xref: /linux/fs/btrfs/send.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
38 
39 /*
40  * A fs_path is a helper to dynamically build path names with unknown size.
41  * It reallocates the internal buffer on demand.
42  * It allows fast adding of path elements on the right side (normal path) and
43  * fast adding to the left side (reversed path). A reversed path can also be
44  * unreversed if needed.
45  */
46 struct fs_path {
47 	union {
48 		struct {
49 			char *start;
50 			char *end;
51 
52 			char *buf;
53 			unsigned short buf_len:15;
54 			unsigned short reversed:1;
55 			char inline_buf[];
56 		};
57 		/*
58 		 * Average path length does not exceed 200 bytes, we'll have
59 		 * better packing in the slab and higher chance to satisfy
60 		 * a allocation later during send.
61 		 */
62 		char pad[256];
63 	};
64 };
65 #define FS_PATH_INLINE_SIZE \
66 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67 
68 
69 /* reused for each extent */
70 struct clone_root {
71 	struct btrfs_root *root;
72 	u64 ino;
73 	u64 offset;
74 
75 	u64 found_refs;
76 };
77 
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80 
81 struct send_ctx {
82 	struct file *send_filp;
83 	loff_t send_off;
84 	char *send_buf;
85 	u32 send_size;
86 	u32 send_max_size;
87 	u64 total_send_size;
88 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
90 
91 	struct btrfs_root *send_root;
92 	struct btrfs_root *parent_root;
93 	struct clone_root *clone_roots;
94 	int clone_roots_cnt;
95 
96 	/* current state of the compare_tree call */
97 	struct btrfs_path *left_path;
98 	struct btrfs_path *right_path;
99 	struct btrfs_key *cmp_key;
100 
101 	/*
102 	 * infos of the currently processed inode. In case of deleted inodes,
103 	 * these are the values from the deleted inode.
104 	 */
105 	u64 cur_ino;
106 	u64 cur_inode_gen;
107 	int cur_inode_new;
108 	int cur_inode_new_gen;
109 	int cur_inode_deleted;
110 	u64 cur_inode_size;
111 	u64 cur_inode_mode;
112 	u64 cur_inode_rdev;
113 	u64 cur_inode_last_extent;
114 
115 	u64 send_progress;
116 
117 	struct list_head new_refs;
118 	struct list_head deleted_refs;
119 
120 	struct radix_tree_root name_cache;
121 	struct list_head name_cache_list;
122 	int name_cache_size;
123 
124 	struct file_ra_state ra;
125 
126 	char *read_buf;
127 
128 	/*
129 	 * We process inodes by their increasing order, so if before an
130 	 * incremental send we reverse the parent/child relationship of
131 	 * directories such that a directory with a lower inode number was
132 	 * the parent of a directory with a higher inode number, and the one
133 	 * becoming the new parent got renamed too, we can't rename/move the
134 	 * directory with lower inode number when we finish processing it - we
135 	 * must process the directory with higher inode number first, then
136 	 * rename/move it and then rename/move the directory with lower inode
137 	 * number. Example follows.
138 	 *
139 	 * Tree state when the first send was performed:
140 	 *
141 	 * .
142 	 * |-- a                   (ino 257)
143 	 *     |-- b               (ino 258)
144 	 *         |
145 	 *         |
146 	 *         |-- c           (ino 259)
147 	 *         |   |-- d       (ino 260)
148 	 *         |
149 	 *         |-- c2          (ino 261)
150 	 *
151 	 * Tree state when the second (incremental) send is performed:
152 	 *
153 	 * .
154 	 * |-- a                   (ino 257)
155 	 *     |-- b               (ino 258)
156 	 *         |-- c2          (ino 261)
157 	 *             |-- d2      (ino 260)
158 	 *                 |-- cc  (ino 259)
159 	 *
160 	 * The sequence of steps that lead to the second state was:
161 	 *
162 	 * mv /a/b/c/d /a/b/c2/d2
163 	 * mv /a/b/c /a/b/c2/d2/cc
164 	 *
165 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 	 * before we move "d", which has higher inode number.
167 	 *
168 	 * So we just memorize which move/rename operations must be performed
169 	 * later when their respective parent is processed and moved/renamed.
170 	 */
171 
172 	/* Indexed by parent directory inode number. */
173 	struct rb_root pending_dir_moves;
174 
175 	/*
176 	 * Reverse index, indexed by the inode number of a directory that
177 	 * is waiting for the move/rename of its immediate parent before its
178 	 * own move/rename can be performed.
179 	 */
180 	struct rb_root waiting_dir_moves;
181 
182 	/*
183 	 * A directory that is going to be rm'ed might have a child directory
184 	 * which is in the pending directory moves index above. In this case,
185 	 * the directory can only be removed after the move/rename of its child
186 	 * is performed. Example:
187 	 *
188 	 * Parent snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- c/           (ino 259)
194 	 *         |   |-- x/       (ino 260)
195 	 *         |
196 	 *         |-- y/           (ino 261)
197 	 *
198 	 * Send snapshot:
199 	 *
200 	 * .                        (ino 256)
201 	 * |-- a/                   (ino 257)
202 	 *     |-- b/               (ino 258)
203 	 *         |-- YY/          (ino 261)
204 	 *              |-- x/      (ino 260)
205 	 *
206 	 * Sequence of steps that lead to the send snapshot:
207 	 * rm -f /a/b/c/foo.txt
208 	 * mv /a/b/y /a/b/YY
209 	 * mv /a/b/c/x /a/b/YY
210 	 * rmdir /a/b/c
211 	 *
212 	 * When the child is processed, its move/rename is delayed until its
213 	 * parent is processed (as explained above), but all other operations
214 	 * like update utimes, chown, chgrp, etc, are performed and the paths
215 	 * that it uses for those operations must use the orphanized name of
216 	 * its parent (the directory we're going to rm later), so we need to
217 	 * memorize that name.
218 	 *
219 	 * Indexed by the inode number of the directory to be deleted.
220 	 */
221 	struct rb_root orphan_dirs;
222 };
223 
224 struct pending_dir_move {
225 	struct rb_node node;
226 	struct list_head list;
227 	u64 parent_ino;
228 	u64 ino;
229 	u64 gen;
230 	struct list_head update_refs;
231 };
232 
233 struct waiting_dir_move {
234 	struct rb_node node;
235 	u64 ino;
236 	/*
237 	 * There might be some directory that could not be removed because it
238 	 * was waiting for this directory inode to be moved first. Therefore
239 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 	 */
241 	u64 rmdir_ino;
242 	bool orphanized;
243 };
244 
245 struct orphan_dir_info {
246 	struct rb_node node;
247 	u64 ino;
248 	u64 gen;
249 };
250 
251 struct name_cache_entry {
252 	struct list_head list;
253 	/*
254 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 	 * more then one inum would fall into the same entry, we use radix_list
257 	 * to store the additional entries. radix_list is also used to store
258 	 * entries where two entries have the same inum but different
259 	 * generations.
260 	 */
261 	struct list_head radix_list;
262 	u64 ino;
263 	u64 gen;
264 	u64 parent_ino;
265 	u64 parent_gen;
266 	int ret;
267 	int need_later_update;
268 	int name_len;
269 	char name[];
270 };
271 
272 static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 					enum btrfs_compare_tree_result result,
274 					const char *what)
275 {
276 	const char *result_string;
277 
278 	switch (result) {
279 	case BTRFS_COMPARE_TREE_NEW:
280 		result_string = "new";
281 		break;
282 	case BTRFS_COMPARE_TREE_DELETED:
283 		result_string = "deleted";
284 		break;
285 	case BTRFS_COMPARE_TREE_CHANGED:
286 		result_string = "updated";
287 		break;
288 	case BTRFS_COMPARE_TREE_SAME:
289 		ASSERT(0);
290 		result_string = "unchanged";
291 		break;
292 	default:
293 		ASSERT(0);
294 		result_string = "unexpected";
295 	}
296 
297 	btrfs_err(sctx->send_root->fs_info,
298 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 		  result_string, what, sctx->cmp_key->objectid,
300 		  sctx->send_root->root_key.objectid,
301 		  (sctx->parent_root ?
302 		   sctx->parent_root->root_key.objectid : 0));
303 }
304 
305 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306 
307 static struct waiting_dir_move *
308 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309 
310 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311 
312 static int need_send_hole(struct send_ctx *sctx)
313 {
314 	return (sctx->parent_root && !sctx->cur_inode_new &&
315 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 		S_ISREG(sctx->cur_inode_mode));
317 }
318 
319 static void fs_path_reset(struct fs_path *p)
320 {
321 	if (p->reversed) {
322 		p->start = p->buf + p->buf_len - 1;
323 		p->end = p->start;
324 		*p->start = 0;
325 	} else {
326 		p->start = p->buf;
327 		p->end = p->start;
328 		*p->start = 0;
329 	}
330 }
331 
332 static struct fs_path *fs_path_alloc(void)
333 {
334 	struct fs_path *p;
335 
336 	p = kmalloc(sizeof(*p), GFP_KERNEL);
337 	if (!p)
338 		return NULL;
339 	p->reversed = 0;
340 	p->buf = p->inline_buf;
341 	p->buf_len = FS_PATH_INLINE_SIZE;
342 	fs_path_reset(p);
343 	return p;
344 }
345 
346 static struct fs_path *fs_path_alloc_reversed(void)
347 {
348 	struct fs_path *p;
349 
350 	p = fs_path_alloc();
351 	if (!p)
352 		return NULL;
353 	p->reversed = 1;
354 	fs_path_reset(p);
355 	return p;
356 }
357 
358 static void fs_path_free(struct fs_path *p)
359 {
360 	if (!p)
361 		return;
362 	if (p->buf != p->inline_buf)
363 		kfree(p->buf);
364 	kfree(p);
365 }
366 
367 static int fs_path_len(struct fs_path *p)
368 {
369 	return p->end - p->start;
370 }
371 
372 static int fs_path_ensure_buf(struct fs_path *p, int len)
373 {
374 	char *tmp_buf;
375 	int path_len;
376 	int old_buf_len;
377 
378 	len++;
379 
380 	if (p->buf_len >= len)
381 		return 0;
382 
383 	if (len > PATH_MAX) {
384 		WARN_ON(1);
385 		return -ENOMEM;
386 	}
387 
388 	path_len = p->end - p->start;
389 	old_buf_len = p->buf_len;
390 
391 	/*
392 	 * First time the inline_buf does not suffice
393 	 */
394 	if (p->buf == p->inline_buf) {
395 		tmp_buf = kmalloc(len, GFP_KERNEL);
396 		if (tmp_buf)
397 			memcpy(tmp_buf, p->buf, old_buf_len);
398 	} else {
399 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 	}
401 	if (!tmp_buf)
402 		return -ENOMEM;
403 	p->buf = tmp_buf;
404 	/*
405 	 * The real size of the buffer is bigger, this will let the fast path
406 	 * happen most of the time
407 	 */
408 	p->buf_len = ksize(p->buf);
409 
410 	if (p->reversed) {
411 		tmp_buf = p->buf + old_buf_len - path_len - 1;
412 		p->end = p->buf + p->buf_len - 1;
413 		p->start = p->end - path_len;
414 		memmove(p->start, tmp_buf, path_len + 1);
415 	} else {
416 		p->start = p->buf;
417 		p->end = p->start + path_len;
418 	}
419 	return 0;
420 }
421 
422 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 				   char **prepared)
424 {
425 	int ret;
426 	int new_len;
427 
428 	new_len = p->end - p->start + name_len;
429 	if (p->start != p->end)
430 		new_len++;
431 	ret = fs_path_ensure_buf(p, new_len);
432 	if (ret < 0)
433 		goto out;
434 
435 	if (p->reversed) {
436 		if (p->start != p->end)
437 			*--p->start = '/';
438 		p->start -= name_len;
439 		*prepared = p->start;
440 	} else {
441 		if (p->start != p->end)
442 			*p->end++ = '/';
443 		*prepared = p->end;
444 		p->end += name_len;
445 		*p->end = 0;
446 	}
447 
448 out:
449 	return ret;
450 }
451 
452 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453 {
454 	int ret;
455 	char *prepared;
456 
457 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 	if (ret < 0)
459 		goto out;
460 	memcpy(prepared, name, name_len);
461 
462 out:
463 	return ret;
464 }
465 
466 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467 {
468 	int ret;
469 	char *prepared;
470 
471 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 	if (ret < 0)
473 		goto out;
474 	memcpy(prepared, p2->start, p2->end - p2->start);
475 
476 out:
477 	return ret;
478 }
479 
480 static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 					  struct extent_buffer *eb,
482 					  unsigned long off, int len)
483 {
484 	int ret;
485 	char *prepared;
486 
487 	ret = fs_path_prepare_for_add(p, len, &prepared);
488 	if (ret < 0)
489 		goto out;
490 
491 	read_extent_buffer(eb, prepared, off, len);
492 
493 out:
494 	return ret;
495 }
496 
497 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498 {
499 	int ret;
500 
501 	p->reversed = from->reversed;
502 	fs_path_reset(p);
503 
504 	ret = fs_path_add_path(p, from);
505 
506 	return ret;
507 }
508 
509 
510 static void fs_path_unreverse(struct fs_path *p)
511 {
512 	char *tmp;
513 	int len;
514 
515 	if (!p->reversed)
516 		return;
517 
518 	tmp = p->start;
519 	len = p->end - p->start;
520 	p->start = p->buf;
521 	p->end = p->start + len;
522 	memmove(p->start, tmp, len + 1);
523 	p->reversed = 0;
524 }
525 
526 static struct btrfs_path *alloc_path_for_send(void)
527 {
528 	struct btrfs_path *path;
529 
530 	path = btrfs_alloc_path();
531 	if (!path)
532 		return NULL;
533 	path->search_commit_root = 1;
534 	path->skip_locking = 1;
535 	path->need_commit_sem = 1;
536 	return path;
537 }
538 
539 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540 {
541 	int ret;
542 	mm_segment_t old_fs;
543 	u32 pos = 0;
544 
545 	old_fs = get_fs();
546 	set_fs(KERNEL_DS);
547 
548 	while (pos < len) {
549 		ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 				len - pos, off);
551 		/* TODO handle that correctly */
552 		/*if (ret == -ERESTARTSYS) {
553 			continue;
554 		}*/
555 		if (ret < 0)
556 			goto out;
557 		if (ret == 0) {
558 			ret = -EIO;
559 			goto out;
560 		}
561 		pos += ret;
562 	}
563 
564 	ret = 0;
565 
566 out:
567 	set_fs(old_fs);
568 	return ret;
569 }
570 
571 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572 {
573 	struct btrfs_tlv_header *hdr;
574 	int total_len = sizeof(*hdr) + len;
575 	int left = sctx->send_max_size - sctx->send_size;
576 
577 	if (unlikely(left < total_len))
578 		return -EOVERFLOW;
579 
580 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 	hdr->tlv_type = cpu_to_le16(attr);
582 	hdr->tlv_len = cpu_to_le16(len);
583 	memcpy(hdr + 1, data, len);
584 	sctx->send_size += total_len;
585 
586 	return 0;
587 }
588 
589 #define TLV_PUT_DEFINE_INT(bits) \
590 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
591 			u##bits attr, u##bits value)			\
592 	{								\
593 		__le##bits __tmp = cpu_to_le##bits(value);		\
594 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
595 	}
596 
597 TLV_PUT_DEFINE_INT(64)
598 
599 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 			  const char *str, int len)
601 {
602 	if (len == -1)
603 		len = strlen(str);
604 	return tlv_put(sctx, attr, str, len);
605 }
606 
607 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 			const u8 *uuid)
609 {
610 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611 }
612 
613 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 				  struct extent_buffer *eb,
615 				  struct btrfs_timespec *ts)
616 {
617 	struct btrfs_timespec bts;
618 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 	return tlv_put(sctx, attr, &bts, sizeof(bts));
620 }
621 
622 
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
624 	do { \
625 		ret = tlv_put(sctx, attrtype, attrlen, data); \
626 		if (ret < 0) \
627 			goto tlv_put_failure; \
628 	} while (0)
629 
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 	do { \
632 		ret = tlv_put_u##bits(sctx, attrtype, value); \
633 		if (ret < 0) \
634 			goto tlv_put_failure; \
635 	} while (0)
636 
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 	do { \
643 		ret = tlv_put_string(sctx, attrtype, str, len); \
644 		if (ret < 0) \
645 			goto tlv_put_failure; \
646 	} while (0)
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
648 	do { \
649 		ret = tlv_put_string(sctx, attrtype, p->start, \
650 			p->end - p->start); \
651 		if (ret < 0) \
652 			goto tlv_put_failure; \
653 	} while(0)
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 	do { \
656 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 		if (ret < 0) \
658 			goto tlv_put_failure; \
659 	} while (0)
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 	do { \
662 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 		if (ret < 0) \
664 			goto tlv_put_failure; \
665 	} while (0)
666 
667 static int send_header(struct send_ctx *sctx)
668 {
669 	struct btrfs_stream_header hdr;
670 
671 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673 
674 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 					&sctx->send_off);
676 }
677 
678 /*
679  * For each command/item we want to send to userspace, we call this function.
680  */
681 static int begin_cmd(struct send_ctx *sctx, int cmd)
682 {
683 	struct btrfs_cmd_header *hdr;
684 
685 	if (WARN_ON(!sctx->send_buf))
686 		return -EINVAL;
687 
688 	BUG_ON(sctx->send_size);
689 
690 	sctx->send_size += sizeof(*hdr);
691 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 	hdr->cmd = cpu_to_le16(cmd);
693 
694 	return 0;
695 }
696 
697 static int send_cmd(struct send_ctx *sctx)
698 {
699 	int ret;
700 	struct btrfs_cmd_header *hdr;
701 	u32 crc;
702 
703 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 	hdr->crc = 0;
706 
707 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 	hdr->crc = cpu_to_le32(crc);
709 
710 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 					&sctx->send_off);
712 
713 	sctx->total_send_size += sctx->send_size;
714 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 	sctx->send_size = 0;
716 
717 	return ret;
718 }
719 
720 /*
721  * Sends a move instruction to user space
722  */
723 static int send_rename(struct send_ctx *sctx,
724 		     struct fs_path *from, struct fs_path *to)
725 {
726 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 	int ret;
728 
729 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730 
731 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 	if (ret < 0)
733 		goto out;
734 
735 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737 
738 	ret = send_cmd(sctx);
739 
740 tlv_put_failure:
741 out:
742 	return ret;
743 }
744 
745 /*
746  * Sends a link instruction to user space
747  */
748 static int send_link(struct send_ctx *sctx,
749 		     struct fs_path *path, struct fs_path *lnk)
750 {
751 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 	int ret;
753 
754 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755 
756 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 	if (ret < 0)
758 		goto out;
759 
760 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762 
763 	ret = send_cmd(sctx);
764 
765 tlv_put_failure:
766 out:
767 	return ret;
768 }
769 
770 /*
771  * Sends an unlink instruction to user space
772  */
773 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774 {
775 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 	int ret;
777 
778 	btrfs_debug(fs_info, "send_unlink %s", path->start);
779 
780 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 	if (ret < 0)
782 		goto out;
783 
784 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785 
786 	ret = send_cmd(sctx);
787 
788 tlv_put_failure:
789 out:
790 	return ret;
791 }
792 
793 /*
794  * Sends a rmdir instruction to user space
795  */
796 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797 {
798 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 	int ret;
800 
801 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
802 
803 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 	if (ret < 0)
805 		goto out;
806 
807 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808 
809 	ret = send_cmd(sctx);
810 
811 tlv_put_failure:
812 out:
813 	return ret;
814 }
815 
816 /*
817  * Helper function to retrieve some fields from an inode item.
818  */
819 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 			  u64 *gid, u64 *rdev)
822 {
823 	int ret;
824 	struct btrfs_inode_item *ii;
825 	struct btrfs_key key;
826 
827 	key.objectid = ino;
828 	key.type = BTRFS_INODE_ITEM_KEY;
829 	key.offset = 0;
830 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 	if (ret) {
832 		if (ret > 0)
833 			ret = -ENOENT;
834 		return ret;
835 	}
836 
837 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 			struct btrfs_inode_item);
839 	if (size)
840 		*size = btrfs_inode_size(path->nodes[0], ii);
841 	if (gen)
842 		*gen = btrfs_inode_generation(path->nodes[0], ii);
843 	if (mode)
844 		*mode = btrfs_inode_mode(path->nodes[0], ii);
845 	if (uid)
846 		*uid = btrfs_inode_uid(path->nodes[0], ii);
847 	if (gid)
848 		*gid = btrfs_inode_gid(path->nodes[0], ii);
849 	if (rdev)
850 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
851 
852 	return ret;
853 }
854 
855 static int get_inode_info(struct btrfs_root *root,
856 			  u64 ino, u64 *size, u64 *gen,
857 			  u64 *mode, u64 *uid, u64 *gid,
858 			  u64 *rdev)
859 {
860 	struct btrfs_path *path;
861 	int ret;
862 
863 	path = alloc_path_for_send();
864 	if (!path)
865 		return -ENOMEM;
866 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 			       rdev);
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 				   struct fs_path *p,
874 				   void *ctx);
875 
876 /*
877  * Helper function to iterate the entries in ONE btrfs_inode_ref or
878  * btrfs_inode_extref.
879  * The iterate callback may return a non zero value to stop iteration. This can
880  * be a negative value for error codes or 1 to simply stop it.
881  *
882  * path must point to the INODE_REF or INODE_EXTREF when called.
883  */
884 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 			     struct btrfs_key *found_key, int resolve,
886 			     iterate_inode_ref_t iterate, void *ctx)
887 {
888 	struct extent_buffer *eb = path->nodes[0];
889 	struct btrfs_item *item;
890 	struct btrfs_inode_ref *iref;
891 	struct btrfs_inode_extref *extref;
892 	struct btrfs_path *tmp_path;
893 	struct fs_path *p;
894 	u32 cur = 0;
895 	u32 total;
896 	int slot = path->slots[0];
897 	u32 name_len;
898 	char *start;
899 	int ret = 0;
900 	int num = 0;
901 	int index;
902 	u64 dir;
903 	unsigned long name_off;
904 	unsigned long elem_size;
905 	unsigned long ptr;
906 
907 	p = fs_path_alloc_reversed();
908 	if (!p)
909 		return -ENOMEM;
910 
911 	tmp_path = alloc_path_for_send();
912 	if (!tmp_path) {
913 		fs_path_free(p);
914 		return -ENOMEM;
915 	}
916 
917 
918 	if (found_key->type == BTRFS_INODE_REF_KEY) {
919 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 						    struct btrfs_inode_ref);
921 		item = btrfs_item_nr(slot);
922 		total = btrfs_item_size(eb, item);
923 		elem_size = sizeof(*iref);
924 	} else {
925 		ptr = btrfs_item_ptr_offset(eb, slot);
926 		total = btrfs_item_size_nr(eb, slot);
927 		elem_size = sizeof(*extref);
928 	}
929 
930 	while (cur < total) {
931 		fs_path_reset(p);
932 
933 		if (found_key->type == BTRFS_INODE_REF_KEY) {
934 			iref = (struct btrfs_inode_ref *)(ptr + cur);
935 			name_len = btrfs_inode_ref_name_len(eb, iref);
936 			name_off = (unsigned long)(iref + 1);
937 			index = btrfs_inode_ref_index(eb, iref);
938 			dir = found_key->offset;
939 		} else {
940 			extref = (struct btrfs_inode_extref *)(ptr + cur);
941 			name_len = btrfs_inode_extref_name_len(eb, extref);
942 			name_off = (unsigned long)&extref->name;
943 			index = btrfs_inode_extref_index(eb, extref);
944 			dir = btrfs_inode_extref_parent(eb, extref);
945 		}
946 
947 		if (resolve) {
948 			start = btrfs_ref_to_path(root, tmp_path, name_len,
949 						  name_off, eb, dir,
950 						  p->buf, p->buf_len);
951 			if (IS_ERR(start)) {
952 				ret = PTR_ERR(start);
953 				goto out;
954 			}
955 			if (start < p->buf) {
956 				/* overflow , try again with larger buffer */
957 				ret = fs_path_ensure_buf(p,
958 						p->buf_len + p->buf - start);
959 				if (ret < 0)
960 					goto out;
961 				start = btrfs_ref_to_path(root, tmp_path,
962 							  name_len, name_off,
963 							  eb, dir,
964 							  p->buf, p->buf_len);
965 				if (IS_ERR(start)) {
966 					ret = PTR_ERR(start);
967 					goto out;
968 				}
969 				BUG_ON(start < p->buf);
970 			}
971 			p->start = start;
972 		} else {
973 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 							     name_len);
975 			if (ret < 0)
976 				goto out;
977 		}
978 
979 		cur += elem_size + name_len;
980 		ret = iterate(num, dir, index, p, ctx);
981 		if (ret)
982 			goto out;
983 		num++;
984 	}
985 
986 out:
987 	btrfs_free_path(tmp_path);
988 	fs_path_free(p);
989 	return ret;
990 }
991 
992 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 				  const char *name, int name_len,
994 				  const char *data, int data_len,
995 				  u8 type, void *ctx);
996 
997 /*
998  * Helper function to iterate the entries in ONE btrfs_dir_item.
