1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 27 /* 28 * Maximum number of references an extent can have in order for us to attempt to 29 * issue clone operations instead of write operations. This currently exists to 30 * avoid hitting limitations of the backreference walking code (taking a lot of 31 * time and using too much memory for extents with large number of references). 32 */ 33 #define SEND_MAX_EXTENT_REFS 64 34 35 /* 36 * A fs_path is a helper to dynamically build path names with unknown size. 37 * It reallocates the internal buffer on demand. 38 * It allows fast adding of path elements on the right side (normal path) and 39 * fast adding to the left side (reversed path). A reversed path can also be 40 * unreversed if needed. 41 */ 42 struct fs_path { 43 union { 44 struct { 45 char *start; 46 char *end; 47 48 char *buf; 49 unsigned short buf_len:15; 50 unsigned short reversed:1; 51 char inline_buf[]; 52 }; 53 /* 54 * Average path length does not exceed 200 bytes, we'll have 55 * better packing in the slab and higher chance to satisfy 56 * a allocation later during send. 57 */ 58 char pad[256]; 59 }; 60 }; 61 #define FS_PATH_INLINE_SIZE \ 62 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 63 64 65 /* reused for each extent */ 66 struct clone_root { 67 struct btrfs_root *root; 68 u64 ino; 69 u64 offset; 70 71 u64 found_refs; 72 }; 73 74 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 75 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 76 77 struct send_ctx { 78 struct file *send_filp; 79 loff_t send_off; 80 char *send_buf; 81 u32 send_size; 82 u32 send_max_size; 83 u64 total_send_size; 84 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 85 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 86 87 struct btrfs_root *send_root; 88 struct btrfs_root *parent_root; 89 struct clone_root *clone_roots; 90 int clone_roots_cnt; 91 92 /* current state of the compare_tree call */ 93 struct btrfs_path *left_path; 94 struct btrfs_path *right_path; 95 struct btrfs_key *cmp_key; 96 97 /* 98 * infos of the currently processed inode. In case of deleted inodes, 99 * these are the values from the deleted inode. 100 */ 101 u64 cur_ino; 102 u64 cur_inode_gen; 103 int cur_inode_new; 104 int cur_inode_new_gen; 105 int cur_inode_deleted; 106 u64 cur_inode_size; 107 u64 cur_inode_mode; 108 u64 cur_inode_rdev; 109 u64 cur_inode_last_extent; 110 u64 cur_inode_next_write_offset; 111 bool ignore_cur_inode; 112 113 u64 send_progress; 114 115 struct list_head new_refs; 116 struct list_head deleted_refs; 117 118 struct radix_tree_root name_cache; 119 struct list_head name_cache_list; 120 int name_cache_size; 121 122 struct file_ra_state ra; 123 124 char *read_buf; 125 126 /* 127 * We process inodes by their increasing order, so if before an 128 * incremental send we reverse the parent/child relationship of 129 * directories such that a directory with a lower inode number was 130 * the parent of a directory with a higher inode number, and the one 131 * becoming the new parent got renamed too, we can't rename/move the 132 * directory with lower inode number when we finish processing it - we 133 * must process the directory with higher inode number first, then 134 * rename/move it and then rename/move the directory with lower inode 135 * number. Example follows. 136 * 137 * Tree state when the first send was performed: 138 * 139 * . 140 * |-- a (ino 257) 141 * |-- b (ino 258) 142 * | 143 * | 144 * |-- c (ino 259) 145 * | |-- d (ino 260) 146 * | 147 * |-- c2 (ino 261) 148 * 149 * Tree state when the second (incremental) send is performed: 150 * 151 * . 152 * |-- a (ino 257) 153 * |-- b (ino 258) 154 * |-- c2 (ino 261) 155 * |-- d2 (ino 260) 156 * |-- cc (ino 259) 157 * 158 * The sequence of steps that lead to the second state was: 159 * 160 * mv /a/b/c/d /a/b/c2/d2 161 * mv /a/b/c /a/b/c2/d2/cc 162 * 163 * "c" has lower inode number, but we can't move it (2nd mv operation) 164 * before we move "d", which has higher inode number. 165 * 166 * So we just memorize which move/rename operations must be performed 167 * later when their respective parent is processed and moved/renamed. 168 */ 169 170 /* Indexed by parent directory inode number. */ 171 struct rb_root pending_dir_moves; 172 173 /* 174 * Reverse index, indexed by the inode number of a directory that 175 * is waiting for the move/rename of its immediate parent before its 176 * own move/rename can be performed. 177 */ 178 struct rb_root waiting_dir_moves; 179 180 /* 181 * A directory that is going to be rm'ed might have a child directory 182 * which is in the pending directory moves index above. In this case, 183 * the directory can only be removed after the move/rename of its child 184 * is performed. Example: 185 * 186 * Parent snapshot: 187 * 188 * . (ino 256) 189 * |-- a/ (ino 257) 190 * |-- b/ (ino 258) 191 * |-- c/ (ino 259) 192 * | |-- x/ (ino 260) 193 * | 194 * |-- y/ (ino 261) 195 * 196 * Send snapshot: 197 * 198 * . (ino 256) 199 * |-- a/ (ino 257) 200 * |-- b/ (ino 258) 201 * |-- YY/ (ino 261) 202 * |-- x/ (ino 260) 203 * 204 * Sequence of steps that lead to the send snapshot: 205 * rm -f /a/b/c/foo.txt 206 * mv /a/b/y /a/b/YY 207 * mv /a/b/c/x /a/b/YY 208 * rmdir /a/b/c 209 * 210 * When the child is processed, its move/rename is delayed until its 211 * parent is processed (as explained above), but all other operations 212 * like update utimes, chown, chgrp, etc, are performed and the paths 213 * that it uses for those operations must use the orphanized name of 214 * its parent (the directory we're going to rm later), so we need to 215 * memorize that name. 216 * 217 * Indexed by the inode number of the directory to be deleted. 218 */ 219 struct rb_root orphan_dirs; 220 }; 221 222 struct pending_dir_move { 223 struct rb_node node; 224 struct list_head list; 225 u64 parent_ino; 226 u64 ino; 227 u64 gen; 228 struct list_head update_refs; 229 }; 230 231 struct waiting_dir_move { 232 struct rb_node node; 233 u64 ino; 234 /* 235 * There might be some directory that could not be removed because it 236 * was waiting for this directory inode to be moved first. Therefore 237 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 238 */ 239 u64 rmdir_ino; 240 bool orphanized; 241 }; 242 243 struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248 }; 249 250 struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269 }; 270 271 #define ADVANCE 1 272 #define ADVANCE_ONLY_NEXT -1 273 274 enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279 }; 280 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path, 281 struct btrfs_path *right_path, 282 struct btrfs_key *key, 283 enum btrfs_compare_tree_result result, 284 void *ctx); 285 286 __cold 287 static void inconsistent_snapshot_error(struct send_ctx *sctx, 288 enum btrfs_compare_tree_result result, 289 const char *what) 290 { 291 const char *result_string; 292 293 switch (result) { 294 case BTRFS_COMPARE_TREE_NEW: 295 result_string = "new"; 296 break; 297 case BTRFS_COMPARE_TREE_DELETED: 298 result_string = "deleted"; 299 break; 300 case BTRFS_COMPARE_TREE_CHANGED: 301 result_string = "updated"; 302 break; 303 case BTRFS_COMPARE_TREE_SAME: 304 ASSERT(0); 305 result_string = "unchanged"; 306 break; 307 default: 308 ASSERT(0); 309 result_string = "unexpected"; 310 } 311 312 btrfs_err(sctx->send_root->fs_info, 313 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 314 result_string, what, sctx->cmp_key->objectid, 315 sctx->send_root->root_key.objectid, 316 (sctx->parent_root ? 317 sctx->parent_root->root_key.objectid : 0)); 318 } 319 320 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 321 322 static struct waiting_dir_move * 323 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 324 325 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 326 327 static int need_send_hole(struct send_ctx *sctx) 328 { 329 return (sctx->parent_root && !sctx->cur_inode_new && 330 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 331 S_ISREG(sctx->cur_inode_mode)); 332 } 333 334 static void fs_path_reset(struct fs_path *p) 335 { 336 if (p->reversed) { 337 p->start = p->buf + p->buf_len - 1; 338 p->end = p->start; 339 *p->start = 0; 340 } else { 341 p->start = p->buf; 342 p->end = p->start; 343 *p->start = 0; 344 } 345 } 346 347 static struct fs_path *fs_path_alloc(void) 348 { 349 struct fs_path *p; 350 351 p = kmalloc(sizeof(*p), GFP_KERNEL); 352 if (!p) 353 return NULL; 354 p->reversed = 0; 355 p->buf = p->inline_buf; 356 p->buf_len = FS_PATH_INLINE_SIZE; 357 fs_path_reset(p); 358 return p; 359 } 360 361 static struct fs_path *fs_path_alloc_reversed(void) 362 { 363 struct fs_path *p; 364 365 p = fs_path_alloc(); 366 if (!p) 367 return NULL; 368 p->reversed = 1; 369 fs_path_reset(p); 370 return p; 371 } 372 373 static void fs_path_free(struct fs_path *p) 374 { 375 if (!p) 376 return; 377 if (p->buf != p->inline_buf) 378 kfree(p->buf); 379 kfree(p); 380 } 381 382 static int fs_path_len(struct fs_path *p) 383 { 384 return p->end - p->start; 385 } 386 387 static int fs_path_ensure_buf(struct fs_path *p, int len) 388 { 389 char *tmp_buf; 390 int path_len; 391 int old_buf_len; 392 393 len++; 394 395 if (p->buf_len >= len) 396 return 0; 397 398 if (len > PATH_MAX) { 399 WARN_ON(1); 400 return -ENOMEM; 401 } 402 403 path_len = p->end - p->start; 404 old_buf_len = p->buf_len; 405 406 /* 407 * First time the inline_buf does not suffice 408 */ 409 if (p->buf == p->inline_buf) { 410 tmp_buf = kmalloc(len, GFP_KERNEL); 411 if (tmp_buf) 412 memcpy(tmp_buf, p->buf, old_buf_len); 413 } else { 414 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 415 } 416 if (!tmp_buf) 417 return -ENOMEM; 418 p->buf = tmp_buf; 419 /* 420 * The real size of the buffer is bigger, this will let the fast path 421 * happen most of the time 422 */ 423 p->buf_len = ksize(p->buf); 424 425 if (p->reversed) { 426 tmp_buf = p->buf + old_buf_len - path_len - 1; 427 p->end = p->buf + p->buf_len - 1; 428 p->start = p->end - path_len; 429 memmove(p->start, tmp_buf, path_len + 1); 430 } else { 431 p->start = p->buf; 432 p->end = p->start + path_len; 433 } 434 return 0; 435 } 436 437 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 438 char **prepared) 439 { 440 int ret; 441 int new_len; 442 443 new_len = p->end - p->start + name_len; 444 if (p->start != p->end) 445 new_len++; 446 ret = fs_path_ensure_buf(p, new_len); 447 if (ret < 0) 448 goto out; 449 450 if (p->reversed) { 451 if (p->start != p->end) 452 *--p->start = '/'; 453 p->start -= name_len; 454 *prepared = p->start; 455 } else { 456 if (p->start != p->end) 457 *p->end++ = '/'; 458 *prepared = p->end; 459 p->end += name_len; 460 *p->end = 0; 461 } 462 463 out: 464 return ret; 465 } 466 467 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 468 { 469 int ret; 470 char *prepared; 471 472 ret = fs_path_prepare_for_add(p, name_len, &prepared); 473 if (ret < 0) 474 goto out; 475 memcpy(prepared, name, name_len); 476 477 out: 478 return ret; 479 } 480 481 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 482 { 483 int ret; 484 char *prepared; 485 486 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 487 if (ret < 0) 488 goto out; 489 memcpy(prepared, p2->start, p2->end - p2->start); 490 491 out: 492 return ret; 493 } 494 495 static int fs_path_add_from_extent_buffer(struct fs_path *p, 496 struct extent_buffer *eb, 497 unsigned long off, int len) 498 { 499 int ret; 500 char *prepared; 501 502 ret = fs_path_prepare_for_add(p, len, &prepared); 503 if (ret < 0) 504 goto out; 505 506 read_extent_buffer(eb, prepared, off, len); 507 508 out: 509 return ret; 510 } 511 512 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 513 { 514 int ret; 515 516 p->reversed = from->reversed; 517 fs_path_reset(p); 518 519 ret = fs_path_add_path(p, from); 520 521 return ret; 522 } 523 524 525 static void fs_path_unreverse(struct fs_path *p) 526 { 527 char *tmp; 528 int len; 529 530 if (!p->reversed) 531 return; 532 533 tmp = p->start; 534 len = p->end - p->start; 535 p->start = p->buf; 536 p->end = p->start + len; 537 memmove(p->start, tmp, len + 1); 538 p->reversed = 0; 539 } 540 541 static struct btrfs_path *alloc_path_for_send(void) 542 { 543 struct btrfs_path *path; 544 545 path = btrfs_alloc_path(); 546 if (!path) 547 return NULL; 548 path->search_commit_root = 1; 549 path->skip_locking = 1; 550 path->need_commit_sem = 1; 551 return path; 552 } 553 554 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 555 { 556 int ret; 557 u32 pos = 0; 558 559 while (pos < len) { 560 ret = kernel_write(filp, buf + pos, len - pos, off); 561 /* TODO handle that correctly */ 562 /*if (ret == -ERESTARTSYS) { 563 continue; 564 }*/ 565 if (ret < 0) 566 return ret; 567 if (ret == 0) { 568 return -EIO; 569 } 570 pos += ret; 571 } 572 573 return 0; 574 } 575 576 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 577 { 578 struct btrfs_tlv_header *hdr; 579 int total_len = sizeof(*hdr) + len; 580 int left = sctx->send_max_size - sctx->send_size; 581 582 if (unlikely(left < total_len)) 583 return -EOVERFLOW; 584 585 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 586 hdr->tlv_type = cpu_to_le16(attr); 587 hdr->tlv_len = cpu_to_le16(len); 588 memcpy(hdr + 1, data, len); 589 sctx->send_size += total_len; 590 591 return 0; 592 } 593 594 #define TLV_PUT_DEFINE_INT(bits) \ 595 static int tlv_put_u##bits(struct send_ctx *sctx, \ 596 u##bits attr, u##bits value) \ 597 { \ 598 __le##bits __tmp = cpu_to_le##bits(value); \ 599 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 600 } 601 602 TLV_PUT_DEFINE_INT(64) 603 604 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 605 const char *str, int len) 606 { 607 if (len == -1) 608 len = strlen(str); 609 return tlv_put(sctx, attr, str, len); 610 } 611 612 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 613 const u8 *uuid) 614 { 615 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 616 } 617 618 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 619 struct extent_buffer *eb, 620 struct btrfs_timespec *ts) 621 { 622 struct btrfs_timespec bts; 623 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 624 return tlv_put(sctx, attr, &bts, sizeof(bts)); 625 } 626 627 628 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 629 do { \ 630 ret = tlv_put(sctx, attrtype, data, attrlen); \ 631 if (ret < 0) \ 632 goto tlv_put_failure; \ 633 } while (0) 634 635 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 636 do { \ 637 ret = tlv_put_u##bits(sctx, attrtype, value); \ 638 if (ret < 0) \ 639 goto tlv_put_failure; \ 640 } while (0) 641 642 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 643 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 644 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 645 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 646 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 647 do { \ 648 ret = tlv_put_string(sctx, attrtype, str, len); \ 649 if (ret < 0) \ 650 goto tlv_put_failure; \ 651 } while (0) 652 #define TLV_PUT_PATH(sctx, attrtype, p) \ 653 do { \ 654 ret = tlv_put_string(sctx, attrtype, p->start, \ 655 p->end - p->start); \ 656 if (ret < 0) \ 657 goto tlv_put_failure; \ 658 } while(0) 659 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 660 do { \ 661 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 662 if (ret < 0) \ 663 goto tlv_put_failure; \ 664 } while (0) 665 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 666 do { \ 667 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 668 if (ret < 0) \ 669 goto tlv_put_failure; \ 670 } while (0) 671 672 static int send_header(struct send_ctx *sctx) 673 { 674 struct btrfs_stream_header hdr; 675 676 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 677 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 678 679 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 680 &sctx->send_off); 681 } 682 683 /* 684 * For each command/item we want to send to userspace, we call this function. 685 */ 686 static int begin_cmd(struct send_ctx *sctx, int cmd) 687 { 688 struct btrfs_cmd_header *hdr; 689 690 if (WARN_ON(!sctx->send_buf)) 691 return -EINVAL; 692 693 BUG_ON(sctx->send_size); 694 695 sctx->send_size += sizeof(*hdr); 696 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 697 hdr->cmd = cpu_to_le16(cmd); 698 699 return 0; 700 } 701 702 static int send_cmd(struct send_ctx *sctx) 703 { 704 int ret; 705 struct btrfs_cmd_header *hdr; 706 u32 crc; 707 708 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 709 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 710 hdr->crc = 0; 711 712 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 713 hdr->crc = cpu_to_le32(crc); 714 715 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 716 &sctx->send_off); 717 718 sctx->total_send_size += sctx->send_size; 719 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 720 sctx->send_size = 0; 721 722 return ret; 723 } 724 725 /* 726 * Sends a move instruction to user space 727 */ 728 static int send_rename(struct send_ctx *sctx, 729 struct fs_path *from, struct fs_path *to) 730 { 731 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 732 int ret; 733 734 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 735 736 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 737 if (ret < 0) 738 goto out; 739 740 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 742 743 ret = send_cmd(sctx); 744 745 tlv_put_failure: 746 out: 747 return ret; 748 } 749 750 /* 751 * Sends a link instruction to user space 752 */ 753 static int send_link(struct send_ctx *sctx, 754 struct fs_path *path, struct fs_path *lnk) 755 { 756 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 757 int ret; 758 759 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 760 761 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 762 if (ret < 0) 763 goto out; 764 765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 767 768 ret = send_cmd(sctx); 769 770 tlv_put_failure: 771 out: 772 return ret; 773 } 774 775 /* 776 * Sends an unlink instruction to user space 777 */ 778 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 779 { 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 781 int ret; 782 783 btrfs_debug(fs_info, "send_unlink %s", path->start); 784 785 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 786 if (ret < 0) 787 goto out; 788 789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 790 791 ret = send_cmd(sctx); 792 793 tlv_put_failure: 794 out: 795 return ret; 796 } 797 798 /* 799 * Sends a rmdir instruction to user space 800 */ 801 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 802 { 803 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 804 int ret; 805 806 btrfs_debug(fs_info, "send_rmdir %s", path->start); 807 808 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 809 if (ret < 0) 810 goto out; 811 812 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 813 814 ret = send_cmd(sctx); 815 816 tlv_put_failure: 817 out: 818 return ret; 819 } 820 821 /* 822 * Helper function to retrieve some fields from an inode item. 823 */ 824 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 825 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 826 u64 *gid, u64 *rdev) 827 { 828 int ret; 829 struct btrfs_inode_item *ii; 830 struct btrfs_key key; 831 832 key.objectid = ino; 833 key.type = BTRFS_INODE_ITEM_KEY; 834 key.offset = 0; 835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 836 if (ret) { 837 if (ret > 0) 838 ret = -ENOENT; 839 return ret; 840 } 841 842 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 843 struct btrfs_inode_item); 844 if (size) 845 *size = btrfs_inode_size(path->nodes[0], ii); 846 if (gen) 847 *gen = btrfs_inode_generation(path->nodes[0], ii); 848 if (mode) 849 *mode = btrfs_inode_mode(path->nodes[0], ii); 850 if (uid) 851 *uid = btrfs_inode_uid(path->nodes[0], ii); 852 if (gid) 853 *gid = btrfs_inode_gid(path->nodes[0], ii); 854 if (rdev) 855 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 856 857 return ret; 858 } 859 860 static int get_inode_info(struct btrfs_root *root, 861 u64 ino, u64 *size, u64 *gen, 862 u64 *mode, u64 *uid, u64 *gid, 863 u64 *rdev) 864 { 865 struct btrfs_path *path; 866 int ret; 867 868 path = alloc_path_for_send(); 869 if (!path) 870 return -ENOMEM; 871 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 872 rdev); 873 btrfs_free_path(path); 874 return ret; 875 } 876 877 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 878 struct fs_path *p, 879 void *ctx); 880 881 /* 882 * Helper function to iterate the entries in ONE btrfs_inode_ref or 883 * btrfs_inode_extref. 884 * The iterate callback may return a non zero value to stop iteration. This can 885 * be a negative value for error codes or 1 to simply stop it. 886 * 887 * path must point to the INODE_REF or INODE_EXTREF when called. 888 */ 889 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 890 struct btrfs_key *found_key, int resolve, 891 iterate_inode_ref_t iterate, void *ctx) 892 { 893 struct extent_buffer *eb = path->nodes[0]; 894 struct btrfs_item *item; 895 struct btrfs_inode_ref *iref; 896 struct btrfs_inode_extref *extref; 897 struct btrfs_path *tmp_path; 898 struct fs_path *p; 899 u32 cur = 0; 900 u32 total; 901 int slot = path->slots[0]; 902 u32 name_len; 903 char *start; 904 int ret = 0; 905 int num = 0; 906 int index; 907 u64 dir; 908 unsigned long name_off; 909 unsigned long elem_size; 910 unsigned long ptr; 911 912 p = fs_path_alloc_reversed(); 913 if (!p) 914 return -ENOMEM; 915 916 tmp_path = alloc_path_for_send(); 917 if (!tmp_path) { 918 fs_path_free(p); 919 return -ENOMEM; 920 } 921 922 923 if (found_key->type == BTRFS_INODE_REF_KEY) { 924 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 925 struct btrfs_inode_ref); 926 item = btrfs_item_nr(slot); 927 total = btrfs_item_size(eb, item); 928 elem_size = sizeof(*iref); 929 } else { 930 ptr = btrfs_item_ptr_offset(eb, slot); 931 total = btrfs_item_size_nr(eb, slot); 932 elem_size = sizeof(*extref); 933 } 934 935 while (cur < total) { 936 fs_path_reset(p); 937 938 if (found_key->type == BTRFS_INODE_REF_KEY) { 939 iref = (struct btrfs_inode_ref *)(ptr + cur); 940 name_len = btrfs_inode_ref_name_len(eb, iref); 941 name_off = (unsigned long)(iref + 1); 942 index = btrfs_inode_ref_index(eb, iref); 943 dir = found_key->offset; 944 } else { 945 extref = (struct btrfs_inode_extref *)(ptr + cur); 946 name_len = btrfs_inode_extref_name_len(eb, extref); 947 name_off = (unsigned long)&extref->name; 948 index = btrfs_inode_extref_index(eb, extref); 949 dir = btrfs_inode_extref_parent(eb, extref); 950 } 951 952 if (resolve) { 953 start = btrfs_ref_to_path(root, tmp_path, name_len, 954 name_off, eb, dir, 955 p->buf, p->buf_len); 956 if (IS_ERR(start)) { 957 ret = PTR_ERR(start); 958 goto out; 959 } 960 if (start < p->buf) { 961 /* overflow , try again with larger buffer */ 962 ret = fs_path_ensure_buf(p, 963 p->buf_len + p->buf - start); 964 if (ret < 0) 965 goto out; 966 start = btrfs_ref_to_path(root, tmp_path, 967 name_len, name_off, 968 eb, dir, 969 p->buf, p->buf_len); 970 if (IS_ERR(start)) { 971 ret = PTR_ERR(start); 972 goto out; 973 } 974 BUG_ON(start < p->buf); 975 } 976 p->start = start; 977 } else { 978 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 979 name_len); 980 if (ret < 0) 981 goto out; 982 } 983 984 cur += elem_size + name_len; 985 ret = iterate(num, dir, index, p, ctx); 986 if (ret) 987 goto out; 988 num++; 989 } 990 991 out: 992 btrfs_free_path(tmp_path); 993 fs_path_free(p); 994 return ret; 995 } 996 997 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 998 const char *name, int name_len, 999 const char *data, int data_len, 1000 u8 type, void *ctx); 1001 1002 /* 1003 * Helper function to iterate the entries in ONE btrfs_dir_item. 1004 * The iterate callback may return a non zero value to stop iteration. This can 1005 * be a negative value for error codes or 1 to simply stop it. 1006 * 1007 * path must point to the dir item when called. 1008 */ 1009 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1010 iterate_dir_item_t iterate, void *ctx) 1011 { 1012 int ret = 0; 1013 struct extent_buffer *eb; 1014 struct btrfs_item *item; 1015 struct btrfs_dir_item *di; 1016 struct btrfs_key di_key; 1017 char *buf = NULL; 1018 int buf_len; 1019 u32 name_len; 1020 u32 data_len; 1021 u32 cur; 1022 u32 len; 1023 u32 total; 1024 int slot; 1025 int num; 1026 u8 type; 1027 1028 /* 1029 * Start with a small buffer (1 page). If later we end up needing more 1030 * space, which can happen for xattrs on a fs with a leaf size greater 1031 * then the page size, attempt to increase the buffer. Typically xattr 1032 * values are small. 