xref: /linux/fs/btrfs/send.c (revision 56fb34d86e875dbb0d3e6a81c5d3d035db373031)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 
19 #include "send.h"
20 #include "backref.h"
21 #include "locking.h"
22 #include "disk-io.h"
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
26 
27 /*
28  * A fs_path is a helper to dynamically build path names with unknown size.
29  * It reallocates the internal buffer on demand.
30  * It allows fast adding of path elements on the right side (normal path) and
31  * fast adding to the left side (reversed path). A reversed path can also be
32  * unreversed if needed.
33  */
34 struct fs_path {
35 	union {
36 		struct {
37 			char *start;
38 			char *end;
39 
40 			char *buf;
41 			unsigned short buf_len:15;
42 			unsigned short reversed:1;
43 			char inline_buf[];
44 		};
45 		/*
46 		 * Average path length does not exceed 200 bytes, we'll have
47 		 * better packing in the slab and higher chance to satisfy
48 		 * a allocation later during send.
49 		 */
50 		char pad[256];
51 	};
52 };
53 #define FS_PATH_INLINE_SIZE \
54 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
55 
56 
57 /* reused for each extent */
58 struct clone_root {
59 	struct btrfs_root *root;
60 	u64 ino;
61 	u64 offset;
62 
63 	u64 found_refs;
64 };
65 
66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
68 
69 struct send_ctx {
70 	struct file *send_filp;
71 	loff_t send_off;
72 	char *send_buf;
73 	u32 send_size;
74 	u32 send_max_size;
75 	u64 total_send_size;
76 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
77 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
78 
79 	struct btrfs_root *send_root;
80 	struct btrfs_root *parent_root;
81 	struct clone_root *clone_roots;
82 	int clone_roots_cnt;
83 
84 	/* current state of the compare_tree call */
85 	struct btrfs_path *left_path;
86 	struct btrfs_path *right_path;
87 	struct btrfs_key *cmp_key;
88 
89 	/*
90 	 * infos of the currently processed inode. In case of deleted inodes,
91 	 * these are the values from the deleted inode.
92 	 */
93 	u64 cur_ino;
94 	u64 cur_inode_gen;
95 	int cur_inode_new;
96 	int cur_inode_new_gen;
97 	int cur_inode_deleted;
98 	u64 cur_inode_size;
99 	u64 cur_inode_mode;
100 	u64 cur_inode_rdev;
101 	u64 cur_inode_last_extent;
102 	u64 cur_inode_next_write_offset;
103 	bool ignore_cur_inode;
104 
105 	u64 send_progress;
106 
107 	struct list_head new_refs;
108 	struct list_head deleted_refs;
109 
110 	struct radix_tree_root name_cache;
111 	struct list_head name_cache_list;
112 	int name_cache_size;
113 
114 	struct file_ra_state ra;
115 
116 	char *read_buf;
117 
118 	/*
119 	 * We process inodes by their increasing order, so if before an
120 	 * incremental send we reverse the parent/child relationship of
121 	 * directories such that a directory with a lower inode number was
122 	 * the parent of a directory with a higher inode number, and the one
123 	 * becoming the new parent got renamed too, we can't rename/move the
124 	 * directory with lower inode number when we finish processing it - we
125 	 * must process the directory with higher inode number first, then
126 	 * rename/move it and then rename/move the directory with lower inode
127 	 * number. Example follows.
128 	 *
129 	 * Tree state when the first send was performed:
130 	 *
131 	 * .
132 	 * |-- a                   (ino 257)
133 	 *     |-- b               (ino 258)
134 	 *         |
135 	 *         |
136 	 *         |-- c           (ino 259)
137 	 *         |   |-- d       (ino 260)
138 	 *         |
139 	 *         |-- c2          (ino 261)
140 	 *
141 	 * Tree state when the second (incremental) send is performed:
142 	 *
143 	 * .
144 	 * |-- a                   (ino 257)
145 	 *     |-- b               (ino 258)
146 	 *         |-- c2          (ino 261)
147 	 *             |-- d2      (ino 260)
148 	 *                 |-- cc  (ino 259)
149 	 *
150 	 * The sequence of steps that lead to the second state was:
151 	 *
152 	 * mv /a/b/c/d /a/b/c2/d2
153 	 * mv /a/b/c /a/b/c2/d2/cc
154 	 *
155 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
156 	 * before we move "d", which has higher inode number.
157 	 *
158 	 * So we just memorize which move/rename operations must be performed
159 	 * later when their respective parent is processed and moved/renamed.
160 	 */
161 
162 	/* Indexed by parent directory inode number. */
163 	struct rb_root pending_dir_moves;
164 
165 	/*
166 	 * Reverse index, indexed by the inode number of a directory that
167 	 * is waiting for the move/rename of its immediate parent before its
168 	 * own move/rename can be performed.
169 	 */
170 	struct rb_root waiting_dir_moves;
171 
172 	/*
173 	 * A directory that is going to be rm'ed might have a child directory
174 	 * which is in the pending directory moves index above. In this case,
175 	 * the directory can only be removed after the move/rename of its child
176 	 * is performed. Example:
177 	 *
178 	 * Parent snapshot:
179 	 *
180 	 * .                        (ino 256)
181 	 * |-- a/                   (ino 257)
182 	 *     |-- b/               (ino 258)
183 	 *         |-- c/           (ino 259)
184 	 *         |   |-- x/       (ino 260)
185 	 *         |
186 	 *         |-- y/           (ino 261)
187 	 *
188 	 * Send snapshot:
189 	 *
190 	 * .                        (ino 256)
191 	 * |-- a/                   (ino 257)
192 	 *     |-- b/               (ino 258)
193 	 *         |-- YY/          (ino 261)
194 	 *              |-- x/      (ino 260)
195 	 *
196 	 * Sequence of steps that lead to the send snapshot:
197 	 * rm -f /a/b/c/foo.txt
198 	 * mv /a/b/y /a/b/YY
199 	 * mv /a/b/c/x /a/b/YY
200 	 * rmdir /a/b/c
201 	 *
202 	 * When the child is processed, its move/rename is delayed until its
203 	 * parent is processed (as explained above), but all other operations
204 	 * like update utimes, chown, chgrp, etc, are performed and the paths
205 	 * that it uses for those operations must use the orphanized name of
206 	 * its parent (the directory we're going to rm later), so we need to
207 	 * memorize that name.
208 	 *
209 	 * Indexed by the inode number of the directory to be deleted.