999  * The iterate callback may return a non zero value to stop iteration. This can
1000  * be a negative value for error codes or 1 to simply stop it.
1001  *
1002  * path must point to the dir item when called.
1003  */
1004 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 			    struct btrfs_key *found_key,
1006 			    iterate_dir_item_t iterate, void *ctx)
1007 {
1008 	int ret = 0;
1009 	struct extent_buffer *eb;
1010 	struct btrfs_item *item;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key di_key;
1013 	char *buf = NULL;
1014 	int buf_len;
1015 	u32 name_len;
1016 	u32 data_len;
1017 	u32 cur;
1018 	u32 len;
1019 	u32 total;
1020 	int slot;
1021 	int num;
1022 	u8 type;
1023 
1024 	/*
1025 	 * Start with a small buffer (1 page). If later we end up needing more
1026 	 * space, which can happen for xattrs on a fs with a leaf size greater
1027 	 * then the page size, attempt to increase the buffer. Typically xattr
1028 	 * values are small.
1029 	 */
1030 	buf_len = PATH_MAX;
1031 	buf = kmalloc(buf_len, GFP_KERNEL);
1032 	if (!buf) {
1033 		ret = -ENOMEM;
1034 		goto out;
1035 	}
1036 
1037 	eb = path->nodes[0];
1038 	slot = path->slots[0];
1039 	item = btrfs_item_nr(slot);
1040 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 	cur = 0;
1042 	len = 0;
1043 	total = btrfs_item_size(eb, item);
1044 
1045 	num = 0;
1046 	while (cur < total) {
1047 		name_len = btrfs_dir_name_len(eb, di);
1048 		data_len = btrfs_dir_data_len(eb, di);
1049 		type = btrfs_dir_type(eb, di);
1050 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051 
1052 		if (type == BTRFS_FT_XATTR) {
1053 			if (name_len > XATTR_NAME_MAX) {
1054 				ret = -ENAMETOOLONG;
1055 				goto out;
1056 			}
1057 			if (name_len + data_len >
1058 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1059 				ret = -E2BIG;
1060 				goto out;
1061 			}
1062 		} else {
1063 			/*
1064 			 * Path too long
1065 			 */
1066 			if (name_len + data_len > PATH_MAX) {
1067 				ret = -ENAMETOOLONG;
1068 				goto out;
1069 			}
1070 		}
1071 
1072 		if (name_len + data_len > buf_len) {
1073 			buf_len = name_len + data_len;
1074 			if (is_vmalloc_addr(buf)) {
1075 				vfree(buf);
1076 				buf = NULL;
1077 			} else {
1078 				char *tmp = krealloc(buf, buf_len,
1079 						GFP_KERNEL | __GFP_NOWARN);
1080 
1081 				if (!tmp)
1082 					kfree(buf);
1083 				buf = tmp;
1084 			}
1085 			if (!buf) {
1086 				buf = vmalloc(buf_len);
1087 				if (!buf) {
1088 					ret = -ENOMEM;
1089 					goto out;
1090 				}
1091 			}
1092 		}
1093 
1094 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1095 				name_len + data_len);
1096 
1097 		len = sizeof(*di) + name_len + data_len;
1098 		di = (struct btrfs_dir_item *)((char *)di + len);
1099 		cur += len;
1100 
1101 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1102 				data_len, type, ctx);
1103 		if (ret < 0)
1104 			goto out;
1105 		if (ret) {
1106 			ret = 0;
1107 			goto out;
1108 		}
1109 
1110 		num++;
1111 	}
1112 
1113 out:
1114 	kvfree(buf);
1115 	return ret;
1116 }
1117 
1118 static int __copy_first_ref(int num, u64 dir, int index,
1119 			    struct fs_path *p, void *ctx)
1120 {
1121 	int ret;
1122 	struct fs_path *pt = ctx;
1123 
1124 	ret = fs_path_copy(pt, p);
1125 	if (ret < 0)
1126 		return ret;
1127 
1128 	/* we want the first only */
1129 	return 1;
1130 }
1131 
1132 /*
1133  * Retrieve the first path of an inode. If an inode has more then one
1134  * ref/hardlink, this is ignored.
1135  */
1136 static int get_inode_path(struct btrfs_root *root,
1137 			  u64 ino, struct fs_path *path)
1138 {
1139 	int ret;
1140 	struct btrfs_key key, found_key;
1141 	struct btrfs_path *p;
1142 
1143 	p = alloc_path_for_send();
1144 	if (!p)
1145 		return -ENOMEM;
1146 
1147 	fs_path_reset(path);
1148 
1149 	key.objectid = ino;
1150 	key.type = BTRFS_INODE_REF_KEY;
1151 	key.offset = 0;
1152 
1153 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1154 	if (ret < 0)
1155 		goto out;
1156 	if (ret) {
1157 		ret = 1;
1158 		goto out;
1159 	}
1160 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1161 	if (found_key.objectid != ino ||
1162 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1163 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1164 		ret = -ENOENT;
1165 		goto out;
1166 	}
1167 
1168 	ret = iterate_inode_ref(root, p, &found_key, 1,
1169 				__copy_first_ref, path);
1170 	if (ret < 0)
1171 		goto out;
1172 	ret = 0;
1173 
1174 out:
1175 	btrfs_free_path(p);
1176 	return ret;
1177 }
1178 
1179 struct backref_ctx {
1180 	struct send_ctx *sctx;
1181 
1182 	struct btrfs_path *path;
1183 	/* number of total found references */
1184 	u64 found;
1185 
1186 	/*
1187 	 * used for clones found in send_root. clones found behind cur_objectid
1188 	 * and cur_offset are not considered as allowed clones.
1189 	 */
1190 	u64 cur_objectid;
1191 	u64 cur_offset;
1192 
1193 	/* may be truncated in case it's the last extent in a file */
1194 	u64 extent_len;
1195 
1196 	/* data offset in the file extent item */
1197 	u64 data_offset;
1198 
1199 	/* Just to check for bugs in backref resolving */
1200 	int found_itself;
1201 };
1202 
1203 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1204 {
1205 	u64 root = (u64)(uintptr_t)key;
1206 	struct clone_root *cr = (struct clone_root *)elt;
1207 
1208 	if (root < cr->root->objectid)
1209 		return -1;
1210 	if (root > cr->root->objectid)
1211 		return 1;
1212 	return 0;
1213 }
1214 
1215 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1216 {
1217 	struct clone_root *cr1 = (struct clone_root *)e1;
1218 	struct clone_root *cr2 = (struct clone_root *)e2;
1219 
1220 	if (cr1->root->objectid < cr2->root->objectid)
1221 		return -1;
1222 	if (cr1->root->objectid > cr2->root->objectid)
1223 		return 1;
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Called for every backref that is found for the current extent.
1229  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1230  */
1231 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1232 {
1233 	struct backref_ctx *bctx = ctx_;
1234 	struct clone_root *found;
1235 	int ret;
1236 	u64 i_size;
1237 
1238 	/* First check if the root is in the list of accepted clone sources */
1239 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1240 			bctx->sctx->clone_roots_cnt,
1241 			sizeof(struct clone_root),
1242 			__clone_root_cmp_bsearch);
1243 	if (!found)
1244 		return 0;
1245 
1246 	if (found->root == bctx->sctx->send_root &&
1247 	    ino == bctx->cur_objectid &&
1248 	    offset == bctx->cur_offset) {
1249 		bctx->found_itself = 1;
1250 	}
1251 
1252 	/*
1253 	 * There are inodes that have extents that lie behind its i_size. Don't
1254 	 * accept clones from these extents.
1255 	 */
1256 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1257 			       NULL, NULL, NULL);
1258 	btrfs_release_path(bctx->path);
1259 	if (ret < 0)
1260 		return ret;
1261 
1262 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1263 		return 0;
1264 
1265 	/*
1266 	 * Make sure we don't consider clones from send_root that are
1267 	 * behind the current inode/offset.
1268 	 */
1269 	if (found->root == bctx->sctx->send_root) {
1270 		/*
1271 		 * TODO for the moment we don't accept clones from the inode
1272 		 * that is currently send. We may change this when
1273 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1274 		 * file.
1275 		 */
1276 		if (ino >= bctx->cur_objectid)
1277 			return 0;
1278 #if 0
1279 		if (ino > bctx->cur_objectid)
1280 			return 0;
1281 		if (offset + bctx->extent_len > bctx->cur_offset)
1282 			return 0;
1283 #endif
1284 	}
1285 
1286 	bctx->found++;
1287 	found->found_refs++;
1288 	if (ino < found->ino) {
1289 		found->ino = ino;
1290 		found->offset = offset;
1291 	} else if (found->ino == ino) {
1292 		/*
1293 		 * same extent found more then once in the same file.
1294 		 */
1295 		if (found->offset > offset + bctx->extent_len)
1296 			found->offset = offset;
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Given an inode, offset and extent item, it finds a good clone for a clone
1304  * instruction. Returns -ENOENT when none could be found. The function makes
1305  * sure that the returned clone is usable at the point where sending is at the
1306  * moment. This means, that no clones are accepted which lie behind the current
1307  * inode+offset.
1308  *
1309  * path must point to the extent item when called.
1310  */
1311 static int find_extent_clone(struct send_ctx *sctx,
1312 			     struct btrfs_path *path,
1313 			     u64 ino, u64 data_offset,
1314 			     u64 ino_size,
1315 			     struct clone_root **found)
1316 {
1317 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1318 	int ret;
1319 	int extent_type;
1320 	u64 logical;
1321 	u64 disk_byte;
1322 	u64 num_bytes;
1323 	u64 extent_item_pos;
1324 	u64 flags = 0;
1325 	struct btrfs_file_extent_item *fi;
1326 	struct extent_buffer *eb = path->nodes[0];
1327 	struct backref_ctx *backref_ctx = NULL;
1328 	struct clone_root *cur_clone_root;
1329 	struct btrfs_key found_key;
1330 	struct btrfs_path *tmp_path;
1331 	int compressed;
1332 	u32 i;
1333 
1334 	tmp_path = alloc_path_for_send();
1335 	if (!tmp_path)
1336 		return -ENOMEM;
1337 
1338 	/* We only use this path under the commit sem */
1339 	tmp_path->need_commit_sem = 0;
1340 
1341 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1342 	if (!backref_ctx) {
1343 		ret = -ENOMEM;
1344 		goto out;
1345 	}
1346 
1347 	backref_ctx->path = tmp_path;
1348 
1349 	if (data_offset >= ino_size) {
1350 		/*
1351 		 * There may be extents that lie behind the file's size.
1352 		 * I at least had this in combination with snapshotting while
1353 		 * writing large files.
1354 		 */
1355 		ret = 0;
1356 		goto out;
1357 	}
1358 
1359 	fi = btrfs_item_ptr(eb, path->slots[0],
1360 			struct btrfs_file_extent_item);
1361 	extent_type = btrfs_file_extent_type(eb, fi);
1362 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1363 		ret = -ENOENT;
1364 		goto out;
1365 	}
1366 	compressed = btrfs_file_extent_compression(eb, fi);
1367 
1368 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1369 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1370 	if (disk_byte == 0) {
1371 		ret = -ENOENT;
1372 		goto out;
1373 	}
1374 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1375 
1376 	down_read(&fs_info->commit_root_sem);
1377 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1378 				  &found_key, &flags);
1379 	up_read(&fs_info->commit_root_sem);
1380 	btrfs_release_path(tmp_path);
1381 
1382 	if (ret < 0)
1383 		goto out;
1384 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1385 		ret = -EIO;
1386 		goto out;
1387 	}
1388 
1389 	/*
1390 	 * Setup the clone roots.
1391 	 */
1392 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1393 		cur_clone_root = sctx->clone_roots + i;
1394 		cur_clone_root->ino = (u64)-1;
1395 		cur_clone_root->offset = 0;
1396 		cur_clone_root->found_refs = 0;
1397 	}
1398 
1399 	backref_ctx->sctx = sctx;
1400 	backref_ctx->found = 0;
1401 	backref_ctx->cur_objectid = ino;
1402 	backref_ctx->cur_offset = data_offset;
1403 	backref_ctx->found_itself = 0;
1404 	backref_ctx->extent_len = num_bytes;
1405 	/*
1406 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1407 	 * offsets that already take into account the data offset, but not for
1408 	 * compressed extents, since the offset is logical and not relative to
1409 	 * the physical extent locations. We must take this into account to
1410 	 * avoid sending clone offsets that go beyond the source file's size,
1411 	 * which would result in the clone ioctl failing with -EINVAL on the
1412 	 * receiving end.
1413 	 */
1414 	if (compressed == BTRFS_COMPRESS_NONE)
1415 		backref_ctx->data_offset = 0;
1416 	else
1417 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1418 
1419 	/*
1420 	 * The last extent of a file may be too large due to page alignment.
1421 	 * We need to adjust extent_len in this case so that the checks in
1422 	 * __iterate_backrefs work.
1423 	 */
1424 	if (data_offset + num_bytes >= ino_size)
1425 		backref_ctx->extent_len = ino_size - data_offset;
1426 
1427 	/*
1428 	 * Now collect all backrefs.
1429 	 */
1430 	if (compressed == BTRFS_COMPRESS_NONE)
1431 		extent_item_pos = logical - found_key.objectid;
1432 	else
1433 		extent_item_pos = 0;
1434 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1435 				    extent_item_pos, 1, __iterate_backrefs,
1436 				    backref_ctx);
1437 
1438 	if (ret < 0)
1439 		goto out;
1440 
1441 	if (!backref_ctx->found_itself) {
1442 		/* found a bug in backref code? */
1443 		ret = -EIO;
1444 		btrfs_err(fs_info,
1445 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1446 			  ino, data_offset, disk_byte, found_key.objectid);
1447 		goto out;
1448 	}
1449 
1450 	btrfs_debug(fs_info,
1451 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1452 		    data_offset, ino, num_bytes, logical);
1453 
1454 	if (!backref_ctx->found)
1455 		btrfs_debug(fs_info, "no clones found");
1456 
1457 	cur_clone_root = NULL;
1458 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 		if (sctx->clone_roots[i].found_refs) {
1460 			if (!cur_clone_root)
1461 				cur_clone_root = sctx->clone_roots + i;
1462 			else if (sctx->clone_roots[i].root == sctx->send_root)
1463 				/* prefer clones from send_root over others */
1464 				cur_clone_root = sctx->clone_roots + i;
1465 		}
1466 
1467 	}
1468 
1469 	if (cur_clone_root) {
1470 		*found = cur_clone_root;
1471 		ret = 0;
1472 	} else {
1473 		ret = -ENOENT;
1474 	}
1475 
1476 out:
1477 	btrfs_free_path(tmp_path);
1478 	kfree(backref_ctx);
1479 	return ret;
1480 }
1481 
1482 static int read_symlink(struct btrfs_root *root,
1483 			u64 ino,
1484 			struct fs_path *dest)
1485 {
1486 	int ret;
1487 	struct btrfs_path *path;
1488 	struct btrfs_key key;
1489 	struct btrfs_file_extent_item *ei;
1490 	u8 type;
1491 	u8 compression;
1492 	unsigned long off;
1493 	int len;
1494 
1495 	path = alloc_path_for_send();
1496 	if (!path)
1497 		return -ENOMEM;
1498 
1499 	key.objectid = ino;
1500 	key.type = BTRFS_EXTENT_DATA_KEY;
1501 	key.offset = 0;
1502 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1503 	if (ret < 0)
1504 		goto out;
1505 	if (ret) {
1506 		/*
1507 		 * An empty symlink inode. Can happen in rare error paths when
1508 		 * creating a symlink (transaction committed before the inode
1509 		 * eviction handler removed the symlink inode items and a crash
1510 		 * happened in between or the subvol was snapshoted in between).
1511 		 * Print an informative message to dmesg/syslog so that the user
1512 		 * can delete the symlink.
1513 		 */
1514 		btrfs_err(root->fs_info,
1515 			  "Found empty symlink inode %llu at root %llu",
1516 			  ino, root->root_key.objectid);
1517 		ret = -EIO;
1518 		goto out;
1519 	}
1520 
1521 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 			struct btrfs_file_extent_item);
1523 	type = btrfs_file_extent_type(path->nodes[0], ei);
1524 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 	BUG_ON(compression);
1527 
1528 	off = btrfs_file_extent_inline_start(ei);
1529 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1530 
1531 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1532 
1533 out:
1534 	btrfs_free_path(path);
1535 	return ret;
1536 }
1537 
1538 /*
1539  * Helper function to generate a file name that is unique in the root of
1540  * send_root and parent_root. This is used to generate names for orphan inodes.
1541  */
1542 static int gen_unique_name(struct send_ctx *sctx,
1543 			   u64 ino, u64 gen,
1544 			   struct fs_path *dest)
1545 {
1546 	int ret = 0;
1547 	struct btrfs_path *path;
1548 	struct btrfs_dir_item *di;
1549 	char tmp[64];
1550 	int len;
1551 	u64 idx = 0;
1552 
1553 	path = alloc_path_for_send();
1554 	if (!path)
1555 		return -ENOMEM;
1556 
1557 	while (1) {
1558 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1559 				ino, gen, idx);
1560 		ASSERT(len < sizeof(tmp));
1561 
1562 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 				path, BTRFS_FIRST_FREE_OBJECTID,
1564 				tmp, strlen(tmp), 0);
1565 		btrfs_release_path(path);
1566 		if (IS_ERR(di)) {
1567 			ret = PTR_ERR(di);
1568 			goto out;
1569 		}
1570 		if (di) {
1571 			/* not unique, try again */
1572 			idx++;
1573 			continue;
1574 		}
1575 
1576 		if (!sctx->parent_root) {
1577 			/* unique */
1578 			ret = 0;
1579 			break;
1580 		}
1581 
1582 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 				path, BTRFS_FIRST_FREE_OBJECTID,
1584 				tmp, strlen(tmp), 0);
1585 		btrfs_release_path(path);
1586 		if (IS_ERR(di)) {
1587 			ret = PTR_ERR(di);
1588 			goto out;
1589 		}
1590 		if (di) {
1591 			/* not unique, try again */
1592 			idx++;
1593 			continue;
1594 		}
1595 		/* unique */
1596 		break;
1597 	}
1598 
1599 	ret = fs_path_add(dest, tmp, strlen(tmp));
1600 
1601 out:
1602 	btrfs_free_path(path);
1603 	return ret;
1604 }
1605 
1606 enum inode_state {
1607 	inode_state_no_change,
1608 	inode_state_will_create,
1609 	inode_state_did_create,
1610 	inode_state_will_delete,
1611 	inode_state_did_delete,
1612 };
1613 
1614 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1615 {
1616 	int ret;
1617 	int left_ret;
1618 	int right_ret;
1619 	u64 left_gen;
1620 	u64 right_gen;
1621 
1622 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1623 			NULL, NULL);
1624 	if (ret < 0 && ret != -ENOENT)
1625 		goto out;
1626 	left_ret = ret;
1627 
1628 	if (!sctx->parent_root) {
1629 		right_ret = -ENOENT;
1630 	} else {
1631 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1632 				NULL, NULL, NULL, NULL);
1633 		if (ret < 0 && ret != -ENOENT)
1634 			goto out;
1635 		right_ret = ret;
1636 	}
1637 
1638 	if (!left_ret && !right_ret) {
1639 		if (left_gen == gen && right_gen == gen) {
1640 			ret = inode_state_no_change;
1641 		} else if (left_gen == gen) {
1642 			if (ino < sctx->send_progress)
1643 				ret = inode_state_did_create;
1644 			else
1645 				ret = inode_state_will_create;
1646 		} else if (right_gen == gen) {
1647 			if (ino < sctx->send_progress)
1648 				ret = inode_state_did_delete;
1649 			else
1650 				ret = inode_state_will_delete;
1651 		} else  {
1652 			ret = -ENOENT;
1653 		}
1654 	} else if (!left_ret) {
1655 		if (left_gen == gen) {
1656 			if (ino < sctx->send_progress)
1657 				ret = inode_state_did_create;
1658 			else
1659 				ret = inode_state_will_create;
1660 		} else {
1661 			ret = -ENOENT;
1662 		}
1663 	} else if (!right_ret) {
1664 		if (right_gen == gen) {
1665 			if (ino < sctx->send_progress)
1666 				ret = inode_state_did_delete;
1667 			else
1668 				ret = inode_state_will_delete;
1669 		} else {
1670 			ret = -ENOENT;
1671 		}
1672 	} else {
1673 		ret = -ENOENT;
1674 	}
1675 
1676 out:
1677 	return ret;
1678 }
1679 
1680 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1681 {
1682 	int ret;
1683 
1684 	ret = get_cur_inode_state(sctx, ino, gen);
1685 	if (ret < 0)
1686 		goto out;
1687 
1688 	if (ret == inode_state_no_change ||
1689 	    ret == inode_state_did_create ||
1690 	    ret == inode_state_will_delete)
1691 		ret = 1;
1692 	else
1693 		ret = 0;
1694 
1695 out:
1696 	return ret;
1697 }
1698 
1699 /*
1700  * Helper function to lookup a dir item in a dir.
1701  */
1702 static int lookup_dir_item_inode(struct btrfs_root *root,
1703 				 u64 dir, const char *name, int name_len,
1704 				 u64 *found_inode,
1705 				 u8 *found_type)
1706 {
1707 	int ret = 0;
1708 	struct btrfs_dir_item *di;
1709 	struct btrfs_key key;
1710 	struct btrfs_path *path;
1711 
1712 	path = alloc_path_for_send();
1713 	if (!path)
1714 		return -ENOMEM;
1715 
1716 	di = btrfs_lookup_dir_item(NULL, root, path,
1717 			dir, name, name_len, 0);
1718 	if (!di) {
1719 		ret = -ENOENT;
1720 		goto out;
1721 	}
1722 	if (IS_ERR(di)) {
1723 		ret = PTR_ERR(di);
1724 		goto out;
1725 	}
1726 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1727 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1728 		ret = -ENOENT;
1729 		goto out;
1730 	}
1731 	*found_inode = key.objectid;
1732 	*found_type = btrfs_dir_type(path->nodes[0], di);
1733 
1734 out:
1735 	btrfs_free_path(path);
1736 	return ret;
1737 }
1738 
1739 /*
1740  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1741  * generation of the parent dir and the name of the dir entry.
