1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/falloc.h> 8 #include <linux/fs.h> 9 #include <linux/file.h> 10 #include <linux/sort.h> 11 #include <linux/mount.h> 12 #include <linux/xattr.h> 13 #include <linux/posix_acl_xattr.h> 14 #include <linux/radix-tree.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/compat.h> 18 #include <linux/crc32c.h> 19 #include <linux/fsverity.h> 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 * 51 * The definition of struct fs_path relies on -fms-extensions to allow 52 * including a tagged struct as an anonymous member. 53 */ 54 struct __fs_path { 55 char *start; 56 char *end; 57 58 char *buf; 59 unsigned short buf_len:15; 60 unsigned short reversed:1; 61 }; 62 static_assert(sizeof(struct __fs_path) < 256); 63 struct fs_path { 64 struct __fs_path; 65 /* 66 * Average path length does not exceed 200 bytes, we'll have 67 * better packing in the slab and higher chance to satisfy 68 * an allocation later during send. 69 */ 70 char inline_buf[256 - sizeof(struct __fs_path)]; 71 }; 72 #define FS_PATH_INLINE_SIZE \ 73 sizeof_field(struct fs_path, inline_buf) 74 75 76 /* reused for each extent */ 77 struct clone_root { 78 struct btrfs_root *root; 79 u64 ino; 80 u64 offset; 81 u64 num_bytes; 82 bool found_ref; 83 }; 84 85 #define SEND_MAX_NAME_CACHE_SIZE 256 86 87 /* 88 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 89 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 90 * can be satisfied from the kmalloc-192 slab, without wasting any space. 91 * The most common case is to have a single root for cloning, which corresponds 92 * to the send root. Having the user specify more than 16 clone roots is not 93 * common, and in such rare cases we simply don't use caching if the number of 94 * cloning roots that lead down to a leaf is more than 17. 95 */ 96 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 97 98 /* 99 * Max number of entries in the cache. 100 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 101 * maple tree's internal nodes, is 24K. 102 */ 103 #define SEND_MAX_BACKREF_CACHE_SIZE 128 104 105 /* 106 * A backref cache entry maps a leaf to a list of IDs of roots from which the 107 * leaf is accessible and we can use for clone operations. 108 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 109 * x86_64). 110 */ 111 struct backref_cache_entry { 112 struct btrfs_lru_cache_entry entry; 113 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 114 /* Number of valid elements in the root_ids array. */ 115 int num_roots; 116 }; 117 118 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 119 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 120 121 /* 122 * Max number of entries in the cache that stores directories that were already 123 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 124 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 125 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 126 */ 127 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 128 129 /* 130 * Max number of entries in the cache that stores directories that were already 131 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 132 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 133 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 134 */ 135 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 136 137 struct send_ctx { 138 struct file *send_filp; 139 loff_t send_off; 140 char *send_buf; 141 u32 send_size; 142 u32 send_max_size; 143 /* 144 * Whether BTRFS_SEND_A_DATA attribute was already added to current 145 * command (since protocol v2, data must be the last attribute). 146 */ 147 bool put_data; 148 struct page **send_buf_pages; 149 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 150 /* Protocol version compatibility requested */ 151 u32 proto; 152 153 struct btrfs_root *send_root; 154 struct btrfs_root *parent_root; 155 struct clone_root *clone_roots; 156 int clone_roots_cnt; 157 158 /* current state of the compare_tree call */ 159 struct btrfs_path *left_path; 160 struct btrfs_path *right_path; 161 struct btrfs_key *cmp_key; 162 163 /* 164 * Keep track of the generation of the last transaction that was used 165 * for relocating a block group. This is periodically checked in order 166 * to detect if a relocation happened since the last check, so that we 167 * don't operate on stale extent buffers for nodes (level >= 1) or on 168 * stale disk_bytenr values of file extent items. 169 */ 170 u64 last_reloc_trans; 171 172 /* 173 * infos of the currently processed inode. In case of deleted inodes, 174 * these are the values from the deleted inode. 175 */ 176 u64 cur_ino; 177 u64 cur_inode_gen; 178 u64 cur_inode_size; 179 u64 cur_inode_mode; 180 u64 cur_inode_rdev; 181 u64 cur_inode_last_extent; 182 u64 cur_inode_next_write_offset; 183 bool cur_inode_new; 184 bool cur_inode_new_gen; 185 bool cur_inode_deleted; 186 bool ignore_cur_inode; 187 bool cur_inode_needs_verity; 188 void *verity_descriptor; 189 190 u64 send_progress; 191 192 struct list_head new_refs; 193 struct list_head deleted_refs; 194 195 struct btrfs_lru_cache name_cache; 196 197 /* 198 * The inode we are currently processing. It's not NULL only when we 199 * need to issue write commands for data extents from this inode. 200 */ 201 struct inode *cur_inode; 202 struct file_ra_state ra; 203 u64 page_cache_clear_start; 204 bool clean_page_cache; 205 206 /* 207 * We process inodes by their increasing order, so if before an 208 * incremental send we reverse the parent/child relationship of 209 * directories such that a directory with a lower inode number was 210 * the parent of a directory with a higher inode number, and the one 211 * becoming the new parent got renamed too, we can't rename/move the 212 * directory with lower inode number when we finish processing it - we 213 * must process the directory with higher inode number first, then 214 * rename/move it and then rename/move the directory with lower inode 215 * number. Example follows. 216 * 217 * Tree state when the first send was performed: 218 * 219 * . 220 * |-- a (ino 257) 221 * |-- b (ino 258) 222 * | 223 * | 224 * |-- c (ino 259) 225 * | |-- d (ino 260) 226 * | 227 * |-- c2 (ino 261) 228 * 229 * Tree state when the second (incremental) send is performed: 230 * 231 * . 232 * |-- a (ino 257) 233 * |-- b (ino 258) 234 * |-- c2 (ino 261) 235 * |-- d2 (ino 260) 236 * |-- cc (ino 259) 237 * 238 * The sequence of steps that lead to the second state was: 239 * 240 * mv /a/b/c/d /a/b/c2/d2 241 * mv /a/b/c /a/b/c2/d2/cc 242 * 243 * "c" has lower inode number, but we can't move it (2nd mv operation) 244 * before we move "d", which has higher inode number. 245 * 246 * So we just memorize which move/rename operations must be performed 247 * later when their respective parent is processed and moved/renamed. 248 */ 249 250 /* Indexed by parent directory inode number. */ 251 struct rb_root pending_dir_moves; 252 253 /* 254 * Reverse index, indexed by the inode number of a directory that 255 * is waiting for the move/rename of its immediate parent before its 256 * own move/rename can be performed. 257 */ 258 struct rb_root waiting_dir_moves; 259 260 /* 261 * A directory that is going to be rm'ed might have a child directory 262 * which is in the pending directory moves index above. In this case, 263 * the directory can only be removed after the move/rename of its child 264 * is performed. Example: 265 * 266 * Parent snapshot: 267 * 268 * . (ino 256) 269 * |-- a/ (ino 257) 270 * |-- b/ (ino 258) 271 * |-- c/ (ino 259) 272 * | |-- x/ (ino 260) 273 * | 274 * |-- y/ (ino 261) 275 * 276 * Send snapshot: 277 * 278 * . (ino 256) 279 * |-- a/ (ino 257) 280 * |-- b/ (ino 258) 281 * |-- YY/ (ino 261) 282 * |-- x/ (ino 260) 283 * 284 * Sequence of steps that lead to the send snapshot: 285 * rm -f /a/b/c/foo.txt 286 * mv /a/b/y /a/b/YY 287 * mv /a/b/c/x /a/b/YY 288 * rmdir /a/b/c 289 * 290 * When the child is processed, its move/rename is delayed until its 291 * parent is processed (as explained above), but all other operations 292 * like update utimes, chown, chgrp, etc, are performed and the paths 293 * that it uses for those operations must use the orphanized name of 294 * its parent (the directory we're going to rm later), so we need to 295 * memorize that name. 296 * 297 * Indexed by the inode number of the directory to be deleted. 298 */ 299 struct rb_root orphan_dirs; 300 301 struct rb_root rbtree_new_refs; 302 struct rb_root rbtree_deleted_refs; 303 304 struct btrfs_lru_cache backref_cache; 305 u64 backref_cache_last_reloc_trans; 306 307 struct btrfs_lru_cache dir_created_cache; 308 struct btrfs_lru_cache dir_utimes_cache; 309 310 struct fs_path cur_inode_path; 311 }; 312 313 struct pending_dir_move { 314 struct rb_node node; 315 struct list_head list; 316 u64 parent_ino; 317 u64 ino; 318 u64 gen; 319 struct list_head update_refs; 320 }; 321 322 struct waiting_dir_move { 323 struct rb_node node; 324 u64 ino; 325 /* 326 * There might be some directory that could not be removed because it 327 * was waiting for this directory inode to be moved first. Therefore 328 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 329 */ 330 u64 rmdir_ino; 331 u64 rmdir_gen; 332 bool orphanized; 333 }; 334 335 struct orphan_dir_info { 336 struct rb_node node; 337 u64 ino; 338 u64 gen; 339 u64 last_dir_index_offset; 340 u64 dir_high_seq_ino; 341 }; 342 343 struct name_cache_entry { 344 /* 345 * The key in the entry is an inode number, and the generation matches 346 * the inode's generation. 347 */ 348 struct btrfs_lru_cache_entry entry; 349 u64 parent_ino; 350 u64 parent_gen; 351 int ret; 352 int need_later_update; 353 /* Name length without NUL terminator. */ 354 int name_len; 355 /* Not NUL terminated. */ 356 char name[] __counted_by(name_len) __nonstring; 357 }; 358 359 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 360 static_assert(offsetof(struct name_cache_entry, entry) == 0); 361 362 #define ADVANCE 1 363 #define ADVANCE_ONLY_NEXT -1 364 365 enum btrfs_compare_tree_result { 366 BTRFS_COMPARE_TREE_NEW, 367 BTRFS_COMPARE_TREE_DELETED, 368 BTRFS_COMPARE_TREE_CHANGED, 369 BTRFS_COMPARE_TREE_SAME, 370 }; 371 372 __cold 373 static void inconsistent_snapshot_error(struct send_ctx *sctx, 374 enum btrfs_compare_tree_result result, 375 const char *what) 376 { 377 const char *result_string; 378 379 switch (result) { 380 case BTRFS_COMPARE_TREE_NEW: 381 result_string = "new"; 382 break; 383 case BTRFS_COMPARE_TREE_DELETED: 384 result_string = "deleted"; 385 break; 386 case BTRFS_COMPARE_TREE_CHANGED: 387 result_string = "updated"; 388 break; 389 case BTRFS_COMPARE_TREE_SAME: 390 DEBUG_WARN("no change between trees"); 391 result_string = "unchanged"; 392 break; 393 default: 394 DEBUG_WARN("unexpected comparison result %d", result); 395 result_string = "unexpected"; 396 } 397 398 btrfs_err(sctx->send_root->fs_info, 399 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 400 result_string, what, sctx->cmp_key->objectid, 401 btrfs_root_id(sctx->send_root), 402 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 403 } 404 405 __maybe_unused 406 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 407 { 408 switch (sctx->proto) { 409 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 410 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 411 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 412 default: return false; 413 } 414 } 415 416 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 417 418 static struct waiting_dir_move * 419 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 420 421 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 422 423 static int need_send_hole(struct send_ctx *sctx) 424 { 425 return (sctx->parent_root && !sctx->cur_inode_new && 426 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 427 S_ISREG(sctx->cur_inode_mode)); 428 } 429 430 static void fs_path_reset(struct fs_path *p) 431 { 432 if (p->reversed) 433 p->start = p->buf + p->buf_len - 1; 434 else 435 p->start = p->buf; 436 437 p->end = p->start; 438 *p->start = 0; 439 } 440 441 static void init_path(struct fs_path *p) 442 { 443 p->reversed = 0; 444 p->buf = p->inline_buf; 445 p->buf_len = FS_PATH_INLINE_SIZE; 446 fs_path_reset(p); 447 } 448 449 static struct fs_path *fs_path_alloc(void) 450 { 451 struct fs_path *p; 452 453 p = kmalloc(sizeof(*p), GFP_KERNEL); 454 if (!p) 455 return NULL; 456 init_path(p); 457 return p; 458 } 459 460 static struct fs_path *fs_path_alloc_reversed(void) 461 { 462 struct fs_path *p; 463 464 p = fs_path_alloc(); 465 if (!p) 466 return NULL; 467 p->reversed = 1; 468 fs_path_reset(p); 469 return p; 470 } 471 472 static void fs_path_free(struct fs_path *p) 473 { 474 if (!p) 475 return; 476 if (p->buf != p->inline_buf) 477 kfree(p->buf); 478 kfree(p); 479 } 480 481 static inline int fs_path_len(const struct fs_path *p) 482 { 483 return p->end - p->start; 484 } 485 486 static int fs_path_ensure_buf(struct fs_path *p, int len) 487 { 488 char *tmp_buf; 489 int path_len; 490 int old_buf_len; 491 492 len++; 493 494 if (p->buf_len >= len) 495 return 0; 496 497 if (WARN_ON(len > PATH_MAX)) 498 return -ENAMETOOLONG; 499 500 path_len = fs_path_len(p); 501 old_buf_len = p->buf_len; 502 503 /* 504 * Allocate to the next largest kmalloc bucket size, to let 505 * the fast path happen most of the time. 506 */ 507 len = kmalloc_size_roundup(len); 508 /* 509 * First time the inline_buf does not suffice 510 */ 511 if (p->buf == p->inline_buf) { 512 tmp_buf = kmalloc(len, GFP_KERNEL); 513 if (tmp_buf) 514 memcpy(tmp_buf, p->buf, old_buf_len); 515 } else { 516 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 517 } 518 if (!tmp_buf) 519 return -ENOMEM; 520 p->buf = tmp_buf; 521 p->buf_len = len; 522 523 if (p->reversed) { 524 tmp_buf = p->buf + old_buf_len - path_len - 1; 525 p->end = p->buf + p->buf_len - 1; 526 p->start = p->end - path_len; 527 memmove(p->start, tmp_buf, path_len + 1); 528 } else { 529 p->start = p->buf; 530 p->end = p->start + path_len; 531 } 532 return 0; 533 } 534 535 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 536 char **prepared) 537 { 538 int ret; 539 int new_len; 540 541 new_len = fs_path_len(p) + name_len; 542 if (p->start != p->end) 543 new_len++; 544 ret = fs_path_ensure_buf(p, new_len); 545 if (ret < 0) 546 return ret; 547 548 if (p->reversed) { 549 if (p->start != p->end) 550 *--p->start = '/'; 551 p->start -= name_len; 552 *prepared = p->start; 553 } else { 554 if (p->start != p->end) 555 *p->end++ = '/'; 556 *prepared = p->end; 557 p->end += name_len; 558 *p->end = 0; 559 } 560 561 return 0; 562 } 563 564 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 565 { 566 int ret; 567 char *prepared; 568 569 ret = fs_path_prepare_for_add(p, name_len, &prepared); 570 if (ret < 0) 571 return ret; 572 memcpy(prepared, name, name_len); 573 574 return 0; 575 } 576 577 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) 578 { 579 return fs_path_add(p, p2->start, fs_path_len(p2)); 580 } 581 582 static int fs_path_add_from_extent_buffer(struct fs_path *p, 583 struct extent_buffer *eb, 584 unsigned long off, int len) 585 { 586 int ret; 587 char *prepared; 588 589 ret = fs_path_prepare_for_add(p, len, &prepared); 590 if (ret < 0) 591 return ret; 592 593 read_extent_buffer(eb, prepared, off, len); 594 595 return 0; 596 } 597 598 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 599 { 600 p->reversed = from->reversed; 601 fs_path_reset(p); 602 603 return fs_path_add_path(p, from); 604 } 605 606 static void fs_path_unreverse(struct fs_path *p) 607 { 608 char *tmp; 609 int len; 610 611 if (!p->reversed) 612 return; 613 614 tmp = p->start; 615 len = fs_path_len(p); 616 p->start = p->buf; 617 p->end = p->start + len; 618 memmove(p->start, tmp, len + 1); 619 p->reversed = 0; 620 } 621 622 static inline bool is_current_inode_path(const struct send_ctx *sctx, 623 const struct fs_path *path) 624 { 625 const struct fs_path *cur = &sctx->cur_inode_path; 626 627 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); 628 } 629 630 static struct btrfs_path *alloc_path_for_send(void) 631 { 632 struct btrfs_path *path; 633 634 path = btrfs_alloc_path(); 635 if (!path) 636 return NULL; 637 path->search_commit_root = true; 638 path->skip_locking = true; 639 path->need_commit_sem = true; 640 return path; 641 } 642 643 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 644 { 645 int ret; 646 u32 pos = 0; 647 648 while (pos < len) { 649 ret = kernel_write(filp, buf + pos, len - pos, off); 650 if (ret < 0) 651 return ret; 652 if (unlikely(ret == 0)) 653 return -EIO; 654 pos += ret; 655 } 656 657 return 0; 658 } 659 660 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 661 { 662 struct btrfs_tlv_header *hdr; 663 int total_len = sizeof(*hdr) + len; 664 int left = sctx->send_max_size - sctx->send_size; 665 666 if (WARN_ON_ONCE(sctx->put_data)) 667 return -EINVAL; 668 669 if (unlikely(left < total_len)) 670 return -EOVERFLOW; 671 672 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 673 put_unaligned_le16(attr, &hdr->tlv_type); 674 put_unaligned_le16(len, &hdr->tlv_len); 675 memcpy(hdr + 1, data, len); 676 sctx->send_size += total_len; 677 678 return 0; 679 } 680 681 #define TLV_PUT_DEFINE_INT(bits) \ 682 static int tlv_put_u##bits(struct send_ctx *sctx, \ 683 u##bits attr, u##bits value) \ 684 { \ 685 __le##bits __tmp = cpu_to_le##bits(value); \ 686 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 687 } 688 689 TLV_PUT_DEFINE_INT(8) 690 TLV_PUT_DEFINE_INT(32) 691 TLV_PUT_DEFINE_INT(64) 692 693 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 694 const char *str, int len) 695 { 696 if (len == -1) 697 len = strlen(str); 698 return tlv_put(sctx, attr, str, len); 699 } 700 701 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 702 const u8 *uuid) 703 { 704 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 705 } 706 707 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 708 struct extent_buffer *eb, 709 struct btrfs_timespec *ts) 710 { 711 struct btrfs_timespec bts; 712 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 713 return tlv_put(sctx, attr, &bts, sizeof(bts)); 714 } 715 716 717 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 718 do { \ 719 ret = tlv_put(sctx, attrtype, data, attrlen); \ 720 if (ret < 0) \ 721 goto tlv_put_failure; \ 722 } while (0) 723 724 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 725 do { \ 726 ret = tlv_put_u##bits(sctx, attrtype, value); \ 727 if (ret < 0) \ 728 goto tlv_put_failure; \ 729 } while (0) 730 731 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 732 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 733 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 734 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 735 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 736 do { \ 737 ret = tlv_put_string(sctx, attrtype, str, len); \ 738 if (ret < 0) \ 739 goto tlv_put_failure; \ 740 } while (0) 741 #define TLV_PUT_PATH(sctx, attrtype, p) \ 742 do { \ 743 ret = tlv_put_string(sctx, attrtype, p->start, \ 744 fs_path_len((p))); \ 745 if (ret < 0) \ 746 goto tlv_put_failure; \ 747 } while(0) 748 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 749 do { \ 750 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 751 if (ret < 0) \ 752 goto tlv_put_failure; \ 753 } while (0) 754 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 755 do { \ 756 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 757 if (ret < 0) \ 758 goto tlv_put_failure; \ 759 } while (0) 760 761 static int send_header(struct send_ctx *sctx) 762 { 763 struct btrfs_stream_header hdr; 764 765 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 766 hdr.version = cpu_to_le32(sctx->proto); 767 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 768 &sctx->send_off); 769 } 770 771 /* 772 * For each command/item we want to send to userspace, we call this function. 773 */ 774 static int begin_cmd(struct send_ctx *sctx, int cmd) 775 { 776 struct btrfs_cmd_header *hdr; 777 778 if (WARN_ON(!sctx->send_buf)) 779 return -EINVAL; 780 781 if (unlikely(sctx->send_size != 0)) { 782 btrfs_err(sctx->send_root->fs_info, 783 "send: command header buffer not empty cmd %d offset %llu", 784 cmd, sctx->send_off); 785 return -EINVAL; 786 } 787 788 sctx->send_size += sizeof(*hdr); 789 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 790 put_unaligned_le16(cmd, &hdr->cmd); 791 792 return 0; 793 } 794 795 static int send_cmd(struct send_ctx *sctx) 796 { 797 int ret; 798 struct btrfs_cmd_header *hdr; 799 u32 crc; 800 801 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 802 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 803 put_unaligned_le32(0, &hdr->crc); 804 805 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 806 put_unaligned_le32(crc, &hdr->crc); 807 808 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 809 &sctx->send_off); 810 811 sctx->send_size = 0; 812 sctx->put_data = false; 813 814 return ret; 815 } 816 817 /* 818 * Sends a move instruction to user space 819 */ 820 static int send_rename(struct send_ctx *sctx, 821 struct fs_path *from, struct fs_path *to) 822 { 823 int ret; 824 825 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 826 if (ret < 0) 827 return ret; 828 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 831 832 ret = send_cmd(sctx); 833 834 tlv_put_failure: 835 return ret; 836 } 837 838 /* 839 * Sends a link instruction to user space 840 */ 841 static int send_link(struct send_ctx *sctx, 842 struct fs_path *path, struct fs_path *lnk) 843 { 844 int ret; 845 846 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 847 if (ret < 0) 848 return ret; 849 850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 852 853 ret = send_cmd(sctx); 854 855 tlv_put_failure: 856 return ret; 857 } 858 859 /* 860 * Sends an unlink instruction to user space 861 */ 862 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 863 { 864 int ret; 865 866 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 867 if (ret < 0) 868 return ret; 869 870 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 871 872 ret = send_cmd(sctx); 873 874 tlv_put_failure: 875 return ret; 876 } 877 878 /* 879 * Sends a rmdir instruction to user space 880 */ 881 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 882 { 883 int ret; 884 885 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 886 if (ret < 0) 887 return ret; 888 889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 890 891 ret = send_cmd(sctx); 892 893 tlv_put_failure: 894 return ret; 895 } 896 897 struct btrfs_inode_info { 898 u64 size; 899 u64 gen; 900 u64 mode; 901 u64 uid; 902 u64 gid; 903 u64 rdev; 904 u64 fileattr; 905 u64 nlink; 906 }; 907 908 /* 909 * Helper function to retrieve some fields from an inode item. 910 */ 911 static int get_inode_info(struct btrfs_root *root, u64 ino, 912 struct btrfs_inode_info *info) 913 { 914 int ret; 915 BTRFS_PATH_AUTO_FREE(path); 916 struct btrfs_inode_item *ii; 917 struct btrfs_key key; 918 919 path = alloc_path_for_send(); 920 if (!path) 921 return -ENOMEM; 922 923 key.objectid = ino; 924 key.type = BTRFS_INODE_ITEM_KEY; 925 key.offset = 0; 926 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 927 if (ret) { 928 if (ret > 0) 929 ret = -ENOENT; 930 return ret; 931 } 932 933 if (!info) 934 return 0; 935 936 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 937 struct btrfs_inode_item); 938 info->size = btrfs_inode_size(path->nodes[0], ii); 939 info->gen = btrfs_inode_generation(path->nodes[0], ii); 940 info->mode = btrfs_inode_mode(path->nodes[0], ii); 941 info->uid = btrfs_inode_uid(path->nodes[0], ii); 942 info->gid = btrfs_inode_gid(path->nodes[0], ii); 943 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 944 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 945 /* 946 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 947 * otherwise logically split to 32/32 parts. 948 */ 949 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 950 951 return 0; 952 } 953 954 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 955 { 956 int ret; 957 struct btrfs_inode_info info = { 0 }; 958 959 ASSERT(gen); 960 961 ret = get_inode_info(root, ino, &info); 962 *gen = info.gen; 963 return ret; 964 } 965 966 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 967 968 /* 969 * Helper function to iterate the entries in ONE btrfs_inode_ref or 970 * btrfs_inode_extref. 971 * The iterate callback may return a non zero value to stop iteration. This can 972 * be a negative value for error codes or 1 to simply stop it. 973 * 974 * path must point to the INODE_REF or INODE_EXTREF when called. 975 */ 976 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 977 struct btrfs_key *found_key, bool resolve, 978 iterate_inode_ref_t iterate, void *ctx) 979 { 980 struct extent_buffer *eb = path->nodes[0]; 981 struct btrfs_inode_ref *iref; 982 struct btrfs_inode_extref *extref; 983 BTRFS_PATH_AUTO_FREE(tmp_path); 984 struct fs_path *p; 985 u32 cur = 0; 986 u32 total; 987 int slot = path->slots[0]; 988 u32 name_len; 989 char *start; 990 int ret = 0; 991 u64 dir; 992 unsigned long name_off; 993 unsigned long elem_size; 994 unsigned long ptr; 995 996 p = fs_path_alloc_reversed(); 997 if (!p) 998 return -ENOMEM; 999 1000 tmp_path = alloc_path_for_send(); 1001 if (!tmp_path) { 1002 fs_path_free(p); 1003 return -ENOMEM; 1004 } 1005 1006 1007 if (found_key->type == BTRFS_INODE_REF_KEY) { 1008 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1009 struct btrfs_inode_ref); 1010 total = btrfs_item_size(eb, slot); 1011 elem_size = sizeof(*iref); 1012 } else { 1013 ptr = btrfs_item_ptr_offset(eb, slot); 1014 total = btrfs_item_size(eb, slot); 1015 elem_size = sizeof(*extref); 1016 } 1017 1018 while (cur < total) { 1019 fs_path_reset(p); 1020 1021 if (found_key->type == BTRFS_INODE_REF_KEY) { 1022 iref = (struct btrfs_inode_ref *)(ptr + cur); 1023 name_len = btrfs_inode_ref_name_len(eb, iref); 1024 name_off = (unsigned long)(iref + 1); 1025 dir = found_key->offset; 1026 } else { 1027 extref = (struct btrfs_inode_extref *)(ptr + cur); 1028 name_len = btrfs_inode_extref_name_len(eb, extref); 1029 name_off = (unsigned long)&extref->name; 1030 dir = btrfs_inode_extref_parent(eb, extref); 1031 } 1032 1033 if (resolve) { 1034 start = btrfs_ref_to_path(root, tmp_path, name_len, 1035 name_off, eb, dir, 1036 p->buf, p->buf_len); 1037 if (IS_ERR(start)) { 1038 ret = PTR_ERR(start); 1039 goto out; 1040 } 1041 if (start < p->buf) { 1042 /* overflow , try again with larger buffer */ 1043 ret = fs_path_ensure_buf(p, 1044 p->buf_len + p->buf - start); 1045 if (ret < 0) 1046 goto out; 1047 start = btrfs_ref_to_path(root, tmp_path, 1048 name_len, name_off, 1049 eb, dir, 1050 p->buf, p->buf_len); 1051 if (IS_ERR(start)) { 1052 ret = PTR_ERR(start); 1053 goto out; 1054 } 1055 if (unlikely(start < p->buf)) { 1056 btrfs_err(root->fs_info, 1057 "send: path ref buffer underflow for key " BTRFS_KEY_FMT, 1058 BTRFS_KEY_FMT_VALUE(found_key)); 1059 ret = -EINVAL; 1060 goto out; 1061 } 1062 } 1063 p->start = start; 1064 } else { 1065 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1066 name_len); 1067 if (ret < 0) 1068 goto out; 1069 } 1070 1071 cur += elem_size + name_len; 1072 ret = iterate(dir, p, ctx); 1073 if (ret) 1074 goto out; 1075 } 1076 1077 out: 1078 fs_path_free(p); 1079 return ret; 1080 } 1081 1082 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1083 const char *name, int name_len, 1084 const char *data, int data_len, 1085 void *ctx); 1086 1087 /* 1088 * Helper function to iterate the entries in ONE btrfs_dir_item. 1089 * The iterate callback may return a non zero value to stop iteration. This can 1090 * be a negative value for error codes or 1 to simply stop it. 1091 * 1092 * path must point to the dir item when called. 1093 */ 1094 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1095 iterate_dir_item_t iterate, void *ctx) 1096 { 1097 int ret = 0; 1098 struct extent_buffer *eb; 1099 struct btrfs_dir_item *di; 1100 struct btrfs_key di_key; 1101 char *buf = NULL; 1102 int buf_len; 1103 u32 name_len; 1104 u32 data_len; 1105 u32 cur; 1106 u32 len; 1107 u32 total; 1108 int slot; 1109 int num; 1110 1111 /* 1112 * Start with a small buffer (1 page). If later we end up needing more 1113 * space, which can happen for xattrs on a fs with a leaf size greater 1114 * than the page size, attempt to increase the buffer. Typically xattr 1115 * values are small. 1116 */ 1117 buf_len = PATH_MAX; 1118 buf = kmalloc(buf_len, GFP_KERNEL); 1119 if (!buf) { 1120 ret = -ENOMEM; 1121 goto out; 1122 } 1123 1124 eb = path->nodes[0]; 1125 slot = path->slots[0]; 1126 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1127 cur = 0; 1128 len = 0; 1129 total = btrfs_item_size(eb, slot); 1130 1131 num = 0; 1132 while (cur < total) { 1133 name_len = btrfs_dir_name_len(eb, di); 1134 data_len = btrfs_dir_data_len(eb, di); 1135 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1136 1137 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1138 if (unlikely(name_len > XATTR_NAME_MAX)) { 1139 ret = -ENAMETOOLONG; 1140 goto out; 1141 } 1142 if (unlikely(name_len + data_len > 1143 BTRFS_MAX_XATTR_SIZE(root->fs_info))) { 1144 ret = -E2BIG; 1145 goto out; 1146 } 1147 } else { 1148 /* 1149 * Path too long 1150 */ 1151 if (unlikely(name_len + data_len > PATH_MAX)) { 1152 ret = -ENAMETOOLONG; 1153 goto out; 1154 } 1155 } 1156 1157 if (name_len + data_len > buf_len) { 1158 buf_len = name_len + data_len; 1159 if (is_vmalloc_addr(buf)) { 1160 vfree(buf); 1161 buf = NULL; 1162 } else { 1163 char *tmp = krealloc(buf, buf_len, 1164 GFP_KERNEL | __GFP_NOWARN); 1165 1166 if (!tmp) 1167 kfree(buf); 1168 buf = tmp; 1169 } 1170 if (!buf) { 1171 buf = kvmalloc(buf_len, GFP_KERNEL); 1172 if (!buf) { 1173 ret = -ENOMEM; 1174 goto out; 1175 } 1176 } 1177 } 1178 1179 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1180 name_len + data_len); 1181 1182 len = sizeof(*di) + name_len + data_len; 1183 di = (struct btrfs_dir_item *)((char *)di + len); 1184 cur += len; 1185 1186 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1187 data_len, ctx); 1188 if (ret < 0) 1189 goto out; 1190 if (ret) { 1191 ret = 0; 1192 goto out; 1193 } 1194 1195 num++; 1196 } 1197 1198 out: 1199 kvfree(buf); 1200 return ret; 1201 } 1202 1203 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1204 { 1205 int ret; 1206 struct fs_path *pt = ctx; 1207 1208 ret = fs_path_copy(pt, p); 1209 if (ret < 0) 1210 return ret; 1211 1212 /* we want the first only */ 1213 return 1; 1214 } 1215 1216 /* 1217 * Retrieve the first path of an inode. If an inode has more then one 1218 * ref/hardlink, this is ignored. 