1033 */ 1034 buf_len = PATH_MAX; 1035 buf = kmalloc(buf_len, GFP_KERNEL); 1036 if (!buf) { 1037 ret = -ENOMEM; 1038 goto out; 1039 } 1040 1041 eb = path->nodes[0]; 1042 slot = path->slots[0]; 1043 item = btrfs_item_nr(slot); 1044 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1045 cur = 0; 1046 len = 0; 1047 total = btrfs_item_size(eb, item); 1048 1049 num = 0; 1050 while (cur < total) { 1051 name_len = btrfs_dir_name_len(eb, di); 1052 data_len = btrfs_dir_data_len(eb, di); 1053 type = btrfs_dir_type(eb, di); 1054 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1055 1056 if (type == BTRFS_FT_XATTR) { 1057 if (name_len > XATTR_NAME_MAX) { 1058 ret = -ENAMETOOLONG; 1059 goto out; 1060 } 1061 if (name_len + data_len > 1062 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1063 ret = -E2BIG; 1064 goto out; 1065 } 1066 } else { 1067 /* 1068 * Path too long 1069 */ 1070 if (name_len + data_len > PATH_MAX) { 1071 ret = -ENAMETOOLONG; 1072 goto out; 1073 } 1074 } 1075 1076 if (name_len + data_len > buf_len) { 1077 buf_len = name_len + data_len; 1078 if (is_vmalloc_addr(buf)) { 1079 vfree(buf); 1080 buf = NULL; 1081 } else { 1082 char *tmp = krealloc(buf, buf_len, 1083 GFP_KERNEL | __GFP_NOWARN); 1084 1085 if (!tmp) 1086 kfree(buf); 1087 buf = tmp; 1088 } 1089 if (!buf) { 1090 buf = kvmalloc(buf_len, GFP_KERNEL); 1091 if (!buf) { 1092 ret = -ENOMEM; 1093 goto out; 1094 } 1095 } 1096 } 1097 1098 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1099 name_len + data_len); 1100 1101 len = sizeof(*di) + name_len + data_len; 1102 di = (struct btrfs_dir_item *)((char *)di + len); 1103 cur += len; 1104 1105 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1106 data_len, type, ctx); 1107 if (ret < 0) 1108 goto out; 1109 if (ret) { 1110 ret = 0; 1111 goto out; 1112 } 1113 1114 num++; 1115 } 1116 1117 out: 1118 kvfree(buf); 1119 return ret; 1120 } 1121 1122 static int __copy_first_ref(int num, u64 dir, int index, 1123 struct fs_path *p, void *ctx) 1124 { 1125 int ret; 1126 struct fs_path *pt = ctx; 1127 1128 ret = fs_path_copy(pt, p); 1129 if (ret < 0) 1130 return ret; 1131 1132 /* we want the first only */ 1133 return 1; 1134 } 1135 1136 /* 1137 * Retrieve the first path of an inode. If an inode has more then one 1138 * ref/hardlink, this is ignored. 1139 */ 1140 static int get_inode_path(struct btrfs_root *root, 1141 u64 ino, struct fs_path *path) 1142 { 1143 int ret; 1144 struct btrfs_key key, found_key; 1145 struct btrfs_path *p; 1146 1147 p = alloc_path_for_send(); 1148 if (!p) 1149 return -ENOMEM; 1150 1151 fs_path_reset(path); 1152 1153 key.objectid = ino; 1154 key.type = BTRFS_INODE_REF_KEY; 1155 key.offset = 0; 1156 1157 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1158 if (ret < 0) 1159 goto out; 1160 if (ret) { 1161 ret = 1; 1162 goto out; 1163 } 1164 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1165 if (found_key.objectid != ino || 1166 (found_key.type != BTRFS_INODE_REF_KEY && 1167 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1168 ret = -ENOENT; 1169 goto out; 1170 } 1171 1172 ret = iterate_inode_ref(root, p, &found_key, 1, 1173 __copy_first_ref, path); 1174 if (ret < 0) 1175 goto out; 1176 ret = 0; 1177 1178 out: 1179 btrfs_free_path(p); 1180 return ret; 1181 } 1182 1183 struct backref_ctx { 1184 struct send_ctx *sctx; 1185 1186 /* number of total found references */ 1187 u64 found; 1188 1189 /* 1190 * used for clones found in send_root. clones found behind cur_objectid 1191 * and cur_offset are not considered as allowed clones. 1192 */ 1193 u64 cur_objectid; 1194 u64 cur_offset; 1195 1196 /* may be truncated in case it's the last extent in a file */ 1197 u64 extent_len; 1198 1199 /* data offset in the file extent item */ 1200 u64 data_offset; 1201 1202 /* Just to check for bugs in backref resolving */ 1203 int found_itself; 1204 }; 1205 1206 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1207 { 1208 u64 root = (u64)(uintptr_t)key; 1209 struct clone_root *cr = (struct clone_root *)elt; 1210 1211 if (root < cr->root->root_key.objectid) 1212 return -1; 1213 if (root > cr->root->root_key.objectid) 1214 return 1; 1215 return 0; 1216 } 1217 1218 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1219 { 1220 struct clone_root *cr1 = (struct clone_root *)e1; 1221 struct clone_root *cr2 = (struct clone_root *)e2; 1222 1223 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1224 return -1; 1225 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1226 return 1; 1227 return 0; 1228 } 1229 1230 /* 1231 * Called for every backref that is found for the current extent. 1232 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1233 */ 1234 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1235 { 1236 struct backref_ctx *bctx = ctx_; 1237 struct clone_root *found; 1238 1239 /* First check if the root is in the list of accepted clone sources */ 1240 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1241 bctx->sctx->clone_roots_cnt, 1242 sizeof(struct clone_root), 1243 __clone_root_cmp_bsearch); 1244 if (!found) 1245 return 0; 1246 1247 if (found->root == bctx->sctx->send_root && 1248 ino == bctx->cur_objectid && 1249 offset == bctx->cur_offset) { 1250 bctx->found_itself = 1; 1251 } 1252 1253 /* 1254 * Make sure we don't consider clones from send_root that are 1255 * behind the current inode/offset. 1256 */ 1257 if (found->root == bctx->sctx->send_root) { 1258 /* 1259 * If the source inode was not yet processed we can't issue a 1260 * clone operation, as the source extent does not exist yet at 1261 * the destination of the stream. 1262 */ 1263 if (ino > bctx->cur_objectid) 1264 return 0; 1265 /* 1266 * We clone from the inode currently being sent as long as the 1267 * source extent is already processed, otherwise we could try 1268 * to clone from an extent that does not exist yet at the 1269 * destination of the stream. 1270 */ 1271 if (ino == bctx->cur_objectid && 1272 offset >= bctx->sctx->cur_inode_next_write_offset) 1273 return 0; 1274 } 1275 1276 bctx->found++; 1277 found->found_refs++; 1278 if (ino < found->ino) { 1279 found->ino = ino; 1280 found->offset = offset; 1281 } else if (found->ino == ino) { 1282 /* 1283 * same extent found more then once in the same file. 1284 */ 1285 if (found->offset > offset + bctx->extent_len) 1286 found->offset = offset; 1287 } 1288 1289 return 0; 1290 } 1291 1292 /* 1293 * Given an inode, offset and extent item, it finds a good clone for a clone 1294 * instruction. Returns -ENOENT when none could be found. The function makes 1295 * sure that the returned clone is usable at the point where sending is at the 1296 * moment. This means, that no clones are accepted which lie behind the current 1297 * inode+offset. 1298 * 1299 * path must point to the extent item when called. 1300 */ 1301 static int find_extent_clone(struct send_ctx *sctx, 1302 struct btrfs_path *path, 1303 u64 ino, u64 data_offset, 1304 u64 ino_size, 1305 struct clone_root **found) 1306 { 1307 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1308 int ret; 1309 int extent_type; 1310 u64 logical; 1311 u64 disk_byte; 1312 u64 num_bytes; 1313 u64 extent_item_pos; 1314 u64 flags = 0; 1315 struct btrfs_file_extent_item *fi; 1316 struct extent_buffer *eb = path->nodes[0]; 1317 struct backref_ctx *backref_ctx = NULL; 1318 struct clone_root *cur_clone_root; 1319 struct btrfs_key found_key; 1320 struct btrfs_path *tmp_path; 1321 struct btrfs_extent_item *ei; 1322 int compressed; 1323 u32 i; 1324 1325 tmp_path = alloc_path_for_send(); 1326 if (!tmp_path) 1327 return -ENOMEM; 1328 1329 /* We only use this path under the commit sem */ 1330 tmp_path->need_commit_sem = 0; 1331 1332 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1333 if (!backref_ctx) { 1334 ret = -ENOMEM; 1335 goto out; 1336 } 1337 1338 if (data_offset >= ino_size) { 1339 /* 1340 * There may be extents that lie behind the file's size. 1341 * I at least had this in combination with snapshotting while 1342 * writing large files. 1343 */ 1344 ret = 0; 1345 goto out; 1346 } 1347 1348 fi = btrfs_item_ptr(eb, path->slots[0], 1349 struct btrfs_file_extent_item); 1350 extent_type = btrfs_file_extent_type(eb, fi); 1351 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1352 ret = -ENOENT; 1353 goto out; 1354 } 1355 compressed = btrfs_file_extent_compression(eb, fi); 1356 1357 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1358 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1359 if (disk_byte == 0) { 1360 ret = -ENOENT; 1361 goto out; 1362 } 1363 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1364 1365 down_read(&fs_info->commit_root_sem); 1366 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1367 &found_key, &flags); 1368 up_read(&fs_info->commit_root_sem); 1369 1370 if (ret < 0) 1371 goto out; 1372 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1373 ret = -EIO; 1374 goto out; 1375 } 1376 1377 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1378 struct btrfs_extent_item); 1379 /* 1380 * Backreference walking (iterate_extent_inodes() below) is currently 1381 * too expensive when an extent has a large number of references, both 1382 * in time spent and used memory. So for now just fallback to write 1383 * operations instead of clone operations when an extent has more than 1384 * a certain amount of references. 1385 */ 1386 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1387 ret = -ENOENT; 1388 goto out; 1389 } 1390 btrfs_release_path(tmp_path); 1391 1392 /* 1393 * Setup the clone roots. 1394 */ 1395 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1396 cur_clone_root = sctx->clone_roots + i; 1397 cur_clone_root->ino = (u64)-1; 1398 cur_clone_root->offset = 0; 1399 cur_clone_root->found_refs = 0; 1400 } 1401 1402 backref_ctx->sctx = sctx; 1403 backref_ctx->found = 0; 1404 backref_ctx->cur_objectid = ino; 1405 backref_ctx->cur_offset = data_offset; 1406 backref_ctx->found_itself = 0; 1407 backref_ctx->extent_len = num_bytes; 1408 /* 1409 * For non-compressed extents iterate_extent_inodes() gives us extent 1410 * offsets that already take into account the data offset, but not for 1411 * compressed extents, since the offset is logical and not relative to 1412 * the physical extent locations. We must take this into account to 1413 * avoid sending clone offsets that go beyond the source file's size, 1414 * which would result in the clone ioctl failing with -EINVAL on the 1415 * receiving end. 1416 */ 1417 if (compressed == BTRFS_COMPRESS_NONE) 1418 backref_ctx->data_offset = 0; 1419 else 1420 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1421 1422 /* 1423 * The last extent of a file may be too large due to page alignment. 1424 * We need to adjust extent_len in this case so that the checks in 1425 * __iterate_backrefs work. 1426 */ 1427 if (data_offset + num_bytes >= ino_size) 1428 backref_ctx->extent_len = ino_size - data_offset; 1429 1430 /* 1431 * Now collect all backrefs. 1432 */ 1433 if (compressed == BTRFS_COMPRESS_NONE) 1434 extent_item_pos = logical - found_key.objectid; 1435 else 1436 extent_item_pos = 0; 1437 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1438 extent_item_pos, 1, __iterate_backrefs, 1439 backref_ctx, false); 1440 1441 if (ret < 0) 1442 goto out; 1443 1444 if (!backref_ctx->found_itself) { 1445 /* found a bug in backref code? */ 1446 ret = -EIO; 1447 btrfs_err(fs_info, 1448 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1449 ino, data_offset, disk_byte, found_key.objectid); 1450 goto out; 1451 } 1452 1453 btrfs_debug(fs_info, 1454 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1455 data_offset, ino, num_bytes, logical); 1456 1457 if (!backref_ctx->found) 1458 btrfs_debug(fs_info, "no clones found"); 1459 1460 cur_clone_root = NULL; 1461 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1462 if (sctx->clone_roots[i].found_refs) { 1463 if (!cur_clone_root) 1464 cur_clone_root = sctx->clone_roots + i; 1465 else if (sctx->clone_roots[i].root == sctx->send_root) 1466 /* prefer clones from send_root over others */ 1467 cur_clone_root = sctx->clone_roots + i; 1468 } 1469 1470 } 1471 1472 if (cur_clone_root) { 1473 *found = cur_clone_root; 1474 ret = 0; 1475 } else { 1476 ret = -ENOENT; 1477 } 1478 1479 out: 1480 btrfs_free_path(tmp_path); 1481 kfree(backref_ctx); 1482 return ret; 1483 } 1484 1485 static int read_symlink(struct btrfs_root *root, 1486 u64 ino, 1487 struct fs_path *dest) 1488 { 1489 int ret; 1490 struct btrfs_path *path; 1491 struct btrfs_key key; 1492 struct btrfs_file_extent_item *ei; 1493 u8 type; 1494 u8 compression; 1495 unsigned long off; 1496 int len; 1497 1498 path = alloc_path_for_send(); 1499 if (!path) 1500 return -ENOMEM; 1501 1502 key.objectid = ino; 1503 key.type = BTRFS_EXTENT_DATA_KEY; 1504 key.offset = 0; 1505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1506 if (ret < 0) 1507 goto out; 1508 if (ret) { 1509 /* 1510 * An empty symlink inode. Can happen in rare error paths when 1511 * creating a symlink (transaction committed before the inode 1512 * eviction handler removed the symlink inode items and a crash 1513 * happened in between or the subvol was snapshoted in between). 1514 * Print an informative message to dmesg/syslog so that the user 1515 * can delete the symlink. 1516 */ 1517 btrfs_err(root->fs_info, 1518 "Found empty symlink inode %llu at root %llu", 1519 ino, root->root_key.objectid); 1520 ret = -EIO; 1521 goto out; 1522 } 1523 1524 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1525 struct btrfs_file_extent_item); 1526 type = btrfs_file_extent_type(path->nodes[0], ei); 1527 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1528 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1529 BUG_ON(compression); 1530 1531 off = btrfs_file_extent_inline_start(ei); 1532 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1533 1534 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1535 1536 out: 1537 btrfs_free_path(path); 1538 return ret; 1539 } 1540 1541 /* 1542 * Helper function to generate a file name that is unique in the root of 1543 * send_root and parent_root. This is used to generate names for orphan inodes. 1544 */ 1545 static int gen_unique_name(struct send_ctx *sctx, 1546 u64 ino, u64 gen, 1547 struct fs_path *dest) 1548 { 1549 int ret = 0; 1550 struct btrfs_path *path; 1551 struct btrfs_dir_item *di; 1552 char tmp[64]; 1553 int len; 1554 u64 idx = 0; 1555 1556 path = alloc_path_for_send(); 1557 if (!path) 1558 return -ENOMEM; 1559 1560 while (1) { 1561 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1562 ino, gen, idx); 1563 ASSERT(len < sizeof(tmp)); 1564 1565 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1566 path, BTRFS_FIRST_FREE_OBJECTID, 1567 tmp, strlen(tmp), 0); 1568 btrfs_release_path(path); 1569 if (IS_ERR(di)) { 1570 ret = PTR_ERR(di); 1571 goto out; 1572 } 1573 if (di) { 1574 /* not unique, try again */ 1575 idx++; 1576 continue; 1577 } 1578 1579 if (!sctx->parent_root) { 1580 /* unique */ 1581 ret = 0; 1582 break; 1583 } 1584 1585 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1586 path, BTRFS_FIRST_FREE_OBJECTID, 1587 tmp, strlen(tmp), 0); 1588 btrfs_release_path(path); 1589 if (IS_ERR(di)) { 1590 ret = PTR_ERR(di); 1591 goto out; 1592 } 1593 if (di) { 1594 /* not unique, try again */ 1595 idx++; 1596 continue; 1597 } 1598 /* unique */ 1599 break; 1600 } 1601 1602 ret = fs_path_add(dest, tmp, strlen(tmp)); 1603 1604 out: 1605 btrfs_free_path(path); 1606 return ret; 1607 } 1608 1609 enum inode_state { 1610 inode_state_no_change, 1611 inode_state_will_create, 1612 inode_state_did_create, 1613 inode_state_will_delete, 1614 inode_state_did_delete, 1615 }; 1616 1617 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1618 { 1619 int ret; 1620 int left_ret; 1621 int right_ret; 1622 u64 left_gen; 1623 u64 right_gen; 1624 1625 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1626 NULL, NULL); 1627 if (ret < 0 && ret != -ENOENT) 1628 goto out; 1629 left_ret = ret; 1630 1631 if (!sctx->parent_root) { 1632 right_ret = -ENOENT; 1633 } else { 1634 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1635 NULL, NULL, NULL, NULL); 1636 if (ret < 0 && ret != -ENOENT) 1637 goto out; 1638 right_ret = ret; 1639 } 1640 1641 if (!left_ret && !right_ret) { 1642 if (left_gen == gen && right_gen == gen) { 1643 ret = inode_state_no_change; 1644 } else if (left_gen == gen) { 1645 if (ino < sctx->send_progress) 1646 ret = inode_state_did_create; 1647 else 1648 ret = inode_state_will_create; 1649 } else if (right_gen == gen) { 1650 if (ino < sctx->send_progress) 1651 ret = inode_state_did_delete; 1652 else 1653 ret = inode_state_will_delete; 1654 } else { 1655 ret = -ENOENT; 1656 } 1657 } else if (!left_ret) { 1658 if (left_gen == gen) { 1659 if (ino < sctx->send_progress) 1660 ret = inode_state_did_create; 1661 else 1662 ret = inode_state_will_create; 1663 } else { 1664 ret = -ENOENT; 1665 } 1666 } else if (!right_ret) { 1667 if (right_gen == gen) { 1668 if (ino < sctx->send_progress) 1669 ret = inode_state_did_delete; 1670 else 1671 ret = inode_state_will_delete; 1672 } else { 1673 ret = -ENOENT; 1674 } 1675 } else { 1676 ret = -ENOENT; 1677 } 1678 1679 out: 1680 return ret; 1681 } 1682 1683 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1684 { 1685 int ret; 1686 1687 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1688 return 1; 1689 1690 ret = get_cur_inode_state(sctx, ino, gen); 1691 if (ret < 0) 1692 goto out; 1693 1694 if (ret == inode_state_no_change || 1695 ret == inode_state_did_create || 1696 ret == inode_state_will_delete) 1697 ret = 1; 1698 else 1699 ret = 0; 1700 1701 out: 1702 return ret; 1703 } 1704 1705 /* 1706 * Helper function to lookup a dir item in a dir. 1707 */ 1708 static int lookup_dir_item_inode(struct btrfs_root *root, 1709 u64 dir, const char *name, int name_len, 1710 u64 *found_inode, 1711 u8 *found_type) 1712 { 1713 int ret = 0; 1714 struct btrfs_dir_item *di; 1715 struct btrfs_key key; 1716 struct btrfs_path *path; 1717 1718 path = alloc_path_for_send(); 1719 if (!path) 1720 return -ENOMEM; 1721 1722 di = btrfs_lookup_dir_item(NULL, root, path, 1723 dir, name, name_len, 0); 1724 if (IS_ERR_OR_NULL(di)) { 1725 ret = di ? PTR_ERR(di) : -ENOENT; 1726 goto out; 1727 } 1728 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1729 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1730 ret = -ENOENT; 1731 goto out; 1732 } 1733 *found_inode = key.objectid; 1734 *found_type = btrfs_dir_type(path->nodes[0], di); 1735 1736 out: 1737 btrfs_free_path(path); 1738 return ret; 1739 } 1740 1741 /* 1742 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1743 * generation of the parent dir and the name of the dir entry. 1744 */ 1745 static int get_first_ref(struct btrfs_root *root, u64 ino, 1746 u64 *dir, u64 *dir_gen, struct fs_path *name) 1747 { 1748 int ret; 1749 struct btrfs_key key; 1750 struct btrfs_key found_key; 1751 struct btrfs_path *path; 1752 int len; 1753 u64 parent_dir; 1754 1755 path = alloc_path_for_send(); 1756 if (!path) 1757 return -ENOMEM; 1758 1759 key.objectid = ino; 1760 key.type = BTRFS_INODE_REF_KEY; 1761 key.offset = 0; 1762 1763 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1764 if (ret < 0) 1765 goto out; 1766 if (!ret) 1767 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1768 path->slots[0]); 1769 if (ret || found_key.objectid != ino || 1770 (found_key.type != BTRFS_INODE_REF_KEY && 1771 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1772 ret = -ENOENT; 1773 goto out; 1774 } 1775 1776 if (found_key.type == BTRFS_INODE_REF_KEY) { 1777 struct btrfs_inode_ref *iref; 1778 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1779 struct btrfs_inode_ref); 1780 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1781 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1782 (unsigned long)(iref + 1), 1783 len); 1784 parent_dir = found_key.offset; 1785 } else { 1786 struct btrfs_inode_extref *extref; 1787 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1788 struct btrfs_inode_extref); 1789 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1790 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1791 (unsigned long)&extref->name, len); 1792 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1793 } 1794 if (ret < 0) 1795 goto out; 1796 btrfs_release_path(path); 1797 1798 if (dir_gen) { 1799 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1800 NULL, NULL, NULL); 1801 if (ret < 0) 1802 goto out; 1803 } 1804 1805 *dir = parent_dir; 1806 1807 out: 1808 btrfs_free_path(path); 1809 return ret; 1810 } 1811 1812 static int is_first_ref(struct btrfs_root *root, 1813 u64 ino, u64 dir, 1814 const char *name, int name_len) 1815 { 1816 int ret; 1817 struct fs_path *tmp_name; 1818 u64 tmp_dir; 1819 1820 tmp_name = fs_path_alloc(); 1821 if (!tmp_name) 1822 return -ENOMEM; 1823 1824 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1825 if (ret < 0) 1826 goto out; 1827 1828 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1829 ret = 0; 1830 goto out; 1831 } 1832 1833 ret = !memcmp(tmp_name->start, name, name_len); 1834 1835 out: 1836 fs_path_free(tmp_name); 1837 return ret; 1838 } 1839 1840 /* 1841 * Used by process_recorded_refs to determine if a new ref would overwrite an 1842 * already existing ref. In case it detects an overwrite, it returns the 1843 * inode/gen in who_ino/who_gen. 1844 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1845 * to make sure later references to the overwritten inode are possible. 1846 * Orphanizing is however only required for the first ref of an inode. 1847 * process_recorded_refs does an additional is_first_ref check to see if 1848 * orphanizing is really required. 1849 */ 1850 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1851 const char *name, int name_len, 1852 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1853 { 1854 int ret = 0; 1855 u64 gen; 1856 u64 other_inode = 0; 1857 u8 other_type = 0; 1858 1859 if (!sctx->parent_root) 1860 goto out; 1861 1862 ret = is_inode_existent(sctx, dir, dir_gen); 1863 if (ret <= 0) 1864 goto out; 1865 1866 /* 1867 * If we have a parent root we need to verify that the parent dir was 1868 * not deleted and then re-created, if it was then we have no overwrite 1869 * and we can just unlink this entry. 1870 */ 1871 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1872 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1873 NULL, NULL, NULL); 1874 if (ret < 0 && ret != -ENOENT) 1875 goto out; 1876 if (ret) { 1877 ret = 0; 1878 goto out; 1879 } 1880 if (gen != dir_gen) 1881 goto out; 1882 } 1883 1884 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1885 &other_inode, &other_type); 1886 if (ret < 0 && ret != -ENOENT) 1887 goto out; 1888 if (ret) { 1889 ret = 0; 1890 goto out; 1891 } 1892 1893 /* 1894 * Check if the overwritten ref was already processed. If yes, the ref 1895 * was already unlinked/moved, so we can safely assume that we will not 1896 * overwrite anything at this point in time. 1897 */ 1898 if (other_inode > sctx->send_progress || 1899 is_waiting_for_move(sctx, other_inode)) { 1900 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1901 who_gen, who_mode, NULL, NULL, NULL); 1902 if (ret < 0) 1903 goto out; 1904 1905 ret = 1; 1906 *who_ino = other_inode; 1907 } else { 1908 ret = 0; 1909 } 1910 1911 out: 1912 return ret; 1913 } 1914 1915 /* 1916 * Checks if the ref was overwritten by an already processed inode. This is 1917 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1918 * thus the orphan name needs be used. 1919 * process_recorded_refs also uses it to avoid unlinking of refs that were 1920 * overwritten. 1921 */ 1922 static int did_overwrite_ref(struct send_ctx *sctx, 1923 u64 dir, u64 dir_gen, 1924 u64 ino, u64 ino_gen, 1925 const char *name, int name_len) 1926 { 1927 int ret = 0; 1928 u64 gen; 1929 u64 ow_inode; 1930 u8 other_type; 1931 1932 if (!sctx->parent_root) 1933 goto out; 1934 1935 ret = is_inode_existent(sctx, dir, dir_gen); 1936 if (ret <= 0) 1937 goto out; 1938 1939 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1940 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1941 NULL, NULL, NULL); 1942 if (ret < 0 && ret != -ENOENT) 1943 goto out; 1944 if (ret) { 1945 ret = 0; 1946 goto out; 1947 } 1948 if (gen != dir_gen) 1949 goto out; 1950 } 1951 1952 /* check if the ref was overwritten by another ref */ 1953 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1954 &ow_inode, &other_type); 1955 if (ret < 0 && ret != -ENOENT) 1956 goto out; 1957 if (ret) { 1958 /* was never and will never be overwritten */ 1959 ret = 0; 1960 goto out; 1961 } 1962 1963 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1964 NULL, NULL); 1965 if (ret < 0) 1966 goto out; 1967 1968 if (ow_inode == ino && gen == ino_gen) { 1969 ret = 0; 1970 goto out; 1971 } 1972 1973 /* 1974 * We know that it is or will be overwritten. Check this now. 1975 * The current inode being processed might have been the one that caused 1976 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1977 * the current inode being processed. 