1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/vmalloc.h> 28 #include <linux/string.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "hash.h" 33 #include "locking.h" 34 #include "disk-io.h" 35 #include "btrfs_inode.h" 36 #include "transaction.h" 37 #include "compression.h" 38 39 /* 40 * A fs_path is a helper to dynamically build path names with unknown size. 41 * It reallocates the internal buffer on demand. 42 * It allows fast adding of path elements on the right side (normal path) and 43 * fast adding to the left side (reversed path). A reversed path can also be 44 * unreversed if needed. 45 */ 46 struct fs_path { 47 union { 48 struct { 49 char *start; 50 char *end; 51 52 char *buf; 53 unsigned short buf_len:15; 54 unsigned short reversed:1; 55 char inline_buf[]; 56 }; 57 /* 58 * Average path length does not exceed 200 bytes, we'll have 59 * better packing in the slab and higher chance to satisfy 60 * a allocation later during send. 61 */ 62 char pad[256]; 63 }; 64 }; 65 #define FS_PATH_INLINE_SIZE \ 66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 67 68 69 /* reused for each extent */ 70 struct clone_root { 71 struct btrfs_root *root; 72 u64 ino; 73 u64 offset; 74 75 u64 found_refs; 76 }; 77 78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 80 81 struct send_ctx { 82 struct file *send_filp; 83 loff_t send_off; 84 char *send_buf; 85 u32 send_size; 86 u32 send_max_size; 87 u64 total_send_size; 88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 90 91 struct btrfs_root *send_root; 92 struct btrfs_root *parent_root; 93 struct clone_root *clone_roots; 94 int clone_roots_cnt; 95 96 /* current state of the compare_tree call */ 97 struct btrfs_path *left_path; 98 struct btrfs_path *right_path; 99 struct btrfs_key *cmp_key; 100 101 /* 102 * infos of the currently processed inode. In case of deleted inodes, 103 * these are the values from the deleted inode. 104 */ 105 u64 cur_ino; 106 u64 cur_inode_gen; 107 int cur_inode_new; 108 int cur_inode_new_gen; 109 int cur_inode_deleted; 110 u64 cur_inode_size; 111 u64 cur_inode_mode; 112 u64 cur_inode_rdev; 113 u64 cur_inode_last_extent; 114 115 u64 send_progress; 116 117 struct list_head new_refs; 118 struct list_head deleted_refs; 119 120 struct radix_tree_root name_cache; 121 struct list_head name_cache_list; 122 int name_cache_size; 123 124 struct file_ra_state ra; 125 126 char *read_buf; 127 128 /* 129 * We process inodes by their increasing order, so if before an 130 * incremental send we reverse the parent/child relationship of 131 * directories such that a directory with a lower inode number was 132 * the parent of a directory with a higher inode number, and the one 133 * becoming the new parent got renamed too, we can't rename/move the 134 * directory with lower inode number when we finish processing it - we 135 * must process the directory with higher inode number first, then 136 * rename/move it and then rename/move the directory with lower inode 137 * number. Example follows. 138 * 139 * Tree state when the first send was performed: 140 * 141 * . 142 * |-- a (ino 257) 143 * |-- b (ino 258) 144 * | 145 * | 146 * |-- c (ino 259) 147 * | |-- d (ino 260) 148 * | 149 * |-- c2 (ino 261) 150 * 151 * Tree state when the second (incremental) send is performed: 152 * 153 * . 154 * |-- a (ino 257) 155 * |-- b (ino 258) 156 * |-- c2 (ino 261) 157 * |-- d2 (ino 260) 158 * |-- cc (ino 259) 159 * 160 * The sequence of steps that lead to the second state was: 161 * 162 * mv /a/b/c/d /a/b/c2/d2 163 * mv /a/b/c /a/b/c2/d2/cc 164 * 165 * "c" has lower inode number, but we can't move it (2nd mv operation) 166 * before we move "d", which has higher inode number. 167 * 168 * So we just memorize which move/rename operations must be performed 169 * later when their respective parent is processed and moved/renamed. 170 */ 171 172 /* Indexed by parent directory inode number. */ 173 struct rb_root pending_dir_moves; 174 175 /* 176 * Reverse index, indexed by the inode number of a directory that 177 * is waiting for the move/rename of its immediate parent before its 178 * own move/rename can be performed. 179 */ 180 struct rb_root waiting_dir_moves; 181 182 /* 183 * A directory that is going to be rm'ed might have a child directory 184 * which is in the pending directory moves index above. In this case, 185 * the directory can only be removed after the move/rename of its child 186 * is performed. Example: 187 * 188 * Parent snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- c/ (ino 259) 194 * | |-- x/ (ino 260) 195 * | 196 * |-- y/ (ino 261) 197 * 198 * Send snapshot: 199 * 200 * . (ino 256) 201 * |-- a/ (ino 257) 202 * |-- b/ (ino 258) 203 * |-- YY/ (ino 261) 204 * |-- x/ (ino 260) 205 * 206 * Sequence of steps that lead to the send snapshot: 207 * rm -f /a/b/c/foo.txt 208 * mv /a/b/y /a/b/YY 209 * mv /a/b/c/x /a/b/YY 210 * rmdir /a/b/c 211 * 212 * When the child is processed, its move/rename is delayed until its 213 * parent is processed (as explained above), but all other operations 214 * like update utimes, chown, chgrp, etc, are performed and the paths 215 * that it uses for those operations must use the orphanized name of 216 * its parent (the directory we're going to rm later), so we need to 217 * memorize that name. 218 * 219 * Indexed by the inode number of the directory to be deleted. 220 */ 221 struct rb_root orphan_dirs; 222 }; 223 224 struct pending_dir_move { 225 struct rb_node node; 226 struct list_head list; 227 u64 parent_ino; 228 u64 ino; 229 u64 gen; 230 struct list_head update_refs; 231 }; 232 233 struct waiting_dir_move { 234 struct rb_node node; 235 u64 ino; 236 /* 237 * There might be some directory that could not be removed because it 238 * was waiting for this directory inode to be moved first. Therefore 239 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 240 */ 241 u64 rmdir_ino; 242 bool orphanized; 243 }; 244 245 struct orphan_dir_info { 246 struct rb_node node; 247 u64 ino; 248 u64 gen; 249 }; 250 251 struct name_cache_entry { 252 struct list_head list; 253 /* 254 * radix_tree has only 32bit entries but we need to handle 64bit inums. 255 * We use the lower 32bit of the 64bit inum to store it in the tree. If 256 * more then one inum would fall into the same entry, we use radix_list 257 * to store the additional entries. radix_list is also used to store 258 * entries where two entries have the same inum but different 259 * generations. 260 */ 261 struct list_head radix_list; 262 u64 ino; 263 u64 gen; 264 u64 parent_ino; 265 u64 parent_gen; 266 int ret; 267 int need_later_update; 268 int name_len; 269 char name[]; 270 }; 271 272 static void inconsistent_snapshot_error(struct send_ctx *sctx, 273 enum btrfs_compare_tree_result result, 274 const char *what) 275 { 276 const char *result_string; 277 278 switch (result) { 279 case BTRFS_COMPARE_TREE_NEW: 280 result_string = "new"; 281 break; 282 case BTRFS_COMPARE_TREE_DELETED: 283 result_string = "deleted"; 284 break; 285 case BTRFS_COMPARE_TREE_CHANGED: 286 result_string = "updated"; 287 break; 288 case BTRFS_COMPARE_TREE_SAME: 289 ASSERT(0); 290 result_string = "unchanged"; 291 break; 292 default: 293 ASSERT(0); 294 result_string = "unexpected"; 295 } 296 297 btrfs_err(sctx->send_root->fs_info, 298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 299 result_string, what, sctx->cmp_key->objectid, 300 sctx->send_root->root_key.objectid, 301 (sctx->parent_root ? 302 sctx->parent_root->root_key.objectid : 0)); 303 } 304 305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 306 307 static struct waiting_dir_move * 308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 309 310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 311 312 static int need_send_hole(struct send_ctx *sctx) 313 { 314 return (sctx->parent_root && !sctx->cur_inode_new && 315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 316 S_ISREG(sctx->cur_inode_mode)); 317 } 318 319 static void fs_path_reset(struct fs_path *p) 320 { 321 if (p->reversed) { 322 p->start = p->buf + p->buf_len - 1; 323 p->end = p->start; 324 *p->start = 0; 325 } else { 326 p->start = p->buf; 327 p->end = p->start; 328 *p->start = 0; 329 } 330 } 331 332 static struct fs_path *fs_path_alloc(void) 333 { 334 struct fs_path *p; 335 336 p = kmalloc(sizeof(*p), GFP_KERNEL); 337 if (!p) 338 return NULL; 339 p->reversed = 0; 340 p->buf = p->inline_buf; 341 p->buf_len = FS_PATH_INLINE_SIZE; 342 fs_path_reset(p); 343 return p; 344 } 345 346 static struct fs_path *fs_path_alloc_reversed(void) 347 { 348 struct fs_path *p; 349 350 p = fs_path_alloc(); 351 if (!p) 352 return NULL; 353 p->reversed = 1; 354 fs_path_reset(p); 355 return p; 356 } 357 358 static void fs_path_free(struct fs_path *p) 359 { 360 if (!p) 361 return; 362 if (p->buf != p->inline_buf) 363 kfree(p->buf); 364 kfree(p); 365 } 366 367 static int fs_path_len(struct fs_path *p) 368 { 369 return p->end - p->start; 370 } 371 372 static int fs_path_ensure_buf(struct fs_path *p, int len) 373 { 374 char *tmp_buf; 375 int path_len; 376 int old_buf_len; 377 378 len++; 379 380 if (p->buf_len >= len) 381 return 0; 382 383 if (len > PATH_MAX) { 384 WARN_ON(1); 385 return -ENOMEM; 386 } 387 388 path_len = p->end - p->start; 389 old_buf_len = p->buf_len; 390 391 /* 392 * First time the inline_buf does not suffice 393 */ 394 if (p->buf == p->inline_buf) { 395 tmp_buf = kmalloc(len, GFP_KERNEL); 396 if (tmp_buf) 397 memcpy(tmp_buf, p->buf, old_buf_len); 398 } else { 399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 400 } 401 if (!tmp_buf) 402 return -ENOMEM; 403 p->buf = tmp_buf; 404 /* 405 * The real size of the buffer is bigger, this will let the fast path 406 * happen most of the time 407 */ 408 p->buf_len = ksize(p->buf); 409 410 if (p->reversed) { 411 tmp_buf = p->buf + old_buf_len - path_len - 1; 412 p->end = p->buf + p->buf_len - 1; 413 p->start = p->end - path_len; 414 memmove(p->start, tmp_buf, path_len + 1); 415 } else { 416 p->start = p->buf; 417 p->end = p->start + path_len; 418 } 419 return 0; 420 } 421 422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 423 char **prepared) 424 { 425 int ret; 426 int new_len; 427 428 new_len = p->end - p->start + name_len; 429 if (p->start != p->end) 430 new_len++; 431 ret = fs_path_ensure_buf(p, new_len); 432 if (ret < 0) 433 goto out; 434 435 if (p->reversed) { 436 if (p->start != p->end) 437 *--p->start = '/'; 438 p->start -= name_len; 439 *prepared = p->start; 440 } else { 441 if (p->start != p->end) 442 *p->end++ = '/'; 443 *prepared = p->end; 444 p->end += name_len; 445 *p->end = 0; 446 } 447 448 out: 449 return ret; 450 } 451 452 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 453 { 454 int ret; 455 char *prepared; 456 457 ret = fs_path_prepare_for_add(p, name_len, &prepared); 458 if (ret < 0) 459 goto out; 460 memcpy(prepared, name, name_len); 461 462 out: 463 return ret; 464 } 465 466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 467 { 468 int ret; 469 char *prepared; 470 471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 472 if (ret < 0) 473 goto out; 474 memcpy(prepared, p2->start, p2->end - p2->start); 475 476 out: 477 return ret; 478 } 479 480 static int fs_path_add_from_extent_buffer(struct fs_path *p, 481 struct extent_buffer *eb, 482 unsigned long off, int len) 483 { 484 int ret; 485 char *prepared; 486 487 ret = fs_path_prepare_for_add(p, len, &prepared); 488 if (ret < 0) 489 goto out; 490 491 read_extent_buffer(eb, prepared, off, len); 492 493 out: 494 return ret; 495 } 496 497 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 498 { 499 int ret; 500 501 p->reversed = from->reversed; 502 fs_path_reset(p); 503 504 ret = fs_path_add_path(p, from); 505 506 return ret; 507 } 508 509 510 static void fs_path_unreverse(struct fs_path *p) 511 { 512 char *tmp; 513 int len; 514 515 if (!p->reversed) 516 return; 517 518 tmp = p->start; 519 len = p->end - p->start; 520 p->start = p->buf; 521 p->end = p->start + len; 522 memmove(p->start, tmp, len + 1); 523 p->reversed = 0; 524 } 525 526 static struct btrfs_path *alloc_path_for_send(void) 527 { 528 struct btrfs_path *path; 529 530 path = btrfs_alloc_path(); 531 if (!path) 532 return NULL; 533 path->search_commit_root = 1; 534 path->skip_locking = 1; 535 path->need_commit_sem = 1; 536 return path; 537 } 538 539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 540 { 541 int ret; 542 mm_segment_t old_fs; 543 u32 pos = 0; 544 545 old_fs = get_fs(); 546 set_fs(KERNEL_DS); 547 548 while (pos < len) { 549 ret = vfs_write(filp, (__force const char __user *)buf + pos, 550 len - pos, off); 551 /* TODO handle that correctly */ 552 /*if (ret == -ERESTARTSYS) { 553 continue; 554 }*/ 555 if (ret < 0) 556 goto out; 557 if (ret == 0) { 558 ret = -EIO; 559 goto out; 560 } 561 pos += ret; 562 } 563 564 ret = 0; 565 566 out: 567 set_fs(old_fs); 568 return ret; 569 } 570 571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 572 { 573 struct btrfs_tlv_header *hdr; 574 int total_len = sizeof(*hdr) + len; 575 int left = sctx->send_max_size - sctx->send_size; 576 577 if (unlikely(left < total_len)) 578 return -EOVERFLOW; 579 580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 581 hdr->tlv_type = cpu_to_le16(attr); 582 hdr->tlv_len = cpu_to_le16(len); 583 memcpy(hdr + 1, data, len); 584 sctx->send_size += total_len; 585 586 return 0; 587 } 588 589 #define TLV_PUT_DEFINE_INT(bits) \ 590 static int tlv_put_u##bits(struct send_ctx *sctx, \ 591 u##bits attr, u##bits value) \ 592 { \ 593 __le##bits __tmp = cpu_to_le##bits(value); \ 594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 595 } 596 597 TLV_PUT_DEFINE_INT(64) 598 599 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 600 const char *str, int len) 601 { 602 if (len == -1) 603 len = strlen(str); 604 return tlv_put(sctx, attr, str, len); 605 } 606 607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 608 const u8 *uuid) 609 { 610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 611 } 612 613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 614 struct extent_buffer *eb, 615 struct btrfs_timespec *ts) 616 { 617 struct btrfs_timespec bts; 618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 619 return tlv_put(sctx, attr, &bts, sizeof(bts)); 620 } 621 622 623 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 624 do { \ 625 ret = tlv_put(sctx, attrtype, attrlen, data); \ 626 if (ret < 0) \ 627 goto tlv_put_failure; \ 628 } while (0) 629 630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 631 do { \ 632 ret = tlv_put_u##bits(sctx, attrtype, value); \ 633 if (ret < 0) \ 634 goto tlv_put_failure; \ 635 } while (0) 636 637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 642 do { \ 643 ret = tlv_put_string(sctx, attrtype, str, len); \ 644 if (ret < 0) \ 645 goto tlv_put_failure; \ 646 } while (0) 647 #define TLV_PUT_PATH(sctx, attrtype, p) \ 648 do { \ 649 ret = tlv_put_string(sctx, attrtype, p->start, \ 650 p->end - p->start); \ 651 if (ret < 0) \ 652 goto tlv_put_failure; \ 653 } while(0) 654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 655 do { \ 656 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 657 if (ret < 0) \ 658 goto tlv_put_failure; \ 659 } while (0) 660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 661 do { \ 662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 663 if (ret < 0) \ 664 goto tlv_put_failure; \ 665 } while (0) 666 667 static int send_header(struct send_ctx *sctx) 668 { 669 struct btrfs_stream_header hdr; 670 671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 673 674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 675 &sctx->send_off); 676 } 677 678 /* 679 * For each command/item we want to send to userspace, we call this function. 680 */ 681 static int begin_cmd(struct send_ctx *sctx, int cmd) 682 { 683 struct btrfs_cmd_header *hdr; 684 685 if (WARN_ON(!sctx->send_buf)) 686 return -EINVAL; 687 688 BUG_ON(sctx->send_size); 689 690 sctx->send_size += sizeof(*hdr); 691 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 692 hdr->cmd = cpu_to_le16(cmd); 693 694 return 0; 695 } 696 697 static int send_cmd(struct send_ctx *sctx) 698 { 699 int ret; 700 struct btrfs_cmd_header *hdr; 701 u32 crc; 702 703 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 705 hdr->crc = 0; 706 707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 708 hdr->crc = cpu_to_le32(crc); 709 710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 711 &sctx->send_off); 712 713 sctx->total_send_size += sctx->send_size; 714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 715 sctx->send_size = 0; 716 717 return ret; 718 } 719 720 /* 721 * Sends a move instruction to user space 722 */ 723 static int send_rename(struct send_ctx *sctx, 724 struct fs_path *from, struct fs_path *to) 725 { 726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 727 int ret; 728 729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 730 731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 732 if (ret < 0) 733 goto out; 734 735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 737 738 ret = send_cmd(sctx); 739 740 tlv_put_failure: 741 out: 742 return ret; 743 } 744 745 /* 746 * Sends a link instruction to user space 747 */ 748 static int send_link(struct send_ctx *sctx, 749 struct fs_path *path, struct fs_path *lnk) 750 { 751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 752 int ret; 753 754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 755 756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 757 if (ret < 0) 758 goto out; 759 760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 762 763 ret = send_cmd(sctx); 764 765 tlv_put_failure: 766 out: 767 return ret; 768 } 769 770 /* 771 * Sends an unlink instruction to user space 772 */ 773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 774 { 775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 776 int ret; 777 778 btrfs_debug(fs_info, "send_unlink %s", path->start); 779 780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 781 if (ret < 0) 782 goto out; 783 784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 785 786 ret = send_cmd(sctx); 787 788 tlv_put_failure: 789 out: 790 return ret; 791 } 792 793 /* 794 * Sends a rmdir instruction to user space 795 */ 796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 797 { 798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 799 int ret; 800 801 btrfs_debug(fs_info, "send_rmdir %s", path->start); 802 803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 804 if (ret < 0) 805 goto out; 806 807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 808 809 ret = send_cmd(sctx); 810 811 tlv_put_failure: 812 out: 813 return ret; 814 } 815 816 /* 817 * Helper function to retrieve some fields from an inode item. 818 */ 819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 821 u64 *gid, u64 *rdev) 822 { 823 int ret; 824 struct btrfs_inode_item *ii; 825 struct btrfs_key key; 826 827 key.objectid = ino; 828 key.type = BTRFS_INODE_ITEM_KEY; 829 key.offset = 0; 830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 831 if (ret) { 832 if (ret > 0) 833 ret = -ENOENT; 834 return ret; 835 } 836 837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 838 struct btrfs_inode_item); 839 if (size) 840 *size = btrfs_inode_size(path->nodes[0], ii); 841 if (gen) 842 *gen = btrfs_inode_generation(path->nodes[0], ii); 843 if (mode) 844 *mode = btrfs_inode_mode(path->nodes[0], ii); 845 if (uid) 846 *uid = btrfs_inode_uid(path->nodes[0], ii); 847 if (gid) 848 *gid = btrfs_inode_gid(path->nodes[0], ii); 849 if (rdev) 850 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 851 852 return ret; 853 } 854 855 static int get_inode_info(struct btrfs_root *root, 856 u64 ino, u64 *size, u64 *gen, 857 u64 *mode, u64 *uid, u64 *gid, 858 u64 *rdev) 859 { 860 struct btrfs_path *path; 861 int ret; 862 863 path = alloc_path_for_send(); 864 if (!path) 865 return -ENOMEM; 866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 867 rdev); 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 873 struct fs_path *p, 874 void *ctx); 875 876 /* 877 * Helper function to iterate the entries in ONE btrfs_inode_ref or 878 * btrfs_inode_extref. 879 * The iterate callback may return a non zero value to stop iteration. This can 880 * be a negative value for error codes or 1 to simply stop it. 881 * 882 * path must point to the INODE_REF or INODE_EXTREF when called. 