xref: /linux/fs/btrfs/send.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * A fs_path is a helper to dynamically build path names with unknown size.
29  * It reallocates the internal buffer on demand.
30  * It allows fast adding of path elements on the right side (normal path) and
31  * fast adding to the left side (reversed path). A reversed path can also be
32  * unreversed if needed.
33  */
34 struct fs_path {
35 	union {
36 		struct {
37 			char *start;
38 			char *end;
39 
40 			char *buf;
41 			unsigned short buf_len:15;
42 			unsigned short reversed:1;
43 			char inline_buf[];
44 		};
45 		/*
46 		 * Average path length does not exceed 200 bytes, we'll have
47 		 * better packing in the slab and higher chance to satisfy
48 		 * a allocation later during send.
49 		 */
50 		char pad[256];
51 	};
52 };
53 #define FS_PATH_INLINE_SIZE \
54 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55 
56 
57 /* reused for each extent */
58 struct clone_root {
59 	struct btrfs_root *root;
60 	u64 ino;
61 	u64 offset;
62 
63 	u64 found_refs;
64 };
65 
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68 
69 struct send_ctx {
70 	struct file *send_filp;
71 	loff_t send_off;
72 	char *send_buf;
73 	u32 send_size;
74 	u32 send_max_size;
75 	u64 total_send_size;
76 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
78 
79 	struct btrfs_root *send_root;
80 	struct btrfs_root *parent_root;
81 	struct clone_root *clone_roots;
82 	int clone_roots_cnt;
83 
84 	/* current state of the compare_tree call */
85 	struct btrfs_path *left_path;
86 	struct btrfs_path *right_path;
87 	struct btrfs_key *cmp_key;
88 
89 	/*
90 	 * infos of the currently processed inode. In case of deleted inodes,
91 	 * these are the values from the deleted inode.
92 	 */
93 	u64 cur_ino;
94 	u64 cur_inode_gen;
95 	int cur_inode_new;
96 	int cur_inode_new_gen;
97 	int cur_inode_deleted;
98 	u64 cur_inode_size;
99 	u64 cur_inode_mode;
100 	u64 cur_inode_rdev;
101 	u64 cur_inode_last_extent;
102 	u64 cur_inode_next_write_offset;
103 	bool ignore_cur_inode;
104 
105 	u64 send_progress;
106 
107 	struct list_head new_refs;
108 	struct list_head deleted_refs;
109 
110 	struct radix_tree_root name_cache;
111 	struct list_head name_cache_list;
112 	int name_cache_size;
113 
114 	struct file_ra_state ra;
115 
116 	char *read_buf;
117 
118 	/*
119 	 * We process inodes by their increasing order, so if before an
120 	 * incremental send we reverse the parent/child relationship of
121 	 * directories such that a directory with a lower inode number was
122 	 * the parent of a directory with a higher inode number, and the one
123 	 * becoming the new parent got renamed too, we can't rename/move the
124 	 * directory with lower inode number when we finish processing it - we
125 	 * must process the directory with higher inode number first, then
126 	 * rename/move it and then rename/move the directory with lower inode
127 	 * number. Example follows.
128 	 *
129 	 * Tree state when the first send was performed:
130 	 *
131 	 * .
132 	 * |-- a                   (ino 257)
133 	 *     |-- b               (ino 258)
134 	 *         |
135 	 *         |
136 	 *         |-- c           (ino 259)
137 	 *         |   |-- d       (ino 260)
138 	 *         |
139 	 *         |-- c2          (ino 261)
140 	 *
141 	 * Tree state when the second (incremental) send is performed:
142 	 *
143 	 * .
144 	 * |-- a                   (ino 257)
145 	 *     |-- b               (ino 258)
146 	 *         |-- c2          (ino 261)
147 	 *             |-- d2      (ino 260)
148 	 *                 |-- cc  (ino 259)
149 	 *
150 	 * The sequence of steps that lead to the second state was:
151 	 *
152 	 * mv /a/b/c/d /a/b/c2/d2
153 	 * mv /a/b/c /a/b/c2/d2/cc
154 	 *
155 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 	 * before we move "d", which has higher inode number.
157 	 *
158 	 * So we just memorize which move/rename operations must be performed
159 	 * later when their respective parent is processed and moved/renamed.
160 	 */
161 
162 	/* Indexed by parent directory inode number. */
163 	struct rb_root pending_dir_moves;
164 
165 	/*
166 	 * Reverse index, indexed by the inode number of a directory that
167 	 * is waiting for the move/rename of its immediate parent before its
168 	 * own move/rename can be performed.
169 	 */
170 	struct rb_root waiting_dir_moves;
171 
172 	/*
173 	 * A directory that is going to be rm'ed might have a child directory
174 	 * which is in the pending directory moves index above. In this case,
175 	 * the directory can only be removed after the move/rename of its child
176 	 * is performed. Example:
177 	 *
178 	 * Parent snapshot:
179 	 *
180 	 * .                        (ino 256)
181 	 * |-- a/                   (ino 257)
182 	 *     |-- b/               (ino 258)
183 	 *         |-- c/           (ino 259)
184 	 *         |   |-- x/       (ino 260)
185 	 *         |
186 	 *         |-- y/           (ino 261)
187 	 *
188 	 * Send snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- YY/          (ino 261)
194 	 *              |-- x/      (ino 260)
195 	 *
196 	 * Sequence of steps that lead to the send snapshot:
197 	 * rm -f /a/b/c/foo.txt
198 	 * mv /a/b/y /a/b/YY
199 	 * mv /a/b/c/x /a/b/YY
200 	 * rmdir /a/b/c
201 	 *
202 	 * When the child is processed, its move/rename is delayed until its
203 	 * parent is processed (as explained above), but all other operations
204 	 * like update utimes, chown, chgrp, etc, are performed and the paths
205 	 * that it uses for those operations must use the orphanized name of
206 	 * its parent (the directory we're going to rm later), so we need to
207 	 * memorize that name.
208 	 *
209 	 * Indexed by the inode number of the directory to be deleted.
210 	 */
211 	struct rb_root orphan_dirs;
212 };
213 
214 struct pending_dir_move {
215 	struct rb_node node;
216 	struct list_head list;
217 	u64 parent_ino;
218 	u64 ino;
219 	u64 gen;
220 	struct list_head update_refs;
221 };
222 
223 struct waiting_dir_move {
224 	struct rb_node node;
225 	u64 ino;
226 	/*
227 	 * There might be some directory that could not be removed because it
228 	 * was waiting for this directory inode to be moved first. Therefore
229 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
230 	 */
231 	u64 rmdir_ino;
232 	bool orphanized;
233 };
234 
235 struct orphan_dir_info {
236 	struct rb_node node;
237 	u64 ino;
238 	u64 gen;
239 	u64 last_dir_index_offset;
240 };
241 
242 struct name_cache_entry {
243 	struct list_head list;
244 	/*
245 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 	 * more then one inum would fall into the same entry, we use radix_list
248 	 * to store the additional entries. radix_list is also used to store
249 	 * entries where two entries have the same inum but different
250 	 * generations.
251 	 */
252 	struct list_head radix_list;
253 	u64 ino;
254 	u64 gen;
255 	u64 parent_ino;
256 	u64 parent_gen;
257 	int ret;
258 	int need_later_update;
259 	int name_len;
260 	char name[];
261 };
262 
263 __cold
264 static void inconsistent_snapshot_error(struct send_ctx *sctx,
265 					enum btrfs_compare_tree_result result,
266 					const char *what)
267 {
268 	const char *result_string;
269 
270 	switch (result) {
271 	case BTRFS_COMPARE_TREE_NEW:
272 		result_string = "new";
273 		break;
274 	case BTRFS_COMPARE_TREE_DELETED:
275 		result_string = "deleted";
276 		break;
277 	case BTRFS_COMPARE_TREE_CHANGED:
278 		result_string = "updated";
279 		break;
280 	case BTRFS_COMPARE_TREE_SAME:
281 		ASSERT(0);
282 		result_string = "unchanged";
283 		break;
284 	default:
285 		ASSERT(0);
286 		result_string = "unexpected";
287 	}
288 
289 	btrfs_err(sctx->send_root->fs_info,
290 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
291 		  result_string, what, sctx->cmp_key->objectid,
292 		  sctx->send_root->root_key.objectid,
293 		  (sctx->parent_root ?
294 		   sctx->parent_root->root_key.objectid : 0));
295 }
296 
297 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
298 
299 static struct waiting_dir_move *
300 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
301 
302 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
303 
304 static int need_send_hole(struct send_ctx *sctx)
305 {
306 	return (sctx->parent_root && !sctx->cur_inode_new &&
307 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
308 		S_ISREG(sctx->cur_inode_mode));
309 }
310 
311 static void fs_path_reset(struct fs_path *p)
312 {
313 	if (p->reversed) {
314 		p->start = p->buf + p->buf_len - 1;
315 		p->end = p->start;
316 		*p->start = 0;
317 	} else {
318 		p->start = p->buf;
319 		p->end = p->start;
320 		*p->start = 0;
321 	}
322 }
323 
324 static struct fs_path *fs_path_alloc(void)
325 {
326 	struct fs_path *p;
327 
328 	p = kmalloc(sizeof(*p), GFP_KERNEL);
329 	if (!p)
330 		return NULL;
331 	p->reversed = 0;
332 	p->buf = p->inline_buf;
333 	p->buf_len = FS_PATH_INLINE_SIZE;
334 	fs_path_reset(p);
335 	return p;
336 }
337 
338 static struct fs_path *fs_path_alloc_reversed(void)
339 {
340 	struct fs_path *p;
341 
342 	p = fs_path_alloc();
343 	if (!p)
344 		return NULL;
345 	p->reversed = 1;
346 	fs_path_reset(p);
347 	return p;
348 }
349 
350 static void fs_path_free(struct fs_path *p)
351 {
352 	if (!p)
353 		return;
354 	if (p->buf != p->inline_buf)
355 		kfree(p->buf);
356 	kfree(p);
357 }
358 
359 static int fs_path_len(struct fs_path *p)
360 {
361 	return p->end - p->start;
362 }
363 
364 static int fs_path_ensure_buf(struct fs_path *p, int len)
365 {
366 	char *tmp_buf;
367 	int path_len;
368 	int old_buf_len;
369 
370 	len++;
371 
372 	if (p->buf_len >= len)
373 		return 0;
374 
375 	if (len > PATH_MAX) {
376 		WARN_ON(1);
377 		return -ENOMEM;
378 	}
379 
380 	path_len = p->end - p->start;
381 	old_buf_len = p->buf_len;
382 
383 	/*
384 	 * First time the inline_buf does not suffice
385 	 */
386 	if (p->buf == p->inline_buf) {
387 		tmp_buf = kmalloc(len, GFP_KERNEL);
388 		if (tmp_buf)
389 			memcpy(tmp_buf, p->buf, old_buf_len);
390 	} else {
391 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
392 	}
393 	if (!tmp_buf)
394 		return -ENOMEM;
395 	p->buf = tmp_buf;
396 	/*
397 	 * The real size of the buffer is bigger, this will let the fast path
398 	 * happen most of the time
399 	 */
400 	p->buf_len = ksize(p->buf);
401 
402 	if (p->reversed) {
403 		tmp_buf = p->buf + old_buf_len - path_len - 1;
404 		p->end = p->buf + p->buf_len - 1;
405 		p->start = p->end - path_len;
406 		memmove(p->start, tmp_buf, path_len + 1);
407 	} else {
408 		p->start = p->buf;
409 		p->end = p->start + path_len;
410 	}
411 	return 0;
412 }
413 
414 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
415 				   char **prepared)
416 {
417 	int ret;
418 	int new_len;
419 
420 	new_len = p->end - p->start + name_len;
421 	if (p->start != p->end)
422 		new_len++;
423 	ret = fs_path_ensure_buf(p, new_len);
424 	if (ret < 0)
425 		goto out;
426 
427 	if (p->reversed) {
428 		if (p->start != p->end)
429 			*--p->start = '/';
430 		p->start -= name_len;
431 		*prepared = p->start;
432 	} else {
433 		if (p->start != p->end)
434 			*p->end++ = '/';
435 		*prepared = p->end;
436 		p->end += name_len;
437 		*p->end = 0;
438 	}
439 
440 out:
441 	return ret;
442 }
443 
444 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
445 {
446 	int ret;
447 	char *prepared;
448 
449 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
450 	if (ret < 0)
451 		goto out;
452 	memcpy(prepared, name, name_len);
453 
454 out:
455 	return ret;
456 }
457 
458 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
459 {
460 	int ret;
461 	char *prepared;
462 
463 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
464 	if (ret < 0)
465 		goto out;
466 	memcpy(prepared, p2->start, p2->end - p2->start);
467 
468 out:
469 	return ret;
470 }
471 
472 static int fs_path_add_from_extent_buffer(struct fs_path *p,
473 					  struct extent_buffer *eb,
474 					  unsigned long off, int len)
475 {
476 	int ret;
477 	char *prepared;
478 
479 	ret = fs_path_prepare_for_add(p, len, &prepared);
480 	if (ret < 0)
481 		goto out;
482 
483 	read_extent_buffer(eb, prepared, off, len);
484 
485 out:
486 	return ret;
487 }
488 
489 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
490 {
491 	int ret;
492 
493 	p->reversed = from->reversed;
494 	fs_path_reset(p);
495 
496 	ret = fs_path_add_path(p, from);
497 
498 	return ret;
499 }
500 
501 
502 static void fs_path_unreverse(struct fs_path *p)
503 {
504 	char *tmp;
505 	int len;
506 
507 	if (!p->reversed)
508 		return;
509 
510 	tmp = p->start;
511 	len = p->end - p->start;
512 	p->start = p->buf;
513 	p->end = p->start + len;
514 	memmove(p->start, tmp, len + 1);
515 	p->reversed = 0;
516 }
517 
518 static struct btrfs_path *alloc_path_for_send(void)
519 {
520 	struct btrfs_path *path;
521 
522 	path = btrfs_alloc_path();
523 	if (!path)
524 		return NULL;
525 	path->search_commit_root = 1;
526 	path->skip_locking = 1;
527 	path->need_commit_sem = 1;
528 	return path;
529 }
530 
531 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
532 {
533 	int ret;
534 	u32 pos = 0;
535 
536 	while (pos < len) {
537 		ret = kernel_write(filp, buf + pos, len - pos, off);
538 		/* TODO handle that correctly */
539 		/*if (ret == -ERESTARTSYS) {
540 			continue;
541 		}*/
542 		if (ret < 0)
543 			return ret;
544 		if (ret == 0) {
545 			return -EIO;
546 		}
547 		pos += ret;
548 	}
549 
550 	return 0;
551 }
552 
553 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
554 {
555 	struct btrfs_tlv_header *hdr;
556 	int total_len = sizeof(*hdr) + len;
557 	int left = sctx->send_max_size - sctx->send_size;
558 
559 	if (unlikely(left < total_len))
560 		return -EOVERFLOW;
561 
562 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
563 	hdr->tlv_type = cpu_to_le16(attr);
564 	hdr->tlv_len = cpu_to_le16(len);
565 	memcpy(hdr + 1, data, len);
566 	sctx->send_size += total_len;
567 
568 	return 0;
569 }
570 
571 #define TLV_PUT_DEFINE_INT(bits) \
572 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
573 			u##bits attr, u##bits value)			\
574 	{								\
575 		__le##bits __tmp = cpu_to_le##bits(value);		\
576 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
577 	}
578 
579 TLV_PUT_DEFINE_INT(64)
580 
581 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
582 			  const char *str, int len)
583 {
584 	if (len == -1)
585 		len = strlen(str);
586 	return tlv_put(sctx, attr, str, len);
587 }
588 
589 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
590 			const u8 *uuid)
591 {
592 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
593 }
594 
595 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
596 				  struct extent_buffer *eb,
597 				  struct btrfs_timespec *ts)
598 {
599 	struct btrfs_timespec bts;
600 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
601 	return tlv_put(sctx, attr, &bts, sizeof(bts));
602 }
603 
604 
605 #define TLV_PUT(sctx, attrtype, data, attrlen) \
606 	do { \
607 		ret = tlv_put(sctx, attrtype, data, attrlen); \
608 		if (ret < 0) \
609 			goto tlv_put_failure; \
610 	} while (0)
611 
612 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
613 	do { \
614 		ret = tlv_put_u##bits(sctx, attrtype, value); \
615 		if (ret < 0) \
616 			goto tlv_put_failure; \
617 	} while (0)
618 
619 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
620 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
621 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
622 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
623 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
624 	do { \
625 		ret = tlv_put_string(sctx, attrtype, str, len); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 #define TLV_PUT_PATH(sctx, attrtype, p) \
630 	do { \
631 		ret = tlv_put_string(sctx, attrtype, p->start, \
632 			p->end - p->start); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while(0)
636 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
637 	do { \
638 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
639 		if (ret < 0) \
640 			goto tlv_put_failure; \
641 	} while (0)
642 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
643 	do { \
644 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
645 		if (ret < 0) \
646 			goto tlv_put_failure; \
647 	} while (0)
648 
649 static int send_header(struct send_ctx *sctx)
650 {
651 	struct btrfs_stream_header hdr;
652 
653 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
654 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
655 
656 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
657 					&sctx->send_off);
658 }
659 
660 /*
661  * For each command/item we want to send to userspace, we call this function.
662  */
663 static int begin_cmd(struct send_ctx *sctx, int cmd)
664 {
665 	struct btrfs_cmd_header *hdr;
666 
667 	if (WARN_ON(!sctx->send_buf))
668 		return -EINVAL;
669 
670 	BUG_ON(sctx->send_size);
671 
672 	sctx->send_size += sizeof(*hdr);
673 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
674 	hdr->cmd = cpu_to_le16(cmd);
675 
676 	return 0;
677 }
678 
679 static int send_cmd(struct send_ctx *sctx)
680 {
681 	int ret;
682 	struct btrfs_cmd_header *hdr;
683 	u32 crc;
684 
685 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
686 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
687 	hdr->crc = 0;
688 
689 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
690 	hdr->crc = cpu_to_le32(crc);
691 
692 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
693 					&sctx->send_off);
694 
695 	sctx->total_send_size += sctx->send_size;
696 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
697 	sctx->send_size = 0;
698 
699 	return ret;
700 }
701 
702 /*
703  * Sends a move instruction to user space
704  */
705 static int send_rename(struct send_ctx *sctx,
706 		     struct fs_path *from, struct fs_path *to)
707 {
708 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
709 	int ret;
710 
711 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
712 
713 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
714 	if (ret < 0)
715 		goto out;
716 
717 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
718 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
719 
720 	ret = send_cmd(sctx);
721 
722 tlv_put_failure:
723 out:
724 	return ret;
725 }
726 
727 /*
728  * Sends a link instruction to user space
729  */
730 static int send_link(struct send_ctx *sctx,
731 		     struct fs_path *path, struct fs_path *lnk)
732 {
733 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
734 	int ret;
735 
736 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
737 
738 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
739 	if (ret < 0)
740 		goto out;
741 
742 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
743 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
744 
745 	ret = send_cmd(sctx);
746 
747 tlv_put_failure:
748 out:
749 	return ret;
750 }
751 
752 /*
753  * Sends an unlink instruction to user space
754  */
755 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
756 {
757 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
758 	int ret;
759 
760 	btrfs_debug(fs_info, "send_unlink %s", path->start);
761 
762 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
763 	if (ret < 0)
764 		goto out;
765 
766 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
767 
768 	ret = send_cmd(sctx);
769 
770 tlv_put_failure:
771 out:
772 	return ret;
773 }
774 
775 /*
776  * Sends a rmdir instruction to user space
777  */
778 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
779 {
780 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
781 	int ret;
782 
783 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
784 
785 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
786 	if (ret < 0)
787 		goto out;
788 
789 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
790 
791 	ret = send_cmd(sctx);
792 
793 tlv_put_failure:
794 out:
795 	return ret;
796 }
797 
798 /*
799  * Helper function to retrieve some fields from an inode item.
800  */
801 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
802 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
803 			  u64 *gid, u64 *rdev)
804 {
805 	int ret;
806 	struct btrfs_inode_item *ii;
807 	struct btrfs_key key;
808 
809 	key.objectid = ino;
810 	key.type = BTRFS_INODE_ITEM_KEY;
811 	key.offset = 0;
812 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
813 	if (ret) {
814 		if (ret > 0)
815 			ret = -ENOENT;
816 		return ret;
817 	}
818 
819 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
820 			struct btrfs_inode_item);
821 	if (size)
822 		*size = btrfs_inode_size(path->nodes[0], ii);
823 	if (gen)
824 		*gen = btrfs_inode_generation(path->nodes[0], ii);
825 	if (mode)
826 		*mode = btrfs_inode_mode(path->nodes[0], ii);
827 	if (uid)
828 		*uid = btrfs_inode_uid(path->nodes[0], ii);
829 	if (gid)
830 		*gid = btrfs_inode_gid(path->nodes[0], ii);
831 	if (rdev)
832 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
833 
834 	return ret;
835 }
836 
837 static int get_inode_info(struct btrfs_root *root,
838 			  u64 ino, u64 *size, u64 *gen,
839 			  u64 *mode, u64 *uid, u64 *gid,
840 			  u64 *rdev)
841 {
842 	struct btrfs_path *path;
843 	int ret;
844 
845 	path = alloc_path_for_send();
846 	if (!path)
847 		return -ENOMEM;
848 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
849 			       rdev);
850 	btrfs_free_path(path);
851 	return ret;
852 }
853 
854 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
855 				   struct fs_path *p,
856 				   void *ctx);
857 
858 /*
859  * Helper function to iterate the entries in ONE btrfs_inode_ref or
860  * btrfs_inode_extref.
861  * The iterate callback may return a non zero value to stop iteration. This can
862  * be a negative value for error codes or 1 to simply stop it.
863  *
864  * path must point to the INODE_REF or INODE_EXTREF when called.
865  */
866 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
867 			     struct btrfs_key *found_key, int resolve,
868 			     iterate_inode_ref_t iterate, void *ctx)
869 {
870 	struct extent_buffer *eb = path->nodes[0];
871 	struct btrfs_item *item;
872 	struct btrfs_inode_ref *iref;
873 	struct btrfs_inode_extref *extref;
874 	struct btrfs_path *tmp_path;
875 	struct fs_path *p;
876 	u32 cur = 0;
877 	u32 total;
878 	int slot = path->slots[0];
879 	u32 name_len;
880 	char *start;
881 	int ret = 0;
882 	int num = 0;
883 	int index;
884 	u64 dir;
885 	unsigned long name_off;
886 	unsigned long elem_size;
887 	unsigned long ptr;
888 
889 	p = fs_path_alloc_reversed();
890 	if (!p)
891 		return -ENOMEM;
892 
893 	tmp_path = alloc_path_for_send();
894 	if (!tmp_path) {
895 		fs_path_free(p);
896 		return -ENOMEM;
897 	}
898 
899 
900 	if (found_key->type == BTRFS_INODE_REF_KEY) {
901 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
902 						    struct btrfs_inode_ref);
903 		item = btrfs_item_nr(slot);
904 		total = btrfs_item_size(eb, item);
905 		elem_size = sizeof(*iref);
906 	} else {
907 		ptr = btrfs_item_ptr_offset(eb, slot);
908 		total = btrfs_item_size_nr(eb, slot);
909 		elem_size = sizeof(*extref);
910 	}
911 
912 	while (cur < total) {
913 		fs_path_reset(p);
914 
915 		if (found_key->type == BTRFS_INODE_REF_KEY) {
916 			iref = (struct btrfs_inode_ref *)(ptr + cur);
917 			name_len = btrfs_inode_ref_name_len(eb, iref);
918 			name_off = (unsigned long)(iref + 1);
919 			index = btrfs_inode_ref_index(eb, iref);
920 			dir = found_key->offset;
921 		} else {
922 			extref = (struct btrfs_inode_extref *)(ptr + cur);
923 			name_len = btrfs_inode_extref_name_len(eb, extref);
924 			name_off = (unsigned long)&extref->name;
925 			index = btrfs_inode_extref_index(eb, extref);
926 			dir = btrfs_inode_extref_parent(eb, extref);
927 		}
928 
929 		if (resolve) {
930 			start = btrfs_ref_to_path(root, tmp_path, name_len,
931 						  name_off, eb, dir,
932 						  p->buf, p->buf_len);
933 			if (IS_ERR(start)) {
934 				ret = PTR_ERR(start);
935 				goto out;
936 			}
937 			if (start < p->buf) {
938 				/* overflow , try again with larger buffer */
939 				ret = fs_path_ensure_buf(p,
940 						p->buf_len + p->buf - start);
941 				if (ret < 0)
942 					goto out;
943 				start = btrfs_ref_to_path(root, tmp_path,
944 							  name_len, name_off,
945 							  eb, dir,
946 							  p->buf, p->buf_len);
947 				if (IS_ERR(start)) {
948 					ret = PTR_ERR(start);
949 					goto out;
950 				}
951 				BUG_ON(start < p->buf);
952 			}
953 			p->start = start;
954 		} else {
955 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
956 							     name_len);
957 			if (ret < 0)
958 				goto out;
959 		}
960 
961 		cur += elem_size + name_len;
962 		ret = iterate(num, dir, index, p, ctx);
963 		if (ret)
964 			goto out;
965 		num++;
966 	}
967 
968 out:
969 	btrfs_free_path(tmp_path);
970 	fs_path_free(p);
971 	return ret;
972 }
973 
974 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
975 				  const char *name, int name_len,
976 				  const char *data, int data_len,
977 				  u8 type, void *ctx);
978 
979 /*
980  * Helper function to iterate the entries in ONE btrfs_dir_item.