1219 */ 1220 static int get_inode_path(struct btrfs_root *root, 1221 u64 ino, struct fs_path *path) 1222 { 1223 int ret; 1224 struct btrfs_key key, found_key; 1225 BTRFS_PATH_AUTO_FREE(p); 1226 1227 p = alloc_path_for_send(); 1228 if (!p) 1229 return -ENOMEM; 1230 1231 fs_path_reset(path); 1232 1233 key.objectid = ino; 1234 key.type = BTRFS_INODE_REF_KEY; 1235 key.offset = 0; 1236 1237 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1238 if (ret < 0) 1239 return ret; 1240 if (ret) 1241 return 1; 1242 1243 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1244 if (found_key.objectid != ino || 1245 (found_key.type != BTRFS_INODE_REF_KEY && 1246 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1247 return -ENOENT; 1248 1249 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path); 1250 if (ret < 0) 1251 return ret; 1252 return 0; 1253 } 1254 1255 struct backref_ctx { 1256 struct send_ctx *sctx; 1257 1258 /* number of total found references */ 1259 u64 found; 1260 1261 /* 1262 * used for clones found in send_root. clones found behind cur_objectid 1263 * and cur_offset are not considered as allowed clones. 1264 */ 1265 u64 cur_objectid; 1266 u64 cur_offset; 1267 1268 /* may be truncated in case it's the last extent in a file */ 1269 u64 extent_len; 1270 1271 /* The bytenr the file extent item we are processing refers to. */ 1272 u64 bytenr; 1273 /* The owner (root id) of the data backref for the current extent. */ 1274 u64 backref_owner; 1275 /* The offset of the data backref for the current extent. */ 1276 u64 backref_offset; 1277 }; 1278 1279 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1280 { 1281 u64 root = (u64)(uintptr_t)key; 1282 const struct clone_root *cr = elt; 1283 1284 if (root < btrfs_root_id(cr->root)) 1285 return -1; 1286 if (root > btrfs_root_id(cr->root)) 1287 return 1; 1288 return 0; 1289 } 1290 1291 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1292 { 1293 const struct clone_root *cr1 = e1; 1294 const struct clone_root *cr2 = e2; 1295 1296 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1297 return -1; 1298 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1299 return 1; 1300 return 0; 1301 } 1302 1303 /* 1304 * Called for every backref that is found for the current extent. 1305 * Results are collected in sctx->clone_roots->ino/offset. 1306 */ 1307 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1308 void *ctx_) 1309 { 1310 struct backref_ctx *bctx = ctx_; 1311 struct clone_root *clone_root; 1312 1313 /* First check if the root is in the list of accepted clone sources */ 1314 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1315 bctx->sctx->clone_roots_cnt, 1316 sizeof(struct clone_root), 1317 __clone_root_cmp_bsearch); 1318 if (!clone_root) 1319 return 0; 1320 1321 /* This is our own reference, bail out as we can't clone from it. */ 1322 if (clone_root->root == bctx->sctx->send_root && 1323 ino == bctx->cur_objectid && 1324 offset == bctx->cur_offset) 1325 return 0; 1326 1327 /* 1328 * Make sure we don't consider clones from send_root that are 1329 * behind the current inode/offset. 1330 */ 1331 if (clone_root->root == bctx->sctx->send_root) { 1332 /* 1333 * If the source inode was not yet processed we can't issue a 1334 * clone operation, as the source extent does not exist yet at 1335 * the destination of the stream. 1336 */ 1337 if (ino > bctx->cur_objectid) 1338 return 0; 1339 /* 1340 * We clone from the inode currently being sent as long as the 1341 * source extent is already processed, otherwise we could try 1342 * to clone from an extent that does not exist yet at the 1343 * destination of the stream. 1344 */ 1345 if (ino == bctx->cur_objectid && 1346 offset + bctx->extent_len > 1347 bctx->sctx->cur_inode_next_write_offset) 1348 return 0; 1349 } 1350 1351 bctx->found++; 1352 clone_root->found_ref = true; 1353 1354 /* 1355 * If the given backref refers to a file extent item with a larger 1356 * number of bytes than what we found before, use the new one so that 1357 * we clone more optimally and end up doing less writes and getting 1358 * less exclusive, non-shared extents at the destination. 1359 */ 1360 if (num_bytes > clone_root->num_bytes) { 1361 clone_root->ino = ino; 1362 clone_root->offset = offset; 1363 clone_root->num_bytes = num_bytes; 1364 1365 /* 1366 * Found a perfect candidate, so there's no need to continue 1367 * backref walking. 1368 */ 1369 if (num_bytes >= bctx->extent_len) 1370 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1377 const u64 **root_ids_ret, int *root_count_ret) 1378 { 1379 struct backref_ctx *bctx = ctx; 1380 struct send_ctx *sctx = bctx->sctx; 1381 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1382 const u64 key = leaf_bytenr >> fs_info->nodesize_bits; 1383 struct btrfs_lru_cache_entry *raw_entry; 1384 struct backref_cache_entry *entry; 1385 1386 if (sctx->backref_cache.size == 0) 1387 return false; 1388 1389 /* 1390 * If relocation happened since we first filled the cache, then we must 1391 * empty the cache and can not use it, because even though we operate on 1392 * read-only roots, their leaves and nodes may have been reallocated and 1393 * now be used for different nodes/leaves of the same tree or some other 1394 * tree. 1395 * 1396 * We are called from iterate_extent_inodes() while either holding a 1397 * transaction handle or holding fs_info->commit_root_sem, so no need 1398 * to take any lock here. 1399 */ 1400 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1401 btrfs_lru_cache_clear(&sctx->backref_cache); 1402 return false; 1403 } 1404 1405 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1406 if (!raw_entry) 1407 return false; 1408 1409 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1410 *root_ids_ret = entry->root_ids; 1411 *root_count_ret = entry->num_roots; 1412 1413 return true; 1414 } 1415 1416 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1417 void *ctx) 1418 { 1419 struct backref_ctx *bctx = ctx; 1420 struct send_ctx *sctx = bctx->sctx; 1421 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1422 struct backref_cache_entry *new_entry; 1423 struct ulist_iterator uiter; 1424 struct ulist_node *node; 1425 int ret; 1426 1427 /* 1428 * We're called while holding a transaction handle or while holding 1429 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1430 * NOFS allocation. 1431 */ 1432 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1433 /* No worries, cache is optional. */ 1434 if (!new_entry) 1435 return; 1436 1437 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits; 1438 new_entry->entry.gen = 0; 1439 new_entry->num_roots = 0; 1440 ULIST_ITER_INIT(&uiter); 1441 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1442 const u64 root_id = node->val; 1443 struct clone_root *root; 1444 1445 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1446 sctx->clone_roots_cnt, sizeof(struct clone_root), 1447 __clone_root_cmp_bsearch); 1448 if (!root) 1449 continue; 1450 1451 /* Too many roots, just exit, no worries as caching is optional. */ 1452 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1453 kfree(new_entry); 1454 return; 1455 } 1456 1457 new_entry->root_ids[new_entry->num_roots] = root_id; 1458 new_entry->num_roots++; 1459 } 1460 1461 /* 1462 * We may have not added any roots to the new cache entry, which means 1463 * none of the roots is part of the list of roots from which we are 1464 * allowed to clone. Cache the new entry as it's still useful to avoid 1465 * backref walking to determine which roots have a path to the leaf. 1466 * 1467 * Also use GFP_NOFS because we're called while holding a transaction 1468 * handle or while holding fs_info->commit_root_sem. 1469 */ 1470 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1471 GFP_NOFS); 1472 ASSERT(ret == 0 || ret == -ENOMEM); 1473 if (ret) { 1474 /* Caching is optional, no worries. */ 1475 kfree(new_entry); 1476 return; 1477 } 1478 1479 /* 1480 * We are called from iterate_extent_inodes() while either holding a 1481 * transaction handle or holding fs_info->commit_root_sem, so no need 1482 * to take any lock here. 1483 */ 1484 if (sctx->backref_cache.size == 1) 1485 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1486 } 1487 1488 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1489 const struct extent_buffer *leaf, void *ctx) 1490 { 1491 const u64 refs = btrfs_extent_refs(leaf, ei); 1492 const struct backref_ctx *bctx = ctx; 1493 const struct send_ctx *sctx = bctx->sctx; 1494 1495 if (bytenr == bctx->bytenr) { 1496 const u64 flags = btrfs_extent_flags(leaf, ei); 1497 1498 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1499 return -EUCLEAN; 1500 1501 /* 1502 * If we have only one reference and only the send root as a 1503 * clone source - meaning no clone roots were given in the 1504 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1505 * it's our reference and there's no point in doing backref 1506 * walking which is expensive, so exit early. 1507 */ 1508 if (refs == 1 && sctx->clone_roots_cnt == 1) 1509 return -ENOENT; 1510 } 1511 1512 /* 1513 * Backreference walking (iterate_extent_inodes() below) is currently 1514 * too expensive when an extent has a large number of references, both 1515 * in time spent and used memory. So for now just fallback to write 1516 * operations instead of clone operations when an extent has more than 1517 * a certain amount of references. 1518 */ 1519 if (refs > SEND_MAX_EXTENT_REFS) 1520 return -ENOENT; 1521 1522 return 0; 1523 } 1524 1525 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1526 { 1527 const struct backref_ctx *bctx = ctx; 1528 1529 if (ino == bctx->cur_objectid && 1530 root == bctx->backref_owner && 1531 offset == bctx->backref_offset) 1532 return true; 1533 1534 return false; 1535 } 1536 1537 /* 1538 * Given an inode, offset and extent item, it finds a good clone for a clone 1539 * instruction. Returns -ENOENT when none could be found. The function makes 1540 * sure that the returned clone is usable at the point where sending is at the 1541 * moment. This means, that no clones are accepted which lie behind the current 1542 * inode+offset. 1543 * 1544 * path must point to the extent item when called. 1545 */ 1546 static int find_extent_clone(struct send_ctx *sctx, 1547 struct btrfs_path *path, 1548 u64 ino, u64 data_offset, 1549 u64 ino_size, 1550 struct clone_root **found) 1551 { 1552 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1553 int ret; 1554 int extent_type; 1555 u64 disk_byte; 1556 u64 num_bytes; 1557 struct btrfs_file_extent_item *fi; 1558 struct extent_buffer *eb = path->nodes[0]; 1559 struct backref_ctx backref_ctx = { 0 }; 1560 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1561 struct clone_root *cur_clone_root; 1562 int compressed; 1563 u32 i; 1564 1565 /* 1566 * With fallocate we can get prealloc extents beyond the inode's i_size, 1567 * so we don't do anything here because clone operations can not clone 1568 * to a range beyond i_size without increasing the i_size of the 1569 * destination inode. 1570 */ 1571 if (data_offset >= ino_size) 1572 return 0; 1573 1574 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1575 extent_type = btrfs_file_extent_type(eb, fi); 1576 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1577 return -ENOENT; 1578 1579 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1580 if (disk_byte == 0) 1581 return -ENOENT; 1582 1583 compressed = btrfs_file_extent_compression(eb, fi); 1584 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1585 1586 /* 1587 * Setup the clone roots. 1588 */ 1589 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1590 cur_clone_root = sctx->clone_roots + i; 1591 cur_clone_root->ino = (u64)-1; 1592 cur_clone_root->offset = 0; 1593 cur_clone_root->num_bytes = 0; 1594 cur_clone_root->found_ref = false; 1595 } 1596 1597 backref_ctx.sctx = sctx; 1598 backref_ctx.cur_objectid = ino; 1599 backref_ctx.cur_offset = data_offset; 1600 backref_ctx.bytenr = disk_byte; 1601 /* 1602 * Use the header owner and not the send root's id, because in case of a 1603 * snapshot we can have shared subtrees. 1604 */ 1605 backref_ctx.backref_owner = btrfs_header_owner(eb); 1606 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1607 1608 /* 1609 * The last extent of a file may be too large due to page alignment. 1610 * We need to adjust extent_len in this case so that the checks in 1611 * iterate_backrefs() work. 1612 */ 1613 if (data_offset + num_bytes >= ino_size) 1614 backref_ctx.extent_len = ino_size - data_offset; 1615 else 1616 backref_ctx.extent_len = num_bytes; 1617 1618 /* 1619 * Now collect all backrefs. 1620 */ 1621 backref_walk_ctx.bytenr = disk_byte; 1622 if (compressed == BTRFS_COMPRESS_NONE) 1623 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1624 backref_walk_ctx.fs_info = fs_info; 1625 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1626 backref_walk_ctx.cache_store = store_backref_cache; 1627 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1628 backref_walk_ctx.check_extent_item = check_extent_item; 1629 backref_walk_ctx.user_ctx = &backref_ctx; 1630 1631 /* 1632 * If have a single clone root, then it's the send root and we can tell 1633 * the backref walking code to skip our own backref and not resolve it, 1634 * since we can not use it for cloning - the source and destination 1635 * ranges can't overlap and in case the leaf is shared through a subtree 1636 * due to snapshots, we can't use those other roots since they are not 1637 * in the list of clone roots. 1638 */ 1639 if (sctx->clone_roots_cnt == 1) 1640 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1641 1642 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1643 &backref_ctx); 1644 if (ret < 0) 1645 return ret; 1646 1647 down_read(&fs_info->commit_root_sem); 1648 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1649 /* 1650 * A transaction commit for a transaction in which block group 1651 * relocation was done just happened. 1652 * The disk_bytenr of the file extent item we processed is 1653 * possibly stale, referring to the extent's location before 1654 * relocation. So act as if we haven't found any clone sources 1655 * and fallback to write commands, which will read the correct 1656 * data from the new extent location. Otherwise we will fail 1657 * below because we haven't found our own back reference or we 1658 * could be getting incorrect sources in case the old extent 1659 * was already reallocated after the relocation. 1660 */ 1661 up_read(&fs_info->commit_root_sem); 1662 return -ENOENT; 1663 } 1664 up_read(&fs_info->commit_root_sem); 1665 1666 if (!backref_ctx.found) 1667 return -ENOENT; 1668 1669 cur_clone_root = NULL; 1670 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1671 struct clone_root *clone_root = &sctx->clone_roots[i]; 1672 1673 if (!clone_root->found_ref) 1674 continue; 1675 1676 /* 1677 * Choose the root from which we can clone more bytes, to 1678 * minimize write operations and therefore have more extent 1679 * sharing at the destination (the same as in the source). 1680 */ 1681 if (!cur_clone_root || 1682 clone_root->num_bytes > cur_clone_root->num_bytes) { 1683 cur_clone_root = clone_root; 1684 1685 /* 1686 * We found an optimal clone candidate (any inode from 1687 * any root is fine), so we're done. 1688 */ 1689 if (clone_root->num_bytes >= backref_ctx.extent_len) 1690 break; 1691 } 1692 } 1693 1694 if (cur_clone_root) { 1695 *found = cur_clone_root; 1696 ret = 0; 1697 } else { 1698 ret = -ENOENT; 1699 } 1700 1701 return ret; 1702 } 1703 1704 static int read_symlink(struct btrfs_root *root, 1705 u64 ino, 1706 struct fs_path *dest) 1707 { 1708 int ret; 1709 BTRFS_PATH_AUTO_FREE(path); 1710 struct btrfs_key key; 1711 struct btrfs_file_extent_item *ei; 1712 u8 type; 1713 u8 compression; 1714 unsigned long off; 1715 int len; 1716 1717 path = alloc_path_for_send(); 1718 if (!path) 1719 return -ENOMEM; 1720 1721 key.objectid = ino; 1722 key.type = BTRFS_EXTENT_DATA_KEY; 1723 key.offset = 0; 1724 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1725 if (ret < 0) 1726 return ret; 1727 if (unlikely(ret)) { 1728 /* 1729 * An empty symlink inode. Can happen in rare error paths when 1730 * creating a symlink (transaction committed before the inode 1731 * eviction handler removed the symlink inode items and a crash 1732 * happened in between or the subvol was snapshotted in between). 1733 * Print an informative message to dmesg/syslog so that the user 1734 * can delete the symlink. 1735 */ 1736 btrfs_err(root->fs_info, 1737 "Found empty symlink inode %llu at root %llu", 1738 ino, btrfs_root_id(root)); 1739 return -EIO; 1740 } 1741 1742 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1743 struct btrfs_file_extent_item); 1744 type = btrfs_file_extent_type(path->nodes[0], ei); 1745 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1746 ret = -EUCLEAN; 1747 btrfs_crit(root->fs_info, 1748 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1749 ino, btrfs_root_id(root), type); 1750 return ret; 1751 } 1752 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1753 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1754 ret = -EUCLEAN; 1755 btrfs_crit(root->fs_info, 1756 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1757 ino, btrfs_root_id(root), compression); 1758 return ret; 1759 } 1760 1761 off = btrfs_file_extent_inline_start(ei); 1762 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1763 1764 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1765 } 1766 1767 /* 1768 * Helper function to generate a file name that is unique in the root of 1769 * send_root and parent_root. This is used to generate names for orphan inodes. 1770 */ 1771 static int gen_unique_name(struct send_ctx *sctx, 1772 u64 ino, u64 gen, 1773 struct fs_path *dest) 1774 { 1775 BTRFS_PATH_AUTO_FREE(path); 1776 struct btrfs_dir_item *di; 1777 char tmp[64]; 1778 int len; 1779 u64 idx = 0; 1780 1781 path = alloc_path_for_send(); 1782 if (!path) 1783 return -ENOMEM; 1784 1785 while (1) { 1786 struct fscrypt_str tmp_name; 1787 1788 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1789 ino, gen, idx); 1790 ASSERT(len < sizeof(tmp)); 1791 tmp_name.name = tmp; 1792 tmp_name.len = len; 1793 1794 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1795 path, BTRFS_FIRST_FREE_OBJECTID, 1796 &tmp_name, 0); 1797 btrfs_release_path(path); 1798 if (IS_ERR(di)) 1799 return PTR_ERR(di); 1800 1801 if (di) { 1802 /* not unique, try again */ 1803 idx++; 1804 continue; 1805 } 1806 1807 if (!sctx->parent_root) { 1808 /* unique */ 1809 break; 1810 } 1811 1812 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1813 path, BTRFS_FIRST_FREE_OBJECTID, 1814 &tmp_name, 0); 1815 btrfs_release_path(path); 1816 if (IS_ERR(di)) 1817 return PTR_ERR(di); 1818 1819 if (di) { 1820 /* not unique, try again */ 1821 idx++; 1822 continue; 1823 } 1824 /* unique */ 1825 break; 1826 } 1827 1828 return fs_path_add(dest, tmp, len); 1829 } 1830 1831 enum inode_state { 1832 inode_state_no_change, 1833 inode_state_will_create, 1834 inode_state_did_create, 1835 inode_state_will_delete, 1836 inode_state_did_delete, 1837 }; 1838 1839 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1840 u64 *send_gen, u64 *parent_gen) 1841 { 1842 int ret; 1843 int left_ret; 1844 int right_ret; 1845 u64 left_gen; 1846 u64 right_gen = 0; 1847 struct btrfs_inode_info info; 1848 1849 ret = get_inode_info(sctx->send_root, ino, &info); 1850 if (ret < 0 && ret != -ENOENT) 1851 return ret; 1852 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1853 left_gen = info.gen; 1854 if (send_gen) 1855 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1856 1857 if (!sctx->parent_root) { 1858 right_ret = -ENOENT; 1859 } else { 1860 ret = get_inode_info(sctx->parent_root, ino, &info); 1861 if (ret < 0 && ret != -ENOENT) 1862 return ret; 1863 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1864 right_gen = info.gen; 1865 if (parent_gen) 1866 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1867 } 1868 1869 if (!left_ret && !right_ret) { 1870 if (left_gen == gen && right_gen == gen) { 1871 ret = inode_state_no_change; 1872 } else if (left_gen == gen) { 1873 if (ino < sctx->send_progress) 1874 ret = inode_state_did_create; 1875 else 1876 ret = inode_state_will_create; 1877 } else if (right_gen == gen) { 1878 if (ino < sctx->send_progress) 1879 ret = inode_state_did_delete; 1880 else 1881 ret = inode_state_will_delete; 1882 } else { 1883 ret = -ENOENT; 1884 } 1885 } else if (!left_ret) { 1886 if (left_gen == gen) { 1887 if (ino < sctx->send_progress) 1888 ret = inode_state_did_create; 1889 else 1890 ret = inode_state_will_create; 1891 } else { 1892 ret = -ENOENT; 1893 } 1894 } else if (!right_ret) { 1895 if (right_gen == gen) { 1896 if (ino < sctx->send_progress) 1897 ret = inode_state_did_delete; 1898 else 1899 ret = inode_state_will_delete; 1900 } else { 1901 ret = -ENOENT; 1902 } 1903 } else { 1904 ret = -ENOENT; 1905 } 1906 1907 return ret; 1908 } 1909 1910 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1911 u64 *send_gen, u64 *parent_gen) 1912 { 1913 int ret; 1914 1915 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1916 return 1; 1917 1918 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1919 if (ret < 0) 1920 return ret; 1921 1922 if (ret == inode_state_no_change || 1923 ret == inode_state_did_create || 1924 ret == inode_state_will_delete) 1925 return 1; 1926 1927 return 0; 1928 } 1929 1930 /* 1931 * Helper function to lookup a dir item in a dir. 1932 */ 1933 static int lookup_dir_item_inode(struct btrfs_root *root, 1934 u64 dir, const char *name, int name_len, 1935 u64 *found_inode) 1936 { 1937 int ret = 0; 1938 struct btrfs_dir_item *di; 1939 struct btrfs_key key; 1940 BTRFS_PATH_AUTO_FREE(path); 1941 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1942 1943 path = alloc_path_for_send(); 1944 if (!path) 1945 return -ENOMEM; 1946 1947 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1948 if (IS_ERR_OR_NULL(di)) 1949 return di ? PTR_ERR(di) : -ENOENT; 1950 1951 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1952 if (key.type == BTRFS_ROOT_ITEM_KEY) 1953 return -ENOENT; 1954 1955 *found_inode = key.objectid; 1956 1957 return ret; 1958 } 1959 1960 /* 1961 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1962 * generation of the parent dir and the name of the dir entry. 1963 */ 1964 static int get_first_ref(struct btrfs_root *root, u64 ino, 1965 u64 *dir, u64 *dir_gen, struct fs_path *name) 1966 { 1967 int ret; 1968 struct btrfs_key key; 1969 struct btrfs_key found_key; 1970 BTRFS_PATH_AUTO_FREE(path); 1971 int len; 1972 u64 parent_dir; 1973 1974 path = alloc_path_for_send(); 1975 if (!path) 1976 return -ENOMEM; 1977 1978 key.objectid = ino; 1979 key.type = BTRFS_INODE_REF_KEY; 1980 key.offset = 0; 1981 1982 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1983 if (ret < 0) 1984 return ret; 1985 if (!ret) 1986 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1987 path->slots[0]); 1988 if (ret || found_key.objectid != ino || 1989 (found_key.type != BTRFS_INODE_REF_KEY && 1990 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1991 return -ENOENT; 1992 1993 if (found_key.type == BTRFS_INODE_REF_KEY) { 1994 struct btrfs_inode_ref *iref; 1995 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1996 struct btrfs_inode_ref); 1997 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1998 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1999 (unsigned long)(iref + 1), 2000 len); 2001 parent_dir = found_key.offset; 2002 } else { 2003 struct btrfs_inode_extref *extref; 2004 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2005 struct btrfs_inode_extref); 2006 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2007 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2008 (unsigned long)&extref->name, len); 2009 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2010 } 2011 if (ret < 0) 2012 return ret; 2013 btrfs_release_path(path); 2014 2015 if (dir_gen) { 2016 ret = get_inode_gen(root, parent_dir, dir_gen); 2017 if (ret < 0) 2018 return ret; 2019 } 2020 2021 *dir = parent_dir; 2022 2023 return ret; 2024 } 2025 2026 static int is_first_ref(struct btrfs_root *root, 2027 u64 ino, u64 dir, 2028 const char *name, int name_len) 2029 { 2030 int ret; 2031 struct fs_path *tmp_name; 2032 u64 tmp_dir; 2033 2034 tmp_name = fs_path_alloc(); 2035 if (!tmp_name) 2036 return -ENOMEM; 2037 2038 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2039 if (ret < 0) 2040 goto out; 2041 2042 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2043 ret = 0; 2044 goto out; 2045 } 2046 2047 ret = !memcmp(tmp_name->start, name, name_len); 2048 2049 out: 2050 fs_path_free(tmp_name); 2051 return ret; 2052 } 2053 2054 /* 2055 * Used by process_recorded_refs to determine if a new ref would overwrite an 2056 * already existing ref. In case it detects an overwrite, it returns the 2057 * inode/gen in who_ino/who_gen. 2058 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2059 * to make sure later references to the overwritten inode are possible. 2060 * Orphanizing is however only required for the first ref of an inode. 2061 * process_recorded_refs does an additional is_first_ref check to see if 2062 * orphanizing is really required. 2063 */ 2064 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2065 const char *name, int name_len, 2066 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2067 { 2068 int ret; 2069 u64 parent_root_dir_gen; 2070 u64 other_inode = 0; 2071 struct btrfs_inode_info info; 2072 2073 if (!sctx->parent_root) 2074 return 0; 2075 2076 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2077 if (ret <= 0) 2078 return 0; 2079 2080 /* 2081 * If we have a parent root we need to verify that the parent dir was 2082 * not deleted and then re-created, if it was then we have no overwrite 2083 * and we can just unlink this entry. 2084 * 2085 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2086 * parent root. 2087 */ 2088 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2089 parent_root_dir_gen != dir_gen) 2090 return 0; 2091 2092 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2093 &other_inode); 2094 if (ret == -ENOENT) 2095 return 0; 2096 else if (ret < 0) 2097 return ret; 2098 2099 /* 2100 * Check if the overwritten ref was already processed. If yes, the ref 2101 * was already unlinked/moved, so we can safely assume that we will not 2102 * overwrite anything at this point in time. 2103 */ 2104 if (other_inode > sctx->send_progress || 2105 is_waiting_for_move(sctx, other_inode)) { 2106 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2107 if (ret < 0) 2108 return ret; 2109 2110 *who_ino = other_inode; 2111 *who_gen = info.gen; 2112 *who_mode = info.mode; 2113 return 1; 2114 } 2115 2116 return 0; 2117 } 2118 2119 /* 2120 * Checks if the ref was overwritten by an already processed inode. This is 2121 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2122 * thus the orphan name needs be used. 2123 * process_recorded_refs also uses it to avoid unlinking of refs that were 2124 * overwritten. 2125 */ 2126 static int did_overwrite_ref(struct send_ctx *sctx, 2127 u64 dir, u64 dir_gen, 2128 u64 ino, u64 ino_gen, 2129 const char *name, int name_len) 2130 { 2131 int ret; 2132 u64 ow_inode; 2133 u64 ow_gen = 0; 2134 u64 send_root_dir_gen; 2135 2136 if (!sctx->parent_root) 2137 return 0; 2138 2139 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2140 if (ret <= 0) 2141 return ret; 2142 2143 /* 2144 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2145 * send root. 2146 */ 2147 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2148 return 0; 2149 2150 /* check if the ref was overwritten by another ref */ 2151 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2152 &ow_inode); 2153 if (ret == -ENOENT) { 2154 /* was never and will never be overwritten */ 2155 return 0; 2156 } else if (ret < 0) { 2157 return ret; 2158 } 2159 2160 if (ow_inode == ino) { 2161 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2162 if (ret < 0) 2163 return ret; 2164 2165 /* It's the same inode, so no overwrite happened. */ 2166 if (ow_gen == ino_gen) 2167 return 0; 2168 } 2169 2170 /* 2171 * We know that it is or will be overwritten. Check this now. 2172 * The current inode being processed might have been the one that caused 2173 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2174 * the current inode being processed. 2175 */ 2176 if (ow_inode < sctx->send_progress) 2177 return 1; 2178 2179 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2180 if (ow_gen == 0) { 2181 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2182 if (ret < 0) 2183 return ret; 2184 } 2185 if (ow_gen == sctx->cur_inode_gen) 2186 return 1; 2187 } 2188 2189 return 0; 2190 } 2191 2192 /* 2193 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2194 * that got overwritten. This is used by process_recorded_refs to determine 2195 * if it has to use the path as returned by get_cur_path or the orphan name. 2196 */ 2197 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2198 { 2199 int ret = 0; 2200 struct fs_path *name = NULL; 2201 u64 dir; 2202 u64 dir_gen; 2203 2204 if (!sctx->parent_root) 2205 goto out; 2206 2207 name = fs_path_alloc(); 2208 if (!name) 2209 return -ENOMEM; 2210 2211 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2212 if (ret < 0) 2213 goto out; 2214 2215 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2216 name->start, fs_path_len(name)); 2217 2218 out: 2219 fs_path_free(name); 2220 return ret; 2221 } 2222 2223 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2224 u64 ino, u64 gen) 2225 { 2226 struct btrfs_lru_cache_entry *entry; 2227 2228 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2229 if (!entry) 2230 return NULL; 2231 2232 return container_of(entry, struct name_cache_entry, entry); 2233 } 2234 2235 /* 2236 * Used by get_cur_path for each ref up to the root. 2237 * Returns 0 if it succeeded. 