xref: /linux/fs/btrfs/send.c (revision 6a87e0f0ce1ae8d70566935215430e718ea776ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30 #include "accessors.h"
31 #include "dir-item.h"
32 #include "file-item.h"
33 #include "ioctl.h"
34 #include "verity.h"
35 #include "lru_cache.h"
36 
37 /*
38  * Maximum number of references an extent can have in order for us to attempt to
39  * issue clone operations instead of write operations. This currently exists to
40  * avoid hitting limitations of the backreference walking code (taking a lot of
41  * time and using too much memory for extents with large number of references).
42  */
43 #define SEND_MAX_EXTENT_REFS	1024
44 
45 /*
46  * A fs_path is a helper to dynamically build path names with unknown size.
47  * It reallocates the internal buffer on demand.
48  * It allows fast adding of path elements on the right side (normal path) and
49  * fast adding to the left side (reversed path). A reversed path can also be
50  * unreversed if needed.
51  */
52 struct fs_path {
53 	union {
54 		struct {
55 			char *start;
56 			char *end;
57 
58 			char *buf;
59 			unsigned short buf_len:15;
60 			unsigned short reversed:1;
61 			char inline_buf[];
62 		};
63 		/*
64 		 * Average path length does not exceed 200 bytes, we'll have
65 		 * better packing in the slab and higher chance to satisfy
66 		 * a allocation later during send.
67 		 */
68 		char pad[256];
69 	};
70 };
71 #define FS_PATH_INLINE_SIZE \
72 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73 
74 
75 /* reused for each extent */
76 struct clone_root {
77 	struct btrfs_root *root;
78 	u64 ino;
79 	u64 offset;
80 	u64 num_bytes;
81 	bool found_ref;
82 };
83 
84 #define SEND_MAX_NAME_CACHE_SIZE			256
85 
86 /*
87  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89  * can be satisfied from the kmalloc-192 slab, without wasting any space.
90  * The most common case is to have a single root for cloning, which corresponds
91  * to the send root. Having the user specify more than 16 clone roots is not
92  * common, and in such rare cases we simply don't use caching if the number of
93  * cloning roots that lead down to a leaf is more than 17.
94  */
95 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
96 
97 /*
98  * Max number of entries in the cache.
99  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100  * maple tree's internal nodes, is 24K.
101  */
102 #define SEND_MAX_BACKREF_CACHE_SIZE 128
103 
104 /*
105  * A backref cache entry maps a leaf to a list of IDs of roots from which the
106  * leaf is accessible and we can use for clone operations.
107  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108  * x86_64).
109  */
110 struct backref_cache_entry {
111 	struct btrfs_lru_cache_entry entry;
112 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 	/* Number of valid elements in the root_ids array. */
114 	int num_roots;
115 };
116 
117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119 
120 /*
121  * Max number of entries in the cache that stores directories that were already
122  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125  */
126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
127 
128 /*
129  * Max number of entries in the cache that stores directories that were already
130  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133  */
134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
135 
136 struct send_ctx {
137 	struct file *send_filp;
138 	loff_t send_off;
139 	char *send_buf;
140 	u32 send_size;
141 	u32 send_max_size;
142 	/*
143 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 	 * command (since protocol v2, data must be the last attribute).
145 	 */
146 	bool put_data;
147 	struct page **send_buf_pages;
148 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
149 	/* Protocol version compatibility requested */
150 	u32 proto;
151 
152 	struct btrfs_root *send_root;
153 	struct btrfs_root *parent_root;
154 	struct clone_root *clone_roots;
155 	int clone_roots_cnt;
156 
157 	/* current state of the compare_tree call */
158 	struct btrfs_path *left_path;
159 	struct btrfs_path *right_path;
160 	struct btrfs_key *cmp_key;
161 
162 	/*
163 	 * Keep track of the generation of the last transaction that was used
164 	 * for relocating a block group. This is periodically checked in order
165 	 * to detect if a relocation happened since the last check, so that we
166 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 	 * stale disk_bytenr values of file extent items.
168 	 */
169 	u64 last_reloc_trans;
170 
171 	/*
172 	 * infos of the currently processed inode. In case of deleted inodes,
173 	 * these are the values from the deleted inode.
174 	 */
175 	u64 cur_ino;
176 	u64 cur_inode_gen;
177 	u64 cur_inode_size;
178 	u64 cur_inode_mode;
179 	u64 cur_inode_rdev;
180 	u64 cur_inode_last_extent;
181 	u64 cur_inode_next_write_offset;
182 	bool cur_inode_new;
183 	bool cur_inode_new_gen;
184 	bool cur_inode_deleted;
185 	bool ignore_cur_inode;
186 	bool cur_inode_needs_verity;
187 	void *verity_descriptor;
188 
189 	u64 send_progress;
190 
191 	struct list_head new_refs;
192 	struct list_head deleted_refs;
193 
194 	struct btrfs_lru_cache name_cache;
195 
196 	/*
197 	 * The inode we are currently processing. It's not NULL only when we
198 	 * need to issue write commands for data extents from this inode.
199 	 */
200 	struct inode *cur_inode;
201 	struct file_ra_state ra;
202 	u64 page_cache_clear_start;
203 	bool clean_page_cache;
204 
205 	/*
206 	 * We process inodes by their increasing order, so if before an
207 	 * incremental send we reverse the parent/child relationship of
208 	 * directories such that a directory with a lower inode number was
209 	 * the parent of a directory with a higher inode number, and the one
210 	 * becoming the new parent got renamed too, we can't rename/move the
211 	 * directory with lower inode number when we finish processing it - we
212 	 * must process the directory with higher inode number first, then
213 	 * rename/move it and then rename/move the directory with lower inode
214 	 * number. Example follows.
215 	 *
216 	 * Tree state when the first send was performed:
217 	 *
218 	 * .
219 	 * |-- a                   (ino 257)
220 	 *     |-- b               (ino 258)
221 	 *         |
222 	 *         |
223 	 *         |-- c           (ino 259)
224 	 *         |   |-- d       (ino 260)
225 	 *         |
226 	 *         |-- c2          (ino 261)
227 	 *
228 	 * Tree state when the second (incremental) send is performed:
229 	 *
230 	 * .
231 	 * |-- a                   (ino 257)
232 	 *     |-- b               (ino 258)
233 	 *         |-- c2          (ino 261)
234 	 *             |-- d2      (ino 260)
235 	 *                 |-- cc  (ino 259)
236 	 *
237 	 * The sequence of steps that lead to the second state was:
238 	 *
239 	 * mv /a/b/c/d /a/b/c2/d2
240 	 * mv /a/b/c /a/b/c2/d2/cc
241 	 *
242 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 	 * before we move "d", which has higher inode number.
244 	 *
245 	 * So we just memorize which move/rename operations must be performed
246 	 * later when their respective parent is processed and moved/renamed.
247 	 */
248 
249 	/* Indexed by parent directory inode number. */
250 	struct rb_root pending_dir_moves;
251 
252 	/*
253 	 * Reverse index, indexed by the inode number of a directory that
254 	 * is waiting for the move/rename of its immediate parent before its
255 	 * own move/rename can be performed.
256 	 */
257 	struct rb_root waiting_dir_moves;
258 
259 	/*
260 	 * A directory that is going to be rm'ed might have a child directory
261 	 * which is in the pending directory moves index above. In this case,
262 	 * the directory can only be removed after the move/rename of its child
263 	 * is performed. Example:
264 	 *
265 	 * Parent snapshot:
266 	 *
267 	 * .                        (ino 256)
268 	 * |-- a/                   (ino 257)
269 	 *     |-- b/               (ino 258)
270 	 *         |-- c/           (ino 259)
271 	 *         |   |-- x/       (ino 260)
272 	 *         |
273 	 *         |-- y/           (ino 261)
274 	 *
275 	 * Send snapshot:
276 	 *
277 	 * .                        (ino 256)
278 	 * |-- a/                   (ino 257)
279 	 *     |-- b/               (ino 258)
280 	 *         |-- YY/          (ino 261)
281 	 *              |-- x/      (ino 260)
282 	 *
283 	 * Sequence of steps that lead to the send snapshot:
284 	 * rm -f /a/b/c/foo.txt
285 	 * mv /a/b/y /a/b/YY
286 	 * mv /a/b/c/x /a/b/YY
287 	 * rmdir /a/b/c
288 	 *
289 	 * When the child is processed, its move/rename is delayed until its
290 	 * parent is processed (as explained above), but all other operations
291 	 * like update utimes, chown, chgrp, etc, are performed and the paths
292 	 * that it uses for those operations must use the orphanized name of
293 	 * its parent (the directory we're going to rm later), so we need to
294 	 * memorize that name.
295 	 *
296 	 * Indexed by the inode number of the directory to be deleted.
297 	 */
298 	struct rb_root orphan_dirs;
299 
300 	struct rb_root rbtree_new_refs;
301 	struct rb_root rbtree_deleted_refs;
302 
303 	struct btrfs_lru_cache backref_cache;
304 	u64 backref_cache_last_reloc_trans;
305 
306 	struct btrfs_lru_cache dir_created_cache;
307 	struct btrfs_lru_cache dir_utimes_cache;
308 };
309 
310 struct pending_dir_move {
311 	struct rb_node node;
312 	struct list_head list;
313 	u64 parent_ino;
314 	u64 ino;
315 	u64 gen;
316 	struct list_head update_refs;
317 };
318 
319 struct waiting_dir_move {
320 	struct rb_node node;
321 	u64 ino;
322 	/*
323 	 * There might be some directory that could not be removed because it
324 	 * was waiting for this directory inode to be moved first. Therefore
325 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 	 */
327 	u64 rmdir_ino;
328 	u64 rmdir_gen;
329 	bool orphanized;
330 };
331 
332 struct orphan_dir_info {
333 	struct rb_node node;
334 	u64 ino;
335 	u64 gen;
336 	u64 last_dir_index_offset;
337 	u64 dir_high_seq_ino;
338 };
339 
340 struct name_cache_entry {
341 	/*
342 	 * The key in the entry is an inode number, and the generation matches
343 	 * the inode's generation.
344 	 */
345 	struct btrfs_lru_cache_entry entry;
346 	u64 parent_ino;
347 	u64 parent_gen;
348 	int ret;
349 	int need_later_update;
350 	int name_len;
351 	char name[];
352 };
353 
354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355 static_assert(offsetof(struct name_cache_entry, entry) == 0);
356 
357 #define ADVANCE							1
358 #define ADVANCE_ONLY_NEXT					-1
359 
360 enum btrfs_compare_tree_result {
361 	BTRFS_COMPARE_TREE_NEW,
362 	BTRFS_COMPARE_TREE_DELETED,
363 	BTRFS_COMPARE_TREE_CHANGED,
364 	BTRFS_COMPARE_TREE_SAME,
365 };
366 
367 __cold
368 static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 					enum btrfs_compare_tree_result result,
370 					const char *what)
371 {
372 	const char *result_string;
373 
374 	switch (result) {
375 	case BTRFS_COMPARE_TREE_NEW:
376 		result_string = "new";
377 		break;
378 	case BTRFS_COMPARE_TREE_DELETED:
379 		result_string = "deleted";
380 		break;
381 	case BTRFS_COMPARE_TREE_CHANGED:
382 		result_string = "updated";
383 		break;
384 	case BTRFS_COMPARE_TREE_SAME:
385 		ASSERT(0);
386 		result_string = "unchanged";
387 		break;
388 	default:
389 		ASSERT(0);
390 		result_string = "unexpected";
391 	}
392 
393 	btrfs_err(sctx->send_root->fs_info,
394 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 		  result_string, what, sctx->cmp_key->objectid,
396 		  sctx->send_root->root_key.objectid,
397 		  (sctx->parent_root ?
398 		   sctx->parent_root->root_key.objectid : 0));
399 }
400 
401 __maybe_unused
402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (len > PATH_MAX) {
491 		WARN_ON(1);
492 		return -ENOMEM;
493 	}
494 
495 	path_len = p->end - p->start;
496 	old_buf_len = p->buf_len;
497 
498 	/*
499 	 * Allocate to the next largest kmalloc bucket size, to let
500 	 * the fast path happen most of the time.
501 	 */
502 	len = kmalloc_size_roundup(len);
503 	/*
504 	 * First time the inline_buf does not suffice
505 	 */
506 	if (p->buf == p->inline_buf) {
507 		tmp_buf = kmalloc(len, GFP_KERNEL);
508 		if (tmp_buf)
509 			memcpy(tmp_buf, p->buf, old_buf_len);
510 	} else {
511 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 	}
513 	if (!tmp_buf)
514 		return -ENOMEM;
515 	p->buf = tmp_buf;
516 	p->buf_len = len;
517 
518 	if (p->reversed) {
519 		tmp_buf = p->buf + old_buf_len - path_len - 1;
520 		p->end = p->buf + p->buf_len - 1;
521 		p->start = p->end - path_len;
522 		memmove(p->start, tmp_buf, path_len + 1);
523 	} else {
524 		p->start = p->buf;
525 		p->end = p->start + path_len;
526 	}
527 	return 0;
528 }
529 
530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 				   char **prepared)
532 {
533 	int ret;
534 	int new_len;
535 
536 	new_len = p->end - p->start + name_len;
537 	if (p->start != p->end)
538 		new_len++;
539 	ret = fs_path_ensure_buf(p, new_len);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (p->reversed) {
544 		if (p->start != p->end)
545 			*--p->start = '/';
546 		p->start -= name_len;
547 		*prepared = p->start;
548 	} else {
549 		if (p->start != p->end)
550 			*p->end++ = '/';
551 		*prepared = p->end;
552 		p->end += name_len;
553 		*p->end = 0;
554 	}
555 
556 out:
557 	return ret;
558 }
559 
560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 	int ret;
563 	char *prepared;
564 
565 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 	if (ret < 0)
567 		goto out;
568 	memcpy(prepared, name, name_len);
569 
570 out:
571 	return ret;
572 }
573 
574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 	int ret;
577 	char *prepared;
578 
579 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 	if (ret < 0)
581 		goto out;
582 	memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585 	return ret;
586 }
587 
588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 					  struct extent_buffer *eb,
590 					  unsigned long off, int len)
591 {
592 	int ret;
593 	char *prepared;
594 
595 	ret = fs_path_prepare_for_add(p, len, &prepared);
596 	if (ret < 0)
597 		goto out;
598 
599 	read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602 	return ret;
603 }
604 
605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 	p->reversed = from->reversed;
608 	fs_path_reset(p);
609 
610 	return fs_path_add_path(p, from);
611 }
612 
613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 	char *tmp;
616 	int len;
617 
618 	if (!p->reversed)
619 		return;
620 
621 	tmp = p->start;
622 	len = p->end - p->start;
623 	p->start = p->buf;
624 	p->end = p->start + len;
625 	memmove(p->start, tmp, len + 1);
626 	p->reversed = 0;
627 }
628 
629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 	struct btrfs_path *path;
632 
633 	path = btrfs_alloc_path();
634 	if (!path)
635 		return NULL;
636 	path->search_commit_root = 1;
637 	path->skip_locking = 1;
638 	path->need_commit_sem = 1;
639 	return path;
640 }
641 
642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 	int ret;
645 	u32 pos = 0;
646 
647 	while (pos < len) {
648 		ret = kernel_write(filp, buf + pos, len - pos, off);
649 		if (ret < 0)
650 			return ret;
651 		if (ret == 0)
652 			return -EIO;
653 		pos += ret;
654 	}
655 
656 	return 0;
657 }
658 
659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 	struct btrfs_tlv_header *hdr;
662 	int total_len = sizeof(*hdr) + len;
663 	int left = sctx->send_max_size - sctx->send_size;
664 
665 	if (WARN_ON_ONCE(sctx->put_data))
666 		return -EINVAL;
667 
668 	if (unlikely(left < total_len))
669 		return -EOVERFLOW;
670 
671 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 	put_unaligned_le16(attr, &hdr->tlv_type);
673 	put_unaligned_le16(len, &hdr->tlv_len);
674 	memcpy(hdr + 1, data, len);
675 	sctx->send_size += total_len;
676 
677 	return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682 			u##bits attr, u##bits value)			\
683 	{								\
684 		__le##bits __tmp = cpu_to_le##bits(value);		\
685 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686 	}
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 			  const char *str, int len)
694 {
695 	if (len == -1)
696 		len = strlen(str);
697 	return tlv_put(sctx, attr, str, len);
698 }
699 
700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 			const u8 *uuid)
702 {
703 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 				  struct extent_buffer *eb,
708 				  struct btrfs_timespec *ts)
709 {
710 	struct btrfs_timespec bts;
711 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 	return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 	do { \
718 		ret = tlv_put(sctx, attrtype, data, attrlen); \
719 		if (ret < 0) \
720 			goto tlv_put_failure; \
721 	} while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 	do { \
725 		ret = tlv_put_u##bits(sctx, attrtype, value); \
726 		if (ret < 0) \
727 			goto tlv_put_failure; \
728 	} while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 	do { \
736 		ret = tlv_put_string(sctx, attrtype, str, len); \
737 		if (ret < 0) \
738 			goto tlv_put_failure; \
739 	} while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 	do { \
742 		ret = tlv_put_string(sctx, attrtype, p->start, \
743 			p->end - p->start); \
744 		if (ret < 0) \
745 			goto tlv_put_failure; \
746 	} while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 	do { \
749 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 		if (ret < 0) \
751 			goto tlv_put_failure; \
752 	} while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 	do { \
755 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 		if (ret < 0) \
757 			goto tlv_put_failure; \
758 	} while (0)
759 
760 static int send_header(struct send_ctx *sctx)
761 {
762 	struct btrfs_stream_header hdr;
763 
764 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 	hdr.version = cpu_to_le32(sctx->proto);
766 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 					&sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 	struct btrfs_cmd_header *hdr;
776 
777 	if (WARN_ON(!sctx->send_buf))
778 		return -EINVAL;
779 
780 	BUG_ON(sctx->send_size);
781 
782 	sctx->send_size += sizeof(*hdr);
783 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
784 	put_unaligned_le16(cmd, &hdr->cmd);
785 
786 	return 0;
787 }
788 
789 static int send_cmd(struct send_ctx *sctx)
790 {
791 	int ret;
792 	struct btrfs_cmd_header *hdr;
793 	u32 crc;
794 
795 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
796 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
797 	put_unaligned_le32(0, &hdr->crc);
798 
799 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
800 	put_unaligned_le32(crc, &hdr->crc);
801 
802 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
803 					&sctx->send_off);
804 
805 	sctx->send_size = 0;
806 	sctx->put_data = false;
807 
808 	return ret;
809 }
810 
811 /*
812  * Sends a move instruction to user space
813  */
814 static int send_rename(struct send_ctx *sctx,
815 		     struct fs_path *from, struct fs_path *to)
816 {
817 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
818 	int ret;
819 
820 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
821 
822 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
823 	if (ret < 0)
824 		goto out;
825 
826 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
827 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
828 
829 	ret = send_cmd(sctx);
830 
831 tlv_put_failure:
832 out:
833 	return ret;
834 }
835 
836 /*
837  * Sends a link instruction to user space
838  */
839 static int send_link(struct send_ctx *sctx,
840 		     struct fs_path *path, struct fs_path *lnk)
841 {
842 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
843 	int ret;
844 
845 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
846 
847 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
848 	if (ret < 0)
849 		goto out;
850 
851 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
852 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
853 
854 	ret = send_cmd(sctx);
855 
856 tlv_put_failure:
857 out:
858 	return ret;
859 }
860 
861 /*
862  * Sends an unlink instruction to user space
863  */
864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
865 {
866 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
867 	int ret;
868 
869 	btrfs_debug(fs_info, "send_unlink %s", path->start);
870 
871 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
872 	if (ret < 0)
873 		goto out;
874 
875 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
876 
877 	ret = send_cmd(sctx);
878 
879 tlv_put_failure:
880 out:
881 	return ret;
882 }
883 
884 /*
885  * Sends a rmdir instruction to user space
886  */
887 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
888 {
889 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
890 	int ret;
891 
892 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
893 
894 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
895 	if (ret < 0)
896 		goto out;
897 
898 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
899 
900 	ret = send_cmd(sctx);
901 
902 tlv_put_failure:
903 out:
904 	return ret;
905 }
906 
907 struct btrfs_inode_info {
908 	u64 size;
909 	u64 gen;
910 	u64 mode;
911 	u64 uid;
912 	u64 gid;
913 	u64 rdev;
914 	u64 fileattr;
915 	u64 nlink;
916 };
917 
918 /*
919  * Helper function to retrieve some fields from an inode item.
920  */
921 static int get_inode_info(struct btrfs_root *root, u64 ino,
922 			  struct btrfs_inode_info *info)
923 {
924 	int ret;
925 	struct btrfs_path *path;
926 	struct btrfs_inode_item *ii;
927 	struct btrfs_key key;
928 
929 	path = alloc_path_for_send();
930 	if (!path)
931 		return -ENOMEM;
932 
933 	key.objectid = ino;
934 	key.type = BTRFS_INODE_ITEM_KEY;
935 	key.offset = 0;
936 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
937 	if (ret) {
938 		if (ret > 0)
939 			ret = -ENOENT;
940 		goto out;
941 	}
942 
943 	if (!info)
944 		goto out;
945 
946 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
947 			struct btrfs_inode_item);
948 	info->size = btrfs_inode_size(path->nodes[0], ii);
949 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
950 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
951 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
952 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
953 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
954 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
955 	/*
956 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
957 	 * otherwise logically split to 32/32 parts.
958 	 */
959 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
960 
961 out:
962 	btrfs_free_path(path);
963 	return ret;
964 }
965 
966 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
967 {
968 	int ret;
969 	struct btrfs_inode_info info = { 0 };
970 
971 	ASSERT(gen);
972 
973 	ret = get_inode_info(root, ino, &info);
974 	*gen = info.gen;
975 	return ret;
976 }
977 
978 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
979 				   struct fs_path *p,
980 				   void *ctx);
981 
982 /*
983  * Helper function to iterate the entries in ONE btrfs_inode_ref or
984  * btrfs_inode_extref.
985  * The iterate callback may return a non zero value to stop iteration. This can
986  * be a negative value for error codes or 1 to simply stop it.
987  *
988  * path must point to the INODE_REF or INODE_EXTREF when called.
989  */
990 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
991 			     struct btrfs_key *found_key, int resolve,
992 			     iterate_inode_ref_t iterate, void *ctx)
993 {
994 	struct extent_buffer *eb = path->nodes[0];
995 	struct btrfs_inode_ref *iref;
996 	struct btrfs_inode_extref *extref;
997 	struct btrfs_path *tmp_path;
998 	struct fs_path *p;
999 	u32 cur = 0;
1000 	u32 total;
1001 	int slot = path->slots[0];
1002 	u32 name_len;
1003 	char *start;
1004 	int ret = 0;
1005 	int num = 0;
1006 	int index;
1007 	u64 dir;
1008 	unsigned long name_off;
1009 	unsigned long elem_size;
1010 	unsigned long ptr;
1011 
1012 	p = fs_path_alloc_reversed();
1013 	if (!p)
1014 		return -ENOMEM;
1015 
1016 	tmp_path = alloc_path_for_send();
1017 	if (!tmp_path) {
1018 		fs_path_free(p);
1019 		return -ENOMEM;
1020 	}
1021 
1022 
1023 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1024 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1025 						    struct btrfs_inode_ref);
1026 		total = btrfs_item_size(eb, slot);
1027 		elem_size = sizeof(*iref);
1028 	} else {
1029 		ptr = btrfs_item_ptr_offset(eb, slot);
1030 		total = btrfs_item_size(eb, slot);
1031 		elem_size = sizeof(*extref);
1032 	}
1033 
1034 	while (cur < total) {
1035 		fs_path_reset(p);
1036 
1037 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1038 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1039 			name_len = btrfs_inode_ref_name_len(eb, iref);
1040 			name_off = (unsigned long)(iref + 1);
1041 			index = btrfs_inode_ref_index(eb, iref);
1042 			dir = found_key->offset;
1043 		} else {
1044 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 			name_len = btrfs_inode_extref_name_len(eb, extref);
1046 			name_off = (unsigned long)&extref->name;
1047 			index = btrfs_inode_extref_index(eb, extref);
1048 			dir = btrfs_inode_extref_parent(eb, extref);
1049 		}
1050 
1051 		if (resolve) {
1052 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1053 						  name_off, eb, dir,
1054 						  p->buf, p->buf_len);
1055 			if (IS_ERR(start)) {
1056 				ret = PTR_ERR(start);
1057 				goto out;
1058 			}
1059 			if (start < p->buf) {
1060 				/* overflow , try again with larger buffer */
1061 				ret = fs_path_ensure_buf(p,
1062 						p->buf_len + p->buf - start);
1063 				if (ret < 0)
1064 					goto out;
1065 				start = btrfs_ref_to_path(root, tmp_path,
1066 							  name_len, name_off,
1067 							  eb, dir,
1068 							  p->buf, p->buf_len);
1069 				if (IS_ERR(start)) {
1070 					ret = PTR_ERR(start);
1071 					goto out;
1072 				}
1073 				BUG_ON(start < p->buf);
1074 			}
1075 			p->start = start;
1076 		} else {
1077 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1078 							     name_len);
1079 			if (ret < 0)
1080 				goto out;
1081 		}
1082 
1083 		cur += elem_size + name_len;
1084 		ret = iterate(num, dir, index, p, ctx);
1085 		if (ret)
1086 			goto out;
1087 		num++;
1088 	}
1089 
1090 out:
1091 	btrfs_free_path(tmp_path);
1092 	fs_path_free(p);
1093 	return ret;
1094 }
1095 
1096 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1097 				  const char *name, int name_len,
1098 				  const char *data, int data_len,
1099 				  void *ctx);
1100 
1101 /*
1102  * Helper function to iterate the entries in ONE btrfs_dir_item.
1103  * The iterate callback may return a non zero value to stop iteration. This can
1104  * be a negative value for error codes or 1 to simply stop it.
1105  *
1106  * path must point to the dir item when called.
1107  */
1108 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1109 			    iterate_dir_item_t iterate, void *ctx)
1110 {
1111 	int ret = 0;
1112 	struct extent_buffer *eb;
1113 	struct btrfs_dir_item *di;
1114 	struct btrfs_key di_key;
1115 	char *buf = NULL;
1116 	int buf_len;
1117 	u32 name_len;
1118 	u32 data_len;
1119 	u32 cur;
1120 	u32 len;
1121 	u32 total;
1122 	int slot;
1123 	int num;
1124 
1125 	/*
1126 	 * Start with a small buffer (1 page). If later we end up needing more
1127 	 * space, which can happen for xattrs on a fs with a leaf size greater
1128 	 * then the page size, attempt to increase the buffer. Typically xattr
1129 	 * values are small.
1130 	 */
1131 	buf_len = PATH_MAX;
1132 	buf = kmalloc(buf_len, GFP_KERNEL);
1133 	if (!buf) {
1134 		ret = -ENOMEM;
1135 		goto out;
1136 	}
1137 
1138 	eb = path->nodes[0];
1139 	slot = path->slots[0];
1140 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1141 	cur = 0;
1142 	len = 0;
1143 	total = btrfs_item_size(eb, slot);
1144 
1145 	num = 0;
1146 	while (cur < total) {
1147 		name_len = btrfs_dir_name_len(eb, di);
1148 		data_len = btrfs_dir_data_len(eb, di);
1149 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1150 
1151 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1152 			if (name_len > XATTR_NAME_MAX) {
1153 				ret = -ENAMETOOLONG;
1154 				goto out;
1155 			}
1156 			if (name_len + data_len >
1157 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1158 				ret = -E2BIG;
1159 				goto out;
1160 			}
1161 		} else {
1162 			/*
1163 			 * Path too long
1164 			 */
1165 			if (name_len + data_len > PATH_MAX) {
1166 				ret = -ENAMETOOLONG;
1167 				goto out;
1168 			}
1169 		}
1170 
1171 		if (name_len + data_len > buf_len) {
1172 			buf_len = name_len + data_len;
1173 			if (is_vmalloc_addr(buf)) {
1174 				vfree(buf);
1175 				buf = NULL;
1176 			} else {
1177 				char *tmp = krealloc(buf, buf_len,
1178 						GFP_KERNEL | __GFP_NOWARN);
1179 
1180 				if (!tmp)
1181 					kfree(buf);
1182 				buf = tmp;
1183 			}
1184 			if (!buf) {
1185 				buf = kvmalloc(buf_len, GFP_KERNEL);
1186 				if (!buf) {
1187 					ret = -ENOMEM;
1188 					goto out;
1189 				}
1190 			}
1191 		}
1192 
1193 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1194 				name_len + data_len);
1195 
1196 		len = sizeof(*di) + name_len + data_len;
1197 		di = (struct btrfs_dir_item *)((char *)di + len);
1198 		cur += len;
1199 
1200 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1201 			      data_len, ctx);
1202 		if (ret < 0)
1203 			goto out;
1204 		if (ret) {
1205 			ret = 0;
1206 			goto out;
1207 		}
1208 
1209 		num++;
1210 	}
1211 
1212 out:
1213 	kvfree(buf);
1214 	return ret;
1215 }
1216 
1217 static int __copy_first_ref(int num, u64 dir, int index,
1218 			    struct fs_path *p, void *ctx)
1219 {
1220 	int ret;
1221 	struct fs_path *pt = ctx;
1222 
1223 	ret = fs_path_copy(pt, p);
1224 	if (ret < 0)
1225 		return ret;
1226 
1227 	/* we want the first only */
1228 	return 1;
1229 }
1230 
1231 /*
1232  * Retrieve the first path of an inode. If an inode has more then one
1233  * ref/hardlink, this is ignored.
1234  */
1235 static int get_inode_path(struct btrfs_root *root,
1236 			  u64 ino, struct fs_path *path)
1237 {
1238 	int ret;
1239 	struct btrfs_key key, found_key;
1240 	struct btrfs_path *p;
1241 
1242 	p = alloc_path_for_send();
1243 	if (!p)
1244 		return -ENOMEM;
1245 
1246 	fs_path_reset(path);
1247 
1248 	key.objectid = ino;
1249 	key.type = BTRFS_INODE_REF_KEY;
1250 	key.offset = 0;
1251 
1252 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1253 	if (ret < 0)
1254 		goto out;
1255 	if (ret) {
1256 		ret = 1;
1257 		goto out;
1258 	}
1259 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1260 	if (found_key.objectid != ino ||
1261 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1262 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1263 		ret = -ENOENT;
1264 		goto out;
1265 	}
1266 
1267 	ret = iterate_inode_ref(root, p, &found_key, 1,
1268 				__copy_first_ref, path);
1269 	if (ret < 0)
1270 		goto out;
1271 	ret = 0;
1272 
1273 out:
1274 	btrfs_free_path(p);
1275 	return ret;
1276 }
1277 
1278 struct backref_ctx {
1279 	struct send_ctx *sctx;
1280 
1281 	/* number of total found references */
1282 	u64 found;
1283 
1284 	/*
1285 	 * used for clones found in send_root. clones found behind cur_objectid
1286 	 * and cur_offset are not considered as allowed clones.