981  * The iterate callback may return a non zero value to stop iteration. This can
982  * be a negative value for error codes or 1 to simply stop it.
983  *
984  * path must point to the dir item when called.
985  */
986 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
987 			    iterate_dir_item_t iterate, void *ctx)
988 {
989 	int ret = 0;
990 	struct extent_buffer *eb;
991 	struct btrfs_item *item;
992 	struct btrfs_dir_item *di;
993 	struct btrfs_key di_key;
994 	char *buf = NULL;
995 	int buf_len;
996 	u32 name_len;
997 	u32 data_len;
998 	u32 cur;
999 	u32 len;
1000 	u32 total;
1001 	int slot;
1002 	int num;
1003 	u8 type;
1004 
1005 	/*
1006 	 * Start with a small buffer (1 page). If later we end up needing more
1007 	 * space, which can happen for xattrs on a fs with a leaf size greater
1008 	 * then the page size, attempt to increase the buffer. Typically xattr
1009 	 * values are small.
1010 	 */
1011 	buf_len = PATH_MAX;
1012 	buf = kmalloc(buf_len, GFP_KERNEL);
1013 	if (!buf) {
1014 		ret = -ENOMEM;
1015 		goto out;
1016 	}
1017 
1018 	eb = path->nodes[0];
1019 	slot = path->slots[0];
1020 	item = btrfs_item_nr(slot);
1021 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1022 	cur = 0;
1023 	len = 0;
1024 	total = btrfs_item_size(eb, item);
1025 
1026 	num = 0;
1027 	while (cur < total) {
1028 		name_len = btrfs_dir_name_len(eb, di);
1029 		data_len = btrfs_dir_data_len(eb, di);
1030 		type = btrfs_dir_type(eb, di);
1031 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1032 
1033 		if (type == BTRFS_FT_XATTR) {
1034 			if (name_len > XATTR_NAME_MAX) {
1035 				ret = -ENAMETOOLONG;
1036 				goto out;
1037 			}
1038 			if (name_len + data_len >
1039 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1040 				ret = -E2BIG;
1041 				goto out;
1042 			}
1043 		} else {
1044 			/*
1045 			 * Path too long
1046 			 */
1047 			if (name_len + data_len > PATH_MAX) {
1048 				ret = -ENAMETOOLONG;
1049 				goto out;
1050 			}
1051 		}
1052 
1053 		if (name_len + data_len > buf_len) {
1054 			buf_len = name_len + data_len;
1055 			if (is_vmalloc_addr(buf)) {
1056 				vfree(buf);
1057 				buf = NULL;
1058 			} else {
1059 				char *tmp = krealloc(buf, buf_len,
1060 						GFP_KERNEL | __GFP_NOWARN);
1061 
1062 				if (!tmp)
1063 					kfree(buf);
1064 				buf = tmp;
1065 			}
1066 			if (!buf) {
1067 				buf = kvmalloc(buf_len, GFP_KERNEL);
1068 				if (!buf) {
1069 					ret = -ENOMEM;
1070 					goto out;
1071 				}
1072 			}
1073 		}
1074 
1075 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1076 				name_len + data_len);
1077 
1078 		len = sizeof(*di) + name_len + data_len;
1079 		di = (struct btrfs_dir_item *)((char *)di + len);
1080 		cur += len;
1081 
1082 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1083 				data_len, type, ctx);
1084 		if (ret < 0)
1085 			goto out;
1086 		if (ret) {
1087 			ret = 0;
1088 			goto out;
1089 		}
1090 
1091 		num++;
1092 	}
1093 
1094 out:
1095 	kvfree(buf);
1096 	return ret;
1097 }
1098 
1099 static int __copy_first_ref(int num, u64 dir, int index,
1100 			    struct fs_path *p, void *ctx)
1101 {
1102 	int ret;
1103 	struct fs_path *pt = ctx;
1104 
1105 	ret = fs_path_copy(pt, p);
1106 	if (ret < 0)
1107 		return ret;
1108 
1109 	/* we want the first only */
1110 	return 1;
1111 }
1112 
1113 /*
1114  * Retrieve the first path of an inode. If an inode has more then one
1115  * ref/hardlink, this is ignored.
1116  */
1117 static int get_inode_path(struct btrfs_root *root,
1118 			  u64 ino, struct fs_path *path)
1119 {
1120 	int ret;
1121 	struct btrfs_key key, found_key;
1122 	struct btrfs_path *p;
1123 
1124 	p = alloc_path_for_send();
1125 	if (!p)
1126 		return -ENOMEM;
1127 
1128 	fs_path_reset(path);
1129 
1130 	key.objectid = ino;
1131 	key.type = BTRFS_INODE_REF_KEY;
1132 	key.offset = 0;
1133 
1134 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1135 	if (ret < 0)
1136 		goto out;
1137 	if (ret) {
1138 		ret = 1;
1139 		goto out;
1140 	}
1141 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1142 	if (found_key.objectid != ino ||
1143 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1144 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1145 		ret = -ENOENT;
1146 		goto out;
1147 	}
1148 
1149 	ret = iterate_inode_ref(root, p, &found_key, 1,
1150 				__copy_first_ref, path);
1151 	if (ret < 0)
1152 		goto out;
1153 	ret = 0;
1154 
1155 out:
1156 	btrfs_free_path(p);
1157 	return ret;
1158 }
1159 
1160 struct backref_ctx {
1161 	struct send_ctx *sctx;
1162 
1163 	struct btrfs_path *path;
1164 	/* number of total found references */
1165 	u64 found;
1166 
1167 	/*
1168 	 * used for clones found in send_root. clones found behind cur_objectid
1169 	 * and cur_offset are not considered as allowed clones.
1170 	 */
1171 	u64 cur_objectid;
1172 	u64 cur_offset;
1173 
1174 	/* may be truncated in case it's the last extent in a file */
1175 	u64 extent_len;
1176 
1177 	/* data offset in the file extent item */
1178 	u64 data_offset;
1179 
1180 	/* Just to check for bugs in backref resolving */
1181 	int found_itself;
1182 };
1183 
1184 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1185 {
1186 	u64 root = (u64)(uintptr_t)key;
1187 	struct clone_root *cr = (struct clone_root *)elt;
1188 
1189 	if (root < cr->root->root_key.objectid)
1190 		return -1;
1191 	if (root > cr->root->root_key.objectid)
1192 		return 1;
1193 	return 0;
1194 }
1195 
1196 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1197 {
1198 	struct clone_root *cr1 = (struct clone_root *)e1;
1199 	struct clone_root *cr2 = (struct clone_root *)e2;
1200 
1201 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1202 		return -1;
1203 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1204 		return 1;
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Called for every backref that is found for the current extent.
1210  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1211  */
1212 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1213 {
1214 	struct backref_ctx *bctx = ctx_;
1215 	struct clone_root *found;
1216 	int ret;
1217 	u64 i_size;
1218 
1219 	/* First check if the root is in the list of accepted clone sources */
1220 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1221 			bctx->sctx->clone_roots_cnt,
1222 			sizeof(struct clone_root),
1223 			__clone_root_cmp_bsearch);
1224 	if (!found)
1225 		return 0;
1226 
1227 	if (found->root == bctx->sctx->send_root &&
1228 	    ino == bctx->cur_objectid &&
1229 	    offset == bctx->cur_offset) {
1230 		bctx->found_itself = 1;
1231 	}
1232 
1233 	/*
1234 	 * There are inodes that have extents that lie behind its i_size. Don't
1235 	 * accept clones from these extents.
1236 	 */
1237 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1238 			       NULL, NULL, NULL);
1239 	btrfs_release_path(bctx->path);
1240 	if (ret < 0)
1241 		return ret;
1242 
1243 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1244 		return 0;
1245 
1246 	/*
1247 	 * Make sure we don't consider clones from send_root that are
1248 	 * behind the current inode/offset.
1249 	 */
1250 	if (found->root == bctx->sctx->send_root) {
1251 		/*
1252 		 * TODO for the moment we don't accept clones from the inode
1253 		 * that is currently send. We may change this when
1254 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1255 		 * file.
1256 		 */
1257 		if (ino >= bctx->cur_objectid)
1258 			return 0;
1259 	}
1260 
1261 	bctx->found++;
1262 	found->found_refs++;
1263 	if (ino < found->ino) {
1264 		found->ino = ino;
1265 		found->offset = offset;
1266 	} else if (found->ino == ino) {
1267 		/*
1268 		 * same extent found more then once in the same file.
1269 		 */
1270 		if (found->offset > offset + bctx->extent_len)
1271 			found->offset = offset;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /*
1278  * Given an inode, offset and extent item, it finds a good clone for a clone
1279  * instruction. Returns -ENOENT when none could be found. The function makes
1280  * sure that the returned clone is usable at the point where sending is at the
1281  * moment. This means, that no clones are accepted which lie behind the current
1282  * inode+offset.
1283  *
1284  * path must point to the extent item when called.
1285  */
1286 static int find_extent_clone(struct send_ctx *sctx,
1287 			     struct btrfs_path *path,
1288 			     u64 ino, u64 data_offset,
1289 			     u64 ino_size,
1290 			     struct clone_root **found)
1291 {
1292 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1293 	int ret;
1294 	int extent_type;
1295 	u64 logical;
1296 	u64 disk_byte;
1297 	u64 num_bytes;
1298 	u64 extent_item_pos;
1299 	u64 flags = 0;
1300 	struct btrfs_file_extent_item *fi;
1301 	struct extent_buffer *eb = path->nodes[0];
1302 	struct backref_ctx *backref_ctx = NULL;
1303 	struct clone_root *cur_clone_root;
1304 	struct btrfs_key found_key;
1305 	struct btrfs_path *tmp_path;
1306 	int compressed;
1307 	u32 i;
1308 
1309 	tmp_path = alloc_path_for_send();
1310 	if (!tmp_path)
1311 		return -ENOMEM;
1312 
1313 	/* We only use this path under the commit sem */
1314 	tmp_path->need_commit_sem = 0;
1315 
1316 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1317 	if (!backref_ctx) {
1318 		ret = -ENOMEM;
1319 		goto out;
1320 	}
1321 
1322 	backref_ctx->path = tmp_path;
1323 
1324 	if (data_offset >= ino_size) {
1325 		/*
1326 		 * There may be extents that lie behind the file's size.
1327 		 * I at least had this in combination with snapshotting while
1328 		 * writing large files.
1329 		 */
1330 		ret = 0;
1331 		goto out;
1332 	}
1333 
1334 	fi = btrfs_item_ptr(eb, path->slots[0],
1335 			struct btrfs_file_extent_item);
1336 	extent_type = btrfs_file_extent_type(eb, fi);
1337 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1338 		ret = -ENOENT;
1339 		goto out;
1340 	}
1341 	compressed = btrfs_file_extent_compression(eb, fi);
1342 
1343 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1344 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1345 	if (disk_byte == 0) {
1346 		ret = -ENOENT;
1347 		goto out;
1348 	}
1349 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1350 
1351 	down_read(&fs_info->commit_root_sem);
1352 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1353 				  &found_key, &flags);
1354 	up_read(&fs_info->commit_root_sem);
1355 	btrfs_release_path(tmp_path);
1356 
1357 	if (ret < 0)
1358 		goto out;
1359 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1360 		ret = -EIO;
1361 		goto out;
1362 	}
1363 
1364 	/*
1365 	 * Setup the clone roots.
1366 	 */
1367 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1368 		cur_clone_root = sctx->clone_roots + i;
1369 		cur_clone_root->ino = (u64)-1;
1370 		cur_clone_root->offset = 0;
1371 		cur_clone_root->found_refs = 0;
1372 	}
1373 
1374 	backref_ctx->sctx = sctx;
1375 	backref_ctx->found = 0;
1376 	backref_ctx->cur_objectid = ino;
1377 	backref_ctx->cur_offset = data_offset;
1378 	backref_ctx->found_itself = 0;
1379 	backref_ctx->extent_len = num_bytes;
1380 	/*
1381 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1382 	 * offsets that already take into account the data offset, but not for
1383 	 * compressed extents, since the offset is logical and not relative to
1384 	 * the physical extent locations. We must take this into account to
1385 	 * avoid sending clone offsets that go beyond the source file's size,
1386 	 * which would result in the clone ioctl failing with -EINVAL on the
1387 	 * receiving end.
1388 	 */
1389 	if (compressed == BTRFS_COMPRESS_NONE)
1390 		backref_ctx->data_offset = 0;
1391 	else
1392 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1393 
1394 	/*
1395 	 * The last extent of a file may be too large due to page alignment.
1396 	 * We need to adjust extent_len in this case so that the checks in
1397 	 * __iterate_backrefs work.
1398 	 */
1399 	if (data_offset + num_bytes >= ino_size)
1400 		backref_ctx->extent_len = ino_size - data_offset;
1401 
1402 	/*
1403 	 * Now collect all backrefs.
1404 	 */
1405 	if (compressed == BTRFS_COMPRESS_NONE)
1406 		extent_item_pos = logical - found_key.objectid;
1407 	else
1408 		extent_item_pos = 0;
1409 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1410 				    extent_item_pos, 1, __iterate_backrefs,
1411 				    backref_ctx, false);
1412 
1413 	if (ret < 0)
1414 		goto out;
1415 
1416 	if (!backref_ctx->found_itself) {
1417 		/* found a bug in backref code? */
1418 		ret = -EIO;
1419 		btrfs_err(fs_info,
1420 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1421 			  ino, data_offset, disk_byte, found_key.objectid);
1422 		goto out;
1423 	}
1424 
1425 	btrfs_debug(fs_info,
1426 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1427 		    data_offset, ino, num_bytes, logical);
1428 
1429 	if (!backref_ctx->found)
1430 		btrfs_debug(fs_info, "no clones found");
1431 
1432 	cur_clone_root = NULL;
1433 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1434 		if (sctx->clone_roots[i].found_refs) {
1435 			if (!cur_clone_root)
1436 				cur_clone_root = sctx->clone_roots + i;
1437 			else if (sctx->clone_roots[i].root == sctx->send_root)
1438 				/* prefer clones from send_root over others */
1439 				cur_clone_root = sctx->clone_roots + i;
1440 		}
1441 
1442 	}
1443 
1444 	if (cur_clone_root) {
1445 		*found = cur_clone_root;
1446 		ret = 0;
1447 	} else {
1448 		ret = -ENOENT;
1449 	}
1450 
1451 out:
1452 	btrfs_free_path(tmp_path);
1453 	kfree(backref_ctx);
1454 	return ret;
1455 }
1456 
1457 static int read_symlink(struct btrfs_root *root,
1458 			u64 ino,
1459 			struct fs_path *dest)
1460 {
1461 	int ret;
1462 	struct btrfs_path *path;
1463 	struct btrfs_key key;
1464 	struct btrfs_file_extent_item *ei;
1465 	u8 type;
1466 	u8 compression;
1467 	unsigned long off;
1468 	int len;
1469 
1470 	path = alloc_path_for_send();
1471 	if (!path)
1472 		return -ENOMEM;
1473 
1474 	key.objectid = ino;
1475 	key.type = BTRFS_EXTENT_DATA_KEY;
1476 	key.offset = 0;
1477 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1478 	if (ret < 0)
1479 		goto out;
1480 	if (ret) {
1481 		/*
1482 		 * An empty symlink inode. Can happen in rare error paths when
1483 		 * creating a symlink (transaction committed before the inode
1484 		 * eviction handler removed the symlink inode items and a crash
1485 		 * happened in between or the subvol was snapshoted in between).
1486 		 * Print an informative message to dmesg/syslog so that the user
1487 		 * can delete the symlink.
1488 		 */
1489 		btrfs_err(root->fs_info,
1490 			  "Found empty symlink inode %llu at root %llu",
1491 			  ino, root->root_key.objectid);
1492 		ret = -EIO;
1493 		goto out;
1494 	}
1495 
1496 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1497 			struct btrfs_file_extent_item);
1498 	type = btrfs_file_extent_type(path->nodes[0], ei);
1499 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1500 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1501 	BUG_ON(compression);
1502 
1503 	off = btrfs_file_extent_inline_start(ei);
1504 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1505 
1506 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1507 
1508 out:
1509 	btrfs_free_path(path);
1510 	return ret;
1511 }
1512 
1513 /*
1514  * Helper function to generate a file name that is unique in the root of
1515  * send_root and parent_root. This is used to generate names for orphan inodes.
1516  */
1517 static int gen_unique_name(struct send_ctx *sctx,
1518 			   u64 ino, u64 gen,
1519 			   struct fs_path *dest)
1520 {
1521 	int ret = 0;
1522 	struct btrfs_path *path;
1523 	struct btrfs_dir_item *di;
1524 	char tmp[64];
1525 	int len;
1526 	u64 idx = 0;
1527 
1528 	path = alloc_path_for_send();
1529 	if (!path)
1530 		return -ENOMEM;
1531 
1532 	while (1) {
1533 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1534 				ino, gen, idx);
1535 		ASSERT(len < sizeof(tmp));
1536 
1537 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1538 				path, BTRFS_FIRST_FREE_OBJECTID,
1539 				tmp, strlen(tmp), 0);
1540 		btrfs_release_path(path);
1541 		if (IS_ERR(di)) {
1542 			ret = PTR_ERR(di);
1543 			goto out;
1544 		}
1545 		if (di) {
1546 			/* not unique, try again */
1547 			idx++;
1548 			continue;
1549 		}
1550 
1551 		if (!sctx->parent_root) {
1552 			/* unique */
1553 			ret = 0;
1554 			break;
1555 		}
1556 
1557 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1558 				path, BTRFS_FIRST_FREE_OBJECTID,
1559 				tmp, strlen(tmp), 0);
1560 		btrfs_release_path(path);
1561 		if (IS_ERR(di)) {
1562 			ret = PTR_ERR(di);
1563 			goto out;
1564 		}
1565 		if (di) {
1566 			/* not unique, try again */
1567 			idx++;
1568 			continue;
1569 		}
1570 		/* unique */
1571 		break;
1572 	}
1573 
1574 	ret = fs_path_add(dest, tmp, strlen(tmp));
1575 
1576 out:
1577 	btrfs_free_path(path);
1578 	return ret;
1579 }
1580 
1581 enum inode_state {
1582 	inode_state_no_change,
1583 	inode_state_will_create,
1584 	inode_state_did_create,
1585 	inode_state_will_delete,
1586 	inode_state_did_delete,
1587 };
1588 
1589 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1590 {
1591 	int ret;
1592 	int left_ret;
1593 	int right_ret;
1594 	u64 left_gen;
1595 	u64 right_gen;
1596 
1597 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1598 			NULL, NULL);
1599 	if (ret < 0 && ret != -ENOENT)
1600 		goto out;
1601 	left_ret = ret;
1602 
1603 	if (!sctx->parent_root) {
1604 		right_ret = -ENOENT;
1605 	} else {
1606 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1607 				NULL, NULL, NULL, NULL);
1608 		if (ret < 0 && ret != -ENOENT)
1609 			goto out;
1610 		right_ret = ret;
1611 	}
1612 
1613 	if (!left_ret && !right_ret) {
1614 		if (left_gen == gen && right_gen == gen) {
1615 			ret = inode_state_no_change;
1616 		} else if (left_gen == gen) {
1617 			if (ino < sctx->send_progress)
1618 				ret = inode_state_did_create;
1619 			else
1620 				ret = inode_state_will_create;
1621 		} else if (right_gen == gen) {
1622 			if (ino < sctx->send_progress)
1623 				ret = inode_state_did_delete;
1624 			else
1625 				ret = inode_state_will_delete;
1626 		} else  {
1627 			ret = -ENOENT;
1628 		}
1629 	} else if (!left_ret) {
1630 		if (left_gen == gen) {
1631 			if (ino < sctx->send_progress)
1632 				ret = inode_state_did_create;
1633 			else
1634 				ret = inode_state_will_create;
1635 		} else {
1636 			ret = -ENOENT;
1637 		}
1638 	} else if (!right_ret) {
1639 		if (right_gen == gen) {
1640 			if (ino < sctx->send_progress)
1641 				ret = inode_state_did_delete;
1642 			else
1643 				ret = inode_state_will_delete;
1644 		} else {
1645 			ret = -ENOENT;
1646 		}
1647 	} else {
1648 		ret = -ENOENT;
1649 	}
1650 
1651 out:
1652 	return ret;
1653 }
1654 
1655 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1656 {
1657 	int ret;
1658 
1659 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1660 		return 1;
1661 
1662 	ret = get_cur_inode_state(sctx, ino, gen);
1663 	if (ret < 0)
1664 		goto out;
1665 
1666 	if (ret == inode_state_no_change ||
1667 	    ret == inode_state_did_create ||
1668 	    ret == inode_state_will_delete)
1669 		ret = 1;
1670 	else
1671 		ret = 0;
1672 
1673 out:
1674 	return ret;
1675 }
1676 
1677 /*
1678  * Helper function to lookup a dir item in a dir.
1679  */
1680 static int lookup_dir_item_inode(struct btrfs_root *root,
1681 				 u64 dir, const char *name, int name_len,
1682 				 u64 *found_inode,
1683 				 u8 *found_type)
1684 {
1685 	int ret = 0;
1686 	struct btrfs_dir_item *di;
1687 	struct btrfs_key key;
1688 	struct btrfs_path *path;
1689 
1690 	path = alloc_path_for_send();
1691 	if (!path)
1692 		return -ENOMEM;
1693 
1694 	di = btrfs_lookup_dir_item(NULL, root, path,
1695 			dir, name, name_len, 0);
1696 	if (IS_ERR_OR_NULL(di)) {
1697 		ret = di ? PTR_ERR(di) : -ENOENT;
1698 		goto out;
1699 	}
1700 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1701 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1702 		ret = -ENOENT;
1703 		goto out;
1704 	}
1705 	*found_inode = key.objectid;
1706 	*found_type = btrfs_dir_type(path->nodes[0], di);
1707 
1708 out:
1709 	btrfs_free_path(path);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1715  * generation of the parent dir and the name of the dir entry.
1716  */
1717 static int get_first_ref(struct btrfs_root *root, u64 ino,
1718 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1719 {
1720 	int ret;
1721 	struct btrfs_key key;
1722 	struct btrfs_key found_key;
1723 	struct btrfs_path *path;
1724 	int len;
1725 	u64 parent_dir;
1726 
1727 	path = alloc_path_for_send();
1728 	if (!path)
1729 		return -ENOMEM;
1730 
1731 	key.objectid = ino;
1732 	key.type = BTRFS_INODE_REF_KEY;
1733 	key.offset = 0;
1734 
1735 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1736 	if (ret < 0)
1737 		goto out;
1738 	if (!ret)
1739 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1740 				path->slots[0]);
1741 	if (ret || found_key.objectid != ino ||
1742 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1743 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1744 		ret = -ENOENT;
1745 		goto out;
1746 	}
1747 
1748 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1749 		struct btrfs_inode_ref *iref;
1750 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1751 				      struct btrfs_inode_ref);
1752 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1753 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1754 						     (unsigned long)(iref + 1),
1755 						     len);
1756 		parent_dir = found_key.offset;
1757 	} else {
1758 		struct btrfs_inode_extref *extref;
1759 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1760 					struct btrfs_inode_extref);
1761 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1762 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1763 					(unsigned long)&extref->name, len);
1764 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1765 	}
1766 	if (ret < 0)
1767 		goto out;
1768 	btrfs_release_path(path);
1769 
1770 	if (dir_gen) {
1771 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1772 				     NULL, NULL, NULL);
1773 		if (ret < 0)
1774 			goto out;
1775 	}
1776 
1777 	*dir = parent_dir;
1778 
1779 out:
1780 	btrfs_free_path(path);
1781 	return ret;
1782 }
1783 
1784 static int is_first_ref(struct btrfs_root *root,
1785 			u64 ino, u64 dir,
1786 			const char *name, int name_len)
1787 {
1788 	int ret;
1789 	struct fs_path *tmp_name;
1790 	u64 tmp_dir;
1791 
1792 	tmp_name = fs_path_alloc();
1793 	if (!tmp_name)
1794 		return -ENOMEM;
1795 
1796 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1797 	if (ret < 0)
1798 		goto out;
1799 
1800 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1801 		ret = 0;
1802 		goto out;
1803 	}
1804 
1805 	ret = !memcmp(tmp_name->start, name, name_len);
1806 
1807 out:
1808 	fs_path_free(tmp_name);
1809 	return ret;
1810 }
1811 
1812 /*
1813  * Used by process_recorded_refs to determine if a new ref would overwrite an
1814  * already existing ref. In case it detects an overwrite, it returns the
1815  * inode/gen in who_ino/who_gen.
1816  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1817  * to make sure later references to the overwritten inode are possible.
1818  * Orphanizing is however only required for the first ref of an inode.
1819  * process_recorded_refs does an additional is_first_ref check to see if
1820  * orphanizing is really required.
