xref: /linux/fs/btrfs/send.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35 
36 /*
37  * Maximum number of references an extent can have in order for us to attempt to
38  * issue clone operations instead of write operations. This currently exists to
39  * avoid hitting limitations of the backreference walking code (taking a lot of
40  * time and using too much memory for extents with large number of references).
41  */
42 #define SEND_MAX_EXTENT_REFS	1024
43 
44 /*
45  * A fs_path is a helper to dynamically build path names with unknown size.
46  * It reallocates the internal buffer on demand.
47  * It allows fast adding of path elements on the right side (normal path) and
48  * fast adding to the left side (reversed path). A reversed path can also be
49  * unreversed if needed.
50  */
51 struct fs_path {
52 	union {
53 		struct {
54 			char *start;
55 			char *end;
56 
57 			char *buf;
58 			unsigned short buf_len:15;
59 			unsigned short reversed:1;
60 			char inline_buf[];
61 		};
62 		/*
63 		 * Average path length does not exceed 200 bytes, we'll have
64 		 * better packing in the slab and higher chance to satisfy
65 		 * a allocation later during send.
66 		 */
67 		char pad[256];
68 	};
69 };
70 #define FS_PATH_INLINE_SIZE \
71 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 
73 
74 /* reused for each extent */
75 struct clone_root {
76 	struct btrfs_root *root;
77 	u64 ino;
78 	u64 offset;
79 	u64 num_bytes;
80 	bool found_ref;
81 };
82 
83 #define SEND_MAX_NAME_CACHE_SIZE			256
84 
85 /*
86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
89  * The most common case is to have a single root for cloning, which corresponds
90  * to the send root. Having the user specify more than 16 clone roots is not
91  * common, and in such rare cases we simply don't use caching if the number of
92  * cloning roots that lead down to a leaf is more than 17.
93  */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
95 
96 /*
97  * Max number of entries in the cache.
98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110 	struct btrfs_lru_cache_entry entry;
111 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 	/* Number of valid elements in the root_ids array. */
113 	int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
134 
135 struct send_ctx {
136 	struct file *send_filp;
137 	loff_t send_off;
138 	char *send_buf;
139 	u32 send_size;
140 	u32 send_max_size;
141 	/*
142 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 	 * command (since protocol v2, data must be the last attribute).
144 	 */
145 	bool put_data;
146 	struct page **send_buf_pages;
147 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
148 	/* Protocol version compatibility requested */
149 	u32 proto;
150 
151 	struct btrfs_root *send_root;
152 	struct btrfs_root *parent_root;
153 	struct clone_root *clone_roots;
154 	int clone_roots_cnt;
155 
156 	/* current state of the compare_tree call */
157 	struct btrfs_path *left_path;
158 	struct btrfs_path *right_path;
159 	struct btrfs_key *cmp_key;
160 
161 	/*
162 	 * Keep track of the generation of the last transaction that was used
163 	 * for relocating a block group. This is periodically checked in order
164 	 * to detect if a relocation happened since the last check, so that we
165 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 	 * stale disk_bytenr values of file extent items.
167 	 */
168 	u64 last_reloc_trans;
169 
170 	/*
171 	 * infos of the currently processed inode. In case of deleted inodes,
172 	 * these are the values from the deleted inode.
173 	 */
174 	u64 cur_ino;
175 	u64 cur_inode_gen;
176 	u64 cur_inode_size;
177 	u64 cur_inode_mode;
178 	u64 cur_inode_rdev;
179 	u64 cur_inode_last_extent;
180 	u64 cur_inode_next_write_offset;
181 	bool cur_inode_new;
182 	bool cur_inode_new_gen;
183 	bool cur_inode_deleted;
184 	bool ignore_cur_inode;
185 	bool cur_inode_needs_verity;
186 	void *verity_descriptor;
187 
188 	u64 send_progress;
189 
190 	struct list_head new_refs;
191 	struct list_head deleted_refs;
192 
193 	struct btrfs_lru_cache name_cache;
194 
195 	/*
196 	 * The inode we are currently processing. It's not NULL only when we
197 	 * need to issue write commands for data extents from this inode.
198 	 */
199 	struct inode *cur_inode;
200 	struct file_ra_state ra;
201 	u64 page_cache_clear_start;
202 	bool clean_page_cache;
203 
204 	/*
205 	 * We process inodes by their increasing order, so if before an
206 	 * incremental send we reverse the parent/child relationship of
207 	 * directories such that a directory with a lower inode number was
208 	 * the parent of a directory with a higher inode number, and the one
209 	 * becoming the new parent got renamed too, we can't rename/move the
210 	 * directory with lower inode number when we finish processing it - we
211 	 * must process the directory with higher inode number first, then
212 	 * rename/move it and then rename/move the directory with lower inode
213 	 * number. Example follows.
214 	 *
215 	 * Tree state when the first send was performed:
216 	 *
217 	 * .
218 	 * |-- a                   (ino 257)
219 	 *     |-- b               (ino 258)
220 	 *         |
221 	 *         |
222 	 *         |-- c           (ino 259)
223 	 *         |   |-- d       (ino 260)
224 	 *         |
225 	 *         |-- c2          (ino 261)
226 	 *
227 	 * Tree state when the second (incremental) send is performed:
228 	 *
229 	 * .
230 	 * |-- a                   (ino 257)
231 	 *     |-- b               (ino 258)
232 	 *         |-- c2          (ino 261)
233 	 *             |-- d2      (ino 260)
234 	 *                 |-- cc  (ino 259)
235 	 *
236 	 * The sequence of steps that lead to the second state was:
237 	 *
238 	 * mv /a/b/c/d /a/b/c2/d2
239 	 * mv /a/b/c /a/b/c2/d2/cc
240 	 *
241 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 	 * before we move "d", which has higher inode number.
243 	 *
244 	 * So we just memorize which move/rename operations must be performed
245 	 * later when their respective parent is processed and moved/renamed.
246 	 */
247 
248 	/* Indexed by parent directory inode number. */
249 	struct rb_root pending_dir_moves;
250 
251 	/*
252 	 * Reverse index, indexed by the inode number of a directory that
253 	 * is waiting for the move/rename of its immediate parent before its
254 	 * own move/rename can be performed.
255 	 */
256 	struct rb_root waiting_dir_moves;
257 
258 	/*
259 	 * A directory that is going to be rm'ed might have a child directory
260 	 * which is in the pending directory moves index above. In this case,
261 	 * the directory can only be removed after the move/rename of its child
262 	 * is performed. Example:
263 	 *
264 	 * Parent snapshot:
265 	 *
266 	 * .                        (ino 256)
267 	 * |-- a/                   (ino 257)
268 	 *     |-- b/               (ino 258)
269 	 *         |-- c/           (ino 259)
270 	 *         |   |-- x/       (ino 260)
271 	 *         |
272 	 *         |-- y/           (ino 261)
273 	 *
274 	 * Send snapshot:
275 	 *
276 	 * .                        (ino 256)
277 	 * |-- a/                   (ino 257)
278 	 *     |-- b/               (ino 258)
279 	 *         |-- YY/          (ino 261)
280 	 *              |-- x/      (ino 260)
281 	 *
282 	 * Sequence of steps that lead to the send snapshot:
283 	 * rm -f /a/b/c/foo.txt
284 	 * mv /a/b/y /a/b/YY
285 	 * mv /a/b/c/x /a/b/YY
286 	 * rmdir /a/b/c
287 	 *
288 	 * When the child is processed, its move/rename is delayed until its
289 	 * parent is processed (as explained above), but all other operations
290 	 * like update utimes, chown, chgrp, etc, are performed and the paths
291 	 * that it uses for those operations must use the orphanized name of
292 	 * its parent (the directory we're going to rm later), so we need to
293 	 * memorize that name.
294 	 *
295 	 * Indexed by the inode number of the directory to be deleted.
296 	 */
297 	struct rb_root orphan_dirs;
298 
299 	struct rb_root rbtree_new_refs;
300 	struct rb_root rbtree_deleted_refs;
301 
302 	struct btrfs_lru_cache backref_cache;
303 	u64 backref_cache_last_reloc_trans;
304 
305 	struct btrfs_lru_cache dir_created_cache;
306 	struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310 	struct rb_node node;
311 	struct list_head list;
312 	u64 parent_ino;
313 	u64 ino;
314 	u64 gen;
315 	struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319 	struct rb_node node;
320 	u64 ino;
321 	/*
322 	 * There might be some directory that could not be removed because it
323 	 * was waiting for this directory inode to be moved first. Therefore
324 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 	 */
326 	u64 rmdir_ino;
327 	u64 rmdir_gen;
328 	bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332 	struct rb_node node;
333 	u64 ino;
334 	u64 gen;
335 	u64 last_dir_index_offset;
336 	u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340 	/*
341 	 * The key in the entry is an inode number, and the generation matches
342 	 * the inode's generation.
343 	 */
344 	struct btrfs_lru_cache_entry entry;
345 	u64 parent_ino;
346 	u64 parent_gen;
347 	int ret;
348 	int need_later_update;
349 	int name_len;
350 	char name[];
351 };
352 
353 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
354 static_assert(offsetof(struct name_cache_entry, entry) == 0);
355 
356 #define ADVANCE							1
357 #define ADVANCE_ONLY_NEXT					-1
358 
359 enum btrfs_compare_tree_result {
360 	BTRFS_COMPARE_TREE_NEW,
361 	BTRFS_COMPARE_TREE_DELETED,
362 	BTRFS_COMPARE_TREE_CHANGED,
363 	BTRFS_COMPARE_TREE_SAME,
364 };
365 
366 __cold
367 static void inconsistent_snapshot_error(struct send_ctx *sctx,
368 					enum btrfs_compare_tree_result result,
369 					const char *what)
370 {
371 	const char *result_string;
372 
373 	switch (result) {
374 	case BTRFS_COMPARE_TREE_NEW:
375 		result_string = "new";
376 		break;
377 	case BTRFS_COMPARE_TREE_DELETED:
378 		result_string = "deleted";
379 		break;
380 	case BTRFS_COMPARE_TREE_CHANGED:
381 		result_string = "updated";
382 		break;
383 	case BTRFS_COMPARE_TREE_SAME:
384 		ASSERT(0);
385 		result_string = "unchanged";
386 		break;
387 	default:
388 		ASSERT(0);
389 		result_string = "unexpected";
390 	}
391 
392 	btrfs_err(sctx->send_root->fs_info,
393 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
394 		  result_string, what, sctx->cmp_key->objectid,
395 		  sctx->send_root->root_key.objectid,
396 		  (sctx->parent_root ?
397 		   sctx->parent_root->root_key.objectid : 0));
398 }
399 
400 __maybe_unused
401 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
402 {
403 	switch (sctx->proto) {
404 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
405 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
406 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
407 	default: return false;
408 	}
409 }
410 
411 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
412 
413 static struct waiting_dir_move *
414 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
415 
416 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
417 
418 static int need_send_hole(struct send_ctx *sctx)
419 {
420 	return (sctx->parent_root && !sctx->cur_inode_new &&
421 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
422 		S_ISREG(sctx->cur_inode_mode));
423 }
424 
425 static void fs_path_reset(struct fs_path *p)
426 {
427 	if (p->reversed) {
428 		p->start = p->buf + p->buf_len - 1;
429 		p->end = p->start;
430 		*p->start = 0;
431 	} else {
432 		p->start = p->buf;
433 		p->end = p->start;
434 		*p->start = 0;
435 	}
436 }
437 
438 static struct fs_path *fs_path_alloc(void)
439 {
440 	struct fs_path *p;
441 
442 	p = kmalloc(sizeof(*p), GFP_KERNEL);
443 	if (!p)
444 		return NULL;
445 	p->reversed = 0;
446 	p->buf = p->inline_buf;
447 	p->buf_len = FS_PATH_INLINE_SIZE;
448 	fs_path_reset(p);
449 	return p;
450 }
451 
452 static struct fs_path *fs_path_alloc_reversed(void)
453 {
454 	struct fs_path *p;
455 
456 	p = fs_path_alloc();
457 	if (!p)
458 		return NULL;
459 	p->reversed = 1;
460 	fs_path_reset(p);
461 	return p;
462 }
463 
464 static void fs_path_free(struct fs_path *p)
465 {
466 	if (!p)
467 		return;
468 	if (p->buf != p->inline_buf)
469 		kfree(p->buf);
470 	kfree(p);
471 }
472 
473 static int fs_path_len(struct fs_path *p)
474 {
475 	return p->end - p->start;
476 }
477 
478 static int fs_path_ensure_buf(struct fs_path *p, int len)
479 {
480 	char *tmp_buf;
481 	int path_len;
482 	int old_buf_len;
483 
484 	len++;
485 
486 	if (p->buf_len >= len)
487 		return 0;
488 
489 	if (len > PATH_MAX) {
490 		WARN_ON(1);
491 		return -ENOMEM;
492 	}
493 
494 	path_len = p->end - p->start;
495 	old_buf_len = p->buf_len;
496 
497 	/*
498 	 * Allocate to the next largest kmalloc bucket size, to let
499 	 * the fast path happen most of the time.
500 	 */
501 	len = kmalloc_size_roundup(len);
502 	/*
503 	 * First time the inline_buf does not suffice
504 	 */
505 	if (p->buf == p->inline_buf) {
506 		tmp_buf = kmalloc(len, GFP_KERNEL);
507 		if (tmp_buf)
508 			memcpy(tmp_buf, p->buf, old_buf_len);
509 	} else {
510 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
511 	}
512 	if (!tmp_buf)
513 		return -ENOMEM;
514 	p->buf = tmp_buf;
515 	p->buf_len = len;
516 
517 	if (p->reversed) {
518 		tmp_buf = p->buf + old_buf_len - path_len - 1;
519 		p->end = p->buf + p->buf_len - 1;
520 		p->start = p->end - path_len;
521 		memmove(p->start, tmp_buf, path_len + 1);
522 	} else {
523 		p->start = p->buf;
524 		p->end = p->start + path_len;
525 	}
526 	return 0;
527 }
528 
529 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
530 				   char **prepared)
531 {
532 	int ret;
533 	int new_len;
534 
535 	new_len = p->end - p->start + name_len;
536 	if (p->start != p->end)
537 		new_len++;
538 	ret = fs_path_ensure_buf(p, new_len);
539 	if (ret < 0)
540 		goto out;
541 
542 	if (p->reversed) {
543 		if (p->start != p->end)
544 			*--p->start = '/';
545 		p->start -= name_len;
546 		*prepared = p->start;
547 	} else {
548 		if (p->start != p->end)
549 			*p->end++ = '/';
550 		*prepared = p->end;
551 		p->end += name_len;
552 		*p->end = 0;
553 	}
554 
555 out:
556 	return ret;
557 }
558 
559 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
560 {
561 	int ret;
562 	char *prepared;
563 
564 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
565 	if (ret < 0)
566 		goto out;
567 	memcpy(prepared, name, name_len);
568 
569 out:
570 	return ret;
571 }
572 
573 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
574 {
575 	int ret;
576 	char *prepared;
577 
578 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
579 	if (ret < 0)
580 		goto out;
581 	memcpy(prepared, p2->start, p2->end - p2->start);
582 
583 out:
584 	return ret;
585 }
586 
587 static int fs_path_add_from_extent_buffer(struct fs_path *p,
588 					  struct extent_buffer *eb,
589 					  unsigned long off, int len)
590 {
591 	int ret;
592 	char *prepared;
593 
594 	ret = fs_path_prepare_for_add(p, len, &prepared);
595 	if (ret < 0)
596 		goto out;
597 
598 	read_extent_buffer(eb, prepared, off, len);
599 
600 out:
601 	return ret;
602 }
603 
604 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
605 {
606 	p->reversed = from->reversed;
607 	fs_path_reset(p);
608 
609 	return fs_path_add_path(p, from);
610 }
611 
612 static void fs_path_unreverse(struct fs_path *p)
613 {
614 	char *tmp;
615 	int len;
616 
617 	if (!p->reversed)
618 		return;
619 
620 	tmp = p->start;
621 	len = p->end - p->start;
622 	p->start = p->buf;
623 	p->end = p->start + len;
624 	memmove(p->start, tmp, len + 1);
625 	p->reversed = 0;
626 }
627 
628 static struct btrfs_path *alloc_path_for_send(void)
629 {
630 	struct btrfs_path *path;
631 
632 	path = btrfs_alloc_path();
633 	if (!path)
634 		return NULL;
635 	path->search_commit_root = 1;
636 	path->skip_locking = 1;
637 	path->need_commit_sem = 1;
638 	return path;
639 }
640 
641 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
642 {
643 	int ret;
644 	u32 pos = 0;
645 
646 	while (pos < len) {
647 		ret = kernel_write(filp, buf + pos, len - pos, off);
648 		if (ret < 0)
649 			return ret;
650 		if (ret == 0)
651 			return -EIO;
652 		pos += ret;
653 	}
654 
655 	return 0;
656 }
657 
658 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
659 {
660 	struct btrfs_tlv_header *hdr;
661 	int total_len = sizeof(*hdr) + len;
662 	int left = sctx->send_max_size - sctx->send_size;
663 
664 	if (WARN_ON_ONCE(sctx->put_data))
665 		return -EINVAL;
666 
667 	if (unlikely(left < total_len))
668 		return -EOVERFLOW;
669 
670 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
671 	put_unaligned_le16(attr, &hdr->tlv_type);
672 	put_unaligned_le16(len, &hdr->tlv_len);
673 	memcpy(hdr + 1, data, len);
674 	sctx->send_size += total_len;
675 
676 	return 0;
677 }
678 
679 #define TLV_PUT_DEFINE_INT(bits) \
680 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
681 			u##bits attr, u##bits value)			\
682 	{								\
683 		__le##bits __tmp = cpu_to_le##bits(value);		\
684 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
685 	}
686 
687 TLV_PUT_DEFINE_INT(8)
688 TLV_PUT_DEFINE_INT(32)
689 TLV_PUT_DEFINE_INT(64)
690 
691 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
692 			  const char *str, int len)
693 {
694 	if (len == -1)
695 		len = strlen(str);
696 	return tlv_put(sctx, attr, str, len);
697 }
698 
699 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
700 			const u8 *uuid)
701 {
702 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
703 }
704 
705 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
706 				  struct extent_buffer *eb,
707 				  struct btrfs_timespec *ts)
708 {
709 	struct btrfs_timespec bts;
710 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
711 	return tlv_put(sctx, attr, &bts, sizeof(bts));
712 }
713 
714 
715 #define TLV_PUT(sctx, attrtype, data, attrlen) \
716 	do { \
717 		ret = tlv_put(sctx, attrtype, data, attrlen); \
718 		if (ret < 0) \
719 			goto tlv_put_failure; \
720 	} while (0)
721 
722 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
723 	do { \
724 		ret = tlv_put_u##bits(sctx, attrtype, value); \
725 		if (ret < 0) \
726 			goto tlv_put_failure; \
727 	} while (0)
728 
729 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
730 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
731 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
732 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
733 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
734 	do { \
735 		ret = tlv_put_string(sctx, attrtype, str, len); \
736 		if (ret < 0) \
737 			goto tlv_put_failure; \
738 	} while (0)
739 #define TLV_PUT_PATH(sctx, attrtype, p) \
740 	do { \
741 		ret = tlv_put_string(sctx, attrtype, p->start, \
742 			p->end - p->start); \
743 		if (ret < 0) \
744 			goto tlv_put_failure; \
745 	} while(0)
746 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
747 	do { \
748 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
749 		if (ret < 0) \
750 			goto tlv_put_failure; \
751 	} while (0)
752 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
753 	do { \
754 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
755 		if (ret < 0) \
756 			goto tlv_put_failure; \
757 	} while (0)
758 
759 static int send_header(struct send_ctx *sctx)
760 {
761 	struct btrfs_stream_header hdr;
762 
763 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
764 	hdr.version = cpu_to_le32(sctx->proto);
765 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
766 					&sctx->send_off);
767 }
768 
769 /*
770  * For each command/item we want to send to userspace, we call this function.
771  */
772 static int begin_cmd(struct send_ctx *sctx, int cmd)
773 {
774 	struct btrfs_cmd_header *hdr;
775 
776 	if (WARN_ON(!sctx->send_buf))
777 		return -EINVAL;
778 
779 	if (unlikely(sctx->send_size != 0)) {
780 		btrfs_err(sctx->send_root->fs_info,
781 			  "send: command header buffer not empty cmd %d offset %llu",
782 			  cmd, sctx->send_off);
783 		return -EINVAL;
784 	}
785 
786 	sctx->send_size += sizeof(*hdr);
787 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
788 	put_unaligned_le16(cmd, &hdr->cmd);
789 
790 	return 0;
791 }
792 
793 static int send_cmd(struct send_ctx *sctx)
794 {
795 	int ret;
796 	struct btrfs_cmd_header *hdr;
797 	u32 crc;
798 
799 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
800 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
801 	put_unaligned_le32(0, &hdr->crc);
802 
803 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
804 	put_unaligned_le32(crc, &hdr->crc);
805 
806 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
807 					&sctx->send_off);
808 
809 	sctx->send_size = 0;
810 	sctx->put_data = false;
811 
812 	return ret;
813 }
814 
815 /*
816  * Sends a move instruction to user space
817  */
818 static int send_rename(struct send_ctx *sctx,
819 		     struct fs_path *from, struct fs_path *to)
820 {
821 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
822 	int ret;
823 
824 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
825 
826 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
827 	if (ret < 0)
828 		goto out;
829 
830 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
831 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
832 
833 	ret = send_cmd(sctx);
834 
835 tlv_put_failure:
836 out:
837 	return ret;
838 }
839 
840 /*
841  * Sends a link instruction to user space
842  */
843 static int send_link(struct send_ctx *sctx,
844 		     struct fs_path *path, struct fs_path *lnk)
845 {
846 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
847 	int ret;
848 
849 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
850 
851 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
852 	if (ret < 0)
853 		goto out;
854 
855 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
856 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
857 
858 	ret = send_cmd(sctx);
859 
860 tlv_put_failure:
861 out:
862 	return ret;
863 }
864 
865 /*
866  * Sends an unlink instruction to user space
867  */
868 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
869 {
870 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
871 	int ret;
872 
873 	btrfs_debug(fs_info, "send_unlink %s", path->start);
874 
875 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
876 	if (ret < 0)
877 		goto out;
878 
879 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
880 
881 	ret = send_cmd(sctx);
882 
883 tlv_put_failure:
884 out:
885 	return ret;
886 }
887 
888 /*
889  * Sends a rmdir instruction to user space
890  */
891 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
892 {
893 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
894 	int ret;
895 
896 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
897 
898 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
899 	if (ret < 0)
900 		goto out;
901 
902 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
903 
904 	ret = send_cmd(sctx);
905 
906 tlv_put_failure:
907 out:
908 	return ret;
909 }
910 
911 struct btrfs_inode_info {
912 	u64 size;
913 	u64 gen;
914 	u64 mode;
915 	u64 uid;
916 	u64 gid;
917 	u64 rdev;
918 	u64 fileattr;
919 	u64 nlink;
920 };
921 
922 /*
923  * Helper function to retrieve some fields from an inode item.
924  */
925 static int get_inode_info(struct btrfs_root *root, u64 ino,
926 			  struct btrfs_inode_info *info)
927 {
928 	int ret;
929 	struct btrfs_path *path;
930 	struct btrfs_inode_item *ii;
931 	struct btrfs_key key;
932 
933 	path = alloc_path_for_send();
934 	if (!path)
935 		return -ENOMEM;
936 
937 	key.objectid = ino;
938 	key.type = BTRFS_INODE_ITEM_KEY;
939 	key.offset = 0;
940 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
941 	if (ret) {
942 		if (ret > 0)
943 			ret = -ENOENT;
944 		goto out;
945 	}
946 
947 	if (!info)
948 		goto out;
949 
950 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
951 			struct btrfs_inode_item);
952 	info->size = btrfs_inode_size(path->nodes[0], ii);
953 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
954 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
955 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
956 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
957 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
958 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
959 	/*
960 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
961 	 * otherwise logically split to 32/32 parts.
962 	 */
963 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
964 
965 out:
966 	btrfs_free_path(path);
967 	return ret;
968 }
969 
970 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
971 {
972 	int ret;
973 	struct btrfs_inode_info info = { 0 };
974 
975 	ASSERT(gen);
976 
977 	ret = get_inode_info(root, ino, &info);
978 	*gen = info.gen;
979 	return ret;
980 }
981 
982 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
983 				   struct fs_path *p,
984 				   void *ctx);
985 
986 /*
987  * Helper function to iterate the entries in ONE btrfs_inode_ref or
988  * btrfs_inode_extref.
989  * The iterate callback may return a non zero value to stop iteration. This can
990  * be a negative value for error codes or 1 to simply stop it.
991  *
992  * path must point to the INODE_REF or INODE_EXTREF when called.
993  */
994 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
995 			     struct btrfs_key *found_key, int resolve,
996 			     iterate_inode_ref_t iterate, void *ctx)
997 {
998 	struct extent_buffer *eb = path->nodes[0];
999 	struct btrfs_inode_ref *iref;
1000 	struct btrfs_inode_extref *extref;
1001 	struct btrfs_path *tmp_path;
1002 	struct fs_path *p;
1003 	u32 cur = 0;
1004 	u32 total;
1005 	int slot = path->slots[0];
1006 	u32 name_len;
1007 	char *start;
1008 	int ret = 0;
1009 	int num = 0;
1010 	int index;
1011 	u64 dir;
1012 	unsigned long name_off;
1013 	unsigned long elem_size;
1014 	unsigned long ptr;
1015 
1016 	p = fs_path_alloc_reversed();
1017 	if (!p)
1018 		return -ENOMEM;
1019 
1020 	tmp_path = alloc_path_for_send();
1021 	if (!tmp_path) {
1022 		fs_path_free(p);
1023 		return -ENOMEM;
1024 	}
1025 
1026 
1027 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1028 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1029 						    struct btrfs_inode_ref);
1030 		total = btrfs_item_size(eb, slot);
1031 		elem_size = sizeof(*iref);
1032 	} else {
1033 		ptr = btrfs_item_ptr_offset(eb, slot);
1034 		total = btrfs_item_size(eb, slot);
1035 		elem_size = sizeof(*extref);
1036 	}
1037 
1038 	while (cur < total) {
1039 		fs_path_reset(p);
1040 
1041 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1042 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1043 			name_len = btrfs_inode_ref_name_len(eb, iref);
1044 			name_off = (unsigned long)(iref + 1);
1045 			index = btrfs_inode_ref_index(eb, iref);
1046 			dir = found_key->offset;
1047 		} else {
1048 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1049 			name_len = btrfs_inode_extref_name_len(eb, extref);
1050 			name_off = (unsigned long)&extref->name;
1051 			index = btrfs_inode_extref_index(eb, extref);
1052 			dir = btrfs_inode_extref_parent(eb, extref);
1053 		}
1054 
1055 		if (resolve) {
1056 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1057 						  name_off, eb, dir,
1058 						  p->buf, p->buf_len);
1059 			if (IS_ERR(start)) {
1060 				ret = PTR_ERR(start);
1061 				goto out;
1062 			}
1063 			if (start < p->buf) {
1064 				/* overflow , try again with larger buffer */
1065 				ret = fs_path_ensure_buf(p,
1066 						p->buf_len + p->buf - start);
1067 				if (ret < 0)
1068 					goto out;
1069 				start = btrfs_ref_to_path(root, tmp_path,
1070 							  name_len, name_off,
1071 							  eb, dir,
1072 							  p->buf, p->buf_len);
1073 				if (IS_ERR(start)) {
1074 					ret = PTR_ERR(start);
1075 					goto out;
1076 				}
1077 				if (unlikely(start < p->buf)) {
1078 					btrfs_err(root->fs_info,
1079 			"send: path ref buffer underflow for key (%llu %u %llu)",
1080 						  found_key->objectid,
1081 						  found_key->type,
1082 						  found_key->offset);
1083 					ret = -EINVAL;
1084 					goto out;
1085 				}
1086 			}
1087 			p->start = start;
1088 		} else {
1089 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1090 							     name_len);
1091 			if (ret < 0)
1092 				goto out;
1093 		}
1094 
1095 		cur += elem_size + name_len;
1096 		ret = iterate(num, dir, index, p, ctx);
1097 		if (ret)
1098 			goto out;
1099 		num++;
1100 	}
1101 
1102 out:
1103 	btrfs_free_path(tmp_path);
1104 	fs_path_free(p);
1105 	return ret;
1106 }
1107 
1108 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1109 				  const char *name, int name_len,
1110 				  const char *data, int data_len,
1111 				  void *ctx);
1112 
1113 /*
1114  * Helper function to iterate the entries in ONE btrfs_dir_item.
1115  * The iterate callback may return a non zero value to stop iteration. This can
1116  * be a negative value for error codes or 1 to simply stop it.
1117  *
1118  * path must point to the dir item when called.
1119  */
1120 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1121 			    iterate_dir_item_t iterate, void *ctx)
1122 {
1123 	int ret = 0;
1124 	struct extent_buffer *eb;
1125 	struct btrfs_dir_item *di;
1126 	struct btrfs_key di_key;
1127 	char *buf = NULL;
1128 	int buf_len;
1129 	u32 name_len;
1130 	u32 data_len;
1131 	u32 cur;
1132 	u32 len;
1133 	u32 total;
1134 	int slot;
1135 	int num;
1136 
1137 	/*
1138 	 * Start with a small buffer (1 page). If later we end up needing more
1139 	 * space, which can happen for xattrs on a fs with a leaf size greater
1140 	 * then the page size, attempt to increase the buffer. Typically xattr
1141 	 * values are small.
1142 	 */
1143 	buf_len = PATH_MAX;
1144 	buf = kmalloc(buf_len, GFP_KERNEL);
1145 	if (!buf) {
1146 		ret = -ENOMEM;
1147 		goto out;
1148 	}
1149 
1150 	eb = path->nodes[0];
1151 	slot = path->slots[0];
1152 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1153 	cur = 0;
1154 	len = 0;
1155 	total = btrfs_item_size(eb, slot);
1156 
1157 	num = 0;
1158 	while (cur < total) {
1159 		name_len = btrfs_dir_name_len(eb, di);
1160 		data_len = btrfs_dir_data_len(eb, di);
1161 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1162 
1163 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1164 			if (name_len > XATTR_NAME_MAX) {
1165 				ret = -ENAMETOOLONG;
1166 				goto out;
1167 			}
1168 			if (name_len + data_len >
1169 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1170 				ret = -E2BIG;
1171 				goto out;
1172 			}
1173 		} else {
1174 			/*
1175 			 * Path too long
1176 			 */
1177 			if (name_len + data_len > PATH_MAX) {
1178 				ret = -ENAMETOOLONG;
1179 				goto out;
1180 			}
1181 		}
1182 
1183 		if (name_len + data_len > buf_len) {
1184 			buf_len = name_len + data_len;
1185 			if (is_vmalloc_addr(buf)) {
1186 				vfree(buf);
1187 				buf = NULL;
1188 			} else {
1189 				char *tmp = krealloc(buf, buf_len,
1190 						GFP_KERNEL | __GFP_NOWARN);
1191 
1192 				if (!tmp)
1193 					kfree(buf);
1194 				buf = tmp;
1195 			}
1196 			if (!buf) {
1197 				buf = kvmalloc(buf_len, GFP_KERNEL);
1198 				if (!buf) {
1199 					ret = -ENOMEM;
1200 					goto out;
1201 				}
1202 			}
1203 		}
1204 
1205 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1206 				name_len + data_len);
1207 
1208 		len = sizeof(*di) + name_len + data_len;
1209 		di = (struct btrfs_dir_item *)((char *)di + len);
1210 		cur += len;
1211 
1212 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1213 			      data_len, ctx);
1214 		if (ret < 0)
1215 			goto out;
1216 		if (ret) {
1217 			ret = 0;
1218 			goto out;
1219 		}
1220 
1221 		num++;
1222 	}
1223 
1224 out:
1225 	kvfree(buf);
1226 	return ret;
1227 }
1228 
1229 static int __copy_first_ref(int num, u64 dir, int index,
1230 			    struct fs_path *p, void *ctx)
1231 {
1232 	int ret;
1233 	struct fs_path *pt = ctx;
1234 
1235 	ret = fs_path_copy(pt, p);
1236 	if (ret < 0)
1237 		return ret;
1238 
1239 	/* we want the first only */
1240 	return 1;
1241 }
1242 
1243 /*
1244  * Retrieve the first path of an inode. If an inode has more then one
1245  * ref/hardlink, this is ignored.