883 */ 884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 885 struct btrfs_key *found_key, int resolve, 886 iterate_inode_ref_t iterate, void *ctx) 887 { 888 struct extent_buffer *eb = path->nodes[0]; 889 struct btrfs_item *item; 890 struct btrfs_inode_ref *iref; 891 struct btrfs_inode_extref *extref; 892 struct btrfs_path *tmp_path; 893 struct fs_path *p; 894 u32 cur = 0; 895 u32 total; 896 int slot = path->slots[0]; 897 u32 name_len; 898 char *start; 899 int ret = 0; 900 int num = 0; 901 int index; 902 u64 dir; 903 unsigned long name_off; 904 unsigned long elem_size; 905 unsigned long ptr; 906 907 p = fs_path_alloc_reversed(); 908 if (!p) 909 return -ENOMEM; 910 911 tmp_path = alloc_path_for_send(); 912 if (!tmp_path) { 913 fs_path_free(p); 914 return -ENOMEM; 915 } 916 917 918 if (found_key->type == BTRFS_INODE_REF_KEY) { 919 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 920 struct btrfs_inode_ref); 921 item = btrfs_item_nr(slot); 922 total = btrfs_item_size(eb, item); 923 elem_size = sizeof(*iref); 924 } else { 925 ptr = btrfs_item_ptr_offset(eb, slot); 926 total = btrfs_item_size_nr(eb, slot); 927 elem_size = sizeof(*extref); 928 } 929 930 while (cur < total) { 931 fs_path_reset(p); 932 933 if (found_key->type == BTRFS_INODE_REF_KEY) { 934 iref = (struct btrfs_inode_ref *)(ptr + cur); 935 name_len = btrfs_inode_ref_name_len(eb, iref); 936 name_off = (unsigned long)(iref + 1); 937 index = btrfs_inode_ref_index(eb, iref); 938 dir = found_key->offset; 939 } else { 940 extref = (struct btrfs_inode_extref *)(ptr + cur); 941 name_len = btrfs_inode_extref_name_len(eb, extref); 942 name_off = (unsigned long)&extref->name; 943 index = btrfs_inode_extref_index(eb, extref); 944 dir = btrfs_inode_extref_parent(eb, extref); 945 } 946 947 if (resolve) { 948 start = btrfs_ref_to_path(root, tmp_path, name_len, 949 name_off, eb, dir, 950 p->buf, p->buf_len); 951 if (IS_ERR(start)) { 952 ret = PTR_ERR(start); 953 goto out; 954 } 955 if (start < p->buf) { 956 /* overflow , try again with larger buffer */ 957 ret = fs_path_ensure_buf(p, 958 p->buf_len + p->buf - start); 959 if (ret < 0) 960 goto out; 961 start = btrfs_ref_to_path(root, tmp_path, 962 name_len, name_off, 963 eb, dir, 964 p->buf, p->buf_len); 965 if (IS_ERR(start)) { 966 ret = PTR_ERR(start); 967 goto out; 968 } 969 BUG_ON(start < p->buf); 970 } 971 p->start = start; 972 } else { 973 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 974 name_len); 975 if (ret < 0) 976 goto out; 977 } 978 979 cur += elem_size + name_len; 980 ret = iterate(num, dir, index, p, ctx); 981 if (ret) 982 goto out; 983 num++; 984 } 985 986 out: 987 btrfs_free_path(tmp_path); 988 fs_path_free(p); 989 return ret; 990 } 991 992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 993 const char *name, int name_len, 994 const char *data, int data_len, 995 u8 type, void *ctx); 996 997 /* 998 * Helper function to iterate the entries in ONE btrfs_dir_item. 999 * The iterate callback may return a non zero value to stop iteration. This can 1000 * be a negative value for error codes or 1 to simply stop it. 1001 * 1002 * path must point to the dir item when called. 1003 */ 1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1005 struct btrfs_key *found_key, 1006 iterate_dir_item_t iterate, void *ctx) 1007 { 1008 int ret = 0; 1009 struct extent_buffer *eb; 1010 struct btrfs_item *item; 1011 struct btrfs_dir_item *di; 1012 struct btrfs_key di_key; 1013 char *buf = NULL; 1014 int buf_len; 1015 u32 name_len; 1016 u32 data_len; 1017 u32 cur; 1018 u32 len; 1019 u32 total; 1020 int slot; 1021 int num; 1022 u8 type; 1023 1024 /* 1025 * Start with a small buffer (1 page). If later we end up needing more 1026 * space, which can happen for xattrs on a fs with a leaf size greater 1027 * then the page size, attempt to increase the buffer. Typically xattr 1028 * values are small. 1029 */ 1030 buf_len = PATH_MAX; 1031 buf = kmalloc(buf_len, GFP_KERNEL); 1032 if (!buf) { 1033 ret = -ENOMEM; 1034 goto out; 1035 } 1036 1037 eb = path->nodes[0]; 1038 slot = path->slots[0]; 1039 item = btrfs_item_nr(slot); 1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1041 cur = 0; 1042 len = 0; 1043 total = btrfs_item_size(eb, item); 1044 1045 num = 0; 1046 while (cur < total) { 1047 name_len = btrfs_dir_name_len(eb, di); 1048 data_len = btrfs_dir_data_len(eb, di); 1049 type = btrfs_dir_type(eb, di); 1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1051 1052 if (type == BTRFS_FT_XATTR) { 1053 if (name_len > XATTR_NAME_MAX) { 1054 ret = -ENAMETOOLONG; 1055 goto out; 1056 } 1057 if (name_len + data_len > 1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1059 ret = -E2BIG; 1060 goto out; 1061 } 1062 } else { 1063 /* 1064 * Path too long 1065 */ 1066 if (name_len + data_len > PATH_MAX) { 1067 ret = -ENAMETOOLONG; 1068 goto out; 1069 } 1070 } 1071 1072 if (name_len + data_len > buf_len) { 1073 buf_len = name_len + data_len; 1074 if (is_vmalloc_addr(buf)) { 1075 vfree(buf); 1076 buf = NULL; 1077 } else { 1078 char *tmp = krealloc(buf, buf_len, 1079 GFP_KERNEL | __GFP_NOWARN); 1080 1081 if (!tmp) 1082 kfree(buf); 1083 buf = tmp; 1084 } 1085 if (!buf) { 1086 buf = vmalloc(buf_len); 1087 if (!buf) { 1088 ret = -ENOMEM; 1089 goto out; 1090 } 1091 } 1092 } 1093 1094 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1095 name_len + data_len); 1096 1097 len = sizeof(*di) + name_len + data_len; 1098 di = (struct btrfs_dir_item *)((char *)di + len); 1099 cur += len; 1100 1101 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1102 data_len, type, ctx); 1103 if (ret < 0) 1104 goto out; 1105 if (ret) { 1106 ret = 0; 1107 goto out; 1108 } 1109 1110 num++; 1111 } 1112 1113 out: 1114 kvfree(buf); 1115 return ret; 1116 } 1117 1118 static int __copy_first_ref(int num, u64 dir, int index, 1119 struct fs_path *p, void *ctx) 1120 { 1121 int ret; 1122 struct fs_path *pt = ctx; 1123 1124 ret = fs_path_copy(pt, p); 1125 if (ret < 0) 1126 return ret; 1127 1128 /* we want the first only */ 1129 return 1; 1130 } 1131 1132 /* 1133 * Retrieve the first path of an inode. If an inode has more then one 1134 * ref/hardlink, this is ignored. 1135 */ 1136 static int get_inode_path(struct btrfs_root *root, 1137 u64 ino, struct fs_path *path) 1138 { 1139 int ret; 1140 struct btrfs_key key, found_key; 1141 struct btrfs_path *p; 1142 1143 p = alloc_path_for_send(); 1144 if (!p) 1145 return -ENOMEM; 1146 1147 fs_path_reset(path); 1148 1149 key.objectid = ino; 1150 key.type = BTRFS_INODE_REF_KEY; 1151 key.offset = 0; 1152 1153 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1154 if (ret < 0) 1155 goto out; 1156 if (ret) { 1157 ret = 1; 1158 goto out; 1159 } 1160 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1161 if (found_key.objectid != ino || 1162 (found_key.type != BTRFS_INODE_REF_KEY && 1163 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1164 ret = -ENOENT; 1165 goto out; 1166 } 1167 1168 ret = iterate_inode_ref(root, p, &found_key, 1, 1169 __copy_first_ref, path); 1170 if (ret < 0) 1171 goto out; 1172 ret = 0; 1173 1174 out: 1175 btrfs_free_path(p); 1176 return ret; 1177 } 1178 1179 struct backref_ctx { 1180 struct send_ctx *sctx; 1181 1182 struct btrfs_path *path; 1183 /* number of total found references */ 1184 u64 found; 1185 1186 /* 1187 * used for clones found in send_root. clones found behind cur_objectid 1188 * and cur_offset are not considered as allowed clones. 1189 */ 1190 u64 cur_objectid; 1191 u64 cur_offset; 1192 1193 /* may be truncated in case it's the last extent in a file */ 1194 u64 extent_len; 1195 1196 /* data offset in the file extent item */ 1197 u64 data_offset; 1198 1199 /* Just to check for bugs in backref resolving */ 1200 int found_itself; 1201 }; 1202 1203 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1204 { 1205 u64 root = (u64)(uintptr_t)key; 1206 struct clone_root *cr = (struct clone_root *)elt; 1207 1208 if (root < cr->root->objectid) 1209 return -1; 1210 if (root > cr->root->objectid) 1211 return 1; 1212 return 0; 1213 } 1214 1215 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1216 { 1217 struct clone_root *cr1 = (struct clone_root *)e1; 1218 struct clone_root *cr2 = (struct clone_root *)e2; 1219 1220 if (cr1->root->objectid < cr2->root->objectid) 1221 return -1; 1222 if (cr1->root->objectid > cr2->root->objectid) 1223 return 1; 1224 return 0; 1225 } 1226 1227 /* 1228 * Called for every backref that is found for the current extent. 1229 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1230 */ 1231 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1232 { 1233 struct backref_ctx *bctx = ctx_; 1234 struct clone_root *found; 1235 int ret; 1236 u64 i_size; 1237 1238 /* First check if the root is in the list of accepted clone sources */ 1239 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1240 bctx->sctx->clone_roots_cnt, 1241 sizeof(struct clone_root), 1242 __clone_root_cmp_bsearch); 1243 if (!found) 1244 return 0; 1245 1246 if (found->root == bctx->sctx->send_root && 1247 ino == bctx->cur_objectid && 1248 offset == bctx->cur_offset) { 1249 bctx->found_itself = 1; 1250 } 1251 1252 /* 1253 * There are inodes that have extents that lie behind its i_size. Don't 1254 * accept clones from these extents. 1255 */ 1256 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL, 1257 NULL, NULL, NULL); 1258 btrfs_release_path(bctx->path); 1259 if (ret < 0) 1260 return ret; 1261 1262 if (offset + bctx->data_offset + bctx->extent_len > i_size) 1263 return 0; 1264 1265 /* 1266 * Make sure we don't consider clones from send_root that are 1267 * behind the current inode/offset. 1268 */ 1269 if (found->root == bctx->sctx->send_root) { 1270 /* 1271 * TODO for the moment we don't accept clones from the inode 1272 * that is currently send. We may change this when 1273 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1274 * file. 1275 */ 1276 if (ino >= bctx->cur_objectid) 1277 return 0; 1278 #if 0 1279 if (ino > bctx->cur_objectid) 1280 return 0; 1281 if (offset + bctx->extent_len > bctx->cur_offset) 1282 return 0; 1283 #endif 1284 } 1285 1286 bctx->found++; 1287 found->found_refs++; 1288 if (ino < found->ino) { 1289 found->ino = ino; 1290 found->offset = offset; 1291 } else if (found->ino == ino) { 1292 /* 1293 * same extent found more then once in the same file. 1294 */ 1295 if (found->offset > offset + bctx->extent_len) 1296 found->offset = offset; 1297 } 1298 1299 return 0; 1300 } 1301 1302 /* 1303 * Given an inode, offset and extent item, it finds a good clone for a clone 1304 * instruction. Returns -ENOENT when none could be found. The function makes 1305 * sure that the returned clone is usable at the point where sending is at the 1306 * moment. This means, that no clones are accepted which lie behind the current 1307 * inode+offset. 1308 * 1309 * path must point to the extent item when called. 1310 */ 1311 static int find_extent_clone(struct send_ctx *sctx, 1312 struct btrfs_path *path, 1313 u64 ino, u64 data_offset, 1314 u64 ino_size, 1315 struct clone_root **found) 1316 { 1317 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1318 int ret; 1319 int extent_type; 1320 u64 logical; 1321 u64 disk_byte; 1322 u64 num_bytes; 1323 u64 extent_item_pos; 1324 u64 flags = 0; 1325 struct btrfs_file_extent_item *fi; 1326 struct extent_buffer *eb = path->nodes[0]; 1327 struct backref_ctx *backref_ctx = NULL; 1328 struct clone_root *cur_clone_root; 1329 struct btrfs_key found_key; 1330 struct btrfs_path *tmp_path; 1331 int compressed; 1332 u32 i; 1333 1334 tmp_path = alloc_path_for_send(); 1335 if (!tmp_path) 1336 return -ENOMEM; 1337 1338 /* We only use this path under the commit sem */ 1339 tmp_path->need_commit_sem = 0; 1340 1341 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1342 if (!backref_ctx) { 1343 ret = -ENOMEM; 1344 goto out; 1345 } 1346 1347 backref_ctx->path = tmp_path; 1348 1349 if (data_offset >= ino_size) { 1350 /* 1351 * There may be extents that lie behind the file's size. 1352 * I at least had this in combination with snapshotting while 1353 * writing large files. 1354 */ 1355 ret = 0; 1356 goto out; 1357 } 1358 1359 fi = btrfs_item_ptr(eb, path->slots[0], 1360 struct btrfs_file_extent_item); 1361 extent_type = btrfs_file_extent_type(eb, fi); 1362 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1363 ret = -ENOENT; 1364 goto out; 1365 } 1366 compressed = btrfs_file_extent_compression(eb, fi); 1367 1368 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1370 if (disk_byte == 0) { 1371 ret = -ENOENT; 1372 goto out; 1373 } 1374 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1375 1376 down_read(&fs_info->commit_root_sem); 1377 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1378 &found_key, &flags); 1379 up_read(&fs_info->commit_root_sem); 1380 btrfs_release_path(tmp_path); 1381 1382 if (ret < 0) 1383 goto out; 1384 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1385 ret = -EIO; 1386 goto out; 1387 } 1388 1389 /* 1390 * Setup the clone roots. 1391 */ 1392 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1393 cur_clone_root = sctx->clone_roots + i; 1394 cur_clone_root->ino = (u64)-1; 1395 cur_clone_root->offset = 0; 1396 cur_clone_root->found_refs = 0; 1397 } 1398 1399 backref_ctx->sctx = sctx; 1400 backref_ctx->found = 0; 1401 backref_ctx->cur_objectid = ino; 1402 backref_ctx->cur_offset = data_offset; 1403 backref_ctx->found_itself = 0; 1404 backref_ctx->extent_len = num_bytes; 1405 /* 1406 * For non-compressed extents iterate_extent_inodes() gives us extent 1407 * offsets that already take into account the data offset, but not for 1408 * compressed extents, since the offset is logical and not relative to 1409 * the physical extent locations. We must take this into account to 1410 * avoid sending clone offsets that go beyond the source file's size, 1411 * which would result in the clone ioctl failing with -EINVAL on the 1412 * receiving end. 1413 */ 1414 if (compressed == BTRFS_COMPRESS_NONE) 1415 backref_ctx->data_offset = 0; 1416 else 1417 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1418 1419 /* 1420 * The last extent of a file may be too large due to page alignment. 1421 * We need to adjust extent_len in this case so that the checks in 1422 * __iterate_backrefs work. 1423 */ 1424 if (data_offset + num_bytes >= ino_size) 1425 backref_ctx->extent_len = ino_size - data_offset; 1426 1427 /* 1428 * Now collect all backrefs. 1429 */ 1430 if (compressed == BTRFS_COMPRESS_NONE) 1431 extent_item_pos = logical - found_key.objectid; 1432 else 1433 extent_item_pos = 0; 1434 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1435 extent_item_pos, 1, __iterate_backrefs, 1436 backref_ctx); 1437 1438 if (ret < 0) 1439 goto out; 1440 1441 if (!backref_ctx->found_itself) { 1442 /* found a bug in backref code? */ 1443 ret = -EIO; 1444 btrfs_err(fs_info, 1445 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1446 ino, data_offset, disk_byte, found_key.objectid); 1447 goto out; 1448 } 1449 1450 btrfs_debug(fs_info, 1451 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1452 data_offset, ino, num_bytes, logical); 1453 1454 if (!backref_ctx->found) 1455 btrfs_debug(fs_info, "no clones found"); 1456 1457 cur_clone_root = NULL; 1458 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1459 if (sctx->clone_roots[i].found_refs) { 1460 if (!cur_clone_root) 1461 cur_clone_root = sctx->clone_roots + i; 1462 else if (sctx->clone_roots[i].root == sctx->send_root) 1463 /* prefer clones from send_root over others */ 1464 cur_clone_root = sctx->clone_roots + i; 1465 } 1466 1467 } 1468 1469 if (cur_clone_root) { 1470 *found = cur_clone_root; 1471 ret = 0; 1472 } else { 1473 ret = -ENOENT; 1474 } 1475 1476 out: 1477 btrfs_free_path(tmp_path); 1478 kfree(backref_ctx); 1479 return ret; 1480 } 1481 1482 static int read_symlink(struct btrfs_root *root, 1483 u64 ino, 1484 struct fs_path *dest) 1485 { 1486 int ret; 1487 struct btrfs_path *path; 1488 struct btrfs_key key; 1489 struct btrfs_file_extent_item *ei; 1490 u8 type; 1491 u8 compression; 1492 unsigned long off; 1493 int len; 1494 1495 path = alloc_path_for_send(); 1496 if (!path) 1497 return -ENOMEM; 1498 1499 key.objectid = ino; 1500 key.type = BTRFS_EXTENT_DATA_KEY; 1501 key.offset = 0; 1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1503 if (ret < 0) 1504 goto out; 1505 if (ret) { 1506 /* 1507 * An empty symlink inode. Can happen in rare error paths when 1508 * creating a symlink (transaction committed before the inode 1509 * eviction handler removed the symlink inode items and a crash 1510 * happened in between or the subvol was snapshoted in between). 1511 * Print an informative message to dmesg/syslog so that the user 1512 * can delete the symlink. 1513 */ 1514 btrfs_err(root->fs_info, 1515 "Found empty symlink inode %llu at root %llu", 1516 ino, root->root_key.objectid); 1517 ret = -EIO; 1518 goto out; 1519 } 1520 1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1522 struct btrfs_file_extent_item); 1523 type = btrfs_file_extent_type(path->nodes[0], ei); 1524 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1526 BUG_ON(compression); 1527 1528 off = btrfs_file_extent_inline_start(ei); 1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei); 1530 1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1532 1533 out: 1534 btrfs_free_path(path); 1535 return ret; 1536 } 1537 1538 /* 1539 * Helper function to generate a file name that is unique in the root of 1540 * send_root and parent_root. This is used to generate names for orphan inodes. 1541 */ 1542 static int gen_unique_name(struct send_ctx *sctx, 1543 u64 ino, u64 gen, 1544 struct fs_path *dest) 1545 { 1546 int ret = 0; 1547 struct btrfs_path *path; 1548 struct btrfs_dir_item *di; 1549 char tmp[64]; 1550 int len; 1551 u64 idx = 0; 1552 1553 path = alloc_path_for_send(); 1554 if (!path) 1555 return -ENOMEM; 1556 1557 while (1) { 1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1559 ino, gen, idx); 1560 ASSERT(len < sizeof(tmp)); 1561 1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1563 path, BTRFS_FIRST_FREE_OBJECTID, 1564 tmp, strlen(tmp), 0); 1565 btrfs_release_path(path); 1566 if (IS_ERR(di)) { 1567 ret = PTR_ERR(di); 1568 goto out; 1569 } 1570 if (di) { 1571 /* not unique, try again */ 1572 idx++; 1573 continue; 1574 } 1575 1576 if (!sctx->parent_root) { 1577 /* unique */ 1578 ret = 0; 1579 break; 1580 } 1581 1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1583 path, BTRFS_FIRST_FREE_OBJECTID, 1584 tmp, strlen(tmp), 0); 1585 btrfs_release_path(path); 1586 if (IS_ERR(di)) { 1587 ret = PTR_ERR(di); 1588 goto out; 1589 } 1590 if (di) { 1591 /* not unique, try again */ 1592 idx++; 1593 continue; 1594 } 1595 /* unique */ 1596 break; 1597 } 1598 1599 ret = fs_path_add(dest, tmp, strlen(tmp)); 1600 1601 out: 1602 btrfs_free_path(path); 1603 return ret; 1604 } 1605 1606 enum inode_state { 1607 inode_state_no_change, 1608 inode_state_will_create, 1609 inode_state_did_create, 1610 inode_state_will_delete, 1611 inode_state_did_delete, 1612 }; 1613 1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1615 { 1616 int ret; 1617 int left_ret; 1618 int right_ret; 1619 u64 left_gen; 1620 u64 right_gen; 1621 1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1623 NULL, NULL); 1624 if (ret < 0 && ret != -ENOENT) 1625 goto out; 1626 left_ret = ret; 1627 1628 if (!sctx->parent_root) { 1629 right_ret = -ENOENT; 1630 } else { 1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1632 NULL, NULL, NULL, NULL); 1633 if (ret < 0 && ret != -ENOENT) 1634 goto out; 1635 right_ret = ret; 1636 } 1637 1638 if (!left_ret && !right_ret) { 1639 if (left_gen == gen && right_gen == gen) { 1640 ret = inode_state_no_change; 1641 } else if (left_gen == gen) { 1642 if (ino < sctx->send_progress) 1643 ret = inode_state_did_create; 1644 else 1645 ret = inode_state_will_create; 1646 } else if (right_gen == gen) { 1647 if (ino < sctx->send_progress) 1648 ret = inode_state_did_delete; 1649 else 1650 ret = inode_state_will_delete; 1651 } else { 1652 ret = -ENOENT; 1653 } 1654 } else if (!left_ret) { 1655 if (left_gen == gen) { 1656 if (ino < sctx->send_progress) 1657 ret = inode_state_did_create; 1658 else 1659 ret = inode_state_will_create; 1660 } else { 1661 ret = -ENOENT; 1662 } 1663 } else if (!right_ret) { 1664 if (right_gen == gen) { 1665 if (ino < sctx->send_progress) 1666 ret = inode_state_did_delete; 1667 else 1668 ret = inode_state_will_delete; 1669 } else { 1670 ret = -ENOENT; 1671 } 1672 } else { 1673 ret = -ENOENT; 1674 } 1675 1676 out: 1677 return ret; 1678 } 1679 1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1681 { 1682 int ret; 1683 1684 ret = get_cur_inode_state(sctx, ino, gen); 1685 if (ret < 0) 1686 goto out; 1687 1688 if (ret == inode_state_no_change || 1689 ret == inode_state_did_create || 1690 ret == inode_state_will_delete) 1691 ret = 1; 1692 else 1693 ret = 0; 1694 1695 out: 1696 return ret; 1697 } 1698 1699 /* 1700 * Helper function to lookup a dir item in a dir. 1701 */ 1702 static int lookup_dir_item_inode(struct btrfs_root *root, 1703 u64 dir, const char *name, int name_len, 1704 u64 *found_inode, 1705 u8 *found_type) 1706 { 1707 int ret = 0; 1708 struct btrfs_dir_item *di; 1709 struct btrfs_key key; 1710 struct btrfs_path *path; 1711 1712 path = alloc_path_for_send(); 1713 if (!path) 1714 return -ENOMEM; 1715 1716 di = btrfs_lookup_dir_item(NULL, root, path, 1717 dir, name, name_len, 0); 1718 if (!di) { 1719 ret = -ENOENT; 1720 goto out; 1721 } 1722 if (IS_ERR(di)) { 1723 ret = PTR_ERR(di); 1724 goto out; 1725 } 1726 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1727 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1728 ret = -ENOENT; 1729 goto out; 1730 } 1731 *found_inode = key.objectid; 1732 *found_type = btrfs_dir_type(path->nodes[0], di); 1733 1734 out: 1735 btrfs_free_path(path); 1736 return ret; 1737 } 1738 1739 /* 1740 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1741 * generation of the parent dir and the name of the dir entry. 