210 	 */
211 	struct rb_root orphan_dirs;
212 };
213 
214 struct pending_dir_move {
215 	struct rb_node node;
216 	struct list_head list;
217 	u64 parent_ino;
218 	u64 ino;
219 	u64 gen;
220 	struct list_head update_refs;
221 };
222 
223 struct waiting_dir_move {
224 	struct rb_node node;
225 	u64 ino;
226 	/*
227 	 * There might be some directory that could not be removed because it
228 	 * was waiting for this directory inode to be moved first. Therefore
229 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
230 	 */
231 	u64 rmdir_ino;
232 	bool orphanized;
233 };
234 
235 struct orphan_dir_info {
236 	struct rb_node node;
237 	u64 ino;
238 	u64 gen;
239 	u64 last_dir_index_offset;
240 };
241 
242 struct name_cache_entry {
243 	struct list_head list;
244 	/*
245 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
246 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
247 	 * more then one inum would fall into the same entry, we use radix_list
248 	 * to store the additional entries. radix_list is also used to store
249 	 * entries where two entries have the same inum but different
250 	 * generations.
251 	 */
252 	struct list_head radix_list;
253 	u64 ino;
254 	u64 gen;
255 	u64 parent_ino;
256 	u64 parent_gen;
257 	int ret;
258 	int need_later_update;
259 	int name_len;
260 	char name[];
261 };
262 
263 #define ADVANCE							1
264 #define ADVANCE_ONLY_NEXT					-1
265 
266 enum btrfs_compare_tree_result {
267 	BTRFS_COMPARE_TREE_NEW,
268 	BTRFS_COMPARE_TREE_DELETED,
269 	BTRFS_COMPARE_TREE_CHANGED,
270 	BTRFS_COMPARE_TREE_SAME,
271 };
272 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path,
273 				  struct btrfs_path *right_path,
274 				  struct btrfs_key *key,
275 				  enum btrfs_compare_tree_result result,
276 				  void *ctx);
277 
278 __cold
279 static void inconsistent_snapshot_error(struct send_ctx *sctx,
280 					enum btrfs_compare_tree_result result,
281 					const char *what)
282 {
283 	const char *result_string;
284 
285 	switch (result) {
286 	case BTRFS_COMPARE_TREE_NEW:
287 		result_string = "new";
288 		break;
289 	case BTRFS_COMPARE_TREE_DELETED:
290 		result_string = "deleted";
291 		break;
292 	case BTRFS_COMPARE_TREE_CHANGED:
293 		result_string = "updated";
294 		break;
295 	case BTRFS_COMPARE_TREE_SAME:
296 		ASSERT(0);
297 		result_string = "unchanged";
298 		break;
299 	default:
300 		ASSERT(0);
301 		result_string = "unexpected";
302 	}
303 
304 	btrfs_err(sctx->send_root->fs_info,
305 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
306 		  result_string, what, sctx->cmp_key->objectid,
307 		  sctx->send_root->root_key.objectid,
308 		  (sctx->parent_root ?
309 		   sctx->parent_root->root_key.objectid : 0));
310 }
311 
312 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
313 
314 static struct waiting_dir_move *
315 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
316 
317 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
318 
319 static int need_send_hole(struct send_ctx *sctx)
320 {
321 	return (sctx->parent_root && !sctx->cur_inode_new &&
322 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
323 		S_ISREG(sctx->cur_inode_mode));
324 }
325 
326 static void fs_path_reset(struct fs_path *p)
327 {
328 	if (p->reversed) {
329 		p->start = p->buf + p->buf_len - 1;
330 		p->end = p->start;
331 		*p->start = 0;
332 	} else {
333 		p->start = p->buf;
334 		p->end = p->start;
335 		*p->start = 0;
336 	}
337 }
338 
339 static struct fs_path *fs_path_alloc(void)
340 {
341 	struct fs_path *p;
342 
343 	p = kmalloc(sizeof(*p), GFP_KERNEL);
344 	if (!p)
345 		return NULL;
346 	p->reversed = 0;
347 	p->buf = p->inline_buf;
348 	p->buf_len = FS_PATH_INLINE_SIZE;
349 	fs_path_reset(p);
350 	return p;
351 }
352 
353 static struct fs_path *fs_path_alloc_reversed(void)
354 {
355 	struct fs_path *p;
356 
357 	p = fs_path_alloc();
358 	if (!p)
359 		return NULL;
360 	p->reversed = 1;
361 	fs_path_reset(p);
362 	return p;
363 }
364 
365 static void fs_path_free(struct fs_path *p)
366 {
367 	if (!p)
368 		return;
369 	if (p->buf != p->inline_buf)
370 		kfree(p->buf);
371 	kfree(p);
372 }
373 
374 static int fs_path_len(struct fs_path *p)
375 {
376 	return p->end - p->start;
377 }
378 
379 static int fs_path_ensure_buf(struct fs_path *p, int len)
380 {
381 	char *tmp_buf;
382 	int path_len;
383 	int old_buf_len;
384 
385 	len++;
386 
387 	if (p->buf_len >= len)
388 		return 0;
389 
390 	if (len > PATH_MAX) {
391 		WARN_ON(1);
392 		return -ENOMEM;
393 	}
394 
395 	path_len = p->end - p->start;
396 	old_buf_len = p->buf_len;
397 
398 	/*
399 	 * First time the inline_buf does not suffice
400 	 */
401 	if (p->buf == p->inline_buf) {
402 		tmp_buf = kmalloc(len, GFP_KERNEL);
403 		if (tmp_buf)
404 			memcpy(tmp_buf, p->buf, old_buf_len);
405 	} else {
406 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
407 	}
408 	if (!tmp_buf)
409 		return -ENOMEM;
410 	p->buf = tmp_buf;
411 	/*
412 	 * The real size of the buffer is bigger, this will let the fast path
413 	 * happen most of the time
414 	 */
415 	p->buf_len = ksize(p->buf);
416 
417 	if (p->reversed) {
418 		tmp_buf = p->buf + old_buf_len - path_len - 1;
419 		p->end = p->buf + p->buf_len - 1;
420 		p->start = p->end - path_len;
421 		memmove(p->start, tmp_buf, path_len + 1);
422 	} else {
423 		p->start = p->buf;
424 		p->end = p->start + path_len;
425 	}
426 	return 0;
427 }
428 
429 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
430 				   char **prepared)
431 {
432 	int ret;
433 	int new_len;
434 
435 	new_len = p->end - p->start + name_len;
436 	if (p->start != p->end)
437 		new_len++;
438 	ret = fs_path_ensure_buf(p, new_len);
439 	if (ret < 0)
440 		goto out;
441 
442 	if (p->reversed) {
443 		if (p->start != p->end)
444 			*--p->start = '/';
445 		p->start -= name_len;
446 		*prepared = p->start;
447 	} else {
448 		if (p->start != p->end)
449 			*p->end++ = '/';
450 		*prepared = p->end;
451 		p->end += name_len;
452 		*p->end = 0;
453 	}
454 
455 out:
456 	return ret;
457 }
458 
459 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
460 {
461 	int ret;
462 	char *prepared;
463 
464 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
465 	if (ret < 0)
466 		goto out;
467 	memcpy(prepared, name, name_len);
468 
469 out:
470 	return ret;
471 }
472 
473 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
474 {
475 	int ret;
476 	char *prepared;
477 
478 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
479 	if (ret < 0)
480 		goto out;
481 	memcpy(prepared, p2->start, p2->end - p2->start);
482 
483 out:
484 	return ret;
485 }
486 
487 static int fs_path_add_from_extent_buffer(struct fs_path *p,
488 					  struct extent_buffer *eb,
489 					  unsigned long off, int len)
490 {
491 	int ret;
492 	char *prepared;
493 
494 	ret = fs_path_prepare_for_add(p, len, &prepared);
495 	if (ret < 0)
496 		goto out;
497 
498 	read_extent_buffer(eb, prepared, off, len);
499 
500 out:
501 	return ret;
502 }
503 
504 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
505 {
506 	int ret;
507 
508 	p->reversed = from->reversed;
509 	fs_path_reset(p);
510 
511 	ret = fs_path_add_path(p, from);
512 
513 	return ret;
514 }
515 
516 
517 static void fs_path_unreverse(struct fs_path *p)
518 {
519 	char *tmp;
520 	int len;
521 
522 	if (!p->reversed)
523 		return;
524 
525 	tmp = p->start;
526 	len = p->end - p->start;
527 	p->start = p->buf;
528 	p->end = p->start + len;