1246  */
1247 static int get_inode_path(struct btrfs_root *root,
1248 			  u64 ino, struct fs_path *path)
1249 {
1250 	int ret;
1251 	struct btrfs_key key, found_key;
1252 	struct btrfs_path *p;
1253 
1254 	p = alloc_path_for_send();
1255 	if (!p)
1256 		return -ENOMEM;
1257 
1258 	fs_path_reset(path);
1259 
1260 	key.objectid = ino;
1261 	key.type = BTRFS_INODE_REF_KEY;
1262 	key.offset = 0;
1263 
1264 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1265 	if (ret < 0)
1266 		goto out;
1267 	if (ret) {
1268 		ret = 1;
1269 		goto out;
1270 	}
1271 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1272 	if (found_key.objectid != ino ||
1273 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1274 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1275 		ret = -ENOENT;
1276 		goto out;
1277 	}
1278 
1279 	ret = iterate_inode_ref(root, p, &found_key, 1,
1280 				__copy_first_ref, path);
1281 	if (ret < 0)
1282 		goto out;
1283 	ret = 0;
1284 
1285 out:
1286 	btrfs_free_path(p);
1287 	return ret;
1288 }
1289 
1290 struct backref_ctx {
1291 	struct send_ctx *sctx;
1292 
1293 	/* number of total found references */
1294 	u64 found;
1295 
1296 	/*
1297 	 * used for clones found in send_root. clones found behind cur_objectid
1298 	 * and cur_offset are not considered as allowed clones.
1299 	 */
1300 	u64 cur_objectid;
1301 	u64 cur_offset;
1302 
1303 	/* may be truncated in case it's the last extent in a file */
1304 	u64 extent_len;
1305 
1306 	/* The bytenr the file extent item we are processing refers to. */
1307 	u64 bytenr;
1308 	/* The owner (root id) of the data backref for the current extent. */
1309 	u64 backref_owner;
1310 	/* The offset of the data backref for the current extent. */
1311 	u64 backref_offset;
1312 };
1313 
1314 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1315 {
1316 	u64 root = (u64)(uintptr_t)key;
1317 	const struct clone_root *cr = elt;
1318 
1319 	if (root < cr->root->root_key.objectid)
1320 		return -1;
1321 	if (root > cr->root->root_key.objectid)
1322 		return 1;
1323 	return 0;
1324 }
1325 
1326 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1327 {
1328 	const struct clone_root *cr1 = e1;
1329 	const struct clone_root *cr2 = e2;
1330 
1331 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1332 		return -1;
1333 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1334 		return 1;
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Called for every backref that is found for the current extent.
1340  * Results are collected in sctx->clone_roots->ino/offset.
1341  */
1342 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1343 			    void *ctx_)
1344 {
1345 	struct backref_ctx *bctx = ctx_;
1346 	struct clone_root *clone_root;
1347 
1348 	/* First check if the root is in the list of accepted clone sources */
1349 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1350 			     bctx->sctx->clone_roots_cnt,
1351 			     sizeof(struct clone_root),
1352 			     __clone_root_cmp_bsearch);
1353 	if (!clone_root)
1354 		return 0;
1355 
1356 	/* This is our own reference, bail out as we can't clone from it. */
1357 	if (clone_root->root == bctx->sctx->send_root &&
1358 	    ino == bctx->cur_objectid &&
1359 	    offset == bctx->cur_offset)
1360 		return 0;
1361 
1362 	/*
1363 	 * Make sure we don't consider clones from send_root that are
1364 	 * behind the current inode/offset.
1365 	 */
1366 	if (clone_root->root == bctx->sctx->send_root) {
1367 		/*
1368 		 * If the source inode was not yet processed we can't issue a
1369 		 * clone operation, as the source extent does not exist yet at
1370 		 * the destination of the stream.
1371 		 */
1372 		if (ino > bctx->cur_objectid)
1373 			return 0;
1374 		/*
1375 		 * We clone from the inode currently being sent as long as the
1376 		 * source extent is already processed, otherwise we could try
1377 		 * to clone from an extent that does not exist yet at the
1378 		 * destination of the stream.
1379 		 */
1380 		if (ino == bctx->cur_objectid &&
1381 		    offset + bctx->extent_len >
1382 		    bctx->sctx->cur_inode_next_write_offset)
1383 			return 0;
1384 	}
1385 
1386 	bctx->found++;
1387 	clone_root->found_ref = true;
1388 
1389 	/*
1390 	 * If the given backref refers to a file extent item with a larger
1391 	 * number of bytes than what we found before, use the new one so that
1392 	 * we clone more optimally and end up doing less writes and getting
1393 	 * less exclusive, non-shared extents at the destination.
1394 	 */
1395 	if (num_bytes > clone_root->num_bytes) {
1396 		clone_root->ino = ino;
1397 		clone_root->offset = offset;
1398 		clone_root->num_bytes = num_bytes;
1399 
1400 		/*
1401 		 * Found a perfect candidate, so there's no need to continue
1402 		 * backref walking.
1403 		 */
1404 		if (num_bytes >= bctx->extent_len)
1405 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1412 				 const u64 **root_ids_ret, int *root_count_ret)
1413 {
1414 	struct backref_ctx *bctx = ctx;
1415 	struct send_ctx *sctx = bctx->sctx;
1416 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1417 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1418 	struct btrfs_lru_cache_entry *raw_entry;
1419 	struct backref_cache_entry *entry;
1420 
1421 	if (sctx->backref_cache.size == 0)
1422 		return false;
1423 
1424 	/*
1425 	 * If relocation happened since we first filled the cache, then we must
1426 	 * empty the cache and can not use it, because even though we operate on
1427 	 * read-only roots, their leaves and nodes may have been reallocated and
1428 	 * now be used for different nodes/leaves of the same tree or some other
1429 	 * tree.
1430 	 *
1431 	 * We are called from iterate_extent_inodes() while either holding a
1432 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1433 	 * to take any lock here.
1434 	 */
1435 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1436 		btrfs_lru_cache_clear(&sctx->backref_cache);
1437 		return false;
1438 	}
1439 
1440 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1441 	if (!raw_entry)
1442 		return false;
1443 
1444 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1445 	*root_ids_ret = entry->root_ids;
1446 	*root_count_ret = entry->num_roots;
1447 
1448 	return true;
1449 }
1450 
1451 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1452 				void *ctx)
1453 {
1454 	struct backref_ctx *bctx = ctx;
1455 	struct send_ctx *sctx = bctx->sctx;
1456 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1457 	struct backref_cache_entry *new_entry;
1458 	struct ulist_iterator uiter;
1459 	struct ulist_node *node;
1460 	int ret;
1461 
1462 	/*
1463 	 * We're called while holding a transaction handle or while holding
1464 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1465 	 * NOFS allocation.
1466 	 */
1467 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1468 	/* No worries, cache is optional. */
1469 	if (!new_entry)
1470 		return;
1471 
1472 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1473 	new_entry->entry.gen = 0;
1474 	new_entry->num_roots = 0;
1475 	ULIST_ITER_INIT(&uiter);
1476 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1477 		const u64 root_id = node->val;
1478 		struct clone_root *root;
1479 
1480 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1481 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1482 			       __clone_root_cmp_bsearch);
1483 		if (!root)
1484 			continue;
1485 
1486 		/* Too many roots, just exit, no worries as caching is optional. */
1487 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1488 			kfree(new_entry);
1489 			return;
1490 		}
1491 
1492 		new_entry->root_ids[new_entry->num_roots] = root_id;
1493 		new_entry->num_roots++;
1494 	}
1495 
1496 	/*
1497 	 * We may have not added any roots to the new cache entry, which means
1498 	 * none of the roots is part of the list of roots from which we are
1499 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1500 	 * backref walking to determine which roots have a path to the leaf.
1501 	 *
1502 	 * Also use GFP_NOFS because we're called while holding a transaction
1503 	 * handle or while holding fs_info->commit_root_sem.
1504 	 */
1505 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1506 				    GFP_NOFS);
1507 	ASSERT(ret == 0 || ret == -ENOMEM);
1508 	if (ret) {
1509 		/* Caching is optional, no worries. */
1510 		kfree(new_entry);
1511 		return;
1512 	}
1513 
1514 	/*
1515 	 * We are called from iterate_extent_inodes() while either holding a
1516 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1517 	 * to take any lock here.
1518 	 */
1519 	if (sctx->backref_cache.size == 1)
1520 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1521 }
1522 
1523 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1524 			     const struct extent_buffer *leaf, void *ctx)
1525 {
1526 	const u64 refs = btrfs_extent_refs(leaf, ei);
1527 	const struct backref_ctx *bctx = ctx;
1528 	const struct send_ctx *sctx = bctx->sctx;
1529 
1530 	if (bytenr == bctx->bytenr) {
1531 		const u64 flags = btrfs_extent_flags(leaf, ei);
1532 
1533 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1534 			return -EUCLEAN;
1535 
1536 		/*
1537 		 * If we have only one reference and only the send root as a
1538 		 * clone source - meaning no clone roots were given in the
1539 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1540 		 * it's our reference and there's no point in doing backref
1541 		 * walking which is expensive, so exit early.
1542 		 */
1543 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1544 			return -ENOENT;
1545 	}
1546 
1547 	/*
1548 	 * Backreference walking (iterate_extent_inodes() below) is currently
1549 	 * too expensive when an extent has a large number of references, both
1550 	 * in time spent and used memory. So for now just fallback to write
1551 	 * operations instead of clone operations when an extent has more than
1552 	 * a certain amount of references.
1553 	 */
1554 	if (refs > SEND_MAX_EXTENT_REFS)
1555 		return -ENOENT;
1556 
1557 	return 0;
1558 }
1559 
1560 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1561 {
1562 	const struct backref_ctx *bctx = ctx;
1563 
1564 	if (ino == bctx->cur_objectid &&
1565 	    root == bctx->backref_owner &&
1566 	    offset == bctx->backref_offset)
1567 		return true;
1568 
1569 	return false;
1570 }
1571 
1572 /*
1573  * Given an inode, offset and extent item, it finds a good clone for a clone
1574  * instruction. Returns -ENOENT when none could be found. The function makes
1575  * sure that the returned clone is usable at the point where sending is at the
1576  * moment. This means, that no clones are accepted which lie behind the current
1577  * inode+offset.
1578  *
1579  * path must point to the extent item when called.
1580  */
1581 static int find_extent_clone(struct send_ctx *sctx,
1582 			     struct btrfs_path *path,
1583 			     u64 ino, u64 data_offset,
1584 			     u64 ino_size,
1585 			     struct clone_root **found)
1586 {
1587 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1588 	int ret;
1589 	int extent_type;
1590 	u64 logical;
1591 	u64 disk_byte;
1592 	u64 num_bytes;
1593 	struct btrfs_file_extent_item *fi;
1594 	struct extent_buffer *eb = path->nodes[0];
1595 	struct backref_ctx backref_ctx = { 0 };
1596 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1597 	struct clone_root *cur_clone_root;
1598 	int compressed;
1599 	u32 i;
1600 
1601 	/*
1602 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1603 	 * so we don't do anything here because clone operations can not clone
1604 	 * to a range beyond i_size without increasing the i_size of the
1605 	 * destination inode.
1606 	 */
1607 	if (data_offset >= ino_size)
1608 		return 0;
1609 
1610 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1611 	extent_type = btrfs_file_extent_type(eb, fi);
1612 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1613 		return -ENOENT;
1614 
1615 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1616 	if (disk_byte == 0)
1617 		return -ENOENT;
1618 
1619 	compressed = btrfs_file_extent_compression(eb, fi);
1620 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1621 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1622 
1623 	/*
1624 	 * Setup the clone roots.
1625 	 */
1626 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1627 		cur_clone_root = sctx->clone_roots + i;
1628 		cur_clone_root->ino = (u64)-1;
1629 		cur_clone_root->offset = 0;
1630 		cur_clone_root->num_bytes = 0;
1631 		cur_clone_root->found_ref = false;
1632 	}
1633 
1634 	backref_ctx.sctx = sctx;
1635 	backref_ctx.cur_objectid = ino;
1636 	backref_ctx.cur_offset = data_offset;
1637 	backref_ctx.bytenr = disk_byte;
1638 	/*
1639 	 * Use the header owner and not the send root's id, because in case of a
1640 	 * snapshot we can have shared subtrees.
1641 	 */
1642 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1643 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1644 
1645 	/*
1646 	 * The last extent of a file may be too large due to page alignment.
1647 	 * We need to adjust extent_len in this case so that the checks in
1648 	 * iterate_backrefs() work.
1649 	 */
1650 	if (data_offset + num_bytes >= ino_size)
1651 		backref_ctx.extent_len = ino_size - data_offset;
1652 	else
1653 		backref_ctx.extent_len = num_bytes;
1654 
1655 	/*
1656 	 * Now collect all backrefs.
1657 	 */
1658 	backref_walk_ctx.bytenr = disk_byte;
1659 	if (compressed == BTRFS_COMPRESS_NONE)
1660 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1661 	backref_walk_ctx.fs_info = fs_info;
1662 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1663 	backref_walk_ctx.cache_store = store_backref_cache;
1664 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1665 	backref_walk_ctx.check_extent_item = check_extent_item;
1666 	backref_walk_ctx.user_ctx = &backref_ctx;
1667 
1668 	/*
1669 	 * If have a single clone root, then it's the send root and we can tell
1670 	 * the backref walking code to skip our own backref and not resolve it,
1671 	 * since we can not use it for cloning - the source and destination
1672 	 * ranges can't overlap and in case the leaf is shared through a subtree
1673 	 * due to snapshots, we can't use those other roots since they are not
1674 	 * in the list of clone roots.
1675 	 */
1676 	if (sctx->clone_roots_cnt == 1)
1677 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1678 
1679 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1680 				    &backref_ctx);
1681 	if (ret < 0)
1682 		return ret;
1683 
1684 	down_read(&fs_info->commit_root_sem);
1685 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1686 		/*
1687 		 * A transaction commit for a transaction in which block group
1688 		 * relocation was done just happened.
1689 		 * The disk_bytenr of the file extent item we processed is
1690 		 * possibly stale, referring to the extent's location before
1691 		 * relocation. So act as if we haven't found any clone sources
1692 		 * and fallback to write commands, which will read the correct
1693 		 * data from the new extent location. Otherwise we will fail
1694 		 * below because we haven't found our own back reference or we
1695 		 * could be getting incorrect sources in case the old extent
1696 		 * was already reallocated after the relocation.
1697 		 */
1698 		up_read(&fs_info->commit_root_sem);
1699 		return -ENOENT;
1700 	}
1701 	up_read(&fs_info->commit_root_sem);
1702 
1703 	btrfs_debug(fs_info,
1704 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1705 		    data_offset, ino, num_bytes, logical);
1706 
1707 	if (!backref_ctx.found) {
1708 		btrfs_debug(fs_info, "no clones found");
1709 		return -ENOENT;
1710 	}
1711 
1712 	cur_clone_root = NULL;
1713 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1714 		struct clone_root *clone_root = &sctx->clone_roots[i];
1715 
1716 		if (!clone_root->found_ref)
1717 			continue;
1718 
1719 		/*
1720 		 * Choose the root from which we can clone more bytes, to
1721 		 * minimize write operations and therefore have more extent
1722 		 * sharing at the destination (the same as in the source).
1723 		 */
1724 		if (!cur_clone_root ||
1725 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1726 			cur_clone_root = clone_root;
1727 
1728 			/*
1729 			 * We found an optimal clone candidate (any inode from
1730 			 * any root is fine), so we're done.
1731 			 */
1732 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1733 				break;
1734 		}
1735 	}
1736 
1737 	if (cur_clone_root) {
1738 		*found = cur_clone_root;
1739 		ret = 0;
1740 	} else {
1741 		ret = -ENOENT;
1742 	}
1743 
1744 	return ret;
1745 }
1746 
1747 static int read_symlink(struct btrfs_root *root,
1748 			u64 ino,
1749 			struct fs_path *dest)
1750 {
1751 	int ret;
1752 	struct btrfs_path *path;
1753 	struct btrfs_key key;
1754 	struct btrfs_file_extent_item *ei;
1755 	u8 type;
1756 	u8 compression;
1757 	unsigned long off;
1758 	int len;
1759 
1760 	path = alloc_path_for_send();
1761 	if (!path)
1762 		return -ENOMEM;
1763 
1764 	key.objectid = ino;
1765 	key.type = BTRFS_EXTENT_DATA_KEY;
1766 	key.offset = 0;
1767 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1768 	if (ret < 0)
1769 		goto out;
1770 	if (ret) {
1771 		/*
1772 		 * An empty symlink inode. Can happen in rare error paths when
1773 		 * creating a symlink (transaction committed before the inode
1774 		 * eviction handler removed the symlink inode items and a crash
1775 		 * happened in between or the subvol was snapshoted in between).
1776 		 * Print an informative message to dmesg/syslog so that the user
1777 		 * can delete the symlink.
1778 		 */
1779 		btrfs_err(root->fs_info,
1780 			  "Found empty symlink inode %llu at root %llu",
1781 			  ino, root->root_key.objectid);
1782 		ret = -EIO;
1783 		goto out;
1784 	}
1785 
1786 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 			struct btrfs_file_extent_item);
1788 	type = btrfs_file_extent_type(path->nodes[0], ei);
1789 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1790 		ret = -EUCLEAN;
1791 		btrfs_crit(root->fs_info,
1792 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1793 			   ino, btrfs_root_id(root), type);
1794 		goto out;
1795 	}
1796 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1797 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1798 		ret = -EUCLEAN;
1799 		btrfs_crit(root->fs_info,
1800 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1801 			   ino, btrfs_root_id(root), compression);
1802 		goto out;
1803 	}
1804 
1805 	off = btrfs_file_extent_inline_start(ei);
1806 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1807 
1808 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1809 
1810 out:
1811 	btrfs_free_path(path);
1812 	return ret;
1813 }
1814 
1815 /*
1816  * Helper function to generate a file name that is unique in the root of
1817  * send_root and parent_root. This is used to generate names for orphan inodes.
1818  */
1819 static int gen_unique_name(struct send_ctx *sctx,
1820 			   u64 ino, u64 gen,
1821 			   struct fs_path *dest)
1822 {
1823 	int ret = 0;
1824 	struct btrfs_path *path;
1825 	struct btrfs_dir_item *di;
1826 	char tmp[64];
1827 	int len;
1828 	u64 idx = 0;
1829 
1830 	path = alloc_path_for_send();
1831 	if (!path)
1832 		return -ENOMEM;
1833 
1834 	while (1) {
1835 		struct fscrypt_str tmp_name;
1836 
1837 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1838 				ino, gen, idx);
1839 		ASSERT(len < sizeof(tmp));
1840 		tmp_name.name = tmp;
1841 		tmp_name.len = strlen(tmp);
1842 
1843 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1844 				path, BTRFS_FIRST_FREE_OBJECTID,
1845 				&tmp_name, 0);
1846 		btrfs_release_path(path);
1847 		if (IS_ERR(di)) {
1848 			ret = PTR_ERR(di);
1849 			goto out;
1850 		}
1851 		if (di) {
1852 			/* not unique, try again */
1853 			idx++;
1854 			continue;
1855 		}
1856 
1857 		if (!sctx->parent_root) {
1858 			/* unique */
1859 			ret = 0;
1860 			break;
1861 		}
1862 
1863 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1864 				path, BTRFS_FIRST_FREE_OBJECTID,
1865 				&tmp_name, 0);
1866 		btrfs_release_path(path);
1867 		if (IS_ERR(di)) {
1868 			ret = PTR_ERR(di);
1869 			goto out;
1870 		}
1871 		if (di) {
1872 			/* not unique, try again */
1873 			idx++;
1874 			continue;
1875 		}
1876 		/* unique */
1877 		break;
1878 	}
1879 
1880 	ret = fs_path_add(dest, tmp, strlen(tmp));
1881 
1882 out:
1883 	btrfs_free_path(path);
1884 	return ret;
1885 }
1886 
1887 enum inode_state {
1888 	inode_state_no_change,
1889 	inode_state_will_create,
1890 	inode_state_did_create,
1891 	inode_state_will_delete,
1892 	inode_state_did_delete,
1893 };
1894 
1895 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1896 			       u64 *send_gen, u64 *parent_gen)
1897 {
1898 	int ret;
1899 	int left_ret;
1900 	int right_ret;
1901 	u64 left_gen;
1902 	u64 right_gen = 0;
1903 	struct btrfs_inode_info info;
1904 
1905 	ret = get_inode_info(sctx->send_root, ino, &info);
1906 	if (ret < 0 && ret != -ENOENT)
1907 		goto out;
1908 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1909 	left_gen = info.gen;
1910 	if (send_gen)
1911 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1912 
1913 	if (!sctx->parent_root) {
1914 		right_ret = -ENOENT;
1915 	} else {
1916 		ret = get_inode_info(sctx->parent_root, ino, &info);
1917 		if (ret < 0 && ret != -ENOENT)
1918 			goto out;
1919 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1920 		right_gen = info.gen;
1921 		if (parent_gen)
1922 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1923 	}
1924 
1925 	if (!left_ret && !right_ret) {
1926 		if (left_gen == gen && right_gen == gen) {
1927 			ret = inode_state_no_change;
1928 		} else if (left_gen == gen) {
1929 			if (ino < sctx->send_progress)
1930 				ret = inode_state_did_create;
1931 			else
1932 				ret = inode_state_will_create;
1933 		} else if (right_gen == gen) {
1934 			if (ino < sctx->send_progress)
1935 				ret = inode_state_did_delete;
1936 			else
1937 				ret = inode_state_will_delete;
1938 		} else  {
1939 			ret = -ENOENT;
1940 		}
1941 	} else if (!left_ret) {
1942 		if (left_gen == gen) {
1943 			if (ino < sctx->send_progress)
1944 				ret = inode_state_did_create;
1945 			else
1946 				ret = inode_state_will_create;
1947 		} else {
1948 			ret = -ENOENT;
1949 		}
1950 	} else if (!right_ret) {
1951 		if (right_gen == gen) {
1952 			if (ino < sctx->send_progress)
1953 				ret = inode_state_did_delete;
1954 			else
1955 				ret = inode_state_will_delete;
1956 		} else {
1957 			ret = -ENOENT;
1958 		}
1959 	} else {
1960 		ret = -ENOENT;
1961 	}
1962 
1963 out:
1964 	return ret;
1965 }
1966 
1967 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1968 			     u64 *send_gen, u64 *parent_gen)
1969 {
1970 	int ret;
1971 
1972 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1973 		return 1;
1974 
1975 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1976 	if (ret < 0)
1977 		goto out;
1978 
1979 	if (ret == inode_state_no_change ||
1980 	    ret == inode_state_did_create ||
1981 	    ret == inode_state_will_delete)
1982 		ret = 1;
1983 	else
1984 		ret = 0;
1985 
1986 out:
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Helper function to lookup a dir item in a dir.
1992  */
1993 static int lookup_dir_item_inode(struct btrfs_root *root,
1994 				 u64 dir, const char *name, int name_len,
1995 				 u64 *found_inode)
1996 {
1997 	int ret = 0;
1998 	struct btrfs_dir_item *di;
1999 	struct btrfs_key key;
2000 	struct btrfs_path *path;
2001 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2002 
2003 	path = alloc_path_for_send();
2004 	if (!path)
2005 		return -ENOMEM;
2006 
2007 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2008 	if (IS_ERR_OR_NULL(di)) {
2009 		ret = di ? PTR_ERR(di) : -ENOENT;
2010 		goto out;
2011 	}
2012 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2013 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2014 		ret = -ENOENT;
2015 		goto out;
2016 	}
2017 	*found_inode = key.objectid;
2018 
2019 out:
2020 	btrfs_free_path(path);
2021 	return ret;
2022 }
2023 
2024 /*
2025  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2026  * generation of the parent dir and the name of the dir entry.
2027  */
2028 static int get_first_ref(struct btrfs_root *root, u64 ino,
2029 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2030 {
2031 	int ret;
2032 	struct btrfs_key key;
2033 	struct btrfs_key found_key;
2034 	struct btrfs_path *path;
2035 	int len;
2036 	u64 parent_dir;
2037 
2038 	path = alloc_path_for_send();
2039 	if (!path)
2040 		return -ENOMEM;
2041 
2042 	key.objectid = ino;
2043 	key.type = BTRFS_INODE_REF_KEY;
2044 	key.offset = 0;
2045 
2046 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2047 	if (ret < 0)
2048 		goto out;
2049 	if (!ret)
2050 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2051 				path->slots[0]);
2052 	if (ret || found_key.objectid != ino ||
2053 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2054 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2055 		ret = -ENOENT;
2056 		goto out;
2057 	}
2058 
2059 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2060 		struct btrfs_inode_ref *iref;
2061 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 				      struct btrfs_inode_ref);
2063 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2064 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2065 						     (unsigned long)(iref + 1),
2066 						     len);
2067 		parent_dir = found_key.offset;
2068 	} else {
2069 		struct btrfs_inode_extref *extref;
2070 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2071 					struct btrfs_inode_extref);
2072 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2073 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2074 					(unsigned long)&extref->name, len);
2075 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2076 	}
2077 	if (ret < 0)
2078 		goto out;
2079 	btrfs_release_path(path);
2080 
2081 	if (dir_gen) {
2082 		ret = get_inode_gen(root, parent_dir, dir_gen);
2083 		if (ret < 0)
2084 			goto out;
2085 	}
2086 
2087 	*dir = parent_dir;
2088 
2089 out:
2090 	btrfs_free_path(path);
2091 	return ret;
2092 }
2093 
2094 static int is_first_ref(struct btrfs_root *root,
2095 			u64 ino, u64 dir,
2096 			const char *name, int name_len)
2097 {
2098 	int ret;
2099 	struct fs_path *tmp_name;
2100 	u64 tmp_dir;
2101 
2102 	tmp_name = fs_path_alloc();
2103 	if (!tmp_name)
2104 		return -ENOMEM;
2105 
2106 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2107 	if (ret < 0)
2108 		goto out;
2109 
2110 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2111 		ret = 0;
2112 		goto out;
2113 	}
2114 
2115 	ret = !memcmp(tmp_name->start, name, name_len);
2116 
2117 out:
2118 	fs_path_free(tmp_name);
2119 	return ret;
2120 }
2121 
2122 /*
2123  * Used by process_recorded_refs to determine if a new ref would overwrite an
2124  * already existing ref. In case it detects an overwrite, it returns the
2125  * inode/gen in who_ino/who_gen.
2126  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2127  * to make sure later references to the overwritten inode are possible.
2128  * Orphanizing is however only required for the first ref of an inode.
2129  * process_recorded_refs does an additional is_first_ref check to see if
2130  * orphanizing is really required.
2131  */
2132 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2133 			      const char *name, int name_len,
2134 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2135 {
2136 	int ret;
2137 	u64 parent_root_dir_gen;
2138 	u64 other_inode = 0;
2139 	struct btrfs_inode_info info;
2140 
2141 	if (!sctx->parent_root)
2142 		return 0;
2143 
2144 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2145 	if (ret <= 0)
2146 		return 0;
2147 
2148 	/*
2149 	 * If we have a parent root we need to verify that the parent dir was
2150 	 * not deleted and then re-created, if it was then we have no overwrite
2151 	 * and we can just unlink this entry.
2152 	 *
2153 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2154 	 * parent root.
2155 	 */
2156 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2157 	    parent_root_dir_gen != dir_gen)
2158 		return 0;
2159 
2160 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2161 				    &other_inode);
2162 	if (ret == -ENOENT)
2163 		return 0;
2164 	else if (ret < 0)
2165 		return ret;
2166 
2167 	/*
2168 	 * Check if the overwritten ref was already processed. If yes, the ref
2169 	 * was already unlinked/moved, so we can safely assume that we will not
2170 	 * overwrite anything at this point in time.
2171 	 */
2172 	if (other_inode > sctx->send_progress ||
2173 	    is_waiting_for_move(sctx, other_inode)) {
2174 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2175 		if (ret < 0)
2176 			return ret;
2177 
2178 		*who_ino = other_inode;
2179 		*who_gen = info.gen;
2180 		*who_mode = info.mode;
2181 		return 1;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Checks if the ref was overwritten by an already processed inode. This is
2189  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2190  * thus the orphan name needs be used.
2191  * process_recorded_refs also uses it to avoid unlinking of refs that were
2192  * overwritten.
2193  */
2194 static int did_overwrite_ref(struct send_ctx *sctx,
2195 			    u64 dir, u64 dir_gen,
2196 			    u64 ino, u64 ino_gen,
2197 			    const char *name, int name_len)
2198 {
2199 	int ret;
2200 	u64 ow_inode;
2201 	u64 ow_gen = 0;
2202 	u64 send_root_dir_gen;
2203 
2204 	if (!sctx->parent_root)
2205 		return 0;
2206 
2207 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2208 	if (ret <= 0)
2209 		return ret;
2210 
2211 	/*
2212 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2213 	 * send root.
2214 	 */
2215 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2216 		return 0;
2217 
2218 	/* check if the ref was overwritten by another ref */
2219 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2220 				    &ow_inode);
2221 	if (ret == -ENOENT) {
2222 		/* was never and will never be overwritten */
2223 		return 0;
2224 	} else if (ret < 0) {
2225 		return ret;
2226 	}
2227 
2228 	if (ow_inode == ino) {
2229 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2230 		if (ret < 0)
2231 			return ret;
2232 
2233 		/* It's the same inode, so no overwrite happened. */
2234 		if (ow_gen == ino_gen)
2235 			return 0;
2236 	}
2237 
2238 	/*
2239 	 * We know that it is or will be overwritten. Check this now.
2240 	 * The current inode being processed might have been the one that caused
2241 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2242 	 * the current inode being processed.
2243 	 */
2244 	if (ow_inode < sctx->send_progress)
2245 		return 1;
2246 
2247 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2248 		if (ow_gen == 0) {
2249 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2250 			if (ret < 0)
2251 				return ret;
2252 		}
2253 		if (ow_gen == sctx->cur_inode_gen)
2254 			return 1;
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 /*
2261  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2262  * that got overwritten. This is used by process_recorded_refs to determine
2263  * if it has to use the path as returned by get_cur_path or the orphan name.