1742 */ 1743 static int get_first_ref(struct btrfs_root *root, u64 ino, 1744 u64 *dir, u64 *dir_gen, struct fs_path *name) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct btrfs_key found_key; 1749 struct btrfs_path *path; 1750 int len; 1751 u64 parent_dir; 1752 1753 path = alloc_path_for_send(); 1754 if (!path) 1755 return -ENOMEM; 1756 1757 key.objectid = ino; 1758 key.type = BTRFS_INODE_REF_KEY; 1759 key.offset = 0; 1760 1761 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1762 if (ret < 0) 1763 goto out; 1764 if (!ret) 1765 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1766 path->slots[0]); 1767 if (ret || found_key.objectid != ino || 1768 (found_key.type != BTRFS_INODE_REF_KEY && 1769 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1770 ret = -ENOENT; 1771 goto out; 1772 } 1773 1774 if (found_key.type == BTRFS_INODE_REF_KEY) { 1775 struct btrfs_inode_ref *iref; 1776 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1777 struct btrfs_inode_ref); 1778 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1779 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1780 (unsigned long)(iref + 1), 1781 len); 1782 parent_dir = found_key.offset; 1783 } else { 1784 struct btrfs_inode_extref *extref; 1785 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1786 struct btrfs_inode_extref); 1787 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1789 (unsigned long)&extref->name, len); 1790 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1791 } 1792 if (ret < 0) 1793 goto out; 1794 btrfs_release_path(path); 1795 1796 if (dir_gen) { 1797 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1798 NULL, NULL, NULL); 1799 if (ret < 0) 1800 goto out; 1801 } 1802 1803 *dir = parent_dir; 1804 1805 out: 1806 btrfs_free_path(path); 1807 return ret; 1808 } 1809 1810 static int is_first_ref(struct btrfs_root *root, 1811 u64 ino, u64 dir, 1812 const char *name, int name_len) 1813 { 1814 int ret; 1815 struct fs_path *tmp_name; 1816 u64 tmp_dir; 1817 1818 tmp_name = fs_path_alloc(); 1819 if (!tmp_name) 1820 return -ENOMEM; 1821 1822 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1823 if (ret < 0) 1824 goto out; 1825 1826 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1827 ret = 0; 1828 goto out; 1829 } 1830 1831 ret = !memcmp(tmp_name->start, name, name_len); 1832 1833 out: 1834 fs_path_free(tmp_name); 1835 return ret; 1836 } 1837 1838 /* 1839 * Used by process_recorded_refs to determine if a new ref would overwrite an 1840 * already existing ref. In case it detects an overwrite, it returns the 1841 * inode/gen in who_ino/who_gen. 1842 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1843 * to make sure later references to the overwritten inode are possible. 1844 * Orphanizing is however only required for the first ref of an inode. 1845 * process_recorded_refs does an additional is_first_ref check to see if 1846 * orphanizing is really required. 1847 */ 1848 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1849 const char *name, int name_len, 1850 u64 *who_ino, u64 *who_gen) 1851 { 1852 int ret = 0; 1853 u64 gen; 1854 u64 other_inode = 0; 1855 u8 other_type = 0; 1856 1857 if (!sctx->parent_root) 1858 goto out; 1859 1860 ret = is_inode_existent(sctx, dir, dir_gen); 1861 if (ret <= 0) 1862 goto out; 1863 1864 /* 1865 * If we have a parent root we need to verify that the parent dir was 1866 * not deleted and then re-created, if it was then we have no overwrite 1867 * and we can just unlink this entry. 1868 */ 1869 if (sctx->parent_root) { 1870 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1871 NULL, NULL, NULL); 1872 if (ret < 0 && ret != -ENOENT) 1873 goto out; 1874 if (ret) { 1875 ret = 0; 1876 goto out; 1877 } 1878 if (gen != dir_gen) 1879 goto out; 1880 } 1881 1882 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1883 &other_inode, &other_type); 1884 if (ret < 0 && ret != -ENOENT) 1885 goto out; 1886 if (ret) { 1887 ret = 0; 1888 goto out; 1889 } 1890 1891 /* 1892 * Check if the overwritten ref was already processed. If yes, the ref 1893 * was already unlinked/moved, so we can safely assume that we will not 1894 * overwrite anything at this point in time. 1895 */ 1896 if (other_inode > sctx->send_progress || 1897 is_waiting_for_move(sctx, other_inode)) { 1898 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1899 who_gen, NULL, NULL, NULL, NULL); 1900 if (ret < 0) 1901 goto out; 1902 1903 ret = 1; 1904 *who_ino = other_inode; 1905 } else { 1906 ret = 0; 1907 } 1908 1909 out: 1910 return ret; 1911 } 1912 1913 /* 1914 * Checks if the ref was overwritten by an already processed inode. This is 1915 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1916 * thus the orphan name needs be used. 1917 * process_recorded_refs also uses it to avoid unlinking of refs that were 1918 * overwritten. 1919 */ 1920 static int did_overwrite_ref(struct send_ctx *sctx, 1921 u64 dir, u64 dir_gen, 1922 u64 ino, u64 ino_gen, 1923 const char *name, int name_len) 1924 { 1925 int ret = 0; 1926 u64 gen; 1927 u64 ow_inode; 1928 u8 other_type; 1929 1930 if (!sctx->parent_root) 1931 goto out; 1932 1933 ret = is_inode_existent(sctx, dir, dir_gen); 1934 if (ret <= 0) 1935 goto out; 1936 1937 /* check if the ref was overwritten by another ref */ 1938 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1939 &ow_inode, &other_type); 1940 if (ret < 0 && ret != -ENOENT) 1941 goto out; 1942 if (ret) { 1943 /* was never and will never be overwritten */ 1944 ret = 0; 1945 goto out; 1946 } 1947 1948 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1949 NULL, NULL); 1950 if (ret < 0) 1951 goto out; 1952 1953 if (ow_inode == ino && gen == ino_gen) { 1954 ret = 0; 1955 goto out; 1956 } 1957 1958 /* 1959 * We know that it is or will be overwritten. Check this now. 1960 * The current inode being processed might have been the one that caused 1961 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1962 * the current inode being processed. 1963 */ 1964 if ((ow_inode < sctx->send_progress) || 1965 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1966 gen == sctx->cur_inode_gen)) 1967 ret = 1; 1968 else 1969 ret = 0; 1970 1971 out: 1972 return ret; 1973 } 1974 1975 /* 1976 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1977 * that got overwritten. This is used by process_recorded_refs to determine 1978 * if it has to use the path as returned by get_cur_path or the orphan name. 1979 */ 1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1981 { 1982 int ret = 0; 1983 struct fs_path *name = NULL; 1984 u64 dir; 1985 u64 dir_gen; 1986 1987 if (!sctx->parent_root) 1988 goto out; 1989 1990 name = fs_path_alloc(); 1991 if (!name) 1992 return -ENOMEM; 1993 1994 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1995 if (ret < 0) 1996 goto out; 1997 1998 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1999 name->start, fs_path_len(name)); 2000 2001 out: 2002 fs_path_free(name); 2003 return ret; 2004 } 2005 2006 /* 2007 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2008 * so we need to do some special handling in case we have clashes. This function 2009 * takes care of this with the help of name_cache_entry::radix_list. 2010 * In case of error, nce is kfreed. 2011 */ 2012 static int name_cache_insert(struct send_ctx *sctx, 2013 struct name_cache_entry *nce) 2014 { 2015 int ret = 0; 2016 struct list_head *nce_head; 2017 2018 nce_head = radix_tree_lookup(&sctx->name_cache, 2019 (unsigned long)nce->ino); 2020 if (!nce_head) { 2021 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2022 if (!nce_head) { 2023 kfree(nce); 2024 return -ENOMEM; 2025 } 2026 INIT_LIST_HEAD(nce_head); 2027 2028 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2029 if (ret < 0) { 2030 kfree(nce_head); 2031 kfree(nce); 2032 return ret; 2033 } 2034 } 2035 list_add_tail(&nce->radix_list, nce_head); 2036 list_add_tail(&nce->list, &sctx->name_cache_list); 2037 sctx->name_cache_size++; 2038 2039 return ret; 2040 } 2041 2042 static void name_cache_delete(struct send_ctx *sctx, 2043 struct name_cache_entry *nce) 2044 { 2045 struct list_head *nce_head; 2046 2047 nce_head = radix_tree_lookup(&sctx->name_cache, 2048 (unsigned long)nce->ino); 2049 if (!nce_head) { 2050 btrfs_err(sctx->send_root->fs_info, 2051 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2052 nce->ino, sctx->name_cache_size); 2053 } 2054 2055 list_del(&nce->radix_list); 2056 list_del(&nce->list); 2057 sctx->name_cache_size--; 2058 2059 /* 2060 * We may not get to the final release of nce_head if the lookup fails 2061 */ 2062 if (nce_head && list_empty(nce_head)) { 2063 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2064 kfree(nce_head); 2065 } 2066 } 2067 2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2069 u64 ino, u64 gen) 2070 { 2071 struct list_head *nce_head; 2072 struct name_cache_entry *cur; 2073 2074 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2075 if (!nce_head) 2076 return NULL; 2077 2078 list_for_each_entry(cur, nce_head, radix_list) { 2079 if (cur->ino == ino && cur->gen == gen) 2080 return cur; 2081 } 2082 return NULL; 2083 } 2084 2085 /* 2086 * Removes the entry from the list and adds it back to the end. This marks the 2087 * entry as recently used so that name_cache_clean_unused does not remove it. 2088 */ 2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2090 { 2091 list_del(&nce->list); 2092 list_add_tail(&nce->list, &sctx->name_cache_list); 2093 } 2094 2095 /* 2096 * Remove some entries from the beginning of name_cache_list. 2097 */ 2098 static void name_cache_clean_unused(struct send_ctx *sctx) 2099 { 2100 struct name_cache_entry *nce; 2101 2102 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2103 return; 2104 2105 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2106 nce = list_entry(sctx->name_cache_list.next, 2107 struct name_cache_entry, list); 2108 name_cache_delete(sctx, nce); 2109 kfree(nce); 2110 } 2111 } 2112 2113 static void name_cache_free(struct send_ctx *sctx) 2114 { 2115 struct name_cache_entry *nce; 2116 2117 while (!list_empty(&sctx->name_cache_list)) { 2118 nce = list_entry(sctx->name_cache_list.next, 2119 struct name_cache_entry, list); 2120 name_cache_delete(sctx, nce); 2121 kfree(nce); 2122 } 2123 } 2124 2125 /* 2126 * Used by get_cur_path for each ref up to the root. 2127 * Returns 0 if it succeeded. 2128 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2129 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2130 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2131 * Returns <0 in case of error. 2132 */ 2133 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2134 u64 ino, u64 gen, 2135 u64 *parent_ino, 2136 u64 *parent_gen, 2137 struct fs_path *dest) 2138 { 2139 int ret; 2140 int nce_ret; 2141 struct name_cache_entry *nce = NULL; 2142 2143 /* 2144 * First check if we already did a call to this function with the same 2145 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2146 * return the cached result. 2147 */ 2148 nce = name_cache_search(sctx, ino, gen); 2149 if (nce) { 2150 if (ino < sctx->send_progress && nce->need_later_update) { 2151 name_cache_delete(sctx, nce); 2152 kfree(nce); 2153 nce = NULL; 2154 } else { 2155 name_cache_used(sctx, nce); 2156 *parent_ino = nce->parent_ino; 2157 *parent_gen = nce->parent_gen; 2158 ret = fs_path_add(dest, nce->name, nce->name_len); 2159 if (ret < 0) 2160 goto out; 2161 ret = nce->ret; 2162 goto out; 2163 } 2164 } 2165 2166 /* 2167 * If the inode is not existent yet, add the orphan name and return 1. 2168 * This should only happen for the parent dir that we determine in 2169 * __record_new_ref 2170 */ 2171 ret = is_inode_existent(sctx, ino, gen); 2172 if (ret < 0) 2173 goto out; 2174 2175 if (!ret) { 2176 ret = gen_unique_name(sctx, ino, gen, dest); 2177 if (ret < 0) 2178 goto out; 2179 ret = 1; 2180 goto out_cache; 2181 } 2182 2183 /* 2184 * Depending on whether the inode was already processed or not, use 2185 * send_root or parent_root for ref lookup. 2186 */ 2187 if (ino < sctx->send_progress) 2188 ret = get_first_ref(sctx->send_root, ino, 2189 parent_ino, parent_gen, dest); 2190 else 2191 ret = get_first_ref(sctx->parent_root, ino, 2192 parent_ino, parent_gen, dest); 2193 if (ret < 0) 2194 goto out; 2195 2196 /* 2197 * Check if the ref was overwritten by an inode's ref that was processed 2198 * earlier. If yes, treat as orphan and return 1. 2199 */ 2200 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2201 dest->start, dest->end - dest->start); 2202 if (ret < 0) 2203 goto out; 2204 if (ret) { 2205 fs_path_reset(dest); 2206 ret = gen_unique_name(sctx, ino, gen, dest); 2207 if (ret < 0) 2208 goto out; 2209 ret = 1; 2210 } 2211 2212 out_cache: 2213 /* 2214 * Store the result of the lookup in the name cache. 2215 */ 2216 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2217 if (!nce) { 2218 ret = -ENOMEM; 2219 goto out; 2220 } 2221 2222 nce->ino = ino; 2223 nce->gen = gen; 2224 nce->parent_ino = *parent_ino; 2225 nce->parent_gen = *parent_gen; 2226 nce->name_len = fs_path_len(dest); 2227 nce->ret = ret; 2228 strcpy(nce->name, dest->start); 2229 2230 if (ino < sctx->send_progress) 2231 nce->need_later_update = 0; 2232 else 2233 nce->need_later_update = 1; 2234 2235 nce_ret = name_cache_insert(sctx, nce); 2236 if (nce_ret < 0) 2237 ret = nce_ret; 2238 name_cache_clean_unused(sctx); 2239 2240 out: 2241 return ret; 2242 } 2243 2244 /* 2245 * Magic happens here. This function returns the first ref to an inode as it 2246 * would look like while receiving the stream at this point in time. 2247 * We walk the path up to the root. For every inode in between, we check if it 2248 * was already processed/sent. If yes, we continue with the parent as found 2249 * in send_root. If not, we continue with the parent as found in parent_root. 2250 * If we encounter an inode that was deleted at this point in time, we use the 2251 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2252 * that were not created yet and overwritten inodes/refs. 2253 * 2254 * When do we have have orphan inodes: 2255 * 1. When an inode is freshly created and thus no valid refs are available yet 2256 * 2. When a directory lost all it's refs (deleted) but still has dir items 2257 * inside which were not processed yet (pending for move/delete). If anyone 2258 * tried to get the path to the dir items, it would get a path inside that 2259 * orphan directory. 2260 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2261 * of an unprocessed inode. If in that case the first ref would be 2262 * overwritten, the overwritten inode gets "orphanized". Later when we 2263 * process this overwritten inode, it is restored at a new place by moving 2264 * the orphan inode. 2265 * 2266 * sctx->send_progress tells this function at which point in time receiving 2267 * would be. 2268 */ 2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2270 struct fs_path *dest) 2271 { 2272 int ret = 0; 2273 struct fs_path *name = NULL; 2274 u64 parent_inode = 0; 2275 u64 parent_gen = 0; 2276 int stop = 0; 2277 2278 name = fs_path_alloc(); 2279 if (!name) { 2280 ret = -ENOMEM; 2281 goto out; 2282 } 2283 2284 dest->reversed = 1; 2285 fs_path_reset(dest); 2286 2287 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2288 struct waiting_dir_move *wdm; 2289 2290 fs_path_reset(name); 2291 2292 if (is_waiting_for_rm(sctx, ino)) { 2293 ret = gen_unique_name(sctx, ino, gen, name); 2294 if (ret < 0) 2295 goto out; 2296 ret = fs_path_add_path(dest, name); 2297 break; 2298 } 2299 2300 wdm = get_waiting_dir_move(sctx, ino); 2301 if (wdm && wdm->orphanized) { 2302 ret = gen_unique_name(sctx, ino, gen, name); 2303 stop = 1; 2304 } else if (wdm) { 2305 ret = get_first_ref(sctx->parent_root, ino, 2306 &parent_inode, &parent_gen, name); 2307 } else { 2308 ret = __get_cur_name_and_parent(sctx, ino, gen, 2309 &parent_inode, 2310 &parent_gen, name); 2311 if (ret) 2312 stop = 1; 2313 } 2314 2315 if (ret < 0) 2316 goto out; 2317 2318 ret = fs_path_add_path(dest, name); 2319 if (ret < 0) 2320 goto out; 2321 2322 ino = parent_inode; 2323 gen = parent_gen; 2324 } 2325 2326 out: 2327 fs_path_free(name); 2328 if (!ret) 2329 fs_path_unreverse(dest); 2330 return ret; 2331 } 2332 2333 /* 2334 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2335 */ 2336 static int send_subvol_begin(struct send_ctx *sctx) 2337 { 2338 int ret; 2339 struct btrfs_root *send_root = sctx->send_root; 2340 struct btrfs_root *parent_root = sctx->parent_root; 2341 struct btrfs_path *path; 2342 struct btrfs_key key; 2343 struct btrfs_root_ref *ref; 2344 struct extent_buffer *leaf; 2345 char *name = NULL; 2346 int namelen; 2347 2348 path = btrfs_alloc_path(); 2349 if (!path) 2350 return -ENOMEM; 2351 2352 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2353 if (!name) { 2354 btrfs_free_path(path); 2355 return -ENOMEM; 2356 } 2357 2358 key.objectid = send_root->objectid; 2359 key.type = BTRFS_ROOT_BACKREF_KEY; 2360 key.offset = 0; 2361 2362 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2363 &key, path, 1, 0); 2364 if (ret < 0) 2365 goto out; 2366 if (ret) { 2367 ret = -ENOENT; 2368 goto out; 2369 } 2370 2371 leaf = path->nodes[0]; 2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2373 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2374 key.objectid != send_root->objectid) { 2375 ret = -ENOENT; 2376 goto out; 2377 } 2378 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2379 namelen = btrfs_root_ref_name_len(leaf, ref); 2380 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2381 btrfs_release_path(path); 2382 2383 if (parent_root) { 2384 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2385 if (ret < 0) 2386 goto out; 2387 } else { 2388 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2389 if (ret < 0) 2390 goto out; 2391 } 2392 2393 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2394 2395 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2397 sctx->send_root->root_item.received_uuid); 2398 else 2399 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2400 sctx->send_root->root_item.uuid); 2401 2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2403 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2404 if (parent_root) { 2405 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2407 parent_root->root_item.received_uuid); 2408 else 2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2410 parent_root->root_item.uuid); 2411 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2412 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2413 } 2414 2415 ret = send_cmd(sctx); 2416 2417 tlv_put_failure: 2418 out: 2419 btrfs_free_path(path); 2420 kfree(name); 2421 return ret; 2422 } 2423 2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2425 { 2426 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2427 int ret = 0; 2428 struct fs_path *p; 2429 2430 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2431 2432 p = fs_path_alloc(); 2433 if (!p) 2434 return -ENOMEM; 2435 2436 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2437 if (ret < 0) 2438 goto out; 2439 2440 ret = get_cur_path(sctx, ino, gen, p); 2441 if (ret < 0) 2442 goto out; 2443 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2444 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2445 2446 ret = send_cmd(sctx); 2447 2448 tlv_put_failure: 2449 out: 2450 fs_path_free(p); 2451 return ret; 2452 } 2453 2454 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2455 { 2456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2457 int ret = 0; 2458 struct fs_path *p; 2459 2460 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2461 2462 p = fs_path_alloc(); 2463 if (!p) 2464 return -ENOMEM; 2465 2466 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2467 if (ret < 0) 2468 goto out; 2469 2470 ret = get_cur_path(sctx, ino, gen, p); 2471 if (ret < 0) 2472 goto out; 2473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2474 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2475 2476 ret = send_cmd(sctx); 2477 2478 tlv_put_failure: 2479 out: 2480 fs_path_free(p); 2481 return ret; 2482 } 2483 2484 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2485 { 2486 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2487 int ret = 0; 2488 struct fs_path *p; 2489 2490 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2491 ino, uid, gid); 2492 2493 p = fs_path_alloc(); 2494 if (!p) 2495 return -ENOMEM; 2496 2497 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2498 if (ret < 0) 2499 goto out; 2500 2501 ret = get_cur_path(sctx, ino, gen, p); 2502 if (ret < 0) 2503 goto out; 2504 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2505 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2506 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2507 2508 ret = send_cmd(sctx); 2509 2510 tlv_put_failure: 2511 out: 2512 fs_path_free(p); 2513 return ret; 2514 } 2515 2516 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2517 { 2518 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2519 int ret = 0; 2520 struct fs_path *p = NULL; 2521 struct btrfs_inode_item *ii; 2522 struct btrfs_path *path = NULL; 2523 struct extent_buffer *eb; 2524 struct btrfs_key key; 2525 int slot; 2526 2527 btrfs_debug(fs_info, "send_utimes %llu", ino); 2528 2529 p = fs_path_alloc(); 2530 if (!p) 2531 return -ENOMEM; 2532 2533 path = alloc_path_for_send(); 2534 if (!path) { 2535 ret = -ENOMEM; 2536 goto out; 2537 } 2538 2539 key.objectid = ino; 2540 key.type = BTRFS_INODE_ITEM_KEY; 2541 key.offset = 0; 2542 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2543 if (ret > 0) 2544 ret = -ENOENT; 2545 if (ret < 0) 2546 goto out; 2547 2548 eb = path->nodes[0]; 2549 slot = path->slots[0]; 2550 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2551 2552 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2553 if (ret < 0) 2554 goto out; 2555 2556 ret = get_cur_path(sctx, ino, gen, p); 2557 if (ret < 0) 2558 goto out; 2559 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2560 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2561 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2562 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2563 /* TODO Add otime support when the otime patches get into upstream */ 2564 2565 ret = send_cmd(sctx); 2566 2567 tlv_put_failure: 2568 out: 2569 fs_path_free(p); 2570 btrfs_free_path(path); 2571 return ret; 2572 } 2573 2574 /* 2575 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2576 * a valid path yet because we did not process the refs yet. So, the inode 2577 * is created as orphan. 