1287 	 */
1288 	u64 cur_objectid;
1289 	u64 cur_offset;
1290 
1291 	/* may be truncated in case it's the last extent in a file */
1292 	u64 extent_len;
1293 
1294 	/* The bytenr the file extent item we are processing refers to. */
1295 	u64 bytenr;
1296 	/* The owner (root id) of the data backref for the current extent. */
1297 	u64 backref_owner;
1298 	/* The offset of the data backref for the current extent. */
1299 	u64 backref_offset;
1300 };
1301 
1302 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1303 {
1304 	u64 root = (u64)(uintptr_t)key;
1305 	const struct clone_root *cr = elt;
1306 
1307 	if (root < cr->root->root_key.objectid)
1308 		return -1;
1309 	if (root > cr->root->root_key.objectid)
1310 		return 1;
1311 	return 0;
1312 }
1313 
1314 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1315 {
1316 	const struct clone_root *cr1 = e1;
1317 	const struct clone_root *cr2 = e2;
1318 
1319 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1320 		return -1;
1321 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1322 		return 1;
1323 	return 0;
1324 }
1325 
1326 /*
1327  * Called for every backref that is found for the current extent.
1328  * Results are collected in sctx->clone_roots->ino/offset.
1329  */
1330 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1331 			    void *ctx_)
1332 {
1333 	struct backref_ctx *bctx = ctx_;
1334 	struct clone_root *clone_root;
1335 
1336 	/* First check if the root is in the list of accepted clone sources */
1337 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1338 			     bctx->sctx->clone_roots_cnt,
1339 			     sizeof(struct clone_root),
1340 			     __clone_root_cmp_bsearch);
1341 	if (!clone_root)
1342 		return 0;
1343 
1344 	/* This is our own reference, bail out as we can't clone from it. */
1345 	if (clone_root->root == bctx->sctx->send_root &&
1346 	    ino == bctx->cur_objectid &&
1347 	    offset == bctx->cur_offset)
1348 		return 0;
1349 
1350 	/*
1351 	 * Make sure we don't consider clones from send_root that are
1352 	 * behind the current inode/offset.
1353 	 */
1354 	if (clone_root->root == bctx->sctx->send_root) {
1355 		/*
1356 		 * If the source inode was not yet processed we can't issue a
1357 		 * clone operation, as the source extent does not exist yet at
1358 		 * the destination of the stream.
1359 		 */
1360 		if (ino > bctx->cur_objectid)
1361 			return 0;
1362 		/*
1363 		 * We clone from the inode currently being sent as long as the
1364 		 * source extent is already processed, otherwise we could try
1365 		 * to clone from an extent that does not exist yet at the
1366 		 * destination of the stream.
1367 		 */
1368 		if (ino == bctx->cur_objectid &&
1369 		    offset + bctx->extent_len >
1370 		    bctx->sctx->cur_inode_next_write_offset)
1371 			return 0;
1372 	}
1373 
1374 	bctx->found++;
1375 	clone_root->found_ref = true;
1376 
1377 	/*
1378 	 * If the given backref refers to a file extent item with a larger
1379 	 * number of bytes than what we found before, use the new one so that
1380 	 * we clone more optimally and end up doing less writes and getting
1381 	 * less exclusive, non-shared extents at the destination.
1382 	 */
1383 	if (num_bytes > clone_root->num_bytes) {
1384 		clone_root->ino = ino;
1385 		clone_root->offset = offset;
1386 		clone_root->num_bytes = num_bytes;
1387 
1388 		/*
1389 		 * Found a perfect candidate, so there's no need to continue
1390 		 * backref walking.
1391 		 */
1392 		if (num_bytes >= bctx->extent_len)
1393 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1400 				 const u64 **root_ids_ret, int *root_count_ret)
1401 {
1402 	struct backref_ctx *bctx = ctx;
1403 	struct send_ctx *sctx = bctx->sctx;
1404 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1405 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1406 	struct btrfs_lru_cache_entry *raw_entry;
1407 	struct backref_cache_entry *entry;
1408 
1409 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1410 		return false;
1411 
1412 	/*
1413 	 * If relocation happened since we first filled the cache, then we must
1414 	 * empty the cache and can not use it, because even though we operate on
1415 	 * read-only roots, their leaves and nodes may have been reallocated and
1416 	 * now be used for different nodes/leaves of the same tree or some other
1417 	 * tree.
1418 	 *
1419 	 * We are called from iterate_extent_inodes() while either holding a
1420 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1421 	 * to take any lock here.
1422 	 */
1423 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1424 		btrfs_lru_cache_clear(&sctx->backref_cache);
1425 		return false;
1426 	}
1427 
1428 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1429 	if (!raw_entry)
1430 		return false;
1431 
1432 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1433 	*root_ids_ret = entry->root_ids;
1434 	*root_count_ret = entry->num_roots;
1435 
1436 	return true;
1437 }
1438 
1439 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1440 				void *ctx)
1441 {
1442 	struct backref_ctx *bctx = ctx;
1443 	struct send_ctx *sctx = bctx->sctx;
1444 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1445 	struct backref_cache_entry *new_entry;
1446 	struct ulist_iterator uiter;
1447 	struct ulist_node *node;
1448 	int ret;
1449 
1450 	/*
1451 	 * We're called while holding a transaction handle or while holding
1452 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1453 	 * NOFS allocation.
1454 	 */
1455 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1456 	/* No worries, cache is optional. */
1457 	if (!new_entry)
1458 		return;
1459 
1460 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1461 	new_entry->entry.gen = 0;
1462 	new_entry->num_roots = 0;
1463 	ULIST_ITER_INIT(&uiter);
1464 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1465 		const u64 root_id = node->val;
1466 		struct clone_root *root;
1467 
1468 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1469 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1470 			       __clone_root_cmp_bsearch);
1471 		if (!root)
1472 			continue;
1473 
1474 		/* Too many roots, just exit, no worries as caching is optional. */
1475 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1476 			kfree(new_entry);
1477 			return;
1478 		}
1479 
1480 		new_entry->root_ids[new_entry->num_roots] = root_id;
1481 		new_entry->num_roots++;
1482 	}
1483 
1484 	/*
1485 	 * We may have not added any roots to the new cache entry, which means
1486 	 * none of the roots is part of the list of roots from which we are
1487 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1488 	 * backref walking to determine which roots have a path to the leaf.
1489 	 *
1490 	 * Also use GFP_NOFS because we're called while holding a transaction
1491 	 * handle or while holding fs_info->commit_root_sem.
1492 	 */
1493 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1494 				    GFP_NOFS);
1495 	ASSERT(ret == 0 || ret == -ENOMEM);
1496 	if (ret) {
1497 		/* Caching is optional, no worries. */
1498 		kfree(new_entry);
1499 		return;
1500 	}
1501 
1502 	/*
1503 	 * We are called from iterate_extent_inodes() while either holding a
1504 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1505 	 * to take any lock here.
1506 	 */
1507 	if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1508 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1509 }
1510 
1511 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1512 			     const struct extent_buffer *leaf, void *ctx)
1513 {
1514 	const u64 refs = btrfs_extent_refs(leaf, ei);
1515 	const struct backref_ctx *bctx = ctx;
1516 	const struct send_ctx *sctx = bctx->sctx;
1517 
1518 	if (bytenr == bctx->bytenr) {
1519 		const u64 flags = btrfs_extent_flags(leaf, ei);
1520 
1521 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1522 			return -EUCLEAN;
1523 
1524 		/*
1525 		 * If we have only one reference and only the send root as a
1526 		 * clone source - meaning no clone roots were given in the
1527 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1528 		 * it's our reference and there's no point in doing backref
1529 		 * walking which is expensive, so exit early.
1530 		 */
1531 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1532 			return -ENOENT;
1533 	}
1534 
1535 	/*
1536 	 * Backreference walking (iterate_extent_inodes() below) is currently
1537 	 * too expensive when an extent has a large number of references, both
1538 	 * in time spent and used memory. So for now just fallback to write
1539 	 * operations instead of clone operations when an extent has more than
1540 	 * a certain amount of references.
1541 	 */
1542 	if (refs > SEND_MAX_EXTENT_REFS)
1543 		return -ENOENT;
1544 
1545 	return 0;
1546 }
1547 
1548 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1549 {
1550 	const struct backref_ctx *bctx = ctx;
1551 
1552 	if (ino == bctx->cur_objectid &&
1553 	    root == bctx->backref_owner &&
1554 	    offset == bctx->backref_offset)
1555 		return true;
1556 
1557 	return false;
1558 }
1559 
1560 /*
1561  * Given an inode, offset and extent item, it finds a good clone for a clone
1562  * instruction. Returns -ENOENT when none could be found. The function makes
1563  * sure that the returned clone is usable at the point where sending is at the
1564  * moment. This means, that no clones are accepted which lie behind the current
1565  * inode+offset.
1566  *
1567  * path must point to the extent item when called.
1568  */
1569 static int find_extent_clone(struct send_ctx *sctx,
1570 			     struct btrfs_path *path,
1571 			     u64 ino, u64 data_offset,
1572 			     u64 ino_size,
1573 			     struct clone_root **found)
1574 {
1575 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1576 	int ret;
1577 	int extent_type;
1578 	u64 logical;
1579 	u64 disk_byte;
1580 	u64 num_bytes;
1581 	struct btrfs_file_extent_item *fi;
1582 	struct extent_buffer *eb = path->nodes[0];
1583 	struct backref_ctx backref_ctx = { 0 };
1584 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1585 	struct clone_root *cur_clone_root;
1586 	int compressed;
1587 	u32 i;
1588 
1589 	/*
1590 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1591 	 * so we don't do anything here because clone operations can not clone
1592 	 * to a range beyond i_size without increasing the i_size of the
1593 	 * destination inode.
1594 	 */
1595 	if (data_offset >= ino_size)
1596 		return 0;
1597 
1598 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1599 	extent_type = btrfs_file_extent_type(eb, fi);
1600 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1601 		return -ENOENT;
1602 
1603 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1604 	if (disk_byte == 0)
1605 		return -ENOENT;
1606 
1607 	compressed = btrfs_file_extent_compression(eb, fi);
1608 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1609 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1610 
1611 	/*
1612 	 * Setup the clone roots.
1613 	 */
1614 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1615 		cur_clone_root = sctx->clone_roots + i;
1616 		cur_clone_root->ino = (u64)-1;
1617 		cur_clone_root->offset = 0;
1618 		cur_clone_root->num_bytes = 0;
1619 		cur_clone_root->found_ref = false;
1620 	}
1621 
1622 	backref_ctx.sctx = sctx;
1623 	backref_ctx.cur_objectid = ino;
1624 	backref_ctx.cur_offset = data_offset;
1625 	backref_ctx.bytenr = disk_byte;
1626 	/*
1627 	 * Use the header owner and not the send root's id, because in case of a
1628 	 * snapshot we can have shared subtrees.
1629 	 */
1630 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1631 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1632 
1633 	/*
1634 	 * The last extent of a file may be too large due to page alignment.
1635 	 * We need to adjust extent_len in this case so that the checks in
1636 	 * iterate_backrefs() work.
1637 	 */
1638 	if (data_offset + num_bytes >= ino_size)
1639 		backref_ctx.extent_len = ino_size - data_offset;
1640 	else
1641 		backref_ctx.extent_len = num_bytes;
1642 
1643 	/*
1644 	 * Now collect all backrefs.
1645 	 */
1646 	backref_walk_ctx.bytenr = disk_byte;
1647 	if (compressed == BTRFS_COMPRESS_NONE)
1648 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1649 	backref_walk_ctx.fs_info = fs_info;
1650 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1651 	backref_walk_ctx.cache_store = store_backref_cache;
1652 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1653 	backref_walk_ctx.check_extent_item = check_extent_item;
1654 	backref_walk_ctx.user_ctx = &backref_ctx;
1655 
1656 	/*
1657 	 * If have a single clone root, then it's the send root and we can tell
1658 	 * the backref walking code to skip our own backref and not resolve it,
1659 	 * since we can not use it for cloning - the source and destination
1660 	 * ranges can't overlap and in case the leaf is shared through a subtree
1661 	 * due to snapshots, we can't use those other roots since they are not
1662 	 * in the list of clone roots.
1663 	 */
1664 	if (sctx->clone_roots_cnt == 1)
1665 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1666 
1667 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1668 				    &backref_ctx);
1669 	if (ret < 0)
1670 		return ret;
1671 
1672 	down_read(&fs_info->commit_root_sem);
1673 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1674 		/*
1675 		 * A transaction commit for a transaction in which block group
1676 		 * relocation was done just happened.
1677 		 * The disk_bytenr of the file extent item we processed is
1678 		 * possibly stale, referring to the extent's location before
1679 		 * relocation. So act as if we haven't found any clone sources
1680 		 * and fallback to write commands, which will read the correct
1681 		 * data from the new extent location. Otherwise we will fail
1682 		 * below because we haven't found our own back reference or we
1683 		 * could be getting incorrect sources in case the old extent
1684 		 * was already reallocated after the relocation.
1685 		 */
1686 		up_read(&fs_info->commit_root_sem);
1687 		return -ENOENT;
1688 	}
1689 	up_read(&fs_info->commit_root_sem);
1690 
1691 	btrfs_debug(fs_info,
1692 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1693 		    data_offset, ino, num_bytes, logical);
1694 
1695 	if (!backref_ctx.found) {
1696 		btrfs_debug(fs_info, "no clones found");
1697 		return -ENOENT;
1698 	}
1699 
1700 	cur_clone_root = NULL;
1701 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1702 		struct clone_root *clone_root = &sctx->clone_roots[i];
1703 
1704 		if (!clone_root->found_ref)
1705 			continue;
1706 
1707 		/*
1708 		 * Choose the root from which we can clone more bytes, to
1709 		 * minimize write operations and therefore have more extent
1710 		 * sharing at the destination (the same as in the source).
1711 		 */
1712 		if (!cur_clone_root ||
1713 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1714 			cur_clone_root = clone_root;
1715 
1716 			/*
1717 			 * We found an optimal clone candidate (any inode from
1718 			 * any root is fine), so we're done.
1719 			 */
1720 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1721 				break;
1722 		}
1723 	}
1724 
1725 	if (cur_clone_root) {
1726 		*found = cur_clone_root;
1727 		ret = 0;
1728 	} else {
1729 		ret = -ENOENT;
1730 	}
1731 
1732 	return ret;
1733 }
1734 
1735 static int read_symlink(struct btrfs_root *root,
1736 			u64 ino,
1737 			struct fs_path *dest)
1738 {
1739 	int ret;
1740 	struct btrfs_path *path;
1741 	struct btrfs_key key;
1742 	struct btrfs_file_extent_item *ei;
1743 	u8 type;
1744 	u8 compression;
1745 	unsigned long off;
1746 	int len;
1747 
1748 	path = alloc_path_for_send();
1749 	if (!path)
1750 		return -ENOMEM;
1751 
1752 	key.objectid = ino;
1753 	key.type = BTRFS_EXTENT_DATA_KEY;
1754 	key.offset = 0;
1755 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1756 	if (ret < 0)
1757 		goto out;
1758 	if (ret) {
1759 		/*
1760 		 * An empty symlink inode. Can happen in rare error paths when
1761 		 * creating a symlink (transaction committed before the inode
1762 		 * eviction handler removed the symlink inode items and a crash
1763 		 * happened in between or the subvol was snapshoted in between).
1764 		 * Print an informative message to dmesg/syslog so that the user
1765 		 * can delete the symlink.
1766 		 */
1767 		btrfs_err(root->fs_info,
1768 			  "Found empty symlink inode %llu at root %llu",
1769 			  ino, root->root_key.objectid);
1770 		ret = -EIO;
1771 		goto out;
1772 	}
1773 
1774 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 			struct btrfs_file_extent_item);
1776 	type = btrfs_file_extent_type(path->nodes[0], ei);
1777 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1778 		ret = -EUCLEAN;
1779 		btrfs_crit(root->fs_info,
1780 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1781 			   ino, btrfs_root_id(root), type);
1782 		goto out;
1783 	}
1784 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1785 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1786 		ret = -EUCLEAN;
1787 		btrfs_crit(root->fs_info,
1788 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1789 			   ino, btrfs_root_id(root), compression);
1790 		goto out;
1791 	}
1792 
1793 	off = btrfs_file_extent_inline_start(ei);
1794 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1795 
1796 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1797 
1798 out:
1799 	btrfs_free_path(path);
1800 	return ret;
1801 }
1802 
1803 /*
1804  * Helper function to generate a file name that is unique in the root of
1805  * send_root and parent_root. This is used to generate names for orphan inodes.
1806  */
1807 static int gen_unique_name(struct send_ctx *sctx,
1808 			   u64 ino, u64 gen,
1809 			   struct fs_path *dest)
1810 {
1811 	int ret = 0;
1812 	struct btrfs_path *path;
1813 	struct btrfs_dir_item *di;
1814 	char tmp[64];
1815 	int len;
1816 	u64 idx = 0;
1817 
1818 	path = alloc_path_for_send();
1819 	if (!path)
1820 		return -ENOMEM;
1821 
1822 	while (1) {
1823 		struct fscrypt_str tmp_name;
1824 
1825 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1826 				ino, gen, idx);
1827 		ASSERT(len < sizeof(tmp));
1828 		tmp_name.name = tmp;
1829 		tmp_name.len = strlen(tmp);
1830 
1831 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1832 				path, BTRFS_FIRST_FREE_OBJECTID,
1833 				&tmp_name, 0);
1834 		btrfs_release_path(path);
1835 		if (IS_ERR(di)) {
1836 			ret = PTR_ERR(di);
1837 			goto out;
1838 		}
1839 		if (di) {
1840 			/* not unique, try again */
1841 			idx++;
1842 			continue;
1843 		}
1844 
1845 		if (!sctx->parent_root) {
1846 			/* unique */
1847 			ret = 0;
1848 			break;
1849 		}
1850 
1851 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1852 				path, BTRFS_FIRST_FREE_OBJECTID,
1853 				&tmp_name, 0);
1854 		btrfs_release_path(path);
1855 		if (IS_ERR(di)) {
1856 			ret = PTR_ERR(di);
1857 			goto out;
1858 		}
1859 		if (di) {
1860 			/* not unique, try again */
1861 			idx++;
1862 			continue;
1863 		}
1864 		/* unique */
1865 		break;
1866 	}
1867 
1868 	ret = fs_path_add(dest, tmp, strlen(tmp));
1869 
1870 out:
1871 	btrfs_free_path(path);
1872 	return ret;
1873 }
1874 
1875 enum inode_state {
1876 	inode_state_no_change,
1877 	inode_state_will_create,
1878 	inode_state_did_create,
1879 	inode_state_will_delete,
1880 	inode_state_did_delete,
1881 };
1882 
1883 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1884 			       u64 *send_gen, u64 *parent_gen)
1885 {
1886 	int ret;
1887 	int left_ret;
1888 	int right_ret;
1889 	u64 left_gen;
1890 	u64 right_gen = 0;
1891 	struct btrfs_inode_info info;
1892 
1893 	ret = get_inode_info(sctx->send_root, ino, &info);
1894 	if (ret < 0 && ret != -ENOENT)
1895 		goto out;
1896 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1897 	left_gen = info.gen;
1898 	if (send_gen)
1899 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1900 
1901 	if (!sctx->parent_root) {
1902 		right_ret = -ENOENT;
1903 	} else {
1904 		ret = get_inode_info(sctx->parent_root, ino, &info);
1905 		if (ret < 0 && ret != -ENOENT)
1906 			goto out;
1907 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1908 		right_gen = info.gen;
1909 		if (parent_gen)
1910 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1911 	}
1912 
1913 	if (!left_ret && !right_ret) {
1914 		if (left_gen == gen && right_gen == gen) {
1915 			ret = inode_state_no_change;
1916 		} else if (left_gen == gen) {
1917 			if (ino < sctx->send_progress)
1918 				ret = inode_state_did_create;
1919 			else
1920 				ret = inode_state_will_create;
1921 		} else if (right_gen == gen) {
1922 			if (ino < sctx->send_progress)
1923 				ret = inode_state_did_delete;
1924 			else
1925 				ret = inode_state_will_delete;
1926 		} else  {
1927 			ret = -ENOENT;
1928 		}
1929 	} else if (!left_ret) {
1930 		if (left_gen == gen) {
1931 			if (ino < sctx->send_progress)
1932 				ret = inode_state_did_create;
1933 			else
1934 				ret = inode_state_will_create;
1935 		} else {
1936 			ret = -ENOENT;
1937 		}
1938 	} else if (!right_ret) {
1939 		if (right_gen == gen) {
1940 			if (ino < sctx->send_progress)
1941 				ret = inode_state_did_delete;
1942 			else
1943 				ret = inode_state_will_delete;
1944 		} else {
1945 			ret = -ENOENT;
1946 		}
1947 	} else {
1948 		ret = -ENOENT;
1949 	}
1950 
1951 out:
1952 	return ret;
1953 }
1954 
1955 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1956 			     u64 *send_gen, u64 *parent_gen)
1957 {
1958 	int ret;
1959 
1960 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1961 		return 1;
1962 
1963 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1964 	if (ret < 0)
1965 		goto out;
1966 
1967 	if (ret == inode_state_no_change ||
1968 	    ret == inode_state_did_create ||
1969 	    ret == inode_state_will_delete)
1970 		ret = 1;
1971 	else
1972 		ret = 0;
1973 
1974 out:
1975 	return ret;
1976 }
1977 
1978 /*
1979  * Helper function to lookup a dir item in a dir.
1980  */
1981 static int lookup_dir_item_inode(struct btrfs_root *root,
1982 				 u64 dir, const char *name, int name_len,
1983 				 u64 *found_inode)
1984 {
1985 	int ret = 0;
1986 	struct btrfs_dir_item *di;
1987 	struct btrfs_key key;
1988 	struct btrfs_path *path;
1989 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1990 
1991 	path = alloc_path_for_send();
1992 	if (!path)
1993 		return -ENOMEM;
1994 
1995 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1996 	if (IS_ERR_OR_NULL(di)) {
1997 		ret = di ? PTR_ERR(di) : -ENOENT;
1998 		goto out;
1999 	}
2000 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2001 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2002 		ret = -ENOENT;
2003 		goto out;
2004 	}
2005 	*found_inode = key.objectid;
2006 
2007 out:
2008 	btrfs_free_path(path);
2009 	return ret;
2010 }
2011 
2012 /*
2013  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2014  * generation of the parent dir and the name of the dir entry.
2015  */
2016 static int get_first_ref(struct btrfs_root *root, u64 ino,
2017 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2018 {
2019 	int ret;
2020 	struct btrfs_key key;
2021 	struct btrfs_key found_key;
2022 	struct btrfs_path *path;
2023 	int len;
2024 	u64 parent_dir;
2025 
2026 	path = alloc_path_for_send();
2027 	if (!path)
2028 		return -ENOMEM;
2029 
2030 	key.objectid = ino;
2031 	key.type = BTRFS_INODE_REF_KEY;
2032 	key.offset = 0;
2033 
2034 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2035 	if (ret < 0)
2036 		goto out;
2037 	if (!ret)
2038 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2039 				path->slots[0]);
2040 	if (ret || found_key.objectid != ino ||
2041 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2042 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2043 		ret = -ENOENT;
2044 		goto out;
2045 	}
2046 
2047 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2048 		struct btrfs_inode_ref *iref;
2049 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2050 				      struct btrfs_inode_ref);
2051 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2052 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2053 						     (unsigned long)(iref + 1),
2054 						     len);
2055 		parent_dir = found_key.offset;
2056 	} else {
2057 		struct btrfs_inode_extref *extref;
2058 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2059 					struct btrfs_inode_extref);
2060 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2061 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2062 					(unsigned long)&extref->name, len);
2063 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2064 	}
2065 	if (ret < 0)
2066 		goto out;
2067 	btrfs_release_path(path);
2068 
2069 	if (dir_gen) {
2070 		ret = get_inode_gen(root, parent_dir, dir_gen);
2071 		if (ret < 0)
2072 			goto out;
2073 	}
2074 
2075 	*dir = parent_dir;
2076 
2077 out:
2078 	btrfs_free_path(path);
2079 	return ret;
2080 }
2081 
2082 static int is_first_ref(struct btrfs_root *root,
2083 			u64 ino, u64 dir,
2084 			const char *name, int name_len)
2085 {
2086 	int ret;
2087 	struct fs_path *tmp_name;
2088 	u64 tmp_dir;
2089 
2090 	tmp_name = fs_path_alloc();
2091 	if (!tmp_name)
2092 		return -ENOMEM;
2093 
2094 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2095 	if (ret < 0)
2096 		goto out;
2097 
2098 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2099 		ret = 0;
2100 		goto out;
2101 	}
2102 
2103 	ret = !memcmp(tmp_name->start, name, name_len);
2104 
2105 out:
2106 	fs_path_free(tmp_name);
2107 	return ret;
2108 }
2109 
2110 /*
2111  * Used by process_recorded_refs to determine if a new ref would overwrite an
2112  * already existing ref. In case it detects an overwrite, it returns the
2113  * inode/gen in who_ino/who_gen.
2114  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2115  * to make sure later references to the overwritten inode are possible.
2116  * Orphanizing is however only required for the first ref of an inode.
2117  * process_recorded_refs does an additional is_first_ref check to see if
2118  * orphanizing is really required.
2119  */
2120 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2121 			      const char *name, int name_len,
2122 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2123 {
2124 	int ret;
2125 	u64 parent_root_dir_gen;
2126 	u64 other_inode = 0;
2127 	struct btrfs_inode_info info;
2128 
2129 	if (!sctx->parent_root)
2130 		return 0;
2131 
2132 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2133 	if (ret <= 0)
2134 		return 0;
2135 
2136 	/*
2137 	 * If we have a parent root we need to verify that the parent dir was
2138 	 * not deleted and then re-created, if it was then we have no overwrite
2139 	 * and we can just unlink this entry.
2140 	 *
2141 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2142 	 * parent root.
2143 	 */
2144 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2145 	    parent_root_dir_gen != dir_gen)
2146 		return 0;
2147 
2148 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2149 				    &other_inode);
2150 	if (ret == -ENOENT)
2151 		return 0;
2152 	else if (ret < 0)
2153 		return ret;
2154 
2155 	/*
2156 	 * Check if the overwritten ref was already processed. If yes, the ref
2157 	 * was already unlinked/moved, so we can safely assume that we will not
2158 	 * overwrite anything at this point in time.
2159 	 */
2160 	if (other_inode > sctx->send_progress ||
2161 	    is_waiting_for_move(sctx, other_inode)) {
2162 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2163 		if (ret < 0)
2164 			return ret;
2165 
2166 		*who_ino = other_inode;
2167 		*who_gen = info.gen;
2168 		*who_mode = info.mode;
2169 		return 1;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 /*
2176  * Checks if the ref was overwritten by an already processed inode. This is
2177  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2178  * thus the orphan name needs be used.
2179  * process_recorded_refs also uses it to avoid unlinking of refs that were
2180  * overwritten.
2181  */
2182 static int did_overwrite_ref(struct send_ctx *sctx,
2183 			    u64 dir, u64 dir_gen,
2184 			    u64 ino, u64 ino_gen,
2185 			    const char *name, int name_len)
2186 {
2187 	int ret;
2188 	u64 ow_inode;
2189 	u64 ow_gen = 0;
2190 	u64 send_root_dir_gen;
2191 
2192 	if (!sctx->parent_root)
2193 		return 0;
2194 
2195 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2196 	if (ret <= 0)
2197 		return ret;
2198 
2199 	/*
2200 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2201 	 * send root.
2202 	 */
2203 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2204 		return 0;
2205 
2206 	/* check if the ref was overwritten by another ref */
2207 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2208 				    &ow_inode);
2209 	if (ret == -ENOENT) {
2210 		/* was never and will never be overwritten */
2211 		return 0;
2212 	} else if (ret < 0) {
2213 		return ret;
2214 	}
2215 
2216 	if (ow_inode == ino) {
2217 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2218 		if (ret < 0)
2219 			return ret;
2220 
2221 		/* It's the same inode, so no overwrite happened. */
2222 		if (ow_gen == ino_gen)
2223 			return 0;
2224 	}
2225 
2226 	/*
2227 	 * We know that it is or will be overwritten. Check this now.
2228 	 * The current inode being processed might have been the one that caused
2229 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2230 	 * the current inode being processed.
2231 	 */
2232 	if (ow_inode < sctx->send_progress)
2233 		return 1;
2234 
2235 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2236 		if (ow_gen == 0) {
2237 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2238 			if (ret < 0)
2239 				return ret;
2240 		}
2241 		if (ow_gen == sctx->cur_inode_gen)
2242 			return 1;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 /*
2249  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2250  * that got overwritten. This is used by process_recorded_refs to determine
2251  * if it has to use the path as returned by get_cur_path or the orphan name.
2252  */
2253 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2254 {
2255 	int ret = 0;
2256 	struct fs_path *name = NULL;
2257 	u64 dir;
2258 	u64 dir_gen;
2259 
2260 	if (!sctx->parent_root)
2261 		goto out;
2262 
2263 	name = fs_path_alloc();
2264 	if (!name)
2265 		return -ENOMEM;
2266 
2267 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2268 	if (ret < 0)
2269 		goto out;
2270 
2271 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2272 			name->start, fs_path_len(name));
2273 
2274 out:
2275 	fs_path_free(name);
2276 	return ret;
2277 }
2278 
2279 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2280 							 u64 ino, u64 gen)
2281 {
2282 	struct btrfs_lru_cache_entry *entry;
2283 
2284 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2285 	if (!entry)
2286 		return NULL;
2287 
2288 	return container_of(entry, struct name_cache_entry, entry);
2289 }
2290 
2291 /*
2292  * Used by get_cur_path for each ref up to the root.
2293  * Returns 0 if it succeeded.
2294  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2295  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2296  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2297  * Returns <0 in case of error.
2298  */
2299 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2300 				     u64 ino, u64 gen,
2301 				     u64 *parent_ino,
2302 				     u64 *parent_gen,
2303 				     struct fs_path *dest)
2304 {
2305 	int ret;
2306 	int nce_ret;
2307 	struct name_cache_entry *nce;
2308 
2309 	/*
2310 	 * First check if we already did a call to this function with the same
2311 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2312 	 * return the cached result.
2313 	 */
2314 	nce = name_cache_search(sctx, ino, gen);
2315 	if (nce) {
2316 		if (ino < sctx->send_progress && nce->need_later_update) {
2317 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2318 			nce = NULL;
2319 		} else {
2320 			*parent_ino = nce->parent_ino;
2321 			*parent_gen = nce->parent_gen;
2322 			ret = fs_path_add(dest, nce->name, nce->name_len);
2323 			if (ret < 0)
2324 				goto out;
2325 			ret = nce->ret;
2326 			goto out;
2327 		}
2328 	}
2329 
2330 	/*
2331 	 * If the inode is not existent yet, add the orphan name and return 1.
2332 	 * This should only happen for the parent dir that we determine in
2333 	 * record_new_ref_if_needed().
2334 	 */
2335 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2336 	if (ret < 0)
2337 		goto out;
2338 
2339 	if (!ret) {
2340 		ret = gen_unique_name(sctx, ino, gen, dest);
2341 		if (ret < 0)
2342 			goto out;
2343 		ret = 1;
2344 		goto out_cache;
2345 	}
2346 
2347 	/*
2348 	 * Depending on whether the inode was already processed or not, use
2349 	 * send_root or parent_root for ref lookup.
