 492 unsigned long off, int len) 493 { 494 int ret; 495 char *prepared; 496 497 ret = fs_path_prepare_for_add(p, len, &prepared); 498 if (ret < 0) 499 goto out; 500 501 read_extent_buffer(eb, prepared, off, len); 502 503 out: 504 return ret; 505 } 506 507 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 508 { 509 int ret; 510 511 p->reversed = from->reversed; 512 fs_path_reset(p); 513 514 ret = fs_path_add_path(p, from); 515 516 return ret; 517 } 518 519 520 static void fs_path_unreverse(struct fs_path *p) 521 { 522 char *tmp; 523 int len; 524 525 if (!p->reversed) 526 return; 527 528 tmp = p->start; 529 len = p->end - p->start; 530 p->start = p->buf; 531 p->end = p->start + len; 532 memmove(p->start, tmp, len + 1); 533 p->reversed = 0; 534 } 535 536 static struct btrfs_path *alloc_path_for_send(void) 537 { 538 struct btrfs_path *path; 539 540 path = btrfs_alloc_path(); 541 if (!path) 542 return NULL; 543 path->search_commit_root = 1; 544 path->skip_locking = 1; 545 path->need_commit_sem = 1; 546 return path; 547 } 548 549 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 550 { 551 int ret; 552 u32 pos = 0; 553 554 while (pos < len) { 555 ret = kernel_write(filp, buf + pos, len - pos, off); 556 /* TODO handle that correctly */ 557 /*if (ret == -ERESTARTSYS) { 558 continue; 559 }*/ 560 if (ret < 0) 561 return ret; 562 if (ret == 0) { 563 return -EIO; 564 } 565 pos += ret; 566 } 567 568 return 0; 569 } 570 571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572 { 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 put_unaligned_le16(attr, &hdr->tlv_type); 582 put_unaligned_le16(len, &hdr->tlv_len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587 } 588 589 #define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597 TLV_PUT_DEFINE_INT(64) 598 599 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601 { 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605 } 606 607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609 { 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611 } 612 613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616 { 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620 } 621 622 623 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, data, attrlen); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647 #define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667 static int send_header(struct send_ctx *sctx) 668 { 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676 } 677 678 /* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681 static int begin_cmd(struct send_ctx *sctx, int cmd) 682 { 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 put_unaligned_le16(cmd, &hdr->cmd); 693 694 return 0; 695 } 696 697 static int send_cmd(struct send_ctx *sctx) 698 { 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 705 put_unaligned_le32(0, &hdr->crc); 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 put_unaligned_le32(crc, &hdr->crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[get_unaligned_le16(&hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718 } 719 720 /* 721 * Sends a move instruction to user space 722 */ 723 static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725 { 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740 tlv_put_failure: 741 out: 742 return ret; 743 } 744 745 /* 746 * Sends a link instruction to user space 747 */ 748 static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750 { 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765 tlv_put_failure: 766 out: 767 return ret; 768 } 769 770 /* 771 * Sends an unlink instruction to user space 772 */ 773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774 { 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788 tlv_put_failure: 789 out: 790 return ret; 791 } 792 793 /* 794 * Sends a rmdir instruction to user space 795 */ 796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797 { 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 iterate_dir_item_t iterate, void *ctx) 1006 { 1007 int ret = 0; 1008 struct extent_buffer *eb; 1009 struct btrfs_item *item; 1010 struct btrfs_dir_item *di; 1011 struct btrfs_key di_key; 1012 char *buf = NULL; 1013 int buf_len; 1014 u32 name_len; 1015 u32 data_len; 1016 u32 cur; 1017 u32 len; 1018 u32 total; 1019 int slot; 1020 int num; 1021 u8 type; 1022 1023 /* 1024 * Start with a small buffer (1 page). If later we end up needing more 1025 * space, which can happen for xattrs on a fs with a leaf size greater 1026 * then the page size, attempt to increase the buffer. Typically xattr 1027 * values are small. 1028 */ 1029 buf_len = PATH_MAX; 1030 buf = kmalloc(buf_len, GFP_KERNEL); 1031 if (!buf) { 1032 ret = -ENOMEM; 1033 goto out; 1034 } 1035 1036 eb = path->nodes[0]; 1037 slot = path->slots[0]; 1038 item = btrfs_item_nr(slot); 1039 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1040 cur = 0; 1041 len = 0; 1042 total = btrfs_item_size(eb, item); 1043 1044 num = 0; 1045 while (cur < total) { 1046 name_len = btrfs_dir_name_len(eb, di); 1047 data_len = btrfs_dir_data_len(eb, di); 1048 type = btrfs_dir_type(eb, di); 1049 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1050 1051 if (type == BTRFS_FT_XATTR) { 1052 if (name_len > XATTR_NAME_MAX) { 1053 ret = -ENAMETOOLONG; 1054 goto out; 1055 } 1056 if (name_len + data_len > 1057 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1058 ret = -E2BIG; 1059 goto out; 1060 } 1061 } else { 1062 /* 1063 * Path too long 1064 */ 1065 if (name_len + data_len > PATH_MAX) { 1066 ret = -ENAMETOOLONG; 1067 goto out; 1068 } 1069 } 1070 1071 if (name_len + data_len > buf_len) { 1072 buf_len = name_len + data_len; 1073 if (is_vmalloc_addr(buf)) { 1074 vfree(buf); 1075 buf = NULL; 1076 } else { 1077 char *tmp = krealloc(buf, buf_len, 1078 GFP_KERNEL | __GFP_NOWARN); 1079 1080 if (!tmp) 1081 kfree(buf); 1082 buf = tmp; 1083 } 1084 if (!buf) { 1085 buf = kvmalloc(buf_len, GFP_KERNEL); 1086 if (!buf) { 1087 ret = -ENOMEM; 1088 goto out; 1089 } 1090 } 1091 } 1092 1093 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1094 name_len + data_len); 1095 1096 len = sizeof(*di) + name_len + data_len; 1097 di = (struct btrfs_dir_item *)((char *)di + len); 1098 cur += len; 1099 1100 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1101 data_len, type, ctx); 1102 if (ret < 0) 1103 goto out; 1104 if (ret) { 1105 ret = 0; 1106 goto out; 1107 } 1108 1109 num++; 1110 } 1111 1112 out: 1113 kvfree(buf); 1114 return ret; 1115 } 1116 1117 static int __copy_first_ref(int num, u64 dir, int index, 1118 struct fs_path *p, void *ctx) 1119 { 1120 int ret; 1121 struct fs_path *pt = ctx; 1122 1123 ret = fs_path_copy(pt, p); 1124 if (ret < 0) 1125 return ret; 1126 1127 /* we want the first only */ 1128 return 1; 1129 } 1130 1131 /* 1132 * Retrieve the first path of an inode. If an inode has more then one 1133 * ref/hardlink, this is ignored. 1134 */ 1135 static int get_inode_path(struct btrfs_root *root, 1136 u64 ino, struct fs_path *path) 1137 { 1138 int ret; 1139 struct btrfs_key key, found_key; 1140 struct btrfs_path *p; 1141 1142 p = alloc_path_for_send(); 1143 if (!p) 1144 return -ENOMEM; 1145 1146 fs_path_reset(path); 1147 1148 key.objectid = ino; 1149 key.type = BTRFS_INODE_REF_KEY; 1150 key.offset = 0; 1151 1152 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1153 if (ret < 0) 1154 goto out; 1155 if (ret) { 1156 ret = 1; 1157 goto out; 1158 } 1159 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1160 if (found_key.objectid != ino || 1161 (found_key.type != BTRFS_INODE_REF_KEY && 1162 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1163 ret = -ENOENT; 1164 goto out; 1165 } 1166 1167 ret = iterate_inode_ref(root, p, &found_key, 1, 1168 __copy_first_ref, path); 1169 if (ret < 0) 1170 goto out; 1171 ret = 0; 1172 1173 out: 1174 btrfs_free_path(p); 1175 return ret; 1176 } 1177 1178 struct backref_ctx { 1179 struct send_ctx *sctx; 1180 1181 /* number of total found references */ 1182 u64 found; 1183 1184 /* 1185 * used for clones found in send_root. clones found behind cur_objectid 1186 * and cur_offset are not considered as allowed clones. 1187 */ 1188 u64 cur_objectid; 1189 u64 cur_offset; 1190 1191 /* may be truncated in case it's the last extent in a file */ 1192 u64 extent_len; 1193 1194 /* Just to check for bugs in backref resolving */ 1195 int found_itself; 1196 }; 1197 1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1199 { 1200 u64 root = (u64)(uintptr_t)key; 1201 const struct clone_root *cr = elt; 1202 1203 if (root < cr->root->root_key.objectid) 1204 return -1; 1205 if (root > cr->root->root_key.objectid) 1206 return 1; 1207 return 0; 1208 } 1209 1210 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1211 { 1212 const struct clone_root *cr1 = e1; 1213 const struct clone_root *cr2 = e2; 1214 1215 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1216 return -1; 1217 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1218 return 1; 1219 return 0; 1220 } 1221 1222 /* 1223 * Called for every backref that is found for the current extent. 1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1225 */ 1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1227 { 1228 struct backref_ctx *bctx = ctx_; 1229 struct clone_root *found; 1230 1231 /* First check if the root is in the list of accepted clone sources */ 1232 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1233 bctx->sctx->clone_roots_cnt, 1234 sizeof(struct clone_root), 1235 __clone_root_cmp_bsearch); 1236 if (!found) 1237 return 0; 1238 1239 if (found->root == bctx->sctx->send_root && 1240 ino == bctx->cur_objectid && 1241 offset == bctx->cur_offset) { 1242 bctx->found_itself = 1; 1243 } 1244 1245 /* 1246 * Make sure we don't consider clones from send_root that are 1247 * behind the current inode/offset. 1248 */ 1249 if (found->root == bctx->sctx->send_root) { 1250 /* 1251 * If the source inode was not yet processed we can't issue a 1252 * clone operation, as the source extent does not exist yet at 1253 * the destination of the stream. 1254 */ 1255 if (ino > bctx->cur_objectid) 1256 return 0; 1257 /* 1258 * We clone from the inode currently being sent as long as the 1259 * source extent is already processed, otherwise we could try 1260 * to clone from an extent that does not exist yet at the 1261 * destination of the stream. 1262 */ 1263 if (ino == bctx->cur_objectid && 1264 offset + bctx->extent_len > 1265 bctx->sctx->cur_inode_next_write_offset) 1266 return 0; 1267 } 1268 1269 bctx->found++; 1270 found->found_refs++; 1271 if (ino < found->ino) { 1272 found->ino = ino; 1273 found->offset = offset; 1274 } else if (found->ino == ino) { 1275 /* 1276 * same extent found more then once in the same file. 1277 */ 1278 if (found->offset > offset + bctx->extent_len) 1279 found->offset = offset; 1280 } 1281 1282 return 0; 1283 } 1284 1285 /* 1286 * Given an inode, offset and extent item, it finds a good clone for a clone 1287 * instruction. Returns -ENOENT when none could be found. The function makes 1288 * sure that the returned clone is usable at the point where sending is at the 1289 * moment. This means, that no clones are accepted which lie behind the current 1290 * inode+offset. 1291 * 1292 * path must point to the extent item when called. 1293 */ 1294 static int find_extent_clone(struct send_ctx *sctx, 1295 struct btrfs_path *path, 1296 u64 ino, u64 data_offset, 1297 u64 ino_size, 1298 struct clone_root **found) 1299 { 1300 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1301 int ret; 1302 int extent_type; 1303 u64 logical; 1304 u64 disk_byte; 1305 u64 num_bytes; 1306 u64 extent_item_pos; 1307 u64 flags = 0; 1308 struct btrfs_file_extent_item *fi; 1309 struct extent_buffer *eb = path->nodes[0]; 1310 struct backref_ctx backref_ctx = {0}; 1311 struct clone_root *cur_clone_root; 1312 struct btrfs_key found_key; 1313 struct btrfs_path *tmp_path; 1314 struct btrfs_extent_item *ei; 1315 int compressed; 1316 u32 i; 1317 1318 tmp_path = alloc_path_for_send(); 1319 if (!tmp_path) 1320 return -ENOMEM; 1321 1322 /* We only use this path under the commit sem */ 1323 tmp_path->need_commit_sem = 0; 1324 1325 if (data_offset >= ino_size) { 1326 /* 1327 * There may be extents that lie behind the file's size. 1328 * I at least had this in combination with snapshotting while 1329 * writing large files. 1330 */ 1331 ret = 0; 1332 goto out; 1333 } 1334 1335 fi = btrfs_item_ptr(eb, path->slots[0], 1336 struct btrfs_file_extent_item); 1337 extent_type = btrfs_file_extent_type(eb, fi); 1338 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1339 ret = -ENOENT; 1340 goto out; 1341 } 1342 compressed = btrfs_file_extent_compression(eb, fi); 1343 1344 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1345 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1346 if (disk_byte == 0) { 1347 ret = -ENOENT; 1348 goto out; 1349 } 1350 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1351 1352 down_read(&fs_info->commit_root_sem); 1353 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1354 &found_key, &flags); 1355 up_read(&fs_info->commit_root_sem); 1356 1357 if (ret < 0) 1358 goto out; 1359 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1360 ret = -EIO; 1361 goto out; 1362 } 1363 1364 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1365 struct btrfs_extent_item); 1366 /* 1367 * Backreference walking (iterate_extent_inodes() below) is currently 1368 * too expensive when an extent has a large number of references, both 1369 * in time spent and used memory. So for now just fallback to write 1370 * operations instead of clone operations when an extent has more than 1371 * a certain amount of references. 1372 */ 1373 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1374 ret = -ENOENT; 1375 goto out; 1376 } 1377 btrfs_release_path(tmp_path); 1378 1379 /* 1380 * Setup the clone roots. 1381 */ 1382 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1383 cur_clone_root = sctx->clone_roots + i; 1384 cur_clone_root->ino = (u64)-1; 1385 cur_clone_root->offset = 0; 1386 cur_clone_root->found_refs = 0; 1387 } 1388 1389 backref_ctx.sctx = sctx; 1390 backref_ctx.found = 0; 1391 backref_ctx.cur_objectid = ino; 1392 backref_ctx.cur_offset = data_offset; 1393 backref_ctx.found_itself = 0; 1394 backref_ctx.extent_len = num_bytes; 1395 1396 /* 1397 * The last extent of a file may be too large due to page alignment. 1398 * We need to adjust extent_len in this case so that the checks in 1399 * __iterate_backrefs work. 1400 */ 1401 if (data_offset + num_bytes >= ino_size) 1402 backref_ctx.extent_len = ino_size - data_offset; 1403 1404 /* 1405 * Now collect all backrefs. 1406 */ 1407 if (compressed == BTRFS_COMPRESS_NONE) 1408 extent_item_pos = logical - found_key.objectid; 1409 else 1410 extent_item_pos = 0; 1411 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1412 extent_item_pos, 1, __iterate_backrefs, 1413 &backref_ctx, false); 1414 1415 if (ret < 0) 1416 goto out; 1417 1418 if (!backref_ctx.found_itself) { 1419 /* found a bug in backref code? */ 1420 ret = -EIO; 1421 btrfs_err(fs_info, 1422 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1423 ino, data_offset, disk_byte, found_key.objectid); 1424 goto out; 1425 } 1426 1427 btrfs_debug(fs_info, 1428 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1429 data_offset, ino, num_bytes, logical); 1430 1431 if (!backref_ctx.found) 1432 btrfs_debug(fs_info, "no clones found"); 1433 1434 cur_clone_root = NULL; 1435 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1436 if (sctx->clone_roots[i].found_refs) { 1437 if (!cur_clone_root) 1438 cur_clone_root = sctx->clone_roots + i; 1439 else if (sctx->clone_roots[i].root == sctx->send_root) 1440 /* prefer clones from send_root over others */ 1441 cur_clone_root = sctx->clone_roots + i; 1442 } 1443 1444 } 1445 1446 if (cur_clone_root) { 1447 *found = cur_clone_root; 1448 ret = 0; 1449 } else { 1450 ret = -ENOENT; 1451 } 1452 1453 out: 1454 btrfs_free_path(tmp_path); 1455 return ret; 1456 } 1457 1458 static int read_symlink(struct btrfs_root *root, 1459 u64 ino, 1460 struct fs_path *dest) 1461 { 1462 int ret; 1463 struct btrfs_path *path; 1464 struct btrfs_key key; 1465 struct btrfs_file_extent_item *ei; 1466 u8 type; 1467 u8 compression; 1468 unsigned long off; 1469 int len; 1470 1471 path = alloc_path_for_send(); 1472 if (!path) 1473 return -ENOMEM; 1474 1475 key.objectid = ino; 1476 key.type = BTRFS_EXTENT_DATA_KEY; 1477 key.offset = 0; 1478 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1479 if (ret < 0) 1480 goto out; 1481 if (ret) { 1482 /* 1483 * An empty symlink inode. Can happen in rare error paths when 1484 * creating a symlink (transaction committed before the inode 1485 * eviction handler removed the symlink inode items and a crash 1486 * happened in between or the subvol was snapshoted in between). 1487 * Print an informative message to dmesg/syslog so that the user 1488 * can delete the symlink. 1489 */ 1490 btrfs_err(root->fs_info, 1491 "Found empty symlink inode %llu at root %llu", 1492 ino, root->root_key.objectid); 1493 ret = -EIO; 1494 goto out; 1495 } 1496 1497 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1498 struct btrfs_file_extent_item); 1499 type = btrfs_file_extent_type(path->nodes[0], ei); 1500 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1501 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1502 BUG_ON(compression); 1503 1504 off = btrfs_file_extent_inline_start(ei); 1505 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1506 1507 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1508 1509 out: 1510 btrfs_free_path(path); 1511 return ret; 1512 } 1513 1514 /* 1515 * Helper function to generate a file name that is unique in the root of 1516 * send_root and parent_root. This is used to generate names for orphan inodes. 1517 */ 1518 static int gen_unique_name(struct send_ctx *sctx, 1519 u64 ino, u64 gen, 1520 struct fs_path *dest) 1521 { 1522 int ret = 0; 1523 struct btrfs_path *path; 1524 struct btrfs_dir_item *di; 1525 char tmp[64]; 1526 int len; 1527 u64 idx = 0; 1528 1529 path = alloc_path_for_send(); 1530 if (!path) 1531 return -ENOMEM; 1532 1533 while (1) { 1534 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1535 ino, gen, idx); 1536 ASSERT(len < sizeof(tmp)); 1537 1538 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1539 path, BTRFS_FIRST_FREE_OBJECTID, 1540 tmp, strlen(tmp), 0); 1541 btrfs_release_path(path); 1542 if (IS_ERR(di)) { 1543 ret = PTR_ERR(di); 1544 goto out; 1545 } 1546 if (di) { 1547 /* not unique, try again */ 1548 idx++; 1549 continue; 1550 } 1551 1552 if (!sctx->parent_root) { 1553 /* unique */ 1554 ret = 0; 1555 break; 1556 } 1557 1558 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1559 path, BTRFS_FIRST_FREE_OBJECTID, 1560 tmp, strlen(tmp), 0); 1561 btrfs_release_path(path); 1562 if (IS_ERR(di)) { 1563 ret = PTR_ERR(di); 1564 goto out; 1565 } 1566 if (di) { 1567 /* not unique, try again */ 1568 idx++; 1569 continue; 1570 } 1571 /* unique */ 1572 break; 1573 } 1574 1575 ret = fs_path_add(dest, tmp, strlen(tmp)); 1576 1577 out: 1578 btrfs_free_path(path); 1579 return ret; 1580 } 1581 1582 enum inode_state { 1583 inode_state_no_change, 1584 inode_state_will_create, 1585 inode_state_did_create, 1586 inode_state_will_delete, 1587 inode_state_did_delete, 1588 }; 1589 1590 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1591 { 1592 int ret; 1593 int left_ret; 1594 int right_ret; 1595 u64 left_gen; 1596 u64 right_gen; 1597 1598 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1599 NULL, NULL); 1600 if (ret < 0 && ret != -ENOENT) 1601 goto out; 1602 left_ret = ret; 1603 1604 if (!sctx->parent_root) { 1605 right_ret = -ENOENT; 1606 } else { 1607 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1608 NULL, NULL, NULL, NULL); 1609 if (ret < 0 && ret != -ENOENT) 1610 goto out; 1611 right_ret = ret; 1612 } 1613 1614 if (!left_ret && !right_ret) { 1615 if (left_gen == gen && right_gen == gen) { 1616 ret = inode_state_no_change; 1617 } else if (left_gen == gen) { 1618 if (ino < sctx->send_progress) 1619 ret = inode_state_did_create; 1620 else 1621 ret = inode_state_will_create; 1622 } else if (right_gen == gen) { 1623 if (ino < sctx->send_progress) 1624 ret = inode_state_did_delete; 1625 else 1626 ret = inode_state_will_delete; 1627 } else { 1628 ret = -ENOENT; 1629 } 1630 } else if (!left_ret) { 1631 if (left_gen == gen) { 1632 if (ino < sctx->send_progress) 1633 ret = inode_state_did_create; 1634 else 1635 ret = inode_state_will_create; 1636 } else { 1637 ret = -ENOENT; 1638 } 1639 } else if (!right_ret) { 1640 if (right_gen == gen) { 1641 if (ino < sctx->send_progress) 1642 ret = inode_state_did_delete; 1643 else 1644 ret = inode_state_will_delete; 1645 } else { 1646 ret = -ENOENT; 1647 } 1648 } else { 1649 ret = -ENOENT; 1650 } 1651 1652 out: 1653 return ret; 1654 } 1655 1656 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1657 { 1658 int ret; 1659 1660 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1661 return 1; 1662 1663 ret = get_cur_inode_state(sctx, ino, gen); 1664 if (ret < 0) 1665 goto out; 1666 1667 if (ret == inode_state_no_change || 1668 ret == inode_state_did_create || 1669 ret == inode_state_will_delete) 1670 ret = 1; 1671 else 1672 ret = 0; 1673 1674 out: 1675 return ret; 1676 } 1677 1678 /* 1679 * Helper function to lookup a dir item in a dir. 1680 */ 1681 static int lookup_dir_item_inode(struct btrfs_root *root, 1682 u64 dir, const char *name, int name_len, 1683 u64 *found_inode, 1684 u8 *found_type) 1685 { 1686 int ret = 0; 1687 struct btrfs_dir_item *di; 1688 struct btrfs_key key; 1689 struct btrfs_path *path; 1690 1691 path = alloc_path_for_send(); 1692 if (!path) 1693 return -ENOMEM; 1694 1695 di = btrfs_lookup_dir_item(NULL, root, path, 1696 dir, name, name_len, 0); 1697 if (IS_ERR_OR_NULL(di)) { 1698 ret = di ? PTR_ERR(di) : -ENOENT; 1699 goto out; 1700 } 1701 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1702 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1703 ret = -ENOENT; 1704 goto out; 1705 } 1706 *found_inode = key.objectid; 1707 *found_type = btrfs_dir_type(path->nodes[0], di); 1708 1709 out: 1710 btrfs_free_path(path); 1711 return ret; 1712 } 1713 1714 /* 1715 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1716 * generation of the parent dir and the name of the dir entry. 