2578 */ 2579 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2580 { 2581 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2582 int ret = 0; 2583 struct fs_path *p; 2584 int cmd; 2585 u64 gen; 2586 u64 mode; 2587 u64 rdev; 2588 2589 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2590 2591 p = fs_path_alloc(); 2592 if (!p) 2593 return -ENOMEM; 2594 2595 if (ino != sctx->cur_ino) { 2596 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2597 NULL, NULL, &rdev); 2598 if (ret < 0) 2599 goto out; 2600 } else { 2601 gen = sctx->cur_inode_gen; 2602 mode = sctx->cur_inode_mode; 2603 rdev = sctx->cur_inode_rdev; 2604 } 2605 2606 if (S_ISREG(mode)) { 2607 cmd = BTRFS_SEND_C_MKFILE; 2608 } else if (S_ISDIR(mode)) { 2609 cmd = BTRFS_SEND_C_MKDIR; 2610 } else if (S_ISLNK(mode)) { 2611 cmd = BTRFS_SEND_C_SYMLINK; 2612 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2613 cmd = BTRFS_SEND_C_MKNOD; 2614 } else if (S_ISFIFO(mode)) { 2615 cmd = BTRFS_SEND_C_MKFIFO; 2616 } else if (S_ISSOCK(mode)) { 2617 cmd = BTRFS_SEND_C_MKSOCK; 2618 } else { 2619 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2620 (int)(mode & S_IFMT)); 2621 ret = -ENOTSUPP; 2622 goto out; 2623 } 2624 2625 ret = begin_cmd(sctx, cmd); 2626 if (ret < 0) 2627 goto out; 2628 2629 ret = gen_unique_name(sctx, ino, gen, p); 2630 if (ret < 0) 2631 goto out; 2632 2633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2634 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2635 2636 if (S_ISLNK(mode)) { 2637 fs_path_reset(p); 2638 ret = read_symlink(sctx->send_root, ino, p); 2639 if (ret < 0) 2640 goto out; 2641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2642 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2643 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2646 } 2647 2648 ret = send_cmd(sctx); 2649 if (ret < 0) 2650 goto out; 2651 2652 2653 tlv_put_failure: 2654 out: 2655 fs_path_free(p); 2656 return ret; 2657 } 2658 2659 /* 2660 * We need some special handling for inodes that get processed before the parent 2661 * directory got created. See process_recorded_refs for details. 2662 * This function does the check if we already created the dir out of order. 2663 */ 2664 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2665 { 2666 int ret = 0; 2667 struct btrfs_path *path = NULL; 2668 struct btrfs_key key; 2669 struct btrfs_key found_key; 2670 struct btrfs_key di_key; 2671 struct extent_buffer *eb; 2672 struct btrfs_dir_item *di; 2673 int slot; 2674 2675 path = alloc_path_for_send(); 2676 if (!path) { 2677 ret = -ENOMEM; 2678 goto out; 2679 } 2680 2681 key.objectid = dir; 2682 key.type = BTRFS_DIR_INDEX_KEY; 2683 key.offset = 0; 2684 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2685 if (ret < 0) 2686 goto out; 2687 2688 while (1) { 2689 eb = path->nodes[0]; 2690 slot = path->slots[0]; 2691 if (slot >= btrfs_header_nritems(eb)) { 2692 ret = btrfs_next_leaf(sctx->send_root, path); 2693 if (ret < 0) { 2694 goto out; 2695 } else if (ret > 0) { 2696 ret = 0; 2697 break; 2698 } 2699 continue; 2700 } 2701 2702 btrfs_item_key_to_cpu(eb, &found_key, slot); 2703 if (found_key.objectid != key.objectid || 2704 found_key.type != key.type) { 2705 ret = 0; 2706 goto out; 2707 } 2708 2709 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2710 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2711 2712 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2713 di_key.objectid < sctx->send_progress) { 2714 ret = 1; 2715 goto out; 2716 } 2717 2718 path->slots[0]++; 2719 } 2720 2721 out: 2722 btrfs_free_path(path); 2723 return ret; 2724 } 2725 2726 /* 2727 * Only creates the inode if it is: 2728 * 1. Not a directory 2729 * 2. Or a directory which was not created already due to out of order 2730 * directories. See did_create_dir and process_recorded_refs for details. 2731 */ 2732 static int send_create_inode_if_needed(struct send_ctx *sctx) 2733 { 2734 int ret; 2735 2736 if (S_ISDIR(sctx->cur_inode_mode)) { 2737 ret = did_create_dir(sctx, sctx->cur_ino); 2738 if (ret < 0) 2739 goto out; 2740 if (ret) { 2741 ret = 0; 2742 goto out; 2743 } 2744 } 2745 2746 ret = send_create_inode(sctx, sctx->cur_ino); 2747 if (ret < 0) 2748 goto out; 2749 2750 out: 2751 return ret; 2752 } 2753 2754 struct recorded_ref { 2755 struct list_head list; 2756 char *dir_path; 2757 char *name; 2758 struct fs_path *full_path; 2759 u64 dir; 2760 u64 dir_gen; 2761 int dir_path_len; 2762 int name_len; 2763 }; 2764 2765 /* 2766 * We need to process new refs before deleted refs, but compare_tree gives us 2767 * everything mixed. So we first record all refs and later process them. 2768 * This function is a helper to record one ref. 2769 */ 2770 static int __record_ref(struct list_head *head, u64 dir, 2771 u64 dir_gen, struct fs_path *path) 2772 { 2773 struct recorded_ref *ref; 2774 2775 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2776 if (!ref) 2777 return -ENOMEM; 2778 2779 ref->dir = dir; 2780 ref->dir_gen = dir_gen; 2781 ref->full_path = path; 2782 2783 ref->name = (char *)kbasename(ref->full_path->start); 2784 ref->name_len = ref->full_path->end - ref->name; 2785 ref->dir_path = ref->full_path->start; 2786 if (ref->name == ref->full_path->start) 2787 ref->dir_path_len = 0; 2788 else 2789 ref->dir_path_len = ref->full_path->end - 2790 ref->full_path->start - 1 - ref->name_len; 2791 2792 list_add_tail(&ref->list, head); 2793 return 0; 2794 } 2795 2796 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2797 { 2798 struct recorded_ref *new; 2799 2800 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2801 if (!new) 2802 return -ENOMEM; 2803 2804 new->dir = ref->dir; 2805 new->dir_gen = ref->dir_gen; 2806 new->full_path = NULL; 2807 INIT_LIST_HEAD(&new->list); 2808 list_add_tail(&new->list, list); 2809 return 0; 2810 } 2811 2812 static void __free_recorded_refs(struct list_head *head) 2813 { 2814 struct recorded_ref *cur; 2815 2816 while (!list_empty(head)) { 2817 cur = list_entry(head->next, struct recorded_ref, list); 2818 fs_path_free(cur->full_path); 2819 list_del(&cur->list); 2820 kfree(cur); 2821 } 2822 } 2823 2824 static void free_recorded_refs(struct send_ctx *sctx) 2825 { 2826 __free_recorded_refs(&sctx->new_refs); 2827 __free_recorded_refs(&sctx->deleted_refs); 2828 } 2829 2830 /* 2831 * Renames/moves a file/dir to its orphan name. Used when the first 2832 * ref of an unprocessed inode gets overwritten and for all non empty 2833 * directories. 2834 */ 2835 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2836 struct fs_path *path) 2837 { 2838 int ret; 2839 struct fs_path *orphan; 2840 2841 orphan = fs_path_alloc(); 2842 if (!orphan) 2843 return -ENOMEM; 2844 2845 ret = gen_unique_name(sctx, ino, gen, orphan); 2846 if (ret < 0) 2847 goto out; 2848 2849 ret = send_rename(sctx, path, orphan); 2850 2851 out: 2852 fs_path_free(orphan); 2853 return ret; 2854 } 2855 2856 static struct orphan_dir_info * 2857 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2858 { 2859 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2860 struct rb_node *parent = NULL; 2861 struct orphan_dir_info *entry, *odi; 2862 2863 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2864 if (!odi) 2865 return ERR_PTR(-ENOMEM); 2866 odi->ino = dir_ino; 2867 odi->gen = 0; 2868 2869 while (*p) { 2870 parent = *p; 2871 entry = rb_entry(parent, struct orphan_dir_info, node); 2872 if (dir_ino < entry->ino) { 2873 p = &(*p)->rb_left; 2874 } else if (dir_ino > entry->ino) { 2875 p = &(*p)->rb_right; 2876 } else { 2877 kfree(odi); 2878 return entry; 2879 } 2880 } 2881 2882 rb_link_node(&odi->node, parent, p); 2883 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2884 return odi; 2885 } 2886 2887 static struct orphan_dir_info * 2888 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2889 { 2890 struct rb_node *n = sctx->orphan_dirs.rb_node; 2891 struct orphan_dir_info *entry; 2892 2893 while (n) { 2894 entry = rb_entry(n, struct orphan_dir_info, node); 2895 if (dir_ino < entry->ino) 2896 n = n->rb_left; 2897 else if (dir_ino > entry->ino) 2898 n = n->rb_right; 2899 else 2900 return entry; 2901 } 2902 return NULL; 2903 } 2904 2905 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2906 { 2907 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2908 2909 return odi != NULL; 2910 } 2911 2912 static void free_orphan_dir_info(struct send_ctx *sctx, 2913 struct orphan_dir_info *odi) 2914 { 2915 if (!odi) 2916 return; 2917 rb_erase(&odi->node, &sctx->orphan_dirs); 2918 kfree(odi); 2919 } 2920 2921 /* 2922 * Returns 1 if a directory can be removed at this point in time. 2923 * We check this by iterating all dir items and checking if the inode behind 2924 * the dir item was already processed. 2925 */ 2926 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2927 u64 send_progress) 2928 { 2929 int ret = 0; 2930 struct btrfs_root *root = sctx->parent_root; 2931 struct btrfs_path *path; 2932 struct btrfs_key key; 2933 struct btrfs_key found_key; 2934 struct btrfs_key loc; 2935 struct btrfs_dir_item *di; 2936 2937 /* 2938 * Don't try to rmdir the top/root subvolume dir. 2939 */ 2940 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2941 return 0; 2942 2943 path = alloc_path_for_send(); 2944 if (!path) 2945 return -ENOMEM; 2946 2947 key.objectid = dir; 2948 key.type = BTRFS_DIR_INDEX_KEY; 2949 key.offset = 0; 2950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2951 if (ret < 0) 2952 goto out; 2953 2954 while (1) { 2955 struct waiting_dir_move *dm; 2956 2957 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2958 ret = btrfs_next_leaf(root, path); 2959 if (ret < 0) 2960 goto out; 2961 else if (ret > 0) 2962 break; 2963 continue; 2964 } 2965 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2966 path->slots[0]); 2967 if (found_key.objectid != key.objectid || 2968 found_key.type != key.type) 2969 break; 2970 2971 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2972 struct btrfs_dir_item); 2973 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2974 2975 dm = get_waiting_dir_move(sctx, loc.objectid); 2976 if (dm) { 2977 struct orphan_dir_info *odi; 2978 2979 odi = add_orphan_dir_info(sctx, dir); 2980 if (IS_ERR(odi)) { 2981 ret = PTR_ERR(odi); 2982 goto out; 2983 } 2984 odi->gen = dir_gen; 2985 dm->rmdir_ino = dir; 2986 ret = 0; 2987 goto out; 2988 } 2989 2990 if (loc.objectid > send_progress) { 2991 struct orphan_dir_info *odi; 2992 2993 odi = get_orphan_dir_info(sctx, dir); 2994 free_orphan_dir_info(sctx, odi); 2995 ret = 0; 2996 goto out; 2997 } 2998 2999 path->slots[0]++; 3000 } 3001 3002 ret = 1; 3003 3004 out: 3005 btrfs_free_path(path); 3006 return ret; 3007 } 3008 3009 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3010 { 3011 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3012 3013 return entry != NULL; 3014 } 3015 3016 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3017 { 3018 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3019 struct rb_node *parent = NULL; 3020 struct waiting_dir_move *entry, *dm; 3021 3022 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3023 if (!dm) 3024 return -ENOMEM; 3025 dm->ino = ino; 3026 dm->rmdir_ino = 0; 3027 dm->orphanized = orphanized; 3028 3029 while (*p) { 3030 parent = *p; 3031 entry = rb_entry(parent, struct waiting_dir_move, node); 3032 if (ino < entry->ino) { 3033 p = &(*p)->rb_left; 3034 } else if (ino > entry->ino) { 3035 p = &(*p)->rb_right; 3036 } else { 3037 kfree(dm); 3038 return -EEXIST; 3039 } 3040 } 3041 3042 rb_link_node(&dm->node, parent, p); 3043 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3044 return 0; 3045 } 3046 3047 static struct waiting_dir_move * 3048 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3049 { 3050 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3051 struct waiting_dir_move *entry; 3052 3053 while (n) { 3054 entry = rb_entry(n, struct waiting_dir_move, node); 3055 if (ino < entry->ino) 3056 n = n->rb_left; 3057 else if (ino > entry->ino) 3058 n = n->rb_right; 3059 else 3060 return entry; 3061 } 3062 return NULL; 3063 } 3064 3065 static void free_waiting_dir_move(struct send_ctx *sctx, 3066 struct waiting_dir_move *dm) 3067 { 3068 if (!dm) 3069 return; 3070 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3071 kfree(dm); 3072 } 3073 3074 static int add_pending_dir_move(struct send_ctx *sctx, 3075 u64 ino, 3076 u64 ino_gen, 3077 u64 parent_ino, 3078 struct list_head *new_refs, 3079 struct list_head *deleted_refs, 3080 const bool is_orphan) 3081 { 3082 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3083 struct rb_node *parent = NULL; 3084 struct pending_dir_move *entry = NULL, *pm; 3085 struct recorded_ref *cur; 3086 int exists = 0; 3087 int ret; 3088 3089 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3090 if (!pm) 3091 return -ENOMEM; 3092 pm->parent_ino = parent_ino; 3093 pm->ino = ino; 3094 pm->gen = ino_gen; 3095 INIT_LIST_HEAD(&pm->list); 3096 INIT_LIST_HEAD(&pm->update_refs); 3097 RB_CLEAR_NODE(&pm->node); 3098 3099 while (*p) { 3100 parent = *p; 3101 entry = rb_entry(parent, struct pending_dir_move, node); 3102 if (parent_ino < entry->parent_ino) { 3103 p = &(*p)->rb_left; 3104 } else if (parent_ino > entry->parent_ino) { 3105 p = &(*p)->rb_right; 3106 } else { 3107 exists = 1; 3108 break; 3109 } 3110 } 3111 3112 list_for_each_entry(cur, deleted_refs, list) { 3113 ret = dup_ref(cur, &pm->update_refs); 3114 if (ret < 0) 3115 goto out; 3116 } 3117 list_for_each_entry(cur, new_refs, list) { 3118 ret = dup_ref(cur, &pm->update_refs); 3119 if (ret < 0) 3120 goto out; 3121 } 3122 3123 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3124 if (ret) 3125 goto out; 3126 3127 if (exists) { 3128 list_add_tail(&pm->list, &entry->list); 3129 } else { 3130 rb_link_node(&pm->node, parent, p); 3131 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3132 } 3133 ret = 0; 3134 out: 3135 if (ret) { 3136 __free_recorded_refs(&pm->update_refs); 3137 kfree(pm); 3138 } 3139 return ret; 3140 } 3141 3142 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3143 u64 parent_ino) 3144 { 3145 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3146 struct pending_dir_move *entry; 3147 3148 while (n) { 3149 entry = rb_entry(n, struct pending_dir_move, node); 3150 if (parent_ino < entry->parent_ino) 3151 n = n->rb_left; 3152 else if (parent_ino > entry->parent_ino) 3153 n = n->rb_right; 3154 else 3155 return entry; 3156 } 3157 return NULL; 3158 } 3159 3160 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3161 u64 ino, u64 gen, u64 *ancestor_ino) 3162 { 3163 int ret = 0; 3164 u64 parent_inode = 0; 3165 u64 parent_gen = 0; 3166 u64 start_ino = ino; 3167 3168 *ancestor_ino = 0; 3169 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3170 fs_path_reset(name); 3171 3172 if (is_waiting_for_rm(sctx, ino)) 3173 break; 3174 if (is_waiting_for_move(sctx, ino)) { 3175 if (*ancestor_ino == 0) 3176 *ancestor_ino = ino; 3177 ret = get_first_ref(sctx->parent_root, ino, 3178 &parent_inode, &parent_gen, name); 3179 } else { 3180 ret = __get_cur_name_and_parent(sctx, ino, gen, 3181 &parent_inode, 3182 &parent_gen, name); 3183 if (ret > 0) { 3184 ret = 0; 3185 break; 3186 } 3187 } 3188 if (ret < 0) 3189 break; 3190 if (parent_inode == start_ino) { 3191 ret = 1; 3192 if (*ancestor_ino == 0) 3193 *ancestor_ino = ino; 3194 break; 3195 } 3196 ino = parent_inode; 3197 gen = parent_gen; 3198 } 3199 return ret; 3200 } 3201 3202 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3203 { 3204 struct fs_path *from_path = NULL; 3205 struct fs_path *to_path = NULL; 3206 struct fs_path *name = NULL; 3207 u64 orig_progress = sctx->send_progress; 3208 struct recorded_ref *cur; 3209 u64 parent_ino, parent_gen; 3210 struct waiting_dir_move *dm = NULL; 3211 u64 rmdir_ino = 0; 3212 u64 ancestor; 3213 bool is_orphan; 3214 int ret; 3215 3216 name = fs_path_alloc(); 3217 from_path = fs_path_alloc(); 3218 if (!name || !from_path) { 3219 ret = -ENOMEM; 3220 goto out; 3221 } 3222 3223 dm = get_waiting_dir_move(sctx, pm->ino); 3224 ASSERT(dm); 3225 rmdir_ino = dm->rmdir_ino; 3226 is_orphan = dm->orphanized; 3227 free_waiting_dir_move(sctx, dm); 3228 3229 if (is_orphan) { 3230 ret = gen_unique_name(sctx, pm->ino, 3231 pm->gen, from_path); 3232 } else { 3233 ret = get_first_ref(sctx->parent_root, pm->ino, 3234 &parent_ino, &parent_gen, name); 3235 if (ret < 0) 3236 goto out; 3237 ret = get_cur_path(sctx, parent_ino, parent_gen, 3238 from_path); 3239 if (ret < 0) 3240 goto out; 3241 ret = fs_path_add_path(from_path, name); 3242 } 3243 if (ret < 0) 3244 goto out; 3245 3246 sctx->send_progress = sctx->cur_ino + 1; 3247 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3248 if (ret < 0) 3249 goto out; 3250 if (ret) { 3251 LIST_HEAD(deleted_refs); 3252 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3253 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3254 &pm->update_refs, &deleted_refs, 3255 is_orphan); 3256 if (ret < 0) 3257 goto out; 3258 if (rmdir_ino) { 3259 dm = get_waiting_dir_move(sctx, pm->ino); 3260 ASSERT(dm); 3261 dm->rmdir_ino = rmdir_ino; 3262 } 3263 goto out; 3264 } 3265 fs_path_reset(name); 3266 to_path = name; 3267 name = NULL; 3268 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3269 if (ret < 0) 3270 goto out; 3271 3272 ret = send_rename(sctx, from_path, to_path); 3273 if (ret < 0) 3274 goto out; 3275 3276 if (rmdir_ino) { 3277 struct orphan_dir_info *odi; 3278 3279 odi = get_orphan_dir_info(sctx, rmdir_ino); 3280 if (!odi) { 3281 /* already deleted */ 3282 goto finish; 3283 } 3284 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino); 3285 if (ret < 0) 3286 goto out; 3287 if (!ret) 3288 goto finish; 3289 3290 name = fs_path_alloc(); 3291 if (!name) { 3292 ret = -ENOMEM; 3293 goto out; 3294 } 3295 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name); 3296 if (ret < 0) 3297 goto out; 3298 ret = send_rmdir(sctx, name); 3299 if (ret < 0) 3300 goto out; 3301 free_orphan_dir_info(sctx, odi); 3302 } 3303 3304 finish: 3305 ret = send_utimes(sctx, pm->ino, pm->gen); 3306 if (ret < 0) 3307 goto out; 3308 3309 /* 3310 * After rename/move, need to update the utimes of both new parent(s) 3311 * and old parent(s). 3312 */ 3313 list_for_each_entry(cur, &pm->update_refs, list) { 3314 /* 3315 * The parent inode might have been deleted in the send snapshot 3316 */ 3317 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3318 NULL, NULL, NULL, NULL, NULL); 3319 if (ret == -ENOENT) { 3320 ret = 0; 3321 continue; 3322 } 3323 if (ret < 0) 3324 goto out; 3325 3326 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3327 if (ret < 0) 3328 goto out; 3329 } 3330 3331 out: 3332 fs_path_free(name); 3333 fs_path_free(from_path); 3334 fs_path_free(to_path); 3335 sctx->send_progress = orig_progress; 3336 3337 return ret; 3338 } 3339 3340 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3341 { 3342 if (!list_empty(&m->list)) 3343 list_del(&m->list); 3344 if (!RB_EMPTY_NODE(&m->node)) 3345 rb_erase(&m->node, &sctx->pending_dir_moves); 3346 __free_recorded_refs(&m->update_refs); 3347 kfree(m); 3348 } 3349 3350 static void tail_append_pending_moves(struct pending_dir_move *moves, 3351 struct list_head *stack) 3352 { 3353 if (list_empty(&moves->list)) { 3354 list_add_tail(&moves->list, stack); 3355 } else { 3356 LIST_HEAD(list); 3357 list_splice_init(&moves->list, &list); 3358 list_add_tail(&moves->list, stack); 3359 list_splice_tail(&list, stack); 3360 } 3361 } 3362 3363 static int apply_children_dir_moves(struct send_ctx *sctx) 3364 { 3365 struct pending_dir_move *pm; 3366 struct list_head stack; 3367 u64 parent_ino = sctx->cur_ino; 3368 int ret = 0; 3369 3370 pm = get_pending_dir_moves(sctx, parent_ino); 3371 if (!pm) 3372 return 0; 3373 3374 INIT_LIST_HEAD(&stack); 3375 tail_append_pending_moves(pm, &stack); 3376 3377 while (!list_empty(&stack)) { 3378 pm = list_first_entry(&stack, struct pending_dir_move, list); 3379 parent_ino = pm->ino; 3380 ret = apply_dir_move(sctx, pm); 3381 free_pending_move(sctx, pm); 3382 if (ret) 3383 goto out; 3384 pm = get_pending_dir_moves(sctx, parent_ino); 3385 if (pm) 3386 tail_append_pending_moves(pm, &stack); 3387 } 3388 return 0; 3389 3390 out: 3391 while (!list_empty(&stack)) { 3392 pm = list_first_entry(&stack, struct pending_dir_move, list); 3393 free_pending_move(sctx, pm); 3394 } 3395 return ret; 3396 } 3397 3398 /* 3399 * We might need to delay a directory rename even when no ancestor directory 3400 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3401 * renamed. This happens when we rename a directory to the old name (the name 3402 * in the parent root) of some other unrelated directory that got its rename 3403 * delayed due to some ancestor with higher number that got renamed. 