2350 	 */
2351 	if (ino < sctx->send_progress)
2352 		ret = get_first_ref(sctx->send_root, ino,
2353 				    parent_ino, parent_gen, dest);
2354 	else
2355 		ret = get_first_ref(sctx->parent_root, ino,
2356 				    parent_ino, parent_gen, dest);
2357 	if (ret < 0)
2358 		goto out;
2359 
2360 	/*
2361 	 * Check if the ref was overwritten by an inode's ref that was processed
2362 	 * earlier. If yes, treat as orphan and return 1.
2363 	 */
2364 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2365 			dest->start, dest->end - dest->start);
2366 	if (ret < 0)
2367 		goto out;
2368 	if (ret) {
2369 		fs_path_reset(dest);
2370 		ret = gen_unique_name(sctx, ino, gen, dest);
2371 		if (ret < 0)
2372 			goto out;
2373 		ret = 1;
2374 	}
2375 
2376 out_cache:
2377 	/*
2378 	 * Store the result of the lookup in the name cache.
2379 	 */
2380 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2381 	if (!nce) {
2382 		ret = -ENOMEM;
2383 		goto out;
2384 	}
2385 
2386 	nce->entry.key = ino;
2387 	nce->entry.gen = gen;
2388 	nce->parent_ino = *parent_ino;
2389 	nce->parent_gen = *parent_gen;
2390 	nce->name_len = fs_path_len(dest);
2391 	nce->ret = ret;
2392 	strcpy(nce->name, dest->start);
2393 
2394 	if (ino < sctx->send_progress)
2395 		nce->need_later_update = 0;
2396 	else
2397 		nce->need_later_update = 1;
2398 
2399 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2400 	if (nce_ret < 0) {
2401 		kfree(nce);
2402 		ret = nce_ret;
2403 	}
2404 
2405 out:
2406 	return ret;
2407 }
2408 
2409 /*
2410  * Magic happens here. This function returns the first ref to an inode as it
2411  * would look like while receiving the stream at this point in time.
2412  * We walk the path up to the root. For every inode in between, we check if it
2413  * was already processed/sent. If yes, we continue with the parent as found
2414  * in send_root. If not, we continue with the parent as found in parent_root.
2415  * If we encounter an inode that was deleted at this point in time, we use the
2416  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2417  * that were not created yet and overwritten inodes/refs.
2418  *
2419  * When do we have orphan inodes:
2420  * 1. When an inode is freshly created and thus no valid refs are available yet
2421  * 2. When a directory lost all it's refs (deleted) but still has dir items
2422  *    inside which were not processed yet (pending for move/delete). If anyone
2423  *    tried to get the path to the dir items, it would get a path inside that
2424  *    orphan directory.
2425  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2426  *    of an unprocessed inode. If in that case the first ref would be
2427  *    overwritten, the overwritten inode gets "orphanized". Later when we
2428  *    process this overwritten inode, it is restored at a new place by moving
2429  *    the orphan inode.
2430  *
2431  * sctx->send_progress tells this function at which point in time receiving
2432  * would be.
2433  */
2434 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2435 			struct fs_path *dest)
2436 {
2437 	int ret = 0;
2438 	struct fs_path *name = NULL;
2439 	u64 parent_inode = 0;
2440 	u64 parent_gen = 0;
2441 	int stop = 0;
2442 
2443 	name = fs_path_alloc();
2444 	if (!name) {
2445 		ret = -ENOMEM;
2446 		goto out;
2447 	}
2448 
2449 	dest->reversed = 1;
2450 	fs_path_reset(dest);
2451 
2452 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2453 		struct waiting_dir_move *wdm;
2454 
2455 		fs_path_reset(name);
2456 
2457 		if (is_waiting_for_rm(sctx, ino, gen)) {
2458 			ret = gen_unique_name(sctx, ino, gen, name);
2459 			if (ret < 0)
2460 				goto out;
2461 			ret = fs_path_add_path(dest, name);
2462 			break;
2463 		}
2464 
2465 		wdm = get_waiting_dir_move(sctx, ino);
2466 		if (wdm && wdm->orphanized) {
2467 			ret = gen_unique_name(sctx, ino, gen, name);
2468 			stop = 1;
2469 		} else if (wdm) {
2470 			ret = get_first_ref(sctx->parent_root, ino,
2471 					    &parent_inode, &parent_gen, name);
2472 		} else {
2473 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2474 							&parent_inode,
2475 							&parent_gen, name);
2476 			if (ret)
2477 				stop = 1;
2478 		}
2479 
2480 		if (ret < 0)
2481 			goto out;
2482 
2483 		ret = fs_path_add_path(dest, name);
2484 		if (ret < 0)
2485 			goto out;
2486 
2487 		ino = parent_inode;
2488 		gen = parent_gen;
2489 	}
2490 
2491 out:
2492 	fs_path_free(name);
2493 	if (!ret)
2494 		fs_path_unreverse(dest);
2495 	return ret;
2496 }
2497 
2498 /*
2499  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2500  */
2501 static int send_subvol_begin(struct send_ctx *sctx)
2502 {
2503 	int ret;
2504 	struct btrfs_root *send_root = sctx->send_root;
2505 	struct btrfs_root *parent_root = sctx->parent_root;
2506 	struct btrfs_path *path;
2507 	struct btrfs_key key;
2508 	struct btrfs_root_ref *ref;
2509 	struct extent_buffer *leaf;
2510 	char *name = NULL;
2511 	int namelen;
2512 
2513 	path = btrfs_alloc_path();
2514 	if (!path)
2515 		return -ENOMEM;
2516 
2517 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2518 	if (!name) {
2519 		btrfs_free_path(path);
2520 		return -ENOMEM;
2521 	}
2522 
2523 	key.objectid = send_root->root_key.objectid;
2524 	key.type = BTRFS_ROOT_BACKREF_KEY;
2525 	key.offset = 0;
2526 
2527 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2528 				&key, path, 1, 0);
2529 	if (ret < 0)
2530 		goto out;
2531 	if (ret) {
2532 		ret = -ENOENT;
2533 		goto out;
2534 	}
2535 
2536 	leaf = path->nodes[0];
2537 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2538 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2539 	    key.objectid != send_root->root_key.objectid) {
2540 		ret = -ENOENT;
2541 		goto out;
2542 	}
2543 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2544 	namelen = btrfs_root_ref_name_len(leaf, ref);
2545 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2546 	btrfs_release_path(path);
2547 
2548 	if (parent_root) {
2549 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2550 		if (ret < 0)
2551 			goto out;
2552 	} else {
2553 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2554 		if (ret < 0)
2555 			goto out;
2556 	}
2557 
2558 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2559 
2560 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2561 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2562 			    sctx->send_root->root_item.received_uuid);
2563 	else
2564 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2565 			    sctx->send_root->root_item.uuid);
2566 
2567 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2568 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2569 	if (parent_root) {
2570 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2571 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2572 				     parent_root->root_item.received_uuid);
2573 		else
2574 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2575 				     parent_root->root_item.uuid);
2576 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2577 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2578 	}
2579 
2580 	ret = send_cmd(sctx);
2581 
2582 tlv_put_failure:
2583 out:
2584 	btrfs_free_path(path);
2585 	kfree(name);
2586 	return ret;
2587 }
2588 
2589 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2590 {
2591 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2592 	int ret = 0;
2593 	struct fs_path *p;
2594 
2595 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2596 
2597 	p = fs_path_alloc();
2598 	if (!p)
2599 		return -ENOMEM;
2600 
2601 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2602 	if (ret < 0)
2603 		goto out;
2604 
2605 	ret = get_cur_path(sctx, ino, gen, p);
2606 	if (ret < 0)
2607 		goto out;
2608 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2609 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2610 
2611 	ret = send_cmd(sctx);
2612 
2613 tlv_put_failure:
2614 out:
2615 	fs_path_free(p);
2616 	return ret;
2617 }
2618 
2619 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2620 {
2621 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2622 	int ret = 0;
2623 	struct fs_path *p;
2624 
2625 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2626 
2627 	p = fs_path_alloc();
2628 	if (!p)
2629 		return -ENOMEM;
2630 
2631 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2632 	if (ret < 0)
2633 		goto out;
2634 
2635 	ret = get_cur_path(sctx, ino, gen, p);
2636 	if (ret < 0)
2637 		goto out;
2638 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2639 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2640 
2641 	ret = send_cmd(sctx);
2642 
2643 tlv_put_failure:
2644 out:
2645 	fs_path_free(p);
2646 	return ret;
2647 }
2648 
2649 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2650 {
2651 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2652 	int ret = 0;
2653 	struct fs_path *p;
2654 
2655 	if (sctx->proto < 2)
2656 		return 0;
2657 
2658 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2659 
2660 	p = fs_path_alloc();
2661 	if (!p)
2662 		return -ENOMEM;
2663 
2664 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2665 	if (ret < 0)
2666 		goto out;
2667 
2668 	ret = get_cur_path(sctx, ino, gen, p);
2669 	if (ret < 0)
2670 		goto out;
2671 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2672 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2673 
2674 	ret = send_cmd(sctx);
2675 
2676 tlv_put_failure:
2677 out:
2678 	fs_path_free(p);
2679 	return ret;
2680 }
2681 
2682 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2683 {
2684 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2685 	int ret = 0;
2686 	struct fs_path *p;
2687 
2688 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2689 		    ino, uid, gid);
2690 
2691 	p = fs_path_alloc();
2692 	if (!p)
2693 		return -ENOMEM;
2694 
2695 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2696 	if (ret < 0)
2697 		goto out;
2698 
2699 	ret = get_cur_path(sctx, ino, gen, p);
2700 	if (ret < 0)
2701 		goto out;
2702 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2703 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2704 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2705 
2706 	ret = send_cmd(sctx);
2707 
2708 tlv_put_failure:
2709 out:
2710 	fs_path_free(p);
2711 	return ret;
2712 }
2713 
2714 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2715 {
2716 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2717 	int ret = 0;
2718 	struct fs_path *p = NULL;
2719 	struct btrfs_inode_item *ii;
2720 	struct btrfs_path *path = NULL;
2721 	struct extent_buffer *eb;
2722 	struct btrfs_key key;
2723 	int slot;
2724 
2725 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2726 
2727 	p = fs_path_alloc();
2728 	if (!p)
2729 		return -ENOMEM;
2730 
2731 	path = alloc_path_for_send();
2732 	if (!path) {
2733 		ret = -ENOMEM;
2734 		goto out;
2735 	}
2736 
2737 	key.objectid = ino;
2738 	key.type = BTRFS_INODE_ITEM_KEY;
2739 	key.offset = 0;
2740 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2741 	if (ret > 0)
2742 		ret = -ENOENT;
2743 	if (ret < 0)
2744 		goto out;
2745 
2746 	eb = path->nodes[0];
2747 	slot = path->slots[0];
2748 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2749 
2750 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2751 	if (ret < 0)
2752 		goto out;
2753 
2754 	ret = get_cur_path(sctx, ino, gen, p);
2755 	if (ret < 0)
2756 		goto out;
2757 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2758 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2759 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2760 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2761 	if (sctx->proto >= 2)
2762 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2763 
2764 	ret = send_cmd(sctx);
2765 
2766 tlv_put_failure:
2767 out:
2768 	fs_path_free(p);
2769 	btrfs_free_path(path);
2770 	return ret;
2771 }
2772 
2773 /*
2774  * If the cache is full, we can't remove entries from it and do a call to
2775  * send_utimes() for each respective inode, because we might be finishing
2776  * processing an inode that is a directory and it just got renamed, and existing
2777  * entries in the cache may refer to inodes that have the directory in their
2778  * full path - in which case we would generate outdated paths (pre-rename)
2779  * for the inodes that the cache entries point to. Instead of prunning the
2780  * cache when inserting, do it after we finish processing each inode at
2781  * finish_inode_if_needed().
2782  */
2783 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2784 {
2785 	struct btrfs_lru_cache_entry *entry;
2786 	int ret;
2787 
2788 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2789 	if (entry != NULL)
2790 		return 0;
2791 
2792 	/* Caching is optional, don't fail if we can't allocate memory. */
2793 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2794 	if (!entry)
2795 		return send_utimes(sctx, dir, gen);
2796 
2797 	entry->key = dir;
2798 	entry->gen = gen;
2799 
2800 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2801 	ASSERT(ret != -EEXIST);
2802 	if (ret) {
2803 		kfree(entry);
2804 		return send_utimes(sctx, dir, gen);
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2811 {
2812 	while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2813 	       SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2814 		struct btrfs_lru_cache_entry *lru;
2815 		int ret;
2816 
2817 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2818 		ASSERT(lru != NULL);
2819 
2820 		ret = send_utimes(sctx, lru->key, lru->gen);
2821 		if (ret)
2822 			return ret;
2823 
2824 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 /*
2831  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2832  * a valid path yet because we did not process the refs yet. So, the inode
2833  * is created as orphan.
2834  */
2835 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2836 {
2837 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2838 	int ret = 0;
2839 	struct fs_path *p;
2840 	int cmd;
2841 	struct btrfs_inode_info info;
2842 	u64 gen;
2843 	u64 mode;
2844 	u64 rdev;
2845 
2846 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2847 
2848 	p = fs_path_alloc();
2849 	if (!p)
2850 		return -ENOMEM;
2851 
2852 	if (ino != sctx->cur_ino) {
2853 		ret = get_inode_info(sctx->send_root, ino, &info);
2854 		if (ret < 0)
2855 			goto out;
2856 		gen = info.gen;
2857 		mode = info.mode;
2858 		rdev = info.rdev;
2859 	} else {
2860 		gen = sctx->cur_inode_gen;
2861 		mode = sctx->cur_inode_mode;
2862 		rdev = sctx->cur_inode_rdev;
2863 	}
2864 
2865 	if (S_ISREG(mode)) {
2866 		cmd = BTRFS_SEND_C_MKFILE;
2867 	} else if (S_ISDIR(mode)) {
2868 		cmd = BTRFS_SEND_C_MKDIR;
2869 	} else if (S_ISLNK(mode)) {
2870 		cmd = BTRFS_SEND_C_SYMLINK;
2871 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2872 		cmd = BTRFS_SEND_C_MKNOD;
2873 	} else if (S_ISFIFO(mode)) {
2874 		cmd = BTRFS_SEND_C_MKFIFO;
2875 	} else if (S_ISSOCK(mode)) {
2876 		cmd = BTRFS_SEND_C_MKSOCK;
2877 	} else {
2878 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2879 				(int)(mode & S_IFMT));
2880 		ret = -EOPNOTSUPP;
2881 		goto out;
2882 	}
2883 
2884 	ret = begin_cmd(sctx, cmd);
2885 	if (ret < 0)
2886 		goto out;
2887 
2888 	ret = gen_unique_name(sctx, ino, gen, p);
2889 	if (ret < 0)
2890 		goto out;
2891 
2892 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2893 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2894 
2895 	if (S_ISLNK(mode)) {
2896 		fs_path_reset(p);
2897 		ret = read_symlink(sctx->send_root, ino, p);
2898 		if (ret < 0)
2899 			goto out;
2900 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2901 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2902 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2903 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2904 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2905 	}
2906 
2907 	ret = send_cmd(sctx);
2908 	if (ret < 0)
2909 		goto out;
2910 
2911 
2912 tlv_put_failure:
2913 out:
2914 	fs_path_free(p);
2915 	return ret;
2916 }
2917 
2918 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2919 {
2920 	struct btrfs_lru_cache_entry *entry;
2921 	int ret;
2922 
2923 	/* Caching is optional, ignore any failures. */
2924 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2925 	if (!entry)
2926 		return;
2927 
2928 	entry->key = dir;
2929 	entry->gen = 0;
2930 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2931 	if (ret < 0)
2932 		kfree(entry);
2933 }
2934 
2935 /*
2936  * We need some special handling for inodes that get processed before the parent
2937  * directory got created. See process_recorded_refs for details.
2938  * This function does the check if we already created the dir out of order.
2939  */
2940 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2941 {
2942 	int ret = 0;
2943 	int iter_ret = 0;
2944 	struct btrfs_path *path = NULL;
2945 	struct btrfs_key key;
2946 	struct btrfs_key found_key;
2947 	struct btrfs_key di_key;
2948 	struct btrfs_dir_item *di;
2949 
2950 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2951 		return 1;
2952 
2953 	path = alloc_path_for_send();
2954 	if (!path)
2955 		return -ENOMEM;
2956 
2957 	key.objectid = dir;
2958 	key.type = BTRFS_DIR_INDEX_KEY;
2959 	key.offset = 0;
2960 
2961 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2962 		struct extent_buffer *eb = path->nodes[0];
2963 
2964 		if (found_key.objectid != key.objectid ||
2965 		    found_key.type != key.type) {
2966 			ret = 0;
2967 			break;
2968 		}
2969 
2970 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2971 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2972 
2973 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2974 		    di_key.objectid < sctx->send_progress) {
2975 			ret = 1;
2976 			cache_dir_created(sctx, dir);
2977 			break;
2978 		}
2979 	}
2980 	/* Catch error found during iteration */
2981 	if (iter_ret < 0)
2982 		ret = iter_ret;
2983 
2984 	btrfs_free_path(path);
2985 	return ret;
2986 }
2987 
2988 /*
2989  * Only creates the inode if it is:
2990  * 1. Not a directory
2991  * 2. Or a directory which was not created already due to out of order
2992  *    directories. See did_create_dir and process_recorded_refs for details.
2993  */
2994 static int send_create_inode_if_needed(struct send_ctx *sctx)
2995 {
2996 	int ret;
2997 
2998 	if (S_ISDIR(sctx->cur_inode_mode)) {
2999 		ret = did_create_dir(sctx, sctx->cur_ino);
3000 		if (ret < 0)
3001 			return ret;
3002 		else if (ret > 0)
3003 			return 0;
3004 	}
3005 
3006 	ret = send_create_inode(sctx, sctx->cur_ino);
3007 
3008 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3009 		cache_dir_created(sctx, sctx->cur_ino);
3010 
3011 	return ret;
3012 }
3013 
3014 struct recorded_ref {
3015 	struct list_head list;
3016 	char *name;
3017 	struct fs_path *full_path;
3018 	u64 dir;
3019 	u64 dir_gen;
3020 	int name_len;
3021 	struct rb_node node;
3022 	struct rb_root *root;
3023 };
3024 
3025 static struct recorded_ref *recorded_ref_alloc(void)
3026 {
3027 	struct recorded_ref *ref;
3028 
3029 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3030 	if (!ref)
3031 		return NULL;
3032 	RB_CLEAR_NODE(&ref->node);
3033 	INIT_LIST_HEAD(&ref->list);
3034 	return ref;
3035 }
3036 
3037 static void recorded_ref_free(struct recorded_ref *ref)
3038 {
3039 	if (!ref)
3040 		return;
3041 	if (!RB_EMPTY_NODE(&ref->node))
3042 		rb_erase(&ref->node, ref->root);
3043 	list_del(&ref->list);
3044 	fs_path_free(ref->full_path);
3045 	kfree(ref);
3046 }
3047 
3048 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3049 {
3050 	ref->full_path = path;
3051 	ref->name = (char *)kbasename(ref->full_path->start);
3052 	ref->name_len = ref->full_path->end - ref->name;
3053 }
3054 
3055 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3056 {
3057 	struct recorded_ref *new;
3058 
3059 	new = recorded_ref_alloc();
3060 	if (!new)
3061 		return -ENOMEM;
3062 
3063 	new->dir = ref->dir;
3064 	new->dir_gen = ref->dir_gen;
3065 	list_add_tail(&new->list, list);
3066 	return 0;
3067 }
3068 
3069 static void __free_recorded_refs(struct list_head *head)
3070 {
3071 	struct recorded_ref *cur;
3072 
3073 	while (!list_empty(head)) {
3074 		cur = list_entry(head->next, struct recorded_ref, list);
3075 		recorded_ref_free(cur);
3076 	}
3077 }
3078 
3079 static void free_recorded_refs(struct send_ctx *sctx)
3080 {
3081 	__free_recorded_refs(&sctx->new_refs);
3082 	__free_recorded_refs(&sctx->deleted_refs);
3083 }
3084 
3085 /*
3086  * Renames/moves a file/dir to its orphan name. Used when the first
3087  * ref of an unprocessed inode gets overwritten and for all non empty
3088  * directories.
3089  */
3090 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3091 			  struct fs_path *path)
3092 {
3093 	int ret;
3094 	struct fs_path *orphan;
3095 
3096 	orphan = fs_path_alloc();
3097 	if (!orphan)
3098 		return -ENOMEM;
3099 
3100 	ret = gen_unique_name(sctx, ino, gen, orphan);
3101 	if (ret < 0)
3102 		goto out;
3103 
3104 	ret = send_rename(sctx, path, orphan);
3105 
3106 out:
3107 	fs_path_free(orphan);
3108 	return ret;
3109 }
3110 
3111 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3112 						   u64 dir_ino, u64 dir_gen)
3113 {
3114 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3115 	struct rb_node *parent = NULL;
3116 	struct orphan_dir_info *entry, *odi;
3117 
3118 	while (*p) {
3119 		parent = *p;
3120 		entry = rb_entry(parent, struct orphan_dir_info, node);
3121 		if (dir_ino < entry->ino)
3122 			p = &(*p)->rb_left;
3123 		else if (dir_ino > entry->ino)
3124 			p = &(*p)->rb_right;
3125 		else if (dir_gen < entry->gen)
3126 			p = &(*p)->rb_left;
3127 		else if (dir_gen > entry->gen)
3128 			p = &(*p)->rb_right;
3129 		else
3130 			return entry;
3131 	}
3132 
3133 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3134 	if (!odi)
3135 		return ERR_PTR(-ENOMEM);
3136 	odi->ino = dir_ino;
3137 	odi->gen = dir_gen;
3138 	odi->last_dir_index_offset = 0;
3139 	odi->dir_high_seq_ino = 0;
3140 
3141 	rb_link_node(&odi->node, parent, p);
3142 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3143 	return odi;
3144 }
3145 
3146 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3147 						   u64 dir_ino, u64 gen)
3148 {
3149 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3150 	struct orphan_dir_info *entry;
3151 
3152 	while (n) {
3153 		entry = rb_entry(n, struct orphan_dir_info, node);
3154 		if (dir_ino < entry->ino)
3155 			n = n->rb_left;
3156 		else if (dir_ino > entry->ino)
3157 			n = n->rb_right;
3158 		else if (gen < entry->gen)
3159 			n = n->rb_left;
3160 		else if (gen > entry->gen)
3161 			n = n->rb_right;
3162 		else
3163 			return entry;
3164 	}
3165 	return NULL;
3166 }
3167 
3168 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3169 {
3170 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3171 
3172 	return odi != NULL;
3173 }
3174 
3175 static void free_orphan_dir_info(struct send_ctx *sctx,
3176 				 struct orphan_dir_info *odi)
3177 {
3178 	if (!odi)
3179 		return;
3180 	rb_erase(&odi->node, &sctx->orphan_dirs);
3181 	kfree(odi);
3182 }
3183 
3184 /*
3185  * Returns 1 if a directory can be removed at this point in time.
3186  * We check this by iterating all dir items and checking if the inode behind
3187  * the dir item was already processed.
3188  */
3189 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3190 {
3191 	int ret = 0;
3192 	int iter_ret = 0;
3193 	struct btrfs_root *root = sctx->parent_root;
3194 	struct btrfs_path *path;
3195 	struct btrfs_key key;
3196 	struct btrfs_key found_key;
3197 	struct btrfs_key loc;
3198 	struct btrfs_dir_item *di;
3199 	struct orphan_dir_info *odi = NULL;
3200 	u64 dir_high_seq_ino = 0;
3201 	u64 last_dir_index_offset = 0;
3202 
3203 	/*
3204 	 * Don't try to rmdir the top/root subvolume dir.
3205 	 */
3206 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3207 		return 0;
3208 
3209 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3210 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3211 		return 0;
3212 
3213 	path = alloc_path_for_send();
3214 	if (!path)
3215 		return -ENOMEM;
3216 
3217 	if (!odi) {
3218 		/*
3219 		 * Find the inode number associated with the last dir index
3220 		 * entry. This is very likely the inode with the highest number
3221 		 * of all inodes that have an entry in the directory. We can
3222 		 * then use it to avoid future calls to can_rmdir(), when
3223 		 * processing inodes with a lower number, from having to search
3224 		 * the parent root b+tree for dir index keys.
3225 		 */
3226 		key.objectid = dir;
3227 		key.type = BTRFS_DIR_INDEX_KEY;
3228 		key.offset = (u64)-1;
3229 
3230 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3231 		if (ret < 0) {
3232 			goto out;
3233 		} else if (ret > 0) {
3234 			/* Can't happen, the root is never empty. */
3235 			ASSERT(path->slots[0] > 0);
3236 			if (WARN_ON(path->slots[0] == 0)) {
3237 				ret = -EUCLEAN;
3238 				goto out;
3239 			}
3240 			path->slots[0]--;
3241 		}
3242 
3243 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3244 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3245 			/* No index keys, dir can be removed. */
3246 			ret = 1;
3247 			goto out;
3248 		}
3249 
3250 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3251 				    struct btrfs_dir_item);
3252 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3253 		dir_high_seq_ino = loc.objectid;
3254 		if (sctx->cur_ino < dir_high_seq_ino) {
3255 			ret = 0;
3256 			goto out;
3257 		}
3258 
3259 		btrfs_release_path(path);
3260 	}
3261 
3262 	key.objectid = dir;
3263 	key.type = BTRFS_DIR_INDEX_KEY;
3264 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3265 
3266 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3267 		struct waiting_dir_move *dm;
3268 
3269 		if (found_key.objectid != key.objectid ||
3270 		    found_key.type != key.type)
3271 			break;
3272 
3273 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3274 				struct btrfs_dir_item);
3275 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3276 
3277 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3278 		last_dir_index_offset = found_key.offset;
3279 
3280 		dm = get_waiting_dir_move(sctx, loc.objectid);
3281 		if (dm) {
3282 			dm->rmdir_ino = dir;
3283 			dm->rmdir_gen = dir_gen;
3284 			ret = 0;
3285 			goto out;
3286 		}
3287 
3288 		if (loc.objectid > sctx->cur_ino) {
3289 			ret = 0;
3290 			goto out;
3291 		}
3292 	}
3293 	if (iter_ret < 0) {
3294 		ret = iter_ret;
3295 		goto out;
3296 	}
3297 	free_orphan_dir_info(sctx, odi);
3298 
3299 	ret = 1;
3300 
3301 out:
3302 	btrfs_free_path(path);
3303 
3304 	if (ret)
3305 		return ret;
3306 
3307 	if (!odi) {
3308 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3309 		if (IS_ERR(odi))
3310 			return PTR_ERR(odi);
3311 
3312 		odi->gen = dir_gen;
3313 	}
3314 
3315 	odi->last_dir_index_offset = last_dir_index_offset;
3316 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3317 
3318 	return 0;
3319 }
3320 
3321 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3322 {
3323 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3324 
3325 	return entry != NULL;
3326 }
3327 
3328 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3329 {
3330 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3331 	struct rb_node *parent = NULL;
3332 	struct waiting_dir_move *entry, *dm;
3333 
3334 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3335 	if (!dm)
3336 		return -ENOMEM;
3337 	dm->ino = ino;
3338 	dm->rmdir_ino = 0;
3339 	dm->rmdir_gen = 0;
3340 	dm->orphanized = orphanized;
3341 
3342 	while (*p) {
3343 		parent = *p;
3344 		entry = rb_entry(parent, struct waiting_dir_move, node);
3345 		if (ino < entry->ino) {
3346 			p = &(*p)->rb_left;
3347 		} else if (ino > entry->ino) {
3348 			p = &(*p)->rb_right;
3349 		} else {
3350 			kfree(dm);
3351 			return -EEXIST;
3352 		}
3353 	}
3354 
3355 	rb_link_node(&dm->node, parent, p);
3356 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3357 	return 0;
3358 }
3359 
3360 static struct waiting_dir_move *
3361 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3362 {
3363 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3364 	struct waiting_dir_move *entry;
3365 
3366 	while (n) {
3367 		entry = rb_entry(n, struct waiting_dir_move, node);
3368 		if (ino < entry->ino)
3369 			n = n->rb_left;
3370 		else if (ino > entry->ino)
3371 			n = n->rb_right;
3372 		else
3373 			return entry;
3374 	}
3375 	return NULL;
3376 }
3377 
3378 static void free_waiting_dir_move(struct send_ctx *sctx,
3379 				  struct waiting_dir_move *dm)
3380 {
3381 	if (!dm)
3382 		return;
3383 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3384 	kfree(dm);
3385 }
3386 
3387 static int add_pending_dir_move(struct send_ctx *sctx,
3388 				u64 ino,
3389 				u64 ino_gen,
3390 				u64 parent_ino,
3391 				struct list_head *new_refs,
3392 				struct list_head *deleted_refs,
3393 				const bool is_orphan)
3394 {
3395 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3396 	struct rb_node *parent = NULL;
3397 	struct pending_dir_move *entry = NULL, *pm;
3398 	struct recorded_ref *cur;
3399 	int exists = 0;
3400 	int ret;
3401 
3402 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3403 	if (!pm)
3404 		return -ENOMEM;
3405 	pm->parent_ino = parent_ino;
3406 	pm->ino = ino;
3407 	pm->gen = ino_gen;
3408 	INIT_LIST_HEAD(&pm->list);
3409 	INIT_LIST_HEAD(&pm->update_refs);
3410 	RB_CLEAR_NODE(&pm->node);
3411 
3412 	while (*p) {
3413 		parent = *p;
3414 		entry = rb_entry(parent, struct pending_dir_move, node);
3415 		if (parent_ino < entry->parent_ino) {
3416 			p = &(*p)->rb_left;
3417 		} else if (parent_ino > entry->parent_ino) {
3418 			p = &(*p)->rb_right;
3419 		} else {
3420 			exists = 1;
3421 			break;
3422 		}
3423 	}
3424 
3425 	list_for_each_entry(cur, deleted_refs, list) {
3426 		ret = dup_ref(cur, &pm->update_refs);
3427 		if (ret < 0)
3428 			goto out;
3429 	}
3430 	list_for_each_entry(cur, new_refs, list) {
3431 		ret = dup_ref(cur, &pm->update_refs);
3432 		if (ret < 0)
3433 			goto out;
3434 	}
3435 
3436 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3437 	if (ret)
3438 		goto out;
3439 
3440 	if (exists) {
3441 		list_add_tail(&pm->list, &entry->list);
3442 	} else {
3443 		rb_link_node(&pm->node, parent, p);
3444 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3445 	}
3446 	ret = 0;
3447 out:
3448 	if (ret) {
3449 		__free_recorded_refs(&pm->update_refs);
3450 		kfree(pm);
3451 	}
3452 	return ret;
3453 }
3454 
3455 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3456 						      u64 parent_ino)
3457 {
3458 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3459 	struct pending_dir_move *entry;
3460 
3461 	while (n) {
3462 		entry = rb_entry(n, struct pending_dir_move, node);
3463 		if (parent_ino < entry->parent_ino)
3464 			n = n->rb_left;
3465 		else if (parent_ino > entry->parent_ino)
3466 			n = n->rb_right;
3467 		else
3468 			return entry;
3469 	}
3470 	return NULL;
3471 }
3472 
3473 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3474 		     u64 ino, u64 gen, u64 *ancestor_ino)
3475 {
3476 	int ret = 0;
3477 	u64 parent_inode = 0;
3478 	u64 parent_gen = 0;
3479 	u64 start_ino = ino;
3480 
3481 	*ancestor_ino = 0;
3482 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3483 		fs_path_reset(name);
3484 
3485 		if (is_waiting_for_rm(sctx, ino, gen))
3486 			break;
3487 		if (is_waiting_for_move(sctx, ino)) {
3488 			if (*ancestor_ino == 0)
3489 				*ancestor_ino = ino;
3490 			ret = get_first_ref(sctx->parent_root, ino,
3491 					    &parent_inode, &parent_gen, name);
3492 		} else {
3493 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3494 							&parent_inode,
3495 							&parent_gen, name);
3496 			if (ret > 0) {
3497 				ret = 0;
3498 				break;
3499 			}
3500 		}
3501 		if (ret < 0)
3502 			break;
3503 		if (parent_inode == start_ino) {
3504 			ret = 1;
3505 			if (*ancestor_ino == 0)
3506 				*ancestor_ino = ino;
3507 			break;
3508 		}
3509 		ino = parent_inode;
3510 		gen = parent_gen;
3511 	}
3512 	return ret;
3513 }
3514 
3515 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3516 {
3517 	struct fs_path *from_path = NULL;
3518 	struct fs_path *to_path = NULL;
3519 	struct fs_path *name = NULL;
3520 	u64 orig_progress = sctx->send_progress;
3521 	struct recorded_ref *cur;
3522 	u64 parent_ino, parent_gen;
3523 	struct waiting_dir_move *dm = NULL;
3524 	u64 rmdir_ino = 0;
3525 	u64 rmdir_gen;
3526 	u64 ancestor;
3527 	bool is_orphan;
3528 	int ret;
3529 
3530 	name = fs_path_alloc();
3531 	from_path = fs_path_alloc();
3532 	if (!name || !from_path) {
3533 		ret = -ENOMEM;
3534 		goto out;
3535 	}
3536 
3537 	dm = get_waiting_dir_move(sctx, pm->ino);
3538 	ASSERT(dm);
3539 	rmdir_ino = dm->rmdir_ino;
3540 	rmdir_gen = dm->rmdir_gen;
3541 	is_orphan = dm->orphanized;
3542 	free_waiting_dir_move(sctx, dm);
3543 
3544 	if (is_orphan) {
3545 		ret = gen_unique_name(sctx, pm->ino,
3546 				      pm->gen, from_path);
3547 	} else {
3548 		ret = get_first_ref(sctx->parent_root, pm->ino,
3549 				    &parent_ino, &parent_gen, name);
3550 		if (ret < 0)
3551 			goto out;
3552 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3553 				   from_path);
3554 		if (ret < 0)
3555 			goto out;
3556 		ret = fs_path_add_path(from_path, name);
3557 	}
3558 	if (ret < 0)
3559 		goto out;
3560 
3561 	sctx->send_progress = sctx->cur_ino + 1;
3562 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3563 	if (ret < 0)
3564 		goto out;
3565 	if (ret) {
3566 		LIST_HEAD(deleted_refs);
3567 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3568 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3569 					   &pm->update_refs, &deleted_refs,
3570 					   is_orphan);
3571 		if (ret < 0)
3572 			goto out;
3573 		if (rmdir_ino) {
3574 			dm = get_waiting_dir_move(sctx, pm->ino);
3575 			ASSERT(dm);
3576 			dm->rmdir_ino = rmdir_ino;
3577 			dm->rmdir_gen = rmdir_gen;
3578 		}
3579 		goto out;
3580 	}
3581 	fs_path_reset(name);
3582 	to_path = name;
3583 	name = NULL;
3584 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3585 	if (ret < 0)
3586 		goto out;
3587 
3588 	ret = send_rename(sctx, from_path, to_path);
3589 	if (ret < 0)
3590 		goto out;
3591 
3592 	if (rmdir_ino) {
3593 		struct orphan_dir_info *odi;
3594 		u64 gen;
3595 
3596 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3597 		if (!odi) {
3598 			/* already deleted */
3599 			goto finish;
3600 		}
3601 		gen = odi->gen;
3602 
3603 		ret = can_rmdir(sctx, rmdir_ino, gen);
3604 		if (ret < 0)
3605 			goto out;
3606 		if (!ret)
3607 			goto finish;
3608 
3609 		name = fs_path_alloc();
3610 		if (!name) {
3611 			ret = -ENOMEM;
3612 			goto out;
3613 		}
3614 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3615 		if (ret < 0)
3616 			goto out;
3617 		ret = send_rmdir(sctx, name);
3618 		if (ret < 0)
3619 			goto out;
3620 	}
3621 
3622 finish:
3623 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3624 	if (ret < 0)
3625 		goto out;
3626 
3627 	/*
3628 	 * After rename/move, need to update the utimes of both new parent(s)
3629 	 * and old parent(s).
