1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * a allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 }; 308 309 struct pending_dir_move { 310 struct rb_node node; 311 struct list_head list; 312 u64 parent_ino; 313 u64 ino; 314 u64 gen; 315 struct list_head update_refs; 316 }; 317 318 struct waiting_dir_move { 319 struct rb_node node; 320 u64 ino; 321 /* 322 * There might be some directory that could not be removed because it 323 * was waiting for this directory inode to be moved first. Therefore 324 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 325 */ 326 u64 rmdir_ino; 327 u64 rmdir_gen; 328 bool orphanized; 329 }; 330 331 struct orphan_dir_info { 332 struct rb_node node; 333 u64 ino; 334 u64 gen; 335 u64 last_dir_index_offset; 336 u64 dir_high_seq_ino; 337 }; 338 339 struct name_cache_entry { 340 /* 341 * The key in the entry is an inode number, and the generation matches 342 * the inode's generation. 343 */ 344 struct btrfs_lru_cache_entry entry; 345 u64 parent_ino; 346 u64 parent_gen; 347 int ret; 348 int need_later_update; 349 int name_len; 350 char name[]; 351 }; 352 353 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 354 static_assert(offsetof(struct name_cache_entry, entry) == 0); 355 356 #define ADVANCE 1 357 #define ADVANCE_ONLY_NEXT -1 358 359 enum btrfs_compare_tree_result { 360 BTRFS_COMPARE_TREE_NEW, 361 BTRFS_COMPARE_TREE_DELETED, 362 BTRFS_COMPARE_TREE_CHANGED, 363 BTRFS_COMPARE_TREE_SAME, 364 }; 365 366 __cold 367 static void inconsistent_snapshot_error(struct send_ctx *sctx, 368 enum btrfs_compare_tree_result result, 369 const char *what) 370 { 371 const char *result_string; 372 373 switch (result) { 374 case BTRFS_COMPARE_TREE_NEW: 375 result_string = "new"; 376 break; 377 case BTRFS_COMPARE_TREE_DELETED: 378 result_string = "deleted"; 379 break; 380 case BTRFS_COMPARE_TREE_CHANGED: 381 result_string = "updated"; 382 break; 383 case BTRFS_COMPARE_TREE_SAME: 384 ASSERT(0); 385 result_string = "unchanged"; 386 break; 387 default: 388 ASSERT(0); 389 result_string = "unexpected"; 390 } 391 392 btrfs_err(sctx->send_root->fs_info, 393 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 394 result_string, what, sctx->cmp_key->objectid, 395 sctx->send_root->root_key.objectid, 396 (sctx->parent_root ? 397 sctx->parent_root->root_key.objectid : 0)); 398 } 399 400 __maybe_unused 401 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 402 { 403 switch (sctx->proto) { 404 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 405 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 406 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 407 default: return false; 408 } 409 } 410 411 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 412 413 static struct waiting_dir_move * 414 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 415 416 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 417 418 static int need_send_hole(struct send_ctx *sctx) 419 { 420 return (sctx->parent_root && !sctx->cur_inode_new && 421 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 422 S_ISREG(sctx->cur_inode_mode)); 423 } 424 425 static void fs_path_reset(struct fs_path *p) 426 { 427 if (p->reversed) { 428 p->start = p->buf + p->buf_len - 1; 429 p->end = p->start; 430 *p->start = 0; 431 } else { 432 p->start = p->buf; 433 p->end = p->start; 434 *p->start = 0; 435 } 436 } 437 438 static struct fs_path *fs_path_alloc(void) 439 { 440 struct fs_path *p; 441 442 p = kmalloc(sizeof(*p), GFP_KERNEL); 443 if (!p) 444 return NULL; 445 p->reversed = 0; 446 p->buf = p->inline_buf; 447 p->buf_len = FS_PATH_INLINE_SIZE; 448 fs_path_reset(p); 449 return p; 450 } 451 452 static struct fs_path *fs_path_alloc_reversed(void) 453 { 454 struct fs_path *p; 455 456 p = fs_path_alloc(); 457 if (!p) 458 return NULL; 459 p->reversed = 1; 460 fs_path_reset(p); 461 return p; 462 } 463 464 static void fs_path_free(struct fs_path *p) 465 { 466 if (!p) 467 return; 468 if (p->buf != p->inline_buf) 469 kfree(p->buf); 470 kfree(p); 471 } 472 473 static int fs_path_len(struct fs_path *p) 474 { 475 return p->end - p->start; 476 } 477 478 static int fs_path_ensure_buf(struct fs_path *p, int len) 479 { 480 char *tmp_buf; 481 int path_len; 482 int old_buf_len; 483 484 len++; 485 486 if (p->buf_len >= len) 487 return 0; 488 489 if (len > PATH_MAX) { 490 WARN_ON(1); 491 return -ENOMEM; 492 } 493 494 path_len = p->end - p->start; 495 old_buf_len = p->buf_len; 496 497 /* 498 * Allocate to the next largest kmalloc bucket size, to let 499 * the fast path happen most of the time. 500 */ 501 len = kmalloc_size_roundup(len); 502 /* 503 * First time the inline_buf does not suffice 504 */ 505 if (p->buf == p->inline_buf) { 506 tmp_buf = kmalloc(len, GFP_KERNEL); 507 if (tmp_buf) 508 memcpy(tmp_buf, p->buf, old_buf_len); 509 } else { 510 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 511 } 512 if (!tmp_buf) 513 return -ENOMEM; 514 p->buf = tmp_buf; 515 p->buf_len = len; 516 517 if (p->reversed) { 518 tmp_buf = p->buf + old_buf_len - path_len - 1; 519 p->end = p->buf + p->buf_len - 1; 520 p->start = p->end - path_len; 521 memmove(p->start, tmp_buf, path_len + 1); 522 } else { 523 p->start = p->buf; 524 p->end = p->start + path_len; 525 } 526 return 0; 527 } 528 529 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 530 char **prepared) 531 { 532 int ret; 533 int new_len; 534 535 new_len = p->end - p->start + name_len; 536 if (p->start != p->end) 537 new_len++; 538 ret = fs_path_ensure_buf(p, new_len); 539 if (ret < 0) 540 goto out; 541 542 if (p->reversed) { 543 if (p->start != p->end) 544 *--p->start = '/'; 545 p->start -= name_len; 546 *prepared = p->start; 547 } else { 548 if (p->start != p->end) 549 *p->end++ = '/'; 550 *prepared = p->end; 551 p->end += name_len; 552 *p->end = 0; 553 } 554 555 out: 556 return ret; 557 } 558 559 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 560 { 561 int ret; 562 char *prepared; 563 564 ret = fs_path_prepare_for_add(p, name_len, &prepared); 565 if (ret < 0) 566 goto out; 567 memcpy(prepared, name, name_len); 568 569 out: 570 return ret; 571 } 572 573 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 574 { 575 int ret; 576 char *prepared; 577 578 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 579 if (ret < 0) 580 goto out; 581 memcpy(prepared, p2->start, p2->end - p2->start); 582 583 out: 584 return ret; 585 } 586 587 static int fs_path_add_from_extent_buffer(struct fs_path *p, 588 struct extent_buffer *eb, 589 unsigned long off, int len) 590 { 591 int ret; 592 char *prepared; 593 594 ret = fs_path_prepare_for_add(p, len, &prepared); 595 if (ret < 0) 596 goto out; 597 598 read_extent_buffer(eb, prepared, off, len); 599 600 out: 601 return ret; 602 } 603 604 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 605 { 606 p->reversed = from->reversed; 607 fs_path_reset(p); 608 609 return fs_path_add_path(p, from); 610 } 611 612 static void fs_path_unreverse(struct fs_path *p) 613 { 614 char *tmp; 615 int len; 616 617 if (!p->reversed) 618 return; 619 620 tmp = p->start; 621 len = p->end - p->start; 622 p->start = p->buf; 623 p->end = p->start + len; 624 memmove(p->start, tmp, len + 1); 625 p->reversed = 0; 626 } 627 628 static struct btrfs_path *alloc_path_for_send(void) 629 { 630 struct btrfs_path *path; 631 632 path = btrfs_alloc_path(); 633 if (!path) 634 return NULL; 635 path->search_commit_root = 1; 636 path->skip_locking = 1; 637 path->need_commit_sem = 1; 638 return path; 639 } 640 641 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 642 { 643 int ret; 644 u32 pos = 0; 645 646 while (pos < len) { 647 ret = kernel_write(filp, buf + pos, len - pos, off); 648 if (ret < 0) 649 return ret; 650 if (ret == 0) 651 return -EIO; 652 pos += ret; 653 } 654 655 return 0; 656 } 657 658 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 659 { 660 struct btrfs_tlv_header *hdr; 661 int total_len = sizeof(*hdr) + len; 662 int left = sctx->send_max_size - sctx->send_size; 663 664 if (WARN_ON_ONCE(sctx->put_data)) 665 return -EINVAL; 666 667 if (unlikely(left < total_len)) 668 return -EOVERFLOW; 669 670 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 671 put_unaligned_le16(attr, &hdr->tlv_type); 672 put_unaligned_le16(len, &hdr->tlv_len); 673 memcpy(hdr + 1, data, len); 674 sctx->send_size += total_len; 675 676 return 0; 677 } 678 679 #define TLV_PUT_DEFINE_INT(bits) \ 680 static int tlv_put_u##bits(struct send_ctx *sctx, \ 681 u##bits attr, u##bits value) \ 682 { \ 683 __le##bits __tmp = cpu_to_le##bits(value); \ 684 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 685 } 686 687 TLV_PUT_DEFINE_INT(8) 688 TLV_PUT_DEFINE_INT(32) 689 TLV_PUT_DEFINE_INT(64) 690 691 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 692 const char *str, int len) 693 { 694 if (len == -1) 695 len = strlen(str); 696 return tlv_put(sctx, attr, str, len); 697 } 698 699 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 700 const u8 *uuid) 701 { 702 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 703 } 704 705 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 706 struct extent_buffer *eb, 707 struct btrfs_timespec *ts) 708 { 709 struct btrfs_timespec bts; 710 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 711 return tlv_put(sctx, attr, &bts, sizeof(bts)); 712 } 713 714 715 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 716 do { \ 717 ret = tlv_put(sctx, attrtype, data, attrlen); \ 718 if (ret < 0) \ 719 goto tlv_put_failure; \ 720 } while (0) 721 722 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 723 do { \ 724 ret = tlv_put_u##bits(sctx, attrtype, value); \ 725 if (ret < 0) \ 726 goto tlv_put_failure; \ 727 } while (0) 728 729 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 730 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 731 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 732 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 733 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 734 do { \ 735 ret = tlv_put_string(sctx, attrtype, str, len); \ 736 if (ret < 0) \ 737 goto tlv_put_failure; \ 738 } while (0) 739 #define TLV_PUT_PATH(sctx, attrtype, p) \ 740 do { \ 741 ret = tlv_put_string(sctx, attrtype, p->start, \ 742 p->end - p->start); \ 743 if (ret < 0) \ 744 goto tlv_put_failure; \ 745 } while(0) 746 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 747 do { \ 748 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 749 if (ret < 0) \ 750 goto tlv_put_failure; \ 751 } while (0) 752 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 753 do { \ 754 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 755 if (ret < 0) \ 756 goto tlv_put_failure; \ 757 } while (0) 758 759 static int send_header(struct send_ctx *sctx) 760 { 761 struct btrfs_stream_header hdr; 762 763 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 764 hdr.version = cpu_to_le32(sctx->proto); 765 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 766 &sctx->send_off); 767 } 768 769 /* 770 * For each command/item we want to send to userspace, we call this function. 771 */ 772 static int begin_cmd(struct send_ctx *sctx, int cmd) 773 { 774 struct btrfs_cmd_header *hdr; 775 776 if (WARN_ON(!sctx->send_buf)) 777 return -EINVAL; 778 779 if (unlikely(sctx->send_size != 0)) { 780 btrfs_err(sctx->send_root->fs_info, 781 "send: command header buffer not empty cmd %d offset %llu", 782 cmd, sctx->send_off); 783 return -EINVAL; 784 } 785 786 sctx->send_size += sizeof(*hdr); 787 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 788 put_unaligned_le16(cmd, &hdr->cmd); 789 790 return 0; 791 } 792 793 static int send_cmd(struct send_ctx *sctx) 794 { 795 int ret; 796 struct btrfs_cmd_header *hdr; 797 u32 crc; 798 799 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 800 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 801 put_unaligned_le32(0, &hdr->crc); 802 803 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 804 put_unaligned_le32(crc, &hdr->crc); 805 806 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 807 &sctx->send_off); 808 809 sctx->send_size = 0; 810 sctx->put_data = false; 811 812 return ret; 813 } 814 815 /* 816 * Sends a move instruction to user space 817 */ 818 static int send_rename(struct send_ctx *sctx, 819 struct fs_path *from, struct fs_path *to) 820 { 821 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 822 int ret; 823 824 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 825 826 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 827 if (ret < 0) 828 goto out; 829 830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 832 833 ret = send_cmd(sctx); 834 835 tlv_put_failure: 836 out: 837 return ret; 838 } 839 840 /* 841 * Sends a link instruction to user space 842 */ 843 static int send_link(struct send_ctx *sctx, 844 struct fs_path *path, struct fs_path *lnk) 845 { 846 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 847 int ret; 848 849 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 850 851 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 852 if (ret < 0) 853 goto out; 854 855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 857 858 ret = send_cmd(sctx); 859 860 tlv_put_failure: 861 out: 862 return ret; 863 } 864 865 /* 866 * Sends an unlink instruction to user space 867 */ 868 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 869 { 870 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 871 int ret; 872 873 btrfs_debug(fs_info, "send_unlink %s", path->start); 874 875 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 876 if (ret < 0) 877 goto out; 878 879 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 880 881 ret = send_cmd(sctx); 882 883 tlv_put_failure: 884 out: 885 return ret; 886 } 887 888 /* 889 * Sends a rmdir instruction to user space 890 */ 891 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 892 { 893 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 894 int ret; 895 896 btrfs_debug(fs_info, "send_rmdir %s", path->start); 897 898 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 899 if (ret < 0) 900 goto out; 901 902 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 903 904 ret = send_cmd(sctx); 905 906 tlv_put_failure: 907 out: 908 return ret; 909 } 910 911 struct btrfs_inode_info { 912 u64 size; 913 u64 gen; 914 u64 mode; 915 u64 uid; 916 u64 gid; 917 u64 rdev; 918 u64 fileattr; 919 u64 nlink; 920 }; 921 922 /* 923 * Helper function to retrieve some fields from an inode item. 924 */ 925 static int get_inode_info(struct btrfs_root *root, u64 ino, 926 struct btrfs_inode_info *info) 927 { 928 int ret; 929 struct btrfs_path *path; 930 struct btrfs_inode_item *ii; 931 struct btrfs_key key; 932 933 path = alloc_path_for_send(); 934 if (!path) 935 return -ENOMEM; 936 937 key.objectid = ino; 938 key.type = BTRFS_INODE_ITEM_KEY; 939 key.offset = 0; 940 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 941 if (ret) { 942 if (ret > 0) 943 ret = -ENOENT; 944 goto out; 945 } 946 947 if (!info) 948 goto out; 949 950 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 951 struct btrfs_inode_item); 952 info->size = btrfs_inode_size(path->nodes[0], ii); 953 info->gen = btrfs_inode_generation(path->nodes[0], ii); 954 info->mode = btrfs_inode_mode(path->nodes[0], ii); 955 info->uid = btrfs_inode_uid(path->nodes[0], ii); 956 info->gid = btrfs_inode_gid(path->nodes[0], ii); 957 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 958 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 959 /* 960 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 961 * otherwise logically split to 32/32 parts. 962 */ 963 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 964 965 out: 966 btrfs_free_path(path); 967 return ret; 968 } 969 970 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 971 { 972 int ret; 973 struct btrfs_inode_info info = { 0 }; 974 975 ASSERT(gen); 976 977 ret = get_inode_info(root, ino, &info); 978 *gen = info.gen; 979 return ret; 980 } 981 982 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 983 struct fs_path *p, 984 void *ctx); 985 986 /* 987 * Helper function to iterate the entries in ONE btrfs_inode_ref or 988 * btrfs_inode_extref. 989 * The iterate callback may return a non zero value to stop iteration. This can 990 * be a negative value for error codes or 1 to simply stop it. 991 * 992 * path must point to the INODE_REF or INODE_EXTREF when called. 993 */ 994 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 995 struct btrfs_key *found_key, int resolve, 996 iterate_inode_ref_t iterate, void *ctx) 997 { 998 struct extent_buffer *eb = path->nodes[0]; 999 struct btrfs_inode_ref *iref; 1000 struct btrfs_inode_extref *extref; 1001 struct btrfs_path *tmp_path; 1002 struct fs_path *p; 1003 u32 cur = 0; 1004 u32 total; 1005 int slot = path->slots[0]; 1006 u32 name_len; 1007 char *start; 1008 int ret = 0; 1009 int num = 0; 1010 int index; 1011 u64 dir; 1012 unsigned long name_off; 1013 unsigned long elem_size; 1014 unsigned long ptr; 1015 1016 p = fs_path_alloc_reversed(); 1017 if (!p) 1018 return -ENOMEM; 1019 1020 tmp_path = alloc_path_for_send(); 1021 if (!tmp_path) { 1022 fs_path_free(p); 1023 return -ENOMEM; 1024 } 1025 1026 1027 if (found_key->type == BTRFS_INODE_REF_KEY) { 1028 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1029 struct btrfs_inode_ref); 1030 total = btrfs_item_size(eb, slot); 1031 elem_size = sizeof(*iref); 1032 } else { 1033 ptr = btrfs_item_ptr_offset(eb, slot); 1034 total = btrfs_item_size(eb, slot); 1035 elem_size = sizeof(*extref); 1036 } 1037 1038 while (cur < total) { 1039 fs_path_reset(p); 1040 1041 if (found_key->type == BTRFS_INODE_REF_KEY) { 1042 iref = (struct btrfs_inode_ref *)(ptr + cur); 1043 name_len = btrfs_inode_ref_name_len(eb, iref); 1044 name_off = (unsigned long)(iref + 1); 1045 index = btrfs_inode_ref_index(eb, iref); 1046 dir = found_key->offset; 1047 } else { 1048 extref = (struct btrfs_inode_extref *)(ptr + cur); 1049 name_len = btrfs_inode_extref_name_len(eb, extref); 1050 name_off = (unsigned long)&extref->name; 1051 index = btrfs_inode_extref_index(eb, extref); 1052 dir = btrfs_inode_extref_parent(eb, extref); 1053 } 1054 1055 if (resolve) { 1056 start = btrfs_ref_to_path(root, tmp_path, name_len, 1057 name_off, eb, dir, 1058 p->buf, p->buf_len); 1059 if (IS_ERR(start)) { 1060 ret = PTR_ERR(start); 1061 goto out; 1062 } 1063 if (start < p->buf) { 1064 /* overflow , try again with larger buffer */ 1065 ret = fs_path_ensure_buf(p, 1066 p->buf_len + p->buf - start); 1067 if (ret < 0) 1068 goto out; 1069 start = btrfs_ref_to_path(root, tmp_path, 1070 name_len, name_off, 1071 eb, dir, 1072 p->buf, p->buf_len); 1073 if (IS_ERR(start)) { 1074 ret = PTR_ERR(start); 1075 goto out; 1076 } 1077 if (unlikely(start < p->buf)) { 1078 btrfs_err(root->fs_info, 1079 "send: path ref buffer underflow for key (%llu %u %llu)", 1080 found_key->objectid, 1081 found_key->type, 1082 found_key->offset); 1083 ret = -EINVAL; 1084 goto out; 1085 } 1086 } 1087 p->start = start; 1088 } else { 1089 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1090 name_len); 1091 if (ret < 0) 1092 goto out; 1093 } 1094 1095 cur += elem_size + name_len; 1096 ret = iterate(num, dir, index, p, ctx); 1097 if (ret) 1098 goto out; 1099 num++; 1100 } 1101 1102 out: 1103 btrfs_free_path(tmp_path); 1104 fs_path_free(p); 1105 return ret; 1106 } 1107 1108 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1109 const char *name, int name_len, 1110 const char *data, int data_len, 1111 void *ctx); 1112 1113 /* 1114 * Helper function to iterate the entries in ONE btrfs_dir_item. 1115 * The iterate callback may return a non zero value to stop iteration. This can 1116 * be a negative value for error codes or 1 to simply stop it. 1117 * 1118 * path must point to the dir item when called. 1119 */ 1120 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1121 iterate_dir_item_t iterate, void *ctx) 1122 { 1123 int ret = 0; 1124 struct extent_buffer *eb; 1125 struct btrfs_dir_item *di; 1126 struct btrfs_key di_key; 1127 char *buf = NULL; 1128 int buf_len; 1129 u32 name_len; 1130 u32 data_len; 1131 u32 cur; 1132 u32 len; 1133 u32 total; 1134 int slot; 1135 int num; 1136 1137 /* 1138 * Start with a small buffer (1 page). If later we end up needing more 1139 * space, which can happen for xattrs on a fs with a leaf size greater 1140 * then the page size, attempt to increase the buffer. Typically xattr 1141 * values are small. 1142 */ 1143 buf_len = PATH_MAX; 1144 buf = kmalloc(buf_len, GFP_KERNEL); 1145 if (!buf) { 1146 ret = -ENOMEM; 1147 goto out; 1148 } 1149 1150 eb = path->nodes[0]; 1151 slot = path->slots[0]; 1152 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1153 cur = 0; 1154 len = 0; 1155 total = btrfs_item_size(eb, slot); 1156 1157 num = 0; 1158 while (cur < total) { 1159 name_len = btrfs_dir_name_len(eb, di); 1160 data_len = btrfs_dir_data_len(eb, di); 1161 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1162 1163 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1164 if (name_len > XATTR_NAME_MAX) { 1165 ret = -ENAMETOOLONG; 1166 goto out; 1167 } 1168 if (name_len + data_len > 1169 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1170 ret = -E2BIG; 1171 goto out; 1172 } 1173 } else { 1174 /* 1175 * Path too long 1176 */ 1177 if (name_len + data_len > PATH_MAX) { 1178 ret = -ENAMETOOLONG; 1179 goto out; 1180 } 1181 } 1182 1183 if (name_len + data_len > buf_len) { 1184 buf_len = name_len + data_len; 1185 if (is_vmalloc_addr(buf)) { 1186 vfree(buf); 1187 buf = NULL; 1188 } else { 1189 char *tmp = krealloc(buf, buf_len, 1190 GFP_KERNEL | __GFP_NOWARN); 1191 1192 if (!tmp) 1193 kfree(buf); 1194 buf = tmp; 1195 } 1196 if (!buf) { 1197 buf = kvmalloc(buf_len, GFP_KERNEL); 1198 if (!buf) { 1199 ret = -ENOMEM; 1200 goto out; 1201 } 1202 } 1203 } 1204 1205 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1206 name_len + data_len); 1207 1208 len = sizeof(*di) + name_len + data_len; 1209 di = (struct btrfs_dir_item *)((char *)di + len); 1210 cur += len; 1211 1212 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1213 data_len, ctx); 1214 if (ret < 0) 1215 goto out; 1216 if (ret) { 1217 ret = 0; 1218 goto out; 1219 } 1220 1221 num++; 1222 } 1223 1224 out: 1225 kvfree(buf); 1226 return ret; 1227 } 1228 1229 static int __copy_first_ref(int num, u64 dir, int index, 1230 struct fs_path *p, void *ctx) 1231 { 1232 int ret; 1233 struct fs_path *pt = ctx; 1234 1235 ret = fs_path_copy(pt, p); 1236 if (ret < 0) 1237 return ret; 1238 1239 /* we want the first only */ 1240 return 1; 1241 } 1242 1243 /* 1244 * Retrieve the first path of an inode. If an inode has more then one 1245 * ref/hardlink, this is ignored. 1246 */ 1247 static int get_inode_path(struct btrfs_root *root, 1248 u64 ino, struct fs_path *path) 1249 { 1250 int ret; 1251 struct btrfs_key key, found_key; 1252 struct btrfs_path *p; 1253 1254 p = alloc_path_for_send(); 1255 if (!p) 1256 return -ENOMEM; 1257 1258 fs_path_reset(path); 1259 1260 key.objectid = ino; 1261 key.type = BTRFS_INODE_REF_KEY; 1262 key.offset = 0; 1263 1264 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1265 if (ret < 0) 1266 goto out; 1267 if (ret) { 1268 ret = 1; 1269 goto out; 1270 } 1271 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1272 if (found_key.objectid != ino || 1273 (found_key.type != BTRFS_INODE_REF_KEY && 1274 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1275 ret = -ENOENT; 1276 goto out; 1277 } 1278 1279 ret = iterate_inode_ref(root, p, &found_key, 1, 1280 __copy_first_ref, path); 1281 if (ret < 0) 1282 goto out; 1283 ret = 0; 1284 1285 out: 1286 btrfs_free_path(p); 1287 return ret; 1288 } 1289 1290 struct backref_ctx { 1291 struct send_ctx *sctx; 1292 1293 /* number of total found references */ 1294 u64 found; 1295 1296 /* 1297 * used for clones found in send_root. clones found behind cur_objectid 1298 * and cur_offset are not considered as allowed clones. 1299 */ 1300 u64 cur_objectid; 1301 u64 cur_offset; 1302 1303 /* may be truncated in case it's the last extent in a file */ 1304 u64 extent_len; 1305 1306 /* The bytenr the file extent item we are processing refers to. */ 1307 u64 bytenr; 1308 /* The owner (root id) of the data backref for the current extent. */ 1309 u64 backref_owner; 1310 /* The offset of the data backref for the current extent. */ 1311 u64 backref_offset; 1312 }; 1313 1314 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1315 { 1316 u64 root = (u64)(uintptr_t)key; 1317 const struct clone_root *cr = elt; 1318 1319 if (root < cr->root->root_key.objectid) 1320 return -1; 1321 if (root > cr->root->root_key.objectid) 1322 return 1; 1323 return 0; 1324 } 1325 1326 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1327 { 1328 const struct clone_root *cr1 = e1; 1329 const struct clone_root *cr2 = e2; 1330 1331 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1332 return -1; 1333 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1334 return 1; 1335 return 0; 1336 } 1337 1338 /* 1339 * Called for every backref that is found for the current extent. 1340 * Results are collected in sctx->clone_roots->ino/offset. 1341 */ 1342 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1343 void *ctx_) 1344 { 1345 struct backref_ctx *bctx = ctx_; 1346 struct clone_root *clone_root; 1347 1348 /* First check if the root is in the list of accepted clone sources */ 1349 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1350 bctx->sctx->clone_roots_cnt, 1351 sizeof(struct clone_root), 1352 __clone_root_cmp_bsearch); 1353 if (!clone_root) 1354 return 0; 1355 1356 /* This is our own reference, bail out as we can't clone from it. */ 1357 if (clone_root->root == bctx->sctx->send_root && 1358 ino == bctx->cur_objectid && 1359 offset == bctx->cur_offset) 1360 return 0; 1361 1362 /* 1363 * Make sure we don't consider clones from send_root that are 1364 * behind the current inode/offset. 1365 */ 1366 if (clone_root->root == bctx->sctx->send_root) { 1367 /* 1368 * If the source inode was not yet processed we can't issue a 1369 * clone operation, as the source extent does not exist yet at 1370 * the destination of the stream. 1371 */ 1372 if (ino > bctx->cur_objectid) 1373 return 0; 1374 /* 1375 * We clone from the inode currently being sent as long as the 1376 * source extent is already processed, otherwise we could try 1377 * to clone from an extent that does not exist yet at the 1378 * destination of the stream. 1379 */ 1380 if (ino == bctx->cur_objectid && 1381 offset + bctx->extent_len > 1382 bctx->sctx->cur_inode_next_write_offset) 1383 return 0; 1384 } 1385 1386 bctx->found++; 1387 clone_root->found_ref = true; 1388 1389 /* 1390 * If the given backref refers to a file extent item with a larger 1391 * number of bytes than what we found before, use the new one so that 1392 * we clone more optimally and end up doing less writes and getting 1393 * less exclusive, non-shared extents at the destination. 1394 */ 1395 if (num_bytes > clone_root->num_bytes) { 1396 clone_root->ino = ino; 1397 clone_root->offset = offset; 1398 clone_root->num_bytes = num_bytes; 1399 1400 /* 1401 * Found a perfect candidate, so there's no need to continue 1402 * backref walking. 1403 */ 1404 if (num_bytes >= bctx->extent_len) 1405 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1406 } 1407 1408 return 0; 1409 } 1410 1411 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1412 const u64 **root_ids_ret, int *root_count_ret) 1413 { 1414 struct backref_ctx *bctx = ctx; 1415 struct send_ctx *sctx = bctx->sctx; 1416 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1417 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1418 struct btrfs_lru_cache_entry *raw_entry; 1419 struct backref_cache_entry *entry; 1420 1421 if (sctx->backref_cache.size == 0) 1422 return false; 1423 1424 /* 1425 * If relocation happened since we first filled the cache, then we must 1426 * empty the cache and can not use it, because even though we operate on 1427 * read-only roots, their leaves and nodes may have been reallocated and 1428 * now be used for different nodes/leaves of the same tree or some other 1429 * tree. 1430 * 1431 * We are called from iterate_extent_inodes() while either holding a 1432 * transaction handle or holding fs_info->commit_root_sem, so no need 1433 * to take any lock here. 1434 */ 1435 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1436 btrfs_lru_cache_clear(&sctx->backref_cache); 1437 return false; 1438 } 1439 1440 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1441 if (!raw_entry) 1442 return false; 1443 1444 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1445 *root_ids_ret = entry->root_ids; 1446 *root_count_ret = entry->num_roots; 1447 1448 return true; 1449 } 1450 1451 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1452 void *ctx) 1453 { 1454 struct backref_ctx *bctx = ctx; 1455 struct send_ctx *sctx = bctx->sctx; 1456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1457 struct backref_cache_entry *new_entry; 1458 struct ulist_iterator uiter; 1459 struct ulist_node *node; 1460 int ret; 1461 1462 /* 1463 * We're called while holding a transaction handle or while holding 1464 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1465 * NOFS allocation. 