529 	memmove(p->start, tmp, len + 1);
530 	p->reversed = 0;
531 }
532 
533 static struct btrfs_path *alloc_path_for_send(void)
534 {
535 	struct btrfs_path *path;
536 
537 	path = btrfs_alloc_path();
538 	if (!path)
539 		return NULL;
540 	path->search_commit_root = 1;
541 	path->skip_locking = 1;
542 	path->need_commit_sem = 1;
543 	return path;
544 }
545 
546 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
547 {
548 	int ret;
549 	u32 pos = 0;
550 
551 	while (pos < len) {
552 		ret = kernel_write(filp, buf + pos, len - pos, off);
553 		/* TODO handle that correctly */
554 		/*if (ret == -ERESTARTSYS) {
555 			continue;
556 		}*/
557 		if (ret < 0)
558 			return ret;
559 		if (ret == 0) {
560 			return -EIO;
561 		}
562 		pos += ret;
563 	}
564 
565 	return 0;
566 }
567 
568 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
569 {
570 	struct btrfs_tlv_header *hdr;
571 	int total_len = sizeof(*hdr) + len;
572 	int left = sctx->send_max_size - sctx->send_size;
573 
574 	if (unlikely(left < total_len))
575 		return -EOVERFLOW;
576 
577 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
578 	hdr->tlv_type = cpu_to_le16(attr);
579 	hdr->tlv_len = cpu_to_le16(len);
580 	memcpy(hdr + 1, data, len);
581 	sctx->send_size += total_len;
582 
583 	return 0;
584 }
585 
586 #define TLV_PUT_DEFINE_INT(bits) \
587 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
588 			u##bits attr, u##bits value)			\
589 	{								\
590 		__le##bits __tmp = cpu_to_le##bits(value);		\
591 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
592 	}
593 
594 TLV_PUT_DEFINE_INT(64)
595 
596 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
597 			  const char *str, int len)
598 {
599 	if (len == -1)
600 		len = strlen(str);
601 	return tlv_put(sctx, attr, str, len);
602 }
603 
604 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
605 			const u8 *uuid)
606 {
607 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
608 }
609 
610 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
611 				  struct extent_buffer *eb,
612 				  struct btrfs_timespec *ts)
613 {
614 	struct btrfs_timespec bts;
615 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
616 	return tlv_put(sctx, attr, &bts, sizeof(bts));
617 }
618 
619 
620 #define TLV_PUT(sctx, attrtype, data, attrlen) \
621 	do { \
622 		ret = tlv_put(sctx, attrtype, data, attrlen); \
623 		if (ret < 0) \
624 			goto tlv_put_failure; \
625 	} while (0)
626 
627 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
628 	do { \
629 		ret = tlv_put_u##bits(sctx, attrtype, value); \
630 		if (ret < 0) \
631 			goto tlv_put_failure; \
632 	} while (0)
633 
634 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
635 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
636 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
637 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
638 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
639 	do { \
640 		ret = tlv_put_string(sctx, attrtype, str, len); \
641 		if (ret < 0) \
642 			goto tlv_put_failure; \
643 	} while (0)
644 #define TLV_PUT_PATH(sctx, attrtype, p) \
645 	do { \
646 		ret = tlv_put_string(sctx, attrtype, p->start, \
647 			p->end - p->start); \
648 		if (ret < 0) \
649 			goto tlv_put_failure; \
650 	} while(0)
651 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
652 	do { \
653 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
654 		if (ret < 0) \
655 			goto tlv_put_failure; \
656 	} while (0)
657 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
658 	do { \
659 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
660 		if (ret < 0) \
661 			goto tlv_put_failure; \
662 	} while (0)
663 
664 static int send_header(struct send_ctx *sctx)
665 {
666 	struct btrfs_stream_header hdr;
667 
668 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
669 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
670 
671 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
672 					&sctx->send_off);
673 }
674 
675 /*
676  * For each command/item we want to send to userspace, we call this function.
677  */
678 static int begin_cmd(struct send_ctx *sctx, int cmd)
679 {
680 	struct btrfs_cmd_header *hdr;
681 
682 	if (WARN_ON(!sctx->send_buf))
683 		return -EINVAL;
684 
685 	BUG_ON(sctx->send_size);
686 
687 	sctx->send_size += sizeof(*hdr);
688 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
689 	hdr->cmd = cpu_to_le16(cmd);
690 
691 	return 0;
692 }
693 
694 static int send_cmd(struct send_ctx *sctx)
695 {
696 	int ret;
697 	struct btrfs_cmd_header *hdr;
698 	u32 crc;
699 
700 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
701 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
702 	hdr->crc = 0;
703 
704 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
705 	hdr->crc = cpu_to_le32(crc);
706 
707 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
708 					&sctx->send_off);
709 
710 	sctx->total_send_size += sctx->send_size;
711 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
712 	sctx->send_size = 0;
713 
714 	return ret;
715 }
716 
717 /*
718  * Sends a move instruction to user space
719  */
720 static int send_rename(struct send_ctx *sctx,
721 		     struct fs_path *from, struct fs_path *to)
722 {
723 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
724 	int ret;
725 
726 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
727 
728 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
729 	if (ret < 0)
730 		goto out;
731 
732 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
733 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
734 
735 	ret = send_cmd(sctx);
736 
737 tlv_put_failure:
738 out:
739 	return ret;
740 }
741 
742 /*
743  * Sends a link instruction to user space
744  */
745 static int send_link(struct send_ctx *sctx,
746 		     struct fs_path *path, struct fs_path *lnk)
747 {
748 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
749 	int ret;
750 
751 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
752 
753 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
754 	if (ret < 0)
755 		goto out;
756 
757 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
758 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
759 
760 	ret = send_cmd(sctx);
761 
762 tlv_put_failure:
763 out:
764 	return ret;
765 }
766 
767 /*
768  * Sends an unlink instruction to user space
769  */
770 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
771 {
772 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
773 	int ret;
774 
775 	btrfs_debug(fs_info, "send_unlink %s", path->start);
776 
777 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
778 	if (ret < 0)
779 		goto out;
780 
781 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
782 
783 	ret = send_cmd(sctx);
784 
785 tlv_put_failure:
786 out:
787 	return ret;
788 }
789 
790 /*
791  * Sends a rmdir instruction to user space
792  */
793 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
794 {
795 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
796 	int ret;
797 
798 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
799 
800 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
801 	if (ret < 0)
802 		goto out;
803 
804 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
805 
806 	ret = send_cmd(sctx);
807 
808 tlv_put_failure:
809 out:
810 	return ret;
811 }
812 
813 /*
814  * Helper function to retrieve some fields from an inode item.