3404 * 3405 * Example: 3406 * 3407 * Parent snapshot: 3408 * . (ino 256) 3409 * |---- a/ (ino 257) 3410 * | |---- file (ino 260) 3411 * | 3412 * |---- b/ (ino 258) 3413 * |---- c/ (ino 259) 3414 * 3415 * Send snapshot: 3416 * . (ino 256) 3417 * |---- a/ (ino 258) 3418 * |---- x/ (ino 259) 3419 * |---- y/ (ino 257) 3420 * |----- file (ino 260) 3421 * 3422 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3423 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3424 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3425 * must issue is: 3426 * 3427 * 1 - rename 259 from 'c' to 'x' 3428 * 2 - rename 257 from 'a' to 'x/y' 3429 * 3 - rename 258 from 'b' to 'a' 3430 * 3431 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3432 * be done right away and < 0 on error. 3433 */ 3434 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3435 struct recorded_ref *parent_ref, 3436 const bool is_orphan) 3437 { 3438 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3439 struct btrfs_path *path; 3440 struct btrfs_key key; 3441 struct btrfs_key di_key; 3442 struct btrfs_dir_item *di; 3443 u64 left_gen; 3444 u64 right_gen; 3445 int ret = 0; 3446 struct waiting_dir_move *wdm; 3447 3448 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3449 return 0; 3450 3451 path = alloc_path_for_send(); 3452 if (!path) 3453 return -ENOMEM; 3454 3455 key.objectid = parent_ref->dir; 3456 key.type = BTRFS_DIR_ITEM_KEY; 3457 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3458 3459 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3460 if (ret < 0) { 3461 goto out; 3462 } else if (ret > 0) { 3463 ret = 0; 3464 goto out; 3465 } 3466 3467 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3468 parent_ref->name_len); 3469 if (!di) { 3470 ret = 0; 3471 goto out; 3472 } 3473 /* 3474 * di_key.objectid has the number of the inode that has a dentry in the 3475 * parent directory with the same name that sctx->cur_ino is being 3476 * renamed to. We need to check if that inode is in the send root as 3477 * well and if it is currently marked as an inode with a pending rename, 3478 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3479 * that it happens after that other inode is renamed. 3480 */ 3481 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3482 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3483 ret = 0; 3484 goto out; 3485 } 3486 3487 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3488 &left_gen, NULL, NULL, NULL, NULL); 3489 if (ret < 0) 3490 goto out; 3491 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3492 &right_gen, NULL, NULL, NULL, NULL); 3493 if (ret < 0) { 3494 if (ret == -ENOENT) 3495 ret = 0; 3496 goto out; 3497 } 3498 3499 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3500 if (right_gen != left_gen) { 3501 ret = 0; 3502 goto out; 3503 } 3504 3505 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3506 if (wdm && !wdm->orphanized) { 3507 ret = add_pending_dir_move(sctx, 3508 sctx->cur_ino, 3509 sctx->cur_inode_gen, 3510 di_key.objectid, 3511 &sctx->new_refs, 3512 &sctx->deleted_refs, 3513 is_orphan); 3514 if (!ret) 3515 ret = 1; 3516 } 3517 out: 3518 btrfs_free_path(path); 3519 return ret; 3520 } 3521 3522 /* 3523 * Check if ino ino1 is an ancestor of inode ino2 in the given root. 3524 * Return 1 if true, 0 if false and < 0 on error. 3525 */ 3526 static int is_ancestor(struct btrfs_root *root, 3527 const u64 ino1, 3528 const u64 ino1_gen, 3529 const u64 ino2, 3530 struct fs_path *fs_path) 3531 { 3532 u64 ino = ino2; 3533 3534 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3535 int ret; 3536 u64 parent; 3537 u64 parent_gen; 3538 3539 fs_path_reset(fs_path); 3540 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3541 if (ret < 0) { 3542 if (ret == -ENOENT && ino == ino2) 3543 ret = 0; 3544 return ret; 3545 } 3546 if (parent == ino1) 3547 return parent_gen == ino1_gen ? 1 : 0; 3548 ino = parent; 3549 } 3550 return 0; 3551 } 3552 3553 static int wait_for_parent_move(struct send_ctx *sctx, 3554 struct recorded_ref *parent_ref, 3555 const bool is_orphan) 3556 { 3557 int ret = 0; 3558 u64 ino = parent_ref->dir; 3559 u64 parent_ino_before, parent_ino_after; 3560 struct fs_path *path_before = NULL; 3561 struct fs_path *path_after = NULL; 3562 int len1, len2; 3563 3564 path_after = fs_path_alloc(); 3565 path_before = fs_path_alloc(); 3566 if (!path_after || !path_before) { 3567 ret = -ENOMEM; 3568 goto out; 3569 } 3570 3571 /* 3572 * Our current directory inode may not yet be renamed/moved because some 3573 * ancestor (immediate or not) has to be renamed/moved first. So find if 3574 * such ancestor exists and make sure our own rename/move happens after 3575 * that ancestor is processed to avoid path build infinite loops (done 3576 * at get_cur_path()). 3577 */ 3578 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3579 if (is_waiting_for_move(sctx, ino)) { 3580 /* 3581 * If the current inode is an ancestor of ino in the 3582 * parent root, we need to delay the rename of the 3583 * current inode, otherwise don't delayed the rename 3584 * because we can end up with a circular dependency 3585 * of renames, resulting in some directories never 3586 * getting the respective rename operations issued in 3587 * the send stream or getting into infinite path build 3588 * loops. 3589 */ 3590 ret = is_ancestor(sctx->parent_root, 3591 sctx->cur_ino, sctx->cur_inode_gen, 3592 ino, path_before); 3593 if (ret) 3594 break; 3595 } 3596 3597 fs_path_reset(path_before); 3598 fs_path_reset(path_after); 3599 3600 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3601 NULL, path_after); 3602 if (ret < 0) 3603 goto out; 3604 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3605 NULL, path_before); 3606 if (ret < 0 && ret != -ENOENT) { 3607 goto out; 3608 } else if (ret == -ENOENT) { 3609 ret = 0; 3610 break; 3611 } 3612 3613 len1 = fs_path_len(path_before); 3614 len2 = fs_path_len(path_after); 3615 if (ino > sctx->cur_ino && 3616 (parent_ino_before != parent_ino_after || len1 != len2 || 3617 memcmp(path_before->start, path_after->start, len1))) { 3618 ret = 1; 3619 break; 3620 } 3621 ino = parent_ino_after; 3622 } 3623 3624 out: 3625 fs_path_free(path_before); 3626 fs_path_free(path_after); 3627 3628 if (ret == 1) { 3629 ret = add_pending_dir_move(sctx, 3630 sctx->cur_ino, 3631 sctx->cur_inode_gen, 3632 ino, 3633 &sctx->new_refs, 3634 &sctx->deleted_refs, 3635 is_orphan); 3636 if (!ret) 3637 ret = 1; 3638 } 3639 3640 return ret; 3641 } 3642 3643 /* 3644 * This does all the move/link/unlink/rmdir magic. 3645 */ 3646 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3647 { 3648 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3649 int ret = 0; 3650 struct recorded_ref *cur; 3651 struct recorded_ref *cur2; 3652 struct list_head check_dirs; 3653 struct fs_path *valid_path = NULL; 3654 u64 ow_inode = 0; 3655 u64 ow_gen; 3656 int did_overwrite = 0; 3657 int is_orphan = 0; 3658 u64 last_dir_ino_rm = 0; 3659 bool can_rename = true; 3660 3661 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3662 3663 /* 3664 * This should never happen as the root dir always has the same ref 3665 * which is always '..' 3666 */ 3667 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3668 INIT_LIST_HEAD(&check_dirs); 3669 3670 valid_path = fs_path_alloc(); 3671 if (!valid_path) { 3672 ret = -ENOMEM; 3673 goto out; 3674 } 3675 3676 /* 3677 * First, check if the first ref of the current inode was overwritten 3678 * before. If yes, we know that the current inode was already orphanized 3679 * and thus use the orphan name. If not, we can use get_cur_path to 3680 * get the path of the first ref as it would like while receiving at 3681 * this point in time. 3682 * New inodes are always orphan at the beginning, so force to use the 3683 * orphan name in this case. 3684 * The first ref is stored in valid_path and will be updated if it 3685 * gets moved around. 3686 */ 3687 if (!sctx->cur_inode_new) { 3688 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3689 sctx->cur_inode_gen); 3690 if (ret < 0) 3691 goto out; 3692 if (ret) 3693 did_overwrite = 1; 3694 } 3695 if (sctx->cur_inode_new || did_overwrite) { 3696 ret = gen_unique_name(sctx, sctx->cur_ino, 3697 sctx->cur_inode_gen, valid_path); 3698 if (ret < 0) 3699 goto out; 3700 is_orphan = 1; 3701 } else { 3702 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3703 valid_path); 3704 if (ret < 0) 3705 goto out; 3706 } 3707 3708 list_for_each_entry(cur, &sctx->new_refs, list) { 3709 /* 3710 * We may have refs where the parent directory does not exist 3711 * yet. This happens if the parent directories inum is higher 3712 * the the current inum. To handle this case, we create the 3713 * parent directory out of order. But we need to check if this 3714 * did already happen before due to other refs in the same dir. 3715 */ 3716 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3717 if (ret < 0) 3718 goto out; 3719 if (ret == inode_state_will_create) { 3720 ret = 0; 3721 /* 3722 * First check if any of the current inodes refs did 3723 * already create the dir. 3724 */ 3725 list_for_each_entry(cur2, &sctx->new_refs, list) { 3726 if (cur == cur2) 3727 break; 3728 if (cur2->dir == cur->dir) { 3729 ret = 1; 3730 break; 3731 } 3732 } 3733 3734 /* 3735 * If that did not happen, check if a previous inode 3736 * did already create the dir. 3737 */ 3738 if (!ret) 3739 ret = did_create_dir(sctx, cur->dir); 3740 if (ret < 0) 3741 goto out; 3742 if (!ret) { 3743 ret = send_create_inode(sctx, cur->dir); 3744 if (ret < 0) 3745 goto out; 3746 } 3747 } 3748 3749 /* 3750 * Check if this new ref would overwrite the first ref of 3751 * another unprocessed inode. If yes, orphanize the 3752 * overwritten inode. If we find an overwritten ref that is 3753 * not the first ref, simply unlink it. 3754 */ 3755 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3756 cur->name, cur->name_len, 3757 &ow_inode, &ow_gen); 3758 if (ret < 0) 3759 goto out; 3760 if (ret) { 3761 ret = is_first_ref(sctx->parent_root, 3762 ow_inode, cur->dir, cur->name, 3763 cur->name_len); 3764 if (ret < 0) 3765 goto out; 3766 if (ret) { 3767 struct name_cache_entry *nce; 3768 struct waiting_dir_move *wdm; 3769 3770 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3771 cur->full_path); 3772 if (ret < 0) 3773 goto out; 3774 3775 /* 3776 * If ow_inode has its rename operation delayed 3777 * make sure that its orphanized name is used in 3778 * the source path when performing its rename 3779 * operation. 3780 */ 3781 if (is_waiting_for_move(sctx, ow_inode)) { 3782 wdm = get_waiting_dir_move(sctx, 3783 ow_inode); 3784 ASSERT(wdm); 3785 wdm->orphanized = true; 3786 } 3787 3788 /* 3789 * Make sure we clear our orphanized inode's 3790 * name from the name cache. This is because the 3791 * inode ow_inode might be an ancestor of some 3792 * other inode that will be orphanized as well 3793 * later and has an inode number greater than 3794 * sctx->send_progress. We need to prevent 3795 * future name lookups from using the old name 3796 * and get instead the orphan name. 3797 */ 3798 nce = name_cache_search(sctx, ow_inode, ow_gen); 3799 if (nce) { 3800 name_cache_delete(sctx, nce); 3801 kfree(nce); 3802 } 3803 3804 /* 3805 * ow_inode might currently be an ancestor of 3806 * cur_ino, therefore compute valid_path (the 3807 * current path of cur_ino) again because it 3808 * might contain the pre-orphanization name of 3809 * ow_inode, which is no longer valid. 3810 */ 3811 fs_path_reset(valid_path); 3812 ret = get_cur_path(sctx, sctx->cur_ino, 3813 sctx->cur_inode_gen, valid_path); 3814 if (ret < 0) 3815 goto out; 3816 } else { 3817 ret = send_unlink(sctx, cur->full_path); 3818 if (ret < 0) 3819 goto out; 3820 } 3821 } 3822 3823 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3824 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3825 if (ret < 0) 3826 goto out; 3827 if (ret == 1) { 3828 can_rename = false; 3829 *pending_move = 1; 3830 } 3831 } 3832 3833 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3834 can_rename) { 3835 ret = wait_for_parent_move(sctx, cur, is_orphan); 3836 if (ret < 0) 3837 goto out; 3838 if (ret == 1) { 3839 can_rename = false; 3840 *pending_move = 1; 3841 } 3842 } 3843 3844 /* 3845 * link/move the ref to the new place. If we have an orphan 3846 * inode, move it and update valid_path. If not, link or move 3847 * it depending on the inode mode. 3848 */ 3849 if (is_orphan && can_rename) { 3850 ret = send_rename(sctx, valid_path, cur->full_path); 3851 if (ret < 0) 3852 goto out; 3853 is_orphan = 0; 3854 ret = fs_path_copy(valid_path, cur->full_path); 3855 if (ret < 0) 3856 goto out; 3857 } else if (can_rename) { 3858 if (S_ISDIR(sctx->cur_inode_mode)) { 3859 /* 3860 * Dirs can't be linked, so move it. For moved 3861 * dirs, we always have one new and one deleted 3862 * ref. The deleted ref is ignored later. 3863 */ 3864 ret = send_rename(sctx, valid_path, 3865 cur->full_path); 3866 if (!ret) 3867 ret = fs_path_copy(valid_path, 3868 cur->full_path); 3869 if (ret < 0) 3870 goto out; 3871 } else { 3872 ret = send_link(sctx, cur->full_path, 3873 valid_path); 3874 if (ret < 0) 3875 goto out; 3876 } 3877 } 3878 ret = dup_ref(cur, &check_dirs); 3879 if (ret < 0) 3880 goto out; 3881 } 3882 3883 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 3884 /* 3885 * Check if we can already rmdir the directory. If not, 3886 * orphanize it. For every dir item inside that gets deleted 3887 * later, we do this check again and rmdir it then if possible. 3888 * See the use of check_dirs for more details. 3889 */ 3890 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3891 sctx->cur_ino); 3892 if (ret < 0) 3893 goto out; 3894 if (ret) { 3895 ret = send_rmdir(sctx, valid_path); 3896 if (ret < 0) 3897 goto out; 3898 } else if (!is_orphan) { 3899 ret = orphanize_inode(sctx, sctx->cur_ino, 3900 sctx->cur_inode_gen, valid_path); 3901 if (ret < 0) 3902 goto out; 3903 is_orphan = 1; 3904 } 3905 3906 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3907 ret = dup_ref(cur, &check_dirs); 3908 if (ret < 0) 3909 goto out; 3910 } 3911 } else if (S_ISDIR(sctx->cur_inode_mode) && 3912 !list_empty(&sctx->deleted_refs)) { 3913 /* 3914 * We have a moved dir. Add the old parent to check_dirs 3915 */ 3916 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 3917 list); 3918 ret = dup_ref(cur, &check_dirs); 3919 if (ret < 0) 3920 goto out; 3921 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 3922 /* 3923 * We have a non dir inode. Go through all deleted refs and 3924 * unlink them if they were not already overwritten by other 3925 * inodes. 3926 */ 3927 list_for_each_entry(cur, &sctx->deleted_refs, list) { 3928 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3929 sctx->cur_ino, sctx->cur_inode_gen, 3930 cur->name, cur->name_len); 3931 if (ret < 0) 3932 goto out; 3933 if (!ret) { 3934 ret = send_unlink(sctx, cur->full_path); 3935 if (ret < 0) 3936 goto out; 3937 } 3938 ret = dup_ref(cur, &check_dirs); 3939 if (ret < 0) 3940 goto out; 3941 } 3942 /* 3943 * If the inode is still orphan, unlink the orphan. This may 3944 * happen when a previous inode did overwrite the first ref 3945 * of this inode and no new refs were added for the current 3946 * inode. Unlinking does not mean that the inode is deleted in 3947 * all cases. There may still be links to this inode in other 3948 * places. 3949 */ 3950 if (is_orphan) { 3951 ret = send_unlink(sctx, valid_path); 3952 if (ret < 0) 3953 goto out; 3954 } 3955 } 3956 3957 /* 3958 * We did collect all parent dirs where cur_inode was once located. We 3959 * now go through all these dirs and check if they are pending for 3960 * deletion and if it's finally possible to perform the rmdir now. 3961 * We also update the inode stats of the parent dirs here. 3962 */ 3963 list_for_each_entry(cur, &check_dirs, list) { 3964 /* 3965 * In case we had refs into dirs that were not processed yet, 3966 * we don't need to do the utime and rmdir logic for these dirs. 3967 * The dir will be processed later. 3968 */ 3969 if (cur->dir > sctx->cur_ino) 3970 continue; 3971 3972 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3973 if (ret < 0) 3974 goto out; 3975 3976 if (ret == inode_state_did_create || 3977 ret == inode_state_no_change) { 3978 /* TODO delayed utimes */ 3979 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3980 if (ret < 0) 3981 goto out; 3982 } else if (ret == inode_state_did_delete && 3983 cur->dir != last_dir_ino_rm) { 3984 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 3985 sctx->cur_ino); 3986 if (ret < 0) 3987 goto out; 3988 if (ret) { 3989 ret = get_cur_path(sctx, cur->dir, 3990 cur->dir_gen, valid_path); 3991 if (ret < 0) 3992 goto out; 3993 ret = send_rmdir(sctx, valid_path); 3994 if (ret < 0) 3995 goto out; 3996 last_dir_ino_rm = cur->dir; 3997 } 3998 } 3999 } 4000 4001 ret = 0; 4002 4003 out: 4004 __free_recorded_refs(&check_dirs); 4005 free_recorded_refs(sctx); 4006 fs_path_free(valid_path); 4007 return ret; 4008 } 4009 4010 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index, 4011 struct fs_path *name, void *ctx, struct list_head *refs) 4012 { 4013 int ret = 0; 4014 struct send_ctx *sctx = ctx; 4015 struct fs_path *p; 4016 u64 gen; 4017 4018 p = fs_path_alloc(); 4019 if (!p) 4020 return -ENOMEM; 4021 4022 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4023 NULL, NULL); 4024 if (ret < 0) 4025 goto out; 4026 4027 ret = get_cur_path(sctx, dir, gen, p); 4028 if (ret < 0) 4029 goto out; 4030 ret = fs_path_add_path(p, name); 4031 if (ret < 0) 4032 goto out; 4033 4034 ret = __record_ref(refs, dir, gen, p); 4035 4036 out: 4037 if (ret) 4038 fs_path_free(p); 4039 return ret; 4040 } 4041 4042 static int __record_new_ref(int num, u64 dir, int index, 4043 struct fs_path *name, 4044 void *ctx) 4045 { 4046 struct send_ctx *sctx = ctx; 4047 return record_ref(sctx->send_root, num, dir, index, name, 4048 ctx, &sctx->new_refs); 4049 } 4050 4051 4052 static int __record_deleted_ref(int num, u64 dir, int index, 4053 struct fs_path *name, 4054 void *ctx) 4055 { 4056 struct send_ctx *sctx = ctx; 4057 return record_ref(sctx->parent_root, num, dir, index, name, 4058 ctx, &sctx->deleted_refs); 4059 } 4060 4061 static int record_new_ref(struct send_ctx *sctx) 4062 { 4063 int ret; 4064 4065 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4066 sctx->cmp_key, 0, __record_new_ref, sctx); 4067 if (ret < 0) 4068 goto out; 4069 ret = 0; 4070 4071 out: 4072 return ret; 4073 } 4074 4075 static int record_deleted_ref(struct send_ctx *sctx) 4076 { 4077 int ret; 4078 4079 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4080 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4081 if (ret < 0) 4082 goto out; 4083 ret = 0; 4084 4085 out: 4086 return ret; 4087 } 4088 4089 struct find_ref_ctx { 4090 u64 dir; 4091 u64 dir_gen; 4092 struct btrfs_root *root; 4093 struct fs_path *name; 4094 int found_idx; 4095 }; 4096 4097 static int __find_iref(int num, u64 dir, int index, 4098 struct fs_path *name, 4099 void *ctx_) 4100 { 4101 struct find_ref_ctx *ctx = ctx_; 4102 u64 dir_gen; 4103 int ret; 4104 4105 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4106 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4107 /* 4108 * To avoid doing extra lookups we'll only do this if everything 4109 * else matches. 4110 */ 4111 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4112 NULL, NULL, NULL); 4113 if (ret) 4114 return ret; 4115 if (dir_gen != ctx->dir_gen) 4116 return 0; 4117 ctx->found_idx = num; 4118 return 1; 4119 } 4120 return 0; 4121 } 4122 4123 static int find_iref(struct btrfs_root *root, 4124 struct btrfs_path *path, 4125 struct btrfs_key *key, 4126 u64 dir, u64 dir_gen, struct fs_path *name) 4127 { 4128 int ret; 4129 struct find_ref_ctx ctx; 4130 4131 ctx.dir = dir; 4132 ctx.name = name; 4133 ctx.dir_gen = dir_gen; 4134 ctx.found_idx = -1; 4135 ctx.root = root; 4136 4137 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4138 if (ret < 0) 4139 return ret; 4140 4141 if (ctx.found_idx == -1) 4142 return -ENOENT; 4143 4144 return ctx.found_idx; 4145 } 4146 4147 static int __record_changed_new_ref(int num, u64 dir, int index, 4148 struct fs_path *name, 4149 void *ctx) 4150 { 4151 u64 dir_gen; 4152 int ret; 4153 struct send_ctx *sctx = ctx; 4154 4155 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4156 NULL, NULL, NULL); 4157 if (ret) 4158 return ret; 4159 4160 ret = find_iref(sctx->parent_root, sctx->right_path, 4161 sctx->cmp_key, dir, dir_gen, name); 4162 if (ret == -ENOENT) 4163 ret = __record_new_ref(num, dir, index, name, sctx); 4164 else if (ret > 0) 4165 ret = 0; 4166 4167 return ret; 4168 } 4169 4170 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4171 struct fs_path *name, 4172 void *ctx) 4173 { 4174 u64 dir_gen; 4175 int ret; 4176 struct send_ctx *sctx = ctx; 4177 4178 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4179 NULL, NULL, NULL); 4180 if (ret) 4181 return ret; 4182 4183 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4184 dir, dir_gen, name); 4185 if (ret == -ENOENT) 4186 ret = __record_deleted_ref(num, dir, index, name, sctx); 4187 else if (ret > 0) 4188 ret = 0; 4189 4190 return ret; 4191 } 4192 4193 static int record_changed_ref(struct send_ctx *sctx) 4194 { 4195 int ret = 0; 4196 4197 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4198 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4199 if (ret < 0) 4200 goto out; 4201 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4202 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4203 if (ret < 0) 4204 goto out; 4205 ret = 0; 4206 4207 out: 4208 return ret; 4209 } 4210 4211 /* 4212 * Record and process all refs at once. Needed when an inode changes the 4213 * generation number, which means that it was deleted and recreated. 