1466 */ 1467 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1468 /* No worries, cache is optional. */ 1469 if (!new_entry) 1470 return; 1471 1472 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1473 new_entry->entry.gen = 0; 1474 new_entry->num_roots = 0; 1475 ULIST_ITER_INIT(&uiter); 1476 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1477 const u64 root_id = node->val; 1478 struct clone_root *root; 1479 1480 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1481 sctx->clone_roots_cnt, sizeof(struct clone_root), 1482 __clone_root_cmp_bsearch); 1483 if (!root) 1484 continue; 1485 1486 /* Too many roots, just exit, no worries as caching is optional. */ 1487 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1488 kfree(new_entry); 1489 return; 1490 } 1491 1492 new_entry->root_ids[new_entry->num_roots] = root_id; 1493 new_entry->num_roots++; 1494 } 1495 1496 /* 1497 * We may have not added any roots to the new cache entry, which means 1498 * none of the roots is part of the list of roots from which we are 1499 * allowed to clone. Cache the new entry as it's still useful to avoid 1500 * backref walking to determine which roots have a path to the leaf. 1501 * 1502 * Also use GFP_NOFS because we're called while holding a transaction 1503 * handle or while holding fs_info->commit_root_sem. 1504 */ 1505 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1506 GFP_NOFS); 1507 ASSERT(ret == 0 || ret == -ENOMEM); 1508 if (ret) { 1509 /* Caching is optional, no worries. */ 1510 kfree(new_entry); 1511 return; 1512 } 1513 1514 /* 1515 * We are called from iterate_extent_inodes() while either holding a 1516 * transaction handle or holding fs_info->commit_root_sem, so no need 1517 * to take any lock here. 1518 */ 1519 if (sctx->backref_cache.size == 1) 1520 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1521 } 1522 1523 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1524 const struct extent_buffer *leaf, void *ctx) 1525 { 1526 const u64 refs = btrfs_extent_refs(leaf, ei); 1527 const struct backref_ctx *bctx = ctx; 1528 const struct send_ctx *sctx = bctx->sctx; 1529 1530 if (bytenr == bctx->bytenr) { 1531 const u64 flags = btrfs_extent_flags(leaf, ei); 1532 1533 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1534 return -EUCLEAN; 1535 1536 /* 1537 * If we have only one reference and only the send root as a 1538 * clone source - meaning no clone roots were given in the 1539 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1540 * it's our reference and there's no point in doing backref 1541 * walking which is expensive, so exit early. 1542 */ 1543 if (refs == 1 && sctx->clone_roots_cnt == 1) 1544 return -ENOENT; 1545 } 1546 1547 /* 1548 * Backreference walking (iterate_extent_inodes() below) is currently 1549 * too expensive when an extent has a large number of references, both 1550 * in time spent and used memory. So for now just fallback to write 1551 * operations instead of clone operations when an extent has more than 1552 * a certain amount of references. 1553 */ 1554 if (refs > SEND_MAX_EXTENT_REFS) 1555 return -ENOENT; 1556 1557 return 0; 1558 } 1559 1560 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1561 { 1562 const struct backref_ctx *bctx = ctx; 1563 1564 if (ino == bctx->cur_objectid && 1565 root == bctx->backref_owner && 1566 offset == bctx->backref_offset) 1567 return true; 1568 1569 return false; 1570 } 1571 1572 /* 1573 * Given an inode, offset and extent item, it finds a good clone for a clone 1574 * instruction. Returns -ENOENT when none could be found. The function makes 1575 * sure that the returned clone is usable at the point where sending is at the 1576 * moment. This means, that no clones are accepted which lie behind the current 1577 * inode+offset. 1578 * 1579 * path must point to the extent item when called. 1580 */ 1581 static int find_extent_clone(struct send_ctx *sctx, 1582 struct btrfs_path *path, 1583 u64 ino, u64 data_offset, 1584 u64 ino_size, 1585 struct clone_root **found) 1586 { 1587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1588 int ret; 1589 int extent_type; 1590 u64 logical; 1591 u64 disk_byte; 1592 u64 num_bytes; 1593 struct btrfs_file_extent_item *fi; 1594 struct extent_buffer *eb = path->nodes[0]; 1595 struct backref_ctx backref_ctx = { 0 }; 1596 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1597 struct clone_root *cur_clone_root; 1598 int compressed; 1599 u32 i; 1600 1601 /* 1602 * With fallocate we can get prealloc extents beyond the inode's i_size, 1603 * so we don't do anything here because clone operations can not clone 1604 * to a range beyond i_size without increasing the i_size of the 1605 * destination inode. 1606 */ 1607 if (data_offset >= ino_size) 1608 return 0; 1609 1610 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1611 extent_type = btrfs_file_extent_type(eb, fi); 1612 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1613 return -ENOENT; 1614 1615 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1616 if (disk_byte == 0) 1617 return -ENOENT; 1618 1619 compressed = btrfs_file_extent_compression(eb, fi); 1620 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1621 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1622 1623 /* 1624 * Setup the clone roots. 1625 */ 1626 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1627 cur_clone_root = sctx->clone_roots + i; 1628 cur_clone_root->ino = (u64)-1; 1629 cur_clone_root->offset = 0; 1630 cur_clone_root->num_bytes = 0; 1631 cur_clone_root->found_ref = false; 1632 } 1633 1634 backref_ctx.sctx = sctx; 1635 backref_ctx.cur_objectid = ino; 1636 backref_ctx.cur_offset = data_offset; 1637 backref_ctx.bytenr = disk_byte; 1638 /* 1639 * Use the header owner and not the send root's id, because in case of a 1640 * snapshot we can have shared subtrees. 1641 */ 1642 backref_ctx.backref_owner = btrfs_header_owner(eb); 1643 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1644 1645 /* 1646 * The last extent of a file may be too large due to page alignment. 1647 * We need to adjust extent_len in this case so that the checks in 1648 * iterate_backrefs() work. 1649 */ 1650 if (data_offset + num_bytes >= ino_size) 1651 backref_ctx.extent_len = ino_size - data_offset; 1652 else 1653 backref_ctx.extent_len = num_bytes; 1654 1655 /* 1656 * Now collect all backrefs. 1657 */ 1658 backref_walk_ctx.bytenr = disk_byte; 1659 if (compressed == BTRFS_COMPRESS_NONE) 1660 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1661 backref_walk_ctx.fs_info = fs_info; 1662 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1663 backref_walk_ctx.cache_store = store_backref_cache; 1664 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1665 backref_walk_ctx.check_extent_item = check_extent_item; 1666 backref_walk_ctx.user_ctx = &backref_ctx; 1667 1668 /* 1669 * If have a single clone root, then it's the send root and we can tell 1670 * the backref walking code to skip our own backref and not resolve it, 1671 * since we can not use it for cloning - the source and destination 1672 * ranges can't overlap and in case the leaf is shared through a subtree 1673 * due to snapshots, we can't use those other roots since they are not 1674 * in the list of clone roots. 1675 */ 1676 if (sctx->clone_roots_cnt == 1) 1677 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1678 1679 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1680 &backref_ctx); 1681 if (ret < 0) 1682 return ret; 1683 1684 down_read(&fs_info->commit_root_sem); 1685 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1686 /* 1687 * A transaction commit for a transaction in which block group 1688 * relocation was done just happened. 1689 * The disk_bytenr of the file extent item we processed is 1690 * possibly stale, referring to the extent's location before 1691 * relocation. So act as if we haven't found any clone sources 1692 * and fallback to write commands, which will read the correct 1693 * data from the new extent location. Otherwise we will fail 1694 * below because we haven't found our own back reference or we 1695 * could be getting incorrect sources in case the old extent 1696 * was already reallocated after the relocation. 1697 */ 1698 up_read(&fs_info->commit_root_sem); 1699 return -ENOENT; 1700 } 1701 up_read(&fs_info->commit_root_sem); 1702 1703 btrfs_debug(fs_info, 1704 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1705 data_offset, ino, num_bytes, logical); 1706 1707 if (!backref_ctx.found) { 1708 btrfs_debug(fs_info, "no clones found"); 1709 return -ENOENT; 1710 } 1711 1712 cur_clone_root = NULL; 1713 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1714 struct clone_root *clone_root = &sctx->clone_roots[i]; 1715 1716 if (!clone_root->found_ref) 1717 continue; 1718 1719 /* 1720 * Choose the root from which we can clone more bytes, to 1721 * minimize write operations and therefore have more extent 1722 * sharing at the destination (the same as in the source). 1723 */ 1724 if (!cur_clone_root || 1725 clone_root->num_bytes > cur_clone_root->num_bytes) { 1726 cur_clone_root = clone_root; 1727 1728 /* 1729 * We found an optimal clone candidate (any inode from 1730 * any root is fine), so we're done. 1731 */ 1732 if (clone_root->num_bytes >= backref_ctx.extent_len) 1733 break; 1734 } 1735 } 1736 1737 if (cur_clone_root) { 1738 *found = cur_clone_root; 1739 ret = 0; 1740 } else { 1741 ret = -ENOENT; 1742 } 1743 1744 return ret; 1745 } 1746 1747 static int read_symlink(struct btrfs_root *root, 1748 u64 ino, 1749 struct fs_path *dest) 1750 { 1751 int ret; 1752 struct btrfs_path *path; 1753 struct btrfs_key key; 1754 struct btrfs_file_extent_item *ei; 1755 u8 type; 1756 u8 compression; 1757 unsigned long off; 1758 int len; 1759 1760 path = alloc_path_for_send(); 1761 if (!path) 1762 return -ENOMEM; 1763 1764 key.objectid = ino; 1765 key.type = BTRFS_EXTENT_DATA_KEY; 1766 key.offset = 0; 1767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1768 if (ret < 0) 1769 goto out; 1770 if (ret) { 1771 /* 1772 * An empty symlink inode. Can happen in rare error paths when 1773 * creating a symlink (transaction committed before the inode 1774 * eviction handler removed the symlink inode items and a crash 1775 * happened in between or the subvol was snapshoted in between). 1776 * Print an informative message to dmesg/syslog so that the user 1777 * can delete the symlink. 1778 */ 1779 btrfs_err(root->fs_info, 1780 "Found empty symlink inode %llu at root %llu", 1781 ino, root->root_key.objectid); 1782 ret = -EIO; 1783 goto out; 1784 } 1785 1786 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1787 struct btrfs_file_extent_item); 1788 type = btrfs_file_extent_type(path->nodes[0], ei); 1789 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1790 ret = -EUCLEAN; 1791 btrfs_crit(root->fs_info, 1792 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1793 ino, btrfs_root_id(root), type); 1794 goto out; 1795 } 1796 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1797 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1798 ret = -EUCLEAN; 1799 btrfs_crit(root->fs_info, 1800 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1801 ino, btrfs_root_id(root), compression); 1802 goto out; 1803 } 1804 1805 off = btrfs_file_extent_inline_start(ei); 1806 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1807 1808 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1809 1810 out: 1811 btrfs_free_path(path); 1812 return ret; 1813 } 1814 1815 /* 1816 * Helper function to generate a file name that is unique in the root of 1817 * send_root and parent_root. This is used to generate names for orphan inodes. 1818 */ 1819 static int gen_unique_name(struct send_ctx *sctx, 1820 u64 ino, u64 gen, 1821 struct fs_path *dest) 1822 { 1823 int ret = 0; 1824 struct btrfs_path *path; 1825 struct btrfs_dir_item *di; 1826 char tmp[64]; 1827 int len; 1828 u64 idx = 0; 1829 1830 path = alloc_path_for_send(); 1831 if (!path) 1832 return -ENOMEM; 1833 1834 while (1) { 1835 struct fscrypt_str tmp_name; 1836 1837 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1838 ino, gen, idx); 1839 ASSERT(len < sizeof(tmp)); 1840 tmp_name.name = tmp; 1841 tmp_name.len = strlen(tmp); 1842 1843 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1844 path, BTRFS_FIRST_FREE_OBJECTID, 1845 &tmp_name, 0); 1846 btrfs_release_path(path); 1847 if (IS_ERR(di)) { 1848 ret = PTR_ERR(di); 1849 goto out; 1850 } 1851 if (di) { 1852 /* not unique, try again */ 1853 idx++; 1854 continue; 1855 } 1856 1857 if (!sctx->parent_root) { 1858 /* unique */ 1859 ret = 0; 1860 break; 1861 } 1862 1863 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1864 path, BTRFS_FIRST_FREE_OBJECTID, 1865 &tmp_name, 0); 1866 btrfs_release_path(path); 1867 if (IS_ERR(di)) { 1868 ret = PTR_ERR(di); 1869 goto out; 1870 } 1871 if (di) { 1872 /* not unique, try again */ 1873 idx++; 1874 continue; 1875 } 1876 /* unique */ 1877 break; 1878 } 1879 1880 ret = fs_path_add(dest, tmp, strlen(tmp)); 1881 1882 out: 1883 btrfs_free_path(path); 1884 return ret; 1885 } 1886 1887 enum inode_state { 1888 inode_state_no_change, 1889 inode_state_will_create, 1890 inode_state_did_create, 1891 inode_state_will_delete, 1892 inode_state_did_delete, 1893 }; 1894 1895 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1896 u64 *send_gen, u64 *parent_gen) 1897 { 1898 int ret; 1899 int left_ret; 1900 int right_ret; 1901 u64 left_gen; 1902 u64 right_gen = 0; 1903 struct btrfs_inode_info info; 1904 1905 ret = get_inode_info(sctx->send_root, ino, &info); 1906 if (ret < 0 && ret != -ENOENT) 1907 goto out; 1908 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1909 left_gen = info.gen; 1910 if (send_gen) 1911 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1912 1913 if (!sctx->parent_root) { 1914 right_ret = -ENOENT; 1915 } else { 1916 ret = get_inode_info(sctx->parent_root, ino, &info); 1917 if (ret < 0 && ret != -ENOENT) 1918 goto out; 1919 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1920 right_gen = info.gen; 1921 if (parent_gen) 1922 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1923 } 1924 1925 if (!left_ret && !right_ret) { 1926 if (left_gen == gen && right_gen == gen) { 1927 ret = inode_state_no_change; 1928 } else if (left_gen == gen) { 1929 if (ino < sctx->send_progress) 1930 ret = inode_state_did_create; 1931 else 1932 ret = inode_state_will_create; 1933 } else if (right_gen == gen) { 1934 if (ino < sctx->send_progress) 1935 ret = inode_state_did_delete; 1936 else 1937 ret = inode_state_will_delete; 1938 } else { 1939 ret = -ENOENT; 1940 } 1941 } else if (!left_ret) { 1942 if (left_gen == gen) { 1943 if (ino < sctx->send_progress) 1944 ret = inode_state_did_create; 1945 else 1946 ret = inode_state_will_create; 1947 } else { 1948 ret = -ENOENT; 1949 } 1950 } else if (!right_ret) { 1951 if (right_gen == gen) { 1952 if (ino < sctx->send_progress) 1953 ret = inode_state_did_delete; 1954 else 1955 ret = inode_state_will_delete; 1956 } else { 1957 ret = -ENOENT; 1958 } 1959 } else { 1960 ret = -ENOENT; 1961 } 1962 1963 out: 1964 return ret; 1965 } 1966 1967 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1968 u64 *send_gen, u64 *parent_gen) 1969 { 1970 int ret; 1971 1972 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1973 return 1; 1974 1975 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1976 if (ret < 0) 1977 goto out; 1978 1979 if (ret == inode_state_no_change || 1980 ret == inode_state_did_create || 1981 ret == inode_state_will_delete) 1982 ret = 1; 1983 else 1984 ret = 0; 1985 1986 out: 1987 return ret; 1988 } 1989 1990 /* 1991 * Helper function to lookup a dir item in a dir. 1992 */ 1993 static int lookup_dir_item_inode(struct btrfs_root *root, 1994 u64 dir, const char *name, int name_len, 1995 u64 *found_inode) 1996 { 1997 int ret = 0; 1998 struct btrfs_dir_item *di; 1999 struct btrfs_key key; 2000 struct btrfs_path *path; 2001 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 2002 2003 path = alloc_path_for_send(); 2004 if (!path) 2005 return -ENOMEM; 2006 2007 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 2008 if (IS_ERR_OR_NULL(di)) { 2009 ret = di ? PTR_ERR(di) : -ENOENT; 2010 goto out; 2011 } 2012 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2013 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2014 ret = -ENOENT; 2015 goto out; 2016 } 2017 *found_inode = key.objectid; 2018 2019 out: 2020 btrfs_free_path(path); 2021 return ret; 2022 } 2023 2024 /* 2025 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2026 * generation of the parent dir and the name of the dir entry. 2027 */ 2028 static int get_first_ref(struct btrfs_root *root, u64 ino, 2029 u64 *dir, u64 *dir_gen, struct fs_path *name) 2030 { 2031 int ret; 2032 struct btrfs_key key; 2033 struct btrfs_key found_key; 2034 struct btrfs_path *path; 2035 int len; 2036 u64 parent_dir; 2037 2038 path = alloc_path_for_send(); 2039 if (!path) 2040 return -ENOMEM; 2041 2042 key.objectid = ino; 2043 key.type = BTRFS_INODE_REF_KEY; 2044 key.offset = 0; 2045 2046 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2047 if (ret < 0) 2048 goto out; 2049 if (!ret) 2050 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2051 path->slots[0]); 2052 if (ret || found_key.objectid != ino || 2053 (found_key.type != BTRFS_INODE_REF_KEY && 2054 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2055 ret = -ENOENT; 2056 goto out; 2057 } 2058 2059 if (found_key.type == BTRFS_INODE_REF_KEY) { 2060 struct btrfs_inode_ref *iref; 2061 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2062 struct btrfs_inode_ref); 2063 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2064 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2065 (unsigned long)(iref + 1), 2066 len); 2067 parent_dir = found_key.offset; 2068 } else { 2069 struct btrfs_inode_extref *extref; 2070 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2071 struct btrfs_inode_extref); 2072 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2073 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2074 (unsigned long)&extref->name, len); 2075 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2076 } 2077 if (ret < 0) 2078 goto out; 2079 btrfs_release_path(path); 2080 2081 if (dir_gen) { 2082 ret = get_inode_gen(root, parent_dir, dir_gen); 2083 if (ret < 0) 2084 goto out; 2085 } 2086 2087 *dir = parent_dir; 2088 2089 out: 2090 btrfs_free_path(path); 2091 return ret; 2092 } 2093 2094 static int is_first_ref(struct btrfs_root *root, 2095 u64 ino, u64 dir, 2096 const char *name, int name_len) 2097 { 2098 int ret; 2099 struct fs_path *tmp_name; 2100 u64 tmp_dir; 2101 2102 tmp_name = fs_path_alloc(); 2103 if (!tmp_name) 2104 return -ENOMEM; 2105 2106 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2107 if (ret < 0) 2108 goto out; 2109 2110 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2111 ret = 0; 2112 goto out; 2113 } 2114 2115 ret = !memcmp(tmp_name->start, name, name_len); 2116 2117 out: 2118 fs_path_free(tmp_name); 2119 return ret; 2120 } 2121 2122 /* 2123 * Used by process_recorded_refs to determine if a new ref would overwrite an 2124 * already existing ref. In case it detects an overwrite, it returns the 2125 * inode/gen in who_ino/who_gen. 2126 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2127 * to make sure later references to the overwritten inode are possible. 2128 * Orphanizing is however only required for the first ref of an inode. 2129 * process_recorded_refs does an additional is_first_ref check to see if 2130 * orphanizing is really required. 2131 */ 2132 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2133 const char *name, int name_len, 2134 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2135 { 2136 int ret; 2137 u64 parent_root_dir_gen; 2138 u64 other_inode = 0; 2139 struct btrfs_inode_info info; 2140 2141 if (!sctx->parent_root) 2142 return 0; 2143 2144 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2145 if (ret <= 0) 2146 return 0; 2147 2148 /* 2149 * If we have a parent root we need to verify that the parent dir was 2150 * not deleted and then re-created, if it was then we have no overwrite 2151 * and we can just unlink this entry. 2152 * 2153 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2154 * parent root. 2155 */ 2156 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2157 parent_root_dir_gen != dir_gen) 2158 return 0; 2159 2160 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2161 &other_inode); 2162 if (ret == -ENOENT) 2163 return 0; 2164 else if (ret < 0) 2165 return ret; 2166 2167 /* 2168 * Check if the overwritten ref was already processed. If yes, the ref 2169 * was already unlinked/moved, so we can safely assume that we will not 2170 * overwrite anything at this point in time. 2171 */ 2172 if (other_inode > sctx->send_progress || 2173 is_waiting_for_move(sctx, other_inode)) { 2174 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2175 if (ret < 0) 2176 return ret; 2177 2178 *who_ino = other_inode; 2179 *who_gen = info.gen; 2180 *who_mode = info.mode; 2181 return 1; 2182 } 2183 2184 return 0; 2185 } 2186 2187 /* 2188 * Checks if the ref was overwritten by an already processed inode. This is 2189 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2190 * thus the orphan name needs be used. 2191 * process_recorded_refs also uses it to avoid unlinking of refs that were 2192 * overwritten. 2193 */ 2194 static int did_overwrite_ref(struct send_ctx *sctx, 2195 u64 dir, u64 dir_gen, 2196 u64 ino, u64 ino_gen, 2197 const char *name, int name_len) 2198 { 2199 int ret; 2200 u64 ow_inode; 2201 u64 ow_gen = 0; 2202 u64 send_root_dir_gen; 2203 2204 if (!sctx->parent_root) 2205 return 0; 2206 2207 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2208 if (ret <= 0) 2209 return ret; 2210 2211 /* 2212 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2213 * send root. 2214 */ 2215 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2216 return 0; 2217 2218 /* check if the ref was overwritten by another ref */ 2219 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2220 &ow_inode); 2221 if (ret == -ENOENT) { 2222 /* was never and will never be overwritten */ 2223 return 0; 2224 } else if (ret < 0) { 2225 return ret; 2226 } 2227 2228 if (ow_inode == ino) { 2229 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2230 if (ret < 0) 2231 return ret; 2232 2233 /* It's the same inode, so no overwrite happened. */ 2234 if (ow_gen == ino_gen) 2235 return 0; 2236 } 2237 2238 /* 2239 * We know that it is or will be overwritten. Check this now. 2240 * The current inode being processed might have been the one that caused 2241 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2242 * the current inode being processed. 2243 */ 2244 if (ow_inode < sctx->send_progress) 2245 return 1; 2246 2247 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2248 if (ow_gen == 0) { 2249 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2250 if (ret < 0) 2251 return ret; 2252 } 2253 if (ow_gen == sctx->cur_inode_gen) 2254 return 1; 2255 } 2256 2257 return 0; 2258 } 2259 2260 /* 2261 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2262 * that got overwritten. This is used by process_recorded_refs to determine 2263 * if it has to use the path as returned by get_cur_path or the orphan name. 2264 */ 2265 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2266 { 2267 int ret = 0; 2268 struct fs_path *name = NULL; 2269 u64 dir; 2270 u64 dir_gen; 2271 2272 if (!sctx->parent_root) 2273 goto out; 2274 2275 name = fs_path_alloc(); 2276 if (!name) 2277 return -ENOMEM; 2278 2279 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2280 if (ret < 0) 2281 goto out; 2282 2283 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2284 name->start, fs_path_len(name)); 2285 2286 out: 2287 fs_path_free(name); 2288 return ret; 2289 } 2290 2291 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2292 u64 ino, u64 gen) 2293 { 2294 struct btrfs_lru_cache_entry *entry; 2295 2296 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2297 if (!entry) 2298 return NULL; 2299 2300 return container_of(entry, struct name_cache_entry, entry); 2301 } 2302 2303 /* 2304 * Used by get_cur_path for each ref up to the root. 2305 * Returns 0 if it succeeded. 2306 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2307 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2308 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2309 * Returns <0 in case of error. 2310 */ 2311 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2312 u64 ino, u64 gen, 2313 u64 *parent_ino, 2314 u64 *parent_gen, 2315 struct fs_path *dest) 2316 { 2317 int ret; 2318 int nce_ret; 2319 struct name_cache_entry *nce; 2320 2321 /* 2322 * First check if we already did a call to this function with the same 2323 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2324 * return the cached result. 2325 */ 2326 nce = name_cache_search(sctx, ino, gen); 2327 if (nce) { 2328 if (ino < sctx->send_progress && nce->need_later_update) { 2329 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2330 nce = NULL; 2331 } else { 2332 *parent_ino = nce->parent_ino; 2333 *parent_gen = nce->parent_gen; 2334 ret = fs_path_add(dest, nce->name, nce->name_len); 2335 if (ret < 0) 2336 goto out; 2337 ret = nce->ret; 2338 goto out; 2339 } 2340 } 2341 2342 /* 2343 * If the inode is not existent yet, add the orphan name and return 1. 2344 * This should only happen for the parent dir that we determine in 2345 * record_new_ref_if_needed(). 2346 */ 2347 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2348 if (ret < 0) 2349 goto out; 2350 2351 if (!ret) { 2352 ret = gen_unique_name(sctx, ino, gen, dest); 2353 if (ret < 0) 2354 goto out; 2355 ret = 1; 2356 goto out_cache; 2357 } 2358 2359 /* 2360 * Depending on whether the inode was already processed or not, use 2361 * send_root or parent_root for ref lookup. 2362 */ 2363 if (ino < sctx->send_progress) 2364 ret = get_first_ref(sctx->send_root, ino, 2365 parent_ino, parent_gen, dest); 2366 else 2367 ret = get_first_ref(sctx->parent_root, ino, 2368 parent_ino, parent_gen, dest); 2369 if (ret < 0) 2370 goto out; 2371 2372 /* 2373 * Check if the ref was overwritten by an inode's ref that was processed 2374 * earlier. If yes, treat as orphan and return 1. 2375 */ 2376 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2377 dest->start, dest->end - dest->start); 2378 if (ret < 0) 2379 goto out; 2380 if (ret) { 2381 fs_path_reset(dest); 2382 ret = gen_unique_name(sctx, ino, gen, dest); 2383 if (ret < 0) 2384 goto out; 2385 ret = 1; 2386 } 2387 2388 out_cache: 2389 /* 2390 * Store the result of the lookup in the name cache. 2391 */ 2392 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2393 if (!nce) { 2394 ret = -ENOMEM; 2395 goto out; 2396 } 2397 2398 nce->entry.key = ino; 2399 nce->entry.gen = gen; 2400 nce->parent_ino = *parent_ino; 2401 nce->parent_gen = *parent_gen; 2402 nce->name_len = fs_path_len(dest); 2403 nce->ret = ret; 2404 strcpy(nce->name, dest->start); 2405 2406 if (ino < sctx->send_progress) 2407 nce->need_later_update = 0; 2408 else 2409 nce->need_later_update = 1; 2410 2411 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2412 if (nce_ret < 0) { 2413 kfree(nce); 2414 ret = nce_ret; 2415 } 2416 2417 out: 2418 return ret; 2419 } 2420 2421 /* 2422 * Magic happens here. This function returns the first ref to an inode as it 2423 * would look like while receiving the stream at this point in time. 2424 * We walk the path up to the root. For every inode in between, we check if it 2425 * was already processed/sent. If yes, we continue with the parent as found 2426 * in send_root. If not, we continue with the parent as found in parent_root. 2427 * If we encounter an inode that was deleted at this point in time, we use the 2428 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2429 * that were not created yet and overwritten inodes/refs. 2430 * 2431 * When do we have orphan inodes: 2432 * 1. When an inode is freshly created and thus no valid refs are available yet 2433 * 2. When a directory lost all it's refs (deleted) but still has dir items 2434 * inside which were not processed yet (pending for move/delete). If anyone 2435 * tried to get the path to the dir items, it would get a path inside that 2436 * orphan directory. 