2264  */
2265 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2266 {
2267 	int ret = 0;
2268 	struct fs_path *name = NULL;
2269 	u64 dir;
2270 	u64 dir_gen;
2271 
2272 	if (!sctx->parent_root)
2273 		goto out;
2274 
2275 	name = fs_path_alloc();
2276 	if (!name)
2277 		return -ENOMEM;
2278 
2279 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2280 	if (ret < 0)
2281 		goto out;
2282 
2283 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2284 			name->start, fs_path_len(name));
2285 
2286 out:
2287 	fs_path_free(name);
2288 	return ret;
2289 }
2290 
2291 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2292 							 u64 ino, u64 gen)
2293 {
2294 	struct btrfs_lru_cache_entry *entry;
2295 
2296 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2297 	if (!entry)
2298 		return NULL;
2299 
2300 	return container_of(entry, struct name_cache_entry, entry);
2301 }
2302 
2303 /*
2304  * Used by get_cur_path for each ref up to the root.
2305  * Returns 0 if it succeeded.
2306  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2307  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2308  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2309  * Returns <0 in case of error.
2310  */
2311 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2312 				     u64 ino, u64 gen,
2313 				     u64 *parent_ino,
2314 				     u64 *parent_gen,
2315 				     struct fs_path *dest)
2316 {
2317 	int ret;
2318 	int nce_ret;
2319 	struct name_cache_entry *nce;
2320 
2321 	/*
2322 	 * First check if we already did a call to this function with the same
2323 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2324 	 * return the cached result.
2325 	 */
2326 	nce = name_cache_search(sctx, ino, gen);
2327 	if (nce) {
2328 		if (ino < sctx->send_progress && nce->need_later_update) {
2329 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2330 			nce = NULL;
2331 		} else {
2332 			*parent_ino = nce->parent_ino;
2333 			*parent_gen = nce->parent_gen;
2334 			ret = fs_path_add(dest, nce->name, nce->name_len);
2335 			if (ret < 0)
2336 				goto out;
2337 			ret = nce->ret;
2338 			goto out;
2339 		}
2340 	}
2341 
2342 	/*
2343 	 * If the inode is not existent yet, add the orphan name and return 1.
2344 	 * This should only happen for the parent dir that we determine in
2345 	 * record_new_ref_if_needed().
2346 	 */
2347 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2348 	if (ret < 0)
2349 		goto out;
2350 
2351 	if (!ret) {
2352 		ret = gen_unique_name(sctx, ino, gen, dest);
2353 		if (ret < 0)
2354 			goto out;
2355 		ret = 1;
2356 		goto out_cache;
2357 	}
2358 
2359 	/*
2360 	 * Depending on whether the inode was already processed or not, use
2361 	 * send_root or parent_root for ref lookup.
2362 	 */
2363 	if (ino < sctx->send_progress)
2364 		ret = get_first_ref(sctx->send_root, ino,
2365 				    parent_ino, parent_gen, dest);
2366 	else
2367 		ret = get_first_ref(sctx->parent_root, ino,
2368 				    parent_ino, parent_gen, dest);
2369 	if (ret < 0)
2370 		goto out;
2371 
2372 	/*
2373 	 * Check if the ref was overwritten by an inode's ref that was processed
2374 	 * earlier. If yes, treat as orphan and return 1.
2375 	 */
2376 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2377 			dest->start, dest->end - dest->start);
2378 	if (ret < 0)
2379 		goto out;
2380 	if (ret) {
2381 		fs_path_reset(dest);
2382 		ret = gen_unique_name(sctx, ino, gen, dest);
2383 		if (ret < 0)
2384 			goto out;
2385 		ret = 1;
2386 	}
2387 
2388 out_cache:
2389 	/*
2390 	 * Store the result of the lookup in the name cache.
2391 	 */
2392 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2393 	if (!nce) {
2394 		ret = -ENOMEM;
2395 		goto out;
2396 	}
2397 
2398 	nce->entry.key = ino;
2399 	nce->entry.gen = gen;
2400 	nce->parent_ino = *parent_ino;
2401 	nce->parent_gen = *parent_gen;
2402 	nce->name_len = fs_path_len(dest);
2403 	nce->ret = ret;
2404 	strcpy(nce->name, dest->start);
2405 
2406 	if (ino < sctx->send_progress)
2407 		nce->need_later_update = 0;
2408 	else
2409 		nce->need_later_update = 1;
2410 
2411 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2412 	if (nce_ret < 0) {
2413 		kfree(nce);
2414 		ret = nce_ret;
2415 	}
2416 
2417 out:
2418 	return ret;
2419 }
2420 
2421 /*
2422  * Magic happens here. This function returns the first ref to an inode as it
2423  * would look like while receiving the stream at this point in time.
2424  * We walk the path up to the root. For every inode in between, we check if it
2425  * was already processed/sent. If yes, we continue with the parent as found
2426  * in send_root. If not, we continue with the parent as found in parent_root.
2427  * If we encounter an inode that was deleted at this point in time, we use the
2428  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2429  * that were not created yet and overwritten inodes/refs.
2430  *
2431  * When do we have orphan inodes:
2432  * 1. When an inode is freshly created and thus no valid refs are available yet
2433  * 2. When a directory lost all it's refs (deleted) but still has dir items
2434  *    inside which were not processed yet (pending for move/delete). If anyone
2435  *    tried to get the path to the dir items, it would get a path inside that
2436  *    orphan directory.
2437  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2438  *    of an unprocessed inode. If in that case the first ref would be
2439  *    overwritten, the overwritten inode gets "orphanized". Later when we
2440  *    process this overwritten inode, it is restored at a new place by moving
2441  *    the orphan inode.
2442  *
2443  * sctx->send_progress tells this function at which point in time receiving
2444  * would be.
2445  */
2446 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2447 			struct fs_path *dest)
2448 {
2449 	int ret = 0;
2450 	struct fs_path *name = NULL;
2451 	u64 parent_inode = 0;
2452 	u64 parent_gen = 0;
2453 	int stop = 0;
2454 
2455 	name = fs_path_alloc();
2456 	if (!name) {
2457 		ret = -ENOMEM;
2458 		goto out;
2459 	}
2460 
2461 	dest->reversed = 1;
2462 	fs_path_reset(dest);
2463 
2464 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2465 		struct waiting_dir_move *wdm;
2466 
2467 		fs_path_reset(name);
2468 
2469 		if (is_waiting_for_rm(sctx, ino, gen)) {
2470 			ret = gen_unique_name(sctx, ino, gen, name);
2471 			if (ret < 0)
2472 				goto out;
2473 			ret = fs_path_add_path(dest, name);
2474 			break;
2475 		}
2476 
2477 		wdm = get_waiting_dir_move(sctx, ino);
2478 		if (wdm && wdm->orphanized) {
2479 			ret = gen_unique_name(sctx, ino, gen, name);
2480 			stop = 1;
2481 		} else if (wdm) {
2482 			ret = get_first_ref(sctx->parent_root, ino,
2483 					    &parent_inode, &parent_gen, name);
2484 		} else {
2485 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2486 							&parent_inode,
2487 							&parent_gen, name);
2488 			if (ret)
2489 				stop = 1;
2490 		}
2491 
2492 		if (ret < 0)
2493 			goto out;
2494 
2495 		ret = fs_path_add_path(dest, name);
2496 		if (ret < 0)
2497 			goto out;
2498 
2499 		ino = parent_inode;
2500 		gen = parent_gen;
2501 	}
2502 
2503 out:
2504 	fs_path_free(name);
2505 	if (!ret)
2506 		fs_path_unreverse(dest);
2507 	return ret;
2508 }
2509 
2510 /*
2511  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2512  */
2513 static int send_subvol_begin(struct send_ctx *sctx)
2514 {
2515 	int ret;
2516 	struct btrfs_root *send_root = sctx->send_root;
2517 	struct btrfs_root *parent_root = sctx->parent_root;
2518 	struct btrfs_path *path;
2519 	struct btrfs_key key;
2520 	struct btrfs_root_ref *ref;
2521 	struct extent_buffer *leaf;
2522 	char *name = NULL;
2523 	int namelen;
2524 
2525 	path = btrfs_alloc_path();
2526 	if (!path)
2527 		return -ENOMEM;
2528 
2529 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2530 	if (!name) {
2531 		btrfs_free_path(path);
2532 		return -ENOMEM;
2533 	}
2534 
2535 	key.objectid = send_root->root_key.objectid;
2536 	key.type = BTRFS_ROOT_BACKREF_KEY;
2537 	key.offset = 0;
2538 
2539 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2540 				&key, path, 1, 0);
2541 	if (ret < 0)
2542 		goto out;
2543 	if (ret) {
2544 		ret = -ENOENT;
2545 		goto out;
2546 	}
2547 
2548 	leaf = path->nodes[0];
2549 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2551 	    key.objectid != send_root->root_key.objectid) {
2552 		ret = -ENOENT;
2553 		goto out;
2554 	}
2555 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2556 	namelen = btrfs_root_ref_name_len(leaf, ref);
2557 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2558 	btrfs_release_path(path);
2559 
2560 	if (parent_root) {
2561 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2562 		if (ret < 0)
2563 			goto out;
2564 	} else {
2565 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2566 		if (ret < 0)
2567 			goto out;
2568 	}
2569 
2570 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2571 
2572 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2573 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2574 			    sctx->send_root->root_item.received_uuid);
2575 	else
2576 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2577 			    sctx->send_root->root_item.uuid);
2578 
2579 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2580 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2581 	if (parent_root) {
2582 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2583 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2584 				     parent_root->root_item.received_uuid);
2585 		else
2586 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2587 				     parent_root->root_item.uuid);
2588 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2589 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2590 	}
2591 
2592 	ret = send_cmd(sctx);
2593 
2594 tlv_put_failure:
2595 out:
2596 	btrfs_free_path(path);
2597 	kfree(name);
2598 	return ret;
2599 }
2600 
2601 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2602 {
2603 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2604 	int ret = 0;
2605 	struct fs_path *p;
2606 
2607 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2608 
2609 	p = fs_path_alloc();
2610 	if (!p)
2611 		return -ENOMEM;
2612 
2613 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2614 	if (ret < 0)
2615 		goto out;
2616 
2617 	ret = get_cur_path(sctx, ino, gen, p);
2618 	if (ret < 0)
2619 		goto out;
2620 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2621 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2622 
2623 	ret = send_cmd(sctx);
2624 
2625 tlv_put_failure:
2626 out:
2627 	fs_path_free(p);
2628 	return ret;
2629 }
2630 
2631 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2632 {
2633 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2634 	int ret = 0;
2635 	struct fs_path *p;
2636 
2637 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2638 
2639 	p = fs_path_alloc();
2640 	if (!p)
2641 		return -ENOMEM;
2642 
2643 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2644 	if (ret < 0)
2645 		goto out;
2646 
2647 	ret = get_cur_path(sctx, ino, gen, p);
2648 	if (ret < 0)
2649 		goto out;
2650 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2652 
2653 	ret = send_cmd(sctx);
2654 
2655 tlv_put_failure:
2656 out:
2657 	fs_path_free(p);
2658 	return ret;
2659 }
2660 
2661 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2662 {
2663 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2664 	int ret = 0;
2665 	struct fs_path *p;
2666 
2667 	if (sctx->proto < 2)
2668 		return 0;
2669 
2670 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2671 
2672 	p = fs_path_alloc();
2673 	if (!p)
2674 		return -ENOMEM;
2675 
2676 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2677 	if (ret < 0)
2678 		goto out;
2679 
2680 	ret = get_cur_path(sctx, ino, gen, p);
2681 	if (ret < 0)
2682 		goto out;
2683 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2684 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2685 
2686 	ret = send_cmd(sctx);
2687 
2688 tlv_put_failure:
2689 out:
2690 	fs_path_free(p);
2691 	return ret;
2692 }
2693 
2694 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2695 {
2696 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2697 	int ret = 0;
2698 	struct fs_path *p;
2699 
2700 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2701 		    ino, uid, gid);
2702 
2703 	p = fs_path_alloc();
2704 	if (!p)
2705 		return -ENOMEM;
2706 
2707 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2708 	if (ret < 0)
2709 		goto out;
2710 
2711 	ret = get_cur_path(sctx, ino, gen, p);
2712 	if (ret < 0)
2713 		goto out;
2714 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2715 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2716 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2717 
2718 	ret = send_cmd(sctx);
2719 
2720 tlv_put_failure:
2721 out:
2722 	fs_path_free(p);
2723 	return ret;
2724 }
2725 
2726 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2727 {
2728 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2729 	int ret = 0;
2730 	struct fs_path *p = NULL;
2731 	struct btrfs_inode_item *ii;
2732 	struct btrfs_path *path = NULL;
2733 	struct extent_buffer *eb;
2734 	struct btrfs_key key;
2735 	int slot;
2736 
2737 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2738 
2739 	p = fs_path_alloc();
2740 	if (!p)
2741 		return -ENOMEM;
2742 
2743 	path = alloc_path_for_send();
2744 	if (!path) {
2745 		ret = -ENOMEM;
2746 		goto out;
2747 	}
2748 
2749 	key.objectid = ino;
2750 	key.type = BTRFS_INODE_ITEM_KEY;
2751 	key.offset = 0;
2752 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2753 	if (ret > 0)
2754 		ret = -ENOENT;
2755 	if (ret < 0)
2756 		goto out;
2757 
2758 	eb = path->nodes[0];
2759 	slot = path->slots[0];
2760 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2761 
2762 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2763 	if (ret < 0)
2764 		goto out;
2765 
2766 	ret = get_cur_path(sctx, ino, gen, p);
2767 	if (ret < 0)
2768 		goto out;
2769 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2770 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2771 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2772 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2773 	if (sctx->proto >= 2)
2774 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2775 
2776 	ret = send_cmd(sctx);
2777 
2778 tlv_put_failure:
2779 out:
2780 	fs_path_free(p);
2781 	btrfs_free_path(path);
2782 	return ret;
2783 }
2784 
2785 /*
2786  * If the cache is full, we can't remove entries from it and do a call to
2787  * send_utimes() for each respective inode, because we might be finishing
2788  * processing an inode that is a directory and it just got renamed, and existing
2789  * entries in the cache may refer to inodes that have the directory in their
2790  * full path - in which case we would generate outdated paths (pre-rename)
2791  * for the inodes that the cache entries point to. Instead of prunning the
2792  * cache when inserting, do it after we finish processing each inode at
2793  * finish_inode_if_needed().
2794  */
2795 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2796 {
2797 	struct btrfs_lru_cache_entry *entry;
2798 	int ret;
2799 
2800 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2801 	if (entry != NULL)
2802 		return 0;
2803 
2804 	/* Caching is optional, don't fail if we can't allocate memory. */
2805 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2806 	if (!entry)
2807 		return send_utimes(sctx, dir, gen);
2808 
2809 	entry->key = dir;
2810 	entry->gen = gen;
2811 
2812 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2813 	ASSERT(ret != -EEXIST);
2814 	if (ret) {
2815 		kfree(entry);
2816 		return send_utimes(sctx, dir, gen);
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2823 {
2824 	while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2825 		struct btrfs_lru_cache_entry *lru;
2826 		int ret;
2827 
2828 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2829 		ASSERT(lru != NULL);
2830 
2831 		ret = send_utimes(sctx, lru->key, lru->gen);
2832 		if (ret)
2833 			return ret;
2834 
2835 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 /*
2842  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2843  * a valid path yet because we did not process the refs yet. So, the inode
2844  * is created as orphan.
2845  */
2846 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2847 {
2848 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2849 	int ret = 0;
2850 	struct fs_path *p;
2851 	int cmd;
2852 	struct btrfs_inode_info info;
2853 	u64 gen;
2854 	u64 mode;
2855 	u64 rdev;
2856 
2857 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2858 
2859 	p = fs_path_alloc();
2860 	if (!p)
2861 		return -ENOMEM;
2862 
2863 	if (ino != sctx->cur_ino) {
2864 		ret = get_inode_info(sctx->send_root, ino, &info);
2865 		if (ret < 0)
2866 			goto out;
2867 		gen = info.gen;
2868 		mode = info.mode;
2869 		rdev = info.rdev;
2870 	} else {
2871 		gen = sctx->cur_inode_gen;
2872 		mode = sctx->cur_inode_mode;
2873 		rdev = sctx->cur_inode_rdev;
2874 	}
2875 
2876 	if (S_ISREG(mode)) {
2877 		cmd = BTRFS_SEND_C_MKFILE;
2878 	} else if (S_ISDIR(mode)) {
2879 		cmd = BTRFS_SEND_C_MKDIR;
2880 	} else if (S_ISLNK(mode)) {
2881 		cmd = BTRFS_SEND_C_SYMLINK;
2882 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2883 		cmd = BTRFS_SEND_C_MKNOD;
2884 	} else if (S_ISFIFO(mode)) {
2885 		cmd = BTRFS_SEND_C_MKFIFO;
2886 	} else if (S_ISSOCK(mode)) {
2887 		cmd = BTRFS_SEND_C_MKSOCK;
2888 	} else {
2889 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2890 				(int)(mode & S_IFMT));
2891 		ret = -EOPNOTSUPP;
2892 		goto out;
2893 	}
2894 
2895 	ret = begin_cmd(sctx, cmd);
2896 	if (ret < 0)
2897 		goto out;
2898 
2899 	ret = gen_unique_name(sctx, ino, gen, p);
2900 	if (ret < 0)
2901 		goto out;
2902 
2903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2904 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2905 
2906 	if (S_ISLNK(mode)) {
2907 		fs_path_reset(p);
2908 		ret = read_symlink(sctx->send_root, ino, p);
2909 		if (ret < 0)
2910 			goto out;
2911 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2912 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2913 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2914 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2915 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2916 	}
2917 
2918 	ret = send_cmd(sctx);
2919 	if (ret < 0)
2920 		goto out;
2921 
2922 
2923 tlv_put_failure:
2924 out:
2925 	fs_path_free(p);
2926 	return ret;
2927 }
2928 
2929 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2930 {
2931 	struct btrfs_lru_cache_entry *entry;
2932 	int ret;
2933 
2934 	/* Caching is optional, ignore any failures. */
2935 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2936 	if (!entry)
2937 		return;
2938 
2939 	entry->key = dir;
2940 	entry->gen = 0;
2941 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2942 	if (ret < 0)
2943 		kfree(entry);
2944 }
2945 
2946 /*
2947  * We need some special handling for inodes that get processed before the parent
2948  * directory got created. See process_recorded_refs for details.
2949  * This function does the check if we already created the dir out of order.
2950  */
2951 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2952 {
2953 	int ret = 0;
2954 	int iter_ret = 0;
2955 	struct btrfs_path *path = NULL;
2956 	struct btrfs_key key;
2957 	struct btrfs_key found_key;
2958 	struct btrfs_key di_key;
2959 	struct btrfs_dir_item *di;
2960 
2961 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2962 		return 1;
2963 
2964 	path = alloc_path_for_send();
2965 	if (!path)
2966 		return -ENOMEM;
2967 
2968 	key.objectid = dir;
2969 	key.type = BTRFS_DIR_INDEX_KEY;
2970 	key.offset = 0;
2971 
2972 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2973 		struct extent_buffer *eb = path->nodes[0];
2974 
2975 		if (found_key.objectid != key.objectid ||
2976 		    found_key.type != key.type) {
2977 			ret = 0;
2978 			break;
2979 		}
2980 
2981 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2982 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2983 
2984 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2985 		    di_key.objectid < sctx->send_progress) {
2986 			ret = 1;
2987 			cache_dir_created(sctx, dir);
2988 			break;
2989 		}
2990 	}
2991 	/* Catch error found during iteration */
2992 	if (iter_ret < 0)
2993 		ret = iter_ret;
2994 
2995 	btrfs_free_path(path);
2996 	return ret;
2997 }
2998 
2999 /*
3000  * Only creates the inode if it is:
3001  * 1. Not a directory
3002  * 2. Or a directory which was not created already due to out of order
3003  *    directories. See did_create_dir and process_recorded_refs for details.
3004  */
3005 static int send_create_inode_if_needed(struct send_ctx *sctx)
3006 {
3007 	int ret;
3008 
3009 	if (S_ISDIR(sctx->cur_inode_mode)) {
3010 		ret = did_create_dir(sctx, sctx->cur_ino);
3011 		if (ret < 0)
3012 			return ret;
3013 		else if (ret > 0)
3014 			return 0;
3015 	}
3016 
3017 	ret = send_create_inode(sctx, sctx->cur_ino);
3018 
3019 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3020 		cache_dir_created(sctx, sctx->cur_ino);
3021 
3022 	return ret;
3023 }
3024 
3025 struct recorded_ref {
3026 	struct list_head list;
3027 	char *name;
3028 	struct fs_path *full_path;
3029 	u64 dir;
3030 	u64 dir_gen;
3031 	int name_len;
3032 	struct rb_node node;
3033 	struct rb_root *root;
3034 };
3035 
3036 static struct recorded_ref *recorded_ref_alloc(void)
3037 {
3038 	struct recorded_ref *ref;
3039 
3040 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3041 	if (!ref)
3042 		return NULL;
3043 	RB_CLEAR_NODE(&ref->node);
3044 	INIT_LIST_HEAD(&ref->list);
3045 	return ref;
3046 }
3047 
3048 static void recorded_ref_free(struct recorded_ref *ref)
3049 {
3050 	if (!ref)
3051 		return;
3052 	if (!RB_EMPTY_NODE(&ref->node))
3053 		rb_erase(&ref->node, ref->root);
3054 	list_del(&ref->list);
3055 	fs_path_free(ref->full_path);
3056 	kfree(ref);
3057 }
3058 
3059 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3060 {
3061 	ref->full_path = path;
3062 	ref->name = (char *)kbasename(ref->full_path->start);
3063 	ref->name_len = ref->full_path->end - ref->name;
3064 }
3065 
3066 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3067 {
3068 	struct recorded_ref *new;
3069 
3070 	new = recorded_ref_alloc();
3071 	if (!new)
3072 		return -ENOMEM;
3073 
3074 	new->dir = ref->dir;
3075 	new->dir_gen = ref->dir_gen;
3076 	list_add_tail(&new->list, list);
3077 	return 0;
3078 }
3079 
3080 static void __free_recorded_refs(struct list_head *head)
3081 {
3082 	struct recorded_ref *cur;
3083 
3084 	while (!list_empty(head)) {
3085 		cur = list_entry(head->next, struct recorded_ref, list);
3086 		recorded_ref_free(cur);
3087 	}
3088 }
3089 
3090 static void free_recorded_refs(struct send_ctx *sctx)
3091 {
3092 	__free_recorded_refs(&sctx->new_refs);
3093 	__free_recorded_refs(&sctx->deleted_refs);
3094 }
3095 
3096 /*
3097  * Renames/moves a file/dir to its orphan name. Used when the first
3098  * ref of an unprocessed inode gets overwritten and for all non empty
3099  * directories.
3100  */
3101 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3102 			  struct fs_path *path)
3103 {
3104 	int ret;
3105 	struct fs_path *orphan;
3106 
3107 	orphan = fs_path_alloc();
3108 	if (!orphan)
3109 		return -ENOMEM;
3110 
3111 	ret = gen_unique_name(sctx, ino, gen, orphan);
3112 	if (ret < 0)
3113 		goto out;
3114 
3115 	ret = send_rename(sctx, path, orphan);
3116 
3117 out:
3118 	fs_path_free(orphan);
3119 	return ret;
3120 }
3121 
3122 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3123 						   u64 dir_ino, u64 dir_gen)
3124 {
3125 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3126 	struct rb_node *parent = NULL;
3127 	struct orphan_dir_info *entry, *odi;
3128 
3129 	while (*p) {
3130 		parent = *p;
3131 		entry = rb_entry(parent, struct orphan_dir_info, node);
3132 		if (dir_ino < entry->ino)
3133 			p = &(*p)->rb_left;
3134 		else if (dir_ino > entry->ino)
3135 			p = &(*p)->rb_right;
3136 		else if (dir_gen < entry->gen)
3137 			p = &(*p)->rb_left;
3138 		else if (dir_gen > entry->gen)
3139 			p = &(*p)->rb_right;
3140 		else
3141 			return entry;
3142 	}
3143 
3144 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3145 	if (!odi)
3146 		return ERR_PTR(-ENOMEM);
3147 	odi->ino = dir_ino;
3148 	odi->gen = dir_gen;
3149 	odi->last_dir_index_offset = 0;
3150 	odi->dir_high_seq_ino = 0;
3151 
3152 	rb_link_node(&odi->node, parent, p);
3153 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3154 	return odi;
3155 }
3156 
3157 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3158 						   u64 dir_ino, u64 gen)
3159 {
3160 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3161 	struct orphan_dir_info *entry;
3162 
3163 	while (n) {
3164 		entry = rb_entry(n, struct orphan_dir_info, node);
3165 		if (dir_ino < entry->ino)
3166 			n = n->rb_left;
3167 		else if (dir_ino > entry->ino)
3168 			n = n->rb_right;
3169 		else if (gen < entry->gen)
3170 			n = n->rb_left;
3171 		else if (gen > entry->gen)
3172 			n = n->rb_right;
3173 		else
3174 			return entry;
3175 	}
3176 	return NULL;
3177 }
3178 
3179 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3180 {
3181 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3182 
3183 	return odi != NULL;
3184 }
3185 
3186 static void free_orphan_dir_info(struct send_ctx *sctx,
3187 				 struct orphan_dir_info *odi)
3188 {
3189 	if (!odi)
3190 		return;
3191 	rb_erase(&odi->node, &sctx->orphan_dirs);
3192 	kfree(odi);
3193 }
3194 
3195 /*
3196  * Returns 1 if a directory can be removed at this point in time.
3197  * We check this by iterating all dir items and checking if the inode behind
3198  * the dir item was already processed.
3199  */
3200 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3201 {
3202 	int ret = 0;
3203 	int iter_ret = 0;
3204 	struct btrfs_root *root = sctx->parent_root;
3205 	struct btrfs_path *path;
3206 	struct btrfs_key key;
3207 	struct btrfs_key found_key;
3208 	struct btrfs_key loc;
3209 	struct btrfs_dir_item *di;
3210 	struct orphan_dir_info *odi = NULL;
3211 	u64 dir_high_seq_ino = 0;
3212 	u64 last_dir_index_offset = 0;
3213 
3214 	/*
3215 	 * Don't try to rmdir the top/root subvolume dir.
3216 	 */
3217 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3218 		return 0;
3219 
3220 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3221 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3222 		return 0;
3223 
3224 	path = alloc_path_for_send();
3225 	if (!path)
3226 		return -ENOMEM;
3227 
3228 	if (!odi) {
3229 		/*
3230 		 * Find the inode number associated with the last dir index
3231 		 * entry. This is very likely the inode with the highest number
3232 		 * of all inodes that have an entry in the directory. We can
3233 		 * then use it to avoid future calls to can_rmdir(), when
3234 		 * processing inodes with a lower number, from having to search
3235 		 * the parent root b+tree for dir index keys.
