xref: /linux/fs/btrfs/send.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/crc32c.h>
28 #include <linux/vmalloc.h>
29 
30 #include "send.h"
31 #include "backref.h"
32 #include "locking.h"
33 #include "disk-io.h"
34 #include "btrfs_inode.h"
35 #include "transaction.h"
36 
37 static int g_verbose = 0;
38 
39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
40 
41 /*
42  * A fs_path is a helper to dynamically build path names with unknown size.
43  * It reallocates the internal buffer on demand.
44  * It allows fast adding of path elements on the right side (normal path) and
45  * fast adding to the left side (reversed path). A reversed path can also be
46  * unreversed if needed.
47  */
48 struct fs_path {
49 	union {
50 		struct {
51 			char *start;
52 			char *end;
53 			char *prepared;
54 
55 			char *buf;
56 			int buf_len;
57 			int reversed:1;
58 			int virtual_mem:1;
59 			char inline_buf[];
60 		};
61 		char pad[PAGE_SIZE];
62 	};
63 };
64 #define FS_PATH_INLINE_SIZE \
65 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
66 
67 
68 /* reused for each extent */
69 struct clone_root {
70 	struct btrfs_root *root;
71 	u64 ino;
72 	u64 offset;
73 
74 	u64 found_refs;
75 };
76 
77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
79 
80 struct send_ctx {
81 	struct file *send_filp;
82 	loff_t send_off;
83 	char *send_buf;
84 	u32 send_size;
85 	u32 send_max_size;
86 	u64 total_send_size;
87 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
88 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
89 
90 	struct vfsmount *mnt;
91 
92 	struct btrfs_root *send_root;
93 	struct btrfs_root *parent_root;
94 	struct clone_root *clone_roots;
95 	int clone_roots_cnt;
96 
97 	/* current state of the compare_tree call */
98 	struct btrfs_path *left_path;
99 	struct btrfs_path *right_path;
100 	struct btrfs_key *cmp_key;
101 
102 	/*
103 	 * infos of the currently processed inode. In case of deleted inodes,
104 	 * these are the values from the deleted inode.
105 	 */
106 	u64 cur_ino;
107 	u64 cur_inode_gen;
108 	int cur_inode_new;
109 	int cur_inode_new_gen;
110 	int cur_inode_deleted;
111 	u64 cur_inode_size;
112 	u64 cur_inode_mode;
113 
114 	u64 send_progress;
115 
116 	struct list_head new_refs;
117 	struct list_head deleted_refs;
118 
119 	struct radix_tree_root name_cache;
120 	struct list_head name_cache_list;
121 	int name_cache_size;
122 
123 	struct file *cur_inode_filp;
124 	char *read_buf;
125 };
126 
127 struct name_cache_entry {
128 	struct list_head list;
129 	/*
130 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
131 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
132 	 * more then one inum would fall into the same entry, we use radix_list
133 	 * to store the additional entries. radix_list is also used to store
134 	 * entries where two entries have the same inum but different
135 	 * generations.
136 	 */
137 	struct list_head radix_list;
138 	u64 ino;
139 	u64 gen;
140 	u64 parent_ino;
141 	u64 parent_gen;
142 	int ret;
143 	int need_later_update;
144 	int name_len;
145 	char name[];
146 };
147 
148 static void fs_path_reset(struct fs_path *p)
149 {
150 	if (p->reversed) {
151 		p->start = p->buf + p->buf_len - 1;
152 		p->end = p->start;
153 		*p->start = 0;
154 	} else {
155 		p->start = p->buf;
156 		p->end = p->start;
157 		*p->start = 0;
158 	}
159 }
160 
161 static struct fs_path *fs_path_alloc(struct send_ctx *sctx)
162 {
163 	struct fs_path *p;
164 
165 	p = kmalloc(sizeof(*p), GFP_NOFS);
166 	if (!p)
167 		return NULL;
168 	p->reversed = 0;
169 	p->virtual_mem = 0;
170 	p->buf = p->inline_buf;
171 	p->buf_len = FS_PATH_INLINE_SIZE;
172 	fs_path_reset(p);
173 	return p;
174 }
175 
176 static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx)
177 {
178 	struct fs_path *p;
179 
180 	p = fs_path_alloc(sctx);
181 	if (!p)
182 		return NULL;
183 	p->reversed = 1;
184 	fs_path_reset(p);
185 	return p;
186 }
187 
188 static void fs_path_free(struct send_ctx *sctx, struct fs_path *p)
189 {
190 	if (!p)
191 		return;
192 	if (p->buf != p->inline_buf) {
193 		if (p->virtual_mem)
194 			vfree(p->buf);
195 		else
196 			kfree(p->buf);
197 	}
198 	kfree(p);
199 }
200 
201 static int fs_path_len(struct fs_path *p)
202 {
203 	return p->end - p->start;
204 }
205 
206 static int fs_path_ensure_buf(struct fs_path *p, int len)
207 {
208 	char *tmp_buf;
209 	int path_len;
210 	int old_buf_len;
211 
212 	len++;
213 
214 	if (p->buf_len >= len)
215 		return 0;
216 
217 	path_len = p->end - p->start;
218 	old_buf_len = p->buf_len;
219 	len = PAGE_ALIGN(len);
220 
221 	if (p->buf == p->inline_buf) {
222 		tmp_buf = kmalloc(len, GFP_NOFS);
223 		if (!tmp_buf) {
224 			tmp_buf = vmalloc(len);
225 			if (!tmp_buf)
226 				return -ENOMEM;
227 			p->virtual_mem = 1;
228 		}
229 		memcpy(tmp_buf, p->buf, p->buf_len);
230 		p->buf = tmp_buf;
231 		p->buf_len = len;
232 	} else {
233 		if (p->virtual_mem) {
234 			tmp_buf = vmalloc(len);
235 			if (!tmp_buf)
236 				return -ENOMEM;
237 			memcpy(tmp_buf, p->buf, p->buf_len);
238 			vfree(p->buf);
239 		} else {
240 			tmp_buf = krealloc(p->buf, len, GFP_NOFS);
241 			if (!tmp_buf) {
242 				tmp_buf = vmalloc(len);
243 				if (!tmp_buf)
244 					return -ENOMEM;
245 				memcpy(tmp_buf, p->buf, p->buf_len);
246 				kfree(p->buf);
247 				p->virtual_mem = 1;
248 			}
249 		}
250 		p->buf = tmp_buf;
251 		p->buf_len = len;
252 	}
253 	if (p->reversed) {
254 		tmp_buf = p->buf + old_buf_len - path_len - 1;
255 		p->end = p->buf + p->buf_len - 1;
256 		p->start = p->end - path_len;
257 		memmove(p->start, tmp_buf, path_len + 1);
258 	} else {
259 		p->start = p->buf;
260 		p->end = p->start + path_len;
261 	}
262 	return 0;
263 }
264 
265 static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
266 {
267 	int ret;
268 	int new_len;
269 
270 	new_len = p->end - p->start + name_len;
271 	if (p->start != p->end)
272 		new_len++;
273 	ret = fs_path_ensure_buf(p, new_len);
274 	if (ret < 0)
275 		goto out;
276 
277 	if (p->reversed) {
278 		if (p->start != p->end)
279 			*--p->start = '/';
280 		p->start -= name_len;
281 		p->prepared = p->start;
282 	} else {
283 		if (p->start != p->end)
284 			*p->end++ = '/';
285 		p->prepared = p->end;
286 		p->end += name_len;
287 		*p->end = 0;
288 	}
289 
290 out:
291 	return ret;
292 }
293 
294 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
295 {
296 	int ret;
297 
298 	ret = fs_path_prepare_for_add(p, name_len);
299 	if (ret < 0)
300 		goto out;
301 	memcpy(p->prepared, name, name_len);
302 	p->prepared = NULL;
303 
304 out:
305 	return ret;
306 }
307 
308 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
309 {
310 	int ret;
311 
312 	ret = fs_path_prepare_for_add(p, p2->end - p2->start);
313 	if (ret < 0)
314 		goto out;
315 	memcpy(p->prepared, p2->start, p2->end - p2->start);
316 	p->prepared = NULL;
317 
318 out:
319 	return ret;
320 }
321 
322 static int fs_path_add_from_extent_buffer(struct fs_path *p,
323 					  struct extent_buffer *eb,
324 					  unsigned long off, int len)
325 {
326 	int ret;
327 
328 	ret = fs_path_prepare_for_add(p, len);
329 	if (ret < 0)
330 		goto out;
331 
332 	read_extent_buffer(eb, p->prepared, off, len);
333 	p->prepared = NULL;
334 
335 out:
336 	return ret;
337 }
338 
339 #if 0
340 static void fs_path_remove(struct fs_path *p)
341 {
342 	BUG_ON(p->reversed);
343 	while (p->start != p->end && *p->end != '/')
344 		p->end--;
345 	*p->end = 0;
346 }
347 #endif
348 
349 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
350 {
351 	int ret;
352 
353 	p->reversed = from->reversed;
354 	fs_path_reset(p);
355 
356 	ret = fs_path_add_path(p, from);
357 
358 	return ret;
359 }
360 
361 
362 static void fs_path_unreverse(struct fs_path *p)
363 {
364 	char *tmp;
365 	int len;
366 
367 	if (!p->reversed)
368 		return;
369 
370 	tmp = p->start;
371 	len = p->end - p->start;
372 	p->start = p->buf;
373 	p->end = p->start + len;
374 	memmove(p->start, tmp, len + 1);
375 	p->reversed = 0;
376 }
377 
378 static struct btrfs_path *alloc_path_for_send(void)
379 {
380 	struct btrfs_path *path;
381 
382 	path = btrfs_alloc_path();
383 	if (!path)
384 		return NULL;
385 	path->search_commit_root = 1;
386 	path->skip_locking = 1;
387 	return path;
388 }
389 
390 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
391 {
392 	int ret;
393 	mm_segment_t old_fs;
394 	u32 pos = 0;
395 
396 	old_fs = get_fs();
397 	set_fs(KERNEL_DS);
398 
399 	while (pos < len) {
400 		ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
401 		/* TODO handle that correctly */
402 		/*if (ret == -ERESTARTSYS) {
403 			continue;
404 		}*/
405 		if (ret < 0)
406 			goto out;
407 		if (ret == 0) {
408 			ret = -EIO;
409 			goto out;
410 		}
411 		pos += ret;
412 	}
413 
414 	ret = 0;
415 
416 out:
417 	set_fs(old_fs);
418 	return ret;
419 }
420 
421 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
422 {
423 	struct btrfs_tlv_header *hdr;
424 	int total_len = sizeof(*hdr) + len;
425 	int left = sctx->send_max_size - sctx->send_size;
426 
427 	if (unlikely(left < total_len))
428 		return -EOVERFLOW;
429 
430 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
431 	hdr->tlv_type = cpu_to_le16(attr);
432 	hdr->tlv_len = cpu_to_le16(len);
433 	memcpy(hdr + 1, data, len);
434 	sctx->send_size += total_len;
435 
436 	return 0;
437 }
438 
439 #if 0
440 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value)
441 {
442 	return tlv_put(sctx, attr, &value, sizeof(value));
443 }
444 
445 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value)
446 {
447 	__le16 tmp = cpu_to_le16(value);
448 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
449 }
450 
451 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value)
452 {
453 	__le32 tmp = cpu_to_le32(value);
454 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
455 }
456 #endif
457 
458 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value)
459 {
460 	__le64 tmp = cpu_to_le64(value);
461 	return tlv_put(sctx, attr, &tmp, sizeof(tmp));
462 }
463 
464 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
465 			  const char *str, int len)
466 {
467 	if (len == -1)
468 		len = strlen(str);
469 	return tlv_put(sctx, attr, str, len);
470 }
471 
472 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
473 			const u8 *uuid)
474 {
475 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
476 }
477 
478 #if 0
479 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr,
480 			    struct timespec *ts)
481 {
482 	struct btrfs_timespec bts;
483 	bts.sec = cpu_to_le64(ts->tv_sec);
484 	bts.nsec = cpu_to_le32(ts->tv_nsec);
485 	return tlv_put(sctx, attr, &bts, sizeof(bts));
486 }
487 #endif
488 
489 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
490 				  struct extent_buffer *eb,
491 				  struct btrfs_timespec *ts)
492 {
493 	struct btrfs_timespec bts;
494 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
495 	return tlv_put(sctx, attr, &bts, sizeof(bts));
496 }
497 
498 
499 #define TLV_PUT(sctx, attrtype, attrlen, data) \
500 	do { \
501 		ret = tlv_put(sctx, attrtype, attrlen, data); \
502 		if (ret < 0) \
503 			goto tlv_put_failure; \
504 	} while (0)
505 
506 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
507 	do { \
508 		ret = tlv_put_u##bits(sctx, attrtype, value); \
509 		if (ret < 0) \
510 			goto tlv_put_failure; \
511 	} while (0)
512 
513 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
514 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
515 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
516 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
517 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
518 	do { \
519 		ret = tlv_put_string(sctx, attrtype, str, len); \
520 		if (ret < 0) \
521 			goto tlv_put_failure; \
522 	} while (0)
523 #define TLV_PUT_PATH(sctx, attrtype, p) \
524 	do { \
525 		ret = tlv_put_string(sctx, attrtype, p->start, \
526 			p->end - p->start); \
527 		if (ret < 0) \
528 			goto tlv_put_failure; \
529 	} while(0)
530 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
531 	do { \
532 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
533 		if (ret < 0) \
534 			goto tlv_put_failure; \
535 	} while (0)
536 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \
537 	do { \
538 		ret = tlv_put_timespec(sctx, attrtype, ts); \
539 		if (ret < 0) \
540 			goto tlv_put_failure; \
541 	} while (0)
542 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
543 	do { \
544 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
545 		if (ret < 0) \
546 			goto tlv_put_failure; \
547 	} while (0)
548 
549 static int send_header(struct send_ctx *sctx)
550 {
551 	struct btrfs_stream_header hdr;
552 
553 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
554 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
555 
556 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
557 					&sctx->send_off);
558 }
559 
560 /*
561  * For each command/item we want to send to userspace, we call this function.
562  */
563 static int begin_cmd(struct send_ctx *sctx, int cmd)
564 {
565 	struct btrfs_cmd_header *hdr;
566 
567 	if (!sctx->send_buf) {
568 		WARN_ON(1);
569 		return -EINVAL;
570 	}
571 
572 	BUG_ON(sctx->send_size);
573 
574 	sctx->send_size += sizeof(*hdr);
575 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
576 	hdr->cmd = cpu_to_le16(cmd);
577 
578 	return 0;
579 }
580 
581 static int send_cmd(struct send_ctx *sctx)
582 {
583 	int ret;
584 	struct btrfs_cmd_header *hdr;
585 	u32 crc;
586 
587 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
588 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
589 	hdr->crc = 0;
590 
591 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
592 	hdr->crc = cpu_to_le32(crc);
593 
594 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
595 					&sctx->send_off);
596 
597 	sctx->total_send_size += sctx->send_size;
598 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
599 	sctx->send_size = 0;
600 
601 	return ret;
602 }
603 
604 /*
605  * Sends a move instruction to user space
606  */
607 static int send_rename(struct send_ctx *sctx,
608 		     struct fs_path *from, struct fs_path *to)
609 {
610 	int ret;
611 
612 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
613 
614 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
615 	if (ret < 0)
616 		goto out;
617 
618 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
619 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
620 
621 	ret = send_cmd(sctx);
622 
623 tlv_put_failure:
624 out:
625 	return ret;
626 }
627 
628 /*
629  * Sends a link instruction to user space
630  */
631 static int send_link(struct send_ctx *sctx,
632 		     struct fs_path *path, struct fs_path *lnk)
633 {
634 	int ret;
635 
636 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
637 
638 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
639 	if (ret < 0)
640 		goto out;
641 
642 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
644 
645 	ret = send_cmd(sctx);
646 
647 tlv_put_failure:
648 out:
649 	return ret;
650 }
651 
652 /*
653  * Sends an unlink instruction to user space
654  */
655 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
656 {
657 	int ret;
658 
659 verbose_printk("btrfs: send_unlink %s\n", path->start);
660 
661 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
662 	if (ret < 0)
663 		goto out;
664 
665 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
666 
667 	ret = send_cmd(sctx);
668 
669 tlv_put_failure:
670 out:
671 	return ret;
672 }
673 
674 /*
675  * Sends a rmdir instruction to user space
676  */
677 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
678 {
679 	int ret;
680 
681 verbose_printk("btrfs: send_rmdir %s\n", path->start);
682 
683 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
684 	if (ret < 0)
685 		goto out;
686 
687 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
688 
689 	ret = send_cmd(sctx);
690 
691 tlv_put_failure:
692 out:
693 	return ret;
694 }
695 
696 /*
697  * Helper function to retrieve some fields from an inode item.