815  */
816 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
817 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
818 			  u64 *gid, u64 *rdev)
819 {
820 	int ret;
821 	struct btrfs_inode_item *ii;
822 	struct btrfs_key key;
823 
824 	key.objectid = ino;
825 	key.type = BTRFS_INODE_ITEM_KEY;
826 	key.offset = 0;
827 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
828 	if (ret) {
829 		if (ret > 0)
830 			ret = -ENOENT;
831 		return ret;
832 	}
833 
834 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
835 			struct btrfs_inode_item);
836 	if (size)
837 		*size = btrfs_inode_size(path->nodes[0], ii);
838 	if (gen)
839 		*gen = btrfs_inode_generation(path->nodes[0], ii);
840 	if (mode)
841 		*mode = btrfs_inode_mode(path->nodes[0], ii);
842 	if (uid)
843 		*uid = btrfs_inode_uid(path->nodes[0], ii);
844 	if (gid)
845 		*gid = btrfs_inode_gid(path->nodes[0], ii);
846 	if (rdev)
847 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
848 
849 	return ret;
850 }
851 
852 static int get_inode_info(struct btrfs_root *root,
853 			  u64 ino, u64 *size, u64 *gen,
854 			  u64 *mode, u64 *uid, u64 *gid,
855 			  u64 *rdev)
856 {
857 	struct btrfs_path *path;
858 	int ret;
859 
860 	path = alloc_path_for_send();
861 	if (!path)
862 		return -ENOMEM;
863 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
864 			       rdev);
865 	btrfs_free_path(path);
866 	return ret;
867 }
868 
869 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
870 				   struct fs_path *p,
871 				   void *ctx);
872 
873 /*
874  * Helper function to iterate the entries in ONE btrfs_inode_ref or
875  * btrfs_inode_extref.
876  * The iterate callback may return a non zero value to stop iteration. This can
877  * be a negative value for error codes or 1 to simply stop it.
878  *
879  * path must point to the INODE_REF or INODE_EXTREF when called.
880  */
881 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
882 			     struct btrfs_key *found_key, int resolve,
883 			     iterate_inode_ref_t iterate, void *ctx)
884 {
885 	struct extent_buffer *eb = path->nodes[0];
886 	struct btrfs_item *item;
887 	struct btrfs_inode_ref *iref;
888 	struct btrfs_inode_extref *extref;
889 	struct btrfs_path *tmp_path;
890 	struct fs_path *p;
891 	u32 cur = 0;
892 	u32 total;
893 	int slot = path->slots[0];
894 	u32 name_len;
895 	char *start;
896 	int ret = 0;
897 	int num = 0;
898 	int index;
899 	u64 dir;
900 	unsigned long name_off;
901 	unsigned long elem_size;
902 	unsigned long ptr;
903 
904 	p = fs_path_alloc_reversed();
905 	if (!p)
906 		return -ENOMEM;
907 
908 	tmp_path = alloc_path_for_send();
909 	if (!tmp_path) {
910 		fs_path_free(p);
911 		return -ENOMEM;
912 	}
913 
914 
915 	if (found_key->type == BTRFS_INODE_REF_KEY) {
916 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
917 						    struct btrfs_inode_ref);
918 		item = btrfs_item_nr(slot);
919 		total = btrfs_item_size(eb, item);
920 		elem_size = sizeof(*iref);
921 	} else {
922 		ptr = btrfs_item_ptr_offset(eb, slot);
923 		total = btrfs_item_size_nr(eb, slot);
924 		elem_size = sizeof(*extref);
925 	}
926 
927 	while (cur < total) {
928 		fs_path_reset(p);
929 
930 		if (found_key->type == BTRFS_INODE_REF_KEY) {
931 			iref = (struct btrfs_inode_ref *)(ptr + cur);
932 			name_len = btrfs_inode_ref_name_len(eb, iref);
933 			name_off = (unsigned long)(iref + 1);
934 			index = btrfs_inode_ref_index(eb, iref);
935 			dir = found_key->offset;
936 		} else {
937 			extref = (struct btrfs_inode_extref *)(ptr + cur);
938 			name_len = btrfs_inode_extref_name_len(eb, extref);
939 			name_off = (unsigned long)&extref->name;
940 			index = btrfs_inode_extref_index(eb, extref);
941 			dir = btrfs_inode_extref_parent(eb, extref);
942 		}
943 
944 		if (resolve) {
945 			start = btrfs_ref_to_path(root, tmp_path, name_len,
946 						  name_off, eb, dir,
947 						  p->buf, p->buf_len);
948 			if (IS_ERR(start)) {
949 				ret = PTR_ERR(start);
950 				goto out;
951 			}
952 			if (start < p->buf) {
953 				/* overflow , try again with larger buffer */
954 				ret = fs_path_ensure_buf(p,
955 						p->buf_len + p->buf - start);
956 				if (ret < 0)
957 					goto out;
958 				start = btrfs_ref_to_path(root, tmp_path,
959 							  name_len, name_off,
960 							  eb, dir,
961 							  p->buf, p->buf_len);
962 				if (IS_ERR(start)) {
963 					ret = PTR_ERR(start);
964 					goto out;
965 				}
966 				BUG_ON(start < p->buf);
967 			}
968 			p->start = start;
969 		} else {
970 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
971 							     name_len);
972 			if (ret < 0)
973 				goto out;
974 		}
975 
976 		cur += elem_size + name_len;
977 		ret = iterate(num, dir, index, p, ctx);
978 		if (ret)
979 			goto out;
980 		num++;
981 	}
982 
983 out:
984 	btrfs_free_path(tmp_path);
985 	fs_path_free(p);
986 	return ret;
987 }
988 
989 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
990 				  const char *name, int name_len,
991 				  const char *data, int data_len,
992 				  u8 type, void *ctx);
993 
994 /*
995  * Helper function to iterate the entries in ONE btrfs_dir_item.
996  * The iterate callback may return a non zero value to stop iteration. This can
997  * be a negative value for error codes or 1 to simply stop it.
998  *
999  * path must point to the dir item when called.