3630 	 */
3631 	list_for_each_entry(cur, &pm->update_refs, list) {
3632 		/*
3633 		 * The parent inode might have been deleted in the send snapshot
3634 		 */
3635 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3636 		if (ret == -ENOENT) {
3637 			ret = 0;
3638 			continue;
3639 		}
3640 		if (ret < 0)
3641 			goto out;
3642 
3643 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3644 		if (ret < 0)
3645 			goto out;
3646 	}
3647 
3648 out:
3649 	fs_path_free(name);
3650 	fs_path_free(from_path);
3651 	fs_path_free(to_path);
3652 	sctx->send_progress = orig_progress;
3653 
3654 	return ret;
3655 }
3656 
3657 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3658 {
3659 	if (!list_empty(&m->list))
3660 		list_del(&m->list);
3661 	if (!RB_EMPTY_NODE(&m->node))
3662 		rb_erase(&m->node, &sctx->pending_dir_moves);
3663 	__free_recorded_refs(&m->update_refs);
3664 	kfree(m);
3665 }
3666 
3667 static void tail_append_pending_moves(struct send_ctx *sctx,
3668 				      struct pending_dir_move *moves,
3669 				      struct list_head *stack)
3670 {
3671 	if (list_empty(&moves->list)) {
3672 		list_add_tail(&moves->list, stack);
3673 	} else {
3674 		LIST_HEAD(list);
3675 		list_splice_init(&moves->list, &list);
3676 		list_add_tail(&moves->list, stack);
3677 		list_splice_tail(&list, stack);
3678 	}
3679 	if (!RB_EMPTY_NODE(&moves->node)) {
3680 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3681 		RB_CLEAR_NODE(&moves->node);
3682 	}
3683 }
3684 
3685 static int apply_children_dir_moves(struct send_ctx *sctx)
3686 {
3687 	struct pending_dir_move *pm;
3688 	struct list_head stack;
3689 	u64 parent_ino = sctx->cur_ino;
3690 	int ret = 0;
3691 
3692 	pm = get_pending_dir_moves(sctx, parent_ino);
3693 	if (!pm)
3694 		return 0;
3695 
3696 	INIT_LIST_HEAD(&stack);
3697 	tail_append_pending_moves(sctx, pm, &stack);
3698 
3699 	while (!list_empty(&stack)) {
3700 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3701 		parent_ino = pm->ino;
3702 		ret = apply_dir_move(sctx, pm);
3703 		free_pending_move(sctx, pm);
3704 		if (ret)
3705 			goto out;
3706 		pm = get_pending_dir_moves(sctx, parent_ino);
3707 		if (pm)
3708 			tail_append_pending_moves(sctx, pm, &stack);
3709 	}
3710 	return 0;
3711 
3712 out:
3713 	while (!list_empty(&stack)) {
3714 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3715 		free_pending_move(sctx, pm);
3716 	}
3717 	return ret;
3718 }
3719 
3720 /*
3721  * We might need to delay a directory rename even when no ancestor directory
3722  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3723  * renamed. This happens when we rename a directory to the old name (the name
3724  * in the parent root) of some other unrelated directory that got its rename
3725  * delayed due to some ancestor with higher number that got renamed.
3726  *
3727  * Example:
3728  *
3729  * Parent snapshot:
3730  * .                                       (ino 256)
3731  * |---- a/                                (ino 257)
3732  * |     |---- file                        (ino 260)
3733  * |
3734  * |---- b/                                (ino 258)
3735  * |---- c/                                (ino 259)
3736  *
3737  * Send snapshot:
3738  * .                                       (ino 256)
3739  * |---- a/                                (ino 258)
3740  * |---- x/                                (ino 259)
3741  *       |---- y/                          (ino 257)
3742  *             |----- file                 (ino 260)
3743  *
3744  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3745  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3746  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3747  * must issue is:
3748  *
3749  * 1 - rename 259 from 'c' to 'x'
3750  * 2 - rename 257 from 'a' to 'x/y'
3751  * 3 - rename 258 from 'b' to 'a'
3752  *
3753  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3754  * be done right away and < 0 on error.
3755  */
3756 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3757 				  struct recorded_ref *parent_ref,
3758 				  const bool is_orphan)
3759 {
3760 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3761 	struct btrfs_path *path;
3762 	struct btrfs_key key;
3763 	struct btrfs_key di_key;
3764 	struct btrfs_dir_item *di;
3765 	u64 left_gen;
3766 	u64 right_gen;
3767 	int ret = 0;
3768 	struct waiting_dir_move *wdm;
3769 
3770 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3771 		return 0;
3772 
3773 	path = alloc_path_for_send();
3774 	if (!path)
3775 		return -ENOMEM;
3776 
3777 	key.objectid = parent_ref->dir;
3778 	key.type = BTRFS_DIR_ITEM_KEY;
3779 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3780 
3781 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3782 	if (ret < 0) {
3783 		goto out;
3784 	} else if (ret > 0) {
3785 		ret = 0;
3786 		goto out;
3787 	}
3788 
3789 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3790 				       parent_ref->name_len);
3791 	if (!di) {
3792 		ret = 0;
3793 		goto out;
3794 	}
3795 	/*
3796 	 * di_key.objectid has the number of the inode that has a dentry in the
3797 	 * parent directory with the same name that sctx->cur_ino is being
3798 	 * renamed to. We need to check if that inode is in the send root as
3799 	 * well and if it is currently marked as an inode with a pending rename,
3800 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3801 	 * that it happens after that other inode is renamed.
3802 	 */
3803 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3804 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3805 		ret = 0;
3806 		goto out;
3807 	}
3808 
3809 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3810 	if (ret < 0)
3811 		goto out;
3812 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3813 	if (ret < 0) {
3814 		if (ret == -ENOENT)
3815 			ret = 0;
3816 		goto out;
3817 	}
3818 
3819 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3820 	if (right_gen != left_gen) {
3821 		ret = 0;
3822 		goto out;
3823 	}
3824 
3825 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3826 	if (wdm && !wdm->orphanized) {
3827 		ret = add_pending_dir_move(sctx,
3828 					   sctx->cur_ino,
3829 					   sctx->cur_inode_gen,
3830 					   di_key.objectid,
3831 					   &sctx->new_refs,
3832 					   &sctx->deleted_refs,
3833 					   is_orphan);
3834 		if (!ret)
3835 			ret = 1;
3836 	}
3837 out:
3838 	btrfs_free_path(path);
3839 	return ret;
3840 }
3841 
3842 /*
3843  * Check if inode ino2, or any of its ancestors, is inode ino1.
3844  * Return 1 if true, 0 if false and < 0 on error.
3845  */
3846 static int check_ino_in_path(struct btrfs_root *root,
3847 			     const u64 ino1,
3848 			     const u64 ino1_gen,
3849 			     const u64 ino2,
3850 			     const u64 ino2_gen,
3851 			     struct fs_path *fs_path)
3852 {
3853 	u64 ino = ino2;
3854 
3855 	if (ino1 == ino2)
3856 		return ino1_gen == ino2_gen;
3857 
3858 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3859 		u64 parent;
3860 		u64 parent_gen;
3861 		int ret;
3862 
3863 		fs_path_reset(fs_path);
3864 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3865 		if (ret < 0)
3866 			return ret;
3867 		if (parent == ino1)
3868 			return parent_gen == ino1_gen;
3869 		ino = parent;
3870 	}
3871 	return 0;
3872 }
3873 
3874 /*
3875  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3876  * possible path (in case ino2 is not a directory and has multiple hard links).
3877  * Return 1 if true, 0 if false and < 0 on error.
3878  */
3879 static int is_ancestor(struct btrfs_root *root,
3880 		       const u64 ino1,
3881 		       const u64 ino1_gen,
3882 		       const u64 ino2,
3883 		       struct fs_path *fs_path)
3884 {
3885 	bool free_fs_path = false;
3886 	int ret = 0;
3887 	int iter_ret = 0;
3888 	struct btrfs_path *path = NULL;
3889 	struct btrfs_key key;
3890 
3891 	if (!fs_path) {
3892 		fs_path = fs_path_alloc();
3893 		if (!fs_path)
3894 			return -ENOMEM;
3895 		free_fs_path = true;
3896 	}
3897 
3898 	path = alloc_path_for_send();
3899 	if (!path) {
3900 		ret = -ENOMEM;
3901 		goto out;
3902 	}
3903 
3904 	key.objectid = ino2;
3905 	key.type = BTRFS_INODE_REF_KEY;
3906 	key.offset = 0;
3907 
3908 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3909 		struct extent_buffer *leaf = path->nodes[0];
3910 		int slot = path->slots[0];
3911 		u32 cur_offset = 0;
3912 		u32 item_size;
3913 
3914 		if (key.objectid != ino2)
3915 			break;
3916 		if (key.type != BTRFS_INODE_REF_KEY &&
3917 		    key.type != BTRFS_INODE_EXTREF_KEY)
3918 			break;
3919 
3920 		item_size = btrfs_item_size(leaf, slot);
3921 		while (cur_offset < item_size) {
3922 			u64 parent;
3923 			u64 parent_gen;
3924 
3925 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3926 				unsigned long ptr;
3927 				struct btrfs_inode_extref *extref;
3928 
3929 				ptr = btrfs_item_ptr_offset(leaf, slot);
3930 				extref = (struct btrfs_inode_extref *)
3931 					(ptr + cur_offset);
3932 				parent = btrfs_inode_extref_parent(leaf,
3933 								   extref);
3934 				cur_offset += sizeof(*extref);
3935 				cur_offset += btrfs_inode_extref_name_len(leaf,
3936 								  extref);
3937 			} else {
3938 				parent = key.offset;
3939 				cur_offset = item_size;
3940 			}
3941 
3942 			ret = get_inode_gen(root, parent, &parent_gen);
3943 			if (ret < 0)
3944 				goto out;
3945 			ret = check_ino_in_path(root, ino1, ino1_gen,
3946 						parent, parent_gen, fs_path);
3947 			if (ret)
3948 				goto out;
3949 		}
3950 	}
3951 	ret = 0;
3952 	if (iter_ret < 0)
3953 		ret = iter_ret;
3954 
3955 out:
3956 	btrfs_free_path(path);
3957 	if (free_fs_path)
3958 		fs_path_free(fs_path);
3959 	return ret;
3960 }
3961 
3962 static int wait_for_parent_move(struct send_ctx *sctx,
3963 				struct recorded_ref *parent_ref,
3964 				const bool is_orphan)
3965 {
3966 	int ret = 0;
3967 	u64 ino = parent_ref->dir;
3968 	u64 ino_gen = parent_ref->dir_gen;
3969 	u64 parent_ino_before, parent_ino_after;
3970 	struct fs_path *path_before = NULL;
3971 	struct fs_path *path_after = NULL;
3972 	int len1, len2;
3973 
3974 	path_after = fs_path_alloc();
3975 	path_before = fs_path_alloc();
3976 	if (!path_after || !path_before) {
3977 		ret = -ENOMEM;
3978 		goto out;
3979 	}
3980 
3981 	/*
3982 	 * Our current directory inode may not yet be renamed/moved because some
3983 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3984 	 * such ancestor exists and make sure our own rename/move happens after
3985 	 * that ancestor is processed to avoid path build infinite loops (done
3986 	 * at get_cur_path()).
3987 	 */
3988 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3989 		u64 parent_ino_after_gen;
3990 
3991 		if (is_waiting_for_move(sctx, ino)) {
3992 			/*
3993 			 * If the current inode is an ancestor of ino in the
3994 			 * parent root, we need to delay the rename of the
3995 			 * current inode, otherwise don't delayed the rename
3996 			 * because we can end up with a circular dependency
3997 			 * of renames, resulting in some directories never
3998 			 * getting the respective rename operations issued in
3999 			 * the send stream or getting into infinite path build
4000 			 * loops.
4001 			 */
4002 			ret = is_ancestor(sctx->parent_root,
4003 					  sctx->cur_ino, sctx->cur_inode_gen,
4004 					  ino, path_before);
4005 			if (ret)
4006 				break;
4007 		}
4008 
4009 		fs_path_reset(path_before);
4010 		fs_path_reset(path_after);
4011 
4012 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4013 				    &parent_ino_after_gen, path_after);
4014 		if (ret < 0)
4015 			goto out;
4016 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4017 				    NULL, path_before);
4018 		if (ret < 0 && ret != -ENOENT) {
4019 			goto out;
4020 		} else if (ret == -ENOENT) {
4021 			ret = 0;
4022 			break;
4023 		}
4024 
4025 		len1 = fs_path_len(path_before);
4026 		len2 = fs_path_len(path_after);
4027 		if (ino > sctx->cur_ino &&
4028 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4029 		     memcmp(path_before->start, path_after->start, len1))) {
4030 			u64 parent_ino_gen;
4031 
4032 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4033 			if (ret < 0)
4034 				goto out;
4035 			if (ino_gen == parent_ino_gen) {
4036 				ret = 1;
4037 				break;
4038 			}
4039 		}
4040 		ino = parent_ino_after;
4041 		ino_gen = parent_ino_after_gen;
4042 	}
4043 
4044 out:
4045 	fs_path_free(path_before);
4046 	fs_path_free(path_after);
4047 
4048 	if (ret == 1) {
4049 		ret = add_pending_dir_move(sctx,
4050 					   sctx->cur_ino,
4051 					   sctx->cur_inode_gen,
4052 					   ino,
4053 					   &sctx->new_refs,
4054 					   &sctx->deleted_refs,
4055 					   is_orphan);
4056 		if (!ret)
4057 			ret = 1;
4058 	}
4059 
4060 	return ret;
4061 }
4062 
4063 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4064 {
4065 	int ret;
4066 	struct fs_path *new_path;
4067 
4068 	/*
4069 	 * Our reference's name member points to its full_path member string, so
4070 	 * we use here a new path.
4071 	 */
4072 	new_path = fs_path_alloc();
4073 	if (!new_path)
4074 		return -ENOMEM;
4075 
4076 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4077 	if (ret < 0) {
4078 		fs_path_free(new_path);
4079 		return ret;
4080 	}
4081 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4082 	if (ret < 0) {
4083 		fs_path_free(new_path);
4084 		return ret;
4085 	}
4086 
4087 	fs_path_free(ref->full_path);
4088 	set_ref_path(ref, new_path);
4089 
4090 	return 0;
4091 }
4092 
4093 /*
4094  * When processing the new references for an inode we may orphanize an existing
4095  * directory inode because its old name conflicts with one of the new references
4096  * of the current inode. Later, when processing another new reference of our
4097  * inode, we might need to orphanize another inode, but the path we have in the
4098  * reference reflects the pre-orphanization name of the directory we previously
4099  * orphanized. For example:
4100  *
4101  * parent snapshot looks like:
4102  *
4103  * .                                     (ino 256)
4104  * |----- f1                             (ino 257)
4105  * |----- f2                             (ino 258)
4106  * |----- d1/                            (ino 259)
4107  *        |----- d2/                     (ino 260)
4108  *
4109  * send snapshot looks like:
4110  *
4111  * .                                     (ino 256)
4112  * |----- d1                             (ino 258)
4113  * |----- f2/                            (ino 259)
4114  *        |----- f2_link/                (ino 260)
4115  *        |       |----- f1              (ino 257)
4116  *        |
4117  *        |----- d2                      (ino 258)
4118  *
4119  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4120  * cache it in the name cache. Later when we start processing inode 258, when
4121  * collecting all its new references we set a full path of "d1/d2" for its new
4122  * reference with name "d2". When we start processing the new references we
4123  * start by processing the new reference with name "d1", and this results in
4124  * orphanizing inode 259, since its old reference causes a conflict. Then we
4125  * move on the next new reference, with name "d2", and we find out we must
4126  * orphanize inode 260, as its old reference conflicts with ours - but for the
4127  * orphanization we use a source path corresponding to the path we stored in the
4128  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4129  * receiver fail since the path component "d1/" no longer exists, it was renamed
4130  * to "o259-6-0/" when processing the previous new reference. So in this case we
4131  * must recompute the path in the new reference and use it for the new
4132  * orphanization operation.
4133  */
4134 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4135 {
4136 	char *name;
4137 	int ret;
4138 
4139 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4140 	if (!name)
4141 		return -ENOMEM;
4142 
4143 	fs_path_reset(ref->full_path);
4144 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4145 	if (ret < 0)
4146 		goto out;
4147 
4148 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4149 	if (ret < 0)
4150 		goto out;
4151 
4152 	/* Update the reference's base name pointer. */
4153 	set_ref_path(ref, ref->full_path);
4154 out:
4155 	kfree(name);
4156 	return ret;
4157 }
4158 
4159 /*
4160  * This does all the move/link/unlink/rmdir magic.
4161  */
4162 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4163 {
4164 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4165 	int ret = 0;
4166 	struct recorded_ref *cur;
4167 	struct recorded_ref *cur2;
4168 	struct list_head check_dirs;
4169 	struct fs_path *valid_path = NULL;
4170 	u64 ow_inode = 0;
4171 	u64 ow_gen;
4172 	u64 ow_mode;
4173 	int did_overwrite = 0;
4174 	int is_orphan = 0;
4175 	u64 last_dir_ino_rm = 0;
4176 	bool can_rename = true;
4177 	bool orphanized_dir = false;
4178 	bool orphanized_ancestor = false;
4179 
4180 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4181 
4182 	/*
4183 	 * This should never happen as the root dir always has the same ref
4184 	 * which is always '..'
4185 	 */
4186 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4187 	INIT_LIST_HEAD(&check_dirs);
4188 
4189 	valid_path = fs_path_alloc();
4190 	if (!valid_path) {
4191 		ret = -ENOMEM;
4192 		goto out;
4193 	}
4194 
4195 	/*
4196 	 * First, check if the first ref of the current inode was overwritten
4197 	 * before. If yes, we know that the current inode was already orphanized
4198 	 * and thus use the orphan name. If not, we can use get_cur_path to
4199 	 * get the path of the first ref as it would like while receiving at
4200 	 * this point in time.
4201 	 * New inodes are always orphan at the beginning, so force to use the
4202 	 * orphan name in this case.
4203 	 * The first ref is stored in valid_path and will be updated if it
4204 	 * gets moved around.
4205 	 */
4206 	if (!sctx->cur_inode_new) {
4207 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4208 				sctx->cur_inode_gen);
4209 		if (ret < 0)
4210 			goto out;
4211 		if (ret)
4212 			did_overwrite = 1;
4213 	}
4214 	if (sctx->cur_inode_new || did_overwrite) {
4215 		ret = gen_unique_name(sctx, sctx->cur_ino,
4216 				sctx->cur_inode_gen, valid_path);
4217 		if (ret < 0)
4218 			goto out;
4219 		is_orphan = 1;
4220 	} else {
4221 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4222 				valid_path);
4223 		if (ret < 0)
4224 			goto out;
4225 	}
4226 
4227 	/*
4228 	 * Before doing any rename and link operations, do a first pass on the
4229 	 * new references to orphanize any unprocessed inodes that may have a
4230 	 * reference that conflicts with one of the new references of the current
4231 	 * inode. This needs to happen first because a new reference may conflict
4232 	 * with the old reference of a parent directory, so we must make sure
4233 	 * that the path used for link and rename commands don't use an
4234 	 * orphanized name when an ancestor was not yet orphanized.
4235 	 *
4236 	 * Example:
4237 	 *
4238 	 * Parent snapshot:
4239 	 *
4240 	 * .                                                      (ino 256)
4241 	 * |----- testdir/                                        (ino 259)
4242 	 * |          |----- a                                    (ino 257)
4243 	 * |
4244 	 * |----- b                                               (ino 258)
4245 	 *
4246 	 * Send snapshot:
4247 	 *
4248 	 * .                                                      (ino 256)
4249 	 * |----- testdir_2/                                      (ino 259)
4250 	 * |          |----- a                                    (ino 260)
4251 	 * |
4252 	 * |----- testdir                                         (ino 257)
4253 	 * |----- b                                               (ino 257)
4254 	 * |----- b2                                              (ino 258)
4255 	 *
4256 	 * Processing the new reference for inode 257 with name "b" may happen
4257 	 * before processing the new reference with name "testdir". If so, we
4258 	 * must make sure that by the time we send a link command to create the
4259 	 * hard link "b", inode 259 was already orphanized, since the generated
4260 	 * path in "valid_path" already contains the orphanized name for 259.
4261 	 * We are processing inode 257, so only later when processing 259 we do
4262 	 * the rename operation to change its temporary (orphanized) name to
4263 	 * "testdir_2".
4264 	 */
4265 	list_for_each_entry(cur, &sctx->new_refs, list) {
4266 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4267 		if (ret < 0)
4268 			goto out;
4269 		if (ret == inode_state_will_create)
4270 			continue;
4271 
4272 		/*
4273 		 * Check if this new ref would overwrite the first ref of another
4274 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4275 		 * If we find an overwritten ref that is not the first ref,
4276 		 * simply unlink it.
4277 		 */
4278 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4279 				cur->name, cur->name_len,
4280 				&ow_inode, &ow_gen, &ow_mode);
4281 		if (ret < 0)
4282 			goto out;
4283 		if (ret) {
4284 			ret = is_first_ref(sctx->parent_root,
4285 					   ow_inode, cur->dir, cur->name,
4286 					   cur->name_len);
4287 			if (ret < 0)
4288 				goto out;
4289 			if (ret) {
4290 				struct name_cache_entry *nce;
4291 				struct waiting_dir_move *wdm;
4292 
4293 				if (orphanized_dir) {
4294 					ret = refresh_ref_path(sctx, cur);
4295 					if (ret < 0)
4296 						goto out;
4297 				}
4298 
4299 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4300 						cur->full_path);
4301 				if (ret < 0)
4302 					goto out;
4303 				if (S_ISDIR(ow_mode))
4304 					orphanized_dir = true;
4305 
4306 				/*
4307 				 * If ow_inode has its rename operation delayed
4308 				 * make sure that its orphanized name is used in
4309 				 * the source path when performing its rename
4310 				 * operation.
4311 				 */
4312 				wdm = get_waiting_dir_move(sctx, ow_inode);
4313 				if (wdm)
4314 					wdm->orphanized = true;
4315 
4316 				/*
4317 				 * Make sure we clear our orphanized inode's
4318 				 * name from the name cache. This is because the
4319 				 * inode ow_inode might be an ancestor of some
4320 				 * other inode that will be orphanized as well
4321 				 * later and has an inode number greater than
4322 				 * sctx->send_progress. We need to prevent
4323 				 * future name lookups from using the old name
4324 				 * and get instead the orphan name.
4325 				 */
4326 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4327 				if (nce)
4328 					btrfs_lru_cache_remove(&sctx->name_cache,
4329 							       &nce->entry);
4330 
4331 				/*
4332 				 * ow_inode might currently be an ancestor of
4333 				 * cur_ino, therefore compute valid_path (the
4334 				 * current path of cur_ino) again because it
4335 				 * might contain the pre-orphanization name of
4336 				 * ow_inode, which is no longer valid.
4337 				 */
4338 				ret = is_ancestor(sctx->parent_root,
4339 						  ow_inode, ow_gen,
4340 						  sctx->cur_ino, NULL);
4341 				if (ret > 0) {
4342 					orphanized_ancestor = true;
4343 					fs_path_reset(valid_path);
4344 					ret = get_cur_path(sctx, sctx->cur_ino,
4345 							   sctx->cur_inode_gen,
4346 							   valid_path);
4347 				}
4348 				if (ret < 0)
4349 					goto out;
4350 			} else {
4351 				/*
4352 				 * If we previously orphanized a directory that
4353 				 * collided with a new reference that we already
4354 				 * processed, recompute the current path because
4355 				 * that directory may be part of the path.
4356 				 */
4357 				if (orphanized_dir) {
4358 					ret = refresh_ref_path(sctx, cur);
4359 					if (ret < 0)
4360 						goto out;
4361 				}
4362 				ret = send_unlink(sctx, cur->full_path);
4363 				if (ret < 0)
4364 					goto out;
4365 			}
4366 		}
4367 
4368 	}
4369 
4370 	list_for_each_entry(cur, &sctx->new_refs, list) {
4371 		/*
4372 		 * We may have refs where the parent directory does not exist
4373 		 * yet. This happens if the parent directories inum is higher
4374 		 * than the current inum. To handle this case, we create the
4375 		 * parent directory out of order. But we need to check if this
4376 		 * did already happen before due to other refs in the same dir.
4377 		 */
4378 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4379 		if (ret < 0)
4380 			goto out;
4381 		if (ret == inode_state_will_create) {
4382 			ret = 0;
4383 			/*
4384 			 * First check if any of the current inodes refs did
4385 			 * already create the dir.
4386 			 */
4387 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4388 				if (cur == cur2)
4389 					break;
4390 				if (cur2->dir == cur->dir) {
4391 					ret = 1;
4392 					break;
4393 				}
4394 			}
4395 
4396 			/*
4397 			 * If that did not happen, check if a previous inode
4398 			 * did already create the dir.
4399 			 */
4400 			if (!ret)
4401 				ret = did_create_dir(sctx, cur->dir);
4402 			if (ret < 0)
4403 				goto out;
4404 			if (!ret) {
4405 				ret = send_create_inode(sctx, cur->dir);
4406 				if (ret < 0)
4407 					goto out;
4408 				cache_dir_created(sctx, cur->dir);
4409 			}
4410 		}
4411 
4412 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4413 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4414 			if (ret < 0)
4415 				goto out;
4416 			if (ret == 1) {
4417 				can_rename = false;
4418 				*pending_move = 1;
4419 			}
4420 		}
4421 
4422 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4423 		    can_rename) {
4424 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4425 			if (ret < 0)
4426 				goto out;
4427 			if (ret == 1) {
4428 				can_rename = false;
4429 				*pending_move = 1;
4430 			}
4431 		}
4432 
4433 		/*
4434 		 * link/move the ref to the new place. If we have an orphan
4435 		 * inode, move it and update valid_path. If not, link or move
4436 		 * it depending on the inode mode.