698  */
699 static int get_inode_info(struct btrfs_root *root,
700 			  u64 ino, u64 *size, u64 *gen,
701 			  u64 *mode, u64 *uid, u64 *gid,
702 			  u64 *rdev)
703 {
704 	int ret;
705 	struct btrfs_inode_item *ii;
706 	struct btrfs_key key;
707 	struct btrfs_path *path;
708 
709 	path = alloc_path_for_send();
710 	if (!path)
711 		return -ENOMEM;
712 
713 	key.objectid = ino;
714 	key.type = BTRFS_INODE_ITEM_KEY;
715 	key.offset = 0;
716 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
717 	if (ret < 0)
718 		goto out;
719 	if (ret) {
720 		ret = -ENOENT;
721 		goto out;
722 	}
723 
724 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
725 			struct btrfs_inode_item);
726 	if (size)
727 		*size = btrfs_inode_size(path->nodes[0], ii);
728 	if (gen)
729 		*gen = btrfs_inode_generation(path->nodes[0], ii);
730 	if (mode)
731 		*mode = btrfs_inode_mode(path->nodes[0], ii);
732 	if (uid)
733 		*uid = btrfs_inode_uid(path->nodes[0], ii);
734 	if (gid)
735 		*gid = btrfs_inode_gid(path->nodes[0], ii);
736 	if (rdev)
737 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
738 
739 out:
740 	btrfs_free_path(path);
741 	return ret;
742 }
743 
744 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
745 				   struct fs_path *p,
746 				   void *ctx);
747 
748 /*
749  * Helper function to iterate the entries in ONE btrfs_inode_ref or
750  * btrfs_inode_extref.
751  * The iterate callback may return a non zero value to stop iteration. This can
752  * be a negative value for error codes or 1 to simply stop it.
753  *
754  * path must point to the INODE_REF or INODE_EXTREF when called.
755  */
756 static int iterate_inode_ref(struct send_ctx *sctx,
757 			     struct btrfs_root *root, struct btrfs_path *path,
758 			     struct btrfs_key *found_key, int resolve,
759 			     iterate_inode_ref_t iterate, void *ctx)
760 {
761 	struct extent_buffer *eb = path->nodes[0];
762 	struct btrfs_item *item;
763 	struct btrfs_inode_ref *iref;
764 	struct btrfs_inode_extref *extref;
765 	struct btrfs_path *tmp_path;
766 	struct fs_path *p;
767 	u32 cur = 0;
768 	u32 total;
769 	int slot = path->slots[0];
770 	u32 name_len;
771 	char *start;
772 	int ret = 0;
773 	int num = 0;
774 	int index;
775 	u64 dir;
776 	unsigned long name_off;
777 	unsigned long elem_size;
778 	unsigned long ptr;
779 
780 	p = fs_path_alloc_reversed(sctx);
781 	if (!p)
782 		return -ENOMEM;
783 
784 	tmp_path = alloc_path_for_send();
785 	if (!tmp_path) {
786 		fs_path_free(sctx, p);
787 		return -ENOMEM;
788 	}
789 
790 
791 	if (found_key->type == BTRFS_INODE_REF_KEY) {
792 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
793 						    struct btrfs_inode_ref);
794 		item = btrfs_item_nr(eb, slot);
795 		total = btrfs_item_size(eb, item);
796 		elem_size = sizeof(*iref);
797 	} else {
798 		ptr = btrfs_item_ptr_offset(eb, slot);
799 		total = btrfs_item_size_nr(eb, slot);
800 		elem_size = sizeof(*extref);
801 	}
802 
803 	while (cur < total) {
804 		fs_path_reset(p);
805 
806 		if (found_key->type == BTRFS_INODE_REF_KEY) {
807 			iref = (struct btrfs_inode_ref *)(ptr + cur);
808 			name_len = btrfs_inode_ref_name_len(eb, iref);
809 			name_off = (unsigned long)(iref + 1);
810 			index = btrfs_inode_ref_index(eb, iref);
811 			dir = found_key->offset;
812 		} else {
813 			extref = (struct btrfs_inode_extref *)(ptr + cur);
814 			name_len = btrfs_inode_extref_name_len(eb, extref);
815 			name_off = (unsigned long)&extref->name;
816 			index = btrfs_inode_extref_index(eb, extref);
817 			dir = btrfs_inode_extref_parent(eb, extref);
818 		}
819 
820 		if (resolve) {
821 			start = btrfs_ref_to_path(root, tmp_path, name_len,
822 						  name_off, eb, dir,
823 						  p->buf, p->buf_len);
824 			if (IS_ERR(start)) {
825 				ret = PTR_ERR(start);
826 				goto out;
827 			}
828 			if (start < p->buf) {
829 				/* overflow , try again with larger buffer */
830 				ret = fs_path_ensure_buf(p,
831 						p->buf_len + p->buf - start);
832 				if (ret < 0)
833 					goto out;
834 				start = btrfs_ref_to_path(root, tmp_path,
835 							  name_len, name_off,
836 							  eb, dir,
837 							  p->buf, p->buf_len);
838 				if (IS_ERR(start)) {
839 					ret = PTR_ERR(start);
840 					goto out;
841 				}
842 				BUG_ON(start < p->buf);
843 			}
844 			p->start = start;
845 		} else {
846 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
847 							     name_len);
848 			if (ret < 0)
849 				goto out;
850 		}
851 
852 		cur += elem_size + name_len;
853 		ret = iterate(num, dir, index, p, ctx);
854 		if (ret)
855 			goto out;
856 		num++;
857 	}
858 
859 out:
860 	btrfs_free_path(tmp_path);
861 	fs_path_free(sctx, p);
862 	return ret;
863 }
864 
865 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
866 				  const char *name, int name_len,
867 				  const char *data, int data_len,
868 				  u8 type, void *ctx);
869 
870 /*
871  * Helper function to iterate the entries in ONE btrfs_dir_item.
872  * The iterate callback may return a non zero value to stop iteration. This can
873  * be a negative value for error codes or 1 to simply stop it.
874  *
875  * path must point to the dir item when called.
876  */
877 static int iterate_dir_item(struct send_ctx *sctx,
878 			    struct btrfs_root *root, struct btrfs_path *path,
879 			    struct btrfs_key *found_key,
880 			    iterate_dir_item_t iterate, void *ctx)
881 {
882 	int ret = 0;
883 	struct extent_buffer *eb;
884 	struct btrfs_item *item;
885 	struct btrfs_dir_item *di;
886 	struct btrfs_key di_key;
887 	char *buf = NULL;
888 	char *buf2 = NULL;
889 	int buf_len;
890 	int buf_virtual = 0;
891 	u32 name_len;
892 	u32 data_len;
893 	u32 cur;
894 	u32 len;
895 	u32 total;
896 	int slot;
897 	int num;
898 	u8 type;
899 
900 	buf_len = PAGE_SIZE;
901 	buf = kmalloc(buf_len, GFP_NOFS);
902 	if (!buf) {
903 		ret = -ENOMEM;
904 		goto out;
905 	}
906 
907 	eb = path->nodes[0];
908 	slot = path->slots[0];
909 	item = btrfs_item_nr(eb, slot);
910 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
911 	cur = 0;
912 	len = 0;
913 	total = btrfs_item_size(eb, item);
914 
915 	num = 0;
916 	while (cur < total) {
917 		name_len = btrfs_dir_name_len(eb, di);
918 		data_len = btrfs_dir_data_len(eb, di);
919 		type = btrfs_dir_type(eb, di);
920 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
921 
922 		if (name_len + data_len > buf_len) {
923 			buf_len = PAGE_ALIGN(name_len + data_len);
924 			if (buf_virtual) {
925 				buf2 = vmalloc(buf_len);
926 				if (!buf2) {
927 					ret = -ENOMEM;
928 					goto out;
929 				}
930 				vfree(buf);
931 			} else {
932 				buf2 = krealloc(buf, buf_len, GFP_NOFS);
933 				if (!buf2) {
934 					buf2 = vmalloc(buf_len);
935 					if (!buf2) {
936 						ret = -ENOMEM;
937 						goto out;
938 					}
939 					kfree(buf);
940 					buf_virtual = 1;
941 				}
942 			}
943 
944 			buf = buf2;
945 			buf2 = NULL;
946 		}
947 
948 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
949 				name_len + data_len);
950 
951 		len = sizeof(*di) + name_len + data_len;
952 		di = (struct btrfs_dir_item *)((char *)di + len);
953 		cur += len;
954 
955 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
956 				data_len, type, ctx);
957 		if (ret < 0)
958 			goto out;
959 		if (ret) {
960 			ret = 0;
961 			goto out;
962 		}
963 
964 		num++;
965 	}
966 
967 out:
968 	if (buf_virtual)
969 		vfree(buf);
970 	else
971 		kfree(buf);
972 	return ret;
973 }
974 
975 static int __copy_first_ref(int num, u64 dir, int index,
976 			    struct fs_path *p, void *ctx)
977 {
978 	int ret;
979 	struct fs_path *pt = ctx;
980 
981 	ret = fs_path_copy(pt, p);
982 	if (ret < 0)
983 		return ret;
984 
985 	/* we want the first only */
986 	return 1;
987 }
988 
989 /*
990  * Retrieve the first path of an inode. If an inode has more then one
991  * ref/hardlink, this is ignored.
992  */
993 static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root,
994 			  u64 ino, struct fs_path *path)
995 {
996 	int ret;
997 	struct btrfs_key key, found_key;
998 	struct btrfs_path *p;
999 
1000 	p = alloc_path_for_send();
1001 	if (!p)
1002 		return -ENOMEM;
1003 
1004 	fs_path_reset(path);
1005 
1006 	key.objectid = ino;
1007 	key.type = BTRFS_INODE_REF_KEY;
1008 	key.offset = 0;
1009 
1010 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1011 	if (ret < 0)
1012 		goto out;
1013 	if (ret) {
1014 		ret = 1;
1015 		goto out;
1016 	}
1017 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1018 	if (found_key.objectid != ino ||
1019 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1020 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1021 		ret = -ENOENT;
1022 		goto out;
1023 	}
1024 
1025 	ret = iterate_inode_ref(sctx, root, p, &found_key, 1,
1026 			__copy_first_ref, path);
1027 	if (ret < 0)
1028 		goto out;
1029 	ret = 0;
1030 
1031 out:
1032 	btrfs_free_path(p);
1033 	return ret;
1034 }
1035 
1036 struct backref_ctx {
1037 	struct send_ctx *sctx;
1038 
1039 	/* number of total found references */
1040 	u64 found;
1041 
1042 	/*
1043 	 * used for clones found in send_root. clones found behind cur_objectid
1044 	 * and cur_offset are not considered as allowed clones.
1045 	 */
1046 	u64 cur_objectid;
1047 	u64 cur_offset;
1048 
1049 	/* may be truncated in case it's the last extent in a file */
1050 	u64 extent_len;
1051 
1052 	/* Just to check for bugs in backref resolving */
1053 	int found_itself;
1054 };
1055 
1056 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1057 {
1058 	u64 root = (u64)(uintptr_t)key;
1059 	struct clone_root *cr = (struct clone_root *)elt;
1060 
1061 	if (root < cr->root->objectid)
1062 		return -1;
1063 	if (root > cr->root->objectid)
1064 		return 1;
1065 	return 0;
1066 }
1067 
1068 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1069 {
1070 	struct clone_root *cr1 = (struct clone_root *)e1;
1071 	struct clone_root *cr2 = (struct clone_root *)e2;
1072 
1073 	if (cr1->root->objectid < cr2->root->objectid)
1074 		return -1;
1075 	if (cr1->root->objectid > cr2->root->objectid)
1076 		return 1;
1077 	return 0;
1078 }
1079 
1080 /*
1081  * Called for every backref that is found for the current extent.
1082  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1083  */
1084 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1085 {
1086 	struct backref_ctx *bctx = ctx_;
1087 	struct clone_root *found;
1088 	int ret;
1089 	u64 i_size;
1090 
1091 	/* First check if the root is in the list of accepted clone sources */
1092 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1093 			bctx->sctx->clone_roots_cnt,
1094 			sizeof(struct clone_root),
1095 			__clone_root_cmp_bsearch);
1096 	if (!found)
1097 		return 0;
1098 
1099 	if (found->root == bctx->sctx->send_root &&
1100 	    ino == bctx->cur_objectid &&
1101 	    offset == bctx->cur_offset) {
1102 		bctx->found_itself = 1;
1103 	}
1104 
1105 	/*
1106 	 * There are inodes that have extents that lie behind its i_size. Don't
1107 	 * accept clones from these extents.
1108 	 */
1109 	ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1110 			NULL);
1111 	if (ret < 0)
1112 		return ret;
1113 
1114 	if (offset + bctx->extent_len > i_size)
1115 		return 0;
1116 
1117 	/*
1118 	 * Make sure we don't consider clones from send_root that are
1119 	 * behind the current inode/offset.
1120 	 */
1121 	if (found->root == bctx->sctx->send_root) {
1122 		/*
1123 		 * TODO for the moment we don't accept clones from the inode
1124 		 * that is currently send. We may change this when
1125 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1126 		 * file.
1127 		 */
1128 		if (ino >= bctx->cur_objectid)
1129 			return 0;
1130 #if 0
1131 		if (ino > bctx->cur_objectid)
1132 			return 0;
1133 		if (offset + bctx->extent_len > bctx->cur_offset)
1134 			return 0;
1135 #endif
1136 	}
1137 
1138 	bctx->found++;
1139 	found->found_refs++;
1140 	if (ino < found->ino) {
1141 		found->ino = ino;
1142 		found->offset = offset;
1143 	} else if (found->ino == ino) {
1144 		/*
1145 		 * same extent found more then once in the same file.
1146 		 */
1147 		if (found->offset > offset + bctx->extent_len)
1148 			found->offset = offset;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Given an inode, offset and extent item, it finds a good clone for a clone
1156  * instruction. Returns -ENOENT when none could be found. The function makes
1157  * sure that the returned clone is usable at the point where sending is at the
1158  * moment. This means, that no clones are accepted which lie behind the current
1159  * inode+offset.
1160  *
1161  * path must point to the extent item when called.
1162  */
1163 static int find_extent_clone(struct send_ctx *sctx,
1164 			     struct btrfs_path *path,
1165 			     u64 ino, u64 data_offset,
1166 			     u64 ino_size,
1167 			     struct clone_root **found)
1168 {
1169 	int ret;
1170 	int extent_type;
1171 	u64 logical;
1172 	u64 disk_byte;
1173 	u64 num_bytes;
1174 	u64 extent_item_pos;
1175 	u64 flags = 0;
1176 	struct btrfs_file_extent_item *fi;
1177 	struct extent_buffer *eb = path->nodes[0];
1178 	struct backref_ctx *backref_ctx = NULL;
1179 	struct clone_root *cur_clone_root;
1180 	struct btrfs_key found_key;
1181 	struct btrfs_path *tmp_path;
1182 	int compressed;
1183 	u32 i;
1184 
1185 	tmp_path = alloc_path_for_send();
1186 	if (!tmp_path)
1187 		return -ENOMEM;
1188 
1189 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1190 	if (!backref_ctx) {
1191 		ret = -ENOMEM;
1192 		goto out;
1193 	}
1194 
1195 	if (data_offset >= ino_size) {
1196 		/*
1197 		 * There may be extents that lie behind the file's size.
1198 		 * I at least had this in combination with snapshotting while
1199 		 * writing large files.
1200 		 */
1201 		ret = 0;
1202 		goto out;
1203 	}
1204 
1205 	fi = btrfs_item_ptr(eb, path->slots[0],
1206 			struct btrfs_file_extent_item);
1207 	extent_type = btrfs_file_extent_type(eb, fi);
1208 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1209 		ret = -ENOENT;
1210 		goto out;
1211 	}
1212 	compressed = btrfs_file_extent_compression(eb, fi);
1213 
1214 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1215 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1216 	if (disk_byte == 0) {
1217 		ret = -ENOENT;
1218 		goto out;
1219 	}
1220 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1221 
1222 	ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1223 				  &found_key, &flags);
1224 	btrfs_release_path(tmp_path);
1225 
1226 	if (ret < 0)
1227 		goto out;
1228 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1229 		ret = -EIO;
1230 		goto out;
1231 	}
1232 
1233 	/*
1234 	 * Setup the clone roots.
1235 	 */
1236 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1237 		cur_clone_root = sctx->clone_roots + i;
1238 		cur_clone_root->ino = (u64)-1;
1239 		cur_clone_root->offset = 0;
1240 		cur_clone_root->found_refs = 0;
1241 	}
1242 
1243 	backref_ctx->sctx = sctx;
1244 	backref_ctx->found = 0;
1245 	backref_ctx->cur_objectid = ino;
1246 	backref_ctx->cur_offset = data_offset;
1247 	backref_ctx->found_itself = 0;
1248 	backref_ctx->extent_len = num_bytes;
1249 
1250 	/*
1251 	 * The last extent of a file may be too large due to page alignment.
1252 	 * We need to adjust extent_len in this case so that the checks in
1253 	 * __iterate_backrefs work.
1254 	 */
1255 	if (data_offset + num_bytes >= ino_size)
1256 		backref_ctx->extent_len = ino_size - data_offset;
1257 
1258 	/*
1259 	 * Now collect all backrefs.