1000  */
1001 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1002 			    iterate_dir_item_t iterate, void *ctx)
1003 {
1004 	int ret = 0;
1005 	struct extent_buffer *eb;
1006 	struct btrfs_item *item;
1007 	struct btrfs_dir_item *di;
1008 	struct btrfs_key di_key;
1009 	char *buf = NULL;
1010 	int buf_len;
1011 	u32 name_len;
1012 	u32 data_len;
1013 	u32 cur;
1014 	u32 len;
1015 	u32 total;
1016 	int slot;
1017 	int num;
1018 	u8 type;
1019 
1020 	/*
1021 	 * Start with a small buffer (1 page). If later we end up needing more
1022 	 * space, which can happen for xattrs on a fs with a leaf size greater
1023 	 * then the page size, attempt to increase the buffer. Typically xattr
1024 	 * values are small.
1025 	 */
1026 	buf_len = PATH_MAX;
1027 	buf = kmalloc(buf_len, GFP_KERNEL);
1028 	if (!buf) {
1029 		ret = -ENOMEM;
1030 		goto out;
1031 	}
1032 
1033 	eb = path->nodes[0];
1034 	slot = path->slots[0];
1035 	item = btrfs_item_nr(slot);
1036 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1037 	cur = 0;
1038 	len = 0;
1039 	total = btrfs_item_size(eb, item);
1040 
1041 	num = 0;
1042 	while (cur < total) {
1043 		name_len = btrfs_dir_name_len(eb, di);
1044 		data_len = btrfs_dir_data_len(eb, di);
1045 		type = btrfs_dir_type(eb, di);
1046 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1047 
1048 		if (type == BTRFS_FT_XATTR) {
1049 			if (name_len > XATTR_NAME_MAX) {
1050 				ret = -ENAMETOOLONG;
1051 				goto out;
1052 			}
1053 			if (name_len + data_len >
1054 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1055 				ret = -E2BIG;
1056 				goto out;
1057 			}
1058 		} else {
1059 			/*
1060 			 * Path too long
1061 			 */
1062 			if (name_len + data_len > PATH_MAX) {
1063 				ret = -ENAMETOOLONG;
1064 				goto out;
1065 			}
1066 		}
1067 
1068 		if (name_len + data_len > buf_len) {
1069 			buf_len = name_len + data_len;
1070 			if (is_vmalloc_addr(buf)) {
1071 				vfree(buf);
1072 				buf = NULL;
1073 			} else {
1074 				char *tmp = krealloc(buf, buf_len,
1075 						GFP_KERNEL | __GFP_NOWARN);
1076 
1077 				if (!tmp)
1078 					kfree(buf);
1079 				buf = tmp;
1080 			}
1081 			if (!buf) {
1082 				buf = kvmalloc(buf_len, GFP_KERNEL);
1083 				if (!buf) {
1084 					ret = -ENOMEM;
1085 					goto out;
1086 				}
1087 			}
1088 		}
1089 
1090 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1091 				name_len + data_len);
1092 
1093 		len = sizeof(*di) + name_len + data_len;
1094 		di = (struct btrfs_dir_item *)((char *)di + len);
1095 		cur += len;
1096 
1097 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1098 				data_len, type, ctx);
1099 		if (ret < 0)
1100 			goto out;
1101 		if (ret) {
1102 			ret = 0;
1103 			goto out;
1104 		}
1105 
1106 		num++;
1107 	}
1108 
1109 out:
1110 	kvfree(buf);
1111 	return ret;
1112 }
1113 
1114 static int __copy_first_ref(int num, u64 dir, int index,
1115 			    struct fs_path *p, void *ctx)
1116 {
1117 	int ret;
1118 	struct fs_path *pt = ctx;
1119 
1120 	ret = fs_path_copy(pt, p);
1121 	if (ret < 0)
1122 		return ret;
1123 
1124 	/* we want the first only */
1125 	return 1;
1126 }
1127 
1128 /*
1129  * Retrieve the first path of an inode. If an inode has more then one
1130  * ref/hardlink, this is ignored.
1131  */
1132 static int get_inode_path(struct btrfs_root *root,
1133 			  u64 ino, struct fs_path *path)
1134 {
1135 	int ret;
1136 	struct btrfs_key key, found_key;
1137 	struct btrfs_path *p;
1138 
1139 	p = alloc_path_for_send();
1140 	if (!p)
1141 		return -ENOMEM;
1142 
1143 	fs_path_reset(path);
1144 
1145 	key.objectid = ino;
1146 	key.type = BTRFS_INODE_REF_KEY;
1147 	key.offset = 0;
1148 
1149 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1150 	if (ret < 0)
1151 		goto out;
1152 	if (ret) {
1153 		ret = 1;
1154 		goto out;
1155 	}
1156 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1157 	if (found_key.objectid != ino ||
1158 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1159 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1160 		ret = -ENOENT;
1161 		goto out;
1162 	}
1163 
1164 	ret = iterate_inode_ref(root, p, &found_key, 1,
1165 				__copy_first_ref, path);
1166 	if (ret < 0)
1167 		goto out;
1168 	ret = 0;
1169 
1170 out:
1171 	btrfs_free_path(p);
1172 	return ret;
1173 }
1174 
1175 struct backref_ctx {
1176 	struct send_ctx *sctx;
1177 
1178 	/* number of total found references */
1179 	u64 found;
1180 
1181 	/*
1182 	 * used for clones found in send_root. clones found behind cur_objectid
1183 	 * and cur_offset are not considered as allowed clones.
1184 	 */
1185 	u64 cur_objectid;
1186 	u64 cur_offset;
1187 
1188 	/* may be truncated in case it's the last extent in a file */
1189 	u64 extent_len;
1190 
1191 	/* data offset in the file extent item */
1192 	u64 data_offset;
1193 
1194 	/* Just to check for bugs in backref resolving */
1195 	int found_itself;
1196 };
1197 
1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1199 {
1200 	u64 root = (u64)(uintptr_t)key;
1201 	struct clone_root *cr = (struct clone_root *)elt;
1202 
1203 	if (root < cr->root->root_key.objectid)
1204 		return -1;
1205 	if (root > cr->root->root_key.objectid)
1206 		return 1;
1207 	return 0;
1208 }
1209 
1210 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1211 {
1212 	struct clone_root *cr1 = (struct clone_root *)e1;
1213 	struct clone_root *cr2 = (struct clone_root *)e2;
1214 
1215 	if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1216 		return -1;
1217 	if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1218 		return 1;
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Called for every backref that is found for the current extent.
1224  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1225  */
1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1227 {
1228 	struct backref_ctx *bctx = ctx_;
1229 	struct clone_root *found;
1230 
1231 	/* First check if the root is in the list of accepted clone sources */
1232 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1233 			bctx->sctx->clone_roots_cnt,
1234 			sizeof(struct clone_root),
1235 			__clone_root_cmp_bsearch);
1236 	if (!found)
1237 		return 0;
1238 
1239 	if (found->root == bctx->sctx->send_root &&
1240 	    ino == bctx->cur_objectid &&
1241 	    offset == bctx->cur_offset) {
1242 		bctx->found_itself = 1;
1243 	}
1244 
1245 	/*
1246 	 * Make sure we don't consider clones from send_root that are
1247 	 * behind the current inode/offset.