1717 */ 1718 static int get_first_ref(struct btrfs_root *root, u64 ino, 1719 u64 *dir, u64 *dir_gen, struct fs_path *name) 1720 { 1721 int ret; 1722 struct btrfs_key key; 1723 struct btrfs_key found_key; 1724 struct btrfs_path *path; 1725 int len; 1726 u64 parent_dir; 1727 1728 path = alloc_path_for_send(); 1729 if (!path) 1730 return -ENOMEM; 1731 1732 key.objectid = ino; 1733 key.type = BTRFS_INODE_REF_KEY; 1734 key.offset = 0; 1735 1736 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1737 if (ret < 0) 1738 goto out; 1739 if (!ret) 1740 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1741 path->slots[0]); 1742 if (ret || found_key.objectid != ino || 1743 (found_key.type != BTRFS_INODE_REF_KEY && 1744 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1745 ret = -ENOENT; 1746 goto out; 1747 } 1748 1749 if (found_key.type == BTRFS_INODE_REF_KEY) { 1750 struct btrfs_inode_ref *iref; 1751 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1752 struct btrfs_inode_ref); 1753 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1754 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1755 (unsigned long)(iref + 1), 1756 len); 1757 parent_dir = found_key.offset; 1758 } else { 1759 struct btrfs_inode_extref *extref; 1760 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1761 struct btrfs_inode_extref); 1762 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1763 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1764 (unsigned long)&extref->name, len); 1765 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1766 } 1767 if (ret < 0) 1768 goto out; 1769 btrfs_release_path(path); 1770 1771 if (dir_gen) { 1772 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1773 NULL, NULL, NULL); 1774 if (ret < 0) 1775 goto out; 1776 } 1777 1778 *dir = parent_dir; 1779 1780 out: 1781 btrfs_free_path(path); 1782 return ret; 1783 } 1784 1785 static int is_first_ref(struct btrfs_root *root, 1786 u64 ino, u64 dir, 1787 const char *name, int name_len) 1788 { 1789 int ret; 1790 struct fs_path *tmp_name; 1791 u64 tmp_dir; 1792 1793 tmp_name = fs_path_alloc(); 1794 if (!tmp_name) 1795 return -ENOMEM; 1796 1797 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1798 if (ret < 0) 1799 goto out; 1800 1801 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1802 ret = 0; 1803 goto out; 1804 } 1805 1806 ret = !memcmp(tmp_name->start, name, name_len); 1807 1808 out: 1809 fs_path_free(tmp_name); 1810 return ret; 1811 } 1812 1813 /* 1814 * Used by process_recorded_refs to determine if a new ref would overwrite an 1815 * already existing ref. In case it detects an overwrite, it returns the 1816 * inode/gen in who_ino/who_gen. 1817 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1818 * to make sure later references to the overwritten inode are possible. 1819 * Orphanizing is however only required for the first ref of an inode. 1820 * process_recorded_refs does an additional is_first_ref check to see if 1821 * orphanizing is really required. 1822 */ 1823 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1824 const char *name, int name_len, 1825 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1826 { 1827 int ret = 0; 1828 u64 gen; 1829 u64 other_inode = 0; 1830 u8 other_type = 0; 1831 1832 if (!sctx->parent_root) 1833 goto out; 1834 1835 ret = is_inode_existent(sctx, dir, dir_gen); 1836 if (ret <= 0) 1837 goto out; 1838 1839 /* 1840 * If we have a parent root we need to verify that the parent dir was 1841 * not deleted and then re-created, if it was then we have no overwrite 1842 * and we can just unlink this entry. 1843 */ 1844 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1845 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1846 NULL, NULL, NULL); 1847 if (ret < 0 && ret != -ENOENT) 1848 goto out; 1849 if (ret) { 1850 ret = 0; 1851 goto out; 1852 } 1853 if (gen != dir_gen) 1854 goto out; 1855 } 1856 1857 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1858 &other_inode, &other_type); 1859 if (ret < 0 && ret != -ENOENT) 1860 goto out; 1861 if (ret) { 1862 ret = 0; 1863 goto out; 1864 } 1865 1866 /* 1867 * Check if the overwritten ref was already processed. If yes, the ref 1868 * was already unlinked/moved, so we can safely assume that we will not 1869 * overwrite anything at this point in time. 1870 */ 1871 if (other_inode > sctx->send_progress || 1872 is_waiting_for_move(sctx, other_inode)) { 1873 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1874 who_gen, who_mode, NULL, NULL, NULL); 1875 if (ret < 0) 1876 goto out; 1877 1878 ret = 1; 1879 *who_ino = other_inode; 1880 } else { 1881 ret = 0; 1882 } 1883 1884 out: 1885 return ret; 1886 } 1887 1888 /* 1889 * Checks if the ref was overwritten by an already processed inode. This is 1890 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1891 * thus the orphan name needs be used. 1892 * process_recorded_refs also uses it to avoid unlinking of refs that were 1893 * overwritten. 1894 */ 1895 static int did_overwrite_ref(struct send_ctx *sctx, 1896 u64 dir, u64 dir_gen, 1897 u64 ino, u64 ino_gen, 1898 const char *name, int name_len) 1899 { 1900 int ret = 0; 1901 u64 gen; 1902 u64 ow_inode; 1903 u8 other_type; 1904 1905 if (!sctx->parent_root) 1906 goto out; 1907 1908 ret = is_inode_existent(sctx, dir, dir_gen); 1909 if (ret <= 0) 1910 goto out; 1911 1912 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1913 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1914 NULL, NULL, NULL); 1915 if (ret < 0 && ret != -ENOENT) 1916 goto out; 1917 if (ret) { 1918 ret = 0; 1919 goto out; 1920 } 1921 if (gen != dir_gen) 1922 goto out; 1923 } 1924 1925 /* check if the ref was overwritten by another ref */ 1926 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1927 &ow_inode, &other_type); 1928 if (ret < 0 && ret != -ENOENT) 1929 goto out; 1930 if (ret) { 1931 /* was never and will never be overwritten */ 1932 ret = 0; 1933 goto out; 1934 } 1935 1936 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1937 NULL, NULL); 1938 if (ret < 0) 1939 goto out; 1940 1941 if (ow_inode == ino && gen == ino_gen) { 1942 ret = 0; 1943 goto out; 1944 } 1945 1946 /* 1947 * We know that it is or will be overwritten. Check this now. 1948 * The current inode being processed might have been the one that caused 1949 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1950 * the current inode being processed. 1951 */ 1952 if ((ow_inode < sctx->send_progress) || 1953 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1954 gen == sctx->cur_inode_gen)) 1955 ret = 1; 1956 else 1957 ret = 0; 1958 1959 out: 1960 return ret; 1961 } 1962 1963 /* 1964 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1965 * that got overwritten. This is used by process_recorded_refs to determine 1966 * if it has to use the path as returned by get_cur_path or the orphan name. 1967 */ 1968 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1969 { 1970 int ret = 0; 1971 struct fs_path *name = NULL; 1972 u64 dir; 1973 u64 dir_gen; 1974 1975 if (!sctx->parent_root) 1976 goto out; 1977 1978 name = fs_path_alloc(); 1979 if (!name) 1980 return -ENOMEM; 1981 1982 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1983 if (ret < 0) 1984 goto out; 1985 1986 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1987 name->start, fs_path_len(name)); 1988 1989 out: 1990 fs_path_free(name); 1991 return ret; 1992 } 1993 1994 /* 1995 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1996 * so we need to do some special handling in case we have clashes. This function 1997 * takes care of this with the help of name_cache_entry::radix_list. 1998 * In case of error, nce is kfreed. 1999 */ 2000 static int name_cache_insert(struct send_ctx *sctx, 2001 struct name_cache_entry *nce) 2002 { 2003 int ret = 0; 2004 struct list_head *nce_head; 2005 2006 nce_head = radix_tree_lookup(&sctx->name_cache, 2007 (unsigned long)nce->ino); 2008 if (!nce_head) { 2009 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2010 if (!nce_head) { 2011 kfree(nce); 2012 return -ENOMEM; 2013 } 2014 INIT_LIST_HEAD(nce_head); 2015 2016 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2017 if (ret < 0) { 2018 kfree(nce_head); 2019 kfree(nce); 2020 return ret; 2021 } 2022 } 2023 list_add_tail(&nce->radix_list, nce_head); 2024 list_add_tail(&nce->list, &sctx->name_cache_list); 2025 sctx->name_cache_size++; 2026 2027 return ret; 2028 } 2029 2030 static void name_cache_delete(struct send_ctx *sctx, 2031 struct name_cache_entry *nce) 2032 { 2033 struct list_head *nce_head; 2034 2035 nce_head = radix_tree_lookup(&sctx->name_cache, 2036 (unsigned long)nce->ino); 2037 if (!nce_head) { 2038 btrfs_err(sctx->send_root->fs_info, 2039 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2040 nce->ino, sctx->name_cache_size); 2041 } 2042 2043 list_del(&nce->radix_list); 2044 list_del(&nce->list); 2045 sctx->name_cache_size--; 2046 2047 /* 2048 * We may not get to the final release of nce_head if the lookup fails 2049 */ 2050 if (nce_head && list_empty(nce_head)) { 2051 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2052 kfree(nce_head); 2053 } 2054 } 2055 2056 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2057 u64 ino, u64 gen) 2058 { 2059 struct list_head *nce_head; 2060 struct name_cache_entry *cur; 2061 2062 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2063 if (!nce_head) 2064 return NULL; 2065 2066 list_for_each_entry(cur, nce_head, radix_list) { 2067 if (cur->ino == ino && cur->gen == gen) 2068 return cur; 2069 } 2070 return NULL; 2071 } 2072 2073 /* 2074 * Remove some entries from the beginning of name_cache_list. 2075 */ 2076 static void name_cache_clean_unused(struct send_ctx *sctx) 2077 { 2078 struct name_cache_entry *nce; 2079 2080 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2081 return; 2082 2083 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2084 nce = list_entry(sctx->name_cache_list.next, 2085 struct name_cache_entry, list); 2086 name_cache_delete(sctx, nce); 2087 kfree(nce); 2088 } 2089 } 2090 2091 static void name_cache_free(struct send_ctx *sctx) 2092 { 2093 struct name_cache_entry *nce; 2094 2095 while (!list_empty(&sctx->name_cache_list)) { 2096 nce = list_entry(sctx->name_cache_list.next, 2097 struct name_cache_entry, list); 2098 name_cache_delete(sctx, nce); 2099 kfree(nce); 2100 } 2101 } 2102 2103 /* 2104 * Used by get_cur_path for each ref up to the root. 2105 * Returns 0 if it succeeded. 2106 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2107 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2108 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2109 * Returns <0 in case of error. 2110 */ 2111 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2112 u64 ino, u64 gen, 2113 u64 *parent_ino, 2114 u64 *parent_gen, 2115 struct fs_path *dest) 2116 { 2117 int ret; 2118 int nce_ret; 2119 struct name_cache_entry *nce = NULL; 2120 2121 /* 2122 * First check if we already did a call to this function with the same 2123 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2124 * return the cached result. 2125 */ 2126 nce = name_cache_search(sctx, ino, gen); 2127 if (nce) { 2128 if (ino < sctx->send_progress && nce->need_later_update) { 2129 name_cache_delete(sctx, nce); 2130 kfree(nce); 2131 nce = NULL; 2132 } else { 2133 /* 2134 * Removes the entry from the list and adds it back to 2135 * the end. This marks the entry as recently used so 2136 * that name_cache_clean_unused does not remove it. 2137 */ 2138 list_move_tail(&nce->list, &sctx->name_cache_list); 2139 2140 *parent_ino = nce->parent_ino; 2141 *parent_gen = nce->parent_gen; 2142 ret = fs_path_add(dest, nce->name, nce->name_len); 2143 if (ret < 0) 2144 goto out; 2145 ret = nce->ret; 2146 goto out; 2147 } 2148 } 2149 2150 /* 2151 * If the inode is not existent yet, add the orphan name and return 1. 2152 * This should only happen for the parent dir that we determine in 2153 * __record_new_ref 2154 */ 2155 ret = is_inode_existent(sctx, ino, gen); 2156 if (ret < 0) 2157 goto out; 2158 2159 if (!ret) { 2160 ret = gen_unique_name(sctx, ino, gen, dest); 2161 if (ret < 0) 2162 goto out; 2163 ret = 1; 2164 goto out_cache; 2165 } 2166 2167 /* 2168 * Depending on whether the inode was already processed or not, use 2169 * send_root or parent_root for ref lookup. 2170 */ 2171 if (ino < sctx->send_progress) 2172 ret = get_first_ref(sctx->send_root, ino, 2173 parent_ino, parent_gen, dest); 2174 else 2175 ret = get_first_ref(sctx->parent_root, ino, 2176 parent_ino, parent_gen, dest); 2177 if (ret < 0) 2178 goto out; 2179 2180 /* 2181 * Check if the ref was overwritten by an inode's ref that was processed 2182 * earlier. If yes, treat as orphan and return 1. 2183 */ 2184 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2185 dest->start, dest->end - dest->start); 2186 if (ret < 0) 2187 goto out; 2188 if (ret) { 2189 fs_path_reset(dest); 2190 ret = gen_unique_name(sctx, ino, gen, dest); 2191 if (ret < 0) 2192 goto out; 2193 ret = 1; 2194 } 2195 2196 out_cache: 2197 /* 2198 * Store the result of the lookup in the name cache. 2199 */ 2200 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2201 if (!nce) { 2202 ret = -ENOMEM; 2203 goto out; 2204 } 2205 2206 nce->ino = ino; 2207 nce->gen = gen; 2208 nce->parent_ino = *parent_ino; 2209 nce->parent_gen = *parent_gen; 2210 nce->name_len = fs_path_len(dest); 2211 nce->ret = ret; 2212 strcpy(nce->name, dest->start); 2213 2214 if (ino < sctx->send_progress) 2215 nce->need_later_update = 0; 2216 else 2217 nce->need_later_update = 1; 2218 2219 nce_ret = name_cache_insert(sctx, nce); 2220 if (nce_ret < 0) 2221 ret = nce_ret; 2222 name_cache_clean_unused(sctx); 2223 2224 out: 2225 return ret; 2226 } 2227 2228 /* 2229 * Magic happens here. This function returns the first ref to an inode as it 2230 * would look like while receiving the stream at this point in time. 2231 * We walk the path up to the root. For every inode in between, we check if it 2232 * was already processed/sent. If yes, we continue with the parent as found 2233 * in send_root. If not, we continue with the parent as found in parent_root. 2234 * If we encounter an inode that was deleted at this point in time, we use the 2235 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2236 * that were not created yet and overwritten inodes/refs. 2237 * 2238 * When do we have orphan inodes: 2239 * 1. When an inode is freshly created and thus no valid refs are available yet 2240 * 2. When a directory lost all it's refs (deleted) but still has dir items 2241 * inside which were not processed yet (pending for move/delete). If anyone 2242 * tried to get the path to the dir items, it would get a path inside that 2243 * orphan directory. 2244 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2245 * of an unprocessed inode. If in that case the first ref would be 2246 * overwritten, the overwritten inode gets "orphanized". Later when we 2247 * process this overwritten inode, it is restored at a new place by moving 2248 * the orphan inode. 2249 * 2250 * sctx->send_progress tells this function at which point in time receiving 2251 * would be. 2252 */ 2253 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2254 struct fs_path *dest) 2255 { 2256 int ret = 0; 2257 struct fs_path *name = NULL; 2258 u64 parent_inode = 0; 2259 u64 parent_gen = 0; 2260 int stop = 0; 2261 2262 name = fs_path_alloc(); 2263 if (!name) { 2264 ret = -ENOMEM; 2265 goto out; 2266 } 2267 2268 dest->reversed = 1; 2269 fs_path_reset(dest); 2270 2271 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2272 struct waiting_dir_move *wdm; 2273 2274 fs_path_reset(name); 2275 2276 if (is_waiting_for_rm(sctx, ino, gen)) { 2277 ret = gen_unique_name(sctx, ino, gen, name); 2278 if (ret < 0) 2279 goto out; 2280 ret = fs_path_add_path(dest, name); 2281 break; 2282 } 2283 2284 wdm = get_waiting_dir_move(sctx, ino); 2285 if (wdm && wdm->orphanized) { 2286 ret = gen_unique_name(sctx, ino, gen, name); 2287 stop = 1; 2288 } else if (wdm) { 2289 ret = get_first_ref(sctx->parent_root, ino, 2290 &parent_inode, &parent_gen, name); 2291 } else { 2292 ret = __get_cur_name_and_parent(sctx, ino, gen, 2293 &parent_inode, 2294 &parent_gen, name); 2295 if (ret) 2296 stop = 1; 2297 } 2298 2299 if (ret < 0) 2300 goto out; 2301 2302 ret = fs_path_add_path(dest, name); 2303 if (ret < 0) 2304 goto out; 2305 2306 ino = parent_inode; 2307 gen = parent_gen; 2308 } 2309 2310 out: 2311 fs_path_free(name); 2312 if (!ret) 2313 fs_path_unreverse(dest); 2314 return ret; 2315 } 2316 2317 /* 2318 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2319 */ 2320 static int send_subvol_begin(struct send_ctx *sctx) 2321 { 2322 int ret; 2323 struct btrfs_root *send_root = sctx->send_root; 2324 struct btrfs_root *parent_root = sctx->parent_root; 2325 struct btrfs_path *path; 2326 struct btrfs_key key; 2327 struct btrfs_root_ref *ref; 2328 struct extent_buffer *leaf; 2329 char *name = NULL; 2330 int namelen; 2331 2332 path = btrfs_alloc_path(); 2333 if (!path) 2334 return -ENOMEM; 2335 2336 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2337 if (!name) { 2338 btrfs_free_path(path); 2339 return -ENOMEM; 2340 } 2341 2342 key.objectid = send_root->root_key.objectid; 2343 key.type = BTRFS_ROOT_BACKREF_KEY; 2344 key.offset = 0; 2345 2346 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2347 &key, path, 1, 0); 2348 if (ret < 0) 2349 goto out; 2350 if (ret) { 2351 ret = -ENOENT; 2352 goto out; 2353 } 2354 2355 leaf = path->nodes[0]; 2356 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2357 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2358 key.objectid != send_root->root_key.objectid) { 2359 ret = -ENOENT; 2360 goto out; 2361 } 2362 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2363 namelen = btrfs_root_ref_name_len(leaf, ref); 2364 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2365 btrfs_release_path(path); 2366 2367 if (parent_root) { 2368 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2369 if (ret < 0) 2370 goto out; 2371 } else { 2372 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2373 if (ret < 0) 2374 goto out; 2375 } 2376 2377 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2378 2379 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2380 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2381 sctx->send_root->root_item.received_uuid); 2382 else 2383 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2384 sctx->send_root->root_item.uuid); 2385 2386 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2387 btrfs_root_ctransid(&sctx->send_root->root_item)); 2388 if (parent_root) { 2389 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2391 parent_root->root_item.received_uuid); 2392 else 2393 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2394 parent_root->root_item.uuid); 2395 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2396 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2397 } 2398 2399 ret = send_cmd(sctx); 2400 2401 tlv_put_failure: 2402 out: 2403 btrfs_free_path(path); 2404 kfree(name); 2405 return ret; 2406 } 2407 2408 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2409 { 2410 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2411 int ret = 0; 2412 struct fs_path *p; 2413 2414 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2415 2416 p = fs_path_alloc(); 2417 if (!p) 2418 return -ENOMEM; 2419 2420 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2421 if (ret < 0) 2422 goto out; 2423 2424 ret = get_cur_path(sctx, ino, gen, p); 2425 if (ret < 0) 2426 goto out; 2427 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2428 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2429 2430 ret = send_cmd(sctx); 2431 2432 tlv_put_failure: 2433 out: 2434 fs_path_free(p); 2435 return ret; 2436 } 2437 2438 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2439 { 2440 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2441 int ret = 0; 2442 struct fs_path *p; 2443 2444 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2445 2446 p = fs_path_alloc(); 2447 if (!p) 2448 return -ENOMEM; 2449 2450 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2451 if (ret < 0) 2452 goto out; 2453 2454 ret = get_cur_path(sctx, ino, gen, p); 2455 if (ret < 0) 2456 goto out; 2457 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2458 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2459 2460 ret = send_cmd(sctx); 2461 2462 tlv_put_failure: 2463 out: 2464 fs_path_free(p); 2465 return ret; 2466 } 2467 2468 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2469 { 2470 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2471 int ret = 0; 2472 struct fs_path *p; 2473 2474 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2475 ino, uid, gid); 2476 2477 p = fs_path_alloc(); 2478 if (!p) 2479 return -ENOMEM; 2480 2481 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2482 if (ret < 0) 2483 goto out; 2484 2485 ret = get_cur_path(sctx, ino, gen, p); 2486 if (ret < 0) 2487 goto out; 2488 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2489 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2490 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2491 2492 ret = send_cmd(sctx); 2493 2494 tlv_put_failure: 2495 out: 2496 fs_path_free(p); 2497 return ret; 2498 } 2499 2500 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2501 { 2502 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2503 int ret = 0; 2504 struct fs_path *p = NULL; 2505 struct btrfs_inode_item *ii; 2506 struct btrfs_path *path = NULL; 2507 struct extent_buffer *eb; 2508 struct btrfs_key key; 2509 int slot; 2510 2511 btrfs_debug(fs_info, "send_utimes %llu", ino); 2512 2513 p = fs_path_alloc(); 2514 if (!p) 2515 return -ENOMEM; 2516 2517 path = alloc_path_for_send(); 2518 if (!path) { 2519 ret = -ENOMEM; 2520 goto out; 2521 } 2522 2523 key.objectid = ino; 2524 key.type = BTRFS_INODE_ITEM_KEY; 2525 key.offset = 0; 2526 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2527 if (ret > 0) 2528 ret = -ENOENT; 2529 if (ret < 0) 2530 goto out; 2531 2532 eb = path->nodes[0]; 2533 slot = path->slots[0]; 2534 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2535 2536 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2537 if (ret < 0) 2538 goto out; 2539 2540 ret = get_cur_path(sctx, ino, gen, p); 2541 if (ret < 0) 2542 goto out; 2543 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2544 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2545 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2546 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2547 /* TODO Add otime support when the otime patches get into upstream */ 2548 2549 ret = send_cmd(sctx); 2550 2551 tlv_put_failure: 2552 out: 2553 fs_path_free(p); 2554 btrfs_free_path(path); 2555 return ret; 2556 } 2557 2558 /* 2559 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2560 * a valid path yet because we did not process the refs yet. So, the inode 2561 * is created as orphan. 