2238 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2239 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2240 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2241 * Returns <0 in case of error. 2242 */ 2243 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2244 u64 ino, u64 gen, 2245 u64 *parent_ino, 2246 u64 *parent_gen, 2247 struct fs_path *dest) 2248 { 2249 int ret; 2250 int nce_ret; 2251 struct name_cache_entry *nce; 2252 2253 /* 2254 * First check if we already did a call to this function with the same 2255 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2256 * return the cached result. 2257 */ 2258 nce = name_cache_search(sctx, ino, gen); 2259 if (nce) { 2260 if (ino < sctx->send_progress && nce->need_later_update) { 2261 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2262 nce = NULL; 2263 } else { 2264 *parent_ino = nce->parent_ino; 2265 *parent_gen = nce->parent_gen; 2266 ret = fs_path_add(dest, nce->name, nce->name_len); 2267 if (ret < 0) 2268 return ret; 2269 return nce->ret; 2270 } 2271 } 2272 2273 /* 2274 * If the inode is not existent yet, add the orphan name and return 1. 2275 * This should only happen for the parent dir that we determine in 2276 * record_new_ref_if_needed(). 2277 */ 2278 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2279 if (ret < 0) 2280 return ret; 2281 2282 if (!ret) { 2283 ret = gen_unique_name(sctx, ino, gen, dest); 2284 if (ret < 0) 2285 return ret; 2286 ret = 1; 2287 goto out_cache; 2288 } 2289 2290 /* 2291 * Depending on whether the inode was already processed or not, use 2292 * send_root or parent_root for ref lookup. 2293 */ 2294 if (ino < sctx->send_progress) 2295 ret = get_first_ref(sctx->send_root, ino, 2296 parent_ino, parent_gen, dest); 2297 else 2298 ret = get_first_ref(sctx->parent_root, ino, 2299 parent_ino, parent_gen, dest); 2300 if (ret < 0) 2301 return ret; 2302 2303 /* 2304 * Check if the ref was overwritten by an inode's ref that was processed 2305 * earlier. If yes, treat as orphan and return 1. 2306 */ 2307 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2308 dest->start, fs_path_len(dest)); 2309 if (ret < 0) 2310 return ret; 2311 if (ret) { 2312 fs_path_reset(dest); 2313 ret = gen_unique_name(sctx, ino, gen, dest); 2314 if (ret < 0) 2315 return ret; 2316 ret = 1; 2317 } 2318 2319 out_cache: 2320 /* 2321 * Store the result of the lookup in the name cache. 2322 */ 2323 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2324 if (!nce) 2325 return -ENOMEM; 2326 2327 nce->entry.key = ino; 2328 nce->entry.gen = gen; 2329 nce->parent_ino = *parent_ino; 2330 nce->parent_gen = *parent_gen; 2331 nce->name_len = fs_path_len(dest); 2332 nce->ret = ret; 2333 memcpy(nce->name, dest->start, nce->name_len); 2334 2335 if (ino < sctx->send_progress) 2336 nce->need_later_update = 0; 2337 else 2338 nce->need_later_update = 1; 2339 2340 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2341 if (nce_ret < 0) { 2342 kfree(nce); 2343 return nce_ret; 2344 } 2345 2346 return ret; 2347 } 2348 2349 /* 2350 * Magic happens here. This function returns the first ref to an inode as it 2351 * would look like while receiving the stream at this point in time. 2352 * We walk the path up to the root. For every inode in between, we check if it 2353 * was already processed/sent. If yes, we continue with the parent as found 2354 * in send_root. If not, we continue with the parent as found in parent_root. 2355 * If we encounter an inode that was deleted at this point in time, we use the 2356 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2357 * that were not created yet and overwritten inodes/refs. 2358 * 2359 * When do we have orphan inodes: 2360 * 1. When an inode is freshly created and thus no valid refs are available yet 2361 * 2. When a directory lost all it's refs (deleted) but still has dir items 2362 * inside which were not processed yet (pending for move/delete). If anyone 2363 * tried to get the path to the dir items, it would get a path inside that 2364 * orphan directory. 2365 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2366 * of an unprocessed inode. If in that case the first ref would be 2367 * overwritten, the overwritten inode gets "orphanized". Later when we 2368 * process this overwritten inode, it is restored at a new place by moving 2369 * the orphan inode. 2370 * 2371 * sctx->send_progress tells this function at which point in time receiving 2372 * would be. 2373 */ 2374 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2375 struct fs_path *dest) 2376 { 2377 int ret = 0; 2378 struct fs_path *name = NULL; 2379 u64 parent_inode = 0; 2380 u64 parent_gen = 0; 2381 int stop = 0; 2382 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); 2383 2384 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { 2385 if (dest != &sctx->cur_inode_path) 2386 return fs_path_copy(dest, &sctx->cur_inode_path); 2387 2388 return 0; 2389 } 2390 2391 name = fs_path_alloc(); 2392 if (!name) { 2393 ret = -ENOMEM; 2394 goto out; 2395 } 2396 2397 dest->reversed = 1; 2398 fs_path_reset(dest); 2399 2400 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2401 struct waiting_dir_move *wdm; 2402 2403 fs_path_reset(name); 2404 2405 if (is_waiting_for_rm(sctx, ino, gen)) { 2406 ret = gen_unique_name(sctx, ino, gen, name); 2407 if (ret < 0) 2408 goto out; 2409 ret = fs_path_add_path(dest, name); 2410 break; 2411 } 2412 2413 wdm = get_waiting_dir_move(sctx, ino); 2414 if (wdm && wdm->orphanized) { 2415 ret = gen_unique_name(sctx, ino, gen, name); 2416 stop = 1; 2417 } else if (wdm) { 2418 ret = get_first_ref(sctx->parent_root, ino, 2419 &parent_inode, &parent_gen, name); 2420 } else { 2421 ret = __get_cur_name_and_parent(sctx, ino, gen, 2422 &parent_inode, 2423 &parent_gen, name); 2424 if (ret) 2425 stop = 1; 2426 } 2427 2428 if (ret < 0) 2429 goto out; 2430 2431 ret = fs_path_add_path(dest, name); 2432 if (ret < 0) 2433 goto out; 2434 2435 ino = parent_inode; 2436 gen = parent_gen; 2437 } 2438 2439 out: 2440 fs_path_free(name); 2441 if (!ret) { 2442 fs_path_unreverse(dest); 2443 if (is_cur_inode && dest != &sctx->cur_inode_path) 2444 ret = fs_path_copy(&sctx->cur_inode_path, dest); 2445 } 2446 2447 return ret; 2448 } 2449 2450 /* 2451 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2452 */ 2453 static int send_subvol_begin(struct send_ctx *sctx) 2454 { 2455 int ret; 2456 struct btrfs_root *send_root = sctx->send_root; 2457 struct btrfs_root *parent_root = sctx->parent_root; 2458 BTRFS_PATH_AUTO_FREE(path); 2459 struct btrfs_key key; 2460 struct btrfs_root_ref *ref; 2461 struct extent_buffer *leaf; 2462 char AUTO_KFREE(name); 2463 int namelen; 2464 2465 path = btrfs_alloc_path(); 2466 if (!path) 2467 return -ENOMEM; 2468 2469 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2470 if (!name) 2471 return -ENOMEM; 2472 2473 key.objectid = btrfs_root_id(send_root); 2474 key.type = BTRFS_ROOT_BACKREF_KEY; 2475 key.offset = 0; 2476 2477 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2478 &key, path, 1, 0); 2479 if (ret < 0) 2480 return ret; 2481 if (ret) 2482 return -ENOENT; 2483 2484 leaf = path->nodes[0]; 2485 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2486 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2487 key.objectid != btrfs_root_id(send_root)) { 2488 return -ENOENT; 2489 } 2490 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2491 namelen = btrfs_root_ref_name_len(leaf, ref); 2492 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2493 btrfs_release_path(path); 2494 2495 if (parent_root) { 2496 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2497 if (ret < 0) 2498 return ret; 2499 } else { 2500 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2501 if (ret < 0) 2502 return ret; 2503 } 2504 2505 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2506 2507 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2508 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2509 sctx->send_root->root_item.received_uuid); 2510 else 2511 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2512 sctx->send_root->root_item.uuid); 2513 2514 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2515 btrfs_root_ctransid(&sctx->send_root->root_item)); 2516 if (parent_root) { 2517 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2518 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2519 parent_root->root_item.received_uuid); 2520 else 2521 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2522 parent_root->root_item.uuid); 2523 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2524 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2525 } 2526 2527 ret = send_cmd(sctx); 2528 2529 tlv_put_failure: 2530 return ret; 2531 } 2532 2533 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) 2534 { 2535 if (fs_path_len(&sctx->cur_inode_path) == 0) { 2536 int ret; 2537 2538 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2539 &sctx->cur_inode_path); 2540 if (ret < 0) 2541 return ERR_PTR(ret); 2542 } 2543 2544 return &sctx->cur_inode_path; 2545 } 2546 2547 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) 2548 { 2549 struct fs_path *path; 2550 int ret; 2551 2552 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 2553 return get_cur_inode_path(sctx); 2554 2555 path = fs_path_alloc(); 2556 if (!path) 2557 return ERR_PTR(-ENOMEM); 2558 2559 ret = get_cur_path(sctx, ino, gen, path); 2560 if (ret < 0) { 2561 fs_path_free(path); 2562 return ERR_PTR(ret); 2563 } 2564 2565 return path; 2566 } 2567 2568 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) 2569 { 2570 if (path != &sctx->cur_inode_path) 2571 fs_path_free(path); 2572 } 2573 2574 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2575 { 2576 int ret = 0; 2577 struct fs_path *p; 2578 2579 p = get_path_for_command(sctx, ino, gen); 2580 if (IS_ERR(p)) 2581 return PTR_ERR(p); 2582 2583 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2584 if (ret < 0) 2585 goto out; 2586 2587 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2589 2590 ret = send_cmd(sctx); 2591 2592 tlv_put_failure: 2593 out: 2594 free_path_for_command(sctx, p); 2595 return ret; 2596 } 2597 2598 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2599 { 2600 int ret = 0; 2601 struct fs_path *p; 2602 2603 p = get_path_for_command(sctx, ino, gen); 2604 if (IS_ERR(p)) 2605 return PTR_ERR(p); 2606 2607 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2608 if (ret < 0) 2609 goto out; 2610 2611 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2612 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2613 2614 ret = send_cmd(sctx); 2615 2616 tlv_put_failure: 2617 out: 2618 free_path_for_command(sctx, p); 2619 return ret; 2620 } 2621 2622 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2623 { 2624 int ret = 0; 2625 struct fs_path *p; 2626 2627 if (sctx->proto < 2) 2628 return 0; 2629 2630 p = get_path_for_command(sctx, ino, gen); 2631 if (IS_ERR(p)) 2632 return PTR_ERR(p); 2633 2634 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2635 if (ret < 0) 2636 goto out; 2637 2638 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2640 2641 ret = send_cmd(sctx); 2642 2643 tlv_put_failure: 2644 out: 2645 free_path_for_command(sctx, p); 2646 return ret; 2647 } 2648 2649 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2650 { 2651 int ret = 0; 2652 struct fs_path *p; 2653 2654 p = get_path_for_command(sctx, ino, gen); 2655 if (IS_ERR(p)) 2656 return PTR_ERR(p); 2657 2658 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2659 if (ret < 0) 2660 goto out; 2661 2662 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2663 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2664 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2665 2666 ret = send_cmd(sctx); 2667 2668 tlv_put_failure: 2669 out: 2670 free_path_for_command(sctx, p); 2671 return ret; 2672 } 2673 2674 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2675 { 2676 int ret = 0; 2677 struct fs_path *p = NULL; 2678 struct btrfs_inode_item *ii; 2679 BTRFS_PATH_AUTO_FREE(path); 2680 struct extent_buffer *eb; 2681 struct btrfs_key key; 2682 int slot; 2683 2684 p = get_path_for_command(sctx, ino, gen); 2685 if (IS_ERR(p)) 2686 return PTR_ERR(p); 2687 2688 path = alloc_path_for_send(); 2689 if (!path) { 2690 ret = -ENOMEM; 2691 goto out; 2692 } 2693 2694 key.objectid = ino; 2695 key.type = BTRFS_INODE_ITEM_KEY; 2696 key.offset = 0; 2697 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2698 if (ret > 0) 2699 ret = -ENOENT; 2700 if (ret < 0) 2701 goto out; 2702 2703 eb = path->nodes[0]; 2704 slot = path->slots[0]; 2705 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2706 2707 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2708 if (ret < 0) 2709 goto out; 2710 2711 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2712 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2713 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2714 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2715 if (sctx->proto >= 2) 2716 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2717 2718 ret = send_cmd(sctx); 2719 2720 tlv_put_failure: 2721 out: 2722 free_path_for_command(sctx, p); 2723 return ret; 2724 } 2725 2726 /* 2727 * If the cache is full, we can't remove entries from it and do a call to 2728 * send_utimes() for each respective inode, because we might be finishing 2729 * processing an inode that is a directory and it just got renamed, and existing 2730 * entries in the cache may refer to inodes that have the directory in their 2731 * full path - in which case we would generate outdated paths (pre-rename) 2732 * for the inodes that the cache entries point to. Instead of pruning the 2733 * cache when inserting, do it after we finish processing each inode at 2734 * finish_inode_if_needed(). 2735 */ 2736 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2737 { 2738 struct btrfs_lru_cache_entry *entry; 2739 int ret; 2740 2741 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2742 if (entry != NULL) 2743 return 0; 2744 2745 /* Caching is optional, don't fail if we can't allocate memory. */ 2746 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2747 if (!entry) 2748 return send_utimes(sctx, dir, gen); 2749 2750 entry->key = dir; 2751 entry->gen = gen; 2752 2753 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2754 ASSERT(ret != -EEXIST); 2755 if (ret) { 2756 kfree(entry); 2757 return send_utimes(sctx, dir, gen); 2758 } 2759 2760 return 0; 2761 } 2762 2763 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2764 { 2765 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2766 struct btrfs_lru_cache_entry *lru; 2767 int ret; 2768 2769 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2770 ASSERT(lru != NULL); 2771 2772 ret = send_utimes(sctx, lru->key, lru->gen); 2773 if (ret) 2774 return ret; 2775 2776 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2777 } 2778 2779 return 0; 2780 } 2781 2782 /* 2783 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2784 * a valid path yet because we did not process the refs yet. So, the inode 2785 * is created as orphan. 2786 */ 2787 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2788 { 2789 int ret = 0; 2790 struct fs_path *p; 2791 int cmd; 2792 struct btrfs_inode_info info; 2793 u64 gen; 2794 u64 mode; 2795 u64 rdev; 2796 2797 p = fs_path_alloc(); 2798 if (!p) 2799 return -ENOMEM; 2800 2801 if (ino != sctx->cur_ino) { 2802 ret = get_inode_info(sctx->send_root, ino, &info); 2803 if (ret < 0) 2804 goto out; 2805 gen = info.gen; 2806 mode = info.mode; 2807 rdev = info.rdev; 2808 } else { 2809 gen = sctx->cur_inode_gen; 2810 mode = sctx->cur_inode_mode; 2811 rdev = sctx->cur_inode_rdev; 2812 } 2813 2814 if (S_ISREG(mode)) { 2815 cmd = BTRFS_SEND_C_MKFILE; 2816 } else if (S_ISDIR(mode)) { 2817 cmd = BTRFS_SEND_C_MKDIR; 2818 } else if (S_ISLNK(mode)) { 2819 cmd = BTRFS_SEND_C_SYMLINK; 2820 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2821 cmd = BTRFS_SEND_C_MKNOD; 2822 } else if (S_ISFIFO(mode)) { 2823 cmd = BTRFS_SEND_C_MKFIFO; 2824 } else if (S_ISSOCK(mode)) { 2825 cmd = BTRFS_SEND_C_MKSOCK; 2826 } else { 2827 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2828 (int)(mode & S_IFMT)); 2829 ret = -EOPNOTSUPP; 2830 goto out; 2831 } 2832 2833 ret = begin_cmd(sctx, cmd); 2834 if (ret < 0) 2835 goto out; 2836 2837 ret = gen_unique_name(sctx, ino, gen, p); 2838 if (ret < 0) 2839 goto out; 2840 2841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2842 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2843 2844 if (S_ISLNK(mode)) { 2845 fs_path_reset(p); 2846 ret = read_symlink(sctx->send_root, ino, p); 2847 if (ret < 0) 2848 goto out; 2849 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2850 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2851 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2852 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2853 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2854 } 2855 2856 ret = send_cmd(sctx); 2857 if (ret < 0) 2858 goto out; 2859 2860 2861 tlv_put_failure: 2862 out: 2863 fs_path_free(p); 2864 return ret; 2865 } 2866 2867 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2868 { 2869 struct btrfs_lru_cache_entry *entry; 2870 int ret; 2871 2872 /* Caching is optional, ignore any failures. */ 2873 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2874 if (!entry) 2875 return; 2876 2877 entry->key = dir; 2878 entry->gen = 0; 2879 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2880 if (ret < 0) 2881 kfree(entry); 2882 } 2883 2884 /* 2885 * We need some special handling for inodes that get processed before the parent 2886 * directory got created. See process_recorded_refs for details. 2887 * This function does the check if we already created the dir out of order. 2888 */ 2889 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2890 { 2891 int ret = 0; 2892 int iter_ret = 0; 2893 BTRFS_PATH_AUTO_FREE(path); 2894 struct btrfs_key key; 2895 struct btrfs_key found_key; 2896 struct btrfs_key di_key; 2897 struct btrfs_dir_item *di; 2898 2899 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2900 return 1; 2901 2902 path = alloc_path_for_send(); 2903 if (!path) 2904 return -ENOMEM; 2905 2906 key.objectid = dir; 2907 key.type = BTRFS_DIR_INDEX_KEY; 2908 key.offset = 0; 2909 2910 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2911 struct extent_buffer *eb = path->nodes[0]; 2912 2913 if (found_key.objectid != key.objectid || 2914 found_key.type != key.type) { 2915 ret = 0; 2916 break; 2917 } 2918 2919 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2920 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2921 2922 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2923 di_key.objectid < sctx->send_progress) { 2924 ret = 1; 2925 cache_dir_created(sctx, dir); 2926 break; 2927 } 2928 } 2929 /* Catch error found during iteration */ 2930 if (iter_ret < 0) 2931 ret = iter_ret; 2932 2933 return ret; 2934 } 2935 2936 /* 2937 * Only creates the inode if it is: 2938 * 1. Not a directory 2939 * 2. Or a directory which was not created already due to out of order 2940 * directories. See did_create_dir and process_recorded_refs for details. 2941 */ 2942 static int send_create_inode_if_needed(struct send_ctx *sctx) 2943 { 2944 int ret; 2945 2946 if (S_ISDIR(sctx->cur_inode_mode)) { 2947 ret = did_create_dir(sctx, sctx->cur_ino); 2948 if (ret < 0) 2949 return ret; 2950 else if (ret > 0) 2951 return 0; 2952 } 2953 2954 ret = send_create_inode(sctx, sctx->cur_ino); 2955 2956 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 2957 cache_dir_created(sctx, sctx->cur_ino); 2958 2959 return ret; 2960 } 2961 2962 struct recorded_ref { 2963 struct list_head list; 2964 char *name; 2965 struct fs_path *full_path; 2966 u64 dir; 2967 u64 dir_gen; 2968 int name_len; 2969 struct rb_node node; 2970 struct rb_root *root; 2971 }; 2972 2973 static struct recorded_ref *recorded_ref_alloc(void) 2974 { 2975 struct recorded_ref *ref; 2976 2977 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2978 if (!ref) 2979 return NULL; 2980 RB_CLEAR_NODE(&ref->node); 2981 INIT_LIST_HEAD(&ref->list); 2982 return ref; 2983 } 2984 2985 static void recorded_ref_free(struct recorded_ref *ref) 2986 { 2987 if (!ref) 2988 return; 2989 if (!RB_EMPTY_NODE(&ref->node)) 2990 rb_erase(&ref->node, ref->root); 2991 list_del(&ref->list); 2992 fs_path_free(ref->full_path); 2993 kfree(ref); 2994 } 2995 2996 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2997 { 2998 ref->full_path = path; 2999 ref->name = (char *)kbasename(ref->full_path->start); 3000 ref->name_len = ref->full_path->end - ref->name; 3001 } 3002 3003 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3004 { 3005 struct recorded_ref *new; 3006 3007 new = recorded_ref_alloc(); 3008 if (!new) 3009 return -ENOMEM; 3010 3011 new->dir = ref->dir; 3012 new->dir_gen = ref->dir_gen; 3013 list_add_tail(&new->list, list); 3014 return 0; 3015 } 3016 3017 static void __free_recorded_refs(struct list_head *head) 3018 { 3019 struct recorded_ref *cur; 3020 3021 while (!list_empty(head)) { 3022 cur = list_first_entry(head, struct recorded_ref, list); 3023 recorded_ref_free(cur); 3024 } 3025 } 3026 3027 static void free_recorded_refs(struct send_ctx *sctx) 3028 { 3029 __free_recorded_refs(&sctx->new_refs); 3030 __free_recorded_refs(&sctx->deleted_refs); 3031 } 3032 3033 /* 3034 * Renames/moves a file/dir to its orphan name. Used when the first 3035 * ref of an unprocessed inode gets overwritten and for all non empty 3036 * directories. 3037 */ 3038 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3039 struct fs_path *path) 3040 { 3041 int ret; 3042 struct fs_path *orphan; 3043 3044 orphan = fs_path_alloc(); 3045 if (!orphan) 3046 return -ENOMEM; 3047 3048 ret = gen_unique_name(sctx, ino, gen, orphan); 3049 if (ret < 0) 3050 goto out; 3051 3052 ret = send_rename(sctx, path, orphan); 3053 if (ret < 0) 3054 goto out; 3055 3056 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 3057 ret = fs_path_copy(&sctx->cur_inode_path, orphan); 3058 3059 out: 3060 fs_path_free(orphan); 3061 return ret; 3062 } 3063 3064 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3065 u64 dir_ino, u64 dir_gen) 3066 { 3067 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3068 struct rb_node *parent = NULL; 3069 struct orphan_dir_info *entry, *odi; 3070 3071 while (*p) { 3072 parent = *p; 3073 entry = rb_entry(parent, struct orphan_dir_info, node); 3074 if (dir_ino < entry->ino) 3075 p = &(*p)->rb_left; 3076 else if (dir_ino > entry->ino) 3077 p = &(*p)->rb_right; 3078 else if (dir_gen < entry->gen) 3079 p = &(*p)->rb_left; 3080 else if (dir_gen > entry->gen) 3081 p = &(*p)->rb_right; 3082 else 3083 return entry; 3084 } 3085 3086 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3087 if (!odi) 3088 return ERR_PTR(-ENOMEM); 3089 odi->ino = dir_ino; 3090 odi->gen = dir_gen; 3091 odi->last_dir_index_offset = 0; 3092 odi->dir_high_seq_ino = 0; 3093 3094 rb_link_node(&odi->node, parent, p); 3095 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3096 return odi; 3097 } 3098 3099 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3100 u64 dir_ino, u64 gen) 3101 { 3102 struct rb_node *n = sctx->orphan_dirs.rb_node; 3103 struct orphan_dir_info *entry; 3104 3105 while (n) { 3106 entry = rb_entry(n, struct orphan_dir_info, node); 3107 if (dir_ino < entry->ino) 3108 n = n->rb_left; 3109 else if (dir_ino > entry->ino) 3110 n = n->rb_right; 3111 else if (gen < entry->gen) 3112 n = n->rb_left; 3113 else if (gen > entry->gen) 3114 n = n->rb_right; 3115 else 3116 return entry; 3117 } 3118 return NULL; 3119 } 3120 3121 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3122 { 3123 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3124 3125 return odi != NULL; 3126 } 3127 3128 static void free_orphan_dir_info(struct send_ctx *sctx, 3129 struct orphan_dir_info *odi) 3130 { 3131 if (!odi) 3132 return; 3133 rb_erase(&odi->node, &sctx->orphan_dirs); 3134 kfree(odi); 3135 } 3136 3137 /* 3138 * Returns 1 if a directory can be removed at this point in time. 3139 * We check this by iterating all dir items and checking if the inode behind 3140 * the dir item was already processed. 3141 */ 3142 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3143 { 3144 int ret = 0; 3145 int iter_ret = 0; 3146 struct btrfs_root *root = sctx->parent_root; 3147 struct btrfs_path *path; 3148 struct btrfs_key key; 3149 struct btrfs_key found_key; 3150 struct btrfs_key loc; 3151 struct btrfs_dir_item *di; 3152 struct orphan_dir_info *odi = NULL; 3153 u64 dir_high_seq_ino = 0; 3154 u64 last_dir_index_offset = 0; 3155 3156 /* 3157 * Don't try to rmdir the top/root subvolume dir. 3158 */ 3159 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3160 return 0; 3161 3162 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3163 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3164 return 0; 3165 3166 path = alloc_path_for_send(); 3167 if (!path) 3168 return -ENOMEM; 3169 3170 if (!odi) { 3171 /* 3172 * Find the inode number associated with the last dir index 3173 * entry. This is very likely the inode with the highest number 3174 * of all inodes that have an entry in the directory. We can 3175 * then use it to avoid future calls to can_rmdir(), when 3176 * processing inodes with a lower number, from having to search 3177 * the parent root b+tree for dir index keys. 3178 */ 3179 key.objectid = dir; 3180 key.type = BTRFS_DIR_INDEX_KEY; 3181 key.offset = (u64)-1; 3182 3183 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3184 if (ret < 0) { 3185 goto out; 3186 } else if (ret > 0) { 3187 /* Can't happen, the root is never empty. */ 3188 ASSERT(path->slots[0] > 0); 3189 if (WARN_ON(path->slots[0] == 0)) { 3190 ret = -EUCLEAN; 3191 goto out; 3192 } 3193 path->slots[0]--; 3194 } 3195 3196 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3197 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3198 /* No index keys, dir can be removed. */ 3199 ret = 1; 3200 goto out; 3201 } 3202 3203 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3204 struct btrfs_dir_item); 3205 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3206 dir_high_seq_ino = loc.objectid; 3207 if (sctx->cur_ino < dir_high_seq_ino) { 3208 ret = 0; 3209 goto out; 3210 } 3211 3212 btrfs_release_path(path); 3213 } 3214 3215 key.objectid = dir; 3216 key.type = BTRFS_DIR_INDEX_KEY; 3217 key.offset = (odi ? odi->last_dir_index_offset : 0); 3218 3219 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3220 struct waiting_dir_move *dm; 3221 3222 if (found_key.objectid != key.objectid || 3223 found_key.type != key.type) 3224 break; 3225 3226 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3227 struct btrfs_dir_item); 3228 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3229 3230 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3231 last_dir_index_offset = found_key.offset; 3232 3233 dm = get_waiting_dir_move(sctx, loc.objectid); 3234 if (dm) { 3235 dm->rmdir_ino = dir; 3236 dm->rmdir_gen = dir_gen; 3237 ret = 0; 3238 goto out; 3239 } 3240 3241 if (loc.objectid > sctx->cur_ino) { 3242 ret = 0; 3243 goto out; 3244 } 3245 } 3246 if (iter_ret < 0) { 3247 ret = iter_ret; 3248 goto out; 3249 } 3250 free_orphan_dir_info(sctx, odi); 3251 3252 ret = 1; 3253 3254 out: 3255 btrfs_free_path(path); 3256 3257 if (ret) 3258 return ret; 3259 3260 if (!odi) { 3261 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3262 if (IS_ERR(odi)) 3263 return PTR_ERR(odi); 3264 3265 odi->gen = dir_gen; 3266 } 3267 3268 odi->last_dir_index_offset = last_dir_index_offset; 3269 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3270 3271 return 0; 3272 } 3273 3274 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3275 { 3276 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3277 3278 return entry != NULL; 3279 } 3280 3281 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3282 { 3283 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3284 struct rb_node *parent = NULL; 3285 struct waiting_dir_move *entry, *dm; 3286 3287 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3288 if (!dm) 3289 return -ENOMEM; 3290 dm->ino = ino; 3291 dm->rmdir_ino = 0; 3292 dm->rmdir_gen = 0; 3293 dm->orphanized = orphanized; 3294 3295 while (*p) { 3296 parent = *p; 3297 entry = rb_entry(parent, struct waiting_dir_move, node); 3298 if (ino < entry->ino) { 3299 p = &(*p)->rb_left; 3300 } else if (ino > entry->ino) { 3301 p = &(*p)->rb_right; 3302 } else { 3303 kfree(dm); 3304 return -EEXIST; 3305 } 3306 } 3307 3308 rb_link_node(&dm->node, parent, p); 3309 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3310 return 0; 3311 } 3312 3313 static struct waiting_dir_move * 3314 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3315 { 3316 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3317 struct waiting_dir_move *entry; 3318 3319 while (n) { 3320 entry = rb_entry(n, struct waiting_dir_move, node); 3321 if (ino < entry->ino) 3322 n = n->rb_left; 3323 else if (ino > entry->ino) 3324 n = n->rb_right; 3325 else 3326 return entry; 3327 } 3328 return NULL; 3329 } 3330 3331 static void free_waiting_dir_move(struct send_ctx *sctx, 3332 struct waiting_dir_move *dm) 3333 { 3334 