1821  */
1822 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1823 			      const char *name, int name_len,
1824 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1825 {
1826 	int ret = 0;
1827 	u64 gen;
1828 	u64 other_inode = 0;
1829 	u8 other_type = 0;
1830 
1831 	if (!sctx->parent_root)
1832 		goto out;
1833 
1834 	ret = is_inode_existent(sctx, dir, dir_gen);
1835 	if (ret <= 0)
1836 		goto out;
1837 
1838 	/*
1839 	 * If we have a parent root we need to verify that the parent dir was
1840 	 * not deleted and then re-created, if it was then we have no overwrite
1841 	 * and we can just unlink this entry.
1842 	 */
1843 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1844 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1845 				     NULL, NULL, NULL);
1846 		if (ret < 0 && ret != -ENOENT)
1847 			goto out;
1848 		if (ret) {
1849 			ret = 0;
1850 			goto out;
1851 		}
1852 		if (gen != dir_gen)
1853 			goto out;
1854 	}
1855 
1856 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1857 			&other_inode, &other_type);
1858 	if (ret < 0 && ret != -ENOENT)
1859 		goto out;
1860 	if (ret) {
1861 		ret = 0;
1862 		goto out;
1863 	}
1864 
1865 	/*
1866 	 * Check if the overwritten ref was already processed. If yes, the ref
1867 	 * was already unlinked/moved, so we can safely assume that we will not
1868 	 * overwrite anything at this point in time.
1869 	 */
1870 	if (other_inode > sctx->send_progress ||
1871 	    is_waiting_for_move(sctx, other_inode)) {
1872 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1873 				who_gen, who_mode, NULL, NULL, NULL);
1874 		if (ret < 0)
1875 			goto out;
1876 
1877 		ret = 1;
1878 		*who_ino = other_inode;
1879 	} else {
1880 		ret = 0;
1881 	}
1882 
1883 out:
1884 	return ret;
1885 }
1886 
1887 /*
1888  * Checks if the ref was overwritten by an already processed inode. This is
1889  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1890  * thus the orphan name needs be used.
1891  * process_recorded_refs also uses it to avoid unlinking of refs that were
1892  * overwritten.
1893  */
1894 static int did_overwrite_ref(struct send_ctx *sctx,
1895 			    u64 dir, u64 dir_gen,
1896 			    u64 ino, u64 ino_gen,
1897 			    const char *name, int name_len)
1898 {
1899 	int ret = 0;
1900 	u64 gen;
1901 	u64 ow_inode;
1902 	u8 other_type;
1903 
1904 	if (!sctx->parent_root)
1905 		goto out;
1906 
1907 	ret = is_inode_existent(sctx, dir, dir_gen);
1908 	if (ret <= 0)
1909 		goto out;
1910 
1911 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1912 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1913 				     NULL, NULL, NULL);
1914 		if (ret < 0 && ret != -ENOENT)
1915 			goto out;
1916 		if (ret) {
1917 			ret = 0;
1918 			goto out;
1919 		}
1920 		if (gen != dir_gen)
1921 			goto out;
1922 	}
1923 
1924 	/* check if the ref was overwritten by another ref */
1925 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1926 			&ow_inode, &other_type);
1927 	if (ret < 0 && ret != -ENOENT)
1928 		goto out;
1929 	if (ret) {
1930 		/* was never and will never be overwritten */
1931 		ret = 0;
1932 		goto out;
1933 	}
1934 
1935 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1936 			NULL, NULL);
1937 	if (ret < 0)
1938 		goto out;
1939 
1940 	if (ow_inode == ino && gen == ino_gen) {
1941 		ret = 0;
1942 		goto out;
1943 	}
1944 
1945 	/*
1946 	 * We know that it is or will be overwritten. Check this now.
1947 	 * The current inode being processed might have been the one that caused
1948 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1949 	 * the current inode being processed.
1950 	 */
1951 	if ((ow_inode < sctx->send_progress) ||
1952 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1953 	     gen == sctx->cur_inode_gen))
1954 		ret = 1;
1955 	else
1956 		ret = 0;
1957 
1958 out:
1959 	return ret;
1960 }
1961 
1962 /*
1963  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1964  * that got overwritten. This is used by process_recorded_refs to determine
1965  * if it has to use the path as returned by get_cur_path or the orphan name.
1966  */
1967 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1968 {
1969 	int ret = 0;
1970 	struct fs_path *name = NULL;
1971 	u64 dir;
1972 	u64 dir_gen;
1973 
1974 	if (!sctx->parent_root)
1975 		goto out;
1976 
1977 	name = fs_path_alloc();
1978 	if (!name)
1979 		return -ENOMEM;
1980 
1981 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1982 	if (ret < 0)
1983 		goto out;
1984 
1985 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1986 			name->start, fs_path_len(name));
1987 
1988 out:
1989 	fs_path_free(name);
1990 	return ret;
1991 }
1992 
1993 /*
1994  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1995  * so we need to do some special handling in case we have clashes. This function
1996  * takes care of this with the help of name_cache_entry::radix_list.
1997  * In case of error, nce is kfreed.
1998  */
1999 static int name_cache_insert(struct send_ctx *sctx,
2000 			     struct name_cache_entry *nce)
2001 {
2002 	int ret = 0;
2003 	struct list_head *nce_head;
2004 
2005 	nce_head = radix_tree_lookup(&sctx->name_cache,
2006 			(unsigned long)nce->ino);
2007 	if (!nce_head) {
2008 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2009 		if (!nce_head) {
2010 			kfree(nce);
2011 			return -ENOMEM;
2012 		}
2013 		INIT_LIST_HEAD(nce_head);
2014 
2015 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2016 		if (ret < 0) {
2017 			kfree(nce_head);
2018 			kfree(nce);
2019 			return ret;
2020 		}
2021 	}
2022 	list_add_tail(&nce->radix_list, nce_head);
2023 	list_add_tail(&nce->list, &sctx->name_cache_list);
2024 	sctx->name_cache_size++;
2025 
2026 	return ret;
2027 }
2028 
2029 static void name_cache_delete(struct send_ctx *sctx,
2030 			      struct name_cache_entry *nce)
2031 {
2032 	struct list_head *nce_head;
2033 
2034 	nce_head = radix_tree_lookup(&sctx->name_cache,
2035 			(unsigned long)nce->ino);
2036 	if (!nce_head) {
2037 		btrfs_err(sctx->send_root->fs_info,
2038 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2039 			nce->ino, sctx->name_cache_size);
2040 	}
2041 
2042 	list_del(&nce->radix_list);
2043 	list_del(&nce->list);
2044 	sctx->name_cache_size--;
2045 
2046 	/*
2047 	 * We may not get to the final release of nce_head if the lookup fails
2048 	 */
2049 	if (nce_head && list_empty(nce_head)) {
2050 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2051 		kfree(nce_head);
2052 	}
2053 }
2054 
2055 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2056 						    u64 ino, u64 gen)
2057 {
2058 	struct list_head *nce_head;
2059 	struct name_cache_entry *cur;
2060 
2061 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2062 	if (!nce_head)
2063 		return NULL;
2064 
2065 	list_for_each_entry(cur, nce_head, radix_list) {
2066 		if (cur->ino == ino && cur->gen == gen)
2067 			return cur;
2068 	}
2069 	return NULL;
2070 }
2071 
2072 /*
2073  * Removes the entry from the list and adds it back to the end. This marks the
2074  * entry as recently used so that name_cache_clean_unused does not remove it.
2075  */
2076 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2077 {
2078 	list_del(&nce->list);
2079 	list_add_tail(&nce->list, &sctx->name_cache_list);
2080 }
2081 
2082 /*
2083  * Remove some entries from the beginning of name_cache_list.
2084  */
2085 static void name_cache_clean_unused(struct send_ctx *sctx)
2086 {
2087 	struct name_cache_entry *nce;
2088 
2089 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2090 		return;
2091 
2092 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2093 		nce = list_entry(sctx->name_cache_list.next,
2094 				struct name_cache_entry, list);
2095 		name_cache_delete(sctx, nce);
2096 		kfree(nce);
2097 	}
2098 }
2099 
2100 static void name_cache_free(struct send_ctx *sctx)
2101 {
2102 	struct name_cache_entry *nce;
2103 
2104 	while (!list_empty(&sctx->name_cache_list)) {
2105 		nce = list_entry(sctx->name_cache_list.next,
2106 				struct name_cache_entry, list);
2107 		name_cache_delete(sctx, nce);
2108 		kfree(nce);
2109 	}
2110 }
2111 
2112 /*
2113  * Used by get_cur_path for each ref up to the root.
2114  * Returns 0 if it succeeded.
2115  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2116  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2117  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2118  * Returns <0 in case of error.
2119  */
2120 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2121 				     u64 ino, u64 gen,
2122 				     u64 *parent_ino,
2123 				     u64 *parent_gen,
2124 				     struct fs_path *dest)
2125 {
2126 	int ret;
2127 	int nce_ret;
2128 	struct name_cache_entry *nce = NULL;
2129 
2130 	/*
2131 	 * First check if we already did a call to this function with the same
2132 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2133 	 * return the cached result.
2134 	 */
2135 	nce = name_cache_search(sctx, ino, gen);
2136 	if (nce) {
2137 		if (ino < sctx->send_progress && nce->need_later_update) {
2138 			name_cache_delete(sctx, nce);
2139 			kfree(nce);
2140 			nce = NULL;
2141 		} else {
2142 			name_cache_used(sctx, nce);
2143 			*parent_ino = nce->parent_ino;
2144 			*parent_gen = nce->parent_gen;
2145 			ret = fs_path_add(dest, nce->name, nce->name_len);
2146 			if (ret < 0)
2147 				goto out;
2148 			ret = nce->ret;
2149 			goto out;
2150 		}
2151 	}
2152 
2153 	/*
2154 	 * If the inode is not existent yet, add the orphan name and return 1.
2155 	 * This should only happen for the parent dir that we determine in
2156 	 * __record_new_ref
2157 	 */
2158 	ret = is_inode_existent(sctx, ino, gen);
2159 	if (ret < 0)
2160 		goto out;
2161 
2162 	if (!ret) {
2163 		ret = gen_unique_name(sctx, ino, gen, dest);
2164 		if (ret < 0)
2165 			goto out;
2166 		ret = 1;
2167 		goto out_cache;
2168 	}
2169 
2170 	/*
2171 	 * Depending on whether the inode was already processed or not, use
2172 	 * send_root or parent_root for ref lookup.
2173 	 */
2174 	if (ino < sctx->send_progress)
2175 		ret = get_first_ref(sctx->send_root, ino,
2176 				    parent_ino, parent_gen, dest);
2177 	else
2178 		ret = get_first_ref(sctx->parent_root, ino,
2179 				    parent_ino, parent_gen, dest);
2180 	if (ret < 0)
2181 		goto out;
2182 
2183 	/*
2184 	 * Check if the ref was overwritten by an inode's ref that was processed
2185 	 * earlier. If yes, treat as orphan and return 1.
2186 	 */
2187 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2188 			dest->start, dest->end - dest->start);
2189 	if (ret < 0)
2190 		goto out;
2191 	if (ret) {
2192 		fs_path_reset(dest);
2193 		ret = gen_unique_name(sctx, ino, gen, dest);
2194 		if (ret < 0)
2195 			goto out;
2196 		ret = 1;
2197 	}
2198 
2199 out_cache:
2200 	/*
2201 	 * Store the result of the lookup in the name cache.
2202 	 */
2203 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2204 	if (!nce) {
2205 		ret = -ENOMEM;
2206 		goto out;
2207 	}
2208 
2209 	nce->ino = ino;
2210 	nce->gen = gen;
2211 	nce->parent_ino = *parent_ino;
2212 	nce->parent_gen = *parent_gen;
2213 	nce->name_len = fs_path_len(dest);
2214 	nce->ret = ret;
2215 	strcpy(nce->name, dest->start);
2216 
2217 	if (ino < sctx->send_progress)
2218 		nce->need_later_update = 0;
2219 	else
2220 		nce->need_later_update = 1;
2221 
2222 	nce_ret = name_cache_insert(sctx, nce);
2223 	if (nce_ret < 0)
2224 		ret = nce_ret;
2225 	name_cache_clean_unused(sctx);
2226 
2227 out:
2228 	return ret;
2229 }
2230 
2231 /*
2232  * Magic happens here. This function returns the first ref to an inode as it
2233  * would look like while receiving the stream at this point in time.
2234  * We walk the path up to the root. For every inode in between, we check if it
2235  * was already processed/sent. If yes, we continue with the parent as found
2236  * in send_root. If not, we continue with the parent as found in parent_root.
2237  * If we encounter an inode that was deleted at this point in time, we use the
2238  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2239  * that were not created yet and overwritten inodes/refs.
2240  *
2241  * When do we have orphan inodes:
2242  * 1. When an inode is freshly created and thus no valid refs are available yet
2243  * 2. When a directory lost all it's refs (deleted) but still has dir items
2244  *    inside which were not processed yet (pending for move/delete). If anyone
2245  *    tried to get the path to the dir items, it would get a path inside that
2246  *    orphan directory.
2247  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2248  *    of an unprocessed inode. If in that case the first ref would be
2249  *    overwritten, the overwritten inode gets "orphanized". Later when we
2250  *    process this overwritten inode, it is restored at a new place by moving
2251  *    the orphan inode.
2252  *
2253  * sctx->send_progress tells this function at which point in time receiving
2254  * would be.
2255  */
2256 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2257 			struct fs_path *dest)
2258 {
2259 	int ret = 0;
2260 	struct fs_path *name = NULL;
2261 	u64 parent_inode = 0;
2262 	u64 parent_gen = 0;
2263 	int stop = 0;
2264 
2265 	name = fs_path_alloc();
2266 	if (!name) {
2267 		ret = -ENOMEM;
2268 		goto out;
2269 	}
2270 
2271 	dest->reversed = 1;
2272 	fs_path_reset(dest);
2273 
2274 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2275 		struct waiting_dir_move *wdm;
2276 
2277 		fs_path_reset(name);
2278 
2279 		if (is_waiting_for_rm(sctx, ino)) {
2280 			ret = gen_unique_name(sctx, ino, gen, name);
2281 			if (ret < 0)
2282 				goto out;
2283 			ret = fs_path_add_path(dest, name);
2284 			break;
2285 		}
2286 
2287 		wdm = get_waiting_dir_move(sctx, ino);
2288 		if (wdm && wdm->orphanized) {
2289 			ret = gen_unique_name(sctx, ino, gen, name);
2290 			stop = 1;
2291 		} else if (wdm) {
2292 			ret = get_first_ref(sctx->parent_root, ino,
2293 					    &parent_inode, &parent_gen, name);
2294 		} else {
2295 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2296 							&parent_inode,
2297 							&parent_gen, name);
2298 			if (ret)
2299 				stop = 1;
2300 		}
2301 
2302 		if (ret < 0)
2303 			goto out;
2304 
2305 		ret = fs_path_add_path(dest, name);
2306 		if (ret < 0)
2307 			goto out;
2308 
2309 		ino = parent_inode;
2310 		gen = parent_gen;
2311 	}
2312 
2313 out:
2314 	fs_path_free(name);
2315 	if (!ret)
2316 		fs_path_unreverse(dest);
2317 	return ret;
2318 }
2319 
2320 /*
2321  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2322  */
2323 static int send_subvol_begin(struct send_ctx *sctx)
2324 {
2325 	int ret;
2326 	struct btrfs_root *send_root = sctx->send_root;
2327 	struct btrfs_root *parent_root = sctx->parent_root;
2328 	struct btrfs_path *path;
2329 	struct btrfs_key key;
2330 	struct btrfs_root_ref *ref;
2331 	struct extent_buffer *leaf;
2332 	char *name = NULL;
2333 	int namelen;
2334 
2335 	path = btrfs_alloc_path();
2336 	if (!path)
2337 		return -ENOMEM;
2338 
2339 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2340 	if (!name) {
2341 		btrfs_free_path(path);
2342 		return -ENOMEM;
2343 	}
2344 
2345 	key.objectid = send_root->root_key.objectid;
2346 	key.type = BTRFS_ROOT_BACKREF_KEY;
2347 	key.offset = 0;
2348 
2349 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2350 				&key, path, 1, 0);
2351 	if (ret < 0)
2352 		goto out;
2353 	if (ret) {
2354 		ret = -ENOENT;
2355 		goto out;
2356 	}
2357 
2358 	leaf = path->nodes[0];
2359 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2360 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2361 	    key.objectid != send_root->root_key.objectid) {
2362 		ret = -ENOENT;
2363 		goto out;
2364 	}
2365 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2366 	namelen = btrfs_root_ref_name_len(leaf, ref);
2367 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2368 	btrfs_release_path(path);
2369 
2370 	if (parent_root) {
2371 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2372 		if (ret < 0)
2373 			goto out;
2374 	} else {
2375 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2376 		if (ret < 0)
2377 			goto out;
2378 	}
2379 
2380 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2381 
2382 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2383 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384 			    sctx->send_root->root_item.received_uuid);
2385 	else
2386 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2387 			    sctx->send_root->root_item.uuid);
2388 
2389 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2390 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2391 	if (parent_root) {
2392 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2393 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394 				     parent_root->root_item.received_uuid);
2395 		else
2396 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2397 				     parent_root->root_item.uuid);
2398 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2399 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2400 	}
2401 
2402 	ret = send_cmd(sctx);
2403 
2404 tlv_put_failure:
2405 out:
2406 	btrfs_free_path(path);
2407 	kfree(name);
2408 	return ret;
2409 }
2410 
2411 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2412 {
2413 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2414 	int ret = 0;
2415 	struct fs_path *p;
2416 
2417 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2418 
2419 	p = fs_path_alloc();
2420 	if (!p)
2421 		return -ENOMEM;
2422 
2423 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2424 	if (ret < 0)
2425 		goto out;
2426 
2427 	ret = get_cur_path(sctx, ino, gen, p);
2428 	if (ret < 0)
2429 		goto out;
2430 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2431 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2432 
2433 	ret = send_cmd(sctx);
2434 
2435 tlv_put_failure:
2436 out:
2437 	fs_path_free(p);
2438 	return ret;
2439 }
2440 
2441 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2442 {
2443 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2444 	int ret = 0;
2445 	struct fs_path *p;
2446 
2447 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2448 
2449 	p = fs_path_alloc();
2450 	if (!p)
2451 		return -ENOMEM;
2452 
2453 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2454 	if (ret < 0)
2455 		goto out;
2456 
2457 	ret = get_cur_path(sctx, ino, gen, p);
2458 	if (ret < 0)
2459 		goto out;
2460 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2461 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2462 
2463 	ret = send_cmd(sctx);
2464 
2465 tlv_put_failure:
2466 out:
2467 	fs_path_free(p);
2468 	return ret;
2469 }
2470 
2471 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2472 {
2473 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2474 	int ret = 0;
2475 	struct fs_path *p;
2476 
2477 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2478 		    ino, uid, gid);
2479 
2480 	p = fs_path_alloc();
2481 	if (!p)
2482 		return -ENOMEM;
2483 
2484 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2485 	if (ret < 0)
2486 		goto out;
2487 
2488 	ret = get_cur_path(sctx, ino, gen, p);
2489 	if (ret < 0)
2490 		goto out;
2491 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2492 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2493 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2494 
2495 	ret = send_cmd(sctx);
2496 
2497 tlv_put_failure:
2498 out:
2499 	fs_path_free(p);
2500 	return ret;
2501 }
2502 
2503 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2504 {
2505 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2506 	int ret = 0;
2507 	struct fs_path *p = NULL;
2508 	struct btrfs_inode_item *ii;
2509 	struct btrfs_path *path = NULL;
2510 	struct extent_buffer *eb;
2511 	struct btrfs_key key;
2512 	int slot;
2513 
2514 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2515 
2516 	p = fs_path_alloc();
2517 	if (!p)
2518 		return -ENOMEM;
2519 
2520 	path = alloc_path_for_send();
2521 	if (!path) {
2522 		ret = -ENOMEM;
2523 		goto out;
2524 	}
2525 
2526 	key.objectid = ino;
2527 	key.type = BTRFS_INODE_ITEM_KEY;
2528 	key.offset = 0;
2529 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2530 	if (ret > 0)
2531 		ret = -ENOENT;
2532 	if (ret < 0)
2533 		goto out;
2534 
2535 	eb = path->nodes[0];
2536 	slot = path->slots[0];
2537 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2538 
2539 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2540 	if (ret < 0)
2541 		goto out;
2542 
2543 	ret = get_cur_path(sctx, ino, gen, p);
2544 	if (ret < 0)
2545 		goto out;
2546 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2547 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2548 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2549 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2550 	/* TODO Add otime support when the otime patches get into upstream */
2551 
2552 	ret = send_cmd(sctx);
2553 
2554 tlv_put_failure:
2555 out:
2556 	fs_path_free(p);
2557 	btrfs_free_path(path);
2558 	return ret;
2559 }
2560 
2561 /*
2562  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2563  * a valid path yet because we did not process the refs yet. So, the inode
2564  * is created as orphan.
2565  */
2566 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2567 {
2568 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2569 	int ret = 0;
2570 	struct fs_path *p;
2571 	int cmd;
2572 	u64 gen;
2573 	u64 mode;
2574 	u64 rdev;
2575 
2576 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2577 
2578 	p = fs_path_alloc();
2579 	if (!p)
2580 		return -ENOMEM;
2581 
2582 	if (ino != sctx->cur_ino) {
2583 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2584 				     NULL, NULL, &rdev);
2585 		if (ret < 0)
2586 			goto out;
2587 	} else {
2588 		gen = sctx->cur_inode_gen;
2589 		mode = sctx->cur_inode_mode;
2590 		rdev = sctx->cur_inode_rdev;
2591 	}
2592 
2593 	if (S_ISREG(mode)) {
2594 		cmd = BTRFS_SEND_C_MKFILE;
2595 	} else if (S_ISDIR(mode)) {
2596 		cmd = BTRFS_SEND_C_MKDIR;
2597 	} else if (S_ISLNK(mode)) {
2598 		cmd = BTRFS_SEND_C_SYMLINK;
2599 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2600 		cmd = BTRFS_SEND_C_MKNOD;
2601 	} else if (S_ISFIFO(mode)) {
2602 		cmd = BTRFS_SEND_C_MKFIFO;
2603 	} else if (S_ISSOCK(mode)) {
2604 		cmd = BTRFS_SEND_C_MKSOCK;
2605 	} else {
2606 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2607 				(int)(mode & S_IFMT));
2608 		ret = -EOPNOTSUPP;
2609 		goto out;
2610 	}
2611 
2612 	ret = begin_cmd(sctx, cmd);
2613 	if (ret < 0)
2614 		goto out;
2615 
2616 	ret = gen_unique_name(sctx, ino, gen, p);
2617 	if (ret < 0)
2618 		goto out;
2619 
2620 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2621 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2622 
2623 	if (S_ISLNK(mode)) {
2624 		fs_path_reset(p);
2625 		ret = read_symlink(sctx->send_root, ino, p);
2626 		if (ret < 0)
2627 			goto out;
2628 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2629 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2630 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2631 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2632 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2633 	}
2634 
2635 	ret = send_cmd(sctx);
2636 	if (ret < 0)
2637 		goto out;
2638 
2639 
2640 tlv_put_failure:
2641 out:
2642 	fs_path_free(p);
2643 	return ret;
2644 }
2645 
2646 /*
2647  * We need some special handling for inodes that get processed before the parent
2648  * directory got created. See process_recorded_refs for details.
2649  * This function does the check if we already created the dir out of order.
2650  */
2651 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2652 {
2653 	int ret = 0;
2654 	struct btrfs_path *path = NULL;
2655 	struct btrfs_key key;
2656 	struct btrfs_key found_key;
2657 	struct btrfs_key di_key;
2658 	struct extent_buffer *eb;
2659 	struct btrfs_dir_item *di;
2660 	int slot;
2661 
2662 	path = alloc_path_for_send();
2663 	if (!path) {
2664 		ret = -ENOMEM;
2665 		goto out;
2666 	}
2667 
2668 	key.objectid = dir;
2669 	key.type = BTRFS_DIR_INDEX_KEY;
2670 	key.offset = 0;
2671 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2672 	if (ret < 0)
2673 		goto out;
2674 
2675 	while (1) {
2676 		eb = path->nodes[0];
2677 		slot = path->slots[0];
2678 		if (slot >= btrfs_header_nritems(eb)) {
2679 			ret = btrfs_next_leaf(sctx->send_root, path);
2680 			if (ret < 0) {
2681 				goto out;
2682 			} else if (ret > 0) {
2683 				ret = 0;
2684 				break;
2685 			}
2686 			continue;
2687 		}
2688 
2689 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2690 		if (found_key.objectid != key.objectid ||
2691 		    found_key.type != key.type) {
2692 			ret = 0;
2693 			goto out;
2694 		}
2695 
2696 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2697 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2698 
2699 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2700 		    di_key.objectid < sctx->send_progress) {
2701 			ret = 1;
2702 			goto out;
2703 		}
2704 
2705 		path->slots[0]++;
2706 	}
2707 
2708 out:
2709 	btrfs_free_path(path);
2710 	return ret;
2711 }
2712 
2713 /*
2714  * Only creates the inode if it is:
2715  * 1. Not a directory
2716  * 2. Or a directory which was not created already due to out of order
2717  *    directories. See did_create_dir and process_recorded_refs for details.