2437 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2438 * of an unprocessed inode. If in that case the first ref would be 2439 * overwritten, the overwritten inode gets "orphanized". Later when we 2440 * process this overwritten inode, it is restored at a new place by moving 2441 * the orphan inode. 2442 * 2443 * sctx->send_progress tells this function at which point in time receiving 2444 * would be. 2445 */ 2446 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2447 struct fs_path *dest) 2448 { 2449 int ret = 0; 2450 struct fs_path *name = NULL; 2451 u64 parent_inode = 0; 2452 u64 parent_gen = 0; 2453 int stop = 0; 2454 2455 name = fs_path_alloc(); 2456 if (!name) { 2457 ret = -ENOMEM; 2458 goto out; 2459 } 2460 2461 dest->reversed = 1; 2462 fs_path_reset(dest); 2463 2464 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2465 struct waiting_dir_move *wdm; 2466 2467 fs_path_reset(name); 2468 2469 if (is_waiting_for_rm(sctx, ino, gen)) { 2470 ret = gen_unique_name(sctx, ino, gen, name); 2471 if (ret < 0) 2472 goto out; 2473 ret = fs_path_add_path(dest, name); 2474 break; 2475 } 2476 2477 wdm = get_waiting_dir_move(sctx, ino); 2478 if (wdm && wdm->orphanized) { 2479 ret = gen_unique_name(sctx, ino, gen, name); 2480 stop = 1; 2481 } else if (wdm) { 2482 ret = get_first_ref(sctx->parent_root, ino, 2483 &parent_inode, &parent_gen, name); 2484 } else { 2485 ret = __get_cur_name_and_parent(sctx, ino, gen, 2486 &parent_inode, 2487 &parent_gen, name); 2488 if (ret) 2489 stop = 1; 2490 } 2491 2492 if (ret < 0) 2493 goto out; 2494 2495 ret = fs_path_add_path(dest, name); 2496 if (ret < 0) 2497 goto out; 2498 2499 ino = parent_inode; 2500 gen = parent_gen; 2501 } 2502 2503 out: 2504 fs_path_free(name); 2505 if (!ret) 2506 fs_path_unreverse(dest); 2507 return ret; 2508 } 2509 2510 /* 2511 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2512 */ 2513 static int send_subvol_begin(struct send_ctx *sctx) 2514 { 2515 int ret; 2516 struct btrfs_root *send_root = sctx->send_root; 2517 struct btrfs_root *parent_root = sctx->parent_root; 2518 struct btrfs_path *path; 2519 struct btrfs_key key; 2520 struct btrfs_root_ref *ref; 2521 struct extent_buffer *leaf; 2522 char *name = NULL; 2523 int namelen; 2524 2525 path = btrfs_alloc_path(); 2526 if (!path) 2527 return -ENOMEM; 2528 2529 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2530 if (!name) { 2531 btrfs_free_path(path); 2532 return -ENOMEM; 2533 } 2534 2535 key.objectid = send_root->root_key.objectid; 2536 key.type = BTRFS_ROOT_BACKREF_KEY; 2537 key.offset = 0; 2538 2539 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2540 &key, path, 1, 0); 2541 if (ret < 0) 2542 goto out; 2543 if (ret) { 2544 ret = -ENOENT; 2545 goto out; 2546 } 2547 2548 leaf = path->nodes[0]; 2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2550 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2551 key.objectid != send_root->root_key.objectid) { 2552 ret = -ENOENT; 2553 goto out; 2554 } 2555 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2556 namelen = btrfs_root_ref_name_len(leaf, ref); 2557 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2558 btrfs_release_path(path); 2559 2560 if (parent_root) { 2561 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2562 if (ret < 0) 2563 goto out; 2564 } else { 2565 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2566 if (ret < 0) 2567 goto out; 2568 } 2569 2570 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2571 2572 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2573 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2574 sctx->send_root->root_item.received_uuid); 2575 else 2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2577 sctx->send_root->root_item.uuid); 2578 2579 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2580 btrfs_root_ctransid(&sctx->send_root->root_item)); 2581 if (parent_root) { 2582 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2583 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2584 parent_root->root_item.received_uuid); 2585 else 2586 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2587 parent_root->root_item.uuid); 2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2589 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2590 } 2591 2592 ret = send_cmd(sctx); 2593 2594 tlv_put_failure: 2595 out: 2596 btrfs_free_path(path); 2597 kfree(name); 2598 return ret; 2599 } 2600 2601 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2602 { 2603 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2604 int ret = 0; 2605 struct fs_path *p; 2606 2607 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2608 2609 p = fs_path_alloc(); 2610 if (!p) 2611 return -ENOMEM; 2612 2613 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2614 if (ret < 0) 2615 goto out; 2616 2617 ret = get_cur_path(sctx, ino, gen, p); 2618 if (ret < 0) 2619 goto out; 2620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2621 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2622 2623 ret = send_cmd(sctx); 2624 2625 tlv_put_failure: 2626 out: 2627 fs_path_free(p); 2628 return ret; 2629 } 2630 2631 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2632 { 2633 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2634 int ret = 0; 2635 struct fs_path *p; 2636 2637 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2638 2639 p = fs_path_alloc(); 2640 if (!p) 2641 return -ENOMEM; 2642 2643 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2644 if (ret < 0) 2645 goto out; 2646 2647 ret = get_cur_path(sctx, ino, gen, p); 2648 if (ret < 0) 2649 goto out; 2650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2652 2653 ret = send_cmd(sctx); 2654 2655 tlv_put_failure: 2656 out: 2657 fs_path_free(p); 2658 return ret; 2659 } 2660 2661 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2662 { 2663 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2664 int ret = 0; 2665 struct fs_path *p; 2666 2667 if (sctx->proto < 2) 2668 return 0; 2669 2670 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2671 2672 p = fs_path_alloc(); 2673 if (!p) 2674 return -ENOMEM; 2675 2676 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2677 if (ret < 0) 2678 goto out; 2679 2680 ret = get_cur_path(sctx, ino, gen, p); 2681 if (ret < 0) 2682 goto out; 2683 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2684 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2685 2686 ret = send_cmd(sctx); 2687 2688 tlv_put_failure: 2689 out: 2690 fs_path_free(p); 2691 return ret; 2692 } 2693 2694 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2695 { 2696 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2697 int ret = 0; 2698 struct fs_path *p; 2699 2700 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2701 ino, uid, gid); 2702 2703 p = fs_path_alloc(); 2704 if (!p) 2705 return -ENOMEM; 2706 2707 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2708 if (ret < 0) 2709 goto out; 2710 2711 ret = get_cur_path(sctx, ino, gen, p); 2712 if (ret < 0) 2713 goto out; 2714 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2715 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2717 2718 ret = send_cmd(sctx); 2719 2720 tlv_put_failure: 2721 out: 2722 fs_path_free(p); 2723 return ret; 2724 } 2725 2726 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2727 { 2728 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2729 int ret = 0; 2730 struct fs_path *p = NULL; 2731 struct btrfs_inode_item *ii; 2732 struct btrfs_path *path = NULL; 2733 struct extent_buffer *eb; 2734 struct btrfs_key key; 2735 int slot; 2736 2737 btrfs_debug(fs_info, "send_utimes %llu", ino); 2738 2739 p = fs_path_alloc(); 2740 if (!p) 2741 return -ENOMEM; 2742 2743 path = alloc_path_for_send(); 2744 if (!path) { 2745 ret = -ENOMEM; 2746 goto out; 2747 } 2748 2749 key.objectid = ino; 2750 key.type = BTRFS_INODE_ITEM_KEY; 2751 key.offset = 0; 2752 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2753 if (ret > 0) 2754 ret = -ENOENT; 2755 if (ret < 0) 2756 goto out; 2757 2758 eb = path->nodes[0]; 2759 slot = path->slots[0]; 2760 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2761 2762 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2763 if (ret < 0) 2764 goto out; 2765 2766 ret = get_cur_path(sctx, ino, gen, p); 2767 if (ret < 0) 2768 goto out; 2769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2770 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2773 if (sctx->proto >= 2) 2774 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2775 2776 ret = send_cmd(sctx); 2777 2778 tlv_put_failure: 2779 out: 2780 fs_path_free(p); 2781 btrfs_free_path(path); 2782 return ret; 2783 } 2784 2785 /* 2786 * If the cache is full, we can't remove entries from it and do a call to 2787 * send_utimes() for each respective inode, because we might be finishing 2788 * processing an inode that is a directory and it just got renamed, and existing 2789 * entries in the cache may refer to inodes that have the directory in their 2790 * full path - in which case we would generate outdated paths (pre-rename) 2791 * for the inodes that the cache entries point to. Instead of prunning the 2792 * cache when inserting, do it after we finish processing each inode at 2793 * finish_inode_if_needed(). 2794 */ 2795 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2796 { 2797 struct btrfs_lru_cache_entry *entry; 2798 int ret; 2799 2800 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2801 if (entry != NULL) 2802 return 0; 2803 2804 /* Caching is optional, don't fail if we can't allocate memory. */ 2805 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2806 if (!entry) 2807 return send_utimes(sctx, dir, gen); 2808 2809 entry->key = dir; 2810 entry->gen = gen; 2811 2812 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2813 ASSERT(ret != -EEXIST); 2814 if (ret) { 2815 kfree(entry); 2816 return send_utimes(sctx, dir, gen); 2817 } 2818 2819 return 0; 2820 } 2821 2822 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2823 { 2824 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2825 struct btrfs_lru_cache_entry *lru; 2826 int ret; 2827 2828 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2829 ASSERT(lru != NULL); 2830 2831 ret = send_utimes(sctx, lru->key, lru->gen); 2832 if (ret) 2833 return ret; 2834 2835 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2836 } 2837 2838 return 0; 2839 } 2840 2841 /* 2842 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2843 * a valid path yet because we did not process the refs yet. So, the inode 2844 * is created as orphan. 2845 */ 2846 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2847 { 2848 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2849 int ret = 0; 2850 struct fs_path *p; 2851 int cmd; 2852 struct btrfs_inode_info info; 2853 u64 gen; 2854 u64 mode; 2855 u64 rdev; 2856 2857 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2858 2859 p = fs_path_alloc(); 2860 if (!p) 2861 return -ENOMEM; 2862 2863 if (ino != sctx->cur_ino) { 2864 ret = get_inode_info(sctx->send_root, ino, &info); 2865 if (ret < 0) 2866 goto out; 2867 gen = info.gen; 2868 mode = info.mode; 2869 rdev = info.rdev; 2870 } else { 2871 gen = sctx->cur_inode_gen; 2872 mode = sctx->cur_inode_mode; 2873 rdev = sctx->cur_inode_rdev; 2874 } 2875 2876 if (S_ISREG(mode)) { 2877 cmd = BTRFS_SEND_C_MKFILE; 2878 } else if (S_ISDIR(mode)) { 2879 cmd = BTRFS_SEND_C_MKDIR; 2880 } else if (S_ISLNK(mode)) { 2881 cmd = BTRFS_SEND_C_SYMLINK; 2882 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2883 cmd = BTRFS_SEND_C_MKNOD; 2884 } else if (S_ISFIFO(mode)) { 2885 cmd = BTRFS_SEND_C_MKFIFO; 2886 } else if (S_ISSOCK(mode)) { 2887 cmd = BTRFS_SEND_C_MKSOCK; 2888 } else { 2889 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2890 (int)(mode & S_IFMT)); 2891 ret = -EOPNOTSUPP; 2892 goto out; 2893 } 2894 2895 ret = begin_cmd(sctx, cmd); 2896 if (ret < 0) 2897 goto out; 2898 2899 ret = gen_unique_name(sctx, ino, gen, p); 2900 if (ret < 0) 2901 goto out; 2902 2903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2904 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2905 2906 if (S_ISLNK(mode)) { 2907 fs_path_reset(p); 2908 ret = read_symlink(sctx->send_root, ino, p); 2909 if (ret < 0) 2910 goto out; 2911 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2912 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2913 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2914 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2915 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2916 } 2917 2918 ret = send_cmd(sctx); 2919 if (ret < 0) 2920 goto out; 2921 2922 2923 tlv_put_failure: 2924 out: 2925 fs_path_free(p); 2926 return ret; 2927 } 2928 2929 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2930 { 2931 struct btrfs_lru_cache_entry *entry; 2932 int ret; 2933 2934 /* Caching is optional, ignore any failures. */ 2935 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2936 if (!entry) 2937 return; 2938 2939 entry->key = dir; 2940 entry->gen = 0; 2941 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2942 if (ret < 0) 2943 kfree(entry); 2944 } 2945 2946 /* 2947 * We need some special handling for inodes that get processed before the parent 2948 * directory got created. See process_recorded_refs for details. 2949 * This function does the check if we already created the dir out of order. 2950 */ 2951 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2952 { 2953 int ret = 0; 2954 int iter_ret = 0; 2955 struct btrfs_path *path = NULL; 2956 struct btrfs_key key; 2957 struct btrfs_key found_key; 2958 struct btrfs_key di_key; 2959 struct btrfs_dir_item *di; 2960 2961 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2962 return 1; 2963 2964 path = alloc_path_for_send(); 2965 if (!path) 2966 return -ENOMEM; 2967 2968 key.objectid = dir; 2969 key.type = BTRFS_DIR_INDEX_KEY; 2970 key.offset = 0; 2971 2972 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2973 struct extent_buffer *eb = path->nodes[0]; 2974 2975 if (found_key.objectid != key.objectid || 2976 found_key.type != key.type) { 2977 ret = 0; 2978 break; 2979 } 2980 2981 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2982 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2983 2984 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2985 di_key.objectid < sctx->send_progress) { 2986 ret = 1; 2987 cache_dir_created(sctx, dir); 2988 break; 2989 } 2990 } 2991 /* Catch error found during iteration */ 2992 if (iter_ret < 0) 2993 ret = iter_ret; 2994 2995 btrfs_free_path(path); 2996 return ret; 2997 } 2998 2999 /* 3000 * Only creates the inode if it is: 3001 * 1. Not a directory 3002 * 2. Or a directory which was not created already due to out of order 3003 * directories. See did_create_dir and process_recorded_refs for details. 3004 */ 3005 static int send_create_inode_if_needed(struct send_ctx *sctx) 3006 { 3007 int ret; 3008 3009 if (S_ISDIR(sctx->cur_inode_mode)) { 3010 ret = did_create_dir(sctx, sctx->cur_ino); 3011 if (ret < 0) 3012 return ret; 3013 else if (ret > 0) 3014 return 0; 3015 } 3016 3017 ret = send_create_inode(sctx, sctx->cur_ino); 3018 3019 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3020 cache_dir_created(sctx, sctx->cur_ino); 3021 3022 return ret; 3023 } 3024 3025 struct recorded_ref { 3026 struct list_head list; 3027 char *name; 3028 struct fs_path *full_path; 3029 u64 dir; 3030 u64 dir_gen; 3031 int name_len; 3032 struct rb_node node; 3033 struct rb_root *root; 3034 }; 3035 3036 static struct recorded_ref *recorded_ref_alloc(void) 3037 { 3038 struct recorded_ref *ref; 3039 3040 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3041 if (!ref) 3042 return NULL; 3043 RB_CLEAR_NODE(&ref->node); 3044 INIT_LIST_HEAD(&ref->list); 3045 return ref; 3046 } 3047 3048 static void recorded_ref_free(struct recorded_ref *ref) 3049 { 3050 if (!ref) 3051 return; 3052 if (!RB_EMPTY_NODE(&ref->node)) 3053 rb_erase(&ref->node, ref->root); 3054 list_del(&ref->list); 3055 fs_path_free(ref->full_path); 3056 kfree(ref); 3057 } 3058 3059 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3060 { 3061 ref->full_path = path; 3062 ref->name = (char *)kbasename(ref->full_path->start); 3063 ref->name_len = ref->full_path->end - ref->name; 3064 } 3065 3066 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3067 { 3068 struct recorded_ref *new; 3069 3070 new = recorded_ref_alloc(); 3071 if (!new) 3072 return -ENOMEM; 3073 3074 new->dir = ref->dir; 3075 new->dir_gen = ref->dir_gen; 3076 list_add_tail(&new->list, list); 3077 return 0; 3078 } 3079 3080 static void __free_recorded_refs(struct list_head *head) 3081 { 3082 struct recorded_ref *cur; 3083 3084 while (!list_empty(head)) { 3085 cur = list_entry(head->next, struct recorded_ref, list); 3086 recorded_ref_free(cur); 3087 } 3088 } 3089 3090 static void free_recorded_refs(struct send_ctx *sctx) 3091 { 3092 __free_recorded_refs(&sctx->new_refs); 3093 __free_recorded_refs(&sctx->deleted_refs); 3094 } 3095 3096 /* 3097 * Renames/moves a file/dir to its orphan name. Used when the first 3098 * ref of an unprocessed inode gets overwritten and for all non empty 3099 * directories. 3100 */ 3101 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3102 struct fs_path *path) 3103 { 3104 int ret; 3105 struct fs_path *orphan; 3106 3107 orphan = fs_path_alloc(); 3108 if (!orphan) 3109 return -ENOMEM; 3110 3111 ret = gen_unique_name(sctx, ino, gen, orphan); 3112 if (ret < 0) 3113 goto out; 3114 3115 ret = send_rename(sctx, path, orphan); 3116 3117 out: 3118 fs_path_free(orphan); 3119 return ret; 3120 } 3121 3122 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3123 u64 dir_ino, u64 dir_gen) 3124 { 3125 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3126 struct rb_node *parent = NULL; 3127 struct orphan_dir_info *entry, *odi; 3128 3129 while (*p) { 3130 parent = *p; 3131 entry = rb_entry(parent, struct orphan_dir_info, node); 3132 if (dir_ino < entry->ino) 3133 p = &(*p)->rb_left; 3134 else if (dir_ino > entry->ino) 3135 p = &(*p)->rb_right; 3136 else if (dir_gen < entry->gen) 3137 p = &(*p)->rb_left; 3138 else if (dir_gen > entry->gen) 3139 p = &(*p)->rb_right; 3140 else 3141 return entry; 3142 } 3143 3144 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3145 if (!odi) 3146 return ERR_PTR(-ENOMEM); 3147 odi->ino = dir_ino; 3148 odi->gen = dir_gen; 3149 odi->last_dir_index_offset = 0; 3150 odi->dir_high_seq_ino = 0; 3151 3152 rb_link_node(&odi->node, parent, p); 3153 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3154 return odi; 3155 } 3156 3157 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3158 u64 dir_ino, u64 gen) 3159 { 3160 struct rb_node *n = sctx->orphan_dirs.rb_node; 3161 struct orphan_dir_info *entry; 3162 3163 while (n) { 3164 entry = rb_entry(n, struct orphan_dir_info, node); 3165 if (dir_ino < entry->ino) 3166 n = n->rb_left; 3167 else if (dir_ino > entry->ino) 3168 n = n->rb_right; 3169 else if (gen < entry->gen) 3170 n = n->rb_left; 3171 else if (gen > entry->gen) 3172 n = n->rb_right; 3173 else 3174 return entry; 3175 } 3176 return NULL; 3177 } 3178 3179 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3180 { 3181 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3182 3183 return odi != NULL; 3184 } 3185 3186 static void free_orphan_dir_info(struct send_ctx *sctx, 3187 struct orphan_dir_info *odi) 3188 { 3189 if (!odi) 3190 return; 3191 rb_erase(&odi->node, &sctx->orphan_dirs); 3192 kfree(odi); 3193 } 3194 3195 /* 3196 * Returns 1 if a directory can be removed at this point in time. 3197 * We check this by iterating all dir items and checking if the inode behind 3198 * the dir item was already processed. 3199 */ 3200 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3201 { 3202 int ret = 0; 3203 int iter_ret = 0; 3204 struct btrfs_root *root = sctx->parent_root; 3205 struct btrfs_path *path; 3206 struct btrfs_key key; 3207 struct btrfs_key found_key; 3208 struct btrfs_key loc; 3209 struct btrfs_dir_item *di; 3210 struct orphan_dir_info *odi = NULL; 3211 u64 dir_high_seq_ino = 0; 3212 u64 last_dir_index_offset = 0; 3213 3214 /* 3215 * Don't try to rmdir the top/root subvolume dir. 3216 */ 3217 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3218 return 0; 3219 3220 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3221 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3222 return 0; 3223 3224 path = alloc_path_for_send(); 3225 if (!path) 3226 return -ENOMEM; 3227 3228 if (!odi) { 3229 /* 3230 * Find the inode number associated with the last dir index 3231 * entry. This is very likely the inode with the highest number 3232 * of all inodes that have an entry in the directory. We can 3233 * then use it to avoid future calls to can_rmdir(), when 3234 * processing inodes with a lower number, from having to search 3235 * the parent root b+tree for dir index keys. 3236 */ 3237 key.objectid = dir; 3238 key.type = BTRFS_DIR_INDEX_KEY; 3239 key.offset = (u64)-1; 3240 3241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3242 if (ret < 0) { 3243 goto out; 3244 } else if (ret > 0) { 3245 /* Can't happen, the root is never empty. */ 3246 ASSERT(path->slots[0] > 0); 3247 if (WARN_ON(path->slots[0] == 0)) { 3248 ret = -EUCLEAN; 3249 goto out; 3250 } 3251 path->slots[0]--; 3252 } 3253 3254 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3255 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3256 /* No index keys, dir can be removed. */ 3257 ret = 1; 3258 goto out; 3259 } 3260 3261 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3262 struct btrfs_dir_item); 3263 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3264 dir_high_seq_ino = loc.objectid; 3265 if (sctx->cur_ino < dir_high_seq_ino) { 3266 ret = 0; 3267 goto out; 3268 } 3269 3270 btrfs_release_path(path); 3271 } 3272 3273 key.objectid = dir; 3274 key.type = BTRFS_DIR_INDEX_KEY; 3275 key.offset = (odi ? odi->last_dir_index_offset : 0); 3276 3277 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3278 struct waiting_dir_move *dm; 3279 3280 if (found_key.objectid != key.objectid || 3281 found_key.type != key.type) 3282 break; 3283 3284 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3285 struct btrfs_dir_item); 3286 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3287 3288 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3289 last_dir_index_offset = found_key.offset; 3290 3291 dm = get_waiting_dir_move(sctx, loc.objectid); 3292 if (dm) { 3293 dm->rmdir_ino = dir; 3294 dm->rmdir_gen = dir_gen; 3295 ret = 0; 3296 goto out; 3297 } 3298 3299 if (loc.objectid > sctx->cur_ino) { 3300 ret = 0; 3301 goto out; 3302 } 3303 } 3304 if (iter_ret < 0) { 3305 ret = iter_ret; 3306 goto out; 3307 } 3308 free_orphan_dir_info(sctx, odi); 3309 3310 ret = 1; 3311 3312 out: 3313 btrfs_free_path(path); 3314 3315 if (ret) 3316 return ret; 3317 3318 if (!odi) { 3319 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3320 if (IS_ERR(odi)) 3321 return PTR_ERR(odi); 3322 3323 odi->gen = dir_gen; 3324 } 3325 3326 odi->last_dir_index_offset = last_dir_index_offset; 3327 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3328 3329 return 0; 3330 } 3331 3332 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3333 { 3334 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3335 3336 return entry != NULL; 3337 } 3338 3339 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3340 { 3341 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3342 struct rb_node *parent = NULL; 3343 struct waiting_dir_move *entry, *dm; 3344 3345 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3346 if (!dm) 3347 return -ENOMEM; 3348 dm->ino = ino; 3349 dm->rmdir_ino = 0; 3350 dm->rmdir_gen = 0; 3351 dm->orphanized = orphanized; 3352 3353 while (*p) { 3354 parent = *p; 3355 entry = rb_entry(parent, struct waiting_dir_move, node); 3356 if (ino < entry->ino) { 3357 p = &(*p)->rb_left; 3358 } else if (ino > entry->ino) { 3359 p = &(*p)->rb_right; 3360 } else { 3361 kfree(dm); 3362 return -EEXIST; 3363 } 3364 } 3365 3366 rb_link_node(&dm->node, parent, p); 3367 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3368 return 0; 3369 } 3370 3371 static struct waiting_dir_move * 3372 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3373 { 3374 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3375 struct waiting_dir_move *entry; 3376 3377 while (n) { 3378 entry = rb_entry(n, struct waiting_dir_move, node); 3379 if (ino < entry->ino) 3380 n = n->rb_left; 3381 else if (ino > entry->ino) 3382 n = n->rb_right; 3383 else 3384 return entry; 3385 } 3386 return NULL; 3387 } 3388 3389 static void free_waiting_dir_move(struct send_ctx *sctx, 3390 struct waiting_dir_move *dm) 3391 { 3392 if (!dm) 3393 return; 3394 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3395 kfree(dm); 3396 } 3397 3398 static int add_pending_dir_move(struct send_ctx *sctx, 3399 u64 ino, 3400 u64 ino_gen, 3401 u64 parent_ino, 3402 struct list_head *new_refs, 3403 struct list_head *deleted_refs, 3404 const bool is_orphan) 3405 { 3406 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3407 struct rb_node *parent = NULL; 3408 struct pending_dir_move *entry = NULL, *pm; 3409 struct recorded_ref *cur; 3410 int exists = 0; 3411 int ret; 3412 3413 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3414 if (!pm) 3415 return -ENOMEM; 3416 pm->parent_ino = parent_ino; 3417 pm->ino = ino; 3418 pm->gen = ino_gen; 3419 INIT_LIST_HEAD(&pm->list); 3420 INIT_LIST_HEAD(&pm->update_refs); 3421 RB_CLEAR_NODE(&pm->node); 3422 3423 while (*p) { 3424 parent = *p; 3425 entry = rb_entry(parent, struct pending_dir_move, node); 3426 if (parent_ino < entry->parent_ino) { 3427 p = &(*p)->rb_left; 3428 } else if (parent_ino > entry->parent_ino) { 3429 p = &(*p)->rb_right; 3430 } else { 3431 exists = 1; 3432 break; 3433 } 3434 } 3435 3436 list_for_each_entry(cur, deleted_refs, list) { 3437 ret = dup_ref(cur, &pm->update_refs); 3438 if (ret < 0) 3439 goto out; 3440 } 3441 list_for_each_entry(cur, new_refs, list) { 3442 ret = dup_ref(cur, &pm->update_refs); 3443 if (ret < 0) 3444 goto out; 3445 } 3446 3447 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3448 if (ret) 3449 goto out; 3450 3451 if (exists) { 3452 list_add_tail(&pm->list, &entry->list); 3453 } else { 3454 rb_link_node(&pm->node, parent, p); 3455 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3456 } 3457 ret = 0; 3458 out: 3459 if (ret) { 3460 __free_recorded_refs(&pm->update_refs); 3461 kfree(pm); 3462 } 3463 return ret; 3464 } 3465 3466 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3467 u64 parent_ino) 3468 { 3469 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3470 struct pending_dir_move *entry; 3471 3472 while (n) { 3473 entry = rb_entry(n, struct pending_dir_move, node); 3474 if (parent_ino < entry->parent_ino) 3475 n = n->rb_left; 3476 else if (parent_ino > entry->parent_ino) 3477 n = n->rb_right; 3478 else 3479 return entry; 3480 } 3481 return NULL; 3482 } 3483 3484 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3485 u64 ino, u64 gen, u64 *ancestor_ino) 3486 { 3487 int ret = 0; 3488 u64 parent_inode = 0; 3489 u64 parent_gen = 0; 3490 u64 start_ino = ino; 3491 3492 *ancestor_ino = 0; 3493 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3494 fs_path_reset(name); 3495 3496 if (is_waiting_for_rm(sctx, ino, gen)) 3497 break; 3498 if (is_waiting_for_move(sctx, ino)) { 3499 if (*ancestor_ino == 0) 3500 *ancestor_ino = ino; 3501 ret = get_first_ref(sctx->parent_root, ino, 3502 &parent_inode, &parent_gen, name); 3503 } else { 3504 ret = __get_cur_name_and_parent(sctx, ino, gen, 3505 &parent_inode, 3506 &parent_gen, name); 3507 if (ret > 0) { 3508 ret = 0; 3509 break; 3510 } 3511 } 3512 if (ret < 0) 3513 break; 3514 if (parent_inode == start_ino) { 3515 ret = 1; 3516 if (*ancestor_ino == 0) 3517 *ancestor_ino = ino; 3518 break; 3519 } 3520 ino = parent_inode; 3521 gen = parent_gen; 3522 } 3523 return ret; 3524 } 3525 3526 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3527 { 3528 struct fs_path *from_path = NULL; 3529 struct fs_path *to_path = NULL; 3530 struct fs_path *name = NULL; 3531 u64 orig_progress = sctx->send_progress; 3532 struct recorded_ref *cur; 3533 u64 parent_ino, parent_gen; 3534 struct waiting_dir_move *dm = NULL; 3535 u64 rmdir_ino = 0; 3536 u64 rmdir_gen; 3537 u64 ancestor; 3538 bool is_orphan; 3539 int ret; 3540 3541 name = fs_path_alloc(); 3542 from_path = fs_path_alloc(); 3543 if (!name || !from_path) { 3544 ret = -ENOMEM; 3545 goto out; 3546 } 3547 3548 dm = get_waiting_dir_move(sctx, pm->ino); 3549 ASSERT(dm); 3550 rmdir_ino = dm->rmdir_ino; 3551 rmdir_gen = dm->rmdir_gen; 3552 is_orphan = dm->orphanized; 3553 free_waiting_dir_move(sctx, dm); 3554 3555 if (is_orphan) { 3556 ret = gen_unique_name(sctx, pm->ino, 3557 pm->gen, from_path); 3558 } else { 3559 ret = get_first_ref(sctx->parent_root, pm->ino, 3560 &parent_ino, &parent_gen, name); 3561 if (ret < 0) 3562 goto out; 3563 ret = get_cur_path(sctx, parent_ino, parent_gen, 3564 from_path); 3565 if (ret < 0) 3566 goto out; 3567 ret = fs_path_add_path(from_path, name); 3568 } 3569 if (ret < 0) 3570 goto out; 3571 3572 sctx->send_progress = sctx->cur_ino + 1; 3573 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3574 if (ret < 0) 3575 goto out; 3576 if (ret) { 3577 LIST_HEAD(deleted_refs); 3578 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3579 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3580 &pm->update_refs, &deleted_refs, 3581 is_orphan); 3582 if (ret < 0) 3583 goto out; 3584 if (rmdir_ino) { 3585 dm = get_waiting_dir_move(sctx, pm->ino); 3586 ASSERT(dm); 3587 dm->rmdir_ino = rmdir_ino; 3588 dm->rmdir_gen = rmdir_gen; 3589 } 3590 goto out; 3591 } 3592 fs_path_reset(name); 3593 to_path = name; 3594 name = NULL; 3595 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3596 if (ret < 0) 3597 goto out; 3598 3599 ret = send_rename(sctx, from_path, to_path); 3600 if (ret < 0) 3601 goto out; 3602 3603 if (rmdir_ino) { 3604 struct orphan_dir_info *odi; 3605 u64 gen; 3606 3607 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3608 if (!odi) { 3609 /* already deleted */ 3610 goto finish; 3611 } 3612 gen = odi->gen; 3613 3614 ret = can_rmdir(sctx, rmdir_ino, gen); 3615 if (ret < 0) 3616 goto out; 3617 if (!ret) 3618 goto finish; 3619 3620 name = fs_path_alloc(); 3621 if (!name) { 3622 ret = -ENOMEM; 3623 goto out; 3624 } 3625 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3626 if (ret < 0) 3627 goto out; 3628 ret = send_rmdir(sctx, name); 3629 if (ret < 0) 3630 goto out; 3631 } 3632 3633 finish: 3634 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3635 if (ret < 0) 3636 goto out; 3637 3638 /* 3639 * After rename/move, need to update the utimes of both new parent(s) 3640 * and old parent(s). 