4437 		 */
4438 		if (is_orphan && can_rename) {
4439 			ret = send_rename(sctx, valid_path, cur->full_path);
4440 			if (ret < 0)
4441 				goto out;
4442 			is_orphan = 0;
4443 			ret = fs_path_copy(valid_path, cur->full_path);
4444 			if (ret < 0)
4445 				goto out;
4446 		} else if (can_rename) {
4447 			if (S_ISDIR(sctx->cur_inode_mode)) {
4448 				/*
4449 				 * Dirs can't be linked, so move it. For moved
4450 				 * dirs, we always have one new and one deleted
4451 				 * ref. The deleted ref is ignored later.
4452 				 */
4453 				ret = send_rename(sctx, valid_path,
4454 						  cur->full_path);
4455 				if (!ret)
4456 					ret = fs_path_copy(valid_path,
4457 							   cur->full_path);
4458 				if (ret < 0)
4459 					goto out;
4460 			} else {
4461 				/*
4462 				 * We might have previously orphanized an inode
4463 				 * which is an ancestor of our current inode,
4464 				 * so our reference's full path, which was
4465 				 * computed before any such orphanizations, must
4466 				 * be updated.
4467 				 */
4468 				if (orphanized_dir) {
4469 					ret = update_ref_path(sctx, cur);
4470 					if (ret < 0)
4471 						goto out;
4472 				}
4473 				ret = send_link(sctx, cur->full_path,
4474 						valid_path);
4475 				if (ret < 0)
4476 					goto out;
4477 			}
4478 		}
4479 		ret = dup_ref(cur, &check_dirs);
4480 		if (ret < 0)
4481 			goto out;
4482 	}
4483 
4484 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4485 		/*
4486 		 * Check if we can already rmdir the directory. If not,
4487 		 * orphanize it. For every dir item inside that gets deleted
4488 		 * later, we do this check again and rmdir it then if possible.
4489 		 * See the use of check_dirs for more details.
4490 		 */
4491 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4492 		if (ret < 0)
4493 			goto out;
4494 		if (ret) {
4495 			ret = send_rmdir(sctx, valid_path);
4496 			if (ret < 0)
4497 				goto out;
4498 		} else if (!is_orphan) {
4499 			ret = orphanize_inode(sctx, sctx->cur_ino,
4500 					sctx->cur_inode_gen, valid_path);
4501 			if (ret < 0)
4502 				goto out;
4503 			is_orphan = 1;
4504 		}
4505 
4506 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4507 			ret = dup_ref(cur, &check_dirs);
4508 			if (ret < 0)
4509 				goto out;
4510 		}
4511 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4512 		   !list_empty(&sctx->deleted_refs)) {
4513 		/*
4514 		 * We have a moved dir. Add the old parent to check_dirs
4515 		 */
4516 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4517 				list);
4518 		ret = dup_ref(cur, &check_dirs);
4519 		if (ret < 0)
4520 			goto out;
4521 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4522 		/*
4523 		 * We have a non dir inode. Go through all deleted refs and
4524 		 * unlink them if they were not already overwritten by other
4525 		 * inodes.
4526 		 */
4527 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4528 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4529 					sctx->cur_ino, sctx->cur_inode_gen,
4530 					cur->name, cur->name_len);
4531 			if (ret < 0)
4532 				goto out;
4533 			if (!ret) {
4534 				/*
4535 				 * If we orphanized any ancestor before, we need
4536 				 * to recompute the full path for deleted names,
4537 				 * since any such path was computed before we
4538 				 * processed any references and orphanized any
4539 				 * ancestor inode.
4540 				 */
4541 				if (orphanized_ancestor) {
4542 					ret = update_ref_path(sctx, cur);
4543 					if (ret < 0)
4544 						goto out;
4545 				}
4546 				ret = send_unlink(sctx, cur->full_path);
4547 				if (ret < 0)
4548 					goto out;
4549 			}
4550 			ret = dup_ref(cur, &check_dirs);
4551 			if (ret < 0)
4552 				goto out;
4553 		}
4554 		/*
4555 		 * If the inode is still orphan, unlink the orphan. This may
4556 		 * happen when a previous inode did overwrite the first ref
4557 		 * of this inode and no new refs were added for the current
4558 		 * inode. Unlinking does not mean that the inode is deleted in
4559 		 * all cases. There may still be links to this inode in other
4560 		 * places.
4561 		 */
4562 		if (is_orphan) {
4563 			ret = send_unlink(sctx, valid_path);
4564 			if (ret < 0)
4565 				goto out;
4566 		}
4567 	}
4568 
4569 	/*
4570 	 * We did collect all parent dirs where cur_inode was once located. We
4571 	 * now go through all these dirs and check if they are pending for
4572 	 * deletion and if it's finally possible to perform the rmdir now.
4573 	 * We also update the inode stats of the parent dirs here.
4574 	 */
4575 	list_for_each_entry(cur, &check_dirs, list) {
4576 		/*
4577 		 * In case we had refs into dirs that were not processed yet,
4578 		 * we don't need to do the utime and rmdir logic for these dirs.
4579 		 * The dir will be processed later.
4580 		 */
4581 		if (cur->dir > sctx->cur_ino)
4582 			continue;
4583 
4584 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4585 		if (ret < 0)
4586 			goto out;
4587 
4588 		if (ret == inode_state_did_create ||
4589 		    ret == inode_state_no_change) {
4590 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4591 			if (ret < 0)
4592 				goto out;
4593 		} else if (ret == inode_state_did_delete &&
4594 			   cur->dir != last_dir_ino_rm) {
4595 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4596 			if (ret < 0)
4597 				goto out;
4598 			if (ret) {
4599 				ret = get_cur_path(sctx, cur->dir,
4600 						   cur->dir_gen, valid_path);
4601 				if (ret < 0)
4602 					goto out;
4603 				ret = send_rmdir(sctx, valid_path);
4604 				if (ret < 0)
4605 					goto out;
4606 				last_dir_ino_rm = cur->dir;
4607 			}
4608 		}
4609 	}
4610 
4611 	ret = 0;
4612 
4613 out:
4614 	__free_recorded_refs(&check_dirs);
4615 	free_recorded_refs(sctx);
4616 	fs_path_free(valid_path);
4617 	return ret;
4618 }
4619 
4620 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4621 {
4622 	const struct recorded_ref *data = k;
4623 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4624 	int result;
4625 
4626 	if (data->dir > ref->dir)
4627 		return 1;
4628 	if (data->dir < ref->dir)
4629 		return -1;
4630 	if (data->dir_gen > ref->dir_gen)
4631 		return 1;
4632 	if (data->dir_gen < ref->dir_gen)
4633 		return -1;
4634 	if (data->name_len > ref->name_len)
4635 		return 1;
4636 	if (data->name_len < ref->name_len)
4637 		return -1;
4638 	result = strcmp(data->name, ref->name);
4639 	if (result > 0)
4640 		return 1;
4641 	if (result < 0)
4642 		return -1;
4643 	return 0;
4644 }
4645 
4646 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4647 {
4648 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4649 
4650 	return rbtree_ref_comp(entry, parent) < 0;
4651 }
4652 
4653 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4654 			      struct fs_path *name, u64 dir, u64 dir_gen,
4655 			      struct send_ctx *sctx)
4656 {
4657 	int ret = 0;
4658 	struct fs_path *path = NULL;
4659 	struct recorded_ref *ref = NULL;
4660 
4661 	path = fs_path_alloc();
4662 	if (!path) {
4663 		ret = -ENOMEM;
4664 		goto out;
4665 	}
4666 
4667 	ref = recorded_ref_alloc();
4668 	if (!ref) {
4669 		ret = -ENOMEM;
4670 		goto out;
4671 	}
4672 
4673 	ret = get_cur_path(sctx, dir, dir_gen, path);
4674 	if (ret < 0)
4675 		goto out;
4676 	ret = fs_path_add_path(path, name);
4677 	if (ret < 0)
4678 		goto out;
4679 
4680 	ref->dir = dir;
4681 	ref->dir_gen = dir_gen;
4682 	set_ref_path(ref, path);
4683 	list_add_tail(&ref->list, refs);
4684 	rb_add(&ref->node, root, rbtree_ref_less);
4685 	ref->root = root;
4686 out:
4687 	if (ret) {
4688 		if (path && (!ref || !ref->full_path))
4689 			fs_path_free(path);
4690 		recorded_ref_free(ref);
4691 	}
4692 	return ret;
4693 }
4694 
4695 static int record_new_ref_if_needed(int num, u64 dir, int index,
4696 				    struct fs_path *name, void *ctx)
4697 {
4698 	int ret = 0;
4699 	struct send_ctx *sctx = ctx;
4700 	struct rb_node *node = NULL;
4701 	struct recorded_ref data;
4702 	struct recorded_ref *ref;
4703 	u64 dir_gen;
4704 
4705 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4706 	if (ret < 0)
4707 		goto out;
4708 
4709 	data.dir = dir;
4710 	data.dir_gen = dir_gen;
4711 	set_ref_path(&data, name);
4712 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4713 	if (node) {
4714 		ref = rb_entry(node, struct recorded_ref, node);
4715 		recorded_ref_free(ref);
4716 	} else {
4717 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4718 					 &sctx->new_refs, name, dir, dir_gen,
4719 					 sctx);
4720 	}
4721 out:
4722 	return ret;
4723 }
4724 
4725 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4726 					struct fs_path *name, void *ctx)
4727 {
4728 	int ret = 0;
4729 	struct send_ctx *sctx = ctx;
4730 	struct rb_node *node = NULL;
4731 	struct recorded_ref data;
4732 	struct recorded_ref *ref;
4733 	u64 dir_gen;
4734 
4735 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4736 	if (ret < 0)
4737 		goto out;
4738 
4739 	data.dir = dir;
4740 	data.dir_gen = dir_gen;
4741 	set_ref_path(&data, name);
4742 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4743 	if (node) {
4744 		ref = rb_entry(node, struct recorded_ref, node);
4745 		recorded_ref_free(ref);
4746 	} else {
4747 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4748 					 &sctx->deleted_refs, name, dir,
4749 					 dir_gen, sctx);
4750 	}
4751 out:
4752 	return ret;
4753 }
4754 
4755 static int record_new_ref(struct send_ctx *sctx)
4756 {
4757 	int ret;
4758 
4759 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4760 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4761 	if (ret < 0)
4762 		goto out;
4763 	ret = 0;
4764 
4765 out:
4766 	return ret;
4767 }
4768 
4769 static int record_deleted_ref(struct send_ctx *sctx)
4770 {
4771 	int ret;
4772 
4773 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4774 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4775 				sctx);
4776 	if (ret < 0)
4777 		goto out;
4778 	ret = 0;
4779 
4780 out:
4781 	return ret;
4782 }
4783 
4784 static int record_changed_ref(struct send_ctx *sctx)
4785 {
4786 	int ret = 0;
4787 
4788 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4789 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4790 	if (ret < 0)
4791 		goto out;
4792 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4793 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4794 	if (ret < 0)
4795 		goto out;
4796 	ret = 0;
4797 
4798 out:
4799 	return ret;
4800 }
4801 
4802 /*
4803  * Record and process all refs at once. Needed when an inode changes the
4804  * generation number, which means that it was deleted and recreated.
4805  */
4806 static int process_all_refs(struct send_ctx *sctx,
4807 			    enum btrfs_compare_tree_result cmd)
4808 {
4809 	int ret = 0;
4810 	int iter_ret = 0;
4811 	struct btrfs_root *root;
4812 	struct btrfs_path *path;
4813 	struct btrfs_key key;
4814 	struct btrfs_key found_key;
4815 	iterate_inode_ref_t cb;
4816 	int pending_move = 0;
4817 
4818 	path = alloc_path_for_send();
4819 	if (!path)
4820 		return -ENOMEM;
4821 
4822 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4823 		root = sctx->send_root;
4824 		cb = record_new_ref_if_needed;
4825 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4826 		root = sctx->parent_root;
4827 		cb = record_deleted_ref_if_needed;
4828 	} else {
4829 		btrfs_err(sctx->send_root->fs_info,
4830 				"Wrong command %d in process_all_refs", cmd);
4831 		ret = -EINVAL;
4832 		goto out;
4833 	}
4834 
4835 	key.objectid = sctx->cmp_key->objectid;
4836 	key.type = BTRFS_INODE_REF_KEY;
4837 	key.offset = 0;
4838 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4839 		if (found_key.objectid != key.objectid ||
4840 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4841 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4842 			break;
4843 
4844 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4845 		if (ret < 0)
4846 			goto out;
4847 	}
4848 	/* Catch error found during iteration */
4849 	if (iter_ret < 0) {
4850 		ret = iter_ret;
4851 		goto out;
4852 	}
4853 	btrfs_release_path(path);
4854 
4855 	/*
4856 	 * We don't actually care about pending_move as we are simply
4857 	 * re-creating this inode and will be rename'ing it into place once we
4858 	 * rename the parent directory.
4859 	 */
4860 	ret = process_recorded_refs(sctx, &pending_move);
4861 out:
4862 	btrfs_free_path(path);
4863 	return ret;
4864 }
4865 
4866 static int send_set_xattr(struct send_ctx *sctx,
4867 			  struct fs_path *path,
4868 			  const char *name, int name_len,
4869 			  const char *data, int data_len)
4870 {
4871 	int ret = 0;
4872 
4873 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4874 	if (ret < 0)
4875 		goto out;
4876 
4877 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4878 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4879 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4880 
4881 	ret = send_cmd(sctx);
4882 
4883 tlv_put_failure:
4884 out:
4885 	return ret;
4886 }
4887 
4888 static int send_remove_xattr(struct send_ctx *sctx,
4889 			  struct fs_path *path,
4890 			  const char *name, int name_len)
4891 {
4892 	int ret = 0;
4893 
4894 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4895 	if (ret < 0)
4896 		goto out;
4897 
4898 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4899 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4900 
4901 	ret = send_cmd(sctx);
4902 
4903 tlv_put_failure:
4904 out:
4905 	return ret;
4906 }
4907 
4908 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4909 			       const char *name, int name_len, const char *data,
4910 			       int data_len, void *ctx)
4911 {
4912 	int ret;
4913 	struct send_ctx *sctx = ctx;
4914 	struct fs_path *p;
4915 	struct posix_acl_xattr_header dummy_acl;
4916 
4917 	/* Capabilities are emitted by finish_inode_if_needed */
4918 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4919 		return 0;
4920 
4921 	p = fs_path_alloc();
4922 	if (!p)
4923 		return -ENOMEM;
4924 
4925 	/*
4926 	 * This hack is needed because empty acls are stored as zero byte
4927 	 * data in xattrs. Problem with that is, that receiving these zero byte
4928 	 * acls will fail later. To fix this, we send a dummy acl list that
4929 	 * only contains the version number and no entries.
4930 	 */
4931 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4932 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4933 		if (data_len == 0) {
4934 			dummy_acl.a_version =
4935 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4936 			data = (char *)&dummy_acl;
4937 			data_len = sizeof(dummy_acl);
4938 		}
4939 	}
4940 
4941 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4942 	if (ret < 0)
4943 		goto out;
4944 
4945 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4946 
4947 out:
4948 	fs_path_free(p);
4949 	return ret;
4950 }
4951 
4952 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4953 				   const char *name, int name_len,
4954 				   const char *data, int data_len, void *ctx)
4955 {
4956 	int ret;
4957 	struct send_ctx *sctx = ctx;
4958 	struct fs_path *p;
4959 
4960 	p = fs_path_alloc();
4961 	if (!p)
4962 		return -ENOMEM;
4963 
4964 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4965 	if (ret < 0)
4966 		goto out;
4967 
4968 	ret = send_remove_xattr(sctx, p, name, name_len);
4969 
4970 out:
4971 	fs_path_free(p);
4972 	return ret;
4973 }
4974 
4975 static int process_new_xattr(struct send_ctx *sctx)
4976 {
4977 	int ret = 0;
4978 
4979 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4980 			       __process_new_xattr, sctx);
4981 
4982 	return ret;
4983 }
4984 
4985 static int process_deleted_xattr(struct send_ctx *sctx)
4986 {
4987 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4988 				__process_deleted_xattr, sctx);
4989 }
4990 
4991 struct find_xattr_ctx {
4992 	const char *name;
4993 	int name_len;
4994 	int found_idx;
4995 	char *found_data;
4996 	int found_data_len;
4997 };
4998 
4999 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5000 			int name_len, const char *data, int data_len, void *vctx)
5001 {
5002 	struct find_xattr_ctx *ctx = vctx;
5003 
5004 	if (name_len == ctx->name_len &&
5005 	    strncmp(name, ctx->name, name_len) == 0) {
5006 		ctx->found_idx = num;
5007 		ctx->found_data_len = data_len;
5008 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5009 		if (!ctx->found_data)
5010 			return -ENOMEM;
5011 		return 1;
5012 	}
5013 	return 0;
5014 }
5015 
5016 static int find_xattr(struct btrfs_root *root,
5017 		      struct btrfs_path *path,
5018 		      struct btrfs_key *key,
5019 		      const char *name, int name_len,
5020 		      char **data, int *data_len)
5021 {
5022 	int ret;
5023 	struct find_xattr_ctx ctx;
5024 
5025 	ctx.name = name;
5026 	ctx.name_len = name_len;
5027 	ctx.found_idx = -1;
5028 	ctx.found_data = NULL;
5029 	ctx.found_data_len = 0;
5030 
5031 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5032 	if (ret < 0)
5033 		return ret;
5034 
5035 	if (ctx.found_idx == -1)
5036 		return -ENOENT;
5037 	if (data) {
5038 		*data = ctx.found_data;
5039 		*data_len = ctx.found_data_len;
5040 	} else {
5041 		kfree(ctx.found_data);
5042 	}
5043 	return ctx.found_idx;
5044 }
5045 
5046 
5047 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5048 				       const char *name, int name_len,
5049 				       const char *data, int data_len,
5050 				       void *ctx)
5051 {
5052 	int ret;
5053 	struct send_ctx *sctx = ctx;
5054 	char *found_data = NULL;
5055 	int found_data_len  = 0;
5056 
5057 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5058 			 sctx->cmp_key, name, name_len, &found_data,
5059 			 &found_data_len);
5060 	if (ret == -ENOENT) {
5061 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5062 					  data_len, ctx);
5063 	} else if (ret >= 0) {
5064 		if (data_len != found_data_len ||
5065 		    memcmp(data, found_data, data_len)) {
5066 			ret = __process_new_xattr(num, di_key, name, name_len,
5067 						  data, data_len, ctx);
5068 		} else {
5069 			ret = 0;
5070 		}
5071 	}
5072 
5073 	kfree(found_data);
5074 	return ret;
5075 }
5076 
5077 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5078 					   const char *name, int name_len,
5079 					   const char *data, int data_len,
5080 					   void *ctx)
5081 {
5082 	int ret;
5083 	struct send_ctx *sctx = ctx;
5084 
5085 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5086 			 name, name_len, NULL, NULL);
5087 	if (ret == -ENOENT)
5088 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5089 					      data_len, ctx);
5090 	else if (ret >= 0)
5091 		ret = 0;
5092 
5093 	return ret;
5094 }
5095 
5096 static int process_changed_xattr(struct send_ctx *sctx)
5097 {
5098 	int ret = 0;
5099 
5100 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5101 			__process_changed_new_xattr, sctx);
5102 	if (ret < 0)
5103 		goto out;
5104 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5105 			__process_changed_deleted_xattr, sctx);
5106 
5107 out:
5108 	return ret;
5109 }
5110 
5111 static int process_all_new_xattrs(struct send_ctx *sctx)
5112 {
5113 	int ret = 0;
5114 	int iter_ret = 0;
5115 	struct btrfs_root *root;
5116 	struct btrfs_path *path;
5117 	struct btrfs_key key;
5118 	struct btrfs_key found_key;
5119 
5120 	path = alloc_path_for_send();
5121 	if (!path)
5122 		return -ENOMEM;
5123 
5124 	root = sctx->send_root;
5125 
5126 	key.objectid = sctx->cmp_key->objectid;
5127 	key.type = BTRFS_XATTR_ITEM_KEY;
5128 	key.offset = 0;
5129 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5130 		if (found_key.objectid != key.objectid ||
5131 		    found_key.type != key.type) {
5132 			ret = 0;
5133 			break;
5134 		}
5135 
5136 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5137 		if (ret < 0)
5138 			break;
5139 	}
5140 	/* Catch error found during iteration */
5141 	if (iter_ret < 0)
5142 		ret = iter_ret;
5143 
5144 	btrfs_free_path(path);
5145 	return ret;
5146 }
5147 
5148 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5149 		       struct fsverity_descriptor *desc)
5150 {
5151 	int ret;
5152 
5153 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5154 	if (ret < 0)
5155 		goto out;
5156 
5157 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5158 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5159 			le8_to_cpu(desc->hash_algorithm));
5160 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5161 			1U << le8_to_cpu(desc->log_blocksize));
5162 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5163 			le8_to_cpu(desc->salt_size));
5164 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5165 			le32_to_cpu(desc->sig_size));
5166 
5167 	ret = send_cmd(sctx);
5168 
5169 tlv_put_failure:
5170 out:
5171 	return ret;
5172 }
5173 
5174 static int process_verity(struct send_ctx *sctx)
5175 {
5176 	int ret = 0;
5177 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5178 	struct inode *inode;
5179 	struct fs_path *p;
5180 
5181 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5182 	if (IS_ERR(inode))
5183 		return PTR_ERR(inode);
5184 
5185 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5186 	if (ret < 0)
5187 		goto iput;
5188 
5189 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5190 		ret = -EMSGSIZE;
5191 		goto iput;
5192 	}
5193 	if (!sctx->verity_descriptor) {
5194 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5195 						   GFP_KERNEL);
5196 		if (!sctx->verity_descriptor) {
5197 			ret = -ENOMEM;
5198 			goto iput;
5199 		}
5200 	}
5201 
5202 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5203 	if (ret < 0)
5204 		goto iput;
5205 
5206 	p = fs_path_alloc();
5207 	if (!p) {
5208 		ret = -ENOMEM;
5209 		goto iput;
5210 	}
5211 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5212 	if (ret < 0)
5213 		goto free_path;
5214 
5215 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5216 	if (ret < 0)
5217 		goto free_path;
5218 
5219 free_path:
5220 	fs_path_free(p);
5221 iput:
5222 	iput(inode);
5223 	return ret;
5224 }
5225 
5226 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5227 {
5228 	return sctx->send_max_size - SZ_16K;
5229 }
5230 
5231 static int put_data_header(struct send_ctx *sctx, u32 len)
5232 {
5233 	if (WARN_ON_ONCE(sctx->put_data))
5234 		return -EINVAL;
5235 	sctx->put_data = true;
5236 	if (sctx->proto >= 2) {
5237 		/*
5238 		 * Since v2, the data attribute header doesn't include a length,
5239 		 * it is implicitly to the end of the command.
5240 		 */
5241 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5242 			return -EOVERFLOW;
5243 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5244 		sctx->send_size += sizeof(__le16);
5245 	} else {
5246 		struct btrfs_tlv_header *hdr;
5247 
5248 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5249 			return -EOVERFLOW;
5250 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5251 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5252 		put_unaligned_le16(len, &hdr->tlv_len);
5253 		sctx->send_size += sizeof(*hdr);
5254 	}
5255 	return 0;
5256 }
5257 
5258 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5259 {
5260 	struct btrfs_root *root = sctx->send_root;
5261 	struct btrfs_fs_info *fs_info = root->fs_info;
5262 	struct page *page;
5263 	pgoff_t index = offset >> PAGE_SHIFT;
5264 	pgoff_t last_index;
5265 	unsigned pg_offset = offset_in_page(offset);
5266 	int ret;
5267 
5268 	ret = put_data_header(sctx, len);
5269 	if (ret)
5270 		return ret;
5271 
5272 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5273 
5274 	while (index <= last_index) {
5275 		unsigned cur_len = min_t(unsigned, len,
5276 					 PAGE_SIZE - pg_offset);
5277 
5278 		page = find_lock_page(sctx->cur_inode->i_mapping, index);
5279 		if (!page) {
5280 			page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5281 						  &sctx->ra, NULL, index,
5282 						  last_index + 1 - index);
5283 
5284 			page = find_or_create_page(sctx->cur_inode->i_mapping,
5285 						   index, GFP_KERNEL);
5286 			if (!page) {
5287 				ret = -ENOMEM;
5288 				break;
5289 			}
5290 		}
5291 
5292 		if (PageReadahead(page))
5293 			page_cache_async_readahead(sctx->cur_inode->i_mapping,
5294 						   &sctx->ra, NULL, page_folio(page),
5295 						   index, last_index + 1 - index);
5296 
5297 		if (!PageUptodate(page)) {
5298 			btrfs_read_folio(NULL, page_folio(page));
5299 			lock_page(page);
5300 			if (!PageUptodate(page)) {
5301 				unlock_page(page);
5302 				btrfs_err(fs_info,
5303 			"send: IO error at offset %llu for inode %llu root %llu",
5304 					page_offset(page), sctx->cur_ino,
5305 					sctx->send_root->root_key.objectid);
5306 				put_page(page);
5307 				ret = -EIO;
5308 				break;
5309 			}
5310 		}
5311 
5312 		memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5313 				 pg_offset, cur_len);
5314 		unlock_page(page);
5315 		put_page(page);
5316 		index++;
5317 		pg_offset = 0;
5318 		len -= cur_len;
5319 		sctx->send_size += cur_len;
5320 	}
5321 
5322 	return ret;
5323 }
5324 
5325 /*
5326  * Read some bytes from the current inode/file and send a write command to
5327  * user space.
5328  */
5329 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5330 {
5331 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5332 	int ret = 0;
5333 	struct fs_path *p;
5334 
5335 	p = fs_path_alloc();
5336 	if (!p)
5337 		return -ENOMEM;
5338 
5339 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5340 
5341 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5342 	if (ret < 0)
5343 		goto out;
5344 
5345 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5346 	if (ret < 0)
5347 		goto out;
5348 
5349 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5350 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5351 	ret = put_file_data(sctx, offset, len);
5352 	if (ret < 0)
5353 		goto out;
5354 
5355 	ret = send_cmd(sctx);
5356 
5357 tlv_put_failure:
5358 out:
5359 	fs_path_free(p);
5360 	return ret;
5361 }
5362 
5363 /*
5364  * Send a clone command to user space.
5365  */
5366 static int send_clone(struct send_ctx *sctx,
5367 		      u64 offset, u32 len,
5368 		      struct clone_root *clone_root)
5369 {
5370 	int ret = 0;
5371 	struct fs_path *p;
5372 	u64 gen;
5373 
5374 	btrfs_debug(sctx->send_root->fs_info,
5375 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5376 		    offset, len, clone_root->root->root_key.objectid,
5377 		    clone_root->ino, clone_root->offset);
5378 
5379 	p = fs_path_alloc();
5380 	if (!p)
5381 		return -ENOMEM;
5382 
5383 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5384 	if (ret < 0)
5385 		goto out;
5386 
5387 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5388 	if (ret < 0)
5389 		goto out;
5390 
5391 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5392 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5393 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5394 
5395 	if (clone_root->root == sctx->send_root) {
5396 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5397 		if (ret < 0)
5398 			goto out;
5399 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5400 	} else {
5401 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5402 	}
5403 	if (ret < 0)
5404 		goto out;
5405 
5406 	/*
5407 	 * If the parent we're using has a received_uuid set then use that as
5408 	 * our clone source as that is what we will look for when doing a
5409 	 * receive.
5410 	 *
5411 	 * This covers the case that we create a snapshot off of a received
5412 	 * subvolume and then use that as the parent and try to receive on a
5413 	 * different host.
5414 	 */
5415 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5416 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5417 			     clone_root->root->root_item.received_uuid);
5418 	else
5419 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5420 			     clone_root->root->root_item.uuid);
5421 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5422 		    btrfs_root_ctransid(&clone_root->root->root_item));
5423 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5424 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5425 			clone_root->offset);
5426 
5427 	ret = send_cmd(sctx);
5428 
5429 tlv_put_failure:
5430 out:
5431 	fs_path_free(p);
5432 	return ret;
5433 }
5434 
5435 /*
5436  * Send an update extent command to user space.
5437  */
5438 static int send_update_extent(struct send_ctx *sctx,
5439 			      u64 offset, u32 len)
5440 {
5441 	int ret = 0;
5442 	struct fs_path *p;
5443 
5444 	p = fs_path_alloc();
5445 	if (!p)
5446 		return -ENOMEM;
5447 
5448 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5449 	if (ret < 0)
5450 		goto out;
5451 
5452 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5453 	if (ret < 0)
5454 		goto out;
5455 
5456 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5457 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5458 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5459 
5460 	ret = send_cmd(sctx);
5461 
5462 tlv_put_failure:
5463 out:
5464 	fs_path_free(p);
5465 	return ret;
5466 }
5467 
5468 static int send_hole(struct send_ctx *sctx, u64 end)
5469 {
5470 	struct fs_path *p = NULL;
5471 	u64 read_size = max_send_read_size(sctx);
5472 	u64 offset = sctx->cur_inode_last_extent;
5473 	int ret = 0;
5474 
5475 	/*
5476 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5477 	 * fallocate (for extent preallocation and hole punching), sending a
5478 	 * write of zeroes starting at EOF or beyond would later require issuing
5479 	 * a truncate operation which would undo the write and achieve nothing.
5480 	 */
5481 	if (offset >= sctx->cur_inode_size)
5482 		return 0;
5483 
5484 	/*
5485 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5486 	 * after the i_size.