2718  */
2719 static int send_create_inode_if_needed(struct send_ctx *sctx)
2720 {
2721 	int ret;
2722 
2723 	if (S_ISDIR(sctx->cur_inode_mode)) {
2724 		ret = did_create_dir(sctx, sctx->cur_ino);
2725 		if (ret < 0)
2726 			goto out;
2727 		if (ret) {
2728 			ret = 0;
2729 			goto out;
2730 		}
2731 	}
2732 
2733 	ret = send_create_inode(sctx, sctx->cur_ino);
2734 	if (ret < 0)
2735 		goto out;
2736 
2737 out:
2738 	return ret;
2739 }
2740 
2741 struct recorded_ref {
2742 	struct list_head list;
2743 	char *name;
2744 	struct fs_path *full_path;
2745 	u64 dir;
2746 	u64 dir_gen;
2747 	int name_len;
2748 };
2749 
2750 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2751 {
2752 	ref->full_path = path;
2753 	ref->name = (char *)kbasename(ref->full_path->start);
2754 	ref->name_len = ref->full_path->end - ref->name;
2755 }
2756 
2757 /*
2758  * We need to process new refs before deleted refs, but compare_tree gives us
2759  * everything mixed. So we first record all refs and later process them.
2760  * This function is a helper to record one ref.
2761  */
2762 static int __record_ref(struct list_head *head, u64 dir,
2763 		      u64 dir_gen, struct fs_path *path)
2764 {
2765 	struct recorded_ref *ref;
2766 
2767 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2768 	if (!ref)
2769 		return -ENOMEM;
2770 
2771 	ref->dir = dir;
2772 	ref->dir_gen = dir_gen;
2773 	set_ref_path(ref, path);
2774 	list_add_tail(&ref->list, head);
2775 	return 0;
2776 }
2777 
2778 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2779 {
2780 	struct recorded_ref *new;
2781 
2782 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2783 	if (!new)
2784 		return -ENOMEM;
2785 
2786 	new->dir = ref->dir;
2787 	new->dir_gen = ref->dir_gen;
2788 	new->full_path = NULL;
2789 	INIT_LIST_HEAD(&new->list);
2790 	list_add_tail(&new->list, list);
2791 	return 0;
2792 }
2793 
2794 static void __free_recorded_refs(struct list_head *head)
2795 {
2796 	struct recorded_ref *cur;
2797 
2798 	while (!list_empty(head)) {
2799 		cur = list_entry(head->next, struct recorded_ref, list);
2800 		fs_path_free(cur->full_path);
2801 		list_del(&cur->list);
2802 		kfree(cur);
2803 	}
2804 }
2805 
2806 static void free_recorded_refs(struct send_ctx *sctx)
2807 {
2808 	__free_recorded_refs(&sctx->new_refs);
2809 	__free_recorded_refs(&sctx->deleted_refs);
2810 }
2811 
2812 /*
2813  * Renames/moves a file/dir to its orphan name. Used when the first
2814  * ref of an unprocessed inode gets overwritten and for all non empty
2815  * directories.
2816  */
2817 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2818 			  struct fs_path *path)
2819 {
2820 	int ret;
2821 	struct fs_path *orphan;
2822 
2823 	orphan = fs_path_alloc();
2824 	if (!orphan)
2825 		return -ENOMEM;
2826 
2827 	ret = gen_unique_name(sctx, ino, gen, orphan);
2828 	if (ret < 0)
2829 		goto out;
2830 
2831 	ret = send_rename(sctx, path, orphan);
2832 
2833 out:
2834 	fs_path_free(orphan);
2835 	return ret;
2836 }
2837 
2838 static struct orphan_dir_info *
2839 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2840 {
2841 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2842 	struct rb_node *parent = NULL;
2843 	struct orphan_dir_info *entry, *odi;
2844 
2845 	while (*p) {
2846 		parent = *p;
2847 		entry = rb_entry(parent, struct orphan_dir_info, node);
2848 		if (dir_ino < entry->ino) {
2849 			p = &(*p)->rb_left;
2850 		} else if (dir_ino > entry->ino) {
2851 			p = &(*p)->rb_right;
2852 		} else {
2853 			return entry;
2854 		}
2855 	}
2856 
2857 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2858 	if (!odi)
2859 		return ERR_PTR(-ENOMEM);
2860 	odi->ino = dir_ino;
2861 	odi->gen = 0;
2862 	odi->last_dir_index_offset = 0;
2863 
2864 	rb_link_node(&odi->node, parent, p);
2865 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2866 	return odi;
2867 }
2868 
2869 static struct orphan_dir_info *
2870 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2871 {
2872 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2873 	struct orphan_dir_info *entry;
2874 
2875 	while (n) {
2876 		entry = rb_entry(n, struct orphan_dir_info, node);
2877 		if (dir_ino < entry->ino)
2878 			n = n->rb_left;
2879 		else if (dir_ino > entry->ino)
2880 			n = n->rb_right;
2881 		else
2882 			return entry;
2883 	}
2884 	return NULL;
2885 }
2886 
2887 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2888 {
2889 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2890 
2891 	return odi != NULL;
2892 }
2893 
2894 static void free_orphan_dir_info(struct send_ctx *sctx,
2895 				 struct orphan_dir_info *odi)
2896 {
2897 	if (!odi)
2898 		return;
2899 	rb_erase(&odi->node, &sctx->orphan_dirs);
2900 	kfree(odi);
2901 }
2902 
2903 /*
2904  * Returns 1 if a directory can be removed at this point in time.
2905  * We check this by iterating all dir items and checking if the inode behind
2906  * the dir item was already processed.
2907  */
2908 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2909 		     u64 send_progress)
2910 {
2911 	int ret = 0;
2912 	struct btrfs_root *root = sctx->parent_root;
2913 	struct btrfs_path *path;
2914 	struct btrfs_key key;
2915 	struct btrfs_key found_key;
2916 	struct btrfs_key loc;
2917 	struct btrfs_dir_item *di;
2918 	struct orphan_dir_info *odi = NULL;
2919 
2920 	/*
2921 	 * Don't try to rmdir the top/root subvolume dir.
2922 	 */
2923 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2924 		return 0;
2925 
2926 	path = alloc_path_for_send();
2927 	if (!path)
2928 		return -ENOMEM;
2929 
2930 	key.objectid = dir;
2931 	key.type = BTRFS_DIR_INDEX_KEY;
2932 	key.offset = 0;
2933 
2934 	odi = get_orphan_dir_info(sctx, dir);
2935 	if (odi)
2936 		key.offset = odi->last_dir_index_offset;
2937 
2938 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2939 	if (ret < 0)
2940 		goto out;
2941 
2942 	while (1) {
2943 		struct waiting_dir_move *dm;
2944 
2945 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2946 			ret = btrfs_next_leaf(root, path);
2947 			if (ret < 0)
2948 				goto out;
2949 			else if (ret > 0)
2950 				break;
2951 			continue;
2952 		}
2953 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2954 				      path->slots[0]);
2955 		if (found_key.objectid != key.objectid ||
2956 		    found_key.type != key.type)
2957 			break;
2958 
2959 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2960 				struct btrfs_dir_item);
2961 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2962 
2963 		dm = get_waiting_dir_move(sctx, loc.objectid);
2964 		if (dm) {
2965 			odi = add_orphan_dir_info(sctx, dir);
2966 			if (IS_ERR(odi)) {
2967 				ret = PTR_ERR(odi);
2968 				goto out;
2969 			}
2970 			odi->gen = dir_gen;
2971 			odi->last_dir_index_offset = found_key.offset;
2972 			dm->rmdir_ino = dir;
2973 			ret = 0;
2974 			goto out;
2975 		}
2976 
2977 		if (loc.objectid > send_progress) {
2978 			odi = add_orphan_dir_info(sctx, dir);
2979 			if (IS_ERR(odi)) {
2980 				ret = PTR_ERR(odi);
2981 				goto out;
2982 			}
2983 			odi->gen = dir_gen;
2984 			odi->last_dir_index_offset = found_key.offset;
2985 			ret = 0;
2986 			goto out;
2987 		}
2988 
2989 		path->slots[0]++;
2990 	}
2991 	free_orphan_dir_info(sctx, odi);
2992 
2993 	ret = 1;
2994 
2995 out:
2996 	btrfs_free_path(path);
2997 	return ret;
2998 }
2999 
3000 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3001 {
3002 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3003 
3004 	return entry != NULL;
3005 }
3006 
3007 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3008 {
3009 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3010 	struct rb_node *parent = NULL;
3011 	struct waiting_dir_move *entry, *dm;
3012 
3013 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3014 	if (!dm)
3015 		return -ENOMEM;
3016 	dm->ino = ino;
3017 	dm->rmdir_ino = 0;
3018 	dm->orphanized = orphanized;
3019 
3020 	while (*p) {
3021 		parent = *p;
3022 		entry = rb_entry(parent, struct waiting_dir_move, node);
3023 		if (ino < entry->ino) {
3024 			p = &(*p)->rb_left;
3025 		} else if (ino > entry->ino) {
3026 			p = &(*p)->rb_right;
3027 		} else {
3028 			kfree(dm);
3029 			return -EEXIST;
3030 		}
3031 	}
3032 
3033 	rb_link_node(&dm->node, parent, p);
3034 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3035 	return 0;
3036 }
3037 
3038 static struct waiting_dir_move *
3039 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3040 {
3041 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3042 	struct waiting_dir_move *entry;
3043 
3044 	while (n) {
3045 		entry = rb_entry(n, struct waiting_dir_move, node);
3046 		if (ino < entry->ino)
3047 			n = n->rb_left;
3048 		else if (ino > entry->ino)
3049 			n = n->rb_right;
3050 		else
3051 			return entry;
3052 	}
3053 	return NULL;
3054 }
3055 
3056 static void free_waiting_dir_move(struct send_ctx *sctx,
3057 				  struct waiting_dir_move *dm)
3058 {
3059 	if (!dm)
3060 		return;
3061 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3062 	kfree(dm);
3063 }
3064 
3065 static int add_pending_dir_move(struct send_ctx *sctx,
3066 				u64 ino,
3067 				u64 ino_gen,
3068 				u64 parent_ino,
3069 				struct list_head *new_refs,
3070 				struct list_head *deleted_refs,
3071 				const bool is_orphan)
3072 {
3073 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3074 	struct rb_node *parent = NULL;
3075 	struct pending_dir_move *entry = NULL, *pm;
3076 	struct recorded_ref *cur;
3077 	int exists = 0;
3078 	int ret;
3079 
3080 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3081 	if (!pm)
3082 		return -ENOMEM;
3083 	pm->parent_ino = parent_ino;
3084 	pm->ino = ino;
3085 	pm->gen = ino_gen;
3086 	INIT_LIST_HEAD(&pm->list);
3087 	INIT_LIST_HEAD(&pm->update_refs);
3088 	RB_CLEAR_NODE(&pm->node);
3089 
3090 	while (*p) {
3091 		parent = *p;
3092 		entry = rb_entry(parent, struct pending_dir_move, node);
3093 		if (parent_ino < entry->parent_ino) {
3094 			p = &(*p)->rb_left;
3095 		} else if (parent_ino > entry->parent_ino) {
3096 			p = &(*p)->rb_right;
3097 		} else {
3098 			exists = 1;
3099 			break;
3100 		}
3101 	}
3102 
3103 	list_for_each_entry(cur, deleted_refs, list) {
3104 		ret = dup_ref(cur, &pm->update_refs);
3105 		if (ret < 0)
3106 			goto out;
3107 	}
3108 	list_for_each_entry(cur, new_refs, list) {
3109 		ret = dup_ref(cur, &pm->update_refs);
3110 		if (ret < 0)
3111 			goto out;
3112 	}
3113 
3114 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3115 	if (ret)
3116 		goto out;
3117 
3118 	if (exists) {
3119 		list_add_tail(&pm->list, &entry->list);
3120 	} else {
3121 		rb_link_node(&pm->node, parent, p);
3122 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3123 	}
3124 	ret = 0;
3125 out:
3126 	if (ret) {
3127 		__free_recorded_refs(&pm->update_refs);
3128 		kfree(pm);
3129 	}
3130 	return ret;
3131 }
3132 
3133 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3134 						      u64 parent_ino)
3135 {
3136 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3137 	struct pending_dir_move *entry;
3138 
3139 	while (n) {
3140 		entry = rb_entry(n, struct pending_dir_move, node);
3141 		if (parent_ino < entry->parent_ino)
3142 			n = n->rb_left;
3143 		else if (parent_ino > entry->parent_ino)
3144 			n = n->rb_right;
3145 		else
3146 			return entry;
3147 	}
3148 	return NULL;
3149 }
3150 
3151 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3152 		     u64 ino, u64 gen, u64 *ancestor_ino)
3153 {
3154 	int ret = 0;
3155 	u64 parent_inode = 0;
3156 	u64 parent_gen = 0;
3157 	u64 start_ino = ino;
3158 
3159 	*ancestor_ino = 0;
3160 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3161 		fs_path_reset(name);
3162 
3163 		if (is_waiting_for_rm(sctx, ino))
3164 			break;
3165 		if (is_waiting_for_move(sctx, ino)) {
3166 			if (*ancestor_ino == 0)
3167 				*ancestor_ino = ino;
3168 			ret = get_first_ref(sctx->parent_root, ino,
3169 					    &parent_inode, &parent_gen, name);
3170 		} else {
3171 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3172 							&parent_inode,
3173 							&parent_gen, name);
3174 			if (ret > 0) {
3175 				ret = 0;
3176 				break;
3177 			}
3178 		}
3179 		if (ret < 0)
3180 			break;
3181 		if (parent_inode == start_ino) {
3182 			ret = 1;
3183 			if (*ancestor_ino == 0)
3184 				*ancestor_ino = ino;
3185 			break;
3186 		}
3187 		ino = parent_inode;
3188 		gen = parent_gen;
3189 	}
3190 	return ret;
3191 }
3192 
3193 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3194 {
3195 	struct fs_path *from_path = NULL;
3196 	struct fs_path *to_path = NULL;
3197 	struct fs_path *name = NULL;
3198 	u64 orig_progress = sctx->send_progress;
3199 	struct recorded_ref *cur;
3200 	u64 parent_ino, parent_gen;
3201 	struct waiting_dir_move *dm = NULL;
3202 	u64 rmdir_ino = 0;
3203 	u64 ancestor;
3204 	bool is_orphan;
3205 	int ret;
3206 
3207 	name = fs_path_alloc();
3208 	from_path = fs_path_alloc();
3209 	if (!name || !from_path) {
3210 		ret = -ENOMEM;
3211 		goto out;
3212 	}
3213 
3214 	dm = get_waiting_dir_move(sctx, pm->ino);
3215 	ASSERT(dm);
3216 	rmdir_ino = dm->rmdir_ino;
3217 	is_orphan = dm->orphanized;
3218 	free_waiting_dir_move(sctx, dm);
3219 
3220 	if (is_orphan) {
3221 		ret = gen_unique_name(sctx, pm->ino,
3222 				      pm->gen, from_path);
3223 	} else {
3224 		ret = get_first_ref(sctx->parent_root, pm->ino,
3225 				    &parent_ino, &parent_gen, name);
3226 		if (ret < 0)
3227 			goto out;
3228 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3229 				   from_path);
3230 		if (ret < 0)
3231 			goto out;
3232 		ret = fs_path_add_path(from_path, name);
3233 	}
3234 	if (ret < 0)
3235 		goto out;
3236 
3237 	sctx->send_progress = sctx->cur_ino + 1;
3238 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3239 	if (ret < 0)
3240 		goto out;
3241 	if (ret) {
3242 		LIST_HEAD(deleted_refs);
3243 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3244 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3245 					   &pm->update_refs, &deleted_refs,
3246 					   is_orphan);
3247 		if (ret < 0)
3248 			goto out;
3249 		if (rmdir_ino) {
3250 			dm = get_waiting_dir_move(sctx, pm->ino);
3251 			ASSERT(dm);
3252 			dm->rmdir_ino = rmdir_ino;
3253 		}
3254 		goto out;
3255 	}
3256 	fs_path_reset(name);
3257 	to_path = name;
3258 	name = NULL;
3259 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3260 	if (ret < 0)
3261 		goto out;
3262 
3263 	ret = send_rename(sctx, from_path, to_path);
3264 	if (ret < 0)
3265 		goto out;
3266 
3267 	if (rmdir_ino) {
3268 		struct orphan_dir_info *odi;
3269 		u64 gen;
3270 
3271 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3272 		if (!odi) {
3273 			/* already deleted */
3274 			goto finish;
3275 		}
3276 		gen = odi->gen;
3277 
3278 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3279 		if (ret < 0)
3280 			goto out;
3281 		if (!ret)
3282 			goto finish;
3283 
3284 		name = fs_path_alloc();
3285 		if (!name) {
3286 			ret = -ENOMEM;
3287 			goto out;
3288 		}
3289 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3290 		if (ret < 0)
3291 			goto out;
3292 		ret = send_rmdir(sctx, name);
3293 		if (ret < 0)
3294 			goto out;
3295 	}
3296 
3297 finish:
3298 	ret = send_utimes(sctx, pm->ino, pm->gen);
3299 	if (ret < 0)
3300 		goto out;
3301 
3302 	/*
3303 	 * After rename/move, need to update the utimes of both new parent(s)
3304 	 * and old parent(s).
3305 	 */
3306 	list_for_each_entry(cur, &pm->update_refs, list) {
3307 		/*
3308 		 * The parent inode might have been deleted in the send snapshot
3309 		 */
3310 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3311 				     NULL, NULL, NULL, NULL, NULL);
3312 		if (ret == -ENOENT) {
3313 			ret = 0;
3314 			continue;
3315 		}
3316 		if (ret < 0)
3317 			goto out;
3318 
3319 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3320 		if (ret < 0)
3321 			goto out;
3322 	}
3323 
3324 out:
3325 	fs_path_free(name);
3326 	fs_path_free(from_path);
3327 	fs_path_free(to_path);
3328 	sctx->send_progress = orig_progress;
3329 
3330 	return ret;
3331 }
3332 
3333 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3334 {
3335 	if (!list_empty(&m->list))
3336 		list_del(&m->list);
3337 	if (!RB_EMPTY_NODE(&m->node))
3338 		rb_erase(&m->node, &sctx->pending_dir_moves);
3339 	__free_recorded_refs(&m->update_refs);
3340 	kfree(m);
3341 }
3342 
3343 static void tail_append_pending_moves(struct send_ctx *sctx,
3344 				      struct pending_dir_move *moves,
3345 				      struct list_head *stack)
3346 {
3347 	if (list_empty(&moves->list)) {
3348 		list_add_tail(&moves->list, stack);
3349 	} else {
3350 		LIST_HEAD(list);
3351 		list_splice_init(&moves->list, &list);
3352 		list_add_tail(&moves->list, stack);
3353 		list_splice_tail(&list, stack);
3354 	}
3355 	if (!RB_EMPTY_NODE(&moves->node)) {
3356 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3357 		RB_CLEAR_NODE(&moves->node);
3358 	}
3359 }
3360 
3361 static int apply_children_dir_moves(struct send_ctx *sctx)
3362 {
3363 	struct pending_dir_move *pm;
3364 	struct list_head stack;
3365 	u64 parent_ino = sctx->cur_ino;
3366 	int ret = 0;
3367 
3368 	pm = get_pending_dir_moves(sctx, parent_ino);
3369 	if (!pm)
3370 		return 0;
3371 
3372 	INIT_LIST_HEAD(&stack);
3373 	tail_append_pending_moves(sctx, pm, &stack);
3374 
3375 	while (!list_empty(&stack)) {
3376 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3377 		parent_ino = pm->ino;
3378 		ret = apply_dir_move(sctx, pm);
3379 		free_pending_move(sctx, pm);
3380 		if (ret)
3381 			goto out;
3382 		pm = get_pending_dir_moves(sctx, parent_ino);
3383 		if (pm)
3384 			tail_append_pending_moves(sctx, pm, &stack);
3385 	}
3386 	return 0;
3387 
3388 out:
3389 	while (!list_empty(&stack)) {
3390 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3391 		free_pending_move(sctx, pm);
3392 	}
3393 	return ret;
3394 }
3395 
3396 /*
3397  * We might need to delay a directory rename even when no ancestor directory
3398  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3399  * renamed. This happens when we rename a directory to the old name (the name
3400  * in the parent root) of some other unrelated directory that got its rename
3401  * delayed due to some ancestor with higher number that got renamed.
3402  *
3403  * Example:
3404  *
3405  * Parent snapshot:
3406  * .                                       (ino 256)
3407  * |---- a/                                (ino 257)
3408  * |     |---- file                        (ino 260)
3409  * |
3410  * |---- b/                                (ino 258)
3411  * |---- c/                                (ino 259)
3412  *
3413  * Send snapshot:
3414  * .                                       (ino 256)
3415  * |---- a/                                (ino 258)
3416  * |---- x/                                (ino 259)
3417  *       |---- y/                          (ino 257)
3418  *             |----- file                 (ino 260)
3419  *
3420  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3421  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3422  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3423  * must issue is:
3424  *
3425  * 1 - rename 259 from 'c' to 'x'
3426  * 2 - rename 257 from 'a' to 'x/y'
3427  * 3 - rename 258 from 'b' to 'a'
3428  *
3429  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3430  * be done right away and < 0 on error.
3431  */
3432 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3433 				  struct recorded_ref *parent_ref,
3434 				  const bool is_orphan)
3435 {
3436 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3437 	struct btrfs_path *path;
3438 	struct btrfs_key key;
3439 	struct btrfs_key di_key;
3440 	struct btrfs_dir_item *di;
3441 	u64 left_gen;
3442 	u64 right_gen;
3443 	int ret = 0;
3444 	struct waiting_dir_move *wdm;
3445 
3446 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3447 		return 0;
3448 
3449 	path = alloc_path_for_send();
3450 	if (!path)
3451 		return -ENOMEM;
3452 
3453 	key.objectid = parent_ref->dir;
3454 	key.type = BTRFS_DIR_ITEM_KEY;
3455 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3456 
3457 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3458 	if (ret < 0) {
3459 		goto out;
3460 	} else if (ret > 0) {
3461 		ret = 0;
3462 		goto out;
3463 	}
3464 
3465 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3466 				       parent_ref->name_len);
3467 	if (!di) {
3468 		ret = 0;
3469 		goto out;
3470 	}
3471 	/*
3472 	 * di_key.objectid has the number of the inode that has a dentry in the
3473 	 * parent directory with the same name that sctx->cur_ino is being
3474 	 * renamed to. We need to check if that inode is in the send root as
3475 	 * well and if it is currently marked as an inode with a pending rename,
3476 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3477 	 * that it happens after that other inode is renamed.
3478 	 */
3479 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3480 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3481 		ret = 0;
3482 		goto out;
3483 	}
3484 
3485 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3486 			     &left_gen, NULL, NULL, NULL, NULL);
3487 	if (ret < 0)
3488 		goto out;
3489 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3490 			     &right_gen, NULL, NULL, NULL, NULL);
3491 	if (ret < 0) {
3492 		if (ret == -ENOENT)
3493 			ret = 0;
3494 		goto out;
3495 	}
3496 
3497 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3498 	if (right_gen != left_gen) {
3499 		ret = 0;
3500 		goto out;
3501 	}
3502 
3503 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3504 	if (wdm && !wdm->orphanized) {
3505 		ret = add_pending_dir_move(sctx,
3506 					   sctx->cur_ino,
3507 					   sctx->cur_inode_gen,
3508 					   di_key.objectid,
3509 					   &sctx->new_refs,
3510 					   &sctx->deleted_refs,
3511 					   is_orphan);
3512 		if (!ret)
3513 			ret = 1;
3514 	}
3515 out:
3516 	btrfs_free_path(path);
3517 	return ret;
3518 }
3519 
3520 /*
3521  * Check if inode ino2, or any of its ancestors, is inode ino1.
3522  * Return 1 if true, 0 if false and < 0 on error.
3523  */
3524 static int check_ino_in_path(struct btrfs_root *root,
3525 			     const u64 ino1,
3526 			     const u64 ino1_gen,
3527 			     const u64 ino2,
3528 			     const u64 ino2_gen,
3529 			     struct fs_path *fs_path)
3530 {
3531 	u64 ino = ino2;
3532 
3533 	if (ino1 == ino2)
3534 		return ino1_gen == ino2_gen;
3535 
3536 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3537 		u64 parent;
3538 		u64 parent_gen;
3539 		int ret;
3540 
3541 		fs_path_reset(fs_path);
3542 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3543 		if (ret < 0)
3544 			return ret;
3545 		if (parent == ino1)
3546 			return parent_gen == ino1_gen;
3547 		ino = parent;
3548 	}
3549 	return 0;
3550 }
3551 
3552 /*
3553  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3554  * possible path (in case ino2 is not a directory and has multiple hard links).
3555  * Return 1 if true, 0 if false and < 0 on error.