2562 */ 2563 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2564 { 2565 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2566 int ret = 0; 2567 struct fs_path *p; 2568 int cmd; 2569 u64 gen; 2570 u64 mode; 2571 u64 rdev; 2572 2573 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2574 2575 p = fs_path_alloc(); 2576 if (!p) 2577 return -ENOMEM; 2578 2579 if (ino != sctx->cur_ino) { 2580 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2581 NULL, NULL, &rdev); 2582 if (ret < 0) 2583 goto out; 2584 } else { 2585 gen = sctx->cur_inode_gen; 2586 mode = sctx->cur_inode_mode; 2587 rdev = sctx->cur_inode_rdev; 2588 } 2589 2590 if (S_ISREG(mode)) { 2591 cmd = BTRFS_SEND_C_MKFILE; 2592 } else if (S_ISDIR(mode)) { 2593 cmd = BTRFS_SEND_C_MKDIR; 2594 } else if (S_ISLNK(mode)) { 2595 cmd = BTRFS_SEND_C_SYMLINK; 2596 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2597 cmd = BTRFS_SEND_C_MKNOD; 2598 } else if (S_ISFIFO(mode)) { 2599 cmd = BTRFS_SEND_C_MKFIFO; 2600 } else if (S_ISSOCK(mode)) { 2601 cmd = BTRFS_SEND_C_MKSOCK; 2602 } else { 2603 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2604 (int)(mode & S_IFMT)); 2605 ret = -EOPNOTSUPP; 2606 goto out; 2607 } 2608 2609 ret = begin_cmd(sctx, cmd); 2610 if (ret < 0) 2611 goto out; 2612 2613 ret = gen_unique_name(sctx, ino, gen, p); 2614 if (ret < 0) 2615 goto out; 2616 2617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2618 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2619 2620 if (S_ISLNK(mode)) { 2621 fs_path_reset(p); 2622 ret = read_symlink(sctx->send_root, ino, p); 2623 if (ret < 0) 2624 goto out; 2625 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2626 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2627 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2628 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2629 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2630 } 2631 2632 ret = send_cmd(sctx); 2633 if (ret < 0) 2634 goto out; 2635 2636 2637 tlv_put_failure: 2638 out: 2639 fs_path_free(p); 2640 return ret; 2641 } 2642 2643 /* 2644 * We need some special handling for inodes that get processed before the parent 2645 * directory got created. See process_recorded_refs for details. 2646 * This function does the check if we already created the dir out of order. 2647 */ 2648 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2649 { 2650 int ret = 0; 2651 struct btrfs_path *path = NULL; 2652 struct btrfs_key key; 2653 struct btrfs_key found_key; 2654 struct btrfs_key di_key; 2655 struct extent_buffer *eb; 2656 struct btrfs_dir_item *di; 2657 int slot; 2658 2659 path = alloc_path_for_send(); 2660 if (!path) { 2661 ret = -ENOMEM; 2662 goto out; 2663 } 2664 2665 key.objectid = dir; 2666 key.type = BTRFS_DIR_INDEX_KEY; 2667 key.offset = 0; 2668 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2669 if (ret < 0) 2670 goto out; 2671 2672 while (1) { 2673 eb = path->nodes[0]; 2674 slot = path->slots[0]; 2675 if (slot >= btrfs_header_nritems(eb)) { 2676 ret = btrfs_next_leaf(sctx->send_root, path); 2677 if (ret < 0) { 2678 goto out; 2679 } else if (ret > 0) { 2680 ret = 0; 2681 break; 2682 } 2683 continue; 2684 } 2685 2686 btrfs_item_key_to_cpu(eb, &found_key, slot); 2687 if (found_key.objectid != key.objectid || 2688 found_key.type != key.type) { 2689 ret = 0; 2690 goto out; 2691 } 2692 2693 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2694 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2695 2696 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2697 di_key.objectid < sctx->send_progress) { 2698 ret = 1; 2699 goto out; 2700 } 2701 2702 path->slots[0]++; 2703 } 2704 2705 out: 2706 btrfs_free_path(path); 2707 return ret; 2708 } 2709 2710 /* 2711 * Only creates the inode if it is: 2712 * 1. Not a directory 2713 * 2. Or a directory which was not created already due to out of order 2714 * directories. See did_create_dir and process_recorded_refs for details. 2715 */ 2716 static int send_create_inode_if_needed(struct send_ctx *sctx) 2717 { 2718 int ret; 2719 2720 if (S_ISDIR(sctx->cur_inode_mode)) { 2721 ret = did_create_dir(sctx, sctx->cur_ino); 2722 if (ret < 0) 2723 goto out; 2724 if (ret) { 2725 ret = 0; 2726 goto out; 2727 } 2728 } 2729 2730 ret = send_create_inode(sctx, sctx->cur_ino); 2731 if (ret < 0) 2732 goto out; 2733 2734 out: 2735 return ret; 2736 } 2737 2738 struct recorded_ref { 2739 struct list_head list; 2740 char *name; 2741 struct fs_path *full_path; 2742 u64 dir; 2743 u64 dir_gen; 2744 int name_len; 2745 }; 2746 2747 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2748 { 2749 ref->full_path = path; 2750 ref->name = (char *)kbasename(ref->full_path->start); 2751 ref->name_len = ref->full_path->end - ref->name; 2752 } 2753 2754 /* 2755 * We need to process new refs before deleted refs, but compare_tree gives us 2756 * everything mixed. So we first record all refs and later process them. 2757 * This function is a helper to record one ref. 2758 */ 2759 static int __record_ref(struct list_head *head, u64 dir, 2760 u64 dir_gen, struct fs_path *path) 2761 { 2762 struct recorded_ref *ref; 2763 2764 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2765 if (!ref) 2766 return -ENOMEM; 2767 2768 ref->dir = dir; 2769 ref->dir_gen = dir_gen; 2770 set_ref_path(ref, path); 2771 list_add_tail(&ref->list, head); 2772 return 0; 2773 } 2774 2775 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2776 { 2777 struct recorded_ref *new; 2778 2779 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2780 if (!new) 2781 return -ENOMEM; 2782 2783 new->dir = ref->dir; 2784 new->dir_gen = ref->dir_gen; 2785 new->full_path = NULL; 2786 INIT_LIST_HEAD(&new->list); 2787 list_add_tail(&new->list, list); 2788 return 0; 2789 } 2790 2791 static void __free_recorded_refs(struct list_head *head) 2792 { 2793 struct recorded_ref *cur; 2794 2795 while (!list_empty(head)) { 2796 cur = list_entry(head->next, struct recorded_ref, list); 2797 fs_path_free(cur->full_path); 2798 list_del(&cur->list); 2799 kfree(cur); 2800 } 2801 } 2802 2803 static void free_recorded_refs(struct send_ctx *sctx) 2804 { 2805 __free_recorded_refs(&sctx->new_refs); 2806 __free_recorded_refs(&sctx->deleted_refs); 2807 } 2808 2809 /* 2810 * Renames/moves a file/dir to its orphan name. Used when the first 2811 * ref of an unprocessed inode gets overwritten and for all non empty 2812 * directories. 2813 */ 2814 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2815 struct fs_path *path) 2816 { 2817 int ret; 2818 struct fs_path *orphan; 2819 2820 orphan = fs_path_alloc(); 2821 if (!orphan) 2822 return -ENOMEM; 2823 2824 ret = gen_unique_name(sctx, ino, gen, orphan); 2825 if (ret < 0) 2826 goto out; 2827 2828 ret = send_rename(sctx, path, orphan); 2829 2830 out: 2831 fs_path_free(orphan); 2832 return ret; 2833 } 2834 2835 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2836 u64 dir_ino, u64 dir_gen) 2837 { 2838 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2839 struct rb_node *parent = NULL; 2840 struct orphan_dir_info *entry, *odi; 2841 2842 while (*p) { 2843 parent = *p; 2844 entry = rb_entry(parent, struct orphan_dir_info, node); 2845 if (dir_ino < entry->ino) 2846 p = &(*p)->rb_left; 2847 else if (dir_ino > entry->ino) 2848 p = &(*p)->rb_right; 2849 else if (dir_gen < entry->gen) 2850 p = &(*p)->rb_left; 2851 else if (dir_gen > entry->gen) 2852 p = &(*p)->rb_right; 2853 else 2854 return entry; 2855 } 2856 2857 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2858 if (!odi) 2859 return ERR_PTR(-ENOMEM); 2860 odi->ino = dir_ino; 2861 odi->gen = dir_gen; 2862 odi->last_dir_index_offset = 0; 2863 2864 rb_link_node(&odi->node, parent, p); 2865 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2866 return odi; 2867 } 2868 2869 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2870 u64 dir_ino, u64 gen) 2871 { 2872 struct rb_node *n = sctx->orphan_dirs.rb_node; 2873 struct orphan_dir_info *entry; 2874 2875 while (n) { 2876 entry = rb_entry(n, struct orphan_dir_info, node); 2877 if (dir_ino < entry->ino) 2878 n = n->rb_left; 2879 else if (dir_ino > entry->ino) 2880 n = n->rb_right; 2881 else if (gen < entry->gen) 2882 n = n->rb_left; 2883 else if (gen > entry->gen) 2884 n = n->rb_right; 2885 else 2886 return entry; 2887 } 2888 return NULL; 2889 } 2890 2891 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2892 { 2893 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2894 2895 return odi != NULL; 2896 } 2897 2898 static void free_orphan_dir_info(struct send_ctx *sctx, 2899 struct orphan_dir_info *odi) 2900 { 2901 if (!odi) 2902 return; 2903 rb_erase(&odi->node, &sctx->orphan_dirs); 2904 kfree(odi); 2905 } 2906 2907 /* 2908 * Returns 1 if a directory can be removed at this point in time. 2909 * We check this by iterating all dir items and checking if the inode behind 2910 * the dir item was already processed. 2911 */ 2912 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2913 u64 send_progress) 2914 { 2915 int ret = 0; 2916 struct btrfs_root *root = sctx->parent_root; 2917 struct btrfs_path *path; 2918 struct btrfs_key key; 2919 struct btrfs_key found_key; 2920 struct btrfs_key loc; 2921 struct btrfs_dir_item *di; 2922 struct orphan_dir_info *odi = NULL; 2923 2924 /* 2925 * Don't try to rmdir the top/root subvolume dir. 2926 */ 2927 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2928 return 0; 2929 2930 path = alloc_path_for_send(); 2931 if (!path) 2932 return -ENOMEM; 2933 2934 key.objectid = dir; 2935 key.type = BTRFS_DIR_INDEX_KEY; 2936 key.offset = 0; 2937 2938 odi = get_orphan_dir_info(sctx, dir, dir_gen); 2939 if (odi) 2940 key.offset = odi->last_dir_index_offset; 2941 2942 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2943 if (ret < 0) 2944 goto out; 2945 2946 while (1) { 2947 struct waiting_dir_move *dm; 2948 2949 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2950 ret = btrfs_next_leaf(root, path); 2951 if (ret < 0) 2952 goto out; 2953 else if (ret > 0) 2954 break; 2955 continue; 2956 } 2957 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2958 path->slots[0]); 2959 if (found_key.objectid != key.objectid || 2960 found_key.type != key.type) 2961 break; 2962 2963 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2964 struct btrfs_dir_item); 2965 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2966 2967 dm = get_waiting_dir_move(sctx, loc.objectid); 2968 if (dm) { 2969 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2970 if (IS_ERR(odi)) { 2971 ret = PTR_ERR(odi); 2972 goto out; 2973 } 2974 odi->gen = dir_gen; 2975 odi->last_dir_index_offset = found_key.offset; 2976 dm->rmdir_ino = dir; 2977 dm->rmdir_gen = dir_gen; 2978 ret = 0; 2979 goto out; 2980 } 2981 2982 if (loc.objectid > send_progress) { 2983 odi = add_orphan_dir_info(sctx, dir, dir_gen); 2984 if (IS_ERR(odi)) { 2985 ret = PTR_ERR(odi); 2986 goto out; 2987 } 2988 odi->gen = dir_gen; 2989 odi->last_dir_index_offset = found_key.offset; 2990 ret = 0; 2991 goto out; 2992 } 2993 2994 path->slots[0]++; 2995 } 2996 free_orphan_dir_info(sctx, odi); 2997 2998 ret = 1; 2999 3000 out: 3001 btrfs_free_path(path); 3002 return ret; 3003 } 3004 3005 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3006 { 3007 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3008 3009 return entry != NULL; 3010 } 3011 3012 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3013 { 3014 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3015 struct rb_node *parent = NULL; 3016 struct waiting_dir_move *entry, *dm; 3017 3018 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3019 if (!dm) 3020 return -ENOMEM; 3021 dm->ino = ino; 3022 dm->rmdir_ino = 0; 3023 dm->rmdir_gen = 0; 3024 dm->orphanized = orphanized; 3025 3026 while (*p) { 3027 parent = *p; 3028 entry = rb_entry(parent, struct waiting_dir_move, node); 3029 if (ino < entry->ino) { 3030 p = &(*p)->rb_left; 3031 } else if (ino > entry->ino) { 3032 p = &(*p)->rb_right; 3033 } else { 3034 kfree(dm); 3035 return -EEXIST; 3036 } 3037 } 3038 3039 rb_link_node(&dm->node, parent, p); 3040 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3041 return 0; 3042 } 3043 3044 static struct waiting_dir_move * 3045 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3046 { 3047 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3048 struct waiting_dir_move *entry; 3049 3050 while (n) { 3051 entry = rb_entry(n, struct waiting_dir_move, node); 3052 if (ino < entry->ino) 3053 n = n->rb_left; 3054 else if (ino > entry->ino) 3055 n = n->rb_right; 3056 else 3057 return entry; 3058 } 3059 return NULL; 3060 } 3061 3062 static void free_waiting_dir_move(struct send_ctx *sctx, 3063 struct waiting_dir_move *dm) 3064 { 3065 if (!dm) 3066 return; 3067 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3068 kfree(dm); 3069 } 3070 3071 static int add_pending_dir_move(struct send_ctx *sctx, 3072 u64 ino, 3073 u64 ino_gen, 3074 u64 parent_ino, 3075 struct list_head *new_refs, 3076 struct list_head *deleted_refs, 3077 const bool is_orphan) 3078 { 3079 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3080 struct rb_node *parent = NULL; 3081 struct pending_dir_move *entry = NULL, *pm; 3082 struct recorded_ref *cur; 3083 int exists = 0; 3084 int ret; 3085 3086 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3087 if (!pm) 3088 return -ENOMEM; 3089 pm->parent_ino = parent_ino; 3090 pm->ino = ino; 3091 pm->gen = ino_gen; 3092 INIT_LIST_HEAD(&pm->list); 3093 INIT_LIST_HEAD(&pm->update_refs); 3094 RB_CLEAR_NODE(&pm->node); 3095 3096 while (*p) { 3097 parent = *p; 3098 entry = rb_entry(parent, struct pending_dir_move, node); 3099 if (parent_ino < entry->parent_ino) { 3100 p = &(*p)->rb_left; 3101 } else if (parent_ino > entry->parent_ino) { 3102 p = &(*p)->rb_right; 3103 } else { 3104 exists = 1; 3105 break; 3106 } 3107 } 3108 3109 list_for_each_entry(cur, deleted_refs, list) { 3110 ret = dup_ref(cur, &pm->update_refs); 3111 if (ret < 0) 3112 goto out; 3113 } 3114 list_for_each_entry(cur, new_refs, list) { 3115 ret = dup_ref(cur, &pm->update_refs); 3116 if (ret < 0) 3117 goto out; 3118 } 3119 3120 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3121 if (ret) 3122 goto out; 3123 3124 if (exists) { 3125 list_add_tail(&pm->list, &entry->list); 3126 } else { 3127 rb_link_node(&pm->node, parent, p); 3128 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3129 } 3130 ret = 0; 3131 out: 3132 if (ret) { 3133 __free_recorded_refs(&pm->update_refs); 3134 kfree(pm); 3135 } 3136 return ret; 3137 } 3138 3139 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3140 u64 parent_ino) 3141 { 3142 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3143 struct pending_dir_move *entry; 3144 3145 while (n) { 3146 entry = rb_entry(n, struct pending_dir_move, node); 3147 if (parent_ino < entry->parent_ino) 3148 n = n->rb_left; 3149 else if (parent_ino > entry->parent_ino) 3150 n = n->rb_right; 3151 else 3152 return entry; 3153 } 3154 return NULL; 3155 } 3156 3157 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3158 u64 ino, u64 gen, u64 *ancestor_ino) 3159 { 3160 int ret = 0; 3161 u64 parent_inode = 0; 3162 u64 parent_gen = 0; 3163 u64 start_ino = ino; 3164 3165 *ancestor_ino = 0; 3166 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3167 fs_path_reset(name); 3168 3169 if (is_waiting_for_rm(sctx, ino, gen)) 3170 break; 3171 if (is_waiting_for_move(sctx, ino)) { 3172 if (*ancestor_ino == 0) 3173 *ancestor_ino = ino; 3174 ret = get_first_ref(sctx->parent_root, ino, 3175 &parent_inode, &parent_gen, name); 3176 } else { 3177 ret = __get_cur_name_and_parent(sctx, ino, gen, 3178 &parent_inode, 3179 &parent_gen, name); 3180 if (ret > 0) { 3181 ret = 0; 3182 break; 3183 } 3184 } 3185 if (ret < 0) 3186 break; 3187 if (parent_inode == start_ino) { 3188 ret = 1; 3189 if (*ancestor_ino == 0) 3190 *ancestor_ino = ino; 3191 break; 3192 } 3193 ino = parent_inode; 3194 gen = parent_gen; 3195 } 3196 return ret; 3197 } 3198 3199 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3200 { 3201 struct fs_path *from_path = NULL; 3202 struct fs_path *to_path = NULL; 3203 struct fs_path *name = NULL; 3204 u64 orig_progress = sctx->send_progress; 3205 struct recorded_ref *cur; 3206 u64 parent_ino, parent_gen; 3207 struct waiting_dir_move *dm = NULL; 3208 u64 rmdir_ino = 0; 3209 u64 rmdir_gen; 3210 u64 ancestor; 3211 bool is_orphan; 3212 int ret; 3213 3214 name = fs_path_alloc(); 3215 from_path = fs_path_alloc(); 3216 if (!name || !from_path) { 3217 ret = -ENOMEM; 3218 goto out; 3219 } 3220 3221 dm = get_waiting_dir_move(sctx, pm->ino); 3222 ASSERT(dm); 3223 rmdir_ino = dm->rmdir_ino; 3224 rmdir_gen = dm->rmdir_gen; 3225 is_orphan = dm->orphanized; 3226 free_waiting_dir_move(sctx, dm); 3227 3228 if (is_orphan) { 3229 ret = gen_unique_name(sctx, pm->ino, 3230 pm->gen, from_path); 3231 } else { 3232 ret = get_first_ref(sctx->parent_root, pm->ino, 3233 &parent_ino, &parent_gen, name); 3234 if (ret < 0) 3235 goto out; 3236 ret = get_cur_path(sctx, parent_ino, parent_gen, 3237 from_path); 3238 if (ret < 0) 3239 goto out; 3240 ret = fs_path_add_path(from_path, name); 3241 } 3242 if (ret < 0) 3243 goto out; 3244 3245 sctx->send_progress = sctx->cur_ino + 1; 3246 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3247 if (ret < 0) 3248 goto out; 3249 if (ret) { 3250 LIST_HEAD(deleted_refs); 3251 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3252 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3253 &pm->update_refs, &deleted_refs, 3254 is_orphan); 3255 if (ret < 0) 3256 goto out; 3257 if (rmdir_ino) { 3258 dm = get_waiting_dir_move(sctx, pm->ino); 3259 ASSERT(dm); 3260 dm->rmdir_ino = rmdir_ino; 3261 dm->rmdir_gen = rmdir_gen; 3262 } 3263 goto out; 3264 } 3265 fs_path_reset(name); 3266 to_path = name; 3267 name = NULL; 3268 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3269 if (ret < 0) 3270 goto out; 3271 3272 ret = send_rename(sctx, from_path, to_path); 3273 if (ret < 0) 3274 goto out; 3275 3276 if (rmdir_ino) { 3277 struct orphan_dir_info *odi; 3278 u64 gen; 3279 3280 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3281 if (!odi) { 3282 /* already deleted */ 3283 goto finish; 3284 } 3285 gen = odi->gen; 3286 3287 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3288 if (ret < 0) 3289 goto out; 3290 if (!ret) 3291 goto finish; 3292 3293 name = fs_path_alloc(); 3294 if (!name) { 3295 ret = -ENOMEM; 3296 goto out; 3297 } 3298 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3299 if (ret < 0) 3300 goto out; 3301 ret = send_rmdir(sctx, name); 3302 if (ret < 0) 3303 goto out; 3304 } 3305 3306 finish: 3307 ret = send_utimes(sctx, pm->ino, pm->gen); 3308 if (ret < 0) 3309 goto out; 3310 3311 /* 3312 * After rename/move, need to update the utimes of both new parent(s) 3313 * and old parent(s). 3314 */ 3315 list_for_each_entry(cur, &pm->update_refs, list) { 3316 /* 3317 * The parent inode might have been deleted in the send snapshot 3318 */ 3319 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3320 NULL, NULL, NULL, NULL, NULL); 3321 if (ret == -ENOENT) { 3322 ret = 0; 3323 continue; 3324 } 3325 if (ret < 0) 3326 goto out; 3327 3328 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3329 if (ret < 0) 3330 goto out; 3331 } 3332 3333 out: 3334 fs_path_free(name); 3335 fs_path_free(from_path); 3336 fs_path_free(to_path); 3337 sctx->send_progress = orig_progress; 3338 3339 return ret; 3340 } 3341 3342 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3343 { 3344 if (!list_empty(&m->list)) 3345 list_del(&m->list); 3346 if (!RB_EMPTY_NODE(&m->node)) 3347 rb_erase(&m->node, &sctx->pending_dir_moves); 3348 __free_recorded_refs(&m->update_refs); 3349 kfree(m); 3350 } 3351 3352 static void tail_append_pending_moves(struct send_ctx *sctx, 3353 struct pending_dir_move *moves, 3354 struct list_head *stack) 3355 { 3356 if (list_empty(&moves->list)) { 3357 list_add_tail(&moves->list, stack); 3358 } else { 3359 LIST_HEAD(list); 3360 list_splice_init(&moves->list, &list); 3361 list_add_tail(&moves->list, stack); 3362 list_splice_tail(&list, stack); 3363 } 3364 if (!RB_EMPTY_NODE(&moves->node)) { 3365 rb_erase(&moves->node, &sctx->pending_dir_moves); 3366 RB_CLEAR_NODE(&moves->node); 3367 } 3368 } 3369 3370 static int apply_children_dir_moves(struct send_ctx *sctx) 3371 { 3372 struct pending_dir_move *pm; 3373 struct list_head stack; 3374 u64 parent_ino = sctx->cur_ino; 3375 int ret = 0; 3376 3377 pm = get_pending_dir_moves(sctx, parent_ino); 3378 if (!pm) 3379 return 0; 3380 3381 INIT_LIST_HEAD(&stack); 3382 tail_append_pending_moves(sctx, pm, &stack); 3383 3384 while (!list_empty(&stack)) { 3385 pm = list_first_entry(&stack, struct pending_dir_move, list); 3386 parent_ino = pm->ino; 3387 ret = apply_dir_move(sctx, pm); 3388 free_pending_move(sctx, pm); 3389 if (ret) 3390 goto out; 3391 pm = get_pending_dir_moves(sctx, parent_ino); 3392 if (pm) 3393 tail_append_pending_moves(sctx, pm, &stack); 3394 } 3395 return 0; 3396 3397 out: 3398 while (!list_empty(&stack)) { 3399 pm = list_first_entry(&stack, struct pending_dir_move, list); 3400 free_pending_move(sctx, pm); 3401 } 3402 return ret; 3403 } 3404 3405 /* 3406 * We might need to delay a directory rename even when no ancestor directory 3407 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3408 * renamed. This happens when we rename a directory to the old name (the name 3409 * in the parent root) of some other unrelated directory that got its rename 3410 * delayed due to some ancestor with higher number that got renamed. 3411 * 3412 * Example: 3413 * 3414 * Parent snapshot: 3415 * . (ino 256) 3416 * |---- a/ (ino 257) 3417 * | |---- file (ino 260) 3418 * | 3419 * |---- b/ (ino 258) 3420 * |---- c/ (ino 259) 3421 * 3422 * Send snapshot: 3423 * . (ino 256) 3424 * |---- a/ (ino 258) 3425 * |---- x/ (ino 259) 3426 * |---- y/ (ino 257) 3427 * |----- file (ino 260) 3428 * 3429 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3430 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3431 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3432 * must issue is: 3433 * 3434 * 1 - rename 259 from 'c' to 'x' 3435 * 2 - rename 257 from 'a' to 'x/y' 3436 * 3 - rename 258 from 'b' to 'a' 3437 * 3438 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3439 * be done right away and < 0 on error. 3440 */ 3441 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3442 struct recorded_ref *parent_ref, 3443 const bool is_orphan) 3444 { 3445 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3446 struct btrfs_path *path; 3447 struct btrfs_key key; 3448 struct btrfs_key di_key; 3449 struct btrfs_dir_item *di; 3450 u64 left_gen; 3451 u64 right_gen; 3452 int ret = 0; 3453 struct waiting_dir_move *wdm; 3454 3455 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3456 return 0; 3457 3458 path = alloc_path_for_send(); 3459 if (!path) 3460 return -ENOMEM; 3461 3462 key.objectid = parent_ref->dir; 3463 key.type = BTRFS_DIR_ITEM_KEY; 3464 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3465 3466 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3467 if (ret < 0) { 3468 goto out; 3469 } else if (ret > 0) { 3470 ret = 0; 3471 goto out; 3472 } 3473 3474 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3475 parent_ref->name_len); 3476 if (!di) { 3477 ret = 0; 3478 goto out; 3479 } 3480 /* 3481 * di_key.objectid has the number of the inode that has a dentry in the 3482 * parent directory with the same name that sctx->cur_ino is being 3483 * renamed to. We need to check if that inode is in the send root as 3484 * well and if it is currently marked as an inode with a pending rename, 3485 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3486 * that it happens after that other inode is renamed. 