1978 */ 1979 if ((ow_inode < sctx->send_progress) || 1980 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1981 gen == sctx->cur_inode_gen)) 1982 ret = 1; 1983 else 1984 ret = 0; 1985 1986 out: 1987 return ret; 1988 } 1989 1990 /* 1991 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1992 * that got overwritten. This is used by process_recorded_refs to determine 1993 * if it has to use the path as returned by get_cur_path or the orphan name. 1994 */ 1995 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1996 { 1997 int ret = 0; 1998 struct fs_path *name = NULL; 1999 u64 dir; 2000 u64 dir_gen; 2001 2002 if (!sctx->parent_root) 2003 goto out; 2004 2005 name = fs_path_alloc(); 2006 if (!name) 2007 return -ENOMEM; 2008 2009 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2010 if (ret < 0) 2011 goto out; 2012 2013 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2014 name->start, fs_path_len(name)); 2015 2016 out: 2017 fs_path_free(name); 2018 return ret; 2019 } 2020 2021 /* 2022 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2023 * so we need to do some special handling in case we have clashes. This function 2024 * takes care of this with the help of name_cache_entry::radix_list. 2025 * In case of error, nce is kfreed. 2026 */ 2027 static int name_cache_insert(struct send_ctx *sctx, 2028 struct name_cache_entry *nce) 2029 { 2030 int ret = 0; 2031 struct list_head *nce_head; 2032 2033 nce_head = radix_tree_lookup(&sctx->name_cache, 2034 (unsigned long)nce->ino); 2035 if (!nce_head) { 2036 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2037 if (!nce_head) { 2038 kfree(nce); 2039 return -ENOMEM; 2040 } 2041 INIT_LIST_HEAD(nce_head); 2042 2043 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2044 if (ret < 0) { 2045 kfree(nce_head); 2046 kfree(nce); 2047 return ret; 2048 } 2049 } 2050 list_add_tail(&nce->radix_list, nce_head); 2051 list_add_tail(&nce->list, &sctx->name_cache_list); 2052 sctx->name_cache_size++; 2053 2054 return ret; 2055 } 2056 2057 static void name_cache_delete(struct send_ctx *sctx, 2058 struct name_cache_entry *nce) 2059 { 2060 struct list_head *nce_head; 2061 2062 nce_head = radix_tree_lookup(&sctx->name_cache, 2063 (unsigned long)nce->ino); 2064 if (!nce_head) { 2065 btrfs_err(sctx->send_root->fs_info, 2066 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2067 nce->ino, sctx->name_cache_size); 2068 } 2069 2070 list_del(&nce->radix_list); 2071 list_del(&nce->list); 2072 sctx->name_cache_size--; 2073 2074 /* 2075 * We may not get to the final release of nce_head if the lookup fails 2076 */ 2077 if (nce_head && list_empty(nce_head)) { 2078 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2079 kfree(nce_head); 2080 } 2081 } 2082 2083 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2084 u64 ino, u64 gen) 2085 { 2086 struct list_head *nce_head; 2087 struct name_cache_entry *cur; 2088 2089 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2090 if (!nce_head) 2091 return NULL; 2092 2093 list_for_each_entry(cur, nce_head, radix_list) { 2094 if (cur->ino == ino && cur->gen == gen) 2095 return cur; 2096 } 2097 return NULL; 2098 } 2099 2100 /* 2101 * Removes the entry from the list and adds it back to the end. This marks the 2102 * entry as recently used so that name_cache_clean_unused does not remove it. 2103 */ 2104 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2105 { 2106 list_del(&nce->list); 2107 list_add_tail(&nce->list, &sctx->name_cache_list); 2108 } 2109 2110 /* 2111 * Remove some entries from the beginning of name_cache_list. 2112 */ 2113 static void name_cache_clean_unused(struct send_ctx *sctx) 2114 { 2115 struct name_cache_entry *nce; 2116 2117 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2118 return; 2119 2120 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2121 nce = list_entry(sctx->name_cache_list.next, 2122 struct name_cache_entry, list); 2123 name_cache_delete(sctx, nce); 2124 kfree(nce); 2125 } 2126 } 2127 2128 static void name_cache_free(struct send_ctx *sctx) 2129 { 2130 struct name_cache_entry *nce; 2131 2132 while (!list_empty(&sctx->name_cache_list)) { 2133 nce = list_entry(sctx->name_cache_list.next, 2134 struct name_cache_entry, list); 2135 name_cache_delete(sctx, nce); 2136 kfree(nce); 2137 } 2138 } 2139 2140 /* 2141 * Used by get_cur_path for each ref up to the root. 2142 * Returns 0 if it succeeded. 2143 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2144 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2145 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2146 * Returns <0 in case of error. 2147 */ 2148 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2149 u64 ino, u64 gen, 2150 u64 *parent_ino, 2151 u64 *parent_gen, 2152 struct fs_path *dest) 2153 { 2154 int ret; 2155 int nce_ret; 2156 struct name_cache_entry *nce = NULL; 2157 2158 /* 2159 * First check if we already did a call to this function with the same 2160 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2161 * return the cached result. 2162 */ 2163 nce = name_cache_search(sctx, ino, gen); 2164 if (nce) { 2165 if (ino < sctx->send_progress && nce->need_later_update) { 2166 name_cache_delete(sctx, nce); 2167 kfree(nce); 2168 nce = NULL; 2169 } else { 2170 name_cache_used(sctx, nce); 2171 *parent_ino = nce->parent_ino; 2172 *parent_gen = nce->parent_gen; 2173 ret = fs_path_add(dest, nce->name, nce->name_len); 2174 if (ret < 0) 2175 goto out; 2176 ret = nce->ret; 2177 goto out; 2178 } 2179 } 2180 2181 /* 2182 * If the inode is not existent yet, add the orphan name and return 1. 2183 * This should only happen for the parent dir that we determine in 2184 * __record_new_ref 2185 */ 2186 ret = is_inode_existent(sctx, ino, gen); 2187 if (ret < 0) 2188 goto out; 2189 2190 if (!ret) { 2191 ret = gen_unique_name(sctx, ino, gen, dest); 2192 if (ret < 0) 2193 goto out; 2194 ret = 1; 2195 goto out_cache; 2196 } 2197 2198 /* 2199 * Depending on whether the inode was already processed or not, use 2200 * send_root or parent_root for ref lookup. 2201 */ 2202 if (ino < sctx->send_progress) 2203 ret = get_first_ref(sctx->send_root, ino, 2204 parent_ino, parent_gen, dest); 2205 else 2206 ret = get_first_ref(sctx->parent_root, ino, 2207 parent_ino, parent_gen, dest); 2208 if (ret < 0) 2209 goto out; 2210 2211 /* 2212 * Check if the ref was overwritten by an inode's ref that was processed 2213 * earlier. If yes, treat as orphan and return 1. 2214 */ 2215 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2216 dest->start, dest->end - dest->start); 2217 if (ret < 0) 2218 goto out; 2219 if (ret) { 2220 fs_path_reset(dest); 2221 ret = gen_unique_name(sctx, ino, gen, dest); 2222 if (ret < 0) 2223 goto out; 2224 ret = 1; 2225 } 2226 2227 out_cache: 2228 /* 2229 * Store the result of the lookup in the name cache. 2230 */ 2231 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2232 if (!nce) { 2233 ret = -ENOMEM; 2234 goto out; 2235 } 2236 2237 nce->ino = ino; 2238 nce->gen = gen; 2239 nce->parent_ino = *parent_ino; 2240 nce->parent_gen = *parent_gen; 2241 nce->name_len = fs_path_len(dest); 2242 nce->ret = ret; 2243 strcpy(nce->name, dest->start); 2244 2245 if (ino < sctx->send_progress) 2246 nce->need_later_update = 0; 2247 else 2248 nce->need_later_update = 1; 2249 2250 nce_ret = name_cache_insert(sctx, nce); 2251 if (nce_ret < 0) 2252 ret = nce_ret; 2253 name_cache_clean_unused(sctx); 2254 2255 out: 2256 return ret; 2257 } 2258 2259 /* 2260 * Magic happens here. This function returns the first ref to an inode as it 2261 * would look like while receiving the stream at this point in time. 2262 * We walk the path up to the root. For every inode in between, we check if it 2263 * was already processed/sent. If yes, we continue with the parent as found 2264 * in send_root. If not, we continue with the parent as found in parent_root. 2265 * If we encounter an inode that was deleted at this point in time, we use the 2266 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2267 * that were not created yet and overwritten inodes/refs. 2268 * 2269 * When do we have orphan inodes: 2270 * 1. When an inode is freshly created and thus no valid refs are available yet 2271 * 2. When a directory lost all it's refs (deleted) but still has dir items 2272 * inside which were not processed yet (pending for move/delete). If anyone 2273 * tried to get the path to the dir items, it would get a path inside that 2274 * orphan directory. 2275 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2276 * of an unprocessed inode. If in that case the first ref would be 2277 * overwritten, the overwritten inode gets "orphanized". Later when we 2278 * process this overwritten inode, it is restored at a new place by moving 2279 * the orphan inode. 2280 * 2281 * sctx->send_progress tells this function at which point in time receiving 2282 * would be. 2283 */ 2284 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2285 struct fs_path *dest) 2286 { 2287 int ret = 0; 2288 struct fs_path *name = NULL; 2289 u64 parent_inode = 0; 2290 u64 parent_gen = 0; 2291 int stop = 0; 2292 2293 name = fs_path_alloc(); 2294 if (!name) { 2295 ret = -ENOMEM; 2296 goto out; 2297 } 2298 2299 dest->reversed = 1; 2300 fs_path_reset(dest); 2301 2302 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2303 struct waiting_dir_move *wdm; 2304 2305 fs_path_reset(name); 2306 2307 if (is_waiting_for_rm(sctx, ino)) { 2308 ret = gen_unique_name(sctx, ino, gen, name); 2309 if (ret < 0) 2310 goto out; 2311 ret = fs_path_add_path(dest, name); 2312 break; 2313 } 2314 2315 wdm = get_waiting_dir_move(sctx, ino); 2316 if (wdm && wdm->orphanized) { 2317 ret = gen_unique_name(sctx, ino, gen, name); 2318 stop = 1; 2319 } else if (wdm) { 2320 ret = get_first_ref(sctx->parent_root, ino, 2321 &parent_inode, &parent_gen, name); 2322 } else { 2323 ret = __get_cur_name_and_parent(sctx, ino, gen, 2324 &parent_inode, 2325 &parent_gen, name); 2326 if (ret) 2327 stop = 1; 2328 } 2329 2330 if (ret < 0) 2331 goto out; 2332 2333 ret = fs_path_add_path(dest, name); 2334 if (ret < 0) 2335 goto out; 2336 2337 ino = parent_inode; 2338 gen = parent_gen; 2339 } 2340 2341 out: 2342 fs_path_free(name); 2343 if (!ret) 2344 fs_path_unreverse(dest); 2345 return ret; 2346 } 2347 2348 /* 2349 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2350 */ 2351 static int send_subvol_begin(struct send_ctx *sctx) 2352 { 2353 int ret; 2354 struct btrfs_root *send_root = sctx->send_root; 2355 struct btrfs_root *parent_root = sctx->parent_root; 2356 struct btrfs_path *path; 2357 struct btrfs_key key; 2358 struct btrfs_root_ref *ref; 2359 struct extent_buffer *leaf; 2360 char *name = NULL; 2361 int namelen; 2362 2363 path = btrfs_alloc_path(); 2364 if (!path) 2365 return -ENOMEM; 2366 2367 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2368 if (!name) { 2369 btrfs_free_path(path); 2370 return -ENOMEM; 2371 } 2372 2373 key.objectid = send_root->root_key.objectid; 2374 key.type = BTRFS_ROOT_BACKREF_KEY; 2375 key.offset = 0; 2376 2377 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2378 &key, path, 1, 0); 2379 if (ret < 0) 2380 goto out; 2381 if (ret) { 2382 ret = -ENOENT; 2383 goto out; 2384 } 2385 2386 leaf = path->nodes[0]; 2387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2388 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2389 key.objectid != send_root->root_key.objectid) { 2390 ret = -ENOENT; 2391 goto out; 2392 } 2393 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2394 namelen = btrfs_root_ref_name_len(leaf, ref); 2395 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2396 btrfs_release_path(path); 2397 2398 if (parent_root) { 2399 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2400 if (ret < 0) 2401 goto out; 2402 } else { 2403 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2404 if (ret < 0) 2405 goto out; 2406 } 2407 2408 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2409 2410 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2411 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2412 sctx->send_root->root_item.received_uuid); 2413 else 2414 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2415 sctx->send_root->root_item.uuid); 2416 2417 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2418 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2419 if (parent_root) { 2420 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2421 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2422 parent_root->root_item.received_uuid); 2423 else 2424 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2425 parent_root->root_item.uuid); 2426 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2427 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2428 } 2429 2430 ret = send_cmd(sctx); 2431 2432 tlv_put_failure: 2433 out: 2434 btrfs_free_path(path); 2435 kfree(name); 2436 return ret; 2437 } 2438 2439 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2440 { 2441 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2442 int ret = 0; 2443 struct fs_path *p; 2444 2445 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2446 2447 p = fs_path_alloc(); 2448 if (!p) 2449 return -ENOMEM; 2450 2451 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2452 if (ret < 0) 2453 goto out; 2454 2455 ret = get_cur_path(sctx, ino, gen, p); 2456 if (ret < 0) 2457 goto out; 2458 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2459 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2460 2461 ret = send_cmd(sctx); 2462 2463 tlv_put_failure: 2464 out: 2465 fs_path_free(p); 2466 return ret; 2467 } 2468 2469 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2470 { 2471 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2472 int ret = 0; 2473 struct fs_path *p; 2474 2475 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2476 2477 p = fs_path_alloc(); 2478 if (!p) 2479 return -ENOMEM; 2480 2481 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2482 if (ret < 0) 2483 goto out; 2484 2485 ret = get_cur_path(sctx, ino, gen, p); 2486 if (ret < 0) 2487 goto out; 2488 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2489 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2490 2491 ret = send_cmd(sctx); 2492 2493 tlv_put_failure: 2494 out: 2495 fs_path_free(p); 2496 return ret; 2497 } 2498 2499 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2500 { 2501 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2502 int ret = 0; 2503 struct fs_path *p; 2504 2505 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2506 ino, uid, gid); 2507 2508 p = fs_path_alloc(); 2509 if (!p) 2510 return -ENOMEM; 2511 2512 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2513 if (ret < 0) 2514 goto out; 2515 2516 ret = get_cur_path(sctx, ino, gen, p); 2517 if (ret < 0) 2518 goto out; 2519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2520 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2521 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2522 2523 ret = send_cmd(sctx); 2524 2525 tlv_put_failure: 2526 out: 2527 fs_path_free(p); 2528 return ret; 2529 } 2530 2531 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2532 { 2533 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2534 int ret = 0; 2535 struct fs_path *p = NULL; 2536 struct btrfs_inode_item *ii; 2537 struct btrfs_path *path = NULL; 2538 struct extent_buffer *eb; 2539 struct btrfs_key key; 2540 int slot; 2541 2542 btrfs_debug(fs_info, "send_utimes %llu", ino); 2543 2544 p = fs_path_alloc(); 2545 if (!p) 2546 return -ENOMEM; 2547 2548 path = alloc_path_for_send(); 2549 if (!path) { 2550 ret = -ENOMEM; 2551 goto out; 2552 } 2553 2554 key.objectid = ino; 2555 key.type = BTRFS_INODE_ITEM_KEY; 2556 key.offset = 0; 2557 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2558 if (ret > 0) 2559 ret = -ENOENT; 2560 if (ret < 0) 2561 goto out; 2562 2563 eb = path->nodes[0]; 2564 slot = path->slots[0]; 2565 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2566 2567 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2568 if (ret < 0) 2569 goto out; 2570 2571 ret = get_cur_path(sctx, ino, gen, p); 2572 if (ret < 0) 2573 goto out; 2574 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2575 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2578 /* TODO Add otime support when the otime patches get into upstream */ 2579 2580 ret = send_cmd(sctx); 2581 2582 tlv_put_failure: 2583 out: 2584 fs_path_free(p); 2585 btrfs_free_path(path); 2586 return ret; 2587 } 2588 2589 /* 2590 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2591 * a valid path yet because we did not process the refs yet. So, the inode 2592 * is created as orphan. 2593 */ 2594 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2595 { 2596 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2597 int ret = 0; 2598 struct fs_path *p; 2599 int cmd; 2600 u64 gen; 2601 u64 mode; 2602 u64 rdev; 2603 2604 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2605 2606 p = fs_path_alloc(); 2607 if (!p) 2608 return -ENOMEM; 2609 2610 if (ino != sctx->cur_ino) { 2611 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2612 NULL, NULL, &rdev); 2613 if (ret < 0) 2614 goto out; 2615 } else { 2616 gen = sctx->cur_inode_gen; 2617 mode = sctx->cur_inode_mode; 2618 rdev = sctx->cur_inode_rdev; 2619 } 2620 2621 if (S_ISREG(mode)) { 2622 cmd = BTRFS_SEND_C_MKFILE; 2623 } else if (S_ISDIR(mode)) { 2624 cmd = BTRFS_SEND_C_MKDIR; 2625 } else if (S_ISLNK(mode)) { 2626 cmd = BTRFS_SEND_C_SYMLINK; 2627 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2628 cmd = BTRFS_SEND_C_MKNOD; 2629 } else if (S_ISFIFO(mode)) { 2630 cmd = BTRFS_SEND_C_MKFIFO; 2631 } else if (S_ISSOCK(mode)) { 2632 cmd = BTRFS_SEND_C_MKSOCK; 2633 } else { 2634 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2635 (int)(mode & S_IFMT)); 2636 ret = -EOPNOTSUPP; 2637 goto out; 2638 } 2639 2640 ret = begin_cmd(sctx, cmd); 2641 if (ret < 0) 2642 goto out; 2643 2644 ret = gen_unique_name(sctx, ino, gen, p); 2645 if (ret < 0) 2646 goto out; 2647 2648 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2649 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2650 2651 if (S_ISLNK(mode)) { 2652 fs_path_reset(p); 2653 ret = read_symlink(sctx->send_root, ino, p); 2654 if (ret < 0) 2655 goto out; 2656 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2657 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2658 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2659 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2661 } 2662 2663 ret = send_cmd(sctx); 2664 if (ret < 0) 2665 goto out; 2666 2667 2668 tlv_put_failure: 2669 out: 2670 fs_path_free(p); 2671 return ret; 2672 } 2673 2674 /* 2675 * We need some special handling for inodes that get processed before the parent 2676 * directory got created. See process_recorded_refs for details. 2677 * This function does the check if we already created the dir out of order. 2678 */ 2679 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2680 { 2681 int ret = 0; 2682 struct btrfs_path *path = NULL; 2683 struct btrfs_key key; 2684 struct btrfs_key found_key; 2685 struct btrfs_key di_key; 2686 struct extent_buffer *eb; 2687 struct btrfs_dir_item *di; 2688 int slot; 2689 2690 path = alloc_path_for_send(); 2691 if (!path) { 2692 ret = -ENOMEM; 2693 goto out; 2694 } 2695 2696 key.objectid = dir; 2697 key.type = BTRFS_DIR_INDEX_KEY; 2698 key.offset = 0; 2699 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2700 if (ret < 0) 2701 goto out; 2702 2703 while (1) { 2704 eb = path->nodes[0]; 2705 slot = path->slots[0]; 2706 if (slot >= btrfs_header_nritems(eb)) { 2707 ret = btrfs_next_leaf(sctx->send_root, path); 2708 if (ret < 0) { 2709 goto out; 2710 } else if (ret > 0) { 2711 ret = 0; 2712 break; 2713 } 2714 continue; 2715 } 2716 2717 btrfs_item_key_to_cpu(eb, &found_key, slot); 2718 if (found_key.objectid != key.objectid || 2719 found_key.type != key.type) { 2720 ret = 0; 2721 goto out; 2722 } 2723 2724 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2725 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2726 2727 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2728 di_key.objectid < sctx->send_progress) { 2729 ret = 1; 2730 goto out; 2731 } 2732 2733 path->slots[0]++; 2734 } 2735 2736 out: 2737 btrfs_free_path(path); 2738 return ret; 2739 } 2740 2741 /* 2742 * Only creates the inode if it is: 2743 * 1. Not a directory 2744 * 2. Or a directory which was not created already due to out of order 2745 * directories. See did_create_dir and process_recorded_refs for details. 2746 */ 2747 static int send_create_inode_if_needed(struct send_ctx *sctx) 2748 { 2749 int ret; 2750 2751 if (S_ISDIR(sctx->cur_inode_mode)) { 2752 ret = did_create_dir(sctx, sctx->cur_ino); 2753 if (ret < 0) 2754 goto out; 2755 if (ret) { 2756 ret = 0; 2757 goto out; 2758 } 2759 } 2760 2761 ret = send_create_inode(sctx, sctx->cur_ino); 2762 if (ret < 0) 2763 goto out; 2764 2765 out: 2766 return ret; 2767 } 2768 2769 struct recorded_ref { 2770 struct list_head list; 2771 char *name; 2772 struct fs_path *full_path; 2773 u64 dir; 2774 u64 dir_gen; 2775 int name_len; 2776 }; 2777 2778 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2779 { 2780 ref->full_path = path; 2781 ref->name = (char *)kbasename(ref->full_path->start); 2782 ref->name_len = ref->full_path->end - ref->name; 2783 } 2784 2785 /* 2786 * We need to process new refs before deleted refs, but compare_tree gives us 2787 * everything mixed. So we first record all refs and later process them. 2788 * This function is a helper to record one ref. 2789 */ 2790 static int __record_ref(struct list_head *head, u64 dir, 2791 u64 dir_gen, struct fs_path *path) 2792 { 2793 struct recorded_ref *ref; 2794 2795 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2796 if (!ref) 2797 return -ENOMEM; 2798 2799 ref->dir = dir; 2800 ref->dir_gen = dir_gen; 2801 set_ref_path(ref, path); 2802 list_add_tail(&ref->list, head); 2803 return 0; 2804 } 2805 2806 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2807 { 2808 struct recorded_ref *new; 2809 2810 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2811 if (!new) 2812 return -ENOMEM; 2813 2814 new->dir = ref->dir; 2815 new->dir_gen = ref->dir_gen; 2816 new->full_path = NULL; 2817 INIT_LIST_HEAD(&new->list); 2818 list_add_tail(&new->list, list); 2819 return 0; 2820 } 2821 2822 static void __free_recorded_refs(struct list_head *head) 2823 { 2824 struct recorded_ref *cur; 2825 2826 while (!list_empty(head)) { 2827 cur = list_entry(head->next, struct recorded_ref, list); 2828 fs_path_free(cur->full_path); 2829 list_del(&cur->list); 2830 kfree(cur); 2831 } 2832 } 2833 2834 static void free_recorded_refs(struct send_ctx *sctx) 2835 { 2836 __free_recorded_refs(&sctx->new_refs); 2837 __free_recorded_refs(&sctx->deleted_refs); 2838 } 2839 2840 /* 2841 * Renames/moves a file/dir to its orphan name. Used when the first 2842 * ref of an unprocessed inode gets overwritten and for all non empty 2843 * directories. 2844 */ 2845 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2846 struct fs_path *path) 2847 { 2848 int ret; 2849 struct fs_path *orphan; 2850 2851 orphan = fs_path_alloc(); 2852 if (!orphan) 2853 return -ENOMEM; 2854 2855 ret = gen_unique_name(sctx, ino, gen, orphan); 2856 if (ret < 0) 2857 goto out; 2858 2859 ret = send_rename(sctx, path, orphan); 2860 2861 out: 2862 fs_path_free(orphan); 2863 return ret; 2864 } 2865 2866 static struct orphan_dir_info * 2867 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2868 { 2869 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2870 struct rb_node *parent = NULL; 2871 struct orphan_dir_info *entry, *odi; 2872 2873 while (*p) { 2874 parent = *p; 2875 entry = rb_entry(parent, struct orphan_dir_info, node); 2876 if (dir_ino < entry->ino) { 2877 p = &(*p)->rb_left; 2878 } else if (dir_ino > entry->ino) { 2879 p = &(*p)->rb_right; 2880 } else { 2881 return entry; 2882 } 2883 } 2884 2885 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2886 if (!odi) 2887 return ERR_PTR(-ENOMEM); 2888 odi->ino = dir_ino; 2889 odi->gen = 0; 2890 odi->last_dir_index_offset = 0; 2891 2892 rb_link_node(&odi->node, parent, p); 2893 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2894 return odi; 2895 } 2896 2897 static struct orphan_dir_info * 2898 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2899 { 2900 struct rb_node *n = sctx->orphan_dirs.rb_node; 2901 struct orphan_dir_info *entry; 2902 2903 while (n) { 2904 entry = rb_entry(n, struct orphan_dir_info, node); 2905 if (dir_ino < entry->ino) 2906 n = n->rb_left; 2907 else if (dir_ino > entry->ino) 2908 n = n->rb_right; 2909 else 2910 return entry; 2911 } 2912 return NULL; 2913 } 2914 2915 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2916 { 2917 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2918 2919 return odi != NULL; 2920 } 2921 2922 static void free_orphan_dir_info(struct send_ctx *sctx, 2923 struct orphan_dir_info *odi) 2924 { 2925 if (!odi) 2926 return; 2927 rb_erase(&odi->node, &sctx->orphan_dirs); 2928 kfree(odi); 2929 } 2930 2931 /* 2932 * Returns 1 if a directory can be removed at this point in time. 2933 * We check this by iterating all dir items and checking if the inode behind 2934 * the dir item was already processed. 