3556  */
3557 static int is_ancestor(struct btrfs_root *root,
3558 		       const u64 ino1,
3559 		       const u64 ino1_gen,
3560 		       const u64 ino2,
3561 		       struct fs_path *fs_path)
3562 {
3563 	bool free_fs_path = false;
3564 	int ret = 0;
3565 	struct btrfs_path *path = NULL;
3566 	struct btrfs_key key;
3567 
3568 	if (!fs_path) {
3569 		fs_path = fs_path_alloc();
3570 		if (!fs_path)
3571 			return -ENOMEM;
3572 		free_fs_path = true;
3573 	}
3574 
3575 	path = alloc_path_for_send();
3576 	if (!path) {
3577 		ret = -ENOMEM;
3578 		goto out;
3579 	}
3580 
3581 	key.objectid = ino2;
3582 	key.type = BTRFS_INODE_REF_KEY;
3583 	key.offset = 0;
3584 
3585 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3586 	if (ret < 0)
3587 		goto out;
3588 
3589 	while (true) {
3590 		struct extent_buffer *leaf = path->nodes[0];
3591 		int slot = path->slots[0];
3592 		u32 cur_offset = 0;
3593 		u32 item_size;
3594 
3595 		if (slot >= btrfs_header_nritems(leaf)) {
3596 			ret = btrfs_next_leaf(root, path);
3597 			if (ret < 0)
3598 				goto out;
3599 			if (ret > 0)
3600 				break;
3601 			continue;
3602 		}
3603 
3604 		btrfs_item_key_to_cpu(leaf, &key, slot);
3605 		if (key.objectid != ino2)
3606 			break;
3607 		if (key.type != BTRFS_INODE_REF_KEY &&
3608 		    key.type != BTRFS_INODE_EXTREF_KEY)
3609 			break;
3610 
3611 		item_size = btrfs_item_size_nr(leaf, slot);
3612 		while (cur_offset < item_size) {
3613 			u64 parent;
3614 			u64 parent_gen;
3615 
3616 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3617 				unsigned long ptr;
3618 				struct btrfs_inode_extref *extref;
3619 
3620 				ptr = btrfs_item_ptr_offset(leaf, slot);
3621 				extref = (struct btrfs_inode_extref *)
3622 					(ptr + cur_offset);
3623 				parent = btrfs_inode_extref_parent(leaf,
3624 								   extref);
3625 				cur_offset += sizeof(*extref);
3626 				cur_offset += btrfs_inode_extref_name_len(leaf,
3627 								  extref);
3628 			} else {
3629 				parent = key.offset;
3630 				cur_offset = item_size;
3631 			}
3632 
3633 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3634 					     NULL, NULL, NULL, NULL);
3635 			if (ret < 0)
3636 				goto out;
3637 			ret = check_ino_in_path(root, ino1, ino1_gen,
3638 						parent, parent_gen, fs_path);
3639 			if (ret)
3640 				goto out;
3641 		}
3642 		path->slots[0]++;
3643 	}
3644 	ret = 0;
3645  out:
3646 	btrfs_free_path(path);
3647 	if (free_fs_path)
3648 		fs_path_free(fs_path);
3649 	return ret;
3650 }
3651 
3652 static int wait_for_parent_move(struct send_ctx *sctx,
3653 				struct recorded_ref *parent_ref,
3654 				const bool is_orphan)
3655 {
3656 	int ret = 0;
3657 	u64 ino = parent_ref->dir;
3658 	u64 ino_gen = parent_ref->dir_gen;
3659 	u64 parent_ino_before, parent_ino_after;
3660 	struct fs_path *path_before = NULL;
3661 	struct fs_path *path_after = NULL;
3662 	int len1, len2;
3663 
3664 	path_after = fs_path_alloc();
3665 	path_before = fs_path_alloc();
3666 	if (!path_after || !path_before) {
3667 		ret = -ENOMEM;
3668 		goto out;
3669 	}
3670 
3671 	/*
3672 	 * Our current directory inode may not yet be renamed/moved because some
3673 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3674 	 * such ancestor exists and make sure our own rename/move happens after
3675 	 * that ancestor is processed to avoid path build infinite loops (done
3676 	 * at get_cur_path()).
3677 	 */
3678 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3679 		u64 parent_ino_after_gen;
3680 
3681 		if (is_waiting_for_move(sctx, ino)) {
3682 			/*
3683 			 * If the current inode is an ancestor of ino in the
3684 			 * parent root, we need to delay the rename of the
3685 			 * current inode, otherwise don't delayed the rename
3686 			 * because we can end up with a circular dependency
3687 			 * of renames, resulting in some directories never
3688 			 * getting the respective rename operations issued in
3689 			 * the send stream or getting into infinite path build
3690 			 * loops.
3691 			 */
3692 			ret = is_ancestor(sctx->parent_root,
3693 					  sctx->cur_ino, sctx->cur_inode_gen,
3694 					  ino, path_before);
3695 			if (ret)
3696 				break;
3697 		}
3698 
3699 		fs_path_reset(path_before);
3700 		fs_path_reset(path_after);
3701 
3702 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3703 				    &parent_ino_after_gen, path_after);
3704 		if (ret < 0)
3705 			goto out;
3706 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3707 				    NULL, path_before);
3708 		if (ret < 0 && ret != -ENOENT) {
3709 			goto out;
3710 		} else if (ret == -ENOENT) {
3711 			ret = 0;
3712 			break;
3713 		}
3714 
3715 		len1 = fs_path_len(path_before);
3716 		len2 = fs_path_len(path_after);
3717 		if (ino > sctx->cur_ino &&
3718 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3719 		     memcmp(path_before->start, path_after->start, len1))) {
3720 			u64 parent_ino_gen;
3721 
3722 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3723 					     &parent_ino_gen, NULL, NULL, NULL,
3724 					     NULL);
3725 			if (ret < 0)
3726 				goto out;
3727 			if (ino_gen == parent_ino_gen) {
3728 				ret = 1;
3729 				break;
3730 			}
3731 		}
3732 		ino = parent_ino_after;
3733 		ino_gen = parent_ino_after_gen;
3734 	}
3735 
3736 out:
3737 	fs_path_free(path_before);
3738 	fs_path_free(path_after);
3739 
3740 	if (ret == 1) {
3741 		ret = add_pending_dir_move(sctx,
3742 					   sctx->cur_ino,
3743 					   sctx->cur_inode_gen,
3744 					   ino,
3745 					   &sctx->new_refs,
3746 					   &sctx->deleted_refs,
3747 					   is_orphan);
3748 		if (!ret)
3749 			ret = 1;
3750 	}
3751 
3752 	return ret;
3753 }
3754 
3755 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3756 {
3757 	int ret;
3758 	struct fs_path *new_path;
3759 
3760 	/*
3761 	 * Our reference's name member points to its full_path member string, so
3762 	 * we use here a new path.
3763 	 */
3764 	new_path = fs_path_alloc();
3765 	if (!new_path)
3766 		return -ENOMEM;
3767 
3768 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3769 	if (ret < 0) {
3770 		fs_path_free(new_path);
3771 		return ret;
3772 	}
3773 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3774 	if (ret < 0) {
3775 		fs_path_free(new_path);
3776 		return ret;
3777 	}
3778 
3779 	fs_path_free(ref->full_path);
3780 	set_ref_path(ref, new_path);
3781 
3782 	return 0;
3783 }
3784 
3785 /*
3786  * This does all the move/link/unlink/rmdir magic.
3787  */
3788 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3789 {
3790 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3791 	int ret = 0;
3792 	struct recorded_ref *cur;
3793 	struct recorded_ref *cur2;
3794 	struct list_head check_dirs;
3795 	struct fs_path *valid_path = NULL;
3796 	u64 ow_inode = 0;
3797 	u64 ow_gen;
3798 	u64 ow_mode;
3799 	int did_overwrite = 0;
3800 	int is_orphan = 0;
3801 	u64 last_dir_ino_rm = 0;
3802 	bool can_rename = true;
3803 	bool orphanized_dir = false;
3804 	bool orphanized_ancestor = false;
3805 
3806 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3807 
3808 	/*
3809 	 * This should never happen as the root dir always has the same ref
3810 	 * which is always '..'
3811 	 */
3812 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3813 	INIT_LIST_HEAD(&check_dirs);
3814 
3815 	valid_path = fs_path_alloc();
3816 	if (!valid_path) {
3817 		ret = -ENOMEM;
3818 		goto out;
3819 	}
3820 
3821 	/*
3822 	 * First, check if the first ref of the current inode was overwritten
3823 	 * before. If yes, we know that the current inode was already orphanized
3824 	 * and thus use the orphan name. If not, we can use get_cur_path to
3825 	 * get the path of the first ref as it would like while receiving at
3826 	 * this point in time.
3827 	 * New inodes are always orphan at the beginning, so force to use the
3828 	 * orphan name in this case.
3829 	 * The first ref is stored in valid_path and will be updated if it
3830 	 * gets moved around.
3831 	 */
3832 	if (!sctx->cur_inode_new) {
3833 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3834 				sctx->cur_inode_gen);
3835 		if (ret < 0)
3836 			goto out;
3837 		if (ret)
3838 			did_overwrite = 1;
3839 	}
3840 	if (sctx->cur_inode_new || did_overwrite) {
3841 		ret = gen_unique_name(sctx, sctx->cur_ino,
3842 				sctx->cur_inode_gen, valid_path);
3843 		if (ret < 0)
3844 			goto out;
3845 		is_orphan = 1;
3846 	} else {
3847 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3848 				valid_path);
3849 		if (ret < 0)
3850 			goto out;
3851 	}
3852 
3853 	list_for_each_entry(cur, &sctx->new_refs, list) {
3854 		/*
3855 		 * We may have refs where the parent directory does not exist
3856 		 * yet. This happens if the parent directories inum is higher
3857 		 * than the current inum. To handle this case, we create the
3858 		 * parent directory out of order. But we need to check if this
3859 		 * did already happen before due to other refs in the same dir.
3860 		 */
3861 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3862 		if (ret < 0)
3863 			goto out;
3864 		if (ret == inode_state_will_create) {
3865 			ret = 0;
3866 			/*
3867 			 * First check if any of the current inodes refs did
3868 			 * already create the dir.
3869 			 */
3870 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3871 				if (cur == cur2)
3872 					break;
3873 				if (cur2->dir == cur->dir) {
3874 					ret = 1;
3875 					break;
3876 				}
3877 			}
3878 
3879 			/*
3880 			 * If that did not happen, check if a previous inode
3881 			 * did already create the dir.
3882 			 */
3883 			if (!ret)
3884 				ret = did_create_dir(sctx, cur->dir);
3885 			if (ret < 0)
3886 				goto out;
3887 			if (!ret) {
3888 				ret = send_create_inode(sctx, cur->dir);
3889 				if (ret < 0)
3890 					goto out;
3891 			}
3892 		}
3893 
3894 		/*
3895 		 * Check if this new ref would overwrite the first ref of
3896 		 * another unprocessed inode. If yes, orphanize the
3897 		 * overwritten inode. If we find an overwritten ref that is
3898 		 * not the first ref, simply unlink it.
3899 		 */
3900 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3901 				cur->name, cur->name_len,
3902 				&ow_inode, &ow_gen, &ow_mode);
3903 		if (ret < 0)
3904 			goto out;
3905 		if (ret) {
3906 			ret = is_first_ref(sctx->parent_root,
3907 					   ow_inode, cur->dir, cur->name,
3908 					   cur->name_len);
3909 			if (ret < 0)
3910 				goto out;
3911 			if (ret) {
3912 				struct name_cache_entry *nce;
3913 				struct waiting_dir_move *wdm;
3914 
3915 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3916 						cur->full_path);
3917 				if (ret < 0)
3918 					goto out;
3919 				if (S_ISDIR(ow_mode))
3920 					orphanized_dir = true;
3921 
3922 				/*
3923 				 * If ow_inode has its rename operation delayed
3924 				 * make sure that its orphanized name is used in
3925 				 * the source path when performing its rename
3926 				 * operation.
3927 				 */
3928 				if (is_waiting_for_move(sctx, ow_inode)) {
3929 					wdm = get_waiting_dir_move(sctx,
3930 								   ow_inode);
3931 					ASSERT(wdm);
3932 					wdm->orphanized = true;
3933 				}
3934 
3935 				/*
3936 				 * Make sure we clear our orphanized inode's
3937 				 * name from the name cache. This is because the
3938 				 * inode ow_inode might be an ancestor of some
3939 				 * other inode that will be orphanized as well
3940 				 * later and has an inode number greater than
3941 				 * sctx->send_progress. We need to prevent
3942 				 * future name lookups from using the old name
3943 				 * and get instead the orphan name.
3944 				 */
3945 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3946 				if (nce) {
3947 					name_cache_delete(sctx, nce);
3948 					kfree(nce);
3949 				}
3950 
3951 				/*
3952 				 * ow_inode might currently be an ancestor of
3953 				 * cur_ino, therefore compute valid_path (the
3954 				 * current path of cur_ino) again because it
3955 				 * might contain the pre-orphanization name of
3956 				 * ow_inode, which is no longer valid.
3957 				 */
3958 				ret = is_ancestor(sctx->parent_root,
3959 						  ow_inode, ow_gen,
3960 						  sctx->cur_ino, NULL);
3961 				if (ret > 0) {
3962 					orphanized_ancestor = true;
3963 					fs_path_reset(valid_path);
3964 					ret = get_cur_path(sctx, sctx->cur_ino,
3965 							   sctx->cur_inode_gen,
3966 							   valid_path);
3967 				}
3968 				if (ret < 0)
3969 					goto out;
3970 			} else {
3971 				ret = send_unlink(sctx, cur->full_path);
3972 				if (ret < 0)
3973 					goto out;
3974 			}
3975 		}
3976 
3977 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3978 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3979 			if (ret < 0)
3980 				goto out;
3981 			if (ret == 1) {
3982 				can_rename = false;
3983 				*pending_move = 1;
3984 			}
3985 		}
3986 
3987 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3988 		    can_rename) {
3989 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3990 			if (ret < 0)
3991 				goto out;
3992 			if (ret == 1) {
3993 				can_rename = false;
3994 				*pending_move = 1;
3995 			}
3996 		}
3997 
3998 		/*
3999 		 * link/move the ref to the new place. If we have an orphan
4000 		 * inode, move it and update valid_path. If not, link or move
4001 		 * it depending on the inode mode.
4002 		 */
4003 		if (is_orphan && can_rename) {
4004 			ret = send_rename(sctx, valid_path, cur->full_path);
4005 			if (ret < 0)
4006 				goto out;
4007 			is_orphan = 0;
4008 			ret = fs_path_copy(valid_path, cur->full_path);
4009 			if (ret < 0)
4010 				goto out;
4011 		} else if (can_rename) {
4012 			if (S_ISDIR(sctx->cur_inode_mode)) {
4013 				/*
4014 				 * Dirs can't be linked, so move it. For moved
4015 				 * dirs, we always have one new and one deleted
4016 				 * ref. The deleted ref is ignored later.
4017 				 */
4018 				ret = send_rename(sctx, valid_path,
4019 						  cur->full_path);
4020 				if (!ret)
4021 					ret = fs_path_copy(valid_path,
4022 							   cur->full_path);
4023 				if (ret < 0)
4024 					goto out;
4025 			} else {
4026 				/*
4027 				 * We might have previously orphanized an inode
4028 				 * which is an ancestor of our current inode,
4029 				 * so our reference's full path, which was
4030 				 * computed before any such orphanizations, must
4031 				 * be updated.
4032 				 */
4033 				if (orphanized_dir) {
4034 					ret = update_ref_path(sctx, cur);
4035 					if (ret < 0)
4036 						goto out;
4037 				}
4038 				ret = send_link(sctx, cur->full_path,
4039 						valid_path);
4040 				if (ret < 0)
4041 					goto out;
4042 			}
4043 		}
4044 		ret = dup_ref(cur, &check_dirs);
4045 		if (ret < 0)
4046 			goto out;
4047 	}
4048 
4049 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4050 		/*
4051 		 * Check if we can already rmdir the directory. If not,
4052 		 * orphanize it. For every dir item inside that gets deleted
4053 		 * later, we do this check again and rmdir it then if possible.
4054 		 * See the use of check_dirs for more details.
4055 		 */
4056 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4057 				sctx->cur_ino);
4058 		if (ret < 0)
4059 			goto out;
4060 		if (ret) {
4061 			ret = send_rmdir(sctx, valid_path);
4062 			if (ret < 0)
4063 				goto out;
4064 		} else if (!is_orphan) {
4065 			ret = orphanize_inode(sctx, sctx->cur_ino,
4066 					sctx->cur_inode_gen, valid_path);
4067 			if (ret < 0)
4068 				goto out;
4069 			is_orphan = 1;
4070 		}
4071 
4072 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4073 			ret = dup_ref(cur, &check_dirs);
4074 			if (ret < 0)
4075 				goto out;
4076 		}
4077 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4078 		   !list_empty(&sctx->deleted_refs)) {
4079 		/*
4080 		 * We have a moved dir. Add the old parent to check_dirs
4081 		 */
4082 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4083 				list);
4084 		ret = dup_ref(cur, &check_dirs);
4085 		if (ret < 0)
4086 			goto out;
4087 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4088 		/*
4089 		 * We have a non dir inode. Go through all deleted refs and
4090 		 * unlink them if they were not already overwritten by other
4091 		 * inodes.
4092 		 */
4093 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4094 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4095 					sctx->cur_ino, sctx->cur_inode_gen,
4096 					cur->name, cur->name_len);
4097 			if (ret < 0)
4098 				goto out;
4099 			if (!ret) {
4100 				/*
4101 				 * If we orphanized any ancestor before, we need
4102 				 * to recompute the full path for deleted names,
4103 				 * since any such path was computed before we
4104 				 * processed any references and orphanized any
4105 				 * ancestor inode.
4106 				 */
4107 				if (orphanized_ancestor) {
4108 					ret = update_ref_path(sctx, cur);
4109 					if (ret < 0)
4110 						goto out;
4111 				}
4112 				ret = send_unlink(sctx, cur->full_path);
4113 				if (ret < 0)
4114 					goto out;
4115 			}
4116 			ret = dup_ref(cur, &check_dirs);
4117 			if (ret < 0)
4118 				goto out;
4119 		}
4120 		/*
4121 		 * If the inode is still orphan, unlink the orphan. This may
4122 		 * happen when a previous inode did overwrite the first ref
4123 		 * of this inode and no new refs were added for the current
4124 		 * inode. Unlinking does not mean that the inode is deleted in
4125 		 * all cases. There may still be links to this inode in other
4126 		 * places.
4127 		 */
4128 		if (is_orphan) {
4129 			ret = send_unlink(sctx, valid_path);
4130 			if (ret < 0)
4131 				goto out;
4132 		}
4133 	}
4134 
4135 	/*
4136 	 * We did collect all parent dirs where cur_inode was once located. We
4137 	 * now go through all these dirs and check if they are pending for
4138 	 * deletion and if it's finally possible to perform the rmdir now.
4139 	 * We also update the inode stats of the parent dirs here.
4140 	 */
4141 	list_for_each_entry(cur, &check_dirs, list) {
4142 		/*
4143 		 * In case we had refs into dirs that were not processed yet,
4144 		 * we don't need to do the utime and rmdir logic for these dirs.
4145 		 * The dir will be processed later.
4146 		 */
4147 		if (cur->dir > sctx->cur_ino)
4148 			continue;
4149 
4150 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4151 		if (ret < 0)
4152 			goto out;
4153 
4154 		if (ret == inode_state_did_create ||
4155 		    ret == inode_state_no_change) {
4156 			/* TODO delayed utimes */
4157 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4158 			if (ret < 0)
4159 				goto out;
4160 		} else if (ret == inode_state_did_delete &&
4161 			   cur->dir != last_dir_ino_rm) {
4162 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4163 					sctx->cur_ino);
4164 			if (ret < 0)
4165 				goto out;
4166 			if (ret) {
4167 				ret = get_cur_path(sctx, cur->dir,
4168 						   cur->dir_gen, valid_path);
4169 				if (ret < 0)
4170 					goto out;
4171 				ret = send_rmdir(sctx, valid_path);
4172 				if (ret < 0)
4173 					goto out;
4174 				last_dir_ino_rm = cur->dir;
4175 			}
4176 		}
4177 	}
4178 
4179 	ret = 0;
4180 
4181 out:
4182 	__free_recorded_refs(&check_dirs);
4183 	free_recorded_refs(sctx);
4184 	fs_path_free(valid_path);
4185 	return ret;
4186 }
4187 
4188 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4189 		      void *ctx, struct list_head *refs)
4190 {
4191 	int ret = 0;
4192 	struct send_ctx *sctx = ctx;
4193 	struct fs_path *p;
4194 	u64 gen;
4195 
4196 	p = fs_path_alloc();
4197 	if (!p)
4198 		return -ENOMEM;
4199 
4200 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4201 			NULL, NULL);
4202 	if (ret < 0)
4203 		goto out;
4204 
4205 	ret = get_cur_path(sctx, dir, gen, p);
4206 	if (ret < 0)
4207 		goto out;
4208 	ret = fs_path_add_path(p, name);
4209 	if (ret < 0)
4210 		goto out;
4211 
4212 	ret = __record_ref(refs, dir, gen, p);
4213 
4214 out:
4215 	if (ret)
4216 		fs_path_free(p);
4217 	return ret;
4218 }
4219 
4220 static int __record_new_ref(int num, u64 dir, int index,
4221 			    struct fs_path *name,
4222 			    void *ctx)
4223 {
4224 	struct send_ctx *sctx = ctx;
4225 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4226 }
4227 
4228 
4229 static int __record_deleted_ref(int num, u64 dir, int index,
4230 				struct fs_path *name,
4231 				void *ctx)
4232 {
4233 	struct send_ctx *sctx = ctx;
4234 	return record_ref(sctx->parent_root, dir, name, ctx,
4235 			  &sctx->deleted_refs);
4236 }
4237 
4238 static int record_new_ref(struct send_ctx *sctx)
4239 {
4240 	int ret;
4241 
4242 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4243 				sctx->cmp_key, 0, __record_new_ref, sctx);
4244 	if (ret < 0)
4245 		goto out;
4246 	ret = 0;
4247 
4248 out:
4249 	return ret;
4250 }
4251 
4252 static int record_deleted_ref(struct send_ctx *sctx)
4253 {
4254 	int ret;
4255 
4256 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4257 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4258 	if (ret < 0)
4259 		goto out;
4260 	ret = 0;
4261 
4262 out:
4263 	return ret;
4264 }
4265 
4266 struct find_ref_ctx {
4267 	u64 dir;
4268 	u64 dir_gen;
4269 	struct btrfs_root *root;
4270 	struct fs_path *name;
4271 	int found_idx;
4272 };
4273 
4274 static int __find_iref(int num, u64 dir, int index,
4275 		       struct fs_path *name,
4276 		       void *ctx_)
4277 {
4278 	struct find_ref_ctx *ctx = ctx_;
4279 	u64 dir_gen;
4280 	int ret;
4281 
4282 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4283 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4284 		/*
4285 		 * To avoid doing extra lookups we'll only do this if everything
4286 		 * else matches.
4287 		 */
4288 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4289 				     NULL, NULL, NULL);
4290 		if (ret)
4291 			return ret;
4292 		if (dir_gen != ctx->dir_gen)
4293 			return 0;
4294 		ctx->found_idx = num;
4295 		return 1;
4296 	}
4297 	return 0;
4298 }
4299 
4300 static int find_iref(struct btrfs_root *root,
4301 		     struct btrfs_path *path,
4302 		     struct btrfs_key *key,
4303 		     u64 dir, u64 dir_gen, struct fs_path *name)
4304 {
4305 	int ret;
4306 	struct find_ref_ctx ctx;
4307 
4308 	ctx.dir = dir;
4309 	ctx.name = name;
4310 	ctx.dir_gen = dir_gen;
4311 	ctx.found_idx = -1;
4312 	ctx.root = root;
4313 
4314 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4315 	if (ret < 0)
4316 		return ret;
4317 
4318 	if (ctx.found_idx == -1)
4319 		return -ENOENT;
4320 
4321 	return ctx.found_idx;
4322 }
4323 
4324 static int __record_changed_new_ref(int num, u64 dir, int index,
4325 				    struct fs_path *name,
4326 				    void *ctx)
4327 {
4328 	u64 dir_gen;
4329 	int ret;
4330 	struct send_ctx *sctx = ctx;
4331 
4332 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4333 			     NULL, NULL, NULL);
4334 	if (ret)
4335 		return ret;
4336 
4337 	ret = find_iref(sctx->parent_root, sctx->right_path,
4338 			sctx->cmp_key, dir, dir_gen, name);
4339 	if (ret == -ENOENT)
4340 		ret = __record_new_ref(num, dir, index, name, sctx);
4341 	else if (ret > 0)
4342 		ret = 0;
4343 
4344 	return ret;
4345 }
4346 
4347 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4348 					struct fs_path *name,
4349 					void *ctx)
4350 {
4351 	u64 dir_gen;
4352 	int ret;
4353 	struct send_ctx *sctx = ctx;
4354 
4355 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4356 			     NULL, NULL, NULL);
4357 	if (ret)
4358 		return ret;
4359 
4360 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4361 			dir, dir_gen, name);
4362 	if (ret == -ENOENT)
4363 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4364 	else if (ret > 0)
4365 		ret = 0;
4366 
4367 	return ret;
4368 }
4369 
4370 static int record_changed_ref(struct send_ctx *sctx)
4371 {
4372 	int ret = 0;
4373 
4374 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4375 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4376 	if (ret < 0)
4377 		goto out;
4378 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4379 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4380 	if (ret < 0)
4381 		goto out;
4382 	ret = 0;
4383 
4384 out:
4385 	return ret;
4386 }
4387 
4388 /*
4389  * Record and process all refs at once. Needed when an inode changes the
4390  * generation number, which means that it was deleted and recreated.