3487 */ 3488 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3489 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3490 ret = 0; 3491 goto out; 3492 } 3493 3494 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3495 &left_gen, NULL, NULL, NULL, NULL); 3496 if (ret < 0) 3497 goto out; 3498 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3499 &right_gen, NULL, NULL, NULL, NULL); 3500 if (ret < 0) { 3501 if (ret == -ENOENT) 3502 ret = 0; 3503 goto out; 3504 } 3505 3506 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3507 if (right_gen != left_gen) { 3508 ret = 0; 3509 goto out; 3510 } 3511 3512 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3513 if (wdm && !wdm->orphanized) { 3514 ret = add_pending_dir_move(sctx, 3515 sctx->cur_ino, 3516 sctx->cur_inode_gen, 3517 di_key.objectid, 3518 &sctx->new_refs, 3519 &sctx->deleted_refs, 3520 is_orphan); 3521 if (!ret) 3522 ret = 1; 3523 } 3524 out: 3525 btrfs_free_path(path); 3526 return ret; 3527 } 3528 3529 /* 3530 * Check if inode ino2, or any of its ancestors, is inode ino1. 3531 * Return 1 if true, 0 if false and < 0 on error. 3532 */ 3533 static int check_ino_in_path(struct btrfs_root *root, 3534 const u64 ino1, 3535 const u64 ino1_gen, 3536 const u64 ino2, 3537 const u64 ino2_gen, 3538 struct fs_path *fs_path) 3539 { 3540 u64 ino = ino2; 3541 3542 if (ino1 == ino2) 3543 return ino1_gen == ino2_gen; 3544 3545 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3546 u64 parent; 3547 u64 parent_gen; 3548 int ret; 3549 3550 fs_path_reset(fs_path); 3551 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3552 if (ret < 0) 3553 return ret; 3554 if (parent == ino1) 3555 return parent_gen == ino1_gen; 3556 ino = parent; 3557 } 3558 return 0; 3559 } 3560 3561 /* 3562 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3563 * possible path (in case ino2 is not a directory and has multiple hard links). 3564 * Return 1 if true, 0 if false and < 0 on error. 3565 */ 3566 static int is_ancestor(struct btrfs_root *root, 3567 const u64 ino1, 3568 const u64 ino1_gen, 3569 const u64 ino2, 3570 struct fs_path *fs_path) 3571 { 3572 bool free_fs_path = false; 3573 int ret = 0; 3574 struct btrfs_path *path = NULL; 3575 struct btrfs_key key; 3576 3577 if (!fs_path) { 3578 fs_path = fs_path_alloc(); 3579 if (!fs_path) 3580 return -ENOMEM; 3581 free_fs_path = true; 3582 } 3583 3584 path = alloc_path_for_send(); 3585 if (!path) { 3586 ret = -ENOMEM; 3587 goto out; 3588 } 3589 3590 key.objectid = ino2; 3591 key.type = BTRFS_INODE_REF_KEY; 3592 key.offset = 0; 3593 3594 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3595 if (ret < 0) 3596 goto out; 3597 3598 while (true) { 3599 struct extent_buffer *leaf = path->nodes[0]; 3600 int slot = path->slots[0]; 3601 u32 cur_offset = 0; 3602 u32 item_size; 3603 3604 if (slot >= btrfs_header_nritems(leaf)) { 3605 ret = btrfs_next_leaf(root, path); 3606 if (ret < 0) 3607 goto out; 3608 if (ret > 0) 3609 break; 3610 continue; 3611 } 3612 3613 btrfs_item_key_to_cpu(leaf, &key, slot); 3614 if (key.objectid != ino2) 3615 break; 3616 if (key.type != BTRFS_INODE_REF_KEY && 3617 key.type != BTRFS_INODE_EXTREF_KEY) 3618 break; 3619 3620 item_size = btrfs_item_size_nr(leaf, slot); 3621 while (cur_offset < item_size) { 3622 u64 parent; 3623 u64 parent_gen; 3624 3625 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3626 unsigned long ptr; 3627 struct btrfs_inode_extref *extref; 3628 3629 ptr = btrfs_item_ptr_offset(leaf, slot); 3630 extref = (struct btrfs_inode_extref *) 3631 (ptr + cur_offset); 3632 parent = btrfs_inode_extref_parent(leaf, 3633 extref); 3634 cur_offset += sizeof(*extref); 3635 cur_offset += btrfs_inode_extref_name_len(leaf, 3636 extref); 3637 } else { 3638 parent = key.offset; 3639 cur_offset = item_size; 3640 } 3641 3642 ret = get_inode_info(root, parent, NULL, &parent_gen, 3643 NULL, NULL, NULL, NULL); 3644 if (ret < 0) 3645 goto out; 3646 ret = check_ino_in_path(root, ino1, ino1_gen, 3647 parent, parent_gen, fs_path); 3648 if (ret) 3649 goto out; 3650 } 3651 path->slots[0]++; 3652 } 3653 ret = 0; 3654 out: 3655 btrfs_free_path(path); 3656 if (free_fs_path) 3657 fs_path_free(fs_path); 3658 return ret; 3659 } 3660 3661 static int wait_for_parent_move(struct send_ctx *sctx, 3662 struct recorded_ref *parent_ref, 3663 const bool is_orphan) 3664 { 3665 int ret = 0; 3666 u64 ino = parent_ref->dir; 3667 u64 ino_gen = parent_ref->dir_gen; 3668 u64 parent_ino_before, parent_ino_after; 3669 struct fs_path *path_before = NULL; 3670 struct fs_path *path_after = NULL; 3671 int len1, len2; 3672 3673 path_after = fs_path_alloc(); 3674 path_before = fs_path_alloc(); 3675 if (!path_after || !path_before) { 3676 ret = -ENOMEM; 3677 goto out; 3678 } 3679 3680 /* 3681 * Our current directory inode may not yet be renamed/moved because some 3682 * ancestor (immediate or not) has to be renamed/moved first. So find if 3683 * such ancestor exists and make sure our own rename/move happens after 3684 * that ancestor is processed to avoid path build infinite loops (done 3685 * at get_cur_path()). 3686 */ 3687 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3688 u64 parent_ino_after_gen; 3689 3690 if (is_waiting_for_move(sctx, ino)) { 3691 /* 3692 * If the current inode is an ancestor of ino in the 3693 * parent root, we need to delay the rename of the 3694 * current inode, otherwise don't delayed the rename 3695 * because we can end up with a circular dependency 3696 * of renames, resulting in some directories never 3697 * getting the respective rename operations issued in 3698 * the send stream or getting into infinite path build 3699 * loops. 3700 */ 3701 ret = is_ancestor(sctx->parent_root, 3702 sctx->cur_ino, sctx->cur_inode_gen, 3703 ino, path_before); 3704 if (ret) 3705 break; 3706 } 3707 3708 fs_path_reset(path_before); 3709 fs_path_reset(path_after); 3710 3711 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3712 &parent_ino_after_gen, path_after); 3713 if (ret < 0) 3714 goto out; 3715 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3716 NULL, path_before); 3717 if (ret < 0 && ret != -ENOENT) { 3718 goto out; 3719 } else if (ret == -ENOENT) { 3720 ret = 0; 3721 break; 3722 } 3723 3724 len1 = fs_path_len(path_before); 3725 len2 = fs_path_len(path_after); 3726 if (ino > sctx->cur_ino && 3727 (parent_ino_before != parent_ino_after || len1 != len2 || 3728 memcmp(path_before->start, path_after->start, len1))) { 3729 u64 parent_ino_gen; 3730 3731 ret = get_inode_info(sctx->parent_root, ino, NULL, 3732 &parent_ino_gen, NULL, NULL, NULL, 3733 NULL); 3734 if (ret < 0) 3735 goto out; 3736 if (ino_gen == parent_ino_gen) { 3737 ret = 1; 3738 break; 3739 } 3740 } 3741 ino = parent_ino_after; 3742 ino_gen = parent_ino_after_gen; 3743 } 3744 3745 out: 3746 fs_path_free(path_before); 3747 fs_path_free(path_after); 3748 3749 if (ret == 1) { 3750 ret = add_pending_dir_move(sctx, 3751 sctx->cur_ino, 3752 sctx->cur_inode_gen, 3753 ino, 3754 &sctx->new_refs, 3755 &sctx->deleted_refs, 3756 is_orphan); 3757 if (!ret) 3758 ret = 1; 3759 } 3760 3761 return ret; 3762 } 3763 3764 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3765 { 3766 int ret; 3767 struct fs_path *new_path; 3768 3769 /* 3770 * Our reference's name member points to its full_path member string, so 3771 * we use here a new path. 3772 */ 3773 new_path = fs_path_alloc(); 3774 if (!new_path) 3775 return -ENOMEM; 3776 3777 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3778 if (ret < 0) { 3779 fs_path_free(new_path); 3780 return ret; 3781 } 3782 ret = fs_path_add(new_path, ref->name, ref->name_len); 3783 if (ret < 0) { 3784 fs_path_free(new_path); 3785 return ret; 3786 } 3787 3788 fs_path_free(ref->full_path); 3789 set_ref_path(ref, new_path); 3790 3791 return 0; 3792 } 3793 3794 /* 3795 * When processing the new references for an inode we may orphanize an existing 3796 * directory inode because its old name conflicts with one of the new references 3797 * of the current inode. Later, when processing another new reference of our 3798 * inode, we might need to orphanize another inode, but the path we have in the 3799 * reference reflects the pre-orphanization name of the directory we previously 3800 * orphanized. For example: 3801 * 3802 * parent snapshot looks like: 3803 * 3804 * . (ino 256) 3805 * |----- f1 (ino 257) 3806 * |----- f2 (ino 258) 3807 * |----- d1/ (ino 259) 3808 * |----- d2/ (ino 260) 3809 * 3810 * send snapshot looks like: 3811 * 3812 * . (ino 256) 3813 * |----- d1 (ino 258) 3814 * |----- f2/ (ino 259) 3815 * |----- f2_link/ (ino 260) 3816 * | |----- f1 (ino 257) 3817 * | 3818 * |----- d2 (ino 258) 3819 * 3820 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3821 * cache it in the name cache. Later when we start processing inode 258, when 3822 * collecting all its new references we set a full path of "d1/d2" for its new 3823 * reference with name "d2". When we start processing the new references we 3824 * start by processing the new reference with name "d1", and this results in 3825 * orphanizing inode 259, since its old reference causes a conflict. Then we 3826 * move on the next new reference, with name "d2", and we find out we must 3827 * orphanize inode 260, as its old reference conflicts with ours - but for the 3828 * orphanization we use a source path corresponding to the path we stored in the 3829 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3830 * receiver fail since the path component "d1/" no longer exists, it was renamed 3831 * to "o259-6-0/" when processing the previous new reference. So in this case we 3832 * must recompute the path in the new reference and use it for the new 3833 * orphanization operation. 3834 */ 3835 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3836 { 3837 char *name; 3838 int ret; 3839 3840 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3841 if (!name) 3842 return -ENOMEM; 3843 3844 fs_path_reset(ref->full_path); 3845 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3846 if (ret < 0) 3847 goto out; 3848 3849 ret = fs_path_add(ref->full_path, name, ref->name_len); 3850 if (ret < 0) 3851 goto out; 3852 3853 /* Update the reference's base name pointer. */ 3854 set_ref_path(ref, ref->full_path); 3855 out: 3856 kfree(name); 3857 return ret; 3858 } 3859 3860 /* 3861 * This does all the move/link/unlink/rmdir magic. 3862 */ 3863 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3864 { 3865 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3866 int ret = 0; 3867 struct recorded_ref *cur; 3868 struct recorded_ref *cur2; 3869 struct list_head check_dirs; 3870 struct fs_path *valid_path = NULL; 3871 u64 ow_inode = 0; 3872 u64 ow_gen; 3873 u64 ow_mode; 3874 int did_overwrite = 0; 3875 int is_orphan = 0; 3876 u64 last_dir_ino_rm = 0; 3877 bool can_rename = true; 3878 bool orphanized_dir = false; 3879 bool orphanized_ancestor = false; 3880 3881 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3882 3883 /* 3884 * This should never happen as the root dir always has the same ref 3885 * which is always '..' 3886 */ 3887 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3888 INIT_LIST_HEAD(&check_dirs); 3889 3890 valid_path = fs_path_alloc(); 3891 if (!valid_path) { 3892 ret = -ENOMEM; 3893 goto out; 3894 } 3895 3896 /* 3897 * First, check if the first ref of the current inode was overwritten 3898 * before. If yes, we know that the current inode was already orphanized 3899 * and thus use the orphan name. If not, we can use get_cur_path to 3900 * get the path of the first ref as it would like while receiving at 3901 * this point in time. 3902 * New inodes are always orphan at the beginning, so force to use the 3903 * orphan name in this case. 3904 * The first ref is stored in valid_path and will be updated if it 3905 * gets moved around. 3906 */ 3907 if (!sctx->cur_inode_new) { 3908 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3909 sctx->cur_inode_gen); 3910 if (ret < 0) 3911 goto out; 3912 if (ret) 3913 did_overwrite = 1; 3914 } 3915 if (sctx->cur_inode_new || did_overwrite) { 3916 ret = gen_unique_name(sctx, sctx->cur_ino, 3917 sctx->cur_inode_gen, valid_path); 3918 if (ret < 0) 3919 goto out; 3920 is_orphan = 1; 3921 } else { 3922 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3923 valid_path); 3924 if (ret < 0) 3925 goto out; 3926 } 3927 3928 /* 3929 * Before doing any rename and link operations, do a first pass on the 3930 * new references to orphanize any unprocessed inodes that may have a 3931 * reference that conflicts with one of the new references of the current 3932 * inode. This needs to happen first because a new reference may conflict 3933 * with the old reference of a parent directory, so we must make sure 3934 * that the path used for link and rename commands don't use an 3935 * orphanized name when an ancestor was not yet orphanized. 3936 * 3937 * Example: 3938 * 3939 * Parent snapshot: 3940 * 3941 * . (ino 256) 3942 * |----- testdir/ (ino 259) 3943 * | |----- a (ino 257) 3944 * | 3945 * |----- b (ino 258) 3946 * 3947 * Send snapshot: 3948 * 3949 * . (ino 256) 3950 * |----- testdir_2/ (ino 259) 3951 * | |----- a (ino 260) 3952 * | 3953 * |----- testdir (ino 257) 3954 * |----- b (ino 257) 3955 * |----- b2 (ino 258) 3956 * 3957 * Processing the new reference for inode 257 with name "b" may happen 3958 * before processing the new reference with name "testdir". If so, we 3959 * must make sure that by the time we send a link command to create the 3960 * hard link "b", inode 259 was already orphanized, since the generated 3961 * path in "valid_path" already contains the orphanized name for 259. 3962 * We are processing inode 257, so only later when processing 259 we do 3963 * the rename operation to change its temporary (orphanized) name to 3964 * "testdir_2". 3965 */ 3966 list_for_each_entry(cur, &sctx->new_refs, list) { 3967 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3968 if (ret < 0) 3969 goto out; 3970 if (ret == inode_state_will_create) 3971 continue; 3972 3973 /* 3974 * Check if this new ref would overwrite the first ref of another 3975 * unprocessed inode. If yes, orphanize the overwritten inode. 3976 * If we find an overwritten ref that is not the first ref, 3977 * simply unlink it. 3978 */ 3979 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3980 cur->name, cur->name_len, 3981 &ow_inode, &ow_gen, &ow_mode); 3982 if (ret < 0) 3983 goto out; 3984 if (ret) { 3985 ret = is_first_ref(sctx->parent_root, 3986 ow_inode, cur->dir, cur->name, 3987 cur->name_len); 3988 if (ret < 0) 3989 goto out; 3990 if (ret) { 3991 struct name_cache_entry *nce; 3992 struct waiting_dir_move *wdm; 3993 3994 if (orphanized_dir) { 3995 ret = refresh_ref_path(sctx, cur); 3996 if (ret < 0) 3997 goto out; 3998 } 3999 4000 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4001 cur->full_path); 4002 if (ret < 0) 4003 goto out; 4004 if (S_ISDIR(ow_mode)) 4005 orphanized_dir = true; 4006 4007 /* 4008 * If ow_inode has its rename operation delayed 4009 * make sure that its orphanized name is used in 4010 * the source path when performing its rename 4011 * operation. 4012 */ 4013 if (is_waiting_for_move(sctx, ow_inode)) { 4014 wdm = get_waiting_dir_move(sctx, 4015 ow_inode); 4016 ASSERT(wdm); 4017 wdm->orphanized = true; 4018 } 4019 4020 /* 4021 * Make sure we clear our orphanized inode's 4022 * name from the name cache. This is because the 4023 * inode ow_inode might be an ancestor of some 4024 * other inode that will be orphanized as well 4025 * later and has an inode number greater than 4026 * sctx->send_progress. We need to prevent 4027 * future name lookups from using the old name 4028 * and get instead the orphan name. 4029 */ 4030 nce = name_cache_search(sctx, ow_inode, ow_gen); 4031 if (nce) { 4032 name_cache_delete(sctx, nce); 4033 kfree(nce); 4034 } 4035 4036 /* 4037 * ow_inode might currently be an ancestor of 4038 * cur_ino, therefore compute valid_path (the 4039 * current path of cur_ino) again because it 4040 * might contain the pre-orphanization name of 4041 * ow_inode, which is no longer valid. 4042 */ 4043 ret = is_ancestor(sctx->parent_root, 4044 ow_inode, ow_gen, 4045 sctx->cur_ino, NULL); 4046 if (ret > 0) { 4047 orphanized_ancestor = true; 4048 fs_path_reset(valid_path); 4049 ret = get_cur_path(sctx, sctx->cur_ino, 4050 sctx->cur_inode_gen, 4051 valid_path); 4052 } 4053 if (ret < 0) 4054 goto out; 4055 } else { 4056 /* 4057 * If we previously orphanized a directory that 4058 * collided with a new reference that we already 4059 * processed, recompute the current path because 4060 * that directory may be part of the path. 4061 */ 4062 if (orphanized_dir) { 4063 ret = refresh_ref_path(sctx, cur); 4064 if (ret < 0) 4065 goto out; 4066 } 4067 ret = send_unlink(sctx, cur->full_path); 4068 if (ret < 0) 4069 goto out; 4070 } 4071 } 4072 4073 } 4074 4075 list_for_each_entry(cur, &sctx->new_refs, list) { 4076 /* 4077 * We may have refs where the parent directory does not exist 4078 * yet. This happens if the parent directories inum is higher 4079 * than the current inum. To handle this case, we create the 4080 * parent directory out of order. But we need to check if this 4081 * did already happen before due to other refs in the same dir. 4082 */ 4083 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4084 if (ret < 0) 4085 goto out; 4086 if (ret == inode_state_will_create) { 4087 ret = 0; 4088 /* 4089 * First check if any of the current inodes refs did 4090 * already create the dir. 4091 */ 4092 list_for_each_entry(cur2, &sctx->new_refs, list) { 4093 if (cur == cur2) 4094 break; 4095 if (cur2->dir == cur->dir) { 4096 ret = 1; 4097 break; 4098 } 4099 } 4100 4101 /* 4102 * If that did not happen, check if a previous inode 4103 * did already create the dir. 4104 */ 4105 if (!ret) 4106 ret = did_create_dir(sctx, cur->dir); 4107 if (ret < 0) 4108 goto out; 4109 if (!ret) { 4110 ret = send_create_inode(sctx, cur->dir); 4111 if (ret < 0) 4112 goto out; 4113 } 4114 } 4115 4116 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4117 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4118 if (ret < 0) 4119 goto out; 4120 if (ret == 1) { 4121 can_rename = false; 4122 *pending_move = 1; 4123 } 4124 } 4125 4126 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4127 can_rename) { 4128 ret = wait_for_parent_move(sctx, cur, is_orphan); 4129 if (ret < 0) 4130 goto out; 4131 if (ret == 1) { 4132 can_rename = false; 4133 *pending_move = 1; 4134 } 4135 } 4136 4137 /* 4138 * link/move the ref to the new place. If we have an orphan 4139 * inode, move it and update valid_path. If not, link or move 4140 * it depending on the inode mode. 4141 */ 4142 if (is_orphan && can_rename) { 4143 ret = send_rename(sctx, valid_path, cur->full_path); 4144 if (ret < 0) 4145 goto out; 4146 is_orphan = 0; 4147 ret = fs_path_copy(valid_path, cur->full_path); 4148 if (ret < 0) 4149 goto out; 4150 } else if (can_rename) { 4151 if (S_ISDIR(sctx->cur_inode_mode)) { 4152 /* 4153 * Dirs can't be linked, so move it. For moved 4154 * dirs, we always have one new and one deleted 4155 * ref. The deleted ref is ignored later. 4156 */ 4157 ret = send_rename(sctx, valid_path, 4158 cur->full_path); 4159 if (!ret) 4160 ret = fs_path_copy(valid_path, 4161 cur->full_path); 4162 if (ret < 0) 4163 goto out; 4164 } else { 4165 /* 4166 * We might have previously orphanized an inode 4167 * which is an ancestor of our current inode, 4168 * so our reference's full path, which was 4169 * computed before any such orphanizations, must 4170 * be updated. 4171 */ 4172 if (orphanized_dir) { 4173 ret = update_ref_path(sctx, cur); 4174 if (ret < 0) 4175 goto out; 4176 } 4177 ret = send_link(sctx, cur->full_path, 4178 valid_path); 4179 if (ret < 0) 4180 goto out; 4181 } 4182 } 4183 ret = dup_ref(cur, &check_dirs); 4184 if (ret < 0) 4185 goto out; 4186 } 4187 4188 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4189 /* 4190 * Check if we can already rmdir the directory. If not, 4191 * orphanize it. For every dir item inside that gets deleted 4192 * later, we do this check again and rmdir it then if possible. 4193 * See the use of check_dirs for more details. 4194 */ 4195 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4196 sctx->cur_ino); 4197 if (ret < 0) 4198 goto out; 4199 if (ret) { 4200 ret = send_rmdir(sctx, valid_path); 4201 if (ret < 0) 4202 goto out; 4203 } else if (!is_orphan) { 4204 ret = orphanize_inode(sctx, sctx->cur_ino, 4205 sctx->cur_inode_gen, valid_path); 4206 if (ret < 0) 4207 goto out; 4208 is_orphan = 1; 4209 } 4210 4211 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4212 ret = dup_ref(cur, &check_dirs); 4213 if (ret < 0) 4214 goto out; 4215 } 4216 } else if (S_ISDIR(sctx->cur_inode_mode) && 4217 !list_empty(&sctx->deleted_refs)) { 4218 /* 4219 * We have a moved dir. Add the old parent to check_dirs 4220 */ 4221 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4222 list); 4223 ret = dup_ref(cur, &check_dirs); 4224 if (ret < 0) 4225 goto out; 4226 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4227 /* 4228 * We have a non dir inode. Go through all deleted refs and 4229 * unlink them if they were not already overwritten by other 4230 * inodes. 4231 */ 4232 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4233 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4234 sctx->cur_ino, sctx->cur_inode_gen, 4235 cur->name, cur->name_len); 4236 if (ret < 0) 4237 goto out; 4238 if (!ret) { 4239 /* 4240 * If we orphanized any ancestor before, we need 4241 * to recompute the full path for deleted names, 4242 * since any such path was computed before we 4243 * processed any references and orphanized any 4244 * ancestor inode. 4245 */ 4246 if (orphanized_ancestor) { 4247 ret = update_ref_path(sctx, cur); 4248 if (ret < 0) 4249 goto out; 4250 } 4251 ret = send_unlink(sctx, cur->full_path); 4252 if (ret < 0) 4253 goto out; 4254 } 4255 ret = dup_ref(cur, &check_dirs); 4256 if (ret < 0) 4257 goto out; 4258 } 4259 /* 4260 * If the inode is still orphan, unlink the orphan. This may 4261 * happen when a previous inode did overwrite the first ref 4262 * of this inode and no new refs were added for the current 4263 * inode. Unlinking does not mean that the inode is deleted in 4264 * all cases. There may still be links to this inode in other 4265 * places. 