1742  */
1743 static int get_first_ref(struct btrfs_root *root, u64 ino,
1744 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1745 {
1746 	int ret;
1747 	struct btrfs_key key;
1748 	struct btrfs_key found_key;
1749 	struct btrfs_path *path;
1750 	int len;
1751 	u64 parent_dir;
1752 
1753 	path = alloc_path_for_send();
1754 	if (!path)
1755 		return -ENOMEM;
1756 
1757 	key.objectid = ino;
1758 	key.type = BTRFS_INODE_REF_KEY;
1759 	key.offset = 0;
1760 
1761 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1762 	if (ret < 0)
1763 		goto out;
1764 	if (!ret)
1765 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1766 				path->slots[0]);
1767 	if (ret || found_key.objectid != ino ||
1768 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1769 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1770 		ret = -ENOENT;
1771 		goto out;
1772 	}
1773 
1774 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1775 		struct btrfs_inode_ref *iref;
1776 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1777 				      struct btrfs_inode_ref);
1778 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1779 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1780 						     (unsigned long)(iref + 1),
1781 						     len);
1782 		parent_dir = found_key.offset;
1783 	} else {
1784 		struct btrfs_inode_extref *extref;
1785 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 					struct btrfs_inode_extref);
1787 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1788 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 					(unsigned long)&extref->name, len);
1790 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1791 	}
1792 	if (ret < 0)
1793 		goto out;
1794 	btrfs_release_path(path);
1795 
1796 	if (dir_gen) {
1797 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1798 				     NULL, NULL, NULL);
1799 		if (ret < 0)
1800 			goto out;
1801 	}
1802 
1803 	*dir = parent_dir;
1804 
1805 out:
1806 	btrfs_free_path(path);
1807 	return ret;
1808 }
1809 
1810 static int is_first_ref(struct btrfs_root *root,
1811 			u64 ino, u64 dir,
1812 			const char *name, int name_len)
1813 {
1814 	int ret;
1815 	struct fs_path *tmp_name;
1816 	u64 tmp_dir;
1817 
1818 	tmp_name = fs_path_alloc();
1819 	if (!tmp_name)
1820 		return -ENOMEM;
1821 
1822 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1823 	if (ret < 0)
1824 		goto out;
1825 
1826 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1827 		ret = 0;
1828 		goto out;
1829 	}
1830 
1831 	ret = !memcmp(tmp_name->start, name, name_len);
1832 
1833 out:
1834 	fs_path_free(tmp_name);
1835 	return ret;
1836 }
1837 
1838 /*
1839  * Used by process_recorded_refs to determine if a new ref would overwrite an
1840  * already existing ref. In case it detects an overwrite, it returns the
1841  * inode/gen in who_ino/who_gen.
1842  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1843  * to make sure later references to the overwritten inode are possible.
1844  * Orphanizing is however only required for the first ref of an inode.
1845  * process_recorded_refs does an additional is_first_ref check to see if
1846  * orphanizing is really required.
1847  */
1848 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1849 			      const char *name, int name_len,
1850 			      u64 *who_ino, u64 *who_gen)
1851 {
1852 	int ret = 0;
1853 	u64 gen;
1854 	u64 other_inode = 0;
1855 	u8 other_type = 0;
1856 
1857 	if (!sctx->parent_root)
1858 		goto out;
1859 
1860 	ret = is_inode_existent(sctx, dir, dir_gen);
1861 	if (ret <= 0)
1862 		goto out;
1863 
1864 	/*
1865 	 * If we have a parent root we need to verify that the parent dir was
1866 	 * not deleted and then re-created, if it was then we have no overwrite
1867 	 * and we can just unlink this entry.
1868 	 */
1869 	if (sctx->parent_root) {
1870 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1871 				     NULL, NULL, NULL);
1872 		if (ret < 0 && ret != -ENOENT)
1873 			goto out;
1874 		if (ret) {
1875 			ret = 0;
1876 			goto out;
1877 		}
1878 		if (gen != dir_gen)
1879 			goto out;
1880 	}
1881 
1882 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1883 			&other_inode, &other_type);
1884 	if (ret < 0 && ret != -ENOENT)
1885 		goto out;
1886 	if (ret) {
1887 		ret = 0;
1888 		goto out;
1889 	}
1890 
1891 	/*
1892 	 * Check if the overwritten ref was already processed. If yes, the ref
1893 	 * was already unlinked/moved, so we can safely assume that we will not
1894 	 * overwrite anything at this point in time.
1895 	 */
1896 	if (other_inode > sctx->send_progress ||
1897 	    is_waiting_for_move(sctx, other_inode)) {
1898 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1899 				who_gen, NULL, NULL, NULL, NULL);
1900 		if (ret < 0)
1901 			goto out;
1902 
1903 		ret = 1;
1904 		*who_ino = other_inode;
1905 	} else {
1906 		ret = 0;
1907 	}
1908 
1909 out:
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Checks if the ref was overwritten by an already processed inode. This is
1915  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1916  * thus the orphan name needs be used.
1917  * process_recorded_refs also uses it to avoid unlinking of refs that were
1918  * overwritten.
1919  */
1920 static int did_overwrite_ref(struct send_ctx *sctx,
1921 			    u64 dir, u64 dir_gen,
1922 			    u64 ino, u64 ino_gen,
1923 			    const char *name, int name_len)
1924 {
1925 	int ret = 0;
1926 	u64 gen;
1927 	u64 ow_inode;
1928 	u8 other_type;
1929 
1930 	if (!sctx->parent_root)
1931 		goto out;
1932 
1933 	ret = is_inode_existent(sctx, dir, dir_gen);
1934 	if (ret <= 0)
1935 		goto out;
1936 
1937 	/* check if the ref was overwritten by another ref */
1938 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 			&ow_inode, &other_type);
1940 	if (ret < 0 && ret != -ENOENT)
1941 		goto out;
1942 	if (ret) {
1943 		/* was never and will never be overwritten */
1944 		ret = 0;
1945 		goto out;
1946 	}
1947 
1948 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1949 			NULL, NULL);
1950 	if (ret < 0)
1951 		goto out;
1952 
1953 	if (ow_inode == ino && gen == ino_gen) {
1954 		ret = 0;
1955 		goto out;
1956 	}
1957 
1958 	/*
1959 	 * We know that it is or will be overwritten. Check this now.
1960 	 * The current inode being processed might have been the one that caused
1961 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 	 * the current inode being processed.
1963 	 */
1964 	if ((ow_inode < sctx->send_progress) ||
1965 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 	     gen == sctx->cur_inode_gen))
1967 		ret = 1;
1968 	else
1969 		ret = 0;
1970 
1971 out:
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977  * that got overwritten. This is used by process_recorded_refs to determine
1978  * if it has to use the path as returned by get_cur_path or the orphan name.
1979  */
1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1981 {
1982 	int ret = 0;
1983 	struct fs_path *name = NULL;
1984 	u64 dir;
1985 	u64 dir_gen;
1986 
1987 	if (!sctx->parent_root)
1988 		goto out;
1989 
1990 	name = fs_path_alloc();
1991 	if (!name)
1992 		return -ENOMEM;
1993 
1994 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1995 	if (ret < 0)
1996 		goto out;
1997 
1998 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 			name->start, fs_path_len(name));
2000 
2001 out:
2002 	fs_path_free(name);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008  * so we need to do some special handling in case we have clashes. This function
2009  * takes care of this with the help of name_cache_entry::radix_list.
2010  * In case of error, nce is kfreed.
2011  */
2012 static int name_cache_insert(struct send_ctx *sctx,
2013 			     struct name_cache_entry *nce)
2014 {
2015 	int ret = 0;
2016 	struct list_head *nce_head;
2017 
2018 	nce_head = radix_tree_lookup(&sctx->name_cache,
2019 			(unsigned long)nce->ino);
2020 	if (!nce_head) {
2021 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2022 		if (!nce_head) {
2023 			kfree(nce);
2024 			return -ENOMEM;
2025 		}
2026 		INIT_LIST_HEAD(nce_head);
2027 
2028 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2029 		if (ret < 0) {
2030 			kfree(nce_head);
2031 			kfree(nce);
2032 			return ret;
2033 		}
2034 	}
2035 	list_add_tail(&nce->radix_list, nce_head);
2036 	list_add_tail(&nce->list, &sctx->name_cache_list);
2037 	sctx->name_cache_size++;
2038 
2039 	return ret;
2040 }
2041 
2042 static void name_cache_delete(struct send_ctx *sctx,
2043 			      struct name_cache_entry *nce)
2044 {
2045 	struct list_head *nce_head;
2046 
2047 	nce_head = radix_tree_lookup(&sctx->name_cache,
2048 			(unsigned long)nce->ino);
2049 	if (!nce_head) {
2050 		btrfs_err(sctx->send_root->fs_info,
2051 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 			nce->ino, sctx->name_cache_size);
2053 	}
2054 
2055 	list_del(&nce->radix_list);
2056 	list_del(&nce->list);
2057 	sctx->name_cache_size--;
2058 
2059 	/*
2060 	 * We may not get to the final release of nce_head if the lookup fails
2061 	 */
2062 	if (nce_head && list_empty(nce_head)) {
2063 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2064 		kfree(nce_head);
2065 	}
2066 }
2067 
2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2069 						    u64 ino, u64 gen)
2070 {
2071 	struct list_head *nce_head;
2072 	struct name_cache_entry *cur;
2073 
2074 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2075 	if (!nce_head)
2076 		return NULL;
2077 
2078 	list_for_each_entry(cur, nce_head, radix_list) {
2079 		if (cur->ino == ino && cur->gen == gen)
2080 			return cur;
2081 	}
2082 	return NULL;
2083 }
2084 
2085 /*
2086  * Removes the entry from the list and adds it back to the end. This marks the
2087  * entry as recently used so that name_cache_clean_unused does not remove it.
2088  */
2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2090 {
2091 	list_del(&nce->list);
2092 	list_add_tail(&nce->list, &sctx->name_cache_list);
2093 }
2094 
2095 /*
2096  * Remove some entries from the beginning of name_cache_list.
2097  */
2098 static void name_cache_clean_unused(struct send_ctx *sctx)
2099 {
2100 	struct name_cache_entry *nce;
2101 
2102 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2103 		return;
2104 
2105 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 		nce = list_entry(sctx->name_cache_list.next,
2107 				struct name_cache_entry, list);
2108 		name_cache_delete(sctx, nce);
2109 		kfree(nce);
2110 	}
2111 }
2112 
2113 static void name_cache_free(struct send_ctx *sctx)
2114 {
2115 	struct name_cache_entry *nce;
2116 
2117 	while (!list_empty(&sctx->name_cache_list)) {
2118 		nce = list_entry(sctx->name_cache_list.next,
2119 				struct name_cache_entry, list);
2120 		name_cache_delete(sctx, nce);
2121 		kfree(nce);
2122 	}
2123 }
2124 
2125 /*
2126  * Used by get_cur_path for each ref up to the root.
2127  * Returns 0 if it succeeded.
2128  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131  * Returns <0 in case of error.
2132  */
2133 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2134 				     u64 ino, u64 gen,
2135 				     u64 *parent_ino,
2136 				     u64 *parent_gen,
2137 				     struct fs_path *dest)
2138 {
2139 	int ret;
2140 	int nce_ret;
2141 	struct name_cache_entry *nce = NULL;
2142 
2143 	/*
2144 	 * First check if we already did a call to this function with the same
2145 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 	 * return the cached result.
2147 	 */
2148 	nce = name_cache_search(sctx, ino, gen);
2149 	if (nce) {
2150 		if (ino < sctx->send_progress && nce->need_later_update) {
2151 			name_cache_delete(sctx, nce);
2152 			kfree(nce);
2153 			nce = NULL;
2154 		} else {
2155 			name_cache_used(sctx, nce);
2156 			*parent_ino = nce->parent_ino;
2157 			*parent_gen = nce->parent_gen;
2158 			ret = fs_path_add(dest, nce->name, nce->name_len);
2159 			if (ret < 0)
2160 				goto out;
2161 			ret = nce->ret;
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	/*
2167 	 * If the inode is not existent yet, add the orphan name and return 1.
2168 	 * This should only happen for the parent dir that we determine in
2169 	 * __record_new_ref
2170 	 */
2171 	ret = is_inode_existent(sctx, ino, gen);
2172 	if (ret < 0)
2173 		goto out;
2174 
2175 	if (!ret) {
2176 		ret = gen_unique_name(sctx, ino, gen, dest);
2177 		if (ret < 0)
2178 			goto out;
2179 		ret = 1;
2180 		goto out_cache;
2181 	}
2182 
2183 	/*
2184 	 * Depending on whether the inode was already processed or not, use
2185 	 * send_root or parent_root for ref lookup.
2186 	 */
2187 	if (ino < sctx->send_progress)
2188 		ret = get_first_ref(sctx->send_root, ino,
2189 				    parent_ino, parent_gen, dest);
2190 	else
2191 		ret = get_first_ref(sctx->parent_root, ino,
2192 				    parent_ino, parent_gen, dest);
2193 	if (ret < 0)
2194 		goto out;
2195 
2196 	/*
2197 	 * Check if the ref was overwritten by an inode's ref that was processed
2198 	 * earlier. If yes, treat as orphan and return 1.
2199 	 */
2200 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 			dest->start, dest->end - dest->start);
2202 	if (ret < 0)
2203 		goto out;
2204 	if (ret) {
2205 		fs_path_reset(dest);
2206 		ret = gen_unique_name(sctx, ino, gen, dest);
2207 		if (ret < 0)
2208 			goto out;
2209 		ret = 1;
2210 	}
2211 
2212 out_cache:
2213 	/*
2214 	 * Store the result of the lookup in the name cache.
2215 	 */
2216 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2217 	if (!nce) {
2218 		ret = -ENOMEM;
2219 		goto out;
2220 	}
2221 
2222 	nce->ino = ino;
2223 	nce->gen = gen;
2224 	nce->parent_ino = *parent_ino;
2225 	nce->parent_gen = *parent_gen;
2226 	nce->name_len = fs_path_len(dest);
2227 	nce->ret = ret;
2228 	strcpy(nce->name, dest->start);
2229 
2230 	if (ino < sctx->send_progress)
2231 		nce->need_later_update = 0;
2232 	else
2233 		nce->need_later_update = 1;
2234 
2235 	nce_ret = name_cache_insert(sctx, nce);
2236 	if (nce_ret < 0)
2237 		ret = nce_ret;
2238 	name_cache_clean_unused(sctx);
2239 
2240 out:
2241 	return ret;
2242 }
2243 
2244 /*
2245  * Magic happens here. This function returns the first ref to an inode as it
2246  * would look like while receiving the stream at this point in time.
2247  * We walk the path up to the root. For every inode in between, we check if it
2248  * was already processed/sent. If yes, we continue with the parent as found
2249  * in send_root. If not, we continue with the parent as found in parent_root.
2250  * If we encounter an inode that was deleted at this point in time, we use the
2251  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252  * that were not created yet and overwritten inodes/refs.
2253  *
2254  * When do we have have orphan inodes:
2255  * 1. When an inode is freshly created and thus no valid refs are available yet
2256  * 2. When a directory lost all it's refs (deleted) but still has dir items
2257  *    inside which were not processed yet (pending for move/delete). If anyone
2258  *    tried to get the path to the dir items, it would get a path inside that
2259  *    orphan directory.
2260  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261  *    of an unprocessed inode. If in that case the first ref would be
2262  *    overwritten, the overwritten inode gets "orphanized". Later when we
2263  *    process this overwritten inode, it is restored at a new place by moving
2264  *    the orphan inode.
2265  *
2266  * sctx->send_progress tells this function at which point in time receiving
2267  * would be.
2268  */
2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 			struct fs_path *dest)
2271 {
2272 	int ret = 0;
2273 	struct fs_path *name = NULL;
2274 	u64 parent_inode = 0;
2275 	u64 parent_gen = 0;
2276 	int stop = 0;
2277 
2278 	name = fs_path_alloc();
2279 	if (!name) {
2280 		ret = -ENOMEM;
2281 		goto out;
2282 	}
2283 
2284 	dest->reversed = 1;
2285 	fs_path_reset(dest);
2286 
2287 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2288 		struct waiting_dir_move *wdm;
2289 
2290 		fs_path_reset(name);
2291 
2292 		if (is_waiting_for_rm(sctx, ino)) {
2293 			ret = gen_unique_name(sctx, ino, gen, name);
2294 			if (ret < 0)
2295 				goto out;
2296 			ret = fs_path_add_path(dest, name);
2297 			break;
2298 		}
2299 
2300 		wdm = get_waiting_dir_move(sctx, ino);
2301 		if (wdm && wdm->orphanized) {
2302 			ret = gen_unique_name(sctx, ino, gen, name);
2303 			stop = 1;
2304 		} else if (wdm) {
2305 			ret = get_first_ref(sctx->parent_root, ino,
2306 					    &parent_inode, &parent_gen, name);
2307 		} else {
2308 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 							&parent_inode,
2310 							&parent_gen, name);
2311 			if (ret)
2312 				stop = 1;
2313 		}
2314 
2315 		if (ret < 0)
2316 			goto out;
2317 
2318 		ret = fs_path_add_path(dest, name);
2319 		if (ret < 0)
2320 			goto out;
2321 
2322 		ino = parent_inode;
2323 		gen = parent_gen;
2324 	}
2325 
2326 out:
2327 	fs_path_free(name);
2328 	if (!ret)
2329 		fs_path_unreverse(dest);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2335  */
2336 static int send_subvol_begin(struct send_ctx *sctx)
2337 {
2338 	int ret;
2339 	struct btrfs_root *send_root = sctx->send_root;
2340 	struct btrfs_root *parent_root = sctx->parent_root;
2341 	struct btrfs_path *path;
2342 	struct btrfs_key key;
2343 	struct btrfs_root_ref *ref;
2344 	struct extent_buffer *leaf;
2345 	char *name = NULL;
2346 	int namelen;
2347 
2348 	path = btrfs_alloc_path();
2349 	if (!path)
2350 		return -ENOMEM;
2351 
2352 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2353 	if (!name) {
2354 		btrfs_free_path(path);
2355 		return -ENOMEM;
2356 	}
2357 
2358 	key.objectid = send_root->objectid;
2359 	key.type = BTRFS_ROOT_BACKREF_KEY;
2360 	key.offset = 0;
2361 
2362 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2363 				&key, path, 1, 0);
2364 	if (ret < 0)
2365 		goto out;
2366 	if (ret) {
2367 		ret = -ENOENT;
2368 		goto out;
2369 	}
2370 
2371 	leaf = path->nodes[0];
2372 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 	    key.objectid != send_root->objectid) {
2375 		ret = -ENOENT;
2376 		goto out;
2377 	}
2378 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 	namelen = btrfs_root_ref_name_len(leaf, ref);
2380 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 	btrfs_release_path(path);
2382 
2383 	if (parent_root) {
2384 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2385 		if (ret < 0)
2386 			goto out;
2387 	} else {
2388 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2389 		if (ret < 0)
2390 			goto out;
2391 	}
2392 
2393 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2394 
2395 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 			    sctx->send_root->root_item.received_uuid);
2398 	else
2399 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 			    sctx->send_root->root_item.uuid);
2401 
2402 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2403 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2404 	if (parent_root) {
2405 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 				     parent_root->root_item.received_uuid);
2408 		else
2409 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 				     parent_root->root_item.uuid);
2411 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2412 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2413 	}
2414 
2415 	ret = send_cmd(sctx);
2416 
2417 tlv_put_failure:
2418 out:
2419 	btrfs_free_path(path);
2420 	kfree(name);
2421 	return ret;
2422 }
2423 
2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2425 {
2426 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2427 	int ret = 0;
2428 	struct fs_path *p;
2429 
2430 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2431 
2432 	p = fs_path_alloc();
2433 	if (!p)
2434 		return -ENOMEM;
2435 
2436 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2437 	if (ret < 0)
2438 		goto out;
2439 
2440 	ret = get_cur_path(sctx, ino, gen, p);
2441 	if (ret < 0)
2442 		goto out;
2443 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2444 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2445 
2446 	ret = send_cmd(sctx);
2447 
2448 tlv_put_failure:
2449 out:
2450 	fs_path_free(p);
2451 	return ret;
2452 }
2453 
2454 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2455 {
2456 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2457 	int ret = 0;
2458 	struct fs_path *p;
2459 
2460 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2461 
2462 	p = fs_path_alloc();
2463 	if (!p)
2464 		return -ENOMEM;
2465 
2466 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2467 	if (ret < 0)
2468 		goto out;
2469 
2470 	ret = get_cur_path(sctx, ino, gen, p);
2471 	if (ret < 0)
2472 		goto out;
2473 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2475 
2476 	ret = send_cmd(sctx);
2477 
2478 tlv_put_failure:
2479 out:
2480 	fs_path_free(p);
2481 	return ret;
2482 }
2483 
2484 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2485 {
2486 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2487 	int ret = 0;
2488 	struct fs_path *p;
2489 
2490 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2491 		    ino, uid, gid);
2492 
2493 	p = fs_path_alloc();
2494 	if (!p)
2495 		return -ENOMEM;
2496 
2497 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2498 	if (ret < 0)
2499 		goto out;
2500 
2501 	ret = get_cur_path(sctx, ino, gen, p);
2502 	if (ret < 0)
2503 		goto out;
2504 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2506 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2507 
2508 	ret = send_cmd(sctx);
2509 
2510 tlv_put_failure:
2511 out:
2512 	fs_path_free(p);
2513 	return ret;
2514 }
2515 
2516 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2517 {
2518 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2519 	int ret = 0;
2520 	struct fs_path *p = NULL;
2521 	struct btrfs_inode_item *ii;
2522 	struct btrfs_path *path = NULL;
2523 	struct extent_buffer *eb;
2524 	struct btrfs_key key;
2525 	int slot;
2526 
2527 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2528 
2529 	p = fs_path_alloc();
2530 	if (!p)
2531 		return -ENOMEM;
2532 
2533 	path = alloc_path_for_send();
2534 	if (!path) {
2535 		ret = -ENOMEM;
2536 		goto out;
2537 	}
2538 
2539 	key.objectid = ino;
2540 	key.type = BTRFS_INODE_ITEM_KEY;
2541 	key.offset = 0;
2542 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2543 	if (ret > 0)
2544 		ret = -ENOENT;
2545 	if (ret < 0)
2546 		goto out;
2547 
2548 	eb = path->nodes[0];
2549 	slot = path->slots[0];
2550 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2551 
2552 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2553 	if (ret < 0)
2554 		goto out;
2555 
2556 	ret = get_cur_path(sctx, ino, gen, p);
2557 	if (ret < 0)
2558 		goto out;
2559 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2560 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2561 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2562 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2563 	/* TODO Add otime support when the otime patches get into upstream */
2564 
2565 	ret = send_cmd(sctx);
2566 
2567 tlv_put_failure:
2568 out:
2569 	fs_path_free(p);
2570 	btrfs_free_path(path);
2571 	return ret;
2572 }
2573 
2574 /*
2575  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2576  * a valid path yet because we did not process the refs yet. So, the inode
2577  * is created as orphan.