3236 		 */
3237 		key.objectid = dir;
3238 		key.type = BTRFS_DIR_INDEX_KEY;
3239 		key.offset = (u64)-1;
3240 
3241 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3242 		if (ret < 0) {
3243 			goto out;
3244 		} else if (ret > 0) {
3245 			/* Can't happen, the root is never empty. */
3246 			ASSERT(path->slots[0] > 0);
3247 			if (WARN_ON(path->slots[0] == 0)) {
3248 				ret = -EUCLEAN;
3249 				goto out;
3250 			}
3251 			path->slots[0]--;
3252 		}
3253 
3254 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3255 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3256 			/* No index keys, dir can be removed. */
3257 			ret = 1;
3258 			goto out;
3259 		}
3260 
3261 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 				    struct btrfs_dir_item);
3263 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3264 		dir_high_seq_ino = loc.objectid;
3265 		if (sctx->cur_ino < dir_high_seq_ino) {
3266 			ret = 0;
3267 			goto out;
3268 		}
3269 
3270 		btrfs_release_path(path);
3271 	}
3272 
3273 	key.objectid = dir;
3274 	key.type = BTRFS_DIR_INDEX_KEY;
3275 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3276 
3277 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3278 		struct waiting_dir_move *dm;
3279 
3280 		if (found_key.objectid != key.objectid ||
3281 		    found_key.type != key.type)
3282 			break;
3283 
3284 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3285 				struct btrfs_dir_item);
3286 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3287 
3288 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3289 		last_dir_index_offset = found_key.offset;
3290 
3291 		dm = get_waiting_dir_move(sctx, loc.objectid);
3292 		if (dm) {
3293 			dm->rmdir_ino = dir;
3294 			dm->rmdir_gen = dir_gen;
3295 			ret = 0;
3296 			goto out;
3297 		}
3298 
3299 		if (loc.objectid > sctx->cur_ino) {
3300 			ret = 0;
3301 			goto out;
3302 		}
3303 	}
3304 	if (iter_ret < 0) {
3305 		ret = iter_ret;
3306 		goto out;
3307 	}
3308 	free_orphan_dir_info(sctx, odi);
3309 
3310 	ret = 1;
3311 
3312 out:
3313 	btrfs_free_path(path);
3314 
3315 	if (ret)
3316 		return ret;
3317 
3318 	if (!odi) {
3319 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3320 		if (IS_ERR(odi))
3321 			return PTR_ERR(odi);
3322 
3323 		odi->gen = dir_gen;
3324 	}
3325 
3326 	odi->last_dir_index_offset = last_dir_index_offset;
3327 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3328 
3329 	return 0;
3330 }
3331 
3332 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3333 {
3334 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3335 
3336 	return entry != NULL;
3337 }
3338 
3339 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3340 {
3341 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3342 	struct rb_node *parent = NULL;
3343 	struct waiting_dir_move *entry, *dm;
3344 
3345 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3346 	if (!dm)
3347 		return -ENOMEM;
3348 	dm->ino = ino;
3349 	dm->rmdir_ino = 0;
3350 	dm->rmdir_gen = 0;
3351 	dm->orphanized = orphanized;
3352 
3353 	while (*p) {
3354 		parent = *p;
3355 		entry = rb_entry(parent, struct waiting_dir_move, node);
3356 		if (ino < entry->ino) {
3357 			p = &(*p)->rb_left;
3358 		} else if (ino > entry->ino) {
3359 			p = &(*p)->rb_right;
3360 		} else {
3361 			kfree(dm);
3362 			return -EEXIST;
3363 		}
3364 	}
3365 
3366 	rb_link_node(&dm->node, parent, p);
3367 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3368 	return 0;
3369 }
3370 
3371 static struct waiting_dir_move *
3372 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3373 {
3374 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3375 	struct waiting_dir_move *entry;
3376 
3377 	while (n) {
3378 		entry = rb_entry(n, struct waiting_dir_move, node);
3379 		if (ino < entry->ino)
3380 			n = n->rb_left;
3381 		else if (ino > entry->ino)
3382 			n = n->rb_right;
3383 		else
3384 			return entry;
3385 	}
3386 	return NULL;
3387 }
3388 
3389 static void free_waiting_dir_move(struct send_ctx *sctx,
3390 				  struct waiting_dir_move *dm)
3391 {
3392 	if (!dm)
3393 		return;
3394 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3395 	kfree(dm);
3396 }
3397 
3398 static int add_pending_dir_move(struct send_ctx *sctx,
3399 				u64 ino,
3400 				u64 ino_gen,
3401 				u64 parent_ino,
3402 				struct list_head *new_refs,
3403 				struct list_head *deleted_refs,
3404 				const bool is_orphan)
3405 {
3406 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3407 	struct rb_node *parent = NULL;
3408 	struct pending_dir_move *entry = NULL, *pm;
3409 	struct recorded_ref *cur;
3410 	int exists = 0;
3411 	int ret;
3412 
3413 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3414 	if (!pm)
3415 		return -ENOMEM;
3416 	pm->parent_ino = parent_ino;
3417 	pm->ino = ino;
3418 	pm->gen = ino_gen;
3419 	INIT_LIST_HEAD(&pm->list);
3420 	INIT_LIST_HEAD(&pm->update_refs);
3421 	RB_CLEAR_NODE(&pm->node);
3422 
3423 	while (*p) {
3424 		parent = *p;
3425 		entry = rb_entry(parent, struct pending_dir_move, node);
3426 		if (parent_ino < entry->parent_ino) {
3427 			p = &(*p)->rb_left;
3428 		} else if (parent_ino > entry->parent_ino) {
3429 			p = &(*p)->rb_right;
3430 		} else {
3431 			exists = 1;
3432 			break;
3433 		}
3434 	}
3435 
3436 	list_for_each_entry(cur, deleted_refs, list) {
3437 		ret = dup_ref(cur, &pm->update_refs);
3438 		if (ret < 0)
3439 			goto out;
3440 	}
3441 	list_for_each_entry(cur, new_refs, list) {
3442 		ret = dup_ref(cur, &pm->update_refs);
3443 		if (ret < 0)
3444 			goto out;
3445 	}
3446 
3447 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3448 	if (ret)
3449 		goto out;
3450 
3451 	if (exists) {
3452 		list_add_tail(&pm->list, &entry->list);
3453 	} else {
3454 		rb_link_node(&pm->node, parent, p);
3455 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3456 	}
3457 	ret = 0;
3458 out:
3459 	if (ret) {
3460 		__free_recorded_refs(&pm->update_refs);
3461 		kfree(pm);
3462 	}
3463 	return ret;
3464 }
3465 
3466 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3467 						      u64 parent_ino)
3468 {
3469 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3470 	struct pending_dir_move *entry;
3471 
3472 	while (n) {
3473 		entry = rb_entry(n, struct pending_dir_move, node);
3474 		if (parent_ino < entry->parent_ino)
3475 			n = n->rb_left;
3476 		else if (parent_ino > entry->parent_ino)
3477 			n = n->rb_right;
3478 		else
3479 			return entry;
3480 	}
3481 	return NULL;
3482 }
3483 
3484 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3485 		     u64 ino, u64 gen, u64 *ancestor_ino)
3486 {
3487 	int ret = 0;
3488 	u64 parent_inode = 0;
3489 	u64 parent_gen = 0;
3490 	u64 start_ino = ino;
3491 
3492 	*ancestor_ino = 0;
3493 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3494 		fs_path_reset(name);
3495 
3496 		if (is_waiting_for_rm(sctx, ino, gen))
3497 			break;
3498 		if (is_waiting_for_move(sctx, ino)) {
3499 			if (*ancestor_ino == 0)
3500 				*ancestor_ino = ino;
3501 			ret = get_first_ref(sctx->parent_root, ino,
3502 					    &parent_inode, &parent_gen, name);
3503 		} else {
3504 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3505 							&parent_inode,
3506 							&parent_gen, name);
3507 			if (ret > 0) {
3508 				ret = 0;
3509 				break;
3510 			}
3511 		}
3512 		if (ret < 0)
3513 			break;
3514 		if (parent_inode == start_ino) {
3515 			ret = 1;
3516 			if (*ancestor_ino == 0)
3517 				*ancestor_ino = ino;
3518 			break;
3519 		}
3520 		ino = parent_inode;
3521 		gen = parent_gen;
3522 	}
3523 	return ret;
3524 }
3525 
3526 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3527 {
3528 	struct fs_path *from_path = NULL;
3529 	struct fs_path *to_path = NULL;
3530 	struct fs_path *name = NULL;
3531 	u64 orig_progress = sctx->send_progress;
3532 	struct recorded_ref *cur;
3533 	u64 parent_ino, parent_gen;
3534 	struct waiting_dir_move *dm = NULL;
3535 	u64 rmdir_ino = 0;
3536 	u64 rmdir_gen;
3537 	u64 ancestor;
3538 	bool is_orphan;
3539 	int ret;
3540 
3541 	name = fs_path_alloc();
3542 	from_path = fs_path_alloc();
3543 	if (!name || !from_path) {
3544 		ret = -ENOMEM;
3545 		goto out;
3546 	}
3547 
3548 	dm = get_waiting_dir_move(sctx, pm->ino);
3549 	ASSERT(dm);
3550 	rmdir_ino = dm->rmdir_ino;
3551 	rmdir_gen = dm->rmdir_gen;
3552 	is_orphan = dm->orphanized;
3553 	free_waiting_dir_move(sctx, dm);
3554 
3555 	if (is_orphan) {
3556 		ret = gen_unique_name(sctx, pm->ino,
3557 				      pm->gen, from_path);
3558 	} else {
3559 		ret = get_first_ref(sctx->parent_root, pm->ino,
3560 				    &parent_ino, &parent_gen, name);
3561 		if (ret < 0)
3562 			goto out;
3563 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3564 				   from_path);
3565 		if (ret < 0)
3566 			goto out;
3567 		ret = fs_path_add_path(from_path, name);
3568 	}
3569 	if (ret < 0)
3570 		goto out;
3571 
3572 	sctx->send_progress = sctx->cur_ino + 1;
3573 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3574 	if (ret < 0)
3575 		goto out;
3576 	if (ret) {
3577 		LIST_HEAD(deleted_refs);
3578 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3579 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3580 					   &pm->update_refs, &deleted_refs,
3581 					   is_orphan);
3582 		if (ret < 0)
3583 			goto out;
3584 		if (rmdir_ino) {
3585 			dm = get_waiting_dir_move(sctx, pm->ino);
3586 			ASSERT(dm);
3587 			dm->rmdir_ino = rmdir_ino;
3588 			dm->rmdir_gen = rmdir_gen;
3589 		}
3590 		goto out;
3591 	}
3592 	fs_path_reset(name);
3593 	to_path = name;
3594 	name = NULL;
3595 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3596 	if (ret < 0)
3597 		goto out;
3598 
3599 	ret = send_rename(sctx, from_path, to_path);
3600 	if (ret < 0)
3601 		goto out;
3602 
3603 	if (rmdir_ino) {
3604 		struct orphan_dir_info *odi;
3605 		u64 gen;
3606 
3607 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3608 		if (!odi) {
3609 			/* already deleted */
3610 			goto finish;
3611 		}
3612 		gen = odi->gen;
3613 
3614 		ret = can_rmdir(sctx, rmdir_ino, gen);
3615 		if (ret < 0)
3616 			goto out;
3617 		if (!ret)
3618 			goto finish;
3619 
3620 		name = fs_path_alloc();
3621 		if (!name) {
3622 			ret = -ENOMEM;
3623 			goto out;
3624 		}
3625 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3626 		if (ret < 0)
3627 			goto out;
3628 		ret = send_rmdir(sctx, name);
3629 		if (ret < 0)
3630 			goto out;
3631 	}
3632 
3633 finish:
3634 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3635 	if (ret < 0)
3636 		goto out;
3637 
3638 	/*
3639 	 * After rename/move, need to update the utimes of both new parent(s)
3640 	 * and old parent(s).
3641 	 */
3642 	list_for_each_entry(cur, &pm->update_refs, list) {
3643 		/*
3644 		 * The parent inode might have been deleted in the send snapshot
3645 		 */
3646 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3647 		if (ret == -ENOENT) {
3648 			ret = 0;
3649 			continue;
3650 		}
3651 		if (ret < 0)
3652 			goto out;
3653 
3654 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3655 		if (ret < 0)
3656 			goto out;
3657 	}
3658 
3659 out:
3660 	fs_path_free(name);
3661 	fs_path_free(from_path);
3662 	fs_path_free(to_path);
3663 	sctx->send_progress = orig_progress;
3664 
3665 	return ret;
3666 }
3667 
3668 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3669 {
3670 	if (!list_empty(&m->list))
3671 		list_del(&m->list);
3672 	if (!RB_EMPTY_NODE(&m->node))
3673 		rb_erase(&m->node, &sctx->pending_dir_moves);
3674 	__free_recorded_refs(&m->update_refs);
3675 	kfree(m);
3676 }
3677 
3678 static void tail_append_pending_moves(struct send_ctx *sctx,
3679 				      struct pending_dir_move *moves,
3680 				      struct list_head *stack)
3681 {
3682 	if (list_empty(&moves->list)) {
3683 		list_add_tail(&moves->list, stack);
3684 	} else {
3685 		LIST_HEAD(list);
3686 		list_splice_init(&moves->list, &list);
3687 		list_add_tail(&moves->list, stack);
3688 		list_splice_tail(&list, stack);
3689 	}
3690 	if (!RB_EMPTY_NODE(&moves->node)) {
3691 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3692 		RB_CLEAR_NODE(&moves->node);
3693 	}
3694 }
3695 
3696 static int apply_children_dir_moves(struct send_ctx *sctx)
3697 {
3698 	struct pending_dir_move *pm;
3699 	LIST_HEAD(stack);
3700 	u64 parent_ino = sctx->cur_ino;
3701 	int ret = 0;
3702 
3703 	pm = get_pending_dir_moves(sctx, parent_ino);
3704 	if (!pm)
3705 		return 0;
3706 
3707 	tail_append_pending_moves(sctx, pm, &stack);
3708 
3709 	while (!list_empty(&stack)) {
3710 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3711 		parent_ino = pm->ino;
3712 		ret = apply_dir_move(sctx, pm);
3713 		free_pending_move(sctx, pm);
3714 		if (ret)
3715 			goto out;
3716 		pm = get_pending_dir_moves(sctx, parent_ino);
3717 		if (pm)
3718 			tail_append_pending_moves(sctx, pm, &stack);
3719 	}
3720 	return 0;
3721 
3722 out:
3723 	while (!list_empty(&stack)) {
3724 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3725 		free_pending_move(sctx, pm);
3726 	}
3727 	return ret;
3728 }
3729 
3730 /*
3731  * We might need to delay a directory rename even when no ancestor directory
3732  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3733  * renamed. This happens when we rename a directory to the old name (the name
3734  * in the parent root) of some other unrelated directory that got its rename
3735  * delayed due to some ancestor with higher number that got renamed.
3736  *
3737  * Example:
3738  *
3739  * Parent snapshot:
3740  * .                                       (ino 256)
3741  * |---- a/                                (ino 257)
3742  * |     |---- file                        (ino 260)
3743  * |
3744  * |---- b/                                (ino 258)
3745  * |---- c/                                (ino 259)
3746  *
3747  * Send snapshot:
3748  * .                                       (ino 256)
3749  * |---- a/                                (ino 258)
3750  * |---- x/                                (ino 259)
3751  *       |---- y/                          (ino 257)
3752  *             |----- file                 (ino 260)
3753  *
3754  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3755  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3756  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3757  * must issue is:
3758  *
3759  * 1 - rename 259 from 'c' to 'x'
3760  * 2 - rename 257 from 'a' to 'x/y'
3761  * 3 - rename 258 from 'b' to 'a'
3762  *
3763  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3764  * be done right away and < 0 on error.
3765  */
3766 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3767 				  struct recorded_ref *parent_ref,
3768 				  const bool is_orphan)
3769 {
3770 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3771 	struct btrfs_path *path;
3772 	struct btrfs_key key;
3773 	struct btrfs_key di_key;
3774 	struct btrfs_dir_item *di;
3775 	u64 left_gen;
3776 	u64 right_gen;
3777 	int ret = 0;
3778 	struct waiting_dir_move *wdm;
3779 
3780 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3781 		return 0;
3782 
3783 	path = alloc_path_for_send();
3784 	if (!path)
3785 		return -ENOMEM;
3786 
3787 	key.objectid = parent_ref->dir;
3788 	key.type = BTRFS_DIR_ITEM_KEY;
3789 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3790 
3791 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3792 	if (ret < 0) {
3793 		goto out;
3794 	} else if (ret > 0) {
3795 		ret = 0;
3796 		goto out;
3797 	}
3798 
3799 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3800 				       parent_ref->name_len);
3801 	if (!di) {
3802 		ret = 0;
3803 		goto out;
3804 	}
3805 	/*
3806 	 * di_key.objectid has the number of the inode that has a dentry in the
3807 	 * parent directory with the same name that sctx->cur_ino is being
3808 	 * renamed to. We need to check if that inode is in the send root as
3809 	 * well and if it is currently marked as an inode with a pending rename,
3810 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3811 	 * that it happens after that other inode is renamed.
3812 	 */
3813 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3814 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3815 		ret = 0;
3816 		goto out;
3817 	}
3818 
3819 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3820 	if (ret < 0)
3821 		goto out;
3822 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3823 	if (ret < 0) {
3824 		if (ret == -ENOENT)
3825 			ret = 0;
3826 		goto out;
3827 	}
3828 
3829 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3830 	if (right_gen != left_gen) {
3831 		ret = 0;
3832 		goto out;
3833 	}
3834 
3835 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3836 	if (wdm && !wdm->orphanized) {
3837 		ret = add_pending_dir_move(sctx,
3838 					   sctx->cur_ino,
3839 					   sctx->cur_inode_gen,
3840 					   di_key.objectid,
3841 					   &sctx->new_refs,
3842 					   &sctx->deleted_refs,
3843 					   is_orphan);
3844 		if (!ret)
3845 			ret = 1;
3846 	}
3847 out:
3848 	btrfs_free_path(path);
3849 	return ret;
3850 }
3851 
3852 /*
3853  * Check if inode ino2, or any of its ancestors, is inode ino1.
3854  * Return 1 if true, 0 if false and < 0 on error.
3855  */
3856 static int check_ino_in_path(struct btrfs_root *root,
3857 			     const u64 ino1,
3858 			     const u64 ino1_gen,
3859 			     const u64 ino2,
3860 			     const u64 ino2_gen,
3861 			     struct fs_path *fs_path)
3862 {
3863 	u64 ino = ino2;
3864 
3865 	if (ino1 == ino2)
3866 		return ino1_gen == ino2_gen;
3867 
3868 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3869 		u64 parent;
3870 		u64 parent_gen;
3871 		int ret;
3872 
3873 		fs_path_reset(fs_path);
3874 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3875 		if (ret < 0)
3876 			return ret;
3877 		if (parent == ino1)
3878 			return parent_gen == ino1_gen;
3879 		ino = parent;
3880 	}
3881 	return 0;
3882 }
3883 
3884 /*
3885  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3886  * possible path (in case ino2 is not a directory and has multiple hard links).
3887  * Return 1 if true, 0 if false and < 0 on error.
3888  */
3889 static int is_ancestor(struct btrfs_root *root,
3890 		       const u64 ino1,
3891 		       const u64 ino1_gen,
3892 		       const u64 ino2,
3893 		       struct fs_path *fs_path)
3894 {
3895 	bool free_fs_path = false;
3896 	int ret = 0;
3897 	int iter_ret = 0;
3898 	struct btrfs_path *path = NULL;
3899 	struct btrfs_key key;
3900 
3901 	if (!fs_path) {
3902 		fs_path = fs_path_alloc();
3903 		if (!fs_path)
3904 			return -ENOMEM;
3905 		free_fs_path = true;
3906 	}
3907 
3908 	path = alloc_path_for_send();
3909 	if (!path) {
3910 		ret = -ENOMEM;
3911 		goto out;
3912 	}
3913 
3914 	key.objectid = ino2;
3915 	key.type = BTRFS_INODE_REF_KEY;
3916 	key.offset = 0;
3917 
3918 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3919 		struct extent_buffer *leaf = path->nodes[0];
3920 		int slot = path->slots[0];
3921 		u32 cur_offset = 0;
3922 		u32 item_size;
3923 
3924 		if (key.objectid != ino2)
3925 			break;
3926 		if (key.type != BTRFS_INODE_REF_KEY &&
3927 		    key.type != BTRFS_INODE_EXTREF_KEY)
3928 			break;
3929 
3930 		item_size = btrfs_item_size(leaf, slot);
3931 		while (cur_offset < item_size) {
3932 			u64 parent;
3933 			u64 parent_gen;
3934 
3935 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3936 				unsigned long ptr;
3937 				struct btrfs_inode_extref *extref;
3938 
3939 				ptr = btrfs_item_ptr_offset(leaf, slot);
3940 				extref = (struct btrfs_inode_extref *)
3941 					(ptr + cur_offset);
3942 				parent = btrfs_inode_extref_parent(leaf,
3943 								   extref);
3944 				cur_offset += sizeof(*extref);
3945 				cur_offset += btrfs_inode_extref_name_len(leaf,
3946 								  extref);
3947 			} else {
3948 				parent = key.offset;
3949 				cur_offset = item_size;
3950 			}
3951 
3952 			ret = get_inode_gen(root, parent, &parent_gen);
3953 			if (ret < 0)
3954 				goto out;
3955 			ret = check_ino_in_path(root, ino1, ino1_gen,
3956 						parent, parent_gen, fs_path);
3957 			if (ret)
3958 				goto out;
3959 		}
3960 	}
3961 	ret = 0;
3962 	if (iter_ret < 0)
3963 		ret = iter_ret;
3964 
3965 out:
3966 	btrfs_free_path(path);
3967 	if (free_fs_path)
3968 		fs_path_free(fs_path);
3969 	return ret;
3970 }
3971 
3972 static int wait_for_parent_move(struct send_ctx *sctx,
3973 				struct recorded_ref *parent_ref,
3974 				const bool is_orphan)
3975 {
3976 	int ret = 0;
3977 	u64 ino = parent_ref->dir;
3978 	u64 ino_gen = parent_ref->dir_gen;
3979 	u64 parent_ino_before, parent_ino_after;
3980 	struct fs_path *path_before = NULL;
3981 	struct fs_path *path_after = NULL;
3982 	int len1, len2;
3983 
3984 	path_after = fs_path_alloc();
3985 	path_before = fs_path_alloc();
3986 	if (!path_after || !path_before) {
3987 		ret = -ENOMEM;
3988 		goto out;
3989 	}
3990 
3991 	/*
3992 	 * Our current directory inode may not yet be renamed/moved because some
3993 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3994 	 * such ancestor exists and make sure our own rename/move happens after
3995 	 * that ancestor is processed to avoid path build infinite loops (done
3996 	 * at get_cur_path()).
3997 	 */
3998 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3999 		u64 parent_ino_after_gen;
4000 
4001 		if (is_waiting_for_move(sctx, ino)) {
4002 			/*
4003 			 * If the current inode is an ancestor of ino in the
4004 			 * parent root, we need to delay the rename of the
4005 			 * current inode, otherwise don't delayed the rename
4006 			 * because we can end up with a circular dependency
4007 			 * of renames, resulting in some directories never
4008 			 * getting the respective rename operations issued in
4009 			 * the send stream or getting into infinite path build
4010 			 * loops.
4011 			 */
4012 			ret = is_ancestor(sctx->parent_root,
4013 					  sctx->cur_ino, sctx->cur_inode_gen,
4014 					  ino, path_before);
4015 			if (ret)
4016 				break;
4017 		}
4018 
4019 		fs_path_reset(path_before);
4020 		fs_path_reset(path_after);
4021 
4022 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4023 				    &parent_ino_after_gen, path_after);
4024 		if (ret < 0)
4025 			goto out;
4026 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4027 				    NULL, path_before);
4028 		if (ret < 0 && ret != -ENOENT) {
4029 			goto out;
4030 		} else if (ret == -ENOENT) {
4031 			ret = 0;
4032 			break;
4033 		}
4034 
4035 		len1 = fs_path_len(path_before);
4036 		len2 = fs_path_len(path_after);
4037 		if (ino > sctx->cur_ino &&
4038 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4039 		     memcmp(path_before->start, path_after->start, len1))) {
4040 			u64 parent_ino_gen;
4041 
4042 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4043 			if (ret < 0)
4044 				goto out;
4045 			if (ino_gen == parent_ino_gen) {
4046 				ret = 1;
4047 				break;
4048 			}
4049 		}
4050 		ino = parent_ino_after;
4051 		ino_gen = parent_ino_after_gen;
4052 	}
4053 
4054 out:
4055 	fs_path_free(path_before);
4056 	fs_path_free(path_after);
4057 
4058 	if (ret == 1) {
4059 		ret = add_pending_dir_move(sctx,
4060 					   sctx->cur_ino,
4061 					   sctx->cur_inode_gen,
4062 					   ino,
4063 					   &sctx->new_refs,
4064 					   &sctx->deleted_refs,
4065 					   is_orphan);
4066 		if (!ret)
4067 			ret = 1;
4068 	}
4069 
4070 	return ret;
4071 }
4072 
4073 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4074 {
4075 	int ret;
4076 	struct fs_path *new_path;
4077 
4078 	/*
4079 	 * Our reference's name member points to its full_path member string, so
4080 	 * we use here a new path.
4081 	 */
4082 	new_path = fs_path_alloc();
4083 	if (!new_path)
4084 		return -ENOMEM;
4085 
4086 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4087 	if (ret < 0) {
4088 		fs_path_free(new_path);
4089 		return ret;
4090 	}
4091 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4092 	if (ret < 0) {
4093 		fs_path_free(new_path);
4094 		return ret;
4095 	}
4096 
4097 	fs_path_free(ref->full_path);
4098 	set_ref_path(ref, new_path);
4099 
4100 	return 0;
4101 }
4102 
4103 /*
4104  * When processing the new references for an inode we may orphanize an existing
4105  * directory inode because its old name conflicts with one of the new references
4106  * of the current inode. Later, when processing another new reference of our
4107  * inode, we might need to orphanize another inode, but the path we have in the
4108  * reference reflects the pre-orphanization name of the directory we previously
4109  * orphanized. For example:
4110  *
4111  * parent snapshot looks like:
4112  *
4113  * .                                     (ino 256)
4114  * |----- f1                             (ino 257)
4115  * |----- f2                             (ino 258)
4116  * |----- d1/                            (ino 259)
4117  *        |----- d2/                     (ino 260)
4118  *
4119  * send snapshot looks like:
4120  *
4121  * .                                     (ino 256)
4122  * |----- d1                             (ino 258)
4123  * |----- f2/                            (ino 259)
4124  *        |----- f2_link/                (ino 260)
4125  *        |       |----- f1              (ino 257)
4126  *        |
4127  *        |----- d2                      (ino 258)
4128  *
4129  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4130  * cache it in the name cache. Later when we start processing inode 258, when
4131  * collecting all its new references we set a full path of "d1/d2" for its new
4132  * reference with name "d2". When we start processing the new references we
4133  * start by processing the new reference with name "d1", and this results in
4134  * orphanizing inode 259, since its old reference causes a conflict. Then we
4135  * move on the next new reference, with name "d2", and we find out we must
4136  * orphanize inode 260, as its old reference conflicts with ours - but for the
4137  * orphanization we use a source path corresponding to the path we stored in the
4138  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4139  * receiver fail since the path component "d1/" no longer exists, it was renamed
4140  * to "o259-6-0/" when processing the previous new reference. So in this case we
4141  * must recompute the path in the new reference and use it for the new
4142  * orphanization operation.
4143  */
4144 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4145 {
4146 	char *name;
4147 	int ret;
4148 
4149 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4150 	if (!name)
4151 		return -ENOMEM;
4152 
4153 	fs_path_reset(ref->full_path);
4154 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4155 	if (ret < 0)
4156 		goto out;
4157 
4158 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4159 	if (ret < 0)
4160 		goto out;
4161 
4162 	/* Update the reference's base name pointer. */
4163 	set_ref_path(ref, ref->full_path);
4164 out:
4165 	kfree(name);
4166 	return ret;
4167 }
4168 
4169 /*
4170  * This does all the move/link/unlink/rmdir magic.
4171  */
4172 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4173 {
4174 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4175 	int ret = 0;
4176 	struct recorded_ref *cur;
4177 	struct recorded_ref *cur2;
4178 	LIST_HEAD(check_dirs);
4179 	struct fs_path *valid_path = NULL;
4180 	u64 ow_inode = 0;
4181 	u64 ow_gen;
4182 	u64 ow_mode;
4183 	int did_overwrite = 0;
4184 	int is_orphan = 0;
4185 	u64 last_dir_ino_rm = 0;
4186 	bool can_rename = true;
4187 	bool orphanized_dir = false;
4188 	bool orphanized_ancestor = false;
4189 
4190 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4191 
4192 	/*
4193 	 * This should never happen as the root dir always has the same ref
4194 	 * which is always '..'
4195 	 */
4196 	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4197 		btrfs_err(fs_info,
4198 			  "send: unexpected inode %llu in process_recorded_refs()",
4199 			  sctx->cur_ino);
4200 		ret = -EINVAL;
4201 		goto out;
4202 	}
4203 
4204 	valid_path = fs_path_alloc();
4205 	if (!valid_path) {
4206 		ret = -ENOMEM;
4207 		goto out;
4208 	}
4209 
4210 	/*
4211 	 * First, check if the first ref of the current inode was overwritten
4212 	 * before. If yes, we know that the current inode was already orphanized
4213 	 * and thus use the orphan name. If not, we can use get_cur_path to
4214 	 * get the path of the first ref as it would like while receiving at
4215 	 * this point in time.
4216 	 * New inodes are always orphan at the beginning, so force to use the
4217 	 * orphan name in this case.
4218 	 * The first ref is stored in valid_path and will be updated if it
4219 	 * gets moved around.
4220 	 */
4221 	if (!sctx->cur_inode_new) {
4222 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4223 				sctx->cur_inode_gen);
4224 		if (ret < 0)
4225 			goto out;
4226 		if (ret)
4227 			did_overwrite = 1;
4228 	}
4229 	if (sctx->cur_inode_new || did_overwrite) {
4230 		ret = gen_unique_name(sctx, sctx->cur_ino,
4231 				sctx->cur_inode_gen, valid_path);
4232 		if (ret < 0)
4233 			goto out;
4234 		is_orphan = 1;
4235 	} else {
4236 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4237 				valid_path);
4238 		if (ret < 0)
4239 			goto out;
4240 	}
4241 
4242 	/*
4243 	 * Before doing any rename and link operations, do a first pass on the
4244 	 * new references to orphanize any unprocessed inodes that may have a
4245 	 * reference that conflicts with one of the new references of the current
4246 	 * inode. This needs to happen first because a new reference may conflict
4247 	 * with the old reference of a parent directory, so we must make sure
4248 	 * that the path used for link and rename commands don't use an
4249 	 * orphanized name when an ancestor was not yet orphanized.
4250 	 *
4251 	 * Example:
4252 	 *
4253 	 * Parent snapshot:
4254 	 *
4255 	 * .                                                      (ino 256)
4256 	 * |----- testdir/                                        (ino 259)
4257 	 * |          |----- a                                    (ino 257)
4258 	 * |
4259 	 * |----- b                                               (ino 258)
4260 	 *
4261 	 * Send snapshot:
4262 	 *
4263 	 * .                                                      (ino 256)
4264 	 * |----- testdir_2/                                      (ino 259)
4265 	 * |          |----- a                                    (ino 260)
4266 	 * |
4267 	 * |----- testdir                                         (ino 257)
4268 	 * |----- b                                               (ino 257)
4269 	 * |----- b2                                              (ino 258)
4270 	 *
4271 	 * Processing the new reference for inode 257 with name "b" may happen
4272 	 * before processing the new reference with name "testdir". If so, we
4273 	 * must make sure that by the time we send a link command to create the
4274 	 * hard link "b", inode 259 was already orphanized, since the generated
4275 	 * path in "valid_path" already contains the orphanized name for 259.
4276 	 * We are processing inode 257, so only later when processing 259 we do
4277 	 * the rename operation to change its temporary (orphanized) name to
4278 	 * "testdir_2".
4279 	 */
4280 	list_for_each_entry(cur, &sctx->new_refs, list) {
4281 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4282 		if (ret < 0)
4283 			goto out;
4284 		if (ret == inode_state_will_create)
4285 			continue;
4286 
4287 		/*
4288 		 * Check if this new ref would overwrite the first ref of another
4289 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4290 		 * If we find an overwritten ref that is not the first ref,
4291 		 * simply unlink it.
4292 		 */
4293 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4294 				cur->name, cur->name_len,
4295 				&ow_inode, &ow_gen, &ow_mode);
4296 		if (ret < 0)
4297 			goto out;
4298 		if (ret) {
4299 			ret = is_first_ref(sctx->parent_root,
4300 					   ow_inode, cur->dir, cur->name,
4301 					   cur->name_len);
4302 			if (ret < 0)
4303 				goto out;
4304 			if (ret) {
4305 				struct name_cache_entry *nce;
4306 				struct waiting_dir_move *wdm;
4307 
4308 				if (orphanized_dir) {
4309 					ret = refresh_ref_path(sctx, cur);
4310 					if (ret < 0)
4311 						goto out;
4312 				}
4313 
4314 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4315 						cur->full_path);
4316 				if (ret < 0)
4317 					goto out;
4318 				if (S_ISDIR(ow_mode))
4319 					orphanized_dir = true;
4320 
4321 				/*
4322 				 * If ow_inode has its rename operation delayed
4323 				 * make sure that its orphanized name is used in
4324 				 * the source path when performing its rename
4325 				 * operation.
4326 				 */
4327 				wdm = get_waiting_dir_move(sctx, ow_inode);
4328 				if (wdm)
4329 					wdm->orphanized = true;
4330 
4331 				/*
4332 				 * Make sure we clear our orphanized inode's
4333 				 * name from the name cache. This is because the
4334 				 * inode ow_inode might be an ancestor of some
4335 				 * other inode that will be orphanized as well
4336 				 * later and has an inode number greater than
4337 				 * sctx->send_progress. We need to prevent
4338 				 * future name lookups from using the old name
4339 				 * and get instead the orphan name.
4340 				 */
4341 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4342 				if (nce)
4343 					btrfs_lru_cache_remove(&sctx->name_cache,
4344 							       &nce->entry);
4345 
4346 				/*
4347 				 * ow_inode might currently be an ancestor of
4348 				 * cur_ino, therefore compute valid_path (the
4349 				 * current path of cur_ino) again because it
4350 				 * might contain the pre-orphanization name of
4351 				 * ow_inode, which is no longer valid.
4352 				 */
4353 				ret = is_ancestor(sctx->parent_root,
4354 						  ow_inode, ow_gen,
4355 						  sctx->cur_ino, NULL);
4356 				if (ret > 0) {
4357 					orphanized_ancestor = true;
4358 					fs_path_reset(valid_path);
4359 					ret = get_cur_path(sctx, sctx->cur_ino,
4360 							   sctx->cur_inode_gen,
4361 							   valid_path);
4362 				}
4363 				if (ret < 0)
4364 					goto out;
4365 			} else {
4366 				/*
4367 				 * If we previously orphanized a directory that
4368 				 * collided with a new reference that we already
4369 				 * processed, recompute the current path because
4370 				 * that directory may be part of the path.
4371 				 */
4372 				if (orphanized_dir) {
4373 					ret = refresh_ref_path(sctx, cur);
4374 					if (ret < 0)
4375 						goto out;
4376 				}
4377 				ret = send_unlink(sctx, cur->full_path);
4378 				if (ret < 0)
4379 					goto out;
4380 			}
4381 		}
4382 
4383 	}
4384 
4385 	list_for_each_entry(cur, &sctx->new_refs, list) {
4386 		/*
4387 		 * We may have refs where the parent directory does not exist
4388 		 * yet. This happens if the parent directories inum is higher
4389 		 * than the current inum. To handle this case, we create the
4390 		 * parent directory out of order. But we need to check if this
4391 		 * did already happen before due to other refs in the same dir.
4392 		 */
4393 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4394 		if (ret < 0)
4395 			goto out;
4396 		if (ret == inode_state_will_create) {
4397 			ret = 0;
4398 			/*
4399 			 * First check if any of the current inodes refs did
4400 			 * already create the dir.