1260 	 */
1261 	if (compressed == BTRFS_COMPRESS_NONE)
1262 		extent_item_pos = logical - found_key.objectid;
1263 	else
1264 		extent_item_pos = 0;
1265 
1266 	extent_item_pos = logical - found_key.objectid;
1267 	ret = iterate_extent_inodes(sctx->send_root->fs_info,
1268 					found_key.objectid, extent_item_pos, 1,
1269 					__iterate_backrefs, backref_ctx);
1270 
1271 	if (ret < 0)
1272 		goto out;
1273 
1274 	if (!backref_ctx->found_itself) {
1275 		/* found a bug in backref code? */
1276 		ret = -EIO;
1277 		printk(KERN_ERR "btrfs: ERROR did not find backref in "
1278 				"send_root. inode=%llu, offset=%llu, "
1279 				"disk_byte=%llu found extent=%llu\n",
1280 				ino, data_offset, disk_byte, found_key.objectid);
1281 		goto out;
1282 	}
1283 
1284 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1285 		"ino=%llu, "
1286 		"num_bytes=%llu, logical=%llu\n",
1287 		data_offset, ino, num_bytes, logical);
1288 
1289 	if (!backref_ctx->found)
1290 		verbose_printk("btrfs:    no clones found\n");
1291 
1292 	cur_clone_root = NULL;
1293 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1294 		if (sctx->clone_roots[i].found_refs) {
1295 			if (!cur_clone_root)
1296 				cur_clone_root = sctx->clone_roots + i;
1297 			else if (sctx->clone_roots[i].root == sctx->send_root)
1298 				/* prefer clones from send_root over others */
1299 				cur_clone_root = sctx->clone_roots + i;
1300 		}
1301 
1302 	}
1303 
1304 	if (cur_clone_root) {
1305 		*found = cur_clone_root;
1306 		ret = 0;
1307 	} else {
1308 		ret = -ENOENT;
1309 	}
1310 
1311 out:
1312 	btrfs_free_path(tmp_path);
1313 	kfree(backref_ctx);
1314 	return ret;
1315 }
1316 
1317 static int read_symlink(struct send_ctx *sctx,
1318 			struct btrfs_root *root,
1319 			u64 ino,
1320 			struct fs_path *dest)
1321 {
1322 	int ret;
1323 	struct btrfs_path *path;
1324 	struct btrfs_key key;
1325 	struct btrfs_file_extent_item *ei;
1326 	u8 type;
1327 	u8 compression;
1328 	unsigned long off;
1329 	int len;
1330 
1331 	path = alloc_path_for_send();
1332 	if (!path)
1333 		return -ENOMEM;
1334 
1335 	key.objectid = ino;
1336 	key.type = BTRFS_EXTENT_DATA_KEY;
1337 	key.offset = 0;
1338 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1339 	if (ret < 0)
1340 		goto out;
1341 	BUG_ON(ret);
1342 
1343 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1344 			struct btrfs_file_extent_item);
1345 	type = btrfs_file_extent_type(path->nodes[0], ei);
1346 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1347 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1348 	BUG_ON(compression);
1349 
1350 	off = btrfs_file_extent_inline_start(ei);
1351 	len = btrfs_file_extent_inline_len(path->nodes[0], ei);
1352 
1353 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1354 
1355 out:
1356 	btrfs_free_path(path);
1357 	return ret;
1358 }
1359 
1360 /*
1361  * Helper function to generate a file name that is unique in the root of
1362  * send_root and parent_root. This is used to generate names for orphan inodes.
1363  */
1364 static int gen_unique_name(struct send_ctx *sctx,
1365 			   u64 ino, u64 gen,
1366 			   struct fs_path *dest)
1367 {
1368 	int ret = 0;
1369 	struct btrfs_path *path;
1370 	struct btrfs_dir_item *di;
1371 	char tmp[64];
1372 	int len;
1373 	u64 idx = 0;
1374 
1375 	path = alloc_path_for_send();
1376 	if (!path)
1377 		return -ENOMEM;
1378 
1379 	while (1) {
1380 		len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu",
1381 				ino, gen, idx);
1382 		if (len >= sizeof(tmp)) {
1383 			/* should really not happen */
1384 			ret = -EOVERFLOW;
1385 			goto out;
1386 		}
1387 
1388 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1389 				path, BTRFS_FIRST_FREE_OBJECTID,
1390 				tmp, strlen(tmp), 0);
1391 		btrfs_release_path(path);
1392 		if (IS_ERR(di)) {
1393 			ret = PTR_ERR(di);
1394 			goto out;
1395 		}
1396 		if (di) {
1397 			/* not unique, try again */
1398 			idx++;
1399 			continue;
1400 		}
1401 
1402 		if (!sctx->parent_root) {
1403 			/* unique */
1404 			ret = 0;
1405 			break;
1406 		}
1407 
1408 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1409 				path, BTRFS_FIRST_FREE_OBJECTID,
1410 				tmp, strlen(tmp), 0);
1411 		btrfs_release_path(path);
1412 		if (IS_ERR(di)) {
1413 			ret = PTR_ERR(di);
1414 			goto out;
1415 		}
1416 		if (di) {
1417 			/* not unique, try again */
1418 			idx++;
1419 			continue;
1420 		}
1421 		/* unique */
1422 		break;
1423 	}
1424 
1425 	ret = fs_path_add(dest, tmp, strlen(tmp));
1426 
1427 out:
1428 	btrfs_free_path(path);
1429 	return ret;
1430 }
1431 
1432 enum inode_state {
1433 	inode_state_no_change,
1434 	inode_state_will_create,
1435 	inode_state_did_create,
1436 	inode_state_will_delete,
1437 	inode_state_did_delete,
1438 };
1439 
1440 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1441 {
1442 	int ret;
1443 	int left_ret;
1444 	int right_ret;
1445 	u64 left_gen;
1446 	u64 right_gen;
1447 
1448 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1449 			NULL, NULL);
1450 	if (ret < 0 && ret != -ENOENT)
1451 		goto out;
1452 	left_ret = ret;
1453 
1454 	if (!sctx->parent_root) {
1455 		right_ret = -ENOENT;
1456 	} else {
1457 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1458 				NULL, NULL, NULL, NULL);
1459 		if (ret < 0 && ret != -ENOENT)
1460 			goto out;
1461 		right_ret = ret;
1462 	}
1463 
1464 	if (!left_ret && !right_ret) {
1465 		if (left_gen == gen && right_gen == gen) {
1466 			ret = inode_state_no_change;
1467 		} else if (left_gen == gen) {
1468 			if (ino < sctx->send_progress)
1469 				ret = inode_state_did_create;
1470 			else
1471 				ret = inode_state_will_create;
1472 		} else if (right_gen == gen) {
1473 			if (ino < sctx->send_progress)
1474 				ret = inode_state_did_delete;
1475 			else
1476 				ret = inode_state_will_delete;
1477 		} else  {
1478 			ret = -ENOENT;
1479 		}
1480 	} else if (!left_ret) {
1481 		if (left_gen == gen) {
1482 			if (ino < sctx->send_progress)
1483 				ret = inode_state_did_create;
1484 			else
1485 				ret = inode_state_will_create;
1486 		} else {
1487 			ret = -ENOENT;
1488 		}
1489 	} else if (!right_ret) {
1490 		if (right_gen == gen) {
1491 			if (ino < sctx->send_progress)
1492 				ret = inode_state_did_delete;
1493 			else
1494 				ret = inode_state_will_delete;
1495 		} else {
1496 			ret = -ENOENT;
1497 		}
1498 	} else {
1499 		ret = -ENOENT;
1500 	}
1501 
1502 out:
1503 	return ret;
1504 }
1505 
1506 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1507 {
1508 	int ret;
1509 
1510 	ret = get_cur_inode_state(sctx, ino, gen);
1511 	if (ret < 0)
1512 		goto out;
1513 
1514 	if (ret == inode_state_no_change ||
1515 	    ret == inode_state_did_create ||
1516 	    ret == inode_state_will_delete)
1517 		ret = 1;
1518 	else
1519 		ret = 0;
1520 
1521 out:
1522 	return ret;
1523 }
1524 
1525 /*
1526  * Helper function to lookup a dir item in a dir.
1527  */
1528 static int lookup_dir_item_inode(struct btrfs_root *root,
1529 				 u64 dir, const char *name, int name_len,
1530 				 u64 *found_inode,
1531 				 u8 *found_type)
1532 {
1533 	int ret = 0;
1534 	struct btrfs_dir_item *di;
1535 	struct btrfs_key key;
1536 	struct btrfs_path *path;
1537 
1538 	path = alloc_path_for_send();
1539 	if (!path)
1540 		return -ENOMEM;
1541 
1542 	di = btrfs_lookup_dir_item(NULL, root, path,
1543 			dir, name, name_len, 0);
1544 	if (!di) {
1545 		ret = -ENOENT;
1546 		goto out;
1547 	}
1548 	if (IS_ERR(di)) {
1549 		ret = PTR_ERR(di);
1550 		goto out;
1551 	}
1552 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1553 	*found_inode = key.objectid;
1554 	*found_type = btrfs_dir_type(path->nodes[0], di);
1555 
1556 out:
1557 	btrfs_free_path(path);
1558 	return ret;
1559 }
1560 
1561 /*
1562  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1563  * generation of the parent dir and the name of the dir entry.
1564  */
1565 static int get_first_ref(struct send_ctx *sctx,
1566 			 struct btrfs_root *root, u64 ino,
1567 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1568 {
1569 	int ret;
1570 	struct btrfs_key key;
1571 	struct btrfs_key found_key;
1572 	struct btrfs_path *path;
1573 	int len;
1574 	u64 parent_dir;
1575 
1576 	path = alloc_path_for_send();
1577 	if (!path)
1578 		return -ENOMEM;
1579 
1580 	key.objectid = ino;
1581 	key.type = BTRFS_INODE_REF_KEY;
1582 	key.offset = 0;
1583 
1584 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1585 	if (ret < 0)
1586 		goto out;
1587 	if (!ret)
1588 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1589 				path->slots[0]);
1590 	if (ret || found_key.objectid != ino ||
1591 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1592 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1593 		ret = -ENOENT;
1594 		goto out;
1595 	}
1596 
1597 	if (key.type == BTRFS_INODE_REF_KEY) {
1598 		struct btrfs_inode_ref *iref;
1599 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1600 				      struct btrfs_inode_ref);
1601 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1602 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1603 						     (unsigned long)(iref + 1),
1604 						     len);
1605 		parent_dir = found_key.offset;
1606 	} else {
1607 		struct btrfs_inode_extref *extref;
1608 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1609 					struct btrfs_inode_extref);
1610 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1611 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1612 					(unsigned long)&extref->name, len);
1613 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1614 	}
1615 	if (ret < 0)
1616 		goto out;
1617 	btrfs_release_path(path);
1618 
1619 	ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
1620 			NULL, NULL);
1621 	if (ret < 0)
1622 		goto out;
1623 
1624 	*dir = parent_dir;
1625 
1626 out:
1627 	btrfs_free_path(path);
1628 	return ret;
1629 }
1630 
1631 static int is_first_ref(struct send_ctx *sctx,
1632 			struct btrfs_root *root,
1633 			u64 ino, u64 dir,
1634 			const char *name, int name_len)
1635 {
1636 	int ret;
1637 	struct fs_path *tmp_name;
1638 	u64 tmp_dir;
1639 	u64 tmp_dir_gen;
1640 
1641 	tmp_name = fs_path_alloc(sctx);
1642 	if (!tmp_name)
1643 		return -ENOMEM;
1644 
1645 	ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
1646 	if (ret < 0)
1647 		goto out;
1648 
1649 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1650 		ret = 0;
1651 		goto out;
1652 	}
1653 
1654 	ret = !memcmp(tmp_name->start, name, name_len);
1655 
1656 out:
1657 	fs_path_free(sctx, tmp_name);
1658 	return ret;
1659 }
1660 
1661 /*
1662  * Used by process_recorded_refs to determine if a new ref would overwrite an
1663  * already existing ref. In case it detects an overwrite, it returns the
1664  * inode/gen in who_ino/who_gen.
1665  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1666  * to make sure later references to the overwritten inode are possible.
1667  * Orphanizing is however only required for the first ref of an inode.
1668  * process_recorded_refs does an additional is_first_ref check to see if
1669  * orphanizing is really required.
1670  */
1671 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1672 			      const char *name, int name_len,
1673 			      u64 *who_ino, u64 *who_gen)
1674 {
1675 	int ret = 0;
1676 	u64 other_inode = 0;
1677 	u8 other_type = 0;
1678 
1679 	if (!sctx->parent_root)
1680 		goto out;
1681 
1682 	ret = is_inode_existent(sctx, dir, dir_gen);
1683 	if (ret <= 0)
1684 		goto out;
1685 
1686 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1687 			&other_inode, &other_type);
1688 	if (ret < 0 && ret != -ENOENT)
1689 		goto out;
1690 	if (ret) {
1691 		ret = 0;
1692 		goto out;
1693 	}
1694 
1695 	/*
1696 	 * Check if the overwritten ref was already processed. If yes, the ref
1697 	 * was already unlinked/moved, so we can safely assume that we will not
1698 	 * overwrite anything at this point in time.
1699 	 */
1700 	if (other_inode > sctx->send_progress) {
1701 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1702 				who_gen, NULL, NULL, NULL, NULL);
1703 		if (ret < 0)
1704 			goto out;
1705 
1706 		ret = 1;
1707 		*who_ino = other_inode;
1708 	} else {
1709 		ret = 0;
1710 	}
1711 
1712 out:
1713 	return ret;
1714 }
1715 
1716 /*
1717  * Checks if the ref was overwritten by an already processed inode. This is
1718  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1719  * thus the orphan name needs be used.
1720  * process_recorded_refs also uses it to avoid unlinking of refs that were
1721  * overwritten.
1722  */
1723 static int did_overwrite_ref(struct send_ctx *sctx,
1724 			    u64 dir, u64 dir_gen,
1725 			    u64 ino, u64 ino_gen,
1726 			    const char *name, int name_len)
1727 {
1728 	int ret = 0;
1729 	u64 gen;
1730 	u64 ow_inode;
1731 	u8 other_type;
1732 
1733 	if (!sctx->parent_root)
1734 		goto out;
1735 
1736 	ret = is_inode_existent(sctx, dir, dir_gen);
1737 	if (ret <= 0)
1738 		goto out;
1739 
1740 	/* check if the ref was overwritten by another ref */
1741 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1742 			&ow_inode, &other_type);
1743 	if (ret < 0 && ret != -ENOENT)
1744 		goto out;
1745 	if (ret) {
1746 		/* was never and will never be overwritten */
1747 		ret = 0;
1748 		goto out;
1749 	}
1750 
1751 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1752 			NULL, NULL);
1753 	if (ret < 0)
1754 		goto out;
1755 
1756 	if (ow_inode == ino && gen == ino_gen) {
1757 		ret = 0;
1758 		goto out;
1759 	}
1760 
1761 	/* we know that it is or will be overwritten. check this now */
1762 	if (ow_inode < sctx->send_progress)
1763 		ret = 1;
1764 	else
1765 		ret = 0;
1766 
1767 out:
1768 	return ret;
1769 }
1770 
1771 /*
1772  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1773  * that got overwritten. This is used by process_recorded_refs to determine
1774  * if it has to use the path as returned by get_cur_path or the orphan name.
1775  */
1776 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1777 {
1778 	int ret = 0;
1779 	struct fs_path *name = NULL;
1780 	u64 dir;
1781 	u64 dir_gen;
1782 
1783 	if (!sctx->parent_root)
1784 		goto out;
1785 
1786 	name = fs_path_alloc(sctx);
1787 	if (!name)
1788 		return -ENOMEM;
1789 
1790 	ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name);
1791 	if (ret < 0)
1792 		goto out;
1793 
1794 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1795 			name->start, fs_path_len(name));
1796 
1797 out:
1798 	fs_path_free(sctx, name);
1799 	return ret;
1800 }
1801 
1802 /*
1803  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1804  * so we need to do some special handling in case we have clashes. This function
1805  * takes care of this with the help of name_cache_entry::radix_list.
1806  * In case of error, nce is kfreed.
1807  */
1808 static int name_cache_insert(struct send_ctx *sctx,
1809 			     struct name_cache_entry *nce)
1810 {
1811 	int ret = 0;
1812 	struct list_head *nce_head;
1813 
1814 	nce_head = radix_tree_lookup(&sctx->name_cache,
1815 			(unsigned long)nce->ino);
1816 	if (!nce_head) {
1817 		nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1818 		if (!nce_head) {
1819 			kfree(nce);
1820 			return -ENOMEM;
1821 		}
1822 		INIT_LIST_HEAD(nce_head);
1823 
1824 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1825 		if (ret < 0) {
1826 			kfree(nce_head);
1827 			kfree(nce);
1828 			return ret;
1829 		}
1830 	}
1831 	list_add_tail(&nce->radix_list, nce_head);
1832 	list_add_tail(&nce->list, &sctx->name_cache_list);
1833 	sctx->name_cache_size++;
1834 
1835 	return ret;
1836 }
1837 
1838 static void name_cache_delete(struct send_ctx *sctx,
1839 			      struct name_cache_entry *nce)
1840 {
1841 	struct list_head *nce_head;
1842 
1843 	nce_head = radix_tree_lookup(&sctx->name_cache,
1844 			(unsigned long)nce->ino);
1845 	BUG_ON(!nce_head);
1846 
1847 	list_del(&nce->radix_list);
1848 	list_del(&nce->list);
1849 	sctx->name_cache_size--;
1850 
1851 	if (list_empty(nce_head)) {
1852 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1853 		kfree(nce_head);
1854 	}
1855 }
1856 
1857 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1858 						    u64 ino, u64 gen)
1859 {
1860 	struct list_head *nce_head;
1861 	struct name_cache_entry *cur;
1862 
1863 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1864 	if (!nce_head)
1865 		return NULL;
1866 
1867 	list_for_each_entry(cur, nce_head, radix_list) {
1868 		if (cur->ino == ino && cur->gen == gen)
1869 			return cur;
1870 	}
1871 	return NULL;
1872 }
1873 
1874 /*
1875  * Removes the entry from the list and adds it back to the end. This marks the
1876  * entry as recently used so that name_cache_clean_unused does not remove it.