if (!dm) 3335 return; 3336 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3337 kfree(dm); 3338 } 3339 3340 static int add_pending_dir_move(struct send_ctx *sctx, 3341 u64 ino, 3342 u64 ino_gen, 3343 u64 parent_ino, 3344 struct list_head *new_refs, 3345 struct list_head *deleted_refs, 3346 const bool is_orphan) 3347 { 3348 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3349 struct rb_node *parent = NULL; 3350 struct pending_dir_move *entry = NULL, *pm; 3351 struct recorded_ref *cur; 3352 int exists = 0; 3353 int ret; 3354 3355 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3356 if (!pm) 3357 return -ENOMEM; 3358 pm->parent_ino = parent_ino; 3359 pm->ino = ino; 3360 pm->gen = ino_gen; 3361 INIT_LIST_HEAD(&pm->list); 3362 INIT_LIST_HEAD(&pm->update_refs); 3363 RB_CLEAR_NODE(&pm->node); 3364 3365 while (*p) { 3366 parent = *p; 3367 entry = rb_entry(parent, struct pending_dir_move, node); 3368 if (parent_ino < entry->parent_ino) { 3369 p = &(*p)->rb_left; 3370 } else if (parent_ino > entry->parent_ino) { 3371 p = &(*p)->rb_right; 3372 } else { 3373 exists = 1; 3374 break; 3375 } 3376 } 3377 3378 list_for_each_entry(cur, deleted_refs, list) { 3379 ret = dup_ref(cur, &pm->update_refs); 3380 if (ret < 0) 3381 goto out; 3382 } 3383 list_for_each_entry(cur, new_refs, list) { 3384 ret = dup_ref(cur, &pm->update_refs); 3385 if (ret < 0) 3386 goto out; 3387 } 3388 3389 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3390 if (ret) 3391 goto out; 3392 3393 if (exists) { 3394 list_add_tail(&pm->list, &entry->list); 3395 } else { 3396 rb_link_node(&pm->node, parent, p); 3397 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3398 } 3399 ret = 0; 3400 out: 3401 if (ret) { 3402 __free_recorded_refs(&pm->update_refs); 3403 kfree(pm); 3404 } 3405 return ret; 3406 } 3407 3408 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3409 u64 parent_ino) 3410 { 3411 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3412 struct pending_dir_move *entry; 3413 3414 while (n) { 3415 entry = rb_entry(n, struct pending_dir_move, node); 3416 if (parent_ino < entry->parent_ino) 3417 n = n->rb_left; 3418 else if (parent_ino > entry->parent_ino) 3419 n = n->rb_right; 3420 else 3421 return entry; 3422 } 3423 return NULL; 3424 } 3425 3426 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3427 u64 ino, u64 gen, u64 *ancestor_ino) 3428 { 3429 int ret = 0; 3430 u64 parent_inode = 0; 3431 u64 parent_gen = 0; 3432 u64 start_ino = ino; 3433 3434 *ancestor_ino = 0; 3435 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3436 fs_path_reset(name); 3437 3438 if (is_waiting_for_rm(sctx, ino, gen)) 3439 break; 3440 if (is_waiting_for_move(sctx, ino)) { 3441 if (*ancestor_ino == 0) 3442 *ancestor_ino = ino; 3443 ret = get_first_ref(sctx->parent_root, ino, 3444 &parent_inode, &parent_gen, name); 3445 } else { 3446 ret = __get_cur_name_and_parent(sctx, ino, gen, 3447 &parent_inode, 3448 &parent_gen, name); 3449 if (ret > 0) { 3450 ret = 0; 3451 break; 3452 } 3453 } 3454 if (ret < 0) 3455 break; 3456 if (parent_inode == start_ino) { 3457 ret = 1; 3458 if (*ancestor_ino == 0) 3459 *ancestor_ino = ino; 3460 break; 3461 } 3462 ino = parent_inode; 3463 gen = parent_gen; 3464 } 3465 return ret; 3466 } 3467 3468 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3469 { 3470 struct fs_path *from_path = NULL; 3471 struct fs_path *to_path = NULL; 3472 struct fs_path *name = NULL; 3473 u64 orig_progress = sctx->send_progress; 3474 struct recorded_ref *cur; 3475 u64 parent_ino, parent_gen; 3476 struct waiting_dir_move *dm = NULL; 3477 u64 rmdir_ino = 0; 3478 u64 rmdir_gen; 3479 u64 ancestor; 3480 bool is_orphan; 3481 int ret; 3482 3483 name = fs_path_alloc(); 3484 from_path = fs_path_alloc(); 3485 if (!name || !from_path) { 3486 ret = -ENOMEM; 3487 goto out; 3488 } 3489 3490 dm = get_waiting_dir_move(sctx, pm->ino); 3491 ASSERT(dm); 3492 rmdir_ino = dm->rmdir_ino; 3493 rmdir_gen = dm->rmdir_gen; 3494 is_orphan = dm->orphanized; 3495 free_waiting_dir_move(sctx, dm); 3496 3497 if (is_orphan) { 3498 ret = gen_unique_name(sctx, pm->ino, 3499 pm->gen, from_path); 3500 } else { 3501 ret = get_first_ref(sctx->parent_root, pm->ino, 3502 &parent_ino, &parent_gen, name); 3503 if (ret < 0) 3504 goto out; 3505 ret = get_cur_path(sctx, parent_ino, parent_gen, 3506 from_path); 3507 if (ret < 0) 3508 goto out; 3509 ret = fs_path_add_path(from_path, name); 3510 } 3511 if (ret < 0) 3512 goto out; 3513 3514 sctx->send_progress = sctx->cur_ino + 1; 3515 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3516 if (ret < 0) 3517 goto out; 3518 if (ret) { 3519 LIST_HEAD(deleted_refs); 3520 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3521 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3522 &pm->update_refs, &deleted_refs, 3523 is_orphan); 3524 if (ret < 0) 3525 goto out; 3526 if (rmdir_ino) { 3527 dm = get_waiting_dir_move(sctx, pm->ino); 3528 ASSERT(dm); 3529 dm->rmdir_ino = rmdir_ino; 3530 dm->rmdir_gen = rmdir_gen; 3531 } 3532 goto out; 3533 } 3534 fs_path_reset(name); 3535 to_path = name; 3536 name = NULL; 3537 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3538 if (ret < 0) 3539 goto out; 3540 3541 ret = send_rename(sctx, from_path, to_path); 3542 if (ret < 0) 3543 goto out; 3544 3545 if (rmdir_ino) { 3546 struct orphan_dir_info *odi; 3547 u64 gen; 3548 3549 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3550 if (!odi) { 3551 /* already deleted */ 3552 goto finish; 3553 } 3554 gen = odi->gen; 3555 3556 ret = can_rmdir(sctx, rmdir_ino, gen); 3557 if (ret < 0) 3558 goto out; 3559 if (!ret) 3560 goto finish; 3561 3562 name = fs_path_alloc(); 3563 if (!name) { 3564 ret = -ENOMEM; 3565 goto out; 3566 } 3567 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3568 if (ret < 0) 3569 goto out; 3570 ret = send_rmdir(sctx, name); 3571 if (ret < 0) 3572 goto out; 3573 } 3574 3575 finish: 3576 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3577 if (ret < 0) 3578 goto out; 3579 3580 /* 3581 * After rename/move, need to update the utimes of both new parent(s) 3582 * and old parent(s). 3583 */ 3584 list_for_each_entry(cur, &pm->update_refs, list) { 3585 /* 3586 * The parent inode might have been deleted in the send snapshot 3587 */ 3588 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3589 if (ret == -ENOENT) { 3590 ret = 0; 3591 continue; 3592 } 3593 if (ret < 0) 3594 goto out; 3595 3596 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3597 if (ret < 0) 3598 goto out; 3599 } 3600 3601 out: 3602 fs_path_free(name); 3603 fs_path_free(from_path); 3604 fs_path_free(to_path); 3605 sctx->send_progress = orig_progress; 3606 3607 return ret; 3608 } 3609 3610 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3611 { 3612 if (!list_empty(&m->list)) 3613 list_del(&m->list); 3614 if (!RB_EMPTY_NODE(&m->node)) 3615 rb_erase(&m->node, &sctx->pending_dir_moves); 3616 __free_recorded_refs(&m->update_refs); 3617 kfree(m); 3618 } 3619 3620 static void tail_append_pending_moves(struct send_ctx *sctx, 3621 struct pending_dir_move *moves, 3622 struct list_head *stack) 3623 { 3624 if (list_empty(&moves->list)) { 3625 list_add_tail(&moves->list, stack); 3626 } else { 3627 LIST_HEAD(list); 3628 list_splice_init(&moves->list, &list); 3629 list_add_tail(&moves->list, stack); 3630 list_splice_tail(&list, stack); 3631 } 3632 if (!RB_EMPTY_NODE(&moves->node)) { 3633 rb_erase(&moves->node, &sctx->pending_dir_moves); 3634 RB_CLEAR_NODE(&moves->node); 3635 } 3636 } 3637 3638 static int apply_children_dir_moves(struct send_ctx *sctx) 3639 { 3640 struct pending_dir_move *pm; 3641 LIST_HEAD(stack); 3642 u64 parent_ino = sctx->cur_ino; 3643 int ret = 0; 3644 3645 pm = get_pending_dir_moves(sctx, parent_ino); 3646 if (!pm) 3647 return 0; 3648 3649 tail_append_pending_moves(sctx, pm, &stack); 3650 3651 while (!list_empty(&stack)) { 3652 pm = list_first_entry(&stack, struct pending_dir_move, list); 3653 parent_ino = pm->ino; 3654 ret = apply_dir_move(sctx, pm); 3655 free_pending_move(sctx, pm); 3656 if (ret) 3657 goto out; 3658 pm = get_pending_dir_moves(sctx, parent_ino); 3659 if (pm) 3660 tail_append_pending_moves(sctx, pm, &stack); 3661 } 3662 return 0; 3663 3664 out: 3665 while (!list_empty(&stack)) { 3666 pm = list_first_entry(&stack, struct pending_dir_move, list); 3667 free_pending_move(sctx, pm); 3668 } 3669 return ret; 3670 } 3671 3672 /* 3673 * We might need to delay a directory rename even when no ancestor directory 3674 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3675 * renamed. This happens when we rename a directory to the old name (the name 3676 * in the parent root) of some other unrelated directory that got its rename 3677 * delayed due to some ancestor with higher number that got renamed. 3678 * 3679 * Example: 3680 * 3681 * Parent snapshot: 3682 * . (ino 256) 3683 * |---- a/ (ino 257) 3684 * | |---- file (ino 260) 3685 * | 3686 * |---- b/ (ino 258) 3687 * |---- c/ (ino 259) 3688 * 3689 * Send snapshot: 3690 * . (ino 256) 3691 * |---- a/ (ino 258) 3692 * |---- x/ (ino 259) 3693 * |---- y/ (ino 257) 3694 * |----- file (ino 260) 3695 * 3696 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3697 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3698 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3699 * must issue is: 3700 * 3701 * 1 - rename 259 from 'c' to 'x' 3702 * 2 - rename 257 from 'a' to 'x/y' 3703 * 3 - rename 258 from 'b' to 'a' 3704 * 3705 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3706 * be done right away and < 0 on error. 3707 */ 3708 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3709 struct recorded_ref *parent_ref, 3710 const bool is_orphan) 3711 { 3712 BTRFS_PATH_AUTO_FREE(path); 3713 struct btrfs_key key; 3714 struct btrfs_key di_key; 3715 struct btrfs_dir_item *di; 3716 u64 left_gen; 3717 u64 right_gen; 3718 int ret = 0; 3719 struct waiting_dir_move *wdm; 3720 3721 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3722 return 0; 3723 3724 path = alloc_path_for_send(); 3725 if (!path) 3726 return -ENOMEM; 3727 3728 key.objectid = parent_ref->dir; 3729 key.type = BTRFS_DIR_ITEM_KEY; 3730 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3731 3732 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3733 if (ret < 0) 3734 return ret; 3735 if (ret > 0) 3736 return 0; 3737 3738 di = btrfs_match_dir_item_name(path, parent_ref->name, 3739 parent_ref->name_len); 3740 if (!di) 3741 return 0; 3742 /* 3743 * di_key.objectid has the number of the inode that has a dentry in the 3744 * parent directory with the same name that sctx->cur_ino is being 3745 * renamed to. We need to check if that inode is in the send root as 3746 * well and if it is currently marked as an inode with a pending rename, 3747 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3748 * that it happens after that other inode is renamed. 3749 */ 3750 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3751 if (di_key.type != BTRFS_INODE_ITEM_KEY) 3752 return 0; 3753 3754 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3755 if (ret < 0) 3756 return ret; 3757 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3758 if (ret < 0) { 3759 if (ret == -ENOENT) 3760 ret = 0; 3761 return ret; 3762 } 3763 3764 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3765 if (right_gen != left_gen) 3766 return 0; 3767 3768 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3769 if (wdm && !wdm->orphanized) { 3770 ret = add_pending_dir_move(sctx, 3771 sctx->cur_ino, 3772 sctx->cur_inode_gen, 3773 di_key.objectid, 3774 &sctx->new_refs, 3775 &sctx->deleted_refs, 3776 is_orphan); 3777 if (!ret) 3778 ret = 1; 3779 } 3780 return ret; 3781 } 3782 3783 /* 3784 * Check if inode ino2, or any of its ancestors, is inode ino1. 3785 * Return 1 if true, 0 if false and < 0 on error. 3786 */ 3787 static int check_ino_in_path(struct btrfs_root *root, 3788 const u64 ino1, 3789 const u64 ino1_gen, 3790 const u64 ino2, 3791 const u64 ino2_gen, 3792 struct fs_path *fs_path) 3793 { 3794 u64 ino = ino2; 3795 3796 if (ino1 == ino2) 3797 return ino1_gen == ino2_gen; 3798 3799 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3800 u64 parent; 3801 u64 parent_gen; 3802 int ret; 3803 3804 fs_path_reset(fs_path); 3805 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3806 if (ret < 0) 3807 return ret; 3808 if (parent == ino1) 3809 return parent_gen == ino1_gen; 3810 ino = parent; 3811 } 3812 return 0; 3813 } 3814 3815 /* 3816 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3817 * possible path (in case ino2 is not a directory and has multiple hard links). 3818 * Return 1 if true, 0 if false and < 0 on error. 3819 */ 3820 static int is_ancestor(struct btrfs_root *root, 3821 const u64 ino1, 3822 const u64 ino1_gen, 3823 const u64 ino2, 3824 struct fs_path *fs_path) 3825 { 3826 bool free_fs_path = false; 3827 int ret = 0; 3828 int iter_ret = 0; 3829 BTRFS_PATH_AUTO_FREE(path); 3830 struct btrfs_key key; 3831 3832 if (!fs_path) { 3833 fs_path = fs_path_alloc(); 3834 if (!fs_path) 3835 return -ENOMEM; 3836 free_fs_path = true; 3837 } 3838 3839 path = alloc_path_for_send(); 3840 if (!path) { 3841 ret = -ENOMEM; 3842 goto out; 3843 } 3844 3845 key.objectid = ino2; 3846 key.type = BTRFS_INODE_REF_KEY; 3847 key.offset = 0; 3848 3849 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3850 struct extent_buffer *leaf = path->nodes[0]; 3851 int slot = path->slots[0]; 3852 u32 cur_offset = 0; 3853 u32 item_size; 3854 3855 if (key.objectid != ino2) 3856 break; 3857 if (key.type != BTRFS_INODE_REF_KEY && 3858 key.type != BTRFS_INODE_EXTREF_KEY) 3859 break; 3860 3861 item_size = btrfs_item_size(leaf, slot); 3862 while (cur_offset < item_size) { 3863 u64 parent; 3864 u64 parent_gen; 3865 3866 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3867 unsigned long ptr; 3868 struct btrfs_inode_extref *extref; 3869 3870 ptr = btrfs_item_ptr_offset(leaf, slot); 3871 extref = (struct btrfs_inode_extref *) 3872 (ptr + cur_offset); 3873 parent = btrfs_inode_extref_parent(leaf, 3874 extref); 3875 cur_offset += sizeof(*extref); 3876 cur_offset += btrfs_inode_extref_name_len(leaf, 3877 extref); 3878 } else { 3879 parent = key.offset; 3880 cur_offset = item_size; 3881 } 3882 3883 ret = get_inode_gen(root, parent, &parent_gen); 3884 if (ret < 0) 3885 goto out; 3886 ret = check_ino_in_path(root, ino1, ino1_gen, 3887 parent, parent_gen, fs_path); 3888 if (ret) 3889 goto out; 3890 } 3891 } 3892 ret = 0; 3893 if (iter_ret < 0) 3894 ret = iter_ret; 3895 3896 out: 3897 if (free_fs_path) 3898 fs_path_free(fs_path); 3899 return ret; 3900 } 3901 3902 static int wait_for_parent_move(struct send_ctx *sctx, 3903 struct recorded_ref *parent_ref, 3904 const bool is_orphan) 3905 { 3906 int ret = 0; 3907 u64 ino = parent_ref->dir; 3908 u64 ino_gen = parent_ref->dir_gen; 3909 u64 parent_ino_before, parent_ino_after; 3910 struct fs_path *path_before = NULL; 3911 struct fs_path *path_after = NULL; 3912 int len1, len2; 3913 3914 path_after = fs_path_alloc(); 3915 path_before = fs_path_alloc(); 3916 if (!path_after || !path_before) { 3917 ret = -ENOMEM; 3918 goto out; 3919 } 3920 3921 /* 3922 * Our current directory inode may not yet be renamed/moved because some 3923 * ancestor (immediate or not) has to be renamed/moved first. So find if 3924 * such ancestor exists and make sure our own rename/move happens after 3925 * that ancestor is processed to avoid path build infinite loops (done 3926 * at get_cur_path()). 3927 */ 3928 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3929 u64 parent_ino_after_gen; 3930 3931 if (is_waiting_for_move(sctx, ino)) { 3932 /* 3933 * If the current inode is an ancestor of ino in the 3934 * parent root, we need to delay the rename of the 3935 * current inode, otherwise don't delayed the rename 3936 * because we can end up with a circular dependency 3937 * of renames, resulting in some directories never 3938 * getting the respective rename operations issued in 3939 * the send stream or getting into infinite path build 3940 * loops. 3941 */ 3942 ret = is_ancestor(sctx->parent_root, 3943 sctx->cur_ino, sctx->cur_inode_gen, 3944 ino, path_before); 3945 if (ret) 3946 break; 3947 } 3948 3949 fs_path_reset(path_before); 3950 fs_path_reset(path_after); 3951 3952 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3953 &parent_ino_after_gen, path_after); 3954 if (ret < 0) 3955 goto out; 3956 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3957 NULL, path_before); 3958 if (ret < 0 && ret != -ENOENT) { 3959 goto out; 3960 } else if (ret == -ENOENT) { 3961 ret = 0; 3962 break; 3963 } 3964 3965 len1 = fs_path_len(path_before); 3966 len2 = fs_path_len(path_after); 3967 if (ino > sctx->cur_ino && 3968 (parent_ino_before != parent_ino_after || len1 != len2 || 3969 memcmp(path_before->start, path_after->start, len1))) { 3970 u64 parent_ino_gen; 3971 3972 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 3973 if (ret < 0) 3974 goto out; 3975 if (ino_gen == parent_ino_gen) { 3976 ret = 1; 3977 break; 3978 } 3979 } 3980 ino = parent_ino_after; 3981 ino_gen = parent_ino_after_gen; 3982 } 3983 3984 out: 3985 fs_path_free(path_before); 3986 fs_path_free(path_after); 3987 3988 if (ret == 1) { 3989 ret = add_pending_dir_move(sctx, 3990 sctx->cur_ino, 3991 sctx->cur_inode_gen, 3992 ino, 3993 &sctx->new_refs, 3994 &sctx->deleted_refs, 3995 is_orphan); 3996 if (!ret) 3997 ret = 1; 3998 } 3999 4000 return ret; 4001 } 4002 4003 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4004 { 4005 int ret; 4006 struct fs_path *new_path; 4007 4008 /* 4009 * Our reference's name member points to its full_path member string, so 4010 * we use here a new path. 4011 */ 4012 new_path = fs_path_alloc(); 4013 if (!new_path) 4014 return -ENOMEM; 4015 4016 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4017 if (ret < 0) { 4018 fs_path_free(new_path); 4019 return ret; 4020 } 4021 ret = fs_path_add(new_path, ref->name, ref->name_len); 4022 if (ret < 0) { 4023 fs_path_free(new_path); 4024 return ret; 4025 } 4026 4027 fs_path_free(ref->full_path); 4028 set_ref_path(ref, new_path); 4029 4030 return 0; 4031 } 4032 4033 /* 4034 * When processing the new references for an inode we may orphanize an existing 4035 * directory inode because its old name conflicts with one of the new references 4036 * of the current inode. Later, when processing another new reference of our 4037 * inode, we might need to orphanize another inode, but the path we have in the 4038 * reference reflects the pre-orphanization name of the directory we previously 4039 * orphanized. For example: 4040 * 4041 * parent snapshot looks like: 4042 * 4043 * . (ino 256) 4044 * |----- f1 (ino 257) 4045 * |----- f2 (ino 258) 4046 * |----- d1/ (ino 259) 4047 * |----- d2/ (ino 260) 4048 * 4049 * send snapshot looks like: 4050 * 4051 * . (ino 256) 4052 * |----- d1 (ino 258) 4053 * |----- f2/ (ino 259) 4054 * |----- f2_link/ (ino 260) 4055 * | |----- f1 (ino 257) 4056 * | 4057 * |----- d2 (ino 258) 4058 * 4059 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4060 * cache it in the name cache. Later when we start processing inode 258, when 4061 * collecting all its new references we set a full path of "d1/d2" for its new 4062 * reference with name "d2". When we start processing the new references we 4063 * start by processing the new reference with name "d1", and this results in 4064 * orphanizing inode 259, since its old reference causes a conflict. Then we 4065 * move on the next new reference, with name "d2", and we find out we must 4066 * orphanize inode 260, as its old reference conflicts with ours - but for the 4067 * orphanization we use a source path corresponding to the path we stored in the 4068 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4069 * receiver fail since the path component "d1/" no longer exists, it was renamed 4070 * to "o259-6-0/" when processing the previous new reference. So in this case we 4071 * must recompute the path in the new reference and use it for the new 4072 * orphanization operation. 4073 */ 4074 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4075 { 4076 char AUTO_KFREE(name); 4077 int ret; 4078 4079 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4080 if (!name) 4081 return -ENOMEM; 4082 4083 fs_path_reset(ref->full_path); 4084 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4085 if (ret < 0) 4086 return ret; 4087 4088 ret = fs_path_add(ref->full_path, name, ref->name_len); 4089 if (ret < 0) 4090 return ret; 4091 4092 /* Update the reference's base name pointer. */ 4093 set_ref_path(ref, ref->full_path); 4094 4095 return 0; 4096 } 4097 4098 static int rbtree_check_dir_ref_comp(const void *k, const struct rb_node *node) 4099 { 4100 const struct recorded_ref *data = k; 4101 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4102 4103 if (data->dir > ref->dir) 4104 return 1; 4105 if (data->dir < ref->dir) 4106 return -1; 4107 if (data->dir_gen > ref->dir_gen) 4108 return 1; 4109 if (data->dir_gen < ref->dir_gen) 4110 return -1; 4111 return 0; 4112 } 4113 4114 static bool rbtree_check_dir_ref_less(struct rb_node *node, const struct rb_node *parent) 4115 { 4116 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4117 4118 return rbtree_check_dir_ref_comp(entry, parent) < 0; 4119 } 4120 4121 static int record_check_dir_ref_in_tree(struct rb_root *root, 4122 struct recorded_ref *ref, struct list_head *list) 4123 { 4124 struct recorded_ref *tmp_ref; 4125 int ret; 4126 4127 if (rb_find(ref, root, rbtree_check_dir_ref_comp)) 4128 return 0; 4129 4130 ret = dup_ref(ref, list); 4131 if (ret < 0) 4132 return ret; 4133 4134 tmp_ref = list_last_entry(list, struct recorded_ref, list); 4135 rb_add(&tmp_ref->node, root, rbtree_check_dir_ref_less); 4136 tmp_ref->root = root; 4137 return 0; 4138 } 4139 4140 static int rename_current_inode(struct send_ctx *sctx, 4141 struct fs_path *current_path, 4142 struct fs_path *new_path) 4143 { 4144 int ret; 4145 4146 ret = send_rename(sctx, current_path, new_path); 4147 if (ret < 0) 4148 return ret; 4149 4150 ret = fs_path_copy(&sctx->cur_inode_path, new_path); 4151 if (ret < 0) 4152 return ret; 4153 4154 return fs_path_copy(current_path, new_path); 4155 } 4156 4157 /* 4158 * This does all the move/link/unlink/rmdir magic. 4159 */ 4160 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4161 { 4162 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4163 int ret = 0; 4164 struct recorded_ref *cur; 4165 struct recorded_ref *cur2; 4166 LIST_HEAD(check_dirs); 4167 struct rb_root rbtree_check_dirs = RB_ROOT; 4168 struct fs_path *valid_path = NULL; 4169 u64 ow_inode = 0; 4170 u64 ow_gen; 4171 u64 ow_mode; 4172 bool did_overwrite = false; 4173 bool is_orphan = false; 4174 bool can_rename = true; 4175 bool orphanized_dir = false; 4176 bool orphanized_ancestor = false; 4177 4178 /* 4179 * This should never happen as the root dir always has the same ref 4180 * which is always '..' 4181 */ 4182 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4183 btrfs_err(fs_info, 4184 "send: unexpected inode %llu in process_recorded_refs()", 4185 sctx->cur_ino); 4186 ret = -EINVAL; 4187 goto out; 4188 } 4189 4190 valid_path = fs_path_alloc(); 4191 if (!valid_path) { 4192 ret = -ENOMEM; 4193 goto out; 4194 } 4195 4196 /* 4197 * First, check if the first ref of the current inode was overwritten 4198 * before. If yes, we know that the current inode was already orphanized 4199 * and thus use the orphan name. If not, we can use get_cur_path to 4200 * get the path of the first ref as it would like while receiving at 4201 * this point in time. 4202 * New inodes are always orphan at the beginning, so force to use the 4203 * orphan name in this case. 4204 * The first ref is stored in valid_path and will be updated if it 4205 * gets moved around. 4206 */ 4207 if (!sctx->cur_inode_new) { 4208 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4209 sctx->cur_inode_gen); 4210 if (ret < 0) 4211 goto out; 4212 if (ret) 4213 did_overwrite = true; 4214 } 4215 if (sctx->cur_inode_new || did_overwrite) { 4216 ret = gen_unique_name(sctx, sctx->cur_ino, 4217 sctx->cur_inode_gen, valid_path); 4218 if (ret < 0) 4219 goto out; 4220 is_orphan = true; 4221 } else { 4222 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4223 valid_path); 4224 if (ret < 0) 4225 goto out; 4226 } 4227 4228 /* 4229 * Before doing any rename and link operations, do a first pass on the 4230 * new references to orphanize any unprocessed inodes that may have a 4231 * reference that conflicts with one of the new references of the current 4232 * inode. This needs to happen first because a new reference may conflict 4233 * with the old reference of a parent directory, so we must make sure 4234 * that the path used for link and rename commands don't use an 4235 * orphanized name when an ancestor was not yet orphanized. 4236 * 4237 * Example: 4238 * 4239 * Parent snapshot: 4240 * 4241 * . (ino 256) 4242 * |----- testdir/ (ino 259) 4243 * | |----- a (ino 257) 4244 * | 4245 * |----- b (ino 258) 4246 * 4247 * Send snapshot: 4248 * 4249 * . (ino 256) 4250 * |----- testdir_2/ (ino 259) 4251 * | |----- a (ino 260) 4252 * | 4253 * |----- testdir (ino 257) 4254 * |----- b (ino 257) 4255 * |----- b2 (ino 258) 4256 * 4257 * Processing the new reference for inode 257 with name "b" may happen 4258 * before processing the new reference with name "testdir". If so, we 4259 * must make sure that by the time we send a link command to create the 4260 * hard link "b", inode 259 was already orphanized, since the generated 4261 * path in "valid_path" already contains the orphanized name for 259. 4262 * We are processing inode 257, so only later when processing 259 we do 4263 * the rename operation to change its temporary (orphanized) name to 4264 * "testdir_2". 4265 */ 4266 list_for_each_entry(cur, &sctx->new_refs, list) { 4267 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4268 if (ret < 0) 4269 goto out; 4270 if (ret == inode_state_will_create) 4271 continue; 4272 4273 /* 4274 * Check if this new ref would overwrite the first ref of another 4275 * unprocessed inode. If yes, orphanize the overwritten inode. 4276 * If we find an overwritten ref that is not the first ref, 4277 * simply unlink it. 4278 */ 4279 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4280 cur->name, cur->name_len, 4281 &ow_inode, &ow_gen, &ow_mode); 4282 if (ret < 0) 4283 goto out; 4284 if (ret) { 4285 ret = is_first_ref(sctx->parent_root, 4286 ow_inode, cur->dir, cur->name, 4287 cur->name_len); 4288 if (ret < 0) 4289 goto out; 4290 if (ret) { 4291 struct name_cache_entry *nce; 4292 struct waiting_dir_move *wdm; 4293 4294 if (orphanized_dir) { 4295 ret = refresh_ref_path(sctx, cur); 4296 if (ret < 0) 4297 goto out; 4298 } 4299 4300 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4301 cur->full_path); 4302 if (ret < 0) 4303 goto out; 4304 if (S_ISDIR(ow_mode)) 4305 orphanized_dir = true; 4306 4307 /* 4308 * If ow_inode has its rename operation delayed 4309 * make sure that its orphanized name is used in 4310 * the source path when performing its rename 4311 * operation. 4312 */ 4313 wdm = get_waiting_dir_move(sctx, ow_inode); 4314 if (wdm) 4315 wdm->orphanized = true; 4316 4317 /* 4318 * Make sure we clear our orphanized inode's 4319 * name from the name cache. This is because the 4320 * inode ow_inode might be an ancestor of some 4321 * other inode that will be orphanized as well 4322 * later and has an inode number greater than 4323 * sctx->send_progress. We need to prevent 4324 * future name lookups from using the old name 4325 * and get instead the orphan name. 4326 */ 4327 nce = name_cache_search(sctx, ow_inode, ow_gen); 4328 if (nce) 4329 btrfs_lru_cache_remove(&sctx->name_cache, 4330 &nce->entry); 4331 4332 /* 4333 * ow_inode might currently be an ancestor of 4334 * cur_ino, therefore compute valid_path (the 4335 * current path of cur_ino) again because it 4336 * might contain the pre-orphanization name of 4337 * ow_inode, which is no longer valid. 4338 */ 4339 ret = is_ancestor(sctx->parent_root, 4340 ow_inode, ow_gen, 4341 sctx->cur_ino, NULL); 4342 if (ret > 0) { 4343 orphanized_ancestor = true; 4344 fs_path_reset(valid_path); 4345 fs_path_reset(&sctx->cur_inode_path); 4346 ret = get_cur_path(sctx, sctx->cur_ino, 4347 sctx->cur_inode_gen, 4348 valid_path); 4349 } 4350 if (ret < 0) 4351 goto out; 4352 } else { 4353 /* 4354 * If we previously orphanized a directory that 4355 * collided with a new reference that we already 4356 * processed, recompute the current path because 4357 * that directory may be part of the path. 4358 */ 4359 if (orphanized_dir) { 4360 ret = refresh_ref_path(sctx, cur); 4361 if (ret < 0) 4362 goto out; 4363 } 4364 ret = send_unlink(sctx, cur->full_path); 4365 if (ret < 0) 4366 goto out; 4367 } 4368 } 4369 4370 } 4371 4372 list_for_each_entry(cur, &sctx->new_refs, list) { 4373 /* 4374 * We may have refs where the parent directory does not exist 4375 * yet. This happens if the parent directories inum is higher 4376 * than the current inum. To handle this case, we create the 4377 * parent directory out of order. But we need to check if this 4378 * did already happen before due to other refs in the same dir. 4379 */ 4380 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4381 if (ret < 0) 4382 goto out; 4383 if (ret == inode_state_will_create) { 4384 ret = 0; 4385 /* 4386 * First check if any of the current inodes refs did 4387 * already create the dir. 4388 */ 4389 list_for_each_entry(cur2, &sctx->new_refs, list) { 4390 if (cur == cur2) 4391 break; 4392 if (cur2->dir == cur->dir) { 4393 ret = 1; 4394 break; 4395 } 4396 } 4397 4398 /* 4399 * If that did not happen, check if a previous inode 4400 * did already create the dir. 4401 */ 4402 if (!ret) 4403 ret = did_create_dir(sctx, cur->dir); 4404 if (ret < 0) 4405 goto out; 4406 if (!ret) { 4407 ret = send_create_inode(sctx, cur->dir); 4408 if (ret < 0) 4409 goto out; 4410 cache_dir_created(sctx, cur->dir); 4411 } 4412 } 4413 4414 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4415 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4416 if (ret < 0) 4417 goto out; 4418 if (ret == 1) { 4419 can_rename = false; 4420 *pending_move = 1; 4421 } 4422 } 4423 4424 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4425 can_rename) { 4426 ret = wait_for_parent_move(sctx, cur, is_orphan); 4427 if (ret < 0) 4428 goto out; 4429 if (ret == 1) { 4430 can_rename = false; 4431 *pending_move = 1; 4432 } 4433 } 4434 4435 /* 4436 * link/move the ref to the new place. If we have an orphan 4437 * inode, move it and update valid_path. If not, link or move 4438 * it depending on the inode mode. 4439 */ 4440 if (is_orphan && can_rename) { 4441 ret = rename_current_inode(sctx, valid_path, cur->full_path); 4442 if (ret < 0) 4443 goto out; 4444 is_orphan = false; 4445 } else if (can_rename) { 4446 if (S_ISDIR(sctx->cur_inode_mode)) { 4447 /* 4448 * Dirs can't be linked, so move it. For moved 4449 * dirs, we always have one new and one deleted 4450 * ref. The deleted ref is ignored later. 