4401 			 */
4402 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4403 				if (cur == cur2)
4404 					break;
4405 				if (cur2->dir == cur->dir) {
4406 					ret = 1;
4407 					break;
4408 				}
4409 			}
4410 
4411 			/*
4412 			 * If that did not happen, check if a previous inode
4413 			 * did already create the dir.
4414 			 */
4415 			if (!ret)
4416 				ret = did_create_dir(sctx, cur->dir);
4417 			if (ret < 0)
4418 				goto out;
4419 			if (!ret) {
4420 				ret = send_create_inode(sctx, cur->dir);
4421 				if (ret < 0)
4422 					goto out;
4423 				cache_dir_created(sctx, cur->dir);
4424 			}
4425 		}
4426 
4427 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4428 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4429 			if (ret < 0)
4430 				goto out;
4431 			if (ret == 1) {
4432 				can_rename = false;
4433 				*pending_move = 1;
4434 			}
4435 		}
4436 
4437 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4438 		    can_rename) {
4439 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4440 			if (ret < 0)
4441 				goto out;
4442 			if (ret == 1) {
4443 				can_rename = false;
4444 				*pending_move = 1;
4445 			}
4446 		}
4447 
4448 		/*
4449 		 * link/move the ref to the new place. If we have an orphan
4450 		 * inode, move it and update valid_path. If not, link or move
4451 		 * it depending on the inode mode.
4452 		 */
4453 		if (is_orphan && can_rename) {
4454 			ret = send_rename(sctx, valid_path, cur->full_path);
4455 			if (ret < 0)
4456 				goto out;
4457 			is_orphan = 0;
4458 			ret = fs_path_copy(valid_path, cur->full_path);
4459 			if (ret < 0)
4460 				goto out;
4461 		} else if (can_rename) {
4462 			if (S_ISDIR(sctx->cur_inode_mode)) {
4463 				/*
4464 				 * Dirs can't be linked, so move it. For moved
4465 				 * dirs, we always have one new and one deleted
4466 				 * ref. The deleted ref is ignored later.
4467 				 */
4468 				ret = send_rename(sctx, valid_path,
4469 						  cur->full_path);
4470 				if (!ret)
4471 					ret = fs_path_copy(valid_path,
4472 							   cur->full_path);
4473 				if (ret < 0)
4474 					goto out;
4475 			} else {
4476 				/*
4477 				 * We might have previously orphanized an inode
4478 				 * which is an ancestor of our current inode,
4479 				 * so our reference's full path, which was
4480 				 * computed before any such orphanizations, must
4481 				 * be updated.
4482 				 */
4483 				if (orphanized_dir) {
4484 					ret = update_ref_path(sctx, cur);
4485 					if (ret < 0)
4486 						goto out;
4487 				}
4488 				ret = send_link(sctx, cur->full_path,
4489 						valid_path);
4490 				if (ret < 0)
4491 					goto out;
4492 			}
4493 		}
4494 		ret = dup_ref(cur, &check_dirs);
4495 		if (ret < 0)
4496 			goto out;
4497 	}
4498 
4499 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4500 		/*
4501 		 * Check if we can already rmdir the directory. If not,
4502 		 * orphanize it. For every dir item inside that gets deleted
4503 		 * later, we do this check again and rmdir it then if possible.
4504 		 * See the use of check_dirs for more details.
4505 		 */
4506 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4507 		if (ret < 0)
4508 			goto out;
4509 		if (ret) {
4510 			ret = send_rmdir(sctx, valid_path);
4511 			if (ret < 0)
4512 				goto out;
4513 		} else if (!is_orphan) {
4514 			ret = orphanize_inode(sctx, sctx->cur_ino,
4515 					sctx->cur_inode_gen, valid_path);
4516 			if (ret < 0)
4517 				goto out;
4518 			is_orphan = 1;
4519 		}
4520 
4521 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4522 			ret = dup_ref(cur, &check_dirs);
4523 			if (ret < 0)
4524 				goto out;
4525 		}
4526 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4527 		   !list_empty(&sctx->deleted_refs)) {
4528 		/*
4529 		 * We have a moved dir. Add the old parent to check_dirs
4530 		 */
4531 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4532 				list);
4533 		ret = dup_ref(cur, &check_dirs);
4534 		if (ret < 0)
4535 			goto out;
4536 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4537 		/*
4538 		 * We have a non dir inode. Go through all deleted refs and
4539 		 * unlink them if they were not already overwritten by other
4540 		 * inodes.
4541 		 */
4542 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4543 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4544 					sctx->cur_ino, sctx->cur_inode_gen,
4545 					cur->name, cur->name_len);
4546 			if (ret < 0)
4547 				goto out;
4548 			if (!ret) {
4549 				/*
4550 				 * If we orphanized any ancestor before, we need
4551 				 * to recompute the full path for deleted names,
4552 				 * since any such path was computed before we
4553 				 * processed any references and orphanized any
4554 				 * ancestor inode.
4555 				 */
4556 				if (orphanized_ancestor) {
4557 					ret = update_ref_path(sctx, cur);
4558 					if (ret < 0)
4559 						goto out;
4560 				}
4561 				ret = send_unlink(sctx, cur->full_path);
4562 				if (ret < 0)
4563 					goto out;
4564 			}
4565 			ret = dup_ref(cur, &check_dirs);
4566 			if (ret < 0)
4567 				goto out;
4568 		}
4569 		/*
4570 		 * If the inode is still orphan, unlink the orphan. This may
4571 		 * happen when a previous inode did overwrite the first ref
4572 		 * of this inode and no new refs were added for the current
4573 		 * inode. Unlinking does not mean that the inode is deleted in
4574 		 * all cases. There may still be links to this inode in other
4575 		 * places.
4576 		 */
4577 		if (is_orphan) {
4578 			ret = send_unlink(sctx, valid_path);
4579 			if (ret < 0)
4580 				goto out;
4581 		}
4582 	}
4583 
4584 	/*
4585 	 * We did collect all parent dirs where cur_inode was once located. We
4586 	 * now go through all these dirs and check if they are pending for
4587 	 * deletion and if it's finally possible to perform the rmdir now.
4588 	 * We also update the inode stats of the parent dirs here.
4589 	 */
4590 	list_for_each_entry(cur, &check_dirs, list) {
4591 		/*
4592 		 * In case we had refs into dirs that were not processed yet,
4593 		 * we don't need to do the utime and rmdir logic for these dirs.
4594 		 * The dir will be processed later.
4595 		 */
4596 		if (cur->dir > sctx->cur_ino)
4597 			continue;
4598 
4599 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4600 		if (ret < 0)
4601 			goto out;
4602 
4603 		if (ret == inode_state_did_create ||
4604 		    ret == inode_state_no_change) {
4605 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4606 			if (ret < 0)
4607 				goto out;
4608 		} else if (ret == inode_state_did_delete &&
4609 			   cur->dir != last_dir_ino_rm) {
4610 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4611 			if (ret < 0)
4612 				goto out;
4613 			if (ret) {
4614 				ret = get_cur_path(sctx, cur->dir,
4615 						   cur->dir_gen, valid_path);
4616 				if (ret < 0)
4617 					goto out;
4618 				ret = send_rmdir(sctx, valid_path);
4619 				if (ret < 0)
4620 					goto out;
4621 				last_dir_ino_rm = cur->dir;
4622 			}
4623 		}
4624 	}
4625 
4626 	ret = 0;
4627 
4628 out:
4629 	__free_recorded_refs(&check_dirs);
4630 	free_recorded_refs(sctx);
4631 	fs_path_free(valid_path);
4632 	return ret;
4633 }
4634 
4635 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4636 {
4637 	const struct recorded_ref *data = k;
4638 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4639 	int result;
4640 
4641 	if (data->dir > ref->dir)
4642 		return 1;
4643 	if (data->dir < ref->dir)
4644 		return -1;
4645 	if (data->dir_gen > ref->dir_gen)
4646 		return 1;
4647 	if (data->dir_gen < ref->dir_gen)
4648 		return -1;
4649 	if (data->name_len > ref->name_len)
4650 		return 1;
4651 	if (data->name_len < ref->name_len)
4652 		return -1;
4653 	result = strcmp(data->name, ref->name);
4654 	if (result > 0)
4655 		return 1;
4656 	if (result < 0)
4657 		return -1;
4658 	return 0;
4659 }
4660 
4661 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4662 {
4663 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4664 
4665 	return rbtree_ref_comp(entry, parent) < 0;
4666 }
4667 
4668 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4669 			      struct fs_path *name, u64 dir, u64 dir_gen,
4670 			      struct send_ctx *sctx)
4671 {
4672 	int ret = 0;
4673 	struct fs_path *path = NULL;
4674 	struct recorded_ref *ref = NULL;
4675 
4676 	path = fs_path_alloc();
4677 	if (!path) {
4678 		ret = -ENOMEM;
4679 		goto out;
4680 	}
4681 
4682 	ref = recorded_ref_alloc();
4683 	if (!ref) {
4684 		ret = -ENOMEM;
4685 		goto out;
4686 	}
4687 
4688 	ret = get_cur_path(sctx, dir, dir_gen, path);
4689 	if (ret < 0)
4690 		goto out;
4691 	ret = fs_path_add_path(path, name);
4692 	if (ret < 0)
4693 		goto out;
4694 
4695 	ref->dir = dir;
4696 	ref->dir_gen = dir_gen;
4697 	set_ref_path(ref, path);
4698 	list_add_tail(&ref->list, refs);
4699 	rb_add(&ref->node, root, rbtree_ref_less);
4700 	ref->root = root;
4701 out:
4702 	if (ret) {
4703 		if (path && (!ref || !ref->full_path))
4704 			fs_path_free(path);
4705 		recorded_ref_free(ref);
4706 	}
4707 	return ret;
4708 }
4709 
4710 static int record_new_ref_if_needed(int num, u64 dir, int index,
4711 				    struct fs_path *name, void *ctx)
4712 {
4713 	int ret = 0;
4714 	struct send_ctx *sctx = ctx;
4715 	struct rb_node *node = NULL;
4716 	struct recorded_ref data;
4717 	struct recorded_ref *ref;
4718 	u64 dir_gen;
4719 
4720 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4721 	if (ret < 0)
4722 		goto out;
4723 
4724 	data.dir = dir;
4725 	data.dir_gen = dir_gen;
4726 	set_ref_path(&data, name);
4727 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4728 	if (node) {
4729 		ref = rb_entry(node, struct recorded_ref, node);
4730 		recorded_ref_free(ref);
4731 	} else {
4732 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4733 					 &sctx->new_refs, name, dir, dir_gen,
4734 					 sctx);
4735 	}
4736 out:
4737 	return ret;
4738 }
4739 
4740 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4741 					struct fs_path *name, void *ctx)
4742 {
4743 	int ret = 0;
4744 	struct send_ctx *sctx = ctx;
4745 	struct rb_node *node = NULL;
4746 	struct recorded_ref data;
4747 	struct recorded_ref *ref;
4748 	u64 dir_gen;
4749 
4750 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4751 	if (ret < 0)
4752 		goto out;
4753 
4754 	data.dir = dir;
4755 	data.dir_gen = dir_gen;
4756 	set_ref_path(&data, name);
4757 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4758 	if (node) {
4759 		ref = rb_entry(node, struct recorded_ref, node);
4760 		recorded_ref_free(ref);
4761 	} else {
4762 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4763 					 &sctx->deleted_refs, name, dir,
4764 					 dir_gen, sctx);
4765 	}
4766 out:
4767 	return ret;
4768 }
4769 
4770 static int record_new_ref(struct send_ctx *sctx)
4771 {
4772 	int ret;
4773 
4774 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4775 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4776 	if (ret < 0)
4777 		goto out;
4778 	ret = 0;
4779 
4780 out:
4781 	return ret;
4782 }
4783 
4784 static int record_deleted_ref(struct send_ctx *sctx)
4785 {
4786 	int ret;
4787 
4788 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4789 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4790 				sctx);
4791 	if (ret < 0)
4792 		goto out;
4793 	ret = 0;
4794 
4795 out:
4796 	return ret;
4797 }
4798 
4799 static int record_changed_ref(struct send_ctx *sctx)
4800 {
4801 	int ret = 0;
4802 
4803 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4804 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4805 	if (ret < 0)
4806 		goto out;
4807 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4808 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4809 	if (ret < 0)
4810 		goto out;
4811 	ret = 0;
4812 
4813 out:
4814 	return ret;
4815 }
4816 
4817 /*
4818  * Record and process all refs at once. Needed when an inode changes the
4819  * generation number, which means that it was deleted and recreated.
4820  */
4821 static int process_all_refs(struct send_ctx *sctx,
4822 			    enum btrfs_compare_tree_result cmd)
4823 {
4824 	int ret = 0;
4825 	int iter_ret = 0;
4826 	struct btrfs_root *root;
4827 	struct btrfs_path *path;
4828 	struct btrfs_key key;
4829 	struct btrfs_key found_key;
4830 	iterate_inode_ref_t cb;
4831 	int pending_move = 0;
4832 
4833 	path = alloc_path_for_send();
4834 	if (!path)
4835 		return -ENOMEM;
4836 
4837 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4838 		root = sctx->send_root;
4839 		cb = record_new_ref_if_needed;
4840 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4841 		root = sctx->parent_root;
4842 		cb = record_deleted_ref_if_needed;
4843 	} else {
4844 		btrfs_err(sctx->send_root->fs_info,
4845 				"Wrong command %d in process_all_refs", cmd);
4846 		ret = -EINVAL;
4847 		goto out;
4848 	}
4849 
4850 	key.objectid = sctx->cmp_key->objectid;
4851 	key.type = BTRFS_INODE_REF_KEY;
4852 	key.offset = 0;
4853 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4854 		if (found_key.objectid != key.objectid ||
4855 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4856 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4857 			break;
4858 
4859 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4860 		if (ret < 0)
4861 			goto out;
4862 	}
4863 	/* Catch error found during iteration */
4864 	if (iter_ret < 0) {
4865 		ret = iter_ret;
4866 		goto out;
4867 	}
4868 	btrfs_release_path(path);
4869 
4870 	/*
4871 	 * We don't actually care about pending_move as we are simply
4872 	 * re-creating this inode and will be rename'ing it into place once we
4873 	 * rename the parent directory.
4874 	 */
4875 	ret = process_recorded_refs(sctx, &pending_move);
4876 out:
4877 	btrfs_free_path(path);
4878 	return ret;
4879 }
4880 
4881 static int send_set_xattr(struct send_ctx *sctx,
4882 			  struct fs_path *path,
4883 			  const char *name, int name_len,
4884 			  const char *data, int data_len)
4885 {
4886 	int ret = 0;
4887 
4888 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4889 	if (ret < 0)
4890 		goto out;
4891 
4892 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4893 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4894 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4895 
4896 	ret = send_cmd(sctx);
4897 
4898 tlv_put_failure:
4899 out:
4900 	return ret;
4901 }
4902 
4903 static int send_remove_xattr(struct send_ctx *sctx,
4904 			  struct fs_path *path,
4905 			  const char *name, int name_len)
4906 {
4907 	int ret = 0;
4908 
4909 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4910 	if (ret < 0)
4911 		goto out;
4912 
4913 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4914 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4915 
4916 	ret = send_cmd(sctx);
4917 
4918 tlv_put_failure:
4919 out:
4920 	return ret;
4921 }
4922 
4923 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4924 			       const char *name, int name_len, const char *data,
4925 			       int data_len, void *ctx)
4926 {
4927 	int ret;
4928 	struct send_ctx *sctx = ctx;
4929 	struct fs_path *p;
4930 	struct posix_acl_xattr_header dummy_acl;
4931 
4932 	/* Capabilities are emitted by finish_inode_if_needed */
4933 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4934 		return 0;
4935 
4936 	p = fs_path_alloc();
4937 	if (!p)
4938 		return -ENOMEM;
4939 
4940 	/*
4941 	 * This hack is needed because empty acls are stored as zero byte
4942 	 * data in xattrs. Problem with that is, that receiving these zero byte
4943 	 * acls will fail later. To fix this, we send a dummy acl list that
4944 	 * only contains the version number and no entries.
4945 	 */
4946 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4947 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4948 		if (data_len == 0) {
4949 			dummy_acl.a_version =
4950 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4951 			data = (char *)&dummy_acl;
4952 			data_len = sizeof(dummy_acl);
4953 		}
4954 	}
4955 
4956 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4957 	if (ret < 0)
4958 		goto out;
4959 
4960 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4961 
4962 out:
4963 	fs_path_free(p);
4964 	return ret;
4965 }
4966 
4967 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4968 				   const char *name, int name_len,
4969 				   const char *data, int data_len, void *ctx)
4970 {
4971 	int ret;
4972 	struct send_ctx *sctx = ctx;
4973 	struct fs_path *p;
4974 
4975 	p = fs_path_alloc();
4976 	if (!p)
4977 		return -ENOMEM;
4978 
4979 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4980 	if (ret < 0)
4981 		goto out;
4982 
4983 	ret = send_remove_xattr(sctx, p, name, name_len);
4984 
4985 out:
4986 	fs_path_free(p);
4987 	return ret;
4988 }
4989 
4990 static int process_new_xattr(struct send_ctx *sctx)
4991 {
4992 	int ret = 0;
4993 
4994 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4995 			       __process_new_xattr, sctx);
4996 
4997 	return ret;
4998 }
4999 
5000 static int process_deleted_xattr(struct send_ctx *sctx)
5001 {
5002 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
5003 				__process_deleted_xattr, sctx);
5004 }
5005 
5006 struct find_xattr_ctx {
5007 	const char *name;
5008 	int name_len;
5009 	int found_idx;
5010 	char *found_data;
5011 	int found_data_len;
5012 };
5013 
5014 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5015 			int name_len, const char *data, int data_len, void *vctx)
5016 {
5017 	struct find_xattr_ctx *ctx = vctx;
5018 
5019 	if (name_len == ctx->name_len &&
5020 	    strncmp(name, ctx->name, name_len) == 0) {
5021 		ctx->found_idx = num;
5022 		ctx->found_data_len = data_len;
5023 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5024 		if (!ctx->found_data)
5025 			return -ENOMEM;
5026 		return 1;
5027 	}
5028 	return 0;
5029 }
5030 
5031 static int find_xattr(struct btrfs_root *root,
5032 		      struct btrfs_path *path,
5033 		      struct btrfs_key *key,
5034 		      const char *name, int name_len,
5035 		      char **data, int *data_len)
5036 {
5037 	int ret;
5038 	struct find_xattr_ctx ctx;
5039 
5040 	ctx.name = name;
5041 	ctx.name_len = name_len;
5042 	ctx.found_idx = -1;
5043 	ctx.found_data = NULL;
5044 	ctx.found_data_len = 0;
5045 
5046 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5047 	if (ret < 0)
5048 		return ret;
5049 
5050 	if (ctx.found_idx == -1)
5051 		return -ENOENT;
5052 	if (data) {
5053 		*data = ctx.found_data;
5054 		*data_len = ctx.found_data_len;
5055 	} else {
5056 		kfree(ctx.found_data);
5057 	}
5058 	return ctx.found_idx;
5059 }
5060 
5061 
5062 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5063 				       const char *name, int name_len,
5064 				       const char *data, int data_len,
5065 				       void *ctx)
5066 {
5067 	int ret;
5068 	struct send_ctx *sctx = ctx;
5069 	char *found_data = NULL;
5070 	int found_data_len  = 0;
5071 
5072 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5073 			 sctx->cmp_key, name, name_len, &found_data,
5074 			 &found_data_len);
5075 	if (ret == -ENOENT) {
5076 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5077 					  data_len, ctx);
5078 	} else if (ret >= 0) {
5079 		if (data_len != found_data_len ||
5080 		    memcmp(data, found_data, data_len)) {
5081 			ret = __process_new_xattr(num, di_key, name, name_len,
5082 						  data, data_len, ctx);
5083 		} else {
5084 			ret = 0;
5085 		}
5086 	}
5087 
5088 	kfree(found_data);
5089 	return ret;
5090 }
5091 
5092 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5093 					   const char *name, int name_len,
5094 					   const char *data, int data_len,
5095 					   void *ctx)
5096 {
5097 	int ret;
5098 	struct send_ctx *sctx = ctx;
5099 
5100 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5101 			 name, name_len, NULL, NULL);
5102 	if (ret == -ENOENT)
5103 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5104 					      data_len, ctx);
5105 	else if (ret >= 0)
5106 		ret = 0;
5107 
5108 	return ret;
5109 }
5110 
5111 static int process_changed_xattr(struct send_ctx *sctx)
5112 {
5113 	int ret = 0;
5114 
5115 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5116 			__process_changed_new_xattr, sctx);
5117 	if (ret < 0)
5118 		goto out;
5119 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5120 			__process_changed_deleted_xattr, sctx);
5121 
5122 out:
5123 	return ret;
5124 }
5125 
5126 static int process_all_new_xattrs(struct send_ctx *sctx)
5127 {
5128 	int ret = 0;
5129 	int iter_ret = 0;
5130 	struct btrfs_root *root;
5131 	struct btrfs_path *path;
5132 	struct btrfs_key key;
5133 	struct btrfs_key found_key;
5134 
5135 	path = alloc_path_for_send();
5136 	if (!path)
5137 		return -ENOMEM;
5138 
5139 	root = sctx->send_root;
5140 
5141 	key.objectid = sctx->cmp_key->objectid;
5142 	key.type = BTRFS_XATTR_ITEM_KEY;
5143 	key.offset = 0;
5144 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5145 		if (found_key.objectid != key.objectid ||
5146 		    found_key.type != key.type) {
5147 			ret = 0;
5148 			break;
5149 		}
5150 
5151 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5152 		if (ret < 0)
5153 			break;
5154 	}
5155 	/* Catch error found during iteration */
5156 	if (iter_ret < 0)
5157 		ret = iter_ret;
5158 
5159 	btrfs_free_path(path);
5160 	return ret;
5161 }
5162 
5163 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5164 		       struct fsverity_descriptor *desc)
5165 {
5166 	int ret;
5167 
5168 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5169 	if (ret < 0)
5170 		goto out;
5171 
5172 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5173 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5174 			le8_to_cpu(desc->hash_algorithm));
5175 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5176 			1U << le8_to_cpu(desc->log_blocksize));
5177 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5178 			le8_to_cpu(desc->salt_size));
5179 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5180 			le32_to_cpu(desc->sig_size));
5181 
5182 	ret = send_cmd(sctx);
5183 
5184 tlv_put_failure:
5185 out:
5186 	return ret;
5187 }
5188 
5189 static int process_verity(struct send_ctx *sctx)
5190 {
5191 	int ret = 0;
5192 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5193 	struct inode *inode;
5194 	struct fs_path *p;
5195 
5196 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5197 	if (IS_ERR(inode))
5198 		return PTR_ERR(inode);
5199 
5200 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5201 	if (ret < 0)
5202 		goto iput;
5203 
5204 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205 		ret = -EMSGSIZE;
5206 		goto iput;
5207 	}
5208 	if (!sctx->verity_descriptor) {
5209 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210 						   GFP_KERNEL);
5211 		if (!sctx->verity_descriptor) {
5212 			ret = -ENOMEM;
5213 			goto iput;
5214 		}
5215 	}
5216 
5217 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5218 	if (ret < 0)
5219 		goto iput;
5220 
5221 	p = fs_path_alloc();
5222 	if (!p) {
5223 		ret = -ENOMEM;
5224 		goto iput;
5225 	}
5226 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5227 	if (ret < 0)
5228 		goto free_path;
5229 
5230 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5231 	if (ret < 0)
5232 		goto free_path;
5233 
5234 free_path:
5235 	fs_path_free(p);
5236 iput:
5237 	iput(inode);
5238 	return ret;
5239 }
5240 
5241 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242 {
5243 	return sctx->send_max_size - SZ_16K;
5244 }
5245 
5246 static int put_data_header(struct send_ctx *sctx, u32 len)
5247 {
5248 	if (WARN_ON_ONCE(sctx->put_data))
5249 		return -EINVAL;
5250 	sctx->put_data = true;
5251 	if (sctx->proto >= 2) {
5252 		/*
5253 		 * Since v2, the data attribute header doesn't include a length,
5254 		 * it is implicitly to the end of the command.
5255 		 */
5256 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257 			return -EOVERFLOW;
5258 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259 		sctx->send_size += sizeof(__le16);
5260 	} else {
5261 		struct btrfs_tlv_header *hdr;
5262 
5263 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264 			return -EOVERFLOW;
5265 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267 		put_unaligned_le16(len, &hdr->tlv_len);
5268 		sctx->send_size += sizeof(*hdr);
5269 	}
5270 	return 0;
5271 }
5272 
5273 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274 {
5275 	struct btrfs_root *root = sctx->send_root;
5276 	struct btrfs_fs_info *fs_info = root->fs_info;
5277 	struct page *page;
5278 	pgoff_t index = offset >> PAGE_SHIFT;
5279 	pgoff_t last_index;
5280 	unsigned pg_offset = offset_in_page(offset);
5281 	int ret;
5282 
5283 	ret = put_data_header(sctx, len);
5284 	if (ret)
5285 		return ret;
5286 
5287 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5288 
5289 	while (index <= last_index) {
5290 		unsigned cur_len = min_t(unsigned, len,
5291 					 PAGE_SIZE - pg_offset);
5292 
5293 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5294 		if (!page) {
5295 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5296 						  &sctx->ra, NULL, index,
5297 						  last_index + 1 - index);
5298 
5299 			page = find_or_create_page(sctx->cur_inode->i_mapping,
5300 						   index, GFP_KERNEL);
5301 			if (!page) {
5302 				ret = -ENOMEM;
5303 				break;
5304 			}
5305 		}
5306 
5307 		if (PageReadahead(page))
5308 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5309 						   &sctx->ra, NULL, page_folio(page),
5310 						   index, last_index + 1 - index);
5311 
5312 		if (!PageUptodate(page)) {
5313 			btrfs_read_folio(NULL, page_folio(page));
5314 			lock_page(page);
5315 			if (!PageUptodate(page)) {
5316 				unlock_page(page);
5317 				btrfs_err(fs_info,
5318 			"send: IO error at offset %llu for inode %llu root %llu",
5319 					page_offset(page), sctx->cur_ino,
5320 					sctx->send_root->root_key.objectid);
5321 				put_page(page);
5322 				ret = -EIO;
5323 				break;
5324 			}
5325 		}
5326 
5327 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5328 				 pg_offset, cur_len);
5329 		unlock_page(page);
5330 		put_page(page);
5331 		index++;
5332 		pg_offset = 0;
5333 		len -= cur_len;
5334 		sctx->send_size += cur_len;
5335 	}
5336 
5337 	return ret;
5338 }
5339 
5340 /*
5341  * Read some bytes from the current inode/file and send a write command to
5342  * user space.
5343  */
5344 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5345 {
5346 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5347 	int ret = 0;
5348 	struct fs_path *p;
5349 
5350 	p = fs_path_alloc();
5351 	if (!p)
5352 		return -ENOMEM;
5353 
5354 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5355 
5356 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5357 	if (ret < 0)
5358 		goto out;
5359 
5360 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5361 	if (ret < 0)
5362 		goto out;
5363 
5364 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5365 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5366 	ret = put_file_data(sctx, offset, len);
5367 	if (ret < 0)
5368 		goto out;
5369 
5370 	ret = send_cmd(sctx);
5371 
5372 tlv_put_failure:
5373 out:
5374 	fs_path_free(p);
5375 	return ret;
5376 }
5377 
5378 /*
5379  * Send a clone command to user space.
5380  */
5381 static int send_clone(struct send_ctx *sctx,
5382 		      u64 offset, u32 len,
5383 		      struct clone_root *clone_root)
5384 {
5385 	int ret = 0;
5386 	struct fs_path *p;
5387 	u64 gen;
5388 
5389 	btrfs_debug(sctx->send_root->fs_info,
5390 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5391 		    offset, len, clone_root->root->root_key.objectid,
5392 		    clone_root->ino, clone_root->offset);
5393 
5394 	p = fs_path_alloc();
5395 	if (!p)
5396 		return -ENOMEM;
5397 
5398 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5399 	if (ret < 0)
5400 		goto out;
5401 
5402 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5403 	if (ret < 0)
5404 		goto out;
5405 
5406 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5407 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5408 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5409 
5410 	if (clone_root->root == sctx->send_root) {
5411 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5412 		if (ret < 0)
5413 			goto out;
5414 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5415 	} else {
5416 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5417 	}
5418 	if (ret < 0)
5419 		goto out;
5420 
5421 	/*
5422 	 * If the parent we're using has a received_uuid set then use that as
5423 	 * our clone source as that is what we will look for when doing a
5424 	 * receive.
5425 	 *
5426 	 * This covers the case that we create a snapshot off of a received
5427 	 * subvolume and then use that as the parent and try to receive on a
5428 	 * different host.
5429 	 */
5430 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5431 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5432 			     clone_root->root->root_item.received_uuid);
5433 	else
5434 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5435 			     clone_root->root->root_item.uuid);
5436 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5437 		    btrfs_root_ctransid(&clone_root->root->root_item));
5438 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5439 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5440 			clone_root->offset);
5441 
5442 	ret = send_cmd(sctx);
5443 
5444 tlv_put_failure:
5445 out:
5446 	fs_path_free(p);
5447 	return ret;
5448 }
5449 
5450 /*
5451  * Send an update extent command to user space.
5452  */
5453 static int send_update_extent(struct send_ctx *sctx,
5454 			      u64 offset, u32 len)
5455 {
5456 	int ret = 0;
5457 	struct fs_path *p;
5458 
5459 	p = fs_path_alloc();
5460 	if (!p)
5461 		return -ENOMEM;
5462 
5463 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5464 	if (ret < 0)
5465 		goto out;
5466 
5467 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5468 	if (ret < 0)
5469 		goto out;
5470 
5471 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5472 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5473 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5474 
5475 	ret = send_cmd(sctx);
5476 
5477 tlv_put_failure:
5478 out:
5479 	fs_path_free(p);
5480 	return ret;
5481 }
5482 
5483 static int send_hole(struct send_ctx *sctx, u64 end)
5484 {
5485 	struct fs_path *p = NULL;
5486 	u64 read_size = max_send_read_size(sctx);
5487 	u64 offset = sctx->cur_inode_last_extent;
5488 	int ret = 0;
5489 
5490 	/*
5491 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5492 	 * fallocate (for extent preallocation and hole punching), sending a
5493 	 * write of zeroes starting at EOF or beyond would later require issuing
5494 	 * a truncate operation which would undo the write and achieve nothing.
5495 	 */
5496 	if (offset >= sctx->cur_inode_size)
5497 		return 0;
5498 
5499 	/*
5500 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5501 	 * after the i_size.