3641 */ 3642 list_for_each_entry(cur, &pm->update_refs, list) { 3643 /* 3644 * The parent inode might have been deleted in the send snapshot 3645 */ 3646 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3647 if (ret == -ENOENT) { 3648 ret = 0; 3649 continue; 3650 } 3651 if (ret < 0) 3652 goto out; 3653 3654 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3655 if (ret < 0) 3656 goto out; 3657 } 3658 3659 out: 3660 fs_path_free(name); 3661 fs_path_free(from_path); 3662 fs_path_free(to_path); 3663 sctx->send_progress = orig_progress; 3664 3665 return ret; 3666 } 3667 3668 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3669 { 3670 if (!list_empty(&m->list)) 3671 list_del(&m->list); 3672 if (!RB_EMPTY_NODE(&m->node)) 3673 rb_erase(&m->node, &sctx->pending_dir_moves); 3674 __free_recorded_refs(&m->update_refs); 3675 kfree(m); 3676 } 3677 3678 static void tail_append_pending_moves(struct send_ctx *sctx, 3679 struct pending_dir_move *moves, 3680 struct list_head *stack) 3681 { 3682 if (list_empty(&moves->list)) { 3683 list_add_tail(&moves->list, stack); 3684 } else { 3685 LIST_HEAD(list); 3686 list_splice_init(&moves->list, &list); 3687 list_add_tail(&moves->list, stack); 3688 list_splice_tail(&list, stack); 3689 } 3690 if (!RB_EMPTY_NODE(&moves->node)) { 3691 rb_erase(&moves->node, &sctx->pending_dir_moves); 3692 RB_CLEAR_NODE(&moves->node); 3693 } 3694 } 3695 3696 static int apply_children_dir_moves(struct send_ctx *sctx) 3697 { 3698 struct pending_dir_move *pm; 3699 LIST_HEAD(stack); 3700 u64 parent_ino = sctx->cur_ino; 3701 int ret = 0; 3702 3703 pm = get_pending_dir_moves(sctx, parent_ino); 3704 if (!pm) 3705 return 0; 3706 3707 tail_append_pending_moves(sctx, pm, &stack); 3708 3709 while (!list_empty(&stack)) { 3710 pm = list_first_entry(&stack, struct pending_dir_move, list); 3711 parent_ino = pm->ino; 3712 ret = apply_dir_move(sctx, pm); 3713 free_pending_move(sctx, pm); 3714 if (ret) 3715 goto out; 3716 pm = get_pending_dir_moves(sctx, parent_ino); 3717 if (pm) 3718 tail_append_pending_moves(sctx, pm, &stack); 3719 } 3720 return 0; 3721 3722 out: 3723 while (!list_empty(&stack)) { 3724 pm = list_first_entry(&stack, struct pending_dir_move, list); 3725 free_pending_move(sctx, pm); 3726 } 3727 return ret; 3728 } 3729 3730 /* 3731 * We might need to delay a directory rename even when no ancestor directory 3732 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3733 * renamed. This happens when we rename a directory to the old name (the name 3734 * in the parent root) of some other unrelated directory that got its rename 3735 * delayed due to some ancestor with higher number that got renamed. 3736 * 3737 * Example: 3738 * 3739 * Parent snapshot: 3740 * . (ino 256) 3741 * |---- a/ (ino 257) 3742 * | |---- file (ino 260) 3743 * | 3744 * |---- b/ (ino 258) 3745 * |---- c/ (ino 259) 3746 * 3747 * Send snapshot: 3748 * . (ino 256) 3749 * |---- a/ (ino 258) 3750 * |---- x/ (ino 259) 3751 * |---- y/ (ino 257) 3752 * |----- file (ino 260) 3753 * 3754 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3755 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3756 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3757 * must issue is: 3758 * 3759 * 1 - rename 259 from 'c' to 'x' 3760 * 2 - rename 257 from 'a' to 'x/y' 3761 * 3 - rename 258 from 'b' to 'a' 3762 * 3763 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3764 * be done right away and < 0 on error. 3765 */ 3766 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3767 struct recorded_ref *parent_ref, 3768 const bool is_orphan) 3769 { 3770 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3771 struct btrfs_path *path; 3772 struct btrfs_key key; 3773 struct btrfs_key di_key; 3774 struct btrfs_dir_item *di; 3775 u64 left_gen; 3776 u64 right_gen; 3777 int ret = 0; 3778 struct waiting_dir_move *wdm; 3779 3780 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3781 return 0; 3782 3783 path = alloc_path_for_send(); 3784 if (!path) 3785 return -ENOMEM; 3786 3787 key.objectid = parent_ref->dir; 3788 key.type = BTRFS_DIR_ITEM_KEY; 3789 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3790 3791 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3792 if (ret < 0) { 3793 goto out; 3794 } else if (ret > 0) { 3795 ret = 0; 3796 goto out; 3797 } 3798 3799 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3800 parent_ref->name_len); 3801 if (!di) { 3802 ret = 0; 3803 goto out; 3804 } 3805 /* 3806 * di_key.objectid has the number of the inode that has a dentry in the 3807 * parent directory with the same name that sctx->cur_ino is being 3808 * renamed to. We need to check if that inode is in the send root as 3809 * well and if it is currently marked as an inode with a pending rename, 3810 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3811 * that it happens after that other inode is renamed. 3812 */ 3813 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3814 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3815 ret = 0; 3816 goto out; 3817 } 3818 3819 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3820 if (ret < 0) 3821 goto out; 3822 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3823 if (ret < 0) { 3824 if (ret == -ENOENT) 3825 ret = 0; 3826 goto out; 3827 } 3828 3829 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3830 if (right_gen != left_gen) { 3831 ret = 0; 3832 goto out; 3833 } 3834 3835 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3836 if (wdm && !wdm->orphanized) { 3837 ret = add_pending_dir_move(sctx, 3838 sctx->cur_ino, 3839 sctx->cur_inode_gen, 3840 di_key.objectid, 3841 &sctx->new_refs, 3842 &sctx->deleted_refs, 3843 is_orphan); 3844 if (!ret) 3845 ret = 1; 3846 } 3847 out: 3848 btrfs_free_path(path); 3849 return ret; 3850 } 3851 3852 /* 3853 * Check if inode ino2, or any of its ancestors, is inode ino1. 3854 * Return 1 if true, 0 if false and < 0 on error. 3855 */ 3856 static int check_ino_in_path(struct btrfs_root *root, 3857 const u64 ino1, 3858 const u64 ino1_gen, 3859 const u64 ino2, 3860 const u64 ino2_gen, 3861 struct fs_path *fs_path) 3862 { 3863 u64 ino = ino2; 3864 3865 if (ino1 == ino2) 3866 return ino1_gen == ino2_gen; 3867 3868 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3869 u64 parent; 3870 u64 parent_gen; 3871 int ret; 3872 3873 fs_path_reset(fs_path); 3874 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3875 if (ret < 0) 3876 return ret; 3877 if (parent == ino1) 3878 return parent_gen == ino1_gen; 3879 ino = parent; 3880 } 3881 return 0; 3882 } 3883 3884 /* 3885 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3886 * possible path (in case ino2 is not a directory and has multiple hard links). 3887 * Return 1 if true, 0 if false and < 0 on error. 3888 */ 3889 static int is_ancestor(struct btrfs_root *root, 3890 const u64 ino1, 3891 const u64 ino1_gen, 3892 const u64 ino2, 3893 struct fs_path *fs_path) 3894 { 3895 bool free_fs_path = false; 3896 int ret = 0; 3897 int iter_ret = 0; 3898 struct btrfs_path *path = NULL; 3899 struct btrfs_key key; 3900 3901 if (!fs_path) { 3902 fs_path = fs_path_alloc(); 3903 if (!fs_path) 3904 return -ENOMEM; 3905 free_fs_path = true; 3906 } 3907 3908 path = alloc_path_for_send(); 3909 if (!path) { 3910 ret = -ENOMEM; 3911 goto out; 3912 } 3913 3914 key.objectid = ino2; 3915 key.type = BTRFS_INODE_REF_KEY; 3916 key.offset = 0; 3917 3918 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3919 struct extent_buffer *leaf = path->nodes[0]; 3920 int slot = path->slots[0]; 3921 u32 cur_offset = 0; 3922 u32 item_size; 3923 3924 if (key.objectid != ino2) 3925 break; 3926 if (key.type != BTRFS_INODE_REF_KEY && 3927 key.type != BTRFS_INODE_EXTREF_KEY) 3928 break; 3929 3930 item_size = btrfs_item_size(leaf, slot); 3931 while (cur_offset < item_size) { 3932 u64 parent; 3933 u64 parent_gen; 3934 3935 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3936 unsigned long ptr; 3937 struct btrfs_inode_extref *extref; 3938 3939 ptr = btrfs_item_ptr_offset(leaf, slot); 3940 extref = (struct btrfs_inode_extref *) 3941 (ptr + cur_offset); 3942 parent = btrfs_inode_extref_parent(leaf, 3943 extref); 3944 cur_offset += sizeof(*extref); 3945 cur_offset += btrfs_inode_extref_name_len(leaf, 3946 extref); 3947 } else { 3948 parent = key.offset; 3949 cur_offset = item_size; 3950 } 3951 3952 ret = get_inode_gen(root, parent, &parent_gen); 3953 if (ret < 0) 3954 goto out; 3955 ret = check_ino_in_path(root, ino1, ino1_gen, 3956 parent, parent_gen, fs_path); 3957 if (ret) 3958 goto out; 3959 } 3960 } 3961 ret = 0; 3962 if (iter_ret < 0) 3963 ret = iter_ret; 3964 3965 out: 3966 btrfs_free_path(path); 3967 if (free_fs_path) 3968 fs_path_free(fs_path); 3969 return ret; 3970 } 3971 3972 static int wait_for_parent_move(struct send_ctx *sctx, 3973 struct recorded_ref *parent_ref, 3974 const bool is_orphan) 3975 { 3976 int ret = 0; 3977 u64 ino = parent_ref->dir; 3978 u64 ino_gen = parent_ref->dir_gen; 3979 u64 parent_ino_before, parent_ino_after; 3980 struct fs_path *path_before = NULL; 3981 struct fs_path *path_after = NULL; 3982 int len1, len2; 3983 3984 path_after = fs_path_alloc(); 3985 path_before = fs_path_alloc(); 3986 if (!path_after || !path_before) { 3987 ret = -ENOMEM; 3988 goto out; 3989 } 3990 3991 /* 3992 * Our current directory inode may not yet be renamed/moved because some 3993 * ancestor (immediate or not) has to be renamed/moved first. So find if 3994 * such ancestor exists and make sure our own rename/move happens after 3995 * that ancestor is processed to avoid path build infinite loops (done 3996 * at get_cur_path()). 3997 */ 3998 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3999 u64 parent_ino_after_gen; 4000 4001 if (is_waiting_for_move(sctx, ino)) { 4002 /* 4003 * If the current inode is an ancestor of ino in the 4004 * parent root, we need to delay the rename of the 4005 * current inode, otherwise don't delayed the rename 4006 * because we can end up with a circular dependency 4007 * of renames, resulting in some directories never 4008 * getting the respective rename operations issued in 4009 * the send stream or getting into infinite path build 4010 * loops. 4011 */ 4012 ret = is_ancestor(sctx->parent_root, 4013 sctx->cur_ino, sctx->cur_inode_gen, 4014 ino, path_before); 4015 if (ret) 4016 break; 4017 } 4018 4019 fs_path_reset(path_before); 4020 fs_path_reset(path_after); 4021 4022 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4023 &parent_ino_after_gen, path_after); 4024 if (ret < 0) 4025 goto out; 4026 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4027 NULL, path_before); 4028 if (ret < 0 && ret != -ENOENT) { 4029 goto out; 4030 } else if (ret == -ENOENT) { 4031 ret = 0; 4032 break; 4033 } 4034 4035 len1 = fs_path_len(path_before); 4036 len2 = fs_path_len(path_after); 4037 if (ino > sctx->cur_ino && 4038 (parent_ino_before != parent_ino_after || len1 != len2 || 4039 memcmp(path_before->start, path_after->start, len1))) { 4040 u64 parent_ino_gen; 4041 4042 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4043 if (ret < 0) 4044 goto out; 4045 if (ino_gen == parent_ino_gen) { 4046 ret = 1; 4047 break; 4048 } 4049 } 4050 ino = parent_ino_after; 4051 ino_gen = parent_ino_after_gen; 4052 } 4053 4054 out: 4055 fs_path_free(path_before); 4056 fs_path_free(path_after); 4057 4058 if (ret == 1) { 4059 ret = add_pending_dir_move(sctx, 4060 sctx->cur_ino, 4061 sctx->cur_inode_gen, 4062 ino, 4063 &sctx->new_refs, 4064 &sctx->deleted_refs, 4065 is_orphan); 4066 if (!ret) 4067 ret = 1; 4068 } 4069 4070 return ret; 4071 } 4072 4073 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4074 { 4075 int ret; 4076 struct fs_path *new_path; 4077 4078 /* 4079 * Our reference's name member points to its full_path member string, so 4080 * we use here a new path. 4081 */ 4082 new_path = fs_path_alloc(); 4083 if (!new_path) 4084 return -ENOMEM; 4085 4086 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4087 if (ret < 0) { 4088 fs_path_free(new_path); 4089 return ret; 4090 } 4091 ret = fs_path_add(new_path, ref->name, ref->name_len); 4092 if (ret < 0) { 4093 fs_path_free(new_path); 4094 return ret; 4095 } 4096 4097 fs_path_free(ref->full_path); 4098 set_ref_path(ref, new_path); 4099 4100 return 0; 4101 } 4102 4103 /* 4104 * When processing the new references for an inode we may orphanize an existing 4105 * directory inode because its old name conflicts with one of the new references 4106 * of the current inode. Later, when processing another new reference of our 4107 * inode, we might need to orphanize another inode, but the path we have in the 4108 * reference reflects the pre-orphanization name of the directory we previously 4109 * orphanized. For example: 4110 * 4111 * parent snapshot looks like: 4112 * 4113 * . (ino 256) 4114 * |----- f1 (ino 257) 4115 * |----- f2 (ino 258) 4116 * |----- d1/ (ino 259) 4117 * |----- d2/ (ino 260) 4118 * 4119 * send snapshot looks like: 4120 * 4121 * . (ino 256) 4122 * |----- d1 (ino 258) 4123 * |----- f2/ (ino 259) 4124 * |----- f2_link/ (ino 260) 4125 * | |----- f1 (ino 257) 4126 * | 4127 * |----- d2 (ino 258) 4128 * 4129 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4130 * cache it in the name cache. Later when we start processing inode 258, when 4131 * collecting all its new references we set a full path of "d1/d2" for its new 4132 * reference with name "d2". When we start processing the new references we 4133 * start by processing the new reference with name "d1", and this results in 4134 * orphanizing inode 259, since its old reference causes a conflict. Then we 4135 * move on the next new reference, with name "d2", and we find out we must 4136 * orphanize inode 260, as its old reference conflicts with ours - but for the 4137 * orphanization we use a source path corresponding to the path we stored in the 4138 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4139 * receiver fail since the path component "d1/" no longer exists, it was renamed 4140 * to "o259-6-0/" when processing the previous new reference. So in this case we 4141 * must recompute the path in the new reference and use it for the new 4142 * orphanization operation. 4143 */ 4144 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4145 { 4146 char *name; 4147 int ret; 4148 4149 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4150 if (!name) 4151 return -ENOMEM; 4152 4153 fs_path_reset(ref->full_path); 4154 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4155 if (ret < 0) 4156 goto out; 4157 4158 ret = fs_path_add(ref->full_path, name, ref->name_len); 4159 if (ret < 0) 4160 goto out; 4161 4162 /* Update the reference's base name pointer. */ 4163 set_ref_path(ref, ref->full_path); 4164 out: 4165 kfree(name); 4166 return ret; 4167 } 4168 4169 /* 4170 * This does all the move/link/unlink/rmdir magic. 4171 */ 4172 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4173 { 4174 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4175 int ret = 0; 4176 struct recorded_ref *cur; 4177 struct recorded_ref *cur2; 4178 LIST_HEAD(check_dirs); 4179 struct fs_path *valid_path = NULL; 4180 u64 ow_inode = 0; 4181 u64 ow_gen; 4182 u64 ow_mode; 4183 int did_overwrite = 0; 4184 int is_orphan = 0; 4185 u64 last_dir_ino_rm = 0; 4186 bool can_rename = true; 4187 bool orphanized_dir = false; 4188 bool orphanized_ancestor = false; 4189 4190 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4191 4192 /* 4193 * This should never happen as the root dir always has the same ref 4194 * which is always '..' 4195 */ 4196 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4197 btrfs_err(fs_info, 4198 "send: unexpected inode %llu in process_recorded_refs()", 4199 sctx->cur_ino); 4200 ret = -EINVAL; 4201 goto out; 4202 } 4203 4204 valid_path = fs_path_alloc(); 4205 if (!valid_path) { 4206 ret = -ENOMEM; 4207 goto out; 4208 } 4209 4210 /* 4211 * First, check if the first ref of the current inode was overwritten 4212 * before. If yes, we know that the current inode was already orphanized 4213 * and thus use the orphan name. If not, we can use get_cur_path to 4214 * get the path of the first ref as it would like while receiving at 4215 * this point in time. 4216 * New inodes are always orphan at the beginning, so force to use the 4217 * orphan name in this case. 4218 * The first ref is stored in valid_path and will be updated if it 4219 * gets moved around. 4220 */ 4221 if (!sctx->cur_inode_new) { 4222 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4223 sctx->cur_inode_gen); 4224 if (ret < 0) 4225 goto out; 4226 if (ret) 4227 did_overwrite = 1; 4228 } 4229 if (sctx->cur_inode_new || did_overwrite) { 4230 ret = gen_unique_name(sctx, sctx->cur_ino, 4231 sctx->cur_inode_gen, valid_path); 4232 if (ret < 0) 4233 goto out; 4234 is_orphan = 1; 4235 } else { 4236 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4237 valid_path); 4238 if (ret < 0) 4239 goto out; 4240 } 4241 4242 /* 4243 * Before doing any rename and link operations, do a first pass on the 4244 * new references to orphanize any unprocessed inodes that may have a 4245 * reference that conflicts with one of the new references of the current 4246 * inode. This needs to happen first because a new reference may conflict 4247 * with the old reference of a parent directory, so we must make sure 4248 * that the path used for link and rename commands don't use an 4249 * orphanized name when an ancestor was not yet orphanized. 4250 * 4251 * Example: 4252 * 4253 * Parent snapshot: 4254 * 4255 * . (ino 256) 4256 * |----- testdir/ (ino 259) 4257 * | |----- a (ino 257) 4258 * | 4259 * |----- b (ino 258) 4260 * 4261 * Send snapshot: 4262 * 4263 * . (ino 256) 4264 * |----- testdir_2/ (ino 259) 4265 * | |----- a (ino 260) 4266 * | 4267 * |----- testdir (ino 257) 4268 * |----- b (ino 257) 4269 * |----- b2 (ino 258) 4270 * 4271 * Processing the new reference for inode 257 with name "b" may happen 4272 * before processing the new reference with name "testdir". If so, we 4273 * must make sure that by the time we send a link command to create the 4274 * hard link "b", inode 259 was already orphanized, since the generated 4275 * path in "valid_path" already contains the orphanized name for 259. 4276 * We are processing inode 257, so only later when processing 259 we do 4277 * the rename operation to change its temporary (orphanized) name to 4278 * "testdir_2". 4279 */ 4280 list_for_each_entry(cur, &sctx->new_refs, list) { 4281 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4282 if (ret < 0) 4283 goto out; 4284 if (ret == inode_state_will_create) 4285 continue; 4286 4287 /* 4288 * Check if this new ref would overwrite the first ref of another 4289 * unprocessed inode. If yes, orphanize the overwritten inode. 4290 * If we find an overwritten ref that is not the first ref, 4291 * simply unlink it. 4292 */ 4293 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4294 cur->name, cur->name_len, 4295 &ow_inode, &ow_gen, &ow_mode); 4296 if (ret < 0) 4297 goto out; 4298 if (ret) { 4299 ret = is_first_ref(sctx->parent_root, 4300 ow_inode, cur->dir, cur->name, 4301 cur->name_len); 4302 if (ret < 0) 4303 goto out; 4304 if (ret) { 4305 struct name_cache_entry *nce; 4306 struct waiting_dir_move *wdm; 4307 4308 if (orphanized_dir) { 4309 ret = refresh_ref_path(sctx, cur); 4310 if (ret < 0) 4311 goto out; 4312 } 4313 4314 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4315 cur->full_path); 4316 if (ret < 0) 4317 goto out; 4318 if (S_ISDIR(ow_mode)) 4319 orphanized_dir = true; 4320 4321 /* 4322 * If ow_inode has its rename operation delayed 4323 * make sure that its orphanized name is used in 4324 * the source path when performing its rename 4325 * operation. 4326 */ 4327 wdm = get_waiting_dir_move(sctx, ow_inode); 4328 if (wdm) 4329 wdm->orphanized = true; 4330 4331 /* 4332 * Make sure we clear our orphanized inode's 4333 * name from the name cache. This is because the 4334 * inode ow_inode might be an ancestor of some 4335 * other inode that will be orphanized as well 4336 * later and has an inode number greater than 4337 * sctx->send_progress. We need to prevent 4338 * future name lookups from using the old name 4339 * and get instead the orphan name. 4340 */ 4341 nce = name_cache_search(sctx, ow_inode, ow_gen); 4342 if (nce) 4343 btrfs_lru_cache_remove(&sctx->name_cache, 4344 &nce->entry); 4345 4346 /* 4347 * ow_inode might currently be an ancestor of 4348 * cur_ino, therefore compute valid_path (the 4349 * current path of cur_ino) again because it 4350 * might contain the pre-orphanization name of 4351 * ow_inode, which is no longer valid. 4352 */ 4353 ret = is_ancestor(sctx->parent_root, 4354 ow_inode, ow_gen, 4355 sctx->cur_ino, NULL); 4356 if (ret > 0) { 4357 orphanized_ancestor = true; 4358 fs_path_reset(valid_path); 4359 ret = get_cur_path(sctx, sctx->cur_ino, 4360 sctx->cur_inode_gen, 4361 valid_path); 4362 } 4363 if (ret < 0) 4364 goto out; 4365 } else { 4366 /* 4367 * If we previously orphanized a directory that 4368 * collided with a new reference that we already 4369 * processed, recompute the current path because 4370 * that directory may be part of the path. 4371 */ 4372 if (orphanized_dir) { 4373 ret = refresh_ref_path(sctx, cur); 4374 if (ret < 0) 4375 goto out; 4376 } 4377 ret = send_unlink(sctx, cur->full_path); 4378 if (ret < 0) 4379 goto out; 4380 } 4381 } 4382 4383 } 4384 4385 list_for_each_entry(cur, &sctx->new_refs, list) { 4386 /* 4387 * We may have refs where the parent directory does not exist 4388 * yet. This happens if the parent directories inum is higher 4389 * than the current inum. To handle this case, we create the 4390 * parent directory out of order. But we need to check if this 4391 * did already happen before due to other refs in the same dir. 4392 */ 4393 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4394 if (ret < 0) 4395 goto out; 4396 if (ret == inode_state_will_create) { 4397 ret = 0; 4398 /* 4399 * First check if any of the current inodes refs did 4400 * already create the dir. 4401 */ 4402 list_for_each_entry(cur2, &sctx->new_refs, list) { 4403 if (cur == cur2) 4404 break; 4405 if (cur2->dir == cur->dir) { 4406 ret = 1; 4407 break; 4408 } 4409 } 4410 4411 /* 4412 * If that did not happen, check if a previous inode 4413 * did already create the dir. 4414 */ 4415 if (!ret) 4416 ret = did_create_dir(sctx, cur->dir); 4417 if (ret < 0) 4418 goto out; 4419 if (!ret) { 4420 ret = send_create_inode(sctx, cur->dir); 4421 if (ret < 0) 4422 goto out; 4423 cache_dir_created(sctx, cur->dir); 4424 } 4425 } 4426 4427 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4428 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4429 if (ret < 0) 4430 goto out; 4431 if (ret == 1) { 4432 can_rename = false; 4433 *pending_move = 1; 4434 } 4435 } 4436 4437 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4438 can_rename) { 4439 ret = wait_for_parent_move(sctx, cur, is_orphan); 4440 if (ret < 0) 4441 goto out; 4442 if (ret == 1) { 4443 can_rename = false; 4444 *pending_move = 1; 4445 } 4446 } 4447 4448 /* 4449 * link/move the ref to the new place. If we have an orphan 4450 * inode, move it and update valid_path. If not, link or move 4451 * it depending on the inode mode. 4452 */ 4453 if (is_orphan && can_rename) { 4454 ret = send_rename(sctx, valid_path, cur->full_path); 4455 if (ret < 0) 4456 goto out; 4457 is_orphan = 0; 4458 ret = fs_path_copy(valid_path, cur->full_path); 4459 if (ret < 0) 4460 goto out; 4461 } else if (can_rename) { 4462 if (S_ISDIR(sctx->cur_inode_mode)) { 4463 /* 4464 * Dirs can't be linked, so move it. For moved 4465 * dirs, we always have one new and one deleted 4466 * ref. The deleted ref is ignored later. 4467 */ 4468 ret = send_rename(sctx, valid_path, 4469 cur->full_path); 4470 if (!ret) 4471 ret = fs_path_copy(valid_path, 4472 cur->full_path); 4473 if (ret < 0) 4474 goto out; 4475 } else { 4476 /* 4477 * We might have previously orphanized an inode 4478 * which is an ancestor of our current inode, 4479 * so our reference's full path, which was 4480 * computed before any such orphanizations, must 4481 * be updated. 4482 */ 4483 if (orphanized_dir) { 4484 ret = update_ref_path(sctx, cur); 4485 if (ret < 0) 4486 goto out; 4487 } 4488 ret = send_link(sctx, cur->full_path, 4489 valid_path); 4490 if (ret < 0) 4491 goto out; 4492 } 4493 } 4494 ret = dup_ref(cur, &check_dirs); 4495 if (ret < 0) 4496 goto out; 4497 } 4498 4499 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4500 /* 4501 * Check if we can already rmdir the directory. If not, 4502 * orphanize it. For every dir item inside that gets deleted 4503 * later, we do this check again and rmdir it then if possible. 4504 * See the use of check_dirs for more details. 4505 */ 4506 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4507 if (ret < 0) 4508 goto out; 4509 if (ret) { 4510 ret = send_rmdir(sctx, valid_path); 4511 if (ret < 0) 4512 goto out; 4513 } else if (!is_orphan) { 4514 ret = orphanize_inode(sctx, sctx->cur_ino, 4515 sctx->cur_inode_gen, valid_path); 4516 if (ret < 0) 4517 goto out; 4518 is_orphan = 1; 4519 } 4520 4521 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4522 ret = dup_ref(cur, &check_dirs); 4523 if (ret < 0) 4524 goto out; 4525 } 4526 } else if (S_ISDIR(sctx->cur_inode_mode) && 4527 !list_empty(&sctx->deleted_refs)) { 4528 /* 4529 * We have a moved dir. Add the old parent to check_dirs 4530 */ 4531 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4532 list); 4533 ret = dup_ref(cur, &check_dirs); 4534 if (ret < 0) 4535 goto out; 4536 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4537 /* 4538 * We have a non dir inode. Go through all deleted refs and 4539 * unlink them if they were not already overwritten by other 4540 * inodes. 4541 */ 4542 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4543 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4544 sctx->cur_ino, sctx->cur_inode_gen, 4545 cur->name, cur->name_len); 4546 if (ret < 0) 4547 goto out; 4548 if (!ret) { 4549 /* 4550 * If we orphanized any ancestor before, we need 4551 * to recompute the full path for deleted names, 4552 * since any such path was computed before we 4553 * processed any references and orphanized any 4554 * ancestor inode. 4555 */ 4556 if (orphanized_ancestor) { 4557 ret = update_ref_path(sctx, cur); 4558 if (ret < 0) 4559 goto out; 4560 } 4561 ret = send_unlink(sctx, cur->full_path); 4562 if (ret < 0) 4563 goto out; 4564 } 4565 ret = dup_ref(cur, &check_dirs); 4566 if (ret < 0) 4567 goto out; 4568 } 4569 /* 4570 * If the inode is still orphan, unlink the orphan. This may 4571 * happen when a previous inode did overwrite the first ref 4572 * of this inode and no new refs were added for the current 4573 * inode. Unlinking does not mean that the inode is deleted in 4574 * all cases. There may still be links to this inode in other 4575 * places. 