2578  */
2579 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2580 {
2581 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2582 	int ret = 0;
2583 	struct fs_path *p;
2584 	int cmd;
2585 	u64 gen;
2586 	u64 mode;
2587 	u64 rdev;
2588 
2589 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2590 
2591 	p = fs_path_alloc();
2592 	if (!p)
2593 		return -ENOMEM;
2594 
2595 	if (ino != sctx->cur_ino) {
2596 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2597 				     NULL, NULL, &rdev);
2598 		if (ret < 0)
2599 			goto out;
2600 	} else {
2601 		gen = sctx->cur_inode_gen;
2602 		mode = sctx->cur_inode_mode;
2603 		rdev = sctx->cur_inode_rdev;
2604 	}
2605 
2606 	if (S_ISREG(mode)) {
2607 		cmd = BTRFS_SEND_C_MKFILE;
2608 	} else if (S_ISDIR(mode)) {
2609 		cmd = BTRFS_SEND_C_MKDIR;
2610 	} else if (S_ISLNK(mode)) {
2611 		cmd = BTRFS_SEND_C_SYMLINK;
2612 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2613 		cmd = BTRFS_SEND_C_MKNOD;
2614 	} else if (S_ISFIFO(mode)) {
2615 		cmd = BTRFS_SEND_C_MKFIFO;
2616 	} else if (S_ISSOCK(mode)) {
2617 		cmd = BTRFS_SEND_C_MKSOCK;
2618 	} else {
2619 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2620 				(int)(mode & S_IFMT));
2621 		ret = -ENOTSUPP;
2622 		goto out;
2623 	}
2624 
2625 	ret = begin_cmd(sctx, cmd);
2626 	if (ret < 0)
2627 		goto out;
2628 
2629 	ret = gen_unique_name(sctx, ino, gen, p);
2630 	if (ret < 0)
2631 		goto out;
2632 
2633 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2634 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2635 
2636 	if (S_ISLNK(mode)) {
2637 		fs_path_reset(p);
2638 		ret = read_symlink(sctx->send_root, ino, p);
2639 		if (ret < 0)
2640 			goto out;
2641 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2642 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2643 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2644 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2645 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2646 	}
2647 
2648 	ret = send_cmd(sctx);
2649 	if (ret < 0)
2650 		goto out;
2651 
2652 
2653 tlv_put_failure:
2654 out:
2655 	fs_path_free(p);
2656 	return ret;
2657 }
2658 
2659 /*
2660  * We need some special handling for inodes that get processed before the parent
2661  * directory got created. See process_recorded_refs for details.
2662  * This function does the check if we already created the dir out of order.
2663  */
2664 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2665 {
2666 	int ret = 0;
2667 	struct btrfs_path *path = NULL;
2668 	struct btrfs_key key;
2669 	struct btrfs_key found_key;
2670 	struct btrfs_key di_key;
2671 	struct extent_buffer *eb;
2672 	struct btrfs_dir_item *di;
2673 	int slot;
2674 
2675 	path = alloc_path_for_send();
2676 	if (!path) {
2677 		ret = -ENOMEM;
2678 		goto out;
2679 	}
2680 
2681 	key.objectid = dir;
2682 	key.type = BTRFS_DIR_INDEX_KEY;
2683 	key.offset = 0;
2684 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2685 	if (ret < 0)
2686 		goto out;
2687 
2688 	while (1) {
2689 		eb = path->nodes[0];
2690 		slot = path->slots[0];
2691 		if (slot >= btrfs_header_nritems(eb)) {
2692 			ret = btrfs_next_leaf(sctx->send_root, path);
2693 			if (ret < 0) {
2694 				goto out;
2695 			} else if (ret > 0) {
2696 				ret = 0;
2697 				break;
2698 			}
2699 			continue;
2700 		}
2701 
2702 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2703 		if (found_key.objectid != key.objectid ||
2704 		    found_key.type != key.type) {
2705 			ret = 0;
2706 			goto out;
2707 		}
2708 
2709 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2710 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2711 
2712 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2713 		    di_key.objectid < sctx->send_progress) {
2714 			ret = 1;
2715 			goto out;
2716 		}
2717 
2718 		path->slots[0]++;
2719 	}
2720 
2721 out:
2722 	btrfs_free_path(path);
2723 	return ret;
2724 }
2725 
2726 /*
2727  * Only creates the inode if it is:
2728  * 1. Not a directory
2729  * 2. Or a directory which was not created already due to out of order
2730  *    directories. See did_create_dir and process_recorded_refs for details.
2731  */
2732 static int send_create_inode_if_needed(struct send_ctx *sctx)
2733 {
2734 	int ret;
2735 
2736 	if (S_ISDIR(sctx->cur_inode_mode)) {
2737 		ret = did_create_dir(sctx, sctx->cur_ino);
2738 		if (ret < 0)
2739 			goto out;
2740 		if (ret) {
2741 			ret = 0;
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	ret = send_create_inode(sctx, sctx->cur_ino);
2747 	if (ret < 0)
2748 		goto out;
2749 
2750 out:
2751 	return ret;
2752 }
2753 
2754 struct recorded_ref {
2755 	struct list_head list;
2756 	char *dir_path;
2757 	char *name;
2758 	struct fs_path *full_path;
2759 	u64 dir;
2760 	u64 dir_gen;
2761 	int dir_path_len;
2762 	int name_len;
2763 };
2764 
2765 /*
2766  * We need to process new refs before deleted refs, but compare_tree gives us
2767  * everything mixed. So we first record all refs and later process them.
2768  * This function is a helper to record one ref.
2769  */
2770 static int __record_ref(struct list_head *head, u64 dir,
2771 		      u64 dir_gen, struct fs_path *path)
2772 {
2773 	struct recorded_ref *ref;
2774 
2775 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2776 	if (!ref)
2777 		return -ENOMEM;
2778 
2779 	ref->dir = dir;
2780 	ref->dir_gen = dir_gen;
2781 	ref->full_path = path;
2782 
2783 	ref->name = (char *)kbasename(ref->full_path->start);
2784 	ref->name_len = ref->full_path->end - ref->name;
2785 	ref->dir_path = ref->full_path->start;
2786 	if (ref->name == ref->full_path->start)
2787 		ref->dir_path_len = 0;
2788 	else
2789 		ref->dir_path_len = ref->full_path->end -
2790 				ref->full_path->start - 1 - ref->name_len;
2791 
2792 	list_add_tail(&ref->list, head);
2793 	return 0;
2794 }
2795 
2796 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2797 {
2798 	struct recorded_ref *new;
2799 
2800 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2801 	if (!new)
2802 		return -ENOMEM;
2803 
2804 	new->dir = ref->dir;
2805 	new->dir_gen = ref->dir_gen;
2806 	new->full_path = NULL;
2807 	INIT_LIST_HEAD(&new->list);
2808 	list_add_tail(&new->list, list);
2809 	return 0;
2810 }
2811 
2812 static void __free_recorded_refs(struct list_head *head)
2813 {
2814 	struct recorded_ref *cur;
2815 
2816 	while (!list_empty(head)) {
2817 		cur = list_entry(head->next, struct recorded_ref, list);
2818 		fs_path_free(cur->full_path);
2819 		list_del(&cur->list);
2820 		kfree(cur);
2821 	}
2822 }
2823 
2824 static void free_recorded_refs(struct send_ctx *sctx)
2825 {
2826 	__free_recorded_refs(&sctx->new_refs);
2827 	__free_recorded_refs(&sctx->deleted_refs);
2828 }
2829 
2830 /*
2831  * Renames/moves a file/dir to its orphan name. Used when the first
2832  * ref of an unprocessed inode gets overwritten and for all non empty
2833  * directories.
2834  */
2835 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2836 			  struct fs_path *path)
2837 {
2838 	int ret;
2839 	struct fs_path *orphan;
2840 
2841 	orphan = fs_path_alloc();
2842 	if (!orphan)
2843 		return -ENOMEM;
2844 
2845 	ret = gen_unique_name(sctx, ino, gen, orphan);
2846 	if (ret < 0)
2847 		goto out;
2848 
2849 	ret = send_rename(sctx, path, orphan);
2850 
2851 out:
2852 	fs_path_free(orphan);
2853 	return ret;
2854 }
2855 
2856 static struct orphan_dir_info *
2857 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2858 {
2859 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2860 	struct rb_node *parent = NULL;
2861 	struct orphan_dir_info *entry, *odi;
2862 
2863 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2864 	if (!odi)
2865 		return ERR_PTR(-ENOMEM);
2866 	odi->ino = dir_ino;
2867 	odi->gen = 0;
2868 
2869 	while (*p) {
2870 		parent = *p;
2871 		entry = rb_entry(parent, struct orphan_dir_info, node);
2872 		if (dir_ino < entry->ino) {
2873 			p = &(*p)->rb_left;
2874 		} else if (dir_ino > entry->ino) {
2875 			p = &(*p)->rb_right;
2876 		} else {
2877 			kfree(odi);
2878 			return entry;
2879 		}
2880 	}
2881 
2882 	rb_link_node(&odi->node, parent, p);
2883 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2884 	return odi;
2885 }
2886 
2887 static struct orphan_dir_info *
2888 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2889 {
2890 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2891 	struct orphan_dir_info *entry;
2892 
2893 	while (n) {
2894 		entry = rb_entry(n, struct orphan_dir_info, node);
2895 		if (dir_ino < entry->ino)
2896 			n = n->rb_left;
2897 		else if (dir_ino > entry->ino)
2898 			n = n->rb_right;
2899 		else
2900 			return entry;
2901 	}
2902 	return NULL;
2903 }
2904 
2905 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2906 {
2907 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2908 
2909 	return odi != NULL;
2910 }
2911 
2912 static void free_orphan_dir_info(struct send_ctx *sctx,
2913 				 struct orphan_dir_info *odi)
2914 {
2915 	if (!odi)
2916 		return;
2917 	rb_erase(&odi->node, &sctx->orphan_dirs);
2918 	kfree(odi);
2919 }
2920 
2921 /*
2922  * Returns 1 if a directory can be removed at this point in time.
2923  * We check this by iterating all dir items and checking if the inode behind
2924  * the dir item was already processed.
2925  */
2926 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2927 		     u64 send_progress)
2928 {
2929 	int ret = 0;
2930 	struct btrfs_root *root = sctx->parent_root;
2931 	struct btrfs_path *path;
2932 	struct btrfs_key key;
2933 	struct btrfs_key found_key;
2934 	struct btrfs_key loc;
2935 	struct btrfs_dir_item *di;
2936 
2937 	/*
2938 	 * Don't try to rmdir the top/root subvolume dir.
2939 	 */
2940 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2941 		return 0;
2942 
2943 	path = alloc_path_for_send();
2944 	if (!path)
2945 		return -ENOMEM;
2946 
2947 	key.objectid = dir;
2948 	key.type = BTRFS_DIR_INDEX_KEY;
2949 	key.offset = 0;
2950 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2951 	if (ret < 0)
2952 		goto out;
2953 
2954 	while (1) {
2955 		struct waiting_dir_move *dm;
2956 
2957 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2958 			ret = btrfs_next_leaf(root, path);
2959 			if (ret < 0)
2960 				goto out;
2961 			else if (ret > 0)
2962 				break;
2963 			continue;
2964 		}
2965 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2966 				      path->slots[0]);
2967 		if (found_key.objectid != key.objectid ||
2968 		    found_key.type != key.type)
2969 			break;
2970 
2971 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2972 				struct btrfs_dir_item);
2973 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2974 
2975 		dm = get_waiting_dir_move(sctx, loc.objectid);
2976 		if (dm) {
2977 			struct orphan_dir_info *odi;
2978 
2979 			odi = add_orphan_dir_info(sctx, dir);
2980 			if (IS_ERR(odi)) {
2981 				ret = PTR_ERR(odi);
2982 				goto out;
2983 			}
2984 			odi->gen = dir_gen;
2985 			dm->rmdir_ino = dir;
2986 			ret = 0;
2987 			goto out;
2988 		}
2989 
2990 		if (loc.objectid > send_progress) {
2991 			struct orphan_dir_info *odi;
2992 
2993 			odi = get_orphan_dir_info(sctx, dir);
2994 			free_orphan_dir_info(sctx, odi);
2995 			ret = 0;
2996 			goto out;
2997 		}
2998 
2999 		path->slots[0]++;
3000 	}
3001 
3002 	ret = 1;
3003 
3004 out:
3005 	btrfs_free_path(path);
3006 	return ret;
3007 }
3008 
3009 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3010 {
3011 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3012 
3013 	return entry != NULL;
3014 }
3015 
3016 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3017 {
3018 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3019 	struct rb_node *parent = NULL;
3020 	struct waiting_dir_move *entry, *dm;
3021 
3022 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3023 	if (!dm)
3024 		return -ENOMEM;
3025 	dm->ino = ino;
3026 	dm->rmdir_ino = 0;
3027 	dm->orphanized = orphanized;
3028 
3029 	while (*p) {
3030 		parent = *p;
3031 		entry = rb_entry(parent, struct waiting_dir_move, node);
3032 		if (ino < entry->ino) {
3033 			p = &(*p)->rb_left;
3034 		} else if (ino > entry->ino) {
3035 			p = &(*p)->rb_right;
3036 		} else {
3037 			kfree(dm);
3038 			return -EEXIST;
3039 		}
3040 	}
3041 
3042 	rb_link_node(&dm->node, parent, p);
3043 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3044 	return 0;
3045 }
3046 
3047 static struct waiting_dir_move *
3048 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3049 {
3050 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3051 	struct waiting_dir_move *entry;
3052 
3053 	while (n) {
3054 		entry = rb_entry(n, struct waiting_dir_move, node);
3055 		if (ino < entry->ino)
3056 			n = n->rb_left;
3057 		else if (ino > entry->ino)
3058 			n = n->rb_right;
3059 		else
3060 			return entry;
3061 	}
3062 	return NULL;
3063 }
3064 
3065 static void free_waiting_dir_move(struct send_ctx *sctx,
3066 				  struct waiting_dir_move *dm)
3067 {
3068 	if (!dm)
3069 		return;
3070 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3071 	kfree(dm);
3072 }
3073 
3074 static int add_pending_dir_move(struct send_ctx *sctx,
3075 				u64 ino,
3076 				u64 ino_gen,
3077 				u64 parent_ino,
3078 				struct list_head *new_refs,
3079 				struct list_head *deleted_refs,
3080 				const bool is_orphan)
3081 {
3082 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3083 	struct rb_node *parent = NULL;
3084 	struct pending_dir_move *entry = NULL, *pm;
3085 	struct recorded_ref *cur;
3086 	int exists = 0;
3087 	int ret;
3088 
3089 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3090 	if (!pm)
3091 		return -ENOMEM;
3092 	pm->parent_ino = parent_ino;
3093 	pm->ino = ino;
3094 	pm->gen = ino_gen;
3095 	INIT_LIST_HEAD(&pm->list);
3096 	INIT_LIST_HEAD(&pm->update_refs);
3097 	RB_CLEAR_NODE(&pm->node);
3098 
3099 	while (*p) {
3100 		parent = *p;
3101 		entry = rb_entry(parent, struct pending_dir_move, node);
3102 		if (parent_ino < entry->parent_ino) {
3103 			p = &(*p)->rb_left;
3104 		} else if (parent_ino > entry->parent_ino) {
3105 			p = &(*p)->rb_right;
3106 		} else {
3107 			exists = 1;
3108 			break;
3109 		}
3110 	}
3111 
3112 	list_for_each_entry(cur, deleted_refs, list) {
3113 		ret = dup_ref(cur, &pm->update_refs);
3114 		if (ret < 0)
3115 			goto out;
3116 	}
3117 	list_for_each_entry(cur, new_refs, list) {
3118 		ret = dup_ref(cur, &pm->update_refs);
3119 		if (ret < 0)
3120 			goto out;
3121 	}
3122 
3123 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3124 	if (ret)
3125 		goto out;
3126 
3127 	if (exists) {
3128 		list_add_tail(&pm->list, &entry->list);
3129 	} else {
3130 		rb_link_node(&pm->node, parent, p);
3131 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3132 	}
3133 	ret = 0;
3134 out:
3135 	if (ret) {
3136 		__free_recorded_refs(&pm->update_refs);
3137 		kfree(pm);
3138 	}
3139 	return ret;
3140 }
3141 
3142 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3143 						      u64 parent_ino)
3144 {
3145 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3146 	struct pending_dir_move *entry;
3147 
3148 	while (n) {
3149 		entry = rb_entry(n, struct pending_dir_move, node);
3150 		if (parent_ino < entry->parent_ino)
3151 			n = n->rb_left;
3152 		else if (parent_ino > entry->parent_ino)
3153 			n = n->rb_right;
3154 		else
3155 			return entry;
3156 	}
3157 	return NULL;
3158 }
3159 
3160 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3161 		     u64 ino, u64 gen, u64 *ancestor_ino)
3162 {
3163 	int ret = 0;
3164 	u64 parent_inode = 0;
3165 	u64 parent_gen = 0;
3166 	u64 start_ino = ino;
3167 
3168 	*ancestor_ino = 0;
3169 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3170 		fs_path_reset(name);
3171 
3172 		if (is_waiting_for_rm(sctx, ino))
3173 			break;
3174 		if (is_waiting_for_move(sctx, ino)) {
3175 			if (*ancestor_ino == 0)
3176 				*ancestor_ino = ino;
3177 			ret = get_first_ref(sctx->parent_root, ino,
3178 					    &parent_inode, &parent_gen, name);
3179 		} else {
3180 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3181 							&parent_inode,
3182 							&parent_gen, name);
3183 			if (ret > 0) {
3184 				ret = 0;
3185 				break;
3186 			}
3187 		}
3188 		if (ret < 0)
3189 			break;
3190 		if (parent_inode == start_ino) {
3191 			ret = 1;
3192 			if (*ancestor_ino == 0)
3193 				*ancestor_ino = ino;
3194 			break;
3195 		}
3196 		ino = parent_inode;
3197 		gen = parent_gen;
3198 	}
3199 	return ret;
3200 }
3201 
3202 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3203 {
3204 	struct fs_path *from_path = NULL;
3205 	struct fs_path *to_path = NULL;
3206 	struct fs_path *name = NULL;
3207 	u64 orig_progress = sctx->send_progress;
3208 	struct recorded_ref *cur;
3209 	u64 parent_ino, parent_gen;
3210 	struct waiting_dir_move *dm = NULL;
3211 	u64 rmdir_ino = 0;
3212 	u64 ancestor;
3213 	bool is_orphan;
3214 	int ret;
3215 
3216 	name = fs_path_alloc();
3217 	from_path = fs_path_alloc();
3218 	if (!name || !from_path) {
3219 		ret = -ENOMEM;
3220 		goto out;
3221 	}
3222 
3223 	dm = get_waiting_dir_move(sctx, pm->ino);
3224 	ASSERT(dm);
3225 	rmdir_ino = dm->rmdir_ino;
3226 	is_orphan = dm->orphanized;
3227 	free_waiting_dir_move(sctx, dm);
3228 
3229 	if (is_orphan) {
3230 		ret = gen_unique_name(sctx, pm->ino,
3231 				      pm->gen, from_path);
3232 	} else {
3233 		ret = get_first_ref(sctx->parent_root, pm->ino,
3234 				    &parent_ino, &parent_gen, name);
3235 		if (ret < 0)
3236 			goto out;
3237 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3238 				   from_path);
3239 		if (ret < 0)
3240 			goto out;
3241 		ret = fs_path_add_path(from_path, name);
3242 	}
3243 	if (ret < 0)
3244 		goto out;
3245 
3246 	sctx->send_progress = sctx->cur_ino + 1;
3247 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3248 	if (ret < 0)
3249 		goto out;
3250 	if (ret) {
3251 		LIST_HEAD(deleted_refs);
3252 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3253 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3254 					   &pm->update_refs, &deleted_refs,
3255 					   is_orphan);
3256 		if (ret < 0)
3257 			goto out;
3258 		if (rmdir_ino) {
3259 			dm = get_waiting_dir_move(sctx, pm->ino);
3260 			ASSERT(dm);
3261 			dm->rmdir_ino = rmdir_ino;
3262 		}
3263 		goto out;
3264 	}
3265 	fs_path_reset(name);
3266 	to_path = name;
3267 	name = NULL;
3268 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3269 	if (ret < 0)
3270 		goto out;
3271 
3272 	ret = send_rename(sctx, from_path, to_path);
3273 	if (ret < 0)
3274 		goto out;
3275 
3276 	if (rmdir_ino) {
3277 		struct orphan_dir_info *odi;
3278 
3279 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3280 		if (!odi) {
3281 			/* already deleted */
3282 			goto finish;
3283 		}
3284 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3285 		if (ret < 0)
3286 			goto out;
3287 		if (!ret)
3288 			goto finish;
3289 
3290 		name = fs_path_alloc();
3291 		if (!name) {
3292 			ret = -ENOMEM;
3293 			goto out;
3294 		}
3295 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3296 		if (ret < 0)
3297 			goto out;
3298 		ret = send_rmdir(sctx, name);
3299 		if (ret < 0)
3300 			goto out;
3301 		free_orphan_dir_info(sctx, odi);
3302 	}
3303 
3304 finish:
3305 	ret = send_utimes(sctx, pm->ino, pm->gen);
3306 	if (ret < 0)
3307 		goto out;
3308 
3309 	/*
3310 	 * After rename/move, need to update the utimes of both new parent(s)
3311 	 * and old parent(s).
3312 	 */
3313 	list_for_each_entry(cur, &pm->update_refs, list) {
3314 		/*
3315 		 * The parent inode might have been deleted in the send snapshot
3316 		 */
3317 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3318 				     NULL, NULL, NULL, NULL, NULL);
3319 		if (ret == -ENOENT) {
3320 			ret = 0;
3321 			continue;
3322 		}
3323 		if (ret < 0)
3324 			goto out;
3325 
3326 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3327 		if (ret < 0)
3328 			goto out;
3329 	}
3330 
3331 out:
3332 	fs_path_free(name);
3333 	fs_path_free(from_path);
3334 	fs_path_free(to_path);
3335 	sctx->send_progress = orig_progress;
3336 
3337 	return ret;
3338 }
3339 
3340 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3341 {
3342 	if (!list_empty(&m->list))
3343 		list_del(&m->list);
3344 	if (!RB_EMPTY_NODE(&m->node))
3345 		rb_erase(&m->node, &sctx->pending_dir_moves);
3346 	__free_recorded_refs(&m->update_refs);
3347 	kfree(m);
3348 }
3349 
3350 static void tail_append_pending_moves(struct pending_dir_move *moves,
3351 				      struct list_head *stack)
3352 {
3353 	if (list_empty(&moves->list)) {
3354 		list_add_tail(&moves->list, stack);
3355 	} else {
3356 		LIST_HEAD(list);
3357 		list_splice_init(&moves->list, &list);
3358 		list_add_tail(&moves->list, stack);
3359 		list_splice_tail(&list, stack);
3360 	}
3361 }
3362 
3363 static int apply_children_dir_moves(struct send_ctx *sctx)
3364 {
3365 	struct pending_dir_move *pm;
3366 	struct list_head stack;
3367 	u64 parent_ino = sctx->cur_ino;
3368 	int ret = 0;
3369 
3370 	pm = get_pending_dir_moves(sctx, parent_ino);
3371 	if (!pm)
3372 		return 0;
3373 
3374 	INIT_LIST_HEAD(&stack);
3375 	tail_append_pending_moves(pm, &stack);
3376 
3377 	while (!list_empty(&stack)) {
3378 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3379 		parent_ino = pm->ino;
3380 		ret = apply_dir_move(sctx, pm);
3381 		free_pending_move(sctx, pm);
3382 		if (ret)
3383 			goto out;
3384 		pm = get_pending_dir_moves(sctx, parent_ino);
3385 		if (pm)
3386 			tail_append_pending_moves(pm, &stack);
3387 	}
3388 	return 0;
3389 
3390 out:
3391 	while (!list_empty(&stack)) {
3392 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3393 		free_pending_move(sctx, pm);
3394 	}
3395 	return ret;
3396 }
3397 
3398 /*
3399  * We might need to delay a directory rename even when no ancestor directory
3400  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3401  * renamed. This happens when we rename a directory to the old name (the name
3402  * in the parent root) of some other unrelated directory that got its rename
3403  * delayed due to some ancestor with higher number that got renamed.