1877  */
1878 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1879 {
1880 	list_del(&nce->list);
1881 	list_add_tail(&nce->list, &sctx->name_cache_list);
1882 }
1883 
1884 /*
1885  * Remove some entries from the beginning of name_cache_list.
1886  */
1887 static void name_cache_clean_unused(struct send_ctx *sctx)
1888 {
1889 	struct name_cache_entry *nce;
1890 
1891 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1892 		return;
1893 
1894 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1895 		nce = list_entry(sctx->name_cache_list.next,
1896 				struct name_cache_entry, list);
1897 		name_cache_delete(sctx, nce);
1898 		kfree(nce);
1899 	}
1900 }
1901 
1902 static void name_cache_free(struct send_ctx *sctx)
1903 {
1904 	struct name_cache_entry *nce;
1905 
1906 	while (!list_empty(&sctx->name_cache_list)) {
1907 		nce = list_entry(sctx->name_cache_list.next,
1908 				struct name_cache_entry, list);
1909 		name_cache_delete(sctx, nce);
1910 		kfree(nce);
1911 	}
1912 }
1913 
1914 /*
1915  * Used by get_cur_path for each ref up to the root.
1916  * Returns 0 if it succeeded.
1917  * Returns 1 if the inode is not existent or got overwritten. In that case, the
1918  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1919  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1920  * Returns <0 in case of error.
1921  */
1922 static int __get_cur_name_and_parent(struct send_ctx *sctx,
1923 				     u64 ino, u64 gen,
1924 				     u64 *parent_ino,
1925 				     u64 *parent_gen,
1926 				     struct fs_path *dest)
1927 {
1928 	int ret;
1929 	int nce_ret;
1930 	struct btrfs_path *path = NULL;
1931 	struct name_cache_entry *nce = NULL;
1932 
1933 	/*
1934 	 * First check if we already did a call to this function with the same
1935 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1936 	 * return the cached result.
1937 	 */
1938 	nce = name_cache_search(sctx, ino, gen);
1939 	if (nce) {
1940 		if (ino < sctx->send_progress && nce->need_later_update) {
1941 			name_cache_delete(sctx, nce);
1942 			kfree(nce);
1943 			nce = NULL;
1944 		} else {
1945 			name_cache_used(sctx, nce);
1946 			*parent_ino = nce->parent_ino;
1947 			*parent_gen = nce->parent_gen;
1948 			ret = fs_path_add(dest, nce->name, nce->name_len);
1949 			if (ret < 0)
1950 				goto out;
1951 			ret = nce->ret;
1952 			goto out;
1953 		}
1954 	}
1955 
1956 	path = alloc_path_for_send();
1957 	if (!path)
1958 		return -ENOMEM;
1959 
1960 	/*
1961 	 * If the inode is not existent yet, add the orphan name and return 1.
1962 	 * This should only happen for the parent dir that we determine in
1963 	 * __record_new_ref
1964 	 */
1965 	ret = is_inode_existent(sctx, ino, gen);
1966 	if (ret < 0)
1967 		goto out;
1968 
1969 	if (!ret) {
1970 		ret = gen_unique_name(sctx, ino, gen, dest);
1971 		if (ret < 0)
1972 			goto out;
1973 		ret = 1;
1974 		goto out_cache;
1975 	}
1976 
1977 	/*
1978 	 * Depending on whether the inode was already processed or not, use
1979 	 * send_root or parent_root for ref lookup.
1980 	 */
1981 	if (ino < sctx->send_progress)
1982 		ret = get_first_ref(sctx, sctx->send_root, ino,
1983 				parent_ino, parent_gen, dest);
1984 	else
1985 		ret = get_first_ref(sctx, sctx->parent_root, ino,
1986 				parent_ino, parent_gen, dest);
1987 	if (ret < 0)
1988 		goto out;
1989 
1990 	/*
1991 	 * Check if the ref was overwritten by an inode's ref that was processed
1992 	 * earlier. If yes, treat as orphan and return 1.
1993 	 */
1994 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
1995 			dest->start, dest->end - dest->start);
1996 	if (ret < 0)
1997 		goto out;
1998 	if (ret) {
1999 		fs_path_reset(dest);
2000 		ret = gen_unique_name(sctx, ino, gen, dest);
2001 		if (ret < 0)
2002 			goto out;
2003 		ret = 1;
2004 	}
2005 
2006 out_cache:
2007 	/*
2008 	 * Store the result of the lookup in the name cache.
2009 	 */
2010 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2011 	if (!nce) {
2012 		ret = -ENOMEM;
2013 		goto out;
2014 	}
2015 
2016 	nce->ino = ino;
2017 	nce->gen = gen;
2018 	nce->parent_ino = *parent_ino;
2019 	nce->parent_gen = *parent_gen;
2020 	nce->name_len = fs_path_len(dest);
2021 	nce->ret = ret;
2022 	strcpy(nce->name, dest->start);
2023 
2024 	if (ino < sctx->send_progress)
2025 		nce->need_later_update = 0;
2026 	else
2027 		nce->need_later_update = 1;
2028 
2029 	nce_ret = name_cache_insert(sctx, nce);
2030 	if (nce_ret < 0)
2031 		ret = nce_ret;
2032 	name_cache_clean_unused(sctx);
2033 
2034 out:
2035 	btrfs_free_path(path);
2036 	return ret;
2037 }
2038 
2039 /*
2040  * Magic happens here. This function returns the first ref to an inode as it
2041  * would look like while receiving the stream at this point in time.
2042  * We walk the path up to the root. For every inode in between, we check if it
2043  * was already processed/sent. If yes, we continue with the parent as found
2044  * in send_root. If not, we continue with the parent as found in parent_root.
2045  * If we encounter an inode that was deleted at this point in time, we use the
2046  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2047  * that were not created yet and overwritten inodes/refs.
2048  *
2049  * When do we have have orphan inodes:
2050  * 1. When an inode is freshly created and thus no valid refs are available yet
2051  * 2. When a directory lost all it's refs (deleted) but still has dir items
2052  *    inside which were not processed yet (pending for move/delete). If anyone
2053  *    tried to get the path to the dir items, it would get a path inside that
2054  *    orphan directory.
2055  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2056  *    of an unprocessed inode. If in that case the first ref would be
2057  *    overwritten, the overwritten inode gets "orphanized". Later when we
2058  *    process this overwritten inode, it is restored at a new place by moving
2059  *    the orphan inode.
2060  *
2061  * sctx->send_progress tells this function at which point in time receiving
2062  * would be.
2063  */
2064 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2065 			struct fs_path *dest)
2066 {
2067 	int ret = 0;
2068 	struct fs_path *name = NULL;
2069 	u64 parent_inode = 0;
2070 	u64 parent_gen = 0;
2071 	int stop = 0;
2072 
2073 	name = fs_path_alloc(sctx);
2074 	if (!name) {
2075 		ret = -ENOMEM;
2076 		goto out;
2077 	}
2078 
2079 	dest->reversed = 1;
2080 	fs_path_reset(dest);
2081 
2082 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2083 		fs_path_reset(name);
2084 
2085 		ret = __get_cur_name_and_parent(sctx, ino, gen,
2086 				&parent_inode, &parent_gen, name);
2087 		if (ret < 0)
2088 			goto out;
2089 		if (ret)
2090 			stop = 1;
2091 
2092 		ret = fs_path_add_path(dest, name);
2093 		if (ret < 0)
2094 			goto out;
2095 
2096 		ino = parent_inode;
2097 		gen = parent_gen;
2098 	}
2099 
2100 out:
2101 	fs_path_free(sctx, name);
2102 	if (!ret)
2103 		fs_path_unreverse(dest);
2104 	return ret;
2105 }
2106 
2107 /*
2108  * Called for regular files when sending extents data. Opens a struct file
2109  * to read from the file.
2110  */
2111 static int open_cur_inode_file(struct send_ctx *sctx)
2112 {
2113 	int ret = 0;
2114 	struct btrfs_key key;
2115 	struct path path;
2116 	struct inode *inode;
2117 	struct dentry *dentry;
2118 	struct file *filp;
2119 	int new = 0;
2120 
2121 	if (sctx->cur_inode_filp)
2122 		goto out;
2123 
2124 	key.objectid = sctx->cur_ino;
2125 	key.type = BTRFS_INODE_ITEM_KEY;
2126 	key.offset = 0;
2127 
2128 	inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root,
2129 			&new);
2130 	if (IS_ERR(inode)) {
2131 		ret = PTR_ERR(inode);
2132 		goto out;
2133 	}
2134 
2135 	dentry = d_obtain_alias(inode);
2136 	inode = NULL;
2137 	if (IS_ERR(dentry)) {
2138 		ret = PTR_ERR(dentry);
2139 		goto out;
2140 	}
2141 
2142 	path.mnt = sctx->mnt;
2143 	path.dentry = dentry;
2144 	filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred());
2145 	dput(dentry);
2146 	dentry = NULL;
2147 	if (IS_ERR(filp)) {
2148 		ret = PTR_ERR(filp);
2149 		goto out;
2150 	}
2151 	sctx->cur_inode_filp = filp;
2152 
2153 out:
2154 	/*
2155 	 * no xxxput required here as every vfs op
2156 	 * does it by itself on failure
2157 	 */
2158 	return ret;
2159 }
2160 
2161 /*
2162  * Closes the struct file that was created in open_cur_inode_file
2163  */
2164 static int close_cur_inode_file(struct send_ctx *sctx)
2165 {
2166 	int ret = 0;
2167 
2168 	if (!sctx->cur_inode_filp)
2169 		goto out;
2170 
2171 	ret = filp_close(sctx->cur_inode_filp, NULL);
2172 	sctx->cur_inode_filp = NULL;
2173 
2174 out:
2175 	return ret;
2176 }
2177 
2178 /*
2179  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2180  */
2181 static int send_subvol_begin(struct send_ctx *sctx)
2182 {
2183 	int ret;
2184 	struct btrfs_root *send_root = sctx->send_root;
2185 	struct btrfs_root *parent_root = sctx->parent_root;
2186 	struct btrfs_path *path;
2187 	struct btrfs_key key;
2188 	struct btrfs_root_ref *ref;
2189 	struct extent_buffer *leaf;
2190 	char *name = NULL;
2191 	int namelen;
2192 
2193 	path = alloc_path_for_send();
2194 	if (!path)
2195 		return -ENOMEM;
2196 
2197 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2198 	if (!name) {
2199 		btrfs_free_path(path);
2200 		return -ENOMEM;
2201 	}
2202 
2203 	key.objectid = send_root->objectid;
2204 	key.type = BTRFS_ROOT_BACKREF_KEY;
2205 	key.offset = 0;
2206 
2207 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2208 				&key, path, 1, 0);
2209 	if (ret < 0)
2210 		goto out;
2211 	if (ret) {
2212 		ret = -ENOENT;
2213 		goto out;
2214 	}
2215 
2216 	leaf = path->nodes[0];
2217 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2218 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2219 	    key.objectid != send_root->objectid) {
2220 		ret = -ENOENT;
2221 		goto out;
2222 	}
2223 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2224 	namelen = btrfs_root_ref_name_len(leaf, ref);
2225 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2226 	btrfs_release_path(path);
2227 
2228 	if (parent_root) {
2229 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2230 		if (ret < 0)
2231 			goto out;
2232 	} else {
2233 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2234 		if (ret < 0)
2235 			goto out;
2236 	}
2237 
2238 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2239 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2240 			sctx->send_root->root_item.uuid);
2241 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2242 			sctx->send_root->root_item.ctransid);
2243 	if (parent_root) {
2244 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2245 				sctx->parent_root->root_item.uuid);
2246 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2247 				sctx->parent_root->root_item.ctransid);
2248 	}
2249 
2250 	ret = send_cmd(sctx);
2251 
2252 tlv_put_failure:
2253 out:
2254 	btrfs_free_path(path);
2255 	kfree(name);
2256 	return ret;
2257 }
2258 
2259 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2260 {
2261 	int ret = 0;
2262 	struct fs_path *p;
2263 
2264 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2265 
2266 	p = fs_path_alloc(sctx);
2267 	if (!p)
2268 		return -ENOMEM;
2269 
2270 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2271 	if (ret < 0)
2272 		goto out;
2273 
2274 	ret = get_cur_path(sctx, ino, gen, p);
2275 	if (ret < 0)
2276 		goto out;
2277 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2278 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2279 
2280 	ret = send_cmd(sctx);
2281 
2282 tlv_put_failure:
2283 out:
2284 	fs_path_free(sctx, p);
2285 	return ret;
2286 }
2287 
2288 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2289 {
2290 	int ret = 0;
2291 	struct fs_path *p;
2292 
2293 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2294 
2295 	p = fs_path_alloc(sctx);
2296 	if (!p)
2297 		return -ENOMEM;
2298 
2299 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2300 	if (ret < 0)
2301 		goto out;
2302 
2303 	ret = get_cur_path(sctx, ino, gen, p);
2304 	if (ret < 0)
2305 		goto out;
2306 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2307 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2308 
2309 	ret = send_cmd(sctx);
2310 
2311 tlv_put_failure:
2312 out:
2313 	fs_path_free(sctx, p);
2314 	return ret;
2315 }
2316 
2317 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2318 {
2319 	int ret = 0;
2320 	struct fs_path *p;
2321 
2322 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2323 
2324 	p = fs_path_alloc(sctx);
2325 	if (!p)
2326 		return -ENOMEM;
2327 
2328 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2329 	if (ret < 0)
2330 		goto out;
2331 
2332 	ret = get_cur_path(sctx, ino, gen, p);
2333 	if (ret < 0)
2334 		goto out;
2335 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2336 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2337 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2338 
2339 	ret = send_cmd(sctx);
2340 
2341 tlv_put_failure:
2342 out:
2343 	fs_path_free(sctx, p);
2344 	return ret;
2345 }
2346 
2347 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2348 {
2349 	int ret = 0;
2350 	struct fs_path *p = NULL;
2351 	struct btrfs_inode_item *ii;
2352 	struct btrfs_path *path = NULL;
2353 	struct extent_buffer *eb;
2354 	struct btrfs_key key;
2355 	int slot;
2356 
2357 verbose_printk("btrfs: send_utimes %llu\n", ino);
2358 
2359 	p = fs_path_alloc(sctx);
2360 	if (!p)
2361 		return -ENOMEM;
2362 
2363 	path = alloc_path_for_send();
2364 	if (!path) {
2365 		ret = -ENOMEM;
2366 		goto out;
2367 	}
2368 
2369 	key.objectid = ino;
2370 	key.type = BTRFS_INODE_ITEM_KEY;
2371 	key.offset = 0;
2372 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2373 	if (ret < 0)
2374 		goto out;
2375 
2376 	eb = path->nodes[0];
2377 	slot = path->slots[0];
2378 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2379 
2380 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2381 	if (ret < 0)
2382 		goto out;
2383 
2384 	ret = get_cur_path(sctx, ino, gen, p);
2385 	if (ret < 0)
2386 		goto out;
2387 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2388 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2389 			btrfs_inode_atime(ii));
2390 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2391 			btrfs_inode_mtime(ii));
2392 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2393 			btrfs_inode_ctime(ii));
2394 	/* TODO Add otime support when the otime patches get into upstream */
2395 
2396 	ret = send_cmd(sctx);
2397 
2398 tlv_put_failure:
2399 out:
2400 	fs_path_free(sctx, p);
2401 	btrfs_free_path(path);
2402 	return ret;
2403 }
2404 
2405 /*
2406  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2407  * a valid path yet because we did not process the refs yet. So, the inode
2408  * is created as orphan.
2409  */
2410 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2411 {
2412 	int ret = 0;
2413 	struct fs_path *p;
2414 	int cmd;
2415 	u64 gen;
2416 	u64 mode;
2417 	u64 rdev;
2418 
2419 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2420 
2421 	p = fs_path_alloc(sctx);
2422 	if (!p)
2423 		return -ENOMEM;
2424 
2425 	ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2426 			NULL, &rdev);
2427 	if (ret < 0)
2428 		goto out;
2429 
2430 	if (S_ISREG(mode)) {
2431 		cmd = BTRFS_SEND_C_MKFILE;
2432 	} else if (S_ISDIR(mode)) {
2433 		cmd = BTRFS_SEND_C_MKDIR;
2434 	} else if (S_ISLNK(mode)) {
2435 		cmd = BTRFS_SEND_C_SYMLINK;
2436 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2437 		cmd = BTRFS_SEND_C_MKNOD;
2438 	} else if (S_ISFIFO(mode)) {
2439 		cmd = BTRFS_SEND_C_MKFIFO;
2440 	} else if (S_ISSOCK(mode)) {
2441 		cmd = BTRFS_SEND_C_MKSOCK;
2442 	} else {
2443 		printk(KERN_WARNING "btrfs: unexpected inode type %o",
2444 				(int)(mode & S_IFMT));
2445 		ret = -ENOTSUPP;
2446 		goto out;
2447 	}
2448 
2449 	ret = begin_cmd(sctx, cmd);
2450 	if (ret < 0)
2451 		goto out;
2452 
2453 	ret = gen_unique_name(sctx, ino, gen, p);
2454 	if (ret < 0)
2455 		goto out;
2456 
2457 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2459 
2460 	if (S_ISLNK(mode)) {
2461 		fs_path_reset(p);
2462 		ret = read_symlink(sctx, sctx->send_root, ino, p);
2463 		if (ret < 0)
2464 			goto out;
2465 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2466 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2467 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2468 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2469 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2470 	}
2471 
2472 	ret = send_cmd(sctx);
2473 	if (ret < 0)
2474 		goto out;
2475 
2476 
2477 tlv_put_failure:
2478 out:
2479 	fs_path_free(sctx, p);
2480 	return ret;
2481 }
2482 
2483 /*
2484  * We need some special handling for inodes that get processed before the parent
2485  * directory got created. See process_recorded_refs for details.