4266 */ 4267 if (is_orphan) { 4268 ret = send_unlink(sctx, valid_path); 4269 if (ret < 0) 4270 goto out; 4271 } 4272 } 4273 4274 /* 4275 * We did collect all parent dirs where cur_inode was once located. We 4276 * now go through all these dirs and check if they are pending for 4277 * deletion and if it's finally possible to perform the rmdir now. 4278 * We also update the inode stats of the parent dirs here. 4279 */ 4280 list_for_each_entry(cur, &check_dirs, list) { 4281 /* 4282 * In case we had refs into dirs that were not processed yet, 4283 * we don't need to do the utime and rmdir logic for these dirs. 4284 * The dir will be processed later. 4285 */ 4286 if (cur->dir > sctx->cur_ino) 4287 continue; 4288 4289 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4290 if (ret < 0) 4291 goto out; 4292 4293 if (ret == inode_state_did_create || 4294 ret == inode_state_no_change) { 4295 /* TODO delayed utimes */ 4296 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4297 if (ret < 0) 4298 goto out; 4299 } else if (ret == inode_state_did_delete && 4300 cur->dir != last_dir_ino_rm) { 4301 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4302 sctx->cur_ino); 4303 if (ret < 0) 4304 goto out; 4305 if (ret) { 4306 ret = get_cur_path(sctx, cur->dir, 4307 cur->dir_gen, valid_path); 4308 if (ret < 0) 4309 goto out; 4310 ret = send_rmdir(sctx, valid_path); 4311 if (ret < 0) 4312 goto out; 4313 last_dir_ino_rm = cur->dir; 4314 } 4315 } 4316 } 4317 4318 ret = 0; 4319 4320 out: 4321 __free_recorded_refs(&check_dirs); 4322 free_recorded_refs(sctx); 4323 fs_path_free(valid_path); 4324 return ret; 4325 } 4326 4327 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4328 void *ctx, struct list_head *refs) 4329 { 4330 int ret = 0; 4331 struct send_ctx *sctx = ctx; 4332 struct fs_path *p; 4333 u64 gen; 4334 4335 p = fs_path_alloc(); 4336 if (!p) 4337 return -ENOMEM; 4338 4339 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4340 NULL, NULL); 4341 if (ret < 0) 4342 goto out; 4343 4344 ret = get_cur_path(sctx, dir, gen, p); 4345 if (ret < 0) 4346 goto out; 4347 ret = fs_path_add_path(p, name); 4348 if (ret < 0) 4349 goto out; 4350 4351 ret = __record_ref(refs, dir, gen, p); 4352 4353 out: 4354 if (ret) 4355 fs_path_free(p); 4356 return ret; 4357 } 4358 4359 static int __record_new_ref(int num, u64 dir, int index, 4360 struct fs_path *name, 4361 void *ctx) 4362 { 4363 struct send_ctx *sctx = ctx; 4364 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4365 } 4366 4367 4368 static int __record_deleted_ref(int num, u64 dir, int index, 4369 struct fs_path *name, 4370 void *ctx) 4371 { 4372 struct send_ctx *sctx = ctx; 4373 return record_ref(sctx->parent_root, dir, name, ctx, 4374 &sctx->deleted_refs); 4375 } 4376 4377 static int record_new_ref(struct send_ctx *sctx) 4378 { 4379 int ret; 4380 4381 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4382 sctx->cmp_key, 0, __record_new_ref, sctx); 4383 if (ret < 0) 4384 goto out; 4385 ret = 0; 4386 4387 out: 4388 return ret; 4389 } 4390 4391 static int record_deleted_ref(struct send_ctx *sctx) 4392 { 4393 int ret; 4394 4395 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4396 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4397 if (ret < 0) 4398 goto out; 4399 ret = 0; 4400 4401 out: 4402 return ret; 4403 } 4404 4405 struct find_ref_ctx { 4406 u64 dir; 4407 u64 dir_gen; 4408 struct btrfs_root *root; 4409 struct fs_path *name; 4410 int found_idx; 4411 }; 4412 4413 static int __find_iref(int num, u64 dir, int index, 4414 struct fs_path *name, 4415 void *ctx_) 4416 { 4417 struct find_ref_ctx *ctx = ctx_; 4418 u64 dir_gen; 4419 int ret; 4420 4421 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4422 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4423 /* 4424 * To avoid doing extra lookups we'll only do this if everything 4425 * else matches. 4426 */ 4427 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4428 NULL, NULL, NULL); 4429 if (ret) 4430 return ret; 4431 if (dir_gen != ctx->dir_gen) 4432 return 0; 4433 ctx->found_idx = num; 4434 return 1; 4435 } 4436 return 0; 4437 } 4438 4439 static int find_iref(struct btrfs_root *root, 4440 struct btrfs_path *path, 4441 struct btrfs_key *key, 4442 u64 dir, u64 dir_gen, struct fs_path *name) 4443 { 4444 int ret; 4445 struct find_ref_ctx ctx; 4446 4447 ctx.dir = dir; 4448 ctx.name = name; 4449 ctx.dir_gen = dir_gen; 4450 ctx.found_idx = -1; 4451 ctx.root = root; 4452 4453 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4454 if (ret < 0) 4455 return ret; 4456 4457 if (ctx.found_idx == -1) 4458 return -ENOENT; 4459 4460 return ctx.found_idx; 4461 } 4462 4463 static int __record_changed_new_ref(int num, u64 dir, int index, 4464 struct fs_path *name, 4465 void *ctx) 4466 { 4467 u64 dir_gen; 4468 int ret; 4469 struct send_ctx *sctx = ctx; 4470 4471 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4472 NULL, NULL, NULL); 4473 if (ret) 4474 return ret; 4475 4476 ret = find_iref(sctx->parent_root, sctx->right_path, 4477 sctx->cmp_key, dir, dir_gen, name); 4478 if (ret == -ENOENT) 4479 ret = __record_new_ref(num, dir, index, name, sctx); 4480 else if (ret > 0) 4481 ret = 0; 4482 4483 return ret; 4484 } 4485 4486 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4487 struct fs_path *name, 4488 void *ctx) 4489 { 4490 u64 dir_gen; 4491 int ret; 4492 struct send_ctx *sctx = ctx; 4493 4494 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4495 NULL, NULL, NULL); 4496 if (ret) 4497 return ret; 4498 4499 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4500 dir, dir_gen, name); 4501 if (ret == -ENOENT) 4502 ret = __record_deleted_ref(num, dir, index, name, sctx); 4503 else if (ret > 0) 4504 ret = 0; 4505 4506 return ret; 4507 } 4508 4509 static int record_changed_ref(struct send_ctx *sctx) 4510 { 4511 int ret = 0; 4512 4513 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4514 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4515 if (ret < 0) 4516 goto out; 4517 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4518 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4519 if (ret < 0) 4520 goto out; 4521 ret = 0; 4522 4523 out: 4524 return ret; 4525 } 4526 4527 /* 4528 * Record and process all refs at once. Needed when an inode changes the 4529 * generation number, which means that it was deleted and recreated. 4530 */ 4531 static int process_all_refs(struct send_ctx *sctx, 4532 enum btrfs_compare_tree_result cmd) 4533 { 4534 int ret; 4535 struct btrfs_root *root; 4536 struct btrfs_path *path; 4537 struct btrfs_key key; 4538 struct btrfs_key found_key; 4539 struct extent_buffer *eb; 4540 int slot; 4541 iterate_inode_ref_t cb; 4542 int pending_move = 0; 4543 4544 path = alloc_path_for_send(); 4545 if (!path) 4546 return -ENOMEM; 4547 4548 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4549 root = sctx->send_root; 4550 cb = __record_new_ref; 4551 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4552 root = sctx->parent_root; 4553 cb = __record_deleted_ref; 4554 } else { 4555 btrfs_err(sctx->send_root->fs_info, 4556 "Wrong command %d in process_all_refs", cmd); 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 key.objectid = sctx->cmp_key->objectid; 4562 key.type = BTRFS_INODE_REF_KEY; 4563 key.offset = 0; 4564 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4565 if (ret < 0) 4566 goto out; 4567 4568 while (1) { 4569 eb = path->nodes[0]; 4570 slot = path->slots[0]; 4571 if (slot >= btrfs_header_nritems(eb)) { 4572 ret = btrfs_next_leaf(root, path); 4573 if (ret < 0) 4574 goto out; 4575 else if (ret > 0) 4576 break; 4577 continue; 4578 } 4579 4580 btrfs_item_key_to_cpu(eb, &found_key, slot); 4581 4582 if (found_key.objectid != key.objectid || 4583 (found_key.type != BTRFS_INODE_REF_KEY && 4584 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4585 break; 4586 4587 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4588 if (ret < 0) 4589 goto out; 4590 4591 path->slots[0]++; 4592 } 4593 btrfs_release_path(path); 4594 4595 /* 4596 * We don't actually care about pending_move as we are simply 4597 * re-creating this inode and will be rename'ing it into place once we 4598 * rename the parent directory. 4599 */ 4600 ret = process_recorded_refs(sctx, &pending_move); 4601 out: 4602 btrfs_free_path(path); 4603 return ret; 4604 } 4605 4606 static int send_set_xattr(struct send_ctx *sctx, 4607 struct fs_path *path, 4608 const char *name, int name_len, 4609 const char *data, int data_len) 4610 { 4611 int ret = 0; 4612 4613 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4614 if (ret < 0) 4615 goto out; 4616 4617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4618 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4619 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4620 4621 ret = send_cmd(sctx); 4622 4623 tlv_put_failure: 4624 out: 4625 return ret; 4626 } 4627 4628 static int send_remove_xattr(struct send_ctx *sctx, 4629 struct fs_path *path, 4630 const char *name, int name_len) 4631 { 4632 int ret = 0; 4633 4634 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4635 if (ret < 0) 4636 goto out; 4637 4638 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4639 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4640 4641 ret = send_cmd(sctx); 4642 4643 tlv_put_failure: 4644 out: 4645 return ret; 4646 } 4647 4648 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4649 const char *name, int name_len, 4650 const char *data, int data_len, 4651 u8 type, void *ctx) 4652 { 4653 int ret; 4654 struct send_ctx *sctx = ctx; 4655 struct fs_path *p; 4656 struct posix_acl_xattr_header dummy_acl; 4657 4658 /* Capabilities are emitted by finish_inode_if_needed */ 4659 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4660 return 0; 4661 4662 p = fs_path_alloc(); 4663 if (!p) 4664 return -ENOMEM; 4665 4666 /* 4667 * This hack is needed because empty acls are stored as zero byte 4668 * data in xattrs. Problem with that is, that receiving these zero byte 4669 * acls will fail later. To fix this, we send a dummy acl list that 4670 * only contains the version number and no entries. 4671 */ 4672 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4673 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4674 if (data_len == 0) { 4675 dummy_acl.a_version = 4676 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4677 data = (char *)&dummy_acl; 4678 data_len = sizeof(dummy_acl); 4679 } 4680 } 4681 4682 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4683 if (ret < 0) 4684 goto out; 4685 4686 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4687 4688 out: 4689 fs_path_free(p); 4690 return ret; 4691 } 4692 4693 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4694 const char *name, int name_len, 4695 const char *data, int data_len, 4696 u8 type, void *ctx) 4697 { 4698 int ret; 4699 struct send_ctx *sctx = ctx; 4700 struct fs_path *p; 4701 4702 p = fs_path_alloc(); 4703 if (!p) 4704 return -ENOMEM; 4705 4706 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4707 if (ret < 0) 4708 goto out; 4709 4710 ret = send_remove_xattr(sctx, p, name, name_len); 4711 4712 out: 4713 fs_path_free(p); 4714 return ret; 4715 } 4716 4717 static int process_new_xattr(struct send_ctx *sctx) 4718 { 4719 int ret = 0; 4720 4721 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4722 __process_new_xattr, sctx); 4723 4724 return ret; 4725 } 4726 4727 static int process_deleted_xattr(struct send_ctx *sctx) 4728 { 4729 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4730 __process_deleted_xattr, sctx); 4731 } 4732 4733 struct find_xattr_ctx { 4734 const char *name; 4735 int name_len; 4736 int found_idx; 4737 char *found_data; 4738 int found_data_len; 4739 }; 4740 4741 static int __find_xattr(int num, struct btrfs_key *di_key, 4742 const char *name, int name_len, 4743 const char *data, int data_len, 4744 u8 type, void *vctx) 4745 { 4746 struct find_xattr_ctx *ctx = vctx; 4747 4748 if (name_len == ctx->name_len && 4749 strncmp(name, ctx->name, name_len) == 0) { 4750 ctx->found_idx = num; 4751 ctx->found_data_len = data_len; 4752 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4753 if (!ctx->found_data) 4754 return -ENOMEM; 4755 return 1; 4756 } 4757 return 0; 4758 } 4759 4760 static int find_xattr(struct btrfs_root *root, 4761 struct btrfs_path *path, 4762 struct btrfs_key *key, 4763 const char *name, int name_len, 4764 char **data, int *data_len) 4765 { 4766 int ret; 4767 struct find_xattr_ctx ctx; 4768 4769 ctx.name = name; 4770 ctx.name_len = name_len; 4771 ctx.found_idx = -1; 4772 ctx.found_data = NULL; 4773 ctx.found_data_len = 0; 4774 4775 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4776 if (ret < 0) 4777 return ret; 4778 4779 if (ctx.found_idx == -1) 4780 return -ENOENT; 4781 if (data) { 4782 *data = ctx.found_data; 4783 *data_len = ctx.found_data_len; 4784 } else { 4785 kfree(ctx.found_data); 4786 } 4787 return ctx.found_idx; 4788 } 4789 4790 4791 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4792 const char *name, int name_len, 4793 const char *data, int data_len, 4794 u8 type, void *ctx) 4795 { 4796 int ret; 4797 struct send_ctx *sctx = ctx; 4798 char *found_data = NULL; 4799 int found_data_len = 0; 4800 4801 ret = find_xattr(sctx->parent_root, sctx->right_path, 4802 sctx->cmp_key, name, name_len, &found_data, 4803 &found_data_len); 4804 if (ret == -ENOENT) { 4805 ret = __process_new_xattr(num, di_key, name, name_len, data, 4806 data_len, type, ctx); 4807 } else if (ret >= 0) { 4808 if (data_len != found_data_len || 4809 memcmp(data, found_data, data_len)) { 4810 ret = __process_new_xattr(num, di_key, name, name_len, 4811 data, data_len, type, ctx); 4812 } else { 4813 ret = 0; 4814 } 4815 } 4816 4817 kfree(found_data); 4818 return ret; 4819 } 4820 4821 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4822 const char *name, int name_len, 4823 const char *data, int data_len, 4824 u8 type, void *ctx) 4825 { 4826 int ret; 4827 struct send_ctx *sctx = ctx; 4828 4829 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4830 name, name_len, NULL, NULL); 4831 if (ret == -ENOENT) 4832 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4833 data_len, type, ctx); 4834 else if (ret >= 0) 4835 ret = 0; 4836 4837 return ret; 4838 } 4839 4840 static int process_changed_xattr(struct send_ctx *sctx) 4841 { 4842 int ret = 0; 4843 4844 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4845 __process_changed_new_xattr, sctx); 4846 if (ret < 0) 4847 goto out; 4848 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4849 __process_changed_deleted_xattr, sctx); 4850 4851 out: 4852 return ret; 4853 } 4854 4855 static int process_all_new_xattrs(struct send_ctx *sctx) 4856 { 4857 int ret; 4858 struct btrfs_root *root; 4859 struct btrfs_path *path; 4860 struct btrfs_key key; 4861 struct btrfs_key found_key; 4862 struct extent_buffer *eb; 4863 int slot; 4864 4865 path = alloc_path_for_send(); 4866 if (!path) 4867 return -ENOMEM; 4868 4869 root = sctx->send_root; 4870 4871 key.objectid = sctx->cmp_key->objectid; 4872 key.type = BTRFS_XATTR_ITEM_KEY; 4873 key.offset = 0; 4874 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4875 if (ret < 0) 4876 goto out; 4877 4878 while (1) { 4879 eb = path->nodes[0]; 4880 slot = path->slots[0]; 4881 if (slot >= btrfs_header_nritems(eb)) { 4882 ret = btrfs_next_leaf(root, path); 4883 if (ret < 0) { 4884 goto out; 4885 } else if (ret > 0) { 4886 ret = 0; 4887 break; 4888 } 4889 continue; 4890 } 4891 4892 btrfs_item_key_to_cpu(eb, &found_key, slot); 4893 if (found_key.objectid != key.objectid || 4894 found_key.type != key.type) { 4895 ret = 0; 4896 goto out; 4897 } 4898 4899 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4900 if (ret < 0) 4901 goto out; 4902 4903 path->slots[0]++; 4904 } 4905 4906 out: 4907 btrfs_free_path(path); 4908 return ret; 4909 } 4910 4911 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4912 { 4913 return sctx->send_max_size - SZ_16K; 4914 } 4915 4916 static int put_data_header(struct send_ctx *sctx, u32 len) 4917 { 4918 struct btrfs_tlv_header *hdr; 4919 4920 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 4921 return -EOVERFLOW; 4922 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 4923 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 4924 put_unaligned_le16(len, &hdr->tlv_len); 4925 sctx->send_size += sizeof(*hdr); 4926 return 0; 4927 } 4928 4929 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 4930 { 4931 struct btrfs_root *root = sctx->send_root; 4932 struct btrfs_fs_info *fs_info = root->fs_info; 4933 struct inode *inode; 4934 struct page *page; 4935 pgoff_t index = offset >> PAGE_SHIFT; 4936 pgoff_t last_index; 4937 unsigned pg_offset = offset_in_page(offset); 4938 int ret; 4939 4940 ret = put_data_header(sctx, len); 4941 if (ret) 4942 return ret; 4943 4944 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 4945 if (IS_ERR(inode)) 4946 return PTR_ERR(inode); 4947 4948 last_index = (offset + len - 1) >> PAGE_SHIFT; 4949 4950 /* initial readahead */ 4951 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4952 file_ra_state_init(&sctx->ra, inode->i_mapping); 4953 4954 while (index <= last_index) { 4955 unsigned cur_len = min_t(unsigned, len, 4956 PAGE_SIZE - pg_offset); 4957 4958 page = find_lock_page(inode->i_mapping, index); 4959 if (!page) { 4960 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4961 NULL, index, last_index + 1 - index); 4962 4963 page = find_or_create_page(inode->i_mapping, index, 4964 GFP_KERNEL); 4965 if (!page) { 4966 ret = -ENOMEM; 4967 break; 4968 } 4969 } 4970 4971 if (PageReadahead(page)) { 4972 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4973 NULL, page, index, last_index + 1 - index); 4974 } 4975 4976 if (!PageUptodate(page)) { 4977 btrfs_readpage(NULL, page); 4978 lock_page(page); 4979 if (!PageUptodate(page)) { 4980 unlock_page(page); 4981 put_page(page); 4982 ret = -EIO; 4983 break; 4984 } 4985 } 4986 4987 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 4988 pg_offset, cur_len); 4989 unlock_page(page); 4990 put_page(page); 4991 index++; 4992 pg_offset = 0; 4993 len -= cur_len; 4994 sctx->send_size += cur_len; 4995 } 4996 iput(inode); 4997 return ret; 4998 } 4999 5000 /* 5001 * Read some bytes from the current inode/file and send a write command to 5002 * user space. 5003 */ 5004 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5005 { 5006 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5007 int ret = 0; 5008 struct fs_path *p; 5009 5010 p = fs_path_alloc(); 5011 if (!p) 5012 return -ENOMEM; 5013 5014 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5015 5016 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5017 if (ret < 0) 5018 goto out; 5019 5020 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5021 if (ret < 0) 5022 goto out; 5023 5024 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5025 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5026 ret = put_file_data(sctx, offset, len); 5027 if (ret < 0) 5028 goto out; 5029 5030 ret = send_cmd(sctx); 5031 5032 tlv_put_failure: 5033 out: 5034 fs_path_free(p); 5035 return ret; 5036 } 5037 5038 /* 5039 * Send a clone command to user space. 5040 */ 5041 static int send_clone(struct send_ctx *sctx, 5042 u64 offset, u32 len, 5043 struct clone_root *clone_root) 5044 { 5045 int ret = 0; 5046 struct fs_path *p; 5047 u64 gen; 5048 5049 btrfs_debug(sctx->send_root->fs_info, 5050 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5051 offset, len, clone_root->root->root_key.objectid, 5052 clone_root->ino, clone_root->offset); 5053 5054 p = fs_path_alloc(); 5055 if (!p) 5056 return -ENOMEM; 5057 5058 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5059 if (ret < 0) 5060 goto out; 5061 5062 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5063 if (ret < 0) 5064 goto out; 5065 5066 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5067 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5068 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5069 5070 if (clone_root->root == sctx->send_root) { 5071 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 5072 &gen, NULL, NULL, NULL, NULL); 5073 if (ret < 0) 5074 goto out; 5075 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5076 } else { 5077 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5078 } 5079 if (ret < 0) 5080 goto out; 5081 5082 /* 5083 * If the parent we're using has a received_uuid set then use that as 5084 * our clone source as that is what we will look for when doing a 5085 * receive. 5086 * 5087 * This covers the case that we create a snapshot off of a received 5088 * subvolume and then use that as the parent and try to receive on a 5089 * different host. 5090 */ 5091 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5092 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5093 clone_root->root->root_item.received_uuid); 5094 else 5095 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5096 clone_root->root->root_item.uuid); 5097 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5098 btrfs_root_ctransid(&clone_root->root->root_item)); 5099 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5100 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5101 clone_root->offset); 5102 5103 ret = send_cmd(sctx); 5104 5105 tlv_put_failure: 5106 out: 5107 fs_path_free(p); 5108 return ret; 5109 } 5110 5111 /* 5112 * Send an update extent command to user space. 5113 */ 5114 static int send_update_extent(struct send_ctx *sctx, 5115 u64 offset, u32 len) 5116 { 5117 int ret = 0; 5118 struct fs_path *p; 5119 5120 p = fs_path_alloc(); 5121 if (!p) 5122 return -ENOMEM; 5123 5124 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5125 if (ret < 0) 5126 goto out; 5127 5128 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5129 if (ret < 0) 5130 goto out; 5131 5132 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5133 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5134 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5135 5136 ret = send_cmd(sctx); 5137 5138 tlv_put_failure: 5139 out: 5140 fs_path_free(p); 5141 return ret; 5142 } 5143 5144 static int send_hole(struct send_ctx *sctx, u64 end) 5145 { 5146 struct fs_path *p = NULL; 5147 u64 read_size = max_send_read_size(sctx); 5148 u64 offset = sctx->cur_inode_last_extent; 5149 int ret = 0; 5150 5151 /* 5152 * A hole that starts at EOF or beyond it. Since we do not yet support 5153 * fallocate (for extent preallocation and hole punching), sending a 5154 * write of zeroes starting at EOF or beyond would later require issuing 5155 * a truncate operation which would undo the write and achieve nothing. 