3404  *
3405  * Example:
3406  *
3407  * Parent snapshot:
3408  * .                                       (ino 256)
3409  * |---- a/                                (ino 257)
3410  * |     |---- file                        (ino 260)
3411  * |
3412  * |---- b/                                (ino 258)
3413  * |---- c/                                (ino 259)
3414  *
3415  * Send snapshot:
3416  * .                                       (ino 256)
3417  * |---- a/                                (ino 258)
3418  * |---- x/                                (ino 259)
3419  *       |---- y/                          (ino 257)
3420  *             |----- file                 (ino 260)
3421  *
3422  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3423  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3424  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3425  * must issue is:
3426  *
3427  * 1 - rename 259 from 'c' to 'x'
3428  * 2 - rename 257 from 'a' to 'x/y'
3429  * 3 - rename 258 from 'b' to 'a'
3430  *
3431  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3432  * be done right away and < 0 on error.
3433  */
3434 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3435 				  struct recorded_ref *parent_ref,
3436 				  const bool is_orphan)
3437 {
3438 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3439 	struct btrfs_path *path;
3440 	struct btrfs_key key;
3441 	struct btrfs_key di_key;
3442 	struct btrfs_dir_item *di;
3443 	u64 left_gen;
3444 	u64 right_gen;
3445 	int ret = 0;
3446 	struct waiting_dir_move *wdm;
3447 
3448 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3449 		return 0;
3450 
3451 	path = alloc_path_for_send();
3452 	if (!path)
3453 		return -ENOMEM;
3454 
3455 	key.objectid = parent_ref->dir;
3456 	key.type = BTRFS_DIR_ITEM_KEY;
3457 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3458 
3459 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3460 	if (ret < 0) {
3461 		goto out;
3462 	} else if (ret > 0) {
3463 		ret = 0;
3464 		goto out;
3465 	}
3466 
3467 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3468 				       parent_ref->name_len);
3469 	if (!di) {
3470 		ret = 0;
3471 		goto out;
3472 	}
3473 	/*
3474 	 * di_key.objectid has the number of the inode that has a dentry in the
3475 	 * parent directory with the same name that sctx->cur_ino is being
3476 	 * renamed to. We need to check if that inode is in the send root as
3477 	 * well and if it is currently marked as an inode with a pending rename,
3478 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3479 	 * that it happens after that other inode is renamed.
3480 	 */
3481 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3482 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3483 		ret = 0;
3484 		goto out;
3485 	}
3486 
3487 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3488 			     &left_gen, NULL, NULL, NULL, NULL);
3489 	if (ret < 0)
3490 		goto out;
3491 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3492 			     &right_gen, NULL, NULL, NULL, NULL);
3493 	if (ret < 0) {
3494 		if (ret == -ENOENT)
3495 			ret = 0;
3496 		goto out;
3497 	}
3498 
3499 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3500 	if (right_gen != left_gen) {
3501 		ret = 0;
3502 		goto out;
3503 	}
3504 
3505 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3506 	if (wdm && !wdm->orphanized) {
3507 		ret = add_pending_dir_move(sctx,
3508 					   sctx->cur_ino,
3509 					   sctx->cur_inode_gen,
3510 					   di_key.objectid,
3511 					   &sctx->new_refs,
3512 					   &sctx->deleted_refs,
3513 					   is_orphan);
3514 		if (!ret)
3515 			ret = 1;
3516 	}
3517 out:
3518 	btrfs_free_path(path);
3519 	return ret;
3520 }
3521 
3522 /*
3523  * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3524  * Return 1 if true, 0 if false and < 0 on error.
3525  */
3526 static int is_ancestor(struct btrfs_root *root,
3527 		       const u64 ino1,
3528 		       const u64 ino1_gen,
3529 		       const u64 ino2,
3530 		       struct fs_path *fs_path)
3531 {
3532 	u64 ino = ino2;
3533 
3534 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3535 		int ret;
3536 		u64 parent;
3537 		u64 parent_gen;
3538 
3539 		fs_path_reset(fs_path);
3540 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3541 		if (ret < 0) {
3542 			if (ret == -ENOENT && ino == ino2)
3543 				ret = 0;
3544 			return ret;
3545 		}
3546 		if (parent == ino1)
3547 			return parent_gen == ino1_gen ? 1 : 0;
3548 		ino = parent;
3549 	}
3550 	return 0;
3551 }
3552 
3553 static int wait_for_parent_move(struct send_ctx *sctx,
3554 				struct recorded_ref *parent_ref,
3555 				const bool is_orphan)
3556 {
3557 	int ret = 0;
3558 	u64 ino = parent_ref->dir;
3559 	u64 parent_ino_before, parent_ino_after;
3560 	struct fs_path *path_before = NULL;
3561 	struct fs_path *path_after = NULL;
3562 	int len1, len2;
3563 
3564 	path_after = fs_path_alloc();
3565 	path_before = fs_path_alloc();
3566 	if (!path_after || !path_before) {
3567 		ret = -ENOMEM;
3568 		goto out;
3569 	}
3570 
3571 	/*
3572 	 * Our current directory inode may not yet be renamed/moved because some
3573 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3574 	 * such ancestor exists and make sure our own rename/move happens after
3575 	 * that ancestor is processed to avoid path build infinite loops (done
3576 	 * at get_cur_path()).
3577 	 */
3578 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3579 		if (is_waiting_for_move(sctx, ino)) {
3580 			/*
3581 			 * If the current inode is an ancestor of ino in the
3582 			 * parent root, we need to delay the rename of the
3583 			 * current inode, otherwise don't delayed the rename
3584 			 * because we can end up with a circular dependency
3585 			 * of renames, resulting in some directories never
3586 			 * getting the respective rename operations issued in
3587 			 * the send stream or getting into infinite path build
3588 			 * loops.
3589 			 */
3590 			ret = is_ancestor(sctx->parent_root,
3591 					  sctx->cur_ino, sctx->cur_inode_gen,
3592 					  ino, path_before);
3593 			if (ret)
3594 				break;
3595 		}
3596 
3597 		fs_path_reset(path_before);
3598 		fs_path_reset(path_after);
3599 
3600 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3601 				    NULL, path_after);
3602 		if (ret < 0)
3603 			goto out;
3604 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3605 				    NULL, path_before);
3606 		if (ret < 0 && ret != -ENOENT) {
3607 			goto out;
3608 		} else if (ret == -ENOENT) {
3609 			ret = 0;
3610 			break;
3611 		}
3612 
3613 		len1 = fs_path_len(path_before);
3614 		len2 = fs_path_len(path_after);
3615 		if (ino > sctx->cur_ino &&
3616 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3617 		     memcmp(path_before->start, path_after->start, len1))) {
3618 			ret = 1;
3619 			break;
3620 		}
3621 		ino = parent_ino_after;
3622 	}
3623 
3624 out:
3625 	fs_path_free(path_before);
3626 	fs_path_free(path_after);
3627 
3628 	if (ret == 1) {
3629 		ret = add_pending_dir_move(sctx,
3630 					   sctx->cur_ino,
3631 					   sctx->cur_inode_gen,
3632 					   ino,
3633 					   &sctx->new_refs,
3634 					   &sctx->deleted_refs,
3635 					   is_orphan);
3636 		if (!ret)
3637 			ret = 1;
3638 	}
3639 
3640 	return ret;
3641 }
3642 
3643 /*
3644  * This does all the move/link/unlink/rmdir magic.
3645  */
3646 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3647 {
3648 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3649 	int ret = 0;
3650 	struct recorded_ref *cur;
3651 	struct recorded_ref *cur2;
3652 	struct list_head check_dirs;
3653 	struct fs_path *valid_path = NULL;
3654 	u64 ow_inode = 0;
3655 	u64 ow_gen;
3656 	int did_overwrite = 0;
3657 	int is_orphan = 0;
3658 	u64 last_dir_ino_rm = 0;
3659 	bool can_rename = true;
3660 
3661 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3662 
3663 	/*
3664 	 * This should never happen as the root dir always has the same ref
3665 	 * which is always '..'
3666 	 */
3667 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3668 	INIT_LIST_HEAD(&check_dirs);
3669 
3670 	valid_path = fs_path_alloc();
3671 	if (!valid_path) {
3672 		ret = -ENOMEM;
3673 		goto out;
3674 	}
3675 
3676 	/*
3677 	 * First, check if the first ref of the current inode was overwritten
3678 	 * before. If yes, we know that the current inode was already orphanized
3679 	 * and thus use the orphan name. If not, we can use get_cur_path to
3680 	 * get the path of the first ref as it would like while receiving at
3681 	 * this point in time.
3682 	 * New inodes are always orphan at the beginning, so force to use the
3683 	 * orphan name in this case.
3684 	 * The first ref is stored in valid_path and will be updated if it
3685 	 * gets moved around.
3686 	 */
3687 	if (!sctx->cur_inode_new) {
3688 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3689 				sctx->cur_inode_gen);
3690 		if (ret < 0)
3691 			goto out;
3692 		if (ret)
3693 			did_overwrite = 1;
3694 	}
3695 	if (sctx->cur_inode_new || did_overwrite) {
3696 		ret = gen_unique_name(sctx, sctx->cur_ino,
3697 				sctx->cur_inode_gen, valid_path);
3698 		if (ret < 0)
3699 			goto out;
3700 		is_orphan = 1;
3701 	} else {
3702 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3703 				valid_path);
3704 		if (ret < 0)
3705 			goto out;
3706 	}
3707 
3708 	list_for_each_entry(cur, &sctx->new_refs, list) {
3709 		/*
3710 		 * We may have refs where the parent directory does not exist
3711 		 * yet. This happens if the parent directories inum is higher
3712 		 * the the current inum. To handle this case, we create the
3713 		 * parent directory out of order. But we need to check if this
3714 		 * did already happen before due to other refs in the same dir.
3715 		 */
3716 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3717 		if (ret < 0)
3718 			goto out;
3719 		if (ret == inode_state_will_create) {
3720 			ret = 0;
3721 			/*
3722 			 * First check if any of the current inodes refs did
3723 			 * already create the dir.
3724 			 */
3725 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3726 				if (cur == cur2)
3727 					break;
3728 				if (cur2->dir == cur->dir) {
3729 					ret = 1;
3730 					break;
3731 				}
3732 			}
3733 
3734 			/*
3735 			 * If that did not happen, check if a previous inode
3736 			 * did already create the dir.
3737 			 */
3738 			if (!ret)
3739 				ret = did_create_dir(sctx, cur->dir);
3740 			if (ret < 0)
3741 				goto out;
3742 			if (!ret) {
3743 				ret = send_create_inode(sctx, cur->dir);
3744 				if (ret < 0)
3745 					goto out;
3746 			}
3747 		}
3748 
3749 		/*
3750 		 * Check if this new ref would overwrite the first ref of
3751 		 * another unprocessed inode. If yes, orphanize the
3752 		 * overwritten inode. If we find an overwritten ref that is
3753 		 * not the first ref, simply unlink it.
3754 		 */
3755 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3756 				cur->name, cur->name_len,
3757 				&ow_inode, &ow_gen);
3758 		if (ret < 0)
3759 			goto out;
3760 		if (ret) {
3761 			ret = is_first_ref(sctx->parent_root,
3762 					   ow_inode, cur->dir, cur->name,
3763 					   cur->name_len);
3764 			if (ret < 0)
3765 				goto out;
3766 			if (ret) {
3767 				struct name_cache_entry *nce;
3768 				struct waiting_dir_move *wdm;
3769 
3770 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3771 						cur->full_path);
3772 				if (ret < 0)
3773 					goto out;
3774 
3775 				/*
3776 				 * If ow_inode has its rename operation delayed
3777 				 * make sure that its orphanized name is used in
3778 				 * the source path when performing its rename
3779 				 * operation.
3780 				 */
3781 				if (is_waiting_for_move(sctx, ow_inode)) {
3782 					wdm = get_waiting_dir_move(sctx,
3783 								   ow_inode);
3784 					ASSERT(wdm);
3785 					wdm->orphanized = true;
3786 				}
3787 
3788 				/*
3789 				 * Make sure we clear our orphanized inode's
3790 				 * name from the name cache. This is because the
3791 				 * inode ow_inode might be an ancestor of some
3792 				 * other inode that will be orphanized as well
3793 				 * later and has an inode number greater than
3794 				 * sctx->send_progress. We need to prevent
3795 				 * future name lookups from using the old name
3796 				 * and get instead the orphan name.
3797 				 */
3798 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3799 				if (nce) {
3800 					name_cache_delete(sctx, nce);
3801 					kfree(nce);
3802 				}
3803 
3804 				/*
3805 				 * ow_inode might currently be an ancestor of
3806 				 * cur_ino, therefore compute valid_path (the
3807 				 * current path of cur_ino) again because it
3808 				 * might contain the pre-orphanization name of
3809 				 * ow_inode, which is no longer valid.
3810 				 */
3811 				fs_path_reset(valid_path);
3812 				ret = get_cur_path(sctx, sctx->cur_ino,
3813 					   sctx->cur_inode_gen, valid_path);
3814 				if (ret < 0)
3815 					goto out;
3816 			} else {
3817 				ret = send_unlink(sctx, cur->full_path);
3818 				if (ret < 0)
3819 					goto out;
3820 			}
3821 		}
3822 
3823 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3824 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3825 			if (ret < 0)
3826 				goto out;
3827 			if (ret == 1) {
3828 				can_rename = false;
3829 				*pending_move = 1;
3830 			}
3831 		}
3832 
3833 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3834 		    can_rename) {
3835 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3836 			if (ret < 0)
3837 				goto out;
3838 			if (ret == 1) {
3839 				can_rename = false;
3840 				*pending_move = 1;
3841 			}
3842 		}
3843 
3844 		/*
3845 		 * link/move the ref to the new place. If we have an orphan
3846 		 * inode, move it and update valid_path. If not, link or move
3847 		 * it depending on the inode mode.
3848 		 */
3849 		if (is_orphan && can_rename) {
3850 			ret = send_rename(sctx, valid_path, cur->full_path);
3851 			if (ret < 0)
3852 				goto out;
3853 			is_orphan = 0;
3854 			ret = fs_path_copy(valid_path, cur->full_path);
3855 			if (ret < 0)
3856 				goto out;
3857 		} else if (can_rename) {
3858 			if (S_ISDIR(sctx->cur_inode_mode)) {
3859 				/*
3860 				 * Dirs can't be linked, so move it. For moved
3861 				 * dirs, we always have one new and one deleted
3862 				 * ref. The deleted ref is ignored later.
3863 				 */
3864 				ret = send_rename(sctx, valid_path,
3865 						  cur->full_path);
3866 				if (!ret)
3867 					ret = fs_path_copy(valid_path,
3868 							   cur->full_path);
3869 				if (ret < 0)
3870 					goto out;
3871 			} else {
3872 				ret = send_link(sctx, cur->full_path,
3873 						valid_path);
3874 				if (ret < 0)
3875 					goto out;
3876 			}
3877 		}
3878 		ret = dup_ref(cur, &check_dirs);
3879 		if (ret < 0)
3880 			goto out;
3881 	}
3882 
3883 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3884 		/*
3885 		 * Check if we can already rmdir the directory. If not,
3886 		 * orphanize it. For every dir item inside that gets deleted
3887 		 * later, we do this check again and rmdir it then if possible.
3888 		 * See the use of check_dirs for more details.
3889 		 */
3890 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3891 				sctx->cur_ino);
3892 		if (ret < 0)
3893 			goto out;
3894 		if (ret) {
3895 			ret = send_rmdir(sctx, valid_path);
3896 			if (ret < 0)
3897 				goto out;
3898 		} else if (!is_orphan) {
3899 			ret = orphanize_inode(sctx, sctx->cur_ino,
3900 					sctx->cur_inode_gen, valid_path);
3901 			if (ret < 0)
3902 				goto out;
3903 			is_orphan = 1;
3904 		}
3905 
3906 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3907 			ret = dup_ref(cur, &check_dirs);
3908 			if (ret < 0)
3909 				goto out;
3910 		}
3911 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
3912 		   !list_empty(&sctx->deleted_refs)) {
3913 		/*
3914 		 * We have a moved dir. Add the old parent to check_dirs
3915 		 */
3916 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3917 				list);
3918 		ret = dup_ref(cur, &check_dirs);
3919 		if (ret < 0)
3920 			goto out;
3921 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
3922 		/*
3923 		 * We have a non dir inode. Go through all deleted refs and
3924 		 * unlink them if they were not already overwritten by other
3925 		 * inodes.
3926 		 */
3927 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
3928 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3929 					sctx->cur_ino, sctx->cur_inode_gen,
3930 					cur->name, cur->name_len);
3931 			if (ret < 0)
3932 				goto out;
3933 			if (!ret) {
3934 				ret = send_unlink(sctx, cur->full_path);
3935 				if (ret < 0)
3936 					goto out;
3937 			}
3938 			ret = dup_ref(cur, &check_dirs);
3939 			if (ret < 0)
3940 				goto out;
3941 		}
3942 		/*
3943 		 * If the inode is still orphan, unlink the orphan. This may
3944 		 * happen when a previous inode did overwrite the first ref
3945 		 * of this inode and no new refs were added for the current
3946 		 * inode. Unlinking does not mean that the inode is deleted in
3947 		 * all cases. There may still be links to this inode in other
3948 		 * places.
3949 		 */
3950 		if (is_orphan) {
3951 			ret = send_unlink(sctx, valid_path);
3952 			if (ret < 0)
3953 				goto out;
3954 		}
3955 	}
3956 
3957 	/*
3958 	 * We did collect all parent dirs where cur_inode was once located. We
3959 	 * now go through all these dirs and check if they are pending for
3960 	 * deletion and if it's finally possible to perform the rmdir now.
3961 	 * We also update the inode stats of the parent dirs here.
3962 	 */
3963 	list_for_each_entry(cur, &check_dirs, list) {
3964 		/*
3965 		 * In case we had refs into dirs that were not processed yet,
3966 		 * we don't need to do the utime and rmdir logic for these dirs.
3967 		 * The dir will be processed later.
3968 		 */
3969 		if (cur->dir > sctx->cur_ino)
3970 			continue;
3971 
3972 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3973 		if (ret < 0)
3974 			goto out;
3975 
3976 		if (ret == inode_state_did_create ||
3977 		    ret == inode_state_no_change) {
3978 			/* TODO delayed utimes */
3979 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3980 			if (ret < 0)
3981 				goto out;
3982 		} else if (ret == inode_state_did_delete &&
3983 			   cur->dir != last_dir_ino_rm) {
3984 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3985 					sctx->cur_ino);
3986 			if (ret < 0)
3987 				goto out;
3988 			if (ret) {
3989 				ret = get_cur_path(sctx, cur->dir,
3990 						   cur->dir_gen, valid_path);
3991 				if (ret < 0)
3992 					goto out;
3993 				ret = send_rmdir(sctx, valid_path);
3994 				if (ret < 0)
3995 					goto out;
3996 				last_dir_ino_rm = cur->dir;
3997 			}
3998 		}
3999 	}
4000 
4001 	ret = 0;
4002 
4003 out:
4004 	__free_recorded_refs(&check_dirs);
4005 	free_recorded_refs(sctx);
4006 	fs_path_free(valid_path);
4007 	return ret;
4008 }
4009 
4010 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4011 		      struct fs_path *name, void *ctx, struct list_head *refs)
4012 {
4013 	int ret = 0;
4014 	struct send_ctx *sctx = ctx;
4015 	struct fs_path *p;
4016 	u64 gen;
4017 
4018 	p = fs_path_alloc();
4019 	if (!p)
4020 		return -ENOMEM;
4021 
4022 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4023 			NULL, NULL);
4024 	if (ret < 0)
4025 		goto out;
4026 
4027 	ret = get_cur_path(sctx, dir, gen, p);
4028 	if (ret < 0)
4029 		goto out;
4030 	ret = fs_path_add_path(p, name);
4031 	if (ret < 0)
4032 		goto out;
4033 
4034 	ret = __record_ref(refs, dir, gen, p);
4035 
4036 out:
4037 	if (ret)
4038 		fs_path_free(p);
4039 	return ret;
4040 }
4041 
4042 static int __record_new_ref(int num, u64 dir, int index,
4043 			    struct fs_path *name,
4044 			    void *ctx)
4045 {
4046 	struct send_ctx *sctx = ctx;
4047 	return record_ref(sctx->send_root, num, dir, index, name,
4048 			  ctx, &sctx->new_refs);
4049 }
4050 
4051 
4052 static int __record_deleted_ref(int num, u64 dir, int index,
4053 				struct fs_path *name,
4054 				void *ctx)
4055 {
4056 	struct send_ctx *sctx = ctx;
4057 	return record_ref(sctx->parent_root, num, dir, index, name,
4058 			  ctx, &sctx->deleted_refs);
4059 }
4060 
4061 static int record_new_ref(struct send_ctx *sctx)
4062 {
4063 	int ret;
4064 
4065 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4066 				sctx->cmp_key, 0, __record_new_ref, sctx);
4067 	if (ret < 0)
4068 		goto out;
4069 	ret = 0;
4070 
4071 out:
4072 	return ret;
4073 }
4074 
4075 static int record_deleted_ref(struct send_ctx *sctx)
4076 {
4077 	int ret;
4078 
4079 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4080 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4081 	if (ret < 0)
4082 		goto out;
4083 	ret = 0;
4084 
4085 out:
4086 	return ret;
4087 }
4088 
4089 struct find_ref_ctx {
4090 	u64 dir;
4091 	u64 dir_gen;
4092 	struct btrfs_root *root;
4093 	struct fs_path *name;
4094 	int found_idx;
4095 };
4096 
4097 static int __find_iref(int num, u64 dir, int index,
4098 		       struct fs_path *name,
4099 		       void *ctx_)
4100 {
4101 	struct find_ref_ctx *ctx = ctx_;
4102 	u64 dir_gen;
4103 	int ret;
4104 
4105 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4106 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4107 		/*
4108 		 * To avoid doing extra lookups we'll only do this if everything
4109 		 * else matches.