4214 */ 4215 static int process_all_refs(struct send_ctx *sctx, 4216 enum btrfs_compare_tree_result cmd) 4217 { 4218 int ret; 4219 struct btrfs_root *root; 4220 struct btrfs_path *path; 4221 struct btrfs_key key; 4222 struct btrfs_key found_key; 4223 struct extent_buffer *eb; 4224 int slot; 4225 iterate_inode_ref_t cb; 4226 int pending_move = 0; 4227 4228 path = alloc_path_for_send(); 4229 if (!path) 4230 return -ENOMEM; 4231 4232 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4233 root = sctx->send_root; 4234 cb = __record_new_ref; 4235 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4236 root = sctx->parent_root; 4237 cb = __record_deleted_ref; 4238 } else { 4239 btrfs_err(sctx->send_root->fs_info, 4240 "Wrong command %d in process_all_refs", cmd); 4241 ret = -EINVAL; 4242 goto out; 4243 } 4244 4245 key.objectid = sctx->cmp_key->objectid; 4246 key.type = BTRFS_INODE_REF_KEY; 4247 key.offset = 0; 4248 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4249 if (ret < 0) 4250 goto out; 4251 4252 while (1) { 4253 eb = path->nodes[0]; 4254 slot = path->slots[0]; 4255 if (slot >= btrfs_header_nritems(eb)) { 4256 ret = btrfs_next_leaf(root, path); 4257 if (ret < 0) 4258 goto out; 4259 else if (ret > 0) 4260 break; 4261 continue; 4262 } 4263 4264 btrfs_item_key_to_cpu(eb, &found_key, slot); 4265 4266 if (found_key.objectid != key.objectid || 4267 (found_key.type != BTRFS_INODE_REF_KEY && 4268 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4269 break; 4270 4271 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4272 if (ret < 0) 4273 goto out; 4274 4275 path->slots[0]++; 4276 } 4277 btrfs_release_path(path); 4278 4279 /* 4280 * We don't actually care about pending_move as we are simply 4281 * re-creating this inode and will be rename'ing it into place once we 4282 * rename the parent directory. 4283 */ 4284 ret = process_recorded_refs(sctx, &pending_move); 4285 out: 4286 btrfs_free_path(path); 4287 return ret; 4288 } 4289 4290 static int send_set_xattr(struct send_ctx *sctx, 4291 struct fs_path *path, 4292 const char *name, int name_len, 4293 const char *data, int data_len) 4294 { 4295 int ret = 0; 4296 4297 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4298 if (ret < 0) 4299 goto out; 4300 4301 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4302 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4303 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4304 4305 ret = send_cmd(sctx); 4306 4307 tlv_put_failure: 4308 out: 4309 return ret; 4310 } 4311 4312 static int send_remove_xattr(struct send_ctx *sctx, 4313 struct fs_path *path, 4314 const char *name, int name_len) 4315 { 4316 int ret = 0; 4317 4318 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4319 if (ret < 0) 4320 goto out; 4321 4322 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4323 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4324 4325 ret = send_cmd(sctx); 4326 4327 tlv_put_failure: 4328 out: 4329 return ret; 4330 } 4331 4332 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4333 const char *name, int name_len, 4334 const char *data, int data_len, 4335 u8 type, void *ctx) 4336 { 4337 int ret; 4338 struct send_ctx *sctx = ctx; 4339 struct fs_path *p; 4340 struct posix_acl_xattr_header dummy_acl; 4341 4342 p = fs_path_alloc(); 4343 if (!p) 4344 return -ENOMEM; 4345 4346 /* 4347 * This hack is needed because empty acls are stored as zero byte 4348 * data in xattrs. Problem with that is, that receiving these zero byte 4349 * acls will fail later. To fix this, we send a dummy acl list that 4350 * only contains the version number and no entries. 4351 */ 4352 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4353 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4354 if (data_len == 0) { 4355 dummy_acl.a_version = 4356 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4357 data = (char *)&dummy_acl; 4358 data_len = sizeof(dummy_acl); 4359 } 4360 } 4361 4362 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4363 if (ret < 0) 4364 goto out; 4365 4366 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4367 4368 out: 4369 fs_path_free(p); 4370 return ret; 4371 } 4372 4373 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4374 const char *name, int name_len, 4375 const char *data, int data_len, 4376 u8 type, void *ctx) 4377 { 4378 int ret; 4379 struct send_ctx *sctx = ctx; 4380 struct fs_path *p; 4381 4382 p = fs_path_alloc(); 4383 if (!p) 4384 return -ENOMEM; 4385 4386 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4387 if (ret < 0) 4388 goto out; 4389 4390 ret = send_remove_xattr(sctx, p, name, name_len); 4391 4392 out: 4393 fs_path_free(p); 4394 return ret; 4395 } 4396 4397 static int process_new_xattr(struct send_ctx *sctx) 4398 { 4399 int ret = 0; 4400 4401 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4402 sctx->cmp_key, __process_new_xattr, sctx); 4403 4404 return ret; 4405 } 4406 4407 static int process_deleted_xattr(struct send_ctx *sctx) 4408 { 4409 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4410 sctx->cmp_key, __process_deleted_xattr, sctx); 4411 } 4412 4413 struct find_xattr_ctx { 4414 const char *name; 4415 int name_len; 4416 int found_idx; 4417 char *found_data; 4418 int found_data_len; 4419 }; 4420 4421 static int __find_xattr(int num, struct btrfs_key *di_key, 4422 const char *name, int name_len, 4423 const char *data, int data_len, 4424 u8 type, void *vctx) 4425 { 4426 struct find_xattr_ctx *ctx = vctx; 4427 4428 if (name_len == ctx->name_len && 4429 strncmp(name, ctx->name, name_len) == 0) { 4430 ctx->found_idx = num; 4431 ctx->found_data_len = data_len; 4432 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4433 if (!ctx->found_data) 4434 return -ENOMEM; 4435 return 1; 4436 } 4437 return 0; 4438 } 4439 4440 static int find_xattr(struct btrfs_root *root, 4441 struct btrfs_path *path, 4442 struct btrfs_key *key, 4443 const char *name, int name_len, 4444 char **data, int *data_len) 4445 { 4446 int ret; 4447 struct find_xattr_ctx ctx; 4448 4449 ctx.name = name; 4450 ctx.name_len = name_len; 4451 ctx.found_idx = -1; 4452 ctx.found_data = NULL; 4453 ctx.found_data_len = 0; 4454 4455 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx); 4456 if (ret < 0) 4457 return ret; 4458 4459 if (ctx.found_idx == -1) 4460 return -ENOENT; 4461 if (data) { 4462 *data = ctx.found_data; 4463 *data_len = ctx.found_data_len; 4464 } else { 4465 kfree(ctx.found_data); 4466 } 4467 return ctx.found_idx; 4468 } 4469 4470 4471 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4472 const char *name, int name_len, 4473 const char *data, int data_len, 4474 u8 type, void *ctx) 4475 { 4476 int ret; 4477 struct send_ctx *sctx = ctx; 4478 char *found_data = NULL; 4479 int found_data_len = 0; 4480 4481 ret = find_xattr(sctx->parent_root, sctx->right_path, 4482 sctx->cmp_key, name, name_len, &found_data, 4483 &found_data_len); 4484 if (ret == -ENOENT) { 4485 ret = __process_new_xattr(num, di_key, name, name_len, data, 4486 data_len, type, ctx); 4487 } else if (ret >= 0) { 4488 if (data_len != found_data_len || 4489 memcmp(data, found_data, data_len)) { 4490 ret = __process_new_xattr(num, di_key, name, name_len, 4491 data, data_len, type, ctx); 4492 } else { 4493 ret = 0; 4494 } 4495 } 4496 4497 kfree(found_data); 4498 return ret; 4499 } 4500 4501 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4502 const char *name, int name_len, 4503 const char *data, int data_len, 4504 u8 type, void *ctx) 4505 { 4506 int ret; 4507 struct send_ctx *sctx = ctx; 4508 4509 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4510 name, name_len, NULL, NULL); 4511 if (ret == -ENOENT) 4512 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4513 data_len, type, ctx); 4514 else if (ret >= 0) 4515 ret = 0; 4516 4517 return ret; 4518 } 4519 4520 static int process_changed_xattr(struct send_ctx *sctx) 4521 { 4522 int ret = 0; 4523 4524 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4525 sctx->cmp_key, __process_changed_new_xattr, sctx); 4526 if (ret < 0) 4527 goto out; 4528 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4529 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 4530 4531 out: 4532 return ret; 4533 } 4534 4535 static int process_all_new_xattrs(struct send_ctx *sctx) 4536 { 4537 int ret; 4538 struct btrfs_root *root; 4539 struct btrfs_path *path; 4540 struct btrfs_key key; 4541 struct btrfs_key found_key; 4542 struct extent_buffer *eb; 4543 int slot; 4544 4545 path = alloc_path_for_send(); 4546 if (!path) 4547 return -ENOMEM; 4548 4549 root = sctx->send_root; 4550 4551 key.objectid = sctx->cmp_key->objectid; 4552 key.type = BTRFS_XATTR_ITEM_KEY; 4553 key.offset = 0; 4554 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4555 if (ret < 0) 4556 goto out; 4557 4558 while (1) { 4559 eb = path->nodes[0]; 4560 slot = path->slots[0]; 4561 if (slot >= btrfs_header_nritems(eb)) { 4562 ret = btrfs_next_leaf(root, path); 4563 if (ret < 0) { 4564 goto out; 4565 } else if (ret > 0) { 4566 ret = 0; 4567 break; 4568 } 4569 continue; 4570 } 4571 4572 btrfs_item_key_to_cpu(eb, &found_key, slot); 4573 if (found_key.objectid != key.objectid || 4574 found_key.type != key.type) { 4575 ret = 0; 4576 goto out; 4577 } 4578 4579 ret = iterate_dir_item(root, path, &found_key, 4580 __process_new_xattr, sctx); 4581 if (ret < 0) 4582 goto out; 4583 4584 path->slots[0]++; 4585 } 4586 4587 out: 4588 btrfs_free_path(path); 4589 return ret; 4590 } 4591 4592 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4593 { 4594 struct btrfs_root *root = sctx->send_root; 4595 struct btrfs_fs_info *fs_info = root->fs_info; 4596 struct inode *inode; 4597 struct page *page; 4598 char *addr; 4599 struct btrfs_key key; 4600 pgoff_t index = offset >> PAGE_SHIFT; 4601 pgoff_t last_index; 4602 unsigned pg_offset = offset & ~PAGE_MASK; 4603 ssize_t ret = 0; 4604 4605 key.objectid = sctx->cur_ino; 4606 key.type = BTRFS_INODE_ITEM_KEY; 4607 key.offset = 0; 4608 4609 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4610 if (IS_ERR(inode)) 4611 return PTR_ERR(inode); 4612 4613 if (offset + len > i_size_read(inode)) { 4614 if (offset > i_size_read(inode)) 4615 len = 0; 4616 else 4617 len = offset - i_size_read(inode); 4618 } 4619 if (len == 0) 4620 goto out; 4621 4622 last_index = (offset + len - 1) >> PAGE_SHIFT; 4623 4624 /* initial readahead */ 4625 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4626 file_ra_state_init(&sctx->ra, inode->i_mapping); 4627 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index, 4628 last_index - index + 1); 4629 4630 while (index <= last_index) { 4631 unsigned cur_len = min_t(unsigned, len, 4632 PAGE_SIZE - pg_offset); 4633 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL); 4634 if (!page) { 4635 ret = -ENOMEM; 4636 break; 4637 } 4638 4639 if (!PageUptodate(page)) { 4640 btrfs_readpage(NULL, page); 4641 lock_page(page); 4642 if (!PageUptodate(page)) { 4643 unlock_page(page); 4644 put_page(page); 4645 ret = -EIO; 4646 break; 4647 } 4648 } 4649 4650 addr = kmap(page); 4651 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4652 kunmap(page); 4653 unlock_page(page); 4654 put_page(page); 4655 index++; 4656 pg_offset = 0; 4657 len -= cur_len; 4658 ret += cur_len; 4659 } 4660 out: 4661 iput(inode); 4662 return ret; 4663 } 4664 4665 /* 4666 * Read some bytes from the current inode/file and send a write command to 4667 * user space. 4668 */ 4669 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4670 { 4671 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4672 int ret = 0; 4673 struct fs_path *p; 4674 ssize_t num_read = 0; 4675 4676 p = fs_path_alloc(); 4677 if (!p) 4678 return -ENOMEM; 4679 4680 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4681 4682 num_read = fill_read_buf(sctx, offset, len); 4683 if (num_read <= 0) { 4684 if (num_read < 0) 4685 ret = num_read; 4686 goto out; 4687 } 4688 4689 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4690 if (ret < 0) 4691 goto out; 4692 4693 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4694 if (ret < 0) 4695 goto out; 4696 4697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4698 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4699 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4700 4701 ret = send_cmd(sctx); 4702 4703 tlv_put_failure: 4704 out: 4705 fs_path_free(p); 4706 if (ret < 0) 4707 return ret; 4708 return num_read; 4709 } 4710 4711 /* 4712 * Send a clone command to user space. 4713 */ 4714 static int send_clone(struct send_ctx *sctx, 4715 u64 offset, u32 len, 4716 struct clone_root *clone_root) 4717 { 4718 int ret = 0; 4719 struct fs_path *p; 4720 u64 gen; 4721 4722 btrfs_debug(sctx->send_root->fs_info, 4723 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4724 offset, len, clone_root->root->objectid, clone_root->ino, 4725 clone_root->offset); 4726 4727 p = fs_path_alloc(); 4728 if (!p) 4729 return -ENOMEM; 4730 4731 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4732 if (ret < 0) 4733 goto out; 4734 4735 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4736 if (ret < 0) 4737 goto out; 4738 4739 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4740 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4742 4743 if (clone_root->root == sctx->send_root) { 4744 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4745 &gen, NULL, NULL, NULL, NULL); 4746 if (ret < 0) 4747 goto out; 4748 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4749 } else { 4750 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4751 } 4752 if (ret < 0) 4753 goto out; 4754 4755 /* 4756 * If the parent we're using has a received_uuid set then use that as 4757 * our clone source as that is what we will look for when doing a 4758 * receive. 4759 * 4760 * This covers the case that we create a snapshot off of a received 4761 * subvolume and then use that as the parent and try to receive on a 4762 * different host. 4763 */ 4764 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4765 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4766 clone_root->root->root_item.received_uuid); 4767 else 4768 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4769 clone_root->root->root_item.uuid); 4770 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4771 le64_to_cpu(clone_root->root->root_item.ctransid)); 4772 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4773 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4774 clone_root->offset); 4775 4776 ret = send_cmd(sctx); 4777 4778 tlv_put_failure: 4779 out: 4780 fs_path_free(p); 4781 return ret; 4782 } 4783 4784 /* 4785 * Send an update extent command to user space. 4786 */ 4787 static int send_update_extent(struct send_ctx *sctx, 4788 u64 offset, u32 len) 4789 { 4790 int ret = 0; 4791 struct fs_path *p; 4792 4793 p = fs_path_alloc(); 4794 if (!p) 4795 return -ENOMEM; 4796 4797 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4798 if (ret < 0) 4799 goto out; 4800 4801 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4802 if (ret < 0) 4803 goto out; 4804 4805 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4806 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4807 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4808 4809 ret = send_cmd(sctx); 4810 4811 tlv_put_failure: 4812 out: 4813 fs_path_free(p); 4814 return ret; 4815 } 4816 4817 static int send_hole(struct send_ctx *sctx, u64 end) 4818 { 4819 struct fs_path *p = NULL; 4820 u64 offset = sctx->cur_inode_last_extent; 4821 u64 len; 4822 int ret = 0; 4823 4824 p = fs_path_alloc(); 4825 if (!p) 4826 return -ENOMEM; 4827 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4828 if (ret < 0) 4829 goto tlv_put_failure; 4830 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 4831 while (offset < end) { 4832 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 4833 4834 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4835 if (ret < 0) 4836 break; 4837 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4838 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4839 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 4840 ret = send_cmd(sctx); 4841 if (ret < 0) 4842 break; 4843 offset += len; 4844 } 4845 tlv_put_failure: 4846 fs_path_free(p); 4847 return ret; 4848 } 4849 4850 static int send_extent_data(struct send_ctx *sctx, 4851 const u64 offset, 4852 const u64 len) 4853 { 4854 u64 sent = 0; 4855 4856 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 4857 return send_update_extent(sctx, offset, len); 4858 4859 while (sent < len) { 4860 u64 size = len - sent; 4861 int ret; 4862 4863 if (size > BTRFS_SEND_READ_SIZE) 4864 size = BTRFS_SEND_READ_SIZE; 4865 ret = send_write(sctx, offset + sent, size); 4866 if (ret < 0) 4867 return ret; 4868 if (!ret) 4869 break; 4870 sent += ret; 4871 } 4872 return 0; 4873 } 4874 4875 static int clone_range(struct send_ctx *sctx, 4876 struct clone_root *clone_root, 4877 const u64 disk_byte, 4878 u64 data_offset, 4879 u64 offset, 4880 u64 len) 4881 { 4882 struct btrfs_path *path; 4883 struct btrfs_key key; 4884 int ret; 4885 4886 path = alloc_path_for_send(); 4887 if (!path) 4888 return -ENOMEM; 4889 4890 /* 4891 * We can't send a clone operation for the entire range if we find 4892 * extent items in the respective range in the source file that 4893 * refer to different extents or if we find holes. 4894 * So check for that and do a mix of clone and regular write/copy 4895 * operations if needed. 4896 * 4897 * Example: 4898 * 4899 * mkfs.btrfs -f /dev/sda 4900 * mount /dev/sda /mnt 4901 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 4902 * cp --reflink=always /mnt/foo /mnt/bar 4903 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 4904 * btrfs subvolume snapshot -r /mnt /mnt/snap 4905 * 4906 * If when we send the snapshot and we are processing file bar (which 4907 * has a higher inode number than foo) we blindly send a clone operation 4908 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 4909 * a file bar that matches the content of file foo - iow, doesn't match 4910 * the content from bar in the original filesystem. 