4576 */ 4577 if (is_orphan) { 4578 ret = send_unlink(sctx, valid_path); 4579 if (ret < 0) 4580 goto out; 4581 } 4582 } 4583 4584 /* 4585 * We did collect all parent dirs where cur_inode was once located. We 4586 * now go through all these dirs and check if they are pending for 4587 * deletion and if it's finally possible to perform the rmdir now. 4588 * We also update the inode stats of the parent dirs here. 4589 */ 4590 list_for_each_entry(cur, &check_dirs, list) { 4591 /* 4592 * In case we had refs into dirs that were not processed yet, 4593 * we don't need to do the utime and rmdir logic for these dirs. 4594 * The dir will be processed later. 4595 */ 4596 if (cur->dir > sctx->cur_ino) 4597 continue; 4598 4599 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4600 if (ret < 0) 4601 goto out; 4602 4603 if (ret == inode_state_did_create || 4604 ret == inode_state_no_change) { 4605 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4606 if (ret < 0) 4607 goto out; 4608 } else if (ret == inode_state_did_delete && 4609 cur->dir != last_dir_ino_rm) { 4610 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4611 if (ret < 0) 4612 goto out; 4613 if (ret) { 4614 ret = get_cur_path(sctx, cur->dir, 4615 cur->dir_gen, valid_path); 4616 if (ret < 0) 4617 goto out; 4618 ret = send_rmdir(sctx, valid_path); 4619 if (ret < 0) 4620 goto out; 4621 last_dir_ino_rm = cur->dir; 4622 } 4623 } 4624 } 4625 4626 ret = 0; 4627 4628 out: 4629 __free_recorded_refs(&check_dirs); 4630 free_recorded_refs(sctx); 4631 fs_path_free(valid_path); 4632 return ret; 4633 } 4634 4635 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4636 { 4637 const struct recorded_ref *data = k; 4638 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4639 int result; 4640 4641 if (data->dir > ref->dir) 4642 return 1; 4643 if (data->dir < ref->dir) 4644 return -1; 4645 if (data->dir_gen > ref->dir_gen) 4646 return 1; 4647 if (data->dir_gen < ref->dir_gen) 4648 return -1; 4649 if (data->name_len > ref->name_len) 4650 return 1; 4651 if (data->name_len < ref->name_len) 4652 return -1; 4653 result = strcmp(data->name, ref->name); 4654 if (result > 0) 4655 return 1; 4656 if (result < 0) 4657 return -1; 4658 return 0; 4659 } 4660 4661 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4662 { 4663 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4664 4665 return rbtree_ref_comp(entry, parent) < 0; 4666 } 4667 4668 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4669 struct fs_path *name, u64 dir, u64 dir_gen, 4670 struct send_ctx *sctx) 4671 { 4672 int ret = 0; 4673 struct fs_path *path = NULL; 4674 struct recorded_ref *ref = NULL; 4675 4676 path = fs_path_alloc(); 4677 if (!path) { 4678 ret = -ENOMEM; 4679 goto out; 4680 } 4681 4682 ref = recorded_ref_alloc(); 4683 if (!ref) { 4684 ret = -ENOMEM; 4685 goto out; 4686 } 4687 4688 ret = get_cur_path(sctx, dir, dir_gen, path); 4689 if (ret < 0) 4690 goto out; 4691 ret = fs_path_add_path(path, name); 4692 if (ret < 0) 4693 goto out; 4694 4695 ref->dir = dir; 4696 ref->dir_gen = dir_gen; 4697 set_ref_path(ref, path); 4698 list_add_tail(&ref->list, refs); 4699 rb_add(&ref->node, root, rbtree_ref_less); 4700 ref->root = root; 4701 out: 4702 if (ret) { 4703 if (path && (!ref || !ref->full_path)) 4704 fs_path_free(path); 4705 recorded_ref_free(ref); 4706 } 4707 return ret; 4708 } 4709 4710 static int record_new_ref_if_needed(int num, u64 dir, int index, 4711 struct fs_path *name, void *ctx) 4712 { 4713 int ret = 0; 4714 struct send_ctx *sctx = ctx; 4715 struct rb_node *node = NULL; 4716 struct recorded_ref data; 4717 struct recorded_ref *ref; 4718 u64 dir_gen; 4719 4720 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4721 if (ret < 0) 4722 goto out; 4723 4724 data.dir = dir; 4725 data.dir_gen = dir_gen; 4726 set_ref_path(&data, name); 4727 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4728 if (node) { 4729 ref = rb_entry(node, struct recorded_ref, node); 4730 recorded_ref_free(ref); 4731 } else { 4732 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4733 &sctx->new_refs, name, dir, dir_gen, 4734 sctx); 4735 } 4736 out: 4737 return ret; 4738 } 4739 4740 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4741 struct fs_path *name, void *ctx) 4742 { 4743 int ret = 0; 4744 struct send_ctx *sctx = ctx; 4745 struct rb_node *node = NULL; 4746 struct recorded_ref data; 4747 struct recorded_ref *ref; 4748 u64 dir_gen; 4749 4750 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4751 if (ret < 0) 4752 goto out; 4753 4754 data.dir = dir; 4755 data.dir_gen = dir_gen; 4756 set_ref_path(&data, name); 4757 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4758 if (node) { 4759 ref = rb_entry(node, struct recorded_ref, node); 4760 recorded_ref_free(ref); 4761 } else { 4762 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4763 &sctx->deleted_refs, name, dir, 4764 dir_gen, sctx); 4765 } 4766 out: 4767 return ret; 4768 } 4769 4770 static int record_new_ref(struct send_ctx *sctx) 4771 { 4772 int ret; 4773 4774 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4775 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4776 if (ret < 0) 4777 goto out; 4778 ret = 0; 4779 4780 out: 4781 return ret; 4782 } 4783 4784 static int record_deleted_ref(struct send_ctx *sctx) 4785 { 4786 int ret; 4787 4788 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4789 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4790 sctx); 4791 if (ret < 0) 4792 goto out; 4793 ret = 0; 4794 4795 out: 4796 return ret; 4797 } 4798 4799 static int record_changed_ref(struct send_ctx *sctx) 4800 { 4801 int ret = 0; 4802 4803 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4804 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4805 if (ret < 0) 4806 goto out; 4807 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4808 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4809 if (ret < 0) 4810 goto out; 4811 ret = 0; 4812 4813 out: 4814 return ret; 4815 } 4816 4817 /* 4818 * Record and process all refs at once. Needed when an inode changes the 4819 * generation number, which means that it was deleted and recreated. 4820 */ 4821 static int process_all_refs(struct send_ctx *sctx, 4822 enum btrfs_compare_tree_result cmd) 4823 { 4824 int ret = 0; 4825 int iter_ret = 0; 4826 struct btrfs_root *root; 4827 struct btrfs_path *path; 4828 struct btrfs_key key; 4829 struct btrfs_key found_key; 4830 iterate_inode_ref_t cb; 4831 int pending_move = 0; 4832 4833 path = alloc_path_for_send(); 4834 if (!path) 4835 return -ENOMEM; 4836 4837 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4838 root = sctx->send_root; 4839 cb = record_new_ref_if_needed; 4840 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4841 root = sctx->parent_root; 4842 cb = record_deleted_ref_if_needed; 4843 } else { 4844 btrfs_err(sctx->send_root->fs_info, 4845 "Wrong command %d in process_all_refs", cmd); 4846 ret = -EINVAL; 4847 goto out; 4848 } 4849 4850 key.objectid = sctx->cmp_key->objectid; 4851 key.type = BTRFS_INODE_REF_KEY; 4852 key.offset = 0; 4853 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4854 if (found_key.objectid != key.objectid || 4855 (found_key.type != BTRFS_INODE_REF_KEY && 4856 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4857 break; 4858 4859 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4860 if (ret < 0) 4861 goto out; 4862 } 4863 /* Catch error found during iteration */ 4864 if (iter_ret < 0) { 4865 ret = iter_ret; 4866 goto out; 4867 } 4868 btrfs_release_path(path); 4869 4870 /* 4871 * We don't actually care about pending_move as we are simply 4872 * re-creating this inode and will be rename'ing it into place once we 4873 * rename the parent directory. 4874 */ 4875 ret = process_recorded_refs(sctx, &pending_move); 4876 out: 4877 btrfs_free_path(path); 4878 return ret; 4879 } 4880 4881 static int send_set_xattr(struct send_ctx *sctx, 4882 struct fs_path *path, 4883 const char *name, int name_len, 4884 const char *data, int data_len) 4885 { 4886 int ret = 0; 4887 4888 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4889 if (ret < 0) 4890 goto out; 4891 4892 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4893 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4894 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4895 4896 ret = send_cmd(sctx); 4897 4898 tlv_put_failure: 4899 out: 4900 return ret; 4901 } 4902 4903 static int send_remove_xattr(struct send_ctx *sctx, 4904 struct fs_path *path, 4905 const char *name, int name_len) 4906 { 4907 int ret = 0; 4908 4909 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4910 if (ret < 0) 4911 goto out; 4912 4913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4914 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4915 4916 ret = send_cmd(sctx); 4917 4918 tlv_put_failure: 4919 out: 4920 return ret; 4921 } 4922 4923 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4924 const char *name, int name_len, const char *data, 4925 int data_len, void *ctx) 4926 { 4927 int ret; 4928 struct send_ctx *sctx = ctx; 4929 struct fs_path *p; 4930 struct posix_acl_xattr_header dummy_acl; 4931 4932 /* Capabilities are emitted by finish_inode_if_needed */ 4933 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4934 return 0; 4935 4936 p = fs_path_alloc(); 4937 if (!p) 4938 return -ENOMEM; 4939 4940 /* 4941 * This hack is needed because empty acls are stored as zero byte 4942 * data in xattrs. Problem with that is, that receiving these zero byte 4943 * acls will fail later. To fix this, we send a dummy acl list that 4944 * only contains the version number and no entries. 4945 */ 4946 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4947 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4948 if (data_len == 0) { 4949 dummy_acl.a_version = 4950 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4951 data = (char *)&dummy_acl; 4952 data_len = sizeof(dummy_acl); 4953 } 4954 } 4955 4956 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4957 if (ret < 0) 4958 goto out; 4959 4960 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4961 4962 out: 4963 fs_path_free(p); 4964 return ret; 4965 } 4966 4967 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4968 const char *name, int name_len, 4969 const char *data, int data_len, void *ctx) 4970 { 4971 int ret; 4972 struct send_ctx *sctx = ctx; 4973 struct fs_path *p; 4974 4975 p = fs_path_alloc(); 4976 if (!p) 4977 return -ENOMEM; 4978 4979 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4980 if (ret < 0) 4981 goto out; 4982 4983 ret = send_remove_xattr(sctx, p, name, name_len); 4984 4985 out: 4986 fs_path_free(p); 4987 return ret; 4988 } 4989 4990 static int process_new_xattr(struct send_ctx *sctx) 4991 { 4992 int ret = 0; 4993 4994 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4995 __process_new_xattr, sctx); 4996 4997 return ret; 4998 } 4999 5000 static int process_deleted_xattr(struct send_ctx *sctx) 5001 { 5002 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5003 __process_deleted_xattr, sctx); 5004 } 5005 5006 struct find_xattr_ctx { 5007 const char *name; 5008 int name_len; 5009 int found_idx; 5010 char *found_data; 5011 int found_data_len; 5012 }; 5013 5014 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5015 int name_len, const char *data, int data_len, void *vctx) 5016 { 5017 struct find_xattr_ctx *ctx = vctx; 5018 5019 if (name_len == ctx->name_len && 5020 strncmp(name, ctx->name, name_len) == 0) { 5021 ctx->found_idx = num; 5022 ctx->found_data_len = data_len; 5023 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5024 if (!ctx->found_data) 5025 return -ENOMEM; 5026 return 1; 5027 } 5028 return 0; 5029 } 5030 5031 static int find_xattr(struct btrfs_root *root, 5032 struct btrfs_path *path, 5033 struct btrfs_key *key, 5034 const char *name, int name_len, 5035 char **data, int *data_len) 5036 { 5037 int ret; 5038 struct find_xattr_ctx ctx; 5039 5040 ctx.name = name; 5041 ctx.name_len = name_len; 5042 ctx.found_idx = -1; 5043 ctx.found_data = NULL; 5044 ctx.found_data_len = 0; 5045 5046 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5047 if (ret < 0) 5048 return ret; 5049 5050 if (ctx.found_idx == -1) 5051 return -ENOENT; 5052 if (data) { 5053 *data = ctx.found_data; 5054 *data_len = ctx.found_data_len; 5055 } else { 5056 kfree(ctx.found_data); 5057 } 5058 return ctx.found_idx; 5059 } 5060 5061 5062 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5063 const char *name, int name_len, 5064 const char *data, int data_len, 5065 void *ctx) 5066 { 5067 int ret; 5068 struct send_ctx *sctx = ctx; 5069 char *found_data = NULL; 5070 int found_data_len = 0; 5071 5072 ret = find_xattr(sctx->parent_root, sctx->right_path, 5073 sctx->cmp_key, name, name_len, &found_data, 5074 &found_data_len); 5075 if (ret == -ENOENT) { 5076 ret = __process_new_xattr(num, di_key, name, name_len, data, 5077 data_len, ctx); 5078 } else if (ret >= 0) { 5079 if (data_len != found_data_len || 5080 memcmp(data, found_data, data_len)) { 5081 ret = __process_new_xattr(num, di_key, name, name_len, 5082 data, data_len, ctx); 5083 } else { 5084 ret = 0; 5085 } 5086 } 5087 5088 kfree(found_data); 5089 return ret; 5090 } 5091 5092 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5093 const char *name, int name_len, 5094 const char *data, int data_len, 5095 void *ctx) 5096 { 5097 int ret; 5098 struct send_ctx *sctx = ctx; 5099 5100 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5101 name, name_len, NULL, NULL); 5102 if (ret == -ENOENT) 5103 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5104 data_len, ctx); 5105 else if (ret >= 0) 5106 ret = 0; 5107 5108 return ret; 5109 } 5110 5111 static int process_changed_xattr(struct send_ctx *sctx) 5112 { 5113 int ret = 0; 5114 5115 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5116 __process_changed_new_xattr, sctx); 5117 if (ret < 0) 5118 goto out; 5119 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5120 __process_changed_deleted_xattr, sctx); 5121 5122 out: 5123 return ret; 5124 } 5125 5126 static int process_all_new_xattrs(struct send_ctx *sctx) 5127 { 5128 int ret = 0; 5129 int iter_ret = 0; 5130 struct btrfs_root *root; 5131 struct btrfs_path *path; 5132 struct btrfs_key key; 5133 struct btrfs_key found_key; 5134 5135 path = alloc_path_for_send(); 5136 if (!path) 5137 return -ENOMEM; 5138 5139 root = sctx->send_root; 5140 5141 key.objectid = sctx->cmp_key->objectid; 5142 key.type = BTRFS_XATTR_ITEM_KEY; 5143 key.offset = 0; 5144 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5145 if (found_key.objectid != key.objectid || 5146 found_key.type != key.type) { 5147 ret = 0; 5148 break; 5149 } 5150 5151 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5152 if (ret < 0) 5153 break; 5154 } 5155 /* Catch error found during iteration */ 5156 if (iter_ret < 0) 5157 ret = iter_ret; 5158 5159 btrfs_free_path(path); 5160 return ret; 5161 } 5162 5163 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5164 struct fsverity_descriptor *desc) 5165 { 5166 int ret; 5167 5168 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5169 if (ret < 0) 5170 goto out; 5171 5172 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5173 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5174 le8_to_cpu(desc->hash_algorithm)); 5175 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5176 1U << le8_to_cpu(desc->log_blocksize)); 5177 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5178 le8_to_cpu(desc->salt_size)); 5179 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5180 le32_to_cpu(desc->sig_size)); 5181 5182 ret = send_cmd(sctx); 5183 5184 tlv_put_failure: 5185 out: 5186 return ret; 5187 } 5188 5189 static int process_verity(struct send_ctx *sctx) 5190 { 5191 int ret = 0; 5192 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5193 struct inode *inode; 5194 struct fs_path *p; 5195 5196 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 5197 if (IS_ERR(inode)) 5198 return PTR_ERR(inode); 5199 5200 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5201 if (ret < 0) 5202 goto iput; 5203 5204 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5205 ret = -EMSGSIZE; 5206 goto iput; 5207 } 5208 if (!sctx->verity_descriptor) { 5209 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5210 GFP_KERNEL); 5211 if (!sctx->verity_descriptor) { 5212 ret = -ENOMEM; 5213 goto iput; 5214 } 5215 } 5216 5217 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5218 if (ret < 0) 5219 goto iput; 5220 5221 p = fs_path_alloc(); 5222 if (!p) { 5223 ret = -ENOMEM; 5224 goto iput; 5225 } 5226 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5227 if (ret < 0) 5228 goto free_path; 5229 5230 ret = send_verity(sctx, p, sctx->verity_descriptor); 5231 if (ret < 0) 5232 goto free_path; 5233 5234 free_path: 5235 fs_path_free(p); 5236 iput: 5237 iput(inode); 5238 return ret; 5239 } 5240 5241 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5242 { 5243 return sctx->send_max_size - SZ_16K; 5244 } 5245 5246 static int put_data_header(struct send_ctx *sctx, u32 len) 5247 { 5248 if (WARN_ON_ONCE(sctx->put_data)) 5249 return -EINVAL; 5250 sctx->put_data = true; 5251 if (sctx->proto >= 2) { 5252 /* 5253 * Since v2, the data attribute header doesn't include a length, 5254 * it is implicitly to the end of the command. 5255 */ 5256 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5257 return -EOVERFLOW; 5258 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5259 sctx->send_size += sizeof(__le16); 5260 } else { 5261 struct btrfs_tlv_header *hdr; 5262 5263 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5264 return -EOVERFLOW; 5265 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5266 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5267 put_unaligned_le16(len, &hdr->tlv_len); 5268 sctx->send_size += sizeof(*hdr); 5269 } 5270 return 0; 5271 } 5272 5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5274 { 5275 struct btrfs_root *root = sctx->send_root; 5276 struct btrfs_fs_info *fs_info = root->fs_info; 5277 struct page *page; 5278 pgoff_t index = offset >> PAGE_SHIFT; 5279 pgoff_t last_index; 5280 unsigned pg_offset = offset_in_page(offset); 5281 int ret; 5282 5283 ret = put_data_header(sctx, len); 5284 if (ret) 5285 return ret; 5286 5287 last_index = (offset + len - 1) >> PAGE_SHIFT; 5288 5289 while (index <= last_index) { 5290 unsigned cur_len = min_t(unsigned, len, 5291 PAGE_SIZE - pg_offset); 5292 5293 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5294 if (!page) { 5295 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5296 &sctx->ra, NULL, index, 5297 last_index + 1 - index); 5298 5299 page = find_or_create_page(sctx->cur_inode->i_mapping, 5300 index, GFP_KERNEL); 5301 if (!page) { 5302 ret = -ENOMEM; 5303 break; 5304 } 5305 } 5306 5307 if (PageReadahead(page)) 5308 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5309 &sctx->ra, NULL, page_folio(page), 5310 index, last_index + 1 - index); 5311 5312 if (!PageUptodate(page)) { 5313 btrfs_read_folio(NULL, page_folio(page)); 5314 lock_page(page); 5315 if (!PageUptodate(page)) { 5316 unlock_page(page); 5317 btrfs_err(fs_info, 5318 "send: IO error at offset %llu for inode %llu root %llu", 5319 page_offset(page), sctx->cur_ino, 5320 sctx->send_root->root_key.objectid); 5321 put_page(page); 5322 ret = -EIO; 5323 break; 5324 } 5325 } 5326 5327 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5328 pg_offset, cur_len); 5329 unlock_page(page); 5330 put_page(page); 5331 index++; 5332 pg_offset = 0; 5333 len -= cur_len; 5334 sctx->send_size += cur_len; 5335 } 5336 5337 return ret; 5338 } 5339 5340 /* 5341 * Read some bytes from the current inode/file and send a write command to 5342 * user space. 5343 */ 5344 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5345 { 5346 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5347 int ret = 0; 5348 struct fs_path *p; 5349 5350 p = fs_path_alloc(); 5351 if (!p) 5352 return -ENOMEM; 5353 5354 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5355 5356 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5357 if (ret < 0) 5358 goto out; 5359 5360 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5361 if (ret < 0) 5362 goto out; 5363 5364 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5365 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5366 ret = put_file_data(sctx, offset, len); 5367 if (ret < 0) 5368 goto out; 5369 5370 ret = send_cmd(sctx); 5371 5372 tlv_put_failure: 5373 out: 5374 fs_path_free(p); 5375 return ret; 5376 } 5377 5378 /* 5379 * Send a clone command to user space. 5380 */ 5381 static int send_clone(struct send_ctx *sctx, 5382 u64 offset, u32 len, 5383 struct clone_root *clone_root) 5384 { 5385 int ret = 0; 5386 struct fs_path *p; 5387 u64 gen; 5388 5389 btrfs_debug(sctx->send_root->fs_info, 5390 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5391 offset, len, clone_root->root->root_key.objectid, 5392 clone_root->ino, clone_root->offset); 5393 5394 p = fs_path_alloc(); 5395 if (!p) 5396 return -ENOMEM; 5397 5398 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5399 if (ret < 0) 5400 goto out; 5401 5402 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5403 if (ret < 0) 5404 goto out; 5405 5406 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5408 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5409 5410 if (clone_root->root == sctx->send_root) { 5411 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5412 if (ret < 0) 5413 goto out; 5414 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5415 } else { 5416 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5417 } 5418 if (ret < 0) 5419 goto out; 5420 5421 /* 5422 * If the parent we're using has a received_uuid set then use that as 5423 * our clone source as that is what we will look for when doing a 5424 * receive. 5425 * 5426 * This covers the case that we create a snapshot off of a received 5427 * subvolume and then use that as the parent and try to receive on a 5428 * different host. 5429 */ 5430 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5431 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5432 clone_root->root->root_item.received_uuid); 5433 else 5434 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5435 clone_root->root->root_item.uuid); 5436 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5437 btrfs_root_ctransid(&clone_root->root->root_item)); 5438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5439 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5440 clone_root->offset); 5441 5442 ret = send_cmd(sctx); 5443 5444 tlv_put_failure: 5445 out: 5446 fs_path_free(p); 5447 return ret; 5448 } 5449 5450 /* 5451 * Send an update extent command to user space. 5452 */ 5453 static int send_update_extent(struct send_ctx *sctx, 5454 u64 offset, u32 len) 5455 { 5456 int ret = 0; 5457 struct fs_path *p; 5458 5459 p = fs_path_alloc(); 5460 if (!p) 5461 return -ENOMEM; 5462 5463 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5464 if (ret < 0) 5465 goto out; 5466 5467 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5468 if (ret < 0) 5469 goto out; 5470 5471 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5472 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5473 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5474 5475 ret = send_cmd(sctx); 5476 5477 tlv_put_failure: 5478 out: 5479 fs_path_free(p); 5480 return ret; 5481 } 5482 5483 static int send_hole(struct send_ctx *sctx, u64 end) 5484 { 5485 struct fs_path *p = NULL; 5486 u64 read_size = max_send_read_size(sctx); 5487 u64 offset = sctx->cur_inode_last_extent; 5488 int ret = 0; 5489 5490 /* 5491 * A hole that starts at EOF or beyond it. Since we do not yet support 5492 * fallocate (for extent preallocation and hole punching), sending a 5493 * write of zeroes starting at EOF or beyond would later require issuing 5494 * a truncate operation which would undo the write and achieve nothing. 5495 */ 5496 if (offset >= sctx->cur_inode_size) 5497 return 0; 5498 5499 /* 5500 * Don't go beyond the inode's i_size due to prealloc extents that start 5501 * after the i_size. 5502 */ 5503 end = min_t(u64, end, sctx->cur_inode_size); 5504 5505 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5506 return send_update_extent(sctx, offset, end - offset); 5507 5508 p = fs_path_alloc(); 5509 if (!p) 5510 return -ENOMEM; 5511 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5512 if (ret < 0) 5513 goto tlv_put_failure; 5514 while (offset < end) { 5515 u64 len = min(end - offset, read_size); 5516 5517 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5518 if (ret < 0) 5519 break; 5520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5521 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5522 ret = put_data_header(sctx, len); 5523 if (ret < 0) 5524 break; 5525 memset(sctx->send_buf + sctx->send_size, 0, len); 5526 sctx->send_size += len; 5527 ret = send_cmd(sctx); 5528 if (ret < 0) 5529 break; 5530 offset += len; 5531 } 5532 sctx->cur_inode_next_write_offset = offset; 5533 tlv_put_failure: 5534 fs_path_free(p); 5535 return ret; 5536 } 5537 5538 static int send_encoded_inline_extent(struct send_ctx *sctx, 5539 struct btrfs_path *path, u64 offset, 5540 u64 len) 5541 { 5542 struct btrfs_root *root = sctx->send_root; 5543 struct btrfs_fs_info *fs_info = root->fs_info; 5544 struct inode *inode; 5545 struct fs_path *fspath; 5546 struct extent_buffer *leaf = path->nodes[0]; 5547 struct btrfs_key key; 5548 struct btrfs_file_extent_item *ei; 5549 u64 ram_bytes; 5550 size_t inline_size; 5551 int ret; 5552 5553 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5554 if (IS_ERR(inode)) 5555 return PTR_ERR(inode); 5556 5557 fspath = fs_path_alloc(); 5558 if (!fspath) { 5559 ret = -ENOMEM; 5560 goto out; 5561 } 5562 5563 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5564 if (ret < 0) 5565 goto out; 5566 5567 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5568 if (ret < 0) 5569 goto out; 5570 5571 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5573 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5574 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5575 5576 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5577 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5578 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5579 min(key.offset + ram_bytes - offset, len)); 5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5582 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5583 btrfs_file_extent_compression(leaf, ei)); 5584 if (ret < 0) 5585 goto out; 5586 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5587 5588 ret = put_data_header(sctx, inline_size); 5589 if (ret < 0) 5590 goto out; 5591 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5592 btrfs_file_extent_inline_start(ei), inline_size); 5593 sctx->send_size += inline_size; 5594 5595 ret = send_cmd(sctx); 5596 5597 tlv_put_failure: 5598 out: 5599 fs_path_free(fspath); 5600 iput(inode); 5601 return ret; 5602 } 5603 5604 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5605 u64 offset, u64 len) 5606 { 5607 struct btrfs_root *root = sctx->send_root; 5608 struct btrfs_fs_info *fs_info = root->fs_info; 5609 struct inode *inode; 5610 struct fs_path *fspath; 5611 struct extent_buffer *leaf = path->nodes[0]; 5612 struct btrfs_key key; 5613 struct btrfs_file_extent_item *ei; 5614 u64 disk_bytenr, disk_num_bytes; 5615 u32 data_offset; 5616 struct btrfs_cmd_header *hdr; 5617 u32 crc; 5618 int ret; 5619 5620 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5621 if (IS_ERR(inode)) 5622 return PTR_ERR(inode); 5623 5624 fspath = fs_path_alloc(); 5625 if (!fspath) { 5626 ret = -ENOMEM; 5627 goto out; 5628 } 5629 5630 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5631 if (ret < 0) 5632 goto out; 5633 5634 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5635 if (ret < 0) 5636 goto out; 5637 5638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5639 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5640 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5641 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5642 5643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5645 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5646 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5647 len)); 5648 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5649 btrfs_file_extent_ram_bytes(leaf, ei)); 5650 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5651 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5652 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5653 btrfs_file_extent_compression(leaf, ei)); 5654 if (ret < 0) 5655 goto out; 5656 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5657 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5658 5659 ret = put_data_header(sctx, disk_num_bytes); 5660 if (ret < 0) 5661 goto out; 5662 5663 /* 5664 * We want to do I/O directly into the send buffer, so get the next page 5665 * boundary in the send buffer. This means that there may be a gap 5666 * between the beginning of the command and the file data. 5667 */ 5668 data_offset = PAGE_ALIGN(sctx->send_size); 5669 if (data_offset > sctx->send_max_size || 5670 sctx->send_max_size - data_offset < disk_num_bytes) { 5671 ret = -EOVERFLOW; 5672 goto out; 5673 } 5674 5675 /* 5676 * Note that send_buf is a mapping of send_buf_pages, so this is really 5677 * reading into send_buf. 5678 */ 5679 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5680 disk_bytenr, disk_num_bytes, 5681 sctx->send_buf_pages + 5682 (data_offset >> PAGE_SHIFT)); 5683 if (ret) 5684 goto out; 5685 5686 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5687 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5688 hdr->crc = 0; 5689 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5690 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5691 hdr->crc = cpu_to_le32(crc); 5692 5693 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5694 &sctx->send_off); 5695 if (!ret) { 5696 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5697 disk_num_bytes, &sctx->send_off); 5698 } 5699 sctx->send_size = 0; 5700 sctx->put_data = false; 5701 5702 tlv_put_failure: 5703 out: 5704 fs_path_free(fspath); 5705 iput(inode); 5706 return ret; 5707 } 5708 5709 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5710 const u64 offset, const u64 len) 5711 { 5712 const u64 end = offset + len; 5713 struct extent_buffer *leaf = path->nodes[0]; 5714 struct btrfs_file_extent_item *ei; 5715 u64 read_size = max_send_read_size(sctx); 5716 u64 sent = 0; 5717 5718 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5719 return send_update_extent(sctx, offset, len); 5720 5721 ei = btrfs_item_ptr(leaf, path->slots[0], 5722 struct btrfs_file_extent_item); 5723 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5724 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5725 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5726 BTRFS_FILE_EXTENT_INLINE); 5727 5728 /* 5729 * Send the compressed extent unless the compressed data is 5730 * larger than the decompressed data. This can happen if we're 5731 * not sending the entire extent, either because it has been 5732 * partially overwritten/truncated or because this is a part of 5733 * the extent that we couldn't clone in clone_range(). 