4391  */
4392 static int process_all_refs(struct send_ctx *sctx,
4393 			    enum btrfs_compare_tree_result cmd)
4394 {
4395 	int ret;
4396 	struct btrfs_root *root;
4397 	struct btrfs_path *path;
4398 	struct btrfs_key key;
4399 	struct btrfs_key found_key;
4400 	struct extent_buffer *eb;
4401 	int slot;
4402 	iterate_inode_ref_t cb;
4403 	int pending_move = 0;
4404 
4405 	path = alloc_path_for_send();
4406 	if (!path)
4407 		return -ENOMEM;
4408 
4409 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4410 		root = sctx->send_root;
4411 		cb = __record_new_ref;
4412 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4413 		root = sctx->parent_root;
4414 		cb = __record_deleted_ref;
4415 	} else {
4416 		btrfs_err(sctx->send_root->fs_info,
4417 				"Wrong command %d in process_all_refs", cmd);
4418 		ret = -EINVAL;
4419 		goto out;
4420 	}
4421 
4422 	key.objectid = sctx->cmp_key->objectid;
4423 	key.type = BTRFS_INODE_REF_KEY;
4424 	key.offset = 0;
4425 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 	if (ret < 0)
4427 		goto out;
4428 
4429 	while (1) {
4430 		eb = path->nodes[0];
4431 		slot = path->slots[0];
4432 		if (slot >= btrfs_header_nritems(eb)) {
4433 			ret = btrfs_next_leaf(root, path);
4434 			if (ret < 0)
4435 				goto out;
4436 			else if (ret > 0)
4437 				break;
4438 			continue;
4439 		}
4440 
4441 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4442 
4443 		if (found_key.objectid != key.objectid ||
4444 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4445 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4446 			break;
4447 
4448 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4449 		if (ret < 0)
4450 			goto out;
4451 
4452 		path->slots[0]++;
4453 	}
4454 	btrfs_release_path(path);
4455 
4456 	/*
4457 	 * We don't actually care about pending_move as we are simply
4458 	 * re-creating this inode and will be rename'ing it into place once we
4459 	 * rename the parent directory.
4460 	 */
4461 	ret = process_recorded_refs(sctx, &pending_move);
4462 out:
4463 	btrfs_free_path(path);
4464 	return ret;
4465 }
4466 
4467 static int send_set_xattr(struct send_ctx *sctx,
4468 			  struct fs_path *path,
4469 			  const char *name, int name_len,
4470 			  const char *data, int data_len)
4471 {
4472 	int ret = 0;
4473 
4474 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4475 	if (ret < 0)
4476 		goto out;
4477 
4478 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4479 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4480 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4481 
4482 	ret = send_cmd(sctx);
4483 
4484 tlv_put_failure:
4485 out:
4486 	return ret;
4487 }
4488 
4489 static int send_remove_xattr(struct send_ctx *sctx,
4490 			  struct fs_path *path,
4491 			  const char *name, int name_len)
4492 {
4493 	int ret = 0;
4494 
4495 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4496 	if (ret < 0)
4497 		goto out;
4498 
4499 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4500 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4501 
4502 	ret = send_cmd(sctx);
4503 
4504 tlv_put_failure:
4505 out:
4506 	return ret;
4507 }
4508 
4509 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4510 			       const char *name, int name_len,
4511 			       const char *data, int data_len,
4512 			       u8 type, void *ctx)
4513 {
4514 	int ret;
4515 	struct send_ctx *sctx = ctx;
4516 	struct fs_path *p;
4517 	struct posix_acl_xattr_header dummy_acl;
4518 
4519 	p = fs_path_alloc();
4520 	if (!p)
4521 		return -ENOMEM;
4522 
4523 	/*
4524 	 * This hack is needed because empty acls are stored as zero byte
4525 	 * data in xattrs. Problem with that is, that receiving these zero byte
4526 	 * acls will fail later. To fix this, we send a dummy acl list that
4527 	 * only contains the version number and no entries.
4528 	 */
4529 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4530 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4531 		if (data_len == 0) {
4532 			dummy_acl.a_version =
4533 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4534 			data = (char *)&dummy_acl;
4535 			data_len = sizeof(dummy_acl);
4536 		}
4537 	}
4538 
4539 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4540 	if (ret < 0)
4541 		goto out;
4542 
4543 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4544 
4545 out:
4546 	fs_path_free(p);
4547 	return ret;
4548 }
4549 
4550 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4551 				   const char *name, int name_len,
4552 				   const char *data, int data_len,
4553 				   u8 type, void *ctx)
4554 {
4555 	int ret;
4556 	struct send_ctx *sctx = ctx;
4557 	struct fs_path *p;
4558 
4559 	p = fs_path_alloc();
4560 	if (!p)
4561 		return -ENOMEM;
4562 
4563 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4564 	if (ret < 0)
4565 		goto out;
4566 
4567 	ret = send_remove_xattr(sctx, p, name, name_len);
4568 
4569 out:
4570 	fs_path_free(p);
4571 	return ret;
4572 }
4573 
4574 static int process_new_xattr(struct send_ctx *sctx)
4575 {
4576 	int ret = 0;
4577 
4578 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4579 			       __process_new_xattr, sctx);
4580 
4581 	return ret;
4582 }
4583 
4584 static int process_deleted_xattr(struct send_ctx *sctx)
4585 {
4586 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4587 				__process_deleted_xattr, sctx);
4588 }
4589 
4590 struct find_xattr_ctx {
4591 	const char *name;
4592 	int name_len;
4593 	int found_idx;
4594 	char *found_data;
4595 	int found_data_len;
4596 };
4597 
4598 static int __find_xattr(int num, struct btrfs_key *di_key,
4599 			const char *name, int name_len,
4600 			const char *data, int data_len,
4601 			u8 type, void *vctx)
4602 {
4603 	struct find_xattr_ctx *ctx = vctx;
4604 
4605 	if (name_len == ctx->name_len &&
4606 	    strncmp(name, ctx->name, name_len) == 0) {
4607 		ctx->found_idx = num;
4608 		ctx->found_data_len = data_len;
4609 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4610 		if (!ctx->found_data)
4611 			return -ENOMEM;
4612 		return 1;
4613 	}
4614 	return 0;
4615 }
4616 
4617 static int find_xattr(struct btrfs_root *root,
4618 		      struct btrfs_path *path,
4619 		      struct btrfs_key *key,
4620 		      const char *name, int name_len,
4621 		      char **data, int *data_len)
4622 {
4623 	int ret;
4624 	struct find_xattr_ctx ctx;
4625 
4626 	ctx.name = name;
4627 	ctx.name_len = name_len;
4628 	ctx.found_idx = -1;
4629 	ctx.found_data = NULL;
4630 	ctx.found_data_len = 0;
4631 
4632 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4633 	if (ret < 0)
4634 		return ret;
4635 
4636 	if (ctx.found_idx == -1)
4637 		return -ENOENT;
4638 	if (data) {
4639 		*data = ctx.found_data;
4640 		*data_len = ctx.found_data_len;
4641 	} else {
4642 		kfree(ctx.found_data);
4643 	}
4644 	return ctx.found_idx;
4645 }
4646 
4647 
4648 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4649 				       const char *name, int name_len,
4650 				       const char *data, int data_len,
4651 				       u8 type, void *ctx)
4652 {
4653 	int ret;
4654 	struct send_ctx *sctx = ctx;
4655 	char *found_data = NULL;
4656 	int found_data_len  = 0;
4657 
4658 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4659 			 sctx->cmp_key, name, name_len, &found_data,
4660 			 &found_data_len);
4661 	if (ret == -ENOENT) {
4662 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4663 				data_len, type, ctx);
4664 	} else if (ret >= 0) {
4665 		if (data_len != found_data_len ||
4666 		    memcmp(data, found_data, data_len)) {
4667 			ret = __process_new_xattr(num, di_key, name, name_len,
4668 					data, data_len, type, ctx);
4669 		} else {
4670 			ret = 0;
4671 		}
4672 	}
4673 
4674 	kfree(found_data);
4675 	return ret;
4676 }
4677 
4678 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4679 					   const char *name, int name_len,
4680 					   const char *data, int data_len,
4681 					   u8 type, void *ctx)
4682 {
4683 	int ret;
4684 	struct send_ctx *sctx = ctx;
4685 
4686 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4687 			 name, name_len, NULL, NULL);
4688 	if (ret == -ENOENT)
4689 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4690 				data_len, type, ctx);
4691 	else if (ret >= 0)
4692 		ret = 0;
4693 
4694 	return ret;
4695 }
4696 
4697 static int process_changed_xattr(struct send_ctx *sctx)
4698 {
4699 	int ret = 0;
4700 
4701 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4702 			__process_changed_new_xattr, sctx);
4703 	if (ret < 0)
4704 		goto out;
4705 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4706 			__process_changed_deleted_xattr, sctx);
4707 
4708 out:
4709 	return ret;
4710 }
4711 
4712 static int process_all_new_xattrs(struct send_ctx *sctx)
4713 {
4714 	int ret;
4715 	struct btrfs_root *root;
4716 	struct btrfs_path *path;
4717 	struct btrfs_key key;
4718 	struct btrfs_key found_key;
4719 	struct extent_buffer *eb;
4720 	int slot;
4721 
4722 	path = alloc_path_for_send();
4723 	if (!path)
4724 		return -ENOMEM;
4725 
4726 	root = sctx->send_root;
4727 
4728 	key.objectid = sctx->cmp_key->objectid;
4729 	key.type = BTRFS_XATTR_ITEM_KEY;
4730 	key.offset = 0;
4731 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4732 	if (ret < 0)
4733 		goto out;
4734 
4735 	while (1) {
4736 		eb = path->nodes[0];
4737 		slot = path->slots[0];
4738 		if (slot >= btrfs_header_nritems(eb)) {
4739 			ret = btrfs_next_leaf(root, path);
4740 			if (ret < 0) {
4741 				goto out;
4742 			} else if (ret > 0) {
4743 				ret = 0;
4744 				break;
4745 			}
4746 			continue;
4747 		}
4748 
4749 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4750 		if (found_key.objectid != key.objectid ||
4751 		    found_key.type != key.type) {
4752 			ret = 0;
4753 			goto out;
4754 		}
4755 
4756 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4757 		if (ret < 0)
4758 			goto out;
4759 
4760 		path->slots[0]++;
4761 	}
4762 
4763 out:
4764 	btrfs_free_path(path);
4765 	return ret;
4766 }
4767 
4768 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4769 {
4770 	struct btrfs_root *root = sctx->send_root;
4771 	struct btrfs_fs_info *fs_info = root->fs_info;
4772 	struct inode *inode;
4773 	struct page *page;
4774 	char *addr;
4775 	struct btrfs_key key;
4776 	pgoff_t index = offset >> PAGE_SHIFT;
4777 	pgoff_t last_index;
4778 	unsigned pg_offset = offset_in_page(offset);
4779 	ssize_t ret = 0;
4780 
4781 	key.objectid = sctx->cur_ino;
4782 	key.type = BTRFS_INODE_ITEM_KEY;
4783 	key.offset = 0;
4784 
4785 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4786 	if (IS_ERR(inode))
4787 		return PTR_ERR(inode);
4788 
4789 	if (offset + len > i_size_read(inode)) {
4790 		if (offset > i_size_read(inode))
4791 			len = 0;
4792 		else
4793 			len = offset - i_size_read(inode);
4794 	}
4795 	if (len == 0)
4796 		goto out;
4797 
4798 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4799 
4800 	/* initial readahead */
4801 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4802 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4803 
4804 	while (index <= last_index) {
4805 		unsigned cur_len = min_t(unsigned, len,
4806 					 PAGE_SIZE - pg_offset);
4807 
4808 		page = find_lock_page(inode->i_mapping, index);
4809 		if (!page) {
4810 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4811 				NULL, index, last_index + 1 - index);
4812 
4813 			page = find_or_create_page(inode->i_mapping, index,
4814 					GFP_KERNEL);
4815 			if (!page) {
4816 				ret = -ENOMEM;
4817 				break;
4818 			}
4819 		}
4820 
4821 		if (PageReadahead(page)) {
4822 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4823 				NULL, page, index, last_index + 1 - index);
4824 		}
4825 
4826 		if (!PageUptodate(page)) {
4827 			btrfs_readpage(NULL, page);
4828 			lock_page(page);
4829 			if (!PageUptodate(page)) {
4830 				unlock_page(page);
4831 				put_page(page);
4832 				ret = -EIO;
4833 				break;
4834 			}
4835 		}
4836 
4837 		addr = kmap(page);
4838 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4839 		kunmap(page);
4840 		unlock_page(page);
4841 		put_page(page);
4842 		index++;
4843 		pg_offset = 0;
4844 		len -= cur_len;
4845 		ret += cur_len;
4846 	}
4847 out:
4848 	iput(inode);
4849 	return ret;
4850 }
4851 
4852 /*
4853  * Read some bytes from the current inode/file and send a write command to
4854  * user space.
4855  */
4856 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4857 {
4858 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4859 	int ret = 0;
4860 	struct fs_path *p;
4861 	ssize_t num_read = 0;
4862 
4863 	p = fs_path_alloc();
4864 	if (!p)
4865 		return -ENOMEM;
4866 
4867 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4868 
4869 	num_read = fill_read_buf(sctx, offset, len);
4870 	if (num_read <= 0) {
4871 		if (num_read < 0)
4872 			ret = num_read;
4873 		goto out;
4874 	}
4875 
4876 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4877 	if (ret < 0)
4878 		goto out;
4879 
4880 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4881 	if (ret < 0)
4882 		goto out;
4883 
4884 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4885 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4886 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4887 
4888 	ret = send_cmd(sctx);
4889 
4890 tlv_put_failure:
4891 out:
4892 	fs_path_free(p);
4893 	if (ret < 0)
4894 		return ret;
4895 	return num_read;
4896 }
4897 
4898 /*
4899  * Send a clone command to user space.
4900  */
4901 static int send_clone(struct send_ctx *sctx,
4902 		      u64 offset, u32 len,
4903 		      struct clone_root *clone_root)
4904 {
4905 	int ret = 0;
4906 	struct fs_path *p;
4907 	u64 gen;
4908 
4909 	btrfs_debug(sctx->send_root->fs_info,
4910 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4911 		    offset, len, clone_root->root->root_key.objectid,
4912 		    clone_root->ino, clone_root->offset);
4913 
4914 	p = fs_path_alloc();
4915 	if (!p)
4916 		return -ENOMEM;
4917 
4918 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4919 	if (ret < 0)
4920 		goto out;
4921 
4922 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4923 	if (ret < 0)
4924 		goto out;
4925 
4926 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4927 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4928 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4929 
4930 	if (clone_root->root == sctx->send_root) {
4931 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4932 				&gen, NULL, NULL, NULL, NULL);
4933 		if (ret < 0)
4934 			goto out;
4935 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4936 	} else {
4937 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4938 	}
4939 	if (ret < 0)
4940 		goto out;
4941 
4942 	/*
4943 	 * If the parent we're using has a received_uuid set then use that as
4944 	 * our clone source as that is what we will look for when doing a
4945 	 * receive.
4946 	 *
4947 	 * This covers the case that we create a snapshot off of a received
4948 	 * subvolume and then use that as the parent and try to receive on a
4949 	 * different host.
4950 	 */
4951 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4952 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4953 			     clone_root->root->root_item.received_uuid);
4954 	else
4955 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4956 			     clone_root->root->root_item.uuid);
4957 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4958 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4959 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4960 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4961 			clone_root->offset);
4962 
4963 	ret = send_cmd(sctx);
4964 
4965 tlv_put_failure:
4966 out:
4967 	fs_path_free(p);
4968 	return ret;
4969 }
4970 
4971 /*
4972  * Send an update extent command to user space.
4973  */
4974 static int send_update_extent(struct send_ctx *sctx,
4975 			      u64 offset, u32 len)
4976 {
4977 	int ret = 0;
4978 	struct fs_path *p;
4979 
4980 	p = fs_path_alloc();
4981 	if (!p)
4982 		return -ENOMEM;
4983 
4984 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4985 	if (ret < 0)
4986 		goto out;
4987 
4988 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4989 	if (ret < 0)
4990 		goto out;
4991 
4992 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4993 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4994 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4995 
4996 	ret = send_cmd(sctx);
4997 
4998 tlv_put_failure:
4999 out:
5000 	fs_path_free(p);
5001 	return ret;
5002 }
5003 
5004 static int send_hole(struct send_ctx *sctx, u64 end)
5005 {
5006 	struct fs_path *p = NULL;
5007 	u64 offset = sctx->cur_inode_last_extent;
5008 	u64 len;
5009 	int ret = 0;
5010 
5011 	/*
5012 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5013 	 * fallocate (for extent preallocation and hole punching), sending a
5014 	 * write of zeroes starting at EOF or beyond would later require issuing
5015 	 * a truncate operation which would undo the write and achieve nothing.
5016 	 */
5017 	if (offset >= sctx->cur_inode_size)
5018 		return 0;
5019 
5020 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5021 		return send_update_extent(sctx, offset, end - offset);
5022 
5023 	p = fs_path_alloc();
5024 	if (!p)
5025 		return -ENOMEM;
5026 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5027 	if (ret < 0)
5028 		goto tlv_put_failure;
5029 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5030 	while (offset < end) {
5031 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5032 
5033 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5034 		if (ret < 0)
5035 			break;
5036 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5037 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5038 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5039 		ret = send_cmd(sctx);
5040 		if (ret < 0)
5041 			break;
5042 		offset += len;
5043 	}
5044 	sctx->cur_inode_next_write_offset = offset;
5045 tlv_put_failure:
5046 	fs_path_free(p);
5047 	return ret;
5048 }
5049 
5050 static int send_extent_data(struct send_ctx *sctx,
5051 			    const u64 offset,
5052 			    const u64 len)
5053 {
5054 	u64 sent = 0;
5055 
5056 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5057 		return send_update_extent(sctx, offset, len);
5058 
5059 	while (sent < len) {
5060 		u64 size = len - sent;
5061 		int ret;
5062 
5063 		if (size > BTRFS_SEND_READ_SIZE)
5064 			size = BTRFS_SEND_READ_SIZE;
5065 		ret = send_write(sctx, offset + sent, size);
5066 		if (ret < 0)
5067 			return ret;
5068 		if (!ret)
5069 			break;
5070 		sent += ret;
5071 	}
5072 	return 0;
5073 }
5074 
5075 static int clone_range(struct send_ctx *sctx,
5076 		       struct clone_root *clone_root,
5077 		       const u64 disk_byte,
5078 		       u64 data_offset,
5079 		       u64 offset,
5080 		       u64 len)
5081 {
5082 	struct btrfs_path *path;
5083 	struct btrfs_key key;
5084 	int ret;
5085 
5086 	/*
5087 	 * Prevent cloning from a zero offset with a length matching the sector
5088 	 * size because in some scenarios this will make the receiver fail.
5089 	 *
5090 	 * For example, if in the source filesystem the extent at offset 0
5091 	 * has a length of sectorsize and it was written using direct IO, then
5092 	 * it can never be an inline extent (even if compression is enabled).
5093 	 * Then this extent can be cloned in the original filesystem to a non
5094 	 * zero file offset, but it may not be possible to clone in the
5095 	 * destination filesystem because it can be inlined due to compression
5096 	 * on the destination filesystem (as the receiver's write operations are
5097 	 * always done using buffered IO). The same happens when the original
5098 	 * filesystem does not have compression enabled but the destination
5099 	 * filesystem has.
5100 	 */
5101 	if (clone_root->offset == 0 &&
5102 	    len == sctx->send_root->fs_info->sectorsize)
5103 		return send_extent_data(sctx, offset, len);
5104 
5105 	path = alloc_path_for_send();
5106 	if (!path)
5107 		return -ENOMEM;
5108 
5109 	/*
5110 	 * We can't send a clone operation for the entire range if we find
5111 	 * extent items in the respective range in the source file that
5112 	 * refer to different extents or if we find holes.
5113 	 * So check for that and do a mix of clone and regular write/copy
5114 	 * operations if needed.
5115 	 *
5116 	 * Example:
5117 	 *
5118 	 * mkfs.btrfs -f /dev/sda
5119 	 * mount /dev/sda /mnt
5120 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5121 	 * cp --reflink=always /mnt/foo /mnt/bar
5122 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5123 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5124 	 *
5125 	 * If when we send the snapshot and we are processing file bar (which
5126 	 * has a higher inode number than foo) we blindly send a clone operation
5127 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5128 	 * a file bar that matches the content of file foo - iow, doesn't match
5129 	 * the content from bar in the original filesystem.
5130 	 */
5131 	key.objectid = clone_root->ino;
5132 	key.type = BTRFS_EXTENT_DATA_KEY;
5133 	key.offset = clone_root->offset;
5134 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5135 	if (ret < 0)
5136 		goto out;
5137 	if (ret > 0 && path->slots[0] > 0) {
5138 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5139 		if (key.objectid == clone_root->ino &&
5140 		    key.type == BTRFS_EXTENT_DATA_KEY)
5141 			path->slots[0]--;
5142 	}
5143 
5144 	while (true) {
5145 		struct extent_buffer *leaf = path->nodes[0];
5146 		int slot = path->slots[0];
5147 		struct btrfs_file_extent_item *ei;
5148 		u8 type;
5149 		u64 ext_len;
5150 		u64 clone_len;
5151 
5152 		if (slot >= btrfs_header_nritems(leaf)) {
5153 			ret = btrfs_next_leaf(clone_root->root, path);
5154 			if (ret < 0)
5155 				goto out;
5156 			else if (ret > 0)
5157 				break;
5158 			continue;
5159 		}
5160 
5161 		btrfs_item_key_to_cpu(leaf, &key, slot);
5162 
5163 		/*
5164 		 * We might have an implicit trailing hole (NO_HOLES feature
5165 		 * enabled). We deal with it after leaving this loop.
5166 		 */
5167 		if (key.objectid != clone_root->ino ||
5168 		    key.type != BTRFS_EXTENT_DATA_KEY)
5169 			break;
5170 
5171 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5172 		type = btrfs_file_extent_type(leaf, ei);
5173 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5174 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5175 			ext_len = PAGE_ALIGN(ext_len);
5176 		} else {
5177 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5178 		}
5179 
5180 		if (key.offset + ext_len <= clone_root->offset)
5181 			goto next;
5182 
5183 		if (key.offset > clone_root->offset) {
5184 			/* Implicit hole, NO_HOLES feature enabled. */
5185 			u64 hole_len = key.offset - clone_root->offset;
5186 
5187 			if (hole_len > len)
5188 				hole_len = len;
5189 			ret = send_extent_data(sctx, offset, hole_len);
5190 			if (ret < 0)
5191 				goto out;
5192 
5193 			len -= hole_len;
5194 			if (len == 0)
5195 				break;
5196 			offset += hole_len;
5197 			clone_root->offset += hole_len;
5198 			data_offset += hole_len;
5199 		}
5200 
5201 		if (key.offset >= clone_root->offset + len)
5202 			break;
5203 
5204 		clone_len = min_t(u64, ext_len, len);
5205 
5206 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5207 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5208 			ret = send_clone(sctx, offset, clone_len, clone_root);
5209 		else
5210 			ret = send_extent_data(sctx, offset, clone_len);
5211 
5212 		if (ret < 0)
5213 			goto out;
5214 
5215 		len -= clone_len;
5216 		if (len == 0)
5217 			break;
5218 		offset += clone_len;
5219 		clone_root->offset += clone_len;
5220 		data_offset += clone_len;
5221 next:
5222 		path->slots[0]++;
5223 	}
5224 
5225 	if (len > 0)
5226 		ret = send_extent_data(sctx, offset, len);
5227 	else
5228 		ret = 0;
5229 out:
5230 	btrfs_free_path(path);
5231 	return ret;
5232 }
5233 
5234 static int send_write_or_clone(struct send_ctx *sctx,
5235 			       struct btrfs_path *path,
5236 			       struct btrfs_key *key,
5237 			       struct clone_root *clone_root)
5238 {
5239 	int ret = 0;
5240 	struct btrfs_file_extent_item *ei;
5241 	u64 offset = key->offset;
5242 	u64 len;
5243 	u8 type;
5244 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5245 
5246 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5247 			struct btrfs_file_extent_item);
5248 	type = btrfs_file_extent_type(path->nodes[0], ei);
5249 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5250 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5251 		/*
5252 		 * it is possible the inline item won't cover the whole page,
5253 		 * but there may be items after this page.  Make
5254 		 * sure to send the whole thing
5255 		 */
5256 		len = PAGE_ALIGN(len);
5257 	} else {
5258 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5259 	}
5260 
5261 	if (offset >= sctx->cur_inode_size) {
5262 		ret = 0;
5263 		goto out;
5264 	}
5265 	if (offset + len > sctx->cur_inode_size)
5266 		len = sctx->cur_inode_size - offset;
5267 	if (len == 0) {
5268 		ret = 0;
5269 		goto out;
5270 	}
5271 
5272 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5273 		u64 disk_byte;
5274 		u64 data_offset;
5275 
5276 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5277 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5278 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5279 				  offset, len);
5280 	} else {
5281 		ret = send_extent_data(sctx, offset, len);
5282 	}
5283 	sctx->cur_inode_next_write_offset = offset + len;
5284 out:
5285 	return ret;
5286 }
5287 
5288 static int is_extent_unchanged(struct send_ctx *sctx,
5289 			       struct btrfs_path *left_path,
5290 			       struct btrfs_key *ekey)
5291 {
5292 	int ret = 0;
5293 	struct btrfs_key key;
5294 	struct btrfs_path *path = NULL;
5295 	struct extent_buffer *eb;
5296 	int slot;
5297 	struct btrfs_key found_key;
5298 	struct btrfs_file_extent_item *ei;
5299 	u64 left_disknr;
5300 	u64 right_disknr;
5301 	u64 left_offset;
5302 	u64 right_offset;
5303 	u64 left_offset_fixed;
5304 	u64 left_len;
5305 	u64 right_len;
5306 	u64 left_gen;
5307 	u64 right_gen;
5308 	u8 left_type;
5309 	u8 right_type;
5310 
5311 	path = alloc_path_for_send();
5312 	if (!path)
5313 		return -ENOMEM;
5314 
5315 	eb = left_path->nodes[0];
5316 	slot = left_path->slots[0];
5317 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5318 	left_type = btrfs_file_extent_type(eb, ei);
5319 
5320 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5321 		ret = 0;
5322 		goto out;
5323 	}
5324 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5325 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5326 	left_offset = btrfs_file_extent_offset(eb, ei);
5327 	left_gen = btrfs_file_extent_generation(eb, ei);
5328 
5329 	/*
5330 	 * Following comments will refer to these graphics. L is the left
5331 	 * extents which we are checking at the moment. 1-8 are the right
5332 	 * extents that we iterate.