4911 */ 4912 key.objectid = clone_root->ino; 4913 key.type = BTRFS_EXTENT_DATA_KEY; 4914 key.offset = clone_root->offset; 4915 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 4916 if (ret < 0) 4917 goto out; 4918 if (ret > 0 && path->slots[0] > 0) { 4919 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 4920 if (key.objectid == clone_root->ino && 4921 key.type == BTRFS_EXTENT_DATA_KEY) 4922 path->slots[0]--; 4923 } 4924 4925 while (true) { 4926 struct extent_buffer *leaf = path->nodes[0]; 4927 int slot = path->slots[0]; 4928 struct btrfs_file_extent_item *ei; 4929 u8 type; 4930 u64 ext_len; 4931 u64 clone_len; 4932 4933 if (slot >= btrfs_header_nritems(leaf)) { 4934 ret = btrfs_next_leaf(clone_root->root, path); 4935 if (ret < 0) 4936 goto out; 4937 else if (ret > 0) 4938 break; 4939 continue; 4940 } 4941 4942 btrfs_item_key_to_cpu(leaf, &key, slot); 4943 4944 /* 4945 * We might have an implicit trailing hole (NO_HOLES feature 4946 * enabled). We deal with it after leaving this loop. 4947 */ 4948 if (key.objectid != clone_root->ino || 4949 key.type != BTRFS_EXTENT_DATA_KEY) 4950 break; 4951 4952 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4953 type = btrfs_file_extent_type(leaf, ei); 4954 if (type == BTRFS_FILE_EXTENT_INLINE) { 4955 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei); 4956 ext_len = PAGE_ALIGN(ext_len); 4957 } else { 4958 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 4959 } 4960 4961 if (key.offset + ext_len <= clone_root->offset) 4962 goto next; 4963 4964 if (key.offset > clone_root->offset) { 4965 /* Implicit hole, NO_HOLES feature enabled. */ 4966 u64 hole_len = key.offset - clone_root->offset; 4967 4968 if (hole_len > len) 4969 hole_len = len; 4970 ret = send_extent_data(sctx, offset, hole_len); 4971 if (ret < 0) 4972 goto out; 4973 4974 len -= hole_len; 4975 if (len == 0) 4976 break; 4977 offset += hole_len; 4978 clone_root->offset += hole_len; 4979 data_offset += hole_len; 4980 } 4981 4982 if (key.offset >= clone_root->offset + len) 4983 break; 4984 4985 clone_len = min_t(u64, ext_len, len); 4986 4987 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 4988 btrfs_file_extent_offset(leaf, ei) == data_offset) 4989 ret = send_clone(sctx, offset, clone_len, clone_root); 4990 else 4991 ret = send_extent_data(sctx, offset, clone_len); 4992 4993 if (ret < 0) 4994 goto out; 4995 4996 len -= clone_len; 4997 if (len == 0) 4998 break; 4999 offset += clone_len; 5000 clone_root->offset += clone_len; 5001 data_offset += clone_len; 5002 next: 5003 path->slots[0]++; 5004 } 5005 5006 if (len > 0) 5007 ret = send_extent_data(sctx, offset, len); 5008 else 5009 ret = 0; 5010 out: 5011 btrfs_free_path(path); 5012 return ret; 5013 } 5014 5015 static int send_write_or_clone(struct send_ctx *sctx, 5016 struct btrfs_path *path, 5017 struct btrfs_key *key, 5018 struct clone_root *clone_root) 5019 { 5020 int ret = 0; 5021 struct btrfs_file_extent_item *ei; 5022 u64 offset = key->offset; 5023 u64 len; 5024 u8 type; 5025 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5026 5027 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5028 struct btrfs_file_extent_item); 5029 type = btrfs_file_extent_type(path->nodes[0], ei); 5030 if (type == BTRFS_FILE_EXTENT_INLINE) { 5031 len = btrfs_file_extent_inline_len(path->nodes[0], 5032 path->slots[0], ei); 5033 /* 5034 * it is possible the inline item won't cover the whole page, 5035 * but there may be items after this page. Make 5036 * sure to send the whole thing 5037 */ 5038 len = PAGE_ALIGN(len); 5039 } else { 5040 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5041 } 5042 5043 if (offset + len > sctx->cur_inode_size) 5044 len = sctx->cur_inode_size - offset; 5045 if (len == 0) { 5046 ret = 0; 5047 goto out; 5048 } 5049 5050 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5051 u64 disk_byte; 5052 u64 data_offset; 5053 5054 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5055 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5056 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5057 offset, len); 5058 } else { 5059 ret = send_extent_data(sctx, offset, len); 5060 } 5061 out: 5062 return ret; 5063 } 5064 5065 static int is_extent_unchanged(struct send_ctx *sctx, 5066 struct btrfs_path *left_path, 5067 struct btrfs_key *ekey) 5068 { 5069 int ret = 0; 5070 struct btrfs_key key; 5071 struct btrfs_path *path = NULL; 5072 struct extent_buffer *eb; 5073 int slot; 5074 struct btrfs_key found_key; 5075 struct btrfs_file_extent_item *ei; 5076 u64 left_disknr; 5077 u64 right_disknr; 5078 u64 left_offset; 5079 u64 right_offset; 5080 u64 left_offset_fixed; 5081 u64 left_len; 5082 u64 right_len; 5083 u64 left_gen; 5084 u64 right_gen; 5085 u8 left_type; 5086 u8 right_type; 5087 5088 path = alloc_path_for_send(); 5089 if (!path) 5090 return -ENOMEM; 5091 5092 eb = left_path->nodes[0]; 5093 slot = left_path->slots[0]; 5094 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5095 left_type = btrfs_file_extent_type(eb, ei); 5096 5097 if (left_type != BTRFS_FILE_EXTENT_REG) { 5098 ret = 0; 5099 goto out; 5100 } 5101 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5102 left_len = btrfs_file_extent_num_bytes(eb, ei); 5103 left_offset = btrfs_file_extent_offset(eb, ei); 5104 left_gen = btrfs_file_extent_generation(eb, ei); 5105 5106 /* 5107 * Following comments will refer to these graphics. L is the left 5108 * extents which we are checking at the moment. 1-8 are the right 5109 * extents that we iterate. 5110 * 5111 * |-----L-----| 5112 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5113 * 5114 * |-----L-----| 5115 * |--1--|-2b-|...(same as above) 5116 * 5117 * Alternative situation. Happens on files where extents got split. 5118 * |-----L-----| 5119 * |-----------7-----------|-6-| 5120 * 5121 * Alternative situation. Happens on files which got larger. 5122 * |-----L-----| 5123 * |-8-| 5124 * Nothing follows after 8. 5125 */ 5126 5127 key.objectid = ekey->objectid; 5128 key.type = BTRFS_EXTENT_DATA_KEY; 5129 key.offset = ekey->offset; 5130 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5131 if (ret < 0) 5132 goto out; 5133 if (ret) { 5134 ret = 0; 5135 goto out; 5136 } 5137 5138 /* 5139 * Handle special case where the right side has no extents at all. 5140 */ 5141 eb = path->nodes[0]; 5142 slot = path->slots[0]; 5143 btrfs_item_key_to_cpu(eb, &found_key, slot); 5144 if (found_key.objectid != key.objectid || 5145 found_key.type != key.type) { 5146 /* If we're a hole then just pretend nothing changed */ 5147 ret = (left_disknr) ? 0 : 1; 5148 goto out; 5149 } 5150 5151 /* 5152 * We're now on 2a, 2b or 7. 5153 */ 5154 key = found_key; 5155 while (key.offset < ekey->offset + left_len) { 5156 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5157 right_type = btrfs_file_extent_type(eb, ei); 5158 if (right_type != BTRFS_FILE_EXTENT_REG) { 5159 ret = 0; 5160 goto out; 5161 } 5162 5163 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5164 right_len = btrfs_file_extent_num_bytes(eb, ei); 5165 right_offset = btrfs_file_extent_offset(eb, ei); 5166 right_gen = btrfs_file_extent_generation(eb, ei); 5167 5168 /* 5169 * Are we at extent 8? If yes, we know the extent is changed. 5170 * This may only happen on the first iteration. 5171 */ 5172 if (found_key.offset + right_len <= ekey->offset) { 5173 /* If we're a hole just pretend nothing changed */ 5174 ret = (left_disknr) ? 0 : 1; 5175 goto out; 5176 } 5177 5178 left_offset_fixed = left_offset; 5179 if (key.offset < ekey->offset) { 5180 /* Fix the right offset for 2a and 7. */ 5181 right_offset += ekey->offset - key.offset; 5182 } else { 5183 /* Fix the left offset for all behind 2a and 2b */ 5184 left_offset_fixed += key.offset - ekey->offset; 5185 } 5186 5187 /* 5188 * Check if we have the same extent. 5189 */ 5190 if (left_disknr != right_disknr || 5191 left_offset_fixed != right_offset || 5192 left_gen != right_gen) { 5193 ret = 0; 5194 goto out; 5195 } 5196 5197 /* 5198 * Go to the next extent. 5199 */ 5200 ret = btrfs_next_item(sctx->parent_root, path); 5201 if (ret < 0) 5202 goto out; 5203 if (!ret) { 5204 eb = path->nodes[0]; 5205 slot = path->slots[0]; 5206 btrfs_item_key_to_cpu(eb, &found_key, slot); 5207 } 5208 if (ret || found_key.objectid != key.objectid || 5209 found_key.type != key.type) { 5210 key.offset += right_len; 5211 break; 5212 } 5213 if (found_key.offset != key.offset + right_len) { 5214 ret = 0; 5215 goto out; 5216 } 5217 key = found_key; 5218 } 5219 5220 /* 5221 * We're now behind the left extent (treat as unchanged) or at the end 5222 * of the right side (treat as changed). 5223 */ 5224 if (key.offset >= ekey->offset + left_len) 5225 ret = 1; 5226 else 5227 ret = 0; 5228 5229 5230 out: 5231 btrfs_free_path(path); 5232 return ret; 5233 } 5234 5235 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5236 { 5237 struct btrfs_path *path; 5238 struct btrfs_root *root = sctx->send_root; 5239 struct btrfs_file_extent_item *fi; 5240 struct btrfs_key key; 5241 u64 extent_end; 5242 u8 type; 5243 int ret; 5244 5245 path = alloc_path_for_send(); 5246 if (!path) 5247 return -ENOMEM; 5248 5249 sctx->cur_inode_last_extent = 0; 5250 5251 key.objectid = sctx->cur_ino; 5252 key.type = BTRFS_EXTENT_DATA_KEY; 5253 key.offset = offset; 5254 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5255 if (ret < 0) 5256 goto out; 5257 ret = 0; 5258 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5259 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5260 goto out; 5261 5262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5263 struct btrfs_file_extent_item); 5264 type = btrfs_file_extent_type(path->nodes[0], fi); 5265 if (type == BTRFS_FILE_EXTENT_INLINE) { 5266 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5267 path->slots[0], fi); 5268 extent_end = ALIGN(key.offset + size, 5269 sctx->send_root->fs_info->sectorsize); 5270 } else { 5271 extent_end = key.offset + 5272 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5273 } 5274 sctx->cur_inode_last_extent = extent_end; 5275 out: 5276 btrfs_free_path(path); 5277 return ret; 5278 } 5279 5280 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5281 struct btrfs_key *key) 5282 { 5283 struct btrfs_file_extent_item *fi; 5284 u64 extent_end; 5285 u8 type; 5286 int ret = 0; 5287 5288 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5289 return 0; 5290 5291 if (sctx->cur_inode_last_extent == (u64)-1) { 5292 ret = get_last_extent(sctx, key->offset - 1); 5293 if (ret) 5294 return ret; 5295 } 5296 5297 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5298 struct btrfs_file_extent_item); 5299 type = btrfs_file_extent_type(path->nodes[0], fi); 5300 if (type == BTRFS_FILE_EXTENT_INLINE) { 5301 u64 size = btrfs_file_extent_inline_len(path->nodes[0], 5302 path->slots[0], fi); 5303 extent_end = ALIGN(key->offset + size, 5304 sctx->send_root->fs_info->sectorsize); 5305 } else { 5306 extent_end = key->offset + 5307 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5308 } 5309 5310 if (path->slots[0] == 0 && 5311 sctx->cur_inode_last_extent < key->offset) { 5312 /* 5313 * We might have skipped entire leafs that contained only 5314 * file extent items for our current inode. These leafs have 5315 * a generation number smaller (older) than the one in the 5316 * current leaf and the leaf our last extent came from, and 5317 * are located between these 2 leafs. 5318 */ 5319 ret = get_last_extent(sctx, key->offset - 1); 5320 if (ret) 5321 return ret; 5322 } 5323 5324 if (sctx->cur_inode_last_extent < key->offset) 5325 ret = send_hole(sctx, key->offset); 5326 sctx->cur_inode_last_extent = extent_end; 5327 return ret; 5328 } 5329 5330 static int process_extent(struct send_ctx *sctx, 5331 struct btrfs_path *path, 5332 struct btrfs_key *key) 5333 { 5334 struct clone_root *found_clone = NULL; 5335 int ret = 0; 5336 5337 if (S_ISLNK(sctx->cur_inode_mode)) 5338 return 0; 5339 5340 if (sctx->parent_root && !sctx->cur_inode_new) { 5341 ret = is_extent_unchanged(sctx, path, key); 5342 if (ret < 0) 5343 goto out; 5344 if (ret) { 5345 ret = 0; 5346 goto out_hole; 5347 } 5348 } else { 5349 struct btrfs_file_extent_item *ei; 5350 u8 type; 5351 5352 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5353 struct btrfs_file_extent_item); 5354 type = btrfs_file_extent_type(path->nodes[0], ei); 5355 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5356 type == BTRFS_FILE_EXTENT_REG) { 5357 /* 5358 * The send spec does not have a prealloc command yet, 5359 * so just leave a hole for prealloc'ed extents until 5360 * we have enough commands queued up to justify rev'ing 5361 * the send spec. 5362 */ 5363 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5364 ret = 0; 5365 goto out; 5366 } 5367 5368 /* Have a hole, just skip it. */ 5369 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5370 ret = 0; 5371 goto out; 5372 } 5373 } 5374 } 5375 5376 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5377 sctx->cur_inode_size, &found_clone); 5378 if (ret != -ENOENT && ret < 0) 5379 goto out; 5380 5381 ret = send_write_or_clone(sctx, path, key, found_clone); 5382 if (ret) 5383 goto out; 5384 out_hole: 5385 ret = maybe_send_hole(sctx, path, key); 5386 out: 5387 return ret; 5388 } 5389 5390 static int process_all_extents(struct send_ctx *sctx) 5391 { 5392 int ret; 5393 struct btrfs_root *root; 5394 struct btrfs_path *path; 5395 struct btrfs_key key; 5396 struct btrfs_key found_key; 5397 struct extent_buffer *eb; 5398 int slot; 5399 5400 root = sctx->send_root; 5401 path = alloc_path_for_send(); 5402 if (!path) 5403 return -ENOMEM; 5404 5405 key.objectid = sctx->cmp_key->objectid; 5406 key.type = BTRFS_EXTENT_DATA_KEY; 5407 key.offset = 0; 5408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5409 if (ret < 0) 5410 goto out; 5411 5412 while (1) { 5413 eb = path->nodes[0]; 5414 slot = path->slots[0]; 5415 5416 if (slot >= btrfs_header_nritems(eb)) { 5417 ret = btrfs_next_leaf(root, path); 5418 if (ret < 0) { 5419 goto out; 5420 } else if (ret > 0) { 5421 ret = 0; 5422 break; 5423 } 5424 continue; 5425 } 5426 5427 btrfs_item_key_to_cpu(eb, &found_key, slot); 5428 5429 if (found_key.objectid != key.objectid || 5430 found_key.type != key.type) { 5431 ret = 0; 5432 goto out; 5433 } 5434 5435 ret = process_extent(sctx, path, &found_key); 5436 if (ret < 0) 5437 goto out; 5438 5439 path->slots[0]++; 5440 } 5441 5442 out: 5443 btrfs_free_path(path); 5444 return ret; 5445 } 5446 5447 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5448 int *pending_move, 5449 int *refs_processed) 5450 { 5451 int ret = 0; 5452 5453 if (sctx->cur_ino == 0) 5454 goto out; 5455 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5456 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5457 goto out; 5458 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5459 goto out; 5460 5461 ret = process_recorded_refs(sctx, pending_move); 5462 if (ret < 0) 5463 goto out; 5464 5465 *refs_processed = 1; 5466 out: 5467 return ret; 5468 } 5469 5470 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5471 { 5472 int ret = 0; 5473 u64 left_mode; 5474 u64 left_uid; 5475 u64 left_gid; 5476 u64 right_mode; 5477 u64 right_uid; 5478 u64 right_gid; 5479 int need_chmod = 0; 5480 int need_chown = 0; 5481 int pending_move = 0; 5482 int refs_processed = 0; 5483 5484 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5485 &refs_processed); 5486 if (ret < 0) 5487 goto out; 5488 5489 /* 5490 * We have processed the refs and thus need to advance send_progress. 5491 * Now, calls to get_cur_xxx will take the updated refs of the current 5492 * inode into account. 5493 * 5494 * On the other hand, if our current inode is a directory and couldn't 5495 * be moved/renamed because its parent was renamed/moved too and it has 5496 * a higher inode number, we can only move/rename our current inode 5497 * after we moved/renamed its parent. Therefore in this case operate on 5498 * the old path (pre move/rename) of our current inode, and the 5499 * move/rename will be performed later. 5500 */ 5501 if (refs_processed && !pending_move) 5502 sctx->send_progress = sctx->cur_ino + 1; 5503 5504 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5505 goto out; 5506 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5507 goto out; 5508 5509 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5510 &left_mode, &left_uid, &left_gid, NULL); 5511 if (ret < 0) 5512 goto out; 5513 5514 if (!sctx->parent_root || sctx->cur_inode_new) { 5515 need_chown = 1; 5516 if (!S_ISLNK(sctx->cur_inode_mode)) 5517 need_chmod = 1; 5518 } else { 5519 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5520 NULL, NULL, &right_mode, &right_uid, 5521 &right_gid, NULL); 5522 if (ret < 0) 5523 goto out; 5524 5525 if (left_uid != right_uid || left_gid != right_gid) 5526 need_chown = 1; 5527 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5528 need_chmod = 1; 5529 } 5530 5531 if (S_ISREG(sctx->cur_inode_mode)) { 5532 if (need_send_hole(sctx)) { 5533 if (sctx->cur_inode_last_extent == (u64)-1 || 5534 sctx->cur_inode_last_extent < 5535 sctx->cur_inode_size) { 5536 ret = get_last_extent(sctx, (u64)-1); 5537 if (ret) 5538 goto out; 5539 } 5540 if (sctx->cur_inode_last_extent < 5541 sctx->cur_inode_size) { 5542 ret = send_hole(sctx, sctx->cur_inode_size); 5543 if (ret) 5544 goto out; 5545 } 5546 } 5547 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5548 sctx->cur_inode_size); 5549 if (ret < 0) 5550 goto out; 5551 } 5552 5553 if (need_chown) { 5554 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5555 left_uid, left_gid); 5556 if (ret < 0) 5557 goto out; 5558 } 5559 if (need_chmod) { 5560 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5561 left_mode); 5562 if (ret < 0) 5563 goto out; 5564 } 5565 5566 /* 5567 * If other directory inodes depended on our current directory 5568 * inode's move/rename, now do their move/rename operations. 5569 */ 5570 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5571 ret = apply_children_dir_moves(sctx); 5572 if (ret) 5573 goto out; 5574 /* 5575 * Need to send that every time, no matter if it actually 5576 * changed between the two trees as we have done changes to 5577 * the inode before. If our inode is a directory and it's 5578 * waiting to be moved/renamed, we will send its utimes when 5579 * it's moved/renamed, therefore we don't need to do it here. 5580 */ 5581 sctx->send_progress = sctx->cur_ino + 1; 5582 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5583 if (ret < 0) 5584 goto out; 5585 } 5586 5587 out: 5588 return ret; 5589 } 5590 5591 static int changed_inode(struct send_ctx *sctx, 5592 enum btrfs_compare_tree_result result) 5593 { 5594 int ret = 0; 5595 struct btrfs_key *key = sctx->cmp_key; 5596 struct btrfs_inode_item *left_ii = NULL; 5597 struct btrfs_inode_item *right_ii = NULL; 5598 u64 left_gen = 0; 5599 u64 right_gen = 0; 5600 5601 sctx->cur_ino = key->objectid; 5602 sctx->cur_inode_new_gen = 0; 5603 sctx->cur_inode_last_extent = (u64)-1; 5604 5605 /* 5606 * Set send_progress to current inode. This will tell all get_cur_xxx 5607 * functions that the current inode's refs are not updated yet. Later, 5608 * when process_recorded_refs is finished, it is set to cur_ino + 1. 5609 */ 5610 sctx->send_progress = sctx->cur_ino; 5611 5612 if (result == BTRFS_COMPARE_TREE_NEW || 5613 result == BTRFS_COMPARE_TREE_CHANGED) { 5614 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 5615 sctx->left_path->slots[0], 5616 struct btrfs_inode_item); 5617 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 5618 left_ii); 5619 } else { 5620 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5621 sctx->right_path->slots[0], 5622 struct btrfs_inode_item); 5623 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5624 right_ii); 5625 } 5626 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5627 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 5628 sctx->right_path->slots[0], 5629 struct btrfs_inode_item); 5630 5631 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 5632 right_ii); 5633 5634 /* 5635 * The cur_ino = root dir case is special here. We can't treat 5636 * the inode as deleted+reused because it would generate a 5637 * stream that tries to delete/mkdir the root dir. 5638 */ 5639 if (left_gen != right_gen && 5640 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5641 sctx->cur_inode_new_gen = 1; 5642 } 5643 5644 if (result == BTRFS_COMPARE_TREE_NEW) { 5645 sctx->cur_inode_gen = left_gen; 5646 sctx->cur_inode_new = 1; 5647 sctx->cur_inode_deleted = 0; 5648 sctx->cur_inode_size = btrfs_inode_size( 5649 sctx->left_path->nodes[0], left_ii); 5650 sctx->cur_inode_mode = btrfs_inode_mode( 5651 sctx->left_path->nodes[0], left_ii); 5652 sctx->cur_inode_rdev = btrfs_inode_rdev( 5653 sctx->left_path->nodes[0], left_ii); 5654 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 5655 ret = send_create_inode_if_needed(sctx); 5656 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 5657 sctx->cur_inode_gen = right_gen; 5658 sctx->cur_inode_new = 0; 5659 sctx->cur_inode_deleted = 1; 5660 sctx->cur_inode_size = btrfs_inode_size( 5661 sctx->right_path->nodes[0], right_ii); 5662 sctx->cur_inode_mode = btrfs_inode_mode( 5663 sctx->right_path->nodes[0], right_ii); 5664 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 5665 /* 5666 * We need to do some special handling in case the inode was 5667 * reported as changed with a changed generation number. This 5668 * means that the original inode was deleted and new inode 5669 * reused the same inum. So we have to treat the old inode as 5670 * deleted and the new one as new. 5671 */ 5672 if (sctx->cur_inode_new_gen) { 5673 /* 5674 * First, process the inode as if it was deleted. 