5502 	 */
5503 	end = min_t(u64, end, sctx->cur_inode_size);
5504 
5505 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5506 		return send_update_extent(sctx, offset, end - offset);
5507 
5508 	p = fs_path_alloc();
5509 	if (!p)
5510 		return -ENOMEM;
5511 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5512 	if (ret < 0)
5513 		goto tlv_put_failure;
5514 	while (offset < end) {
5515 		u64 len = min(end - offset, read_size);
5516 
5517 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5518 		if (ret < 0)
5519 			break;
5520 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5521 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5522 		ret = put_data_header(sctx, len);
5523 		if (ret < 0)
5524 			break;
5525 		memset(sctx->send_buf + sctx->send_size, 0, len);
5526 		sctx->send_size += len;
5527 		ret = send_cmd(sctx);
5528 		if (ret < 0)
5529 			break;
5530 		offset += len;
5531 	}
5532 	sctx->cur_inode_next_write_offset = offset;
5533 tlv_put_failure:
5534 	fs_path_free(p);
5535 	return ret;
5536 }
5537 
5538 static int send_encoded_inline_extent(struct send_ctx *sctx,
5539 				      struct btrfs_path *path, u64 offset,
5540 				      u64 len)
5541 {
5542 	struct btrfs_root *root = sctx->send_root;
5543 	struct btrfs_fs_info *fs_info = root->fs_info;
5544 	struct inode *inode;
5545 	struct fs_path *fspath;
5546 	struct extent_buffer *leaf = path->nodes[0];
5547 	struct btrfs_key key;
5548 	struct btrfs_file_extent_item *ei;
5549 	u64 ram_bytes;
5550 	size_t inline_size;
5551 	int ret;
5552 
5553 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5554 	if (IS_ERR(inode))
5555 		return PTR_ERR(inode);
5556 
5557 	fspath = fs_path_alloc();
5558 	if (!fspath) {
5559 		ret = -ENOMEM;
5560 		goto out;
5561 	}
5562 
5563 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5564 	if (ret < 0)
5565 		goto out;
5566 
5567 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5568 	if (ret < 0)
5569 		goto out;
5570 
5571 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5573 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5574 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5575 
5576 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5577 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5578 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5579 		    min(key.offset + ram_bytes - offset, len));
5580 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5581 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5582 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5583 				btrfs_file_extent_compression(leaf, ei));
5584 	if (ret < 0)
5585 		goto out;
5586 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5587 
5588 	ret = put_data_header(sctx, inline_size);
5589 	if (ret < 0)
5590 		goto out;
5591 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5592 			   btrfs_file_extent_inline_start(ei), inline_size);
5593 	sctx->send_size += inline_size;
5594 
5595 	ret = send_cmd(sctx);
5596 
5597 tlv_put_failure:
5598 out:
5599 	fs_path_free(fspath);
5600 	iput(inode);
5601 	return ret;
5602 }
5603 
5604 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5605 			       u64 offset, u64 len)
5606 {
5607 	struct btrfs_root *root = sctx->send_root;
5608 	struct btrfs_fs_info *fs_info = root->fs_info;
5609 	struct inode *inode;
5610 	struct fs_path *fspath;
5611 	struct extent_buffer *leaf = path->nodes[0];
5612 	struct btrfs_key key;
5613 	struct btrfs_file_extent_item *ei;
5614 	u64 disk_bytenr, disk_num_bytes;
5615 	u32 data_offset;
5616 	struct btrfs_cmd_header *hdr;
5617 	u32 crc;
5618 	int ret;
5619 
5620 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5621 	if (IS_ERR(inode))
5622 		return PTR_ERR(inode);
5623 
5624 	fspath = fs_path_alloc();
5625 	if (!fspath) {
5626 		ret = -ENOMEM;
5627 		goto out;
5628 	}
5629 
5630 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5631 	if (ret < 0)
5632 		goto out;
5633 
5634 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5635 	if (ret < 0)
5636 		goto out;
5637 
5638 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5639 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5640 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5641 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5642 
5643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5645 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5646 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5647 			len));
5648 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5649 		    btrfs_file_extent_ram_bytes(leaf, ei));
5650 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5651 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5652 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5653 				btrfs_file_extent_compression(leaf, ei));
5654 	if (ret < 0)
5655 		goto out;
5656 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5657 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5658 
5659 	ret = put_data_header(sctx, disk_num_bytes);
5660 	if (ret < 0)
5661 		goto out;
5662 
5663 	/*
5664 	 * We want to do I/O directly into the send buffer, so get the next page
5665 	 * boundary in the send buffer. This means that there may be a gap
5666 	 * between the beginning of the command and the file data.
5667 	 */
5668 	data_offset = PAGE_ALIGN(sctx->send_size);
5669 	if (data_offset > sctx->send_max_size ||
5670 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5671 		ret = -EOVERFLOW;
5672 		goto out;
5673 	}
5674 
5675 	/*
5676 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5677 	 * reading into send_buf.
5678 	 */
5679 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5680 						    disk_bytenr, disk_num_bytes,
5681 						    sctx->send_buf_pages +
5682 						    (data_offset >> PAGE_SHIFT));
5683 	if (ret)
5684 		goto out;
5685 
5686 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5687 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5688 	hdr->crc = 0;
5689 	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5690 	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5691 	hdr->crc = cpu_to_le32(crc);
5692 
5693 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5694 			&sctx->send_off);
5695 	if (!ret) {
5696 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5697 				disk_num_bytes, &sctx->send_off);
5698 	}
5699 	sctx->send_size = 0;
5700 	sctx->put_data = false;
5701 
5702 tlv_put_failure:
5703 out:
5704 	fs_path_free(fspath);
5705 	iput(inode);
5706 	return ret;
5707 }
5708 
5709 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5710 			    const u64 offset, const u64 len)
5711 {
5712 	const u64 end = offset + len;
5713 	struct extent_buffer *leaf = path->nodes[0];
5714 	struct btrfs_file_extent_item *ei;
5715 	u64 read_size = max_send_read_size(sctx);
5716 	u64 sent = 0;
5717 
5718 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5719 		return send_update_extent(sctx, offset, len);
5720 
5721 	ei = btrfs_item_ptr(leaf, path->slots[0],
5722 			    struct btrfs_file_extent_item);
5723 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5724 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5725 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5726 				  BTRFS_FILE_EXTENT_INLINE);
5727 
5728 		/*
5729 		 * Send the compressed extent unless the compressed data is
5730 		 * larger than the decompressed data. This can happen if we're
5731 		 * not sending the entire extent, either because it has been
5732 		 * partially overwritten/truncated or because this is a part of
5733 		 * the extent that we couldn't clone in clone_range().
5734 		 */
5735 		if (is_inline &&
5736 		    btrfs_file_extent_inline_item_len(leaf,
5737 						      path->slots[0]) <= len) {
5738 			return send_encoded_inline_extent(sctx, path, offset,
5739 							  len);
5740 		} else if (!is_inline &&
5741 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5742 			return send_encoded_extent(sctx, path, offset, len);
5743 		}
5744 	}
5745 
5746 	if (sctx->cur_inode == NULL) {
5747 		struct btrfs_root *root = sctx->send_root;
5748 
5749 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5750 		if (IS_ERR(sctx->cur_inode)) {
5751 			int err = PTR_ERR(sctx->cur_inode);
5752 
5753 			sctx->cur_inode = NULL;
5754 			return err;
5755 		}
5756 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5757 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5758 
5759 		/*
5760 		 * It's very likely there are no pages from this inode in the page
5761 		 * cache, so after reading extents and sending their data, we clean
5762 		 * the page cache to avoid trashing the page cache (adding pressure
5763 		 * to the page cache and forcing eviction of other data more useful
5764 		 * for applications).
5765 		 *
5766 		 * We decide if we should clean the page cache simply by checking
5767 		 * if the inode's mapping nrpages is 0 when we first open it, and
5768 		 * not by using something like filemap_range_has_page() before
5769 		 * reading an extent because when we ask the readahead code to
5770 		 * read a given file range, it may (and almost always does) read
5771 		 * pages from beyond that range (see the documentation for
5772 		 * page_cache_sync_readahead()), so it would not be reliable,
5773 		 * because after reading the first extent future calls to
5774 		 * filemap_range_has_page() would return true because the readahead
5775 		 * on the previous extent resulted in reading pages of the current
5776 		 * extent as well.
5777 		 */
5778 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5779 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5780 	}
5781 
5782 	while (sent < len) {
5783 		u64 size = min(len - sent, read_size);
5784 		int ret;
5785 
5786 		ret = send_write(sctx, offset + sent, size);
5787 		if (ret < 0)
5788 			return ret;
5789 		sent += size;
5790 	}
5791 
5792 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5793 		/*
5794 		 * Always operate only on ranges that are a multiple of the page
5795 		 * size. This is not only to prevent zeroing parts of a page in
5796 		 * the case of subpage sector size, but also to guarantee we evict
5797 		 * pages, as passing a range that is smaller than page size does
5798 		 * not evict the respective page (only zeroes part of its content).
5799 		 *
5800 		 * Always start from the end offset of the last range cleared.
5801 		 * This is because the readahead code may (and very often does)
5802 		 * reads pages beyond the range we request for readahead. So if
5803 		 * we have an extent layout like this:
5804 		 *
5805 		 *            [ extent A ] [ extent B ] [ extent C ]
5806 		 *
5807 		 * When we ask page_cache_sync_readahead() to read extent A, it
5808 		 * may also trigger reads for pages of extent B. If we are doing
5809 		 * an incremental send and extent B has not changed between the
5810 		 * parent and send snapshots, some or all of its pages may end
5811 		 * up being read and placed in the page cache. So when truncating
5812 		 * the page cache we always start from the end offset of the
5813 		 * previously processed extent up to the end of the current
5814 		 * extent.
5815 		 */
5816 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5817 					   sctx->page_cache_clear_start,
5818 					   end - 1);
5819 		sctx->page_cache_clear_start = end;
5820 	}
5821 
5822 	return 0;
5823 }
5824 
5825 /*
5826  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5827  * found, call send_set_xattr function to emit it.
5828  *
5829  * Return 0 if there isn't a capability, or when the capability was emitted
5830  * successfully, or < 0 if an error occurred.
5831  */
5832 static int send_capabilities(struct send_ctx *sctx)
5833 {
5834 	struct fs_path *fspath = NULL;
5835 	struct btrfs_path *path;
5836 	struct btrfs_dir_item *di;
5837 	struct extent_buffer *leaf;
5838 	unsigned long data_ptr;
5839 	char *buf = NULL;
5840 	int buf_len;
5841 	int ret = 0;
5842 
5843 	path = alloc_path_for_send();
5844 	if (!path)
5845 		return -ENOMEM;
5846 
5847 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5848 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5849 	if (!di) {
5850 		/* There is no xattr for this inode */
5851 		goto out;
5852 	} else if (IS_ERR(di)) {
5853 		ret = PTR_ERR(di);
5854 		goto out;
5855 	}
5856 
5857 	leaf = path->nodes[0];
5858 	buf_len = btrfs_dir_data_len(leaf, di);
5859 
5860 	fspath = fs_path_alloc();
5861 	buf = kmalloc(buf_len, GFP_KERNEL);
5862 	if (!fspath || !buf) {
5863 		ret = -ENOMEM;
5864 		goto out;
5865 	}
5866 
5867 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5868 	if (ret < 0)
5869 		goto out;
5870 
5871 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5872 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5873 
5874 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5875 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5876 out:
5877 	kfree(buf);
5878 	fs_path_free(fspath);
5879 	btrfs_free_path(path);
5880 	return ret;
5881 }
5882 
5883 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5884 		       struct clone_root *clone_root, const u64 disk_byte,
5885 		       u64 data_offset, u64 offset, u64 len)
5886 {
5887 	struct btrfs_path *path;
5888 	struct btrfs_key key;
5889 	int ret;
5890 	struct btrfs_inode_info info;
5891 	u64 clone_src_i_size = 0;
5892 
5893 	/*
5894 	 * Prevent cloning from a zero offset with a length matching the sector
5895 	 * size because in some scenarios this will make the receiver fail.
5896 	 *
5897 	 * For example, if in the source filesystem the extent at offset 0
5898 	 * has a length of sectorsize and it was written using direct IO, then
5899 	 * it can never be an inline extent (even if compression is enabled).
5900 	 * Then this extent can be cloned in the original filesystem to a non
5901 	 * zero file offset, but it may not be possible to clone in the
5902 	 * destination filesystem because it can be inlined due to compression
5903 	 * on the destination filesystem (as the receiver's write operations are
5904 	 * always done using buffered IO). The same happens when the original
5905 	 * filesystem does not have compression enabled but the destination
5906 	 * filesystem has.
5907 	 */
5908 	if (clone_root->offset == 0 &&
5909 	    len == sctx->send_root->fs_info->sectorsize)
5910 		return send_extent_data(sctx, dst_path, offset, len);
5911 
5912 	path = alloc_path_for_send();
5913 	if (!path)
5914 		return -ENOMEM;
5915 
5916 	/*
5917 	 * There are inodes that have extents that lie behind its i_size. Don't
5918 	 * accept clones from these extents.
5919 	 */
5920 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5921 	btrfs_release_path(path);
5922 	if (ret < 0)
5923 		goto out;
5924 	clone_src_i_size = info.size;
5925 
5926 	/*
5927 	 * We can't send a clone operation for the entire range if we find
5928 	 * extent items in the respective range in the source file that
5929 	 * refer to different extents or if we find holes.
5930 	 * So check for that and do a mix of clone and regular write/copy
5931 	 * operations if needed.
5932 	 *
5933 	 * Example:
5934 	 *
5935 	 * mkfs.btrfs -f /dev/sda
5936 	 * mount /dev/sda /mnt
5937 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5938 	 * cp --reflink=always /mnt/foo /mnt/bar
5939 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5940 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5941 	 *
5942 	 * If when we send the snapshot and we are processing file bar (which
5943 	 * has a higher inode number than foo) we blindly send a clone operation
5944 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5945 	 * a file bar that matches the content of file foo - iow, doesn't match
5946 	 * the content from bar in the original filesystem.
5947 	 */
5948 	key.objectid = clone_root->ino;
5949 	key.type = BTRFS_EXTENT_DATA_KEY;
5950 	key.offset = clone_root->offset;
5951 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5952 	if (ret < 0)
5953 		goto out;
5954 	if (ret > 0 && path->slots[0] > 0) {
5955 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5956 		if (key.objectid == clone_root->ino &&
5957 		    key.type == BTRFS_EXTENT_DATA_KEY)
5958 			path->slots[0]--;
5959 	}
5960 
5961 	while (true) {
5962 		struct extent_buffer *leaf = path->nodes[0];
5963 		int slot = path->slots[0];
5964 		struct btrfs_file_extent_item *ei;
5965 		u8 type;
5966 		u64 ext_len;
5967 		u64 clone_len;
5968 		u64 clone_data_offset;
5969 		bool crossed_src_i_size = false;
5970 
5971 		if (slot >= btrfs_header_nritems(leaf)) {
5972 			ret = btrfs_next_leaf(clone_root->root, path);
5973 			if (ret < 0)
5974 				goto out;
5975 			else if (ret > 0)
5976 				break;
5977 			continue;
5978 		}
5979 
5980 		btrfs_item_key_to_cpu(leaf, &key, slot);
5981 
5982 		/*
5983 		 * We might have an implicit trailing hole (NO_HOLES feature
5984 		 * enabled). We deal with it after leaving this loop.
5985 		 */
5986 		if (key.objectid != clone_root->ino ||
5987 		    key.type != BTRFS_EXTENT_DATA_KEY)
5988 			break;
5989 
5990 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5991 		type = btrfs_file_extent_type(leaf, ei);
5992 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5993 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5994 			ext_len = PAGE_ALIGN(ext_len);
5995 		} else {
5996 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5997 		}
5998 
5999 		if (key.offset + ext_len <= clone_root->offset)
6000 			goto next;
6001 
6002 		if (key.offset > clone_root->offset) {
6003 			/* Implicit hole, NO_HOLES feature enabled. */
6004 			u64 hole_len = key.offset - clone_root->offset;
6005 
6006 			if (hole_len > len)
6007 				hole_len = len;
6008 			ret = send_extent_data(sctx, dst_path, offset,
6009 					       hole_len);
6010 			if (ret < 0)
6011 				goto out;
6012 
6013 			len -= hole_len;
6014 			if (len == 0)
6015 				break;
6016 			offset += hole_len;
6017 			clone_root->offset += hole_len;
6018 			data_offset += hole_len;
6019 		}
6020 
6021 		if (key.offset >= clone_root->offset + len)
6022 			break;
6023 
6024 		if (key.offset >= clone_src_i_size)
6025 			break;
6026 
6027 		if (key.offset + ext_len > clone_src_i_size) {
6028 			ext_len = clone_src_i_size - key.offset;
6029 			crossed_src_i_size = true;
6030 		}
6031 
6032 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6033 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6034 			clone_root->offset = key.offset;
6035 			if (clone_data_offset < data_offset &&
6036 				clone_data_offset + ext_len > data_offset) {
6037 				u64 extent_offset;
6038 
6039 				extent_offset = data_offset - clone_data_offset;
6040 				ext_len -= extent_offset;
6041 				clone_data_offset += extent_offset;
6042 				clone_root->offset += extent_offset;
6043 			}
6044 		}
6045 
6046 		clone_len = min_t(u64, ext_len, len);
6047 
6048 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6049 		    clone_data_offset == data_offset) {
6050 			const u64 src_end = clone_root->offset + clone_len;
6051 			const u64 sectorsize = SZ_64K;
6052 
6053 			/*
6054 			 * We can't clone the last block, when its size is not
6055 			 * sector size aligned, into the middle of a file. If we
6056 			 * do so, the receiver will get a failure (-EINVAL) when
6057 			 * trying to clone or will silently corrupt the data in
6058 			 * the destination file if it's on a kernel without the
6059 			 * fix introduced by commit ac765f83f1397646
6060 			 * ("Btrfs: fix data corruption due to cloning of eof
6061 			 * block).
6062 			 *
6063 			 * So issue a clone of the aligned down range plus a
6064 			 * regular write for the eof block, if we hit that case.
6065 			 *
6066 			 * Also, we use the maximum possible sector size, 64K,
6067 			 * because we don't know what's the sector size of the
6068 			 * filesystem that receives the stream, so we have to
6069 			 * assume the largest possible sector size.
6070 			 */
6071 			if (src_end == clone_src_i_size &&
6072 			    !IS_ALIGNED(src_end, sectorsize) &&
6073 			    offset + clone_len < sctx->cur_inode_size) {
6074 				u64 slen;
6075 
6076 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6077 						  sectorsize);
6078 				if (slen > 0) {
6079 					ret = send_clone(sctx, offset, slen,
6080 							 clone_root);
6081 					if (ret < 0)
6082 						goto out;
6083 				}
6084 				ret = send_extent_data(sctx, dst_path,
6085 						       offset + slen,
6086 						       clone_len - slen);
6087 			} else {
6088 				ret = send_clone(sctx, offset, clone_len,
6089 						 clone_root);
6090 			}
6091 		} else if (crossed_src_i_size && clone_len < len) {
6092 			/*
6093 			 * If we are at i_size of the clone source inode and we
6094 			 * can not clone from it, terminate the loop. This is
6095 			 * to avoid sending two write operations, one with a
6096 			 * length matching clone_len and the final one after
6097 			 * this loop with a length of len - clone_len.
6098 			 *
6099 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6100 			 * was passed to the send ioctl), this helps avoid
6101 			 * sending an encoded write for an offset that is not
6102 			 * sector size aligned, in case the i_size of the source
6103 			 * inode is not sector size aligned. That will make the
6104 			 * receiver fallback to decompression of the data and
6105 			 * writing it using regular buffered IO, therefore while
6106 			 * not incorrect, it's not optimal due decompression and
6107 			 * possible re-compression at the receiver.
6108 			 */
6109 			break;
6110 		} else {
6111 			ret = send_extent_data(sctx, dst_path, offset,
6112 					       clone_len);
6113 		}
6114 
6115 		if (ret < 0)
6116 			goto out;
6117 
6118 		len -= clone_len;
6119 		if (len == 0)
6120 			break;
6121 		offset += clone_len;
6122 		clone_root->offset += clone_len;
6123 
6124 		/*
6125 		 * If we are cloning from the file we are currently processing,
6126 		 * and using the send root as the clone root, we must stop once
6127 		 * the current clone offset reaches the current eof of the file
6128 		 * at the receiver, otherwise we would issue an invalid clone
6129 		 * operation (source range going beyond eof) and cause the
6130 		 * receiver to fail. So if we reach the current eof, bail out
6131 		 * and fallback to a regular write.
6132 		 */
6133 		if (clone_root->root == sctx->send_root &&
6134 		    clone_root->ino == sctx->cur_ino &&
6135 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6136 			break;
6137 
6138 		data_offset += clone_len;
6139 next:
6140 		path->slots[0]++;
6141 	}
6142 
6143 	if (len > 0)
6144 		ret = send_extent_data(sctx, dst_path, offset, len);
6145 	else
6146 		ret = 0;
6147 out:
6148 	btrfs_free_path(path);
6149 	return ret;
6150 }
6151 
6152 static int send_write_or_clone(struct send_ctx *sctx,
6153 			       struct btrfs_path *path,
6154 			       struct btrfs_key *key,
6155 			       struct clone_root *clone_root)
6156 {
6157 	int ret = 0;
6158 	u64 offset = key->offset;
6159 	u64 end;
6160 	u64 bs = sctx->send_root->fs_info->sectorsize;
6161 
6162 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6163 	if (offset >= end)
6164 		return 0;
6165 
6166 	if (clone_root && IS_ALIGNED(end, bs)) {
6167 		struct btrfs_file_extent_item *ei;
6168 		u64 disk_byte;
6169 		u64 data_offset;
6170 
6171 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6172 				    struct btrfs_file_extent_item);
6173 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6174 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6175 		ret = clone_range(sctx, path, clone_root, disk_byte,
6176 				  data_offset, offset, end - offset);
6177 	} else {
6178 		ret = send_extent_data(sctx, path, offset, end - offset);
6179 	}
6180 	sctx->cur_inode_next_write_offset = end;
6181 	return ret;
6182 }
6183 
6184 static int is_extent_unchanged(struct send_ctx *sctx,
6185 			       struct btrfs_path *left_path,
6186 			       struct btrfs_key *ekey)
6187 {
6188 	int ret = 0;
6189 	struct btrfs_key key;
6190 	struct btrfs_path *path = NULL;
6191 	struct extent_buffer *eb;
6192 	int slot;
6193 	struct btrfs_key found_key;
6194 	struct btrfs_file_extent_item *ei;
6195 	u64 left_disknr;
6196 	u64 right_disknr;
6197 	u64 left_offset;
6198 	u64 right_offset;
6199 	u64 left_offset_fixed;
6200 	u64 left_len;
6201 	u64 right_len;
6202 	u64 left_gen;
6203 	u64 right_gen;
6204 	u8 left_type;
6205 	u8 right_type;
6206 
6207 	path = alloc_path_for_send();
6208 	if (!path)
6209 		return -ENOMEM;
6210 
6211 	eb = left_path->nodes[0];
6212 	slot = left_path->slots[0];
6213 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6214 	left_type = btrfs_file_extent_type(eb, ei);
6215 
6216 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6217 		ret = 0;
6218 		goto out;
6219 	}
6220 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6221 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6222 	left_offset = btrfs_file_extent_offset(eb, ei);
6223 	left_gen = btrfs_file_extent_generation(eb, ei);
6224 
6225 	/*
6226 	 * Following comments will refer to these graphics. L is the left
6227 	 * extents which we are checking at the moment. 1-8 are the right
6228 	 * extents that we iterate.
6229 	 *
6230 	 *       |-----L-----|
6231 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6232 	 *
6233 	 *       |-----L-----|
6234 	 * |--1--|-2b-|...(same as above)
6235 	 *
6236 	 * Alternative situation. Happens on files where extents got split.
6237 	 *       |-----L-----|
6238 	 * |-----------7-----------|-6-|
6239 	 *
6240 	 * Alternative situation. Happens on files which got larger.
6241 	 *       |-----L-----|
6242 	 * |-8-|
6243 	 * Nothing follows after 8.
6244 	 */
6245 
6246 	key.objectid = ekey->objectid;
6247 	key.type = BTRFS_EXTENT_DATA_KEY;
6248 	key.offset = ekey->offset;
6249 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6250 	if (ret < 0)
6251 		goto out;
6252 	if (ret) {
6253 		ret = 0;
6254 		goto out;
6255 	}
6256 
6257 	/*
6258 	 * Handle special case where the right side has no extents at all.
6259 	 */
6260 	eb = path->nodes[0];
6261 	slot = path->slots[0];
6262 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6263 	if (found_key.objectid != key.objectid ||
6264 	    found_key.type != key.type) {
6265 		/* If we're a hole then just pretend nothing changed */
6266 		ret = (left_disknr) ? 0 : 1;
6267 		goto out;
6268 	}
6269 
6270 	/*
6271 	 * We're now on 2a, 2b or 7.
6272 	 */
6273 	key = found_key;
6274 	while (key.offset < ekey->offset + left_len) {
6275 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6276 		right_type = btrfs_file_extent_type(eb, ei);
6277 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6278 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6279 			ret = 0;
6280 			goto out;
6281 		}
6282 
6283 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6284 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6285 			right_len = PAGE_ALIGN(right_len);
6286 		} else {
6287 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6288 		}
6289 
6290 		/*
6291 		 * Are we at extent 8? If yes, we know the extent is changed.
6292 		 * This may only happen on the first iteration.
6293 		 */
6294 		if (found_key.offset + right_len <= ekey->offset) {
6295 			/* If we're a hole just pretend nothing changed */
6296 			ret = (left_disknr) ? 0 : 1;
6297 			goto out;
6298 		}
6299 
6300 		/*
6301 		 * We just wanted to see if when we have an inline extent, what
6302 		 * follows it is a regular extent (wanted to check the above
6303 		 * condition for inline extents too). This should normally not
6304 		 * happen but it's possible for example when we have an inline
6305 		 * compressed extent representing data with a size matching
6306 		 * the page size (currently the same as sector size).
6307 		 */
6308 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6309 			ret = 0;
6310 			goto out;
6311 		}
6312 
6313 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6314 		right_offset = btrfs_file_extent_offset(eb, ei);
6315 		right_gen = btrfs_file_extent_generation(eb, ei);
6316 
6317 		left_offset_fixed = left_offset;
6318 		if (key.offset < ekey->offset) {
6319 			/* Fix the right offset for 2a and 7. */
6320 			right_offset += ekey->offset - key.offset;
6321 		} else {
6322 			/* Fix the left offset for all behind 2a and 2b */
6323 			left_offset_fixed += key.offset - ekey->offset;
6324 		}
6325 
6326 		/*
6327 		 * Check if we have the same extent.
6328 		 */
6329 		if (left_disknr != right_disknr ||
6330 		    left_offset_fixed != right_offset ||
6331 		    left_gen != right_gen) {
6332 			ret = 0;
6333 			goto out;
6334 		}
6335 
6336 		/*
6337 		 * Go to the next extent.
6338 		 */
6339 		ret = btrfs_next_item(sctx->parent_root, path);
6340 		if (ret < 0)
6341 			goto out;
6342 		if (!ret) {
6343 			eb = path->nodes[0];
6344 			slot = path->slots[0];
6345 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6346 		}
6347 		if (ret || found_key.objectid != key.objectid ||
6348 		    found_key.type != key.type) {
6349 			key.offset += right_len;
6350 			break;
6351 		}
6352 		if (found_key.offset != key.offset + right_len) {
6353 			ret = 0;
6354 			goto out;
6355 		}
6356 		key = found_key;
6357 	}
6358 
6359 	/*
6360 	 * We're now behind the left extent (treat as unchanged) or at the end
6361 	 * of the right side (treat as changed).
6362 	 */
6363 	if (key.offset >= ekey->offset + left_len)
6364 		ret = 1;
6365 	else
6366 		ret = 0;
6367 
6368 
6369 out:
6370 	btrfs_free_path(path);
6371 	return ret;
6372 }
6373 
6374 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6375 {
6376 	struct btrfs_path *path;
6377 	struct btrfs_root *root = sctx->send_root;
6378 	struct btrfs_key key;
6379 	int ret;
6380 
6381 	path = alloc_path_for_send();
6382 	if (!path)
6383 		return -ENOMEM;
6384 
6385 	sctx->cur_inode_last_extent = 0;
6386 
6387 	key.objectid = sctx->cur_ino;
6388 	key.type = BTRFS_EXTENT_DATA_KEY;
6389 	key.offset = offset;
6390 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6391 	if (ret < 0)
6392 		goto out;
6393 	ret = 0;
6394 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6395 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6396 		goto out;
6397 
6398 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6399 out:
6400 	btrfs_free_path(path);
6401 	return ret;
6402 }
6403 
6404 static int range_is_hole_in_parent(struct send_ctx *sctx,
6405 				   const u64 start,
6406 				   const u64 end)
6407 {
6408 	struct btrfs_path *path;
6409 	struct btrfs_key key;
6410 	struct btrfs_root *root = sctx->parent_root;
6411 	u64 search_start = start;
6412 	int ret;
6413 
6414 	path = alloc_path_for_send();
6415 	if (!path)
6416 		return -ENOMEM;
6417 
6418 	key.objectid = sctx->cur_ino;
6419 	key.type = BTRFS_EXTENT_DATA_KEY;
6420 	key.offset = search_start;
6421 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6422 	if (ret < 0)
6423 		goto out;
6424 	if (ret > 0 && path->slots[0] > 0)
6425 		path->slots[0]--;
6426 
6427 	while (search_start < end) {
6428 		struct extent_buffer *leaf = path->nodes[0];
6429 		int slot = path->slots[0];
6430 		struct btrfs_file_extent_item *fi;
6431 		u64 extent_end;
6432 
6433 		if (slot >= btrfs_header_nritems(leaf)) {
6434 			ret = btrfs_next_leaf(root, path);
6435 			if (ret < 0)
6436 				goto out;
6437 			else if (ret > 0)
6438 				break;
6439 			continue;
6440 		}
6441 
6442 		btrfs_item_key_to_cpu(leaf, &key, slot);
6443 		if (key.objectid < sctx->cur_ino ||
6444 		    key.type < BTRFS_EXTENT_DATA_KEY)
6445 			goto next;
6446 		if (key.objectid > sctx->cur_ino ||
6447 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6448 		    key.offset >= end)
6449 			break;
6450 
6451 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6452 		extent_end = btrfs_file_extent_end(path);
6453 		if (extent_end <= start)
6454 			goto next;
6455 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6456 			search_start = extent_end;
6457 			goto next;
6458 		}
6459 		ret = 0;
6460 		goto out;
6461 next:
6462 		path->slots[0]++;
6463 	}
6464 	ret = 1;
6465 out:
6466 	btrfs_free_path(path);
6467 	return ret;
6468 }
6469 
6470 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6471 			   struct btrfs_key *key)
6472 {
6473 	int ret = 0;
6474 
6475 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6476 		return 0;
6477 
6478 	/*
6479 	 * Get last extent's end offset (exclusive) if we haven't determined it
6480 	 * yet (we're processing the first file extent item that is new), or if
6481 	 * we're at the first slot of a leaf and the last extent's end is less
6482 	 * than the current extent's offset, because we might have skipped
6483 	 * entire leaves that contained only file extent items for our current
6484 	 * inode. These leaves have a generation number smaller (older) than the
6485 	 * one in the current leaf and the leaf our last extent came from, and
6486 	 * are located between these 2 leaves.
6487 	 */
6488 	if ((sctx->cur_inode_last_extent == (u64)-1) ||
6489 	    (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6490 		ret = get_last_extent(sctx, key->offset - 1);
6491 		if (ret)
6492 			return ret;
6493 	}
6494 
6495 	if (sctx->cur_inode_last_extent < key->offset) {
6496 		ret = range_is_hole_in_parent(sctx,
6497 					      sctx->cur_inode_last_extent,
6498 					      key->offset);
6499 		if (ret < 0)
6500 			return ret;
6501 		else if (ret == 0)
6502 			ret = send_hole(sctx, key->offset);
6503 		else
6504 			ret = 0;
6505 	}
6506 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6507 	return ret;
6508 }
6509 
6510 static int process_extent(struct send_ctx *sctx,
6511 			  struct btrfs_path *path,
6512 			  struct btrfs_key *key)
6513 {
6514 	struct clone_root *found_clone = NULL;
6515 	int ret = 0;
6516 
6517 	if (S_ISLNK(sctx->cur_inode_mode))
6518 		return 0;
6519 
6520 	if (sctx->parent_root && !sctx->cur_inode_new) {
6521 		ret = is_extent_unchanged(sctx, path, key);
6522 		if (ret < 0)
6523 			goto out;
6524 		if (ret) {
6525 			ret = 0;
6526 			goto out_hole;
6527 		}
6528 	} else {
6529 		struct btrfs_file_extent_item *ei;
6530 		u8 type;
6531 
6532 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6533 				    struct btrfs_file_extent_item);
6534 		type = btrfs_file_extent_type(path->nodes[0], ei);
6535 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6536 		    type == BTRFS_FILE_EXTENT_REG) {
6537 			/*
6538 			 * The send spec does not have a prealloc command yet,
6539 			 * so just leave a hole for prealloc'ed extents until
6540 			 * we have enough commands queued up to justify rev'ing
6541 			 * the send spec.