2486  * This function does the check if we already created the dir out of order.
2487  */
2488 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2489 {
2490 	int ret = 0;
2491 	struct btrfs_path *path = NULL;
2492 	struct btrfs_key key;
2493 	struct btrfs_key found_key;
2494 	struct btrfs_key di_key;
2495 	struct extent_buffer *eb;
2496 	struct btrfs_dir_item *di;
2497 	int slot;
2498 
2499 	path = alloc_path_for_send();
2500 	if (!path) {
2501 		ret = -ENOMEM;
2502 		goto out;
2503 	}
2504 
2505 	key.objectid = dir;
2506 	key.type = BTRFS_DIR_INDEX_KEY;
2507 	key.offset = 0;
2508 	while (1) {
2509 		ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2510 				1, 0);
2511 		if (ret < 0)
2512 			goto out;
2513 		if (!ret) {
2514 			eb = path->nodes[0];
2515 			slot = path->slots[0];
2516 			btrfs_item_key_to_cpu(eb, &found_key, slot);
2517 		}
2518 		if (ret || found_key.objectid != key.objectid ||
2519 		    found_key.type != key.type) {
2520 			ret = 0;
2521 			goto out;
2522 		}
2523 
2524 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2525 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2526 
2527 		if (di_key.objectid < sctx->send_progress) {
2528 			ret = 1;
2529 			goto out;
2530 		}
2531 
2532 		key.offset = found_key.offset + 1;
2533 		btrfs_release_path(path);
2534 	}
2535 
2536 out:
2537 	btrfs_free_path(path);
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Only creates the inode if it is:
2543  * 1. Not a directory
2544  * 2. Or a directory which was not created already due to out of order
2545  *    directories. See did_create_dir and process_recorded_refs for details.
2546  */
2547 static int send_create_inode_if_needed(struct send_ctx *sctx)
2548 {
2549 	int ret;
2550 
2551 	if (S_ISDIR(sctx->cur_inode_mode)) {
2552 		ret = did_create_dir(sctx, sctx->cur_ino);
2553 		if (ret < 0)
2554 			goto out;
2555 		if (ret) {
2556 			ret = 0;
2557 			goto out;
2558 		}
2559 	}
2560 
2561 	ret = send_create_inode(sctx, sctx->cur_ino);
2562 	if (ret < 0)
2563 		goto out;
2564 
2565 out:
2566 	return ret;
2567 }
2568 
2569 struct recorded_ref {
2570 	struct list_head list;
2571 	char *dir_path;
2572 	char *name;
2573 	struct fs_path *full_path;
2574 	u64 dir;
2575 	u64 dir_gen;
2576 	int dir_path_len;
2577 	int name_len;
2578 };
2579 
2580 /*
2581  * We need to process new refs before deleted refs, but compare_tree gives us
2582  * everything mixed. So we first record all refs and later process them.
2583  * This function is a helper to record one ref.
2584  */
2585 static int record_ref(struct list_head *head, u64 dir,
2586 		      u64 dir_gen, struct fs_path *path)
2587 {
2588 	struct recorded_ref *ref;
2589 	char *tmp;
2590 
2591 	ref = kmalloc(sizeof(*ref), GFP_NOFS);
2592 	if (!ref)
2593 		return -ENOMEM;
2594 
2595 	ref->dir = dir;
2596 	ref->dir_gen = dir_gen;
2597 	ref->full_path = path;
2598 
2599 	tmp = strrchr(ref->full_path->start, '/');
2600 	if (!tmp) {
2601 		ref->name_len = ref->full_path->end - ref->full_path->start;
2602 		ref->name = ref->full_path->start;
2603 		ref->dir_path_len = 0;
2604 		ref->dir_path = ref->full_path->start;
2605 	} else {
2606 		tmp++;
2607 		ref->name_len = ref->full_path->end - tmp;
2608 		ref->name = tmp;
2609 		ref->dir_path = ref->full_path->start;
2610 		ref->dir_path_len = ref->full_path->end -
2611 				ref->full_path->start - 1 - ref->name_len;
2612 	}
2613 
2614 	list_add_tail(&ref->list, head);
2615 	return 0;
2616 }
2617 
2618 static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head)
2619 {
2620 	struct recorded_ref *cur;
2621 
2622 	while (!list_empty(head)) {
2623 		cur = list_entry(head->next, struct recorded_ref, list);
2624 		fs_path_free(sctx, cur->full_path);
2625 		list_del(&cur->list);
2626 		kfree(cur);
2627 	}
2628 }
2629 
2630 static void free_recorded_refs(struct send_ctx *sctx)
2631 {
2632 	__free_recorded_refs(sctx, &sctx->new_refs);
2633 	__free_recorded_refs(sctx, &sctx->deleted_refs);
2634 }
2635 
2636 /*
2637  * Renames/moves a file/dir to its orphan name. Used when the first
2638  * ref of an unprocessed inode gets overwritten and for all non empty
2639  * directories.
2640  */
2641 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2642 			  struct fs_path *path)
2643 {
2644 	int ret;
2645 	struct fs_path *orphan;
2646 
2647 	orphan = fs_path_alloc(sctx);
2648 	if (!orphan)
2649 		return -ENOMEM;
2650 
2651 	ret = gen_unique_name(sctx, ino, gen, orphan);
2652 	if (ret < 0)
2653 		goto out;
2654 
2655 	ret = send_rename(sctx, path, orphan);
2656 
2657 out:
2658 	fs_path_free(sctx, orphan);
2659 	return ret;
2660 }
2661 
2662 /*
2663  * Returns 1 if a directory can be removed at this point in time.
2664  * We check this by iterating all dir items and checking if the inode behind
2665  * the dir item was already processed.
2666  */
2667 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2668 {
2669 	int ret = 0;
2670 	struct btrfs_root *root = sctx->parent_root;
2671 	struct btrfs_path *path;
2672 	struct btrfs_key key;
2673 	struct btrfs_key found_key;
2674 	struct btrfs_key loc;
2675 	struct btrfs_dir_item *di;
2676 
2677 	/*
2678 	 * Don't try to rmdir the top/root subvolume dir.
2679 	 */
2680 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2681 		return 0;
2682 
2683 	path = alloc_path_for_send();
2684 	if (!path)
2685 		return -ENOMEM;
2686 
2687 	key.objectid = dir;
2688 	key.type = BTRFS_DIR_INDEX_KEY;
2689 	key.offset = 0;
2690 
2691 	while (1) {
2692 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2693 		if (ret < 0)
2694 			goto out;
2695 		if (!ret) {
2696 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2697 					path->slots[0]);
2698 		}
2699 		if (ret || found_key.objectid != key.objectid ||
2700 		    found_key.type != key.type) {
2701 			break;
2702 		}
2703 
2704 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2705 				struct btrfs_dir_item);
2706 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2707 
2708 		if (loc.objectid > send_progress) {
2709 			ret = 0;
2710 			goto out;
2711 		}
2712 
2713 		btrfs_release_path(path);
2714 		key.offset = found_key.offset + 1;
2715 	}
2716 
2717 	ret = 1;
2718 
2719 out:
2720 	btrfs_free_path(path);
2721 	return ret;
2722 }
2723 
2724 /*
2725  * This does all the move/link/unlink/rmdir magic.
2726  */
2727 static int process_recorded_refs(struct send_ctx *sctx)
2728 {
2729 	int ret = 0;
2730 	struct recorded_ref *cur;
2731 	struct recorded_ref *cur2;
2732 	struct ulist *check_dirs = NULL;
2733 	struct ulist_iterator uit;
2734 	struct ulist_node *un;
2735 	struct fs_path *valid_path = NULL;
2736 	u64 ow_inode = 0;
2737 	u64 ow_gen;
2738 	int did_overwrite = 0;
2739 	int is_orphan = 0;
2740 
2741 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
2742 
2743 	/*
2744 	 * This should never happen as the root dir always has the same ref
2745 	 * which is always '..'
2746 	 */
2747 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
2748 
2749 	valid_path = fs_path_alloc(sctx);
2750 	if (!valid_path) {
2751 		ret = -ENOMEM;
2752 		goto out;
2753 	}
2754 
2755 	check_dirs = ulist_alloc(GFP_NOFS);
2756 	if (!check_dirs) {
2757 		ret = -ENOMEM;
2758 		goto out;
2759 	}
2760 
2761 	/*
2762 	 * First, check if the first ref of the current inode was overwritten
2763 	 * before. If yes, we know that the current inode was already orphanized
2764 	 * and thus use the orphan name. If not, we can use get_cur_path to
2765 	 * get the path of the first ref as it would like while receiving at
2766 	 * this point in time.
2767 	 * New inodes are always orphan at the beginning, so force to use the
2768 	 * orphan name in this case.
2769 	 * The first ref is stored in valid_path and will be updated if it
2770 	 * gets moved around.
2771 	 */
2772 	if (!sctx->cur_inode_new) {
2773 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
2774 				sctx->cur_inode_gen);
2775 		if (ret < 0)
2776 			goto out;
2777 		if (ret)
2778 			did_overwrite = 1;
2779 	}
2780 	if (sctx->cur_inode_new || did_overwrite) {
2781 		ret = gen_unique_name(sctx, sctx->cur_ino,
2782 				sctx->cur_inode_gen, valid_path);
2783 		if (ret < 0)
2784 			goto out;
2785 		is_orphan = 1;
2786 	} else {
2787 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
2788 				valid_path);
2789 		if (ret < 0)
2790 			goto out;
2791 	}
2792 
2793 	list_for_each_entry(cur, &sctx->new_refs, list) {
2794 		/*
2795 		 * We may have refs where the parent directory does not exist
2796 		 * yet. This happens if the parent directories inum is higher
2797 		 * the the current inum. To handle this case, we create the
2798 		 * parent directory out of order. But we need to check if this
2799 		 * did already happen before due to other refs in the same dir.
2800 		 */
2801 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
2802 		if (ret < 0)
2803 			goto out;
2804 		if (ret == inode_state_will_create) {
2805 			ret = 0;
2806 			/*
2807 			 * First check if any of the current inodes refs did
2808 			 * already create the dir.
2809 			 */
2810 			list_for_each_entry(cur2, &sctx->new_refs, list) {
2811 				if (cur == cur2)
2812 					break;
2813 				if (cur2->dir == cur->dir) {
2814 					ret = 1;
2815 					break;
2816 				}
2817 			}
2818 
2819 			/*
2820 			 * If that did not happen, check if a previous inode
2821 			 * did already create the dir.
2822 			 */
2823 			if (!ret)
2824 				ret = did_create_dir(sctx, cur->dir);
2825 			if (ret < 0)
2826 				goto out;
2827 			if (!ret) {
2828 				ret = send_create_inode(sctx, cur->dir);
2829 				if (ret < 0)
2830 					goto out;
2831 			}
2832 		}
2833 
2834 		/*
2835 		 * Check if this new ref would overwrite the first ref of
2836 		 * another unprocessed inode. If yes, orphanize the
2837 		 * overwritten inode. If we find an overwritten ref that is
2838 		 * not the first ref, simply unlink it.
2839 		 */
2840 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2841 				cur->name, cur->name_len,
2842 				&ow_inode, &ow_gen);
2843 		if (ret < 0)
2844 			goto out;
2845 		if (ret) {
2846 			ret = is_first_ref(sctx, sctx->parent_root,
2847 					ow_inode, cur->dir, cur->name,
2848 					cur->name_len);
2849 			if (ret < 0)
2850 				goto out;
2851 			if (ret) {
2852 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
2853 						cur->full_path);
2854 				if (ret < 0)
2855 					goto out;
2856 			} else {
2857 				ret = send_unlink(sctx, cur->full_path);
2858 				if (ret < 0)
2859 					goto out;
2860 			}
2861 		}
2862 
2863 		/*
2864 		 * link/move the ref to the new place. If we have an orphan
2865 		 * inode, move it and update valid_path. If not, link or move
2866 		 * it depending on the inode mode.
2867 		 */
2868 		if (is_orphan) {
2869 			ret = send_rename(sctx, valid_path, cur->full_path);
2870 			if (ret < 0)
2871 				goto out;
2872 			is_orphan = 0;
2873 			ret = fs_path_copy(valid_path, cur->full_path);
2874 			if (ret < 0)
2875 				goto out;
2876 		} else {
2877 			if (S_ISDIR(sctx->cur_inode_mode)) {
2878 				/*
2879 				 * Dirs can't be linked, so move it. For moved
2880 				 * dirs, we always have one new and one deleted
2881 				 * ref. The deleted ref is ignored later.
2882 				 */
2883 				ret = send_rename(sctx, valid_path,
2884 						cur->full_path);
2885 				if (ret < 0)
2886 					goto out;
2887 				ret = fs_path_copy(valid_path, cur->full_path);
2888 				if (ret < 0)
2889 					goto out;
2890 			} else {
2891 				ret = send_link(sctx, cur->full_path,
2892 						valid_path);
2893 				if (ret < 0)
2894 					goto out;
2895 			}
2896 		}
2897 		ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2898 				GFP_NOFS);
2899 		if (ret < 0)
2900 			goto out;
2901 	}
2902 
2903 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
2904 		/*
2905 		 * Check if we can already rmdir the directory. If not,
2906 		 * orphanize it. For every dir item inside that gets deleted
2907 		 * later, we do this check again and rmdir it then if possible.
2908 		 * See the use of check_dirs for more details.
2909 		 */
2910 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
2911 		if (ret < 0)
2912 			goto out;
2913 		if (ret) {
2914 			ret = send_rmdir(sctx, valid_path);
2915 			if (ret < 0)
2916 				goto out;
2917 		} else if (!is_orphan) {
2918 			ret = orphanize_inode(sctx, sctx->cur_ino,
2919 					sctx->cur_inode_gen, valid_path);
2920 			if (ret < 0)
2921 				goto out;
2922 			is_orphan = 1;
2923 		}
2924 
2925 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2926 			ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2927 					GFP_NOFS);
2928 			if (ret < 0)
2929 				goto out;
2930 		}
2931 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
2932 		   !list_empty(&sctx->deleted_refs)) {
2933 		/*
2934 		 * We have a moved dir. Add the old parent to check_dirs
2935 		 */
2936 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
2937 				list);
2938 		ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2939 				GFP_NOFS);
2940 		if (ret < 0)
2941 			goto out;
2942 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
2943 		/*
2944 		 * We have a non dir inode. Go through all deleted refs and
2945 		 * unlink them if they were not already overwritten by other
2946 		 * inodes.
2947 		 */
2948 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
2949 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
2950 					sctx->cur_ino, sctx->cur_inode_gen,
2951 					cur->name, cur->name_len);
2952 			if (ret < 0)
2953 				goto out;
2954 			if (!ret) {
2955 				ret = send_unlink(sctx, cur->full_path);
2956 				if (ret < 0)
2957 					goto out;
2958 			}
2959 			ret = ulist_add(check_dirs, cur->dir, cur->dir_gen,
2960 					GFP_NOFS);
2961 			if (ret < 0)
2962 				goto out;
2963 		}
2964 
2965 		/*
2966 		 * If the inode is still orphan, unlink the orphan. This may
2967 		 * happen when a previous inode did overwrite the first ref
2968 		 * of this inode and no new refs were added for the current
2969 		 * inode. Unlinking does not mean that the inode is deleted in
2970 		 * all cases. There may still be links to this inode in other
2971 		 * places.
2972 		 */
2973 		if (is_orphan) {
2974 			ret = send_unlink(sctx, valid_path);
2975 			if (ret < 0)
2976 				goto out;
2977 		}
2978 	}
2979 
2980 	/*
2981 	 * We did collect all parent dirs where cur_inode was once located. We
2982 	 * now go through all these dirs and check if they are pending for
2983 	 * deletion and if it's finally possible to perform the rmdir now.
2984 	 * We also update the inode stats of the parent dirs here.
2985 	 */
2986 	ULIST_ITER_INIT(&uit);
2987 	while ((un = ulist_next(check_dirs, &uit))) {
2988 		/*
2989 		 * In case we had refs into dirs that were not processed yet,
2990 		 * we don't need to do the utime and rmdir logic for these dirs.
2991 		 * The dir will be processed later.