4110 		 */
4111 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4112 				     NULL, NULL, NULL);
4113 		if (ret)
4114 			return ret;
4115 		if (dir_gen != ctx->dir_gen)
4116 			return 0;
4117 		ctx->found_idx = num;
4118 		return 1;
4119 	}
4120 	return 0;
4121 }
4122 
4123 static int find_iref(struct btrfs_root *root,
4124 		     struct btrfs_path *path,
4125 		     struct btrfs_key *key,
4126 		     u64 dir, u64 dir_gen, struct fs_path *name)
4127 {
4128 	int ret;
4129 	struct find_ref_ctx ctx;
4130 
4131 	ctx.dir = dir;
4132 	ctx.name = name;
4133 	ctx.dir_gen = dir_gen;
4134 	ctx.found_idx = -1;
4135 	ctx.root = root;
4136 
4137 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4138 	if (ret < 0)
4139 		return ret;
4140 
4141 	if (ctx.found_idx == -1)
4142 		return -ENOENT;
4143 
4144 	return ctx.found_idx;
4145 }
4146 
4147 static int __record_changed_new_ref(int num, u64 dir, int index,
4148 				    struct fs_path *name,
4149 				    void *ctx)
4150 {
4151 	u64 dir_gen;
4152 	int ret;
4153 	struct send_ctx *sctx = ctx;
4154 
4155 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4156 			     NULL, NULL, NULL);
4157 	if (ret)
4158 		return ret;
4159 
4160 	ret = find_iref(sctx->parent_root, sctx->right_path,
4161 			sctx->cmp_key, dir, dir_gen, name);
4162 	if (ret == -ENOENT)
4163 		ret = __record_new_ref(num, dir, index, name, sctx);
4164 	else if (ret > 0)
4165 		ret = 0;
4166 
4167 	return ret;
4168 }
4169 
4170 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4171 					struct fs_path *name,
4172 					void *ctx)
4173 {
4174 	u64 dir_gen;
4175 	int ret;
4176 	struct send_ctx *sctx = ctx;
4177 
4178 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4179 			     NULL, NULL, NULL);
4180 	if (ret)
4181 		return ret;
4182 
4183 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4184 			dir, dir_gen, name);
4185 	if (ret == -ENOENT)
4186 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4187 	else if (ret > 0)
4188 		ret = 0;
4189 
4190 	return ret;
4191 }
4192 
4193 static int record_changed_ref(struct send_ctx *sctx)
4194 {
4195 	int ret = 0;
4196 
4197 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4198 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4199 	if (ret < 0)
4200 		goto out;
4201 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4202 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4203 	if (ret < 0)
4204 		goto out;
4205 	ret = 0;
4206 
4207 out:
4208 	return ret;
4209 }
4210 
4211 /*
4212  * Record and process all refs at once. Needed when an inode changes the
4213  * generation number, which means that it was deleted and recreated.
4214  */
4215 static int process_all_refs(struct send_ctx *sctx,
4216 			    enum btrfs_compare_tree_result cmd)
4217 {
4218 	int ret;
4219 	struct btrfs_root *root;
4220 	struct btrfs_path *path;
4221 	struct btrfs_key key;
4222 	struct btrfs_key found_key;
4223 	struct extent_buffer *eb;
4224 	int slot;
4225 	iterate_inode_ref_t cb;
4226 	int pending_move = 0;
4227 
4228 	path = alloc_path_for_send();
4229 	if (!path)
4230 		return -ENOMEM;
4231 
4232 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4233 		root = sctx->send_root;
4234 		cb = __record_new_ref;
4235 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4236 		root = sctx->parent_root;
4237 		cb = __record_deleted_ref;
4238 	} else {
4239 		btrfs_err(sctx->send_root->fs_info,
4240 				"Wrong command %d in process_all_refs", cmd);
4241 		ret = -EINVAL;
4242 		goto out;
4243 	}
4244 
4245 	key.objectid = sctx->cmp_key->objectid;
4246 	key.type = BTRFS_INODE_REF_KEY;
4247 	key.offset = 0;
4248 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4249 	if (ret < 0)
4250 		goto out;
4251 
4252 	while (1) {
4253 		eb = path->nodes[0];
4254 		slot = path->slots[0];
4255 		if (slot >= btrfs_header_nritems(eb)) {
4256 			ret = btrfs_next_leaf(root, path);
4257 			if (ret < 0)
4258 				goto out;
4259 			else if (ret > 0)
4260 				break;
4261 			continue;
4262 		}
4263 
4264 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4265 
4266 		if (found_key.objectid != key.objectid ||
4267 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4268 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4269 			break;
4270 
4271 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4272 		if (ret < 0)
4273 			goto out;
4274 
4275 		path->slots[0]++;
4276 	}
4277 	btrfs_release_path(path);
4278 
4279 	/*
4280 	 * We don't actually care about pending_move as we are simply
4281 	 * re-creating this inode and will be rename'ing it into place once we
4282 	 * rename the parent directory.
4283 	 */
4284 	ret = process_recorded_refs(sctx, &pending_move);
4285 out:
4286 	btrfs_free_path(path);
4287 	return ret;
4288 }
4289 
4290 static int send_set_xattr(struct send_ctx *sctx,
4291 			  struct fs_path *path,
4292 			  const char *name, int name_len,
4293 			  const char *data, int data_len)
4294 {
4295 	int ret = 0;
4296 
4297 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4298 	if (ret < 0)
4299 		goto out;
4300 
4301 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4302 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4303 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4304 
4305 	ret = send_cmd(sctx);
4306 
4307 tlv_put_failure:
4308 out:
4309 	return ret;
4310 }
4311 
4312 static int send_remove_xattr(struct send_ctx *sctx,
4313 			  struct fs_path *path,
4314 			  const char *name, int name_len)
4315 {
4316 	int ret = 0;
4317 
4318 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4319 	if (ret < 0)
4320 		goto out;
4321 
4322 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4323 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4324 
4325 	ret = send_cmd(sctx);
4326 
4327 tlv_put_failure:
4328 out:
4329 	return ret;
4330 }
4331 
4332 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4333 			       const char *name, int name_len,
4334 			       const char *data, int data_len,
4335 			       u8 type, void *ctx)
4336 {
4337 	int ret;
4338 	struct send_ctx *sctx = ctx;
4339 	struct fs_path *p;
4340 	struct posix_acl_xattr_header dummy_acl;
4341 
4342 	p = fs_path_alloc();
4343 	if (!p)
4344 		return -ENOMEM;
4345 
4346 	/*
4347 	 * This hack is needed because empty acls are stored as zero byte
4348 	 * data in xattrs. Problem with that is, that receiving these zero byte
4349 	 * acls will fail later. To fix this, we send a dummy acl list that
4350 	 * only contains the version number and no entries.
4351 	 */
4352 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4353 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4354 		if (data_len == 0) {
4355 			dummy_acl.a_version =
4356 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4357 			data = (char *)&dummy_acl;
4358 			data_len = sizeof(dummy_acl);
4359 		}
4360 	}
4361 
4362 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4363 	if (ret < 0)
4364 		goto out;
4365 
4366 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4367 
4368 out:
4369 	fs_path_free(p);
4370 	return ret;
4371 }
4372 
4373 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4374 				   const char *name, int name_len,
4375 				   const char *data, int data_len,
4376 				   u8 type, void *ctx)
4377 {
4378 	int ret;
4379 	struct send_ctx *sctx = ctx;
4380 	struct fs_path *p;
4381 
4382 	p = fs_path_alloc();
4383 	if (!p)
4384 		return -ENOMEM;
4385 
4386 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4387 	if (ret < 0)
4388 		goto out;
4389 
4390 	ret = send_remove_xattr(sctx, p, name, name_len);
4391 
4392 out:
4393 	fs_path_free(p);
4394 	return ret;
4395 }
4396 
4397 static int process_new_xattr(struct send_ctx *sctx)
4398 {
4399 	int ret = 0;
4400 
4401 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4402 			       sctx->cmp_key, __process_new_xattr, sctx);
4403 
4404 	return ret;
4405 }
4406 
4407 static int process_deleted_xattr(struct send_ctx *sctx)
4408 {
4409 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4410 				sctx->cmp_key, __process_deleted_xattr, sctx);
4411 }
4412 
4413 struct find_xattr_ctx {
4414 	const char *name;
4415 	int name_len;
4416 	int found_idx;
4417 	char *found_data;
4418 	int found_data_len;
4419 };
4420 
4421 static int __find_xattr(int num, struct btrfs_key *di_key,
4422 			const char *name, int name_len,
4423 			const char *data, int data_len,
4424 			u8 type, void *vctx)
4425 {
4426 	struct find_xattr_ctx *ctx = vctx;
4427 
4428 	if (name_len == ctx->name_len &&
4429 	    strncmp(name, ctx->name, name_len) == 0) {
4430 		ctx->found_idx = num;
4431 		ctx->found_data_len = data_len;
4432 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4433 		if (!ctx->found_data)
4434 			return -ENOMEM;
4435 		return 1;
4436 	}
4437 	return 0;
4438 }
4439 
4440 static int find_xattr(struct btrfs_root *root,
4441 		      struct btrfs_path *path,
4442 		      struct btrfs_key *key,
4443 		      const char *name, int name_len,
4444 		      char **data, int *data_len)
4445 {
4446 	int ret;
4447 	struct find_xattr_ctx ctx;
4448 
4449 	ctx.name = name;
4450 	ctx.name_len = name_len;
4451 	ctx.found_idx = -1;
4452 	ctx.found_data = NULL;
4453 	ctx.found_data_len = 0;
4454 
4455 	ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4456 	if (ret < 0)
4457 		return ret;
4458 
4459 	if (ctx.found_idx == -1)
4460 		return -ENOENT;
4461 	if (data) {
4462 		*data = ctx.found_data;
4463 		*data_len = ctx.found_data_len;
4464 	} else {
4465 		kfree(ctx.found_data);
4466 	}
4467 	return ctx.found_idx;
4468 }
4469 
4470 
4471 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4472 				       const char *name, int name_len,
4473 				       const char *data, int data_len,
4474 				       u8 type, void *ctx)
4475 {
4476 	int ret;
4477 	struct send_ctx *sctx = ctx;
4478 	char *found_data = NULL;
4479 	int found_data_len  = 0;
4480 
4481 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4482 			 sctx->cmp_key, name, name_len, &found_data,
4483 			 &found_data_len);
4484 	if (ret == -ENOENT) {
4485 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4486 				data_len, type, ctx);
4487 	} else if (ret >= 0) {
4488 		if (data_len != found_data_len ||
4489 		    memcmp(data, found_data, data_len)) {
4490 			ret = __process_new_xattr(num, di_key, name, name_len,
4491 					data, data_len, type, ctx);
4492 		} else {
4493 			ret = 0;
4494 		}
4495 	}
4496 
4497 	kfree(found_data);
4498 	return ret;
4499 }
4500 
4501 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4502 					   const char *name, int name_len,
4503 					   const char *data, int data_len,
4504 					   u8 type, void *ctx)
4505 {
4506 	int ret;
4507 	struct send_ctx *sctx = ctx;
4508 
4509 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4510 			 name, name_len, NULL, NULL);
4511 	if (ret == -ENOENT)
4512 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4513 				data_len, type, ctx);
4514 	else if (ret >= 0)
4515 		ret = 0;
4516 
4517 	return ret;
4518 }
4519 
4520 static int process_changed_xattr(struct send_ctx *sctx)
4521 {
4522 	int ret = 0;
4523 
4524 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4525 			sctx->cmp_key, __process_changed_new_xattr, sctx);
4526 	if (ret < 0)
4527 		goto out;
4528 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4529 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4530 
4531 out:
4532 	return ret;
4533 }
4534 
4535 static int process_all_new_xattrs(struct send_ctx *sctx)
4536 {
4537 	int ret;
4538 	struct btrfs_root *root;
4539 	struct btrfs_path *path;
4540 	struct btrfs_key key;
4541 	struct btrfs_key found_key;
4542 	struct extent_buffer *eb;
4543 	int slot;
4544 
4545 	path = alloc_path_for_send();
4546 	if (!path)
4547 		return -ENOMEM;
4548 
4549 	root = sctx->send_root;
4550 
4551 	key.objectid = sctx->cmp_key->objectid;
4552 	key.type = BTRFS_XATTR_ITEM_KEY;
4553 	key.offset = 0;
4554 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4555 	if (ret < 0)
4556 		goto out;
4557 
4558 	while (1) {
4559 		eb = path->nodes[0];
4560 		slot = path->slots[0];
4561 		if (slot >= btrfs_header_nritems(eb)) {
4562 			ret = btrfs_next_leaf(root, path);
4563 			if (ret < 0) {
4564 				goto out;
4565 			} else if (ret > 0) {
4566 				ret = 0;
4567 				break;
4568 			}
4569 			continue;
4570 		}
4571 
4572 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4573 		if (found_key.objectid != key.objectid ||
4574 		    found_key.type != key.type) {
4575 			ret = 0;
4576 			goto out;
4577 		}
4578 
4579 		ret = iterate_dir_item(root, path, &found_key,
4580 				       __process_new_xattr, sctx);
4581 		if (ret < 0)
4582 			goto out;
4583 
4584 		path->slots[0]++;
4585 	}
4586 
4587 out:
4588 	btrfs_free_path(path);
4589 	return ret;
4590 }
4591 
4592 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4593 {
4594 	struct btrfs_root *root = sctx->send_root;
4595 	struct btrfs_fs_info *fs_info = root->fs_info;
4596 	struct inode *inode;
4597 	struct page *page;
4598 	char *addr;
4599 	struct btrfs_key key;
4600 	pgoff_t index = offset >> PAGE_SHIFT;
4601 	pgoff_t last_index;
4602 	unsigned pg_offset = offset & ~PAGE_MASK;
4603 	ssize_t ret = 0;
4604 
4605 	key.objectid = sctx->cur_ino;
4606 	key.type = BTRFS_INODE_ITEM_KEY;
4607 	key.offset = 0;
4608 
4609 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4610 	if (IS_ERR(inode))
4611 		return PTR_ERR(inode);
4612 
4613 	if (offset + len > i_size_read(inode)) {
4614 		if (offset > i_size_read(inode))
4615 			len = 0;
4616 		else
4617 			len = offset - i_size_read(inode);
4618 	}
4619 	if (len == 0)
4620 		goto out;
4621 
4622 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4623 
4624 	/* initial readahead */
4625 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4626 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4627 	btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4628 		       last_index - index + 1);
4629 
4630 	while (index <= last_index) {
4631 		unsigned cur_len = min_t(unsigned, len,
4632 					 PAGE_SIZE - pg_offset);
4633 		page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4634 		if (!page) {
4635 			ret = -ENOMEM;
4636 			break;
4637 		}
4638 
4639 		if (!PageUptodate(page)) {
4640 			btrfs_readpage(NULL, page);
4641 			lock_page(page);
4642 			if (!PageUptodate(page)) {
4643 				unlock_page(page);
4644 				put_page(page);
4645 				ret = -EIO;
4646 				break;
4647 			}
4648 		}
4649 
4650 		addr = kmap(page);
4651 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4652 		kunmap(page);
4653 		unlock_page(page);
4654 		put_page(page);
4655 		index++;
4656 		pg_offset = 0;
4657 		len -= cur_len;
4658 		ret += cur_len;
4659 	}
4660 out:
4661 	iput(inode);
4662 	return ret;
4663 }
4664 
4665 /*
4666  * Read some bytes from the current inode/file and send a write command to
4667  * user space.
4668  */
4669 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4670 {
4671 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4672 	int ret = 0;
4673 	struct fs_path *p;
4674 	ssize_t num_read = 0;
4675 
4676 	p = fs_path_alloc();
4677 	if (!p)
4678 		return -ENOMEM;
4679 
4680 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4681 
4682 	num_read = fill_read_buf(sctx, offset, len);
4683 	if (num_read <= 0) {
4684 		if (num_read < 0)
4685 			ret = num_read;
4686 		goto out;
4687 	}
4688 
4689 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4690 	if (ret < 0)
4691 		goto out;
4692 
4693 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4694 	if (ret < 0)
4695 		goto out;
4696 
4697 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4698 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4699 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4700 
4701 	ret = send_cmd(sctx);
4702 
4703 tlv_put_failure:
4704 out:
4705 	fs_path_free(p);
4706 	if (ret < 0)
4707 		return ret;
4708 	return num_read;
4709 }
4710 
4711 /*
4712  * Send a clone command to user space.
4713  */
4714 static int send_clone(struct send_ctx *sctx,
4715 		      u64 offset, u32 len,
4716 		      struct clone_root *clone_root)
4717 {
4718 	int ret = 0;
4719 	struct fs_path *p;
4720 	u64 gen;
4721 
4722 	btrfs_debug(sctx->send_root->fs_info,
4723 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4724 		    offset, len, clone_root->root->objectid, clone_root->ino,
4725 		    clone_root->offset);
4726 
4727 	p = fs_path_alloc();
4728 	if (!p)
4729 		return -ENOMEM;
4730 
4731 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4732 	if (ret < 0)
4733 		goto out;
4734 
4735 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4736 	if (ret < 0)
4737 		goto out;
4738 
4739 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4740 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4741 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4742 
4743 	if (clone_root->root == sctx->send_root) {
4744 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4745 				&gen, NULL, NULL, NULL, NULL);
4746 		if (ret < 0)
4747 			goto out;
4748 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4749 	} else {
4750 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4751 	}
4752 	if (ret < 0)
4753 		goto out;
4754 
4755 	/*
4756 	 * If the parent we're using has a received_uuid set then use that as
4757 	 * our clone source as that is what we will look for when doing a
4758 	 * receive.
4759 	 *
4760 	 * This covers the case that we create a snapshot off of a received
4761 	 * subvolume and then use that as the parent and try to receive on a
4762 	 * different host.
4763 	 */
4764 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4765 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4766 			     clone_root->root->root_item.received_uuid);
4767 	else
4768 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4769 			     clone_root->root->root_item.uuid);
4770 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4771 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4772 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4773 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4774 			clone_root->offset);
4775 
4776 	ret = send_cmd(sctx);
4777 
4778 tlv_put_failure:
4779 out:
4780 	fs_path_free(p);
4781 	return ret;
4782 }
4783 
4784 /*
4785  * Send an update extent command to user space.
4786  */
4787 static int send_update_extent(struct send_ctx *sctx,
4788 			      u64 offset, u32 len)
4789 {
4790 	int ret = 0;
4791 	struct fs_path *p;
4792 
4793 	p = fs_path_alloc();
4794 	if (!p)
4795 		return -ENOMEM;
4796 
4797 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4798 	if (ret < 0)
4799 		goto out;
4800 
4801 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4802 	if (ret < 0)
4803 		goto out;
4804 
4805 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4806 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4807 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4808 
4809 	ret = send_cmd(sctx);
4810 
4811 tlv_put_failure:
4812 out:
4813 	fs_path_free(p);
4814 	return ret;
4815 }
4816 
4817 static int send_hole(struct send_ctx *sctx, u64 end)
4818 {
4819 	struct fs_path *p = NULL;
4820 	u64 offset = sctx->cur_inode_last_extent;
4821 	u64 len;
4822 	int ret = 0;
4823 
4824 	p = fs_path_alloc();
4825 	if (!p)
4826 		return -ENOMEM;
4827 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4828 	if (ret < 0)
4829 		goto tlv_put_failure;
4830 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4831 	while (offset < end) {
4832 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4833 
4834 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4835 		if (ret < 0)
4836 			break;
4837 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4838 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4839 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4840 		ret = send_cmd(sctx);
4841 		if (ret < 0)
4842 			break;
4843 		offset += len;
4844 	}
4845 tlv_put_failure:
4846 	fs_path_free(p);
4847 	return ret;
4848 }
4849 
4850 static int send_extent_data(struct send_ctx *sctx,
4851 			    const u64 offset,
4852 			    const u64 len)
4853 {
4854 	u64 sent = 0;
4855 
4856 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4857 		return send_update_extent(sctx, offset, len);
4858 
4859 	while (sent < len) {
4860 		u64 size = len - sent;
4861 		int ret;
4862 
4863 		if (size > BTRFS_SEND_READ_SIZE)
4864 			size = BTRFS_SEND_READ_SIZE;
4865 		ret = send_write(sctx, offset + sent, size);
4866 		if (ret < 0)
4867 			return ret;
4868 		if (!ret)
4869 			break;
4870 		sent += ret;
4871 	}
4872 	return 0;
4873 }
4874 
4875 static int clone_range(struct send_ctx *sctx,
4876 		       struct clone_root *clone_root,
4877 		       const u64 disk_byte,
4878 		       u64 data_offset,
4879 		       u64 offset,
4880 		       u64 len)
4881 {
4882 	struct btrfs_path *path;
4883 	struct btrfs_key key;
4884 	int ret;
4885 
4886 	path = alloc_path_for_send();
4887 	if (!path)
4888 		return -ENOMEM;
4889 
4890 	/*
4891 	 * We can't send a clone operation for the entire range if we find
4892 	 * extent items in the respective range in the source file that
4893 	 * refer to different extents or if we find holes.
4894 	 * So check for that and do a mix of clone and regular write/copy
4895 	 * operations if needed.
4896 	 *
4897 	 * Example:
4898 	 *
4899 	 * mkfs.btrfs -f /dev/sda
4900 	 * mount /dev/sda /mnt
4901 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4902 	 * cp --reflink=always /mnt/foo /mnt/bar
4903 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4904 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
4905 	 *
4906 	 * If when we send the snapshot and we are processing file bar (which
4907 	 * has a higher inode number than foo) we blindly send a clone operation
4908 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4909 	 * a file bar that matches the content of file foo - iow, doesn't match
4910 	 * the content from bar in the original filesystem.
4911 	 */
4912 	key.objectid = clone_root->ino;
4913 	key.type = BTRFS_EXTENT_DATA_KEY;
4914 	key.offset = clone_root->offset;
4915 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4916 	if (ret < 0)
4917 		goto out;
4918 	if (ret > 0 && path->slots[0] > 0) {
4919 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4920 		if (key.objectid == clone_root->ino &&
4921 		    key.type == BTRFS_EXTENT_DATA_KEY)
4922 			path->slots[0]--;
4923 	}
4924 
4925 	while (true) {
4926 		struct extent_buffer *leaf = path->nodes[0];
4927 		int slot = path->slots[0];
4928 		struct btrfs_file_extent_item *ei;
4929 		u8 type;
4930 		u64 ext_len;
4931 		u64 clone_len;
4932 
4933 		if (slot >= btrfs_header_nritems(leaf)) {
4934 			ret = btrfs_next_leaf(clone_root->root, path);
4935 			if (ret < 0)
4936 				goto out;
4937 			else if (ret > 0)
4938 				break;
4939 			continue;
4940 		}
4941 
4942 		btrfs_item_key_to_cpu(leaf, &key, slot);
4943 
4944 		/*
4945 		 * We might have an implicit trailing hole (NO_HOLES feature
4946 		 * enabled). We deal with it after leaving this loop.