2935 */ 2936 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2937 u64 send_progress) 2938 { 2939 int ret = 0; 2940 struct btrfs_root *root = sctx->parent_root; 2941 struct btrfs_path *path; 2942 struct btrfs_key key; 2943 struct btrfs_key found_key; 2944 struct btrfs_key loc; 2945 struct btrfs_dir_item *di; 2946 struct orphan_dir_info *odi = NULL; 2947 2948 /* 2949 * Don't try to rmdir the top/root subvolume dir. 2950 */ 2951 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2952 return 0; 2953 2954 path = alloc_path_for_send(); 2955 if (!path) 2956 return -ENOMEM; 2957 2958 key.objectid = dir; 2959 key.type = BTRFS_DIR_INDEX_KEY; 2960 key.offset = 0; 2961 2962 odi = get_orphan_dir_info(sctx, dir); 2963 if (odi) 2964 key.offset = odi->last_dir_index_offset; 2965 2966 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2967 if (ret < 0) 2968 goto out; 2969 2970 while (1) { 2971 struct waiting_dir_move *dm; 2972 2973 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2974 ret = btrfs_next_leaf(root, path); 2975 if (ret < 0) 2976 goto out; 2977 else if (ret > 0) 2978 break; 2979 continue; 2980 } 2981 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2982 path->slots[0]); 2983 if (found_key.objectid != key.objectid || 2984 found_key.type != key.type) 2985 break; 2986 2987 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2988 struct btrfs_dir_item); 2989 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2990 2991 dm = get_waiting_dir_move(sctx, loc.objectid); 2992 if (dm) { 2993 odi = add_orphan_dir_info(sctx, dir); 2994 if (IS_ERR(odi)) { 2995 ret = PTR_ERR(odi); 2996 goto out; 2997 } 2998 odi->gen = dir_gen; 2999 odi->last_dir_index_offset = found_key.offset; 3000 dm->rmdir_ino = dir; 3001 ret = 0; 3002 goto out; 3003 } 3004 3005 if (loc.objectid > send_progress) { 3006 odi = add_orphan_dir_info(sctx, dir); 3007 if (IS_ERR(odi)) { 3008 ret = PTR_ERR(odi); 3009 goto out; 3010 } 3011 odi->gen = dir_gen; 3012 odi->last_dir_index_offset = found_key.offset; 3013 ret = 0; 3014 goto out; 3015 } 3016 3017 path->slots[0]++; 3018 } 3019 free_orphan_dir_info(sctx, odi); 3020 3021 ret = 1; 3022 3023 out: 3024 btrfs_free_path(path); 3025 return ret; 3026 } 3027 3028 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3029 { 3030 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3031 3032 return entry != NULL; 3033 } 3034 3035 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3036 { 3037 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3038 struct rb_node *parent = NULL; 3039 struct waiting_dir_move *entry, *dm; 3040 3041 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3042 if (!dm) 3043 return -ENOMEM; 3044 dm->ino = ino; 3045 dm->rmdir_ino = 0; 3046 dm->orphanized = orphanized; 3047 3048 while (*p) { 3049 parent = *p; 3050 entry = rb_entry(parent, struct waiting_dir_move, node); 3051 if (ino < entry->ino) { 3052 p = &(*p)->rb_left; 3053 } else if (ino > entry->ino) { 3054 p = &(*p)->rb_right; 3055 } else { 3056 kfree(dm); 3057 return -EEXIST; 3058 } 3059 } 3060 3061 rb_link_node(&dm->node, parent, p); 3062 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3063 return 0; 3064 } 3065 3066 static struct waiting_dir_move * 3067 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3068 { 3069 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3070 struct waiting_dir_move *entry; 3071 3072 while (n) { 3073 entry = rb_entry(n, struct waiting_dir_move, node); 3074 if (ino < entry->ino) 3075 n = n->rb_left; 3076 else if (ino > entry->ino) 3077 n = n->rb_right; 3078 else 3079 return entry; 3080 } 3081 return NULL; 3082 } 3083 3084 static void free_waiting_dir_move(struct send_ctx *sctx, 3085 struct waiting_dir_move *dm) 3086 { 3087 if (!dm) 3088 return; 3089 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3090 kfree(dm); 3091 } 3092 3093 static int add_pending_dir_move(struct send_ctx *sctx, 3094 u64 ino, 3095 u64 ino_gen, 3096 u64 parent_ino, 3097 struct list_head *new_refs, 3098 struct list_head *deleted_refs, 3099 const bool is_orphan) 3100 { 3101 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3102 struct rb_node *parent = NULL; 3103 struct pending_dir_move *entry = NULL, *pm; 3104 struct recorded_ref *cur; 3105 int exists = 0; 3106 int ret; 3107 3108 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3109 if (!pm) 3110 return -ENOMEM; 3111 pm->parent_ino = parent_ino; 3112 pm->ino = ino; 3113 pm->gen = ino_gen; 3114 INIT_LIST_HEAD(&pm->list); 3115 INIT_LIST_HEAD(&pm->update_refs); 3116 RB_CLEAR_NODE(&pm->node); 3117 3118 while (*p) { 3119 parent = *p; 3120 entry = rb_entry(parent, struct pending_dir_move, node); 3121 if (parent_ino < entry->parent_ino) { 3122 p = &(*p)->rb_left; 3123 } else if (parent_ino > entry->parent_ino) { 3124 p = &(*p)->rb_right; 3125 } else { 3126 exists = 1; 3127 break; 3128 } 3129 } 3130 3131 list_for_each_entry(cur, deleted_refs, list) { 3132 ret = dup_ref(cur, &pm->update_refs); 3133 if (ret < 0) 3134 goto out; 3135 } 3136 list_for_each_entry(cur, new_refs, list) { 3137 ret = dup_ref(cur, &pm->update_refs); 3138 if (ret < 0) 3139 goto out; 3140 } 3141 3142 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3143 if (ret) 3144 goto out; 3145 3146 if (exists) { 3147 list_add_tail(&pm->list, &entry->list); 3148 } else { 3149 rb_link_node(&pm->node, parent, p); 3150 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3151 } 3152 ret = 0; 3153 out: 3154 if (ret) { 3155 __free_recorded_refs(&pm->update_refs); 3156 kfree(pm); 3157 } 3158 return ret; 3159 } 3160 3161 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3162 u64 parent_ino) 3163 { 3164 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3165 struct pending_dir_move *entry; 3166 3167 while (n) { 3168 entry = rb_entry(n, struct pending_dir_move, node); 3169 if (parent_ino < entry->parent_ino) 3170 n = n->rb_left; 3171 else if (parent_ino > entry->parent_ino) 3172 n = n->rb_right; 3173 else 3174 return entry; 3175 } 3176 return NULL; 3177 } 3178 3179 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3180 u64 ino, u64 gen, u64 *ancestor_ino) 3181 { 3182 int ret = 0; 3183 u64 parent_inode = 0; 3184 u64 parent_gen = 0; 3185 u64 start_ino = ino; 3186 3187 *ancestor_ino = 0; 3188 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3189 fs_path_reset(name); 3190 3191 if (is_waiting_for_rm(sctx, ino)) 3192 break; 3193 if (is_waiting_for_move(sctx, ino)) { 3194 if (*ancestor_ino == 0) 3195 *ancestor_ino = ino; 3196 ret = get_first_ref(sctx->parent_root, ino, 3197 &parent_inode, &parent_gen, name); 3198 } else { 3199 ret = __get_cur_name_and_parent(sctx, ino, gen, 3200 &parent_inode, 3201 &parent_gen, name); 3202 if (ret > 0) { 3203 ret = 0; 3204 break; 3205 } 3206 } 3207 if (ret < 0) 3208 break; 3209 if (parent_inode == start_ino) { 3210 ret = 1; 3211 if (*ancestor_ino == 0) 3212 *ancestor_ino = ino; 3213 break; 3214 } 3215 ino = parent_inode; 3216 gen = parent_gen; 3217 } 3218 return ret; 3219 } 3220 3221 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3222 { 3223 struct fs_path *from_path = NULL; 3224 struct fs_path *to_path = NULL; 3225 struct fs_path *name = NULL; 3226 u64 orig_progress = sctx->send_progress; 3227 struct recorded_ref *cur; 3228 u64 parent_ino, parent_gen; 3229 struct waiting_dir_move *dm = NULL; 3230 u64 rmdir_ino = 0; 3231 u64 ancestor; 3232 bool is_orphan; 3233 int ret; 3234 3235 name = fs_path_alloc(); 3236 from_path = fs_path_alloc(); 3237 if (!name || !from_path) { 3238 ret = -ENOMEM; 3239 goto out; 3240 } 3241 3242 dm = get_waiting_dir_move(sctx, pm->ino); 3243 ASSERT(dm); 3244 rmdir_ino = dm->rmdir_ino; 3245 is_orphan = dm->orphanized; 3246 free_waiting_dir_move(sctx, dm); 3247 3248 if (is_orphan) { 3249 ret = gen_unique_name(sctx, pm->ino, 3250 pm->gen, from_path); 3251 } else { 3252 ret = get_first_ref(sctx->parent_root, pm->ino, 3253 &parent_ino, &parent_gen, name); 3254 if (ret < 0) 3255 goto out; 3256 ret = get_cur_path(sctx, parent_ino, parent_gen, 3257 from_path); 3258 if (ret < 0) 3259 goto out; 3260 ret = fs_path_add_path(from_path, name); 3261 } 3262 if (ret < 0) 3263 goto out; 3264 3265 sctx->send_progress = sctx->cur_ino + 1; 3266 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3267 if (ret < 0) 3268 goto out; 3269 if (ret) { 3270 LIST_HEAD(deleted_refs); 3271 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3272 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3273 &pm->update_refs, &deleted_refs, 3274 is_orphan); 3275 if (ret < 0) 3276 goto out; 3277 if (rmdir_ino) { 3278 dm = get_waiting_dir_move(sctx, pm->ino); 3279 ASSERT(dm); 3280 dm->rmdir_ino = rmdir_ino; 3281 } 3282 goto out; 3283 } 3284 fs_path_reset(name); 3285 to_path = name; 3286 name = NULL; 3287 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3288 if (ret < 0) 3289 goto out; 3290 3291 ret = send_rename(sctx, from_path, to_path); 3292 if (ret < 0) 3293 goto out; 3294 3295 if (rmdir_ino) { 3296 struct orphan_dir_info *odi; 3297 u64 gen; 3298 3299 odi = get_orphan_dir_info(sctx, rmdir_ino); 3300 if (!odi) { 3301 /* already deleted */ 3302 goto finish; 3303 } 3304 gen = odi->gen; 3305 3306 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3307 if (ret < 0) 3308 goto out; 3309 if (!ret) 3310 goto finish; 3311 3312 name = fs_path_alloc(); 3313 if (!name) { 3314 ret = -ENOMEM; 3315 goto out; 3316 } 3317 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3318 if (ret < 0) 3319 goto out; 3320 ret = send_rmdir(sctx, name); 3321 if (ret < 0) 3322 goto out; 3323 } 3324 3325 finish: 3326 ret = send_utimes(sctx, pm->ino, pm->gen); 3327 if (ret < 0) 3328 goto out; 3329 3330 /* 3331 * After rename/move, need to update the utimes of both new parent(s) 3332 * and old parent(s). 3333 */ 3334 list_for_each_entry(cur, &pm->update_refs, list) { 3335 /* 3336 * The parent inode might have been deleted in the send snapshot 3337 */ 3338 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3339 NULL, NULL, NULL, NULL, NULL); 3340 if (ret == -ENOENT) { 3341 ret = 0; 3342 continue; 3343 } 3344 if (ret < 0) 3345 goto out; 3346 3347 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3348 if (ret < 0) 3349 goto out; 3350 } 3351 3352 out: 3353 fs_path_free(name); 3354 fs_path_free(from_path); 3355 fs_path_free(to_path); 3356 sctx->send_progress = orig_progress; 3357 3358 return ret; 3359 } 3360 3361 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3362 { 3363 if (!list_empty(&m->list)) 3364 list_del(&m->list); 3365 if (!RB_EMPTY_NODE(&m->node)) 3366 rb_erase(&m->node, &sctx->pending_dir_moves); 3367 __free_recorded_refs(&m->update_refs); 3368 kfree(m); 3369 } 3370 3371 static void tail_append_pending_moves(struct send_ctx *sctx, 3372 struct pending_dir_move *moves, 3373 struct list_head *stack) 3374 { 3375 if (list_empty(&moves->list)) { 3376 list_add_tail(&moves->list, stack); 3377 } else { 3378 LIST_HEAD(list); 3379 list_splice_init(&moves->list, &list); 3380 list_add_tail(&moves->list, stack); 3381 list_splice_tail(&list, stack); 3382 } 3383 if (!RB_EMPTY_NODE(&moves->node)) { 3384 rb_erase(&moves->node, &sctx->pending_dir_moves); 3385 RB_CLEAR_NODE(&moves->node); 3386 } 3387 } 3388 3389 static int apply_children_dir_moves(struct send_ctx *sctx) 3390 { 3391 struct pending_dir_move *pm; 3392 struct list_head stack; 3393 u64 parent_ino = sctx->cur_ino; 3394 int ret = 0; 3395 3396 pm = get_pending_dir_moves(sctx, parent_ino); 3397 if (!pm) 3398 return 0; 3399 3400 INIT_LIST_HEAD(&stack); 3401 tail_append_pending_moves(sctx, pm, &stack); 3402 3403 while (!list_empty(&stack)) { 3404 pm = list_first_entry(&stack, struct pending_dir_move, list); 3405 parent_ino = pm->ino; 3406 ret = apply_dir_move(sctx, pm); 3407 free_pending_move(sctx, pm); 3408 if (ret) 3409 goto out; 3410 pm = get_pending_dir_moves(sctx, parent_ino); 3411 if (pm) 3412 tail_append_pending_moves(sctx, pm, &stack); 3413 } 3414 return 0; 3415 3416 out: 3417 while (!list_empty(&stack)) { 3418 pm = list_first_entry(&stack, struct pending_dir_move, list); 3419 free_pending_move(sctx, pm); 3420 } 3421 return ret; 3422 } 3423 3424 /* 3425 * We might need to delay a directory rename even when no ancestor directory 3426 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3427 * renamed. This happens when we rename a directory to the old name (the name 3428 * in the parent root) of some other unrelated directory that got its rename 3429 * delayed due to some ancestor with higher number that got renamed. 3430 * 3431 * Example: 3432 * 3433 * Parent snapshot: 3434 * . (ino 256) 3435 * |---- a/ (ino 257) 3436 * | |---- file (ino 260) 3437 * | 3438 * |---- b/ (ino 258) 3439 * |---- c/ (ino 259) 3440 * 3441 * Send snapshot: 3442 * . (ino 256) 3443 * |---- a/ (ino 258) 3444 * |---- x/ (ino 259) 3445 * |---- y/ (ino 257) 3446 * |----- file (ino 260) 3447 * 3448 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3449 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3450 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3451 * must issue is: 3452 * 3453 * 1 - rename 259 from 'c' to 'x' 3454 * 2 - rename 257 from 'a' to 'x/y' 3455 * 3 - rename 258 from 'b' to 'a' 3456 * 3457 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3458 * be done right away and < 0 on error. 3459 */ 3460 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3461 struct recorded_ref *parent_ref, 3462 const bool is_orphan) 3463 { 3464 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3465 struct btrfs_path *path; 3466 struct btrfs_key key; 3467 struct btrfs_key di_key; 3468 struct btrfs_dir_item *di; 3469 u64 left_gen; 3470 u64 right_gen; 3471 int ret = 0; 3472 struct waiting_dir_move *wdm; 3473 3474 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3475 return 0; 3476 3477 path = alloc_path_for_send(); 3478 if (!path) 3479 return -ENOMEM; 3480 3481 key.objectid = parent_ref->dir; 3482 key.type = BTRFS_DIR_ITEM_KEY; 3483 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3484 3485 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3486 if (ret < 0) { 3487 goto out; 3488 } else if (ret > 0) { 3489 ret = 0; 3490 goto out; 3491 } 3492 3493 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3494 parent_ref->name_len); 3495 if (!di) { 3496 ret = 0; 3497 goto out; 3498 } 3499 /* 3500 * di_key.objectid has the number of the inode that has a dentry in the 3501 * parent directory with the same name that sctx->cur_ino is being 3502 * renamed to. We need to check if that inode is in the send root as 3503 * well and if it is currently marked as an inode with a pending rename, 3504 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3505 * that it happens after that other inode is renamed. 3506 */ 3507 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3508 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3509 ret = 0; 3510 goto out; 3511 } 3512 3513 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3514 &left_gen, NULL, NULL, NULL, NULL); 3515 if (ret < 0) 3516 goto out; 3517 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3518 &right_gen, NULL, NULL, NULL, NULL); 3519 if (ret < 0) { 3520 if (ret == -ENOENT) 3521 ret = 0; 3522 goto out; 3523 } 3524 3525 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3526 if (right_gen != left_gen) { 3527 ret = 0; 3528 goto out; 3529 } 3530 3531 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3532 if (wdm && !wdm->orphanized) { 3533 ret = add_pending_dir_move(sctx, 3534 sctx->cur_ino, 3535 sctx->cur_inode_gen, 3536 di_key.objectid, 3537 &sctx->new_refs, 3538 &sctx->deleted_refs, 3539 is_orphan); 3540 if (!ret) 3541 ret = 1; 3542 } 3543 out: 3544 btrfs_free_path(path); 3545 return ret; 3546 } 3547 3548 /* 3549 * Check if inode ino2, or any of its ancestors, is inode ino1. 3550 * Return 1 if true, 0 if false and < 0 on error. 3551 */ 3552 static int check_ino_in_path(struct btrfs_root *root, 3553 const u64 ino1, 3554 const u64 ino1_gen, 3555 const u64 ino2, 3556 const u64 ino2_gen, 3557 struct fs_path *fs_path) 3558 { 3559 u64 ino = ino2; 3560 3561 if (ino1 == ino2) 3562 return ino1_gen == ino2_gen; 3563 3564 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3565 u64 parent; 3566 u64 parent_gen; 3567 int ret; 3568 3569 fs_path_reset(fs_path); 3570 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3571 if (ret < 0) 3572 return ret; 3573 if (parent == ino1) 3574 return parent_gen == ino1_gen; 3575 ino = parent; 3576 } 3577 return 0; 3578 } 3579 3580 /* 3581 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3582 * possible path (in case ino2 is not a directory and has multiple hard links). 3583 * Return 1 if true, 0 if false and < 0 on error. 3584 */ 3585 static int is_ancestor(struct btrfs_root *root, 3586 const u64 ino1, 3587 const u64 ino1_gen, 3588 const u64 ino2, 3589 struct fs_path *fs_path) 3590 { 3591 bool free_fs_path = false; 3592 int ret = 0; 3593 struct btrfs_path *path = NULL; 3594 struct btrfs_key key; 3595 3596 if (!fs_path) { 3597 fs_path = fs_path_alloc(); 3598 if (!fs_path) 3599 return -ENOMEM; 3600 free_fs_path = true; 3601 } 3602 3603 path = alloc_path_for_send(); 3604 if (!path) { 3605 ret = -ENOMEM; 3606 goto out; 3607 } 3608 3609 key.objectid = ino2; 3610 key.type = BTRFS_INODE_REF_KEY; 3611 key.offset = 0; 3612 3613 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3614 if (ret < 0) 3615 goto out; 3616 3617 while (true) { 3618 struct extent_buffer *leaf = path->nodes[0]; 3619 int slot = path->slots[0]; 3620 u32 cur_offset = 0; 3621 u32 item_size; 3622 3623 if (slot >= btrfs_header_nritems(leaf)) { 3624 ret = btrfs_next_leaf(root, path); 3625 if (ret < 0) 3626 goto out; 3627 if (ret > 0) 3628 break; 3629 continue; 3630 } 3631 3632 btrfs_item_key_to_cpu(leaf, &key, slot); 3633 if (key.objectid != ino2) 3634 break; 3635 if (key.type != BTRFS_INODE_REF_KEY && 3636 key.type != BTRFS_INODE_EXTREF_KEY) 3637 break; 3638 3639 item_size = btrfs_item_size_nr(leaf, slot); 3640 while (cur_offset < item_size) { 3641 u64 parent; 3642 u64 parent_gen; 3643 3644 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3645 unsigned long ptr; 3646 struct btrfs_inode_extref *extref; 3647 3648 ptr = btrfs_item_ptr_offset(leaf, slot); 3649 extref = (struct btrfs_inode_extref *) 3650 (ptr + cur_offset); 3651 parent = btrfs_inode_extref_parent(leaf, 3652 extref); 3653 cur_offset += sizeof(*extref); 3654 cur_offset += btrfs_inode_extref_name_len(leaf, 3655 extref); 3656 } else { 3657 parent = key.offset; 3658 cur_offset = item_size; 3659 } 3660 3661 ret = get_inode_info(root, parent, NULL, &parent_gen, 3662 NULL, NULL, NULL, NULL); 3663 if (ret < 0) 3664 goto out; 3665 ret = check_ino_in_path(root, ino1, ino1_gen, 3666 parent, parent_gen, fs_path); 3667 if (ret) 3668 goto out; 3669 } 3670 path->slots[0]++; 3671 } 3672 ret = 0; 3673 out: 3674 btrfs_free_path(path); 3675 if (free_fs_path) 3676 fs_path_free(fs_path); 3677 return ret; 3678 } 3679 3680 static int wait_for_parent_move(struct send_ctx *sctx, 3681 struct recorded_ref *parent_ref, 3682 const bool is_orphan) 3683 { 3684 int ret = 0; 3685 u64 ino = parent_ref->dir; 3686 u64 ino_gen = parent_ref->dir_gen; 3687 u64 parent_ino_before, parent_ino_after; 3688 struct fs_path *path_before = NULL; 3689 struct fs_path *path_after = NULL; 3690 int len1, len2; 3691 3692 path_after = fs_path_alloc(); 3693 path_before = fs_path_alloc(); 3694 if (!path_after || !path_before) { 3695 ret = -ENOMEM; 3696 goto out; 3697 } 3698 3699 /* 3700 * Our current directory inode may not yet be renamed/moved because some 3701 * ancestor (immediate or not) has to be renamed/moved first. So find if 3702 * such ancestor exists and make sure our own rename/move happens after 3703 * that ancestor is processed to avoid path build infinite loops (done 3704 * at get_cur_path()). 3705 */ 3706 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3707 u64 parent_ino_after_gen; 3708 3709 if (is_waiting_for_move(sctx, ino)) { 3710 /* 3711 * If the current inode is an ancestor of ino in the 3712 * parent root, we need to delay the rename of the 3713 * current inode, otherwise don't delayed the rename 3714 * because we can end up with a circular dependency 3715 * of renames, resulting in some directories never 3716 * getting the respective rename operations issued in 3717 * the send stream or getting into infinite path build 3718 * loops. 3719 */ 3720 ret = is_ancestor(sctx->parent_root, 3721 sctx->cur_ino, sctx->cur_inode_gen, 3722 ino, path_before); 3723 if (ret) 3724 break; 3725 } 3726 3727 fs_path_reset(path_before); 3728 fs_path_reset(path_after); 3729 3730 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3731 &parent_ino_after_gen, path_after); 3732 if (ret < 0) 3733 goto out; 3734 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3735 NULL, path_before); 3736 if (ret < 0 && ret != -ENOENT) { 3737 goto out; 3738 } else if (ret == -ENOENT) { 3739 ret = 0; 3740 break; 3741 } 3742 3743 len1 = fs_path_len(path_before); 3744 len2 = fs_path_len(path_after); 3745 if (ino > sctx->cur_ino && 3746 (parent_ino_before != parent_ino_after || len1 != len2 || 3747 memcmp(path_before->start, path_after->start, len1))) { 3748 u64 parent_ino_gen; 3749 3750 ret = get_inode_info(sctx->parent_root, ino, NULL, 3751 &parent_ino_gen, NULL, NULL, NULL, 3752 NULL); 3753 if (ret < 0) 3754 goto out; 3755 if (ino_gen == parent_ino_gen) { 3756 ret = 1; 3757 break; 3758 } 3759 } 3760 ino = parent_ino_after; 3761 ino_gen = parent_ino_after_gen; 3762 } 3763 3764 out: 3765 fs_path_free(path_before); 3766 fs_path_free(path_after); 3767 3768 if (ret == 1) { 3769 ret = add_pending_dir_move(sctx, 3770 sctx->cur_ino, 3771 sctx->cur_inode_gen, 3772 ino, 3773 &sctx->new_refs, 3774 &sctx->deleted_refs, 3775 is_orphan); 3776 if (!ret) 3777 ret = 1; 3778 } 3779 3780 return ret; 3781 } 3782 3783 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3784 { 3785 int ret; 3786 struct fs_path *new_path; 3787 3788 /* 3789 * Our reference's name member points to its full_path member string, so 3790 * we use here a new path. 3791 */ 3792 new_path = fs_path_alloc(); 3793 if (!new_path) 3794 return -ENOMEM; 3795 3796 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3797 if (ret < 0) { 3798 fs_path_free(new_path); 3799 return ret; 3800 } 3801 ret = fs_path_add(new_path, ref->name, ref->name_len); 3802 if (ret < 0) { 3803 fs_path_free(new_path); 3804 return ret; 3805 } 3806 3807 fs_path_free(ref->full_path); 3808 set_ref_path(ref, new_path); 3809 3810 return 0; 3811 } 3812 3813 /* 3814 * This does all the move/link/unlink/rmdir magic. 3815 */ 3816 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3817 { 3818 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3819 int ret = 0; 3820 struct recorded_ref *cur; 3821 struct recorded_ref *cur2; 3822 struct list_head check_dirs; 3823 struct fs_path *valid_path = NULL; 3824 u64 ow_inode = 0; 3825 u64 ow_gen; 3826 u64 ow_mode; 3827 int did_overwrite = 0; 3828 int is_orphan = 0; 3829 u64 last_dir_ino_rm = 0; 3830 bool can_rename = true; 3831 bool orphanized_dir = false; 3832 bool orphanized_ancestor = false; 3833 3834 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3835 3836 /* 3837 * This should never happen as the root dir always has the same ref 3838 * which is always '..' 3839 */ 3840 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3841 INIT_LIST_HEAD(&check_dirs); 3842 3843 valid_path = fs_path_alloc(); 3844 if (!valid_path) { 3845 ret = -ENOMEM; 3846 goto out; 3847 } 3848 3849 /* 3850 * First, check if the first ref of the current inode was overwritten 3851 * before. If yes, we know that the current inode was already orphanized 3852 * and thus use the orphan name. If not, we can use get_cur_path to 3853 * get the path of the first ref as it would like while receiving at 3854 * this point in time. 3855 * New inodes are always orphan at the beginning, so force to use the 3856 * orphan name in this case. 3857 * The first ref is stored in valid_path and will be updated if it 3858 * gets moved around. 