5333 	 *
5334 	 *       |-----L-----|
5335 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5336 	 *
5337 	 *       |-----L-----|
5338 	 * |--1--|-2b-|...(same as above)
5339 	 *
5340 	 * Alternative situation. Happens on files where extents got split.
5341 	 *       |-----L-----|
5342 	 * |-----------7-----------|-6-|
5343 	 *
5344 	 * Alternative situation. Happens on files which got larger.
5345 	 *       |-----L-----|
5346 	 * |-8-|
5347 	 * Nothing follows after 8.
5348 	 */
5349 
5350 	key.objectid = ekey->objectid;
5351 	key.type = BTRFS_EXTENT_DATA_KEY;
5352 	key.offset = ekey->offset;
5353 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5354 	if (ret < 0)
5355 		goto out;
5356 	if (ret) {
5357 		ret = 0;
5358 		goto out;
5359 	}
5360 
5361 	/*
5362 	 * Handle special case where the right side has no extents at all.
5363 	 */
5364 	eb = path->nodes[0];
5365 	slot = path->slots[0];
5366 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5367 	if (found_key.objectid != key.objectid ||
5368 	    found_key.type != key.type) {
5369 		/* If we're a hole then just pretend nothing changed */
5370 		ret = (left_disknr) ? 0 : 1;
5371 		goto out;
5372 	}
5373 
5374 	/*
5375 	 * We're now on 2a, 2b or 7.
5376 	 */
5377 	key = found_key;
5378 	while (key.offset < ekey->offset + left_len) {
5379 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5380 		right_type = btrfs_file_extent_type(eb, ei);
5381 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5382 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5383 			ret = 0;
5384 			goto out;
5385 		}
5386 
5387 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5388 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5389 			right_len = PAGE_ALIGN(right_len);
5390 		} else {
5391 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5392 		}
5393 
5394 		/*
5395 		 * Are we at extent 8? If yes, we know the extent is changed.
5396 		 * This may only happen on the first iteration.
5397 		 */
5398 		if (found_key.offset + right_len <= ekey->offset) {
5399 			/* If we're a hole just pretend nothing changed */
5400 			ret = (left_disknr) ? 0 : 1;
5401 			goto out;
5402 		}
5403 
5404 		/*
5405 		 * We just wanted to see if when we have an inline extent, what
5406 		 * follows it is a regular extent (wanted to check the above
5407 		 * condition for inline extents too). This should normally not
5408 		 * happen but it's possible for example when we have an inline
5409 		 * compressed extent representing data with a size matching
5410 		 * the page size (currently the same as sector size).
5411 		 */
5412 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5413 			ret = 0;
5414 			goto out;
5415 		}
5416 
5417 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5418 		right_offset = btrfs_file_extent_offset(eb, ei);
5419 		right_gen = btrfs_file_extent_generation(eb, ei);
5420 
5421 		left_offset_fixed = left_offset;
5422 		if (key.offset < ekey->offset) {
5423 			/* Fix the right offset for 2a and 7. */
5424 			right_offset += ekey->offset - key.offset;
5425 		} else {
5426 			/* Fix the left offset for all behind 2a and 2b */
5427 			left_offset_fixed += key.offset - ekey->offset;
5428 		}
5429 
5430 		/*
5431 		 * Check if we have the same extent.
5432 		 */
5433 		if (left_disknr != right_disknr ||
5434 		    left_offset_fixed != right_offset ||
5435 		    left_gen != right_gen) {
5436 			ret = 0;
5437 			goto out;
5438 		}
5439 
5440 		/*
5441 		 * Go to the next extent.
5442 		 */
5443 		ret = btrfs_next_item(sctx->parent_root, path);
5444 		if (ret < 0)
5445 			goto out;
5446 		if (!ret) {
5447 			eb = path->nodes[0];
5448 			slot = path->slots[0];
5449 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5450 		}
5451 		if (ret || found_key.objectid != key.objectid ||
5452 		    found_key.type != key.type) {
5453 			key.offset += right_len;
5454 			break;
5455 		}
5456 		if (found_key.offset != key.offset + right_len) {
5457 			ret = 0;
5458 			goto out;
5459 		}
5460 		key = found_key;
5461 	}
5462 
5463 	/*
5464 	 * We're now behind the left extent (treat as unchanged) or at the end
5465 	 * of the right side (treat as changed).
5466 	 */
5467 	if (key.offset >= ekey->offset + left_len)
5468 		ret = 1;
5469 	else
5470 		ret = 0;
5471 
5472 
5473 out:
5474 	btrfs_free_path(path);
5475 	return ret;
5476 }
5477 
5478 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5479 {
5480 	struct btrfs_path *path;
5481 	struct btrfs_root *root = sctx->send_root;
5482 	struct btrfs_file_extent_item *fi;
5483 	struct btrfs_key key;
5484 	u64 extent_end;
5485 	u8 type;
5486 	int ret;
5487 
5488 	path = alloc_path_for_send();
5489 	if (!path)
5490 		return -ENOMEM;
5491 
5492 	sctx->cur_inode_last_extent = 0;
5493 
5494 	key.objectid = sctx->cur_ino;
5495 	key.type = BTRFS_EXTENT_DATA_KEY;
5496 	key.offset = offset;
5497 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5498 	if (ret < 0)
5499 		goto out;
5500 	ret = 0;
5501 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5502 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5503 		goto out;
5504 
5505 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5506 			    struct btrfs_file_extent_item);
5507 	type = btrfs_file_extent_type(path->nodes[0], fi);
5508 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5509 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5510 		extent_end = ALIGN(key.offset + size,
5511 				   sctx->send_root->fs_info->sectorsize);
5512 	} else {
5513 		extent_end = key.offset +
5514 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5515 	}
5516 	sctx->cur_inode_last_extent = extent_end;
5517 out:
5518 	btrfs_free_path(path);
5519 	return ret;
5520 }
5521 
5522 static int range_is_hole_in_parent(struct send_ctx *sctx,
5523 				   const u64 start,
5524 				   const u64 end)
5525 {
5526 	struct btrfs_path *path;
5527 	struct btrfs_key key;
5528 	struct btrfs_root *root = sctx->parent_root;
5529 	u64 search_start = start;
5530 	int ret;
5531 
5532 	path = alloc_path_for_send();
5533 	if (!path)
5534 		return -ENOMEM;
5535 
5536 	key.objectid = sctx->cur_ino;
5537 	key.type = BTRFS_EXTENT_DATA_KEY;
5538 	key.offset = search_start;
5539 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5540 	if (ret < 0)
5541 		goto out;
5542 	if (ret > 0 && path->slots[0] > 0)
5543 		path->slots[0]--;
5544 
5545 	while (search_start < end) {
5546 		struct extent_buffer *leaf = path->nodes[0];
5547 		int slot = path->slots[0];
5548 		struct btrfs_file_extent_item *fi;
5549 		u64 extent_end;
5550 
5551 		if (slot >= btrfs_header_nritems(leaf)) {
5552 			ret = btrfs_next_leaf(root, path);
5553 			if (ret < 0)
5554 				goto out;
5555 			else if (ret > 0)
5556 				break;
5557 			continue;
5558 		}
5559 
5560 		btrfs_item_key_to_cpu(leaf, &key, slot);
5561 		if (key.objectid < sctx->cur_ino ||
5562 		    key.type < BTRFS_EXTENT_DATA_KEY)
5563 			goto next;
5564 		if (key.objectid > sctx->cur_ino ||
5565 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5566 		    key.offset >= end)
5567 			break;
5568 
5569 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5570 		if (btrfs_file_extent_type(leaf, fi) ==
5571 		    BTRFS_FILE_EXTENT_INLINE) {
5572 			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5573 
5574 			extent_end = ALIGN(key.offset + size,
5575 					   root->fs_info->sectorsize);
5576 		} else {
5577 			extent_end = key.offset +
5578 				btrfs_file_extent_num_bytes(leaf, fi);
5579 		}
5580 		if (extent_end <= start)
5581 			goto next;
5582 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5583 			search_start = extent_end;
5584 			goto next;
5585 		}
5586 		ret = 0;
5587 		goto out;
5588 next:
5589 		path->slots[0]++;
5590 	}
5591 	ret = 1;
5592 out:
5593 	btrfs_free_path(path);
5594 	return ret;
5595 }
5596 
5597 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5598 			   struct btrfs_key *key)
5599 {
5600 	struct btrfs_file_extent_item *fi;
5601 	u64 extent_end;
5602 	u8 type;
5603 	int ret = 0;
5604 
5605 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5606 		return 0;
5607 
5608 	if (sctx->cur_inode_last_extent == (u64)-1) {
5609 		ret = get_last_extent(sctx, key->offset - 1);
5610 		if (ret)
5611 			return ret;
5612 	}
5613 
5614 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5615 			    struct btrfs_file_extent_item);
5616 	type = btrfs_file_extent_type(path->nodes[0], fi);
5617 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5618 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5619 		extent_end = ALIGN(key->offset + size,
5620 				   sctx->send_root->fs_info->sectorsize);
5621 	} else {
5622 		extent_end = key->offset +
5623 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5624 	}
5625 
5626 	if (path->slots[0] == 0 &&
5627 	    sctx->cur_inode_last_extent < key->offset) {
5628 		/*
5629 		 * We might have skipped entire leafs that contained only
5630 		 * file extent items for our current inode. These leafs have
5631 		 * a generation number smaller (older) than the one in the
5632 		 * current leaf and the leaf our last extent came from, and
5633 		 * are located between these 2 leafs.
5634 		 */
5635 		ret = get_last_extent(sctx, key->offset - 1);
5636 		if (ret)
5637 			return ret;
5638 	}
5639 
5640 	if (sctx->cur_inode_last_extent < key->offset) {
5641 		ret = range_is_hole_in_parent(sctx,
5642 					      sctx->cur_inode_last_extent,
5643 					      key->offset);
5644 		if (ret < 0)
5645 			return ret;
5646 		else if (ret == 0)
5647 			ret = send_hole(sctx, key->offset);
5648 		else
5649 			ret = 0;
5650 	}
5651 	sctx->cur_inode_last_extent = extent_end;
5652 	return ret;
5653 }
5654 
5655 static int process_extent(struct send_ctx *sctx,
5656 			  struct btrfs_path *path,
5657 			  struct btrfs_key *key)
5658 {
5659 	struct clone_root *found_clone = NULL;
5660 	int ret = 0;
5661 
5662 	if (S_ISLNK(sctx->cur_inode_mode))
5663 		return 0;
5664 
5665 	if (sctx->parent_root && !sctx->cur_inode_new) {
5666 		ret = is_extent_unchanged(sctx, path, key);
5667 		if (ret < 0)
5668 			goto out;
5669 		if (ret) {
5670 			ret = 0;
5671 			goto out_hole;
5672 		}
5673 	} else {
5674 		struct btrfs_file_extent_item *ei;
5675 		u8 type;
5676 
5677 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5678 				    struct btrfs_file_extent_item);
5679 		type = btrfs_file_extent_type(path->nodes[0], ei);
5680 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5681 		    type == BTRFS_FILE_EXTENT_REG) {
5682 			/*
5683 			 * The send spec does not have a prealloc command yet,
5684 			 * so just leave a hole for prealloc'ed extents until
5685 			 * we have enough commands queued up to justify rev'ing
5686 			 * the send spec.
5687 			 */
5688 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5689 				ret = 0;
5690 				goto out;
5691 			}
5692 
5693 			/* Have a hole, just skip it. */
5694 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5695 				ret = 0;
5696 				goto out;
5697 			}
5698 		}
5699 	}
5700 
5701 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5702 			sctx->cur_inode_size, &found_clone);
5703 	if (ret != -ENOENT && ret < 0)
5704 		goto out;
5705 
5706 	ret = send_write_or_clone(sctx, path, key, found_clone);
5707 	if (ret)
5708 		goto out;
5709 out_hole:
5710 	ret = maybe_send_hole(sctx, path, key);
5711 out:
5712 	return ret;
5713 }
5714 
5715 static int process_all_extents(struct send_ctx *sctx)
5716 {
5717 	int ret;
5718 	struct btrfs_root *root;
5719 	struct btrfs_path *path;
5720 	struct btrfs_key key;
5721 	struct btrfs_key found_key;
5722 	struct extent_buffer *eb;
5723 	int slot;
5724 
5725 	root = sctx->send_root;
5726 	path = alloc_path_for_send();
5727 	if (!path)
5728 		return -ENOMEM;
5729 
5730 	key.objectid = sctx->cmp_key->objectid;
5731 	key.type = BTRFS_EXTENT_DATA_KEY;
5732 	key.offset = 0;
5733 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5734 	if (ret < 0)
5735 		goto out;
5736 
5737 	while (1) {
5738 		eb = path->nodes[0];
5739 		slot = path->slots[0];
5740 
5741 		if (slot >= btrfs_header_nritems(eb)) {
5742 			ret = btrfs_next_leaf(root, path);
5743 			if (ret < 0) {
5744 				goto out;
5745 			} else if (ret > 0) {
5746 				ret = 0;
5747 				break;
5748 			}
5749 			continue;
5750 		}
5751 
5752 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5753 
5754 		if (found_key.objectid != key.objectid ||
5755 		    found_key.type != key.type) {
5756 			ret = 0;
5757 			goto out;
5758 		}
5759 
5760 		ret = process_extent(sctx, path, &found_key);
5761 		if (ret < 0)
5762 			goto out;
5763 
5764 		path->slots[0]++;
5765 	}
5766 
5767 out:
5768 	btrfs_free_path(path);
5769 	return ret;
5770 }
5771 
5772 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5773 					   int *pending_move,
5774 					   int *refs_processed)
5775 {
5776 	int ret = 0;
5777 
5778 	if (sctx->cur_ino == 0)
5779 		goto out;
5780 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5781 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5782 		goto out;
5783 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5784 		goto out;
5785 
5786 	ret = process_recorded_refs(sctx, pending_move);
5787 	if (ret < 0)
5788 		goto out;
5789 
5790 	*refs_processed = 1;
5791 out:
5792 	return ret;
5793 }
5794 
5795 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5796 {
5797 	int ret = 0;
5798 	u64 left_mode;
5799 	u64 left_uid;
5800 	u64 left_gid;
5801 	u64 right_mode;
5802 	u64 right_uid;
5803 	u64 right_gid;
5804 	int need_chmod = 0;
5805 	int need_chown = 0;
5806 	int need_truncate = 1;
5807 	int pending_move = 0;
5808 	int refs_processed = 0;
5809 
5810 	if (sctx->ignore_cur_inode)
5811 		return 0;
5812 
5813 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5814 					      &refs_processed);
5815 	if (ret < 0)
5816 		goto out;
5817 
5818 	/*
5819 	 * We have processed the refs and thus need to advance send_progress.
5820 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5821 	 * inode into account.
5822 	 *
5823 	 * On the other hand, if our current inode is a directory and couldn't
5824 	 * be moved/renamed because its parent was renamed/moved too and it has
5825 	 * a higher inode number, we can only move/rename our current inode
5826 	 * after we moved/renamed its parent. Therefore in this case operate on
5827 	 * the old path (pre move/rename) of our current inode, and the
5828 	 * move/rename will be performed later.
5829 	 */
5830 	if (refs_processed && !pending_move)
5831 		sctx->send_progress = sctx->cur_ino + 1;
5832 
5833 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5834 		goto out;
5835 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5836 		goto out;
5837 
5838 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5839 			&left_mode, &left_uid, &left_gid, NULL);
5840 	if (ret < 0)
5841 		goto out;
5842 
5843 	if (!sctx->parent_root || sctx->cur_inode_new) {
5844 		need_chown = 1;
5845 		if (!S_ISLNK(sctx->cur_inode_mode))
5846 			need_chmod = 1;
5847 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5848 			need_truncate = 0;
5849 	} else {
5850 		u64 old_size;
5851 
5852 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5853 				&old_size, NULL, &right_mode, &right_uid,
5854 				&right_gid, NULL);
5855 		if (ret < 0)
5856 			goto out;
5857 
5858 		if (left_uid != right_uid || left_gid != right_gid)
5859 			need_chown = 1;
5860 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5861 			need_chmod = 1;
5862 		if ((old_size == sctx->cur_inode_size) ||
5863 		    (sctx->cur_inode_size > old_size &&
5864 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5865 			need_truncate = 0;
5866 	}
5867 
5868 	if (S_ISREG(sctx->cur_inode_mode)) {
5869 		if (need_send_hole(sctx)) {
5870 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5871 			    sctx->cur_inode_last_extent <
5872 			    sctx->cur_inode_size) {
5873 				ret = get_last_extent(sctx, (u64)-1);
5874 				if (ret)
5875 					goto out;
5876 			}
5877 			if (sctx->cur_inode_last_extent <
5878 			    sctx->cur_inode_size) {
5879 				ret = send_hole(sctx, sctx->cur_inode_size);
5880 				if (ret)
5881 					goto out;
5882 			}
5883 		}
5884 		if (need_truncate) {
5885 			ret = send_truncate(sctx, sctx->cur_ino,
5886 					    sctx->cur_inode_gen,
5887 					    sctx->cur_inode_size);
5888 			if (ret < 0)
5889 				goto out;
5890 		}
5891 	}
5892 
5893 	if (need_chown) {
5894 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5895 				left_uid, left_gid);
5896 		if (ret < 0)
5897 			goto out;
5898 	}
5899 	if (need_chmod) {
5900 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5901 				left_mode);
5902 		if (ret < 0)
5903 			goto out;
5904 	}
5905 
5906 	/*
5907 	 * If other directory inodes depended on our current directory
5908 	 * inode's move/rename, now do their move/rename operations.
5909 	 */
5910 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5911 		ret = apply_children_dir_moves(sctx);
5912 		if (ret)
5913 			goto out;
5914 		/*
5915 		 * Need to send that every time, no matter if it actually
5916 		 * changed between the two trees as we have done changes to
5917 		 * the inode before. If our inode is a directory and it's
5918 		 * waiting to be moved/renamed, we will send its utimes when
5919 		 * it's moved/renamed, therefore we don't need to do it here.
5920 		 */
5921 		sctx->send_progress = sctx->cur_ino + 1;
5922 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5923 		if (ret < 0)
5924 			goto out;
5925 	}
5926 
5927 out:
5928 	return ret;
5929 }
5930 
5931 struct parent_paths_ctx {
5932 	struct list_head *refs;
5933 	struct send_ctx *sctx;
5934 };
5935 
5936 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
5937 			     void *ctx)
5938 {
5939 	struct parent_paths_ctx *ppctx = ctx;
5940 
5941 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
5942 			  ppctx->refs);
5943 }
5944 
5945 /*
5946  * Issue unlink operations for all paths of the current inode found in the
5947  * parent snapshot.
5948  */
5949 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
5950 {
5951 	LIST_HEAD(deleted_refs);
5952 	struct btrfs_path *path;
5953 	struct btrfs_key key;
5954 	struct parent_paths_ctx ctx;
5955 	int ret;
5956 
5957 	path = alloc_path_for_send();
5958 	if (!path)
5959 		return -ENOMEM;
5960 
5961 	key.objectid = sctx->cur_ino;
5962 	key.type = BTRFS_INODE_REF_KEY;
5963 	key.offset = 0;
5964 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
5965 	if (ret < 0)
5966 		goto out;
5967 
5968 	ctx.refs = &deleted_refs;
5969 	ctx.sctx = sctx;
5970 
5971 	while (true) {
5972 		struct extent_buffer *eb = path->nodes[0];
5973 		int slot = path->slots[0];
5974 
5975 		if (slot >= btrfs_header_nritems(eb)) {
5976 			ret = btrfs_next_leaf(sctx->parent_root, path);
5977 			if (ret < 0)
5978 				goto out;
5979 			else if (ret > 0)
5980 				break;
5981 			continue;
5982 		}
5983 
5984 		btrfs_item_key_to_cpu(eb, &key, slot);
5985 		if (key.objectid != sctx->cur_ino)
5986 			break;
5987 		if (key.type != BTRFS_INODE_REF_KEY &&
5988 		    key.type != BTRFS_INODE_EXTREF_KEY)
5989 			break;
5990 
5991 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
5992 					record_parent_ref, &ctx);
5993 		if (ret < 0)
5994 			goto out;
5995 
5996 		path->slots[0]++;
5997 	}
5998 
5999 	while (!list_empty(&deleted_refs)) {
6000 		struct recorded_ref *ref;
6001 
6002 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6003 		ret = send_unlink(sctx, ref->full_path);
6004 		if (ret < 0)
6005 			goto out;
6006 		fs_path_free(ref->full_path);
6007 		list_del(&ref->list);
6008 		kfree(ref);
6009 	}
6010 	ret = 0;
6011 out:
6012 	btrfs_free_path(path);
6013 	if (ret)
6014 		__free_recorded_refs(&deleted_refs);
6015 	return ret;
6016 }
6017 
6018 static int changed_inode(struct send_ctx *sctx,
6019 			 enum btrfs_compare_tree_result result)
6020 {
6021 	int ret = 0;
6022 	struct btrfs_key *key = sctx->cmp_key;
6023 	struct btrfs_inode_item *left_ii = NULL;
6024 	struct btrfs_inode_item *right_ii = NULL;
6025 	u64 left_gen = 0;
6026 	u64 right_gen = 0;
6027 
6028 	sctx->cur_ino = key->objectid;
6029 	sctx->cur_inode_new_gen = 0;
6030 	sctx->cur_inode_last_extent = (u64)-1;
6031 	sctx->cur_inode_next_write_offset = 0;
6032 	sctx->ignore_cur_inode = false;
6033 
6034 	/*
6035 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6036 	 * functions that the current inode's refs are not updated yet. Later,
6037 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6038 	 */
6039 	sctx->send_progress = sctx->cur_ino;
6040 
6041 	if (result == BTRFS_COMPARE_TREE_NEW ||
6042 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6043 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6044 				sctx->left_path->slots[0],
6045 				struct btrfs_inode_item);
6046 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6047 				left_ii);
6048 	} else {
6049 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6050 				sctx->right_path->slots[0],
6051 				struct btrfs_inode_item);
6052 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6053 				right_ii);
6054 	}
6055 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6056 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6057 				sctx->right_path->slots[0],
6058 				struct btrfs_inode_item);
6059 
6060 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6061 				right_ii);
6062 
6063 		/*
6064 		 * The cur_ino = root dir case is special here. We can't treat
6065 		 * the inode as deleted+reused because it would generate a
6066 		 * stream that tries to delete/mkdir the root dir.
6067 		 */
6068 		if (left_gen != right_gen &&
6069 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6070 			sctx->cur_inode_new_gen = 1;
6071 	}
6072 
6073 	/*
6074 	 * Normally we do not find inodes with a link count of zero (orphans)
6075 	 * because the most common case is to create a snapshot and use it
6076 	 * for a send operation. However other less common use cases involve
6077 	 * using a subvolume and send it after turning it to RO mode just
6078 	 * after deleting all hard links of a file while holding an open
6079 	 * file descriptor against it or turning a RO snapshot into RW mode,
6080 	 * keep an open file descriptor against a file, delete it and then
6081 	 * turn the snapshot back to RO mode before using it for a send
6082 	 * operation. So if we find such cases, ignore the inode and all its
6083 	 * items completely if it's a new inode, or if it's a changed inode
6084 	 * make sure all its previous paths (from the parent snapshot) are all
6085 	 * unlinked and all other the inode items are ignored.