5487 	 */
5488 	end = min_t(u64, end, sctx->cur_inode_size);
5489 
5490 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5491 		return send_update_extent(sctx, offset, end - offset);
5492 
5493 	p = fs_path_alloc();
5494 	if (!p)
5495 		return -ENOMEM;
5496 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5497 	if (ret < 0)
5498 		goto tlv_put_failure;
5499 	while (offset < end) {
5500 		u64 len = min(end - offset, read_size);
5501 
5502 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5503 		if (ret < 0)
5504 			break;
5505 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5506 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5507 		ret = put_data_header(sctx, len);
5508 		if (ret < 0)
5509 			break;
5510 		memset(sctx->send_buf + sctx->send_size, 0, len);
5511 		sctx->send_size += len;
5512 		ret = send_cmd(sctx);
5513 		if (ret < 0)
5514 			break;
5515 		offset += len;
5516 	}
5517 	sctx->cur_inode_next_write_offset = offset;
5518 tlv_put_failure:
5519 	fs_path_free(p);
5520 	return ret;
5521 }
5522 
5523 static int send_encoded_inline_extent(struct send_ctx *sctx,
5524 				      struct btrfs_path *path, u64 offset,
5525 				      u64 len)
5526 {
5527 	struct btrfs_root *root = sctx->send_root;
5528 	struct btrfs_fs_info *fs_info = root->fs_info;
5529 	struct inode *inode;
5530 	struct fs_path *fspath;
5531 	struct extent_buffer *leaf = path->nodes[0];
5532 	struct btrfs_key key;
5533 	struct btrfs_file_extent_item *ei;
5534 	u64 ram_bytes;
5535 	size_t inline_size;
5536 	int ret;
5537 
5538 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5539 	if (IS_ERR(inode))
5540 		return PTR_ERR(inode);
5541 
5542 	fspath = fs_path_alloc();
5543 	if (!fspath) {
5544 		ret = -ENOMEM;
5545 		goto out;
5546 	}
5547 
5548 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5549 	if (ret < 0)
5550 		goto out;
5551 
5552 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5553 	if (ret < 0)
5554 		goto out;
5555 
5556 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5557 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5558 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5559 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5560 
5561 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5562 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5563 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5564 		    min(key.offset + ram_bytes - offset, len));
5565 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5566 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5567 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5568 				btrfs_file_extent_compression(leaf, ei));
5569 	if (ret < 0)
5570 		goto out;
5571 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5572 
5573 	ret = put_data_header(sctx, inline_size);
5574 	if (ret < 0)
5575 		goto out;
5576 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5577 			   btrfs_file_extent_inline_start(ei), inline_size);
5578 	sctx->send_size += inline_size;
5579 
5580 	ret = send_cmd(sctx);
5581 
5582 tlv_put_failure:
5583 out:
5584 	fs_path_free(fspath);
5585 	iput(inode);
5586 	return ret;
5587 }
5588 
5589 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5590 			       u64 offset, u64 len)
5591 {
5592 	struct btrfs_root *root = sctx->send_root;
5593 	struct btrfs_fs_info *fs_info = root->fs_info;
5594 	struct inode *inode;
5595 	struct fs_path *fspath;
5596 	struct extent_buffer *leaf = path->nodes[0];
5597 	struct btrfs_key key;
5598 	struct btrfs_file_extent_item *ei;
5599 	u64 disk_bytenr, disk_num_bytes;
5600 	u32 data_offset;
5601 	struct btrfs_cmd_header *hdr;
5602 	u32 crc;
5603 	int ret;
5604 
5605 	inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5606 	if (IS_ERR(inode))
5607 		return PTR_ERR(inode);
5608 
5609 	fspath = fs_path_alloc();
5610 	if (!fspath) {
5611 		ret = -ENOMEM;
5612 		goto out;
5613 	}
5614 
5615 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5616 	if (ret < 0)
5617 		goto out;
5618 
5619 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5620 	if (ret < 0)
5621 		goto out;
5622 
5623 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5624 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5625 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5626 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5627 
5628 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5629 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5630 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5631 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5632 			len));
5633 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5634 		    btrfs_file_extent_ram_bytes(leaf, ei));
5635 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5636 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5637 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5638 				btrfs_file_extent_compression(leaf, ei));
5639 	if (ret < 0)
5640 		goto out;
5641 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5642 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5643 
5644 	ret = put_data_header(sctx, disk_num_bytes);
5645 	if (ret < 0)
5646 		goto out;
5647 
5648 	/*
5649 	 * We want to do I/O directly into the send buffer, so get the next page
5650 	 * boundary in the send buffer. This means that there may be a gap
5651 	 * between the beginning of the command and the file data.
5652 	 */
5653 	data_offset = PAGE_ALIGN(sctx->send_size);
5654 	if (data_offset > sctx->send_max_size ||
5655 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5656 		ret = -EOVERFLOW;
5657 		goto out;
5658 	}
5659 
5660 	/*
5661 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5662 	 * reading into send_buf.
5663 	 */
5664 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5665 						    disk_bytenr, disk_num_bytes,
5666 						    sctx->send_buf_pages +
5667 						    (data_offset >> PAGE_SHIFT));
5668 	if (ret)
5669 		goto out;
5670 
5671 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5672 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5673 	hdr->crc = 0;
5674 	crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5675 	crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5676 	hdr->crc = cpu_to_le32(crc);
5677 
5678 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5679 			&sctx->send_off);
5680 	if (!ret) {
5681 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5682 				disk_num_bytes, &sctx->send_off);
5683 	}
5684 	sctx->send_size = 0;
5685 	sctx->put_data = false;
5686 
5687 tlv_put_failure:
5688 out:
5689 	fs_path_free(fspath);
5690 	iput(inode);
5691 	return ret;
5692 }
5693 
5694 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5695 			    const u64 offset, const u64 len)
5696 {
5697 	const u64 end = offset + len;
5698 	struct extent_buffer *leaf = path->nodes[0];
5699 	struct btrfs_file_extent_item *ei;
5700 	u64 read_size = max_send_read_size(sctx);
5701 	u64 sent = 0;
5702 
5703 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5704 		return send_update_extent(sctx, offset, len);
5705 
5706 	ei = btrfs_item_ptr(leaf, path->slots[0],
5707 			    struct btrfs_file_extent_item);
5708 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5709 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5710 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5711 				  BTRFS_FILE_EXTENT_INLINE);
5712 
5713 		/*
5714 		 * Send the compressed extent unless the compressed data is
5715 		 * larger than the decompressed data. This can happen if we're
5716 		 * not sending the entire extent, either because it has been
5717 		 * partially overwritten/truncated or because this is a part of
5718 		 * the extent that we couldn't clone in clone_range().
5719 		 */
5720 		if (is_inline &&
5721 		    btrfs_file_extent_inline_item_len(leaf,
5722 						      path->slots[0]) <= len) {
5723 			return send_encoded_inline_extent(sctx, path, offset,
5724 							  len);
5725 		} else if (!is_inline &&
5726 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5727 			return send_encoded_extent(sctx, path, offset, len);
5728 		}
5729 	}
5730 
5731 	if (sctx->cur_inode == NULL) {
5732 		struct btrfs_root *root = sctx->send_root;
5733 
5734 		sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5735 		if (IS_ERR(sctx->cur_inode)) {
5736 			int err = PTR_ERR(sctx->cur_inode);
5737 
5738 			sctx->cur_inode = NULL;
5739 			return err;
5740 		}
5741 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5742 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5743 
5744 		/*
5745 		 * It's very likely there are no pages from this inode in the page
5746 		 * cache, so after reading extents and sending their data, we clean
5747 		 * the page cache to avoid trashing the page cache (adding pressure
5748 		 * to the page cache and forcing eviction of other data more useful
5749 		 * for applications).
5750 		 *
5751 		 * We decide if we should clean the page cache simply by checking
5752 		 * if the inode's mapping nrpages is 0 when we first open it, and
5753 		 * not by using something like filemap_range_has_page() before
5754 		 * reading an extent because when we ask the readahead code to
5755 		 * read a given file range, it may (and almost always does) read
5756 		 * pages from beyond that range (see the documentation for
5757 		 * page_cache_sync_readahead()), so it would not be reliable,
5758 		 * because after reading the first extent future calls to
5759 		 * filemap_range_has_page() would return true because the readahead
5760 		 * on the previous extent resulted in reading pages of the current
5761 		 * extent as well.
5762 		 */
5763 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5764 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5765 	}
5766 
5767 	while (sent < len) {
5768 		u64 size = min(len - sent, read_size);
5769 		int ret;
5770 
5771 		ret = send_write(sctx, offset + sent, size);
5772 		if (ret < 0)
5773 			return ret;
5774 		sent += size;
5775 	}
5776 
5777 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5778 		/*
5779 		 * Always operate only on ranges that are a multiple of the page
5780 		 * size. This is not only to prevent zeroing parts of a page in
5781 		 * the case of subpage sector size, but also to guarantee we evict
5782 		 * pages, as passing a range that is smaller than page size does
5783 		 * not evict the respective page (only zeroes part of its content).
5784 		 *
5785 		 * Always start from the end offset of the last range cleared.
5786 		 * This is because the readahead code may (and very often does)
5787 		 * reads pages beyond the range we request for readahead. So if
5788 		 * we have an extent layout like this:
5789 		 *
5790 		 *            [ extent A ] [ extent B ] [ extent C ]
5791 		 *
5792 		 * When we ask page_cache_sync_readahead() to read extent A, it
5793 		 * may also trigger reads for pages of extent B. If we are doing
5794 		 * an incremental send and extent B has not changed between the
5795 		 * parent and send snapshots, some or all of its pages may end
5796 		 * up being read and placed in the page cache. So when truncating
5797 		 * the page cache we always start from the end offset of the
5798 		 * previously processed extent up to the end of the current
5799 		 * extent.
5800 		 */
5801 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5802 					   sctx->page_cache_clear_start,
5803 					   end - 1);
5804 		sctx->page_cache_clear_start = end;
5805 	}
5806 
5807 	return 0;
5808 }
5809 
5810 /*
5811  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5812  * found, call send_set_xattr function to emit it.
5813  *
5814  * Return 0 if there isn't a capability, or when the capability was emitted
5815  * successfully, or < 0 if an error occurred.
5816  */
5817 static int send_capabilities(struct send_ctx *sctx)
5818 {
5819 	struct fs_path *fspath = NULL;
5820 	struct btrfs_path *path;
5821 	struct btrfs_dir_item *di;
5822 	struct extent_buffer *leaf;
5823 	unsigned long data_ptr;
5824 	char *buf = NULL;
5825 	int buf_len;
5826 	int ret = 0;
5827 
5828 	path = alloc_path_for_send();
5829 	if (!path)
5830 		return -ENOMEM;
5831 
5832 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5833 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5834 	if (!di) {
5835 		/* There is no xattr for this inode */
5836 		goto out;
5837 	} else if (IS_ERR(di)) {
5838 		ret = PTR_ERR(di);
5839 		goto out;
5840 	}
5841 
5842 	leaf = path->nodes[0];
5843 	buf_len = btrfs_dir_data_len(leaf, di);
5844 
5845 	fspath = fs_path_alloc();
5846 	buf = kmalloc(buf_len, GFP_KERNEL);
5847 	if (!fspath || !buf) {
5848 		ret = -ENOMEM;
5849 		goto out;
5850 	}
5851 
5852 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5853 	if (ret < 0)
5854 		goto out;
5855 
5856 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5857 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5858 
5859 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5860 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5861 out:
5862 	kfree(buf);
5863 	fs_path_free(fspath);
5864 	btrfs_free_path(path);
5865 	return ret;
5866 }
5867 
5868 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5869 		       struct clone_root *clone_root, const u64 disk_byte,
5870 		       u64 data_offset, u64 offset, u64 len)
5871 {
5872 	struct btrfs_path *path;
5873 	struct btrfs_key key;
5874 	int ret;
5875 	struct btrfs_inode_info info;
5876 	u64 clone_src_i_size = 0;
5877 
5878 	/*
5879 	 * Prevent cloning from a zero offset with a length matching the sector
5880 	 * size because in some scenarios this will make the receiver fail.
5881 	 *
5882 	 * For example, if in the source filesystem the extent at offset 0
5883 	 * has a length of sectorsize and it was written using direct IO, then
5884 	 * it can never be an inline extent (even if compression is enabled).
5885 	 * Then this extent can be cloned in the original filesystem to a non
5886 	 * zero file offset, but it may not be possible to clone in the
5887 	 * destination filesystem because it can be inlined due to compression
5888 	 * on the destination filesystem (as the receiver's write operations are
5889 	 * always done using buffered IO). The same happens when the original
5890 	 * filesystem does not have compression enabled but the destination
5891 	 * filesystem has.
5892 	 */
5893 	if (clone_root->offset == 0 &&
5894 	    len == sctx->send_root->fs_info->sectorsize)
5895 		return send_extent_data(sctx, dst_path, offset, len);
5896 
5897 	path = alloc_path_for_send();
5898 	if (!path)
5899 		return -ENOMEM;
5900 
5901 	/*
5902 	 * There are inodes that have extents that lie behind its i_size. Don't
5903 	 * accept clones from these extents.
5904 	 */
5905 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5906 	btrfs_release_path(path);
5907 	if (ret < 0)
5908 		goto out;
5909 	clone_src_i_size = info.size;
5910 
5911 	/*
5912 	 * We can't send a clone operation for the entire range if we find
5913 	 * extent items in the respective range in the source file that
5914 	 * refer to different extents or if we find holes.
5915 	 * So check for that and do a mix of clone and regular write/copy
5916 	 * operations if needed.
5917 	 *
5918 	 * Example:
5919 	 *
5920 	 * mkfs.btrfs -f /dev/sda
5921 	 * mount /dev/sda /mnt
5922 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5923 	 * cp --reflink=always /mnt/foo /mnt/bar
5924 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5925 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5926 	 *
5927 	 * If when we send the snapshot and we are processing file bar (which
5928 	 * has a higher inode number than foo) we blindly send a clone operation
5929 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5930 	 * a file bar that matches the content of file foo - iow, doesn't match
5931 	 * the content from bar in the original filesystem.
5932 	 */
5933 	key.objectid = clone_root->ino;
5934 	key.type = BTRFS_EXTENT_DATA_KEY;
5935 	key.offset = clone_root->offset;
5936 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5937 	if (ret < 0)
5938 		goto out;
5939 	if (ret > 0 && path->slots[0] > 0) {
5940 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5941 		if (key.objectid == clone_root->ino &&
5942 		    key.type == BTRFS_EXTENT_DATA_KEY)
5943 			path->slots[0]--;
5944 	}
5945 
5946 	while (true) {
5947 		struct extent_buffer *leaf = path->nodes[0];
5948 		int slot = path->slots[0];
5949 		struct btrfs_file_extent_item *ei;
5950 		u8 type;
5951 		u64 ext_len;
5952 		u64 clone_len;
5953 		u64 clone_data_offset;
5954 		bool crossed_src_i_size = false;
5955 
5956 		if (slot >= btrfs_header_nritems(leaf)) {
5957 			ret = btrfs_next_leaf(clone_root->root, path);
5958 			if (ret < 0)
5959 				goto out;
5960 			else if (ret > 0)
5961 				break;
5962 			continue;
5963 		}
5964 
5965 		btrfs_item_key_to_cpu(leaf, &key, slot);
5966 
5967 		/*
5968 		 * We might have an implicit trailing hole (NO_HOLES feature
5969 		 * enabled). We deal with it after leaving this loop.
5970 		 */
5971 		if (key.objectid != clone_root->ino ||
5972 		    key.type != BTRFS_EXTENT_DATA_KEY)
5973 			break;
5974 
5975 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5976 		type = btrfs_file_extent_type(leaf, ei);
5977 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5978 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5979 			ext_len = PAGE_ALIGN(ext_len);
5980 		} else {
5981 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5982 		}
5983 
5984 		if (key.offset + ext_len <= clone_root->offset)
5985 			goto next;
5986 
5987 		if (key.offset > clone_root->offset) {
5988 			/* Implicit hole, NO_HOLES feature enabled. */
5989 			u64 hole_len = key.offset - clone_root->offset;
5990 
5991 			if (hole_len > len)
5992 				hole_len = len;
5993 			ret = send_extent_data(sctx, dst_path, offset,
5994 					       hole_len);
5995 			if (ret < 0)
5996 				goto out;
5997 
5998 			len -= hole_len;
5999 			if (len == 0)
6000 				break;
6001 			offset += hole_len;
6002 			clone_root->offset += hole_len;
6003 			data_offset += hole_len;
6004 		}
6005 
6006 		if (key.offset >= clone_root->offset + len)
6007 			break;
6008 
6009 		if (key.offset >= clone_src_i_size)
6010 			break;
6011 
6012 		if (key.offset + ext_len > clone_src_i_size) {
6013 			ext_len = clone_src_i_size - key.offset;
6014 			crossed_src_i_size = true;
6015 		}
6016 
6017 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6018 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6019 			clone_root->offset = key.offset;
6020 			if (clone_data_offset < data_offset &&
6021 				clone_data_offset + ext_len > data_offset) {
6022 				u64 extent_offset;
6023 
6024 				extent_offset = data_offset - clone_data_offset;
6025 				ext_len -= extent_offset;
6026 				clone_data_offset += extent_offset;
6027 				clone_root->offset += extent_offset;
6028 			}
6029 		}
6030 
6031 		clone_len = min_t(u64, ext_len, len);
6032 
6033 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6034 		    clone_data_offset == data_offset) {
6035 			const u64 src_end = clone_root->offset + clone_len;
6036 			const u64 sectorsize = SZ_64K;
6037 
6038 			/*
6039 			 * We can't clone the last block, when its size is not
6040 			 * sector size aligned, into the middle of a file. If we
6041 			 * do so, the receiver will get a failure (-EINVAL) when
6042 			 * trying to clone or will silently corrupt the data in
6043 			 * the destination file if it's on a kernel without the
6044 			 * fix introduced by commit ac765f83f1397646
6045 			 * ("Btrfs: fix data corruption due to cloning of eof
6046 			 * block).
6047 			 *
6048 			 * So issue a clone of the aligned down range plus a
6049 			 * regular write for the eof block, if we hit that case.
6050 			 *
6051 			 * Also, we use the maximum possible sector size, 64K,
6052 			 * because we don't know what's the sector size of the
6053 			 * filesystem that receives the stream, so we have to
6054 			 * assume the largest possible sector size.
6055 			 */
6056 			if (src_end == clone_src_i_size &&
6057 			    !IS_ALIGNED(src_end, sectorsize) &&
6058 			    offset + clone_len < sctx->cur_inode_size) {
6059 				u64 slen;
6060 
6061 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6062 						  sectorsize);
6063 				if (slen > 0) {
6064 					ret = send_clone(sctx, offset, slen,
6065 							 clone_root);
6066 					if (ret < 0)
6067 						goto out;
6068 				}
6069 				ret = send_extent_data(sctx, dst_path,
6070 						       offset + slen,
6071 						       clone_len - slen);
6072 			} else {
6073 				ret = send_clone(sctx, offset, clone_len,
6074 						 clone_root);
6075 			}
6076 		} else if (crossed_src_i_size && clone_len < len) {
6077 			/*
6078 			 * If we are at i_size of the clone source inode and we
6079 			 * can not clone from it, terminate the loop. This is
6080 			 * to avoid sending two write operations, one with a
6081 			 * length matching clone_len and the final one after
6082 			 * this loop with a length of len - clone_len.
6083 			 *
6084 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6085 			 * was passed to the send ioctl), this helps avoid
6086 			 * sending an encoded write for an offset that is not
6087 			 * sector size aligned, in case the i_size of the source
6088 			 * inode is not sector size aligned. That will make the
6089 			 * receiver fallback to decompression of the data and
6090 			 * writing it using regular buffered IO, therefore while
6091 			 * not incorrect, it's not optimal due decompression and
6092 			 * possible re-compression at the receiver.
6093 			 */
6094 			break;
6095 		} else {
6096 			ret = send_extent_data(sctx, dst_path, offset,
6097 					       clone_len);
6098 		}
6099 
6100 		if (ret < 0)
6101 			goto out;
6102 
6103 		len -= clone_len;
6104 		if (len == 0)
6105 			break;
6106 		offset += clone_len;
6107 		clone_root->offset += clone_len;
6108 
6109 		/*
6110 		 * If we are cloning from the file we are currently processing,
6111 		 * and using the send root as the clone root, we must stop once
6112 		 * the current clone offset reaches the current eof of the file
6113 		 * at the receiver, otherwise we would issue an invalid clone
6114 		 * operation (source range going beyond eof) and cause the
6115 		 * receiver to fail. So if we reach the current eof, bail out
6116 		 * and fallback to a regular write.
6117 		 */
6118 		if (clone_root->root == sctx->send_root &&
6119 		    clone_root->ino == sctx->cur_ino &&
6120 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6121 			break;
6122 
6123 		data_offset += clone_len;
6124 next:
6125 		path->slots[0]++;
6126 	}
6127 
6128 	if (len > 0)
6129 		ret = send_extent_data(sctx, dst_path, offset, len);
6130 	else
6131 		ret = 0;
6132 out:
6133 	btrfs_free_path(path);
6134 	return ret;
6135 }
6136 
6137 static int send_write_or_clone(struct send_ctx *sctx,
6138 			       struct btrfs_path *path,
6139 			       struct btrfs_key *key,
6140 			       struct clone_root *clone_root)
6141 {
6142 	int ret = 0;
6143 	u64 offset = key->offset;
6144 	u64 end;
6145 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6146 
6147 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6148 	if (offset >= end)
6149 		return 0;
6150 
6151 	if (clone_root && IS_ALIGNED(end, bs)) {
6152 		struct btrfs_file_extent_item *ei;
6153 		u64 disk_byte;
6154 		u64 data_offset;
6155 
6156 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6157 				    struct btrfs_file_extent_item);
6158 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6159 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6160 		ret = clone_range(sctx, path, clone_root, disk_byte,
6161 				  data_offset, offset, end - offset);
6162 	} else {
6163 		ret = send_extent_data(sctx, path, offset, end - offset);
6164 	}
6165 	sctx->cur_inode_next_write_offset = end;
6166 	return ret;
6167 }
6168 
6169 static int is_extent_unchanged(struct send_ctx *sctx,
6170 			       struct btrfs_path *left_path,
6171 			       struct btrfs_key *ekey)
6172 {
6173 	int ret = 0;
6174 	struct btrfs_key key;
6175 	struct btrfs_path *path = NULL;
6176 	struct extent_buffer *eb;
6177 	int slot;
6178 	struct btrfs_key found_key;
6179 	struct btrfs_file_extent_item *ei;
6180 	u64 left_disknr;
6181 	u64 right_disknr;
6182 	u64 left_offset;
6183 	u64 right_offset;
6184 	u64 left_offset_fixed;
6185 	u64 left_len;
6186 	u64 right_len;
6187 	u64 left_gen;
6188 	u64 right_gen;
6189 	u8 left_type;
6190 	u8 right_type;
6191 
6192 	path = alloc_path_for_send();
6193 	if (!path)
6194 		return -ENOMEM;
6195 
6196 	eb = left_path->nodes[0];
6197 	slot = left_path->slots[0];
6198 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6199 	left_type = btrfs_file_extent_type(eb, ei);
6200 
6201 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6202 		ret = 0;
6203 		goto out;
6204 	}
6205 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6206 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6207 	left_offset = btrfs_file_extent_offset(eb, ei);
6208 	left_gen = btrfs_file_extent_generation(eb, ei);
6209 
6210 	/*
6211 	 * Following comments will refer to these graphics. L is the left
6212 	 * extents which we are checking at the moment. 1-8 are the right
6213 	 * extents that we iterate.
6214 	 *
6215 	 *       |-----L-----|
6216 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6217 	 *
6218 	 *       |-----L-----|
6219 	 * |--1--|-2b-|...(same as above)
6220 	 *
6221 	 * Alternative situation. Happens on files where extents got split.
6222 	 *       |-----L-----|
6223 	 * |-----------7-----------|-6-|
6224 	 *
6225 	 * Alternative situation. Happens on files which got larger.
6226 	 *       |-----L-----|
6227 	 * |-8-|
6228 	 * Nothing follows after 8.
6229 	 */
6230 
6231 	key.objectid = ekey->objectid;
6232 	key.type = BTRFS_EXTENT_DATA_KEY;
6233 	key.offset = ekey->offset;
6234 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6235 	if (ret < 0)
6236 		goto out;
6237 	if (ret) {
6238 		ret = 0;
6239 		goto out;
6240 	}
6241 
6242 	/*
6243 	 * Handle special case where the right side has no extents at all.
6244 	 */
6245 	eb = path->nodes[0];
6246 	slot = path->slots[0];
6247 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6248 	if (found_key.objectid != key.objectid ||
6249 	    found_key.type != key.type) {
6250 		/* If we're a hole then just pretend nothing changed */
6251 		ret = (left_disknr) ? 0 : 1;
6252 		goto out;
6253 	}
6254 
6255 	/*
6256 	 * We're now on 2a, 2b or 7.
6257 	 */
6258 	key = found_key;
6259 	while (key.offset < ekey->offset + left_len) {
6260 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6261 		right_type = btrfs_file_extent_type(eb, ei);
6262 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6263 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6264 			ret = 0;
6265 			goto out;
6266 		}
6267 
6268 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6269 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6270 			right_len = PAGE_ALIGN(right_len);
6271 		} else {
6272 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6273 		}
6274 
6275 		/*
6276 		 * Are we at extent 8? If yes, we know the extent is changed.
6277 		 * This may only happen on the first iteration.
6278 		 */
6279 		if (found_key.offset + right_len <= ekey->offset) {
6280 			/* If we're a hole just pretend nothing changed */
6281 			ret = (left_disknr) ? 0 : 1;
6282 			goto out;
6283 		}
6284 
6285 		/*
6286 		 * We just wanted to see if when we have an inline extent, what
6287 		 * follows it is a regular extent (wanted to check the above
6288 		 * condition for inline extents too). This should normally not
6289 		 * happen but it's possible for example when we have an inline
6290 		 * compressed extent representing data with a size matching
6291 		 * the page size (currently the same as sector size).
6292 		 */
6293 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6294 			ret = 0;
6295 			goto out;
6296 		}
6297 
6298 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6299 		right_offset = btrfs_file_extent_offset(eb, ei);
6300 		right_gen = btrfs_file_extent_generation(eb, ei);
6301 
6302 		left_offset_fixed = left_offset;
6303 		if (key.offset < ekey->offset) {
6304 			/* Fix the right offset for 2a and 7. */
6305 			right_offset += ekey->offset - key.offset;
6306 		} else {
6307 			/* Fix the left offset for all behind 2a and 2b */
6308 			left_offset_fixed += key.offset - ekey->offset;
6309 		}
6310 
6311 		/*
6312 		 * Check if we have the same extent.
6313 		 */
6314 		if (left_disknr != right_disknr ||
6315 		    left_offset_fixed != right_offset ||
6316 		    left_gen != right_gen) {
6317 			ret = 0;
6318 			goto out;
6319 		}
6320 
6321 		/*
6322 		 * Go to the next extent.
6323 		 */
6324 		ret = btrfs_next_item(sctx->parent_root, path);
6325 		if (ret < 0)
6326 			goto out;
6327 		if (!ret) {
6328 			eb = path->nodes[0];
6329 			slot = path->slots[0];
6330 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6331 		}
6332 		if (ret || found_key.objectid != key.objectid ||
6333 		    found_key.type != key.type) {
6334 			key.offset += right_len;
6335 			break;
6336 		}
6337 		if (found_key.offset != key.offset + right_len) {
6338 			ret = 0;
6339 			goto out;
6340 		}
6341 		key = found_key;
6342 	}
6343 
6344 	/*
6345 	 * We're now behind the left extent (treat as unchanged) or at the end
6346 	 * of the right side (treat as changed).
6347 	 */
6348 	if (key.offset >= ekey->offset + left_len)
6349 		ret = 1;
6350 	else
6351 		ret = 0;
6352 
6353 
6354 out:
6355 	btrfs_free_path(path);
6356 	return ret;
6357 }
6358 
6359 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6360 {
6361 	struct btrfs_path *path;
6362 	struct btrfs_root *root = sctx->send_root;
6363 	struct btrfs_key key;
6364 	int ret;
6365 
6366 	path = alloc_path_for_send();
6367 	if (!path)
6368 		return -ENOMEM;
6369 
6370 	sctx->cur_inode_last_extent = 0;
6371 
6372 	key.objectid = sctx->cur_ino;
6373 	key.type = BTRFS_EXTENT_DATA_KEY;
6374 	key.offset = offset;
6375 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6376 	if (ret < 0)
6377 		goto out;
6378 	ret = 0;
6379 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6380 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6381 		goto out;
6382 
6383 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6384 out:
6385 	btrfs_free_path(path);
6386 	return ret;
6387 }
6388 
6389 static int range_is_hole_in_parent(struct send_ctx *sctx,
6390 				   const u64 start,
6391 				   const u64 end)
6392 {
6393 	struct btrfs_path *path;
6394 	struct btrfs_key key;
6395 	struct btrfs_root *root = sctx->parent_root;
6396 	u64 search_start = start;
6397 	int ret;
6398 
6399 	path = alloc_path_for_send();
6400 	if (!path)
6401 		return -ENOMEM;
6402 
6403 	key.objectid = sctx->cur_ino;
6404 	key.type = BTRFS_EXTENT_DATA_KEY;
6405 	key.offset = search_start;
6406 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6407 	if (ret < 0)
6408 		goto out;
6409 	if (ret > 0 && path->slots[0] > 0)
6410 		path->slots[0]--;
6411 
6412 	while (search_start < end) {
6413 		struct extent_buffer *leaf = path->nodes[0];
6414 		int slot = path->slots[0];
6415 		struct btrfs_file_extent_item *fi;
6416 		u64 extent_end;
6417 
6418 		if (slot >= btrfs_header_nritems(leaf)) {
6419 			ret = btrfs_next_leaf(root, path);
6420 			if (ret < 0)
6421 				goto out;
6422 			else if (ret > 0)
6423 				break;
6424 			continue;
6425 		}
6426 
6427 		btrfs_item_key_to_cpu(leaf, &key, slot);
6428 		if (key.objectid < sctx->cur_ino ||
6429 		    key.type < BTRFS_EXTENT_DATA_KEY)
6430 			goto next;
6431 		if (key.objectid > sctx->cur_ino ||
6432 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6433 		    key.offset >= end)
6434 			break;
6435 
6436 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6437 		extent_end = btrfs_file_extent_end(path);
6438 		if (extent_end <= start)
6439 			goto next;
6440 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6441 			search_start = extent_end;
6442 			goto next;
6443 		}
6444 		ret = 0;
6445 		goto out;
6446 next:
6447 		path->slots[0]++;
6448 	}
6449 	ret = 1;
6450 out:
6451 	btrfs_free_path(path);
6452 	return ret;
6453 }
6454 
6455 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6456 			   struct btrfs_key *key)
6457 {
6458 	int ret = 0;
6459 
6460 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6461 		return 0;
6462 
6463 	if (sctx->cur_inode_last_extent == (u64)-1) {
6464 		ret = get_last_extent(sctx, key->offset - 1);
6465 		if (ret)
6466 			return ret;
6467 	}
6468 
6469 	if (path->slots[0] == 0 &&
6470 	    sctx->cur_inode_last_extent < key->offset) {
6471 		/*
6472 		 * We might have skipped entire leafs that contained only
6473 		 * file extent items for our current inode. These leafs have
6474 		 * a generation number smaller (older) than the one in the
6475 		 * current leaf and the leaf our last extent came from, and
6476 		 * are located between these 2 leafs.
6477 		 */
6478 		ret = get_last_extent(sctx, key->offset - 1);
6479 		if (ret)
6480 			return ret;
6481 	}
6482 
6483 	if (sctx->cur_inode_last_extent < key->offset) {
6484 		ret = range_is_hole_in_parent(sctx,
6485 					      sctx->cur_inode_last_extent,
6486 					      key->offset);
6487 		if (ret < 0)
6488 			return ret;
6489 		else if (ret == 0)
6490 			ret = send_hole(sctx, key->offset);
6491 		else
6492 			ret = 0;
6493 	}
6494 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6495 	return ret;
6496 }
6497 
6498 static int process_extent(struct send_ctx *sctx,
6499 			  struct btrfs_path *path,
6500 			  struct btrfs_key *key)
6501 {
6502 	struct clone_root *found_clone = NULL;
6503 	int ret = 0;
6504 
6505 	if (S_ISLNK(sctx->cur_inode_mode))
6506 		return 0;
6507 
6508 	if (sctx->parent_root && !sctx->cur_inode_new) {
6509 		ret = is_extent_unchanged(sctx, path, key);
6510 		if (ret < 0)
6511 			goto out;
6512 		if (ret) {
6513 			ret = 0;
6514 			goto out_hole;
6515 		}
6516 	} else {
6517 		struct btrfs_file_extent_item *ei;
6518 		u8 type;
6519 
6520 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6521 				    struct btrfs_file_extent_item);
6522 		type = btrfs_file_extent_type(path->nodes[0], ei);
6523 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6524 		    type == BTRFS_FILE_EXTENT_REG) {
6525 			/*
6526 			 * The send spec does not have a prealloc command yet,
6527 			 * so just leave a hole for prealloc'ed extents until
6528 			 * we have enough commands queued up to justify rev'ing
6529 			 * the send spec.