5734 */ 5735 if (is_inline && 5736 btrfs_file_extent_inline_item_len(leaf, 5737 path->slots[0]) <= len) { 5738 return send_encoded_inline_extent(sctx, path, offset, 5739 len); 5740 } else if (!is_inline && 5741 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5742 return send_encoded_extent(sctx, path, offset, len); 5743 } 5744 } 5745 5746 if (sctx->cur_inode == NULL) { 5747 struct btrfs_root *root = sctx->send_root; 5748 5749 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5750 if (IS_ERR(sctx->cur_inode)) { 5751 int err = PTR_ERR(sctx->cur_inode); 5752 5753 sctx->cur_inode = NULL; 5754 return err; 5755 } 5756 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5757 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5758 5759 /* 5760 * It's very likely there are no pages from this inode in the page 5761 * cache, so after reading extents and sending their data, we clean 5762 * the page cache to avoid trashing the page cache (adding pressure 5763 * to the page cache and forcing eviction of other data more useful 5764 * for applications). 5765 * 5766 * We decide if we should clean the page cache simply by checking 5767 * if the inode's mapping nrpages is 0 when we first open it, and 5768 * not by using something like filemap_range_has_page() before 5769 * reading an extent because when we ask the readahead code to 5770 * read a given file range, it may (and almost always does) read 5771 * pages from beyond that range (see the documentation for 5772 * page_cache_sync_readahead()), so it would not be reliable, 5773 * because after reading the first extent future calls to 5774 * filemap_range_has_page() would return true because the readahead 5775 * on the previous extent resulted in reading pages of the current 5776 * extent as well. 5777 */ 5778 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5779 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5780 } 5781 5782 while (sent < len) { 5783 u64 size = min(len - sent, read_size); 5784 int ret; 5785 5786 ret = send_write(sctx, offset + sent, size); 5787 if (ret < 0) 5788 return ret; 5789 sent += size; 5790 } 5791 5792 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5793 /* 5794 * Always operate only on ranges that are a multiple of the page 5795 * size. This is not only to prevent zeroing parts of a page in 5796 * the case of subpage sector size, but also to guarantee we evict 5797 * pages, as passing a range that is smaller than page size does 5798 * not evict the respective page (only zeroes part of its content). 5799 * 5800 * Always start from the end offset of the last range cleared. 5801 * This is because the readahead code may (and very often does) 5802 * reads pages beyond the range we request for readahead. So if 5803 * we have an extent layout like this: 5804 * 5805 * [ extent A ] [ extent B ] [ extent C ] 5806 * 5807 * When we ask page_cache_sync_readahead() to read extent A, it 5808 * may also trigger reads for pages of extent B. If we are doing 5809 * an incremental send and extent B has not changed between the 5810 * parent and send snapshots, some or all of its pages may end 5811 * up being read and placed in the page cache. So when truncating 5812 * the page cache we always start from the end offset of the 5813 * previously processed extent up to the end of the current 5814 * extent. 5815 */ 5816 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5817 sctx->page_cache_clear_start, 5818 end - 1); 5819 sctx->page_cache_clear_start = end; 5820 } 5821 5822 return 0; 5823 } 5824 5825 /* 5826 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5827 * found, call send_set_xattr function to emit it. 5828 * 5829 * Return 0 if there isn't a capability, or when the capability was emitted 5830 * successfully, or < 0 if an error occurred. 5831 */ 5832 static int send_capabilities(struct send_ctx *sctx) 5833 { 5834 struct fs_path *fspath = NULL; 5835 struct btrfs_path *path; 5836 struct btrfs_dir_item *di; 5837 struct extent_buffer *leaf; 5838 unsigned long data_ptr; 5839 char *buf = NULL; 5840 int buf_len; 5841 int ret = 0; 5842 5843 path = alloc_path_for_send(); 5844 if (!path) 5845 return -ENOMEM; 5846 5847 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5848 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5849 if (!di) { 5850 /* There is no xattr for this inode */ 5851 goto out; 5852 } else if (IS_ERR(di)) { 5853 ret = PTR_ERR(di); 5854 goto out; 5855 } 5856 5857 leaf = path->nodes[0]; 5858 buf_len = btrfs_dir_data_len(leaf, di); 5859 5860 fspath = fs_path_alloc(); 5861 buf = kmalloc(buf_len, GFP_KERNEL); 5862 if (!fspath || !buf) { 5863 ret = -ENOMEM; 5864 goto out; 5865 } 5866 5867 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5868 if (ret < 0) 5869 goto out; 5870 5871 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5872 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5873 5874 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5875 strlen(XATTR_NAME_CAPS), buf, buf_len); 5876 out: 5877 kfree(buf); 5878 fs_path_free(fspath); 5879 btrfs_free_path(path); 5880 return ret; 5881 } 5882 5883 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5884 struct clone_root *clone_root, const u64 disk_byte, 5885 u64 data_offset, u64 offset, u64 len) 5886 { 5887 struct btrfs_path *path; 5888 struct btrfs_key key; 5889 int ret; 5890 struct btrfs_inode_info info; 5891 u64 clone_src_i_size = 0; 5892 5893 /* 5894 * Prevent cloning from a zero offset with a length matching the sector 5895 * size because in some scenarios this will make the receiver fail. 5896 * 5897 * For example, if in the source filesystem the extent at offset 0 5898 * has a length of sectorsize and it was written using direct IO, then 5899 * it can never be an inline extent (even if compression is enabled). 5900 * Then this extent can be cloned in the original filesystem to a non 5901 * zero file offset, but it may not be possible to clone in the 5902 * destination filesystem because it can be inlined due to compression 5903 * on the destination filesystem (as the receiver's write operations are 5904 * always done using buffered IO). The same happens when the original 5905 * filesystem does not have compression enabled but the destination 5906 * filesystem has. 5907 */ 5908 if (clone_root->offset == 0 && 5909 len == sctx->send_root->fs_info->sectorsize) 5910 return send_extent_data(sctx, dst_path, offset, len); 5911 5912 path = alloc_path_for_send(); 5913 if (!path) 5914 return -ENOMEM; 5915 5916 /* 5917 * There are inodes that have extents that lie behind its i_size. Don't 5918 * accept clones from these extents. 5919 */ 5920 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5921 btrfs_release_path(path); 5922 if (ret < 0) 5923 goto out; 5924 clone_src_i_size = info.size; 5925 5926 /* 5927 * We can't send a clone operation for the entire range if we find 5928 * extent items in the respective range in the source file that 5929 * refer to different extents or if we find holes. 5930 * So check for that and do a mix of clone and regular write/copy 5931 * operations if needed. 5932 * 5933 * Example: 5934 * 5935 * mkfs.btrfs -f /dev/sda 5936 * mount /dev/sda /mnt 5937 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5938 * cp --reflink=always /mnt/foo /mnt/bar 5939 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5940 * btrfs subvolume snapshot -r /mnt /mnt/snap 5941 * 5942 * If when we send the snapshot and we are processing file bar (which 5943 * has a higher inode number than foo) we blindly send a clone operation 5944 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5945 * a file bar that matches the content of file foo - iow, doesn't match 5946 * the content from bar in the original filesystem. 5947 */ 5948 key.objectid = clone_root->ino; 5949 key.type = BTRFS_EXTENT_DATA_KEY; 5950 key.offset = clone_root->offset; 5951 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5952 if (ret < 0) 5953 goto out; 5954 if (ret > 0 && path->slots[0] > 0) { 5955 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5956 if (key.objectid == clone_root->ino && 5957 key.type == BTRFS_EXTENT_DATA_KEY) 5958 path->slots[0]--; 5959 } 5960 5961 while (true) { 5962 struct extent_buffer *leaf = path->nodes[0]; 5963 int slot = path->slots[0]; 5964 struct btrfs_file_extent_item *ei; 5965 u8 type; 5966 u64 ext_len; 5967 u64 clone_len; 5968 u64 clone_data_offset; 5969 bool crossed_src_i_size = false; 5970 5971 if (slot >= btrfs_header_nritems(leaf)) { 5972 ret = btrfs_next_leaf(clone_root->root, path); 5973 if (ret < 0) 5974 goto out; 5975 else if (ret > 0) 5976 break; 5977 continue; 5978 } 5979 5980 btrfs_item_key_to_cpu(leaf, &key, slot); 5981 5982 /* 5983 * We might have an implicit trailing hole (NO_HOLES feature 5984 * enabled). We deal with it after leaving this loop. 5985 */ 5986 if (key.objectid != clone_root->ino || 5987 key.type != BTRFS_EXTENT_DATA_KEY) 5988 break; 5989 5990 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5991 type = btrfs_file_extent_type(leaf, ei); 5992 if (type == BTRFS_FILE_EXTENT_INLINE) { 5993 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5994 ext_len = PAGE_ALIGN(ext_len); 5995 } else { 5996 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5997 } 5998 5999 if (key.offset + ext_len <= clone_root->offset) 6000 goto next; 6001 6002 if (key.offset > clone_root->offset) { 6003 /* Implicit hole, NO_HOLES feature enabled. */ 6004 u64 hole_len = key.offset - clone_root->offset; 6005 6006 if (hole_len > len) 6007 hole_len = len; 6008 ret = send_extent_data(sctx, dst_path, offset, 6009 hole_len); 6010 if (ret < 0) 6011 goto out; 6012 6013 len -= hole_len; 6014 if (len == 0) 6015 break; 6016 offset += hole_len; 6017 clone_root->offset += hole_len; 6018 data_offset += hole_len; 6019 } 6020 6021 if (key.offset >= clone_root->offset + len) 6022 break; 6023 6024 if (key.offset >= clone_src_i_size) 6025 break; 6026 6027 if (key.offset + ext_len > clone_src_i_size) { 6028 ext_len = clone_src_i_size - key.offset; 6029 crossed_src_i_size = true; 6030 } 6031 6032 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6033 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6034 clone_root->offset = key.offset; 6035 if (clone_data_offset < data_offset && 6036 clone_data_offset + ext_len > data_offset) { 6037 u64 extent_offset; 6038 6039 extent_offset = data_offset - clone_data_offset; 6040 ext_len -= extent_offset; 6041 clone_data_offset += extent_offset; 6042 clone_root->offset += extent_offset; 6043 } 6044 } 6045 6046 clone_len = min_t(u64, ext_len, len); 6047 6048 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6049 clone_data_offset == data_offset) { 6050 const u64 src_end = clone_root->offset + clone_len; 6051 const u64 sectorsize = SZ_64K; 6052 6053 /* 6054 * We can't clone the last block, when its size is not 6055 * sector size aligned, into the middle of a file. If we 6056 * do so, the receiver will get a failure (-EINVAL) when 6057 * trying to clone or will silently corrupt the data in 6058 * the destination file if it's on a kernel without the 6059 * fix introduced by commit ac765f83f1397646 6060 * ("Btrfs: fix data corruption due to cloning of eof 6061 * block). 6062 * 6063 * So issue a clone of the aligned down range plus a 6064 * regular write for the eof block, if we hit that case. 6065 * 6066 * Also, we use the maximum possible sector size, 64K, 6067 * because we don't know what's the sector size of the 6068 * filesystem that receives the stream, so we have to 6069 * assume the largest possible sector size. 6070 */ 6071 if (src_end == clone_src_i_size && 6072 !IS_ALIGNED(src_end, sectorsize) && 6073 offset + clone_len < sctx->cur_inode_size) { 6074 u64 slen; 6075 6076 slen = ALIGN_DOWN(src_end - clone_root->offset, 6077 sectorsize); 6078 if (slen > 0) { 6079 ret = send_clone(sctx, offset, slen, 6080 clone_root); 6081 if (ret < 0) 6082 goto out; 6083 } 6084 ret = send_extent_data(sctx, dst_path, 6085 offset + slen, 6086 clone_len - slen); 6087 } else { 6088 ret = send_clone(sctx, offset, clone_len, 6089 clone_root); 6090 } 6091 } else if (crossed_src_i_size && clone_len < len) { 6092 /* 6093 * If we are at i_size of the clone source inode and we 6094 * can not clone from it, terminate the loop. This is 6095 * to avoid sending two write operations, one with a 6096 * length matching clone_len and the final one after 6097 * this loop with a length of len - clone_len. 6098 * 6099 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6100 * was passed to the send ioctl), this helps avoid 6101 * sending an encoded write for an offset that is not 6102 * sector size aligned, in case the i_size of the source 6103 * inode is not sector size aligned. That will make the 6104 * receiver fallback to decompression of the data and 6105 * writing it using regular buffered IO, therefore while 6106 * not incorrect, it's not optimal due decompression and 6107 * possible re-compression at the receiver. 6108 */ 6109 break; 6110 } else { 6111 ret = send_extent_data(sctx, dst_path, offset, 6112 clone_len); 6113 } 6114 6115 if (ret < 0) 6116 goto out; 6117 6118 len -= clone_len; 6119 if (len == 0) 6120 break; 6121 offset += clone_len; 6122 clone_root->offset += clone_len; 6123 6124 /* 6125 * If we are cloning from the file we are currently processing, 6126 * and using the send root as the clone root, we must stop once 6127 * the current clone offset reaches the current eof of the file 6128 * at the receiver, otherwise we would issue an invalid clone 6129 * operation (source range going beyond eof) and cause the 6130 * receiver to fail. So if we reach the current eof, bail out 6131 * and fallback to a regular write. 6132 */ 6133 if (clone_root->root == sctx->send_root && 6134 clone_root->ino == sctx->cur_ino && 6135 clone_root->offset >= sctx->cur_inode_next_write_offset) 6136 break; 6137 6138 data_offset += clone_len; 6139 next: 6140 path->slots[0]++; 6141 } 6142 6143 if (len > 0) 6144 ret = send_extent_data(sctx, dst_path, offset, len); 6145 else 6146 ret = 0; 6147 out: 6148 btrfs_free_path(path); 6149 return ret; 6150 } 6151 6152 static int send_write_or_clone(struct send_ctx *sctx, 6153 struct btrfs_path *path, 6154 struct btrfs_key *key, 6155 struct clone_root *clone_root) 6156 { 6157 int ret = 0; 6158 u64 offset = key->offset; 6159 u64 end; 6160 u64 bs = sctx->send_root->fs_info->sectorsize; 6161 6162 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6163 if (offset >= end) 6164 return 0; 6165 6166 if (clone_root && IS_ALIGNED(end, bs)) { 6167 struct btrfs_file_extent_item *ei; 6168 u64 disk_byte; 6169 u64 data_offset; 6170 6171 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6172 struct btrfs_file_extent_item); 6173 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6174 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6175 ret = clone_range(sctx, path, clone_root, disk_byte, 6176 data_offset, offset, end - offset); 6177 } else { 6178 ret = send_extent_data(sctx, path, offset, end - offset); 6179 } 6180 sctx->cur_inode_next_write_offset = end; 6181 return ret; 6182 } 6183 6184 static int is_extent_unchanged(struct send_ctx *sctx, 6185 struct btrfs_path *left_path, 6186 struct btrfs_key *ekey) 6187 { 6188 int ret = 0; 6189 struct btrfs_key key; 6190 struct btrfs_path *path = NULL; 6191 struct extent_buffer *eb; 6192 int slot; 6193 struct btrfs_key found_key; 6194 struct btrfs_file_extent_item *ei; 6195 u64 left_disknr; 6196 u64 right_disknr; 6197 u64 left_offset; 6198 u64 right_offset; 6199 u64 left_offset_fixed; 6200 u64 left_len; 6201 u64 right_len; 6202 u64 left_gen; 6203 u64 right_gen; 6204 u8 left_type; 6205 u8 right_type; 6206 6207 path = alloc_path_for_send(); 6208 if (!path) 6209 return -ENOMEM; 6210 6211 eb = left_path->nodes[0]; 6212 slot = left_path->slots[0]; 6213 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6214 left_type = btrfs_file_extent_type(eb, ei); 6215 6216 if (left_type != BTRFS_FILE_EXTENT_REG) { 6217 ret = 0; 6218 goto out; 6219 } 6220 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6221 left_len = btrfs_file_extent_num_bytes(eb, ei); 6222 left_offset = btrfs_file_extent_offset(eb, ei); 6223 left_gen = btrfs_file_extent_generation(eb, ei); 6224 6225 /* 6226 * Following comments will refer to these graphics. L is the left 6227 * extents which we are checking at the moment. 1-8 are the right 6228 * extents that we iterate. 6229 * 6230 * |-----L-----| 6231 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6232 * 6233 * |-----L-----| 6234 * |--1--|-2b-|...(same as above) 6235 * 6236 * Alternative situation. Happens on files where extents got split. 6237 * |-----L-----| 6238 * |-----------7-----------|-6-| 6239 * 6240 * Alternative situation. Happens on files which got larger. 6241 * |-----L-----| 6242 * |-8-| 6243 * Nothing follows after 8. 6244 */ 6245 6246 key.objectid = ekey->objectid; 6247 key.type = BTRFS_EXTENT_DATA_KEY; 6248 key.offset = ekey->offset; 6249 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6250 if (ret < 0) 6251 goto out; 6252 if (ret) { 6253 ret = 0; 6254 goto out; 6255 } 6256 6257 /* 6258 * Handle special case where the right side has no extents at all. 6259 */ 6260 eb = path->nodes[0]; 6261 slot = path->slots[0]; 6262 btrfs_item_key_to_cpu(eb, &found_key, slot); 6263 if (found_key.objectid != key.objectid || 6264 found_key.type != key.type) { 6265 /* If we're a hole then just pretend nothing changed */ 6266 ret = (left_disknr) ? 0 : 1; 6267 goto out; 6268 } 6269 6270 /* 6271 * We're now on 2a, 2b or 7. 6272 */ 6273 key = found_key; 6274 while (key.offset < ekey->offset + left_len) { 6275 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6276 right_type = btrfs_file_extent_type(eb, ei); 6277 if (right_type != BTRFS_FILE_EXTENT_REG && 6278 right_type != BTRFS_FILE_EXTENT_INLINE) { 6279 ret = 0; 6280 goto out; 6281 } 6282 6283 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6284 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6285 right_len = PAGE_ALIGN(right_len); 6286 } else { 6287 right_len = btrfs_file_extent_num_bytes(eb, ei); 6288 } 6289 6290 /* 6291 * Are we at extent 8? If yes, we know the extent is changed. 6292 * This may only happen on the first iteration. 6293 */ 6294 if (found_key.offset + right_len <= ekey->offset) { 6295 /* If we're a hole just pretend nothing changed */ 6296 ret = (left_disknr) ? 0 : 1; 6297 goto out; 6298 } 6299 6300 /* 6301 * We just wanted to see if when we have an inline extent, what 6302 * follows it is a regular extent (wanted to check the above 6303 * condition for inline extents too). This should normally not 6304 * happen but it's possible for example when we have an inline 6305 * compressed extent representing data with a size matching 6306 * the page size (currently the same as sector size). 6307 */ 6308 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6309 ret = 0; 6310 goto out; 6311 } 6312 6313 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6314 right_offset = btrfs_file_extent_offset(eb, ei); 6315 right_gen = btrfs_file_extent_generation(eb, ei); 6316 6317 left_offset_fixed = left_offset; 6318 if (key.offset < ekey->offset) { 6319 /* Fix the right offset for 2a and 7. */ 6320 right_offset += ekey->offset - key.offset; 6321 } else { 6322 /* Fix the left offset for all behind 2a and 2b */ 6323 left_offset_fixed += key.offset - ekey->offset; 6324 } 6325 6326 /* 6327 * Check if we have the same extent. 6328 */ 6329 if (left_disknr != right_disknr || 6330 left_offset_fixed != right_offset || 6331 left_gen != right_gen) { 6332 ret = 0; 6333 goto out; 6334 } 6335 6336 /* 6337 * Go to the next extent. 6338 */ 6339 ret = btrfs_next_item(sctx->parent_root, path); 6340 if (ret < 0) 6341 goto out; 6342 if (!ret) { 6343 eb = path->nodes[0]; 6344 slot = path->slots[0]; 6345 btrfs_item_key_to_cpu(eb, &found_key, slot); 6346 } 6347 if (ret || found_key.objectid != key.objectid || 6348 found_key.type != key.type) { 6349 key.offset += right_len; 6350 break; 6351 } 6352 if (found_key.offset != key.offset + right_len) { 6353 ret = 0; 6354 goto out; 6355 } 6356 key = found_key; 6357 } 6358 6359 /* 6360 * We're now behind the left extent (treat as unchanged) or at the end 6361 * of the right side (treat as changed). 6362 */ 6363 if (key.offset >= ekey->offset + left_len) 6364 ret = 1; 6365 else 6366 ret = 0; 6367 6368 6369 out: 6370 btrfs_free_path(path); 6371 return ret; 6372 } 6373 6374 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6375 { 6376 struct btrfs_path *path; 6377 struct btrfs_root *root = sctx->send_root; 6378 struct btrfs_key key; 6379 int ret; 6380 6381 path = alloc_path_for_send(); 6382 if (!path) 6383 return -ENOMEM; 6384 6385 sctx->cur_inode_last_extent = 0; 6386 6387 key.objectid = sctx->cur_ino; 6388 key.type = BTRFS_EXTENT_DATA_KEY; 6389 key.offset = offset; 6390 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6391 if (ret < 0) 6392 goto out; 6393 ret = 0; 6394 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6395 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6396 goto out; 6397 6398 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6399 out: 6400 btrfs_free_path(path); 6401 return ret; 6402 } 6403 6404 static int range_is_hole_in_parent(struct send_ctx *sctx, 6405 const u64 start, 6406 const u64 end) 6407 { 6408 struct btrfs_path *path; 6409 struct btrfs_key key; 6410 struct btrfs_root *root = sctx->parent_root; 6411 u64 search_start = start; 6412 int ret; 6413 6414 path = alloc_path_for_send(); 6415 if (!path) 6416 return -ENOMEM; 6417 6418 key.objectid = sctx->cur_ino; 6419 key.type = BTRFS_EXTENT_DATA_KEY; 6420 key.offset = search_start; 6421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6422 if (ret < 0) 6423 goto out; 6424 if (ret > 0 && path->slots[0] > 0) 6425 path->slots[0]--; 6426 6427 while (search_start < end) { 6428 struct extent_buffer *leaf = path->nodes[0]; 6429 int slot = path->slots[0]; 6430 struct btrfs_file_extent_item *fi; 6431 u64 extent_end; 6432 6433 if (slot >= btrfs_header_nritems(leaf)) { 6434 ret = btrfs_next_leaf(root, path); 6435 if (ret < 0) 6436 goto out; 6437 else if (ret > 0) 6438 break; 6439 continue; 6440 } 6441 6442 btrfs_item_key_to_cpu(leaf, &key, slot); 6443 if (key.objectid < sctx->cur_ino || 6444 key.type < BTRFS_EXTENT_DATA_KEY) 6445 goto next; 6446 if (key.objectid > sctx->cur_ino || 6447 key.type > BTRFS_EXTENT_DATA_KEY || 6448 key.offset >= end) 6449 break; 6450 6451 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6452 extent_end = btrfs_file_extent_end(path); 6453 if (extent_end <= start) 6454 goto next; 6455 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6456 search_start = extent_end; 6457 goto next; 6458 } 6459 ret = 0; 6460 goto out; 6461 next: 6462 path->slots[0]++; 6463 } 6464 ret = 1; 6465 out: 6466 btrfs_free_path(path); 6467 return ret; 6468 } 6469 6470 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6471 struct btrfs_key *key) 6472 { 6473 int ret = 0; 6474 6475 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6476 return 0; 6477 6478 /* 6479 * Get last extent's end offset (exclusive) if we haven't determined it 6480 * yet (we're processing the first file extent item that is new), or if 6481 * we're at the first slot of a leaf and the last extent's end is less 6482 * than the current extent's offset, because we might have skipped 6483 * entire leaves that contained only file extent items for our current 6484 * inode. These leaves have a generation number smaller (older) than the 6485 * one in the current leaf and the leaf our last extent came from, and 6486 * are located between these 2 leaves. 6487 */ 6488 if ((sctx->cur_inode_last_extent == (u64)-1) || 6489 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6490 ret = get_last_extent(sctx, key->offset - 1); 6491 if (ret) 6492 return ret; 6493 } 6494 6495 if (sctx->cur_inode_last_extent < key->offset) { 6496 ret = range_is_hole_in_parent(sctx, 6497 sctx->cur_inode_last_extent, 6498 key->offset); 6499 if (ret < 0) 6500 return ret; 6501 else if (ret == 0) 6502 ret = send_hole(sctx, key->offset); 6503 else 6504 ret = 0; 6505 } 6506 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6507 return ret; 6508 } 6509 6510 static int process_extent(struct send_ctx *sctx, 6511 struct btrfs_path *path, 6512 struct btrfs_key *key) 6513 { 6514 struct clone_root *found_clone = NULL; 6515 int ret = 0; 6516 6517 if (S_ISLNK(sctx->cur_inode_mode)) 6518 return 0; 6519 6520 if (sctx->parent_root && !sctx->cur_inode_new) { 6521 ret = is_extent_unchanged(sctx, path, key); 6522 if (ret < 0) 6523 goto out; 6524 if (ret) { 6525 ret = 0; 6526 goto out_hole; 6527 } 6528 } else { 6529 struct btrfs_file_extent_item *ei; 6530 u8 type; 6531 6532 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6533 struct btrfs_file_extent_item); 6534 type = btrfs_file_extent_type(path->nodes[0], ei); 6535 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6536 type == BTRFS_FILE_EXTENT_REG) { 6537 /* 6538 * The send spec does not have a prealloc command yet, 6539 * so just leave a hole for prealloc'ed extents until 6540 * we have enough commands queued up to justify rev'ing 6541 * the send spec. 6542 */ 6543 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6544 ret = 0; 6545 goto out; 6546 } 6547 6548 /* Have a hole, just skip it. */ 6549 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6550 ret = 0; 6551 goto out; 6552 } 6553 } 6554 } 6555 6556 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6557 sctx->cur_inode_size, &found_clone); 6558 if (ret != -ENOENT && ret < 0) 6559 goto out; 6560 6561 ret = send_write_or_clone(sctx, path, key, found_clone); 6562 if (ret) 6563 goto out; 6564 out_hole: 6565 ret = maybe_send_hole(sctx, path, key); 6566 out: 6567 return ret; 6568 } 6569 6570 static int process_all_extents(struct send_ctx *sctx) 6571 { 6572 int ret = 0; 6573 int iter_ret = 0; 6574 struct btrfs_root *root; 6575 struct btrfs_path *path; 6576 struct btrfs_key key; 6577 struct btrfs_key found_key; 6578 6579 root = sctx->send_root; 6580 path = alloc_path_for_send(); 6581 if (!path) 6582 return -ENOMEM; 6583 6584 key.objectid = sctx->cmp_key->objectid; 6585 key.type = BTRFS_EXTENT_DATA_KEY; 6586 key.offset = 0; 6587 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6588 if (found_key.objectid != key.objectid || 6589 found_key.type != key.type) { 6590 ret = 0; 6591 break; 6592 } 6593 6594 ret = process_extent(sctx, path, &found_key); 6595 if (ret < 0) 6596 break; 6597 } 6598 /* Catch error found during iteration */ 6599 if (iter_ret < 0) 6600 ret = iter_ret; 6601 6602 btrfs_free_path(path); 6603 return ret; 6604 } 6605 6606 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6607 int *pending_move, 6608 int *refs_processed) 6609 { 6610 int ret = 0; 6611 6612 if (sctx->cur_ino == 0) 6613 goto out; 6614 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6615 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6616 goto out; 6617 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6618 goto out; 6619 6620 ret = process_recorded_refs(sctx, pending_move); 6621 if (ret < 0) 6622 goto out; 6623 6624 *refs_processed = 1; 6625 out: 6626 return ret; 6627 } 6628 6629 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6630 { 6631 int ret = 0; 6632 struct btrfs_inode_info info; 6633 u64 left_mode; 6634 u64 left_uid; 6635 u64 left_gid; 6636 u64 left_fileattr; 6637 u64 right_mode; 6638 u64 right_uid; 6639 u64 right_gid; 6640 u64 right_fileattr; 6641 int need_chmod = 0; 6642 int need_chown = 0; 6643 bool need_fileattr = false; 6644 int need_truncate = 1; 6645 int pending_move = 0; 6646 int refs_processed = 0; 6647 6648 if (sctx->ignore_cur_inode) 6649 return 0; 6650 6651 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6652 &refs_processed); 6653 if (ret < 0) 6654 goto out; 6655 6656 /* 6657 * We have processed the refs and thus need to advance send_progress. 