6542 			 */
6543 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6544 				ret = 0;
6545 				goto out;
6546 			}
6547 
6548 			/* Have a hole, just skip it. */
6549 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6550 				ret = 0;
6551 				goto out;
6552 			}
6553 		}
6554 	}
6555 
6556 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6557 			sctx->cur_inode_size, &found_clone);
6558 	if (ret != -ENOENT && ret < 0)
6559 		goto out;
6560 
6561 	ret = send_write_or_clone(sctx, path, key, found_clone);
6562 	if (ret)
6563 		goto out;
6564 out_hole:
6565 	ret = maybe_send_hole(sctx, path, key);
6566 out:
6567 	return ret;
6568 }
6569 
6570 static int process_all_extents(struct send_ctx *sctx)
6571 {
6572 	int ret = 0;
6573 	int iter_ret = 0;
6574 	struct btrfs_root *root;
6575 	struct btrfs_path *path;
6576 	struct btrfs_key key;
6577 	struct btrfs_key found_key;
6578 
6579 	root = sctx->send_root;
6580 	path = alloc_path_for_send();
6581 	if (!path)
6582 		return -ENOMEM;
6583 
6584 	key.objectid = sctx->cmp_key->objectid;
6585 	key.type = BTRFS_EXTENT_DATA_KEY;
6586 	key.offset = 0;
6587 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6588 		if (found_key.objectid != key.objectid ||
6589 		    found_key.type != key.type) {
6590 			ret = 0;
6591 			break;
6592 		}
6593 
6594 		ret = process_extent(sctx, path, &found_key);
6595 		if (ret < 0)
6596 			break;
6597 	}
6598 	/* Catch error found during iteration */
6599 	if (iter_ret < 0)
6600 		ret = iter_ret;
6601 
6602 	btrfs_free_path(path);
6603 	return ret;
6604 }
6605 
6606 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6607 					   int *pending_move,
6608 					   int *refs_processed)
6609 {
6610 	int ret = 0;
6611 
6612 	if (sctx->cur_ino == 0)
6613 		goto out;
6614 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6615 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6616 		goto out;
6617 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6618 		goto out;
6619 
6620 	ret = process_recorded_refs(sctx, pending_move);
6621 	if (ret < 0)
6622 		goto out;
6623 
6624 	*refs_processed = 1;
6625 out:
6626 	return ret;
6627 }
6628 
6629 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6630 {
6631 	int ret = 0;
6632 	struct btrfs_inode_info info;
6633 	u64 left_mode;
6634 	u64 left_uid;
6635 	u64 left_gid;
6636 	u64 left_fileattr;
6637 	u64 right_mode;
6638 	u64 right_uid;
6639 	u64 right_gid;
6640 	u64 right_fileattr;
6641 	int need_chmod = 0;
6642 	int need_chown = 0;
6643 	bool need_fileattr = false;
6644 	int need_truncate = 1;
6645 	int pending_move = 0;
6646 	int refs_processed = 0;
6647 
6648 	if (sctx->ignore_cur_inode)
6649 		return 0;
6650 
6651 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6652 					      &refs_processed);
6653 	if (ret < 0)
6654 		goto out;
6655 
6656 	/*
6657 	 * We have processed the refs and thus need to advance send_progress.
6658 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6659 	 * inode into account.
6660 	 *
6661 	 * On the other hand, if our current inode is a directory and couldn't
6662 	 * be moved/renamed because its parent was renamed/moved too and it has
6663 	 * a higher inode number, we can only move/rename our current inode
6664 	 * after we moved/renamed its parent. Therefore in this case operate on
6665 	 * the old path (pre move/rename) of our current inode, and the
6666 	 * move/rename will be performed later.
6667 	 */
6668 	if (refs_processed && !pending_move)
6669 		sctx->send_progress = sctx->cur_ino + 1;
6670 
6671 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6672 		goto out;
6673 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6674 		goto out;
6675 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6676 	if (ret < 0)
6677 		goto out;
6678 	left_mode = info.mode;
6679 	left_uid = info.uid;
6680 	left_gid = info.gid;
6681 	left_fileattr = info.fileattr;
6682 
6683 	if (!sctx->parent_root || sctx->cur_inode_new) {
6684 		need_chown = 1;
6685 		if (!S_ISLNK(sctx->cur_inode_mode))
6686 			need_chmod = 1;
6687 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6688 			need_truncate = 0;
6689 	} else {
6690 		u64 old_size;
6691 
6692 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6693 		if (ret < 0)
6694 			goto out;
6695 		old_size = info.size;
6696 		right_mode = info.mode;
6697 		right_uid = info.uid;
6698 		right_gid = info.gid;
6699 		right_fileattr = info.fileattr;
6700 
6701 		if (left_uid != right_uid || left_gid != right_gid)
6702 			need_chown = 1;
6703 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6704 			need_chmod = 1;
6705 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6706 			need_fileattr = true;
6707 		if ((old_size == sctx->cur_inode_size) ||
6708 		    (sctx->cur_inode_size > old_size &&
6709 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6710 			need_truncate = 0;
6711 	}
6712 
6713 	if (S_ISREG(sctx->cur_inode_mode)) {
6714 		if (need_send_hole(sctx)) {
6715 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6716 			    sctx->cur_inode_last_extent <
6717 			    sctx->cur_inode_size) {
6718 				ret = get_last_extent(sctx, (u64)-1);
6719 				if (ret)
6720 					goto out;
6721 			}
6722 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6723 				ret = range_is_hole_in_parent(sctx,
6724 						      sctx->cur_inode_last_extent,
6725 						      sctx->cur_inode_size);
6726 				if (ret < 0) {
6727 					goto out;
6728 				} else if (ret == 0) {
6729 					ret = send_hole(sctx, sctx->cur_inode_size);
6730 					if (ret < 0)
6731 						goto out;
6732 				} else {
6733 					/* Range is already a hole, skip. */
6734 					ret = 0;
6735 				}
6736 			}
6737 		}
6738 		if (need_truncate) {
6739 			ret = send_truncate(sctx, sctx->cur_ino,
6740 					    sctx->cur_inode_gen,
6741 					    sctx->cur_inode_size);
6742 			if (ret < 0)
6743 				goto out;
6744 		}
6745 	}
6746 
6747 	if (need_chown) {
6748 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6749 				left_uid, left_gid);
6750 		if (ret < 0)
6751 			goto out;
6752 	}
6753 	if (need_chmod) {
6754 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6755 				left_mode);
6756 		if (ret < 0)
6757 			goto out;
6758 	}
6759 	if (need_fileattr) {
6760 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6761 				    left_fileattr);
6762 		if (ret < 0)
6763 			goto out;
6764 	}
6765 
6766 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6767 	    && sctx->cur_inode_needs_verity) {
6768 		ret = process_verity(sctx);
6769 		if (ret < 0)
6770 			goto out;
6771 	}
6772 
6773 	ret = send_capabilities(sctx);
6774 	if (ret < 0)
6775 		goto out;
6776 
6777 	/*
6778 	 * If other directory inodes depended on our current directory
6779 	 * inode's move/rename, now do their move/rename operations.
6780 	 */
6781 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6782 		ret = apply_children_dir_moves(sctx);
6783 		if (ret)
6784 			goto out;
6785 		/*
6786 		 * Need to send that every time, no matter if it actually
6787 		 * changed between the two trees as we have done changes to
6788 		 * the inode before. If our inode is a directory and it's
6789 		 * waiting to be moved/renamed, we will send its utimes when
6790 		 * it's moved/renamed, therefore we don't need to do it here.
6791 		 */
6792 		sctx->send_progress = sctx->cur_ino + 1;
6793 
6794 		/*
6795 		 * If the current inode is a non-empty directory, delay issuing
6796 		 * the utimes command for it, as it's very likely we have inodes
6797 		 * with an higher number inside it. We want to issue the utimes
6798 		 * command only after adding all dentries to it.
6799 		 */
6800 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6801 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6802 		else
6803 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6804 
6805 		if (ret < 0)
6806 			goto out;
6807 	}
6808 
6809 out:
6810 	if (!ret)
6811 		ret = trim_dir_utimes_cache(sctx);
6812 
6813 	return ret;
6814 }
6815 
6816 static void close_current_inode(struct send_ctx *sctx)
6817 {
6818 	u64 i_size;
6819 
6820 	if (sctx->cur_inode == NULL)
6821 		return;
6822 
6823 	i_size = i_size_read(sctx->cur_inode);
6824 
6825 	/*
6826 	 * If we are doing an incremental send, we may have extents between the
6827 	 * last processed extent and the i_size that have not been processed
6828 	 * because they haven't changed but we may have read some of their pages
6829 	 * through readahead, see the comments at send_extent_data().
6830 	 */
6831 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6832 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6833 					   sctx->page_cache_clear_start,
6834 					   round_up(i_size, PAGE_SIZE) - 1);
6835 
6836 	iput(sctx->cur_inode);
6837 	sctx->cur_inode = NULL;
6838 }
6839 
6840 static int changed_inode(struct send_ctx *sctx,
6841 			 enum btrfs_compare_tree_result result)
6842 {
6843 	int ret = 0;
6844 	struct btrfs_key *key = sctx->cmp_key;
6845 	struct btrfs_inode_item *left_ii = NULL;
6846 	struct btrfs_inode_item *right_ii = NULL;
6847 	u64 left_gen = 0;
6848 	u64 right_gen = 0;
6849 
6850 	close_current_inode(sctx);
6851 
6852 	sctx->cur_ino = key->objectid;
6853 	sctx->cur_inode_new_gen = false;
6854 	sctx->cur_inode_last_extent = (u64)-1;
6855 	sctx->cur_inode_next_write_offset = 0;
6856 	sctx->ignore_cur_inode = false;
6857 
6858 	/*
6859 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6860 	 * functions that the current inode's refs are not updated yet. Later,
6861 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6862 	 */
6863 	sctx->send_progress = sctx->cur_ino;
6864 
6865 	if (result == BTRFS_COMPARE_TREE_NEW ||
6866 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6867 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6868 				sctx->left_path->slots[0],
6869 				struct btrfs_inode_item);
6870 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6871 				left_ii);
6872 	} else {
6873 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6874 				sctx->right_path->slots[0],
6875 				struct btrfs_inode_item);
6876 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6877 				right_ii);
6878 	}
6879 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6880 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6881 				sctx->right_path->slots[0],
6882 				struct btrfs_inode_item);
6883 
6884 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6885 				right_ii);
6886 
6887 		/*
6888 		 * The cur_ino = root dir case is special here. We can't treat
6889 		 * the inode as deleted+reused because it would generate a
6890 		 * stream that tries to delete/mkdir the root dir.
6891 		 */
6892 		if (left_gen != right_gen &&
6893 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6894 			sctx->cur_inode_new_gen = true;
6895 	}
6896 
6897 	/*
6898 	 * Normally we do not find inodes with a link count of zero (orphans)
6899 	 * because the most common case is to create a snapshot and use it
6900 	 * for a send operation. However other less common use cases involve
6901 	 * using a subvolume and send it after turning it to RO mode just
6902 	 * after deleting all hard links of a file while holding an open
6903 	 * file descriptor against it or turning a RO snapshot into RW mode,
6904 	 * keep an open file descriptor against a file, delete it and then
6905 	 * turn the snapshot back to RO mode before using it for a send
6906 	 * operation. The former is what the receiver operation does.
6907 	 * Therefore, if we want to send these snapshots soon after they're
6908 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6909 	 * can appear not only in the send snapshot but also in the parent
6910 	 * snapshot. Here are several cases:
6911 	 *
6912 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6913 	 *       |  send snapshot  | action
6914 	 * --------------------------------
6915 	 * nlink |        0        | ignore
6916 	 *
6917 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6918 	 *       | parent snapshot | action
6919 	 * ----------------------------------
6920 	 * nlink |        0        | as usual
6921 	 * Note: No unlinks will be sent because there're no paths for it.
6922 	 *
6923 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6924 	 *           |       | parent snapshot | send snapshot | action
6925 	 * -----------------------------------------------------------------------
6926 	 * subcase 1 | nlink |        0        |       0       | ignore
6927 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6928 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6929 	 *
6930 	 */
6931 	if (result == BTRFS_COMPARE_TREE_NEW) {
6932 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6933 			sctx->ignore_cur_inode = true;
6934 			goto out;
6935 		}
6936 		sctx->cur_inode_gen = left_gen;
6937 		sctx->cur_inode_new = true;
6938 		sctx->cur_inode_deleted = false;
6939 		sctx->cur_inode_size = btrfs_inode_size(
6940 				sctx->left_path->nodes[0], left_ii);
6941 		sctx->cur_inode_mode = btrfs_inode_mode(
6942 				sctx->left_path->nodes[0], left_ii);
6943 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6944 				sctx->left_path->nodes[0], left_ii);
6945 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6946 			ret = send_create_inode_if_needed(sctx);
6947 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6948 		sctx->cur_inode_gen = right_gen;
6949 		sctx->cur_inode_new = false;
6950 		sctx->cur_inode_deleted = true;
6951 		sctx->cur_inode_size = btrfs_inode_size(
6952 				sctx->right_path->nodes[0], right_ii);
6953 		sctx->cur_inode_mode = btrfs_inode_mode(
6954 				sctx->right_path->nodes[0], right_ii);
6955 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6956 		u32 new_nlinks, old_nlinks;
6957 
6958 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6959 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6960 		if (new_nlinks == 0 && old_nlinks == 0) {
6961 			sctx->ignore_cur_inode = true;
6962 			goto out;
6963 		} else if (new_nlinks == 0 || old_nlinks == 0) {
6964 			sctx->cur_inode_new_gen = 1;
6965 		}
6966 		/*
6967 		 * We need to do some special handling in case the inode was
6968 		 * reported as changed with a changed generation number. This
6969 		 * means that the original inode was deleted and new inode
6970 		 * reused the same inum. So we have to treat the old inode as
6971 		 * deleted and the new one as new.
6972 		 */
6973 		if (sctx->cur_inode_new_gen) {
6974 			/*
6975 			 * First, process the inode as if it was deleted.
6976 			 */
6977 			if (old_nlinks > 0) {
6978 				sctx->cur_inode_gen = right_gen;
6979 				sctx->cur_inode_new = false;
6980 				sctx->cur_inode_deleted = true;
6981 				sctx->cur_inode_size = btrfs_inode_size(
6982 						sctx->right_path->nodes[0], right_ii);
6983 				sctx->cur_inode_mode = btrfs_inode_mode(
6984 						sctx->right_path->nodes[0], right_ii);
6985 				ret = process_all_refs(sctx,
6986 						BTRFS_COMPARE_TREE_DELETED);
6987 				if (ret < 0)
6988 					goto out;
6989 			}
6990 
6991 			/*
6992 			 * Now process the inode as if it was new.
6993 			 */
6994 			if (new_nlinks > 0) {
6995 				sctx->cur_inode_gen = left_gen;
6996 				sctx->cur_inode_new = true;
6997 				sctx->cur_inode_deleted = false;
6998 				sctx->cur_inode_size = btrfs_inode_size(
6999 						sctx->left_path->nodes[0],
7000 						left_ii);
7001 				sctx->cur_inode_mode = btrfs_inode_mode(
7002 						sctx->left_path->nodes[0],
7003 						left_ii);
7004 				sctx->cur_inode_rdev = btrfs_inode_rdev(
7005 						sctx->left_path->nodes[0],
7006 						left_ii);
7007 				ret = send_create_inode_if_needed(sctx);
7008 				if (ret < 0)
7009 					goto out;
7010 
7011 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7012 				if (ret < 0)
7013 					goto out;
7014 				/*
7015 				 * Advance send_progress now as we did not get
7016 				 * into process_recorded_refs_if_needed in the
7017 				 * new_gen case.
7018 				 */
7019 				sctx->send_progress = sctx->cur_ino + 1;
7020 
7021 				/*
7022 				 * Now process all extents and xattrs of the
7023 				 * inode as if they were all new.
7024 				 */
7025 				ret = process_all_extents(sctx);
7026 				if (ret < 0)
7027 					goto out;
7028 				ret = process_all_new_xattrs(sctx);
7029 				if (ret < 0)
7030 					goto out;
7031 			}
7032 		} else {
7033 			sctx->cur_inode_gen = left_gen;
7034 			sctx->cur_inode_new = false;
7035 			sctx->cur_inode_new_gen = false;
7036 			sctx->cur_inode_deleted = false;
7037 			sctx->cur_inode_size = btrfs_inode_size(
7038 					sctx->left_path->nodes[0], left_ii);
7039 			sctx->cur_inode_mode = btrfs_inode_mode(
7040 					sctx->left_path->nodes[0], left_ii);
7041 		}
7042 	}
7043 
7044 out:
7045 	return ret;
7046 }
7047 
7048 /*
7049  * We have to process new refs before deleted refs, but compare_trees gives us
7050  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7051  * first and later process them in process_recorded_refs.
7052  * For the cur_inode_new_gen case, we skip recording completely because
7053  * changed_inode did already initiate processing of refs. The reason for this is
7054  * that in this case, compare_tree actually compares the refs of 2 different
7055  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7056  * refs of the right tree as deleted and all refs of the left tree as new.
7057  */
7058 static int changed_ref(struct send_ctx *sctx,
7059 		       enum btrfs_compare_tree_result result)
7060 {
7061 	int ret = 0;
7062 
7063 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7064 		inconsistent_snapshot_error(sctx, result, "reference");
7065 		return -EIO;
7066 	}
7067 
7068 	if (!sctx->cur_inode_new_gen &&
7069 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7070 		if (result == BTRFS_COMPARE_TREE_NEW)
7071 			ret = record_new_ref(sctx);
7072 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7073 			ret = record_deleted_ref(sctx);
7074 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7075 			ret = record_changed_ref(sctx);
7076 	}
7077 
7078 	return ret;
7079 }
7080 
7081 /*
7082  * Process new/deleted/changed xattrs. We skip processing in the
7083  * cur_inode_new_gen case because changed_inode did already initiate processing
7084  * of xattrs. The reason is the same as in changed_ref
7085  */
7086 static int changed_xattr(struct send_ctx *sctx,
7087 			 enum btrfs_compare_tree_result result)
7088 {
7089 	int ret = 0;
7090 
7091 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7092 		inconsistent_snapshot_error(sctx, result, "xattr");
7093 		return -EIO;
7094 	}
7095 
7096 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7097 		if (result == BTRFS_COMPARE_TREE_NEW)
7098 			ret = process_new_xattr(sctx);
7099 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7100 			ret = process_deleted_xattr(sctx);
7101 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7102 			ret = process_changed_xattr(sctx);
7103 	}
7104 
7105 	return ret;
7106 }
7107 
7108 /*
7109  * Process new/deleted/changed extents. We skip processing in the
7110  * cur_inode_new_gen case because changed_inode did already initiate processing
7111  * of extents. The reason is the same as in changed_ref
7112  */
7113 static int changed_extent(struct send_ctx *sctx,
7114 			  enum btrfs_compare_tree_result result)
7115 {
7116 	int ret = 0;
7117 
7118 	/*
7119 	 * We have found an extent item that changed without the inode item
7120 	 * having changed. This can happen either after relocation (where the
7121 	 * disk_bytenr of an extent item is replaced at
7122 	 * relocation.c:replace_file_extents()) or after deduplication into a
7123 	 * file in both the parent and send snapshots (where an extent item can
7124 	 * get modified or replaced with a new one). Note that deduplication
7125 	 * updates the inode item, but it only changes the iversion (sequence
7126 	 * field in the inode item) of the inode, so if a file is deduplicated
7127 	 * the same amount of times in both the parent and send snapshots, its
7128 	 * iversion becomes the same in both snapshots, whence the inode item is
7129 	 * the same on both snapshots.
7130 	 */
7131 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7132 		return 0;
7133 
7134 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7135 		if (result != BTRFS_COMPARE_TREE_DELETED)
7136 			ret = process_extent(sctx, sctx->left_path,
7137 					sctx->cmp_key);
7138 	}
7139 
7140 	return ret;
7141 }
7142 
7143 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7144 {
7145 	int ret = 0;
7146 
7147 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7148 		if (result == BTRFS_COMPARE_TREE_NEW)
7149 			sctx->cur_inode_needs_verity = true;
7150 	}
7151 	return ret;
7152 }
7153 
7154 static int dir_changed(struct send_ctx *sctx, u64 dir)
7155 {
7156 	u64 orig_gen, new_gen;
7157 	int ret;
7158 
7159 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7160 	if (ret)
7161 		return ret;
7162 
7163 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7164 	if (ret)
7165 		return ret;
7166 
7167 	return (orig_gen != new_gen) ? 1 : 0;
7168 }
7169 
7170 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7171 			struct btrfs_key *key)
7172 {
7173 	struct btrfs_inode_extref *extref;
7174 	struct extent_buffer *leaf;
7175 	u64 dirid = 0, last_dirid = 0;
7176 	unsigned long ptr;
7177 	u32 item_size;
7178 	u32 cur_offset = 0;
7179 	int ref_name_len;
7180 	int ret = 0;
7181 
7182 	/* Easy case, just check this one dirid */
7183 	if (key->type == BTRFS_INODE_REF_KEY) {
7184 		dirid = key->offset;
7185 
7186 		ret = dir_changed(sctx, dirid);
7187 		goto out;
7188 	}
7189 
7190 	leaf = path->nodes[0];
7191 	item_size = btrfs_item_size(leaf, path->slots[0]);
7192 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7193 	while (cur_offset < item_size) {
7194 		extref = (struct btrfs_inode_extref *)(ptr +
7195 						       cur_offset);
7196 		dirid = btrfs_inode_extref_parent(leaf, extref);
7197 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7198 		cur_offset += ref_name_len + sizeof(*extref);
7199 		if (dirid == last_dirid)
7200 			continue;
7201 		ret = dir_changed(sctx, dirid);
7202 		if (ret)
7203 			break;
7204 		last_dirid = dirid;
7205 	}
7206 out:
7207 	return ret;
7208 }
7209 
7210 /*
7211  * Updates compare related fields in sctx and simply forwards to the actual
7212  * changed_xxx functions.
7213  */
7214 static int changed_cb(struct btrfs_path *left_path,
7215 		      struct btrfs_path *right_path,
7216 		      struct btrfs_key *key,
7217 		      enum btrfs_compare_tree_result result,
7218 		      struct send_ctx *sctx)
7219 {
7220 	int ret = 0;
7221 
7222 	/*
7223 	 * We can not hold the commit root semaphore here. This is because in
7224 	 * the case of sending and receiving to the same filesystem, using a
7225 	 * pipe, could result in a deadlock:
7226 	 *
7227 	 * 1) The task running send blocks on the pipe because it's full;
7228 	 *
7229 	 * 2) The task running receive, which is the only consumer of the pipe,
7230 	 *    is waiting for a transaction commit (for example due to a space
7231 	 *    reservation when doing a write or triggering a transaction commit
7232 	 *    when creating a subvolume);
7233 	 *
7234 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7235 	 *    but can not acquire it since it's being held at 1).
7236 	 *
7237 	 * Down this call chain we write to the pipe through kernel_write().
7238 	 * The same type of problem can also happen when sending to a file that
7239 	 * is stored in the same filesystem - when reserving space for a write
7240 	 * into the file, we can trigger a transaction commit.
7241 	 *
7242 	 * Our caller has supplied us with clones of leaves from the send and
7243 	 * parent roots, so we're safe here from a concurrent relocation and
7244 	 * further reallocation of metadata extents while we are here. Below we
7245 	 * also assert that the leaves are clones.
7246 	 */
7247 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7248 
7249 	/*
7250 	 * We always have a send root, so left_path is never NULL. We will not
7251 	 * have a leaf when we have reached the end of the send root but have
7252 	 * not yet reached the end of the parent root.
7253 	 */
7254 	if (left_path->nodes[0])
7255 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7256 				&left_path->nodes[0]->bflags));
7257 	/*
7258 	 * When doing a full send we don't have a parent root, so right_path is
7259 	 * NULL. When doing an incremental send, we may have reached the end of
7260 	 * the parent root already, so we don't have a leaf at right_path.
7261 	 */
7262 	if (right_path && right_path->nodes[0])
7263 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7264 				&right_path->nodes[0]->bflags));
7265 
7266 	if (result == BTRFS_COMPARE_TREE_SAME) {
7267 		if (key->type == BTRFS_INODE_REF_KEY ||
7268 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7269 			ret = compare_refs(sctx, left_path, key);
7270 			if (!ret)
7271 				return 0;
7272 			if (ret < 0)
7273 				return ret;
7274 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7275 			return maybe_send_hole(sctx, left_path, key);
7276 		} else {
7277 			return 0;
7278 		}
7279 		result = BTRFS_COMPARE_TREE_CHANGED;
7280 		ret = 0;
7281 	}
7282 
7283 	sctx->left_path = left_path;
7284 	sctx->right_path = right_path;
7285 	sctx->cmp_key = key;
7286 
7287 	ret = finish_inode_if_needed(sctx, 0);
7288 	if (ret < 0)
7289 		goto out;
7290 
7291 	/* Ignore non-FS objects */
7292 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7293 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7294 		goto out;
7295 
7296 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7297 		ret = changed_inode(sctx, result);
7298 	} else if (!sctx->ignore_cur_inode) {
7299 		if (key->type == BTRFS_INODE_REF_KEY ||
7300 		    key->type == BTRFS_INODE_EXTREF_KEY)
7301 			ret = changed_ref(sctx, result);
7302 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7303 			ret = changed_xattr(sctx, result);
7304 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7305 			ret = changed_extent(sctx, result);
7306 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7307 			 key->offset == 0)
7308 			ret = changed_verity(sctx, result);
7309 	}
7310 
7311 out:
7312 	return ret;
7313 }
7314 
7315 static int search_key_again(const struct send_ctx *sctx,
7316 			    struct btrfs_root *root,
7317 			    struct btrfs_path *path,
7318 			    const struct btrfs_key *key)
7319 {
7320 	int ret;
7321 
7322 	if (!path->need_commit_sem)
7323 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7324 
7325 	/*
7326 	 * Roots used for send operations are readonly and no one can add,
7327 	 * update or remove keys from them, so we should be able to find our
7328 	 * key again. The only exception is deduplication, which can operate on
7329 	 * readonly roots and add, update or remove keys to/from them - but at
7330 	 * the moment we don't allow it to run in parallel with send.
7331 	 */
7332 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7333 	ASSERT(ret <= 0);
7334 	if (ret > 0) {
7335 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7336 		btrfs_err(root->fs_info,
7337 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7338 			  key->objectid, key->type, key->offset,
7339 			  (root == sctx->parent_root ? "parent" : "send"),
7340 			  root->root_key.objectid, path->lowest_level,
7341 			  path->slots[path->lowest_level]);
7342 		return -EUCLEAN;
7343 	}
7344 
7345 	return ret;
7346 }
7347 
7348 static int full_send_tree(struct send_ctx *sctx)
7349 {
7350 	int ret;
7351 	struct btrfs_root *send_root = sctx->send_root;
7352 	struct btrfs_key key;
7353 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7354 	struct btrfs_path *path;
7355 
7356 	path = alloc_path_for_send();
7357 	if (!path)
7358 		return -ENOMEM;
7359 	path->reada = READA_FORWARD_ALWAYS;
7360 
7361 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7362 	key.type = BTRFS_INODE_ITEM_KEY;
7363 	key.offset = 0;
7364 
7365 	down_read(&fs_info->commit_root_sem);
7366 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7367 	up_read(&fs_info->commit_root_sem);
7368 
7369 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7370 	if (ret < 0)
7371 		goto out;
7372 	if (ret)
7373 		goto out_finish;
7374 
7375 	while (1) {
7376 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7377 
7378 		ret = changed_cb(path, NULL, &key,
7379 				 BTRFS_COMPARE_TREE_NEW, sctx);
7380 		if (ret < 0)
7381 			goto out;
7382 
7383 		down_read(&fs_info->commit_root_sem);
7384 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7385 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7386 			up_read(&fs_info->commit_root_sem);
7387 			/*
7388 			 * A transaction used for relocating a block group was
7389 			 * committed or is about to finish its commit. Release
7390 			 * our path (leaf) and restart the search, so that we
7391 			 * avoid operating on any file extent items that are
7392 			 * stale, with a disk_bytenr that reflects a pre
7393 			 * relocation value. This way we avoid as much as
7394 			 * possible to fallback to regular writes when checking
7395 			 * if we can clone file ranges.
7396 			 */
7397 			btrfs_release_path(path);
7398 			ret = search_key_again(sctx, send_root, path, &key);
7399 			if (ret < 0)
7400 				goto out;
7401 		} else {
7402 			up_read(&fs_info->commit_root_sem);
7403 		}
7404 
7405 		ret = btrfs_next_item(send_root, path);
7406 		if (ret < 0)
7407 			goto out;
7408 		if (ret) {
7409 			ret  = 0;
7410 			break;
7411 		}
7412 	}
7413 
7414 out_finish:
7415 	ret = finish_inode_if_needed(sctx, 1);
7416 
7417 out:
7418 	btrfs_free_path(path);
7419 	return ret;
7420 }
7421 
7422 static int replace_node_with_clone(struct btrfs_path *path, int level)
7423 {
7424 	struct extent_buffer *clone;
7425 
7426 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7427 	if (!clone)
7428 		return -ENOMEM;
7429 
7430 	free_extent_buffer(path->nodes[level]);
7431 	path->nodes[level] = clone;
7432 
7433 	return 0;
7434 }
7435 
7436 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7437 {
7438 	struct extent_buffer *eb;
7439 	struct extent_buffer *parent = path->nodes[*level];
7440 	int slot = path->slots[*level];
7441 	const int nritems = btrfs_header_nritems(parent);
7442 	u64 reada_max;
7443 	u64 reada_done = 0;
7444 
7445 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7446 	ASSERT(*level != 0);
7447 
7448 	eb = btrfs_read_node_slot(parent, slot);
7449 	if (IS_ERR(eb))
7450 		return PTR_ERR(eb);
7451 
7452 	/*
7453 	 * Trigger readahead for the next leaves we will process, so that it is
7454 	 * very likely that when we need them they are already in memory and we
7455 	 * will not block on disk IO. For nodes we only do readahead for one,
7456 	 * since the time window between processing nodes is typically larger.