4947 		 */
4948 		if (key.objectid != clone_root->ino ||
4949 		    key.type != BTRFS_EXTENT_DATA_KEY)
4950 			break;
4951 
4952 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4953 		type = btrfs_file_extent_type(leaf, ei);
4954 		if (type == BTRFS_FILE_EXTENT_INLINE) {
4955 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4956 			ext_len = PAGE_ALIGN(ext_len);
4957 		} else {
4958 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4959 		}
4960 
4961 		if (key.offset + ext_len <= clone_root->offset)
4962 			goto next;
4963 
4964 		if (key.offset > clone_root->offset) {
4965 			/* Implicit hole, NO_HOLES feature enabled. */
4966 			u64 hole_len = key.offset - clone_root->offset;
4967 
4968 			if (hole_len > len)
4969 				hole_len = len;
4970 			ret = send_extent_data(sctx, offset, hole_len);
4971 			if (ret < 0)
4972 				goto out;
4973 
4974 			len -= hole_len;
4975 			if (len == 0)
4976 				break;
4977 			offset += hole_len;
4978 			clone_root->offset += hole_len;
4979 			data_offset += hole_len;
4980 		}
4981 
4982 		if (key.offset >= clone_root->offset + len)
4983 			break;
4984 
4985 		clone_len = min_t(u64, ext_len, len);
4986 
4987 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4988 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
4989 			ret = send_clone(sctx, offset, clone_len, clone_root);
4990 		else
4991 			ret = send_extent_data(sctx, offset, clone_len);
4992 
4993 		if (ret < 0)
4994 			goto out;
4995 
4996 		len -= clone_len;
4997 		if (len == 0)
4998 			break;
4999 		offset += clone_len;
5000 		clone_root->offset += clone_len;
5001 		data_offset += clone_len;
5002 next:
5003 		path->slots[0]++;
5004 	}
5005 
5006 	if (len > 0)
5007 		ret = send_extent_data(sctx, offset, len);
5008 	else
5009 		ret = 0;
5010 out:
5011 	btrfs_free_path(path);
5012 	return ret;
5013 }
5014 
5015 static int send_write_or_clone(struct send_ctx *sctx,
5016 			       struct btrfs_path *path,
5017 			       struct btrfs_key *key,
5018 			       struct clone_root *clone_root)
5019 {
5020 	int ret = 0;
5021 	struct btrfs_file_extent_item *ei;
5022 	u64 offset = key->offset;
5023 	u64 len;
5024 	u8 type;
5025 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5026 
5027 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5028 			struct btrfs_file_extent_item);
5029 	type = btrfs_file_extent_type(path->nodes[0], ei);
5030 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5031 		len = btrfs_file_extent_inline_len(path->nodes[0],
5032 						   path->slots[0], ei);
5033 		/*
5034 		 * it is possible the inline item won't cover the whole page,
5035 		 * but there may be items after this page.  Make
5036 		 * sure to send the whole thing
5037 		 */
5038 		len = PAGE_ALIGN(len);
5039 	} else {
5040 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5041 	}
5042 
5043 	if (offset + len > sctx->cur_inode_size)
5044 		len = sctx->cur_inode_size - offset;
5045 	if (len == 0) {
5046 		ret = 0;
5047 		goto out;
5048 	}
5049 
5050 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5051 		u64 disk_byte;
5052 		u64 data_offset;
5053 
5054 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5055 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5056 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5057 				  offset, len);
5058 	} else {
5059 		ret = send_extent_data(sctx, offset, len);
5060 	}
5061 out:
5062 	return ret;
5063 }
5064 
5065 static int is_extent_unchanged(struct send_ctx *sctx,
5066 			       struct btrfs_path *left_path,
5067 			       struct btrfs_key *ekey)
5068 {
5069 	int ret = 0;
5070 	struct btrfs_key key;
5071 	struct btrfs_path *path = NULL;
5072 	struct extent_buffer *eb;
5073 	int slot;
5074 	struct btrfs_key found_key;
5075 	struct btrfs_file_extent_item *ei;
5076 	u64 left_disknr;
5077 	u64 right_disknr;
5078 	u64 left_offset;
5079 	u64 right_offset;
5080 	u64 left_offset_fixed;
5081 	u64 left_len;
5082 	u64 right_len;
5083 	u64 left_gen;
5084 	u64 right_gen;
5085 	u8 left_type;
5086 	u8 right_type;
5087 
5088 	path = alloc_path_for_send();
5089 	if (!path)
5090 		return -ENOMEM;
5091 
5092 	eb = left_path->nodes[0];
5093 	slot = left_path->slots[0];
5094 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5095 	left_type = btrfs_file_extent_type(eb, ei);
5096 
5097 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5098 		ret = 0;
5099 		goto out;
5100 	}
5101 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5102 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5103 	left_offset = btrfs_file_extent_offset(eb, ei);
5104 	left_gen = btrfs_file_extent_generation(eb, ei);
5105 
5106 	/*
5107 	 * Following comments will refer to these graphics. L is the left
5108 	 * extents which we are checking at the moment. 1-8 are the right
5109 	 * extents that we iterate.
5110 	 *
5111 	 *       |-----L-----|
5112 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5113 	 *
5114 	 *       |-----L-----|
5115 	 * |--1--|-2b-|...(same as above)
5116 	 *
5117 	 * Alternative situation. Happens on files where extents got split.
5118 	 *       |-----L-----|
5119 	 * |-----------7-----------|-6-|
5120 	 *
5121 	 * Alternative situation. Happens on files which got larger.
5122 	 *       |-----L-----|
5123 	 * |-8-|
5124 	 * Nothing follows after 8.
5125 	 */
5126 
5127 	key.objectid = ekey->objectid;
5128 	key.type = BTRFS_EXTENT_DATA_KEY;
5129 	key.offset = ekey->offset;
5130 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5131 	if (ret < 0)
5132 		goto out;
5133 	if (ret) {
5134 		ret = 0;
5135 		goto out;
5136 	}
5137 
5138 	/*
5139 	 * Handle special case where the right side has no extents at all.
5140 	 */
5141 	eb = path->nodes[0];
5142 	slot = path->slots[0];
5143 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5144 	if (found_key.objectid != key.objectid ||
5145 	    found_key.type != key.type) {
5146 		/* If we're a hole then just pretend nothing changed */
5147 		ret = (left_disknr) ? 0 : 1;
5148 		goto out;
5149 	}
5150 
5151 	/*
5152 	 * We're now on 2a, 2b or 7.
5153 	 */
5154 	key = found_key;
5155 	while (key.offset < ekey->offset + left_len) {
5156 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5157 		right_type = btrfs_file_extent_type(eb, ei);
5158 		if (right_type != BTRFS_FILE_EXTENT_REG) {
5159 			ret = 0;
5160 			goto out;
5161 		}
5162 
5163 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5164 		right_len = btrfs_file_extent_num_bytes(eb, ei);
5165 		right_offset = btrfs_file_extent_offset(eb, ei);
5166 		right_gen = btrfs_file_extent_generation(eb, ei);
5167 
5168 		/*
5169 		 * Are we at extent 8? If yes, we know the extent is changed.
5170 		 * This may only happen on the first iteration.
5171 		 */
5172 		if (found_key.offset + right_len <= ekey->offset) {
5173 			/* If we're a hole just pretend nothing changed */
5174 			ret = (left_disknr) ? 0 : 1;
5175 			goto out;
5176 		}
5177 
5178 		left_offset_fixed = left_offset;
5179 		if (key.offset < ekey->offset) {
5180 			/* Fix the right offset for 2a and 7. */
5181 			right_offset += ekey->offset - key.offset;
5182 		} else {
5183 			/* Fix the left offset for all behind 2a and 2b */
5184 			left_offset_fixed += key.offset - ekey->offset;
5185 		}
5186 
5187 		/*
5188 		 * Check if we have the same extent.
5189 		 */
5190 		if (left_disknr != right_disknr ||
5191 		    left_offset_fixed != right_offset ||
5192 		    left_gen != right_gen) {
5193 			ret = 0;
5194 			goto out;
5195 		}
5196 
5197 		/*
5198 		 * Go to the next extent.
5199 		 */
5200 		ret = btrfs_next_item(sctx->parent_root, path);
5201 		if (ret < 0)
5202 			goto out;
5203 		if (!ret) {
5204 			eb = path->nodes[0];
5205 			slot = path->slots[0];
5206 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5207 		}
5208 		if (ret || found_key.objectid != key.objectid ||
5209 		    found_key.type != key.type) {
5210 			key.offset += right_len;
5211 			break;
5212 		}
5213 		if (found_key.offset != key.offset + right_len) {
5214 			ret = 0;
5215 			goto out;
5216 		}
5217 		key = found_key;
5218 	}
5219 
5220 	/*
5221 	 * We're now behind the left extent (treat as unchanged) or at the end
5222 	 * of the right side (treat as changed).
5223 	 */
5224 	if (key.offset >= ekey->offset + left_len)
5225 		ret = 1;
5226 	else
5227 		ret = 0;
5228 
5229 
5230 out:
5231 	btrfs_free_path(path);
5232 	return ret;
5233 }
5234 
5235 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5236 {
5237 	struct btrfs_path *path;
5238 	struct btrfs_root *root = sctx->send_root;
5239 	struct btrfs_file_extent_item *fi;
5240 	struct btrfs_key key;
5241 	u64 extent_end;
5242 	u8 type;
5243 	int ret;
5244 
5245 	path = alloc_path_for_send();
5246 	if (!path)
5247 		return -ENOMEM;
5248 
5249 	sctx->cur_inode_last_extent = 0;
5250 
5251 	key.objectid = sctx->cur_ino;
5252 	key.type = BTRFS_EXTENT_DATA_KEY;
5253 	key.offset = offset;
5254 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5255 	if (ret < 0)
5256 		goto out;
5257 	ret = 0;
5258 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5259 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5260 		goto out;
5261 
5262 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5263 			    struct btrfs_file_extent_item);
5264 	type = btrfs_file_extent_type(path->nodes[0], fi);
5265 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5266 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5267 							path->slots[0], fi);
5268 		extent_end = ALIGN(key.offset + size,
5269 				   sctx->send_root->fs_info->sectorsize);
5270 	} else {
5271 		extent_end = key.offset +
5272 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5273 	}
5274 	sctx->cur_inode_last_extent = extent_end;
5275 out:
5276 	btrfs_free_path(path);
5277 	return ret;
5278 }
5279 
5280 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5281 			   struct btrfs_key *key)
5282 {
5283 	struct btrfs_file_extent_item *fi;
5284 	u64 extent_end;
5285 	u8 type;
5286 	int ret = 0;
5287 
5288 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5289 		return 0;
5290 
5291 	if (sctx->cur_inode_last_extent == (u64)-1) {
5292 		ret = get_last_extent(sctx, key->offset - 1);
5293 		if (ret)
5294 			return ret;
5295 	}
5296 
5297 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5298 			    struct btrfs_file_extent_item);
5299 	type = btrfs_file_extent_type(path->nodes[0], fi);
5300 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5301 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5302 							path->slots[0], fi);
5303 		extent_end = ALIGN(key->offset + size,
5304 				   sctx->send_root->fs_info->sectorsize);
5305 	} else {
5306 		extent_end = key->offset +
5307 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5308 	}
5309 
5310 	if (path->slots[0] == 0 &&
5311 	    sctx->cur_inode_last_extent < key->offset) {
5312 		/*
5313 		 * We might have skipped entire leafs that contained only
5314 		 * file extent items for our current inode. These leafs have
5315 		 * a generation number smaller (older) than the one in the
5316 		 * current leaf and the leaf our last extent came from, and
5317 		 * are located between these 2 leafs.
5318 		 */
5319 		ret = get_last_extent(sctx, key->offset - 1);
5320 		if (ret)
5321 			return ret;
5322 	}
5323 
5324 	if (sctx->cur_inode_last_extent < key->offset)
5325 		ret = send_hole(sctx, key->offset);
5326 	sctx->cur_inode_last_extent = extent_end;
5327 	return ret;
5328 }
5329 
5330 static int process_extent(struct send_ctx *sctx,
5331 			  struct btrfs_path *path,
5332 			  struct btrfs_key *key)
5333 {
5334 	struct clone_root *found_clone = NULL;
5335 	int ret = 0;
5336 
5337 	if (S_ISLNK(sctx->cur_inode_mode))
5338 		return 0;
5339 
5340 	if (sctx->parent_root && !sctx->cur_inode_new) {
5341 		ret = is_extent_unchanged(sctx, path, key);
5342 		if (ret < 0)
5343 			goto out;
5344 		if (ret) {
5345 			ret = 0;
5346 			goto out_hole;
5347 		}
5348 	} else {
5349 		struct btrfs_file_extent_item *ei;
5350 		u8 type;
5351 
5352 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5353 				    struct btrfs_file_extent_item);
5354 		type = btrfs_file_extent_type(path->nodes[0], ei);
5355 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5356 		    type == BTRFS_FILE_EXTENT_REG) {
5357 			/*
5358 			 * The send spec does not have a prealloc command yet,
5359 			 * so just leave a hole for prealloc'ed extents until
5360 			 * we have enough commands queued up to justify rev'ing
5361 			 * the send spec.
5362 			 */
5363 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5364 				ret = 0;
5365 				goto out;
5366 			}
5367 
5368 			/* Have a hole, just skip it. */
5369 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5370 				ret = 0;
5371 				goto out;
5372 			}
5373 		}
5374 	}
5375 
5376 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5377 			sctx->cur_inode_size, &found_clone);
5378 	if (ret != -ENOENT && ret < 0)
5379 		goto out;
5380 
5381 	ret = send_write_or_clone(sctx, path, key, found_clone);
5382 	if (ret)
5383 		goto out;
5384 out_hole:
5385 	ret = maybe_send_hole(sctx, path, key);
5386 out:
5387 	return ret;
5388 }
5389 
5390 static int process_all_extents(struct send_ctx *sctx)
5391 {
5392 	int ret;
5393 	struct btrfs_root *root;
5394 	struct btrfs_path *path;
5395 	struct btrfs_key key;
5396 	struct btrfs_key found_key;
5397 	struct extent_buffer *eb;
5398 	int slot;
5399 
5400 	root = sctx->send_root;
5401 	path = alloc_path_for_send();
5402 	if (!path)
5403 		return -ENOMEM;
5404 
5405 	key.objectid = sctx->cmp_key->objectid;
5406 	key.type = BTRFS_EXTENT_DATA_KEY;
5407 	key.offset = 0;
5408 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5409 	if (ret < 0)
5410 		goto out;
5411 
5412 	while (1) {
5413 		eb = path->nodes[0];
5414 		slot = path->slots[0];
5415 
5416 		if (slot >= btrfs_header_nritems(eb)) {
5417 			ret = btrfs_next_leaf(root, path);
5418 			if (ret < 0) {
5419 				goto out;
5420 			} else if (ret > 0) {
5421 				ret = 0;
5422 				break;
5423 			}
5424 			continue;
5425 		}
5426 
5427 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5428 
5429 		if (found_key.objectid != key.objectid ||
5430 		    found_key.type != key.type) {
5431 			ret = 0;
5432 			goto out;
5433 		}
5434 
5435 		ret = process_extent(sctx, path, &found_key);
5436 		if (ret < 0)
5437 			goto out;
5438 
5439 		path->slots[0]++;
5440 	}
5441 
5442 out:
5443 	btrfs_free_path(path);
5444 	return ret;
5445 }
5446 
5447 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5448 					   int *pending_move,
5449 					   int *refs_processed)
5450 {
5451 	int ret = 0;
5452 
5453 	if (sctx->cur_ino == 0)
5454 		goto out;
5455 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5456 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5457 		goto out;
5458 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5459 		goto out;
5460 
5461 	ret = process_recorded_refs(sctx, pending_move);
5462 	if (ret < 0)
5463 		goto out;
5464 
5465 	*refs_processed = 1;
5466 out:
5467 	return ret;
5468 }
5469 
5470 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5471 {
5472 	int ret = 0;
5473 	u64 left_mode;
5474 	u64 left_uid;
5475 	u64 left_gid;
5476 	u64 right_mode;
5477 	u64 right_uid;
5478 	u64 right_gid;
5479 	int need_chmod = 0;
5480 	int need_chown = 0;
5481 	int pending_move = 0;
5482 	int refs_processed = 0;
5483 
5484 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5485 					      &refs_processed);
5486 	if (ret < 0)
5487 		goto out;
5488 
5489 	/*
5490 	 * We have processed the refs and thus need to advance send_progress.
5491 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5492 	 * inode into account.
5493 	 *
5494 	 * On the other hand, if our current inode is a directory and couldn't
5495 	 * be moved/renamed because its parent was renamed/moved too and it has
5496 	 * a higher inode number, we can only move/rename our current inode
5497 	 * after we moved/renamed its parent. Therefore in this case operate on
5498 	 * the old path (pre move/rename) of our current inode, and the
5499 	 * move/rename will be performed later.
5500 	 */
5501 	if (refs_processed && !pending_move)
5502 		sctx->send_progress = sctx->cur_ino + 1;
5503 
5504 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5505 		goto out;
5506 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5507 		goto out;
5508 
5509 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5510 			&left_mode, &left_uid, &left_gid, NULL);
5511 	if (ret < 0)
5512 		goto out;
5513 
5514 	if (!sctx->parent_root || sctx->cur_inode_new) {
5515 		need_chown = 1;
5516 		if (!S_ISLNK(sctx->cur_inode_mode))
5517 			need_chmod = 1;
5518 	} else {
5519 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5520 				NULL, NULL, &right_mode, &right_uid,
5521 				&right_gid, NULL);
5522 		if (ret < 0)
5523 			goto out;
5524 
5525 		if (left_uid != right_uid || left_gid != right_gid)
5526 			need_chown = 1;
5527 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5528 			need_chmod = 1;
5529 	}
5530 
5531 	if (S_ISREG(sctx->cur_inode_mode)) {
5532 		if (need_send_hole(sctx)) {
5533 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5534 			    sctx->cur_inode_last_extent <
5535 			    sctx->cur_inode_size) {
5536 				ret = get_last_extent(sctx, (u64)-1);
5537 				if (ret)
5538 					goto out;
5539 			}
5540 			if (sctx->cur_inode_last_extent <
5541 			    sctx->cur_inode_size) {
5542 				ret = send_hole(sctx, sctx->cur_inode_size);
5543 				if (ret)
5544 					goto out;
5545 			}
5546 		}
5547 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5548 				sctx->cur_inode_size);
5549 		if (ret < 0)
5550 			goto out;
5551 	}
5552 
5553 	if (need_chown) {
5554 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5555 				left_uid, left_gid);
5556 		if (ret < 0)
5557 			goto out;
5558 	}
5559 	if (need_chmod) {
5560 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5561 				left_mode);
5562 		if (ret < 0)
5563 			goto out;
5564 	}
5565 
5566 	/*
5567 	 * If other directory inodes depended on our current directory
5568 	 * inode's move/rename, now do their move/rename operations.
5569 	 */
5570 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5571 		ret = apply_children_dir_moves(sctx);
5572 		if (ret)
5573 			goto out;
5574 		/*
5575 		 * Need to send that every time, no matter if it actually
5576 		 * changed between the two trees as we have done changes to
5577 		 * the inode before. If our inode is a directory and it's
5578 		 * waiting to be moved/renamed, we will send its utimes when
5579 		 * it's moved/renamed, therefore we don't need to do it here.
5580 		 */
5581 		sctx->send_progress = sctx->cur_ino + 1;
5582 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5583 		if (ret < 0)
5584 			goto out;
5585 	}
5586 
5587 out:
5588 	return ret;
5589 }
5590 
5591 static int changed_inode(struct send_ctx *sctx,
5592 			 enum btrfs_compare_tree_result result)
5593 {
5594 	int ret = 0;
5595 	struct btrfs_key *key = sctx->cmp_key;
5596 	struct btrfs_inode_item *left_ii = NULL;
5597 	struct btrfs_inode_item *right_ii = NULL;
5598 	u64 left_gen = 0;
5599 	u64 right_gen = 0;
5600 
5601 	sctx->cur_ino = key->objectid;
5602 	sctx->cur_inode_new_gen = 0;
5603 	sctx->cur_inode_last_extent = (u64)-1;
5604 
5605 	/*
5606 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5607 	 * functions that the current inode's refs are not updated yet. Later,
5608 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5609 	 */
5610 	sctx->send_progress = sctx->cur_ino;
5611 
5612 	if (result == BTRFS_COMPARE_TREE_NEW ||
5613 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5614 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5615 				sctx->left_path->slots[0],
5616 				struct btrfs_inode_item);
5617 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5618 				left_ii);
5619 	} else {
5620 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5621 				sctx->right_path->slots[0],
5622 				struct btrfs_inode_item);
5623 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5624 				right_ii);
5625 	}
5626 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5627 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5628 				sctx->right_path->slots[0],
5629 				struct btrfs_inode_item);
5630 
5631 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5632 				right_ii);
5633 
5634 		/*
5635 		 * The cur_ino = root dir case is special here. We can't treat
5636 		 * the inode as deleted+reused because it would generate a
5637 		 * stream that tries to delete/mkdir the root dir.
5638 		 */
5639 		if (left_gen != right_gen &&
5640 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5641 			sctx->cur_inode_new_gen = 1;
5642 	}
5643 
5644 	if (result == BTRFS_COMPARE_TREE_NEW) {
5645 		sctx->cur_inode_gen = left_gen;
5646 		sctx->cur_inode_new = 1;
5647 		sctx->cur_inode_deleted = 0;
5648 		sctx->cur_inode_size = btrfs_inode_size(
5649 				sctx->left_path->nodes[0], left_ii);
5650 		sctx->cur_inode_mode = btrfs_inode_mode(
5651 				sctx->left_path->nodes[0], left_ii);
5652 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5653 				sctx->left_path->nodes[0], left_ii);
5654 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5655 			ret = send_create_inode_if_needed(sctx);
5656 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5657 		sctx->cur_inode_gen = right_gen;
5658 		sctx->cur_inode_new = 0;
5659 		sctx->cur_inode_deleted = 1;
5660 		sctx->cur_inode_size = btrfs_inode_size(
5661 				sctx->right_path->nodes[0], right_ii);
5662 		sctx->cur_inode_mode = btrfs_inode_mode(
5663 				sctx->right_path->nodes[0], right_ii);
5664 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5665 		/*
5666 		 * We need to do some special handling in case the inode was
5667 		 * reported as changed with a changed generation number. This
5668 		 * means that the original inode was deleted and new inode
5669 		 * reused the same inum. So we have to treat the old inode as
5670 		 * deleted and the new one as new.
5671 		 */
5672 		if (sctx->cur_inode_new_gen) {
5673 			/*
5674 			 * First, process the inode as if it was deleted.
5675 			 */
5676 			sctx->cur_inode_gen = right_gen;
5677 			sctx->cur_inode_new = 0;
5678 			sctx->cur_inode_deleted = 1;
5679 			sctx->cur_inode_size = btrfs_inode_size(
5680 					sctx->right_path->nodes[0], right_ii);
5681 			sctx->cur_inode_mode = btrfs_inode_mode(
5682 					sctx->right_path->nodes[0], right_ii);
5683 			ret = process_all_refs(sctx,
5684 					BTRFS_COMPARE_TREE_DELETED);
5685 			if (ret < 0)
5686 				goto out;
5687 
5688 			/*
5689 			 * Now process the inode as if it was new.
5690 			 */
5691 			sctx->cur_inode_gen = left_gen;
5692 			sctx->cur_inode_new = 1;
5693 			sctx->cur_inode_deleted = 0;
5694 			sctx->cur_inode_size = btrfs_inode_size(
5695 					sctx->left_path->nodes[0], left_ii);
5696 			sctx->cur_inode_mode = btrfs_inode_mode(
5697 					sctx->left_path->nodes[0], left_ii);
5698 			sctx->cur_inode_rdev = btrfs_inode_rdev(
5699 					sctx->left_path->nodes[0], left_ii);
5700 			ret = send_create_inode_if_needed(sctx);
5701 			if (ret < 0)
5702 				goto out;
5703 
5704 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5705 			if (ret < 0)
5706 				goto out;
5707 			/*
5708 			 * Advance send_progress now as we did not get into
5709 			 * process_recorded_refs_if_needed in the new_gen case.
5710 			 */
5711 			sctx->send_progress = sctx->cur_ino + 1;
5712 
5713 			/*
5714 			 * Now process all extents and xattrs of the inode as if
5715 			 * they were all new.