3859 */ 3860 if (!sctx->cur_inode_new) { 3861 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3862 sctx->cur_inode_gen); 3863 if (ret < 0) 3864 goto out; 3865 if (ret) 3866 did_overwrite = 1; 3867 } 3868 if (sctx->cur_inode_new || did_overwrite) { 3869 ret = gen_unique_name(sctx, sctx->cur_ino, 3870 sctx->cur_inode_gen, valid_path); 3871 if (ret < 0) 3872 goto out; 3873 is_orphan = 1; 3874 } else { 3875 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3876 valid_path); 3877 if (ret < 0) 3878 goto out; 3879 } 3880 3881 list_for_each_entry(cur, &sctx->new_refs, list) { 3882 /* 3883 * We may have refs where the parent directory does not exist 3884 * yet. This happens if the parent directories inum is higher 3885 * than the current inum. To handle this case, we create the 3886 * parent directory out of order. But we need to check if this 3887 * did already happen before due to other refs in the same dir. 3888 */ 3889 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3890 if (ret < 0) 3891 goto out; 3892 if (ret == inode_state_will_create) { 3893 ret = 0; 3894 /* 3895 * First check if any of the current inodes refs did 3896 * already create the dir. 3897 */ 3898 list_for_each_entry(cur2, &sctx->new_refs, list) { 3899 if (cur == cur2) 3900 break; 3901 if (cur2->dir == cur->dir) { 3902 ret = 1; 3903 break; 3904 } 3905 } 3906 3907 /* 3908 * If that did not happen, check if a previous inode 3909 * did already create the dir. 3910 */ 3911 if (!ret) 3912 ret = did_create_dir(sctx, cur->dir); 3913 if (ret < 0) 3914 goto out; 3915 if (!ret) { 3916 ret = send_create_inode(sctx, cur->dir); 3917 if (ret < 0) 3918 goto out; 3919 } 3920 } 3921 3922 /* 3923 * Check if this new ref would overwrite the first ref of 3924 * another unprocessed inode. If yes, orphanize the 3925 * overwritten inode. If we find an overwritten ref that is 3926 * not the first ref, simply unlink it. 3927 */ 3928 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3929 cur->name, cur->name_len, 3930 &ow_inode, &ow_gen, &ow_mode); 3931 if (ret < 0) 3932 goto out; 3933 if (ret) { 3934 ret = is_first_ref(sctx->parent_root, 3935 ow_inode, cur->dir, cur->name, 3936 cur->name_len); 3937 if (ret < 0) 3938 goto out; 3939 if (ret) { 3940 struct name_cache_entry *nce; 3941 struct waiting_dir_move *wdm; 3942 3943 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3944 cur->full_path); 3945 if (ret < 0) 3946 goto out; 3947 if (S_ISDIR(ow_mode)) 3948 orphanized_dir = true; 3949 3950 /* 3951 * If ow_inode has its rename operation delayed 3952 * make sure that its orphanized name is used in 3953 * the source path when performing its rename 3954 * operation. 3955 */ 3956 if (is_waiting_for_move(sctx, ow_inode)) { 3957 wdm = get_waiting_dir_move(sctx, 3958 ow_inode); 3959 ASSERT(wdm); 3960 wdm->orphanized = true; 3961 } 3962 3963 /* 3964 * Make sure we clear our orphanized inode's 3965 * name from the name cache. This is because the 3966 * inode ow_inode might be an ancestor of some 3967 * other inode that will be orphanized as well 3968 * later and has an inode number greater than 3969 * sctx->send_progress. We need to prevent 3970 * future name lookups from using the old name 3971 * and get instead the orphan name. 3972 */ 3973 nce = name_cache_search(sctx, ow_inode, ow_gen); 3974 if (nce) { 3975 name_cache_delete(sctx, nce); 3976 kfree(nce); 3977 } 3978 3979 /* 3980 * ow_inode might currently be an ancestor of 3981 * cur_ino, therefore compute valid_path (the 3982 * current path of cur_ino) again because it 3983 * might contain the pre-orphanization name of 3984 * ow_inode, which is no longer valid. 3985 */ 3986 ret = is_ancestor(sctx->parent_root, 3987 ow_inode, ow_gen, 3988 sctx->cur_ino, NULL); 3989 if (ret > 0) { 3990 orphanized_ancestor = true; 3991 fs_path_reset(valid_path); 3992 ret = get_cur_path(sctx, sctx->cur_ino, 3993 sctx->cur_inode_gen, 3994 valid_path); 3995 } 3996 if (ret < 0) 3997 goto out; 3998 } else { 3999 ret = send_unlink(sctx, cur->full_path); 4000 if (ret < 0) 4001 goto out; 4002 } 4003 } 4004 4005 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4006 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4007 if (ret < 0) 4008 goto out; 4009 if (ret == 1) { 4010 can_rename = false; 4011 *pending_move = 1; 4012 } 4013 } 4014 4015 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4016 can_rename) { 4017 ret = wait_for_parent_move(sctx, cur, is_orphan); 4018 if (ret < 0) 4019 goto out; 4020 if (ret == 1) { 4021 can_rename = false; 4022 *pending_move = 1; 4023 } 4024 } 4025 4026 /* 4027 * link/move the ref to the new place. If we have an orphan 4028 * inode, move it and update valid_path. If not, link or move 4029 * it depending on the inode mode. 4030 */ 4031 if (is_orphan && can_rename) { 4032 ret = send_rename(sctx, valid_path, cur->full_path); 4033 if (ret < 0) 4034 goto out; 4035 is_orphan = 0; 4036 ret = fs_path_copy(valid_path, cur->full_path); 4037 if (ret < 0) 4038 goto out; 4039 } else if (can_rename) { 4040 if (S_ISDIR(sctx->cur_inode_mode)) { 4041 /* 4042 * Dirs can't be linked, so move it. For moved 4043 * dirs, we always have one new and one deleted 4044 * ref. The deleted ref is ignored later. 4045 */ 4046 ret = send_rename(sctx, valid_path, 4047 cur->full_path); 4048 if (!ret) 4049 ret = fs_path_copy(valid_path, 4050 cur->full_path); 4051 if (ret < 0) 4052 goto out; 4053 } else { 4054 /* 4055 * We might have previously orphanized an inode 4056 * which is an ancestor of our current inode, 4057 * so our reference's full path, which was 4058 * computed before any such orphanizations, must 4059 * be updated. 4060 */ 4061 if (orphanized_dir) { 4062 ret = update_ref_path(sctx, cur); 4063 if (ret < 0) 4064 goto out; 4065 } 4066 ret = send_link(sctx, cur->full_path, 4067 valid_path); 4068 if (ret < 0) 4069 goto out; 4070 } 4071 } 4072 ret = dup_ref(cur, &check_dirs); 4073 if (ret < 0) 4074 goto out; 4075 } 4076 4077 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4078 /* 4079 * Check if we can already rmdir the directory. If not, 4080 * orphanize it. For every dir item inside that gets deleted 4081 * later, we do this check again and rmdir it then if possible. 4082 * See the use of check_dirs for more details. 4083 */ 4084 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4085 sctx->cur_ino); 4086 if (ret < 0) 4087 goto out; 4088 if (ret) { 4089 ret = send_rmdir(sctx, valid_path); 4090 if (ret < 0) 4091 goto out; 4092 } else if (!is_orphan) { 4093 ret = orphanize_inode(sctx, sctx->cur_ino, 4094 sctx->cur_inode_gen, valid_path); 4095 if (ret < 0) 4096 goto out; 4097 is_orphan = 1; 4098 } 4099 4100 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4101 ret = dup_ref(cur, &check_dirs); 4102 if (ret < 0) 4103 goto out; 4104 } 4105 } else if (S_ISDIR(sctx->cur_inode_mode) && 4106 !list_empty(&sctx->deleted_refs)) { 4107 /* 4108 * We have a moved dir. Add the old parent to check_dirs 4109 */ 4110 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4111 list); 4112 ret = dup_ref(cur, &check_dirs); 4113 if (ret < 0) 4114 goto out; 4115 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4116 /* 4117 * We have a non dir inode. Go through all deleted refs and 4118 * unlink them if they were not already overwritten by other 4119 * inodes. 4120 */ 4121 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4122 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4123 sctx->cur_ino, sctx->cur_inode_gen, 4124 cur->name, cur->name_len); 4125 if (ret < 0) 4126 goto out; 4127 if (!ret) { 4128 /* 4129 * If we orphanized any ancestor before, we need 4130 * to recompute the full path for deleted names, 4131 * since any such path was computed before we 4132 * processed any references and orphanized any 4133 * ancestor inode. 4134 */ 4135 if (orphanized_ancestor) { 4136 ret = update_ref_path(sctx, cur); 4137 if (ret < 0) 4138 goto out; 4139 } 4140 ret = send_unlink(sctx, cur->full_path); 4141 if (ret < 0) 4142 goto out; 4143 } 4144 ret = dup_ref(cur, &check_dirs); 4145 if (ret < 0) 4146 goto out; 4147 } 4148 /* 4149 * If the inode is still orphan, unlink the orphan. This may 4150 * happen when a previous inode did overwrite the first ref 4151 * of this inode and no new refs were added for the current 4152 * inode. Unlinking does not mean that the inode is deleted in 4153 * all cases. There may still be links to this inode in other 4154 * places. 4155 */ 4156 if (is_orphan) { 4157 ret = send_unlink(sctx, valid_path); 4158 if (ret < 0) 4159 goto out; 4160 } 4161 } 4162 4163 /* 4164 * We did collect all parent dirs where cur_inode was once located. We 4165 * now go through all these dirs and check if they are pending for 4166 * deletion and if it's finally possible to perform the rmdir now. 4167 * We also update the inode stats of the parent dirs here. 4168 */ 4169 list_for_each_entry(cur, &check_dirs, list) { 4170 /* 4171 * In case we had refs into dirs that were not processed yet, 4172 * we don't need to do the utime and rmdir logic for these dirs. 4173 * The dir will be processed later. 4174 */ 4175 if (cur->dir > sctx->cur_ino) 4176 continue; 4177 4178 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4179 if (ret < 0) 4180 goto out; 4181 4182 if (ret == inode_state_did_create || 4183 ret == inode_state_no_change) { 4184 /* TODO delayed utimes */ 4185 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4186 if (ret < 0) 4187 goto out; 4188 } else if (ret == inode_state_did_delete && 4189 cur->dir != last_dir_ino_rm) { 4190 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4191 sctx->cur_ino); 4192 if (ret < 0) 4193 goto out; 4194 if (ret) { 4195 ret = get_cur_path(sctx, cur->dir, 4196 cur->dir_gen, valid_path); 4197 if (ret < 0) 4198 goto out; 4199 ret = send_rmdir(sctx, valid_path); 4200 if (ret < 0) 4201 goto out; 4202 last_dir_ino_rm = cur->dir; 4203 } 4204 } 4205 } 4206 4207 ret = 0; 4208 4209 out: 4210 __free_recorded_refs(&check_dirs); 4211 free_recorded_refs(sctx); 4212 fs_path_free(valid_path); 4213 return ret; 4214 } 4215 4216 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4217 void *ctx, struct list_head *refs) 4218 { 4219 int ret = 0; 4220 struct send_ctx *sctx = ctx; 4221 struct fs_path *p; 4222 u64 gen; 4223 4224 p = fs_path_alloc(); 4225 if (!p) 4226 return -ENOMEM; 4227 4228 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4229 NULL, NULL); 4230 if (ret < 0) 4231 goto out; 4232 4233 ret = get_cur_path(sctx, dir, gen, p); 4234 if (ret < 0) 4235 goto out; 4236 ret = fs_path_add_path(p, name); 4237 if (ret < 0) 4238 goto out; 4239 4240 ret = __record_ref(refs, dir, gen, p); 4241 4242 out: 4243 if (ret) 4244 fs_path_free(p); 4245 return ret; 4246 } 4247 4248 static int __record_new_ref(int num, u64 dir, int index, 4249 struct fs_path *name, 4250 void *ctx) 4251 { 4252 struct send_ctx *sctx = ctx; 4253 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4254 } 4255 4256 4257 static int __record_deleted_ref(int num, u64 dir, int index, 4258 struct fs_path *name, 4259 void *ctx) 4260 { 4261 struct send_ctx *sctx = ctx; 4262 return record_ref(sctx->parent_root, dir, name, ctx, 4263 &sctx->deleted_refs); 4264 } 4265 4266 static int record_new_ref(struct send_ctx *sctx) 4267 { 4268 int ret; 4269 4270 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4271 sctx->cmp_key, 0, __record_new_ref, sctx); 4272 if (ret < 0) 4273 goto out; 4274 ret = 0; 4275 4276 out: 4277 return ret; 4278 } 4279 4280 static int record_deleted_ref(struct send_ctx *sctx) 4281 { 4282 int ret; 4283 4284 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4285 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4286 if (ret < 0) 4287 goto out; 4288 ret = 0; 4289 4290 out: 4291 return ret; 4292 } 4293 4294 struct find_ref_ctx { 4295 u64 dir; 4296 u64 dir_gen; 4297 struct btrfs_root *root; 4298 struct fs_path *name; 4299 int found_idx; 4300 }; 4301 4302 static int __find_iref(int num, u64 dir, int index, 4303 struct fs_path *name, 4304 void *ctx_) 4305 { 4306 struct find_ref_ctx *ctx = ctx_; 4307 u64 dir_gen; 4308 int ret; 4309 4310 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4311 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4312 /* 4313 * To avoid doing extra lookups we'll only do this if everything 4314 * else matches. 4315 */ 4316 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4317 NULL, NULL, NULL); 4318 if (ret) 4319 return ret; 4320 if (dir_gen != ctx->dir_gen) 4321 return 0; 4322 ctx->found_idx = num; 4323 return 1; 4324 } 4325 return 0; 4326 } 4327 4328 static int find_iref(struct btrfs_root *root, 4329 struct btrfs_path *path, 4330 struct btrfs_key *key, 4331 u64 dir, u64 dir_gen, struct fs_path *name) 4332 { 4333 int ret; 4334 struct find_ref_ctx ctx; 4335 4336 ctx.dir = dir; 4337 ctx.name = name; 4338 ctx.dir_gen = dir_gen; 4339 ctx.found_idx = -1; 4340 ctx.root = root; 4341 4342 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4343 if (ret < 0) 4344 return ret; 4345 4346 if (ctx.found_idx == -1) 4347 return -ENOENT; 4348 4349 return ctx.found_idx; 4350 } 4351 4352 static int __record_changed_new_ref(int num, u64 dir, int index, 4353 struct fs_path *name, 4354 void *ctx) 4355 { 4356 u64 dir_gen; 4357 int ret; 4358 struct send_ctx *sctx = ctx; 4359 4360 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4361 NULL, NULL, NULL); 4362 if (ret) 4363 return ret; 4364 4365 ret = find_iref(sctx->parent_root, sctx->right_path, 4366 sctx->cmp_key, dir, dir_gen, name); 4367 if (ret == -ENOENT) 4368 ret = __record_new_ref(num, dir, index, name, sctx); 4369 else if (ret > 0) 4370 ret = 0; 4371 4372 return ret; 4373 } 4374 4375 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4376 struct fs_path *name, 4377 void *ctx) 4378 { 4379 u64 dir_gen; 4380 int ret; 4381 struct send_ctx *sctx = ctx; 4382 4383 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4384 NULL, NULL, NULL); 4385 if (ret) 4386 return ret; 4387 4388 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4389 dir, dir_gen, name); 4390 if (ret == -ENOENT) 4391 ret = __record_deleted_ref(num, dir, index, name, sctx); 4392 else if (ret > 0) 4393 ret = 0; 4394 4395 return ret; 4396 } 4397 4398 static int record_changed_ref(struct send_ctx *sctx) 4399 { 4400 int ret = 0; 4401 4402 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4403 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4404 if (ret < 0) 4405 goto out; 4406 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4407 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4408 if (ret < 0) 4409 goto out; 4410 ret = 0; 4411 4412 out: 4413 return ret; 4414 } 4415 4416 /* 4417 * Record and process all refs at once. Needed when an inode changes the 4418 * generation number, which means that it was deleted and recreated. 4419 */ 4420 static int process_all_refs(struct send_ctx *sctx, 4421 enum btrfs_compare_tree_result cmd) 4422 { 4423 int ret; 4424 struct btrfs_root *root; 4425 struct btrfs_path *path; 4426 struct btrfs_key key; 4427 struct btrfs_key found_key; 4428 struct extent_buffer *eb; 4429 int slot; 4430 iterate_inode_ref_t cb; 4431 int pending_move = 0; 4432 4433 path = alloc_path_for_send(); 4434 if (!path) 4435 return -ENOMEM; 4436 4437 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4438 root = sctx->send_root; 4439 cb = __record_new_ref; 4440 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4441 root = sctx->parent_root; 4442 cb = __record_deleted_ref; 4443 } else { 4444 btrfs_err(sctx->send_root->fs_info, 4445 "Wrong command %d in process_all_refs", cmd); 4446 ret = -EINVAL; 4447 goto out; 4448 } 4449 4450 key.objectid = sctx->cmp_key->objectid; 4451 key.type = BTRFS_INODE_REF_KEY; 4452 key.offset = 0; 4453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4454 if (ret < 0) 4455 goto out; 4456 4457 while (1) { 4458 eb = path->nodes[0]; 4459 slot = path->slots[0]; 4460 if (slot >= btrfs_header_nritems(eb)) { 4461 ret = btrfs_next_leaf(root, path); 4462 if (ret < 0) 4463 goto out; 4464 else if (ret > 0) 4465 break; 4466 continue; 4467 } 4468 4469 btrfs_item_key_to_cpu(eb, &found_key, slot); 4470 4471 if (found_key.objectid != key.objectid || 4472 (found_key.type != BTRFS_INODE_REF_KEY && 4473 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4474 break; 4475 4476 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4477 if (ret < 0) 4478 goto out; 4479 4480 path->slots[0]++; 4481 } 4482 btrfs_release_path(path); 4483 4484 /* 4485 * We don't actually care about pending_move as we are simply 4486 * re-creating this inode and will be rename'ing it into place once we 4487 * rename the parent directory. 4488 */ 4489 ret = process_recorded_refs(sctx, &pending_move); 4490 out: 4491 btrfs_free_path(path); 4492 return ret; 4493 } 4494 4495 static int send_set_xattr(struct send_ctx *sctx, 4496 struct fs_path *path, 4497 const char *name, int name_len, 4498 const char *data, int data_len) 4499 { 4500 int ret = 0; 4501 4502 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4503 if (ret < 0) 4504 goto out; 4505 4506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4507 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4508 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4509 4510 ret = send_cmd(sctx); 4511 4512 tlv_put_failure: 4513 out: 4514 return ret; 4515 } 4516 4517 static int send_remove_xattr(struct send_ctx *sctx, 4518 struct fs_path *path, 4519 const char *name, int name_len) 4520 { 4521 int ret = 0; 4522 4523 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4524 if (ret < 0) 4525 goto out; 4526 4527 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4528 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4529 4530 ret = send_cmd(sctx); 4531 4532 tlv_put_failure: 4533 out: 4534 return ret; 4535 } 4536 4537 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4538 const char *name, int name_len, 4539 const char *data, int data_len, 4540 u8 type, void *ctx) 4541 { 4542 int ret; 4543 struct send_ctx *sctx = ctx; 4544 struct fs_path *p; 4545 struct posix_acl_xattr_header dummy_acl; 4546 4547 p = fs_path_alloc(); 4548 if (!p) 4549 return -ENOMEM; 4550 4551 /* 4552 * This hack is needed because empty acls are stored as zero byte 4553 * data in xattrs. Problem with that is, that receiving these zero byte 4554 * acls will fail later. To fix this, we send a dummy acl list that 4555 * only contains the version number and no entries. 4556 */ 4557 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4558 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4559 if (data_len == 0) { 4560 dummy_acl.a_version = 4561 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4562 data = (char *)&dummy_acl; 4563 data_len = sizeof(dummy_acl); 4564 } 4565 } 4566 4567 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4568 if (ret < 0) 4569 goto out; 4570 4571 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4572 4573 out: 4574 fs_path_free(p); 4575 return ret; 4576 } 4577 4578 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4579 const char *name, int name_len, 4580 const char *data, int data_len, 4581 u8 type, void *ctx) 4582 { 4583 int ret; 4584 struct send_ctx *sctx = ctx; 4585 struct fs_path *p; 4586 4587 p = fs_path_alloc(); 4588 if (!p) 4589 return -ENOMEM; 4590 4591 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4592 if (ret < 0) 4593 goto out; 4594 4595 ret = send_remove_xattr(sctx, p, name, name_len); 4596 4597 out: 4598 fs_path_free(p); 4599 return ret; 4600 } 4601 4602 static int process_new_xattr(struct send_ctx *sctx) 4603 { 4604 int ret = 0; 4605 4606 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4607 __process_new_xattr, sctx); 4608 4609 return ret; 4610 } 4611 4612 static int process_deleted_xattr(struct send_ctx *sctx) 4613 { 4614 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4615 __process_deleted_xattr, sctx); 4616 } 4617 4618 struct find_xattr_ctx { 4619 const char *name; 4620 int name_len; 4621 int found_idx; 4622 char *found_data; 4623 int found_data_len; 4624 }; 4625 4626 static int __find_xattr(int num, struct btrfs_key *di_key, 4627 const char *name, int name_len, 4628 const char *data, int data_len, 4629 u8 type, void *vctx) 4630 { 4631 struct find_xattr_ctx *ctx = vctx; 4632 4633 if (name_len == ctx->name_len && 4634 strncmp(name, ctx->name, name_len) == 0) { 4635 ctx->found_idx = num; 4636 ctx->found_data_len = data_len; 4637 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4638 if (!ctx->found_data) 4639 return -ENOMEM; 4640 return 1; 4641 } 4642 return 0; 4643 } 4644 4645 static int find_xattr(struct btrfs_root *root, 4646 struct btrfs_path *path, 4647 struct btrfs_key *key, 4648 const char *name, int name_len, 4649 char **data, int *data_len) 4650 { 4651 int ret; 4652 struct find_xattr_ctx ctx; 4653 4654 ctx.name = name; 4655 ctx.name_len = name_len; 4656 ctx.found_idx = -1; 4657 ctx.found_data = NULL; 4658 ctx.found_data_len = 0; 4659 4660 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4661 if (ret < 0) 4662 return ret; 4663 4664 if (ctx.found_idx == -1) 4665 return -ENOENT; 4666 if (data) { 4667 *data = ctx.found_data; 4668 *data_len = ctx.found_data_len; 4669 } else { 4670 kfree(ctx.found_data); 4671 } 4672 return ctx.found_idx; 4673 } 4674 4675 4676 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4677 const char *name, int name_len, 4678 const char *data, int data_len, 4679 u8 type, void *ctx) 4680 { 4681 int ret; 4682 struct send_ctx *sctx = ctx; 4683 char *found_data = NULL; 4684 int found_data_len = 0; 4685 4686 ret = find_xattr(sctx->parent_root, sctx->right_path, 4687 sctx->cmp_key, name, name_len, &found_data, 4688 &found_data_len); 4689 if (ret == -ENOENT) { 4690 ret = __process_new_xattr(num, di_key, name, name_len, data, 4691 data_len, type, ctx); 4692 } else if (ret >= 0) { 4693 if (data_len != found_data_len || 4694 memcmp(data, found_data, data_len)) { 4695 ret = __process_new_xattr(num, di_key, name, name_len, 4696 data, data_len, type, ctx); 4697 } else { 4698 ret = 0; 4699 } 4700 } 4701 4702 kfree(found_data); 4703 return ret; 4704 } 4705 4706 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4707 const char *name, int name_len, 4708 const char *data, int data_len, 4709 u8 type, void *ctx) 4710 { 4711 int ret; 4712 struct send_ctx *sctx = ctx; 4713 4714 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4715 name, name_len, NULL, NULL); 4716 if (ret == -ENOENT) 4717 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4718 data_len, type, ctx); 4719 else if (ret >= 0) 4720 ret = 0; 4721 4722 return ret; 4723 } 4724 4725 static int process_changed_xattr(struct send_ctx *sctx) 4726 { 4727 int ret = 0; 4728 4729 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4730 __process_changed_new_xattr, sctx); 4731 if (ret < 0) 4732 goto out; 4733 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4734 __process_changed_deleted_xattr, sctx); 4735 4736 out: 4737 return ret; 4738 } 4739 4740 static int process_all_new_xattrs(struct send_ctx *sctx) 4741 { 4742 int ret; 4743 struct btrfs_root *root; 4744 struct btrfs_path *path; 4745 struct btrfs_key key; 4746 struct btrfs_key found_key; 4747 struct extent_buffer *eb; 4748 int slot; 4749 4750 path = alloc_path_for_send(); 4751 if (!path) 4752 return -ENOMEM; 4753 4754 root = sctx->send_root; 4755 4756 key.objectid = sctx->cmp_key->objectid; 4757 key.type = BTRFS_XATTR_ITEM_KEY; 4758 key.offset = 0; 4759 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4760 if (ret < 0) 4761 goto out; 4762 4763 while (1) { 4764 eb = path->nodes[0]; 4765 slot = path->slots[0]; 4766 if (slot >= btrfs_header_nritems(eb)) { 4767 ret = btrfs_next_leaf(root, path); 4768 if (ret < 0) { 4769 goto out; 4770 } else if (ret > 0) { 4771 ret = 0; 4772 break; 4773 } 4774 continue; 4775 } 4776 4777 btrfs_item_key_to_cpu(eb, &found_key, slot); 4778 if (found_key.objectid != key.objectid || 4779 found_key.type != key.type) { 4780 ret = 0; 4781 goto out; 4782 } 4783 4784 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4785 if (ret < 0) 4786 goto out; 4787 4788 path->slots[0]++; 4789 } 4790 4791 out: 4792 btrfs_free_path(path); 4793 return ret; 4794 } 4795 4796 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4797 { 4798 struct btrfs_root *root = sctx->send_root; 4799 struct btrfs_fs_info *fs_info = root->fs_info; 4800 struct inode *inode; 4801 struct page *page; 4802 char *addr; 4803 struct btrfs_key key; 4804 pgoff_t index = offset >> PAGE_SHIFT; 4805 pgoff_t last_index; 4806 unsigned pg_offset = offset_in_page(offset); 4807 ssize_t ret = 0; 4808 4809 key.objectid = sctx->cur_ino; 4810 key.type = BTRFS_INODE_ITEM_KEY; 4811 key.offset = 0; 4812 4813 inode = btrfs_iget(fs_info->sb, &key, root); 4814 if (IS_ERR(inode)) 4815 return PTR_ERR(inode); 4816 4817 if (offset + len > i_size_read(inode)) { 4818 if (offset > i_size_read(inode)) 4819 len = 0; 4820 else 4821 len = offset - i_size_read(inode); 4822 } 4823 if (len == 0) 4824 goto out; 4825 4826 last_index = (offset + len - 1) >> PAGE_SHIFT; 4827 4828 /* initial readahead */ 4829 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4830 file_ra_state_init(&sctx->ra, inode->i_mapping); 4831 4832 while (index <= last_index) { 4833 unsigned cur_len = min_t(unsigned, len, 4834 PAGE_SIZE - pg_offset); 4835 4836 page = find_lock_page(inode->i_mapping, index); 4837 if (!page) { 4838 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4839 NULL, index, last_index + 1 - index); 4840 4841 page = find_or_create_page(inode->i_mapping, index, 4842 GFP_KERNEL); 4843 if (!page) { 4844 ret = -ENOMEM; 4845 break; 4846 } 4847 } 4848 4849 if (PageReadahead(page)) { 4850 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4851 NULL, page, index, last_index + 1 - index); 4852 } 4853 4854 if (!PageUptodate(page)) { 4855 btrfs_readpage(NULL, page); 4856 lock_page(page); 4857 if (!PageUptodate(page)) { 4858 unlock_page(page); 4859 put_page(page); 4860 ret = -EIO; 4861 break; 4862 } 4863 } 4864 4865 addr = kmap(page); 4866 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4867 kunmap(page); 4868 unlock_page(page); 4869 put_page(page); 4870 index++; 4871 pg_offset = 0; 4872 len -= cur_len; 4873 ret += cur_len; 4874 } 4875 out: 4876 iput(inode); 4877 return ret; 4878 } 4879 4880 /* 4881 * Read some bytes from the current inode/file and send a write command to 4882 * user space. 