7457 	 */
7458 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7459 
7460 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7461 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7462 			btrfs_readahead_node_child(parent, slot);
7463 			reada_done += eb->fs_info->nodesize;
7464 		}
7465 	}
7466 
7467 	path->nodes[*level - 1] = eb;
7468 	path->slots[*level - 1] = 0;
7469 	(*level)--;
7470 
7471 	if (*level == 0)
7472 		return replace_node_with_clone(path, 0);
7473 
7474 	return 0;
7475 }
7476 
7477 static int tree_move_next_or_upnext(struct btrfs_path *path,
7478 				    int *level, int root_level)
7479 {
7480 	int ret = 0;
7481 	int nritems;
7482 	nritems = btrfs_header_nritems(path->nodes[*level]);
7483 
7484 	path->slots[*level]++;
7485 
7486 	while (path->slots[*level] >= nritems) {
7487 		if (*level == root_level) {
7488 			path->slots[*level] = nritems - 1;
7489 			return -1;
7490 		}
7491 
7492 		/* move upnext */
7493 		path->slots[*level] = 0;
7494 		free_extent_buffer(path->nodes[*level]);
7495 		path->nodes[*level] = NULL;
7496 		(*level)++;
7497 		path->slots[*level]++;
7498 
7499 		nritems = btrfs_header_nritems(path->nodes[*level]);
7500 		ret = 1;
7501 	}
7502 	return ret;
7503 }
7504 
7505 /*
7506  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7507  * or down.
7508  */
7509 static int tree_advance(struct btrfs_path *path,
7510 			int *level, int root_level,
7511 			int allow_down,
7512 			struct btrfs_key *key,
7513 			u64 reada_min_gen)
7514 {
7515 	int ret;
7516 
7517 	if (*level == 0 || !allow_down) {
7518 		ret = tree_move_next_or_upnext(path, level, root_level);
7519 	} else {
7520 		ret = tree_move_down(path, level, reada_min_gen);
7521 	}
7522 
7523 	/*
7524 	 * Even if we have reached the end of a tree, ret is -1, update the key
7525 	 * anyway, so that in case we need to restart due to a block group
7526 	 * relocation, we can assert that the last key of the root node still
7527 	 * exists in the tree.
7528 	 */
7529 	if (*level == 0)
7530 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7531 				      path->slots[*level]);
7532 	else
7533 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7534 				      path->slots[*level]);
7535 
7536 	return ret;
7537 }
7538 
7539 static int tree_compare_item(struct btrfs_path *left_path,
7540 			     struct btrfs_path *right_path,
7541 			     char *tmp_buf)
7542 {
7543 	int cmp;
7544 	int len1, len2;
7545 	unsigned long off1, off2;
7546 
7547 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7548 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7549 	if (len1 != len2)
7550 		return 1;
7551 
7552 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7553 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7554 				right_path->slots[0]);
7555 
7556 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7557 
7558 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7559 	if (cmp)
7560 		return 1;
7561 	return 0;
7562 }
7563 
7564 /*
7565  * A transaction used for relocating a block group was committed or is about to
7566  * finish its commit. Release our paths and restart the search, so that we are
7567  * not using stale extent buffers:
7568  *
7569  * 1) For levels > 0, we are only holding references of extent buffers, without
7570  *    any locks on them, which does not prevent them from having been relocated
7571  *    and reallocated after the last time we released the commit root semaphore.
7572  *    The exception are the root nodes, for which we always have a clone, see
7573  *    the comment at btrfs_compare_trees();
7574  *
7575  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7576  *    we are safe from the concurrent relocation and reallocation. However they
7577  *    can have file extent items with a pre relocation disk_bytenr value, so we
7578  *    restart the start from the current commit roots and clone the new leaves so
7579  *    that we get the post relocation disk_bytenr values. Not doing so, could
7580  *    make us clone the wrong data in case there are new extents using the old
7581  *    disk_bytenr that happen to be shared.
7582  */
7583 static int restart_after_relocation(struct btrfs_path *left_path,
7584 				    struct btrfs_path *right_path,
7585 				    const struct btrfs_key *left_key,
7586 				    const struct btrfs_key *right_key,
7587 				    int left_level,
7588 				    int right_level,
7589 				    const struct send_ctx *sctx)
7590 {
7591 	int root_level;
7592 	int ret;
7593 
7594 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7595 
7596 	btrfs_release_path(left_path);
7597 	btrfs_release_path(right_path);
7598 
7599 	/*
7600 	 * Since keys can not be added or removed to/from our roots because they
7601 	 * are readonly and we do not allow deduplication to run in parallel
7602 	 * (which can add, remove or change keys), the layout of the trees should
7603 	 * not change.
7604 	 */
7605 	left_path->lowest_level = left_level;
7606 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7607 	if (ret < 0)
7608 		return ret;
7609 
7610 	right_path->lowest_level = right_level;
7611 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7612 	if (ret < 0)
7613 		return ret;
7614 
7615 	/*
7616 	 * If the lowest level nodes are leaves, clone them so that they can be
7617 	 * safely used by changed_cb() while not under the protection of the
7618 	 * commit root semaphore, even if relocation and reallocation happens in
7619 	 * parallel.
7620 	 */
7621 	if (left_level == 0) {
7622 		ret = replace_node_with_clone(left_path, 0);
7623 		if (ret < 0)
7624 			return ret;
7625 	}
7626 
7627 	if (right_level == 0) {
7628 		ret = replace_node_with_clone(right_path, 0);
7629 		if (ret < 0)
7630 			return ret;
7631 	}
7632 
7633 	/*
7634 	 * Now clone the root nodes (unless they happen to be the leaves we have
7635 	 * already cloned). This is to protect against concurrent snapshotting of
7636 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7637 	 */
7638 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7639 	if (root_level > 0) {
7640 		ret = replace_node_with_clone(left_path, root_level);
7641 		if (ret < 0)
7642 			return ret;
7643 	}
7644 
7645 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7646 	if (root_level > 0) {
7647 		ret = replace_node_with_clone(right_path, root_level);
7648 		if (ret < 0)
7649 			return ret;
7650 	}
7651 
7652 	return 0;
7653 }
7654 
7655 /*
7656  * This function compares two trees and calls the provided callback for
7657  * every changed/new/deleted item it finds.
7658  * If shared tree blocks are encountered, whole subtrees are skipped, making
7659  * the compare pretty fast on snapshotted subvolumes.
7660  *
7661  * This currently works on commit roots only. As commit roots are read only,
7662  * we don't do any locking. The commit roots are protected with transactions.
7663  * Transactions are ended and rejoined when a commit is tried in between.
7664  *
7665  * This function checks for modifications done to the trees while comparing.
7666  * If it detects a change, it aborts immediately.
7667  */
7668 static int btrfs_compare_trees(struct btrfs_root *left_root,
7669 			struct btrfs_root *right_root, struct send_ctx *sctx)
7670 {
7671 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7672 	int ret;
7673 	int cmp;
7674 	struct btrfs_path *left_path = NULL;
7675 	struct btrfs_path *right_path = NULL;
7676 	struct btrfs_key left_key;
7677 	struct btrfs_key right_key;
7678 	char *tmp_buf = NULL;
7679 	int left_root_level;
7680 	int right_root_level;
7681 	int left_level;
7682 	int right_level;
7683 	int left_end_reached = 0;
7684 	int right_end_reached = 0;
7685 	int advance_left = 0;
7686 	int advance_right = 0;
7687 	u64 left_blockptr;
7688 	u64 right_blockptr;
7689 	u64 left_gen;
7690 	u64 right_gen;
7691 	u64 reada_min_gen;
7692 
7693 	left_path = btrfs_alloc_path();
7694 	if (!left_path) {
7695 		ret = -ENOMEM;
7696 		goto out;
7697 	}
7698 	right_path = btrfs_alloc_path();
7699 	if (!right_path) {
7700 		ret = -ENOMEM;
7701 		goto out;
7702 	}
7703 
7704 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7705 	if (!tmp_buf) {
7706 		ret = -ENOMEM;
7707 		goto out;
7708 	}
7709 
7710 	left_path->search_commit_root = 1;
7711 	left_path->skip_locking = 1;
7712 	right_path->search_commit_root = 1;
7713 	right_path->skip_locking = 1;
7714 
7715 	/*
7716 	 * Strategy: Go to the first items of both trees. Then do
7717 	 *
7718 	 * If both trees are at level 0
7719 	 *   Compare keys of current items
7720 	 *     If left < right treat left item as new, advance left tree
7721 	 *       and repeat
7722 	 *     If left > right treat right item as deleted, advance right tree
7723 	 *       and repeat
7724 	 *     If left == right do deep compare of items, treat as changed if
7725 	 *       needed, advance both trees and repeat
7726 	 * If both trees are at the same level but not at level 0
7727 	 *   Compare keys of current nodes/leafs
7728 	 *     If left < right advance left tree and repeat
7729 	 *     If left > right advance right tree and repeat
7730 	 *     If left == right compare blockptrs of the next nodes/leafs
7731 	 *       If they match advance both trees but stay at the same level
7732 	 *         and repeat
7733 	 *       If they don't match advance both trees while allowing to go
7734 	 *         deeper and repeat
7735 	 * If tree levels are different
7736 	 *   Advance the tree that needs it and repeat
7737 	 *
7738 	 * Advancing a tree means:
7739 	 *   If we are at level 0, try to go to the next slot. If that's not
7740 	 *   possible, go one level up and repeat. Stop when we found a level
7741 	 *   where we could go to the next slot. We may at this point be on a
7742 	 *   node or a leaf.
7743 	 *
7744 	 *   If we are not at level 0 and not on shared tree blocks, go one
7745 	 *   level deeper.
7746 	 *
7747 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7748 	 *   the right if possible or go up and right.
7749 	 */
7750 
7751 	down_read(&fs_info->commit_root_sem);
7752 	left_level = btrfs_header_level(left_root->commit_root);
7753 	left_root_level = left_level;
7754 	/*
7755 	 * We clone the root node of the send and parent roots to prevent races
7756 	 * with snapshot creation of these roots. Snapshot creation COWs the
7757 	 * root node of a tree, so after the transaction is committed the old
7758 	 * extent can be reallocated while this send operation is still ongoing.
7759 	 * So we clone them, under the commit root semaphore, to be race free.
7760 	 */
7761 	left_path->nodes[left_level] =
7762 			btrfs_clone_extent_buffer(left_root->commit_root);
7763 	if (!left_path->nodes[left_level]) {
7764 		ret = -ENOMEM;
7765 		goto out_unlock;
7766 	}
7767 
7768 	right_level = btrfs_header_level(right_root->commit_root);
7769 	right_root_level = right_level;
7770 	right_path->nodes[right_level] =
7771 			btrfs_clone_extent_buffer(right_root->commit_root);
7772 	if (!right_path->nodes[right_level]) {
7773 		ret = -ENOMEM;
7774 		goto out_unlock;
7775 	}
7776 	/*
7777 	 * Our right root is the parent root, while the left root is the "send"
7778 	 * root. We know that all new nodes/leaves in the left root must have
7779 	 * a generation greater than the right root's generation, so we trigger
7780 	 * readahead for those nodes and leaves of the left root, as we know we
7781 	 * will need to read them at some point.
7782 	 */
7783 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7784 
7785 	if (left_level == 0)
7786 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7787 				&left_key, left_path->slots[left_level]);
7788 	else
7789 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7790 				&left_key, left_path->slots[left_level]);
7791 	if (right_level == 0)
7792 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7793 				&right_key, right_path->slots[right_level]);
7794 	else
7795 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7796 				&right_key, right_path->slots[right_level]);
7797 
7798 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7799 
7800 	while (1) {
7801 		if (need_resched() ||
7802 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7803 			up_read(&fs_info->commit_root_sem);
7804 			cond_resched();
7805 			down_read(&fs_info->commit_root_sem);
7806 		}
7807 
7808 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7809 			ret = restart_after_relocation(left_path, right_path,
7810 						       &left_key, &right_key,
7811 						       left_level, right_level,
7812 						       sctx);
7813 			if (ret < 0)
7814 				goto out_unlock;
7815 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7816 		}
7817 
7818 		if (advance_left && !left_end_reached) {
7819 			ret = tree_advance(left_path, &left_level,
7820 					left_root_level,
7821 					advance_left != ADVANCE_ONLY_NEXT,
7822 					&left_key, reada_min_gen);
7823 			if (ret == -1)
7824 				left_end_reached = ADVANCE;
7825 			else if (ret < 0)
7826 				goto out_unlock;
7827 			advance_left = 0;
7828 		}
7829 		if (advance_right && !right_end_reached) {
7830 			ret = tree_advance(right_path, &right_level,
7831 					right_root_level,
7832 					advance_right != ADVANCE_ONLY_NEXT,
7833 					&right_key, reada_min_gen);
7834 			if (ret == -1)
7835 				right_end_reached = ADVANCE;
7836 			else if (ret < 0)
7837 				goto out_unlock;
7838 			advance_right = 0;
7839 		}
7840 
7841 		if (left_end_reached && right_end_reached) {
7842 			ret = 0;
7843 			goto out_unlock;
7844 		} else if (left_end_reached) {
7845 			if (right_level == 0) {
7846 				up_read(&fs_info->commit_root_sem);
7847 				ret = changed_cb(left_path, right_path,
7848 						&right_key,
7849 						BTRFS_COMPARE_TREE_DELETED,
7850 						sctx);
7851 				if (ret < 0)
7852 					goto out;
7853 				down_read(&fs_info->commit_root_sem);
7854 			}
7855 			advance_right = ADVANCE;
7856 			continue;
7857 		} else if (right_end_reached) {
7858 			if (left_level == 0) {
7859 				up_read(&fs_info->commit_root_sem);
7860 				ret = changed_cb(left_path, right_path,
7861 						&left_key,
7862 						BTRFS_COMPARE_TREE_NEW,
7863 						sctx);
7864 				if (ret < 0)
7865 					goto out;
7866 				down_read(&fs_info->commit_root_sem);
7867 			}
7868 			advance_left = ADVANCE;
7869 			continue;
7870 		}
7871 
7872 		if (left_level == 0 && right_level == 0) {
7873 			up_read(&fs_info->commit_root_sem);
7874 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7875 			if (cmp < 0) {
7876 				ret = changed_cb(left_path, right_path,
7877 						&left_key,
7878 						BTRFS_COMPARE_TREE_NEW,
7879 						sctx);
7880 				advance_left = ADVANCE;
7881 			} else if (cmp > 0) {
7882 				ret = changed_cb(left_path, right_path,
7883 						&right_key,
7884 						BTRFS_COMPARE_TREE_DELETED,
7885 						sctx);
7886 				advance_right = ADVANCE;
7887 			} else {
7888 				enum btrfs_compare_tree_result result;
7889 
7890 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7891 				ret = tree_compare_item(left_path, right_path,
7892 							tmp_buf);
7893 				if (ret)
7894 					result = BTRFS_COMPARE_TREE_CHANGED;
7895 				else
7896 					result = BTRFS_COMPARE_TREE_SAME;
7897 				ret = changed_cb(left_path, right_path,
7898 						 &left_key, result, sctx);
7899 				advance_left = ADVANCE;
7900 				advance_right = ADVANCE;
7901 			}
7902 
7903 			if (ret < 0)
7904 				goto out;
7905 			down_read(&fs_info->commit_root_sem);
7906 		} else if (left_level == right_level) {
7907 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7908 			if (cmp < 0) {
7909 				advance_left = ADVANCE;
7910 			} else if (cmp > 0) {
7911 				advance_right = ADVANCE;
7912 			} else {
7913 				left_blockptr = btrfs_node_blockptr(
7914 						left_path->nodes[left_level],
7915 						left_path->slots[left_level]);
7916 				right_blockptr = btrfs_node_blockptr(
7917 						right_path->nodes[right_level],
7918 						right_path->slots[right_level]);
7919 				left_gen = btrfs_node_ptr_generation(
7920 						left_path->nodes[left_level],
7921 						left_path->slots[left_level]);
7922 				right_gen = btrfs_node_ptr_generation(
7923 						right_path->nodes[right_level],
7924 						right_path->slots[right_level]);
7925 				if (left_blockptr == right_blockptr &&
7926 				    left_gen == right_gen) {
7927 					/*
7928 					 * As we're on a shared block, don't
7929 					 * allow to go deeper.
7930 					 */
7931 					advance_left = ADVANCE_ONLY_NEXT;
7932 					advance_right = ADVANCE_ONLY_NEXT;
7933 				} else {
7934 					advance_left = ADVANCE;
7935 					advance_right = ADVANCE;
7936 				}
7937 			}
7938 		} else if (left_level < right_level) {
7939 			advance_right = ADVANCE;
7940 		} else {
7941 			advance_left = ADVANCE;
7942 		}
7943 	}
7944 
7945 out_unlock:
7946 	up_read(&fs_info->commit_root_sem);
7947 out:
7948 	btrfs_free_path(left_path);
7949 	btrfs_free_path(right_path);
7950 	kvfree(tmp_buf);
7951 	return ret;
7952 }
7953 
7954 static int send_subvol(struct send_ctx *sctx)
7955 {
7956 	int ret;
7957 
7958 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7959 		ret = send_header(sctx);
7960 		if (ret < 0)
7961 			goto out;
7962 	}
7963 
7964 	ret = send_subvol_begin(sctx);
7965 	if (ret < 0)
7966 		goto out;
7967 
7968 	if (sctx->parent_root) {
7969 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7970 		if (ret < 0)
7971 			goto out;
7972 		ret = finish_inode_if_needed(sctx, 1);
7973 		if (ret < 0)
7974 			goto out;
7975 	} else {
7976 		ret = full_send_tree(sctx);
7977 		if (ret < 0)
7978 			goto out;
7979 	}
7980 
7981 out:
7982 	free_recorded_refs(sctx);
7983 	return ret;
7984 }
7985 
7986 /*
7987  * If orphan cleanup did remove any orphans from a root, it means the tree
7988  * was modified and therefore the commit root is not the same as the current
7989  * root anymore. This is a problem, because send uses the commit root and
7990  * therefore can see inode items that don't exist in the current root anymore,
7991  * and for example make calls to btrfs_iget, which will do tree lookups based
7992  * on the current root and not on the commit root. Those lookups will fail,
7993  * returning a -ESTALE error, and making send fail with that error. So make
7994  * sure a send does not see any orphans we have just removed, and that it will
7995  * see the same inodes regardless of whether a transaction commit happened
7996  * before it started (meaning that the commit root will be the same as the
7997  * current root) or not.
7998  */
7999 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8000 {
8001 	int i;
8002 	struct btrfs_trans_handle *trans = NULL;
8003 
8004 again:
8005 	if (sctx->parent_root &&
8006 	    sctx->parent_root->node != sctx->parent_root->commit_root)
8007 		goto commit_trans;
8008 
8009 	for (i = 0; i < sctx->clone_roots_cnt; i++)
8010 		if (sctx->clone_roots[i].root->node !=
8011 		    sctx->clone_roots[i].root->commit_root)
8012 			goto commit_trans;
8013 
8014 	if (trans)
8015 		return btrfs_end_transaction(trans);
8016 
8017 	return 0;
8018 
8019 commit_trans:
8020 	/* Use any root, all fs roots will get their commit roots updated. */
8021 	if (!trans) {
8022 		trans = btrfs_join_transaction(sctx->send_root);
8023 		if (IS_ERR(trans))
8024 			return PTR_ERR(trans);
8025 		goto again;
8026 	}
8027 
8028 	return btrfs_commit_transaction(trans);
8029 }
8030 
8031 /*
8032  * Make sure any existing dellaloc is flushed for any root used by a send
8033  * operation so that we do not miss any data and we do not race with writeback
8034  * finishing and changing a tree while send is using the tree. This could
8035  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8036  * a send operation then uses the subvolume.
8037  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8038  */
8039 static int flush_delalloc_roots(struct send_ctx *sctx)
8040 {
8041 	struct btrfs_root *root = sctx->parent_root;
8042 	int ret;
8043 	int i;
8044 
8045 	if (root) {
8046 		ret = btrfs_start_delalloc_snapshot(root, false);
8047 		if (ret)
8048 			return ret;
8049 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8050 	}
8051 
8052 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8053 		root = sctx->clone_roots[i].root;
8054 		ret = btrfs_start_delalloc_snapshot(root, false);
8055 		if (ret)
8056 			return ret;
8057 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8058 	}
8059 
8060 	return 0;
8061 }
8062 
8063 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8064 {
8065 	spin_lock(&root->root_item_lock);
8066 	root->send_in_progress--;
8067 	/*
8068 	 * Not much left to do, we don't know why it's unbalanced and
8069 	 * can't blindly reset it to 0.
8070 	 */
8071 	if (root->send_in_progress < 0)
8072 		btrfs_err(root->fs_info,
8073 			  "send_in_progress unbalanced %d root %llu",
8074 			  root->send_in_progress, root->root_key.objectid);
8075 	spin_unlock(&root->root_item_lock);
8076 }
8077 
8078 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8079 {
8080 	btrfs_warn_rl(root->fs_info,
8081 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8082 		      root->root_key.objectid, root->dedupe_in_progress);
8083 }
8084 
8085 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8086 {
8087 	int ret = 0;
8088 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8089 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8090 	struct btrfs_root *clone_root;
8091 	struct send_ctx *sctx = NULL;
8092 	u32 i;
8093 	u64 *clone_sources_tmp = NULL;
8094 	int clone_sources_to_rollback = 0;
8095 	size_t alloc_size;
8096 	int sort_clone_roots = 0;
8097 	struct btrfs_lru_cache_entry *entry;
8098 	struct btrfs_lru_cache_entry *tmp;
8099 
8100 	if (!capable(CAP_SYS_ADMIN))
8101 		return -EPERM;
8102 
8103 	/*
8104 	 * The subvolume must remain read-only during send, protect against
8105 	 * making it RW. This also protects against deletion.
8106 	 */
8107 	spin_lock(&send_root->root_item_lock);
8108 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8109 		dedupe_in_progress_warn(send_root);
8110 		spin_unlock(&send_root->root_item_lock);
8111 		return -EAGAIN;
8112 	}
8113 	send_root->send_in_progress++;
8114 	spin_unlock(&send_root->root_item_lock);
8115 
8116 	/*
8117 	 * Userspace tools do the checks and warn the user if it's
8118 	 * not RO.
8119 	 */
8120 	if (!btrfs_root_readonly(send_root)) {
8121 		ret = -EPERM;
8122 		goto out;
8123 	}
8124 
8125 	/*
8126 	 * Check that we don't overflow at later allocations, we request
8127 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8128 	 * access_ok. Also set an upper limit for allocation size so this can't
8129 	 * easily exhaust memory. Max number of clone sources is about 200K.
8130 	 */
8131 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8132 		ret = -EINVAL;
8133 		goto out;
8134 	}
8135 
8136 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8137 		ret = -EOPNOTSUPP;
8138 		goto out;
8139 	}
8140 
8141 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8142 	if (!sctx) {
8143 		ret = -ENOMEM;
8144 		goto out;
8145 	}
8146 
8147 	INIT_LIST_HEAD(&sctx->new_refs);
8148 	INIT_LIST_HEAD(&sctx->deleted_refs);
8149 
8150 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8151 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8152 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8153 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8154 	/*
8155 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8156 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8157 	 */
8158 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8159 
8160 	sctx->pending_dir_moves = RB_ROOT;
8161 	sctx->waiting_dir_moves = RB_ROOT;
8162 	sctx->orphan_dirs = RB_ROOT;
8163 	sctx->rbtree_new_refs = RB_ROOT;
8164 	sctx->rbtree_deleted_refs = RB_ROOT;
8165 
8166 	sctx->flags = arg->flags;
8167 
8168 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8169 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8170 			ret = -EPROTO;
8171 			goto out;
8172 		}
8173 		/* Zero means "use the highest version" */
8174 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8175 	} else {
8176 		sctx->proto = 1;
8177 	}
8178 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8179 		ret = -EINVAL;
8180 		goto out;
8181 	}
8182 
8183 	sctx->send_filp = fget(arg->send_fd);
8184 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8185 		ret = -EBADF;
8186 		goto out;
8187 	}
8188 
8189 	sctx->send_root = send_root;
8190 	/*
8191 	 * Unlikely but possible, if the subvolume is marked for deletion but
8192 	 * is slow to remove the directory entry, send can still be started
8193 	 */
8194 	if (btrfs_root_dead(sctx->send_root)) {
8195 		ret = -EPERM;
8196 		goto out;
8197 	}
8198 
8199 	sctx->clone_roots_cnt = arg->clone_sources_count;
8200 
8201 	if (sctx->proto >= 2) {
8202 		u32 send_buf_num_pages;
8203 
8204 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8205 		sctx->send_buf = vmalloc(sctx->send_max_size);
8206 		if (!sctx->send_buf) {
8207 			ret = -ENOMEM;
8208 			goto out;
8209 		}
8210 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8211 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8212 					       sizeof(*sctx->send_buf_pages),
8213 					       GFP_KERNEL);
8214 		if (!sctx->send_buf_pages) {
8215 			ret = -ENOMEM;
8216 			goto out;
8217 		}
8218 		for (i = 0; i < send_buf_num_pages; i++) {
8219 			sctx->send_buf_pages[i] =
8220 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8221 		}
8222 	} else {
8223 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8224 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8225 	}
8226 	if (!sctx->send_buf) {
8227 		ret = -ENOMEM;
8228 		goto out;
8229 	}
8230 
8231 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8232 				     sizeof(*sctx->clone_roots),
8233 				     GFP_KERNEL);
8234 	if (!sctx->clone_roots) {
8235 		ret = -ENOMEM;
8236 		goto out;
8237 	}
8238 
8239 	alloc_size = array_size(sizeof(*arg->clone_sources),
8240 				arg->clone_sources_count);
8241 
8242 	if (arg->clone_sources_count) {
8243 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8244 		if (!clone_sources_tmp) {
8245 			ret = -ENOMEM;
8246 			goto out;
8247 		}
8248 
8249 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8250 				alloc_size);
8251 		if (ret) {
8252 			ret = -EFAULT;
8253 			goto out;
8254 		}
8255 
8256 		for (i = 0; i < arg->clone_sources_count; i++) {
8257 			clone_root = btrfs_get_fs_root(fs_info,
8258 						clone_sources_tmp[i], true);
8259 			if (IS_ERR(clone_root)) {
8260 				ret = PTR_ERR(clone_root);
8261 				goto out;
8262 			}
8263 			spin_lock(&clone_root->root_item_lock);
8264 			if (!btrfs_root_readonly(clone_root) ||
8265 			    btrfs_root_dead(clone_root)) {
8266 				spin_unlock(&clone_root->root_item_lock);
8267 				btrfs_put_root(clone_root);
8268 				ret = -EPERM;
8269 				goto out;
8270 			}
8271 			if (clone_root->dedupe_in_progress) {
8272 				dedupe_in_progress_warn(clone_root);
8273 				spin_unlock(&clone_root->root_item_lock);
8274 				btrfs_put_root(clone_root);
8275 				ret = -EAGAIN;
8276 				goto out;
8277 			}
8278 			clone_root->send_in_progress++;
8279 			spin_unlock(&clone_root->root_item_lock);
8280 
8281 			sctx->clone_roots[i].root = clone_root;
8282 			clone_sources_to_rollback = i + 1;
8283 		}
8284 		kvfree(clone_sources_tmp);
8285 		clone_sources_tmp = NULL;
8286 	}
8287 
8288 	if (arg->parent_root) {
8289 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8290 						      true);
8291 		if (IS_ERR(sctx->parent_root)) {
8292 			ret = PTR_ERR(sctx->parent_root);
8293 			goto out;
8294 		}
8295 
8296 		spin_lock(&sctx->parent_root->root_item_lock);
8297 		sctx->parent_root->send_in_progress++;
8298 		if (!btrfs_root_readonly(sctx->parent_root) ||
8299 				btrfs_root_dead(sctx->parent_root)) {
8300 			spin_unlock(&sctx->parent_root->root_item_lock);
8301 			ret = -EPERM;
8302 			goto out;
8303 		}
8304 		if (sctx->parent_root->dedupe_in_progress) {
8305 			dedupe_in_progress_warn(sctx->parent_root);
8306 			spin_unlock(&sctx->parent_root->root_item_lock);
8307 			ret = -EAGAIN;
8308 			goto out;
8309 		}
8310 		spin_unlock(&sctx->parent_root->root_item_lock);
8311 	}
8312 
8313 	/*
8314 	 * Clones from send_root are allowed, but only if the clone source
8315 	 * is behind the current send position. This is checked while searching
8316 	 * for possible clone sources.
8317 	 */
8318 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8319 		btrfs_grab_root(sctx->send_root);
8320 
8321 	/* We do a bsearch later */
8322 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8323 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8324 			NULL);
8325 	sort_clone_roots = 1;
8326 
8327 	ret = flush_delalloc_roots(sctx);
8328 	if (ret)
8329 		goto out;
8330 
8331 	ret = ensure_commit_roots_uptodate(sctx);
8332 	if (ret)
8333 		goto out;
8334 
8335 	ret = send_subvol(sctx);
8336 	if (ret < 0)
8337 		goto out;
8338 
8339 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8340 		ret = send_utimes(sctx, entry->key, entry->gen);
8341 		if (ret < 0)
8342 			goto out;
8343 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8344 	}
8345 
8346 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8347 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8348 		if (ret < 0)
8349 			goto out;
8350 		ret = send_cmd(sctx);
8351 		if (ret < 0)
8352 			goto out;
8353 	}
8354 
8355 out:
8356 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8357 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8358 		struct rb_node *n;
8359 		struct pending_dir_move *pm;
8360 
8361 		n = rb_first(&sctx->pending_dir_moves);
8362 		pm = rb_entry(n, struct pending_dir_move, node);
8363 		while (!list_empty(&pm->list)) {
8364 			struct pending_dir_move *pm2;
8365 
8366 			pm2 = list_first_entry(&pm->list,
8367 					       struct pending_dir_move, list);
8368 			free_pending_move(sctx, pm2);
8369 		}
8370 		free_pending_move(sctx, pm);
8371 	}
8372 
8373 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8374 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8375 		struct rb_node *n;
8376 		struct waiting_dir_move *dm;
8377 
8378 		n = rb_first(&sctx->waiting_dir_moves);
8379 		dm = rb_entry(n, struct waiting_dir_move, node);
8380 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8381 		kfree(dm);
8382 	}
8383 
8384 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8385 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8386 		struct rb_node *n;
8387 		struct orphan_dir_info *odi;
8388 
8389 		n = rb_first(&sctx->orphan_dirs);
8390 		odi = rb_entry(n, struct orphan_dir_info, node);
8391 		free_orphan_dir_info(sctx, odi);
8392 	}
8393 
8394 	if (sort_clone_roots) {
8395 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8396 			btrfs_root_dec_send_in_progress(
8397 					sctx->clone_roots[i].root);
8398 			btrfs_put_root(sctx->clone_roots[i].root);
8399 		}
8400 	} else {
8401 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8402 			btrfs_root_dec_send_in_progress(
8403 					sctx->clone_roots[i].root);
8404 			btrfs_put_root(sctx->clone_roots[i].root);
8405 		}
8406 
8407 		btrfs_root_dec_send_in_progress(send_root);
8408 	}
8409 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8410 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8411 		btrfs_put_root(sctx->parent_root);
8412 	}
8413 
8414 	kvfree(clone_sources_tmp);
8415 
8416 	if (sctx) {
8417 		if (sctx->send_filp)
8418 			fput(sctx->send_filp);
8419 
8420 		kvfree(sctx->clone_roots);
8421 		kfree(sctx->send_buf_pages);
8422 		kvfree(sctx->send_buf);
8423 		kvfree(sctx->verity_descriptor);
8424 
8425 		close_current_inode(sctx);
8426 
8427 		btrfs_lru_cache_clear(&sctx->name_cache);
8428 		btrfs_lru_cache_clear(&sctx->backref_cache);
8429 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8430 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8431 
8432 		kfree(sctx);
8433 	}
8434 
8435 	return ret;
8436 }
8437