4451 */ 4452 ret = rename_current_inode(sctx, valid_path, 4453 cur->full_path); 4454 if (ret < 0) 4455 goto out; 4456 } else { 4457 /* 4458 * We might have previously orphanized an inode 4459 * which is an ancestor of our current inode, 4460 * so our reference's full path, which was 4461 * computed before any such orphanizations, must 4462 * be updated. 4463 */ 4464 if (orphanized_dir) { 4465 ret = update_ref_path(sctx, cur); 4466 if (ret < 0) 4467 goto out; 4468 } 4469 ret = send_link(sctx, cur->full_path, 4470 valid_path); 4471 if (ret < 0) 4472 goto out; 4473 } 4474 } 4475 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4476 if (ret < 0) 4477 goto out; 4478 } 4479 4480 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4481 /* 4482 * Check if we can already rmdir the directory. If not, 4483 * orphanize it. For every dir item inside that gets deleted 4484 * later, we do this check again and rmdir it then if possible. 4485 * See the use of check_dirs for more details. 4486 */ 4487 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4488 if (ret < 0) 4489 goto out; 4490 if (ret) { 4491 ret = send_rmdir(sctx, valid_path); 4492 if (ret < 0) 4493 goto out; 4494 } else if (!is_orphan) { 4495 ret = orphanize_inode(sctx, sctx->cur_ino, 4496 sctx->cur_inode_gen, valid_path); 4497 if (ret < 0) 4498 goto out; 4499 is_orphan = true; 4500 } 4501 4502 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4503 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4504 if (ret < 0) 4505 goto out; 4506 } 4507 } else if (S_ISDIR(sctx->cur_inode_mode) && 4508 !list_empty(&sctx->deleted_refs)) { 4509 /* 4510 * We have a moved dir. Add the old parent to check_dirs 4511 */ 4512 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list); 4513 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4514 if (ret < 0) 4515 goto out; 4516 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4517 /* 4518 * We have a non dir inode. Go through all deleted refs and 4519 * unlink them if they were not already overwritten by other 4520 * inodes. 4521 */ 4522 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4523 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4524 sctx->cur_ino, sctx->cur_inode_gen, 4525 cur->name, cur->name_len); 4526 if (ret < 0) 4527 goto out; 4528 if (!ret) { 4529 /* 4530 * If we orphanized any ancestor before, we need 4531 * to recompute the full path for deleted names, 4532 * since any such path was computed before we 4533 * processed any references and orphanized any 4534 * ancestor inode. 4535 */ 4536 if (orphanized_ancestor) { 4537 ret = update_ref_path(sctx, cur); 4538 if (ret < 0) 4539 goto out; 4540 } 4541 ret = send_unlink(sctx, cur->full_path); 4542 if (ret < 0) 4543 goto out; 4544 if (is_current_inode_path(sctx, cur->full_path)) 4545 fs_path_reset(&sctx->cur_inode_path); 4546 } 4547 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4548 if (ret < 0) 4549 goto out; 4550 } 4551 /* 4552 * If the inode is still orphan, unlink the orphan. This may 4553 * happen when a previous inode did overwrite the first ref 4554 * of this inode and no new refs were added for the current 4555 * inode. Unlinking does not mean that the inode is deleted in 4556 * all cases. There may still be links to this inode in other 4557 * places. 4558 */ 4559 if (is_orphan) { 4560 ret = send_unlink(sctx, valid_path); 4561 if (ret < 0) 4562 goto out; 4563 } 4564 } 4565 4566 /* 4567 * We did collect all parent dirs where cur_inode was once located. We 4568 * now go through all these dirs and check if they are pending for 4569 * deletion and if it's finally possible to perform the rmdir now. 4570 * We also update the inode stats of the parent dirs here. 4571 */ 4572 list_for_each_entry(cur, &check_dirs, list) { 4573 /* 4574 * In case we had refs into dirs that were not processed yet, 4575 * we don't need to do the utime and rmdir logic for these dirs. 4576 * The dir will be processed later. 4577 */ 4578 if (cur->dir > sctx->cur_ino) 4579 continue; 4580 4581 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4582 if (ret < 0) 4583 goto out; 4584 4585 if (ret == inode_state_did_create || 4586 ret == inode_state_no_change) { 4587 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4588 if (ret < 0) 4589 goto out; 4590 } else if (ret == inode_state_did_delete) { 4591 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4592 if (ret < 0) 4593 goto out; 4594 if (ret) { 4595 ret = get_cur_path(sctx, cur->dir, 4596 cur->dir_gen, valid_path); 4597 if (ret < 0) 4598 goto out; 4599 ret = send_rmdir(sctx, valid_path); 4600 if (ret < 0) 4601 goto out; 4602 } 4603 } 4604 } 4605 4606 ret = 0; 4607 4608 out: 4609 __free_recorded_refs(&check_dirs); 4610 free_recorded_refs(sctx); 4611 fs_path_free(valid_path); 4612 return ret; 4613 } 4614 4615 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4616 { 4617 const struct recorded_ref *data = k; 4618 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4619 4620 if (data->dir > ref->dir) 4621 return 1; 4622 if (data->dir < ref->dir) 4623 return -1; 4624 if (data->dir_gen > ref->dir_gen) 4625 return 1; 4626 if (data->dir_gen < ref->dir_gen) 4627 return -1; 4628 if (data->name_len > ref->name_len) 4629 return 1; 4630 if (data->name_len < ref->name_len) 4631 return -1; 4632 return strcmp(data->name, ref->name); 4633 } 4634 4635 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4636 { 4637 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4638 4639 return rbtree_ref_comp(entry, parent) < 0; 4640 } 4641 4642 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4643 struct fs_path *name, u64 dir, u64 dir_gen, 4644 struct send_ctx *sctx) 4645 { 4646 int ret = 0; 4647 struct fs_path *path = NULL; 4648 struct recorded_ref *ref = NULL; 4649 4650 path = fs_path_alloc(); 4651 if (!path) { 4652 ret = -ENOMEM; 4653 goto out; 4654 } 4655 4656 ref = recorded_ref_alloc(); 4657 if (!ref) { 4658 ret = -ENOMEM; 4659 goto out; 4660 } 4661 4662 ret = get_cur_path(sctx, dir, dir_gen, path); 4663 if (ret < 0) 4664 goto out; 4665 ret = fs_path_add_path(path, name); 4666 if (ret < 0) 4667 goto out; 4668 4669 ref->dir = dir; 4670 ref->dir_gen = dir_gen; 4671 set_ref_path(ref, path); 4672 list_add_tail(&ref->list, refs); 4673 rb_add(&ref->node, root, rbtree_ref_less); 4674 ref->root = root; 4675 out: 4676 if (ret) { 4677 if (path && (!ref || !ref->full_path)) 4678 fs_path_free(path); 4679 recorded_ref_free(ref); 4680 } 4681 return ret; 4682 } 4683 4684 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4685 { 4686 int ret; 4687 struct send_ctx *sctx = ctx; 4688 struct rb_node *node = NULL; 4689 struct recorded_ref data; 4690 struct recorded_ref *ref; 4691 u64 dir_gen; 4692 4693 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4694 if (ret < 0) 4695 return ret; 4696 4697 data.dir = dir; 4698 data.dir_gen = dir_gen; 4699 set_ref_path(&data, name); 4700 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4701 if (node) { 4702 ref = rb_entry(node, struct recorded_ref, node); 4703 recorded_ref_free(ref); 4704 } else { 4705 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4706 &sctx->new_refs, name, dir, dir_gen, 4707 sctx); 4708 } 4709 4710 return ret; 4711 } 4712 4713 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4714 { 4715 int ret; 4716 struct send_ctx *sctx = ctx; 4717 struct rb_node *node = NULL; 4718 struct recorded_ref data; 4719 struct recorded_ref *ref; 4720 u64 dir_gen; 4721 4722 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4723 if (ret < 0) 4724 return ret; 4725 4726 data.dir = dir; 4727 data.dir_gen = dir_gen; 4728 set_ref_path(&data, name); 4729 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4730 if (node) { 4731 ref = rb_entry(node, struct recorded_ref, node); 4732 recorded_ref_free(ref); 4733 } else { 4734 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4735 &sctx->deleted_refs, name, dir, 4736 dir_gen, sctx); 4737 } 4738 4739 return ret; 4740 } 4741 4742 static int record_new_ref(struct send_ctx *sctx) 4743 { 4744 int ret; 4745 4746 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4747 false, record_new_ref_if_needed, sctx); 4748 if (ret < 0) 4749 return ret; 4750 4751 return 0; 4752 } 4753 4754 static int record_deleted_ref(struct send_ctx *sctx) 4755 { 4756 int ret; 4757 4758 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4759 false, record_deleted_ref_if_needed, sctx); 4760 if (ret < 0) 4761 return ret; 4762 4763 return 0; 4764 } 4765 4766 static int record_changed_ref(struct send_ctx *sctx) 4767 { 4768 int ret; 4769 4770 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4771 false, record_new_ref_if_needed, sctx); 4772 if (ret < 0) 4773 return ret; 4774 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4775 false, record_deleted_ref_if_needed, sctx); 4776 if (ret < 0) 4777 return ret; 4778 4779 return 0; 4780 } 4781 4782 /* 4783 * Record and process all refs at once. Needed when an inode changes the 4784 * generation number, which means that it was deleted and recreated. 4785 */ 4786 static int process_all_refs(struct send_ctx *sctx, 4787 enum btrfs_compare_tree_result cmd) 4788 { 4789 int ret = 0; 4790 int iter_ret = 0; 4791 struct btrfs_root *root; 4792 BTRFS_PATH_AUTO_FREE(path); 4793 struct btrfs_key key; 4794 struct btrfs_key found_key; 4795 iterate_inode_ref_t cb; 4796 int pending_move = 0; 4797 4798 path = alloc_path_for_send(); 4799 if (!path) 4800 return -ENOMEM; 4801 4802 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4803 root = sctx->send_root; 4804 cb = record_new_ref_if_needed; 4805 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4806 root = sctx->parent_root; 4807 cb = record_deleted_ref_if_needed; 4808 } else { 4809 btrfs_err(sctx->send_root->fs_info, 4810 "Wrong command %d in process_all_refs", cmd); 4811 return -EINVAL; 4812 } 4813 4814 key.objectid = sctx->cmp_key->objectid; 4815 key.type = BTRFS_INODE_REF_KEY; 4816 key.offset = 0; 4817 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4818 if (found_key.objectid != key.objectid || 4819 (found_key.type != BTRFS_INODE_REF_KEY && 4820 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4821 break; 4822 4823 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx); 4824 if (ret < 0) 4825 return ret; 4826 } 4827 /* Catch error found during iteration */ 4828 if (iter_ret < 0) 4829 return iter_ret; 4830 4831 btrfs_release_path(path); 4832 4833 /* 4834 * We don't actually care about pending_move as we are simply 4835 * re-creating this inode and will be rename'ing it into place once we 4836 * rename the parent directory. 4837 */ 4838 return process_recorded_refs(sctx, &pending_move); 4839 } 4840 4841 static int send_set_xattr(struct send_ctx *sctx, 4842 const char *name, int name_len, 4843 const char *data, int data_len) 4844 { 4845 struct fs_path *path; 4846 int ret; 4847 4848 path = get_cur_inode_path(sctx); 4849 if (IS_ERR(path)) 4850 return PTR_ERR(path); 4851 4852 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4853 if (ret < 0) 4854 return ret; 4855 4856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4857 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4858 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4859 4860 ret = send_cmd(sctx); 4861 4862 tlv_put_failure: 4863 return ret; 4864 } 4865 4866 static int send_remove_xattr(struct send_ctx *sctx, 4867 struct fs_path *path, 4868 const char *name, int name_len) 4869 { 4870 int ret; 4871 4872 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4873 if (ret < 0) 4874 return ret; 4875 4876 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4877 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4878 4879 ret = send_cmd(sctx); 4880 4881 tlv_put_failure: 4882 return ret; 4883 } 4884 4885 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4886 const char *name, int name_len, const char *data, 4887 int data_len, void *ctx) 4888 { 4889 struct send_ctx *sctx = ctx; 4890 struct posix_acl_xattr_header dummy_acl; 4891 4892 /* Capabilities are emitted by finish_inode_if_needed */ 4893 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4894 return 0; 4895 4896 /* 4897 * This hack is needed because empty acls are stored as zero byte 4898 * data in xattrs. Problem with that is, that receiving these zero byte 4899 * acls will fail later. To fix this, we send a dummy acl list that 4900 * only contains the version number and no entries. 4901 */ 4902 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4903 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4904 if (data_len == 0) { 4905 dummy_acl.a_version = 4906 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4907 data = (char *)&dummy_acl; 4908 data_len = sizeof(dummy_acl); 4909 } 4910 } 4911 4912 return send_set_xattr(sctx, name, name_len, data, data_len); 4913 } 4914 4915 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4916 const char *name, int name_len, 4917 const char *data, int data_len, void *ctx) 4918 { 4919 struct send_ctx *sctx = ctx; 4920 struct fs_path *p; 4921 4922 p = get_cur_inode_path(sctx); 4923 if (IS_ERR(p)) 4924 return PTR_ERR(p); 4925 4926 return send_remove_xattr(sctx, p, name, name_len); 4927 } 4928 4929 static int process_new_xattr(struct send_ctx *sctx) 4930 { 4931 return iterate_dir_item(sctx->send_root, sctx->left_path, 4932 __process_new_xattr, sctx); 4933 } 4934 4935 static int process_deleted_xattr(struct send_ctx *sctx) 4936 { 4937 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4938 __process_deleted_xattr, sctx); 4939 } 4940 4941 struct find_xattr_ctx { 4942 const char *name; 4943 int name_len; 4944 int found_idx; 4945 char *found_data; 4946 int found_data_len; 4947 bool copy_data; 4948 }; 4949 4950 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4951 int name_len, const char *data, int data_len, void *vctx) 4952 { 4953 struct find_xattr_ctx *ctx = vctx; 4954 4955 if (name_len == ctx->name_len && 4956 strncmp(name, ctx->name, name_len) == 0) { 4957 ctx->found_idx = num; 4958 ctx->found_data_len = data_len; 4959 if (ctx->copy_data) { 4960 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4961 if (!ctx->found_data) 4962 return -ENOMEM; 4963 } 4964 return 1; 4965 } 4966 return 0; 4967 } 4968 4969 static int find_xattr(struct btrfs_root *root, 4970 struct btrfs_path *path, 4971 struct btrfs_key *key, 4972 const char *name, int name_len, 4973 char **data, int *data_len) 4974 { 4975 int ret; 4976 struct find_xattr_ctx ctx; 4977 4978 ctx.name = name; 4979 ctx.name_len = name_len; 4980 ctx.found_idx = -1; 4981 ctx.found_data = NULL; 4982 ctx.found_data_len = 0; 4983 ctx.copy_data = (data != NULL); 4984 4985 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4986 if (ret < 0) 4987 return ret; 4988 4989 if (ctx.found_idx == -1) 4990 return -ENOENT; 4991 if (data) { 4992 *data = ctx.found_data; 4993 *data_len = ctx.found_data_len; 4994 } else { 4995 ASSERT(ctx.found_data == NULL); 4996 } 4997 return ctx.found_idx; 4998 } 4999 5000 5001 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5002 const char *name, int name_len, 5003 const char *data, int data_len, 5004 void *ctx) 5005 { 5006 int ret; 5007 struct send_ctx *sctx = ctx; 5008 char AUTO_KFREE(found_data); 5009 int found_data_len = 0; 5010 5011 ret = find_xattr(sctx->parent_root, sctx->right_path, 5012 sctx->cmp_key, name, name_len, &found_data, 5013 &found_data_len); 5014 if (ret == -ENOENT) { 5015 ret = __process_new_xattr(num, di_key, name, name_len, data, 5016 data_len, ctx); 5017 } else if (ret >= 0) { 5018 if (data_len != found_data_len || 5019 memcmp(data, found_data, data_len)) { 5020 ret = __process_new_xattr(num, di_key, name, name_len, 5021 data, data_len, ctx); 5022 } else { 5023 ret = 0; 5024 } 5025 } 5026 5027 return ret; 5028 } 5029 5030 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5031 const char *name, int name_len, 5032 const char *data, int data_len, 5033 void *ctx) 5034 { 5035 int ret; 5036 struct send_ctx *sctx = ctx; 5037 5038 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5039 name, name_len, NULL, NULL); 5040 if (ret == -ENOENT) 5041 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5042 data_len, ctx); 5043 else if (ret >= 0) 5044 ret = 0; 5045 5046 return ret; 5047 } 5048 5049 static int process_changed_xattr(struct send_ctx *sctx) 5050 { 5051 int ret; 5052 5053 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5054 __process_changed_new_xattr, sctx); 5055 if (ret < 0) 5056 return ret; 5057 5058 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5059 __process_changed_deleted_xattr, sctx); 5060 } 5061 5062 static int process_all_new_xattrs(struct send_ctx *sctx) 5063 { 5064 int ret = 0; 5065 int iter_ret = 0; 5066 struct btrfs_root *root; 5067 BTRFS_PATH_AUTO_FREE(path); 5068 struct btrfs_key key; 5069 struct btrfs_key found_key; 5070 5071 path = alloc_path_for_send(); 5072 if (!path) 5073 return -ENOMEM; 5074 5075 root = sctx->send_root; 5076 5077 key.objectid = sctx->cmp_key->objectid; 5078 key.type = BTRFS_XATTR_ITEM_KEY; 5079 key.offset = 0; 5080 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5081 if (found_key.objectid != key.objectid || 5082 found_key.type != key.type) { 5083 ret = 0; 5084 break; 5085 } 5086 5087 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5088 if (ret < 0) 5089 break; 5090 } 5091 /* Catch error found during iteration */ 5092 if (iter_ret < 0) 5093 ret = iter_ret; 5094 5095 return ret; 5096 } 5097 5098 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5099 struct fsverity_descriptor *desc) 5100 { 5101 int ret; 5102 5103 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5104 if (ret < 0) 5105 return ret; 5106 5107 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5108 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5109 le8_to_cpu(desc->hash_algorithm)); 5110 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5111 1U << le8_to_cpu(desc->log_blocksize)); 5112 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5113 le8_to_cpu(desc->salt_size)); 5114 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5115 le32_to_cpu(desc->sig_size)); 5116 5117 ret = send_cmd(sctx); 5118 5119 tlv_put_failure: 5120 return ret; 5121 } 5122 5123 static int process_verity(struct send_ctx *sctx) 5124 { 5125 int ret = 0; 5126 struct btrfs_inode *inode; 5127 struct fs_path *p; 5128 5129 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5130 if (IS_ERR(inode)) 5131 return PTR_ERR(inode); 5132 5133 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); 5134 if (ret < 0) 5135 goto iput; 5136 5137 if (unlikely(ret > FS_VERITY_MAX_DESCRIPTOR_SIZE)) { 5138 ret = -EMSGSIZE; 5139 goto iput; 5140 } 5141 if (!sctx->verity_descriptor) { 5142 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5143 GFP_KERNEL); 5144 if (!sctx->verity_descriptor) { 5145 ret = -ENOMEM; 5146 goto iput; 5147 } 5148 } 5149 5150 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); 5151 if (ret < 0) 5152 goto iput; 5153 5154 p = get_cur_inode_path(sctx); 5155 if (IS_ERR(p)) { 5156 ret = PTR_ERR(p); 5157 goto iput; 5158 } 5159 5160 ret = send_verity(sctx, p, sctx->verity_descriptor); 5161 iput: 5162 iput(&inode->vfs_inode); 5163 return ret; 5164 } 5165 5166 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5167 { 5168 return sctx->send_max_size - SZ_16K; 5169 } 5170 5171 static int put_data_header(struct send_ctx *sctx, u32 len) 5172 { 5173 if (WARN_ON_ONCE(sctx->put_data)) 5174 return -EINVAL; 5175 sctx->put_data = true; 5176 if (sctx->proto >= 2) { 5177 /* 5178 * Since v2, the data attribute header doesn't include a length, 5179 * it is implicitly to the end of the command. 5180 */ 5181 if (unlikely(sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)) 5182 return -EOVERFLOW; 5183 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5184 sctx->send_size += sizeof(__le16); 5185 } else { 5186 struct btrfs_tlv_header *hdr; 5187 5188 if (unlikely(sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)) 5189 return -EOVERFLOW; 5190 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5191 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5192 put_unaligned_le16(len, &hdr->tlv_len); 5193 sctx->send_size += sizeof(*hdr); 5194 } 5195 return 0; 5196 } 5197 5198 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5199 { 5200 struct btrfs_root *root = sctx->send_root; 5201 struct btrfs_fs_info *fs_info = root->fs_info; 5202 u64 cur = offset; 5203 const u64 end = offset + len; 5204 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT); 5205 struct address_space *mapping = sctx->cur_inode->i_mapping; 5206 int ret; 5207 5208 ret = put_data_header(sctx, len); 5209 if (ret) 5210 return ret; 5211 5212 while (cur < end) { 5213 pgoff_t index = (cur >> PAGE_SHIFT); 5214 unsigned int cur_len; 5215 unsigned int pg_offset; 5216 struct folio *folio; 5217 5218 folio = filemap_lock_folio(mapping, index); 5219 if (IS_ERR(folio)) { 5220 page_cache_sync_readahead(mapping, 5221 &sctx->ra, NULL, index, 5222 last_index + 1 - index); 5223 5224 folio = filemap_grab_folio(mapping, index); 5225 if (IS_ERR(folio)) { 5226 ret = PTR_ERR(folio); 5227 break; 5228 } 5229 } 5230 pg_offset = offset_in_folio(folio, cur); 5231 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset); 5232 5233 if (folio_test_readahead(folio)) 5234 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5235 last_index + 1 - index); 5236 5237 if (!folio_test_uptodate(folio)) { 5238 btrfs_read_folio(NULL, folio); 5239 folio_lock(folio); 5240 if (unlikely(!folio_test_uptodate(folio))) { 5241 folio_unlock(folio); 5242 btrfs_err(fs_info, 5243 "send: IO error at offset %llu for inode %llu root %llu", 5244 folio_pos(folio), sctx->cur_ino, 5245 btrfs_root_id(sctx->send_root)); 5246 folio_put(folio); 5247 ret = -EIO; 5248 break; 5249 } 5250 if (folio->mapping != mapping) { 5251 folio_unlock(folio); 5252 folio_put(folio); 5253 continue; 5254 } 5255 } 5256 5257 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5258 pg_offset, cur_len); 5259 folio_unlock(folio); 5260 folio_put(folio); 5261 cur += cur_len; 5262 sctx->send_size += cur_len; 5263 } 5264 5265 return ret; 5266 } 5267 5268 /* 5269 * Read some bytes from the current inode/file and send a write command to 5270 * user space. 5271 */ 5272 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5273 { 5274 int ret = 0; 5275 struct fs_path *p; 5276 5277 p = get_cur_inode_path(sctx); 5278 if (IS_ERR(p)) 5279 return PTR_ERR(p); 5280 5281 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5282 if (ret < 0) 5283 return ret; 5284 5285 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5286 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5287 ret = put_file_data(sctx, offset, len); 5288 if (ret < 0) 5289 return ret; 5290 5291 ret = send_cmd(sctx); 5292 5293 tlv_put_failure: 5294 return ret; 5295 } 5296 5297 /* 5298 * Send a clone command to user space. 5299 */ 5300 static int send_clone(struct send_ctx *sctx, 5301 u64 offset, u32 len, 5302 struct clone_root *clone_root) 5303 { 5304 int ret = 0; 5305 struct fs_path *p; 5306 struct fs_path *cur_inode_path; 5307 u64 gen; 5308 5309 cur_inode_path = get_cur_inode_path(sctx); 5310 if (IS_ERR(cur_inode_path)) 5311 return PTR_ERR(cur_inode_path); 5312 5313 p = fs_path_alloc(); 5314 if (!p) 5315 return -ENOMEM; 5316 5317 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5318 if (ret < 0) 5319 goto out; 5320 5321 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5322 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5323 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); 5324 5325 if (clone_root->root == sctx->send_root) { 5326 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5327 if (ret < 0) 5328 goto out; 5329 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5330 } else { 5331 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5332 } 5333 if (ret < 0) 5334 goto out; 5335 5336 /* 5337 * If the parent we're using has a received_uuid set then use that as 5338 * our clone source as that is what we will look for when doing a 5339 * receive. 5340 * 5341 * This covers the case that we create a snapshot off of a received 5342 * subvolume and then use that as the parent and try to receive on a 5343 * different host. 5344 */ 5345 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5346 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5347 clone_root->root->root_item.received_uuid); 5348 else 5349 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5350 clone_root->root->root_item.uuid); 5351 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5352 btrfs_root_ctransid(&clone_root->root->root_item)); 5353 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5354 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5355 clone_root->offset); 5356 5357 ret = send_cmd(sctx); 5358 5359 tlv_put_failure: 5360 out: 5361 fs_path_free(p); 5362 return ret; 5363 } 5364 5365 /* 5366 * Send an update extent command to user space. 5367 */ 5368 static int send_update_extent(struct send_ctx *sctx, 5369 u64 offset, u32 len) 5370 { 5371 int ret = 0; 5372 struct fs_path *p; 5373 5374 p = get_cur_inode_path(sctx); 5375 if (IS_ERR(p)) 5376 return PTR_ERR(p); 5377 5378 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5379 if (ret < 0) 5380 return ret; 5381 5382 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5383 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5384 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5385 5386 ret = send_cmd(sctx); 5387 5388 tlv_put_failure: 5389 return ret; 5390 } 5391 5392 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len) 5393 { 5394 struct fs_path *path; 5395 int ret; 5396 5397 path = get_cur_inode_path(sctx); 5398 if (IS_ERR(path)) 5399 return PTR_ERR(path); 5400 5401 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE); 5402 if (ret < 0) 5403 return ret; 5404 5405 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5406 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode); 5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5408 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5409 5410 ret = send_cmd(sctx); 5411 5412 tlv_put_failure: 5413 return ret; 5414 } 5415 5416 static int send_hole(struct send_ctx *sctx, u64 end) 5417 { 5418 struct fs_path *p = NULL; 5419 u64 read_size = max_send_read_size(sctx); 5420 u64 offset = sctx->cur_inode_last_extent; 5421 int ret = 0; 5422 5423 /* 5424 * Starting with send stream v2 we have fallocate and can use it to 5425 * punch holes instead of sending writes full of zeroes. 5426 */ 5427 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE)) 5428 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 5429 offset, end - offset); 5430 5431 /* 5432 * A hole that starts at EOF or beyond it. Since we do not yet support 5433 * fallocate (for extent preallocation and hole punching), sending a 5434 * write of zeroes starting at EOF or beyond would later require issuing 5435 * a truncate operation which would undo the write and achieve nothing. 