4883 */ 4884 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4885 { 4886 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4887 int ret = 0; 4888 struct fs_path *p; 4889 ssize_t num_read = 0; 4890 4891 p = fs_path_alloc(); 4892 if (!p) 4893 return -ENOMEM; 4894 4895 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4896 4897 num_read = fill_read_buf(sctx, offset, len); 4898 if (num_read <= 0) { 4899 if (num_read < 0) 4900 ret = num_read; 4901 goto out; 4902 } 4903 4904 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4905 if (ret < 0) 4906 goto out; 4907 4908 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4909 if (ret < 0) 4910 goto out; 4911 4912 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4913 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4914 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4915 4916 ret = send_cmd(sctx); 4917 4918 tlv_put_failure: 4919 out: 4920 fs_path_free(p); 4921 if (ret < 0) 4922 return ret; 4923 return num_read; 4924 } 4925 4926 /* 4927 * Send a clone command to user space. 4928 */ 4929 static int send_clone(struct send_ctx *sctx, 4930 u64 offset, u32 len, 4931 struct clone_root *clone_root) 4932 { 4933 int ret = 0; 4934 struct fs_path *p; 4935 u64 gen; 4936 4937 btrfs_debug(sctx->send_root->fs_info, 4938 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4939 offset, len, clone_root->root->root_key.objectid, 4940 clone_root->ino, clone_root->offset); 4941 4942 p = fs_path_alloc(); 4943 if (!p) 4944 return -ENOMEM; 4945 4946 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4947 if (ret < 0) 4948 goto out; 4949 4950 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4951 if (ret < 0) 4952 goto out; 4953 4954 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4955 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4956 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4957 4958 if (clone_root->root == sctx->send_root) { 4959 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4960 &gen, NULL, NULL, NULL, NULL); 4961 if (ret < 0) 4962 goto out; 4963 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4964 } else { 4965 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4966 } 4967 if (ret < 0) 4968 goto out; 4969 4970 /* 4971 * If the parent we're using has a received_uuid set then use that as 4972 * our clone source as that is what we will look for when doing a 4973 * receive. 4974 * 4975 * This covers the case that we create a snapshot off of a received 4976 * subvolume and then use that as the parent and try to receive on a 4977 * different host. 4978 */ 4979 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4980 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4981 clone_root->root->root_item.received_uuid); 4982 else 4983 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4984 clone_root->root->root_item.uuid); 4985 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4986 le64_to_cpu(clone_root->root->root_item.ctransid)); 4987 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4988 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4989 clone_root->offset); 4990 4991 ret = send_cmd(sctx); 4992 4993 tlv_put_failure: 4994 out: 4995 fs_path_free(p); 4996 return ret; 4997 } 4998 4999 /* 5000 * Send an update extent command to user space. 5001 */ 5002 static int send_update_extent(struct send_ctx *sctx, 5003 u64 offset, u32 len) 5004 { 5005 int ret = 0; 5006 struct fs_path *p; 5007 5008 p = fs_path_alloc(); 5009 if (!p) 5010 return -ENOMEM; 5011 5012 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5013 if (ret < 0) 5014 goto out; 5015 5016 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5017 if (ret < 0) 5018 goto out; 5019 5020 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5021 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5022 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5023 5024 ret = send_cmd(sctx); 5025 5026 tlv_put_failure: 5027 out: 5028 fs_path_free(p); 5029 return ret; 5030 } 5031 5032 static int send_hole(struct send_ctx *sctx, u64 end) 5033 { 5034 struct fs_path *p = NULL; 5035 u64 offset = sctx->cur_inode_last_extent; 5036 u64 len; 5037 int ret = 0; 5038 5039 /* 5040 * A hole that starts at EOF or beyond it. Since we do not yet support 5041 * fallocate (for extent preallocation and hole punching), sending a 5042 * write of zeroes starting at EOF or beyond would later require issuing 5043 * a truncate operation which would undo the write and achieve nothing. 5044 */ 5045 if (offset >= sctx->cur_inode_size) 5046 return 0; 5047 5048 /* 5049 * Don't go beyond the inode's i_size due to prealloc extents that start 5050 * after the i_size. 5051 */ 5052 end = min_t(u64, end, sctx->cur_inode_size); 5053 5054 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5055 return send_update_extent(sctx, offset, end - offset); 5056 5057 p = fs_path_alloc(); 5058 if (!p) 5059 return -ENOMEM; 5060 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5061 if (ret < 0) 5062 goto tlv_put_failure; 5063 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5064 while (offset < end) { 5065 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5066 5067 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5068 if (ret < 0) 5069 break; 5070 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5071 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5072 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5073 ret = send_cmd(sctx); 5074 if (ret < 0) 5075 break; 5076 offset += len; 5077 } 5078 sctx->cur_inode_next_write_offset = offset; 5079 tlv_put_failure: 5080 fs_path_free(p); 5081 return ret; 5082 } 5083 5084 static int send_extent_data(struct send_ctx *sctx, 5085 const u64 offset, 5086 const u64 len) 5087 { 5088 u64 sent = 0; 5089 5090 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5091 return send_update_extent(sctx, offset, len); 5092 5093 while (sent < len) { 5094 u64 size = len - sent; 5095 int ret; 5096 5097 if (size > BTRFS_SEND_READ_SIZE) 5098 size = BTRFS_SEND_READ_SIZE; 5099 ret = send_write(sctx, offset + sent, size); 5100 if (ret < 0) 5101 return ret; 5102 if (!ret) 5103 break; 5104 sent += ret; 5105 } 5106 return 0; 5107 } 5108 5109 static int clone_range(struct send_ctx *sctx, 5110 struct clone_root *clone_root, 5111 const u64 disk_byte, 5112 u64 data_offset, 5113 u64 offset, 5114 u64 len) 5115 { 5116 struct btrfs_path *path; 5117 struct btrfs_key key; 5118 int ret; 5119 u64 clone_src_i_size = 0; 5120 5121 /* 5122 * Prevent cloning from a zero offset with a length matching the sector 5123 * size because in some scenarios this will make the receiver fail. 5124 * 5125 * For example, if in the source filesystem the extent at offset 0 5126 * has a length of sectorsize and it was written using direct IO, then 5127 * it can never be an inline extent (even if compression is enabled). 5128 * Then this extent can be cloned in the original filesystem to a non 5129 * zero file offset, but it may not be possible to clone in the 5130 * destination filesystem because it can be inlined due to compression 5131 * on the destination filesystem (as the receiver's write operations are 5132 * always done using buffered IO). The same happens when the original 5133 * filesystem does not have compression enabled but the destination 5134 * filesystem has. 5135 */ 5136 if (clone_root->offset == 0 && 5137 len == sctx->send_root->fs_info->sectorsize) 5138 return send_extent_data(sctx, offset, len); 5139 5140 path = alloc_path_for_send(); 5141 if (!path) 5142 return -ENOMEM; 5143 5144 /* 5145 * There are inodes that have extents that lie behind its i_size. Don't 5146 * accept clones from these extents. 5147 */ 5148 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5149 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5150 btrfs_release_path(path); 5151 if (ret < 0) 5152 goto out; 5153 5154 /* 5155 * We can't send a clone operation for the entire range if we find 5156 * extent items in the respective range in the source file that 5157 * refer to different extents or if we find holes. 5158 * So check for that and do a mix of clone and regular write/copy 5159 * operations if needed. 5160 * 5161 * Example: 5162 * 5163 * mkfs.btrfs -f /dev/sda 5164 * mount /dev/sda /mnt 5165 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5166 * cp --reflink=always /mnt/foo /mnt/bar 5167 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5168 * btrfs subvolume snapshot -r /mnt /mnt/snap 5169 * 5170 * If when we send the snapshot and we are processing file bar (which 5171 * has a higher inode number than foo) we blindly send a clone operation 5172 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5173 * a file bar that matches the content of file foo - iow, doesn't match 5174 * the content from bar in the original filesystem. 5175 */ 5176 key.objectid = clone_root->ino; 5177 key.type = BTRFS_EXTENT_DATA_KEY; 5178 key.offset = clone_root->offset; 5179 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5180 if (ret < 0) 5181 goto out; 5182 if (ret > 0 && path->slots[0] > 0) { 5183 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5184 if (key.objectid == clone_root->ino && 5185 key.type == BTRFS_EXTENT_DATA_KEY) 5186 path->slots[0]--; 5187 } 5188 5189 while (true) { 5190 struct extent_buffer *leaf = path->nodes[0]; 5191 int slot = path->slots[0]; 5192 struct btrfs_file_extent_item *ei; 5193 u8 type; 5194 u64 ext_len; 5195 u64 clone_len; 5196 u64 clone_data_offset; 5197 5198 if (slot >= btrfs_header_nritems(leaf)) { 5199 ret = btrfs_next_leaf(clone_root->root, path); 5200 if (ret < 0) 5201 goto out; 5202 else if (ret > 0) 5203 break; 5204 continue; 5205 } 5206 5207 btrfs_item_key_to_cpu(leaf, &key, slot); 5208 5209 /* 5210 * We might have an implicit trailing hole (NO_HOLES feature 5211 * enabled). We deal with it after leaving this loop. 5212 */ 5213 if (key.objectid != clone_root->ino || 5214 key.type != BTRFS_EXTENT_DATA_KEY) 5215 break; 5216 5217 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5218 type = btrfs_file_extent_type(leaf, ei); 5219 if (type == BTRFS_FILE_EXTENT_INLINE) { 5220 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5221 ext_len = PAGE_ALIGN(ext_len); 5222 } else { 5223 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5224 } 5225 5226 if (key.offset + ext_len <= clone_root->offset) 5227 goto next; 5228 5229 if (key.offset > clone_root->offset) { 5230 /* Implicit hole, NO_HOLES feature enabled. */ 5231 u64 hole_len = key.offset - clone_root->offset; 5232 5233 if (hole_len > len) 5234 hole_len = len; 5235 ret = send_extent_data(sctx, offset, hole_len); 5236 if (ret < 0) 5237 goto out; 5238 5239 len -= hole_len; 5240 if (len == 0) 5241 break; 5242 offset += hole_len; 5243 clone_root->offset += hole_len; 5244 data_offset += hole_len; 5245 } 5246 5247 if (key.offset >= clone_root->offset + len) 5248 break; 5249 5250 if (key.offset >= clone_src_i_size) 5251 break; 5252 5253 if (key.offset + ext_len > clone_src_i_size) 5254 ext_len = clone_src_i_size - key.offset; 5255 5256 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5257 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5258 clone_root->offset = key.offset; 5259 if (clone_data_offset < data_offset && 5260 clone_data_offset + ext_len > data_offset) { 5261 u64 extent_offset; 5262 5263 extent_offset = data_offset - clone_data_offset; 5264 ext_len -= extent_offset; 5265 clone_data_offset += extent_offset; 5266 clone_root->offset += extent_offset; 5267 } 5268 } 5269 5270 clone_len = min_t(u64, ext_len, len); 5271 5272 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5273 clone_data_offset == data_offset) { 5274 const u64 src_end = clone_root->offset + clone_len; 5275 const u64 sectorsize = SZ_64K; 5276 5277 /* 5278 * We can't clone the last block, when its size is not 5279 * sector size aligned, into the middle of a file. If we 5280 * do so, the receiver will get a failure (-EINVAL) when 5281 * trying to clone or will silently corrupt the data in 5282 * the destination file if it's on a kernel without the 5283 * fix introduced by commit ac765f83f1397646 5284 * ("Btrfs: fix data corruption due to cloning of eof 5285 * block). 5286 * 5287 * So issue a clone of the aligned down range plus a 5288 * regular write for the eof block, if we hit that case. 5289 * 5290 * Also, we use the maximum possible sector size, 64K, 5291 * because we don't know what's the sector size of the 5292 * filesystem that receives the stream, so we have to 5293 * assume the largest possible sector size. 5294 */ 5295 if (src_end == clone_src_i_size && 5296 !IS_ALIGNED(src_end, sectorsize) && 5297 offset + clone_len < sctx->cur_inode_size) { 5298 u64 slen; 5299 5300 slen = ALIGN_DOWN(src_end - clone_root->offset, 5301 sectorsize); 5302 if (slen > 0) { 5303 ret = send_clone(sctx, offset, slen, 5304 clone_root); 5305 if (ret < 0) 5306 goto out; 5307 } 5308 ret = send_extent_data(sctx, offset + slen, 5309 clone_len - slen); 5310 } else { 5311 ret = send_clone(sctx, offset, clone_len, 5312 clone_root); 5313 } 5314 } else { 5315 ret = send_extent_data(sctx, offset, clone_len); 5316 } 5317 5318 if (ret < 0) 5319 goto out; 5320 5321 len -= clone_len; 5322 if (len == 0) 5323 break; 5324 offset += clone_len; 5325 clone_root->offset += clone_len; 5326 data_offset += clone_len; 5327 next: 5328 path->slots[0]++; 5329 } 5330 5331 if (len > 0) 5332 ret = send_extent_data(sctx, offset, len); 5333 else 5334 ret = 0; 5335 out: 5336 btrfs_free_path(path); 5337 return ret; 5338 } 5339 5340 static int send_write_or_clone(struct send_ctx *sctx, 5341 struct btrfs_path *path, 5342 struct btrfs_key *key, 5343 struct clone_root *clone_root) 5344 { 5345 int ret = 0; 5346 struct btrfs_file_extent_item *ei; 5347 u64 offset = key->offset; 5348 u64 len; 5349 u8 type; 5350 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5351 5352 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5353 struct btrfs_file_extent_item); 5354 type = btrfs_file_extent_type(path->nodes[0], ei); 5355 if (type == BTRFS_FILE_EXTENT_INLINE) { 5356 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 5357 /* 5358 * it is possible the inline item won't cover the whole page, 5359 * but there may be items after this page. Make 5360 * sure to send the whole thing 5361 */ 5362 len = PAGE_ALIGN(len); 5363 } else { 5364 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5365 } 5366 5367 if (offset >= sctx->cur_inode_size) { 5368 ret = 0; 5369 goto out; 5370 } 5371 if (offset + len > sctx->cur_inode_size) 5372 len = sctx->cur_inode_size - offset; 5373 if (len == 0) { 5374 ret = 0; 5375 goto out; 5376 } 5377 5378 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5379 u64 disk_byte; 5380 u64 data_offset; 5381 5382 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5383 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5384 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5385 offset, len); 5386 } else { 5387 ret = send_extent_data(sctx, offset, len); 5388 } 5389 sctx->cur_inode_next_write_offset = offset + len; 5390 out: 5391 return ret; 5392 } 5393 5394 static int is_extent_unchanged(struct send_ctx *sctx, 5395 struct btrfs_path *left_path, 5396 struct btrfs_key *ekey) 5397 { 5398 int ret = 0; 5399 struct btrfs_key key; 5400 struct btrfs_path *path = NULL; 5401 struct extent_buffer *eb; 5402 int slot; 5403 struct btrfs_key found_key; 5404 struct btrfs_file_extent_item *ei; 5405 u64 left_disknr; 5406 u64 right_disknr; 5407 u64 left_offset; 5408 u64 right_offset; 5409 u64 left_offset_fixed; 5410 u64 left_len; 5411 u64 right_len; 5412 u64 left_gen; 5413 u64 right_gen; 5414 u8 left_type; 5415 u8 right_type; 5416 5417 path = alloc_path_for_send(); 5418 if (!path) 5419 return -ENOMEM; 5420 5421 eb = left_path->nodes[0]; 5422 slot = left_path->slots[0]; 5423 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5424 left_type = btrfs_file_extent_type(eb, ei); 5425 5426 if (left_type != BTRFS_FILE_EXTENT_REG) { 5427 ret = 0; 5428 goto out; 5429 } 5430 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5431 left_len = btrfs_file_extent_num_bytes(eb, ei); 5432 left_offset = btrfs_file_extent_offset(eb, ei); 5433 left_gen = btrfs_file_extent_generation(eb, ei); 5434 5435 /* 5436 * Following comments will refer to these graphics. L is the left 5437 * extents which we are checking at the moment. 1-8 are the right 5438 * extents that we iterate. 5439 * 5440 * |-----L-----| 5441 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5442 * 5443 * |-----L-----| 5444 * |--1--|-2b-|...(same as above) 5445 * 5446 * Alternative situation. Happens on files where extents got split. 5447 * |-----L-----| 5448 * |-----------7-----------|-6-| 5449 * 5450 * Alternative situation. Happens on files which got larger. 5451 * |-----L-----| 5452 * |-8-| 5453 * Nothing follows after 8. 5454 */ 5455 5456 key.objectid = ekey->objectid; 5457 key.type = BTRFS_EXTENT_DATA_KEY; 5458 key.offset = ekey->offset; 5459 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5460 if (ret < 0) 5461 goto out; 5462 if (ret) { 5463 ret = 0; 5464 goto out; 5465 } 5466 5467 /* 5468 * Handle special case where the right side has no extents at all. 5469 */ 5470 eb = path->nodes[0]; 5471 slot = path->slots[0]; 5472 btrfs_item_key_to_cpu(eb, &found_key, slot); 5473 if (found_key.objectid != key.objectid || 5474 found_key.type != key.type) { 5475 /* If we're a hole then just pretend nothing changed */ 5476 ret = (left_disknr) ? 0 : 1; 5477 goto out; 5478 } 5479 5480 /* 5481 * We're now on 2a, 2b or 7. 5482 */ 5483 key = found_key; 5484 while (key.offset < ekey->offset + left_len) { 5485 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5486 right_type = btrfs_file_extent_type(eb, ei); 5487 if (right_type != BTRFS_FILE_EXTENT_REG && 5488 right_type != BTRFS_FILE_EXTENT_INLINE) { 5489 ret = 0; 5490 goto out; 5491 } 5492 5493 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5494 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5495 right_len = PAGE_ALIGN(right_len); 5496 } else { 5497 right_len = btrfs_file_extent_num_bytes(eb, ei); 5498 } 5499 5500 /* 5501 * Are we at extent 8? If yes, we know the extent is changed. 5502 * This may only happen on the first iteration. 5503 */ 5504 if (found_key.offset + right_len <= ekey->offset) { 5505 /* If we're a hole just pretend nothing changed */ 5506 ret = (left_disknr) ? 0 : 1; 5507 goto out; 5508 } 5509 5510 /* 5511 * We just wanted to see if when we have an inline extent, what 5512 * follows it is a regular extent (wanted to check the above 5513 * condition for inline extents too). This should normally not 5514 * happen but it's possible for example when we have an inline 5515 * compressed extent representing data with a size matching 5516 * the page size (currently the same as sector size). 5517 */ 5518 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5519 ret = 0; 5520 goto out; 5521 } 5522 5523 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5524 right_offset = btrfs_file_extent_offset(eb, ei); 5525 right_gen = btrfs_file_extent_generation(eb, ei); 5526 5527 left_offset_fixed = left_offset; 5528 if (key.offset < ekey->offset) { 5529 /* Fix the right offset for 2a and 7. */ 5530 right_offset += ekey->offset - key.offset; 5531 } else { 5532 /* Fix the left offset for all behind 2a and 2b */ 5533 left_offset_fixed += key.offset - ekey->offset; 5534 } 5535 5536 /* 5537 * Check if we have the same extent. 5538 */ 5539 if (left_disknr != right_disknr || 5540 left_offset_fixed != right_offset || 5541 left_gen != right_gen) { 5542 ret = 0; 5543 goto out; 5544 } 5545 5546 /* 5547 * Go to the next extent. 5548 */ 5549 ret = btrfs_next_item(sctx->parent_root, path); 5550 if (ret < 0) 5551 goto out; 5552 if (!ret) { 5553 eb = path->nodes[0]; 5554 slot = path->slots[0]; 5555 btrfs_item_key_to_cpu(eb, &found_key, slot); 5556 } 5557 if (ret || found_key.objectid != key.objectid || 5558 found_key.type != key.type) { 5559 key.offset += right_len; 5560 break; 5561 } 5562 if (found_key.offset != key.offset + right_len) { 5563 ret = 0; 5564 goto out; 5565 } 5566 key = found_key; 5567 } 5568 5569 /* 5570 * We're now behind the left extent (treat as unchanged) or at the end 5571 * of the right side (treat as changed). 5572 */ 5573 if (key.offset >= ekey->offset + left_len) 5574 ret = 1; 5575 else 5576 ret = 0; 5577 5578 5579 out: 5580 btrfs_free_path(path); 5581 return ret; 5582 } 5583 5584 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5585 { 5586 struct btrfs_path *path; 5587 struct btrfs_root *root = sctx->send_root; 5588 struct btrfs_file_extent_item *fi; 5589 struct btrfs_key key; 5590 u64 extent_end; 5591 u8 type; 5592 int ret; 5593 5594 path = alloc_path_for_send(); 5595 if (!path) 5596 return -ENOMEM; 5597 5598 sctx->cur_inode_last_extent = 0; 5599 5600 key.objectid = sctx->cur_ino; 5601 key.type = BTRFS_EXTENT_DATA_KEY; 5602 key.offset = offset; 5603 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5604 if (ret < 0) 5605 goto out; 5606 ret = 0; 5607 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5608 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5609 goto out; 5610 5611 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5612 struct btrfs_file_extent_item); 5613 type = btrfs_file_extent_type(path->nodes[0], fi); 5614 if (type == BTRFS_FILE_EXTENT_INLINE) { 5615 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5616 extent_end = ALIGN(key.offset + size, 5617 sctx->send_root->fs_info->sectorsize); 5618 } else { 5619 extent_end = key.offset + 5620 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5621 } 5622 sctx->cur_inode_last_extent = extent_end; 5623 out: 5624 btrfs_free_path(path); 5625 return ret; 5626 } 5627 5628 static int range_is_hole_in_parent(struct send_ctx *sctx, 5629 const u64 start, 5630 const u64 end) 5631 { 5632 struct btrfs_path *path; 5633 struct btrfs_key key; 5634 struct btrfs_root *root = sctx->parent_root; 5635 u64 search_start = start; 5636 int ret; 5637 5638 path = alloc_path_for_send(); 5639 if (!path) 5640 return -ENOMEM; 5641 5642 key.objectid = sctx->cur_ino; 5643 key.type = BTRFS_EXTENT_DATA_KEY; 5644 key.offset = search_start; 5645 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5646 if (ret < 0) 5647 goto out; 5648 if (ret > 0 && path->slots[0] > 0) 5649 path->slots[0]--; 5650 5651 while (search_start < end) { 5652 struct extent_buffer *leaf = path->nodes[0]; 5653 int slot = path->slots[0]; 5654 struct btrfs_file_extent_item *fi; 5655 u64 extent_end; 5656 5657 if (slot >= btrfs_header_nritems(leaf)) { 5658 ret = btrfs_next_leaf(root, path); 5659 if (ret < 0) 5660 goto out; 5661 else if (ret > 0) 5662 break; 5663 continue; 5664 } 5665 5666 btrfs_item_key_to_cpu(leaf, &key, slot); 5667 if (key.objectid < sctx->cur_ino || 5668 key.type < BTRFS_EXTENT_DATA_KEY) 5669 goto next; 5670 if (key.objectid > sctx->cur_ino || 5671 key.type > BTRFS_EXTENT_DATA_KEY || 5672 key.offset >= end) 5673 break; 5674 5675 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5676 if (btrfs_file_extent_type(leaf, fi) == 5677 BTRFS_FILE_EXTENT_INLINE) { 5678 u64 size = btrfs_file_extent_ram_bytes(leaf, fi); 5679 5680 extent_end = ALIGN(key.offset + size, 5681 root->fs_info->sectorsize); 5682 } else { 5683 extent_end = key.offset + 5684 btrfs_file_extent_num_bytes(leaf, fi); 5685 } 5686 if (extent_end <= start) 5687 goto next; 5688 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5689 search_start = extent_end; 5690 goto next; 5691 } 5692 ret = 0; 5693 goto out; 5694 next: 5695 path->slots[0]++; 5696 } 5697 ret = 1; 5698 out: 5699 btrfs_free_path(path); 5700 return ret; 5701 } 5702 5703 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5704 struct btrfs_key *key) 5705 { 5706 struct btrfs_file_extent_item *fi; 5707 u64 extent_end; 5708 u8 type; 5709 int ret = 0; 5710 5711 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5712 return 0; 5713 5714 if (sctx->cur_inode_last_extent == (u64)-1) { 5715 ret = get_last_extent(sctx, key->offset - 1); 5716 if (ret) 5717 return ret; 5718 } 5719 5720 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5721 struct btrfs_file_extent_item); 5722 type = btrfs_file_extent_type(path->nodes[0], fi); 5723 if (type == BTRFS_FILE_EXTENT_INLINE) { 5724 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5725 extent_end = ALIGN(key->offset + size, 5726 sctx->send_root->fs_info->sectorsize); 5727 } else { 5728 extent_end = key->offset + 5729 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5730 } 5731 5732 if (path->slots[0] == 0 && 5733 sctx->cur_inode_last_extent < key->offset) { 5734 /* 5735 * We might have skipped entire leafs that contained only 5736 * file extent items for our current inode. These leafs have 5737 * a generation number smaller (older) than the one in the 5738 * current leaf and the leaf our last extent came from, and 5739 * are located between these 2 leafs. 