6086 	 */
6087 	if (result == BTRFS_COMPARE_TREE_NEW ||
6088 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6089 		u32 nlinks;
6090 
6091 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6092 		if (nlinks == 0) {
6093 			sctx->ignore_cur_inode = true;
6094 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6095 				ret = btrfs_unlink_all_paths(sctx);
6096 			goto out;
6097 		}
6098 	}
6099 
6100 	if (result == BTRFS_COMPARE_TREE_NEW) {
6101 		sctx->cur_inode_gen = left_gen;
6102 		sctx->cur_inode_new = 1;
6103 		sctx->cur_inode_deleted = 0;
6104 		sctx->cur_inode_size = btrfs_inode_size(
6105 				sctx->left_path->nodes[0], left_ii);
6106 		sctx->cur_inode_mode = btrfs_inode_mode(
6107 				sctx->left_path->nodes[0], left_ii);
6108 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6109 				sctx->left_path->nodes[0], left_ii);
6110 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6111 			ret = send_create_inode_if_needed(sctx);
6112 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6113 		sctx->cur_inode_gen = right_gen;
6114 		sctx->cur_inode_new = 0;
6115 		sctx->cur_inode_deleted = 1;
6116 		sctx->cur_inode_size = btrfs_inode_size(
6117 				sctx->right_path->nodes[0], right_ii);
6118 		sctx->cur_inode_mode = btrfs_inode_mode(
6119 				sctx->right_path->nodes[0], right_ii);
6120 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6121 		/*
6122 		 * We need to do some special handling in case the inode was
6123 		 * reported as changed with a changed generation number. This
6124 		 * means that the original inode was deleted and new inode
6125 		 * reused the same inum. So we have to treat the old inode as
6126 		 * deleted and the new one as new.
6127 		 */
6128 		if (sctx->cur_inode_new_gen) {
6129 			/*
6130 			 * First, process the inode as if it was deleted.
6131 			 */
6132 			sctx->cur_inode_gen = right_gen;
6133 			sctx->cur_inode_new = 0;
6134 			sctx->cur_inode_deleted = 1;
6135 			sctx->cur_inode_size = btrfs_inode_size(
6136 					sctx->right_path->nodes[0], right_ii);
6137 			sctx->cur_inode_mode = btrfs_inode_mode(
6138 					sctx->right_path->nodes[0], right_ii);
6139 			ret = process_all_refs(sctx,
6140 					BTRFS_COMPARE_TREE_DELETED);
6141 			if (ret < 0)
6142 				goto out;
6143 
6144 			/*
6145 			 * Now process the inode as if it was new.
6146 			 */
6147 			sctx->cur_inode_gen = left_gen;
6148 			sctx->cur_inode_new = 1;
6149 			sctx->cur_inode_deleted = 0;
6150 			sctx->cur_inode_size = btrfs_inode_size(
6151 					sctx->left_path->nodes[0], left_ii);
6152 			sctx->cur_inode_mode = btrfs_inode_mode(
6153 					sctx->left_path->nodes[0], left_ii);
6154 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6155 					sctx->left_path->nodes[0], left_ii);
6156 			ret = send_create_inode_if_needed(sctx);
6157 			if (ret < 0)
6158 				goto out;
6159 
6160 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6161 			if (ret < 0)
6162 				goto out;
6163 			/*
6164 			 * Advance send_progress now as we did not get into
6165 			 * process_recorded_refs_if_needed in the new_gen case.
6166 			 */
6167 			sctx->send_progress = sctx->cur_ino + 1;
6168 
6169 			/*
6170 			 * Now process all extents and xattrs of the inode as if
6171 			 * they were all new.
6172 			 */
6173 			ret = process_all_extents(sctx);
6174 			if (ret < 0)
6175 				goto out;
6176 			ret = process_all_new_xattrs(sctx);
6177 			if (ret < 0)
6178 				goto out;
6179 		} else {
6180 			sctx->cur_inode_gen = left_gen;
6181 			sctx->cur_inode_new = 0;
6182 			sctx->cur_inode_new_gen = 0;
6183 			sctx->cur_inode_deleted = 0;
6184 			sctx->cur_inode_size = btrfs_inode_size(
6185 					sctx->left_path->nodes[0], left_ii);
6186 			sctx->cur_inode_mode = btrfs_inode_mode(
6187 					sctx->left_path->nodes[0], left_ii);
6188 		}
6189 	}
6190 
6191 out:
6192 	return ret;
6193 }
6194 
6195 /*
6196  * We have to process new refs before deleted refs, but compare_trees gives us
6197  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6198  * first and later process them in process_recorded_refs.
6199  * For the cur_inode_new_gen case, we skip recording completely because
6200  * changed_inode did already initiate processing of refs. The reason for this is
6201  * that in this case, compare_tree actually compares the refs of 2 different
6202  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6203  * refs of the right tree as deleted and all refs of the left tree as new.
6204  */
6205 static int changed_ref(struct send_ctx *sctx,
6206 		       enum btrfs_compare_tree_result result)
6207 {
6208 	int ret = 0;
6209 
6210 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6211 		inconsistent_snapshot_error(sctx, result, "reference");
6212 		return -EIO;
6213 	}
6214 
6215 	if (!sctx->cur_inode_new_gen &&
6216 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6217 		if (result == BTRFS_COMPARE_TREE_NEW)
6218 			ret = record_new_ref(sctx);
6219 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6220 			ret = record_deleted_ref(sctx);
6221 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6222 			ret = record_changed_ref(sctx);
6223 	}
6224 
6225 	return ret;
6226 }
6227 
6228 /*
6229  * Process new/deleted/changed xattrs. We skip processing in the
6230  * cur_inode_new_gen case because changed_inode did already initiate processing
6231  * of xattrs. The reason is the same as in changed_ref
6232  */
6233 static int changed_xattr(struct send_ctx *sctx,
6234 			 enum btrfs_compare_tree_result result)
6235 {
6236 	int ret = 0;
6237 
6238 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6239 		inconsistent_snapshot_error(sctx, result, "xattr");
6240 		return -EIO;
6241 	}
6242 
6243 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6244 		if (result == BTRFS_COMPARE_TREE_NEW)
6245 			ret = process_new_xattr(sctx);
6246 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6247 			ret = process_deleted_xattr(sctx);
6248 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6249 			ret = process_changed_xattr(sctx);
6250 	}
6251 
6252 	return ret;
6253 }
6254 
6255 /*
6256  * Process new/deleted/changed extents. We skip processing in the
6257  * cur_inode_new_gen case because changed_inode did already initiate processing
6258  * of extents. The reason is the same as in changed_ref
6259  */
6260 static int changed_extent(struct send_ctx *sctx,
6261 			  enum btrfs_compare_tree_result result)
6262 {
6263 	int ret = 0;
6264 
6265 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6266 
6267 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6268 			struct extent_buffer *leaf_l;
6269 			struct extent_buffer *leaf_r;
6270 			struct btrfs_file_extent_item *ei_l;
6271 			struct btrfs_file_extent_item *ei_r;
6272 
6273 			leaf_l = sctx->left_path->nodes[0];
6274 			leaf_r = sctx->right_path->nodes[0];
6275 			ei_l = btrfs_item_ptr(leaf_l,
6276 					      sctx->left_path->slots[0],
6277 					      struct btrfs_file_extent_item);
6278 			ei_r = btrfs_item_ptr(leaf_r,
6279 					      sctx->right_path->slots[0],
6280 					      struct btrfs_file_extent_item);
6281 
6282 			/*
6283 			 * We may have found an extent item that has changed
6284 			 * only its disk_bytenr field and the corresponding
6285 			 * inode item was not updated. This case happens due to
6286 			 * very specific timings during relocation when a leaf
6287 			 * that contains file extent items is COWed while
6288 			 * relocation is ongoing and its in the stage where it
6289 			 * updates data pointers. So when this happens we can
6290 			 * safely ignore it since we know it's the same extent,
6291 			 * but just at different logical and physical locations
6292 			 * (when an extent is fully replaced with a new one, we
6293 			 * know the generation number must have changed too,
6294 			 * since snapshot creation implies committing the current
6295 			 * transaction, and the inode item must have been updated
6296 			 * as well).
6297 			 * This replacement of the disk_bytenr happens at
6298 			 * relocation.c:replace_file_extents() through
6299 			 * relocation.c:btrfs_reloc_cow_block().
6300 			 */
6301 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6302 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6303 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6304 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6305 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6306 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6307 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6308 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6309 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6310 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6311 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6312 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6313 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6314 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6315 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6316 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6317 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6318 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6319 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6320 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6321 				return 0;
6322 		}
6323 
6324 		inconsistent_snapshot_error(sctx, result, "extent");
6325 		return -EIO;
6326 	}
6327 
6328 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6329 		if (result != BTRFS_COMPARE_TREE_DELETED)
6330 			ret = process_extent(sctx, sctx->left_path,
6331 					sctx->cmp_key);
6332 	}
6333 
6334 	return ret;
6335 }
6336 
6337 static int dir_changed(struct send_ctx *sctx, u64 dir)
6338 {
6339 	u64 orig_gen, new_gen;
6340 	int ret;
6341 
6342 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6343 			     NULL, NULL);
6344 	if (ret)
6345 		return ret;
6346 
6347 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6348 			     NULL, NULL, NULL);
6349 	if (ret)
6350 		return ret;
6351 
6352 	return (orig_gen != new_gen) ? 1 : 0;
6353 }
6354 
6355 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6356 			struct btrfs_key *key)
6357 {
6358 	struct btrfs_inode_extref *extref;
6359 	struct extent_buffer *leaf;
6360 	u64 dirid = 0, last_dirid = 0;
6361 	unsigned long ptr;
6362 	u32 item_size;
6363 	u32 cur_offset = 0;
6364 	int ref_name_len;
6365 	int ret = 0;
6366 
6367 	/* Easy case, just check this one dirid */
6368 	if (key->type == BTRFS_INODE_REF_KEY) {
6369 		dirid = key->offset;
6370 
6371 		ret = dir_changed(sctx, dirid);
6372 		goto out;
6373 	}
6374 
6375 	leaf = path->nodes[0];
6376 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6377 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6378 	while (cur_offset < item_size) {
6379 		extref = (struct btrfs_inode_extref *)(ptr +
6380 						       cur_offset);
6381 		dirid = btrfs_inode_extref_parent(leaf, extref);
6382 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6383 		cur_offset += ref_name_len + sizeof(*extref);
6384 		if (dirid == last_dirid)
6385 			continue;
6386 		ret = dir_changed(sctx, dirid);
6387 		if (ret)
6388 			break;
6389 		last_dirid = dirid;
6390 	}
6391 out:
6392 	return ret;
6393 }
6394 
6395 /*
6396  * Updates compare related fields in sctx and simply forwards to the actual
6397  * changed_xxx functions.
6398  */
6399 static int changed_cb(struct btrfs_path *left_path,
6400 		      struct btrfs_path *right_path,
6401 		      struct btrfs_key *key,
6402 		      enum btrfs_compare_tree_result result,
6403 		      void *ctx)
6404 {
6405 	int ret = 0;
6406 	struct send_ctx *sctx = ctx;
6407 
6408 	if (result == BTRFS_COMPARE_TREE_SAME) {
6409 		if (key->type == BTRFS_INODE_REF_KEY ||
6410 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6411 			ret = compare_refs(sctx, left_path, key);
6412 			if (!ret)
6413 				return 0;
6414 			if (ret < 0)
6415 				return ret;
6416 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6417 			return maybe_send_hole(sctx, left_path, key);
6418 		} else {
6419 			return 0;
6420 		}
6421 		result = BTRFS_COMPARE_TREE_CHANGED;
6422 		ret = 0;
6423 	}
6424 
6425 	sctx->left_path = left_path;
6426 	sctx->right_path = right_path;
6427 	sctx->cmp_key = key;
6428 
6429 	ret = finish_inode_if_needed(sctx, 0);
6430 	if (ret < 0)
6431 		goto out;
6432 
6433 	/* Ignore non-FS objects */
6434 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6435 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6436 		goto out;
6437 
6438 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6439 		ret = changed_inode(sctx, result);
6440 	} else if (!sctx->ignore_cur_inode) {
6441 		if (key->type == BTRFS_INODE_REF_KEY ||
6442 		    key->type == BTRFS_INODE_EXTREF_KEY)
6443 			ret = changed_ref(sctx, result);
6444 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6445 			ret = changed_xattr(sctx, result);
6446 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6447 			ret = changed_extent(sctx, result);
6448 	}
6449 
6450 out:
6451 	return ret;
6452 }
6453 
6454 static int full_send_tree(struct send_ctx *sctx)
6455 {
6456 	int ret;
6457 	struct btrfs_root *send_root = sctx->send_root;
6458 	struct btrfs_key key;
6459 	struct btrfs_path *path;
6460 	struct extent_buffer *eb;
6461 	int slot;
6462 
6463 	path = alloc_path_for_send();
6464 	if (!path)
6465 		return -ENOMEM;
6466 
6467 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6468 	key.type = BTRFS_INODE_ITEM_KEY;
6469 	key.offset = 0;
6470 
6471 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6472 	if (ret < 0)
6473 		goto out;
6474 	if (ret)
6475 		goto out_finish;
6476 
6477 	while (1) {
6478 		eb = path->nodes[0];
6479 		slot = path->slots[0];
6480 		btrfs_item_key_to_cpu(eb, &key, slot);
6481 
6482 		ret = changed_cb(path, NULL, &key,
6483 				 BTRFS_COMPARE_TREE_NEW, sctx);
6484 		if (ret < 0)
6485 			goto out;
6486 
6487 		ret = btrfs_next_item(send_root, path);
6488 		if (ret < 0)
6489 			goto out;
6490 		if (ret) {
6491 			ret  = 0;
6492 			break;
6493 		}
6494 	}
6495 
6496 out_finish:
6497 	ret = finish_inode_if_needed(sctx, 1);
6498 
6499 out:
6500 	btrfs_free_path(path);
6501 	return ret;
6502 }
6503 
6504 static int send_subvol(struct send_ctx *sctx)
6505 {
6506 	int ret;
6507 
6508 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6509 		ret = send_header(sctx);
6510 		if (ret < 0)
6511 			goto out;
6512 	}
6513 
6514 	ret = send_subvol_begin(sctx);
6515 	if (ret < 0)
6516 		goto out;
6517 
6518 	if (sctx->parent_root) {
6519 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6520 				changed_cb, sctx);
6521 		if (ret < 0)
6522 			goto out;
6523 		ret = finish_inode_if_needed(sctx, 1);
6524 		if (ret < 0)
6525 			goto out;
6526 	} else {
6527 		ret = full_send_tree(sctx);
6528 		if (ret < 0)
6529 			goto out;
6530 	}
6531 
6532 out:
6533 	free_recorded_refs(sctx);
6534 	return ret;
6535 }
6536 
6537 /*
6538  * If orphan cleanup did remove any orphans from a root, it means the tree
6539  * was modified and therefore the commit root is not the same as the current
6540  * root anymore. This is a problem, because send uses the commit root and
6541  * therefore can see inode items that don't exist in the current root anymore,
6542  * and for example make calls to btrfs_iget, which will do tree lookups based
6543  * on the current root and not on the commit root. Those lookups will fail,
6544  * returning a -ESTALE error, and making send fail with that error. So make
6545  * sure a send does not see any orphans we have just removed, and that it will
6546  * see the same inodes regardless of whether a transaction commit happened
6547  * before it started (meaning that the commit root will be the same as the
6548  * current root) or not.
6549  */
6550 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6551 {
6552 	int i;
6553 	struct btrfs_trans_handle *trans = NULL;
6554 
6555 again:
6556 	if (sctx->parent_root &&
6557 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6558 		goto commit_trans;
6559 
6560 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6561 		if (sctx->clone_roots[i].root->node !=
6562 		    sctx->clone_roots[i].root->commit_root)
6563 			goto commit_trans;
6564 
6565 	if (trans)
6566 		return btrfs_end_transaction(trans);
6567 
6568 	return 0;
6569 
6570 commit_trans:
6571 	/* Use any root, all fs roots will get their commit roots updated. */
6572 	if (!trans) {
6573 		trans = btrfs_join_transaction(sctx->send_root);
6574 		if (IS_ERR(trans))
6575 			return PTR_ERR(trans);
6576 		goto again;
6577 	}
6578 
6579 	return btrfs_commit_transaction(trans);
6580 }
6581 
6582 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6583 {
6584 	spin_lock(&root->root_item_lock);
6585 	root->send_in_progress--;
6586 	/*
6587 	 * Not much left to do, we don't know why it's unbalanced and
6588 	 * can't blindly reset it to 0.
6589 	 */
6590 	if (root->send_in_progress < 0)
6591 		btrfs_err(root->fs_info,
6592 			  "send_in_progress unbalanced %d root %llu",
6593 			  root->send_in_progress, root->root_key.objectid);
6594 	spin_unlock(&root->root_item_lock);
6595 }
6596 
6597 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6598 {
6599 	int ret = 0;
6600 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6601 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6602 	struct btrfs_root *clone_root;
6603 	struct btrfs_key key;
6604 	struct send_ctx *sctx = NULL;
6605 	u32 i;
6606 	u64 *clone_sources_tmp = NULL;
6607 	int clone_sources_to_rollback = 0;
6608 	unsigned alloc_size;
6609 	int sort_clone_roots = 0;
6610 	int index;
6611 
6612 	if (!capable(CAP_SYS_ADMIN))
6613 		return -EPERM;
6614 
6615 	/*
6616 	 * The subvolume must remain read-only during send, protect against
6617 	 * making it RW. This also protects against deletion.
6618 	 */
6619 	spin_lock(&send_root->root_item_lock);
6620 	send_root->send_in_progress++;
6621 	spin_unlock(&send_root->root_item_lock);
6622 
6623 	/*
6624 	 * This is done when we lookup the root, it should already be complete
6625 	 * by the time we get here.
6626 	 */
6627 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6628 
6629 	/*
6630 	 * Userspace tools do the checks and warn the user if it's
6631 	 * not RO.
6632 	 */
6633 	if (!btrfs_root_readonly(send_root)) {
6634 		ret = -EPERM;
6635 		goto out;
6636 	}
6637 
6638 	/*
6639 	 * Check that we don't overflow at later allocations, we request
6640 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6641 	 * access_ok.
6642 	 */
6643 	if (arg->clone_sources_count >
6644 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6645 		ret = -EINVAL;
6646 		goto out;
6647 	}
6648 
6649 	if (!access_ok(arg->clone_sources,
6650 			sizeof(*arg->clone_sources) *
6651 			arg->clone_sources_count)) {
6652 		ret = -EFAULT;
6653 		goto out;
6654 	}
6655 
6656 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6657 		ret = -EINVAL;
6658 		goto out;
6659 	}
6660 
6661 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6662 	if (!sctx) {
6663 		ret = -ENOMEM;
6664 		goto out;
6665 	}
6666 
6667 	INIT_LIST_HEAD(&sctx->new_refs);
6668 	INIT_LIST_HEAD(&sctx->deleted_refs);
6669 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6670 	INIT_LIST_HEAD(&sctx->name_cache_list);
6671 
6672 	sctx->flags = arg->flags;
6673 
6674 	sctx->send_filp = fget(arg->send_fd);
6675 	if (!sctx->send_filp) {
6676 		ret = -EBADF;
6677 		goto out;
6678 	}
6679 
6680 	sctx->send_root = send_root;
6681 	/*
6682 	 * Unlikely but possible, if the subvolume is marked for deletion but
6683 	 * is slow to remove the directory entry, send can still be started
6684 	 */
6685 	if (btrfs_root_dead(sctx->send_root)) {
6686 		ret = -EPERM;
6687 		goto out;
6688 	}
6689 
6690 	sctx->clone_roots_cnt = arg->clone_sources_count;
6691 
6692 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6693 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6694 	if (!sctx->send_buf) {
6695 		ret = -ENOMEM;
6696 		goto out;
6697 	}
6698 
6699 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6700 	if (!sctx->read_buf) {
6701 		ret = -ENOMEM;
6702 		goto out;
6703 	}
6704 
6705 	sctx->pending_dir_moves = RB_ROOT;
6706 	sctx->waiting_dir_moves = RB_ROOT;
6707 	sctx->orphan_dirs = RB_ROOT;
6708 
6709 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6710 
6711 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6712 	if (!sctx->clone_roots) {
6713 		ret = -ENOMEM;
6714 		goto out;
6715 	}
6716 
6717 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6718 
6719 	if (arg->clone_sources_count) {
6720 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6721 		if (!clone_sources_tmp) {
6722 			ret = -ENOMEM;
6723 			goto out;
6724 		}
6725 
6726 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6727 				alloc_size);
6728 		if (ret) {
6729 			ret = -EFAULT;
6730 			goto out;
6731 		}
6732 
6733 		for (i = 0; i < arg->clone_sources_count; i++) {
6734 			key.objectid = clone_sources_tmp[i];
6735 			key.type = BTRFS_ROOT_ITEM_KEY;
6736 			key.offset = (u64)-1;
6737 
6738 			index = srcu_read_lock(&fs_info->subvol_srcu);
6739 
6740 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6741 			if (IS_ERR(clone_root)) {
6742 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6743 				ret = PTR_ERR(clone_root);
6744 				goto out;
6745 			}
6746 			spin_lock(&clone_root->root_item_lock);
6747 			if (!btrfs_root_readonly(clone_root) ||
6748 			    btrfs_root_dead(clone_root)) {
6749 				spin_unlock(&clone_root->root_item_lock);
6750 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6751 				ret = -EPERM;
6752 				goto out;
6753 			}
6754 			clone_root->send_in_progress++;
6755 			spin_unlock(&clone_root->root_item_lock);
6756 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6757 
6758 			sctx->clone_roots[i].root = clone_root;
6759 			clone_sources_to_rollback = i + 1;
6760 		}
6761 		kvfree(clone_sources_tmp);
6762 		clone_sources_tmp = NULL;
6763 	}
6764 
6765 	if (arg->parent_root) {
6766 		key.objectid = arg->parent_root;
6767 		key.type = BTRFS_ROOT_ITEM_KEY;
6768 		key.offset = (u64)-1;
6769 
6770 		index = srcu_read_lock(&fs_info->subvol_srcu);
6771 
6772 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6773 		if (IS_ERR(sctx->parent_root)) {
6774 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6775 			ret = PTR_ERR(sctx->parent_root);
6776 			goto out;
6777 		}
6778 
6779 		spin_lock(&sctx->parent_root->root_item_lock);
6780 		sctx->parent_root->send_in_progress++;
6781 		if (!btrfs_root_readonly(sctx->parent_root) ||
6782 				btrfs_root_dead(sctx->parent_root)) {
6783 			spin_unlock(&sctx->parent_root->root_item_lock);
6784 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6785 			ret = -EPERM;
6786 			goto out;
6787 		}
6788 		spin_unlock(&sctx->parent_root->root_item_lock);
6789 
6790 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6791 	}
6792 
6793 	/*
6794 	 * Clones from send_root are allowed, but only if the clone source
6795 	 * is behind the current send position. This is checked while searching
6796 	 * for possible clone sources.
6797 	 */
6798 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6799 
6800 	/* We do a bsearch later */
6801 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6802 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6803 			NULL);
6804 	sort_clone_roots = 1;
6805 
6806 	ret = ensure_commit_roots_uptodate(sctx);
6807 	if (ret)
6808 		goto out;
6809 
6810 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6811 	ret = send_subvol(sctx);
6812 	current->journal_info = NULL;
6813 	if (ret < 0)
6814 		goto out;
6815 
6816 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6817 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6818 		if (ret < 0)
6819 			goto out;
6820 		ret = send_cmd(sctx);
6821 		if (ret < 0)
6822 			goto out;
6823 	}
6824 
6825 out:
6826 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6827 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6828 		struct rb_node *n;
6829 		struct pending_dir_move *pm;
6830 
6831 		n = rb_first(&sctx->pending_dir_moves);
6832 		pm = rb_entry(n, struct pending_dir_move, node);
6833 		while (!list_empty(&pm->list)) {
6834 			struct pending_dir_move *pm2;
6835 
6836 			pm2 = list_first_entry(&pm->list,
6837 					       struct pending_dir_move, list);
6838 			free_pending_move(sctx, pm2);
6839 		}
6840 		free_pending_move(sctx, pm);
6841 	}
6842 
6843 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6844 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6845 		struct rb_node *n;
6846 		struct waiting_dir_move *dm;
6847 
6848 		n = rb_first(&sctx->waiting_dir_moves);
6849 		dm = rb_entry(n, struct waiting_dir_move, node);
6850 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6851 		kfree(dm);
6852 	}
6853 
6854 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6855 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6856 		struct rb_node *n;
6857 		struct orphan_dir_info *odi;
6858 
6859 		n = rb_first(&sctx->orphan_dirs);
6860 		odi = rb_entry(n, struct orphan_dir_info, node);
6861 		free_orphan_dir_info(sctx, odi);
6862 	}
6863 
6864 	if (sort_clone_roots) {
6865 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6866 			btrfs_root_dec_send_in_progress(
6867 					sctx->clone_roots[i].root);
6868 	} else {
6869 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6870 			btrfs_root_dec_send_in_progress(
6871 					sctx->clone_roots[i].root);
6872 
6873 		btrfs_root_dec_send_in_progress(send_root);
6874 	}
6875 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6876 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6877 
6878 	kvfree(clone_sources_tmp);
6879 
6880 	if (sctx) {
6881 		if (sctx->send_filp)
6882 			fput(sctx->send_filp);
6883 
6884 		kvfree(sctx->clone_roots);
6885 		kvfree(sctx->send_buf);
6886 		kvfree(sctx->read_buf);
6887 
6888 		name_cache_free(sctx);
6889 
6890 		kfree(sctx);
6891 	}
6892 
6893 	return ret;
6894 }
6895