5436 */ 5437 if (offset >= sctx->cur_inode_size) 5438 return 0; 5439 5440 /* 5441 * Don't go beyond the inode's i_size due to prealloc extents that start 5442 * after the i_size. 5443 */ 5444 end = min_t(u64, end, sctx->cur_inode_size); 5445 5446 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5447 return send_update_extent(sctx, offset, end - offset); 5448 5449 p = get_cur_inode_path(sctx); 5450 if (IS_ERR(p)) 5451 return PTR_ERR(p); 5452 5453 while (offset < end) { 5454 u64 len = min(end - offset, read_size); 5455 5456 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5457 if (ret < 0) 5458 break; 5459 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5460 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5461 ret = put_data_header(sctx, len); 5462 if (ret < 0) 5463 break; 5464 memset(sctx->send_buf + sctx->send_size, 0, len); 5465 sctx->send_size += len; 5466 ret = send_cmd(sctx); 5467 if (ret < 0) 5468 break; 5469 offset += len; 5470 } 5471 sctx->cur_inode_next_write_offset = offset; 5472 tlv_put_failure: 5473 return ret; 5474 } 5475 5476 static int send_encoded_inline_extent(struct send_ctx *sctx, 5477 struct btrfs_path *path, u64 offset, 5478 u64 len) 5479 { 5480 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5481 struct fs_path *fspath; 5482 struct extent_buffer *leaf = path->nodes[0]; 5483 struct btrfs_key key; 5484 struct btrfs_file_extent_item *ei; 5485 u64 ram_bytes; 5486 size_t inline_size; 5487 int ret; 5488 5489 fspath = get_cur_inode_path(sctx); 5490 if (IS_ERR(fspath)) 5491 return PTR_ERR(fspath); 5492 5493 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5494 if (ret < 0) 5495 return ret; 5496 5497 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5498 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5499 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5500 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5501 5502 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5503 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5504 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5505 min(key.offset + ram_bytes - offset, len)); 5506 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5507 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5508 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5509 btrfs_file_extent_compression(leaf, ei)); 5510 if (ret < 0) 5511 return ret; 5512 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5513 5514 ret = put_data_header(sctx, inline_size); 5515 if (ret < 0) 5516 return ret; 5517 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5518 btrfs_file_extent_inline_start(ei), inline_size); 5519 sctx->send_size += inline_size; 5520 5521 ret = send_cmd(sctx); 5522 5523 tlv_put_failure: 5524 return ret; 5525 } 5526 5527 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5528 u64 offset, u64 len) 5529 { 5530 struct btrfs_root *root = sctx->send_root; 5531 struct btrfs_fs_info *fs_info = root->fs_info; 5532 struct btrfs_inode *inode; 5533 struct fs_path *fspath; 5534 struct extent_buffer *leaf = path->nodes[0]; 5535 struct btrfs_key key; 5536 struct btrfs_file_extent_item *ei; 5537 u64 disk_bytenr, disk_num_bytes; 5538 u32 data_offset; 5539 struct btrfs_cmd_header *hdr; 5540 u32 crc; 5541 int ret; 5542 5543 inode = btrfs_iget(sctx->cur_ino, root); 5544 if (IS_ERR(inode)) 5545 return PTR_ERR(inode); 5546 5547 fspath = get_cur_inode_path(sctx); 5548 if (IS_ERR(fspath)) { 5549 ret = PTR_ERR(fspath); 5550 goto out; 5551 } 5552 5553 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5554 if (ret < 0) 5555 goto out; 5556 5557 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5558 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5559 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5560 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5561 5562 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5563 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5564 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5565 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5566 len)); 5567 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5568 btrfs_file_extent_ram_bytes(leaf, ei)); 5569 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5570 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5571 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5572 btrfs_file_extent_compression(leaf, ei)); 5573 if (ret < 0) 5574 goto out; 5575 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5576 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5577 5578 ret = put_data_header(sctx, disk_num_bytes); 5579 if (ret < 0) 5580 goto out; 5581 5582 /* 5583 * We want to do I/O directly into the send buffer, so get the next page 5584 * boundary in the send buffer. This means that there may be a gap 5585 * between the beginning of the command and the file data. 5586 */ 5587 data_offset = PAGE_ALIGN(sctx->send_size); 5588 if (unlikely(data_offset > sctx->send_max_size || 5589 sctx->send_max_size - data_offset < disk_num_bytes)) { 5590 ret = -EOVERFLOW; 5591 goto out; 5592 } 5593 5594 /* 5595 * Note that send_buf is a mapping of send_buf_pages, so this is really 5596 * reading into send_buf. 5597 */ 5598 ret = btrfs_encoded_read_regular_fill_pages(inode, 5599 disk_bytenr, disk_num_bytes, 5600 sctx->send_buf_pages + 5601 (data_offset >> PAGE_SHIFT), 5602 NULL); 5603 if (ret) 5604 goto out; 5605 5606 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5607 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5608 hdr->crc = 0; 5609 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5610 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5611 hdr->crc = cpu_to_le32(crc); 5612 5613 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5614 &sctx->send_off); 5615 if (!ret) { 5616 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5617 disk_num_bytes, &sctx->send_off); 5618 } 5619 sctx->send_size = 0; 5620 sctx->put_data = false; 5621 5622 tlv_put_failure: 5623 out: 5624 iput(&inode->vfs_inode); 5625 return ret; 5626 } 5627 5628 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5629 const u64 offset, const u64 len) 5630 { 5631 const u64 end = offset + len; 5632 struct extent_buffer *leaf = path->nodes[0]; 5633 struct btrfs_file_extent_item *ei; 5634 u64 read_size = max_send_read_size(sctx); 5635 u64 sent = 0; 5636 5637 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5638 return send_update_extent(sctx, offset, len); 5639 5640 ei = btrfs_item_ptr(leaf, path->slots[0], 5641 struct btrfs_file_extent_item); 5642 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5643 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5644 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5645 BTRFS_FILE_EXTENT_INLINE); 5646 5647 /* 5648 * Send the compressed extent unless the compressed data is 5649 * larger than the decompressed data. This can happen if we're 5650 * not sending the entire extent, either because it has been 5651 * partially overwritten/truncated or because this is a part of 5652 * the extent that we couldn't clone in clone_range(). 5653 */ 5654 if (is_inline && 5655 btrfs_file_extent_inline_item_len(leaf, 5656 path->slots[0]) <= len) { 5657 return send_encoded_inline_extent(sctx, path, offset, 5658 len); 5659 } else if (!is_inline && 5660 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5661 return send_encoded_extent(sctx, path, offset, len); 5662 } 5663 } 5664 5665 if (sctx->cur_inode == NULL) { 5666 struct btrfs_inode *btrfs_inode; 5667 struct btrfs_root *root = sctx->send_root; 5668 5669 btrfs_inode = btrfs_iget(sctx->cur_ino, root); 5670 if (IS_ERR(btrfs_inode)) 5671 return PTR_ERR(btrfs_inode); 5672 5673 sctx->cur_inode = &btrfs_inode->vfs_inode; 5674 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5675 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5676 5677 /* 5678 * It's very likely there are no pages from this inode in the page 5679 * cache, so after reading extents and sending their data, we clean 5680 * the page cache to avoid trashing the page cache (adding pressure 5681 * to the page cache and forcing eviction of other data more useful 5682 * for applications). 5683 * 5684 * We decide if we should clean the page cache simply by checking 5685 * if the inode's mapping nrpages is 0 when we first open it, and 5686 * not by using something like filemap_range_has_page() before 5687 * reading an extent because when we ask the readahead code to 5688 * read a given file range, it may (and almost always does) read 5689 * pages from beyond that range (see the documentation for 5690 * page_cache_sync_readahead()), so it would not be reliable, 5691 * because after reading the first extent future calls to 5692 * filemap_range_has_page() would return true because the readahead 5693 * on the previous extent resulted in reading pages of the current 5694 * extent as well. 5695 */ 5696 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5697 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5698 } 5699 5700 while (sent < len) { 5701 u64 size = min(len - sent, read_size); 5702 int ret; 5703 5704 ret = send_write(sctx, offset + sent, size); 5705 if (ret < 0) 5706 return ret; 5707 sent += size; 5708 } 5709 5710 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5711 /* 5712 * Always operate only on ranges that are a multiple of the page 5713 * size. This is not only to prevent zeroing parts of a page in 5714 * the case of subpage sector size, but also to guarantee we evict 5715 * pages, as passing a range that is smaller than page size does 5716 * not evict the respective page (only zeroes part of its content). 5717 * 5718 * Always start from the end offset of the last range cleared. 5719 * This is because the readahead code may (and very often does) 5720 * reads pages beyond the range we request for readahead. So if 5721 * we have an extent layout like this: 5722 * 5723 * [ extent A ] [ extent B ] [ extent C ] 5724 * 5725 * When we ask page_cache_sync_readahead() to read extent A, it 5726 * may also trigger reads for pages of extent B. If we are doing 5727 * an incremental send and extent B has not changed between the 5728 * parent and send snapshots, some or all of its pages may end 5729 * up being read and placed in the page cache. So when truncating 5730 * the page cache we always start from the end offset of the 5731 * previously processed extent up to the end of the current 5732 * extent. 5733 */ 5734 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5735 sctx->page_cache_clear_start, 5736 end - 1); 5737 sctx->page_cache_clear_start = end; 5738 } 5739 5740 return 0; 5741 } 5742 5743 /* 5744 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5745 * found, call send_set_xattr function to emit it. 5746 * 5747 * Return 0 if there isn't a capability, or when the capability was emitted 5748 * successfully, or < 0 if an error occurred. 5749 */ 5750 static int send_capabilities(struct send_ctx *sctx) 5751 { 5752 BTRFS_PATH_AUTO_FREE(path); 5753 struct btrfs_dir_item *di; 5754 struct extent_buffer *leaf; 5755 unsigned long data_ptr; 5756 char AUTO_KFREE(buf); 5757 int buf_len; 5758 int ret = 0; 5759 5760 path = alloc_path_for_send(); 5761 if (!path) 5762 return -ENOMEM; 5763 5764 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5765 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5766 if (!di) { 5767 /* There is no xattr for this inode */ 5768 return 0; 5769 } else if (IS_ERR(di)) { 5770 return PTR_ERR(di); 5771 } 5772 5773 leaf = path->nodes[0]; 5774 buf_len = btrfs_dir_data_len(leaf, di); 5775 5776 buf = kmalloc(buf_len, GFP_KERNEL); 5777 if (!buf) 5778 return -ENOMEM; 5779 5780 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5781 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5782 5783 ret = send_set_xattr(sctx, XATTR_NAME_CAPS, 5784 strlen(XATTR_NAME_CAPS), buf, buf_len); 5785 return ret; 5786 } 5787 5788 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5789 struct clone_root *clone_root, const u64 disk_byte, 5790 u64 data_offset, u64 offset, u64 len) 5791 { 5792 BTRFS_PATH_AUTO_FREE(path); 5793 struct btrfs_key key; 5794 int ret; 5795 struct btrfs_inode_info info; 5796 u64 clone_src_i_size = 0; 5797 5798 /* 5799 * Prevent cloning from a zero offset with a length matching the sector 5800 * size because in some scenarios this will make the receiver fail. 5801 * 5802 * For example, if in the source filesystem the extent at offset 0 5803 * has a length of sectorsize and it was written using direct IO, then 5804 * it can never be an inline extent (even if compression is enabled). 5805 * Then this extent can be cloned in the original filesystem to a non 5806 * zero file offset, but it may not be possible to clone in the 5807 * destination filesystem because it can be inlined due to compression 5808 * on the destination filesystem (as the receiver's write operations are 5809 * always done using buffered IO). The same happens when the original 5810 * filesystem does not have compression enabled but the destination 5811 * filesystem has. 5812 */ 5813 if (clone_root->offset == 0 && 5814 len == sctx->send_root->fs_info->sectorsize) 5815 return send_extent_data(sctx, dst_path, offset, len); 5816 5817 path = alloc_path_for_send(); 5818 if (!path) 5819 return -ENOMEM; 5820 5821 /* 5822 * There are inodes that have extents that lie behind its i_size. Don't 5823 * accept clones from these extents. 5824 */ 5825 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5826 btrfs_release_path(path); 5827 if (ret < 0) 5828 return ret; 5829 clone_src_i_size = info.size; 5830 5831 /* 5832 * We can't send a clone operation for the entire range if we find 5833 * extent items in the respective range in the source file that 5834 * refer to different extents or if we find holes. 5835 * So check for that and do a mix of clone and regular write/copy 5836 * operations if needed. 5837 * 5838 * Example: 5839 * 5840 * mkfs.btrfs -f /dev/sda 5841 * mount /dev/sda /mnt 5842 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5843 * cp --reflink=always /mnt/foo /mnt/bar 5844 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5845 * btrfs subvolume snapshot -r /mnt /mnt/snap 5846 * 5847 * If when we send the snapshot and we are processing file bar (which 5848 * has a higher inode number than foo) we blindly send a clone operation 5849 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5850 * a file bar that matches the content of file foo - iow, doesn't match 5851 * the content from bar in the original filesystem. 5852 */ 5853 key.objectid = clone_root->ino; 5854 key.type = BTRFS_EXTENT_DATA_KEY; 5855 key.offset = clone_root->offset; 5856 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5857 if (ret < 0) 5858 return ret; 5859 if (ret > 0 && path->slots[0] > 0) { 5860 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5861 if (key.objectid == clone_root->ino && 5862 key.type == BTRFS_EXTENT_DATA_KEY) 5863 path->slots[0]--; 5864 } 5865 5866 while (true) { 5867 struct extent_buffer *leaf = path->nodes[0]; 5868 int slot = path->slots[0]; 5869 struct btrfs_file_extent_item *ei; 5870 u8 type; 5871 u64 ext_len; 5872 u64 clone_len; 5873 u64 clone_data_offset; 5874 bool crossed_src_i_size = false; 5875 5876 if (slot >= btrfs_header_nritems(leaf)) { 5877 ret = btrfs_next_leaf(clone_root->root, path); 5878 if (ret < 0) 5879 return ret; 5880 else if (ret > 0) 5881 break; 5882 continue; 5883 } 5884 5885 btrfs_item_key_to_cpu(leaf, &key, slot); 5886 5887 /* 5888 * We might have an implicit trailing hole (NO_HOLES feature 5889 * enabled). We deal with it after leaving this loop. 5890 */ 5891 if (key.objectid != clone_root->ino || 5892 key.type != BTRFS_EXTENT_DATA_KEY) 5893 break; 5894 5895 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5896 type = btrfs_file_extent_type(leaf, ei); 5897 if (type == BTRFS_FILE_EXTENT_INLINE) { 5898 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5899 ext_len = PAGE_ALIGN(ext_len); 5900 } else { 5901 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5902 } 5903 5904 if (key.offset + ext_len <= clone_root->offset) 5905 goto next; 5906 5907 if (key.offset > clone_root->offset) { 5908 /* Implicit hole, NO_HOLES feature enabled. */ 5909 u64 hole_len = key.offset - clone_root->offset; 5910 5911 if (hole_len > len) 5912 hole_len = len; 5913 ret = send_extent_data(sctx, dst_path, offset, 5914 hole_len); 5915 if (ret < 0) 5916 return ret; 5917 5918 len -= hole_len; 5919 if (len == 0) 5920 break; 5921 offset += hole_len; 5922 clone_root->offset += hole_len; 5923 data_offset += hole_len; 5924 } 5925 5926 if (key.offset >= clone_root->offset + len) 5927 break; 5928 5929 if (key.offset >= clone_src_i_size) 5930 break; 5931 5932 if (key.offset + ext_len > clone_src_i_size) { 5933 ext_len = clone_src_i_size - key.offset; 5934 crossed_src_i_size = true; 5935 } 5936 5937 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5938 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5939 clone_root->offset = key.offset; 5940 if (clone_data_offset < data_offset && 5941 clone_data_offset + ext_len > data_offset) { 5942 u64 extent_offset; 5943 5944 extent_offset = data_offset - clone_data_offset; 5945 ext_len -= extent_offset; 5946 clone_data_offset += extent_offset; 5947 clone_root->offset += extent_offset; 5948 } 5949 } 5950 5951 clone_len = min_t(u64, ext_len, len); 5952 5953 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5954 clone_data_offset == data_offset) { 5955 const u64 src_end = clone_root->offset + clone_len; 5956 const u64 sectorsize = SZ_64K; 5957 5958 /* 5959 * We can't clone the last block, when its size is not 5960 * sector size aligned, into the middle of a file. If we 5961 * do so, the receiver will get a failure (-EINVAL) when 5962 * trying to clone or will silently corrupt the data in 5963 * the destination file if it's on a kernel without the 5964 * fix introduced by commit ac765f83f1397646 5965 * ("Btrfs: fix data corruption due to cloning of eof 5966 * block). 5967 * 5968 * So issue a clone of the aligned down range plus a 5969 * regular write for the eof block, if we hit that case. 5970 * 5971 * Also, we use the maximum possible sector size, 64K, 5972 * because we don't know what's the sector size of the 5973 * filesystem that receives the stream, so we have to 5974 * assume the largest possible sector size. 5975 */ 5976 if (src_end == clone_src_i_size && 5977 !IS_ALIGNED(src_end, sectorsize) && 5978 offset + clone_len < sctx->cur_inode_size) { 5979 u64 slen; 5980 5981 slen = ALIGN_DOWN(src_end - clone_root->offset, 5982 sectorsize); 5983 if (slen > 0) { 5984 ret = send_clone(sctx, offset, slen, 5985 clone_root); 5986 if (ret < 0) 5987 return ret; 5988 } 5989 ret = send_extent_data(sctx, dst_path, 5990 offset + slen, 5991 clone_len - slen); 5992 } else { 5993 ret = send_clone(sctx, offset, clone_len, 5994 clone_root); 5995 } 5996 } else if (crossed_src_i_size && clone_len < len) { 5997 /* 5998 * If we are at i_size of the clone source inode and we 5999 * can not clone from it, terminate the loop. This is 6000 * to avoid sending two write operations, one with a 6001 * length matching clone_len and the final one after 6002 * this loop with a length of len - clone_len. 6003 * 6004 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6005 * was passed to the send ioctl), this helps avoid 6006 * sending an encoded write for an offset that is not 6007 * sector size aligned, in case the i_size of the source 6008 * inode is not sector size aligned. That will make the 6009 * receiver fallback to decompression of the data and 6010 * writing it using regular buffered IO, therefore while 6011 * not incorrect, it's not optimal due decompression and 6012 * possible re-compression at the receiver. 6013 */ 6014 break; 6015 } else { 6016 ret = send_extent_data(sctx, dst_path, offset, 6017 clone_len); 6018 } 6019 6020 if (ret < 0) 6021 return ret; 6022 6023 len -= clone_len; 6024 if (len == 0) 6025 break; 6026 offset += clone_len; 6027 clone_root->offset += clone_len; 6028 6029 /* 6030 * If we are cloning from the file we are currently processing, 6031 * and using the send root as the clone root, we must stop once 6032 * the current clone offset reaches the current eof of the file 6033 * at the receiver, otherwise we would issue an invalid clone 6034 * operation (source range going beyond eof) and cause the 6035 * receiver to fail. So if we reach the current eof, bail out 6036 * and fallback to a regular write. 6037 */ 6038 if (clone_root->root == sctx->send_root && 6039 clone_root->ino == sctx->cur_ino && 6040 clone_root->offset >= sctx->cur_inode_next_write_offset) 6041 break; 6042 6043 data_offset += clone_len; 6044 next: 6045 path->slots[0]++; 6046 } 6047 6048 if (len > 0) 6049 ret = send_extent_data(sctx, dst_path, offset, len); 6050 else 6051 ret = 0; 6052 return ret; 6053 } 6054 6055 static int send_write_or_clone(struct send_ctx *sctx, 6056 struct btrfs_path *path, 6057 struct btrfs_key *key, 6058 struct clone_root *clone_root) 6059 { 6060 int ret = 0; 6061 u64 offset = key->offset; 6062 u64 end; 6063 u64 bs = sctx->send_root->fs_info->sectorsize; 6064 struct btrfs_file_extent_item *ei; 6065 u64 disk_byte; 6066 u64 data_offset; 6067 u64 num_bytes; 6068 struct btrfs_inode_info info = { 0 }; 6069 6070 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6071 if (offset >= end) 6072 return 0; 6073 6074 num_bytes = end - offset; 6075 6076 if (!clone_root) 6077 goto write_data; 6078 6079 if (IS_ALIGNED(end, bs)) 6080 goto clone_data; 6081 6082 /* 6083 * If the extent end is not aligned, we can clone if the extent ends at 6084 * the i_size of the inode and the clone range ends at the i_size of the 6085 * source inode, otherwise the clone operation fails with -EINVAL. 6086 */ 6087 if (end != sctx->cur_inode_size) 6088 goto write_data; 6089 6090 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6091 if (ret < 0) 6092 return ret; 6093 6094 if (clone_root->offset + num_bytes == info.size) { 6095 /* 6096 * The final size of our file matches the end offset, but it may 6097 * be that its current size is larger, so we have to truncate it 6098 * to any value between the start offset of the range and the 6099 * final i_size, otherwise the clone operation is invalid 6100 * because it's unaligned and it ends before the current EOF. 6101 * We do this truncate to the final i_size when we finish 6102 * processing the inode, but it's too late by then. And here we 6103 * truncate to the start offset of the range because it's always 6104 * sector size aligned while if it were the final i_size it 6105 * would result in dirtying part of a page, filling part of a 6106 * page with zeroes and then having the clone operation at the 6107 * receiver trigger IO and wait for it due to the dirty page. 6108 */ 6109 if (sctx->parent_root != NULL) { 6110 ret = send_truncate(sctx, sctx->cur_ino, 6111 sctx->cur_inode_gen, offset); 6112 if (ret < 0) 6113 return ret; 6114 } 6115 goto clone_data; 6116 } 6117 6118 write_data: 6119 ret = send_extent_data(sctx, path, offset, num_bytes); 6120 sctx->cur_inode_next_write_offset = end; 6121 return ret; 6122 6123 clone_data: 6124 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6125 struct btrfs_file_extent_item); 6126 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6127 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6128 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6129 num_bytes); 6130 sctx->cur_inode_next_write_offset = end; 6131 return ret; 6132 } 6133 6134 static int is_extent_unchanged(struct send_ctx *sctx, 6135 struct btrfs_path *left_path, 6136 struct btrfs_key *ekey) 6137 { 6138 int ret = 0; 6139 struct btrfs_key key; 6140 BTRFS_PATH_AUTO_FREE(path); 6141 struct extent_buffer *eb; 6142 int slot; 6143 struct btrfs_key found_key; 6144 struct btrfs_file_extent_item *ei; 6145 u64 left_disknr; 6146 u64 right_disknr; 6147 u64 left_offset; 6148 u64 right_offset; 6149 u64 left_offset_fixed; 6150 u64 left_len; 6151 u64 right_len; 6152 u64 left_gen; 6153 u64 right_gen; 6154 u8 left_type; 6155 u8 right_type; 6156 6157 path = alloc_path_for_send(); 6158 if (!path) 6159 return -ENOMEM; 6160 6161 eb = left_path->nodes[0]; 6162 slot = left_path->slots[0]; 6163 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6164 left_type = btrfs_file_extent_type(eb, ei); 6165 6166 if (left_type != BTRFS_FILE_EXTENT_REG) 6167 return 0; 6168 6169 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6170 left_len = btrfs_file_extent_num_bytes(eb, ei); 6171 left_offset = btrfs_file_extent_offset(eb, ei); 6172 left_gen = btrfs_file_extent_generation(eb, ei); 6173 6174 /* 6175 * Following comments will refer to these graphics. L is the left 6176 * extents which we are checking at the moment. 1-8 are the right 6177 * extents that we iterate. 6178 * 6179 * |-----L-----| 6180 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6181 * 6182 * |-----L-----| 6183 * |--1--|-2b-|...(same as above) 6184 * 6185 * Alternative situation. Happens on files where extents got split. 6186 * |-----L-----| 6187 * |-----------7-----------|-6-| 6188 * 6189 * Alternative situation. Happens on files which got larger. 6190 * |-----L-----| 6191 * |-8-| 6192 * Nothing follows after 8. 6193 */ 6194 6195 key.objectid = ekey->objectid; 6196 key.type = BTRFS_EXTENT_DATA_KEY; 6197 key.offset = ekey->offset; 6198 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6199 if (ret < 0) 6200 return ret; 6201 if (ret) 6202 return 0; 6203 6204 /* 6205 * Handle special case where the right side has no extents at all. 6206 */ 6207 eb = path->nodes[0]; 6208 slot = path->slots[0]; 6209 btrfs_item_key_to_cpu(eb, &found_key, slot); 6210 if (found_key.objectid != key.objectid || 6211 found_key.type != key.type) 6212 /* If we're a hole then just pretend nothing changed */ 6213 return (left_disknr ? 0 : 1); 6214 6215 /* 6216 * We're now on 2a, 2b or 7. 6217 */ 6218 key = found_key; 6219 while (key.offset < ekey->offset + left_len) { 6220 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6221 right_type = btrfs_file_extent_type(eb, ei); 6222 if (right_type != BTRFS_FILE_EXTENT_REG && 6223 right_type != BTRFS_FILE_EXTENT_INLINE) 6224 return 0; 6225 6226 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6227 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6228 right_len = PAGE_ALIGN(right_len); 6229 } else { 6230 right_len = btrfs_file_extent_num_bytes(eb, ei); 6231 } 6232 6233 /* 6234 * Are we at extent 8? If yes, we know the extent is changed. 6235 * This may only happen on the first iteration. 6236 */ 6237 if (found_key.offset + right_len <= ekey->offset) 6238 /* If we're a hole just pretend nothing changed */ 6239 return (left_disknr ? 0 : 1); 6240 6241 /* 6242 * We just wanted to see if when we have an inline extent, what 6243 * follows it is a regular extent (wanted to check the above 6244 * condition for inline extents too). This should normally not 6245 * happen but it's possible for example when we have an inline 6246 * compressed extent representing data with a size matching 6247 * the page size (currently the same as sector size). 6248 */ 6249 if (right_type == BTRFS_FILE_EXTENT_INLINE) 6250 return 0; 6251 6252 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6253 right_offset = btrfs_file_extent_offset(eb, ei); 6254 right_gen = btrfs_file_extent_generation(eb, ei); 6255 6256 left_offset_fixed = left_offset; 6257 if (key.offset < ekey->offset) { 6258 /* Fix the right offset for 2a and 7. */ 6259 right_offset += ekey->offset - key.offset; 6260 } else { 6261 /* Fix the left offset for all behind 2a and 2b */ 6262 left_offset_fixed += key.offset - ekey->offset; 6263 } 6264 6265 /* 6266 * Check if we have the same extent. 6267 */ 6268 if (left_disknr != right_disknr || 6269 left_offset_fixed != right_offset || 6270 left_gen != right_gen) 6271 return 0; 6272 6273 /* 6274 * Go to the next extent. 6275 */ 6276 ret = btrfs_next_item(sctx->parent_root, path); 6277 if (ret < 0) 6278 return ret; 6279 if (!ret) { 6280 eb = path->nodes[0]; 6281 slot = path->slots[0]; 6282 btrfs_item_key_to_cpu(eb, &found_key, slot); 6283 } 6284 if (ret || found_key.objectid != key.objectid || 6285 found_key.type != key.type) { 6286 key.offset += right_len; 6287 break; 6288 } 6289 if (found_key.offset != key.offset + right_len) 6290 return 0; 6291 6292 key = found_key; 6293 } 6294 6295 /* 6296 * We're now behind the left extent (treat as unchanged) or at the end 6297 * of the right side (treat as changed). 6298 */ 6299 if (key.offset >= ekey->offset + left_len) 6300 ret = 1; 6301 else 6302 ret = 0; 6303 6304 return ret; 6305 } 6306 6307 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6308 { 6309 BTRFS_PATH_AUTO_FREE(path); 6310 struct btrfs_root *root = sctx->send_root; 6311 struct btrfs_key key; 6312 int ret; 6313 6314 path = alloc_path_for_send(); 6315 if (!path) 6316 return -ENOMEM; 6317 6318 sctx->cur_inode_last_extent = 0; 6319 6320 key.objectid = sctx->cur_ino; 6321 key.type = BTRFS_EXTENT_DATA_KEY; 6322 key.offset = offset; 6323 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6324 if (ret < 0) 6325 return ret; 6326 ret = 0; 6327 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6328 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6329 return ret; 6330 6331 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6332 return ret; 6333 } 6334 6335 static int range_is_hole_in_parent(struct send_ctx *sctx, 6336 const u64 start, 6337 const u64 end) 6338 { 6339 BTRFS_PATH_AUTO_FREE(path); 6340 struct btrfs_key key; 6341 struct btrfs_root *root = sctx->parent_root; 6342 u64 search_start = start; 6343 int ret; 6344 6345 path = alloc_path_for_send(); 6346 if (!path) 6347 return -ENOMEM; 6348 6349 key.objectid = sctx->cur_ino; 6350 key.type = BTRFS_EXTENT_DATA_KEY; 6351 key.offset = search_start; 6352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6353 if (ret < 0) 6354 return ret; 6355 if (ret > 0 && path->slots[0] > 0) 6356 path->slots[0]--; 6357 6358 while (search_start < end) { 6359 struct extent_buffer *leaf = path->nodes[0]; 6360 int slot = path->slots[0]; 6361 struct btrfs_file_extent_item *fi; 6362 u64 extent_end; 6363 6364 if (slot >= btrfs_header_nritems(leaf)) { 6365 ret = btrfs_next_leaf(root, path); 6366 if (ret < 0) 6367 return ret; 6368 if (ret > 0) 6369 break; 6370 continue; 6371 } 6372 6373 btrfs_item_key_to_cpu(leaf, &key, slot); 6374 if (key.objectid < sctx->cur_ino || 6375 key.type < BTRFS_EXTENT_DATA_KEY) 6376 goto next; 6377 if (key.objectid > sctx->cur_ino || 6378 key.type > BTRFS_EXTENT_DATA_KEY || 6379 key.offset >= end) 6380 break; 6381 6382 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6383 extent_end = btrfs_file_extent_end(path); 6384 if (extent_end <= start) 6385 goto next; 6386 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6387 search_start = extent_end; 6388 goto next; 6389 } 6390 return 0; 6391 next: 6392 path->slots[0]++; 6393 } 6394 return 1; 6395 } 6396 6397 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6398 struct btrfs_key *key) 6399 { 6400 int ret = 0; 6401 6402 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6403 return 0; 6404 6405 /* 6406 * Get last extent's end offset (exclusive) if we haven't determined it 6407 * yet (we're processing the first file extent item that is new), or if 6408 * we're at the first slot of a leaf and the last extent's end is less 6409 * than the current extent's offset, because we might have skipped 6410 * entire leaves that contained only file extent items for our current 6411 * inode. These leaves have a generation number smaller (older) than the 6412 * one in the current leaf and the leaf our last extent came from, and 6413 * are located between these 2 leaves. 