5740 */ 5741 ret = get_last_extent(sctx, key->offset - 1); 5742 if (ret) 5743 return ret; 5744 } 5745 5746 if (sctx->cur_inode_last_extent < key->offset) { 5747 ret = range_is_hole_in_parent(sctx, 5748 sctx->cur_inode_last_extent, 5749 key->offset); 5750 if (ret < 0) 5751 return ret; 5752 else if (ret == 0) 5753 ret = send_hole(sctx, key->offset); 5754 else 5755 ret = 0; 5756 } 5757 sctx->cur_inode_last_extent = extent_end; 5758 return ret; 5759 } 5760 5761 static int process_extent(struct send_ctx *sctx, 5762 struct btrfs_path *path, 5763 struct btrfs_key *key) 5764 { 5765 struct clone_root *found_clone = NULL; 5766 int ret = 0; 5767 5768 if (S_ISLNK(sctx->cur_inode_mode)) 5769 return 0; 5770 5771 if (sctx->parent_root && !sctx->cur_inode_new) { 5772 ret = is_extent_unchanged(sctx, path, key); 5773 if (ret < 0) 5774 goto out; 5775 if (ret) { 5776 ret = 0; 5777 goto out_hole; 5778 } 5779 } else { 5780 struct btrfs_file_extent_item *ei; 5781 u8 type; 5782 5783 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5784 struct btrfs_file_extent_item); 5785 type = btrfs_file_extent_type(path->nodes[0], ei); 5786 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5787 type == BTRFS_FILE_EXTENT_REG) { 5788 /* 5789 * The send spec does not have a prealloc command yet, 5790 * so just leave a hole for prealloc'ed extents until 5791 * we have enough commands queued up to justify rev'ing 5792 * the send spec. 5793 */ 5794 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5795 ret = 0; 5796 goto out; 5797 } 5798 5799 /* Have a hole, just skip it. */ 5800 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5801 ret = 0; 5802 goto out; 5803 } 5804 } 5805 } 5806 5807 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5808 sctx->cur_inode_size, &found_clone); 5809 if (ret != -ENOENT && ret < 0) 5810 goto out; 5811 5812 ret = send_write_or_clone(sctx, path, key, found_clone); 5813 if (ret) 5814 goto out; 5815 out_hole: 5816 ret = maybe_send_hole(sctx, path, key); 5817 out: 5818 return ret; 5819 } 5820 5821 static int process_all_extents(struct send_ctx *sctx) 5822 { 5823 int ret; 5824 struct btrfs_root *root; 5825 struct btrfs_path *path; 5826 struct btrfs_key key; 5827 struct btrfs_key found_key; 5828 struct extent_buffer *eb; 5829 int slot; 5830 5831 root = sctx->send_root; 5832 path = alloc_path_for_send(); 5833 if (!path) 5834 return -ENOMEM; 5835 5836 key.objectid = sctx->cmp_key->objectid; 5837 key.type = BTRFS_EXTENT_DATA_KEY; 5838 key.offset = 0; 5839 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5840 if (ret < 0) 5841 goto out; 5842 5843 while (1) { 5844 eb = path->nodes[0]; 5845 slot = path->slots[0]; 5846 5847 if (slot >= btrfs_header_nritems(eb)) { 5848 ret = btrfs_next_leaf(root, path); 5849 if (ret < 0) { 5850 goto out; 5851 } else if (ret > 0) { 5852 ret = 0; 5853 break; 5854 } 5855 continue; 5856 } 5857 5858 btrfs_item_key_to_cpu(eb, &found_key, slot); 5859 5860 if (found_key.objectid != key.objectid || 5861 found_key.type != key.type) { 5862 ret = 0; 5863 goto out; 5864 } 5865 5866 ret = process_extent(sctx, path, &found_key); 5867 if (ret < 0) 5868 goto out; 5869 5870 path->slots[0]++; 5871 } 5872 5873 out: 5874 btrfs_free_path(path); 5875 return ret; 5876 } 5877 5878 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5879 int *pending_move, 5880 int *refs_processed) 5881 { 5882 int ret = 0; 5883 5884 if (sctx->cur_ino == 0) 5885 goto out; 5886 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5887 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5888 goto out; 5889 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5890 goto out; 5891 5892 ret = process_recorded_refs(sctx, pending_move); 5893 if (ret < 0) 5894 goto out; 5895 5896 *refs_processed = 1; 5897 out: 5898 return ret; 5899 } 5900 5901 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5902 { 5903 int ret = 0; 5904 u64 left_mode; 5905 u64 left_uid; 5906 u64 left_gid; 5907 u64 right_mode; 5908 u64 right_uid; 5909 u64 right_gid; 5910 int need_chmod = 0; 5911 int need_chown = 0; 5912 int need_truncate = 1; 5913 int pending_move = 0; 5914 int refs_processed = 0; 5915 5916 if (sctx->ignore_cur_inode) 5917 return 0; 5918 5919 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5920 &refs_processed); 5921 if (ret < 0) 5922 goto out; 5923 5924 /* 5925 * We have processed the refs and thus need to advance send_progress. 5926 * Now, calls to get_cur_xxx will take the updated refs of the current 5927 * inode into account. 5928 * 5929 * On the other hand, if our current inode is a directory and couldn't 5930 * be moved/renamed because its parent was renamed/moved too and it has 5931 * a higher inode number, we can only move/rename our current inode 5932 * after we moved/renamed its parent. Therefore in this case operate on 5933 * the old path (pre move/rename) of our current inode, and the 5934 * move/rename will be performed later. 5935 */ 5936 if (refs_processed && !pending_move) 5937 sctx->send_progress = sctx->cur_ino + 1; 5938 5939 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5940 goto out; 5941 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5942 goto out; 5943 5944 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5945 &left_mode, &left_uid, &left_gid, NULL); 5946 if (ret < 0) 5947 goto out; 5948 5949 if (!sctx->parent_root || sctx->cur_inode_new) { 5950 need_chown = 1; 5951 if (!S_ISLNK(sctx->cur_inode_mode)) 5952 need_chmod = 1; 5953 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5954 need_truncate = 0; 5955 } else { 5956 u64 old_size; 5957 5958 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5959 &old_size, NULL, &right_mode, &right_uid, 5960 &right_gid, NULL); 5961 if (ret < 0) 5962 goto out; 5963 5964 if (left_uid != right_uid || left_gid != right_gid) 5965 need_chown = 1; 5966 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5967 need_chmod = 1; 5968 if ((old_size == sctx->cur_inode_size) || 5969 (sctx->cur_inode_size > old_size && 5970 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5971 need_truncate = 0; 5972 } 5973 5974 if (S_ISREG(sctx->cur_inode_mode)) { 5975 if (need_send_hole(sctx)) { 5976 if (sctx->cur_inode_last_extent == (u64)-1 || 5977 sctx->cur_inode_last_extent < 5978 sctx->cur_inode_size) { 5979 ret = get_last_extent(sctx, (u64)-1); 5980 if (ret) 5981 goto out; 5982 } 5983 if (sctx->cur_inode_last_extent < 5984 sctx->cur_inode_size) { 5985 ret = send_hole(sctx, sctx->cur_inode_size); 5986 if (ret) 5987 goto out; 5988 } 5989 } 5990 if (need_truncate) { 5991 ret = send_truncate(sctx, sctx->cur_ino, 5992 sctx->cur_inode_gen, 5993 sctx->cur_inode_size); 5994 if (ret < 0) 5995 goto out; 5996 } 5997 } 5998 5999 if (need_chown) { 6000 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6001 left_uid, left_gid); 6002 if (ret < 0) 6003 goto out; 6004 } 6005 if (need_chmod) { 6006 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6007 left_mode); 6008 if (ret < 0) 6009 goto out; 6010 } 6011 6012 /* 6013 * If other directory inodes depended on our current directory 6014 * inode's move/rename, now do their move/rename operations. 6015 */ 6016 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6017 ret = apply_children_dir_moves(sctx); 6018 if (ret) 6019 goto out; 6020 /* 6021 * Need to send that every time, no matter if it actually 6022 * changed between the two trees as we have done changes to 6023 * the inode before. If our inode is a directory and it's 6024 * waiting to be moved/renamed, we will send its utimes when 6025 * it's moved/renamed, therefore we don't need to do it here. 6026 */ 6027 sctx->send_progress = sctx->cur_ino + 1; 6028 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6029 if (ret < 0) 6030 goto out; 6031 } 6032 6033 out: 6034 return ret; 6035 } 6036 6037 struct parent_paths_ctx { 6038 struct list_head *refs; 6039 struct send_ctx *sctx; 6040 }; 6041 6042 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6043 void *ctx) 6044 { 6045 struct parent_paths_ctx *ppctx = ctx; 6046 6047 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6048 ppctx->refs); 6049 } 6050 6051 /* 6052 * Issue unlink operations for all paths of the current inode found in the 6053 * parent snapshot. 6054 */ 6055 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6056 { 6057 LIST_HEAD(deleted_refs); 6058 struct btrfs_path *path; 6059 struct btrfs_key key; 6060 struct parent_paths_ctx ctx; 6061 int ret; 6062 6063 path = alloc_path_for_send(); 6064 if (!path) 6065 return -ENOMEM; 6066 6067 key.objectid = sctx->cur_ino; 6068 key.type = BTRFS_INODE_REF_KEY; 6069 key.offset = 0; 6070 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6071 if (ret < 0) 6072 goto out; 6073 6074 ctx.refs = &deleted_refs; 6075 ctx.sctx = sctx; 6076 6077 while (true) { 6078 struct extent_buffer *eb = path->nodes[0]; 6079 int slot = path->slots[0]; 6080 6081 if (slot >= btrfs_header_nritems(eb)) { 6082 ret = btrfs_next_leaf(sctx->parent_root, path); 6083 if (ret < 0) 6084 goto out; 6085 else if (ret > 0) 6086 break; 6087 continue; 6088 } 6089 6090 btrfs_item_key_to_cpu(eb, &key, slot); 6091 if (key.objectid != sctx->cur_ino) 6092 break; 6093 if (key.type != BTRFS_INODE_REF_KEY && 6094 key.type != BTRFS_INODE_EXTREF_KEY) 6095 break; 6096 6097 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6098 record_parent_ref, &ctx); 6099 if (ret < 0) 6100 goto out; 6101 6102 path->slots[0]++; 6103 } 6104 6105 while (!list_empty(&deleted_refs)) { 6106 struct recorded_ref *ref; 6107 6108 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6109 ret = send_unlink(sctx, ref->full_path); 6110 if (ret < 0) 6111 goto out; 6112 fs_path_free(ref->full_path); 6113 list_del(&ref->list); 6114 kfree(ref); 6115 } 6116 ret = 0; 6117 out: 6118 btrfs_free_path(path); 6119 if (ret) 6120 __free_recorded_refs(&deleted_refs); 6121 return ret; 6122 } 6123 6124 static int changed_inode(struct send_ctx *sctx, 6125 enum btrfs_compare_tree_result result) 6126 { 6127 int ret = 0; 6128 struct btrfs_key *key = sctx->cmp_key; 6129 struct btrfs_inode_item *left_ii = NULL; 6130 struct btrfs_inode_item *right_ii = NULL; 6131 u64 left_gen = 0; 6132 u64 right_gen = 0; 6133 6134 sctx->cur_ino = key->objectid; 6135 sctx->cur_inode_new_gen = 0; 6136 sctx->cur_inode_last_extent = (u64)-1; 6137 sctx->cur_inode_next_write_offset = 0; 6138 sctx->ignore_cur_inode = false; 6139 6140 /* 6141 * Set send_progress to current inode. This will tell all get_cur_xxx 6142 * functions that the current inode's refs are not updated yet. Later, 6143 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6144 */ 6145 sctx->send_progress = sctx->cur_ino; 6146 6147 if (result == BTRFS_COMPARE_TREE_NEW || 6148 result == BTRFS_COMPARE_TREE_CHANGED) { 6149 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6150 sctx->left_path->slots[0], 6151 struct btrfs_inode_item); 6152 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6153 left_ii); 6154 } else { 6155 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6156 sctx->right_path->slots[0], 6157 struct btrfs_inode_item); 6158 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6159 right_ii); 6160 } 6161 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6162 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6163 sctx->right_path->slots[0], 6164 struct btrfs_inode_item); 6165 6166 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6167 right_ii); 6168 6169 /* 6170 * The cur_ino = root dir case is special here. We can't treat 6171 * the inode as deleted+reused because it would generate a 6172 * stream that tries to delete/mkdir the root dir. 6173 */ 6174 if (left_gen != right_gen && 6175 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6176 sctx->cur_inode_new_gen = 1; 6177 } 6178 6179 /* 6180 * Normally we do not find inodes with a link count of zero (orphans) 6181 * because the most common case is to create a snapshot and use it 6182 * for a send operation. However other less common use cases involve 6183 * using a subvolume and send it after turning it to RO mode just 6184 * after deleting all hard links of a file while holding an open 6185 * file descriptor against it or turning a RO snapshot into RW mode, 6186 * keep an open file descriptor against a file, delete it and then 6187 * turn the snapshot back to RO mode before using it for a send 6188 * operation. So if we find such cases, ignore the inode and all its 6189 * items completely if it's a new inode, or if it's a changed inode 6190 * make sure all its previous paths (from the parent snapshot) are all 6191 * unlinked and all other the inode items are ignored. 6192 */ 6193 if (result == BTRFS_COMPARE_TREE_NEW || 6194 result == BTRFS_COMPARE_TREE_CHANGED) { 6195 u32 nlinks; 6196 6197 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6198 if (nlinks == 0) { 6199 sctx->ignore_cur_inode = true; 6200 if (result == BTRFS_COMPARE_TREE_CHANGED) 6201 ret = btrfs_unlink_all_paths(sctx); 6202 goto out; 6203 } 6204 } 6205 6206 if (result == BTRFS_COMPARE_TREE_NEW) { 6207 sctx->cur_inode_gen = left_gen; 6208 sctx->cur_inode_new = 1; 6209 sctx->cur_inode_deleted = 0; 6210 sctx->cur_inode_size = btrfs_inode_size( 6211 sctx->left_path->nodes[0], left_ii); 6212 sctx->cur_inode_mode = btrfs_inode_mode( 6213 sctx->left_path->nodes[0], left_ii); 6214 sctx->cur_inode_rdev = btrfs_inode_rdev( 6215 sctx->left_path->nodes[0], left_ii); 6216 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6217 ret = send_create_inode_if_needed(sctx); 6218 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6219 sctx->cur_inode_gen = right_gen; 6220 sctx->cur_inode_new = 0; 6221 sctx->cur_inode_deleted = 1; 6222 sctx->cur_inode_size = btrfs_inode_size( 6223 sctx->right_path->nodes[0], right_ii); 6224 sctx->cur_inode_mode = btrfs_inode_mode( 6225 sctx->right_path->nodes[0], right_ii); 6226 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6227 /* 6228 * We need to do some special handling in case the inode was 6229 * reported as changed with a changed generation number. This 6230 * means that the original inode was deleted and new inode 6231 * reused the same inum. So we have to treat the old inode as 6232 * deleted and the new one as new. 6233 */ 6234 if (sctx->cur_inode_new_gen) { 6235 /* 6236 * First, process the inode as if it was deleted. 6237 */ 6238 sctx->cur_inode_gen = right_gen; 6239 sctx->cur_inode_new = 0; 6240 sctx->cur_inode_deleted = 1; 6241 sctx->cur_inode_size = btrfs_inode_size( 6242 sctx->right_path->nodes[0], right_ii); 6243 sctx->cur_inode_mode = btrfs_inode_mode( 6244 sctx->right_path->nodes[0], right_ii); 6245 ret = process_all_refs(sctx, 6246 BTRFS_COMPARE_TREE_DELETED); 6247 if (ret < 0) 6248 goto out; 6249 6250 /* 6251 * Now process the inode as if it was new. 6252 */ 6253 sctx->cur_inode_gen = left_gen; 6254 sctx->cur_inode_new = 1; 6255 sctx->cur_inode_deleted = 0; 6256 sctx->cur_inode_size = btrfs_inode_size( 6257 sctx->left_path->nodes[0], left_ii); 6258 sctx->cur_inode_mode = btrfs_inode_mode( 6259 sctx->left_path->nodes[0], left_ii); 6260 sctx->cur_inode_rdev = btrfs_inode_rdev( 6261 sctx->left_path->nodes[0], left_ii); 6262 ret = send_create_inode_if_needed(sctx); 6263 if (ret < 0) 6264 goto out; 6265 6266 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6267 if (ret < 0) 6268 goto out; 6269 /* 6270 * Advance send_progress now as we did not get into 6271 * process_recorded_refs_if_needed in the new_gen case. 6272 */ 6273 sctx->send_progress = sctx->cur_ino + 1; 6274 6275 /* 6276 * Now process all extents and xattrs of the inode as if 6277 * they were all new. 6278 */ 6279 ret = process_all_extents(sctx); 6280 if (ret < 0) 6281 goto out; 6282 ret = process_all_new_xattrs(sctx); 6283 if (ret < 0) 6284 goto out; 6285 } else { 6286 sctx->cur_inode_gen = left_gen; 6287 sctx->cur_inode_new = 0; 6288 sctx->cur_inode_new_gen = 0; 6289 sctx->cur_inode_deleted = 0; 6290 sctx->cur_inode_size = btrfs_inode_size( 6291 sctx->left_path->nodes[0], left_ii); 6292 sctx->cur_inode_mode = btrfs_inode_mode( 6293 sctx->left_path->nodes[0], left_ii); 6294 } 6295 } 6296 6297 out: 6298 return ret; 6299 } 6300 6301 /* 6302 * We have to process new refs before deleted refs, but compare_trees gives us 6303 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6304 * first and later process them in process_recorded_refs. 6305 * For the cur_inode_new_gen case, we skip recording completely because 6306 * changed_inode did already initiate processing of refs. The reason for this is 6307 * that in this case, compare_tree actually compares the refs of 2 different 6308 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6309 * refs of the right tree as deleted and all refs of the left tree as new. 6310 */ 6311 static int changed_ref(struct send_ctx *sctx, 6312 enum btrfs_compare_tree_result result) 6313 { 6314 int ret = 0; 6315 6316 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6317 inconsistent_snapshot_error(sctx, result, "reference"); 6318 return -EIO; 6319 } 6320 6321 if (!sctx->cur_inode_new_gen && 6322 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6323 if (result == BTRFS_COMPARE_TREE_NEW) 6324 ret = record_new_ref(sctx); 6325 else if (result == BTRFS_COMPARE_TREE_DELETED) 6326 ret = record_deleted_ref(sctx); 6327 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6328 ret = record_changed_ref(sctx); 6329 } 6330 6331 return ret; 6332 } 6333 6334 /* 6335 * Process new/deleted/changed xattrs. We skip processing in the 6336 * cur_inode_new_gen case because changed_inode did already initiate processing 6337 * of xattrs. The reason is the same as in changed_ref 6338 */ 6339 static int changed_xattr(struct send_ctx *sctx, 6340 enum btrfs_compare_tree_result result) 6341 { 6342 int ret = 0; 6343 6344 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6345 inconsistent_snapshot_error(sctx, result, "xattr"); 6346 return -EIO; 6347 } 6348 6349 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6350 if (result == BTRFS_COMPARE_TREE_NEW) 6351 ret = process_new_xattr(sctx); 6352 else if (result == BTRFS_COMPARE_TREE_DELETED) 6353 ret = process_deleted_xattr(sctx); 6354 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6355 ret = process_changed_xattr(sctx); 6356 } 6357 6358 return ret; 6359 } 6360 6361 /* 6362 * Process new/deleted/changed extents. We skip processing in the 6363 * cur_inode_new_gen case because changed_inode did already initiate processing 6364 * of extents. The reason is the same as in changed_ref 6365 */ 6366 static int changed_extent(struct send_ctx *sctx, 6367 enum btrfs_compare_tree_result result) 6368 { 6369 int ret = 0; 6370 6371 /* 6372 * We have found an extent item that changed without the inode item 6373 * having changed. This can happen either after relocation (where the 6374 * disk_bytenr of an extent item is replaced at 6375 * relocation.c:replace_file_extents()) or after deduplication into a 6376 * file in both the parent and send snapshots (where an extent item can 6377 * get modified or replaced with a new one). Note that deduplication 6378 * updates the inode item, but it only changes the iversion (sequence 6379 * field in the inode item) of the inode, so if a file is deduplicated 6380 * the same amount of times in both the parent and send snapshots, its 6381 * iversion becames the same in both snapshots, whence the inode item is 6382 * the same on both snapshots. 6383 */ 6384 if (sctx->cur_ino != sctx->cmp_key->objectid) 6385 return 0; 6386 6387 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6388 if (result != BTRFS_COMPARE_TREE_DELETED) 6389 ret = process_extent(sctx, sctx->left_path, 6390 sctx->cmp_key); 6391 } 6392 6393 return ret; 6394 } 6395 6396 static int dir_changed(struct send_ctx *sctx, u64 dir) 6397 { 6398 u64 orig_gen, new_gen; 6399 int ret; 6400 6401 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6402 NULL, NULL); 6403 if (ret) 6404 return ret; 6405 6406 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6407 NULL, NULL, NULL); 6408 if (ret) 6409 return ret; 6410 6411 return (orig_gen != new_gen) ? 1 : 0; 6412 } 6413 6414 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6415 struct btrfs_key *key) 6416 { 6417 struct btrfs_inode_extref *extref; 6418 struct extent_buffer *leaf; 6419 u64 dirid = 0, last_dirid = 0; 6420 unsigned long ptr; 6421 u32 item_size; 6422 u32 cur_offset = 0; 6423 int ref_name_len; 6424 int ret = 0; 6425 6426 /* Easy case, just check this one dirid */ 6427 if (key->type == BTRFS_INODE_REF_KEY) { 6428 dirid = key->offset; 6429 6430 ret = dir_changed(sctx, dirid); 6431 goto out; 6432 } 6433 6434 leaf = path->nodes[0]; 6435 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6436 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6437 while (cur_offset < item_size) { 6438 extref = (struct btrfs_inode_extref *)(ptr + 6439 cur_offset); 6440 dirid = btrfs_inode_extref_parent(leaf, extref); 6441 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6442 cur_offset += ref_name_len + sizeof(*extref); 6443 if (dirid == last_dirid) 6444 continue; 6445 ret = dir_changed(sctx, dirid); 6446 if (ret) 6447 break; 6448 last_dirid = dirid; 6449 } 6450 out: 6451 return ret; 6452 } 6453 6454 /* 6455 * Updates compare related fields in sctx and simply forwards to the actual 6456 * changed_xxx functions. 