6658 * Now, calls to get_cur_xxx will take the updated refs of the current 6659 * inode into account. 6660 * 6661 * On the other hand, if our current inode is a directory and couldn't 6662 * be moved/renamed because its parent was renamed/moved too and it has 6663 * a higher inode number, we can only move/rename our current inode 6664 * after we moved/renamed its parent. Therefore in this case operate on 6665 * the old path (pre move/rename) of our current inode, and the 6666 * move/rename will be performed later. 6667 */ 6668 if (refs_processed && !pending_move) 6669 sctx->send_progress = sctx->cur_ino + 1; 6670 6671 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6672 goto out; 6673 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6674 goto out; 6675 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6676 if (ret < 0) 6677 goto out; 6678 left_mode = info.mode; 6679 left_uid = info.uid; 6680 left_gid = info.gid; 6681 left_fileattr = info.fileattr; 6682 6683 if (!sctx->parent_root || sctx->cur_inode_new) { 6684 need_chown = 1; 6685 if (!S_ISLNK(sctx->cur_inode_mode)) 6686 need_chmod = 1; 6687 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6688 need_truncate = 0; 6689 } else { 6690 u64 old_size; 6691 6692 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6693 if (ret < 0) 6694 goto out; 6695 old_size = info.size; 6696 right_mode = info.mode; 6697 right_uid = info.uid; 6698 right_gid = info.gid; 6699 right_fileattr = info.fileattr; 6700 6701 if (left_uid != right_uid || left_gid != right_gid) 6702 need_chown = 1; 6703 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6704 need_chmod = 1; 6705 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6706 need_fileattr = true; 6707 if ((old_size == sctx->cur_inode_size) || 6708 (sctx->cur_inode_size > old_size && 6709 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6710 need_truncate = 0; 6711 } 6712 6713 if (S_ISREG(sctx->cur_inode_mode)) { 6714 if (need_send_hole(sctx)) { 6715 if (sctx->cur_inode_last_extent == (u64)-1 || 6716 sctx->cur_inode_last_extent < 6717 sctx->cur_inode_size) { 6718 ret = get_last_extent(sctx, (u64)-1); 6719 if (ret) 6720 goto out; 6721 } 6722 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6723 ret = range_is_hole_in_parent(sctx, 6724 sctx->cur_inode_last_extent, 6725 sctx->cur_inode_size); 6726 if (ret < 0) { 6727 goto out; 6728 } else if (ret == 0) { 6729 ret = send_hole(sctx, sctx->cur_inode_size); 6730 if (ret < 0) 6731 goto out; 6732 } else { 6733 /* Range is already a hole, skip. */ 6734 ret = 0; 6735 } 6736 } 6737 } 6738 if (need_truncate) { 6739 ret = send_truncate(sctx, sctx->cur_ino, 6740 sctx->cur_inode_gen, 6741 sctx->cur_inode_size); 6742 if (ret < 0) 6743 goto out; 6744 } 6745 } 6746 6747 if (need_chown) { 6748 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6749 left_uid, left_gid); 6750 if (ret < 0) 6751 goto out; 6752 } 6753 if (need_chmod) { 6754 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6755 left_mode); 6756 if (ret < 0) 6757 goto out; 6758 } 6759 if (need_fileattr) { 6760 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6761 left_fileattr); 6762 if (ret < 0) 6763 goto out; 6764 } 6765 6766 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6767 && sctx->cur_inode_needs_verity) { 6768 ret = process_verity(sctx); 6769 if (ret < 0) 6770 goto out; 6771 } 6772 6773 ret = send_capabilities(sctx); 6774 if (ret < 0) 6775 goto out; 6776 6777 /* 6778 * If other directory inodes depended on our current directory 6779 * inode's move/rename, now do their move/rename operations. 6780 */ 6781 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6782 ret = apply_children_dir_moves(sctx); 6783 if (ret) 6784 goto out; 6785 /* 6786 * Need to send that every time, no matter if it actually 6787 * changed between the two trees as we have done changes to 6788 * the inode before. If our inode is a directory and it's 6789 * waiting to be moved/renamed, we will send its utimes when 6790 * it's moved/renamed, therefore we don't need to do it here. 6791 */ 6792 sctx->send_progress = sctx->cur_ino + 1; 6793 6794 /* 6795 * If the current inode is a non-empty directory, delay issuing 6796 * the utimes command for it, as it's very likely we have inodes 6797 * with an higher number inside it. We want to issue the utimes 6798 * command only after adding all dentries to it. 6799 */ 6800 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6801 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6802 else 6803 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6804 6805 if (ret < 0) 6806 goto out; 6807 } 6808 6809 out: 6810 if (!ret) 6811 ret = trim_dir_utimes_cache(sctx); 6812 6813 return ret; 6814 } 6815 6816 static void close_current_inode(struct send_ctx *sctx) 6817 { 6818 u64 i_size; 6819 6820 if (sctx->cur_inode == NULL) 6821 return; 6822 6823 i_size = i_size_read(sctx->cur_inode); 6824 6825 /* 6826 * If we are doing an incremental send, we may have extents between the 6827 * last processed extent and the i_size that have not been processed 6828 * because they haven't changed but we may have read some of their pages 6829 * through readahead, see the comments at send_extent_data(). 6830 */ 6831 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6832 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6833 sctx->page_cache_clear_start, 6834 round_up(i_size, PAGE_SIZE) - 1); 6835 6836 iput(sctx->cur_inode); 6837 sctx->cur_inode = NULL; 6838 } 6839 6840 static int changed_inode(struct send_ctx *sctx, 6841 enum btrfs_compare_tree_result result) 6842 { 6843 int ret = 0; 6844 struct btrfs_key *key = sctx->cmp_key; 6845 struct btrfs_inode_item *left_ii = NULL; 6846 struct btrfs_inode_item *right_ii = NULL; 6847 u64 left_gen = 0; 6848 u64 right_gen = 0; 6849 6850 close_current_inode(sctx); 6851 6852 sctx->cur_ino = key->objectid; 6853 sctx->cur_inode_new_gen = false; 6854 sctx->cur_inode_last_extent = (u64)-1; 6855 sctx->cur_inode_next_write_offset = 0; 6856 sctx->ignore_cur_inode = false; 6857 6858 /* 6859 * Set send_progress to current inode. This will tell all get_cur_xxx 6860 * functions that the current inode's refs are not updated yet. Later, 6861 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6862 */ 6863 sctx->send_progress = sctx->cur_ino; 6864 6865 if (result == BTRFS_COMPARE_TREE_NEW || 6866 result == BTRFS_COMPARE_TREE_CHANGED) { 6867 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6868 sctx->left_path->slots[0], 6869 struct btrfs_inode_item); 6870 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6871 left_ii); 6872 } else { 6873 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6874 sctx->right_path->slots[0], 6875 struct btrfs_inode_item); 6876 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6877 right_ii); 6878 } 6879 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6880 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6881 sctx->right_path->slots[0], 6882 struct btrfs_inode_item); 6883 6884 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6885 right_ii); 6886 6887 /* 6888 * The cur_ino = root dir case is special here. We can't treat 6889 * the inode as deleted+reused because it would generate a 6890 * stream that tries to delete/mkdir the root dir. 6891 */ 6892 if (left_gen != right_gen && 6893 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6894 sctx->cur_inode_new_gen = true; 6895 } 6896 6897 /* 6898 * Normally we do not find inodes with a link count of zero (orphans) 6899 * because the most common case is to create a snapshot and use it 6900 * for a send operation. However other less common use cases involve 6901 * using a subvolume and send it after turning it to RO mode just 6902 * after deleting all hard links of a file while holding an open 6903 * file descriptor against it or turning a RO snapshot into RW mode, 6904 * keep an open file descriptor against a file, delete it and then 6905 * turn the snapshot back to RO mode before using it for a send 6906 * operation. The former is what the receiver operation does. 6907 * Therefore, if we want to send these snapshots soon after they're 6908 * received, we need to handle orphan inodes as well. Moreover, orphans 6909 * can appear not only in the send snapshot but also in the parent 6910 * snapshot. Here are several cases: 6911 * 6912 * Case 1: BTRFS_COMPARE_TREE_NEW 6913 * | send snapshot | action 6914 * -------------------------------- 6915 * nlink | 0 | ignore 6916 * 6917 * Case 2: BTRFS_COMPARE_TREE_DELETED 6918 * | parent snapshot | action 6919 * ---------------------------------- 6920 * nlink | 0 | as usual 6921 * Note: No unlinks will be sent because there're no paths for it. 6922 * 6923 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6924 * | | parent snapshot | send snapshot | action 6925 * ----------------------------------------------------------------------- 6926 * subcase 1 | nlink | 0 | 0 | ignore 6927 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6928 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6929 * 6930 */ 6931 if (result == BTRFS_COMPARE_TREE_NEW) { 6932 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6933 sctx->ignore_cur_inode = true; 6934 goto out; 6935 } 6936 sctx->cur_inode_gen = left_gen; 6937 sctx->cur_inode_new = true; 6938 sctx->cur_inode_deleted = false; 6939 sctx->cur_inode_size = btrfs_inode_size( 6940 sctx->left_path->nodes[0], left_ii); 6941 sctx->cur_inode_mode = btrfs_inode_mode( 6942 sctx->left_path->nodes[0], left_ii); 6943 sctx->cur_inode_rdev = btrfs_inode_rdev( 6944 sctx->left_path->nodes[0], left_ii); 6945 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6946 ret = send_create_inode_if_needed(sctx); 6947 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6948 sctx->cur_inode_gen = right_gen; 6949 sctx->cur_inode_new = false; 6950 sctx->cur_inode_deleted = true; 6951 sctx->cur_inode_size = btrfs_inode_size( 6952 sctx->right_path->nodes[0], right_ii); 6953 sctx->cur_inode_mode = btrfs_inode_mode( 6954 sctx->right_path->nodes[0], right_ii); 6955 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6956 u32 new_nlinks, old_nlinks; 6957 6958 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6959 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6960 if (new_nlinks == 0 && old_nlinks == 0) { 6961 sctx->ignore_cur_inode = true; 6962 goto out; 6963 } else if (new_nlinks == 0 || old_nlinks == 0) { 6964 sctx->cur_inode_new_gen = 1; 6965 } 6966 /* 6967 * We need to do some special handling in case the inode was 6968 * reported as changed with a changed generation number. This 6969 * means that the original inode was deleted and new inode 6970 * reused the same inum. So we have to treat the old inode as 6971 * deleted and the new one as new. 6972 */ 6973 if (sctx->cur_inode_new_gen) { 6974 /* 6975 * First, process the inode as if it was deleted. 6976 */ 6977 if (old_nlinks > 0) { 6978 sctx->cur_inode_gen = right_gen; 6979 sctx->cur_inode_new = false; 6980 sctx->cur_inode_deleted = true; 6981 sctx->cur_inode_size = btrfs_inode_size( 6982 sctx->right_path->nodes[0], right_ii); 6983 sctx->cur_inode_mode = btrfs_inode_mode( 6984 sctx->right_path->nodes[0], right_ii); 6985 ret = process_all_refs(sctx, 6986 BTRFS_COMPARE_TREE_DELETED); 6987 if (ret < 0) 6988 goto out; 6989 } 6990 6991 /* 6992 * Now process the inode as if it was new. 6993 */ 6994 if (new_nlinks > 0) { 6995 sctx->cur_inode_gen = left_gen; 6996 sctx->cur_inode_new = true; 6997 sctx->cur_inode_deleted = false; 6998 sctx->cur_inode_size = btrfs_inode_size( 6999 sctx->left_path->nodes[0], 7000 left_ii); 7001 sctx->cur_inode_mode = btrfs_inode_mode( 7002 sctx->left_path->nodes[0], 7003 left_ii); 7004 sctx->cur_inode_rdev = btrfs_inode_rdev( 7005 sctx->left_path->nodes[0], 7006 left_ii); 7007 ret = send_create_inode_if_needed(sctx); 7008 if (ret < 0) 7009 goto out; 7010 7011 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7012 if (ret < 0) 7013 goto out; 7014 /* 7015 * Advance send_progress now as we did not get 7016 * into process_recorded_refs_if_needed in the 7017 * new_gen case. 7018 */ 7019 sctx->send_progress = sctx->cur_ino + 1; 7020 7021 /* 7022 * Now process all extents and xattrs of the 7023 * inode as if they were all new. 7024 */ 7025 ret = process_all_extents(sctx); 7026 if (ret < 0) 7027 goto out; 7028 ret = process_all_new_xattrs(sctx); 7029 if (ret < 0) 7030 goto out; 7031 } 7032 } else { 7033 sctx->cur_inode_gen = left_gen; 7034 sctx->cur_inode_new = false; 7035 sctx->cur_inode_new_gen = false; 7036 sctx->cur_inode_deleted = false; 7037 sctx->cur_inode_size = btrfs_inode_size( 7038 sctx->left_path->nodes[0], left_ii); 7039 sctx->cur_inode_mode = btrfs_inode_mode( 7040 sctx->left_path->nodes[0], left_ii); 7041 } 7042 } 7043 7044 out: 7045 return ret; 7046 } 7047 7048 /* 7049 * We have to process new refs before deleted refs, but compare_trees gives us 7050 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7051 * first and later process them in process_recorded_refs. 7052 * For the cur_inode_new_gen case, we skip recording completely because 7053 * changed_inode did already initiate processing of refs. The reason for this is 7054 * that in this case, compare_tree actually compares the refs of 2 different 7055 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7056 * refs of the right tree as deleted and all refs of the left tree as new. 7057 */ 7058 static int changed_ref(struct send_ctx *sctx, 7059 enum btrfs_compare_tree_result result) 7060 { 7061 int ret = 0; 7062 7063 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7064 inconsistent_snapshot_error(sctx, result, "reference"); 7065 return -EIO; 7066 } 7067 7068 if (!sctx->cur_inode_new_gen && 7069 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7070 if (result == BTRFS_COMPARE_TREE_NEW) 7071 ret = record_new_ref(sctx); 7072 else if (result == BTRFS_COMPARE_TREE_DELETED) 7073 ret = record_deleted_ref(sctx); 7074 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7075 ret = record_changed_ref(sctx); 7076 } 7077 7078 return ret; 7079 } 7080 7081 /* 7082 * Process new/deleted/changed xattrs. We skip processing in the 7083 * cur_inode_new_gen case because changed_inode did already initiate processing 7084 * of xattrs. The reason is the same as in changed_ref 7085 */ 7086 static int changed_xattr(struct send_ctx *sctx, 7087 enum btrfs_compare_tree_result result) 7088 { 7089 int ret = 0; 7090 7091 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7092 inconsistent_snapshot_error(sctx, result, "xattr"); 7093 return -EIO; 7094 } 7095 7096 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7097 if (result == BTRFS_COMPARE_TREE_NEW) 7098 ret = process_new_xattr(sctx); 7099 else if (result == BTRFS_COMPARE_TREE_DELETED) 7100 ret = process_deleted_xattr(sctx); 7101 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7102 ret = process_changed_xattr(sctx); 7103 } 7104 7105 return ret; 7106 } 7107 7108 /* 7109 * Process new/deleted/changed extents. We skip processing in the 7110 * cur_inode_new_gen case because changed_inode did already initiate processing 7111 * of extents. The reason is the same as in changed_ref 7112 */ 7113 static int changed_extent(struct send_ctx *sctx, 7114 enum btrfs_compare_tree_result result) 7115 { 7116 int ret = 0; 7117 7118 /* 7119 * We have found an extent item that changed without the inode item 7120 * having changed. This can happen either after relocation (where the 7121 * disk_bytenr of an extent item is replaced at 7122 * relocation.c:replace_file_extents()) or after deduplication into a 7123 * file in both the parent and send snapshots (where an extent item can 7124 * get modified or replaced with a new one). Note that deduplication 7125 * updates the inode item, but it only changes the iversion (sequence 7126 * field in the inode item) of the inode, so if a file is deduplicated 7127 * the same amount of times in both the parent and send snapshots, its 7128 * iversion becomes the same in both snapshots, whence the inode item is 7129 * the same on both snapshots. 7130 */ 7131 if (sctx->cur_ino != sctx->cmp_key->objectid) 7132 return 0; 7133 7134 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7135 if (result != BTRFS_COMPARE_TREE_DELETED) 7136 ret = process_extent(sctx, sctx->left_path, 7137 sctx->cmp_key); 7138 } 7139 7140 return ret; 7141 } 7142 7143 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7144 { 7145 int ret = 0; 7146 7147 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7148 if (result == BTRFS_COMPARE_TREE_NEW) 7149 sctx->cur_inode_needs_verity = true; 7150 } 7151 return ret; 7152 } 7153 7154 static int dir_changed(struct send_ctx *sctx, u64 dir) 7155 { 7156 u64 orig_gen, new_gen; 7157 int ret; 7158 7159 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7160 if (ret) 7161 return ret; 7162 7163 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7164 if (ret) 7165 return ret; 7166 7167 return (orig_gen != new_gen) ? 1 : 0; 7168 } 7169 7170 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7171 struct btrfs_key *key) 7172 { 7173 struct btrfs_inode_extref *extref; 7174 struct extent_buffer *leaf; 7175 u64 dirid = 0, last_dirid = 0; 7176 unsigned long ptr; 7177 u32 item_size; 7178 u32 cur_offset = 0; 7179 int ref_name_len; 7180 int ret = 0; 7181 7182 /* Easy case, just check this one dirid */ 7183 if (key->type == BTRFS_INODE_REF_KEY) { 7184 dirid = key->offset; 7185 7186 ret = dir_changed(sctx, dirid); 7187 goto out; 7188 } 7189 7190 leaf = path->nodes[0]; 7191 item_size = btrfs_item_size(leaf, path->slots[0]); 7192 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7193 while (cur_offset < item_size) { 7194 extref = (struct btrfs_inode_extref *)(ptr + 7195 cur_offset); 7196 dirid = btrfs_inode_extref_parent(leaf, extref); 7197 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7198 cur_offset += ref_name_len + sizeof(*extref); 7199 if (dirid == last_dirid) 7200 continue; 7201 ret = dir_changed(sctx, dirid); 7202 if (ret) 7203 break; 7204 last_dirid = dirid; 7205 } 7206 out: 7207 return ret; 7208 } 7209 7210 /* 7211 * Updates compare related fields in sctx and simply forwards to the actual 7212 * changed_xxx functions. 7213 */ 7214 static int changed_cb(struct btrfs_path *left_path, 7215 struct btrfs_path *right_path, 7216 struct btrfs_key *key, 7217 enum btrfs_compare_tree_result result, 7218 struct send_ctx *sctx) 7219 { 7220 int ret = 0; 7221 7222 /* 7223 * We can not hold the commit root semaphore here. This is because in 7224 * the case of sending and receiving to the same filesystem, using a 7225 * pipe, could result in a deadlock: 7226 * 7227 * 1) The task running send blocks on the pipe because it's full; 7228 * 7229 * 2) The task running receive, which is the only consumer of the pipe, 7230 * is waiting for a transaction commit (for example due to a space 7231 * reservation when doing a write or triggering a transaction commit 7232 * when creating a subvolume); 7233 * 7234 * 3) The transaction is waiting to write lock the commit root semaphore, 7235 * but can not acquire it since it's being held at 1). 7236 * 7237 * Down this call chain we write to the pipe through kernel_write(). 7238 * The same type of problem can also happen when sending to a file that 7239 * is stored in the same filesystem - when reserving space for a write 7240 * into the file, we can trigger a transaction commit. 7241 * 7242 * Our caller has supplied us with clones of leaves from the send and 7243 * parent roots, so we're safe here from a concurrent relocation and 7244 * further reallocation of metadata extents while we are here. Below we 7245 * also assert that the leaves are clones. 7246 */ 7247 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7248 7249 /* 7250 * We always have a send root, so left_path is never NULL. We will not 7251 * have a leaf when we have reached the end of the send root but have 7252 * not yet reached the end of the parent root. 7253 */ 7254 if (left_path->nodes[0]) 7255 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7256 &left_path->nodes[0]->bflags)); 7257 /* 7258 * When doing a full send we don't have a parent root, so right_path is 7259 * NULL. When doing an incremental send, we may have reached the end of 7260 * the parent root already, so we don't have a leaf at right_path. 7261 */ 7262 if (right_path && right_path->nodes[0]) 7263 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7264 &right_path->nodes[0]->bflags)); 7265 7266 if (result == BTRFS_COMPARE_TREE_SAME) { 7267 if (key->type == BTRFS_INODE_REF_KEY || 7268 key->type == BTRFS_INODE_EXTREF_KEY) { 7269 ret = compare_refs(sctx, left_path, key); 7270 if (!ret) 7271 return 0; 7272 if (ret < 0) 7273 return ret; 7274 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7275 return maybe_send_hole(sctx, left_path, key); 7276 } else { 7277 return 0; 7278 } 7279 result = BTRFS_COMPARE_TREE_CHANGED; 7280 ret = 0; 7281 } 7282 7283 sctx->left_path = left_path; 7284 sctx->right_path = right_path; 7285 sctx->cmp_key = key; 7286 7287 ret = finish_inode_if_needed(sctx, 0); 7288 if (ret < 0) 7289 goto out; 7290 7291 /* Ignore non-FS objects */ 7292 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7293 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7294 goto out; 7295 7296 if (key->type == BTRFS_INODE_ITEM_KEY) { 7297 ret = changed_inode(sctx, result); 7298 } else if (!sctx->ignore_cur_inode) { 7299 if (key->type == BTRFS_INODE_REF_KEY || 7300 key->type == BTRFS_INODE_EXTREF_KEY) 7301 ret = changed_ref(sctx, result); 7302 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7303 ret = changed_xattr(sctx, result); 7304 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7305 ret = changed_extent(sctx, result); 7306 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7307 key->offset == 0) 7308 ret = changed_verity(sctx, result); 7309 } 7310 7311 out: 7312 return ret; 7313 } 7314 7315 static int search_key_again(const struct send_ctx *sctx, 7316 struct btrfs_root *root, 7317 struct btrfs_path *path, 7318 const struct btrfs_key *key) 7319 { 7320 int ret; 7321 7322 if (!path->need_commit_sem) 7323 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7324 7325 /* 7326 * Roots used for send operations are readonly and no one can add, 7327 * update or remove keys from them, so we should be able to find our 7328 * key again. The only exception is deduplication, which can operate on 7329 * readonly roots and add, update or remove keys to/from them - but at 7330 * the moment we don't allow it to run in parallel with send. 7331 */ 7332 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7333 ASSERT(ret <= 0); 7334 if (ret > 0) { 7335 btrfs_print_tree(path->nodes[path->lowest_level], false); 7336 btrfs_err(root->fs_info, 7337 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7338 key->objectid, key->type, key->offset, 7339 (root == sctx->parent_root ? "parent" : "send"), 7340 root->root_key.objectid, path->lowest_level, 7341 path->slots[path->lowest_level]); 7342 return -EUCLEAN; 7343 } 7344 7345 return ret; 7346 } 7347 7348 static int full_send_tree(struct send_ctx *sctx) 7349 { 7350 int ret; 7351 struct btrfs_root *send_root = sctx->send_root; 7352 struct btrfs_key key; 7353 struct btrfs_fs_info *fs_info = send_root->fs_info; 7354 struct btrfs_path *path; 7355 7356 path = alloc_path_for_send(); 7357 if (!path) 7358 return -ENOMEM; 7359 path->reada = READA_FORWARD_ALWAYS; 7360 7361 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7362 key.type = BTRFS_INODE_ITEM_KEY; 7363 key.offset = 0; 7364 7365 down_read(&fs_info->commit_root_sem); 7366 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7367 up_read(&fs_info->commit_root_sem); 7368 7369 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7370 if (ret < 0) 7371 goto out; 7372 if (ret) 7373 goto out_finish; 7374 7375 while (1) { 7376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7377 7378 ret = changed_cb(path, NULL, &key, 7379 BTRFS_COMPARE_TREE_NEW, sctx); 7380 if (ret < 0) 7381 goto out; 7382 7383 down_read(&fs_info->commit_root_sem); 7384 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7385 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7386 up_read(&fs_info->commit_root_sem); 7387 /* 7388 * A transaction used for relocating a block group was 7389 * committed or is about to finish its commit. Release 7390 * our path (leaf) and restart the search, so that we 7391 * avoid operating on any file extent items that are 7392 * stale, with a disk_bytenr that reflects a pre 7393 * relocation value. This way we avoid as much as 7394 * possible to fallback to regular writes when checking 7395 * if we can clone file ranges. 7396 */ 7397 btrfs_release_path(path); 7398 ret = search_key_again(sctx, send_root, path, &key); 7399 if (ret < 0) 7400 goto out; 7401 } else { 7402 up_read(&fs_info->commit_root_sem); 7403 } 7404 7405 ret = btrfs_next_item(send_root, path); 7406 if (ret < 0) 7407 goto out; 7408 if (ret) { 7409 ret = 0; 7410 break; 7411 } 7412 } 7413 7414 out_finish: 7415 ret = finish_inode_if_needed(sctx, 1); 7416 7417 out: 7418 btrfs_free_path(path); 7419 return ret; 7420 } 7421 7422 static int replace_node_with_clone(struct btrfs_path *path, int level) 7423 { 7424 struct extent_buffer *clone; 7425 7426 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7427 if (!clone) 7428 return -ENOMEM; 7429 7430 free_extent_buffer(path->nodes[level]); 7431 path->nodes[level] = clone; 7432 7433 return 0; 7434 } 7435 7436 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7437 { 7438 struct extent_buffer *eb; 7439 struct extent_buffer *parent = path->nodes[*level]; 7440 int slot = path->slots[*level]; 7441 const int nritems = btrfs_header_nritems(parent); 7442 u64 reada_max; 7443 u64 reada_done = 0; 7444 7445 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7446 ASSERT(*level != 0); 7447 7448 eb = btrfs_read_node_slot(parent, slot); 7449 if (IS_ERR(eb)) 7450 return PTR_ERR(eb); 7451 7452 /* 7453 * Trigger readahead for the next leaves we will process, so that it is 7454 * very likely that when we need them they are already in memory and we 7455 * will not block on disk IO. For nodes we only do readahead for one, 7456 * since the time window between processing nodes is typically larger. 