5156 */ 5157 if (offset >= sctx->cur_inode_size) 5158 return 0; 5159 5160 /* 5161 * Don't go beyond the inode's i_size due to prealloc extents that start 5162 * after the i_size. 5163 */ 5164 end = min_t(u64, end, sctx->cur_inode_size); 5165 5166 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5167 return send_update_extent(sctx, offset, end - offset); 5168 5169 p = fs_path_alloc(); 5170 if (!p) 5171 return -ENOMEM; 5172 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5173 if (ret < 0) 5174 goto tlv_put_failure; 5175 while (offset < end) { 5176 u64 len = min(end - offset, read_size); 5177 5178 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5179 if (ret < 0) 5180 break; 5181 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5182 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5183 ret = put_data_header(sctx, len); 5184 if (ret < 0) 5185 break; 5186 memset(sctx->send_buf + sctx->send_size, 0, len); 5187 sctx->send_size += len; 5188 ret = send_cmd(sctx); 5189 if (ret < 0) 5190 break; 5191 offset += len; 5192 } 5193 sctx->cur_inode_next_write_offset = offset; 5194 tlv_put_failure: 5195 fs_path_free(p); 5196 return ret; 5197 } 5198 5199 static int send_extent_data(struct send_ctx *sctx, 5200 const u64 offset, 5201 const u64 len) 5202 { 5203 u64 read_size = max_send_read_size(sctx); 5204 u64 sent = 0; 5205 5206 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5207 return send_update_extent(sctx, offset, len); 5208 5209 while (sent < len) { 5210 u64 size = min(len - sent, read_size); 5211 int ret; 5212 5213 ret = send_write(sctx, offset + sent, size); 5214 if (ret < 0) 5215 return ret; 5216 sent += size; 5217 } 5218 return 0; 5219 } 5220 5221 /* 5222 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5223 * found, call send_set_xattr function to emit it. 5224 * 5225 * Return 0 if there isn't a capability, or when the capability was emitted 5226 * successfully, or < 0 if an error occurred. 5227 */ 5228 static int send_capabilities(struct send_ctx *sctx) 5229 { 5230 struct fs_path *fspath = NULL; 5231 struct btrfs_path *path; 5232 struct btrfs_dir_item *di; 5233 struct extent_buffer *leaf; 5234 unsigned long data_ptr; 5235 char *buf = NULL; 5236 int buf_len; 5237 int ret = 0; 5238 5239 path = alloc_path_for_send(); 5240 if (!path) 5241 return -ENOMEM; 5242 5243 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5244 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5245 if (!di) { 5246 /* There is no xattr for this inode */ 5247 goto out; 5248 } else if (IS_ERR(di)) { 5249 ret = PTR_ERR(di); 5250 goto out; 5251 } 5252 5253 leaf = path->nodes[0]; 5254 buf_len = btrfs_dir_data_len(leaf, di); 5255 5256 fspath = fs_path_alloc(); 5257 buf = kmalloc(buf_len, GFP_KERNEL); 5258 if (!fspath || !buf) { 5259 ret = -ENOMEM; 5260 goto out; 5261 } 5262 5263 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5264 if (ret < 0) 5265 goto out; 5266 5267 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5268 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5269 5270 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5271 strlen(XATTR_NAME_CAPS), buf, buf_len); 5272 out: 5273 kfree(buf); 5274 fs_path_free(fspath); 5275 btrfs_free_path(path); 5276 return ret; 5277 } 5278 5279 static int clone_range(struct send_ctx *sctx, 5280 struct clone_root *clone_root, 5281 const u64 disk_byte, 5282 u64 data_offset, 5283 u64 offset, 5284 u64 len) 5285 { 5286 struct btrfs_path *path; 5287 struct btrfs_key key; 5288 int ret; 5289 u64 clone_src_i_size = 0; 5290 5291 /* 5292 * Prevent cloning from a zero offset with a length matching the sector 5293 * size because in some scenarios this will make the receiver fail. 5294 * 5295 * For example, if in the source filesystem the extent at offset 0 5296 * has a length of sectorsize and it was written using direct IO, then 5297 * it can never be an inline extent (even if compression is enabled). 5298 * Then this extent can be cloned in the original filesystem to a non 5299 * zero file offset, but it may not be possible to clone in the 5300 * destination filesystem because it can be inlined due to compression 5301 * on the destination filesystem (as the receiver's write operations are 5302 * always done using buffered IO). The same happens when the original 5303 * filesystem does not have compression enabled but the destination 5304 * filesystem has. 5305 */ 5306 if (clone_root->offset == 0 && 5307 len == sctx->send_root->fs_info->sectorsize) 5308 return send_extent_data(sctx, offset, len); 5309 5310 path = alloc_path_for_send(); 5311 if (!path) 5312 return -ENOMEM; 5313 5314 /* 5315 * There are inodes that have extents that lie behind its i_size. Don't 5316 * accept clones from these extents. 5317 */ 5318 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5319 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5320 btrfs_release_path(path); 5321 if (ret < 0) 5322 goto out; 5323 5324 /* 5325 * We can't send a clone operation for the entire range if we find 5326 * extent items in the respective range in the source file that 5327 * refer to different extents or if we find holes. 5328 * So check for that and do a mix of clone and regular write/copy 5329 * operations if needed. 5330 * 5331 * Example: 5332 * 5333 * mkfs.btrfs -f /dev/sda 5334 * mount /dev/sda /mnt 5335 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5336 * cp --reflink=always /mnt/foo /mnt/bar 5337 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5338 * btrfs subvolume snapshot -r /mnt /mnt/snap 5339 * 5340 * If when we send the snapshot and we are processing file bar (which 5341 * has a higher inode number than foo) we blindly send a clone operation 5342 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5343 * a file bar that matches the content of file foo - iow, doesn't match 5344 * the content from bar in the original filesystem. 5345 */ 5346 key.objectid = clone_root->ino; 5347 key.type = BTRFS_EXTENT_DATA_KEY; 5348 key.offset = clone_root->offset; 5349 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5350 if (ret < 0) 5351 goto out; 5352 if (ret > 0 && path->slots[0] > 0) { 5353 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5354 if (key.objectid == clone_root->ino && 5355 key.type == BTRFS_EXTENT_DATA_KEY) 5356 path->slots[0]--; 5357 } 5358 5359 while (true) { 5360 struct extent_buffer *leaf = path->nodes[0]; 5361 int slot = path->slots[0]; 5362 struct btrfs_file_extent_item *ei; 5363 u8 type; 5364 u64 ext_len; 5365 u64 clone_len; 5366 u64 clone_data_offset; 5367 5368 if (slot >= btrfs_header_nritems(leaf)) { 5369 ret = btrfs_next_leaf(clone_root->root, path); 5370 if (ret < 0) 5371 goto out; 5372 else if (ret > 0) 5373 break; 5374 continue; 5375 } 5376 5377 btrfs_item_key_to_cpu(leaf, &key, slot); 5378 5379 /* 5380 * We might have an implicit trailing hole (NO_HOLES feature 5381 * enabled). We deal with it after leaving this loop. 5382 */ 5383 if (key.objectid != clone_root->ino || 5384 key.type != BTRFS_EXTENT_DATA_KEY) 5385 break; 5386 5387 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5388 type = btrfs_file_extent_type(leaf, ei); 5389 if (type == BTRFS_FILE_EXTENT_INLINE) { 5390 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5391 ext_len = PAGE_ALIGN(ext_len); 5392 } else { 5393 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5394 } 5395 5396 if (key.offset + ext_len <= clone_root->offset) 5397 goto next; 5398 5399 if (key.offset > clone_root->offset) { 5400 /* Implicit hole, NO_HOLES feature enabled. */ 5401 u64 hole_len = key.offset - clone_root->offset; 5402 5403 if (hole_len > len) 5404 hole_len = len; 5405 ret = send_extent_data(sctx, offset, hole_len); 5406 if (ret < 0) 5407 goto out; 5408 5409 len -= hole_len; 5410 if (len == 0) 5411 break; 5412 offset += hole_len; 5413 clone_root->offset += hole_len; 5414 data_offset += hole_len; 5415 } 5416 5417 if (key.offset >= clone_root->offset + len) 5418 break; 5419 5420 if (key.offset >= clone_src_i_size) 5421 break; 5422 5423 if (key.offset + ext_len > clone_src_i_size) 5424 ext_len = clone_src_i_size - key.offset; 5425 5426 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5427 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5428 clone_root->offset = key.offset; 5429 if (clone_data_offset < data_offset && 5430 clone_data_offset + ext_len > data_offset) { 5431 u64 extent_offset; 5432 5433 extent_offset = data_offset - clone_data_offset; 5434 ext_len -= extent_offset; 5435 clone_data_offset += extent_offset; 5436 clone_root->offset += extent_offset; 5437 } 5438 } 5439 5440 clone_len = min_t(u64, ext_len, len); 5441 5442 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5443 clone_data_offset == data_offset) { 5444 const u64 src_end = clone_root->offset + clone_len; 5445 const u64 sectorsize = SZ_64K; 5446 5447 /* 5448 * We can't clone the last block, when its size is not 5449 * sector size aligned, into the middle of a file. If we 5450 * do so, the receiver will get a failure (-EINVAL) when 5451 * trying to clone or will silently corrupt the data in 5452 * the destination file if it's on a kernel without the 5453 * fix introduced by commit ac765f83f1397646 5454 * ("Btrfs: fix data corruption due to cloning of eof 5455 * block). 5456 * 5457 * So issue a clone of the aligned down range plus a 5458 * regular write for the eof block, if we hit that case. 5459 * 5460 * Also, we use the maximum possible sector size, 64K, 5461 * because we don't know what's the sector size of the 5462 * filesystem that receives the stream, so we have to 5463 * assume the largest possible sector size. 5464 */ 5465 if (src_end == clone_src_i_size && 5466 !IS_ALIGNED(src_end, sectorsize) && 5467 offset + clone_len < sctx->cur_inode_size) { 5468 u64 slen; 5469 5470 slen = ALIGN_DOWN(src_end - clone_root->offset, 5471 sectorsize); 5472 if (slen > 0) { 5473 ret = send_clone(sctx, offset, slen, 5474 clone_root); 5475 if (ret < 0) 5476 goto out; 5477 } 5478 ret = send_extent_data(sctx, offset + slen, 5479 clone_len - slen); 5480 } else { 5481 ret = send_clone(sctx, offset, clone_len, 5482 clone_root); 5483 } 5484 } else { 5485 ret = send_extent_data(sctx, offset, clone_len); 5486 } 5487 5488 if (ret < 0) 5489 goto out; 5490 5491 len -= clone_len; 5492 if (len == 0) 5493 break; 5494 offset += clone_len; 5495 clone_root->offset += clone_len; 5496 5497 /* 5498 * If we are cloning from the file we are currently processing, 5499 * and using the send root as the clone root, we must stop once 5500 * the current clone offset reaches the current eof of the file 5501 * at the receiver, otherwise we would issue an invalid clone 5502 * operation (source range going beyond eof) and cause the 5503 * receiver to fail. So if we reach the current eof, bail out 5504 * and fallback to a regular write. 5505 */ 5506 if (clone_root->root == sctx->send_root && 5507 clone_root->ino == sctx->cur_ino && 5508 clone_root->offset >= sctx->cur_inode_next_write_offset) 5509 break; 5510 5511 data_offset += clone_len; 5512 next: 5513 path->slots[0]++; 5514 } 5515 5516 if (len > 0) 5517 ret = send_extent_data(sctx, offset, len); 5518 else 5519 ret = 0; 5520 out: 5521 btrfs_free_path(path); 5522 return ret; 5523 } 5524 5525 static int send_write_or_clone(struct send_ctx *sctx, 5526 struct btrfs_path *path, 5527 struct btrfs_key *key, 5528 struct clone_root *clone_root) 5529 { 5530 int ret = 0; 5531 u64 offset = key->offset; 5532 u64 end; 5533 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5534 5535 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5536 if (offset >= end) 5537 return 0; 5538 5539 if (clone_root && IS_ALIGNED(end, bs)) { 5540 struct btrfs_file_extent_item *ei; 5541 u64 disk_byte; 5542 u64 data_offset; 5543 5544 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5545 struct btrfs_file_extent_item); 5546 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5547 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5548 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5549 offset, end - offset); 5550 } else { 5551 ret = send_extent_data(sctx, offset, end - offset); 5552 } 5553 sctx->cur_inode_next_write_offset = end; 5554 return ret; 5555 } 5556 5557 static int is_extent_unchanged(struct send_ctx *sctx, 5558 struct btrfs_path *left_path, 5559 struct btrfs_key *ekey) 5560 { 5561 int ret = 0; 5562 struct btrfs_key key; 5563 struct btrfs_path *path = NULL; 5564 struct extent_buffer *eb; 5565 int slot; 5566 struct btrfs_key found_key; 5567 struct btrfs_file_extent_item *ei; 5568 u64 left_disknr; 5569 u64 right_disknr; 5570 u64 left_offset; 5571 u64 right_offset; 5572 u64 left_offset_fixed; 5573 u64 left_len; 5574 u64 right_len; 5575 u64 left_gen; 5576 u64 right_gen; 5577 u8 left_type; 5578 u8 right_type; 5579 5580 path = alloc_path_for_send(); 5581 if (!path) 5582 return -ENOMEM; 5583 5584 eb = left_path->nodes[0]; 5585 slot = left_path->slots[0]; 5586 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5587 left_type = btrfs_file_extent_type(eb, ei); 5588 5589 if (left_type != BTRFS_FILE_EXTENT_REG) { 5590 ret = 0; 5591 goto out; 5592 } 5593 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5594 left_len = btrfs_file_extent_num_bytes(eb, ei); 5595 left_offset = btrfs_file_extent_offset(eb, ei); 5596 left_gen = btrfs_file_extent_generation(eb, ei); 5597 5598 /* 5599 * Following comments will refer to these graphics. L is the left 5600 * extents which we are checking at the moment. 1-8 are the right 5601 * extents that we iterate. 5602 * 5603 * |-----L-----| 5604 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5605 * 5606 * |-----L-----| 5607 * |--1--|-2b-|...(same as above) 5608 * 5609 * Alternative situation. Happens on files where extents got split. 5610 * |-----L-----| 5611 * |-----------7-----------|-6-| 5612 * 5613 * Alternative situation. Happens on files which got larger. 5614 * |-----L-----| 5615 * |-8-| 5616 * Nothing follows after 8. 5617 */ 5618 5619 key.objectid = ekey->objectid; 5620 key.type = BTRFS_EXTENT_DATA_KEY; 5621 key.offset = ekey->offset; 5622 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5623 if (ret < 0) 5624 goto out; 5625 if (ret) { 5626 ret = 0; 5627 goto out; 5628 } 5629 5630 /* 5631 * Handle special case where the right side has no extents at all. 5632 */ 5633 eb = path->nodes[0]; 5634 slot = path->slots[0]; 5635 btrfs_item_key_to_cpu(eb, &found_key, slot); 5636 if (found_key.objectid != key.objectid || 5637 found_key.type != key.type) { 5638 /* If we're a hole then just pretend nothing changed */ 5639 ret = (left_disknr) ? 0 : 1; 5640 goto out; 5641 } 5642 5643 /* 5644 * We're now on 2a, 2b or 7. 5645 */ 5646 key = found_key; 5647 while (key.offset < ekey->offset + left_len) { 5648 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5649 right_type = btrfs_file_extent_type(eb, ei); 5650 if (right_type != BTRFS_FILE_EXTENT_REG && 5651 right_type != BTRFS_FILE_EXTENT_INLINE) { 5652 ret = 0; 5653 goto out; 5654 } 5655 5656 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5657 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5658 right_len = PAGE_ALIGN(right_len); 5659 } else { 5660 right_len = btrfs_file_extent_num_bytes(eb, ei); 5661 } 5662 5663 /* 5664 * Are we at extent 8? If yes, we know the extent is changed. 5665 * This may only happen on the first iteration. 5666 */ 5667 if (found_key.offset + right_len <= ekey->offset) { 5668 /* If we're a hole just pretend nothing changed */ 5669 ret = (left_disknr) ? 0 : 1; 5670 goto out; 5671 } 5672 5673 /* 5674 * We just wanted to see if when we have an inline extent, what 5675 * follows it is a regular extent (wanted to check the above 5676 * condition for inline extents too). This should normally not 5677 * happen but it's possible for example when we have an inline 5678 * compressed extent representing data with a size matching 5679 * the page size (currently the same as sector size). 5680 */ 5681 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5682 ret = 0; 5683 goto out; 5684 } 5685 5686 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5687 right_offset = btrfs_file_extent_offset(eb, ei); 5688 right_gen = btrfs_file_extent_generation(eb, ei); 5689 5690 left_offset_fixed = left_offset; 5691 if (key.offset < ekey->offset) { 5692 /* Fix the right offset for 2a and 7. */ 5693 right_offset += ekey->offset - key.offset; 5694 } else { 5695 /* Fix the left offset for all behind 2a and 2b */ 5696 left_offset_fixed += key.offset - ekey->offset; 5697 } 5698 5699 /* 5700 * Check if we have the same extent. 5701 */ 5702 if (left_disknr != right_disknr || 5703 left_offset_fixed != right_offset || 5704 left_gen != right_gen) { 5705 ret = 0; 5706 goto out; 5707 } 5708 5709 /* 5710 * Go to the next extent. 5711 */ 5712 ret = btrfs_next_item(sctx->parent_root, path); 5713 if (ret < 0) 5714 goto out; 5715 if (!ret) { 5716 eb = path->nodes[0]; 5717 slot = path->slots[0]; 5718 btrfs_item_key_to_cpu(eb, &found_key, slot); 5719 } 5720 if (ret || found_key.objectid != key.objectid || 5721 found_key.type != key.type) { 5722 key.offset += right_len; 5723 break; 5724 } 5725 if (found_key.offset != key.offset + right_len) { 5726 ret = 0; 5727 goto out; 5728 } 5729 key = found_key; 5730 } 5731 5732 /* 5733 * We're now behind the left extent (treat as unchanged) or at the end 5734 * of the right side (treat as changed). 5735 */ 5736 if (key.offset >= ekey->offset + left_len) 5737 ret = 1; 5738 else 5739 ret = 0; 5740 5741 5742 out: 5743 btrfs_free_path(path); 5744 return ret; 5745 } 5746 5747 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5748 { 5749 struct btrfs_path *path; 5750 struct btrfs_root *root = sctx->send_root; 5751 struct btrfs_key key; 5752 int ret; 5753 5754 path = alloc_path_for_send(); 5755 if (!path) 5756 return -ENOMEM; 5757 5758 sctx->cur_inode_last_extent = 0; 5759 5760 key.objectid = sctx->cur_ino; 5761 key.type = BTRFS_EXTENT_DATA_KEY; 5762 key.offset = offset; 5763 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5764 if (ret < 0) 5765 goto out; 5766 ret = 0; 5767 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5768 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5769 goto out; 5770 5771 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5772 out: 5773 btrfs_free_path(path); 5774 return ret; 5775 } 5776 5777 static int range_is_hole_in_parent(struct send_ctx *sctx, 5778 const u64 start, 5779 const u64 end) 5780 { 5781 struct btrfs_path *path; 5782 struct btrfs_key key; 5783 struct btrfs_root *root = sctx->parent_root; 5784 u64 search_start = start; 5785 int ret; 5786 5787 path = alloc_path_for_send(); 5788 if (!path) 5789 return -ENOMEM; 5790 5791 key.objectid = sctx->cur_ino; 5792 key.type = BTRFS_EXTENT_DATA_KEY; 5793 key.offset = search_start; 5794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5795 if (ret < 0) 5796 goto out; 5797 if (ret > 0 && path->slots[0] > 0) 5798 path->slots[0]--; 5799 5800 while (search_start < end) { 5801 struct extent_buffer *leaf = path->nodes[0]; 5802 int slot = path->slots[0]; 5803 struct btrfs_file_extent_item *fi; 5804 u64 extent_end; 5805 5806 if (slot >= btrfs_header_nritems(leaf)) { 5807 ret = btrfs_next_leaf(root, path); 5808 if (ret < 0) 5809 goto out; 5810 else if (ret > 0) 5811 break; 5812 continue; 5813 } 5814 5815 btrfs_item_key_to_cpu(leaf, &key, slot); 5816 if (key.objectid < sctx->cur_ino || 5817 key.type < BTRFS_EXTENT_DATA_KEY) 5818 goto next; 5819 if (key.objectid > sctx->cur_ino || 5820 key.type > BTRFS_EXTENT_DATA_KEY || 5821 key.offset >= end) 5822 break; 5823 5824 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5825 extent_end = btrfs_file_extent_end(path); 5826 if (extent_end <= start) 5827 goto next; 5828 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5829 search_start = extent_end; 5830 goto next; 5831 } 5832 ret = 0; 5833 goto out; 5834 next: 5835 path->slots[0]++; 5836 } 5837 ret = 1; 5838 out: 5839 btrfs_free_path(path); 5840 return ret; 5841 } 5842 5843 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5844 struct btrfs_key *key) 5845 { 5846 int ret = 0; 5847 5848 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5849 return 0; 5850 5851 if (sctx->cur_inode_last_extent == (u64)-1) { 5852 ret = get_last_extent(sctx, key->offset - 1); 5853 if (ret) 5854 return ret; 5855 } 5856 5857 if (path->slots[0] == 0 && 5858 sctx->cur_inode_last_extent < key->offset) { 5859 /* 5860 * We might have skipped entire leafs that contained only 5861 * file extent items for our current inode. These leafs have 5862 * a generation number smaller (older) than the one in the 5863 * current leaf and the leaf our last extent came from, and 5864 * are located between these 2 leafs. 5865 */ 5866 ret = get_last_extent(sctx, key->offset - 1); 5867 if (ret) 5868 return ret; 5869 } 5870 5871 if (sctx->cur_inode_last_extent < key->offset) { 5872 ret = range_is_hole_in_parent(sctx, 5873 sctx->cur_inode_last_extent, 5874 key->offset); 5875 if (ret < 0) 5876 return ret; 5877 else if (ret == 0) 5878 ret = send_hole(sctx, key->offset); 5879 else 5880 ret = 0; 5881 } 5882 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5883 return ret; 5884 } 5885 5886 static int process_extent(struct send_ctx *sctx, 5887 struct btrfs_path *path, 5888 struct btrfs_key *key) 5889 { 5890 struct clone_root *found_clone = NULL; 5891 int ret = 0; 5892 5893 if (S_ISLNK(sctx->cur_inode_mode)) 5894 return 0; 5895 5896 if (sctx->parent_root && !sctx->cur_inode_new) { 5897 ret = is_extent_unchanged(sctx, path, key); 5898 if (ret < 0) 5899 goto out; 5900 if (ret) { 5901 ret = 0; 5902 goto out_hole; 5903 } 5904 } else { 5905 struct btrfs_file_extent_item *ei; 5906 u8 type; 5907 5908 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5909 struct btrfs_file_extent_item); 5910 type = btrfs_file_extent_type(path->nodes[0], ei); 5911 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5912 type == BTRFS_FILE_EXTENT_REG) { 5913 /* 5914 * The send spec does not have a prealloc command yet, 5915 * so just leave a hole for prealloc'ed extents until 5916 * we have enough commands queued up to justify rev'ing 5917 * the send spec. 5918 */ 5919 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5920 ret = 0; 5921 goto out; 5922 } 5923 5924 /* Have a hole, just skip it. */ 5925 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5926 ret = 0; 5927 goto out; 5928 } 5929 } 5930 } 5931 5932 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5933 sctx->cur_inode_size, &found_clone); 5934 if (ret != -ENOENT && ret < 0) 5935 goto out; 5936 5937 ret = send_write_or_clone(sctx, path, key, found_clone); 5938 if (ret) 5939 goto out; 5940 out_hole: 5941 ret = maybe_send_hole(sctx, path, key); 5942 out: 5943 return ret; 5944 } 5945 5946 static int process_all_extents(struct send_ctx *sctx) 5947 { 5948 int ret; 5949 struct btrfs_root *root; 5950 struct btrfs_path *path; 5951 struct btrfs_key key; 5952 struct btrfs_key found_key; 5953 struct extent_buffer *eb; 5954 int slot; 5955 5956 root = sctx->send_root; 5957 path = alloc_path_for_send(); 5958 if (!path) 5959 return -ENOMEM; 5960 5961 key.objectid = sctx->cmp_key->objectid; 5962 key.type = BTRFS_EXTENT_DATA_KEY; 5963 key.offset = 0; 5964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5965 if (ret < 0) 5966 goto out; 5967 5968 while (1) { 5969 eb = path->nodes[0]; 5970 slot = path->slots[0]; 5971 5972 if (slot >= btrfs_header_nritems(eb)) { 5973 ret = btrfs_next_leaf(root, path); 5974 if (ret < 0) { 5975 goto out; 5976 } else if (ret > 0) { 5977 ret = 0; 5978 break; 5979 } 5980 continue; 5981 } 5982 5983 btrfs_item_key_to_cpu(eb, &found_key, slot); 5984 5985 if (found_key.objectid != key.objectid || 5986 found_key.type != key.type) { 5987 ret = 0; 5988 goto out; 5989 } 5990 5991 ret = process_extent(sctx, path, &found_key); 5992 if (ret < 0) 5993 goto out; 5994 5995 path->slots[0]++; 5996 } 5997 5998 out: 5999 btrfs_free_path(path); 6000 return ret; 6001 } 6002 6003 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6004 int *pending_move, 6005 int *refs_processed) 6006 { 6007 int ret = 0; 6008 6009 if (sctx->cur_ino == 0) 6010 goto out; 6011 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6012 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6013 goto out; 6014 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6015 goto out; 6016 6017 ret = process_recorded_refs(sctx, pending_move); 6018 if (ret < 0) 6019 goto out; 6020 6021 *refs_processed = 1; 6022 out: 6023 return ret; 6024 } 6025 6026 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6027 { 6028 int ret = 0; 6029 u64 left_mode; 6030 u64 left_uid; 6031 u64 left_gid; 6032 u64 right_mode; 6033 u64 right_uid; 6034 u64 right_gid; 6035 int need_chmod = 0; 6036 int need_chown = 0; 6037 int need_truncate = 1; 6038 int pending_move = 0; 6039 int refs_processed = 0; 6040 6041 if (sctx->ignore_cur_inode) 6042 return 0; 6043 6044 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6045 &refs_processed); 6046 if (ret < 0) 6047 goto out; 6048 6049 /* 6050 * We have processed the refs and thus need to advance send_progress. 