6457 */ 6458 static int changed_cb(struct btrfs_path *left_path, 6459 struct btrfs_path *right_path, 6460 struct btrfs_key *key, 6461 enum btrfs_compare_tree_result result, 6462 void *ctx) 6463 { 6464 int ret = 0; 6465 struct send_ctx *sctx = ctx; 6466 6467 if (result == BTRFS_COMPARE_TREE_SAME) { 6468 if (key->type == BTRFS_INODE_REF_KEY || 6469 key->type == BTRFS_INODE_EXTREF_KEY) { 6470 ret = compare_refs(sctx, left_path, key); 6471 if (!ret) 6472 return 0; 6473 if (ret < 0) 6474 return ret; 6475 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6476 return maybe_send_hole(sctx, left_path, key); 6477 } else { 6478 return 0; 6479 } 6480 result = BTRFS_COMPARE_TREE_CHANGED; 6481 ret = 0; 6482 } 6483 6484 sctx->left_path = left_path; 6485 sctx->right_path = right_path; 6486 sctx->cmp_key = key; 6487 6488 ret = finish_inode_if_needed(sctx, 0); 6489 if (ret < 0) 6490 goto out; 6491 6492 /* Ignore non-FS objects */ 6493 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6494 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6495 goto out; 6496 6497 if (key->type == BTRFS_INODE_ITEM_KEY) { 6498 ret = changed_inode(sctx, result); 6499 } else if (!sctx->ignore_cur_inode) { 6500 if (key->type == BTRFS_INODE_REF_KEY || 6501 key->type == BTRFS_INODE_EXTREF_KEY) 6502 ret = changed_ref(sctx, result); 6503 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6504 ret = changed_xattr(sctx, result); 6505 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6506 ret = changed_extent(sctx, result); 6507 } 6508 6509 out: 6510 return ret; 6511 } 6512 6513 static int full_send_tree(struct send_ctx *sctx) 6514 { 6515 int ret; 6516 struct btrfs_root *send_root = sctx->send_root; 6517 struct btrfs_key key; 6518 struct btrfs_path *path; 6519 struct extent_buffer *eb; 6520 int slot; 6521 6522 path = alloc_path_for_send(); 6523 if (!path) 6524 return -ENOMEM; 6525 6526 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6527 key.type = BTRFS_INODE_ITEM_KEY; 6528 key.offset = 0; 6529 6530 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6531 if (ret < 0) 6532 goto out; 6533 if (ret) 6534 goto out_finish; 6535 6536 while (1) { 6537 eb = path->nodes[0]; 6538 slot = path->slots[0]; 6539 btrfs_item_key_to_cpu(eb, &key, slot); 6540 6541 ret = changed_cb(path, NULL, &key, 6542 BTRFS_COMPARE_TREE_NEW, sctx); 6543 if (ret < 0) 6544 goto out; 6545 6546 ret = btrfs_next_item(send_root, path); 6547 if (ret < 0) 6548 goto out; 6549 if (ret) { 6550 ret = 0; 6551 break; 6552 } 6553 } 6554 6555 out_finish: 6556 ret = finish_inode_if_needed(sctx, 1); 6557 6558 out: 6559 btrfs_free_path(path); 6560 return ret; 6561 } 6562 6563 static int tree_move_down(struct btrfs_path *path, int *level) 6564 { 6565 struct extent_buffer *eb; 6566 6567 BUG_ON(*level == 0); 6568 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]); 6569 if (IS_ERR(eb)) 6570 return PTR_ERR(eb); 6571 6572 path->nodes[*level - 1] = eb; 6573 path->slots[*level - 1] = 0; 6574 (*level)--; 6575 return 0; 6576 } 6577 6578 static int tree_move_next_or_upnext(struct btrfs_path *path, 6579 int *level, int root_level) 6580 { 6581 int ret = 0; 6582 int nritems; 6583 nritems = btrfs_header_nritems(path->nodes[*level]); 6584 6585 path->slots[*level]++; 6586 6587 while (path->slots[*level] >= nritems) { 6588 if (*level == root_level) 6589 return -1; 6590 6591 /* move upnext */ 6592 path->slots[*level] = 0; 6593 free_extent_buffer(path->nodes[*level]); 6594 path->nodes[*level] = NULL; 6595 (*level)++; 6596 path->slots[*level]++; 6597 6598 nritems = btrfs_header_nritems(path->nodes[*level]); 6599 ret = 1; 6600 } 6601 return ret; 6602 } 6603 6604 /* 6605 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6606 * or down. 6607 */ 6608 static int tree_advance(struct btrfs_path *path, 6609 int *level, int root_level, 6610 int allow_down, 6611 struct btrfs_key *key) 6612 { 6613 int ret; 6614 6615 if (*level == 0 || !allow_down) { 6616 ret = tree_move_next_or_upnext(path, level, root_level); 6617 } else { 6618 ret = tree_move_down(path, level); 6619 } 6620 if (ret >= 0) { 6621 if (*level == 0) 6622 btrfs_item_key_to_cpu(path->nodes[*level], key, 6623 path->slots[*level]); 6624 else 6625 btrfs_node_key_to_cpu(path->nodes[*level], key, 6626 path->slots[*level]); 6627 } 6628 return ret; 6629 } 6630 6631 static int tree_compare_item(struct btrfs_path *left_path, 6632 struct btrfs_path *right_path, 6633 char *tmp_buf) 6634 { 6635 int cmp; 6636 int len1, len2; 6637 unsigned long off1, off2; 6638 6639 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6640 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6641 if (len1 != len2) 6642 return 1; 6643 6644 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6645 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6646 right_path->slots[0]); 6647 6648 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6649 6650 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6651 if (cmp) 6652 return 1; 6653 return 0; 6654 } 6655 6656 /* 6657 * This function compares two trees and calls the provided callback for 6658 * every changed/new/deleted item it finds. 6659 * If shared tree blocks are encountered, whole subtrees are skipped, making 6660 * the compare pretty fast on snapshotted subvolumes. 6661 * 6662 * This currently works on commit roots only. As commit roots are read only, 6663 * we don't do any locking. The commit roots are protected with transactions. 6664 * Transactions are ended and rejoined when a commit is tried in between. 6665 * 6666 * This function checks for modifications done to the trees while comparing. 6667 * If it detects a change, it aborts immediately. 6668 */ 6669 static int btrfs_compare_trees(struct btrfs_root *left_root, 6670 struct btrfs_root *right_root, 6671 btrfs_changed_cb_t changed_cb, void *ctx) 6672 { 6673 struct btrfs_fs_info *fs_info = left_root->fs_info; 6674 int ret; 6675 int cmp; 6676 struct btrfs_path *left_path = NULL; 6677 struct btrfs_path *right_path = NULL; 6678 struct btrfs_key left_key; 6679 struct btrfs_key right_key; 6680 char *tmp_buf = NULL; 6681 int left_root_level; 6682 int right_root_level; 6683 int left_level; 6684 int right_level; 6685 int left_end_reached; 6686 int right_end_reached; 6687 int advance_left; 6688 int advance_right; 6689 u64 left_blockptr; 6690 u64 right_blockptr; 6691 u64 left_gen; 6692 u64 right_gen; 6693 6694 left_path = btrfs_alloc_path(); 6695 if (!left_path) { 6696 ret = -ENOMEM; 6697 goto out; 6698 } 6699 right_path = btrfs_alloc_path(); 6700 if (!right_path) { 6701 ret = -ENOMEM; 6702 goto out; 6703 } 6704 6705 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6706 if (!tmp_buf) { 6707 ret = -ENOMEM; 6708 goto out; 6709 } 6710 6711 left_path->search_commit_root = 1; 6712 left_path->skip_locking = 1; 6713 right_path->search_commit_root = 1; 6714 right_path->skip_locking = 1; 6715 6716 /* 6717 * Strategy: Go to the first items of both trees. Then do 6718 * 6719 * If both trees are at level 0 6720 * Compare keys of current items 6721 * If left < right treat left item as new, advance left tree 6722 * and repeat 6723 * If left > right treat right item as deleted, advance right tree 6724 * and repeat 6725 * If left == right do deep compare of items, treat as changed if 6726 * needed, advance both trees and repeat 6727 * If both trees are at the same level but not at level 0 6728 * Compare keys of current nodes/leafs 6729 * If left < right advance left tree and repeat 6730 * If left > right advance right tree and repeat 6731 * If left == right compare blockptrs of the next nodes/leafs 6732 * If they match advance both trees but stay at the same level 6733 * and repeat 6734 * If they don't match advance both trees while allowing to go 6735 * deeper and repeat 6736 * If tree levels are different 6737 * Advance the tree that needs it and repeat 6738 * 6739 * Advancing a tree means: 6740 * If we are at level 0, try to go to the next slot. If that's not 6741 * possible, go one level up and repeat. Stop when we found a level 6742 * where we could go to the next slot. We may at this point be on a 6743 * node or a leaf. 6744 * 6745 * If we are not at level 0 and not on shared tree blocks, go one 6746 * level deeper. 6747 * 6748 * If we are not at level 0 and on shared tree blocks, go one slot to 6749 * the right if possible or go up and right. 6750 */ 6751 6752 down_read(&fs_info->commit_root_sem); 6753 left_level = btrfs_header_level(left_root->commit_root); 6754 left_root_level = left_level; 6755 left_path->nodes[left_level] = 6756 btrfs_clone_extent_buffer(left_root->commit_root); 6757 if (!left_path->nodes[left_level]) { 6758 up_read(&fs_info->commit_root_sem); 6759 ret = -ENOMEM; 6760 goto out; 6761 } 6762 6763 right_level = btrfs_header_level(right_root->commit_root); 6764 right_root_level = right_level; 6765 right_path->nodes[right_level] = 6766 btrfs_clone_extent_buffer(right_root->commit_root); 6767 if (!right_path->nodes[right_level]) { 6768 up_read(&fs_info->commit_root_sem); 6769 ret = -ENOMEM; 6770 goto out; 6771 } 6772 up_read(&fs_info->commit_root_sem); 6773 6774 if (left_level == 0) 6775 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6776 &left_key, left_path->slots[left_level]); 6777 else 6778 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6779 &left_key, left_path->slots[left_level]); 6780 if (right_level == 0) 6781 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6782 &right_key, right_path->slots[right_level]); 6783 else 6784 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6785 &right_key, right_path->slots[right_level]); 6786 6787 left_end_reached = right_end_reached = 0; 6788 advance_left = advance_right = 0; 6789 6790 while (1) { 6791 cond_resched(); 6792 if (advance_left && !left_end_reached) { 6793 ret = tree_advance(left_path, &left_level, 6794 left_root_level, 6795 advance_left != ADVANCE_ONLY_NEXT, 6796 &left_key); 6797 if (ret == -1) 6798 left_end_reached = ADVANCE; 6799 else if (ret < 0) 6800 goto out; 6801 advance_left = 0; 6802 } 6803 if (advance_right && !right_end_reached) { 6804 ret = tree_advance(right_path, &right_level, 6805 right_root_level, 6806 advance_right != ADVANCE_ONLY_NEXT, 6807 &right_key); 6808 if (ret == -1) 6809 right_end_reached = ADVANCE; 6810 else if (ret < 0) 6811 goto out; 6812 advance_right = 0; 6813 } 6814 6815 if (left_end_reached && right_end_reached) { 6816 ret = 0; 6817 goto out; 6818 } else if (left_end_reached) { 6819 if (right_level == 0) { 6820 ret = changed_cb(left_path, right_path, 6821 &right_key, 6822 BTRFS_COMPARE_TREE_DELETED, 6823 ctx); 6824 if (ret < 0) 6825 goto out; 6826 } 6827 advance_right = ADVANCE; 6828 continue; 6829 } else if (right_end_reached) { 6830 if (left_level == 0) { 6831 ret = changed_cb(left_path, right_path, 6832 &left_key, 6833 BTRFS_COMPARE_TREE_NEW, 6834 ctx); 6835 if (ret < 0) 6836 goto out; 6837 } 6838 advance_left = ADVANCE; 6839 continue; 6840 } 6841 6842 if (left_level == 0 && right_level == 0) { 6843 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6844 if (cmp < 0) { 6845 ret = changed_cb(left_path, right_path, 6846 &left_key, 6847 BTRFS_COMPARE_TREE_NEW, 6848 ctx); 6849 if (ret < 0) 6850 goto out; 6851 advance_left = ADVANCE; 6852 } else if (cmp > 0) { 6853 ret = changed_cb(left_path, right_path, 6854 &right_key, 6855 BTRFS_COMPARE_TREE_DELETED, 6856 ctx); 6857 if (ret < 0) 6858 goto out; 6859 advance_right = ADVANCE; 6860 } else { 6861 enum btrfs_compare_tree_result result; 6862 6863 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 6864 ret = tree_compare_item(left_path, right_path, 6865 tmp_buf); 6866 if (ret) 6867 result = BTRFS_COMPARE_TREE_CHANGED; 6868 else 6869 result = BTRFS_COMPARE_TREE_SAME; 6870 ret = changed_cb(left_path, right_path, 6871 &left_key, result, ctx); 6872 if (ret < 0) 6873 goto out; 6874 advance_left = ADVANCE; 6875 advance_right = ADVANCE; 6876 } 6877 } else if (left_level == right_level) { 6878 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6879 if (cmp < 0) { 6880 advance_left = ADVANCE; 6881 } else if (cmp > 0) { 6882 advance_right = ADVANCE; 6883 } else { 6884 left_blockptr = btrfs_node_blockptr( 6885 left_path->nodes[left_level], 6886 left_path->slots[left_level]); 6887 right_blockptr = btrfs_node_blockptr( 6888 right_path->nodes[right_level], 6889 right_path->slots[right_level]); 6890 left_gen = btrfs_node_ptr_generation( 6891 left_path->nodes[left_level], 6892 left_path->slots[left_level]); 6893 right_gen = btrfs_node_ptr_generation( 6894 right_path->nodes[right_level], 6895 right_path->slots[right_level]); 6896 if (left_blockptr == right_blockptr && 6897 left_gen == right_gen) { 6898 /* 6899 * As we're on a shared block, don't 6900 * allow to go deeper. 6901 */ 6902 advance_left = ADVANCE_ONLY_NEXT; 6903 advance_right = ADVANCE_ONLY_NEXT; 6904 } else { 6905 advance_left = ADVANCE; 6906 advance_right = ADVANCE; 6907 } 6908 } 6909 } else if (left_level < right_level) { 6910 advance_right = ADVANCE; 6911 } else { 6912 advance_left = ADVANCE; 6913 } 6914 } 6915 6916 out: 6917 btrfs_free_path(left_path); 6918 btrfs_free_path(right_path); 6919 kvfree(tmp_buf); 6920 return ret; 6921 } 6922 6923 static int send_subvol(struct send_ctx *sctx) 6924 { 6925 int ret; 6926 6927 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6928 ret = send_header(sctx); 6929 if (ret < 0) 6930 goto out; 6931 } 6932 6933 ret = send_subvol_begin(sctx); 6934 if (ret < 0) 6935 goto out; 6936 6937 if (sctx->parent_root) { 6938 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6939 changed_cb, sctx); 6940 if (ret < 0) 6941 goto out; 6942 ret = finish_inode_if_needed(sctx, 1); 6943 if (ret < 0) 6944 goto out; 6945 } else { 6946 ret = full_send_tree(sctx); 6947 if (ret < 0) 6948 goto out; 6949 } 6950 6951 out: 6952 free_recorded_refs(sctx); 6953 return ret; 6954 } 6955 6956 /* 6957 * If orphan cleanup did remove any orphans from a root, it means the tree 6958 * was modified and therefore the commit root is not the same as the current 6959 * root anymore. This is a problem, because send uses the commit root and 6960 * therefore can see inode items that don't exist in the current root anymore, 6961 * and for example make calls to btrfs_iget, which will do tree lookups based 6962 * on the current root and not on the commit root. Those lookups will fail, 6963 * returning a -ESTALE error, and making send fail with that error. So make 6964 * sure a send does not see any orphans we have just removed, and that it will 6965 * see the same inodes regardless of whether a transaction commit happened 6966 * before it started (meaning that the commit root will be the same as the 6967 * current root) or not. 6968 */ 6969 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6970 { 6971 int i; 6972 struct btrfs_trans_handle *trans = NULL; 6973 6974 again: 6975 if (sctx->parent_root && 6976 sctx->parent_root->node != sctx->parent_root->commit_root) 6977 goto commit_trans; 6978 6979 for (i = 0; i < sctx->clone_roots_cnt; i++) 6980 if (sctx->clone_roots[i].root->node != 6981 sctx->clone_roots[i].root->commit_root) 6982 goto commit_trans; 6983 6984 if (trans) 6985 return btrfs_end_transaction(trans); 6986 6987 return 0; 6988 6989 commit_trans: 6990 /* Use any root, all fs roots will get their commit roots updated. */ 6991 if (!trans) { 6992 trans = btrfs_join_transaction(sctx->send_root); 6993 if (IS_ERR(trans)) 6994 return PTR_ERR(trans); 6995 goto again; 6996 } 6997 6998 return btrfs_commit_transaction(trans); 6999 } 7000 7001 /* 7002 * Make sure any existing dellaloc is flushed for any root used by a send 7003 * operation so that we do not miss any data and we do not race with writeback 7004 * finishing and changing a tree while send is using the tree. This could 7005 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7006 * a send operation then uses the subvolume. 7007 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7008 */ 7009 static int flush_delalloc_roots(struct send_ctx *sctx) 7010 { 7011 struct btrfs_root *root = sctx->parent_root; 7012 int ret; 7013 int i; 7014 7015 if (root) { 7016 ret = btrfs_start_delalloc_snapshot(root); 7017 if (ret) 7018 return ret; 7019 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7020 } 7021 7022 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7023 root = sctx->clone_roots[i].root; 7024 ret = btrfs_start_delalloc_snapshot(root); 7025 if (ret) 7026 return ret; 7027 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7028 } 7029 7030 return 0; 7031 } 7032 7033 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7034 { 7035 spin_lock(&root->root_item_lock); 7036 root->send_in_progress--; 7037 /* 7038 * Not much left to do, we don't know why it's unbalanced and 7039 * can't blindly reset it to 0. 7040 */ 7041 if (root->send_in_progress < 0) 7042 btrfs_err(root->fs_info, 7043 "send_in_progress unbalanced %d root %llu", 7044 root->send_in_progress, root->root_key.objectid); 7045 spin_unlock(&root->root_item_lock); 7046 } 7047 7048 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7049 { 7050 btrfs_warn_rl(root->fs_info, 7051 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7052 root->root_key.objectid, root->dedupe_in_progress); 7053 } 7054 7055 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7056 { 7057 int ret = 0; 7058 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7059 struct btrfs_fs_info *fs_info = send_root->fs_info; 7060 struct btrfs_root *clone_root; 7061 struct btrfs_key key; 7062 struct send_ctx *sctx = NULL; 7063 u32 i; 7064 u64 *clone_sources_tmp = NULL; 7065 int clone_sources_to_rollback = 0; 7066 unsigned alloc_size; 7067 int sort_clone_roots = 0; 7068 int index; 7069 7070 if (!capable(CAP_SYS_ADMIN)) 7071 return -EPERM; 7072 7073 /* 7074 * The subvolume must remain read-only during send, protect against 7075 * making it RW. This also protects against deletion. 7076 */ 7077 spin_lock(&send_root->root_item_lock); 7078 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7079 dedupe_in_progress_warn(send_root); 7080 spin_unlock(&send_root->root_item_lock); 7081 return -EAGAIN; 7082 } 7083 send_root->send_in_progress++; 7084 spin_unlock(&send_root->root_item_lock); 7085 7086 /* 7087 * This is done when we lookup the root, it should already be complete 7088 * by the time we get here. 7089 */ 7090 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 7091 7092 /* 7093 * Userspace tools do the checks and warn the user if it's 7094 * not RO. 7095 */ 7096 if (!btrfs_root_readonly(send_root)) { 7097 ret = -EPERM; 7098 goto out; 7099 } 7100 7101 /* 7102 * Check that we don't overflow at later allocations, we request 7103 * clone_sources_count + 1 items, and compare to unsigned long inside 7104 * access_ok. 7105 */ 7106 if (arg->clone_sources_count > 7107 ULONG_MAX / sizeof(struct clone_root) - 1) { 7108 ret = -EINVAL; 7109 goto out; 7110 } 7111 7112 if (!access_ok(arg->clone_sources, 7113 sizeof(*arg->clone_sources) * 7114 arg->clone_sources_count)) { 7115 ret = -EFAULT; 7116 goto out; 7117 } 7118 7119 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7120 ret = -EINVAL; 7121 goto out; 7122 } 7123 7124 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7125 if (!sctx) { 7126 ret = -ENOMEM; 7127 goto out; 7128 } 7129 7130 INIT_LIST_HEAD(&sctx->new_refs); 7131 INIT_LIST_HEAD(&sctx->deleted_refs); 7132 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7133 INIT_LIST_HEAD(&sctx->name_cache_list); 7134 7135 sctx->flags = arg->flags; 7136 7137 sctx->send_filp = fget(arg->send_fd); 7138 if (!sctx->send_filp) { 7139 ret = -EBADF; 7140 goto out; 7141 } 7142 7143 sctx->send_root = send_root; 7144 /* 7145 * Unlikely but possible, if the subvolume is marked for deletion but 7146 * is slow to remove the directory entry, send can still be started 7147 */ 7148 if (btrfs_root_dead(sctx->send_root)) { 7149 ret = -EPERM; 7150 goto out; 7151 } 7152 7153 sctx->clone_roots_cnt = arg->clone_sources_count; 7154 7155 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7156 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7157 if (!sctx->send_buf) { 7158 ret = -ENOMEM; 7159 goto out; 7160 } 7161 7162 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 7163 if (!sctx->read_buf) { 7164 ret = -ENOMEM; 7165 goto out; 7166 } 7167 7168 sctx->pending_dir_moves = RB_ROOT; 7169 sctx->waiting_dir_moves = RB_ROOT; 7170 sctx->orphan_dirs = RB_ROOT; 7171 7172 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 7173 7174 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 7175 if (!sctx->clone_roots) { 7176 ret = -ENOMEM; 7177 goto out; 7178 } 7179 7180 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 7181 7182 if (arg->clone_sources_count) { 7183 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7184 if (!clone_sources_tmp) { 7185 ret = -ENOMEM; 7186 goto out; 7187 } 7188 7189 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7190 alloc_size); 7191 if (ret) { 7192 ret = -EFAULT; 7193 goto out; 7194 } 7195 7196 for (i = 0; i < arg->clone_sources_count; i++) { 7197 key.objectid = clone_sources_tmp[i]; 7198 key.type = BTRFS_ROOT_ITEM_KEY; 7199 key.offset = (u64)-1; 7200 7201 index = srcu_read_lock(&fs_info->subvol_srcu); 7202 7203 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 7204 if (IS_ERR(clone_root)) { 7205 srcu_read_unlock(&fs_info->subvol_srcu, index); 7206 ret = PTR_ERR(clone_root); 7207 goto out; 7208 } 7209 spin_lock(&clone_root->root_item_lock); 7210 if (!btrfs_root_readonly(clone_root) || 7211 btrfs_root_dead(clone_root)) { 7212 spin_unlock(&clone_root->root_item_lock); 7213 srcu_read_unlock(&fs_info->subvol_srcu, index); 7214 ret = -EPERM; 7215 goto out; 7216 } 7217 if (clone_root->dedupe_in_progress) { 7218 dedupe_in_progress_warn(clone_root); 7219 spin_unlock(&clone_root->root_item_lock); 7220 srcu_read_unlock(&fs_info->subvol_srcu, index); 7221 ret = -EAGAIN; 7222 goto out; 7223 } 7224 clone_root->send_in_progress++; 7225 spin_unlock(&clone_root->root_item_lock); 7226 srcu_read_unlock(&fs_info->subvol_srcu, index); 7227 7228 sctx->clone_roots[i].root = clone_root; 7229 clone_sources_to_rollback = i + 1; 7230 } 7231 kvfree(clone_sources_tmp); 7232 clone_sources_tmp = NULL; 7233 } 7234 7235 if (arg->parent_root) { 7236 key.objectid = arg->parent_root; 7237 key.type = BTRFS_ROOT_ITEM_KEY; 7238 key.offset = (u64)-1; 7239 7240 index = srcu_read_lock(&fs_info->subvol_srcu); 7241 7242 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 7243 if (IS_ERR(sctx->parent_root)) { 7244 srcu_read_unlock(&fs_info->subvol_srcu, index); 7245 ret = PTR_ERR(sctx->parent_root); 7246 goto out; 7247 } 7248 7249 spin_lock(&sctx->parent_root->root_item_lock); 7250 sctx->parent_root->send_in_progress++; 7251 if (!btrfs_root_readonly(sctx->parent_root) || 7252 btrfs_root_dead(sctx->parent_root)) { 7253 spin_unlock(&sctx->parent_root->root_item_lock); 7254 srcu_read_unlock(&fs_info->subvol_srcu, index); 7255 ret = -EPERM; 7256 goto out; 7257 } 7258 if (sctx->parent_root->dedupe_in_progress) { 7259 dedupe_in_progress_warn(sctx->parent_root); 7260 spin_unlock(&sctx->parent_root->root_item_lock); 7261 srcu_read_unlock(&fs_info->subvol_srcu, index); 7262 ret = -EAGAIN; 7263 goto out; 7264 } 7265 spin_unlock(&sctx->parent_root->root_item_lock); 7266 7267 srcu_read_unlock(&fs_info->subvol_srcu, index); 7268 } 7269 7270 /* 7271 * Clones from send_root are allowed, but only if the clone source 7272 * is behind the current send position. This is checked while searching 7273 * for possible clone sources. 7274 */ 7275 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 7276 7277 /* We do a bsearch later */ 7278 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7279 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7280 NULL); 7281 sort_clone_roots = 1; 7282 7283 ret = flush_delalloc_roots(sctx); 7284 if (ret) 7285 goto out; 7286 7287 ret = ensure_commit_roots_uptodate(sctx); 7288 if (ret) 7289 goto out; 7290 7291 mutex_lock(&fs_info->balance_mutex); 7292 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 7293 mutex_unlock(&fs_info->balance_mutex); 7294 btrfs_warn_rl(fs_info, 7295 "cannot run send because a balance operation is in progress"); 7296 ret = -EAGAIN; 7297 goto out; 7298 } 7299 fs_info->send_in_progress++; 7300 mutex_unlock(&fs_info->balance_mutex); 7301 7302 current->journal_info = BTRFS_SEND_TRANS_STUB; 7303 ret = send_subvol(sctx); 7304 current->journal_info = NULL; 7305 mutex_lock(&fs_info->balance_mutex); 7306 fs_info->send_in_progress--; 7307 mutex_unlock(&fs_info->balance_mutex); 7308 if (ret < 0) 7309 goto out; 7310 7311 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7312 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7313 if (ret < 0) 7314 goto out; 7315 ret = send_cmd(sctx); 7316 if (ret < 0) 7317 goto out; 7318 } 7319 7320 out: 7321 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7322 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7323 struct rb_node *n; 7324 struct pending_dir_move *pm; 7325 7326 n = rb_first(&sctx->pending_dir_moves); 7327 pm = rb_entry(n, struct pending_dir_move, node); 7328 while (!list_empty(&pm->list)) { 7329 struct pending_dir_move *pm2; 7330 7331 pm2 = list_first_entry(&pm->list, 7332 struct pending_dir_move, list); 7333 free_pending_move(sctx, pm2); 7334 } 7335 free_pending_move(sctx, pm); 7336 } 7337 7338 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7339 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7340 struct rb_node *n; 7341 struct waiting_dir_move *dm; 7342 7343 n = rb_first(&sctx->waiting_dir_moves); 7344 dm = rb_entry(n, struct waiting_dir_move, node); 7345 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7346 kfree(dm); 7347 } 7348 7349 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7350 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7351 struct rb_node *n; 7352 struct orphan_dir_info *odi; 7353 7354 n = rb_first(&sctx->orphan_dirs); 7355 odi = rb_entry(n, struct orphan_dir_info, node); 7356 free_orphan_dir_info(sctx, odi); 7357 } 7358 7359 if (sort_clone_roots) { 7360 for (i = 0; i < sctx->clone_roots_cnt; i++) 7361 btrfs_root_dec_send_in_progress( 7362 sctx->clone_roots[i].root); 7363 } else { 7364 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 7365 btrfs_root_dec_send_in_progress( 7366 sctx->clone_roots[i].root); 7367 7368 btrfs_root_dec_send_in_progress(send_root); 7369 } 7370 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 7371 btrfs_root_dec_send_in_progress(sctx->parent_root); 7372 7373 kvfree(clone_sources_tmp); 7374 7375 if (sctx) { 7376 if (sctx->send_filp) 7377 fput(sctx->send_filp); 7378 7379 kvfree(sctx->clone_roots); 7380 kvfree(sctx->send_buf); 7381 kvfree(sctx->read_buf); 7382 7383 name_cache_free(sctx); 7384 7385 kfree(sctx); 7386 } 7387 7388 return ret; 7389 } 7390