5716 			 */
5717 			ret = process_all_extents(sctx);
5718 			if (ret < 0)
5719 				goto out;
5720 			ret = process_all_new_xattrs(sctx);
5721 			if (ret < 0)
5722 				goto out;
5723 		} else {
5724 			sctx->cur_inode_gen = left_gen;
5725 			sctx->cur_inode_new = 0;
5726 			sctx->cur_inode_new_gen = 0;
5727 			sctx->cur_inode_deleted = 0;
5728 			sctx->cur_inode_size = btrfs_inode_size(
5729 					sctx->left_path->nodes[0], left_ii);
5730 			sctx->cur_inode_mode = btrfs_inode_mode(
5731 					sctx->left_path->nodes[0], left_ii);
5732 		}
5733 	}
5734 
5735 out:
5736 	return ret;
5737 }
5738 
5739 /*
5740  * We have to process new refs before deleted refs, but compare_trees gives us
5741  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5742  * first and later process them in process_recorded_refs.
5743  * For the cur_inode_new_gen case, we skip recording completely because
5744  * changed_inode did already initiate processing of refs. The reason for this is
5745  * that in this case, compare_tree actually compares the refs of 2 different
5746  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5747  * refs of the right tree as deleted and all refs of the left tree as new.
5748  */
5749 static int changed_ref(struct send_ctx *sctx,
5750 		       enum btrfs_compare_tree_result result)
5751 {
5752 	int ret = 0;
5753 
5754 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5755 		inconsistent_snapshot_error(sctx, result, "reference");
5756 		return -EIO;
5757 	}
5758 
5759 	if (!sctx->cur_inode_new_gen &&
5760 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5761 		if (result == BTRFS_COMPARE_TREE_NEW)
5762 			ret = record_new_ref(sctx);
5763 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5764 			ret = record_deleted_ref(sctx);
5765 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5766 			ret = record_changed_ref(sctx);
5767 	}
5768 
5769 	return ret;
5770 }
5771 
5772 /*
5773  * Process new/deleted/changed xattrs. We skip processing in the
5774  * cur_inode_new_gen case because changed_inode did already initiate processing
5775  * of xattrs. The reason is the same as in changed_ref
5776  */
5777 static int changed_xattr(struct send_ctx *sctx,
5778 			 enum btrfs_compare_tree_result result)
5779 {
5780 	int ret = 0;
5781 
5782 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5783 		inconsistent_snapshot_error(sctx, result, "xattr");
5784 		return -EIO;
5785 	}
5786 
5787 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5788 		if (result == BTRFS_COMPARE_TREE_NEW)
5789 			ret = process_new_xattr(sctx);
5790 		else if (result == BTRFS_COMPARE_TREE_DELETED)
5791 			ret = process_deleted_xattr(sctx);
5792 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
5793 			ret = process_changed_xattr(sctx);
5794 	}
5795 
5796 	return ret;
5797 }
5798 
5799 /*
5800  * Process new/deleted/changed extents. We skip processing in the
5801  * cur_inode_new_gen case because changed_inode did already initiate processing
5802  * of extents. The reason is the same as in changed_ref
5803  */
5804 static int changed_extent(struct send_ctx *sctx,
5805 			  enum btrfs_compare_tree_result result)
5806 {
5807 	int ret = 0;
5808 
5809 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
5810 
5811 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
5812 			struct extent_buffer *leaf_l;
5813 			struct extent_buffer *leaf_r;
5814 			struct btrfs_file_extent_item *ei_l;
5815 			struct btrfs_file_extent_item *ei_r;
5816 
5817 			leaf_l = sctx->left_path->nodes[0];
5818 			leaf_r = sctx->right_path->nodes[0];
5819 			ei_l = btrfs_item_ptr(leaf_l,
5820 					      sctx->left_path->slots[0],
5821 					      struct btrfs_file_extent_item);
5822 			ei_r = btrfs_item_ptr(leaf_r,
5823 					      sctx->right_path->slots[0],
5824 					      struct btrfs_file_extent_item);
5825 
5826 			/*
5827 			 * We may have found an extent item that has changed
5828 			 * only its disk_bytenr field and the corresponding
5829 			 * inode item was not updated. This case happens due to
5830 			 * very specific timings during relocation when a leaf
5831 			 * that contains file extent items is COWed while
5832 			 * relocation is ongoing and its in the stage where it
5833 			 * updates data pointers. So when this happens we can
5834 			 * safely ignore it since we know it's the same extent,
5835 			 * but just at different logical and physical locations
5836 			 * (when an extent is fully replaced with a new one, we
5837 			 * know the generation number must have changed too,
5838 			 * since snapshot creation implies committing the current
5839 			 * transaction, and the inode item must have been updated
5840 			 * as well).
5841 			 * This replacement of the disk_bytenr happens at
5842 			 * relocation.c:replace_file_extents() through
5843 			 * relocation.c:btrfs_reloc_cow_block().
5844 			 */
5845 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
5846 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
5847 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
5848 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
5849 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
5850 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
5851 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
5852 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
5853 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
5854 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
5855 			    btrfs_file_extent_type(leaf_l, ei_l) ==
5856 			    btrfs_file_extent_type(leaf_r, ei_r) &&
5857 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
5858 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
5859 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
5860 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
5861 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
5862 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
5863 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
5864 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
5865 				return 0;
5866 		}
5867 
5868 		inconsistent_snapshot_error(sctx, result, "extent");
5869 		return -EIO;
5870 	}
5871 
5872 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5873 		if (result != BTRFS_COMPARE_TREE_DELETED)
5874 			ret = process_extent(sctx, sctx->left_path,
5875 					sctx->cmp_key);
5876 	}
5877 
5878 	return ret;
5879 }
5880 
5881 static int dir_changed(struct send_ctx *sctx, u64 dir)
5882 {
5883 	u64 orig_gen, new_gen;
5884 	int ret;
5885 
5886 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5887 			     NULL, NULL);
5888 	if (ret)
5889 		return ret;
5890 
5891 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5892 			     NULL, NULL, NULL);
5893 	if (ret)
5894 		return ret;
5895 
5896 	return (orig_gen != new_gen) ? 1 : 0;
5897 }
5898 
5899 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5900 			struct btrfs_key *key)
5901 {
5902 	struct btrfs_inode_extref *extref;
5903 	struct extent_buffer *leaf;
5904 	u64 dirid = 0, last_dirid = 0;
5905 	unsigned long ptr;
5906 	u32 item_size;
5907 	u32 cur_offset = 0;
5908 	int ref_name_len;
5909 	int ret = 0;
5910 
5911 	/* Easy case, just check this one dirid */
5912 	if (key->type == BTRFS_INODE_REF_KEY) {
5913 		dirid = key->offset;
5914 
5915 		ret = dir_changed(sctx, dirid);
5916 		goto out;
5917 	}
5918 
5919 	leaf = path->nodes[0];
5920 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5921 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5922 	while (cur_offset < item_size) {
5923 		extref = (struct btrfs_inode_extref *)(ptr +
5924 						       cur_offset);
5925 		dirid = btrfs_inode_extref_parent(leaf, extref);
5926 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5927 		cur_offset += ref_name_len + sizeof(*extref);
5928 		if (dirid == last_dirid)
5929 			continue;
5930 		ret = dir_changed(sctx, dirid);
5931 		if (ret)
5932 			break;
5933 		last_dirid = dirid;
5934 	}
5935 out:
5936 	return ret;
5937 }
5938 
5939 /*
5940  * Updates compare related fields in sctx and simply forwards to the actual
5941  * changed_xxx functions.
5942  */
5943 static int changed_cb(struct btrfs_root *left_root,
5944 		      struct btrfs_root *right_root,
5945 		      struct btrfs_path *left_path,
5946 		      struct btrfs_path *right_path,
5947 		      struct btrfs_key *key,
5948 		      enum btrfs_compare_tree_result result,
5949 		      void *ctx)
5950 {
5951 	int ret = 0;
5952 	struct send_ctx *sctx = ctx;
5953 
5954 	if (result == BTRFS_COMPARE_TREE_SAME) {
5955 		if (key->type == BTRFS_INODE_REF_KEY ||
5956 		    key->type == BTRFS_INODE_EXTREF_KEY) {
5957 			ret = compare_refs(sctx, left_path, key);
5958 			if (!ret)
5959 				return 0;
5960 			if (ret < 0)
5961 				return ret;
5962 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5963 			return maybe_send_hole(sctx, left_path, key);
5964 		} else {
5965 			return 0;
5966 		}
5967 		result = BTRFS_COMPARE_TREE_CHANGED;
5968 		ret = 0;
5969 	}
5970 
5971 	sctx->left_path = left_path;
5972 	sctx->right_path = right_path;
5973 	sctx->cmp_key = key;
5974 
5975 	ret = finish_inode_if_needed(sctx, 0);
5976 	if (ret < 0)
5977 		goto out;
5978 
5979 	/* Ignore non-FS objects */
5980 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5981 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5982 		goto out;
5983 
5984 	if (key->type == BTRFS_INODE_ITEM_KEY)
5985 		ret = changed_inode(sctx, result);
5986 	else if (key->type == BTRFS_INODE_REF_KEY ||
5987 		 key->type == BTRFS_INODE_EXTREF_KEY)
5988 		ret = changed_ref(sctx, result);
5989 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
5990 		ret = changed_xattr(sctx, result);
5991 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
5992 		ret = changed_extent(sctx, result);
5993 
5994 out:
5995 	return ret;
5996 }
5997 
5998 static int full_send_tree(struct send_ctx *sctx)
5999 {
6000 	int ret;
6001 	struct btrfs_root *send_root = sctx->send_root;
6002 	struct btrfs_key key;
6003 	struct btrfs_key found_key;
6004 	struct btrfs_path *path;
6005 	struct extent_buffer *eb;
6006 	int slot;
6007 
6008 	path = alloc_path_for_send();
6009 	if (!path)
6010 		return -ENOMEM;
6011 
6012 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6013 	key.type = BTRFS_INODE_ITEM_KEY;
6014 	key.offset = 0;
6015 
6016 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6017 	if (ret < 0)
6018 		goto out;
6019 	if (ret)
6020 		goto out_finish;
6021 
6022 	while (1) {
6023 		eb = path->nodes[0];
6024 		slot = path->slots[0];
6025 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6026 
6027 		ret = changed_cb(send_root, NULL, path, NULL,
6028 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6029 		if (ret < 0)
6030 			goto out;
6031 
6032 		key.objectid = found_key.objectid;
6033 		key.type = found_key.type;
6034 		key.offset = found_key.offset + 1;
6035 
6036 		ret = btrfs_next_item(send_root, path);
6037 		if (ret < 0)
6038 			goto out;
6039 		if (ret) {
6040 			ret  = 0;
6041 			break;
6042 		}
6043 	}
6044 
6045 out_finish:
6046 	ret = finish_inode_if_needed(sctx, 1);
6047 
6048 out:
6049 	btrfs_free_path(path);
6050 	return ret;
6051 }
6052 
6053 static int send_subvol(struct send_ctx *sctx)
6054 {
6055 	int ret;
6056 
6057 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6058 		ret = send_header(sctx);
6059 		if (ret < 0)
6060 			goto out;
6061 	}
6062 
6063 	ret = send_subvol_begin(sctx);
6064 	if (ret < 0)
6065 		goto out;
6066 
6067 	if (sctx->parent_root) {
6068 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6069 				changed_cb, sctx);
6070 		if (ret < 0)
6071 			goto out;
6072 		ret = finish_inode_if_needed(sctx, 1);
6073 		if (ret < 0)
6074 			goto out;
6075 	} else {
6076 		ret = full_send_tree(sctx);
6077 		if (ret < 0)
6078 			goto out;
6079 	}
6080 
6081 out:
6082 	free_recorded_refs(sctx);
6083 	return ret;
6084 }
6085 
6086 /*
6087  * If orphan cleanup did remove any orphans from a root, it means the tree
6088  * was modified and therefore the commit root is not the same as the current
6089  * root anymore. This is a problem, because send uses the commit root and
6090  * therefore can see inode items that don't exist in the current root anymore,
6091  * and for example make calls to btrfs_iget, which will do tree lookups based
6092  * on the current root and not on the commit root. Those lookups will fail,
6093  * returning a -ESTALE error, and making send fail with that error. So make
6094  * sure a send does not see any orphans we have just removed, and that it will
6095  * see the same inodes regardless of whether a transaction commit happened
6096  * before it started (meaning that the commit root will be the same as the
6097  * current root) or not.
6098  */
6099 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6100 {
6101 	int i;
6102 	struct btrfs_trans_handle *trans = NULL;
6103 
6104 again:
6105 	if (sctx->parent_root &&
6106 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6107 		goto commit_trans;
6108 
6109 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6110 		if (sctx->clone_roots[i].root->node !=
6111 		    sctx->clone_roots[i].root->commit_root)
6112 			goto commit_trans;
6113 
6114 	if (trans)
6115 		return btrfs_end_transaction(trans);
6116 
6117 	return 0;
6118 
6119 commit_trans:
6120 	/* Use any root, all fs roots will get their commit roots updated. */
6121 	if (!trans) {
6122 		trans = btrfs_join_transaction(sctx->send_root);
6123 		if (IS_ERR(trans))
6124 			return PTR_ERR(trans);
6125 		goto again;
6126 	}
6127 
6128 	return btrfs_commit_transaction(trans);
6129 }
6130 
6131 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6132 {
6133 	spin_lock(&root->root_item_lock);
6134 	root->send_in_progress--;
6135 	/*
6136 	 * Not much left to do, we don't know why it's unbalanced and
6137 	 * can't blindly reset it to 0.
6138 	 */
6139 	if (root->send_in_progress < 0)
6140 		btrfs_err(root->fs_info,
6141 			  "send_in_progres unbalanced %d root %llu",
6142 			  root->send_in_progress, root->root_key.objectid);
6143 	spin_unlock(&root->root_item_lock);
6144 }
6145 
6146 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6147 {
6148 	int ret = 0;
6149 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6150 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6151 	struct btrfs_root *clone_root;
6152 	struct btrfs_ioctl_send_args *arg = NULL;
6153 	struct btrfs_key key;
6154 	struct send_ctx *sctx = NULL;
6155 	u32 i;
6156 	u64 *clone_sources_tmp = NULL;
6157 	int clone_sources_to_rollback = 0;
6158 	unsigned alloc_size;
6159 	int sort_clone_roots = 0;
6160 	int index;
6161 
6162 	if (!capable(CAP_SYS_ADMIN))
6163 		return -EPERM;
6164 
6165 	/*
6166 	 * The subvolume must remain read-only during send, protect against
6167 	 * making it RW. This also protects against deletion.
6168 	 */
6169 	spin_lock(&send_root->root_item_lock);
6170 	send_root->send_in_progress++;
6171 	spin_unlock(&send_root->root_item_lock);
6172 
6173 	/*
6174 	 * This is done when we lookup the root, it should already be complete
6175 	 * by the time we get here.
6176 	 */
6177 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6178 
6179 	/*
6180 	 * Userspace tools do the checks and warn the user if it's
6181 	 * not RO.
6182 	 */
6183 	if (!btrfs_root_readonly(send_root)) {
6184 		ret = -EPERM;
6185 		goto out;
6186 	}
6187 
6188 	arg = memdup_user(arg_, sizeof(*arg));
6189 	if (IS_ERR(arg)) {
6190 		ret = PTR_ERR(arg);
6191 		arg = NULL;
6192 		goto out;
6193 	}
6194 
6195 	if (arg->clone_sources_count >
6196 	    ULLONG_MAX / sizeof(*arg->clone_sources)) {
6197 		ret = -EINVAL;
6198 		goto out;
6199 	}
6200 
6201 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6202 			sizeof(*arg->clone_sources) *
6203 			arg->clone_sources_count)) {
6204 		ret = -EFAULT;
6205 		goto out;
6206 	}
6207 
6208 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6209 		ret = -EINVAL;
6210 		goto out;
6211 	}
6212 
6213 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6214 	if (!sctx) {
6215 		ret = -ENOMEM;
6216 		goto out;
6217 	}
6218 
6219 	INIT_LIST_HEAD(&sctx->new_refs);
6220 	INIT_LIST_HEAD(&sctx->deleted_refs);
6221 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6222 	INIT_LIST_HEAD(&sctx->name_cache_list);
6223 
6224 	sctx->flags = arg->flags;
6225 
6226 	sctx->send_filp = fget(arg->send_fd);
6227 	if (!sctx->send_filp) {
6228 		ret = -EBADF;
6229 		goto out;
6230 	}
6231 
6232 	sctx->send_root = send_root;
6233 	/*
6234 	 * Unlikely but possible, if the subvolume is marked for deletion but
6235 	 * is slow to remove the directory entry, send can still be started
6236 	 */
6237 	if (btrfs_root_dead(sctx->send_root)) {
6238 		ret = -EPERM;
6239 		goto out;
6240 	}
6241 
6242 	sctx->clone_roots_cnt = arg->clone_sources_count;
6243 
6244 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6245 	sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6246 	if (!sctx->send_buf) {
6247 		sctx->send_buf = vmalloc(sctx->send_max_size);
6248 		if (!sctx->send_buf) {
6249 			ret = -ENOMEM;
6250 			goto out;
6251 		}
6252 	}
6253 
6254 	sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6255 	if (!sctx->read_buf) {
6256 		sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6257 		if (!sctx->read_buf) {
6258 			ret = -ENOMEM;
6259 			goto out;
6260 		}
6261 	}
6262 
6263 	sctx->pending_dir_moves = RB_ROOT;
6264 	sctx->waiting_dir_moves = RB_ROOT;
6265 	sctx->orphan_dirs = RB_ROOT;
6266 
6267 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6268 
6269 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6270 	if (!sctx->clone_roots) {
6271 		sctx->clone_roots = vzalloc(alloc_size);
6272 		if (!sctx->clone_roots) {
6273 			ret = -ENOMEM;
6274 			goto out;
6275 		}
6276 	}
6277 
6278 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6279 
6280 	if (arg->clone_sources_count) {
6281 		clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6282 		if (!clone_sources_tmp) {
6283 			clone_sources_tmp = vmalloc(alloc_size);
6284 			if (!clone_sources_tmp) {
6285 				ret = -ENOMEM;
6286 				goto out;
6287 			}
6288 		}
6289 
6290 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6291 				alloc_size);
6292 		if (ret) {
6293 			ret = -EFAULT;
6294 			goto out;
6295 		}
6296 
6297 		for (i = 0; i < arg->clone_sources_count; i++) {
6298 			key.objectid = clone_sources_tmp[i];
6299 			key.type = BTRFS_ROOT_ITEM_KEY;
6300 			key.offset = (u64)-1;
6301 
6302 			index = srcu_read_lock(&fs_info->subvol_srcu);
6303 
6304 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6305 			if (IS_ERR(clone_root)) {
6306 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6307 				ret = PTR_ERR(clone_root);
6308 				goto out;
6309 			}
6310 			spin_lock(&clone_root->root_item_lock);
6311 			if (!btrfs_root_readonly(clone_root) ||
6312 			    btrfs_root_dead(clone_root)) {
6313 				spin_unlock(&clone_root->root_item_lock);
6314 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6315 				ret = -EPERM;
6316 				goto out;
6317 			}
6318 			clone_root->send_in_progress++;
6319 			spin_unlock(&clone_root->root_item_lock);
6320 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6321 
6322 			sctx->clone_roots[i].root = clone_root;
6323 			clone_sources_to_rollback = i + 1;
6324 		}
6325 		kvfree(clone_sources_tmp);
6326 		clone_sources_tmp = NULL;
6327 	}
6328 
6329 	if (arg->parent_root) {
6330 		key.objectid = arg->parent_root;
6331 		key.type = BTRFS_ROOT_ITEM_KEY;
6332 		key.offset = (u64)-1;
6333 
6334 		index = srcu_read_lock(&fs_info->subvol_srcu);
6335 
6336 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6337 		if (IS_ERR(sctx->parent_root)) {
6338 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6339 			ret = PTR_ERR(sctx->parent_root);
6340 			goto out;
6341 		}
6342 
6343 		spin_lock(&sctx->parent_root->root_item_lock);
6344 		sctx->parent_root->send_in_progress++;
6345 		if (!btrfs_root_readonly(sctx->parent_root) ||
6346 				btrfs_root_dead(sctx->parent_root)) {
6347 			spin_unlock(&sctx->parent_root->root_item_lock);
6348 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6349 			ret = -EPERM;
6350 			goto out;
6351 		}
6352 		spin_unlock(&sctx->parent_root->root_item_lock);
6353 
6354 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6355 	}
6356 
6357 	/*
6358 	 * Clones from send_root are allowed, but only if the clone source
6359 	 * is behind the current send position. This is checked while searching
6360 	 * for possible clone sources.
6361 	 */
6362 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6363 
6364 	/* We do a bsearch later */
6365 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6366 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6367 			NULL);
6368 	sort_clone_roots = 1;
6369 
6370 	ret = ensure_commit_roots_uptodate(sctx);
6371 	if (ret)
6372 		goto out;
6373 
6374 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6375 	ret = send_subvol(sctx);
6376 	current->journal_info = NULL;
6377 	if (ret < 0)
6378 		goto out;
6379 
6380 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6381 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6382 		if (ret < 0)
6383 			goto out;
6384 		ret = send_cmd(sctx);
6385 		if (ret < 0)
6386 			goto out;
6387 	}
6388 
6389 out:
6390 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6391 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6392 		struct rb_node *n;
6393 		struct pending_dir_move *pm;
6394 
6395 		n = rb_first(&sctx->pending_dir_moves);
6396 		pm = rb_entry(n, struct pending_dir_move, node);
6397 		while (!list_empty(&pm->list)) {
6398 			struct pending_dir_move *pm2;
6399 
6400 			pm2 = list_first_entry(&pm->list,
6401 					       struct pending_dir_move, list);
6402 			free_pending_move(sctx, pm2);
6403 		}
6404 		free_pending_move(sctx, pm);
6405 	}
6406 
6407 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6408 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6409 		struct rb_node *n;
6410 		struct waiting_dir_move *dm;
6411 
6412 		n = rb_first(&sctx->waiting_dir_moves);
6413 		dm = rb_entry(n, struct waiting_dir_move, node);
6414 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6415 		kfree(dm);
6416 	}
6417 
6418 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6419 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6420 		struct rb_node *n;
6421 		struct orphan_dir_info *odi;
6422 
6423 		n = rb_first(&sctx->orphan_dirs);
6424 		odi = rb_entry(n, struct orphan_dir_info, node);
6425 		free_orphan_dir_info(sctx, odi);
6426 	}
6427 
6428 	if (sort_clone_roots) {
6429 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6430 			btrfs_root_dec_send_in_progress(
6431 					sctx->clone_roots[i].root);
6432 	} else {
6433 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6434 			btrfs_root_dec_send_in_progress(
6435 					sctx->clone_roots[i].root);
6436 
6437 		btrfs_root_dec_send_in_progress(send_root);
6438 	}
6439 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6440 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6441 
6442 	kfree(arg);
6443 	kvfree(clone_sources_tmp);
6444 
6445 	if (sctx) {
6446 		if (sctx->send_filp)
6447 			fput(sctx->send_filp);
6448 
6449 		kvfree(sctx->clone_roots);
6450 		kvfree(sctx->send_buf);
6451 		kvfree(sctx->read_buf);
6452 
6453 		name_cache_free(sctx);
6454 
6455 		kfree(sctx);
6456 	}
6457 
6458 	return ret;
6459 }
6460