1248 	 */
1249 	if (found->root == bctx->sctx->send_root) {
1250 		/*
1251 		 * TODO for the moment we don't accept clones from the inode
1252 		 * that is currently send. We may change this when
1253 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1254 		 * file.
1255 		 */
1256 		if (ino >= bctx->cur_objectid)
1257 			return 0;
1258 	}
1259 
1260 	bctx->found++;
1261 	found->found_refs++;
1262 	if (ino < found->ino) {
1263 		found->ino = ino;
1264 		found->offset = offset;
1265 	} else if (found->ino == ino) {
1266 		/*
1267 		 * same extent found more then once in the same file.
1268 		 */
1269 		if (found->offset > offset + bctx->extent_len)
1270 			found->offset = offset;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Given an inode, offset and extent item, it finds a good clone for a clone
1278  * instruction. Returns -ENOENT when none could be found. The function makes
1279  * sure that the returned clone is usable at the point where sending is at the
1280  * moment. This means, that no clones are accepted which lie behind the current
1281  * inode+offset.
1282  *
1283  * path must point to the extent item when called.
1284  */
1285 static int find_extent_clone(struct send_ctx *sctx,
1286 			     struct btrfs_path *path,
1287 			     u64 ino, u64 data_offset,
1288 			     u64 ino_size,
1289 			     struct clone_root **found)
1290 {
1291 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1292 	int ret;
1293 	int extent_type;
1294 	u64 logical;
1295 	u64 disk_byte;
1296 	u64 num_bytes;
1297 	u64 extent_item_pos;
1298 	u64 flags = 0;
1299 	struct btrfs_file_extent_item *fi;
1300 	struct extent_buffer *eb = path->nodes[0];
1301 	struct backref_ctx *backref_ctx = NULL;
1302 	struct clone_root *cur_clone_root;
1303 	struct btrfs_key found_key;
1304 	struct btrfs_path *tmp_path;
1305 	int compressed;
1306 	u32 i;
1307 
1308 	tmp_path = alloc_path_for_send();
1309 	if (!tmp_path)
1310 		return -ENOMEM;
1311 
1312 	/* We only use this path under the commit sem */
1313 	tmp_path->need_commit_sem = 0;
1314 
1315 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1316 	if (!backref_ctx) {
1317 		ret = -ENOMEM;
1318 		goto out;
1319 	}
1320 
1321 	if (data_offset >= ino_size) {
1322 		/*
1323 		 * There may be extents that lie behind the file's size.
1324 		 * I at least had this in combination with snapshotting while
1325 		 * writing large files.
1326 		 */
1327 		ret = 0;
1328 		goto out;
1329 	}
1330 
1331 	fi = btrfs_item_ptr(eb, path->slots[0],
1332 			struct btrfs_file_extent_item);
1333 	extent_type = btrfs_file_extent_type(eb, fi);
1334 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1335 		ret = -ENOENT;
1336 		goto out;
1337 	}
1338 	compressed = btrfs_file_extent_compression(eb, fi);
1339 
1340 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1341 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1342 	if (disk_byte == 0) {
1343 		ret = -ENOENT;
1344 		goto out;
1345 	}
1346 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1347 
1348 	down_read(&fs_info->commit_root_sem);
1349 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1350 				  &found_key, &flags);
1351 	up_read(&fs_info->commit_root_sem);
1352 	btrfs_release_path(tmp_path);
1353 
1354 	if (ret < 0)
1355 		goto out;
1356 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1357 		ret = -EIO;
1358 		goto out;
1359 	}
1360 
1361 	/*
1362 	 * Setup the clone roots.
1363 	 */
1364 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1365 		cur_clone_root = sctx->clone_roots + i;
1366 		cur_clone_root->ino = (u64)-1;
1367 		cur_clone_root->offset = 0;
1368 		cur_clone_root->found_refs = 0;
1369 	}
1370 
1371 	backref_ctx->sctx = sctx;
1372 	backref_ctx->found = 0;
1373 	backref_ctx->cur_objectid = ino;
1374 	backref_ctx->cur_offset = data_offset;
1375 	backref_ctx->found_itself = 0;
1376 	backref_ctx->extent_len = num_bytes;
1377 	/*
1378 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1379 	 * offsets that already take into account the data offset, but not for
1380 	 * compressed extents, since the offset is logical and not relative to
1381 	 * the physical extent locations. We must take this into account to
1382 	 * avoid sending clone offsets that go beyond the source file's size,
1383 	 * which would result in the clone ioctl failing with -EINVAL on the
1384 	 * receiving end.
1385 	 */
1386 	if (compressed == BTRFS_COMPRESS_NONE)
1387 		backref_ctx->data_offset = 0;
1388 	else
1389 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1390 
1391 	/*
1392 	 * The last extent of a file may be too large due to page alignment.
1393 	 * We need to adjust extent_len in this case so that the checks in
1394 	 * __iterate_backrefs work.
1395 	 */
1396 	if (data_offset + num_bytes >= ino_size)
1397 		backref_ctx->extent_len = ino_size - data_offset;
1398 
1399 	/*
1400 	 * Now collect all backrefs.
1401 	 */
1402 	if (compressed == BTRFS_COMPRESS_NONE)
1403 		extent_item_pos = logical - found_key.objectid;
1404 	else
1405 		extent_item_pos = 0;
1406 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1407 				    extent_item_pos, 1, __iterate_backrefs,
1408 				    backref_ctx, false);
1409 
1410 	if (ret < 0)
1411 		goto out;
1412 
1413 	if (!backref_ctx->found_itself) {
1414 		/* found a bug in backref code? */
1415 		ret = -EIO;
1416 		btrfs_err(fs_info,
1417 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1418 			  ino, data_offset, disk_byte, found_key.objectid);
1419 		goto out;
1420 	}
1421 
1422 	btrfs_debug(fs_info,
1423 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1424 		    data_offset, ino, num_bytes, logical);
1425 
1426 	if (!backref_ctx->found)
1427 		btrfs_debug(fs_info, "no clones found");
1428 
1429 	cur_clone_root = NULL;
1430 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1431 		if (sctx->clone_roots[i].found_refs) {
1432 			if (!cur_clone_root)
1433 				cur_clone_root = sctx->clone_roots + i;
1434 			else if (sctx->clone_roots[i].root == sctx->send_root)
1435 				/* prefer clones from send_root over others */
1436 				cur_clone_root = sctx->clone_roots + i;
1437 		}
1438 
1439 	}
1440 
1441 	if (cur_clone_root) {
1442 		*found = cur_clone_root;
1443 		ret = 0;
1444 	} else {
1445 		ret = -ENOENT;
1446 	}
1447 
1448 out:
1449 	btrfs_free_path(tmp_path);
1450 	kfree(backref_ctx);
1451 	return ret;
1452 }
1453 
1454 static int read_symlink(struct btrfs_root *root,
1455 			u64 ino,
1456 			struct fs_path *dest)
1457 {
1458 	int ret;
1459 	struct btrfs_path *path;
1460 	struct btrfs_key key;
1461 	struct btrfs_file_extent_item *ei;
1462 	u8 type;
1463 	u8 compression;
1464 	unsigned long off;
1465 	int len;
1466 
1467 	path = alloc_path_for_send();
1468 	if (!path)
1469 		return -ENOMEM;
1470 
1471 	key.objectid = ino;
1472 	key.type = BTRFS_EXTENT_DATA_KEY;
1473 	key.offset = 0;
1474 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1475 	if (ret < 0)
1476 		goto out;
1477 	if (ret) {
1478 		/*
1479 		 * An empty symlink inode. Can happen in rare error paths when
1480 		 * creating a symlink (transaction committed before the inode
1481 		 * eviction handler removed the symlink inode items and a crash
1482 		 * happened in between or the subvol was snapshoted in between).