6530 			 */
6531 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6532 				ret = 0;
6533 				goto out;
6534 			}
6535 
6536 			/* Have a hole, just skip it. */
6537 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6538 				ret = 0;
6539 				goto out;
6540 			}
6541 		}
6542 	}
6543 
6544 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6545 			sctx->cur_inode_size, &found_clone);
6546 	if (ret != -ENOENT && ret < 0)
6547 		goto out;
6548 
6549 	ret = send_write_or_clone(sctx, path, key, found_clone);
6550 	if (ret)
6551 		goto out;
6552 out_hole:
6553 	ret = maybe_send_hole(sctx, path, key);
6554 out:
6555 	return ret;
6556 }
6557 
6558 static int process_all_extents(struct send_ctx *sctx)
6559 {
6560 	int ret = 0;
6561 	int iter_ret = 0;
6562 	struct btrfs_root *root;
6563 	struct btrfs_path *path;
6564 	struct btrfs_key key;
6565 	struct btrfs_key found_key;
6566 
6567 	root = sctx->send_root;
6568 	path = alloc_path_for_send();
6569 	if (!path)
6570 		return -ENOMEM;
6571 
6572 	key.objectid = sctx->cmp_key->objectid;
6573 	key.type = BTRFS_EXTENT_DATA_KEY;
6574 	key.offset = 0;
6575 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6576 		if (found_key.objectid != key.objectid ||
6577 		    found_key.type != key.type) {
6578 			ret = 0;
6579 			break;
6580 		}
6581 
6582 		ret = process_extent(sctx, path, &found_key);
6583 		if (ret < 0)
6584 			break;
6585 	}
6586 	/* Catch error found during iteration */
6587 	if (iter_ret < 0)
6588 		ret = iter_ret;
6589 
6590 	btrfs_free_path(path);
6591 	return ret;
6592 }
6593 
6594 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6595 					   int *pending_move,
6596 					   int *refs_processed)
6597 {
6598 	int ret = 0;
6599 
6600 	if (sctx->cur_ino == 0)
6601 		goto out;
6602 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6603 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6604 		goto out;
6605 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6606 		goto out;
6607 
6608 	ret = process_recorded_refs(sctx, pending_move);
6609 	if (ret < 0)
6610 		goto out;
6611 
6612 	*refs_processed = 1;
6613 out:
6614 	return ret;
6615 }
6616 
6617 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6618 {
6619 	int ret = 0;
6620 	struct btrfs_inode_info info;
6621 	u64 left_mode;
6622 	u64 left_uid;
6623 	u64 left_gid;
6624 	u64 left_fileattr;
6625 	u64 right_mode;
6626 	u64 right_uid;
6627 	u64 right_gid;
6628 	u64 right_fileattr;
6629 	int need_chmod = 0;
6630 	int need_chown = 0;
6631 	bool need_fileattr = false;
6632 	int need_truncate = 1;
6633 	int pending_move = 0;
6634 	int refs_processed = 0;
6635 
6636 	if (sctx->ignore_cur_inode)
6637 		return 0;
6638 
6639 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6640 					      &refs_processed);
6641 	if (ret < 0)
6642 		goto out;
6643 
6644 	/*
6645 	 * We have processed the refs and thus need to advance send_progress.
6646 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6647 	 * inode into account.
6648 	 *
6649 	 * On the other hand, if our current inode is a directory and couldn't
6650 	 * be moved/renamed because its parent was renamed/moved too and it has
6651 	 * a higher inode number, we can only move/rename our current inode
6652 	 * after we moved/renamed its parent. Therefore in this case operate on
6653 	 * the old path (pre move/rename) of our current inode, and the
6654 	 * move/rename will be performed later.
6655 	 */
6656 	if (refs_processed && !pending_move)
6657 		sctx->send_progress = sctx->cur_ino + 1;
6658 
6659 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6660 		goto out;
6661 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6662 		goto out;
6663 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6664 	if (ret < 0)
6665 		goto out;
6666 	left_mode = info.mode;
6667 	left_uid = info.uid;
6668 	left_gid = info.gid;
6669 	left_fileattr = info.fileattr;
6670 
6671 	if (!sctx->parent_root || sctx->cur_inode_new) {
6672 		need_chown = 1;
6673 		if (!S_ISLNK(sctx->cur_inode_mode))
6674 			need_chmod = 1;
6675 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6676 			need_truncate = 0;
6677 	} else {
6678 		u64 old_size;
6679 
6680 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6681 		if (ret < 0)
6682 			goto out;
6683 		old_size = info.size;
6684 		right_mode = info.mode;
6685 		right_uid = info.uid;
6686 		right_gid = info.gid;
6687 		right_fileattr = info.fileattr;
6688 
6689 		if (left_uid != right_uid || left_gid != right_gid)
6690 			need_chown = 1;
6691 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6692 			need_chmod = 1;
6693 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6694 			need_fileattr = true;
6695 		if ((old_size == sctx->cur_inode_size) ||
6696 		    (sctx->cur_inode_size > old_size &&
6697 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6698 			need_truncate = 0;
6699 	}
6700 
6701 	if (S_ISREG(sctx->cur_inode_mode)) {
6702 		if (need_send_hole(sctx)) {
6703 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6704 			    sctx->cur_inode_last_extent <
6705 			    sctx->cur_inode_size) {
6706 				ret = get_last_extent(sctx, (u64)-1);
6707 				if (ret)
6708 					goto out;
6709 			}
6710 			if (sctx->cur_inode_last_extent <
6711 			    sctx->cur_inode_size) {
6712 				ret = send_hole(sctx, sctx->cur_inode_size);
6713 				if (ret)
6714 					goto out;
6715 			}
6716 		}
6717 		if (need_truncate) {
6718 			ret = send_truncate(sctx, sctx->cur_ino,
6719 					    sctx->cur_inode_gen,
6720 					    sctx->cur_inode_size);
6721 			if (ret < 0)
6722 				goto out;
6723 		}
6724 	}
6725 
6726 	if (need_chown) {
6727 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6728 				left_uid, left_gid);
6729 		if (ret < 0)
6730 			goto out;
6731 	}
6732 	if (need_chmod) {
6733 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6734 				left_mode);
6735 		if (ret < 0)
6736 			goto out;
6737 	}
6738 	if (need_fileattr) {
6739 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6740 				    left_fileattr);
6741 		if (ret < 0)
6742 			goto out;
6743 	}
6744 
6745 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6746 	    && sctx->cur_inode_needs_verity) {
6747 		ret = process_verity(sctx);
6748 		if (ret < 0)
6749 			goto out;
6750 	}
6751 
6752 	ret = send_capabilities(sctx);
6753 	if (ret < 0)
6754 		goto out;
6755 
6756 	/*
6757 	 * If other directory inodes depended on our current directory
6758 	 * inode's move/rename, now do their move/rename operations.
6759 	 */
6760 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6761 		ret = apply_children_dir_moves(sctx);
6762 		if (ret)
6763 			goto out;
6764 		/*
6765 		 * Need to send that every time, no matter if it actually
6766 		 * changed between the two trees as we have done changes to
6767 		 * the inode before. If our inode is a directory and it's
6768 		 * waiting to be moved/renamed, we will send its utimes when
6769 		 * it's moved/renamed, therefore we don't need to do it here.
6770 		 */
6771 		sctx->send_progress = sctx->cur_ino + 1;
6772 
6773 		/*
6774 		 * If the current inode is a non-empty directory, delay issuing
6775 		 * the utimes command for it, as it's very likely we have inodes
6776 		 * with an higher number inside it. We want to issue the utimes
6777 		 * command only after adding all dentries to it.
6778 		 */
6779 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6780 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6781 		else
6782 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6783 
6784 		if (ret < 0)
6785 			goto out;
6786 	}
6787 
6788 out:
6789 	if (!ret)
6790 		ret = trim_dir_utimes_cache(sctx);
6791 
6792 	return ret;
6793 }
6794 
6795 static void close_current_inode(struct send_ctx *sctx)
6796 {
6797 	u64 i_size;
6798 
6799 	if (sctx->cur_inode == NULL)
6800 		return;
6801 
6802 	i_size = i_size_read(sctx->cur_inode);
6803 
6804 	/*
6805 	 * If we are doing an incremental send, we may have extents between the
6806 	 * last processed extent and the i_size that have not been processed
6807 	 * because they haven't changed but we may have read some of their pages
6808 	 * through readahead, see the comments at send_extent_data().
6809 	 */
6810 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6811 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6812 					   sctx->page_cache_clear_start,
6813 					   round_up(i_size, PAGE_SIZE) - 1);
6814 
6815 	iput(sctx->cur_inode);
6816 	sctx->cur_inode = NULL;
6817 }
6818 
6819 static int changed_inode(struct send_ctx *sctx,
6820 			 enum btrfs_compare_tree_result result)
6821 {
6822 	int ret = 0;
6823 	struct btrfs_key *key = sctx->cmp_key;
6824 	struct btrfs_inode_item *left_ii = NULL;
6825 	struct btrfs_inode_item *right_ii = NULL;
6826 	u64 left_gen = 0;
6827 	u64 right_gen = 0;
6828 
6829 	close_current_inode(sctx);
6830 
6831 	sctx->cur_ino = key->objectid;
6832 	sctx->cur_inode_new_gen = false;
6833 	sctx->cur_inode_last_extent = (u64)-1;
6834 	sctx->cur_inode_next_write_offset = 0;
6835 	sctx->ignore_cur_inode = false;
6836 
6837 	/*
6838 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6839 	 * functions that the current inode's refs are not updated yet. Later,
6840 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6841 	 */
6842 	sctx->send_progress = sctx->cur_ino;
6843 
6844 	if (result == BTRFS_COMPARE_TREE_NEW ||
6845 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6846 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6847 				sctx->left_path->slots[0],
6848 				struct btrfs_inode_item);
6849 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6850 				left_ii);
6851 	} else {
6852 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6853 				sctx->right_path->slots[0],
6854 				struct btrfs_inode_item);
6855 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6856 				right_ii);
6857 	}
6858 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6859 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6860 				sctx->right_path->slots[0],
6861 				struct btrfs_inode_item);
6862 
6863 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6864 				right_ii);
6865 
6866 		/*
6867 		 * The cur_ino = root dir case is special here. We can't treat
6868 		 * the inode as deleted+reused because it would generate a
6869 		 * stream that tries to delete/mkdir the root dir.
6870 		 */
6871 		if (left_gen != right_gen &&
6872 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6873 			sctx->cur_inode_new_gen = true;
6874 	}
6875 
6876 	/*
6877 	 * Normally we do not find inodes with a link count of zero (orphans)
6878 	 * because the most common case is to create a snapshot and use it
6879 	 * for a send operation. However other less common use cases involve
6880 	 * using a subvolume and send it after turning it to RO mode just
6881 	 * after deleting all hard links of a file while holding an open
6882 	 * file descriptor against it or turning a RO snapshot into RW mode,
6883 	 * keep an open file descriptor against a file, delete it and then
6884 	 * turn the snapshot back to RO mode before using it for a send
6885 	 * operation. The former is what the receiver operation does.
6886 	 * Therefore, if we want to send these snapshots soon after they're
6887 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6888 	 * can appear not only in the send snapshot but also in the parent
6889 	 * snapshot. Here are several cases:
6890 	 *
6891 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6892 	 *       |  send snapshot  | action
6893 	 * --------------------------------
6894 	 * nlink |        0        | ignore
6895 	 *
6896 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6897 	 *       | parent snapshot | action
6898 	 * ----------------------------------
6899 	 * nlink |        0        | as usual
6900 	 * Note: No unlinks will be sent because there're no paths for it.
6901 	 *
6902 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6903 	 *           |       | parent snapshot | send snapshot | action
6904 	 * -----------------------------------------------------------------------
6905 	 * subcase 1 | nlink |        0        |       0       | ignore
6906 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6907 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6908 	 *
6909 	 */
6910 	if (result == BTRFS_COMPARE_TREE_NEW) {
6911 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6912 			sctx->ignore_cur_inode = true;
6913 			goto out;
6914 		}
6915 		sctx->cur_inode_gen = left_gen;
6916 		sctx->cur_inode_new = true;
6917 		sctx->cur_inode_deleted = false;
6918 		sctx->cur_inode_size = btrfs_inode_size(
6919 				sctx->left_path->nodes[0], left_ii);
6920 		sctx->cur_inode_mode = btrfs_inode_mode(
6921 				sctx->left_path->nodes[0], left_ii);
6922 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6923 				sctx->left_path->nodes[0], left_ii);
6924 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6925 			ret = send_create_inode_if_needed(sctx);
6926 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6927 		sctx->cur_inode_gen = right_gen;
6928 		sctx->cur_inode_new = false;
6929 		sctx->cur_inode_deleted = true;
6930 		sctx->cur_inode_size = btrfs_inode_size(
6931 				sctx->right_path->nodes[0], right_ii);
6932 		sctx->cur_inode_mode = btrfs_inode_mode(
6933 				sctx->right_path->nodes[0], right_ii);
6934 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6935 		u32 new_nlinks, old_nlinks;
6936 
6937 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6938 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6939 		if (new_nlinks == 0 && old_nlinks == 0) {
6940 			sctx->ignore_cur_inode = true;
6941 			goto out;
6942 		} else if (new_nlinks == 0 || old_nlinks == 0) {
6943 			sctx->cur_inode_new_gen = 1;
6944 		}
6945 		/*
6946 		 * We need to do some special handling in case the inode was
6947 		 * reported as changed with a changed generation number. This
6948 		 * means that the original inode was deleted and new inode
6949 		 * reused the same inum. So we have to treat the old inode as
6950 		 * deleted and the new one as new.
6951 		 */
6952 		if (sctx->cur_inode_new_gen) {
6953 			/*
6954 			 * First, process the inode as if it was deleted.
6955 			 */
6956 			if (old_nlinks > 0) {
6957 				sctx->cur_inode_gen = right_gen;
6958 				sctx->cur_inode_new = false;
6959 				sctx->cur_inode_deleted = true;
6960 				sctx->cur_inode_size = btrfs_inode_size(
6961 						sctx->right_path->nodes[0], right_ii);
6962 				sctx->cur_inode_mode = btrfs_inode_mode(
6963 						sctx->right_path->nodes[0], right_ii);
6964 				ret = process_all_refs(sctx,
6965 						BTRFS_COMPARE_TREE_DELETED);
6966 				if (ret < 0)
6967 					goto out;
6968 			}
6969 
6970 			/*
6971 			 * Now process the inode as if it was new.
6972 			 */
6973 			if (new_nlinks > 0) {
6974 				sctx->cur_inode_gen = left_gen;
6975 				sctx->cur_inode_new = true;
6976 				sctx->cur_inode_deleted = false;
6977 				sctx->cur_inode_size = btrfs_inode_size(
6978 						sctx->left_path->nodes[0],
6979 						left_ii);
6980 				sctx->cur_inode_mode = btrfs_inode_mode(
6981 						sctx->left_path->nodes[0],
6982 						left_ii);
6983 				sctx->cur_inode_rdev = btrfs_inode_rdev(
6984 						sctx->left_path->nodes[0],
6985 						left_ii);
6986 				ret = send_create_inode_if_needed(sctx);
6987 				if (ret < 0)
6988 					goto out;
6989 
6990 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6991 				if (ret < 0)
6992 					goto out;
6993 				/*
6994 				 * Advance send_progress now as we did not get
6995 				 * into process_recorded_refs_if_needed in the
6996 				 * new_gen case.
6997 				 */
6998 				sctx->send_progress = sctx->cur_ino + 1;
6999 
7000 				/*
7001 				 * Now process all extents and xattrs of the
7002 				 * inode as if they were all new.
7003 				 */
7004 				ret = process_all_extents(sctx);
7005 				if (ret < 0)
7006 					goto out;
7007 				ret = process_all_new_xattrs(sctx);
7008 				if (ret < 0)
7009 					goto out;
7010 			}
7011 		} else {
7012 			sctx->cur_inode_gen = left_gen;
7013 			sctx->cur_inode_new = false;
7014 			sctx->cur_inode_new_gen = false;
7015 			sctx->cur_inode_deleted = false;
7016 			sctx->cur_inode_size = btrfs_inode_size(
7017 					sctx->left_path->nodes[0], left_ii);
7018 			sctx->cur_inode_mode = btrfs_inode_mode(
7019 					sctx->left_path->nodes[0], left_ii);
7020 		}
7021 	}
7022 
7023 out:
7024 	return ret;
7025 }
7026 
7027 /*
7028  * We have to process new refs before deleted refs, but compare_trees gives us
7029  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7030  * first and later process them in process_recorded_refs.
7031  * For the cur_inode_new_gen case, we skip recording completely because
7032  * changed_inode did already initiate processing of refs. The reason for this is
7033  * that in this case, compare_tree actually compares the refs of 2 different
7034  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7035  * refs of the right tree as deleted and all refs of the left tree as new.
7036  */
7037 static int changed_ref(struct send_ctx *sctx,
7038 		       enum btrfs_compare_tree_result result)
7039 {
7040 	int ret = 0;
7041 
7042 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7043 		inconsistent_snapshot_error(sctx, result, "reference");
7044 		return -EIO;
7045 	}
7046 
7047 	if (!sctx->cur_inode_new_gen &&
7048 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7049 		if (result == BTRFS_COMPARE_TREE_NEW)
7050 			ret = record_new_ref(sctx);
7051 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7052 			ret = record_deleted_ref(sctx);
7053 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7054 			ret = record_changed_ref(sctx);
7055 	}
7056 
7057 	return ret;
7058 }
7059 
7060 /*
7061  * Process new/deleted/changed xattrs. We skip processing in the
7062  * cur_inode_new_gen case because changed_inode did already initiate processing
7063  * of xattrs. The reason is the same as in changed_ref
7064  */
7065 static int changed_xattr(struct send_ctx *sctx,
7066 			 enum btrfs_compare_tree_result result)
7067 {
7068 	int ret = 0;
7069 
7070 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7071 		inconsistent_snapshot_error(sctx, result, "xattr");
7072 		return -EIO;
7073 	}
7074 
7075 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7076 		if (result == BTRFS_COMPARE_TREE_NEW)
7077 			ret = process_new_xattr(sctx);
7078 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7079 			ret = process_deleted_xattr(sctx);
7080 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7081 			ret = process_changed_xattr(sctx);
7082 	}
7083 
7084 	return ret;
7085 }
7086 
7087 /*
7088  * Process new/deleted/changed extents. We skip processing in the
7089  * cur_inode_new_gen case because changed_inode did already initiate processing
7090  * of extents. The reason is the same as in changed_ref
7091  */
7092 static int changed_extent(struct send_ctx *sctx,
7093 			  enum btrfs_compare_tree_result result)
7094 {
7095 	int ret = 0;
7096 
7097 	/*
7098 	 * We have found an extent item that changed without the inode item
7099 	 * having changed. This can happen either after relocation (where the
7100 	 * disk_bytenr of an extent item is replaced at
7101 	 * relocation.c:replace_file_extents()) or after deduplication into a
7102 	 * file in both the parent and send snapshots (where an extent item can
7103 	 * get modified or replaced with a new one). Note that deduplication
7104 	 * updates the inode item, but it only changes the iversion (sequence
7105 	 * field in the inode item) of the inode, so if a file is deduplicated
7106 	 * the same amount of times in both the parent and send snapshots, its
7107 	 * iversion becomes the same in both snapshots, whence the inode item is
7108 	 * the same on both snapshots.
7109 	 */
7110 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7111 		return 0;
7112 
7113 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7114 		if (result != BTRFS_COMPARE_TREE_DELETED)
7115 			ret = process_extent(sctx, sctx->left_path,
7116 					sctx->cmp_key);
7117 	}
7118 
7119 	return ret;
7120 }
7121 
7122 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7123 {
7124 	int ret = 0;
7125 
7126 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7127 		if (result == BTRFS_COMPARE_TREE_NEW)
7128 			sctx->cur_inode_needs_verity = true;
7129 	}
7130 	return ret;
7131 }
7132 
7133 static int dir_changed(struct send_ctx *sctx, u64 dir)
7134 {
7135 	u64 orig_gen, new_gen;
7136 	int ret;
7137 
7138 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7139 	if (ret)
7140 		return ret;
7141 
7142 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7143 	if (ret)
7144 		return ret;
7145 
7146 	return (orig_gen != new_gen) ? 1 : 0;
7147 }
7148 
7149 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7150 			struct btrfs_key *key)
7151 {
7152 	struct btrfs_inode_extref *extref;
7153 	struct extent_buffer *leaf;
7154 	u64 dirid = 0, last_dirid = 0;
7155 	unsigned long ptr;
7156 	u32 item_size;
7157 	u32 cur_offset = 0;
7158 	int ref_name_len;
7159 	int ret = 0;
7160 
7161 	/* Easy case, just check this one dirid */
7162 	if (key->type == BTRFS_INODE_REF_KEY) {
7163 		dirid = key->offset;
7164 
7165 		ret = dir_changed(sctx, dirid);
7166 		goto out;
7167 	}
7168 
7169 	leaf = path->nodes[0];
7170 	item_size = btrfs_item_size(leaf, path->slots[0]);
7171 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7172 	while (cur_offset < item_size) {
7173 		extref = (struct btrfs_inode_extref *)(ptr +
7174 						       cur_offset);
7175 		dirid = btrfs_inode_extref_parent(leaf, extref);
7176 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7177 		cur_offset += ref_name_len + sizeof(*extref);
7178 		if (dirid == last_dirid)
7179 			continue;
7180 		ret = dir_changed(sctx, dirid);
7181 		if (ret)
7182 			break;
7183 		last_dirid = dirid;
7184 	}
7185 out:
7186 	return ret;
7187 }
7188 
7189 /*
7190  * Updates compare related fields in sctx and simply forwards to the actual
7191  * changed_xxx functions.
7192  */
7193 static int changed_cb(struct btrfs_path *left_path,
7194 		      struct btrfs_path *right_path,
7195 		      struct btrfs_key *key,
7196 		      enum btrfs_compare_tree_result result,
7197 		      struct send_ctx *sctx)
7198 {
7199 	int ret = 0;
7200 
7201 	/*
7202 	 * We can not hold the commit root semaphore here. This is because in
7203 	 * the case of sending and receiving to the same filesystem, using a
7204 	 * pipe, could result in a deadlock:
7205 	 *
7206 	 * 1) The task running send blocks on the pipe because it's full;
7207 	 *
7208 	 * 2) The task running receive, which is the only consumer of the pipe,
7209 	 *    is waiting for a transaction commit (for example due to a space
7210 	 *    reservation when doing a write or triggering a transaction commit
7211 	 *    when creating a subvolume);
7212 	 *
7213 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7214 	 *    but can not acquire it since it's being held at 1).
7215 	 *
7216 	 * Down this call chain we write to the pipe through kernel_write().
7217 	 * The same type of problem can also happen when sending to a file that
7218 	 * is stored in the same filesystem - when reserving space for a write
7219 	 * into the file, we can trigger a transaction commit.
7220 	 *
7221 	 * Our caller has supplied us with clones of leaves from the send and
7222 	 * parent roots, so we're safe here from a concurrent relocation and
7223 	 * further reallocation of metadata extents while we are here. Below we
7224 	 * also assert that the leaves are clones.
7225 	 */
7226 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7227 
7228 	/*
7229 	 * We always have a send root, so left_path is never NULL. We will not
7230 	 * have a leaf when we have reached the end of the send root but have
7231 	 * not yet reached the end of the parent root.
7232 	 */
7233 	if (left_path->nodes[0])
7234 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7235 				&left_path->nodes[0]->bflags));
7236 	/*
7237 	 * When doing a full send we don't have a parent root, so right_path is
7238 	 * NULL. When doing an incremental send, we may have reached the end of
7239 	 * the parent root already, so we don't have a leaf at right_path.
7240 	 */
7241 	if (right_path && right_path->nodes[0])
7242 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7243 				&right_path->nodes[0]->bflags));
7244 
7245 	if (result == BTRFS_COMPARE_TREE_SAME) {
7246 		if (key->type == BTRFS_INODE_REF_KEY ||
7247 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7248 			ret = compare_refs(sctx, left_path, key);
7249 			if (!ret)
7250 				return 0;
7251 			if (ret < 0)
7252 				return ret;
7253 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7254 			return maybe_send_hole(sctx, left_path, key);
7255 		} else {
7256 			return 0;
7257 		}
7258 		result = BTRFS_COMPARE_TREE_CHANGED;
7259 		ret = 0;
7260 	}
7261 
7262 	sctx->left_path = left_path;
7263 	sctx->right_path = right_path;
7264 	sctx->cmp_key = key;
7265 
7266 	ret = finish_inode_if_needed(sctx, 0);
7267 	if (ret < 0)
7268 		goto out;
7269 
7270 	/* Ignore non-FS objects */
7271 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7272 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7273 		goto out;
7274 
7275 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7276 		ret = changed_inode(sctx, result);
7277 	} else if (!sctx->ignore_cur_inode) {
7278 		if (key->type == BTRFS_INODE_REF_KEY ||
7279 		    key->type == BTRFS_INODE_EXTREF_KEY)
7280 			ret = changed_ref(sctx, result);
7281 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7282 			ret = changed_xattr(sctx, result);
7283 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7284 			ret = changed_extent(sctx, result);
7285 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7286 			 key->offset == 0)
7287 			ret = changed_verity(sctx, result);
7288 	}
7289 
7290 out:
7291 	return ret;
7292 }
7293 
7294 static int search_key_again(const struct send_ctx *sctx,
7295 			    struct btrfs_root *root,
7296 			    struct btrfs_path *path,
7297 			    const struct btrfs_key *key)
7298 {
7299 	int ret;
7300 
7301 	if (!path->need_commit_sem)
7302 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7303 
7304 	/*
7305 	 * Roots used for send operations are readonly and no one can add,
7306 	 * update or remove keys from them, so we should be able to find our
7307 	 * key again. The only exception is deduplication, which can operate on
7308 	 * readonly roots and add, update or remove keys to/from them - but at
7309 	 * the moment we don't allow it to run in parallel with send.
7310 	 */
7311 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7312 	ASSERT(ret <= 0);
7313 	if (ret > 0) {
7314 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7315 		btrfs_err(root->fs_info,
7316 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7317 			  key->objectid, key->type, key->offset,
7318 			  (root == sctx->parent_root ? "parent" : "send"),
7319 			  root->root_key.objectid, path->lowest_level,
7320 			  path->slots[path->lowest_level]);
7321 		return -EUCLEAN;
7322 	}
7323 
7324 	return ret;
7325 }
7326 
7327 static int full_send_tree(struct send_ctx *sctx)
7328 {
7329 	int ret;
7330 	struct btrfs_root *send_root = sctx->send_root;
7331 	struct btrfs_key key;
7332 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7333 	struct btrfs_path *path;
7334 
7335 	path = alloc_path_for_send();
7336 	if (!path)
7337 		return -ENOMEM;
7338 	path->reada = READA_FORWARD_ALWAYS;
7339 
7340 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7341 	key.type = BTRFS_INODE_ITEM_KEY;
7342 	key.offset = 0;
7343 
7344 	down_read(&fs_info->commit_root_sem);
7345 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7346 	up_read(&fs_info->commit_root_sem);
7347 
7348 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7349 	if (ret < 0)
7350 		goto out;
7351 	if (ret)
7352 		goto out_finish;
7353 
7354 	while (1) {
7355 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7356 
7357 		ret = changed_cb(path, NULL, &key,
7358 				 BTRFS_COMPARE_TREE_NEW, sctx);
7359 		if (ret < 0)
7360 			goto out;
7361 
7362 		down_read(&fs_info->commit_root_sem);
7363 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7364 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7365 			up_read(&fs_info->commit_root_sem);
7366 			/*
7367 			 * A transaction used for relocating a block group was
7368 			 * committed or is about to finish its commit. Release
7369 			 * our path (leaf) and restart the search, so that we
7370 			 * avoid operating on any file extent items that are
7371 			 * stale, with a disk_bytenr that reflects a pre
7372 			 * relocation value. This way we avoid as much as
7373 			 * possible to fallback to regular writes when checking
7374 			 * if we can clone file ranges.
7375 			 */
7376 			btrfs_release_path(path);
7377 			ret = search_key_again(sctx, send_root, path, &key);
7378 			if (ret < 0)
7379 				goto out;
7380 		} else {
7381 			up_read(&fs_info->commit_root_sem);
7382 		}
7383 
7384 		ret = btrfs_next_item(send_root, path);
7385 		if (ret < 0)
7386 			goto out;
7387 		if (ret) {
7388 			ret  = 0;
7389 			break;
7390 		}
7391 	}
7392 
7393 out_finish:
7394 	ret = finish_inode_if_needed(sctx, 1);
7395 
7396 out:
7397 	btrfs_free_path(path);
7398 	return ret;
7399 }
7400 
7401 static int replace_node_with_clone(struct btrfs_path *path, int level)
7402 {
7403 	struct extent_buffer *clone;
7404 
7405 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7406 	if (!clone)
7407 		return -ENOMEM;
7408 
7409 	free_extent_buffer(path->nodes[level]);
7410 	path->nodes[level] = clone;
7411 
7412 	return 0;
7413 }
7414 
7415 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7416 {
7417 	struct extent_buffer *eb;
7418 	struct extent_buffer *parent = path->nodes[*level];
7419 	int slot = path->slots[*level];
7420 	const int nritems = btrfs_header_nritems(parent);
7421 	u64 reada_max;
7422 	u64 reada_done = 0;
7423 
7424 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7425 
7426 	BUG_ON(*level == 0);
7427 	eb = btrfs_read_node_slot(parent, slot);
7428 	if (IS_ERR(eb))
7429 		return PTR_ERR(eb);
7430 
7431 	/*
7432 	 * Trigger readahead for the next leaves we will process, so that it is
7433 	 * very likely that when we need them they are already in memory and we
7434 	 * will not block on disk IO. For nodes we only do readahead for one,
7435 	 * since the time window between processing nodes is typically larger.
7436 	 */
7437 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7438 
7439 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7440 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7441 			btrfs_readahead_node_child(parent, slot);
7442 			reada_done += eb->fs_info->nodesize;
7443 		}
7444 	}
7445 
7446 	path->nodes[*level - 1] = eb;
7447 	path->slots[*level - 1] = 0;
7448 	(*level)--;
7449 
7450 	if (*level == 0)
7451 		return replace_node_with_clone(path, 0);
7452 
7453 	return 0;
7454 }
7455 
7456 static int tree_move_next_or_upnext(struct btrfs_path *path,
7457 				    int *level, int root_level)
7458 {
7459 	int ret = 0;
7460 	int nritems;
7461 	nritems = btrfs_header_nritems(path->nodes[*level]);
7462 
7463 	path->slots[*level]++;
7464 
7465 	while (path->slots[*level] >= nritems) {
7466 		if (*level == root_level) {
7467 			path->slots[*level] = nritems - 1;
7468 			return -1;
7469 		}
7470 
7471 		/* move upnext */
7472 		path->slots[*level] = 0;
7473 		free_extent_buffer(path->nodes[*level]);
7474 		path->nodes[*level] = NULL;
7475 		(*level)++;
7476 		path->slots[*level]++;
7477 
7478 		nritems = btrfs_header_nritems(path->nodes[*level]);
7479 		ret = 1;
7480 	}
7481 	return ret;
7482 }
7483 
7484 /*
7485  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7486  * or down.