2992 		 */
2993 		if (un->val > sctx->cur_ino)
2994 			continue;
2995 
2996 		ret = get_cur_inode_state(sctx, un->val, un->aux);
2997 		if (ret < 0)
2998 			goto out;
2999 
3000 		if (ret == inode_state_did_create ||
3001 		    ret == inode_state_no_change) {
3002 			/* TODO delayed utimes */
3003 			ret = send_utimes(sctx, un->val, un->aux);
3004 			if (ret < 0)
3005 				goto out;
3006 		} else if (ret == inode_state_did_delete) {
3007 			ret = can_rmdir(sctx, un->val, sctx->cur_ino);
3008 			if (ret < 0)
3009 				goto out;
3010 			if (ret) {
3011 				ret = get_cur_path(sctx, un->val, un->aux,
3012 						valid_path);
3013 				if (ret < 0)
3014 					goto out;
3015 				ret = send_rmdir(sctx, valid_path);
3016 				if (ret < 0)
3017 					goto out;
3018 			}
3019 		}
3020 	}
3021 
3022 	ret = 0;
3023 
3024 out:
3025 	free_recorded_refs(sctx);
3026 	ulist_free(check_dirs);
3027 	fs_path_free(sctx, valid_path);
3028 	return ret;
3029 }
3030 
3031 static int __record_new_ref(int num, u64 dir, int index,
3032 			    struct fs_path *name,
3033 			    void *ctx)
3034 {
3035 	int ret = 0;
3036 	struct send_ctx *sctx = ctx;
3037 	struct fs_path *p;
3038 	u64 gen;
3039 
3040 	p = fs_path_alloc(sctx);
3041 	if (!p)
3042 		return -ENOMEM;
3043 
3044 	ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
3045 			NULL, NULL);
3046 	if (ret < 0)
3047 		goto out;
3048 
3049 	ret = get_cur_path(sctx, dir, gen, p);
3050 	if (ret < 0)
3051 		goto out;
3052 	ret = fs_path_add_path(p, name);
3053 	if (ret < 0)
3054 		goto out;
3055 
3056 	ret = record_ref(&sctx->new_refs, dir, gen, p);
3057 
3058 out:
3059 	if (ret)
3060 		fs_path_free(sctx, p);
3061 	return ret;
3062 }
3063 
3064 static int __record_deleted_ref(int num, u64 dir, int index,
3065 				struct fs_path *name,
3066 				void *ctx)
3067 {
3068 	int ret = 0;
3069 	struct send_ctx *sctx = ctx;
3070 	struct fs_path *p;
3071 	u64 gen;
3072 
3073 	p = fs_path_alloc(sctx);
3074 	if (!p)
3075 		return -ENOMEM;
3076 
3077 	ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
3078 			NULL, NULL);
3079 	if (ret < 0)
3080 		goto out;
3081 
3082 	ret = get_cur_path(sctx, dir, gen, p);
3083 	if (ret < 0)
3084 		goto out;
3085 	ret = fs_path_add_path(p, name);
3086 	if (ret < 0)
3087 		goto out;
3088 
3089 	ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3090 
3091 out:
3092 	if (ret)
3093 		fs_path_free(sctx, p);
3094 	return ret;
3095 }
3096 
3097 static int record_new_ref(struct send_ctx *sctx)
3098 {
3099 	int ret;
3100 
3101 	ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3102 			sctx->cmp_key, 0, __record_new_ref, sctx);
3103 	if (ret < 0)
3104 		goto out;
3105 	ret = 0;
3106 
3107 out:
3108 	return ret;
3109 }
3110 
3111 static int record_deleted_ref(struct send_ctx *sctx)
3112 {
3113 	int ret;
3114 
3115 	ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3116 			sctx->cmp_key, 0, __record_deleted_ref, sctx);
3117 	if (ret < 0)
3118 		goto out;
3119 	ret = 0;
3120 
3121 out:
3122 	return ret;
3123 }
3124 
3125 struct find_ref_ctx {
3126 	u64 dir;
3127 	struct fs_path *name;
3128 	int found_idx;
3129 };
3130 
3131 static int __find_iref(int num, u64 dir, int index,
3132 		       struct fs_path *name,
3133 		       void *ctx_)
3134 {
3135 	struct find_ref_ctx *ctx = ctx_;
3136 
3137 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3138 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3139 		ctx->found_idx = num;
3140 		return 1;
3141 	}
3142 	return 0;
3143 }
3144 
3145 static int find_iref(struct send_ctx *sctx,
3146 		     struct btrfs_root *root,
3147 		     struct btrfs_path *path,
3148 		     struct btrfs_key *key,
3149 		     u64 dir, struct fs_path *name)
3150 {
3151 	int ret;
3152 	struct find_ref_ctx ctx;
3153 
3154 	ctx.dir = dir;
3155 	ctx.name = name;
3156 	ctx.found_idx = -1;
3157 
3158 	ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx);
3159 	if (ret < 0)
3160 		return ret;
3161 
3162 	if (ctx.found_idx == -1)
3163 		return -ENOENT;
3164 
3165 	return ctx.found_idx;
3166 }
3167 
3168 static int __record_changed_new_ref(int num, u64 dir, int index,
3169 				    struct fs_path *name,
3170 				    void *ctx)
3171 {
3172 	int ret;
3173 	struct send_ctx *sctx = ctx;
3174 
3175 	ret = find_iref(sctx, sctx->parent_root, sctx->right_path,
3176 			sctx->cmp_key, dir, name);
3177 	if (ret == -ENOENT)
3178 		ret = __record_new_ref(num, dir, index, name, sctx);
3179 	else if (ret > 0)
3180 		ret = 0;
3181 
3182 	return ret;
3183 }
3184 
3185 static int __record_changed_deleted_ref(int num, u64 dir, int index,
3186 					struct fs_path *name,
3187 					void *ctx)
3188 {
3189 	int ret;
3190 	struct send_ctx *sctx = ctx;
3191 
3192 	ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3193 			dir, name);
3194 	if (ret == -ENOENT)
3195 		ret = __record_deleted_ref(num, dir, index, name, sctx);
3196 	else if (ret > 0)
3197 		ret = 0;
3198 
3199 	return ret;
3200 }
3201 
3202 static int record_changed_ref(struct send_ctx *sctx)
3203 {
3204 	int ret = 0;
3205 
3206 	ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path,
3207 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3208 	if (ret < 0)
3209 		goto out;
3210 	ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path,
3211 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3212 	if (ret < 0)
3213 		goto out;
3214 	ret = 0;
3215 
3216 out:
3217 	return ret;
3218 }
3219 
3220 /*
3221  * Record and process all refs at once. Needed when an inode changes the
3222  * generation number, which means that it was deleted and recreated.
3223  */
3224 static int process_all_refs(struct send_ctx *sctx,
3225 			    enum btrfs_compare_tree_result cmd)
3226 {
3227 	int ret;
3228 	struct btrfs_root *root;
3229 	struct btrfs_path *path;
3230 	struct btrfs_key key;
3231 	struct btrfs_key found_key;
3232 	struct extent_buffer *eb;
3233 	int slot;
3234 	iterate_inode_ref_t cb;
3235 
3236 	path = alloc_path_for_send();
3237 	if (!path)
3238 		return -ENOMEM;
3239 
3240 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
3241 		root = sctx->send_root;
3242 		cb = __record_new_ref;
3243 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3244 		root = sctx->parent_root;
3245 		cb = __record_deleted_ref;
3246 	} else {
3247 		BUG();
3248 	}
3249 
3250 	key.objectid = sctx->cmp_key->objectid;
3251 	key.type = BTRFS_INODE_REF_KEY;
3252 	key.offset = 0;
3253 	while (1) {
3254 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3255 		if (ret < 0)
3256 			goto out;
3257 		if (ret)
3258 			break;
3259 
3260 		eb = path->nodes[0];
3261 		slot = path->slots[0];
3262 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3263 
3264 		if (found_key.objectid != key.objectid ||
3265 		    (found_key.type != BTRFS_INODE_REF_KEY &&
3266 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
3267 			break;
3268 
3269 		ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb,
3270 				sctx);
3271 		btrfs_release_path(path);
3272 		if (ret < 0)
3273 			goto out;
3274 
3275 		key.offset = found_key.offset + 1;
3276 	}
3277 	btrfs_release_path(path);
3278 
3279 	ret = process_recorded_refs(sctx);
3280 
3281 out:
3282 	btrfs_free_path(path);
3283 	return ret;
3284 }
3285 
3286 static int send_set_xattr(struct send_ctx *sctx,
3287 			  struct fs_path *path,
3288 			  const char *name, int name_len,
3289 			  const char *data, int data_len)
3290 {
3291 	int ret = 0;
3292 
3293 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3294 	if (ret < 0)
3295 		goto out;
3296 
3297 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3298 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3299 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3300 
3301 	ret = send_cmd(sctx);
3302 
3303 tlv_put_failure:
3304 out:
3305 	return ret;
3306 }
3307 
3308 static int send_remove_xattr(struct send_ctx *sctx,
3309 			  struct fs_path *path,
3310 			  const char *name, int name_len)
3311 {
3312 	int ret = 0;
3313 
3314 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3315 	if (ret < 0)
3316 		goto out;
3317 
3318 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3319 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3320 
3321 	ret = send_cmd(sctx);
3322 
3323 tlv_put_failure:
3324 out:
3325 	return ret;
3326 }
3327 
3328 static int __process_new_xattr(int num, struct btrfs_key *di_key,
3329 			       const char *name, int name_len,
3330 			       const char *data, int data_len,
3331 			       u8 type, void *ctx)
3332 {
3333 	int ret;
3334 	struct send_ctx *sctx = ctx;
3335 	struct fs_path *p;
3336 	posix_acl_xattr_header dummy_acl;
3337 
3338 	p = fs_path_alloc(sctx);
3339 	if (!p)
3340 		return -ENOMEM;
3341 
3342 	/*
3343 	 * This hack is needed because empty acl's are stored as zero byte
3344 	 * data in xattrs. Problem with that is, that receiving these zero byte
3345 	 * acl's will fail later. To fix this, we send a dummy acl list that
3346 	 * only contains the version number and no entries.
3347 	 */
3348 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3349 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3350 		if (data_len == 0) {
3351 			dummy_acl.a_version =
3352 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3353 			data = (char *)&dummy_acl;
3354 			data_len = sizeof(dummy_acl);
3355 		}
3356 	}
3357 
3358 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3359 	if (ret < 0)
3360 		goto out;
3361 
3362 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3363 
3364 out:
3365 	fs_path_free(sctx, p);
3366 	return ret;
3367 }
3368 
3369 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3370 				   const char *name, int name_len,
3371 				   const char *data, int data_len,
3372 				   u8 type, void *ctx)
3373 {
3374 	int ret;
3375 	struct send_ctx *sctx = ctx;
3376 	struct fs_path *p;
3377 
3378 	p = fs_path_alloc(sctx);
3379 	if (!p)
3380 		return -ENOMEM;
3381 
3382 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3383 	if (ret < 0)
3384 		goto out;
3385 
3386 	ret = send_remove_xattr(sctx, p, name, name_len);
3387 
3388 out:
3389 	fs_path_free(sctx, p);
3390 	return ret;
3391 }
3392 
3393 static int process_new_xattr(struct send_ctx *sctx)
3394 {
3395 	int ret = 0;
3396 
3397 	ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3398 			sctx->cmp_key, __process_new_xattr, sctx);
3399 
3400 	return ret;
3401 }
3402 
3403 static int process_deleted_xattr(struct send_ctx *sctx)
3404 {
3405 	int ret;
3406 
3407 	ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3408 			sctx->cmp_key, __process_deleted_xattr, sctx);
3409 
3410 	return ret;
3411 }
3412 
3413 struct find_xattr_ctx {
3414 	const char *name;
3415 	int name_len;
3416 	int found_idx;
3417 	char *found_data;
3418 	int found_data_len;
3419 };
3420 
3421 static int __find_xattr(int num, struct btrfs_key *di_key,
3422 			const char *name, int name_len,
3423 			const char *data, int data_len,
3424 			u8 type, void *vctx)
3425 {
3426 	struct find_xattr_ctx *ctx = vctx;
3427 
3428 	if (name_len == ctx->name_len &&
3429 	    strncmp(name, ctx->name, name_len) == 0) {
3430 		ctx->found_idx = num;
3431 		ctx->found_data_len = data_len;
3432 		ctx->found_data = kmalloc(data_len, GFP_NOFS);
3433 		if (!ctx->found_data)
3434 			return -ENOMEM;
3435 		memcpy(ctx->found_data, data, data_len);
3436 		return 1;
3437 	}
3438 	return 0;
3439 }
3440 
3441 static int find_xattr(struct send_ctx *sctx,
3442 		      struct btrfs_root *root,
3443 		      struct btrfs_path *path,
3444 		      struct btrfs_key *key,
3445 		      const char *name, int name_len,
3446 		      char **data, int *data_len)
3447 {
3448 	int ret;
3449 	struct find_xattr_ctx ctx;
3450 
3451 	ctx.name = name;
3452 	ctx.name_len = name_len;
3453 	ctx.found_idx = -1;
3454 	ctx.found_data = NULL;
3455 	ctx.found_data_len = 0;
3456 
3457 	ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx);
3458 	if (ret < 0)
3459 		return ret;
3460 
3461 	if (ctx.found_idx == -1)
3462 		return -ENOENT;
3463 	if (data) {
3464 		*data = ctx.found_data;
3465 		*data_len = ctx.found_data_len;
3466 	} else {
3467 		kfree(ctx.found_data);
3468 	}
3469 	return ctx.found_idx;
3470 }
3471 
3472 
3473 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3474 				       const char *name, int name_len,
3475 				       const char *data, int data_len,
3476 				       u8 type, void *ctx)
3477 {
3478 	int ret;
3479 	struct send_ctx *sctx = ctx;
3480 	char *found_data = NULL;
3481 	int found_data_len  = 0;
3482 
3483 	ret = find_xattr(sctx, sctx->parent_root, sctx->right_path,
3484 			sctx->cmp_key, name, name_len, &found_data,
3485 			&found_data_len);
3486 	if (ret == -ENOENT) {
3487 		ret = __process_new_xattr(num, di_key, name, name_len, data,
3488 				data_len, type, ctx);
3489 	} else if (ret >= 0) {
3490 		if (data_len != found_data_len ||
3491 		    memcmp(data, found_data, data_len)) {
3492 			ret = __process_new_xattr(num, di_key, name, name_len,
3493 					data, data_len, type, ctx);
3494 		} else {
3495 			ret = 0;
3496 		}
3497 	}
3498 
3499 	kfree(found_data);
3500 	return ret;
3501 }
3502 
3503 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3504 					   const char *name, int name_len,
3505 					   const char *data, int data_len,
3506 					   u8 type, void *ctx)
3507 {
3508 	int ret;
3509 	struct send_ctx *sctx = ctx;
3510 
3511 	ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key,
3512 			name, name_len, NULL, NULL);
3513 	if (ret == -ENOENT)
3514 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3515 				data_len, type, ctx);
3516 	else if (ret >= 0)
3517 		ret = 0;
3518 
3519 	return ret;
3520 }
3521 
3522 static int process_changed_xattr(struct send_ctx *sctx)
3523 {
3524 	int ret = 0;
3525 
3526 	ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path,
3527 			sctx->cmp_key, __process_changed_new_xattr, sctx);
3528 	if (ret < 0)
3529 		goto out;
3530 	ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path,
3531 			sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3532 
3533 out:
3534 	return ret;
3535 }
3536 
3537 static int process_all_new_xattrs(struct send_ctx *sctx)
3538 {
3539 	int ret;
3540 	struct btrfs_root *root;
3541 	struct btrfs_path *path;
3542 	struct btrfs_key key;
3543 	struct btrfs_key found_key;
3544 	struct extent_buffer *eb;
3545 	int slot;
3546 
3547 	path = alloc_path_for_send();
3548 	if (!path)
3549 		return -ENOMEM;
3550 
3551 	root = sctx->send_root;
3552 
3553 	key.objectid = sctx->cmp_key->objectid;
3554 	key.type = BTRFS_XATTR_ITEM_KEY;
3555 	key.offset = 0;
3556 	while (1) {
3557 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3558 		if (ret < 0)
3559 			goto out;
3560 		if (ret) {
3561 			ret = 0;
3562 			goto out;
3563 		}
3564 
3565 		eb = path->nodes[0];
3566 		slot = path->slots[0];
3567 		btrfs_item_key_to_cpu(eb, &found_key, slot);
3568 
3569 		if (found_key.objectid != key.objectid ||
3570 		    found_key.type != key.type) {
3571 			ret = 0;
3572 			goto out;
3573 		}
3574 
3575 		ret = iterate_dir_item(sctx, root, path, &found_key,
3576 				__process_new_xattr, sctx);
3577 		if (ret < 0)
3578 			goto out;
3579 
3580 		btrfs_release_path(path);
3581 		key.offset = found_key.offset + 1;
3582 	}
3583 
3584 out:
3585 	btrfs_free_path(path);
3586 	return ret;
3587 }
3588 
3589 /*
3590  * Read some bytes from the current inode/file and send a write command to
3591  * user space.
3592  */
3593 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
3594 {
3595 	int ret = 0;
3596 	struct fs_path *p;
3597 	loff_t pos = offset;
3598 	int num_read = 0;
3599 	mm_segment_t old_fs;
3600 
3601 	p = fs_path_alloc(sctx);
3602 	if (!p)
3603 		return -ENOMEM;
3604 
3605 	/*
3606 	 * vfs normally only accepts user space buffers for security reasons.
3607 	 * we only read from the file and also only provide the read_buf buffer
3608 	 * to vfs. As this buffer does not come from a user space call, it's
3609 	 * ok to temporary allow kernel space buffers.
3610 	 */
3611 	old_fs = get_fs();
3612 	set_fs(KERNEL_DS);
3613 
3614 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
3615 
3616 	ret = open_cur_inode_file(sctx);
3617 	if (ret < 0)
3618 		goto out;
3619 
3620 	ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos);
3621 	if (ret < 0)
3622 		goto out;
3623 	num_read = ret;
3624 	if (!num_read)
3625 		goto out;
3626 
3627 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
3628 	if (ret < 0)
3629 		goto out;
3630 
3631 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3632 	if (ret < 0)
3633 		goto out;
3634 
3635 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3636 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3637 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
3638 
3639 	ret = send_cmd(sctx);
3640 
3641 tlv_put_failure:
3642 out:
3643 	fs_path_free(sctx, p);
3644 	set_fs(old_fs);
3645 	if (ret < 0)
3646 		return ret;
3647 	return num_read;
3648 }
3649 
3650 /*
3651  * Send a clone command to user space.