7457 */ 7458 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7459 7460 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7461 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7462 btrfs_readahead_node_child(parent, slot); 7463 reada_done += eb->fs_info->nodesize; 7464 } 7465 } 7466 7467 path->nodes[*level - 1] = eb; 7468 path->slots[*level - 1] = 0; 7469 (*level)--; 7470 7471 if (*level == 0) 7472 return replace_node_with_clone(path, 0); 7473 7474 return 0; 7475 } 7476 7477 static int tree_move_next_or_upnext(struct btrfs_path *path, 7478 int *level, int root_level) 7479 { 7480 int ret = 0; 7481 int nritems; 7482 nritems = btrfs_header_nritems(path->nodes[*level]); 7483 7484 path->slots[*level]++; 7485 7486 while (path->slots[*level] >= nritems) { 7487 if (*level == root_level) { 7488 path->slots[*level] = nritems - 1; 7489 return -1; 7490 } 7491 7492 /* move upnext */ 7493 path->slots[*level] = 0; 7494 free_extent_buffer(path->nodes[*level]); 7495 path->nodes[*level] = NULL; 7496 (*level)++; 7497 path->slots[*level]++; 7498 7499 nritems = btrfs_header_nritems(path->nodes[*level]); 7500 ret = 1; 7501 } 7502 return ret; 7503 } 7504 7505 /* 7506 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7507 * or down. 7508 */ 7509 static int tree_advance(struct btrfs_path *path, 7510 int *level, int root_level, 7511 int allow_down, 7512 struct btrfs_key *key, 7513 u64 reada_min_gen) 7514 { 7515 int ret; 7516 7517 if (*level == 0 || !allow_down) { 7518 ret = tree_move_next_or_upnext(path, level, root_level); 7519 } else { 7520 ret = tree_move_down(path, level, reada_min_gen); 7521 } 7522 7523 /* 7524 * Even if we have reached the end of a tree, ret is -1, update the key 7525 * anyway, so that in case we need to restart due to a block group 7526 * relocation, we can assert that the last key of the root node still 7527 * exists in the tree. 7528 */ 7529 if (*level == 0) 7530 btrfs_item_key_to_cpu(path->nodes[*level], key, 7531 path->slots[*level]); 7532 else 7533 btrfs_node_key_to_cpu(path->nodes[*level], key, 7534 path->slots[*level]); 7535 7536 return ret; 7537 } 7538 7539 static int tree_compare_item(struct btrfs_path *left_path, 7540 struct btrfs_path *right_path, 7541 char *tmp_buf) 7542 { 7543 int cmp; 7544 int len1, len2; 7545 unsigned long off1, off2; 7546 7547 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7548 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7549 if (len1 != len2) 7550 return 1; 7551 7552 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7553 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7554 right_path->slots[0]); 7555 7556 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7557 7558 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7559 if (cmp) 7560 return 1; 7561 return 0; 7562 } 7563 7564 /* 7565 * A transaction used for relocating a block group was committed or is about to 7566 * finish its commit. Release our paths and restart the search, so that we are 7567 * not using stale extent buffers: 7568 * 7569 * 1) For levels > 0, we are only holding references of extent buffers, without 7570 * any locks on them, which does not prevent them from having been relocated 7571 * and reallocated after the last time we released the commit root semaphore. 7572 * The exception are the root nodes, for which we always have a clone, see 7573 * the comment at btrfs_compare_trees(); 7574 * 7575 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7576 * we are safe from the concurrent relocation and reallocation. However they 7577 * can have file extent items with a pre relocation disk_bytenr value, so we 7578 * restart the start from the current commit roots and clone the new leaves so 7579 * that we get the post relocation disk_bytenr values. Not doing so, could 7580 * make us clone the wrong data in case there are new extents using the old 7581 * disk_bytenr that happen to be shared. 7582 */ 7583 static int restart_after_relocation(struct btrfs_path *left_path, 7584 struct btrfs_path *right_path, 7585 const struct btrfs_key *left_key, 7586 const struct btrfs_key *right_key, 7587 int left_level, 7588 int right_level, 7589 const struct send_ctx *sctx) 7590 { 7591 int root_level; 7592 int ret; 7593 7594 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7595 7596 btrfs_release_path(left_path); 7597 btrfs_release_path(right_path); 7598 7599 /* 7600 * Since keys can not be added or removed to/from our roots because they 7601 * are readonly and we do not allow deduplication to run in parallel 7602 * (which can add, remove or change keys), the layout of the trees should 7603 * not change. 7604 */ 7605 left_path->lowest_level = left_level; 7606 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7607 if (ret < 0) 7608 return ret; 7609 7610 right_path->lowest_level = right_level; 7611 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7612 if (ret < 0) 7613 return ret; 7614 7615 /* 7616 * If the lowest level nodes are leaves, clone them so that they can be 7617 * safely used by changed_cb() while not under the protection of the 7618 * commit root semaphore, even if relocation and reallocation happens in 7619 * parallel. 7620 */ 7621 if (left_level == 0) { 7622 ret = replace_node_with_clone(left_path, 0); 7623 if (ret < 0) 7624 return ret; 7625 } 7626 7627 if (right_level == 0) { 7628 ret = replace_node_with_clone(right_path, 0); 7629 if (ret < 0) 7630 return ret; 7631 } 7632 7633 /* 7634 * Now clone the root nodes (unless they happen to be the leaves we have 7635 * already cloned). This is to protect against concurrent snapshotting of 7636 * the send and parent roots (see the comment at btrfs_compare_trees()). 7637 */ 7638 root_level = btrfs_header_level(sctx->send_root->commit_root); 7639 if (root_level > 0) { 7640 ret = replace_node_with_clone(left_path, root_level); 7641 if (ret < 0) 7642 return ret; 7643 } 7644 7645 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7646 if (root_level > 0) { 7647 ret = replace_node_with_clone(right_path, root_level); 7648 if (ret < 0) 7649 return ret; 7650 } 7651 7652 return 0; 7653 } 7654 7655 /* 7656 * This function compares two trees and calls the provided callback for 7657 * every changed/new/deleted item it finds. 7658 * If shared tree blocks are encountered, whole subtrees are skipped, making 7659 * the compare pretty fast on snapshotted subvolumes. 7660 * 7661 * This currently works on commit roots only. As commit roots are read only, 7662 * we don't do any locking. The commit roots are protected with transactions. 7663 * Transactions are ended and rejoined when a commit is tried in between. 7664 * 7665 * This function checks for modifications done to the trees while comparing. 7666 * If it detects a change, it aborts immediately. 7667 */ 7668 static int btrfs_compare_trees(struct btrfs_root *left_root, 7669 struct btrfs_root *right_root, struct send_ctx *sctx) 7670 { 7671 struct btrfs_fs_info *fs_info = left_root->fs_info; 7672 int ret; 7673 int cmp; 7674 struct btrfs_path *left_path = NULL; 7675 struct btrfs_path *right_path = NULL; 7676 struct btrfs_key left_key; 7677 struct btrfs_key right_key; 7678 char *tmp_buf = NULL; 7679 int left_root_level; 7680 int right_root_level; 7681 int left_level; 7682 int right_level; 7683 int left_end_reached = 0; 7684 int right_end_reached = 0; 7685 int advance_left = 0; 7686 int advance_right = 0; 7687 u64 left_blockptr; 7688 u64 right_blockptr; 7689 u64 left_gen; 7690 u64 right_gen; 7691 u64 reada_min_gen; 7692 7693 left_path = btrfs_alloc_path(); 7694 if (!left_path) { 7695 ret = -ENOMEM; 7696 goto out; 7697 } 7698 right_path = btrfs_alloc_path(); 7699 if (!right_path) { 7700 ret = -ENOMEM; 7701 goto out; 7702 } 7703 7704 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7705 if (!tmp_buf) { 7706 ret = -ENOMEM; 7707 goto out; 7708 } 7709 7710 left_path->search_commit_root = 1; 7711 left_path->skip_locking = 1; 7712 right_path->search_commit_root = 1; 7713 right_path->skip_locking = 1; 7714 7715 /* 7716 * Strategy: Go to the first items of both trees. Then do 7717 * 7718 * If both trees are at level 0 7719 * Compare keys of current items 7720 * If left < right treat left item as new, advance left tree 7721 * and repeat 7722 * If left > right treat right item as deleted, advance right tree 7723 * and repeat 7724 * If left == right do deep compare of items, treat as changed if 7725 * needed, advance both trees and repeat 7726 * If both trees are at the same level but not at level 0 7727 * Compare keys of current nodes/leafs 7728 * If left < right advance left tree and repeat 7729 * If left > right advance right tree and repeat 7730 * If left == right compare blockptrs of the next nodes/leafs 7731 * If they match advance both trees but stay at the same level 7732 * and repeat 7733 * If they don't match advance both trees while allowing to go 7734 * deeper and repeat 7735 * If tree levels are different 7736 * Advance the tree that needs it and repeat 7737 * 7738 * Advancing a tree means: 7739 * If we are at level 0, try to go to the next slot. If that's not 7740 * possible, go one level up and repeat. Stop when we found a level 7741 * where we could go to the next slot. We may at this point be on a 7742 * node or a leaf. 7743 * 7744 * If we are not at level 0 and not on shared tree blocks, go one 7745 * level deeper. 7746 * 7747 * If we are not at level 0 and on shared tree blocks, go one slot to 7748 * the right if possible or go up and right. 7749 */ 7750 7751 down_read(&fs_info->commit_root_sem); 7752 left_level = btrfs_header_level(left_root->commit_root); 7753 left_root_level = left_level; 7754 /* 7755 * We clone the root node of the send and parent roots to prevent races 7756 * with snapshot creation of these roots. Snapshot creation COWs the 7757 * root node of a tree, so after the transaction is committed the old 7758 * extent can be reallocated while this send operation is still ongoing. 7759 * So we clone them, under the commit root semaphore, to be race free. 7760 */ 7761 left_path->nodes[left_level] = 7762 btrfs_clone_extent_buffer(left_root->commit_root); 7763 if (!left_path->nodes[left_level]) { 7764 ret = -ENOMEM; 7765 goto out_unlock; 7766 } 7767 7768 right_level = btrfs_header_level(right_root->commit_root); 7769 right_root_level = right_level; 7770 right_path->nodes[right_level] = 7771 btrfs_clone_extent_buffer(right_root->commit_root); 7772 if (!right_path->nodes[right_level]) { 7773 ret = -ENOMEM; 7774 goto out_unlock; 7775 } 7776 /* 7777 * Our right root is the parent root, while the left root is the "send" 7778 * root. We know that all new nodes/leaves in the left root must have 7779 * a generation greater than the right root's generation, so we trigger 7780 * readahead for those nodes and leaves of the left root, as we know we 7781 * will need to read them at some point. 7782 */ 7783 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7784 7785 if (left_level == 0) 7786 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7787 &left_key, left_path->slots[left_level]); 7788 else 7789 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7790 &left_key, left_path->slots[left_level]); 7791 if (right_level == 0) 7792 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7793 &right_key, right_path->slots[right_level]); 7794 else 7795 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7796 &right_key, right_path->slots[right_level]); 7797 7798 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7799 7800 while (1) { 7801 if (need_resched() || 7802 rwsem_is_contended(&fs_info->commit_root_sem)) { 7803 up_read(&fs_info->commit_root_sem); 7804 cond_resched(); 7805 down_read(&fs_info->commit_root_sem); 7806 } 7807 7808 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7809 ret = restart_after_relocation(left_path, right_path, 7810 &left_key, &right_key, 7811 left_level, right_level, 7812 sctx); 7813 if (ret < 0) 7814 goto out_unlock; 7815 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7816 } 7817 7818 if (advance_left && !left_end_reached) { 7819 ret = tree_advance(left_path, &left_level, 7820 left_root_level, 7821 advance_left != ADVANCE_ONLY_NEXT, 7822 &left_key, reada_min_gen); 7823 if (ret == -1) 7824 left_end_reached = ADVANCE; 7825 else if (ret < 0) 7826 goto out_unlock; 7827 advance_left = 0; 7828 } 7829 if (advance_right && !right_end_reached) { 7830 ret = tree_advance(right_path, &right_level, 7831 right_root_level, 7832 advance_right != ADVANCE_ONLY_NEXT, 7833 &right_key, reada_min_gen); 7834 if (ret == -1) 7835 right_end_reached = ADVANCE; 7836 else if (ret < 0) 7837 goto out_unlock; 7838 advance_right = 0; 7839 } 7840 7841 if (left_end_reached && right_end_reached) { 7842 ret = 0; 7843 goto out_unlock; 7844 } else if (left_end_reached) { 7845 if (right_level == 0) { 7846 up_read(&fs_info->commit_root_sem); 7847 ret = changed_cb(left_path, right_path, 7848 &right_key, 7849 BTRFS_COMPARE_TREE_DELETED, 7850 sctx); 7851 if (ret < 0) 7852 goto out; 7853 down_read(&fs_info->commit_root_sem); 7854 } 7855 advance_right = ADVANCE; 7856 continue; 7857 } else if (right_end_reached) { 7858 if (left_level == 0) { 7859 up_read(&fs_info->commit_root_sem); 7860 ret = changed_cb(left_path, right_path, 7861 &left_key, 7862 BTRFS_COMPARE_TREE_NEW, 7863 sctx); 7864 if (ret < 0) 7865 goto out; 7866 down_read(&fs_info->commit_root_sem); 7867 } 7868 advance_left = ADVANCE; 7869 continue; 7870 } 7871 7872 if (left_level == 0 && right_level == 0) { 7873 up_read(&fs_info->commit_root_sem); 7874 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7875 if (cmp < 0) { 7876 ret = changed_cb(left_path, right_path, 7877 &left_key, 7878 BTRFS_COMPARE_TREE_NEW, 7879 sctx); 7880 advance_left = ADVANCE; 7881 } else if (cmp > 0) { 7882 ret = changed_cb(left_path, right_path, 7883 &right_key, 7884 BTRFS_COMPARE_TREE_DELETED, 7885 sctx); 7886 advance_right = ADVANCE; 7887 } else { 7888 enum btrfs_compare_tree_result result; 7889 7890 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7891 ret = tree_compare_item(left_path, right_path, 7892 tmp_buf); 7893 if (ret) 7894 result = BTRFS_COMPARE_TREE_CHANGED; 7895 else 7896 result = BTRFS_COMPARE_TREE_SAME; 7897 ret = changed_cb(left_path, right_path, 7898 &left_key, result, sctx); 7899 advance_left = ADVANCE; 7900 advance_right = ADVANCE; 7901 } 7902 7903 if (ret < 0) 7904 goto out; 7905 down_read(&fs_info->commit_root_sem); 7906 } else if (left_level == right_level) { 7907 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7908 if (cmp < 0) { 7909 advance_left = ADVANCE; 7910 } else if (cmp > 0) { 7911 advance_right = ADVANCE; 7912 } else { 7913 left_blockptr = btrfs_node_blockptr( 7914 left_path->nodes[left_level], 7915 left_path->slots[left_level]); 7916 right_blockptr = btrfs_node_blockptr( 7917 right_path->nodes[right_level], 7918 right_path->slots[right_level]); 7919 left_gen = btrfs_node_ptr_generation( 7920 left_path->nodes[left_level], 7921 left_path->slots[left_level]); 7922 right_gen = btrfs_node_ptr_generation( 7923 right_path->nodes[right_level], 7924 right_path->slots[right_level]); 7925 if (left_blockptr == right_blockptr && 7926 left_gen == right_gen) { 7927 /* 7928 * As we're on a shared block, don't 7929 * allow to go deeper. 7930 */ 7931 advance_left = ADVANCE_ONLY_NEXT; 7932 advance_right = ADVANCE_ONLY_NEXT; 7933 } else { 7934 advance_left = ADVANCE; 7935 advance_right = ADVANCE; 7936 } 7937 } 7938 } else if (left_level < right_level) { 7939 advance_right = ADVANCE; 7940 } else { 7941 advance_left = ADVANCE; 7942 } 7943 } 7944 7945 out_unlock: 7946 up_read(&fs_info->commit_root_sem); 7947 out: 7948 btrfs_free_path(left_path); 7949 btrfs_free_path(right_path); 7950 kvfree(tmp_buf); 7951 return ret; 7952 } 7953 7954 static int send_subvol(struct send_ctx *sctx) 7955 { 7956 int ret; 7957 7958 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7959 ret = send_header(sctx); 7960 if (ret < 0) 7961 goto out; 7962 } 7963 7964 ret = send_subvol_begin(sctx); 7965 if (ret < 0) 7966 goto out; 7967 7968 if (sctx->parent_root) { 7969 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7970 if (ret < 0) 7971 goto out; 7972 ret = finish_inode_if_needed(sctx, 1); 7973 if (ret < 0) 7974 goto out; 7975 } else { 7976 ret = full_send_tree(sctx); 7977 if (ret < 0) 7978 goto out; 7979 } 7980 7981 out: 7982 free_recorded_refs(sctx); 7983 return ret; 7984 } 7985 7986 /* 7987 * If orphan cleanup did remove any orphans from a root, it means the tree 7988 * was modified and therefore the commit root is not the same as the current 7989 * root anymore. This is a problem, because send uses the commit root and 7990 * therefore can see inode items that don't exist in the current root anymore, 7991 * and for example make calls to btrfs_iget, which will do tree lookups based 7992 * on the current root and not on the commit root. Those lookups will fail, 7993 * returning a -ESTALE error, and making send fail with that error. So make 7994 * sure a send does not see any orphans we have just removed, and that it will 7995 * see the same inodes regardless of whether a transaction commit happened 7996 * before it started (meaning that the commit root will be the same as the 7997 * current root) or not. 7998 */ 7999 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 8000 { 8001 int i; 8002 struct btrfs_trans_handle *trans = NULL; 8003 8004 again: 8005 if (sctx->parent_root && 8006 sctx->parent_root->node != sctx->parent_root->commit_root) 8007 goto commit_trans; 8008 8009 for (i = 0; i < sctx->clone_roots_cnt; i++) 8010 if (sctx->clone_roots[i].root->node != 8011 sctx->clone_roots[i].root->commit_root) 8012 goto commit_trans; 8013 8014 if (trans) 8015 return btrfs_end_transaction(trans); 8016 8017 return 0; 8018 8019 commit_trans: 8020 /* Use any root, all fs roots will get their commit roots updated. */ 8021 if (!trans) { 8022 trans = btrfs_join_transaction(sctx->send_root); 8023 if (IS_ERR(trans)) 8024 return PTR_ERR(trans); 8025 goto again; 8026 } 8027 8028 return btrfs_commit_transaction(trans); 8029 } 8030 8031 /* 8032 * Make sure any existing dellaloc is flushed for any root used by a send 8033 * operation so that we do not miss any data and we do not race with writeback 8034 * finishing and changing a tree while send is using the tree. This could 8035 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8036 * a send operation then uses the subvolume. 8037 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8038 */ 8039 static int flush_delalloc_roots(struct send_ctx *sctx) 8040 { 8041 struct btrfs_root *root = sctx->parent_root; 8042 int ret; 8043 int i; 8044 8045 if (root) { 8046 ret = btrfs_start_delalloc_snapshot(root, false); 8047 if (ret) 8048 return ret; 8049 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8050 } 8051 8052 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8053 root = sctx->clone_roots[i].root; 8054 ret = btrfs_start_delalloc_snapshot(root, false); 8055 if (ret) 8056 return ret; 8057 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8058 } 8059 8060 return 0; 8061 } 8062 8063 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8064 { 8065 spin_lock(&root->root_item_lock); 8066 root->send_in_progress--; 8067 /* 8068 * Not much left to do, we don't know why it's unbalanced and 8069 * can't blindly reset it to 0. 8070 */ 8071 if (root->send_in_progress < 0) 8072 btrfs_err(root->fs_info, 8073 "send_in_progress unbalanced %d root %llu", 8074 root->send_in_progress, root->root_key.objectid); 8075 spin_unlock(&root->root_item_lock); 8076 } 8077 8078 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8079 { 8080 btrfs_warn_rl(root->fs_info, 8081 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8082 root->root_key.objectid, root->dedupe_in_progress); 8083 } 8084 8085 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 8086 { 8087 int ret = 0; 8088 struct btrfs_root *send_root = BTRFS_I(inode)->root; 8089 struct btrfs_fs_info *fs_info = send_root->fs_info; 8090 struct btrfs_root *clone_root; 8091 struct send_ctx *sctx = NULL; 8092 u32 i; 8093 u64 *clone_sources_tmp = NULL; 8094 int clone_sources_to_rollback = 0; 8095 size_t alloc_size; 8096 int sort_clone_roots = 0; 8097 struct btrfs_lru_cache_entry *entry; 8098 struct btrfs_lru_cache_entry *tmp; 8099 8100 if (!capable(CAP_SYS_ADMIN)) 8101 return -EPERM; 8102 8103 /* 8104 * The subvolume must remain read-only during send, protect against 8105 * making it RW. This also protects against deletion. 8106 */ 8107 spin_lock(&send_root->root_item_lock); 8108 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8109 dedupe_in_progress_warn(send_root); 8110 spin_unlock(&send_root->root_item_lock); 8111 return -EAGAIN; 8112 } 8113 send_root->send_in_progress++; 8114 spin_unlock(&send_root->root_item_lock); 8115 8116 /* 8117 * Userspace tools do the checks and warn the user if it's 8118 * not RO. 8119 */ 8120 if (!btrfs_root_readonly(send_root)) { 8121 ret = -EPERM; 8122 goto out; 8123 } 8124 8125 /* 8126 * Check that we don't overflow at later allocations, we request 8127 * clone_sources_count + 1 items, and compare to unsigned long inside 8128 * access_ok. Also set an upper limit for allocation size so this can't 8129 * easily exhaust memory. Max number of clone sources is about 200K. 8130 */ 8131 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8132 ret = -EINVAL; 8133 goto out; 8134 } 8135 8136 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8137 ret = -EOPNOTSUPP; 8138 goto out; 8139 } 8140 8141 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8142 if (!sctx) { 8143 ret = -ENOMEM; 8144 goto out; 8145 } 8146 8147 INIT_LIST_HEAD(&sctx->new_refs); 8148 INIT_LIST_HEAD(&sctx->deleted_refs); 8149 8150 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8151 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8152 btrfs_lru_cache_init(&sctx->dir_created_cache, 8153 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8154 /* 8155 * This cache is periodically trimmed to a fixed size elsewhere, see 8156 * cache_dir_utimes() and trim_dir_utimes_cache(). 8157 */ 8158 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8159 8160 sctx->pending_dir_moves = RB_ROOT; 8161 sctx->waiting_dir_moves = RB_ROOT; 8162 sctx->orphan_dirs = RB_ROOT; 8163 sctx->rbtree_new_refs = RB_ROOT; 8164 sctx->rbtree_deleted_refs = RB_ROOT; 8165 8166 sctx->flags = arg->flags; 8167 8168 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8169 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8170 ret = -EPROTO; 8171 goto out; 8172 } 8173 /* Zero means "use the highest version" */ 8174 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8175 } else { 8176 sctx->proto = 1; 8177 } 8178 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8179 ret = -EINVAL; 8180 goto out; 8181 } 8182 8183 sctx->send_filp = fget(arg->send_fd); 8184 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8185 ret = -EBADF; 8186 goto out; 8187 } 8188 8189 sctx->send_root = send_root; 8190 /* 8191 * Unlikely but possible, if the subvolume is marked for deletion but 8192 * is slow to remove the directory entry, send can still be started 8193 */ 8194 if (btrfs_root_dead(sctx->send_root)) { 8195 ret = -EPERM; 8196 goto out; 8197 } 8198 8199 sctx->clone_roots_cnt = arg->clone_sources_count; 8200 8201 if (sctx->proto >= 2) { 8202 u32 send_buf_num_pages; 8203 8204 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8205 sctx->send_buf = vmalloc(sctx->send_max_size); 8206 if (!sctx->send_buf) { 8207 ret = -ENOMEM; 8208 goto out; 8209 } 8210 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8211 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8212 sizeof(*sctx->send_buf_pages), 8213 GFP_KERNEL); 8214 if (!sctx->send_buf_pages) { 8215 ret = -ENOMEM; 8216 goto out; 8217 } 8218 for (i = 0; i < send_buf_num_pages; i++) { 8219 sctx->send_buf_pages[i] = 8220 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8221 } 8222 } else { 8223 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8224 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8225 } 8226 if (!sctx->send_buf) { 8227 ret = -ENOMEM; 8228 goto out; 8229 } 8230 8231 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8232 sizeof(*sctx->clone_roots), 8233 GFP_KERNEL); 8234 if (!sctx->clone_roots) { 8235 ret = -ENOMEM; 8236 goto out; 8237 } 8238 8239 alloc_size = array_size(sizeof(*arg->clone_sources), 8240 arg->clone_sources_count); 8241 8242 if (arg->clone_sources_count) { 8243 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8244 if (!clone_sources_tmp) { 8245 ret = -ENOMEM; 8246 goto out; 8247 } 8248 8249 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8250 alloc_size); 8251 if (ret) { 8252 ret = -EFAULT; 8253 goto out; 8254 } 8255 8256 for (i = 0; i < arg->clone_sources_count; i++) { 8257 clone_root = btrfs_get_fs_root(fs_info, 8258 clone_sources_tmp[i], true); 8259 if (IS_ERR(clone_root)) { 8260 ret = PTR_ERR(clone_root); 8261 goto out; 8262 } 8263 spin_lock(&clone_root->root_item_lock); 8264 if (!btrfs_root_readonly(clone_root) || 8265 btrfs_root_dead(clone_root)) { 8266 spin_unlock(&clone_root->root_item_lock); 8267 btrfs_put_root(clone_root); 8268 ret = -EPERM; 8269 goto out; 8270 } 8271 if (clone_root->dedupe_in_progress) { 8272 dedupe_in_progress_warn(clone_root); 8273 spin_unlock(&clone_root->root_item_lock); 8274 btrfs_put_root(clone_root); 8275 ret = -EAGAIN; 8276 goto out; 8277 } 8278 clone_root->send_in_progress++; 8279 spin_unlock(&clone_root->root_item_lock); 8280 8281 sctx->clone_roots[i].root = clone_root; 8282 clone_sources_to_rollback = i + 1; 8283 } 8284 kvfree(clone_sources_tmp); 8285 clone_sources_tmp = NULL; 8286 } 8287 8288 if (arg->parent_root) { 8289 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8290 true); 8291 if (IS_ERR(sctx->parent_root)) { 8292 ret = PTR_ERR(sctx->parent_root); 8293 goto out; 8294 } 8295 8296 spin_lock(&sctx->parent_root->root_item_lock); 8297 sctx->parent_root->send_in_progress++; 8298 if (!btrfs_root_readonly(sctx->parent_root) || 8299 btrfs_root_dead(sctx->parent_root)) { 8300 spin_unlock(&sctx->parent_root->root_item_lock); 8301 ret = -EPERM; 8302 goto out; 8303 } 8304 if (sctx->parent_root->dedupe_in_progress) { 8305 dedupe_in_progress_warn(sctx->parent_root); 8306 spin_unlock(&sctx->parent_root->root_item_lock); 8307 ret = -EAGAIN; 8308 goto out; 8309 } 8310 spin_unlock(&sctx->parent_root->root_item_lock); 8311 } 8312 8313 /* 8314 * Clones from send_root are allowed, but only if the clone source 8315 * is behind the current send position. This is checked while searching 8316 * for possible clone sources. 8317 */ 8318 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8319 btrfs_grab_root(sctx->send_root); 8320 8321 /* We do a bsearch later */ 8322 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8323 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8324 NULL); 8325 sort_clone_roots = 1; 8326 8327 ret = flush_delalloc_roots(sctx); 8328 if (ret) 8329 goto out; 8330 8331 ret = ensure_commit_roots_uptodate(sctx); 8332 if (ret) 8333 goto out; 8334 8335 ret = send_subvol(sctx); 8336 if (ret < 0) 8337 goto out; 8338 8339 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8340 ret = send_utimes(sctx, entry->key, entry->gen); 8341 if (ret < 0) 8342 goto out; 8343 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8344 } 8345 8346 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8347 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8348 if (ret < 0) 8349 goto out; 8350 ret = send_cmd(sctx); 8351 if (ret < 0) 8352 goto out; 8353 } 8354 8355 out: 8356 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8357 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8358 struct rb_node *n; 8359 struct pending_dir_move *pm; 8360 8361 n = rb_first(&sctx->pending_dir_moves); 8362 pm = rb_entry(n, struct pending_dir_move, node); 8363 while (!list_empty(&pm->list)) { 8364 struct pending_dir_move *pm2; 8365 8366 pm2 = list_first_entry(&pm->list, 8367 struct pending_dir_move, list); 8368 free_pending_move(sctx, pm2); 8369 } 8370 free_pending_move(sctx, pm); 8371 } 8372 8373 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8374 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8375 struct rb_node *n; 8376 struct waiting_dir_move *dm; 8377 8378 n = rb_first(&sctx->waiting_dir_moves); 8379 dm = rb_entry(n, struct waiting_dir_move, node); 8380 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8381 kfree(dm); 8382 } 8383 8384 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8385 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8386 struct rb_node *n; 8387 struct orphan_dir_info *odi; 8388 8389 n = rb_first(&sctx->orphan_dirs); 8390 odi = rb_entry(n, struct orphan_dir_info, node); 8391 free_orphan_dir_info(sctx, odi); 8392 } 8393 8394 if (sort_clone_roots) { 8395 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8396 btrfs_root_dec_send_in_progress( 8397 sctx->clone_roots[i].root); 8398 btrfs_put_root(sctx->clone_roots[i].root); 8399 } 8400 } else { 8401 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8402 btrfs_root_dec_send_in_progress( 8403 sctx->clone_roots[i].root); 8404 btrfs_put_root(sctx->clone_roots[i].root); 8405 } 8406 8407 btrfs_root_dec_send_in_progress(send_root); 8408 } 8409 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8410 btrfs_root_dec_send_in_progress(sctx->parent_root); 8411 btrfs_put_root(sctx->parent_root); 8412 } 8413 8414 kvfree(clone_sources_tmp); 8415 8416 if (sctx) { 8417 if (sctx->send_filp) 8418 fput(sctx->send_filp); 8419 8420 kvfree(sctx->clone_roots); 8421 kfree(sctx->send_buf_pages); 8422 kvfree(sctx->send_buf); 8423 kvfree(sctx->verity_descriptor); 8424 8425 close_current_inode(sctx); 8426 8427 btrfs_lru_cache_clear(&sctx->name_cache); 8428 btrfs_lru_cache_clear(&sctx->backref_cache); 8429 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8430 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8431 8432 kfree(sctx); 8433 } 8434 8435 return ret; 8436 } 8437