6414 */ 6415 if ((sctx->cur_inode_last_extent == (u64)-1) || 6416 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6417 ret = get_last_extent(sctx, key->offset - 1); 6418 if (ret) 6419 return ret; 6420 } 6421 6422 if (sctx->cur_inode_last_extent < key->offset) { 6423 ret = range_is_hole_in_parent(sctx, 6424 sctx->cur_inode_last_extent, 6425 key->offset); 6426 if (ret < 0) 6427 return ret; 6428 else if (ret == 0) 6429 ret = send_hole(sctx, key->offset); 6430 else 6431 ret = 0; 6432 } 6433 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6434 return ret; 6435 } 6436 6437 static int process_extent(struct send_ctx *sctx, 6438 struct btrfs_path *path, 6439 struct btrfs_key *key) 6440 { 6441 struct clone_root *found_clone = NULL; 6442 int ret = 0; 6443 6444 if (S_ISLNK(sctx->cur_inode_mode)) 6445 return 0; 6446 6447 if (sctx->parent_root && !sctx->cur_inode_new) { 6448 ret = is_extent_unchanged(sctx, path, key); 6449 if (ret < 0) 6450 goto out; 6451 if (ret) { 6452 ret = 0; 6453 goto out_hole; 6454 } 6455 } else { 6456 struct btrfs_file_extent_item *ei; 6457 u8 type; 6458 6459 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6460 struct btrfs_file_extent_item); 6461 type = btrfs_file_extent_type(path->nodes[0], ei); 6462 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6463 type == BTRFS_FILE_EXTENT_REG) { 6464 /* 6465 * The send spec does not have a prealloc command yet, 6466 * so just leave a hole for prealloc'ed extents until 6467 * we have enough commands queued up to justify rev'ing 6468 * the send spec. 6469 */ 6470 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6471 ret = 0; 6472 goto out; 6473 } 6474 6475 /* Have a hole, just skip it. */ 6476 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6477 ret = 0; 6478 goto out; 6479 } 6480 } 6481 } 6482 6483 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6484 sctx->cur_inode_size, &found_clone); 6485 if (ret != -ENOENT && ret < 0) 6486 goto out; 6487 6488 ret = send_write_or_clone(sctx, path, key, found_clone); 6489 if (ret) 6490 goto out; 6491 out_hole: 6492 ret = maybe_send_hole(sctx, path, key); 6493 out: 6494 return ret; 6495 } 6496 6497 static int process_all_extents(struct send_ctx *sctx) 6498 { 6499 int ret = 0; 6500 int iter_ret = 0; 6501 struct btrfs_root *root; 6502 BTRFS_PATH_AUTO_FREE(path); 6503 struct btrfs_key key; 6504 struct btrfs_key found_key; 6505 6506 root = sctx->send_root; 6507 path = alloc_path_for_send(); 6508 if (!path) 6509 return -ENOMEM; 6510 6511 key.objectid = sctx->cmp_key->objectid; 6512 key.type = BTRFS_EXTENT_DATA_KEY; 6513 key.offset = 0; 6514 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6515 if (found_key.objectid != key.objectid || 6516 found_key.type != key.type) { 6517 ret = 0; 6518 break; 6519 } 6520 6521 ret = process_extent(sctx, path, &found_key); 6522 if (ret < 0) 6523 break; 6524 } 6525 /* Catch error found during iteration */ 6526 if (iter_ret < 0) 6527 ret = iter_ret; 6528 6529 return ret; 6530 } 6531 6532 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end, 6533 int *pending_move, 6534 int *refs_processed) 6535 { 6536 int ret = 0; 6537 6538 if (sctx->cur_ino == 0) 6539 goto out; 6540 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6541 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6542 goto out; 6543 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6544 goto out; 6545 6546 ret = process_recorded_refs(sctx, pending_move); 6547 if (ret < 0) 6548 goto out; 6549 6550 *refs_processed = 1; 6551 out: 6552 return ret; 6553 } 6554 6555 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end) 6556 { 6557 int ret = 0; 6558 struct btrfs_inode_info info; 6559 u64 left_mode; 6560 u64 left_uid; 6561 u64 left_gid; 6562 u64 left_fileattr; 6563 u64 right_mode; 6564 u64 right_uid; 6565 u64 right_gid; 6566 u64 right_fileattr; 6567 int need_chmod = 0; 6568 int need_chown = 0; 6569 bool need_fileattr = false; 6570 int need_truncate = 1; 6571 int pending_move = 0; 6572 int refs_processed = 0; 6573 6574 if (sctx->ignore_cur_inode) 6575 return 0; 6576 6577 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6578 &refs_processed); 6579 if (ret < 0) 6580 goto out; 6581 6582 /* 6583 * We have processed the refs and thus need to advance send_progress. 6584 * Now, calls to get_cur_xxx will take the updated refs of the current 6585 * inode into account. 6586 * 6587 * On the other hand, if our current inode is a directory and couldn't 6588 * be moved/renamed because its parent was renamed/moved too and it has 6589 * a higher inode number, we can only move/rename our current inode 6590 * after we moved/renamed its parent. Therefore in this case operate on 6591 * the old path (pre move/rename) of our current inode, and the 6592 * move/rename will be performed later. 6593 */ 6594 if (refs_processed && !pending_move) 6595 sctx->send_progress = sctx->cur_ino + 1; 6596 6597 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6598 goto out; 6599 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6600 goto out; 6601 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6602 if (ret < 0) 6603 goto out; 6604 left_mode = info.mode; 6605 left_uid = info.uid; 6606 left_gid = info.gid; 6607 left_fileattr = info.fileattr; 6608 6609 if (!sctx->parent_root || sctx->cur_inode_new) { 6610 need_chown = 1; 6611 if (!S_ISLNK(sctx->cur_inode_mode)) 6612 need_chmod = 1; 6613 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6614 need_truncate = 0; 6615 } else { 6616 u64 old_size; 6617 6618 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6619 if (ret < 0) 6620 goto out; 6621 old_size = info.size; 6622 right_mode = info.mode; 6623 right_uid = info.uid; 6624 right_gid = info.gid; 6625 right_fileattr = info.fileattr; 6626 6627 if (left_uid != right_uid || left_gid != right_gid) 6628 need_chown = 1; 6629 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6630 need_chmod = 1; 6631 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6632 need_fileattr = true; 6633 if ((old_size == sctx->cur_inode_size) || 6634 (sctx->cur_inode_size > old_size && 6635 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6636 need_truncate = 0; 6637 } 6638 6639 if (S_ISREG(sctx->cur_inode_mode)) { 6640 if (need_send_hole(sctx)) { 6641 if (sctx->cur_inode_last_extent == (u64)-1 || 6642 sctx->cur_inode_last_extent < 6643 sctx->cur_inode_size) { 6644 ret = get_last_extent(sctx, (u64)-1); 6645 if (ret) 6646 goto out; 6647 } 6648 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6649 ret = range_is_hole_in_parent(sctx, 6650 sctx->cur_inode_last_extent, 6651 sctx->cur_inode_size); 6652 if (ret < 0) { 6653 goto out; 6654 } else if (ret == 0) { 6655 ret = send_hole(sctx, sctx->cur_inode_size); 6656 if (ret < 0) 6657 goto out; 6658 } else { 6659 /* Range is already a hole, skip. */ 6660 ret = 0; 6661 } 6662 } 6663 } 6664 if (need_truncate) { 6665 ret = send_truncate(sctx, sctx->cur_ino, 6666 sctx->cur_inode_gen, 6667 sctx->cur_inode_size); 6668 if (ret < 0) 6669 goto out; 6670 } 6671 } 6672 6673 if (need_chown) { 6674 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6675 left_uid, left_gid); 6676 if (ret < 0) 6677 goto out; 6678 } 6679 if (need_chmod) { 6680 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6681 left_mode); 6682 if (ret < 0) 6683 goto out; 6684 } 6685 if (need_fileattr) { 6686 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6687 left_fileattr); 6688 if (ret < 0) 6689 goto out; 6690 } 6691 6692 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6693 && sctx->cur_inode_needs_verity) { 6694 ret = process_verity(sctx); 6695 if (ret < 0) 6696 goto out; 6697 } 6698 6699 ret = send_capabilities(sctx); 6700 if (ret < 0) 6701 goto out; 6702 6703 /* 6704 * If other directory inodes depended on our current directory 6705 * inode's move/rename, now do their move/rename operations. 6706 */ 6707 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6708 ret = apply_children_dir_moves(sctx); 6709 if (ret) 6710 goto out; 6711 /* 6712 * Need to send that every time, no matter if it actually 6713 * changed between the two trees as we have done changes to 6714 * the inode before. If our inode is a directory and it's 6715 * waiting to be moved/renamed, we will send its utimes when 6716 * it's moved/renamed, therefore we don't need to do it here. 6717 */ 6718 sctx->send_progress = sctx->cur_ino + 1; 6719 6720 /* 6721 * If the current inode is a non-empty directory, delay issuing 6722 * the utimes command for it, as it's very likely we have inodes 6723 * with an higher number inside it. We want to issue the utimes 6724 * command only after adding all dentries to it. 6725 */ 6726 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6727 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6728 else 6729 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6730 6731 if (ret < 0) 6732 goto out; 6733 } 6734 6735 out: 6736 if (!ret) 6737 ret = trim_dir_utimes_cache(sctx); 6738 6739 return ret; 6740 } 6741 6742 static void close_current_inode(struct send_ctx *sctx) 6743 { 6744 u64 i_size; 6745 6746 if (sctx->cur_inode == NULL) 6747 return; 6748 6749 i_size = i_size_read(sctx->cur_inode); 6750 6751 /* 6752 * If we are doing an incremental send, we may have extents between the 6753 * last processed extent and the i_size that have not been processed 6754 * because they haven't changed but we may have read some of their pages 6755 * through readahead, see the comments at send_extent_data(). 6756 */ 6757 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6758 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6759 sctx->page_cache_clear_start, 6760 round_up(i_size, PAGE_SIZE) - 1); 6761 6762 iput(sctx->cur_inode); 6763 sctx->cur_inode = NULL; 6764 } 6765 6766 static int changed_inode(struct send_ctx *sctx, 6767 enum btrfs_compare_tree_result result) 6768 { 6769 int ret = 0; 6770 struct btrfs_key *key = sctx->cmp_key; 6771 struct btrfs_inode_item *left_ii = NULL; 6772 struct btrfs_inode_item *right_ii = NULL; 6773 u64 left_gen = 0; 6774 u64 right_gen = 0; 6775 6776 close_current_inode(sctx); 6777 6778 sctx->cur_ino = key->objectid; 6779 sctx->cur_inode_new_gen = false; 6780 sctx->cur_inode_last_extent = (u64)-1; 6781 sctx->cur_inode_next_write_offset = 0; 6782 sctx->ignore_cur_inode = false; 6783 fs_path_reset(&sctx->cur_inode_path); 6784 6785 /* 6786 * Set send_progress to current inode. This will tell all get_cur_xxx 6787 * functions that the current inode's refs are not updated yet. Later, 6788 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6789 */ 6790 sctx->send_progress = sctx->cur_ino; 6791 6792 if (result == BTRFS_COMPARE_TREE_NEW || 6793 result == BTRFS_COMPARE_TREE_CHANGED) { 6794 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6795 sctx->left_path->slots[0], 6796 struct btrfs_inode_item); 6797 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6798 left_ii); 6799 } else { 6800 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6801 sctx->right_path->slots[0], 6802 struct btrfs_inode_item); 6803 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6804 right_ii); 6805 } 6806 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6807 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6808 sctx->right_path->slots[0], 6809 struct btrfs_inode_item); 6810 6811 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6812 right_ii); 6813 6814 /* 6815 * The cur_ino = root dir case is special here. We can't treat 6816 * the inode as deleted+reused because it would generate a 6817 * stream that tries to delete/mkdir the root dir. 6818 */ 6819 if (left_gen != right_gen && 6820 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6821 sctx->cur_inode_new_gen = true; 6822 } 6823 6824 /* 6825 * Normally we do not find inodes with a link count of zero (orphans) 6826 * because the most common case is to create a snapshot and use it 6827 * for a send operation. However other less common use cases involve 6828 * using a subvolume and send it after turning it to RO mode just 6829 * after deleting all hard links of a file while holding an open 6830 * file descriptor against it or turning a RO snapshot into RW mode, 6831 * keep an open file descriptor against a file, delete it and then 6832 * turn the snapshot back to RO mode before using it for a send 6833 * operation. The former is what the receiver operation does. 6834 * Therefore, if we want to send these snapshots soon after they're 6835 * received, we need to handle orphan inodes as well. Moreover, orphans 6836 * can appear not only in the send snapshot but also in the parent 6837 * snapshot. Here are several cases: 6838 * 6839 * Case 1: BTRFS_COMPARE_TREE_NEW 6840 * | send snapshot | action 6841 * -------------------------------- 6842 * nlink | 0 | ignore 6843 * 6844 * Case 2: BTRFS_COMPARE_TREE_DELETED 6845 * | parent snapshot | action 6846 * ---------------------------------- 6847 * nlink | 0 | as usual 6848 * Note: No unlinks will be sent because there're no paths for it. 6849 * 6850 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6851 * | | parent snapshot | send snapshot | action 6852 * ----------------------------------------------------------------------- 6853 * subcase 1 | nlink | 0 | 0 | ignore 6854 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6855 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6856 * 6857 */ 6858 if (result == BTRFS_COMPARE_TREE_NEW) { 6859 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6860 sctx->ignore_cur_inode = true; 6861 goto out; 6862 } 6863 sctx->cur_inode_gen = left_gen; 6864 sctx->cur_inode_new = true; 6865 sctx->cur_inode_deleted = false; 6866 sctx->cur_inode_size = btrfs_inode_size( 6867 sctx->left_path->nodes[0], left_ii); 6868 sctx->cur_inode_mode = btrfs_inode_mode( 6869 sctx->left_path->nodes[0], left_ii); 6870 sctx->cur_inode_rdev = btrfs_inode_rdev( 6871 sctx->left_path->nodes[0], left_ii); 6872 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6873 ret = send_create_inode_if_needed(sctx); 6874 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6875 sctx->cur_inode_gen = right_gen; 6876 sctx->cur_inode_new = false; 6877 sctx->cur_inode_deleted = true; 6878 sctx->cur_inode_size = btrfs_inode_size( 6879 sctx->right_path->nodes[0], right_ii); 6880 sctx->cur_inode_mode = btrfs_inode_mode( 6881 sctx->right_path->nodes[0], right_ii); 6882 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6883 u32 new_nlinks, old_nlinks; 6884 6885 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6886 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6887 if (new_nlinks == 0 && old_nlinks == 0) { 6888 sctx->ignore_cur_inode = true; 6889 goto out; 6890 } else if (new_nlinks == 0 || old_nlinks == 0) { 6891 sctx->cur_inode_new_gen = 1; 6892 } 6893 /* 6894 * We need to do some special handling in case the inode was 6895 * reported as changed with a changed generation number. This 6896 * means that the original inode was deleted and new inode 6897 * reused the same inum. So we have to treat the old inode as 6898 * deleted and the new one as new. 6899 */ 6900 if (sctx->cur_inode_new_gen) { 6901 /* 6902 * First, process the inode as if it was deleted. 6903 */ 6904 if (old_nlinks > 0) { 6905 sctx->cur_inode_gen = right_gen; 6906 sctx->cur_inode_new = false; 6907 sctx->cur_inode_deleted = true; 6908 sctx->cur_inode_size = btrfs_inode_size( 6909 sctx->right_path->nodes[0], right_ii); 6910 sctx->cur_inode_mode = btrfs_inode_mode( 6911 sctx->right_path->nodes[0], right_ii); 6912 ret = process_all_refs(sctx, 6913 BTRFS_COMPARE_TREE_DELETED); 6914 if (ret < 0) 6915 goto out; 6916 } 6917 6918 /* 6919 * Now process the inode as if it was new. 6920 */ 6921 if (new_nlinks > 0) { 6922 sctx->cur_inode_gen = left_gen; 6923 sctx->cur_inode_new = true; 6924 sctx->cur_inode_deleted = false; 6925 sctx->cur_inode_size = btrfs_inode_size( 6926 sctx->left_path->nodes[0], 6927 left_ii); 6928 sctx->cur_inode_mode = btrfs_inode_mode( 6929 sctx->left_path->nodes[0], 6930 left_ii); 6931 sctx->cur_inode_rdev = btrfs_inode_rdev( 6932 sctx->left_path->nodes[0], 6933 left_ii); 6934 ret = send_create_inode_if_needed(sctx); 6935 if (ret < 0) 6936 goto out; 6937 6938 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6939 if (ret < 0) 6940 goto out; 6941 /* 6942 * Advance send_progress now as we did not get 6943 * into process_recorded_refs_if_needed in the 6944 * new_gen case. 6945 */ 6946 sctx->send_progress = sctx->cur_ino + 1; 6947 6948 /* 6949 * Now process all extents and xattrs of the 6950 * inode as if they were all new. 6951 */ 6952 ret = process_all_extents(sctx); 6953 if (ret < 0) 6954 goto out; 6955 ret = process_all_new_xattrs(sctx); 6956 if (ret < 0) 6957 goto out; 6958 } 6959 } else { 6960 sctx->cur_inode_gen = left_gen; 6961 sctx->cur_inode_new = false; 6962 sctx->cur_inode_new_gen = false; 6963 sctx->cur_inode_deleted = false; 6964 sctx->cur_inode_size = btrfs_inode_size( 6965 sctx->left_path->nodes[0], left_ii); 6966 sctx->cur_inode_mode = btrfs_inode_mode( 6967 sctx->left_path->nodes[0], left_ii); 6968 } 6969 } 6970 6971 out: 6972 return ret; 6973 } 6974 6975 /* 6976 * We have to process new refs before deleted refs, but compare_trees gives us 6977 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6978 * first and later process them in process_recorded_refs. 6979 * For the cur_inode_new_gen case, we skip recording completely because 6980 * changed_inode did already initiate processing of refs. The reason for this is 6981 * that in this case, compare_tree actually compares the refs of 2 different 6982 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6983 * refs of the right tree as deleted and all refs of the left tree as new. 6984 */ 6985 static int changed_ref(struct send_ctx *sctx, 6986 enum btrfs_compare_tree_result result) 6987 { 6988 int ret = 0; 6989 6990 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 6991 inconsistent_snapshot_error(sctx, result, "reference"); 6992 return -EIO; 6993 } 6994 6995 if (!sctx->cur_inode_new_gen && 6996 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6997 if (result == BTRFS_COMPARE_TREE_NEW) 6998 ret = record_new_ref(sctx); 6999 else if (result == BTRFS_COMPARE_TREE_DELETED) 7000 ret = record_deleted_ref(sctx); 7001 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7002 ret = record_changed_ref(sctx); 7003 } 7004 7005 return ret; 7006 } 7007 7008 /* 7009 * Process new/deleted/changed xattrs. We skip processing in the 7010 * cur_inode_new_gen case because changed_inode did already initiate processing 7011 * of xattrs. The reason is the same as in changed_ref 7012 */ 7013 static int changed_xattr(struct send_ctx *sctx, 7014 enum btrfs_compare_tree_result result) 7015 { 7016 int ret = 0; 7017 7018 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 7019 inconsistent_snapshot_error(sctx, result, "xattr"); 7020 return -EIO; 7021 } 7022 7023 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7024 if (result == BTRFS_COMPARE_TREE_NEW) 7025 ret = process_new_xattr(sctx); 7026 else if (result == BTRFS_COMPARE_TREE_DELETED) 7027 ret = process_deleted_xattr(sctx); 7028 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7029 ret = process_changed_xattr(sctx); 7030 } 7031 7032 return ret; 7033 } 7034 7035 /* 7036 * Process new/deleted/changed extents. We skip processing in the 7037 * cur_inode_new_gen case because changed_inode did already initiate processing 7038 * of extents. The reason is the same as in changed_ref 7039 */ 7040 static int changed_extent(struct send_ctx *sctx, 7041 enum btrfs_compare_tree_result result) 7042 { 7043 int ret = 0; 7044 7045 /* 7046 * We have found an extent item that changed without the inode item 7047 * having changed. This can happen either after relocation (where the 7048 * disk_bytenr of an extent item is replaced at 7049 * relocation.c:replace_file_extents()) or after deduplication into a 7050 * file in both the parent and send snapshots (where an extent item can 7051 * get modified or replaced with a new one). Note that deduplication 7052 * updates the inode item, but it only changes the iversion (sequence 7053 * field in the inode item) of the inode, so if a file is deduplicated 7054 * the same amount of times in both the parent and send snapshots, its 7055 * iversion becomes the same in both snapshots, whence the inode item is 7056 * the same on both snapshots. 7057 */ 7058 if (sctx->cur_ino != sctx->cmp_key->objectid) 7059 return 0; 7060 7061 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7062 if (result != BTRFS_COMPARE_TREE_DELETED) 7063 ret = process_extent(sctx, sctx->left_path, 7064 sctx->cmp_key); 7065 } 7066 7067 return ret; 7068 } 7069 7070 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7071 { 7072 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7073 if (result == BTRFS_COMPARE_TREE_NEW) 7074 sctx->cur_inode_needs_verity = true; 7075 } 7076 return 0; 7077 } 7078 7079 static int dir_changed(struct send_ctx *sctx, u64 dir) 7080 { 7081 u64 orig_gen, new_gen; 7082 int ret; 7083 7084 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7085 if (ret) 7086 return ret; 7087 7088 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7089 if (ret) 7090 return ret; 7091 7092 return (orig_gen != new_gen) ? 1 : 0; 7093 } 7094 7095 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7096 struct btrfs_key *key) 7097 { 7098 struct btrfs_inode_extref *extref; 7099 struct extent_buffer *leaf; 7100 u64 dirid = 0, last_dirid = 0; 7101 unsigned long ptr; 7102 u32 item_size; 7103 u32 cur_offset = 0; 7104 int ref_name_len; 7105 int ret = 0; 7106 7107 /* Easy case, just check this one dirid */ 7108 if (key->type == BTRFS_INODE_REF_KEY) { 7109 dirid = key->offset; 7110 7111 ret = dir_changed(sctx, dirid); 7112 goto out; 7113 } 7114 7115 leaf = path->nodes[0]; 7116 item_size = btrfs_item_size(leaf, path->slots[0]); 7117 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7118 while (cur_offset < item_size) { 7119 extref = (struct btrfs_inode_extref *)(ptr + 7120 cur_offset); 7121 dirid = btrfs_inode_extref_parent(leaf, extref); 7122 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7123 cur_offset += ref_name_len + sizeof(*extref); 7124 if (dirid == last_dirid) 7125 continue; 7126 ret = dir_changed(sctx, dirid); 7127 if (ret) 7128 break; 7129 last_dirid = dirid; 7130 } 7131 out: 7132 return ret; 7133 } 7134 7135 /* 7136 * Updates compare related fields in sctx and simply forwards to the actual 7137 * changed_xxx functions. 7138 */ 7139 static int changed_cb(struct btrfs_path *left_path, 7140 struct btrfs_path *right_path, 7141 struct btrfs_key *key, 7142 enum btrfs_compare_tree_result result, 7143 struct send_ctx *sctx) 7144 { 7145 int ret; 7146 7147 /* 7148 * We can not hold the commit root semaphore here. This is because in 7149 * the case of sending and receiving to the same filesystem, using a 7150 * pipe, could result in a deadlock: 7151 * 7152 * 1) The task running send blocks on the pipe because it's full; 7153 * 7154 * 2) The task running receive, which is the only consumer of the pipe, 7155 * is waiting for a transaction commit (for example due to a space 7156 * reservation when doing a write or triggering a transaction commit 7157 * when creating a subvolume); 7158 * 7159 * 3) The transaction is waiting to write lock the commit root semaphore, 7160 * but can not acquire it since it's being held at 1). 7161 * 7162 * Down this call chain we write to the pipe through kernel_write(). 7163 * The same type of problem can also happen when sending to a file that 7164 * is stored in the same filesystem - when reserving space for a write 7165 * into the file, we can trigger a transaction commit. 7166 * 7167 * Our caller has supplied us with clones of leaves from the send and 7168 * parent roots, so we're safe here from a concurrent relocation and 7169 * further reallocation of metadata extents while we are here. Below we 7170 * also assert that the leaves are clones. 7171 */ 7172 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7173 7174 /* 7175 * We always have a send root, so left_path is never NULL. We will not 7176 * have a leaf when we have reached the end of the send root but have 7177 * not yet reached the end of the parent root. 7178 */ 7179 if (left_path->nodes[0]) 7180 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7181 &left_path->nodes[0]->bflags)); 7182 /* 7183 * When doing a full send we don't have a parent root, so right_path is 7184 * NULL. When doing an incremental send, we may have reached the end of 7185 * the parent root already, so we don't have a leaf at right_path. 7186 */ 7187 if (right_path && right_path->nodes[0]) 7188 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7189 &right_path->nodes[0]->bflags)); 7190 7191 if (result == BTRFS_COMPARE_TREE_SAME) { 7192 if (key->type == BTRFS_INODE_REF_KEY || 7193 key->type == BTRFS_INODE_EXTREF_KEY) { 7194 ret = compare_refs(sctx, left_path, key); 7195 if (!ret) 7196 return 0; 7197 if (ret < 0) 7198 return ret; 7199 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7200 return maybe_send_hole(sctx, left_path, key); 7201 } else { 7202 return 0; 7203 } 7204 result = BTRFS_COMPARE_TREE_CHANGED; 7205 } 7206 7207 sctx->left_path = left_path; 7208 sctx->right_path = right_path; 7209 sctx->cmp_key = key; 7210 7211 ret = finish_inode_if_needed(sctx, 0); 7212 if (ret < 0) 7213 goto out; 7214 7215 /* Ignore non-FS objects */ 7216 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7217 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7218 goto out; 7219 7220 if (key->type == BTRFS_INODE_ITEM_KEY) { 7221 ret = changed_inode(sctx, result); 7222 } else if (!sctx->ignore_cur_inode) { 7223 if (key->type == BTRFS_INODE_REF_KEY || 7224 key->type == BTRFS_INODE_EXTREF_KEY) 7225 ret = changed_ref(sctx, result); 7226 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7227 ret = changed_xattr(sctx, result); 7228 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7229 ret = changed_extent(sctx, result); 7230 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7231 key->offset == 0) 7232 ret = changed_verity(sctx, result); 7233 } 7234 7235 out: 7236 return ret; 7237 } 7238 7239 static int search_key_again(const struct send_ctx *sctx, 7240 struct btrfs_root *root, 7241 struct btrfs_path *path, 7242 const struct btrfs_key *key) 7243 { 7244 int ret; 7245 7246 if (!path->need_commit_sem) 7247 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7248 7249 /* 7250 * Roots used for send operations are readonly and no one can add, 7251 * update or remove keys from them, so we should be able to find our 7252 * key again. The only exception is deduplication, which can operate on 7253 * readonly roots and add, update or remove keys to/from them - but at 7254 * the moment we don't allow it to run in parallel with send. 7255 */ 7256 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7257 ASSERT(ret <= 0); 7258 if (unlikely(ret > 0)) { 7259 btrfs_print_tree(path->nodes[path->lowest_level], false); 7260 btrfs_err(root->fs_info, 7261 "send: key " BTRFS_KEY_FMT" not found in %s root %llu, lowest_level %d, slot %d", 7262 BTRFS_KEY_FMT_VALUE(key), 7263 (root == sctx->parent_root ? "parent" : "send"), 7264 btrfs_root_id(root), path->lowest_level, 7265 path->slots[path->lowest_level]); 7266 return -EUCLEAN; 7267 } 7268 7269 return ret; 7270 } 7271 7272 static int full_send_tree(struct send_ctx *sctx) 7273 { 7274 int ret; 7275 struct btrfs_root *send_root = sctx->send_root; 7276 struct btrfs_key key; 7277 struct btrfs_fs_info *fs_info = send_root->fs_info; 7278 BTRFS_PATH_AUTO_FREE(path); 7279 7280 path = alloc_path_for_send(); 7281 if (!path) 7282 return -ENOMEM; 7283 path->reada = READA_FORWARD_ALWAYS; 7284 7285 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7286 key.type = BTRFS_INODE_ITEM_KEY; 7287 key.offset = 0; 7288 7289 down_read(&fs_info->commit_root_sem); 7290 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7291 up_read(&fs_info->commit_root_sem); 7292 7293 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7294 if (ret < 0) 7295 return ret; 7296 if (ret) 7297 goto out_finish; 7298 7299 while (1) { 7300 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7301 7302 ret = changed_cb(path, NULL, &key, 7303 BTRFS_COMPARE_TREE_NEW, sctx); 7304 if (ret < 0) 7305 return ret; 7306 7307 down_read(&fs_info->commit_root_sem); 7308 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7309 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7310 up_read(&fs_info->commit_root_sem); 7311 /* 7312 * A transaction used for relocating a block group was 7313 * committed or is about to finish its commit. Release 7314 * our path (leaf) and restart the search, so that we 7315 * avoid operating on any file extent items that are 7316 * stale, with a disk_bytenr that reflects a pre 7317 * relocation value. This way we avoid as much as 7318 * possible to fallback to regular writes when checking 7319 * if we can clone file ranges. 7320 */ 7321 btrfs_release_path(path); 7322 ret = search_key_again(sctx, send_root, path, &key); 7323 if (ret < 0) 7324 return ret; 7325 } else { 7326 up_read(&fs_info->commit_root_sem); 7327 } 7328 7329 ret = btrfs_next_item(send_root, path); 7330 if (ret < 0) 7331 return ret; 7332 if (ret) { 7333 ret = 0; 7334 break; 7335 } 7336 } 7337 7338 out_finish: 7339 return finish_inode_if_needed(sctx, 1); 7340 } 7341 7342 static int replace_node_with_clone(struct btrfs_path *path, int level) 7343 { 7344 struct extent_buffer *clone; 7345 7346 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7347 if (!clone) 7348 return -ENOMEM; 7349 7350 free_extent_buffer(path->nodes[level]); 7351 path->nodes[level] = clone; 7352 7353 return 0; 7354 } 7355 7356 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7357 { 7358 struct extent_buffer *eb; 7359 struct extent_buffer *parent = path->nodes[*level]; 7360 int slot = path->slots[*level]; 7361 const int nritems = btrfs_header_nritems(parent); 7362 u64 reada_max; 7363 u64 reada_done = 0; 7364 7365 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7366 ASSERT(*level != 0); 7367 7368 eb = btrfs_read_node_slot(parent, slot); 7369 if (IS_ERR(eb)) 7370 return PTR_ERR(eb); 7371 7372 /* 7373 * Trigger readahead for the next leaves we will process, so that it is 7374 * very likely that when we need them they are already in memory and we 7375 * will not block on disk IO. For nodes we only do readahead for one, 7376 * since the time window between processing nodes is typically larger. 