6051 * Now, calls to get_cur_xxx will take the updated refs of the current 6052 * inode into account. 6053 * 6054 * On the other hand, if our current inode is a directory and couldn't 6055 * be moved/renamed because its parent was renamed/moved too and it has 6056 * a higher inode number, we can only move/rename our current inode 6057 * after we moved/renamed its parent. Therefore in this case operate on 6058 * the old path (pre move/rename) of our current inode, and the 6059 * move/rename will be performed later. 6060 */ 6061 if (refs_processed && !pending_move) 6062 sctx->send_progress = sctx->cur_ino + 1; 6063 6064 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6065 goto out; 6066 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6067 goto out; 6068 6069 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 6070 &left_mode, &left_uid, &left_gid, NULL); 6071 if (ret < 0) 6072 goto out; 6073 6074 if (!sctx->parent_root || sctx->cur_inode_new) { 6075 need_chown = 1; 6076 if (!S_ISLNK(sctx->cur_inode_mode)) 6077 need_chmod = 1; 6078 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6079 need_truncate = 0; 6080 } else { 6081 u64 old_size; 6082 6083 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 6084 &old_size, NULL, &right_mode, &right_uid, 6085 &right_gid, NULL); 6086 if (ret < 0) 6087 goto out; 6088 6089 if (left_uid != right_uid || left_gid != right_gid) 6090 need_chown = 1; 6091 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6092 need_chmod = 1; 6093 if ((old_size == sctx->cur_inode_size) || 6094 (sctx->cur_inode_size > old_size && 6095 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6096 need_truncate = 0; 6097 } 6098 6099 if (S_ISREG(sctx->cur_inode_mode)) { 6100 if (need_send_hole(sctx)) { 6101 if (sctx->cur_inode_last_extent == (u64)-1 || 6102 sctx->cur_inode_last_extent < 6103 sctx->cur_inode_size) { 6104 ret = get_last_extent(sctx, (u64)-1); 6105 if (ret) 6106 goto out; 6107 } 6108 if (sctx->cur_inode_last_extent < 6109 sctx->cur_inode_size) { 6110 ret = send_hole(sctx, sctx->cur_inode_size); 6111 if (ret) 6112 goto out; 6113 } 6114 } 6115 if (need_truncate) { 6116 ret = send_truncate(sctx, sctx->cur_ino, 6117 sctx->cur_inode_gen, 6118 sctx->cur_inode_size); 6119 if (ret < 0) 6120 goto out; 6121 } 6122 } 6123 6124 if (need_chown) { 6125 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6126 left_uid, left_gid); 6127 if (ret < 0) 6128 goto out; 6129 } 6130 if (need_chmod) { 6131 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6132 left_mode); 6133 if (ret < 0) 6134 goto out; 6135 } 6136 6137 ret = send_capabilities(sctx); 6138 if (ret < 0) 6139 goto out; 6140 6141 /* 6142 * If other directory inodes depended on our current directory 6143 * inode's move/rename, now do their move/rename operations. 6144 */ 6145 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6146 ret = apply_children_dir_moves(sctx); 6147 if (ret) 6148 goto out; 6149 /* 6150 * Need to send that every time, no matter if it actually 6151 * changed between the two trees as we have done changes to 6152 * the inode before. If our inode is a directory and it's 6153 * waiting to be moved/renamed, we will send its utimes when 6154 * it's moved/renamed, therefore we don't need to do it here. 6155 */ 6156 sctx->send_progress = sctx->cur_ino + 1; 6157 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6158 if (ret < 0) 6159 goto out; 6160 } 6161 6162 out: 6163 return ret; 6164 } 6165 6166 struct parent_paths_ctx { 6167 struct list_head *refs; 6168 struct send_ctx *sctx; 6169 }; 6170 6171 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6172 void *ctx) 6173 { 6174 struct parent_paths_ctx *ppctx = ctx; 6175 6176 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6177 ppctx->refs); 6178 } 6179 6180 /* 6181 * Issue unlink operations for all paths of the current inode found in the 6182 * parent snapshot. 6183 */ 6184 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6185 { 6186 LIST_HEAD(deleted_refs); 6187 struct btrfs_path *path; 6188 struct btrfs_key key; 6189 struct parent_paths_ctx ctx; 6190 int ret; 6191 6192 path = alloc_path_for_send(); 6193 if (!path) 6194 return -ENOMEM; 6195 6196 key.objectid = sctx->cur_ino; 6197 key.type = BTRFS_INODE_REF_KEY; 6198 key.offset = 0; 6199 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6200 if (ret < 0) 6201 goto out; 6202 6203 ctx.refs = &deleted_refs; 6204 ctx.sctx = sctx; 6205 6206 while (true) { 6207 struct extent_buffer *eb = path->nodes[0]; 6208 int slot = path->slots[0]; 6209 6210 if (slot >= btrfs_header_nritems(eb)) { 6211 ret = btrfs_next_leaf(sctx->parent_root, path); 6212 if (ret < 0) 6213 goto out; 6214 else if (ret > 0) 6215 break; 6216 continue; 6217 } 6218 6219 btrfs_item_key_to_cpu(eb, &key, slot); 6220 if (key.objectid != sctx->cur_ino) 6221 break; 6222 if (key.type != BTRFS_INODE_REF_KEY && 6223 key.type != BTRFS_INODE_EXTREF_KEY) 6224 break; 6225 6226 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6227 record_parent_ref, &ctx); 6228 if (ret < 0) 6229 goto out; 6230 6231 path->slots[0]++; 6232 } 6233 6234 while (!list_empty(&deleted_refs)) { 6235 struct recorded_ref *ref; 6236 6237 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6238 ret = send_unlink(sctx, ref->full_path); 6239 if (ret < 0) 6240 goto out; 6241 fs_path_free(ref->full_path); 6242 list_del(&ref->list); 6243 kfree(ref); 6244 } 6245 ret = 0; 6246 out: 6247 btrfs_free_path(path); 6248 if (ret) 6249 __free_recorded_refs(&deleted_refs); 6250 return ret; 6251 } 6252 6253 static int changed_inode(struct send_ctx *sctx, 6254 enum btrfs_compare_tree_result result) 6255 { 6256 int ret = 0; 6257 struct btrfs_key *key = sctx->cmp_key; 6258 struct btrfs_inode_item *left_ii = NULL; 6259 struct btrfs_inode_item *right_ii = NULL; 6260 u64 left_gen = 0; 6261 u64 right_gen = 0; 6262 6263 sctx->cur_ino = key->objectid; 6264 sctx->cur_inode_new_gen = 0; 6265 sctx->cur_inode_last_extent = (u64)-1; 6266 sctx->cur_inode_next_write_offset = 0; 6267 sctx->ignore_cur_inode = false; 6268 6269 /* 6270 * Set send_progress to current inode. This will tell all get_cur_xxx 6271 * functions that the current inode's refs are not updated yet. Later, 6272 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6273 */ 6274 sctx->send_progress = sctx->cur_ino; 6275 6276 if (result == BTRFS_COMPARE_TREE_NEW || 6277 result == BTRFS_COMPARE_TREE_CHANGED) { 6278 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6279 sctx->left_path->slots[0], 6280 struct btrfs_inode_item); 6281 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6282 left_ii); 6283 } else { 6284 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6285 sctx->right_path->slots[0], 6286 struct btrfs_inode_item); 6287 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6288 right_ii); 6289 } 6290 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6291 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6292 sctx->right_path->slots[0], 6293 struct btrfs_inode_item); 6294 6295 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6296 right_ii); 6297 6298 /* 6299 * The cur_ino = root dir case is special here. We can't treat 6300 * the inode as deleted+reused because it would generate a 6301 * stream that tries to delete/mkdir the root dir. 6302 */ 6303 if (left_gen != right_gen && 6304 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6305 sctx->cur_inode_new_gen = 1; 6306 } 6307 6308 /* 6309 * Normally we do not find inodes with a link count of zero (orphans) 6310 * because the most common case is to create a snapshot and use it 6311 * for a send operation. However other less common use cases involve 6312 * using a subvolume and send it after turning it to RO mode just 6313 * after deleting all hard links of a file while holding an open 6314 * file descriptor against it or turning a RO snapshot into RW mode, 6315 * keep an open file descriptor against a file, delete it and then 6316 * turn the snapshot back to RO mode before using it for a send 6317 * operation. So if we find such cases, ignore the inode and all its 6318 * items completely if it's a new inode, or if it's a changed inode 6319 * make sure all its previous paths (from the parent snapshot) are all 6320 * unlinked and all other the inode items are ignored. 6321 */ 6322 if (result == BTRFS_COMPARE_TREE_NEW || 6323 result == BTRFS_COMPARE_TREE_CHANGED) { 6324 u32 nlinks; 6325 6326 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6327 if (nlinks == 0) { 6328 sctx->ignore_cur_inode = true; 6329 if (result == BTRFS_COMPARE_TREE_CHANGED) 6330 ret = btrfs_unlink_all_paths(sctx); 6331 goto out; 6332 } 6333 } 6334 6335 if (result == BTRFS_COMPARE_TREE_NEW) { 6336 sctx->cur_inode_gen = left_gen; 6337 sctx->cur_inode_new = 1; 6338 sctx->cur_inode_deleted = 0; 6339 sctx->cur_inode_size = btrfs_inode_size( 6340 sctx->left_path->nodes[0], left_ii); 6341 sctx->cur_inode_mode = btrfs_inode_mode( 6342 sctx->left_path->nodes[0], left_ii); 6343 sctx->cur_inode_rdev = btrfs_inode_rdev( 6344 sctx->left_path->nodes[0], left_ii); 6345 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6346 ret = send_create_inode_if_needed(sctx); 6347 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6348 sctx->cur_inode_gen = right_gen; 6349 sctx->cur_inode_new = 0; 6350 sctx->cur_inode_deleted = 1; 6351 sctx->cur_inode_size = btrfs_inode_size( 6352 sctx->right_path->nodes[0], right_ii); 6353 sctx->cur_inode_mode = btrfs_inode_mode( 6354 sctx->right_path->nodes[0], right_ii); 6355 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6356 /* 6357 * We need to do some special handling in case the inode was 6358 * reported as changed with a changed generation number. This 6359 * means that the original inode was deleted and new inode 6360 * reused the same inum. So we have to treat the old inode as 6361 * deleted and the new one as new. 6362 */ 6363 if (sctx->cur_inode_new_gen) { 6364 /* 6365 * First, process the inode as if it was deleted. 6366 */ 6367 sctx->cur_inode_gen = right_gen; 6368 sctx->cur_inode_new = 0; 6369 sctx->cur_inode_deleted = 1; 6370 sctx->cur_inode_size = btrfs_inode_size( 6371 sctx->right_path->nodes[0], right_ii); 6372 sctx->cur_inode_mode = btrfs_inode_mode( 6373 sctx->right_path->nodes[0], right_ii); 6374 ret = process_all_refs(sctx, 6375 BTRFS_COMPARE_TREE_DELETED); 6376 if (ret < 0) 6377 goto out; 6378 6379 /* 6380 * Now process the inode as if it was new. 6381 */ 6382 sctx->cur_inode_gen = left_gen; 6383 sctx->cur_inode_new = 1; 6384 sctx->cur_inode_deleted = 0; 6385 sctx->cur_inode_size = btrfs_inode_size( 6386 sctx->left_path->nodes[0], left_ii); 6387 sctx->cur_inode_mode = btrfs_inode_mode( 6388 sctx->left_path->nodes[0], left_ii); 6389 sctx->cur_inode_rdev = btrfs_inode_rdev( 6390 sctx->left_path->nodes[0], left_ii); 6391 ret = send_create_inode_if_needed(sctx); 6392 if (ret < 0) 6393 goto out; 6394 6395 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6396 if (ret < 0) 6397 goto out; 6398 /* 6399 * Advance send_progress now as we did not get into 6400 * process_recorded_refs_if_needed in the new_gen case. 6401 */ 6402 sctx->send_progress = sctx->cur_ino + 1; 6403 6404 /* 6405 * Now process all extents and xattrs of the inode as if 6406 * they were all new. 6407 */ 6408 ret = process_all_extents(sctx); 6409 if (ret < 0) 6410 goto out; 6411 ret = process_all_new_xattrs(sctx); 6412 if (ret < 0) 6413 goto out; 6414 } else { 6415 sctx->cur_inode_gen = left_gen; 6416 sctx->cur_inode_new = 0; 6417 sctx->cur_inode_new_gen = 0; 6418 sctx->cur_inode_deleted = 0; 6419 sctx->cur_inode_size = btrfs_inode_size( 6420 sctx->left_path->nodes[0], left_ii); 6421 sctx->cur_inode_mode = btrfs_inode_mode( 6422 sctx->left_path->nodes[0], left_ii); 6423 } 6424 } 6425 6426 out: 6427 return ret; 6428 } 6429 6430 /* 6431 * We have to process new refs before deleted refs, but compare_trees gives us 6432 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6433 * first and later process them in process_recorded_refs. 6434 * For the cur_inode_new_gen case, we skip recording completely because 6435 * changed_inode did already initiate processing of refs. The reason for this is 6436 * that in this case, compare_tree actually compares the refs of 2 different 6437 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6438 * refs of the right tree as deleted and all refs of the left tree as new. 6439 */ 6440 static int changed_ref(struct send_ctx *sctx, 6441 enum btrfs_compare_tree_result result) 6442 { 6443 int ret = 0; 6444 6445 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6446 inconsistent_snapshot_error(sctx, result, "reference"); 6447 return -EIO; 6448 } 6449 6450 if (!sctx->cur_inode_new_gen && 6451 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6452 if (result == BTRFS_COMPARE_TREE_NEW) 6453 ret = record_new_ref(sctx); 6454 else if (result == BTRFS_COMPARE_TREE_DELETED) 6455 ret = record_deleted_ref(sctx); 6456 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6457 ret = record_changed_ref(sctx); 6458 } 6459 6460 return ret; 6461 } 6462 6463 /* 6464 * Process new/deleted/changed xattrs. We skip processing in the 6465 * cur_inode_new_gen case because changed_inode did already initiate processing 6466 * of xattrs. The reason is the same as in changed_ref 6467 */ 6468 static int changed_xattr(struct send_ctx *sctx, 6469 enum btrfs_compare_tree_result result) 6470 { 6471 int ret = 0; 6472 6473 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6474 inconsistent_snapshot_error(sctx, result, "xattr"); 6475 return -EIO; 6476 } 6477 6478 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6479 if (result == BTRFS_COMPARE_TREE_NEW) 6480 ret = process_new_xattr(sctx); 6481 else if (result == BTRFS_COMPARE_TREE_DELETED) 6482 ret = process_deleted_xattr(sctx); 6483 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6484 ret = process_changed_xattr(sctx); 6485 } 6486 6487 return ret; 6488 } 6489 6490 /* 6491 * Process new/deleted/changed extents. We skip processing in the 6492 * cur_inode_new_gen case because changed_inode did already initiate processing 6493 * of extents. The reason is the same as in changed_ref 6494 */ 6495 static int changed_extent(struct send_ctx *sctx, 6496 enum btrfs_compare_tree_result result) 6497 { 6498 int ret = 0; 6499 6500 /* 6501 * We have found an extent item that changed without the inode item 6502 * having changed. This can happen either after relocation (where the 6503 * disk_bytenr of an extent item is replaced at 6504 * relocation.c:replace_file_extents()) or after deduplication into a 6505 * file in both the parent and send snapshots (where an extent item can 6506 * get modified or replaced with a new one). Note that deduplication 6507 * updates the inode item, but it only changes the iversion (sequence 6508 * field in the inode item) of the inode, so if a file is deduplicated 6509 * the same amount of times in both the parent and send snapshots, its 6510 * iversion becomes the same in both snapshots, whence the inode item is 6511 * the same on both snapshots. 6512 */ 6513 if (sctx->cur_ino != sctx->cmp_key->objectid) 6514 return 0; 6515 6516 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6517 if (result != BTRFS_COMPARE_TREE_DELETED) 6518 ret = process_extent(sctx, sctx->left_path, 6519 sctx->cmp_key); 6520 } 6521 6522 return ret; 6523 } 6524 6525 static int dir_changed(struct send_ctx *sctx, u64 dir) 6526 { 6527 u64 orig_gen, new_gen; 6528 int ret; 6529 6530 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6531 NULL, NULL); 6532 if (ret) 6533 return ret; 6534 6535 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6536 NULL, NULL, NULL); 6537 if (ret) 6538 return ret; 6539 6540 return (orig_gen != new_gen) ? 1 : 0; 6541 } 6542 6543 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6544 struct btrfs_key *key) 6545 { 6546 struct btrfs_inode_extref *extref; 6547 struct extent_buffer *leaf; 6548 u64 dirid = 0, last_dirid = 0; 6549 unsigned long ptr; 6550 u32 item_size; 6551 u32 cur_offset = 0; 6552 int ref_name_len; 6553 int ret = 0; 6554 6555 /* Easy case, just check this one dirid */ 6556 if (key->type == BTRFS_INODE_REF_KEY) { 6557 dirid = key->offset; 6558 6559 ret = dir_changed(sctx, dirid); 6560 goto out; 6561 } 6562 6563 leaf = path->nodes[0]; 6564 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6565 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6566 while (cur_offset < item_size) { 6567 extref = (struct btrfs_inode_extref *)(ptr + 6568 cur_offset); 6569 dirid = btrfs_inode_extref_parent(leaf, extref); 6570 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6571 cur_offset += ref_name_len + sizeof(*extref); 6572 if (dirid == last_dirid) 6573 continue; 6574 ret = dir_changed(sctx, dirid); 6575 if (ret) 6576 break; 6577 last_dirid = dirid; 6578 } 6579 out: 6580 return ret; 6581 } 6582 6583 /* 6584 * Updates compare related fields in sctx and simply forwards to the actual 6585 * changed_xxx functions. 6586 */ 6587 static int changed_cb(struct btrfs_path *left_path, 6588 struct btrfs_path *right_path, 6589 struct btrfs_key *key, 6590 enum btrfs_compare_tree_result result, 6591 struct send_ctx *sctx) 6592 { 6593 int ret = 0; 6594 6595 if (result == BTRFS_COMPARE_TREE_SAME) { 6596 if (key->type == BTRFS_INODE_REF_KEY || 6597 key->type == BTRFS_INODE_EXTREF_KEY) { 6598 ret = compare_refs(sctx, left_path, key); 6599 if (!ret) 6600 return 0; 6601 if (ret < 0) 6602 return ret; 6603 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6604 return maybe_send_hole(sctx, left_path, key); 6605 } else { 6606 return 0; 6607 } 6608 result = BTRFS_COMPARE_TREE_CHANGED; 6609 ret = 0; 6610 } 6611 6612 sctx->left_path = left_path; 6613 sctx->right_path = right_path; 6614 sctx->cmp_key = key; 6615 6616 ret = finish_inode_if_needed(sctx, 0); 6617 if (ret < 0) 6618 goto out; 6619 6620 /* Ignore non-FS objects */ 6621 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6622 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6623 goto out; 6624 6625 if (key->type == BTRFS_INODE_ITEM_KEY) { 6626 ret = changed_inode(sctx, result); 6627 } else if (!sctx->ignore_cur_inode) { 6628 if (key->type == BTRFS_INODE_REF_KEY || 6629 key->type == BTRFS_INODE_EXTREF_KEY) 6630 ret = changed_ref(sctx, result); 6631 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6632 ret = changed_xattr(sctx, result); 6633 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6634 ret = changed_extent(sctx, result); 6635 } 6636 6637 out: 6638 return ret; 6639 } 6640 6641 static int full_send_tree(struct send_ctx *sctx) 6642 { 6643 int ret; 6644 struct btrfs_root *send_root = sctx->send_root; 6645 struct btrfs_key key; 6646 struct btrfs_path *path; 6647 struct extent_buffer *eb; 6648 int slot; 6649 6650 path = alloc_path_for_send(); 6651 if (!path) 6652 return -ENOMEM; 6653 path->reada = READA_FORWARD_ALWAYS; 6654 6655 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6656 key.type = BTRFS_INODE_ITEM_KEY; 6657 key.offset = 0; 6658 6659 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6660 if (ret < 0) 6661 goto out; 6662 if (ret) 6663 goto out_finish; 6664 6665 while (1) { 6666 eb = path->nodes[0]; 6667 slot = path->slots[0]; 6668 btrfs_item_key_to_cpu(eb, &key, slot); 6669 6670 ret = changed_cb(path, NULL, &key, 6671 BTRFS_COMPARE_TREE_NEW, sctx); 6672 if (ret < 0) 6673 goto out; 6674 6675 ret = btrfs_next_item(send_root, path); 6676 if (ret < 0) 6677 goto out; 6678 if (ret) { 6679 ret = 0; 6680 break; 6681 } 6682 } 6683 6684 out_finish: 6685 ret = finish_inode_if_needed(sctx, 1); 6686 6687 out: 6688 btrfs_free_path(path); 6689 return ret; 6690 } 6691 6692 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 6693 { 6694 struct extent_buffer *eb; 6695 struct extent_buffer *parent = path->nodes[*level]; 6696 int slot = path->slots[*level]; 6697 const int nritems = btrfs_header_nritems(parent); 6698 u64 reada_max; 6699 u64 reada_done = 0; 6700 6701 BUG_ON(*level == 0); 6702 eb = btrfs_read_node_slot(parent, slot); 6703 if (IS_ERR(eb)) 6704 return PTR_ERR(eb); 6705 6706 /* 6707 * Trigger readahead for the next leaves we will process, so that it is 6708 * very likely that when we need them they are already in memory and we 6709 * will not block on disk IO. For nodes we only do readahead for one, 6710 * since the time window between processing nodes is typically larger. 