3652  */
3653 static int send_clone(struct send_ctx *sctx,
3654 		      u64 offset, u32 len,
3655 		      struct clone_root *clone_root)
3656 {
3657 	int ret = 0;
3658 	struct fs_path *p;
3659 	u64 gen;
3660 
3661 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
3662 	       "clone_inode=%llu, clone_offset=%llu\n", offset, len,
3663 		clone_root->root->objectid, clone_root->ino,
3664 		clone_root->offset);
3665 
3666 	p = fs_path_alloc(sctx);
3667 	if (!p)
3668 		return -ENOMEM;
3669 
3670 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
3671 	if (ret < 0)
3672 		goto out;
3673 
3674 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3675 	if (ret < 0)
3676 		goto out;
3677 
3678 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3679 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
3680 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3681 
3682 	if (clone_root->root == sctx->send_root) {
3683 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
3684 				&gen, NULL, NULL, NULL, NULL);
3685 		if (ret < 0)
3686 			goto out;
3687 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
3688 	} else {
3689 		ret = get_inode_path(sctx, clone_root->root,
3690 				clone_root->ino, p);
3691 	}
3692 	if (ret < 0)
3693 		goto out;
3694 
3695 	TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
3696 			clone_root->root->root_item.uuid);
3697 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
3698 			clone_root->root->root_item.ctransid);
3699 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
3700 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
3701 			clone_root->offset);
3702 
3703 	ret = send_cmd(sctx);
3704 
3705 tlv_put_failure:
3706 out:
3707 	fs_path_free(sctx, p);
3708 	return ret;
3709 }
3710 
3711 /*
3712  * Send an update extent command to user space.
3713  */
3714 static int send_update_extent(struct send_ctx *sctx,
3715 			      u64 offset, u32 len)
3716 {
3717 	int ret = 0;
3718 	struct fs_path *p;
3719 
3720 	p = fs_path_alloc(sctx);
3721 	if (!p)
3722 		return -ENOMEM;
3723 
3724 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
3725 	if (ret < 0)
3726 		goto out;
3727 
3728 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3729 	if (ret < 0)
3730 		goto out;
3731 
3732 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
3733 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
3734 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
3735 
3736 	ret = send_cmd(sctx);
3737 
3738 tlv_put_failure:
3739 out:
3740 	fs_path_free(sctx, p);
3741 	return ret;
3742 }
3743 
3744 static int send_write_or_clone(struct send_ctx *sctx,
3745 			       struct btrfs_path *path,
3746 			       struct btrfs_key *key,
3747 			       struct clone_root *clone_root)
3748 {
3749 	int ret = 0;
3750 	struct btrfs_file_extent_item *ei;
3751 	u64 offset = key->offset;
3752 	u64 pos = 0;
3753 	u64 len;
3754 	u32 l;
3755 	u8 type;
3756 
3757 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3758 			struct btrfs_file_extent_item);
3759 	type = btrfs_file_extent_type(path->nodes[0], ei);
3760 	if (type == BTRFS_FILE_EXTENT_INLINE) {
3761 		len = btrfs_file_extent_inline_len(path->nodes[0], ei);
3762 		/*
3763 		 * it is possible the inline item won't cover the whole page,
3764 		 * but there may be items after this page.  Make
3765 		 * sure to send the whole thing
3766 		 */
3767 		len = PAGE_CACHE_ALIGN(len);
3768 	} else {
3769 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3770 	}
3771 
3772 	if (offset + len > sctx->cur_inode_size)
3773 		len = sctx->cur_inode_size - offset;
3774 	if (len == 0) {
3775 		ret = 0;
3776 		goto out;
3777 	}
3778 
3779 	if (clone_root) {
3780 		ret = send_clone(sctx, offset, len, clone_root);
3781 	} else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
3782 		ret = send_update_extent(sctx, offset, len);
3783 	} else {
3784 		while (pos < len) {
3785 			l = len - pos;
3786 			if (l > BTRFS_SEND_READ_SIZE)
3787 				l = BTRFS_SEND_READ_SIZE;
3788 			ret = send_write(sctx, pos + offset, l);
3789 			if (ret < 0)
3790 				goto out;
3791 			if (!ret)
3792 				break;
3793 			pos += ret;
3794 		}
3795 		ret = 0;
3796 	}
3797 out:
3798 	return ret;
3799 }
3800 
3801 static int is_extent_unchanged(struct send_ctx *sctx,
3802 			       struct btrfs_path *left_path,
3803 			       struct btrfs_key *ekey)
3804 {
3805 	int ret = 0;
3806 	struct btrfs_key key;
3807 	struct btrfs_path *path = NULL;
3808 	struct extent_buffer *eb;
3809 	int slot;
3810 	struct btrfs_key found_key;
3811 	struct btrfs_file_extent_item *ei;
3812 	u64 left_disknr;
3813 	u64 right_disknr;
3814 	u64 left_offset;
3815 	u64 right_offset;
3816 	u64 left_offset_fixed;
3817 	u64 left_len;
3818 	u64 right_len;
3819 	u64 left_gen;
3820 	u64 right_gen;
3821 	u8 left_type;
3822 	u8 right_type;
3823 
3824 	path = alloc_path_for_send();
3825 	if (!path)
3826 		return -ENOMEM;
3827 
3828 	eb = left_path->nodes[0];
3829 	slot = left_path->slots[0];
3830 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3831 	left_type = btrfs_file_extent_type(eb, ei);
3832 
3833 	if (left_type != BTRFS_FILE_EXTENT_REG) {
3834 		ret = 0;
3835 		goto out;
3836 	}
3837 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3838 	left_len = btrfs_file_extent_num_bytes(eb, ei);
3839 	left_offset = btrfs_file_extent_offset(eb, ei);
3840 	left_gen = btrfs_file_extent_generation(eb, ei);
3841 
3842 	/*
3843 	 * Following comments will refer to these graphics. L is the left
3844 	 * extents which we are checking at the moment. 1-8 are the right
3845 	 * extents that we iterate.
3846 	 *
3847 	 *       |-----L-----|
3848 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
3849 	 *
3850 	 *       |-----L-----|
3851 	 * |--1--|-2b-|...(same as above)
3852 	 *
3853 	 * Alternative situation. Happens on files where extents got split.
3854 	 *       |-----L-----|
3855 	 * |-----------7-----------|-6-|
3856 	 *
3857 	 * Alternative situation. Happens on files which got larger.
3858 	 *       |-----L-----|
3859 	 * |-8-|
3860 	 * Nothing follows after 8.
3861 	 */
3862 
3863 	key.objectid = ekey->objectid;
3864 	key.type = BTRFS_EXTENT_DATA_KEY;
3865 	key.offset = ekey->offset;
3866 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
3867 	if (ret < 0)
3868 		goto out;
3869 	if (ret) {
3870 		ret = 0;
3871 		goto out;
3872 	}
3873 
3874 	/*
3875 	 * Handle special case where the right side has no extents at all.
3876 	 */
3877 	eb = path->nodes[0];
3878 	slot = path->slots[0];
3879 	btrfs_item_key_to_cpu(eb, &found_key, slot);
3880 	if (found_key.objectid != key.objectid ||
3881 	    found_key.type != key.type) {
3882 		ret = 0;
3883 		goto out;
3884 	}
3885 
3886 	/*
3887 	 * We're now on 2a, 2b or 7.
3888 	 */
3889 	key = found_key;
3890 	while (key.offset < ekey->offset + left_len) {
3891 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
3892 		right_type = btrfs_file_extent_type(eb, ei);
3893 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
3894 		right_len = btrfs_file_extent_num_bytes(eb, ei);
3895 		right_offset = btrfs_file_extent_offset(eb, ei);
3896 		right_gen = btrfs_file_extent_generation(eb, ei);
3897 
3898 		if (right_type != BTRFS_FILE_EXTENT_REG) {
3899 			ret = 0;
3900 			goto out;
3901 		}
3902 
3903 		/*
3904 		 * Are we at extent 8? If yes, we know the extent is changed.
3905 		 * This may only happen on the first iteration.
3906 		 */
3907 		if (found_key.offset + right_len <= ekey->offset) {
3908 			ret = 0;
3909 			goto out;
3910 		}
3911 
3912 		left_offset_fixed = left_offset;
3913 		if (key.offset < ekey->offset) {
3914 			/* Fix the right offset for 2a and 7. */
3915 			right_offset += ekey->offset - key.offset;
3916 		} else {
3917 			/* Fix the left offset for all behind 2a and 2b */
3918 			left_offset_fixed += key.offset - ekey->offset;
3919 		}
3920 
3921 		/*
3922 		 * Check if we have the same extent.
3923 		 */
3924 		if (left_disknr != right_disknr ||
3925 		    left_offset_fixed != right_offset ||
3926 		    left_gen != right_gen) {
3927 			ret = 0;
3928 			goto out;
3929 		}
3930 
3931 		/*
3932 		 * Go to the next extent.
3933 		 */
3934 		ret = btrfs_next_item(sctx->parent_root, path);
3935 		if (ret < 0)
3936 			goto out;
3937 		if (!ret) {
3938 			eb = path->nodes[0];
3939 			slot = path->slots[0];
3940 			btrfs_item_key_to_cpu(eb, &found_key, slot);
3941 		}
3942 		if (ret || found_key.objectid != key.objectid ||
3943 		    found_key.type != key.type) {
3944 			key.offset += right_len;
3945 			break;
3946 		}
3947 		if (found_key.offset != key.offset + right_len) {
3948 			ret = 0;
3949 			goto out;
3950 		}
3951 		key = found_key;
3952 	}
3953 
3954 	/*
3955 	 * We're now behind the left extent (treat as unchanged) or at the end
3956 	 * of the right side (treat as changed).
3957 	 */
3958 	if (key.offset >= ekey->offset + left_len)
3959 		ret = 1;
3960 	else
3961 		ret = 0;
3962 
3963 
3964 out:
3965 	btrfs_free_path(path);
3966 	return ret;
3967 }
3968 
3969 static int process_extent(struct send_ctx *sctx,
3970 			  struct btrfs_path *path,
3971 			  struct btrfs_key *key)
3972 {
3973 	int ret = 0;
3974 	struct clone_root *found_clone = NULL;
3975 
3976 	if (S_ISLNK(sctx->cur_inode_mode))
3977 		return 0;
3978 
3979 	if (sctx->parent_root && !sctx->cur_inode_new) {
3980 		ret = is_extent_unchanged(sctx, path, key);
3981 		if (ret < 0)
3982 			goto out;
3983 		if (ret) {
3984 			ret = 0;
3985 			goto out;
3986 		}
3987 	}
3988 
3989 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
3990 			sctx->cur_inode_size, &found_clone);
3991 	if (ret != -ENOENT && ret < 0)
3992 		goto out;
3993 
3994 	ret = send_write_or_clone(sctx, path, key, found_clone);
3995 
3996 out:
3997 	return ret;
3998 }
3999 
4000 static int process_all_extents(struct send_ctx *sctx)
4001 {
4002 	int ret;
4003 	struct btrfs_root *root;
4004 	struct btrfs_path *path;
4005 	struct btrfs_key key;
4006 	struct btrfs_key found_key;
4007 	struct extent_buffer *eb;
4008 	int slot;
4009 
4010 	root = sctx->send_root;
4011 	path = alloc_path_for_send();
4012 	if (!path)
4013 		return -ENOMEM;
4014 
4015 	key.objectid = sctx->cmp_key->objectid;
4016 	key.type = BTRFS_EXTENT_DATA_KEY;
4017 	key.offset = 0;
4018 	while (1) {
4019 		ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
4020 		if (ret < 0)
4021 			goto out;
4022 		if (ret) {
4023 			ret = 0;
4024 			goto out;
4025 		}
4026 
4027 		eb = path->nodes[0];
4028 		slot = path->slots[0];
4029 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4030 
4031 		if (found_key.objectid != key.objectid ||
4032 		    found_key.type != key.type) {
4033 			ret = 0;
4034 			goto out;
4035 		}
4036 
4037 		ret = process_extent(sctx, path, &found_key);
4038 		if (ret < 0)
4039 			goto out;
4040 
4041 		btrfs_release_path(path);
4042 		key.offset = found_key.offset + 1;
4043 	}
4044 
4045 out:
4046 	btrfs_free_path(path);
4047 	return ret;
4048 }
4049 
4050 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end)
4051 {
4052 	int ret = 0;
4053 
4054 	if (sctx->cur_ino == 0)
4055 		goto out;
4056 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
4057 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
4058 		goto out;
4059 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4060 		goto out;
4061 
4062 	ret = process_recorded_refs(sctx);
4063 	if (ret < 0)
4064 		goto out;
4065 
4066 	/*
4067 	 * We have processed the refs and thus need to advance send_progress.
4068 	 * Now, calls to get_cur_xxx will take the updated refs of the current
4069 	 * inode into account.
4070 	 */
4071 	sctx->send_progress = sctx->cur_ino + 1;
4072 
4073 out:
4074 	return ret;
4075 }
4076 
4077 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4078 {
4079 	int ret = 0;
4080 	u64 left_mode;
4081 	u64 left_uid;
4082 	u64 left_gid;
4083 	u64 right_mode;
4084 	u64 right_uid;
4085 	u64 right_gid;
4086 	int need_chmod = 0;
4087 	int need_chown = 0;
4088 
4089 	ret = process_recorded_refs_if_needed(sctx, at_end);
4090 	if (ret < 0)
4091 		goto out;
4092 
4093 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4094 		goto out;
4095 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4096 		goto out;
4097 
4098 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
4099 			&left_mode, &left_uid, &left_gid, NULL);
4100 	if (ret < 0)
4101 		goto out;
4102 
4103 	if (!sctx->parent_root || sctx->cur_inode_new) {
4104 		need_chown = 1;
4105 		if (!S_ISLNK(sctx->cur_inode_mode))
4106 			need_chmod = 1;
4107 	} else {
4108 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4109 				NULL, NULL, &right_mode, &right_uid,
4110 				&right_gid, NULL);
4111 		if (ret < 0)
4112 			goto out;
4113 
4114 		if (left_uid != right_uid || left_gid != right_gid)
4115 			need_chown = 1;
4116 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4117 			need_chmod = 1;
4118 	}
4119 
4120 	if (S_ISREG(sctx->cur_inode_mode)) {
4121 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4122 				sctx->cur_inode_size);
4123 		if (ret < 0)
4124 			goto out;
4125 	}
4126 
4127 	if (need_chown) {
4128 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4129 				left_uid, left_gid);
4130 		if (ret < 0)
4131 			goto out;
4132 	}
4133 	if (need_chmod) {
4134 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4135 				left_mode);
4136 		if (ret < 0)
4137 			goto out;
4138 	}
4139 
4140 	/*
4141 	 * Need to send that every time, no matter if it actually changed
4142 	 * between the two trees as we have done changes to the inode before.
4143 	 */
4144 	ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4145 	if (ret < 0)
4146 		goto out;
4147 
4148 out:
4149 	return ret;
4150 }
4151 
4152 static int changed_inode(struct send_ctx *sctx,
4153 			 enum btrfs_compare_tree_result result)
4154 {
4155 	int ret = 0;
4156 	struct btrfs_key *key = sctx->cmp_key;
4157 	struct btrfs_inode_item *left_ii = NULL;
4158 	struct btrfs_inode_item *right_ii = NULL;
4159 	u64 left_gen = 0;
4160 	u64 right_gen = 0;
4161 
4162 	ret = close_cur_inode_file(sctx);
4163 	if (ret < 0)
4164 		goto out;
4165 
4166 	sctx->cur_ino = key->objectid;
4167 	sctx->cur_inode_new_gen = 0;
4168 
4169 	/*
4170 	 * Set send_progress to current inode. This will tell all get_cur_xxx
4171 	 * functions that the current inode's refs are not updated yet. Later,
4172 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4173 	 */
4174 	sctx->send_progress = sctx->cur_ino;
4175 
4176 	if (result == BTRFS_COMPARE_TREE_NEW ||
4177 	    result == BTRFS_COMPARE_TREE_CHANGED) {
4178 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4179 				sctx->left_path->slots[0],
4180 				struct btrfs_inode_item);
4181 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4182 				left_ii);
4183 	} else {
4184 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4185 				sctx->right_path->slots[0],
4186 				struct btrfs_inode_item);
4187 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4188 				right_ii);
4189 	}
4190 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
4191 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4192 				sctx->right_path->slots[0],
4193 				struct btrfs_inode_item);
4194 
4195 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4196 				right_ii);
4197 
4198 		/*
4199 		 * The cur_ino = root dir case is special here. We can't treat
4200 		 * the inode as deleted+reused because it would generate a
4201 		 * stream that tries to delete/mkdir the root dir.