7377 */ 7378 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7379 7380 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7381 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7382 btrfs_readahead_node_child(parent, slot); 7383 reada_done += eb->fs_info->nodesize; 7384 } 7385 } 7386 7387 path->nodes[*level - 1] = eb; 7388 path->slots[*level - 1] = 0; 7389 (*level)--; 7390 7391 if (*level == 0) 7392 return replace_node_with_clone(path, 0); 7393 7394 return 0; 7395 } 7396 7397 static int tree_move_next_or_upnext(struct btrfs_path *path, 7398 int *level, int root_level) 7399 { 7400 int ret = 0; 7401 int nritems; 7402 nritems = btrfs_header_nritems(path->nodes[*level]); 7403 7404 path->slots[*level]++; 7405 7406 while (path->slots[*level] >= nritems) { 7407 if (*level == root_level) { 7408 path->slots[*level] = nritems - 1; 7409 return -1; 7410 } 7411 7412 /* move upnext */ 7413 path->slots[*level] = 0; 7414 free_extent_buffer(path->nodes[*level]); 7415 path->nodes[*level] = NULL; 7416 (*level)++; 7417 path->slots[*level]++; 7418 7419 nritems = btrfs_header_nritems(path->nodes[*level]); 7420 ret = 1; 7421 } 7422 return ret; 7423 } 7424 7425 /* 7426 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7427 * or down. 7428 */ 7429 static int tree_advance(struct btrfs_path *path, 7430 int *level, int root_level, 7431 int allow_down, 7432 struct btrfs_key *key, 7433 u64 reada_min_gen) 7434 { 7435 int ret; 7436 7437 if (*level == 0 || !allow_down) { 7438 ret = tree_move_next_or_upnext(path, level, root_level); 7439 } else { 7440 ret = tree_move_down(path, level, reada_min_gen); 7441 } 7442 7443 /* 7444 * Even if we have reached the end of a tree, ret is -1, update the key 7445 * anyway, so that in case we need to restart due to a block group 7446 * relocation, we can assert that the last key of the root node still 7447 * exists in the tree. 7448 */ 7449 if (*level == 0) 7450 btrfs_item_key_to_cpu(path->nodes[*level], key, 7451 path->slots[*level]); 7452 else 7453 btrfs_node_key_to_cpu(path->nodes[*level], key, 7454 path->slots[*level]); 7455 7456 return ret; 7457 } 7458 7459 static int tree_compare_item(struct btrfs_path *left_path, 7460 struct btrfs_path *right_path, 7461 char *tmp_buf) 7462 { 7463 int cmp; 7464 int len1, len2; 7465 unsigned long off1, off2; 7466 7467 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7468 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7469 if (len1 != len2) 7470 return 1; 7471 7472 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7473 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7474 right_path->slots[0]); 7475 7476 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7477 7478 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7479 if (cmp) 7480 return 1; 7481 return 0; 7482 } 7483 7484 /* 7485 * A transaction used for relocating a block group was committed or is about to 7486 * finish its commit. Release our paths and restart the search, so that we are 7487 * not using stale extent buffers: 7488 * 7489 * 1) For levels > 0, we are only holding references of extent buffers, without 7490 * any locks on them, which does not prevent them from having been relocated 7491 * and reallocated after the last time we released the commit root semaphore. 7492 * The exception are the root nodes, for which we always have a clone, see 7493 * the comment at btrfs_compare_trees(); 7494 * 7495 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7496 * we are safe from the concurrent relocation and reallocation. However they 7497 * can have file extent items with a pre relocation disk_bytenr value, so we 7498 * restart the start from the current commit roots and clone the new leaves so 7499 * that we get the post relocation disk_bytenr values. Not doing so, could 7500 * make us clone the wrong data in case there are new extents using the old 7501 * disk_bytenr that happen to be shared. 7502 */ 7503 static int restart_after_relocation(struct btrfs_path *left_path, 7504 struct btrfs_path *right_path, 7505 const struct btrfs_key *left_key, 7506 const struct btrfs_key *right_key, 7507 int left_level, 7508 int right_level, 7509 const struct send_ctx *sctx) 7510 { 7511 int root_level; 7512 int ret; 7513 7514 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7515 7516 btrfs_release_path(left_path); 7517 btrfs_release_path(right_path); 7518 7519 /* 7520 * Since keys can not be added or removed to/from our roots because they 7521 * are readonly and we do not allow deduplication to run in parallel 7522 * (which can add, remove or change keys), the layout of the trees should 7523 * not change. 7524 */ 7525 left_path->lowest_level = left_level; 7526 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7527 if (ret < 0) 7528 return ret; 7529 7530 right_path->lowest_level = right_level; 7531 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7532 if (ret < 0) 7533 return ret; 7534 7535 /* 7536 * If the lowest level nodes are leaves, clone them so that they can be 7537 * safely used by changed_cb() while not under the protection of the 7538 * commit root semaphore, even if relocation and reallocation happens in 7539 * parallel. 7540 */ 7541 if (left_level == 0) { 7542 ret = replace_node_with_clone(left_path, 0); 7543 if (ret < 0) 7544 return ret; 7545 } 7546 7547 if (right_level == 0) { 7548 ret = replace_node_with_clone(right_path, 0); 7549 if (ret < 0) 7550 return ret; 7551 } 7552 7553 /* 7554 * Now clone the root nodes (unless they happen to be the leaves we have 7555 * already cloned). This is to protect against concurrent snapshotting of 7556 * the send and parent roots (see the comment at btrfs_compare_trees()). 7557 */ 7558 root_level = btrfs_header_level(sctx->send_root->commit_root); 7559 if (root_level > 0) { 7560 ret = replace_node_with_clone(left_path, root_level); 7561 if (ret < 0) 7562 return ret; 7563 } 7564 7565 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7566 if (root_level > 0) { 7567 ret = replace_node_with_clone(right_path, root_level); 7568 if (ret < 0) 7569 return ret; 7570 } 7571 7572 return 0; 7573 } 7574 7575 /* 7576 * This function compares two trees and calls the provided callback for 7577 * every changed/new/deleted item it finds. 7578 * If shared tree blocks are encountered, whole subtrees are skipped, making 7579 * the compare pretty fast on snapshotted subvolumes. 7580 * 7581 * This currently works on commit roots only. As commit roots are read only, 7582 * we don't do any locking. The commit roots are protected with transactions. 7583 * Transactions are ended and rejoined when a commit is tried in between. 7584 * 7585 * This function checks for modifications done to the trees while comparing. 7586 * If it detects a change, it aborts immediately. 7587 */ 7588 static int btrfs_compare_trees(struct btrfs_root *left_root, 7589 struct btrfs_root *right_root, struct send_ctx *sctx) 7590 { 7591 struct btrfs_fs_info *fs_info = left_root->fs_info; 7592 int ret; 7593 int cmp; 7594 BTRFS_PATH_AUTO_FREE(left_path); 7595 BTRFS_PATH_AUTO_FREE(right_path); 7596 struct btrfs_key left_key; 7597 struct btrfs_key right_key; 7598 char *tmp_buf = NULL; 7599 int left_root_level; 7600 int right_root_level; 7601 int left_level; 7602 int right_level; 7603 int left_end_reached = 0; 7604 int right_end_reached = 0; 7605 int advance_left = 0; 7606 int advance_right = 0; 7607 u64 left_blockptr; 7608 u64 right_blockptr; 7609 u64 left_gen; 7610 u64 right_gen; 7611 u64 reada_min_gen; 7612 7613 left_path = btrfs_alloc_path(); 7614 if (!left_path) { 7615 ret = -ENOMEM; 7616 goto out; 7617 } 7618 right_path = btrfs_alloc_path(); 7619 if (!right_path) { 7620 ret = -ENOMEM; 7621 goto out; 7622 } 7623 7624 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7625 if (!tmp_buf) { 7626 ret = -ENOMEM; 7627 goto out; 7628 } 7629 7630 left_path->search_commit_root = true; 7631 left_path->skip_locking = true; 7632 right_path->search_commit_root = true; 7633 right_path->skip_locking = true; 7634 7635 /* 7636 * Strategy: Go to the first items of both trees. Then do 7637 * 7638 * If both trees are at level 0 7639 * Compare keys of current items 7640 * If left < right treat left item as new, advance left tree 7641 * and repeat 7642 * If left > right treat right item as deleted, advance right tree 7643 * and repeat 7644 * If left == right do deep compare of items, treat as changed if 7645 * needed, advance both trees and repeat 7646 * If both trees are at the same level but not at level 0 7647 * Compare keys of current nodes/leafs 7648 * If left < right advance left tree and repeat 7649 * If left > right advance right tree and repeat 7650 * If left == right compare blockptrs of the next nodes/leafs 7651 * If they match advance both trees but stay at the same level 7652 * and repeat 7653 * If they don't match advance both trees while allowing to go 7654 * deeper and repeat 7655 * If tree levels are different 7656 * Advance the tree that needs it and repeat 7657 * 7658 * Advancing a tree means: 7659 * If we are at level 0, try to go to the next slot. If that's not 7660 * possible, go one level up and repeat. Stop when we found a level 7661 * where we could go to the next slot. We may at this point be on a 7662 * node or a leaf. 7663 * 7664 * If we are not at level 0 and not on shared tree blocks, go one 7665 * level deeper. 7666 * 7667 * If we are not at level 0 and on shared tree blocks, go one slot to 7668 * the right if possible or go up and right. 7669 */ 7670 7671 down_read(&fs_info->commit_root_sem); 7672 left_level = btrfs_header_level(left_root->commit_root); 7673 left_root_level = left_level; 7674 /* 7675 * We clone the root node of the send and parent roots to prevent races 7676 * with snapshot creation of these roots. Snapshot creation COWs the 7677 * root node of a tree, so after the transaction is committed the old 7678 * extent can be reallocated while this send operation is still ongoing. 7679 * So we clone them, under the commit root semaphore, to be race free. 7680 */ 7681 left_path->nodes[left_level] = 7682 btrfs_clone_extent_buffer(left_root->commit_root); 7683 if (!left_path->nodes[left_level]) { 7684 ret = -ENOMEM; 7685 goto out_unlock; 7686 } 7687 7688 right_level = btrfs_header_level(right_root->commit_root); 7689 right_root_level = right_level; 7690 right_path->nodes[right_level] = 7691 btrfs_clone_extent_buffer(right_root->commit_root); 7692 if (!right_path->nodes[right_level]) { 7693 ret = -ENOMEM; 7694 goto out_unlock; 7695 } 7696 /* 7697 * Our right root is the parent root, while the left root is the "send" 7698 * root. We know that all new nodes/leaves in the left root must have 7699 * a generation greater than the right root's generation, so we trigger 7700 * readahead for those nodes and leaves of the left root, as we know we 7701 * will need to read them at some point. 7702 */ 7703 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7704 7705 if (left_level == 0) 7706 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7707 &left_key, left_path->slots[left_level]); 7708 else 7709 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7710 &left_key, left_path->slots[left_level]); 7711 if (right_level == 0) 7712 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7713 &right_key, right_path->slots[right_level]); 7714 else 7715 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7716 &right_key, right_path->slots[right_level]); 7717 7718 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7719 7720 while (1) { 7721 if (need_resched() || 7722 rwsem_is_contended(&fs_info->commit_root_sem)) { 7723 up_read(&fs_info->commit_root_sem); 7724 cond_resched(); 7725 down_read(&fs_info->commit_root_sem); 7726 } 7727 7728 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7729 ret = restart_after_relocation(left_path, right_path, 7730 &left_key, &right_key, 7731 left_level, right_level, 7732 sctx); 7733 if (ret < 0) 7734 goto out_unlock; 7735 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7736 } 7737 7738 if (advance_left && !left_end_reached) { 7739 ret = tree_advance(left_path, &left_level, 7740 left_root_level, 7741 advance_left != ADVANCE_ONLY_NEXT, 7742 &left_key, reada_min_gen); 7743 if (ret == -1) 7744 left_end_reached = ADVANCE; 7745 else if (ret < 0) 7746 goto out_unlock; 7747 advance_left = 0; 7748 } 7749 if (advance_right && !right_end_reached) { 7750 ret = tree_advance(right_path, &right_level, 7751 right_root_level, 7752 advance_right != ADVANCE_ONLY_NEXT, 7753 &right_key, reada_min_gen); 7754 if (ret == -1) 7755 right_end_reached = ADVANCE; 7756 else if (ret < 0) 7757 goto out_unlock; 7758 advance_right = 0; 7759 } 7760 7761 if (left_end_reached && right_end_reached) { 7762 ret = 0; 7763 goto out_unlock; 7764 } else if (left_end_reached) { 7765 if (right_level == 0) { 7766 up_read(&fs_info->commit_root_sem); 7767 ret = changed_cb(left_path, right_path, 7768 &right_key, 7769 BTRFS_COMPARE_TREE_DELETED, 7770 sctx); 7771 if (ret < 0) 7772 goto out; 7773 down_read(&fs_info->commit_root_sem); 7774 } 7775 advance_right = ADVANCE; 7776 continue; 7777 } else if (right_end_reached) { 7778 if (left_level == 0) { 7779 up_read(&fs_info->commit_root_sem); 7780 ret = changed_cb(left_path, right_path, 7781 &left_key, 7782 BTRFS_COMPARE_TREE_NEW, 7783 sctx); 7784 if (ret < 0) 7785 goto out; 7786 down_read(&fs_info->commit_root_sem); 7787 } 7788 advance_left = ADVANCE; 7789 continue; 7790 } 7791 7792 if (left_level == 0 && right_level == 0) { 7793 up_read(&fs_info->commit_root_sem); 7794 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7795 if (cmp < 0) { 7796 ret = changed_cb(left_path, right_path, 7797 &left_key, 7798 BTRFS_COMPARE_TREE_NEW, 7799 sctx); 7800 advance_left = ADVANCE; 7801 } else if (cmp > 0) { 7802 ret = changed_cb(left_path, right_path, 7803 &right_key, 7804 BTRFS_COMPARE_TREE_DELETED, 7805 sctx); 7806 advance_right = ADVANCE; 7807 } else { 7808 enum btrfs_compare_tree_result result; 7809 7810 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7811 ret = tree_compare_item(left_path, right_path, 7812 tmp_buf); 7813 if (ret) 7814 result = BTRFS_COMPARE_TREE_CHANGED; 7815 else 7816 result = BTRFS_COMPARE_TREE_SAME; 7817 ret = changed_cb(left_path, right_path, 7818 &left_key, result, sctx); 7819 advance_left = ADVANCE; 7820 advance_right = ADVANCE; 7821 } 7822 7823 if (ret < 0) 7824 goto out; 7825 down_read(&fs_info->commit_root_sem); 7826 } else if (left_level == right_level) { 7827 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7828 if (cmp < 0) { 7829 advance_left = ADVANCE; 7830 } else if (cmp > 0) { 7831 advance_right = ADVANCE; 7832 } else { 7833 left_blockptr = btrfs_node_blockptr( 7834 left_path->nodes[left_level], 7835 left_path->slots[left_level]); 7836 right_blockptr = btrfs_node_blockptr( 7837 right_path->nodes[right_level], 7838 right_path->slots[right_level]); 7839 left_gen = btrfs_node_ptr_generation( 7840 left_path->nodes[left_level], 7841 left_path->slots[left_level]); 7842 right_gen = btrfs_node_ptr_generation( 7843 right_path->nodes[right_level], 7844 right_path->slots[right_level]); 7845 if (left_blockptr == right_blockptr && 7846 left_gen == right_gen) { 7847 /* 7848 * As we're on a shared block, don't 7849 * allow to go deeper. 7850 */ 7851 advance_left = ADVANCE_ONLY_NEXT; 7852 advance_right = ADVANCE_ONLY_NEXT; 7853 } else { 7854 advance_left = ADVANCE; 7855 advance_right = ADVANCE; 7856 } 7857 } 7858 } else if (left_level < right_level) { 7859 advance_right = ADVANCE; 7860 } else { 7861 advance_left = ADVANCE; 7862 } 7863 } 7864 7865 out_unlock: 7866 up_read(&fs_info->commit_root_sem); 7867 out: 7868 kvfree(tmp_buf); 7869 return ret; 7870 } 7871 7872 static int send_subvol(struct send_ctx *sctx) 7873 { 7874 int ret; 7875 7876 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7877 ret = send_header(sctx); 7878 if (ret < 0) 7879 goto out; 7880 } 7881 7882 ret = send_subvol_begin(sctx); 7883 if (ret < 0) 7884 goto out; 7885 7886 if (sctx->parent_root) { 7887 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7888 if (ret < 0) 7889 goto out; 7890 ret = finish_inode_if_needed(sctx, 1); 7891 if (ret < 0) 7892 goto out; 7893 } else { 7894 ret = full_send_tree(sctx); 7895 if (ret < 0) 7896 goto out; 7897 } 7898 7899 out: 7900 free_recorded_refs(sctx); 7901 return ret; 7902 } 7903 7904 /* 7905 * If orphan cleanup did remove any orphans from a root, it means the tree 7906 * was modified and therefore the commit root is not the same as the current 7907 * root anymore. This is a problem, because send uses the commit root and 7908 * therefore can see inode items that don't exist in the current root anymore, 7909 * and for example make calls to btrfs_iget, which will do tree lookups based 7910 * on the current root and not on the commit root. Those lookups will fail, 7911 * returning a -ESTALE error, and making send fail with that error. So make 7912 * sure a send does not see any orphans we have just removed, and that it will 7913 * see the same inodes regardless of whether a transaction commit happened 7914 * before it started (meaning that the commit root will be the same as the 7915 * current root) or not. 7916 */ 7917 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7918 { 7919 struct btrfs_root *root = sctx->parent_root; 7920 7921 if (root && root->node != root->commit_root) 7922 return btrfs_commit_current_transaction(root); 7923 7924 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 7925 root = sctx->clone_roots[i].root; 7926 if (root->node != root->commit_root) 7927 return btrfs_commit_current_transaction(root); 7928 } 7929 7930 return 0; 7931 } 7932 7933 /* 7934 * Make sure any existing delalloc is flushed for any root used by a send 7935 * operation so that we do not miss any data and we do not race with writeback 7936 * finishing and changing a tree while send is using the tree. This could 7937 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7938 * a send operation then uses the subvolume. 7939 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7940 */ 7941 static int flush_delalloc_roots(struct send_ctx *sctx) 7942 { 7943 struct btrfs_root *root = sctx->parent_root; 7944 int ret; 7945 int i; 7946 7947 if (root) { 7948 ret = btrfs_start_delalloc_snapshot(root, false); 7949 if (ret) 7950 return ret; 7951 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7952 } 7953 7954 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7955 root = sctx->clone_roots[i].root; 7956 ret = btrfs_start_delalloc_snapshot(root, false); 7957 if (ret) 7958 return ret; 7959 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7960 } 7961 7962 return 0; 7963 } 7964 7965 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7966 { 7967 spin_lock(&root->root_item_lock); 7968 root->send_in_progress--; 7969 /* 7970 * Not much left to do, we don't know why it's unbalanced and 7971 * can't blindly reset it to 0. 7972 */ 7973 if (root->send_in_progress < 0) 7974 btrfs_err(root->fs_info, 7975 "send_in_progress unbalanced %d root %llu", 7976 root->send_in_progress, btrfs_root_id(root)); 7977 spin_unlock(&root->root_item_lock); 7978 } 7979 7980 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7981 { 7982 btrfs_warn_rl(root->fs_info, 7983 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7984 btrfs_root_id(root), root->dedupe_in_progress); 7985 } 7986 7987 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) 7988 { 7989 int ret = 0; 7990 struct btrfs_fs_info *fs_info = send_root->fs_info; 7991 struct btrfs_root *clone_root; 7992 struct send_ctx *sctx = NULL; 7993 u32 i; 7994 u64 *clone_sources_tmp = NULL; 7995 int clone_sources_to_rollback = 0; 7996 size_t alloc_size; 7997 int sort_clone_roots = 0; 7998 struct btrfs_lru_cache_entry *entry; 7999 struct btrfs_lru_cache_entry *tmp; 8000 8001 if (!capable(CAP_SYS_ADMIN)) 8002 return -EPERM; 8003 8004 /* 8005 * The subvolume must remain read-only during send, protect against 8006 * making it RW. This also protects against deletion. 8007 */ 8008 spin_lock(&send_root->root_item_lock); 8009 /* 8010 * Unlikely but possible, if the subvolume is marked for deletion but 8011 * is slow to remove the directory entry, send can still be started. 8012 */ 8013 if (btrfs_root_dead(send_root)) { 8014 spin_unlock(&send_root->root_item_lock); 8015 return -EPERM; 8016 } 8017 /* Userspace tools do the checks and warn the user if it's not RO. */ 8018 if (!btrfs_root_readonly(send_root)) { 8019 spin_unlock(&send_root->root_item_lock); 8020 return -EPERM; 8021 } 8022 if (send_root->dedupe_in_progress) { 8023 dedupe_in_progress_warn(send_root); 8024 spin_unlock(&send_root->root_item_lock); 8025 return -EAGAIN; 8026 } 8027 send_root->send_in_progress++; 8028 spin_unlock(&send_root->root_item_lock); 8029 8030 /* 8031 * Check that we don't overflow at later allocations, we request 8032 * clone_sources_count + 1 items, and compare to unsigned long inside 8033 * access_ok. Also set an upper limit for allocation size so this can't 8034 * easily exhaust memory. Max number of clone sources is about 200K. 8035 */ 8036 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8037 ret = -EINVAL; 8038 goto out; 8039 } 8040 8041 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8042 ret = -EOPNOTSUPP; 8043 goto out; 8044 } 8045 8046 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8047 if (!sctx) { 8048 ret = -ENOMEM; 8049 goto out; 8050 } 8051 8052 init_path(&sctx->cur_inode_path); 8053 INIT_LIST_HEAD(&sctx->new_refs); 8054 INIT_LIST_HEAD(&sctx->deleted_refs); 8055 8056 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8057 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8058 btrfs_lru_cache_init(&sctx->dir_created_cache, 8059 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8060 /* 8061 * This cache is periodically trimmed to a fixed size elsewhere, see 8062 * cache_dir_utimes() and trim_dir_utimes_cache(). 8063 */ 8064 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8065 8066 sctx->pending_dir_moves = RB_ROOT; 8067 sctx->waiting_dir_moves = RB_ROOT; 8068 sctx->orphan_dirs = RB_ROOT; 8069 sctx->rbtree_new_refs = RB_ROOT; 8070 sctx->rbtree_deleted_refs = RB_ROOT; 8071 8072 sctx->flags = arg->flags; 8073 8074 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8075 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8076 ret = -EPROTO; 8077 goto out; 8078 } 8079 /* Zero means "use the highest version" */ 8080 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8081 } else { 8082 sctx->proto = 1; 8083 } 8084 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8085 ret = -EINVAL; 8086 goto out; 8087 } 8088 8089 sctx->send_filp = fget(arg->send_fd); 8090 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8091 ret = -EBADF; 8092 goto out; 8093 } 8094 8095 sctx->send_root = send_root; 8096 sctx->clone_roots_cnt = arg->clone_sources_count; 8097 8098 if (sctx->proto >= 2) { 8099 u32 send_buf_num_pages; 8100 8101 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8102 sctx->send_buf = vmalloc(sctx->send_max_size); 8103 if (!sctx->send_buf) { 8104 ret = -ENOMEM; 8105 goto out; 8106 } 8107 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8108 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8109 sizeof(*sctx->send_buf_pages), 8110 GFP_KERNEL); 8111 if (!sctx->send_buf_pages) { 8112 ret = -ENOMEM; 8113 goto out; 8114 } 8115 for (i = 0; i < send_buf_num_pages; i++) { 8116 sctx->send_buf_pages[i] = 8117 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8118 } 8119 } else { 8120 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8121 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8122 } 8123 if (!sctx->send_buf) { 8124 ret = -ENOMEM; 8125 goto out; 8126 } 8127 8128 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8129 sizeof(*sctx->clone_roots), 8130 GFP_KERNEL); 8131 if (!sctx->clone_roots) { 8132 ret = -ENOMEM; 8133 goto out; 8134 } 8135 8136 alloc_size = array_size(sizeof(*arg->clone_sources), 8137 arg->clone_sources_count); 8138 8139 if (arg->clone_sources_count) { 8140 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8141 if (!clone_sources_tmp) { 8142 ret = -ENOMEM; 8143 goto out; 8144 } 8145 8146 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8147 alloc_size); 8148 if (ret) { 8149 ret = -EFAULT; 8150 goto out; 8151 } 8152 8153 for (i = 0; i < arg->clone_sources_count; i++) { 8154 clone_root = btrfs_get_fs_root(fs_info, 8155 clone_sources_tmp[i], true); 8156 if (IS_ERR(clone_root)) { 8157 ret = PTR_ERR(clone_root); 8158 goto out; 8159 } 8160 spin_lock(&clone_root->root_item_lock); 8161 if (!btrfs_root_readonly(clone_root) || 8162 btrfs_root_dead(clone_root)) { 8163 spin_unlock(&clone_root->root_item_lock); 8164 btrfs_put_root(clone_root); 8165 ret = -EPERM; 8166 goto out; 8167 } 8168 if (clone_root->dedupe_in_progress) { 8169 dedupe_in_progress_warn(clone_root); 8170 spin_unlock(&clone_root->root_item_lock); 8171 btrfs_put_root(clone_root); 8172 ret = -EAGAIN; 8173 goto out; 8174 } 8175 clone_root->send_in_progress++; 8176 spin_unlock(&clone_root->root_item_lock); 8177 8178 sctx->clone_roots[i].root = clone_root; 8179 clone_sources_to_rollback = i + 1; 8180 } 8181 kvfree(clone_sources_tmp); 8182 clone_sources_tmp = NULL; 8183 } 8184 8185 if (arg->parent_root) { 8186 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8187 true); 8188 if (IS_ERR(sctx->parent_root)) { 8189 ret = PTR_ERR(sctx->parent_root); 8190 goto out; 8191 } 8192 8193 spin_lock(&sctx->parent_root->root_item_lock); 8194 sctx->parent_root->send_in_progress++; 8195 if (!btrfs_root_readonly(sctx->parent_root) || 8196 btrfs_root_dead(sctx->parent_root)) { 8197 spin_unlock(&sctx->parent_root->root_item_lock); 8198 ret = -EPERM; 8199 goto out; 8200 } 8201 if (sctx->parent_root->dedupe_in_progress) { 8202 dedupe_in_progress_warn(sctx->parent_root); 8203 spin_unlock(&sctx->parent_root->root_item_lock); 8204 ret = -EAGAIN; 8205 goto out; 8206 } 8207 spin_unlock(&sctx->parent_root->root_item_lock); 8208 } 8209 8210 /* 8211 * Clones from send_root are allowed, but only if the clone source 8212 * is behind the current send position. This is checked while searching 8213 * for possible clone sources. 8214 */ 8215 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8216 btrfs_grab_root(sctx->send_root); 8217 8218 /* We do a bsearch later */ 8219 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8220 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8221 NULL); 8222 sort_clone_roots = 1; 8223 8224 ret = flush_delalloc_roots(sctx); 8225 if (ret) 8226 goto out; 8227 8228 ret = ensure_commit_roots_uptodate(sctx); 8229 if (ret) 8230 goto out; 8231 8232 ret = send_subvol(sctx); 8233 if (ret < 0) 8234 goto out; 8235 8236 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8237 ret = send_utimes(sctx, entry->key, entry->gen); 8238 if (ret < 0) 8239 goto out; 8240 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8241 } 8242 8243 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8244 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8245 if (ret < 0) 8246 goto out; 8247 ret = send_cmd(sctx); 8248 if (ret < 0) 8249 goto out; 8250 } 8251 8252 out: 8253 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8254 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8255 struct rb_node *n; 8256 struct pending_dir_move *pm; 8257 8258 n = rb_first(&sctx->pending_dir_moves); 8259 pm = rb_entry(n, struct pending_dir_move, node); 8260 while (!list_empty(&pm->list)) { 8261 struct pending_dir_move *pm2; 8262 8263 pm2 = list_first_entry(&pm->list, 8264 struct pending_dir_move, list); 8265 free_pending_move(sctx, pm2); 8266 } 8267 free_pending_move(sctx, pm); 8268 } 8269 8270 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8271 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8272 struct rb_node *n; 8273 struct waiting_dir_move *dm; 8274 8275 n = rb_first(&sctx->waiting_dir_moves); 8276 dm = rb_entry(n, struct waiting_dir_move, node); 8277 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8278 kfree(dm); 8279 } 8280 8281 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8282 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8283 struct rb_node *n; 8284 struct orphan_dir_info *odi; 8285 8286 n = rb_first(&sctx->orphan_dirs); 8287 odi = rb_entry(n, struct orphan_dir_info, node); 8288 free_orphan_dir_info(sctx, odi); 8289 } 8290 8291 if (sort_clone_roots) { 8292 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8293 btrfs_root_dec_send_in_progress( 8294 sctx->clone_roots[i].root); 8295 btrfs_put_root(sctx->clone_roots[i].root); 8296 } 8297 } else { 8298 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8299 btrfs_root_dec_send_in_progress( 8300 sctx->clone_roots[i].root); 8301 btrfs_put_root(sctx->clone_roots[i].root); 8302 } 8303 8304 btrfs_root_dec_send_in_progress(send_root); 8305 } 8306 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8307 btrfs_root_dec_send_in_progress(sctx->parent_root); 8308 btrfs_put_root(sctx->parent_root); 8309 } 8310 8311 kvfree(clone_sources_tmp); 8312 8313 if (sctx) { 8314 if (sctx->send_filp) 8315 fput(sctx->send_filp); 8316 8317 kvfree(sctx->clone_roots); 8318 kfree(sctx->send_buf_pages); 8319 kvfree(sctx->send_buf); 8320 kvfree(sctx->verity_descriptor); 8321 8322 close_current_inode(sctx); 8323 8324 btrfs_lru_cache_clear(&sctx->name_cache); 8325 btrfs_lru_cache_clear(&sctx->backref_cache); 8326 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8327 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8328 8329 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) 8330 kfree(sctx->cur_inode_path.buf); 8331 8332 kfree(sctx); 8333 } 8334 8335 return ret; 8336 } 8337