6711 */ 6712 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 6713 6714 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 6715 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 6716 btrfs_readahead_node_child(parent, slot); 6717 reada_done += eb->fs_info->nodesize; 6718 } 6719 } 6720 6721 path->nodes[*level - 1] = eb; 6722 path->slots[*level - 1] = 0; 6723 (*level)--; 6724 return 0; 6725 } 6726 6727 static int tree_move_next_or_upnext(struct btrfs_path *path, 6728 int *level, int root_level) 6729 { 6730 int ret = 0; 6731 int nritems; 6732 nritems = btrfs_header_nritems(path->nodes[*level]); 6733 6734 path->slots[*level]++; 6735 6736 while (path->slots[*level] >= nritems) { 6737 if (*level == root_level) 6738 return -1; 6739 6740 /* move upnext */ 6741 path->slots[*level] = 0; 6742 free_extent_buffer(path->nodes[*level]); 6743 path->nodes[*level] = NULL; 6744 (*level)++; 6745 path->slots[*level]++; 6746 6747 nritems = btrfs_header_nritems(path->nodes[*level]); 6748 ret = 1; 6749 } 6750 return ret; 6751 } 6752 6753 /* 6754 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6755 * or down. 6756 */ 6757 static int tree_advance(struct btrfs_path *path, 6758 int *level, int root_level, 6759 int allow_down, 6760 struct btrfs_key *key, 6761 u64 reada_min_gen) 6762 { 6763 int ret; 6764 6765 if (*level == 0 || !allow_down) { 6766 ret = tree_move_next_or_upnext(path, level, root_level); 6767 } else { 6768 ret = tree_move_down(path, level, reada_min_gen); 6769 } 6770 if (ret >= 0) { 6771 if (*level == 0) 6772 btrfs_item_key_to_cpu(path->nodes[*level], key, 6773 path->slots[*level]); 6774 else 6775 btrfs_node_key_to_cpu(path->nodes[*level], key, 6776 path->slots[*level]); 6777 } 6778 return ret; 6779 } 6780 6781 static int tree_compare_item(struct btrfs_path *left_path, 6782 struct btrfs_path *right_path, 6783 char *tmp_buf) 6784 { 6785 int cmp; 6786 int len1, len2; 6787 unsigned long off1, off2; 6788 6789 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6790 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6791 if (len1 != len2) 6792 return 1; 6793 6794 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6795 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6796 right_path->slots[0]); 6797 6798 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6799 6800 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6801 if (cmp) 6802 return 1; 6803 return 0; 6804 } 6805 6806 /* 6807 * This function compares two trees and calls the provided callback for 6808 * every changed/new/deleted item it finds. 6809 * If shared tree blocks are encountered, whole subtrees are skipped, making 6810 * the compare pretty fast on snapshotted subvolumes. 6811 * 6812 * This currently works on commit roots only. As commit roots are read only, 6813 * we don't do any locking. The commit roots are protected with transactions. 6814 * Transactions are ended and rejoined when a commit is tried in between. 6815 * 6816 * This function checks for modifications done to the trees while comparing. 6817 * If it detects a change, it aborts immediately. 6818 */ 6819 static int btrfs_compare_trees(struct btrfs_root *left_root, 6820 struct btrfs_root *right_root, struct send_ctx *sctx) 6821 { 6822 struct btrfs_fs_info *fs_info = left_root->fs_info; 6823 int ret; 6824 int cmp; 6825 struct btrfs_path *left_path = NULL; 6826 struct btrfs_path *right_path = NULL; 6827 struct btrfs_key left_key; 6828 struct btrfs_key right_key; 6829 char *tmp_buf = NULL; 6830 int left_root_level; 6831 int right_root_level; 6832 int left_level; 6833 int right_level; 6834 int left_end_reached; 6835 int right_end_reached; 6836 int advance_left; 6837 int advance_right; 6838 u64 left_blockptr; 6839 u64 right_blockptr; 6840 u64 left_gen; 6841 u64 right_gen; 6842 u64 reada_min_gen; 6843 6844 left_path = btrfs_alloc_path(); 6845 if (!left_path) { 6846 ret = -ENOMEM; 6847 goto out; 6848 } 6849 right_path = btrfs_alloc_path(); 6850 if (!right_path) { 6851 ret = -ENOMEM; 6852 goto out; 6853 } 6854 6855 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6856 if (!tmp_buf) { 6857 ret = -ENOMEM; 6858 goto out; 6859 } 6860 6861 left_path->search_commit_root = 1; 6862 left_path->skip_locking = 1; 6863 right_path->search_commit_root = 1; 6864 right_path->skip_locking = 1; 6865 6866 /* 6867 * Strategy: Go to the first items of both trees. Then do 6868 * 6869 * If both trees are at level 0 6870 * Compare keys of current items 6871 * If left < right treat left item as new, advance left tree 6872 * and repeat 6873 * If left > right treat right item as deleted, advance right tree 6874 * and repeat 6875 * If left == right do deep compare of items, treat as changed if 6876 * needed, advance both trees and repeat 6877 * If both trees are at the same level but not at level 0 6878 * Compare keys of current nodes/leafs 6879 * If left < right advance left tree and repeat 6880 * If left > right advance right tree and repeat 6881 * If left == right compare blockptrs of the next nodes/leafs 6882 * If they match advance both trees but stay at the same level 6883 * and repeat 6884 * If they don't match advance both trees while allowing to go 6885 * deeper and repeat 6886 * If tree levels are different 6887 * Advance the tree that needs it and repeat 6888 * 6889 * Advancing a tree means: 6890 * If we are at level 0, try to go to the next slot. If that's not 6891 * possible, go one level up and repeat. Stop when we found a level 6892 * where we could go to the next slot. We may at this point be on a 6893 * node or a leaf. 6894 * 6895 * If we are not at level 0 and not on shared tree blocks, go one 6896 * level deeper. 6897 * 6898 * If we are not at level 0 and on shared tree blocks, go one slot to 6899 * the right if possible or go up and right. 6900 */ 6901 6902 down_read(&fs_info->commit_root_sem); 6903 left_level = btrfs_header_level(left_root->commit_root); 6904 left_root_level = left_level; 6905 left_path->nodes[left_level] = 6906 btrfs_clone_extent_buffer(left_root->commit_root); 6907 if (!left_path->nodes[left_level]) { 6908 up_read(&fs_info->commit_root_sem); 6909 ret = -ENOMEM; 6910 goto out; 6911 } 6912 6913 right_level = btrfs_header_level(right_root->commit_root); 6914 right_root_level = right_level; 6915 right_path->nodes[right_level] = 6916 btrfs_clone_extent_buffer(right_root->commit_root); 6917 if (!right_path->nodes[right_level]) { 6918 up_read(&fs_info->commit_root_sem); 6919 ret = -ENOMEM; 6920 goto out; 6921 } 6922 /* 6923 * Our right root is the parent root, while the left root is the "send" 6924 * root. We know that all new nodes/leaves in the left root must have 6925 * a generation greater than the right root's generation, so we trigger 6926 * readahead for those nodes and leaves of the left root, as we know we 6927 * will need to read them at some point. 6928 */ 6929 reada_min_gen = btrfs_header_generation(right_root->commit_root); 6930 up_read(&fs_info->commit_root_sem); 6931 6932 if (left_level == 0) 6933 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6934 &left_key, left_path->slots[left_level]); 6935 else 6936 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6937 &left_key, left_path->slots[left_level]); 6938 if (right_level == 0) 6939 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6940 &right_key, right_path->slots[right_level]); 6941 else 6942 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6943 &right_key, right_path->slots[right_level]); 6944 6945 left_end_reached = right_end_reached = 0; 6946 advance_left = advance_right = 0; 6947 6948 while (1) { 6949 cond_resched(); 6950 if (advance_left && !left_end_reached) { 6951 ret = tree_advance(left_path, &left_level, 6952 left_root_level, 6953 advance_left != ADVANCE_ONLY_NEXT, 6954 &left_key, reada_min_gen); 6955 if (ret == -1) 6956 left_end_reached = ADVANCE; 6957 else if (ret < 0) 6958 goto out; 6959 advance_left = 0; 6960 } 6961 if (advance_right && !right_end_reached) { 6962 ret = tree_advance(right_path, &right_level, 6963 right_root_level, 6964 advance_right != ADVANCE_ONLY_NEXT, 6965 &right_key, reada_min_gen); 6966 if (ret == -1) 6967 right_end_reached = ADVANCE; 6968 else if (ret < 0) 6969 goto out; 6970 advance_right = 0; 6971 } 6972 6973 if (left_end_reached && right_end_reached) { 6974 ret = 0; 6975 goto out; 6976 } else if (left_end_reached) { 6977 if (right_level == 0) { 6978 ret = changed_cb(left_path, right_path, 6979 &right_key, 6980 BTRFS_COMPARE_TREE_DELETED, 6981 sctx); 6982 if (ret < 0) 6983 goto out; 6984 } 6985 advance_right = ADVANCE; 6986 continue; 6987 } else if (right_end_reached) { 6988 if (left_level == 0) { 6989 ret = changed_cb(left_path, right_path, 6990 &left_key, 6991 BTRFS_COMPARE_TREE_NEW, 6992 sctx); 6993 if (ret < 0) 6994 goto out; 6995 } 6996 advance_left = ADVANCE; 6997 continue; 6998 } 6999 7000 if (left_level == 0 && right_level == 0) { 7001 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7002 if (cmp < 0) { 7003 ret = changed_cb(left_path, right_path, 7004 &left_key, 7005 BTRFS_COMPARE_TREE_NEW, 7006 sctx); 7007 if (ret < 0) 7008 goto out; 7009 advance_left = ADVANCE; 7010 } else if (cmp > 0) { 7011 ret = changed_cb(left_path, right_path, 7012 &right_key, 7013 BTRFS_COMPARE_TREE_DELETED, 7014 sctx); 7015 if (ret < 0) 7016 goto out; 7017 advance_right = ADVANCE; 7018 } else { 7019 enum btrfs_compare_tree_result result; 7020 7021 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7022 ret = tree_compare_item(left_path, right_path, 7023 tmp_buf); 7024 if (ret) 7025 result = BTRFS_COMPARE_TREE_CHANGED; 7026 else 7027 result = BTRFS_COMPARE_TREE_SAME; 7028 ret = changed_cb(left_path, right_path, 7029 &left_key, result, sctx); 7030 if (ret < 0) 7031 goto out; 7032 advance_left = ADVANCE; 7033 advance_right = ADVANCE; 7034 } 7035 } else if (left_level == right_level) { 7036 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7037 if (cmp < 0) { 7038 advance_left = ADVANCE; 7039 } else if (cmp > 0) { 7040 advance_right = ADVANCE; 7041 } else { 7042 left_blockptr = btrfs_node_blockptr( 7043 left_path->nodes[left_level], 7044 left_path->slots[left_level]); 7045 right_blockptr = btrfs_node_blockptr( 7046 right_path->nodes[right_level], 7047 right_path->slots[right_level]); 7048 left_gen = btrfs_node_ptr_generation( 7049 left_path->nodes[left_level], 7050 left_path->slots[left_level]); 7051 right_gen = btrfs_node_ptr_generation( 7052 right_path->nodes[right_level], 7053 right_path->slots[right_level]); 7054 if (left_blockptr == right_blockptr && 7055 left_gen == right_gen) { 7056 /* 7057 * As we're on a shared block, don't 7058 * allow to go deeper. 7059 */ 7060 advance_left = ADVANCE_ONLY_NEXT; 7061 advance_right = ADVANCE_ONLY_NEXT; 7062 } else { 7063 advance_left = ADVANCE; 7064 advance_right = ADVANCE; 7065 } 7066 } 7067 } else if (left_level < right_level) { 7068 advance_right = ADVANCE; 7069 } else { 7070 advance_left = ADVANCE; 7071 } 7072 } 7073 7074 out: 7075 btrfs_free_path(left_path); 7076 btrfs_free_path(right_path); 7077 kvfree(tmp_buf); 7078 return ret; 7079 } 7080 7081 static int send_subvol(struct send_ctx *sctx) 7082 { 7083 int ret; 7084 7085 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7086 ret = send_header(sctx); 7087 if (ret < 0) 7088 goto out; 7089 } 7090 7091 ret = send_subvol_begin(sctx); 7092 if (ret < 0) 7093 goto out; 7094 7095 if (sctx->parent_root) { 7096 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7097 if (ret < 0) 7098 goto out; 7099 ret = finish_inode_if_needed(sctx, 1); 7100 if (ret < 0) 7101 goto out; 7102 } else { 7103 ret = full_send_tree(sctx); 7104 if (ret < 0) 7105 goto out; 7106 } 7107 7108 out: 7109 free_recorded_refs(sctx); 7110 return ret; 7111 } 7112 7113 /* 7114 * If orphan cleanup did remove any orphans from a root, it means the tree 7115 * was modified and therefore the commit root is not the same as the current 7116 * root anymore. This is a problem, because send uses the commit root and 7117 * therefore can see inode items that don't exist in the current root anymore, 7118 * and for example make calls to btrfs_iget, which will do tree lookups based 7119 * on the current root and not on the commit root. Those lookups will fail, 7120 * returning a -ESTALE error, and making send fail with that error. So make 7121 * sure a send does not see any orphans we have just removed, and that it will 7122 * see the same inodes regardless of whether a transaction commit happened 7123 * before it started (meaning that the commit root will be the same as the 7124 * current root) or not. 7125 */ 7126 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7127 { 7128 int i; 7129 struct btrfs_trans_handle *trans = NULL; 7130 7131 again: 7132 if (sctx->parent_root && 7133 sctx->parent_root->node != sctx->parent_root->commit_root) 7134 goto commit_trans; 7135 7136 for (i = 0; i < sctx->clone_roots_cnt; i++) 7137 if (sctx->clone_roots[i].root->node != 7138 sctx->clone_roots[i].root->commit_root) 7139 goto commit_trans; 7140 7141 if (trans) 7142 return btrfs_end_transaction(trans); 7143 7144 return 0; 7145 7146 commit_trans: 7147 /* Use any root, all fs roots will get their commit roots updated. */ 7148 if (!trans) { 7149 trans = btrfs_join_transaction(sctx->send_root); 7150 if (IS_ERR(trans)) 7151 return PTR_ERR(trans); 7152 goto again; 7153 } 7154 7155 return btrfs_commit_transaction(trans); 7156 } 7157 7158 /* 7159 * Make sure any existing dellaloc is flushed for any root used by a send 7160 * operation so that we do not miss any data and we do not race with writeback 7161 * finishing and changing a tree while send is using the tree. This could 7162 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7163 * a send operation then uses the subvolume. 7164 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7165 */ 7166 static int flush_delalloc_roots(struct send_ctx *sctx) 7167 { 7168 struct btrfs_root *root = sctx->parent_root; 7169 int ret; 7170 int i; 7171 7172 if (root) { 7173 ret = btrfs_start_delalloc_snapshot(root, false); 7174 if (ret) 7175 return ret; 7176 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7177 } 7178 7179 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7180 root = sctx->clone_roots[i].root; 7181 ret = btrfs_start_delalloc_snapshot(root, false); 7182 if (ret) 7183 return ret; 7184 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7185 } 7186 7187 return 0; 7188 } 7189 7190 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7191 { 7192 spin_lock(&root->root_item_lock); 7193 root->send_in_progress--; 7194 /* 7195 * Not much left to do, we don't know why it's unbalanced and 7196 * can't blindly reset it to 0. 7197 */ 7198 if (root->send_in_progress < 0) 7199 btrfs_err(root->fs_info, 7200 "send_in_progress unbalanced %d root %llu", 7201 root->send_in_progress, root->root_key.objectid); 7202 spin_unlock(&root->root_item_lock); 7203 } 7204 7205 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7206 { 7207 btrfs_warn_rl(root->fs_info, 7208 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7209 root->root_key.objectid, root->dedupe_in_progress); 7210 } 7211 7212 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7213 { 7214 int ret = 0; 7215 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7216 struct btrfs_fs_info *fs_info = send_root->fs_info; 7217 struct btrfs_root *clone_root; 7218 struct send_ctx *sctx = NULL; 7219 u32 i; 7220 u64 *clone_sources_tmp = NULL; 7221 int clone_sources_to_rollback = 0; 7222 size_t alloc_size; 7223 int sort_clone_roots = 0; 7224 7225 if (!capable(CAP_SYS_ADMIN)) 7226 return -EPERM; 7227 7228 /* 7229 * The subvolume must remain read-only during send, protect against 7230 * making it RW. This also protects against deletion. 7231 */ 7232 spin_lock(&send_root->root_item_lock); 7233 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7234 dedupe_in_progress_warn(send_root); 7235 spin_unlock(&send_root->root_item_lock); 7236 return -EAGAIN; 7237 } 7238 send_root->send_in_progress++; 7239 spin_unlock(&send_root->root_item_lock); 7240 7241 /* 7242 * Userspace tools do the checks and warn the user if it's 7243 * not RO. 7244 */ 7245 if (!btrfs_root_readonly(send_root)) { 7246 ret = -EPERM; 7247 goto out; 7248 } 7249 7250 /* 7251 * Check that we don't overflow at later allocations, we request 7252 * clone_sources_count + 1 items, and compare to unsigned long inside 7253 * access_ok. 7254 */ 7255 if (arg->clone_sources_count > 7256 ULONG_MAX / sizeof(struct clone_root) - 1) { 7257 ret = -EINVAL; 7258 goto out; 7259 } 7260 7261 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7262 ret = -EINVAL; 7263 goto out; 7264 } 7265 7266 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7267 if (!sctx) { 7268 ret = -ENOMEM; 7269 goto out; 7270 } 7271 7272 INIT_LIST_HEAD(&sctx->new_refs); 7273 INIT_LIST_HEAD(&sctx->deleted_refs); 7274 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7275 INIT_LIST_HEAD(&sctx->name_cache_list); 7276 7277 sctx->flags = arg->flags; 7278 7279 sctx->send_filp = fget(arg->send_fd); 7280 if (!sctx->send_filp) { 7281 ret = -EBADF; 7282 goto out; 7283 } 7284 7285 sctx->send_root = send_root; 7286 /* 7287 * Unlikely but possible, if the subvolume is marked for deletion but 7288 * is slow to remove the directory entry, send can still be started 7289 */ 7290 if (btrfs_root_dead(sctx->send_root)) { 7291 ret = -EPERM; 7292 goto out; 7293 } 7294 7295 sctx->clone_roots_cnt = arg->clone_sources_count; 7296 7297 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7298 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7299 if (!sctx->send_buf) { 7300 ret = -ENOMEM; 7301 goto out; 7302 } 7303 7304 sctx->pending_dir_moves = RB_ROOT; 7305 sctx->waiting_dir_moves = RB_ROOT; 7306 sctx->orphan_dirs = RB_ROOT; 7307 7308 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7309 arg->clone_sources_count + 1, 7310 GFP_KERNEL); 7311 if (!sctx->clone_roots) { 7312 ret = -ENOMEM; 7313 goto out; 7314 } 7315 7316 alloc_size = array_size(sizeof(*arg->clone_sources), 7317 arg->clone_sources_count); 7318 7319 if (arg->clone_sources_count) { 7320 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7321 if (!clone_sources_tmp) { 7322 ret = -ENOMEM; 7323 goto out; 7324 } 7325 7326 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7327 alloc_size); 7328 if (ret) { 7329 ret = -EFAULT; 7330 goto out; 7331 } 7332 7333 for (i = 0; i < arg->clone_sources_count; i++) { 7334 clone_root = btrfs_get_fs_root(fs_info, 7335 clone_sources_tmp[i], true); 7336 if (IS_ERR(clone_root)) { 7337 ret = PTR_ERR(clone_root); 7338 goto out; 7339 } 7340 spin_lock(&clone_root->root_item_lock); 7341 if (!btrfs_root_readonly(clone_root) || 7342 btrfs_root_dead(clone_root)) { 7343 spin_unlock(&clone_root->root_item_lock); 7344 btrfs_put_root(clone_root); 7345 ret = -EPERM; 7346 goto out; 7347 } 7348 if (clone_root->dedupe_in_progress) { 7349 dedupe_in_progress_warn(clone_root); 7350 spin_unlock(&clone_root->root_item_lock); 7351 btrfs_put_root(clone_root); 7352 ret = -EAGAIN; 7353 goto out; 7354 } 7355 clone_root->send_in_progress++; 7356 spin_unlock(&clone_root->root_item_lock); 7357 7358 sctx->clone_roots[i].root = clone_root; 7359 clone_sources_to_rollback = i + 1; 7360 } 7361 kvfree(clone_sources_tmp); 7362 clone_sources_tmp = NULL; 7363 } 7364 7365 if (arg->parent_root) { 7366 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7367 true); 7368 if (IS_ERR(sctx->parent_root)) { 7369 ret = PTR_ERR(sctx->parent_root); 7370 goto out; 7371 } 7372 7373 spin_lock(&sctx->parent_root->root_item_lock); 7374 sctx->parent_root->send_in_progress++; 7375 if (!btrfs_root_readonly(sctx->parent_root) || 7376 btrfs_root_dead(sctx->parent_root)) { 7377 spin_unlock(&sctx->parent_root->root_item_lock); 7378 ret = -EPERM; 7379 goto out; 7380 } 7381 if (sctx->parent_root->dedupe_in_progress) { 7382 dedupe_in_progress_warn(sctx->parent_root); 7383 spin_unlock(&sctx->parent_root->root_item_lock); 7384 ret = -EAGAIN; 7385 goto out; 7386 } 7387 spin_unlock(&sctx->parent_root->root_item_lock); 7388 } 7389 7390 /* 7391 * Clones from send_root are allowed, but only if the clone source 7392 * is behind the current send position. This is checked while searching 7393 * for possible clone sources. 7394 */ 7395 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7396 btrfs_grab_root(sctx->send_root); 7397 7398 /* We do a bsearch later */ 7399 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7400 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7401 NULL); 7402 sort_clone_roots = 1; 7403 7404 ret = flush_delalloc_roots(sctx); 7405 if (ret) 7406 goto out; 7407 7408 ret = ensure_commit_roots_uptodate(sctx); 7409 if (ret) 7410 goto out; 7411 7412 spin_lock(&fs_info->send_reloc_lock); 7413 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 7414 spin_unlock(&fs_info->send_reloc_lock); 7415 btrfs_warn_rl(fs_info, 7416 "cannot run send because a relocation operation is in progress"); 7417 ret = -EAGAIN; 7418 goto out; 7419 } 7420 fs_info->send_in_progress++; 7421 spin_unlock(&fs_info->send_reloc_lock); 7422 7423 ret = send_subvol(sctx); 7424 spin_lock(&fs_info->send_reloc_lock); 7425 fs_info->send_in_progress--; 7426 spin_unlock(&fs_info->send_reloc_lock); 7427 if (ret < 0) 7428 goto out; 7429 7430 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7431 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7432 if (ret < 0) 7433 goto out; 7434 ret = send_cmd(sctx); 7435 if (ret < 0) 7436 goto out; 7437 } 7438 7439 out: 7440 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7441 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7442 struct rb_node *n; 7443 struct pending_dir_move *pm; 7444 7445 n = rb_first(&sctx->pending_dir_moves); 7446 pm = rb_entry(n, struct pending_dir_move, node); 7447 while (!list_empty(&pm->list)) { 7448 struct pending_dir_move *pm2; 7449 7450 pm2 = list_first_entry(&pm->list, 7451 struct pending_dir_move, list); 7452 free_pending_move(sctx, pm2); 7453 } 7454 free_pending_move(sctx, pm); 7455 } 7456 7457 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7458 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7459 struct rb_node *n; 7460 struct waiting_dir_move *dm; 7461 7462 n = rb_first(&sctx->waiting_dir_moves); 7463 dm = rb_entry(n, struct waiting_dir_move, node); 7464 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7465 kfree(dm); 7466 } 7467 7468 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7469 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7470 struct rb_node *n; 7471 struct orphan_dir_info *odi; 7472 7473 n = rb_first(&sctx->orphan_dirs); 7474 odi = rb_entry(n, struct orphan_dir_info, node); 7475 free_orphan_dir_info(sctx, odi); 7476 } 7477 7478 if (sort_clone_roots) { 7479 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7480 btrfs_root_dec_send_in_progress( 7481 sctx->clone_roots[i].root); 7482 btrfs_put_root(sctx->clone_roots[i].root); 7483 } 7484 } else { 7485 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7486 btrfs_root_dec_send_in_progress( 7487 sctx->clone_roots[i].root); 7488 btrfs_put_root(sctx->clone_roots[i].root); 7489 } 7490 7491 btrfs_root_dec_send_in_progress(send_root); 7492 } 7493 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7494 btrfs_root_dec_send_in_progress(sctx->parent_root); 7495 btrfs_put_root(sctx->parent_root); 7496 } 7497 7498 kvfree(clone_sources_tmp); 7499 7500 if (sctx) { 7501 if (sctx->send_filp) 7502 fput(sctx->send_filp); 7503 7504 kvfree(sctx->clone_roots); 7505 kvfree(sctx->send_buf); 7506 7507 name_cache_free(sctx); 7508 7509 kfree(sctx); 7510 } 7511 7512 return ret; 7513 } 7514