4202 		 */
4203 		if (left_gen != right_gen &&
4204 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4205 			sctx->cur_inode_new_gen = 1;
4206 	}
4207 
4208 	if (result == BTRFS_COMPARE_TREE_NEW) {
4209 		sctx->cur_inode_gen = left_gen;
4210 		sctx->cur_inode_new = 1;
4211 		sctx->cur_inode_deleted = 0;
4212 		sctx->cur_inode_size = btrfs_inode_size(
4213 				sctx->left_path->nodes[0], left_ii);
4214 		sctx->cur_inode_mode = btrfs_inode_mode(
4215 				sctx->left_path->nodes[0], left_ii);
4216 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
4217 			ret = send_create_inode_if_needed(sctx);
4218 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
4219 		sctx->cur_inode_gen = right_gen;
4220 		sctx->cur_inode_new = 0;
4221 		sctx->cur_inode_deleted = 1;
4222 		sctx->cur_inode_size = btrfs_inode_size(
4223 				sctx->right_path->nodes[0], right_ii);
4224 		sctx->cur_inode_mode = btrfs_inode_mode(
4225 				sctx->right_path->nodes[0], right_ii);
4226 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
4227 		/*
4228 		 * We need to do some special handling in case the inode was
4229 		 * reported as changed with a changed generation number. This
4230 		 * means that the original inode was deleted and new inode
4231 		 * reused the same inum. So we have to treat the old inode as
4232 		 * deleted and the new one as new.
4233 		 */
4234 		if (sctx->cur_inode_new_gen) {
4235 			/*
4236 			 * First, process the inode as if it was deleted.
4237 			 */
4238 			sctx->cur_inode_gen = right_gen;
4239 			sctx->cur_inode_new = 0;
4240 			sctx->cur_inode_deleted = 1;
4241 			sctx->cur_inode_size = btrfs_inode_size(
4242 					sctx->right_path->nodes[0], right_ii);
4243 			sctx->cur_inode_mode = btrfs_inode_mode(
4244 					sctx->right_path->nodes[0], right_ii);
4245 			ret = process_all_refs(sctx,
4246 					BTRFS_COMPARE_TREE_DELETED);
4247 			if (ret < 0)
4248 				goto out;
4249 
4250 			/*
4251 			 * Now process the inode as if it was new.
4252 			 */
4253 			sctx->cur_inode_gen = left_gen;
4254 			sctx->cur_inode_new = 1;
4255 			sctx->cur_inode_deleted = 0;
4256 			sctx->cur_inode_size = btrfs_inode_size(
4257 					sctx->left_path->nodes[0], left_ii);
4258 			sctx->cur_inode_mode = btrfs_inode_mode(
4259 					sctx->left_path->nodes[0], left_ii);
4260 			ret = send_create_inode_if_needed(sctx);
4261 			if (ret < 0)
4262 				goto out;
4263 
4264 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4265 			if (ret < 0)
4266 				goto out;
4267 			/*
4268 			 * Advance send_progress now as we did not get into
4269 			 * process_recorded_refs_if_needed in the new_gen case.
4270 			 */
4271 			sctx->send_progress = sctx->cur_ino + 1;
4272 
4273 			/*
4274 			 * Now process all extents and xattrs of the inode as if
4275 			 * they were all new.
4276 			 */
4277 			ret = process_all_extents(sctx);
4278 			if (ret < 0)
4279 				goto out;
4280 			ret = process_all_new_xattrs(sctx);
4281 			if (ret < 0)
4282 				goto out;
4283 		} else {
4284 			sctx->cur_inode_gen = left_gen;
4285 			sctx->cur_inode_new = 0;
4286 			sctx->cur_inode_new_gen = 0;
4287 			sctx->cur_inode_deleted = 0;
4288 			sctx->cur_inode_size = btrfs_inode_size(
4289 					sctx->left_path->nodes[0], left_ii);
4290 			sctx->cur_inode_mode = btrfs_inode_mode(
4291 					sctx->left_path->nodes[0], left_ii);
4292 		}
4293 	}
4294 
4295 out:
4296 	return ret;
4297 }
4298 
4299 /*
4300  * We have to process new refs before deleted refs, but compare_trees gives us
4301  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4302  * first and later process them in process_recorded_refs.
4303  * For the cur_inode_new_gen case, we skip recording completely because
4304  * changed_inode did already initiate processing of refs. The reason for this is
4305  * that in this case, compare_tree actually compares the refs of 2 different
4306  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4307  * refs of the right tree as deleted and all refs of the left tree as new.
4308  */
4309 static int changed_ref(struct send_ctx *sctx,
4310 		       enum btrfs_compare_tree_result result)
4311 {
4312 	int ret = 0;
4313 
4314 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4315 
4316 	if (!sctx->cur_inode_new_gen &&
4317 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4318 		if (result == BTRFS_COMPARE_TREE_NEW)
4319 			ret = record_new_ref(sctx);
4320 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4321 			ret = record_deleted_ref(sctx);
4322 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4323 			ret = record_changed_ref(sctx);
4324 	}
4325 
4326 	return ret;
4327 }
4328 
4329 /*
4330  * Process new/deleted/changed xattrs. We skip processing in the
4331  * cur_inode_new_gen case because changed_inode did already initiate processing
4332  * of xattrs. The reason is the same as in changed_ref
4333  */
4334 static int changed_xattr(struct send_ctx *sctx,
4335 			 enum btrfs_compare_tree_result result)
4336 {
4337 	int ret = 0;
4338 
4339 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4340 
4341 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4342 		if (result == BTRFS_COMPARE_TREE_NEW)
4343 			ret = process_new_xattr(sctx);
4344 		else if (result == BTRFS_COMPARE_TREE_DELETED)
4345 			ret = process_deleted_xattr(sctx);
4346 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
4347 			ret = process_changed_xattr(sctx);
4348 	}
4349 
4350 	return ret;
4351 }
4352 
4353 /*
4354  * Process new/deleted/changed extents. We skip processing in the
4355  * cur_inode_new_gen case because changed_inode did already initiate processing
4356  * of extents. The reason is the same as in changed_ref
4357  */
4358 static int changed_extent(struct send_ctx *sctx,
4359 			  enum btrfs_compare_tree_result result)
4360 {
4361 	int ret = 0;
4362 
4363 	BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4364 
4365 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4366 		if (result != BTRFS_COMPARE_TREE_DELETED)
4367 			ret = process_extent(sctx, sctx->left_path,
4368 					sctx->cmp_key);
4369 	}
4370 
4371 	return ret;
4372 }
4373 
4374 /*
4375  * Updates compare related fields in sctx and simply forwards to the actual
4376  * changed_xxx functions.
4377  */
4378 static int changed_cb(struct btrfs_root *left_root,
4379 		      struct btrfs_root *right_root,
4380 		      struct btrfs_path *left_path,
4381 		      struct btrfs_path *right_path,
4382 		      struct btrfs_key *key,
4383 		      enum btrfs_compare_tree_result result,
4384 		      void *ctx)
4385 {
4386 	int ret = 0;
4387 	struct send_ctx *sctx = ctx;
4388 
4389 	sctx->left_path = left_path;
4390 	sctx->right_path = right_path;
4391 	sctx->cmp_key = key;
4392 
4393 	ret = finish_inode_if_needed(sctx, 0);
4394 	if (ret < 0)
4395 		goto out;
4396 
4397 	/* Ignore non-FS objects */
4398 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
4399 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
4400 		goto out;
4401 
4402 	if (key->type == BTRFS_INODE_ITEM_KEY)
4403 		ret = changed_inode(sctx, result);
4404 	else if (key->type == BTRFS_INODE_REF_KEY ||
4405 		 key->type == BTRFS_INODE_EXTREF_KEY)
4406 		ret = changed_ref(sctx, result);
4407 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
4408 		ret = changed_xattr(sctx, result);
4409 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
4410 		ret = changed_extent(sctx, result);
4411 
4412 out:
4413 	return ret;
4414 }
4415 
4416 static int full_send_tree(struct send_ctx *sctx)
4417 {
4418 	int ret;
4419 	struct btrfs_trans_handle *trans = NULL;
4420 	struct btrfs_root *send_root = sctx->send_root;
4421 	struct btrfs_key key;
4422 	struct btrfs_key found_key;
4423 	struct btrfs_path *path;
4424 	struct extent_buffer *eb;
4425 	int slot;
4426 	u64 start_ctransid;
4427 	u64 ctransid;
4428 
4429 	path = alloc_path_for_send();
4430 	if (!path)
4431 		return -ENOMEM;
4432 
4433 	spin_lock(&send_root->root_item_lock);
4434 	start_ctransid = btrfs_root_ctransid(&send_root->root_item);
4435 	spin_unlock(&send_root->root_item_lock);
4436 
4437 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
4438 	key.type = BTRFS_INODE_ITEM_KEY;
4439 	key.offset = 0;
4440 
4441 join_trans:
4442 	/*
4443 	 * We need to make sure the transaction does not get committed
4444 	 * while we do anything on commit roots. Join a transaction to prevent
4445 	 * this.
4446 	 */
4447 	trans = btrfs_join_transaction(send_root);
4448 	if (IS_ERR(trans)) {
4449 		ret = PTR_ERR(trans);
4450 		trans = NULL;
4451 		goto out;
4452 	}
4453 
4454 	/*
4455 	 * Make sure the tree has not changed after re-joining. We detect this
4456 	 * by comparing start_ctransid and ctransid. They should always match.
4457 	 */
4458 	spin_lock(&send_root->root_item_lock);
4459 	ctransid = btrfs_root_ctransid(&send_root->root_item);
4460 	spin_unlock(&send_root->root_item_lock);
4461 
4462 	if (ctransid != start_ctransid) {
4463 		WARN(1, KERN_WARNING "btrfs: the root that you're trying to "
4464 				     "send was modified in between. This is "
4465 				     "probably a bug.\n");
4466 		ret = -EIO;
4467 		goto out;
4468 	}
4469 
4470 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
4471 	if (ret < 0)
4472 		goto out;
4473 	if (ret)
4474 		goto out_finish;
4475 
4476 	while (1) {
4477 		/*
4478 		 * When someone want to commit while we iterate, end the
4479 		 * joined transaction and rejoin.
4480 		 */
4481 		if (btrfs_should_end_transaction(trans, send_root)) {
4482 			ret = btrfs_end_transaction(trans, send_root);
4483 			trans = NULL;
4484 			if (ret < 0)
4485 				goto out;
4486 			btrfs_release_path(path);
4487 			goto join_trans;
4488 		}
4489 
4490 		eb = path->nodes[0];
4491 		slot = path->slots[0];
4492 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4493 
4494 		ret = changed_cb(send_root, NULL, path, NULL,
4495 				&found_key, BTRFS_COMPARE_TREE_NEW, sctx);
4496 		if (ret < 0)
4497 			goto out;
4498 
4499 		key.objectid = found_key.objectid;
4500 		key.type = found_key.type;
4501 		key.offset = found_key.offset + 1;
4502 
4503 		ret = btrfs_next_item(send_root, path);
4504 		if (ret < 0)
4505 			goto out;
4506 		if (ret) {
4507 			ret  = 0;
4508 			break;
4509 		}
4510 	}
4511 
4512 out_finish:
4513 	ret = finish_inode_if_needed(sctx, 1);
4514 
4515 out:
4516 	btrfs_free_path(path);
4517 	if (trans) {
4518 		if (!ret)
4519 			ret = btrfs_end_transaction(trans, send_root);
4520 		else
4521 			btrfs_end_transaction(trans, send_root);
4522 	}
4523 	return ret;
4524 }
4525 
4526 static int send_subvol(struct send_ctx *sctx)
4527 {
4528 	int ret;
4529 
4530 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
4531 		ret = send_header(sctx);
4532 		if (ret < 0)
4533 			goto out;
4534 	}
4535 
4536 	ret = send_subvol_begin(sctx);
4537 	if (ret < 0)
4538 		goto out;
4539 
4540 	if (sctx->parent_root) {
4541 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
4542 				changed_cb, sctx);
4543 		if (ret < 0)
4544 			goto out;
4545 		ret = finish_inode_if_needed(sctx, 1);
4546 		if (ret < 0)
4547 			goto out;
4548 	} else {
4549 		ret = full_send_tree(sctx);
4550 		if (ret < 0)
4551 			goto out;
4552 	}
4553 
4554 out:
4555 	if (!ret)
4556 		ret = close_cur_inode_file(sctx);
4557 	else
4558 		close_cur_inode_file(sctx);
4559 
4560 	free_recorded_refs(sctx);
4561 	return ret;
4562 }
4563 
4564 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
4565 {
4566 	int ret = 0;
4567 	struct btrfs_root *send_root;
4568 	struct btrfs_root *clone_root;
4569 	struct btrfs_fs_info *fs_info;
4570 	struct btrfs_ioctl_send_args *arg = NULL;
4571 	struct btrfs_key key;
4572 	struct send_ctx *sctx = NULL;
4573 	u32 i;
4574 	u64 *clone_sources_tmp = NULL;
4575 
4576 	if (!capable(CAP_SYS_ADMIN))
4577 		return -EPERM;
4578 
4579 	send_root = BTRFS_I(file_inode(mnt_file))->root;
4580 	fs_info = send_root->fs_info;
4581 
4582 	arg = memdup_user(arg_, sizeof(*arg));
4583 	if (IS_ERR(arg)) {
4584 		ret = PTR_ERR(arg);
4585 		arg = NULL;
4586 		goto out;
4587 	}
4588 
4589 	if (!access_ok(VERIFY_READ, arg->clone_sources,
4590 			sizeof(*arg->clone_sources *
4591 			arg->clone_sources_count))) {
4592 		ret = -EFAULT;
4593 		goto out;
4594 	}
4595 
4596 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
4597 		ret = -EINVAL;
4598 		goto out;
4599 	}
4600 
4601 	sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
4602 	if (!sctx) {
4603 		ret = -ENOMEM;
4604 		goto out;
4605 	}
4606 
4607 	INIT_LIST_HEAD(&sctx->new_refs);
4608 	INIT_LIST_HEAD(&sctx->deleted_refs);
4609 	INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
4610 	INIT_LIST_HEAD(&sctx->name_cache_list);
4611 
4612 	sctx->flags = arg->flags;
4613 
4614 	sctx->send_filp = fget(arg->send_fd);
4615 	if (!sctx->send_filp) {
4616 		ret = -EBADF;
4617 		goto out;
4618 	}
4619 
4620 	sctx->mnt = mnt_file->f_path.mnt;
4621 
4622 	sctx->send_root = send_root;
4623 	sctx->clone_roots_cnt = arg->clone_sources_count;
4624 
4625 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
4626 	sctx->send_buf = vmalloc(sctx->send_max_size);
4627 	if (!sctx->send_buf) {
4628 		ret = -ENOMEM;
4629 		goto out;
4630 	}
4631 
4632 	sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
4633 	if (!sctx->read_buf) {
4634 		ret = -ENOMEM;
4635 		goto out;
4636 	}
4637 
4638 	sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
4639 			(arg->clone_sources_count + 1));
4640 	if (!sctx->clone_roots) {
4641 		ret = -ENOMEM;
4642 		goto out;
4643 	}
4644 
4645 	if (arg->clone_sources_count) {
4646 		clone_sources_tmp = vmalloc(arg->clone_sources_count *
4647 				sizeof(*arg->clone_sources));
4648 		if (!clone_sources_tmp) {
4649 			ret = -ENOMEM;
4650 			goto out;
4651 		}
4652 
4653 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
4654 				arg->clone_sources_count *
4655 				sizeof(*arg->clone_sources));
4656 		if (ret) {
4657 			ret = -EFAULT;
4658 			goto out;
4659 		}
4660 
4661 		for (i = 0; i < arg->clone_sources_count; i++) {
4662 			key.objectid = clone_sources_tmp[i];
4663 			key.type = BTRFS_ROOT_ITEM_KEY;
4664 			key.offset = (u64)-1;
4665 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
4666 			if (!clone_root) {
4667 				ret = -EINVAL;
4668 				goto out;
4669 			}
4670 			if (IS_ERR(clone_root)) {
4671 				ret = PTR_ERR(clone_root);
4672 				goto out;
4673 			}
4674 			sctx->clone_roots[i].root = clone_root;
4675 		}
4676 		vfree(clone_sources_tmp);
4677 		clone_sources_tmp = NULL;
4678 	}
4679 
4680 	if (arg->parent_root) {
4681 		key.objectid = arg->parent_root;
4682 		key.type = BTRFS_ROOT_ITEM_KEY;
4683 		key.offset = (u64)-1;
4684 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
4685 		if (!sctx->parent_root) {
4686 			ret = -EINVAL;
4687 			goto out;
4688 		}
4689 	}
4690 
4691 	/*
4692 	 * Clones from send_root are allowed, but only if the clone source
4693 	 * is behind the current send position. This is checked while searching
4694 	 * for possible clone sources.
4695 	 */
4696 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
4697 
4698 	/* We do a bsearch later */
4699 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
4700 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
4701 			NULL);
4702 
4703 	ret = send_subvol(sctx);
4704 	if (ret < 0)
4705 		goto out;
4706 
4707 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
4708 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
4709 		if (ret < 0)
4710 			goto out;
4711 		ret = send_cmd(sctx);
4712 		if (ret < 0)
4713 			goto out;
4714 	}
4715 
4716 out:
4717 	kfree(arg);
4718 	vfree(clone_sources_tmp);
4719 
4720 	if (sctx) {
4721 		if (sctx->send_filp)
4722 			fput(sctx->send_filp);
4723 
4724 		vfree(sctx->clone_roots);
4725 		vfree(sctx->send_buf);
4726 		vfree(sctx->read_buf);
4727 
4728 		name_cache_free(sctx);
4729 
4730 		kfree(sctx);
4731 	}
4732 
4733 	return ret;
4734 }
4735