7487  */
7488 static int tree_advance(struct btrfs_path *path,
7489 			int *level, int root_level,
7490 			int allow_down,
7491 			struct btrfs_key *key,
7492 			u64 reada_min_gen)
7493 {
7494 	int ret;
7495 
7496 	if (*level == 0 || !allow_down) {
7497 		ret = tree_move_next_or_upnext(path, level, root_level);
7498 	} else {
7499 		ret = tree_move_down(path, level, reada_min_gen);
7500 	}
7501 
7502 	/*
7503 	 * Even if we have reached the end of a tree, ret is -1, update the key
7504 	 * anyway, so that in case we need to restart due to a block group
7505 	 * relocation, we can assert that the last key of the root node still
7506 	 * exists in the tree.
7507 	 */
7508 	if (*level == 0)
7509 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7510 				      path->slots[*level]);
7511 	else
7512 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7513 				      path->slots[*level]);
7514 
7515 	return ret;
7516 }
7517 
7518 static int tree_compare_item(struct btrfs_path *left_path,
7519 			     struct btrfs_path *right_path,
7520 			     char *tmp_buf)
7521 {
7522 	int cmp;
7523 	int len1, len2;
7524 	unsigned long off1, off2;
7525 
7526 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7527 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7528 	if (len1 != len2)
7529 		return 1;
7530 
7531 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7532 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7533 				right_path->slots[0]);
7534 
7535 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7536 
7537 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7538 	if (cmp)
7539 		return 1;
7540 	return 0;
7541 }
7542 
7543 /*
7544  * A transaction used for relocating a block group was committed or is about to
7545  * finish its commit. Release our paths and restart the search, so that we are
7546  * not using stale extent buffers:
7547  *
7548  * 1) For levels > 0, we are only holding references of extent buffers, without
7549  *    any locks on them, which does not prevent them from having been relocated
7550  *    and reallocated after the last time we released the commit root semaphore.
7551  *    The exception are the root nodes, for which we always have a clone, see
7552  *    the comment at btrfs_compare_trees();
7553  *
7554  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7555  *    we are safe from the concurrent relocation and reallocation. However they
7556  *    can have file extent items with a pre relocation disk_bytenr value, so we
7557  *    restart the start from the current commit roots and clone the new leaves so
7558  *    that we get the post relocation disk_bytenr values. Not doing so, could
7559  *    make us clone the wrong data in case there are new extents using the old
7560  *    disk_bytenr that happen to be shared.
7561  */
7562 static int restart_after_relocation(struct btrfs_path *left_path,
7563 				    struct btrfs_path *right_path,
7564 				    const struct btrfs_key *left_key,
7565 				    const struct btrfs_key *right_key,
7566 				    int left_level,
7567 				    int right_level,
7568 				    const struct send_ctx *sctx)
7569 {
7570 	int root_level;
7571 	int ret;
7572 
7573 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7574 
7575 	btrfs_release_path(left_path);
7576 	btrfs_release_path(right_path);
7577 
7578 	/*
7579 	 * Since keys can not be added or removed to/from our roots because they
7580 	 * are readonly and we do not allow deduplication to run in parallel
7581 	 * (which can add, remove or change keys), the layout of the trees should
7582 	 * not change.
7583 	 */
7584 	left_path->lowest_level = left_level;
7585 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7586 	if (ret < 0)
7587 		return ret;
7588 
7589 	right_path->lowest_level = right_level;
7590 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7591 	if (ret < 0)
7592 		return ret;
7593 
7594 	/*
7595 	 * If the lowest level nodes are leaves, clone them so that they can be
7596 	 * safely used by changed_cb() while not under the protection of the
7597 	 * commit root semaphore, even if relocation and reallocation happens in
7598 	 * parallel.
7599 	 */
7600 	if (left_level == 0) {
7601 		ret = replace_node_with_clone(left_path, 0);
7602 		if (ret < 0)
7603 			return ret;
7604 	}
7605 
7606 	if (right_level == 0) {
7607 		ret = replace_node_with_clone(right_path, 0);
7608 		if (ret < 0)
7609 			return ret;
7610 	}
7611 
7612 	/*
7613 	 * Now clone the root nodes (unless they happen to be the leaves we have
7614 	 * already cloned). This is to protect against concurrent snapshotting of
7615 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7616 	 */
7617 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7618 	if (root_level > 0) {
7619 		ret = replace_node_with_clone(left_path, root_level);
7620 		if (ret < 0)
7621 			return ret;
7622 	}
7623 
7624 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7625 	if (root_level > 0) {
7626 		ret = replace_node_with_clone(right_path, root_level);
7627 		if (ret < 0)
7628 			return ret;
7629 	}
7630 
7631 	return 0;
7632 }
7633 
7634 /*
7635  * This function compares two trees and calls the provided callback for
7636  * every changed/new/deleted item it finds.
7637  * If shared tree blocks are encountered, whole subtrees are skipped, making
7638  * the compare pretty fast on snapshotted subvolumes.
7639  *
7640  * This currently works on commit roots only. As commit roots are read only,
7641  * we don't do any locking. The commit roots are protected with transactions.
7642  * Transactions are ended and rejoined when a commit is tried in between.
7643  *
7644  * This function checks for modifications done to the trees while comparing.
7645  * If it detects a change, it aborts immediately.
7646  */
7647 static int btrfs_compare_trees(struct btrfs_root *left_root,
7648 			struct btrfs_root *right_root, struct send_ctx *sctx)
7649 {
7650 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7651 	int ret;
7652 	int cmp;
7653 	struct btrfs_path *left_path = NULL;
7654 	struct btrfs_path *right_path = NULL;
7655 	struct btrfs_key left_key;
7656 	struct btrfs_key right_key;
7657 	char *tmp_buf = NULL;
7658 	int left_root_level;
7659 	int right_root_level;
7660 	int left_level;
7661 	int right_level;
7662 	int left_end_reached = 0;
7663 	int right_end_reached = 0;
7664 	int advance_left = 0;
7665 	int advance_right = 0;
7666 	u64 left_blockptr;
7667 	u64 right_blockptr;
7668 	u64 left_gen;
7669 	u64 right_gen;
7670 	u64 reada_min_gen;
7671 
7672 	left_path = btrfs_alloc_path();
7673 	if (!left_path) {
7674 		ret = -ENOMEM;
7675 		goto out;
7676 	}
7677 	right_path = btrfs_alloc_path();
7678 	if (!right_path) {
7679 		ret = -ENOMEM;
7680 		goto out;
7681 	}
7682 
7683 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7684 	if (!tmp_buf) {
7685 		ret = -ENOMEM;
7686 		goto out;
7687 	}
7688 
7689 	left_path->search_commit_root = 1;
7690 	left_path->skip_locking = 1;
7691 	right_path->search_commit_root = 1;
7692 	right_path->skip_locking = 1;
7693 
7694 	/*
7695 	 * Strategy: Go to the first items of both trees. Then do
7696 	 *
7697 	 * If both trees are at level 0
7698 	 *   Compare keys of current items
7699 	 *     If left < right treat left item as new, advance left tree
7700 	 *       and repeat
7701 	 *     If left > right treat right item as deleted, advance right tree
7702 	 *       and repeat
7703 	 *     If left == right do deep compare of items, treat as changed if
7704 	 *       needed, advance both trees and repeat
7705 	 * If both trees are at the same level but not at level 0
7706 	 *   Compare keys of current nodes/leafs
7707 	 *     If left < right advance left tree and repeat
7708 	 *     If left > right advance right tree and repeat
7709 	 *     If left == right compare blockptrs of the next nodes/leafs
7710 	 *       If they match advance both trees but stay at the same level
7711 	 *         and repeat
7712 	 *       If they don't match advance both trees while allowing to go
7713 	 *         deeper and repeat
7714 	 * If tree levels are different
7715 	 *   Advance the tree that needs it and repeat
7716 	 *
7717 	 * Advancing a tree means:
7718 	 *   If we are at level 0, try to go to the next slot. If that's not
7719 	 *   possible, go one level up and repeat. Stop when we found a level
7720 	 *   where we could go to the next slot. We may at this point be on a
7721 	 *   node or a leaf.
7722 	 *
7723 	 *   If we are not at level 0 and not on shared tree blocks, go one
7724 	 *   level deeper.
7725 	 *
7726 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7727 	 *   the right if possible or go up and right.
7728 	 */
7729 
7730 	down_read(&fs_info->commit_root_sem);
7731 	left_level = btrfs_header_level(left_root->commit_root);
7732 	left_root_level = left_level;
7733 	/*
7734 	 * We clone the root node of the send and parent roots to prevent races
7735 	 * with snapshot creation of these roots. Snapshot creation COWs the
7736 	 * root node of a tree, so after the transaction is committed the old
7737 	 * extent can be reallocated while this send operation is still ongoing.
7738 	 * So we clone them, under the commit root semaphore, to be race free.
7739 	 */
7740 	left_path->nodes[left_level] =
7741 			btrfs_clone_extent_buffer(left_root->commit_root);
7742 	if (!left_path->nodes[left_level]) {
7743 		ret = -ENOMEM;
7744 		goto out_unlock;
7745 	}
7746 
7747 	right_level = btrfs_header_level(right_root->commit_root);
7748 	right_root_level = right_level;
7749 	right_path->nodes[right_level] =
7750 			btrfs_clone_extent_buffer(right_root->commit_root);
7751 	if (!right_path->nodes[right_level]) {
7752 		ret = -ENOMEM;
7753 		goto out_unlock;
7754 	}
7755 	/*
7756 	 * Our right root is the parent root, while the left root is the "send"
7757 	 * root. We know that all new nodes/leaves in the left root must have
7758 	 * a generation greater than the right root's generation, so we trigger
7759 	 * readahead for those nodes and leaves of the left root, as we know we
7760 	 * will need to read them at some point.
7761 	 */
7762 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7763 
7764 	if (left_level == 0)
7765 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7766 				&left_key, left_path->slots[left_level]);
7767 	else
7768 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7769 				&left_key, left_path->slots[left_level]);
7770 	if (right_level == 0)
7771 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7772 				&right_key, right_path->slots[right_level]);
7773 	else
7774 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7775 				&right_key, right_path->slots[right_level]);
7776 
7777 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7778 
7779 	while (1) {
7780 		if (need_resched() ||
7781 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7782 			up_read(&fs_info->commit_root_sem);
7783 			cond_resched();
7784 			down_read(&fs_info->commit_root_sem);
7785 		}
7786 
7787 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7788 			ret = restart_after_relocation(left_path, right_path,
7789 						       &left_key, &right_key,
7790 						       left_level, right_level,
7791 						       sctx);
7792 			if (ret < 0)
7793 				goto out_unlock;
7794 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7795 		}
7796 
7797 		if (advance_left && !left_end_reached) {
7798 			ret = tree_advance(left_path, &left_level,
7799 					left_root_level,
7800 					advance_left != ADVANCE_ONLY_NEXT,
7801 					&left_key, reada_min_gen);
7802 			if (ret == -1)
7803 				left_end_reached = ADVANCE;
7804 			else if (ret < 0)
7805 				goto out_unlock;
7806 			advance_left = 0;
7807 		}
7808 		if (advance_right && !right_end_reached) {
7809 			ret = tree_advance(right_path, &right_level,
7810 					right_root_level,
7811 					advance_right != ADVANCE_ONLY_NEXT,
7812 					&right_key, reada_min_gen);
7813 			if (ret == -1)
7814 				right_end_reached = ADVANCE;
7815 			else if (ret < 0)
7816 				goto out_unlock;
7817 			advance_right = 0;
7818 		}
7819 
7820 		if (left_end_reached && right_end_reached) {
7821 			ret = 0;
7822 			goto out_unlock;
7823 		} else if (left_end_reached) {
7824 			if (right_level == 0) {
7825 				up_read(&fs_info->commit_root_sem);
7826 				ret = changed_cb(left_path, right_path,
7827 						&right_key,
7828 						BTRFS_COMPARE_TREE_DELETED,
7829 						sctx);
7830 				if (ret < 0)
7831 					goto out;
7832 				down_read(&fs_info->commit_root_sem);
7833 			}
7834 			advance_right = ADVANCE;
7835 			continue;
7836 		} else if (right_end_reached) {
7837 			if (left_level == 0) {
7838 				up_read(&fs_info->commit_root_sem);
7839 				ret = changed_cb(left_path, right_path,
7840 						&left_key,
7841 						BTRFS_COMPARE_TREE_NEW,
7842 						sctx);
7843 				if (ret < 0)
7844 					goto out;
7845 				down_read(&fs_info->commit_root_sem);
7846 			}
7847 			advance_left = ADVANCE;
7848 			continue;
7849 		}
7850 
7851 		if (left_level == 0 && right_level == 0) {
7852 			up_read(&fs_info->commit_root_sem);
7853 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7854 			if (cmp < 0) {
7855 				ret = changed_cb(left_path, right_path,
7856 						&left_key,
7857 						BTRFS_COMPARE_TREE_NEW,
7858 						sctx);
7859 				advance_left = ADVANCE;
7860 			} else if (cmp > 0) {
7861 				ret = changed_cb(left_path, right_path,
7862 						&right_key,
7863 						BTRFS_COMPARE_TREE_DELETED,
7864 						sctx);
7865 				advance_right = ADVANCE;
7866 			} else {
7867 				enum btrfs_compare_tree_result result;
7868 
7869 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7870 				ret = tree_compare_item(left_path, right_path,
7871 							tmp_buf);
7872 				if (ret)
7873 					result = BTRFS_COMPARE_TREE_CHANGED;
7874 				else
7875 					result = BTRFS_COMPARE_TREE_SAME;
7876 				ret = changed_cb(left_path, right_path,
7877 						 &left_key, result, sctx);
7878 				advance_left = ADVANCE;
7879 				advance_right = ADVANCE;
7880 			}
7881 
7882 			if (ret < 0)
7883 				goto out;
7884 			down_read(&fs_info->commit_root_sem);
7885 		} else if (left_level == right_level) {
7886 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7887 			if (cmp < 0) {
7888 				advance_left = ADVANCE;
7889 			} else if (cmp > 0) {
7890 				advance_right = ADVANCE;
7891 			} else {
7892 				left_blockptr = btrfs_node_blockptr(
7893 						left_path->nodes[left_level],
7894 						left_path->slots[left_level]);
7895 				right_blockptr = btrfs_node_blockptr(
7896 						right_path->nodes[right_level],
7897 						right_path->slots[right_level]);
7898 				left_gen = btrfs_node_ptr_generation(
7899 						left_path->nodes[left_level],
7900 						left_path->slots[left_level]);
7901 				right_gen = btrfs_node_ptr_generation(
7902 						right_path->nodes[right_level],
7903 						right_path->slots[right_level]);
7904 				if (left_blockptr == right_blockptr &&
7905 				    left_gen == right_gen) {
7906 					/*
7907 					 * As we're on a shared block, don't
7908 					 * allow to go deeper.
7909 					 */
7910 					advance_left = ADVANCE_ONLY_NEXT;
7911 					advance_right = ADVANCE_ONLY_NEXT;
7912 				} else {
7913 					advance_left = ADVANCE;
7914 					advance_right = ADVANCE;
7915 				}
7916 			}
7917 		} else if (left_level < right_level) {
7918 			advance_right = ADVANCE;
7919 		} else {
7920 			advance_left = ADVANCE;
7921 		}
7922 	}
7923 
7924 out_unlock:
7925 	up_read(&fs_info->commit_root_sem);
7926 out:
7927 	btrfs_free_path(left_path);
7928 	btrfs_free_path(right_path);
7929 	kvfree(tmp_buf);
7930 	return ret;
7931 }
7932 
7933 static int send_subvol(struct send_ctx *sctx)
7934 {
7935 	int ret;
7936 
7937 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7938 		ret = send_header(sctx);
7939 		if (ret < 0)
7940 			goto out;
7941 	}
7942 
7943 	ret = send_subvol_begin(sctx);
7944 	if (ret < 0)
7945 		goto out;
7946 
7947 	if (sctx->parent_root) {
7948 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7949 		if (ret < 0)
7950 			goto out;
7951 		ret = finish_inode_if_needed(sctx, 1);
7952 		if (ret < 0)
7953 			goto out;
7954 	} else {
7955 		ret = full_send_tree(sctx);
7956 		if (ret < 0)
7957 			goto out;
7958 	}
7959 
7960 out:
7961 	free_recorded_refs(sctx);
7962 	return ret;
7963 }
7964 
7965 /*
7966  * If orphan cleanup did remove any orphans from a root, it means the tree
7967  * was modified and therefore the commit root is not the same as the current
7968  * root anymore. This is a problem, because send uses the commit root and
7969  * therefore can see inode items that don't exist in the current root anymore,
7970  * and for example make calls to btrfs_iget, which will do tree lookups based
7971  * on the current root and not on the commit root. Those lookups will fail,
7972  * returning a -ESTALE error, and making send fail with that error. So make
7973  * sure a send does not see any orphans we have just removed, and that it will
7974  * see the same inodes regardless of whether a transaction commit happened
7975  * before it started (meaning that the commit root will be the same as the
7976  * current root) or not.
7977  */
7978 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7979 {
7980 	int i;
7981 	struct btrfs_trans_handle *trans = NULL;
7982 
7983 again:
7984 	if (sctx->parent_root &&
7985 	    sctx->parent_root->node != sctx->parent_root->commit_root)
7986 		goto commit_trans;
7987 
7988 	for (i = 0; i < sctx->clone_roots_cnt; i++)
7989 		if (sctx->clone_roots[i].root->node !=
7990 		    sctx->clone_roots[i].root->commit_root)
7991 			goto commit_trans;
7992 
7993 	if (trans)
7994 		return btrfs_end_transaction(trans);
7995 
7996 	return 0;
7997 
7998 commit_trans:
7999 	/* Use any root, all fs roots will get their commit roots updated. */
8000 	if (!trans) {
8001 		trans = btrfs_join_transaction(sctx->send_root);
8002 		if (IS_ERR(trans))
8003 			return PTR_ERR(trans);
8004 		goto again;
8005 	}
8006 
8007 	return btrfs_commit_transaction(trans);
8008 }
8009 
8010 /*
8011  * Make sure any existing dellaloc is flushed for any root used by a send
8012  * operation so that we do not miss any data and we do not race with writeback
8013  * finishing and changing a tree while send is using the tree. This could
8014  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8015  * a send operation then uses the subvolume.
8016  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8017  */
8018 static int flush_delalloc_roots(struct send_ctx *sctx)
8019 {
8020 	struct btrfs_root *root = sctx->parent_root;
8021 	int ret;
8022 	int i;
8023 
8024 	if (root) {
8025 		ret = btrfs_start_delalloc_snapshot(root, false);
8026 		if (ret)
8027 			return ret;
8028 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8029 	}
8030 
8031 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8032 		root = sctx->clone_roots[i].root;
8033 		ret = btrfs_start_delalloc_snapshot(root, false);
8034 		if (ret)
8035 			return ret;
8036 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8037 	}
8038 
8039 	return 0;
8040 }
8041 
8042 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8043 {
8044 	spin_lock(&root->root_item_lock);
8045 	root->send_in_progress--;
8046 	/*
8047 	 * Not much left to do, we don't know why it's unbalanced and
8048 	 * can't blindly reset it to 0.
8049 	 */
8050 	if (root->send_in_progress < 0)
8051 		btrfs_err(root->fs_info,
8052 			  "send_in_progress unbalanced %d root %llu",
8053 			  root->send_in_progress, root->root_key.objectid);
8054 	spin_unlock(&root->root_item_lock);
8055 }
8056 
8057 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8058 {
8059 	btrfs_warn_rl(root->fs_info,
8060 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8061 		      root->root_key.objectid, root->dedupe_in_progress);
8062 }
8063 
8064 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8065 {
8066 	int ret = 0;
8067 	struct btrfs_root *send_root = BTRFS_I(inode)->root;
8068 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8069 	struct btrfs_root *clone_root;
8070 	struct send_ctx *sctx = NULL;
8071 	u32 i;
8072 	u64 *clone_sources_tmp = NULL;
8073 	int clone_sources_to_rollback = 0;
8074 	size_t alloc_size;
8075 	int sort_clone_roots = 0;
8076 	struct btrfs_lru_cache_entry *entry;
8077 	struct btrfs_lru_cache_entry *tmp;
8078 
8079 	if (!capable(CAP_SYS_ADMIN))
8080 		return -EPERM;
8081 
8082 	/*
8083 	 * The subvolume must remain read-only during send, protect against
8084 	 * making it RW. This also protects against deletion.
8085 	 */
8086 	spin_lock(&send_root->root_item_lock);
8087 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8088 		dedupe_in_progress_warn(send_root);
8089 		spin_unlock(&send_root->root_item_lock);
8090 		return -EAGAIN;
8091 	}
8092 	send_root->send_in_progress++;
8093 	spin_unlock(&send_root->root_item_lock);
8094 
8095 	/*
8096 	 * Userspace tools do the checks and warn the user if it's
8097 	 * not RO.
8098 	 */
8099 	if (!btrfs_root_readonly(send_root)) {
8100 		ret = -EPERM;
8101 		goto out;
8102 	}
8103 
8104 	/*
8105 	 * Check that we don't overflow at later allocations, we request
8106 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8107 	 * access_ok. Also set an upper limit for allocation size so this can't
8108 	 * easily exhaust memory. Max number of clone sources is about 200K.
8109 	 */
8110 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8111 		ret = -EINVAL;
8112 		goto out;
8113 	}
8114 
8115 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8116 		ret = -EINVAL;
8117 		goto out;
8118 	}
8119 
8120 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8121 	if (!sctx) {
8122 		ret = -ENOMEM;
8123 		goto out;
8124 	}
8125 
8126 	INIT_LIST_HEAD(&sctx->new_refs);
8127 	INIT_LIST_HEAD(&sctx->deleted_refs);
8128 
8129 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8130 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8131 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8132 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8133 	/*
8134 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8135 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8136 	 */
8137 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8138 
8139 	sctx->pending_dir_moves = RB_ROOT;
8140 	sctx->waiting_dir_moves = RB_ROOT;
8141 	sctx->orphan_dirs = RB_ROOT;
8142 	sctx->rbtree_new_refs = RB_ROOT;
8143 	sctx->rbtree_deleted_refs = RB_ROOT;
8144 
8145 	sctx->flags = arg->flags;
8146 
8147 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8148 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8149 			ret = -EPROTO;
8150 			goto out;
8151 		}
8152 		/* Zero means "use the highest version" */
8153 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8154 	} else {
8155 		sctx->proto = 1;
8156 	}
8157 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8158 		ret = -EINVAL;
8159 		goto out;
8160 	}
8161 
8162 	sctx->send_filp = fget(arg->send_fd);
8163 	if (!sctx->send_filp) {
8164 		ret = -EBADF;
8165 		goto out;
8166 	}
8167 
8168 	sctx->send_root = send_root;
8169 	/*
8170 	 * Unlikely but possible, if the subvolume is marked for deletion but
8171 	 * is slow to remove the directory entry, send can still be started
8172 	 */
8173 	if (btrfs_root_dead(sctx->send_root)) {
8174 		ret = -EPERM;
8175 		goto out;
8176 	}
8177 
8178 	sctx->clone_roots_cnt = arg->clone_sources_count;
8179 
8180 	if (sctx->proto >= 2) {
8181 		u32 send_buf_num_pages;
8182 
8183 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8184 		sctx->send_buf = vmalloc(sctx->send_max_size);
8185 		if (!sctx->send_buf) {
8186 			ret = -ENOMEM;
8187 			goto out;
8188 		}
8189 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8190 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8191 					       sizeof(*sctx->send_buf_pages),
8192 					       GFP_KERNEL);
8193 		if (!sctx->send_buf_pages) {
8194 			ret = -ENOMEM;
8195 			goto out;
8196 		}
8197 		for (i = 0; i < send_buf_num_pages; i++) {
8198 			sctx->send_buf_pages[i] =
8199 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8200 		}
8201 	} else {
8202 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8203 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8204 	}
8205 	if (!sctx->send_buf) {
8206 		ret = -ENOMEM;
8207 		goto out;
8208 	}
8209 
8210 	sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8211 				     arg->clone_sources_count + 1,
8212 				     GFP_KERNEL);
8213 	if (!sctx->clone_roots) {
8214 		ret = -ENOMEM;
8215 		goto out;
8216 	}
8217 
8218 	alloc_size = array_size(sizeof(*arg->clone_sources),
8219 				arg->clone_sources_count);
8220 
8221 	if (arg->clone_sources_count) {
8222 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8223 		if (!clone_sources_tmp) {
8224 			ret = -ENOMEM;
8225 			goto out;
8226 		}
8227 
8228 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8229 				alloc_size);
8230 		if (ret) {
8231 			ret = -EFAULT;
8232 			goto out;
8233 		}
8234 
8235 		for (i = 0; i < arg->clone_sources_count; i++) {
8236 			clone_root = btrfs_get_fs_root(fs_info,
8237 						clone_sources_tmp[i], true);
8238 			if (IS_ERR(clone_root)) {
8239 				ret = PTR_ERR(clone_root);
8240 				goto out;
8241 			}
8242 			spin_lock(&clone_root->root_item_lock);
8243 			if (!btrfs_root_readonly(clone_root) ||
8244 			    btrfs_root_dead(clone_root)) {
8245 				spin_unlock(&clone_root->root_item_lock);
8246 				btrfs_put_root(clone_root);
8247 				ret = -EPERM;
8248 				goto out;
8249 			}
8250 			if (clone_root->dedupe_in_progress) {
8251 				dedupe_in_progress_warn(clone_root);
8252 				spin_unlock(&clone_root->root_item_lock);
8253 				btrfs_put_root(clone_root);
8254 				ret = -EAGAIN;
8255 				goto out;
8256 			}
8257 			clone_root->send_in_progress++;
8258 			spin_unlock(&clone_root->root_item_lock);
8259 
8260 			sctx->clone_roots[i].root = clone_root;
8261 			clone_sources_to_rollback = i + 1;
8262 		}
8263 		kvfree(clone_sources_tmp);
8264 		clone_sources_tmp = NULL;
8265 	}
8266 
8267 	if (arg->parent_root) {
8268 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8269 						      true);
8270 		if (IS_ERR(sctx->parent_root)) {
8271 			ret = PTR_ERR(sctx->parent_root);
8272 			goto out;
8273 		}
8274 
8275 		spin_lock(&sctx->parent_root->root_item_lock);
8276 		sctx->parent_root->send_in_progress++;
8277 		if (!btrfs_root_readonly(sctx->parent_root) ||
8278 				btrfs_root_dead(sctx->parent_root)) {
8279 			spin_unlock(&sctx->parent_root->root_item_lock);
8280 			ret = -EPERM;
8281 			goto out;
8282 		}
8283 		if (sctx->parent_root->dedupe_in_progress) {
8284 			dedupe_in_progress_warn(sctx->parent_root);
8285 			spin_unlock(&sctx->parent_root->root_item_lock);
8286 			ret = -EAGAIN;
8287 			goto out;
8288 		}
8289 		spin_unlock(&sctx->parent_root->root_item_lock);
8290 	}
8291 
8292 	/*
8293 	 * Clones from send_root are allowed, but only if the clone source
8294 	 * is behind the current send position. This is checked while searching
8295 	 * for possible clone sources.
8296 	 */
8297 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8298 		btrfs_grab_root(sctx->send_root);
8299 
8300 	/* We do a bsearch later */
8301 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8302 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8303 			NULL);
8304 	sort_clone_roots = 1;
8305 
8306 	ret = flush_delalloc_roots(sctx);
8307 	if (ret)
8308 		goto out;
8309 
8310 	ret = ensure_commit_roots_uptodate(sctx);
8311 	if (ret)
8312 		goto out;
8313 
8314 	ret = send_subvol(sctx);
8315 	if (ret < 0)
8316 		goto out;
8317 
8318 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8319 		ret = send_utimes(sctx, entry->key, entry->gen);
8320 		if (ret < 0)
8321 			goto out;
8322 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8323 	}
8324 
8325 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8326 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8327 		if (ret < 0)
8328 			goto out;
8329 		ret = send_cmd(sctx);
8330 		if (ret < 0)
8331 			goto out;
8332 	}
8333 
8334 out:
8335 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8336 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8337 		struct rb_node *n;
8338 		struct pending_dir_move *pm;
8339 
8340 		n = rb_first(&sctx->pending_dir_moves);
8341 		pm = rb_entry(n, struct pending_dir_move, node);
8342 		while (!list_empty(&pm->list)) {
8343 			struct pending_dir_move *pm2;
8344 
8345 			pm2 = list_first_entry(&pm->list,
8346 					       struct pending_dir_move, list);
8347 			free_pending_move(sctx, pm2);
8348 		}
8349 		free_pending_move(sctx, pm);
8350 	}
8351 
8352 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8353 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8354 		struct rb_node *n;
8355 		struct waiting_dir_move *dm;
8356 
8357 		n = rb_first(&sctx->waiting_dir_moves);
8358 		dm = rb_entry(n, struct waiting_dir_move, node);
8359 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8360 		kfree(dm);
8361 	}
8362 
8363 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8364 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8365 		struct rb_node *n;
8366 		struct orphan_dir_info *odi;
8367 
8368 		n = rb_first(&sctx->orphan_dirs);
8369 		odi = rb_entry(n, struct orphan_dir_info, node);
8370 		free_orphan_dir_info(sctx, odi);
8371 	}
8372 
8373 	if (sort_clone_roots) {
8374 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8375 			btrfs_root_dec_send_in_progress(
8376 					sctx->clone_roots[i].root);
8377 			btrfs_put_root(sctx->clone_roots[i].root);
8378 		}
8379 	} else {
8380 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8381 			btrfs_root_dec_send_in_progress(
8382 					sctx->clone_roots[i].root);
8383 			btrfs_put_root(sctx->clone_roots[i].root);
8384 		}
8385 
8386 		btrfs_root_dec_send_in_progress(send_root);
8387 	}
8388 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8389 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8390 		btrfs_put_root(sctx->parent_root);
8391 	}
8392 
8393 	kvfree(clone_sources_tmp);
8394 
8395 	if (sctx) {
8396 		if (sctx->send_filp)
8397 			fput(sctx->send_filp);
8398 
8399 		kvfree(sctx->clone_roots);
8400 		kfree(sctx->send_buf_pages);
8401 		kvfree(sctx->send_buf);
8402 		kvfree(sctx->verity_descriptor);
8403 
8404 		close_current_inode(sctx);
8405 
8406 		btrfs_lru_cache_clear(&sctx->name_cache);
8407 		btrfs_lru_cache_clear(&sctx->backref_cache);
8408 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8409 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8410 
8411 		kfree(sctx);
8412 	}
8413 
8414 	return ret;
8415 }
8416