1483 		 * Print an informative message to dmesg/syslog so that the user
1484 		 * can delete the symlink.
1485 		 */
1486 		btrfs_err(root->fs_info,
1487 			  "Found empty symlink inode %llu at root %llu",
1488 			  ino, root->root_key.objectid);
1489 		ret = -EIO;
1490 		goto out;
1491 	}
1492 
1493 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1494 			struct btrfs_file_extent_item);
1495 	type = btrfs_file_extent_type(path->nodes[0], ei);
1496 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1497 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1498 	BUG_ON(compression);
1499 
1500 	off = btrfs_file_extent_inline_start(ei);
1501 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1502 
1503 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1504 
1505 out:
1506 	btrfs_free_path(path);
1507 	return ret;
1508 }
1509 
1510 /*
1511  * Helper function to generate a file name that is unique in the root of
1512  * send_root and parent_root. This is used to generate names for orphan inodes.
1513  */
1514 static int gen_unique_name(struct send_ctx *sctx,
1515 			   u64 ino, u64 gen,
1516 			   struct fs_path *dest)
1517 {
1518 	int ret = 0;
1519 	struct btrfs_path *path;
1520 	struct btrfs_dir_item *di;
1521 	char tmp[64];
1522 	int len;
1523 	u64 idx = 0;
1524 
1525 	path = alloc_path_for_send();
1526 	if (!path)
1527 		return -ENOMEM;
1528 
1529 	while (1) {
1530 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1531 				ino, gen, idx);
1532 		ASSERT(len < sizeof(tmp));
1533 
1534 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1535 				path, BTRFS_FIRST_FREE_OBJECTID,
1536 				tmp, strlen(tmp), 0);
1537 		btrfs_release_path(path);
1538 		if (IS_ERR(di)) {
1539 			ret = PTR_ERR(di);
1540 			goto out;
1541 		}
1542 		if (di) {
1543 			/* not unique, try again */
1544 			idx++;
1545 			continue;
1546 		}
1547 
1548 		if (!sctx->parent_root) {
1549 			/* unique */
1550 			ret = 0;
1551 			break;
1552 		}
1553 
1554 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1555 				path, BTRFS_FIRST_FREE_OBJECTID,
1556 				tmp, strlen(tmp), 0);
1557 		btrfs_release_path(path);
1558 		if (IS_ERR(di)) {
1559 			ret = PTR_ERR(di);
1560 			goto out;
1561 		}
1562 		if (di) {
1563 			/* not unique, try again */
1564 			idx++;
1565 			continue;
1566 		}
1567 		/* unique */
1568 		break;
1569 	}
1570 
1571 	ret = fs_path_add(dest, tmp, strlen(tmp));
1572 
1573 out:
1574 	btrfs_free_path(path);
1575 	return ret;
1576 }
1577 
1578 enum inode_state {
1579 	inode_state_no_change,
1580 	inode_state_will_create,
1581 	inode_state_did_create,
1582 	inode_state_will_delete,
1583 	inode_state_did_delete,
1584 };
1585 
1586 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1587 {
1588 	int ret;
1589 	int left_ret;
1590 	int right_ret;
1591 	u64 left_gen;
1592 	u64 right_gen;
1593 
1594 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1595 			NULL, NULL);
1596 	if (ret < 0 && ret != -ENOENT)
1597 		goto out;
1598 	left_ret = ret;
1599 
1600 	if (!sctx->parent_root) {
1601 		right_ret = -ENOENT;
1602 	} else {
1603 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1604 				NULL, NULL, NULL, NULL);
1605 		if (ret < 0 && ret != -ENOENT)
1606 			goto out;
1607 		right_ret = ret;
1608 	}
1609 
1610 	if (!left_ret && !right_ret) {
1611 		if (left_gen == gen && right_gen == gen) {
1612 			ret = inode_state_no_change;
1613 		} else if (left_gen == gen) {
1614 			if (ino < sctx->send_progress)
1615 				ret = inode_state_did_create;
1616 			else
1617 				ret = inode_state_will_create;
1618 		} else if (right_gen == gen) {
1619 			if (ino < sctx->send_progress)
1620 				ret = inode_state_did_delete;
1621 			else
1622 				ret = inode_state_will_delete;
1623 		} else  {
1624 			ret = -ENOENT;
1625 		}
1626 	} else if (!left_ret) {
1627 		if (left_gen == gen) {
1628 			if (ino < sctx->send_progress)
1629 				ret = inode_state_did_create;
1630 			else
1631 				ret = inode_state_will_create;
1632 		} else {
1633 			ret = -ENOENT;
1634 		}
1635 	} else if (!right_ret) {
1636 		if (right_gen == gen) {
1637 			if (ino < sctx->send_progress)
1638 				ret = inode_state_did_delete;
1639 			else
1640 				ret = inode_state_will_delete;
1641 		} else {
1642 			ret = -ENOENT;
1643 		}
1644 	} else {
1645 		ret = -ENOENT;
1646 	}
1647 
1648 out:
1649 	return ret;
1650 }
1651 
1652 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1653 {
1654 	int ret;
1655 
1656 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1657 		return 1;
1658 
1659 	ret = get_cur_inode_state(sctx, ino, gen);
1660 	if (ret < 0)
1661 		goto out;
1662 
1663 	if (ret == inode_state_no_change ||
1664 	    ret == inode_state_did_create ||
1665 	    ret == inode_state_will_delete)
1666 		ret = 1;
1667 	else
1668 		ret = 0;
1669 
1670 out:
1671 	return ret;
1672 }
1673 
1674 /*
1675  * Helper function to lookup a dir item in a dir.