5675 */ 5676 sctx->cur_inode_gen = right_gen; 5677 sctx->cur_inode_new = 0; 5678 sctx->cur_inode_deleted = 1; 5679 sctx->cur_inode_size = btrfs_inode_size( 5680 sctx->right_path->nodes[0], right_ii); 5681 sctx->cur_inode_mode = btrfs_inode_mode( 5682 sctx->right_path->nodes[0], right_ii); 5683 ret = process_all_refs(sctx, 5684 BTRFS_COMPARE_TREE_DELETED); 5685 if (ret < 0) 5686 goto out; 5687 5688 /* 5689 * Now process the inode as if it was new. 5690 */ 5691 sctx->cur_inode_gen = left_gen; 5692 sctx->cur_inode_new = 1; 5693 sctx->cur_inode_deleted = 0; 5694 sctx->cur_inode_size = btrfs_inode_size( 5695 sctx->left_path->nodes[0], left_ii); 5696 sctx->cur_inode_mode = btrfs_inode_mode( 5697 sctx->left_path->nodes[0], left_ii); 5698 sctx->cur_inode_rdev = btrfs_inode_rdev( 5699 sctx->left_path->nodes[0], left_ii); 5700 ret = send_create_inode_if_needed(sctx); 5701 if (ret < 0) 5702 goto out; 5703 5704 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 5705 if (ret < 0) 5706 goto out; 5707 /* 5708 * Advance send_progress now as we did not get into 5709 * process_recorded_refs_if_needed in the new_gen case. 5710 */ 5711 sctx->send_progress = sctx->cur_ino + 1; 5712 5713 /* 5714 * Now process all extents and xattrs of the inode as if 5715 * they were all new. 5716 */ 5717 ret = process_all_extents(sctx); 5718 if (ret < 0) 5719 goto out; 5720 ret = process_all_new_xattrs(sctx); 5721 if (ret < 0) 5722 goto out; 5723 } else { 5724 sctx->cur_inode_gen = left_gen; 5725 sctx->cur_inode_new = 0; 5726 sctx->cur_inode_new_gen = 0; 5727 sctx->cur_inode_deleted = 0; 5728 sctx->cur_inode_size = btrfs_inode_size( 5729 sctx->left_path->nodes[0], left_ii); 5730 sctx->cur_inode_mode = btrfs_inode_mode( 5731 sctx->left_path->nodes[0], left_ii); 5732 } 5733 } 5734 5735 out: 5736 return ret; 5737 } 5738 5739 /* 5740 * We have to process new refs before deleted refs, but compare_trees gives us 5741 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 5742 * first and later process them in process_recorded_refs. 5743 * For the cur_inode_new_gen case, we skip recording completely because 5744 * changed_inode did already initiate processing of refs. The reason for this is 5745 * that in this case, compare_tree actually compares the refs of 2 different 5746 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 5747 * refs of the right tree as deleted and all refs of the left tree as new. 5748 */ 5749 static int changed_ref(struct send_ctx *sctx, 5750 enum btrfs_compare_tree_result result) 5751 { 5752 int ret = 0; 5753 5754 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5755 inconsistent_snapshot_error(sctx, result, "reference"); 5756 return -EIO; 5757 } 5758 5759 if (!sctx->cur_inode_new_gen && 5760 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 5761 if (result == BTRFS_COMPARE_TREE_NEW) 5762 ret = record_new_ref(sctx); 5763 else if (result == BTRFS_COMPARE_TREE_DELETED) 5764 ret = record_deleted_ref(sctx); 5765 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5766 ret = record_changed_ref(sctx); 5767 } 5768 5769 return ret; 5770 } 5771 5772 /* 5773 * Process new/deleted/changed xattrs. We skip processing in the 5774 * cur_inode_new_gen case because changed_inode did already initiate processing 5775 * of xattrs. The reason is the same as in changed_ref 5776 */ 5777 static int changed_xattr(struct send_ctx *sctx, 5778 enum btrfs_compare_tree_result result) 5779 { 5780 int ret = 0; 5781 5782 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5783 inconsistent_snapshot_error(sctx, result, "xattr"); 5784 return -EIO; 5785 } 5786 5787 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5788 if (result == BTRFS_COMPARE_TREE_NEW) 5789 ret = process_new_xattr(sctx); 5790 else if (result == BTRFS_COMPARE_TREE_DELETED) 5791 ret = process_deleted_xattr(sctx); 5792 else if (result == BTRFS_COMPARE_TREE_CHANGED) 5793 ret = process_changed_xattr(sctx); 5794 } 5795 5796 return ret; 5797 } 5798 5799 /* 5800 * Process new/deleted/changed extents. We skip processing in the 5801 * cur_inode_new_gen case because changed_inode did already initiate processing 5802 * of extents. The reason is the same as in changed_ref 5803 */ 5804 static int changed_extent(struct send_ctx *sctx, 5805 enum btrfs_compare_tree_result result) 5806 { 5807 int ret = 0; 5808 5809 if (sctx->cur_ino != sctx->cmp_key->objectid) { 5810 5811 if (result == BTRFS_COMPARE_TREE_CHANGED) { 5812 struct extent_buffer *leaf_l; 5813 struct extent_buffer *leaf_r; 5814 struct btrfs_file_extent_item *ei_l; 5815 struct btrfs_file_extent_item *ei_r; 5816 5817 leaf_l = sctx->left_path->nodes[0]; 5818 leaf_r = sctx->right_path->nodes[0]; 5819 ei_l = btrfs_item_ptr(leaf_l, 5820 sctx->left_path->slots[0], 5821 struct btrfs_file_extent_item); 5822 ei_r = btrfs_item_ptr(leaf_r, 5823 sctx->right_path->slots[0], 5824 struct btrfs_file_extent_item); 5825 5826 /* 5827 * We may have found an extent item that has changed 5828 * only its disk_bytenr field and the corresponding 5829 * inode item was not updated. This case happens due to 5830 * very specific timings during relocation when a leaf 5831 * that contains file extent items is COWed while 5832 * relocation is ongoing and its in the stage where it 5833 * updates data pointers. So when this happens we can 5834 * safely ignore it since we know it's the same extent, 5835 * but just at different logical and physical locations 5836 * (when an extent is fully replaced with a new one, we 5837 * know the generation number must have changed too, 5838 * since snapshot creation implies committing the current 5839 * transaction, and the inode item must have been updated 5840 * as well). 5841 * This replacement of the disk_bytenr happens at 5842 * relocation.c:replace_file_extents() through 5843 * relocation.c:btrfs_reloc_cow_block(). 5844 */ 5845 if (btrfs_file_extent_generation(leaf_l, ei_l) == 5846 btrfs_file_extent_generation(leaf_r, ei_r) && 5847 btrfs_file_extent_ram_bytes(leaf_l, ei_l) == 5848 btrfs_file_extent_ram_bytes(leaf_r, ei_r) && 5849 btrfs_file_extent_compression(leaf_l, ei_l) == 5850 btrfs_file_extent_compression(leaf_r, ei_r) && 5851 btrfs_file_extent_encryption(leaf_l, ei_l) == 5852 btrfs_file_extent_encryption(leaf_r, ei_r) && 5853 btrfs_file_extent_other_encoding(leaf_l, ei_l) == 5854 btrfs_file_extent_other_encoding(leaf_r, ei_r) && 5855 btrfs_file_extent_type(leaf_l, ei_l) == 5856 btrfs_file_extent_type(leaf_r, ei_r) && 5857 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) != 5858 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) && 5859 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) == 5860 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) && 5861 btrfs_file_extent_offset(leaf_l, ei_l) == 5862 btrfs_file_extent_offset(leaf_r, ei_r) && 5863 btrfs_file_extent_num_bytes(leaf_l, ei_l) == 5864 btrfs_file_extent_num_bytes(leaf_r, ei_r)) 5865 return 0; 5866 } 5867 5868 inconsistent_snapshot_error(sctx, result, "extent"); 5869 return -EIO; 5870 } 5871 5872 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 5873 if (result != BTRFS_COMPARE_TREE_DELETED) 5874 ret = process_extent(sctx, sctx->left_path, 5875 sctx->cmp_key); 5876 } 5877 5878 return ret; 5879 } 5880 5881 static int dir_changed(struct send_ctx *sctx, u64 dir) 5882 { 5883 u64 orig_gen, new_gen; 5884 int ret; 5885 5886 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 5887 NULL, NULL); 5888 if (ret) 5889 return ret; 5890 5891 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 5892 NULL, NULL, NULL); 5893 if (ret) 5894 return ret; 5895 5896 return (orig_gen != new_gen) ? 1 : 0; 5897 } 5898 5899 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 5900 struct btrfs_key *key) 5901 { 5902 struct btrfs_inode_extref *extref; 5903 struct extent_buffer *leaf; 5904 u64 dirid = 0, last_dirid = 0; 5905 unsigned long ptr; 5906 u32 item_size; 5907 u32 cur_offset = 0; 5908 int ref_name_len; 5909 int ret = 0; 5910 5911 /* Easy case, just check this one dirid */ 5912 if (key->type == BTRFS_INODE_REF_KEY) { 5913 dirid = key->offset; 5914 5915 ret = dir_changed(sctx, dirid); 5916 goto out; 5917 } 5918 5919 leaf = path->nodes[0]; 5920 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 5921 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 5922 while (cur_offset < item_size) { 5923 extref = (struct btrfs_inode_extref *)(ptr + 5924 cur_offset); 5925 dirid = btrfs_inode_extref_parent(leaf, extref); 5926 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 5927 cur_offset += ref_name_len + sizeof(*extref); 5928 if (dirid == last_dirid) 5929 continue; 5930 ret = dir_changed(sctx, dirid); 5931 if (ret) 5932 break; 5933 last_dirid = dirid; 5934 } 5935 out: 5936 return ret; 5937 } 5938 5939 /* 5940 * Updates compare related fields in sctx and simply forwards to the actual 5941 * changed_xxx functions. 5942 */ 5943 static int changed_cb(struct btrfs_root *left_root, 5944 struct btrfs_root *right_root, 5945 struct btrfs_path *left_path, 5946 struct btrfs_path *right_path, 5947 struct btrfs_key *key, 5948 enum btrfs_compare_tree_result result, 5949 void *ctx) 5950 { 5951 int ret = 0; 5952 struct send_ctx *sctx = ctx; 5953 5954 if (result == BTRFS_COMPARE_TREE_SAME) { 5955 if (key->type == BTRFS_INODE_REF_KEY || 5956 key->type == BTRFS_INODE_EXTREF_KEY) { 5957 ret = compare_refs(sctx, left_path, key); 5958 if (!ret) 5959 return 0; 5960 if (ret < 0) 5961 return ret; 5962 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 5963 return maybe_send_hole(sctx, left_path, key); 5964 } else { 5965 return 0; 5966 } 5967 result = BTRFS_COMPARE_TREE_CHANGED; 5968 ret = 0; 5969 } 5970 5971 sctx->left_path = left_path; 5972 sctx->right_path = right_path; 5973 sctx->cmp_key = key; 5974 5975 ret = finish_inode_if_needed(sctx, 0); 5976 if (ret < 0) 5977 goto out; 5978 5979 /* Ignore non-FS objects */ 5980 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 5981 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 5982 goto out; 5983 5984 if (key->type == BTRFS_INODE_ITEM_KEY) 5985 ret = changed_inode(sctx, result); 5986 else if (key->type == BTRFS_INODE_REF_KEY || 5987 key->type == BTRFS_INODE_EXTREF_KEY) 5988 ret = changed_ref(sctx, result); 5989 else if (key->type == BTRFS_XATTR_ITEM_KEY) 5990 ret = changed_xattr(sctx, result); 5991 else if (key->type == BTRFS_EXTENT_DATA_KEY) 5992 ret = changed_extent(sctx, result); 5993 5994 out: 5995 return ret; 5996 } 5997 5998 static int full_send_tree(struct send_ctx *sctx) 5999 { 6000 int ret; 6001 struct btrfs_root *send_root = sctx->send_root; 6002 struct btrfs_key key; 6003 struct btrfs_key found_key; 6004 struct btrfs_path *path; 6005 struct extent_buffer *eb; 6006 int slot; 6007 6008 path = alloc_path_for_send(); 6009 if (!path) 6010 return -ENOMEM; 6011 6012 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6013 key.type = BTRFS_INODE_ITEM_KEY; 6014 key.offset = 0; 6015 6016 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6017 if (ret < 0) 6018 goto out; 6019 if (ret) 6020 goto out_finish; 6021 6022 while (1) { 6023 eb = path->nodes[0]; 6024 slot = path->slots[0]; 6025 btrfs_item_key_to_cpu(eb, &found_key, slot); 6026 6027 ret = changed_cb(send_root, NULL, path, NULL, 6028 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 6029 if (ret < 0) 6030 goto out; 6031 6032 key.objectid = found_key.objectid; 6033 key.type = found_key.type; 6034 key.offset = found_key.offset + 1; 6035 6036 ret = btrfs_next_item(send_root, path); 6037 if (ret < 0) 6038 goto out; 6039 if (ret) { 6040 ret = 0; 6041 break; 6042 } 6043 } 6044 6045 out_finish: 6046 ret = finish_inode_if_needed(sctx, 1); 6047 6048 out: 6049 btrfs_free_path(path); 6050 return ret; 6051 } 6052 6053 static int send_subvol(struct send_ctx *sctx) 6054 { 6055 int ret; 6056 6057 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6058 ret = send_header(sctx); 6059 if (ret < 0) 6060 goto out; 6061 } 6062 6063 ret = send_subvol_begin(sctx); 6064 if (ret < 0) 6065 goto out; 6066 6067 if (sctx->parent_root) { 6068 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6069 changed_cb, sctx); 6070 if (ret < 0) 6071 goto out; 6072 ret = finish_inode_if_needed(sctx, 1); 6073 if (ret < 0) 6074 goto out; 6075 } else { 6076 ret = full_send_tree(sctx); 6077 if (ret < 0) 6078 goto out; 6079 } 6080 6081 out: 6082 free_recorded_refs(sctx); 6083 return ret; 6084 } 6085 6086 /* 6087 * If orphan cleanup did remove any orphans from a root, it means the tree 6088 * was modified and therefore the commit root is not the same as the current 6089 * root anymore. This is a problem, because send uses the commit root and 6090 * therefore can see inode items that don't exist in the current root anymore, 6091 * and for example make calls to btrfs_iget, which will do tree lookups based 6092 * on the current root and not on the commit root. Those lookups will fail, 6093 * returning a -ESTALE error, and making send fail with that error. So make 6094 * sure a send does not see any orphans we have just removed, and that it will 6095 * see the same inodes regardless of whether a transaction commit happened 6096 * before it started (meaning that the commit root will be the same as the 6097 * current root) or not. 6098 */ 6099 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6100 { 6101 int i; 6102 struct btrfs_trans_handle *trans = NULL; 6103 6104 again: 6105 if (sctx->parent_root && 6106 sctx->parent_root->node != sctx->parent_root->commit_root) 6107 goto commit_trans; 6108 6109 for (i = 0; i < sctx->clone_roots_cnt; i++) 6110 if (sctx->clone_roots[i].root->node != 6111 sctx->clone_roots[i].root->commit_root) 6112 goto commit_trans; 6113 6114 if (trans) 6115 return btrfs_end_transaction(trans); 6116 6117 return 0; 6118 6119 commit_trans: 6120 /* Use any root, all fs roots will get their commit roots updated. */ 6121 if (!trans) { 6122 trans = btrfs_join_transaction(sctx->send_root); 6123 if (IS_ERR(trans)) 6124 return PTR_ERR(trans); 6125 goto again; 6126 } 6127 6128 return btrfs_commit_transaction(trans); 6129 } 6130 6131 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6132 { 6133 spin_lock(&root->root_item_lock); 6134 root->send_in_progress--; 6135 /* 6136 * Not much left to do, we don't know why it's unbalanced and 6137 * can't blindly reset it to 0. 6138 */ 6139 if (root->send_in_progress < 0) 6140 btrfs_err(root->fs_info, 6141 "send_in_progres unbalanced %d root %llu", 6142 root->send_in_progress, root->root_key.objectid); 6143 spin_unlock(&root->root_item_lock); 6144 } 6145 6146 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 6147 { 6148 int ret = 0; 6149 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 6150 struct btrfs_fs_info *fs_info = send_root->fs_info; 6151 struct btrfs_root *clone_root; 6152 struct btrfs_ioctl_send_args *arg = NULL; 6153 struct btrfs_key key; 6154 struct send_ctx *sctx = NULL; 6155 u32 i; 6156 u64 *clone_sources_tmp = NULL; 6157 int clone_sources_to_rollback = 0; 6158 unsigned alloc_size; 6159 int sort_clone_roots = 0; 6160 int index; 6161 6162 if (!capable(CAP_SYS_ADMIN)) 6163 return -EPERM; 6164 6165 /* 6166 * The subvolume must remain read-only during send, protect against 6167 * making it RW. This also protects against deletion. 6168 */ 6169 spin_lock(&send_root->root_item_lock); 6170 send_root->send_in_progress++; 6171 spin_unlock(&send_root->root_item_lock); 6172 6173 /* 6174 * This is done when we lookup the root, it should already be complete 6175 * by the time we get here. 6176 */ 6177 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 6178 6179 /* 6180 * Userspace tools do the checks and warn the user if it's 6181 * not RO. 6182 */ 6183 if (!btrfs_root_readonly(send_root)) { 6184 ret = -EPERM; 6185 goto out; 6186 } 6187 6188 arg = memdup_user(arg_, sizeof(*arg)); 6189 if (IS_ERR(arg)) { 6190 ret = PTR_ERR(arg); 6191 arg = NULL; 6192 goto out; 6193 } 6194 6195 if (arg->clone_sources_count > 6196 ULLONG_MAX / sizeof(*arg->clone_sources)) { 6197 ret = -EINVAL; 6198 goto out; 6199 } 6200 6201 if (!access_ok(VERIFY_READ, arg->clone_sources, 6202 sizeof(*arg->clone_sources) * 6203 arg->clone_sources_count)) { 6204 ret = -EFAULT; 6205 goto out; 6206 } 6207 6208 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 6209 ret = -EINVAL; 6210 goto out; 6211 } 6212 6213 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 6214 if (!sctx) { 6215 ret = -ENOMEM; 6216 goto out; 6217 } 6218 6219 INIT_LIST_HEAD(&sctx->new_refs); 6220 INIT_LIST_HEAD(&sctx->deleted_refs); 6221 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 6222 INIT_LIST_HEAD(&sctx->name_cache_list); 6223 6224 sctx->flags = arg->flags; 6225 6226 sctx->send_filp = fget(arg->send_fd); 6227 if (!sctx->send_filp) { 6228 ret = -EBADF; 6229 goto out; 6230 } 6231 6232 sctx->send_root = send_root; 6233 /* 6234 * Unlikely but possible, if the subvolume is marked for deletion but 6235 * is slow to remove the directory entry, send can still be started 6236 */ 6237 if (btrfs_root_dead(sctx->send_root)) { 6238 ret = -EPERM; 6239 goto out; 6240 } 6241 6242 sctx->clone_roots_cnt = arg->clone_sources_count; 6243 6244 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 6245 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN); 6246 if (!sctx->send_buf) { 6247 sctx->send_buf = vmalloc(sctx->send_max_size); 6248 if (!sctx->send_buf) { 6249 ret = -ENOMEM; 6250 goto out; 6251 } 6252 } 6253 6254 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN); 6255 if (!sctx->read_buf) { 6256 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 6257 if (!sctx->read_buf) { 6258 ret = -ENOMEM; 6259 goto out; 6260 } 6261 } 6262 6263 sctx->pending_dir_moves = RB_ROOT; 6264 sctx->waiting_dir_moves = RB_ROOT; 6265 sctx->orphan_dirs = RB_ROOT; 6266 6267 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 6268 6269 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6270 if (!sctx->clone_roots) { 6271 sctx->clone_roots = vzalloc(alloc_size); 6272 if (!sctx->clone_roots) { 6273 ret = -ENOMEM; 6274 goto out; 6275 } 6276 } 6277 6278 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 6279 6280 if (arg->clone_sources_count) { 6281 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN); 6282 if (!clone_sources_tmp) { 6283 clone_sources_tmp = vmalloc(alloc_size); 6284 if (!clone_sources_tmp) { 6285 ret = -ENOMEM; 6286 goto out; 6287 } 6288 } 6289 6290 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 6291 alloc_size); 6292 if (ret) { 6293 ret = -EFAULT; 6294 goto out; 6295 } 6296 6297 for (i = 0; i < arg->clone_sources_count; i++) { 6298 key.objectid = clone_sources_tmp[i]; 6299 key.type = BTRFS_ROOT_ITEM_KEY; 6300 key.offset = (u64)-1; 6301 6302 index = srcu_read_lock(&fs_info->subvol_srcu); 6303 6304 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 6305 if (IS_ERR(clone_root)) { 6306 srcu_read_unlock(&fs_info->subvol_srcu, index); 6307 ret = PTR_ERR(clone_root); 6308 goto out; 6309 } 6310 spin_lock(&clone_root->root_item_lock); 6311 if (!btrfs_root_readonly(clone_root) || 6312 btrfs_root_dead(clone_root)) { 6313 spin_unlock(&clone_root->root_item_lock); 6314 srcu_read_unlock(&fs_info->subvol_srcu, index); 6315 ret = -EPERM; 6316 goto out; 6317 } 6318 clone_root->send_in_progress++; 6319 spin_unlock(&clone_root->root_item_lock); 6320 srcu_read_unlock(&fs_info->subvol_srcu, index); 6321 6322 sctx->clone_roots[i].root = clone_root; 6323 clone_sources_to_rollback = i + 1; 6324 } 6325 kvfree(clone_sources_tmp); 6326 clone_sources_tmp = NULL; 6327 } 6328 6329 if (arg->parent_root) { 6330 key.objectid = arg->parent_root; 6331 key.type = BTRFS_ROOT_ITEM_KEY; 6332 key.offset = (u64)-1; 6333 6334 index = srcu_read_lock(&fs_info->subvol_srcu); 6335 6336 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 6337 if (IS_ERR(sctx->parent_root)) { 6338 srcu_read_unlock(&fs_info->subvol_srcu, index); 6339 ret = PTR_ERR(sctx->parent_root); 6340 goto out; 6341 } 6342 6343 spin_lock(&sctx->parent_root->root_item_lock); 6344 sctx->parent_root->send_in_progress++; 6345 if (!btrfs_root_readonly(sctx->parent_root) || 6346 btrfs_root_dead(sctx->parent_root)) { 6347 spin_unlock(&sctx->parent_root->root_item_lock); 6348 srcu_read_unlock(&fs_info->subvol_srcu, index); 6349 ret = -EPERM; 6350 goto out; 6351 } 6352 spin_unlock(&sctx->parent_root->root_item_lock); 6353 6354 srcu_read_unlock(&fs_info->subvol_srcu, index); 6355 } 6356 6357 /* 6358 * Clones from send_root are allowed, but only if the clone source 6359 * is behind the current send position. This is checked while searching 6360 * for possible clone sources. 6361 */ 6362 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 6363 6364 /* We do a bsearch later */ 6365 sort(sctx->clone_roots, sctx->clone_roots_cnt, 6366 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 6367 NULL); 6368 sort_clone_roots = 1; 6369 6370 ret = ensure_commit_roots_uptodate(sctx); 6371 if (ret) 6372 goto out; 6373 6374 current->journal_info = BTRFS_SEND_TRANS_STUB; 6375 ret = send_subvol(sctx); 6376 current->journal_info = NULL; 6377 if (ret < 0) 6378 goto out; 6379 6380 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 6381 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 6382 if (ret < 0) 6383 goto out; 6384 ret = send_cmd(sctx); 6385 if (ret < 0) 6386 goto out; 6387 } 6388 6389 out: 6390 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 6391 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 6392 struct rb_node *n; 6393 struct pending_dir_move *pm; 6394 6395 n = rb_first(&sctx->pending_dir_moves); 6396 pm = rb_entry(n, struct pending_dir_move, node); 6397 while (!list_empty(&pm->list)) { 6398 struct pending_dir_move *pm2; 6399 6400 pm2 = list_first_entry(&pm->list, 6401 struct pending_dir_move, list); 6402 free_pending_move(sctx, pm2); 6403 } 6404 free_pending_move(sctx, pm); 6405 } 6406 6407 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 6408 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 6409 struct rb_node *n; 6410 struct waiting_dir_move *dm; 6411 6412 n = rb_first(&sctx->waiting_dir_moves); 6413 dm = rb_entry(n, struct waiting_dir_move, node); 6414 rb_erase(&dm->node, &sctx->waiting_dir_moves); 6415 kfree(dm); 6416 } 6417 6418 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 6419 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 6420 struct rb_node *n; 6421 struct orphan_dir_info *odi; 6422 6423 n = rb_first(&sctx->orphan_dirs); 6424 odi = rb_entry(n, struct orphan_dir_info, node); 6425 free_orphan_dir_info(sctx, odi); 6426 } 6427 6428 if (sort_clone_roots) { 6429 for (i = 0; i < sctx->clone_roots_cnt; i++) 6430 btrfs_root_dec_send_in_progress( 6431 sctx->clone_roots[i].root); 6432 } else { 6433 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 6434 btrfs_root_dec_send_in_progress( 6435 sctx->clone_roots[i].root); 6436 6437 btrfs_root_dec_send_in_progress(send_root); 6438 } 6439 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 6440 btrfs_root_dec_send_in_progress(sctx->parent_root); 6441 6442 kfree(arg); 6443 kvfree(clone_sources_tmp); 6444 6445 if (sctx) { 6446 if (sctx->send_filp) 6447 fput(sctx->send_filp); 6448 6449 kvfree(sctx->clone_roots); 6450 kvfree(sctx->send_buf); 6451 kvfree(sctx->read_buf); 6452 6453 name_cache_free(sctx); 6454 6455 kfree(sctx); 6456 } 6457 6458 return ret; 6459 } 6460