1676  */
1677 static int lookup_dir_item_inode(struct btrfs_root *root,
1678 				 u64 dir, const char *name, int name_len,
1679 				 u64 *found_inode,
1680 				 u8 *found_type)
1681 {
1682 	int ret = 0;
1683 	struct btrfs_dir_item *di;
1684 	struct btrfs_key key;
1685 	struct btrfs_path *path;
1686 
1687 	path = alloc_path_for_send();
1688 	if (!path)
1689 		return -ENOMEM;
1690 
1691 	di = btrfs_lookup_dir_item(NULL, root, path,
1692 			dir, name, name_len, 0);
1693 	if (IS_ERR_OR_NULL(di)) {
1694 		ret = di ? PTR_ERR(di) : -ENOENT;
1695 		goto out;
1696 	}
1697 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1698 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1699 		ret = -ENOENT;
1700 		goto out;
1701 	}
1702 	*found_inode = key.objectid;
1703 	*found_type = btrfs_dir_type(path->nodes[0], di);
1704 
1705 out:
1706 	btrfs_free_path(path);
1707 	return ret;
1708 }
1709 
1710 /*
1711  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1712  * generation of the parent dir and the name of the dir entry.
1713  */
1714 static int get_first_ref(struct btrfs_root *root, u64 ino,
1715 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1716 {
1717 	int ret;
1718 	struct btrfs_key key;
1719 	struct btrfs_key found_key;
1720 	struct btrfs_path *path;
1721 	int len;
1722 	u64 parent_dir;
1723 
1724 	path = alloc_path_for_send();
1725 	if (!path)
1726 		return -ENOMEM;
1727 
1728 	key.objectid = ino;
1729 	key.type = BTRFS_INODE_REF_KEY;
1730 	key.offset = 0;
1731 
1732 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1733 	if (ret < 0)
1734 		goto out;
1735 	if (!ret)
1736 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1737 				path->slots[0]);
1738 	if (ret || found_key.objectid != ino ||
1739 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1740 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1741 		ret = -ENOENT;
1742 		goto out;
1743 	}
1744 
1745 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1746 		struct btrfs_inode_ref *iref;
1747 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1748 				      struct btrfs_inode_ref);
1749 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1750 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1751 						     (unsigned long)(iref + 1),
1752 						     len);
1753 		parent_dir = found_key.offset;
1754 	} else {
1755 		struct btrfs_inode_extref *extref;
1756 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 					struct btrfs_inode_extref);
1758 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1759 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1760 					(unsigned long)&extref->name, len);
1761 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1762 	}
1763 	if (ret < 0)
1764 		goto out;
1765 	btrfs_release_path(path);
1766 
1767 	if (dir_gen) {
1768 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1769 				     NULL, NULL, NULL);
1770 		if (ret < 0)
1771 			goto out;
1772 	}
1773 
1774 	*dir = parent_dir;
1775 
1776 out:
1777 	btrfs_free_path(path);
1778 	return ret;
1779 }
1780 
1781 static int is_first_ref(struct btrfs_root *root,
1782 			u64 ino, u64 dir,
1783 			const char *name, int name_len)
1784 {
1785 	int ret;
1786 	struct fs_path *tmp_name;
1787 	u64 tmp_dir;
1788 
1789 	tmp_name = fs_path_alloc();
1790 	if (!tmp_name)
1791 		return -ENOMEM;
1792 
1793 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1794 	if (ret < 0)
1795 		goto out;
1796 
1797 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1798 		ret = 0;
1799 		goto out;
1800 	}
1801 
1802 	ret = !memcmp(tmp_name->start, name, name_len);
1803 
1804 out:
1805 	fs_path_free(tmp_name);
1806 	return ret;
1807 }
1808 
1809 /*
1810  * Used by process_recorded_refs to determine if a new ref would overwrite an
1811  * already existing ref. In case it detects an overwrite, it returns the
1812  * inode/gen in who_ino/who_gen.
1813  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1814  * to make sure later references to the overwritten inode are possible.
1815  * Orphanizing is however only required for the first ref of an inode.
1816  * process_recorded_refs does an additional is_first_ref check to see if
1817  * orphanizing is really required.
1818  */
1819 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1820 			      const char *name, int name_len,
1821 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1822 {
1823 	int ret = 0;
1824 	u64 gen;
1825 	u64 other_inode = 0;
1826 	u8 other_type = 0;
1827 
1828 	if (!sctx->parent_root)
1829 		goto out;
1830 
1831 	ret = is_inode_existent(sctx, dir, dir_gen);
1832 	if (ret <= 0)
1833 		goto out;
1834 
1835 	/*
1836 	 * If we have a parent root we need to verify that the parent dir was
1837 	 * not deleted and then re-created, if it was then we have no overwrite
1838 	 * and we can just unlink this entry.
1839 	 */
1840 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1841 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1842 				     NULL, NULL, NULL);
1843 		if (ret < 0 && ret != -ENOENT)
1844 			goto out;
1845 		if (ret) {
1846 			ret = 0;
1847 			goto out;
1848 		}
1849 		if (gen != dir_gen)
1850 			goto out;
1851 	}
1852 
1853 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1854 			&other_inode, &other_type);
1855 	if (ret < 0 && ret != -ENOENT)
1856 		goto out;
1857 	if (ret) {
1858 		ret = 0;
1859 		goto out;
1860 	}
1861 
1862 	/*
1863 	 * Check if the overwritten ref was already processed. If yes, the ref
1864 	 * was already unlinked/moved, so we can safely assume that we will not
1865 	 * overwrite anything at this point in time.
1866 	 */
1867 	if (other_inode > sctx->send_progress ||
1868 	    is_waiting_for_move(sctx, other_inode)) {
1869 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1870 				who_gen, who_mode, NULL, NULL, NULL);
1871 		if (ret < 0)
1872 			goto out;
1873 
1874 		ret = 1;
1875 		*who_ino = other_inode;
1876 	} else {
1877 		ret = 0;
1878 	}
1879 
1880 out:
1881 	return ret;
1882 }
1883 
1884 /*
1885  * Checks if the ref was overwritten by an already processed inode. This is
1886  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1887  * thus the orphan name needs be used.
1888  * process_recorded_refs also uses it to avoid unlinking of refs that were
1889  * overwritten.
1890  */
1891 static int did_overwrite_ref(struct send_ctx *sctx,
1892 			    u64 dir, u64 dir_gen,
1893 			    u64 ino, u64 ino_gen,
1894 			    const char *name, int name_len)
1895 {
1896 	int ret = 0;
1897 	u64 gen;
1898 	u64 ow_inode;
1899 	u8 other_type;
1900 
1901 	if (!sctx->parent_root)
1902 		goto out;
1903 
1904 	ret = is_inode_existent(sctx, dir, dir_gen);
1905 	if (ret <= 0)
1906 		goto out;
1907 
1908 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1909 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1910 				     NULL, NULL, NULL);
1911 		if (ret < 0 && ret != -ENOENT)
1912 			goto out;
1913 		if (ret) {
1914 			ret = 0;
1915 			goto out;
1916 		}
1917 		if (gen != dir_gen)
1918 			goto out;
1919 	}
1920 
1921 	/* check if the ref was overwritten by another ref */
1922 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1923 			&ow_inode, &other_type);
1924 	if (ret < 0 && ret != -ENOENT)
1925 		goto out;
1926 	if (ret) {
1927 		/* was never and will never be overwritten */
1928 		ret = 0;
1929 		goto out;
1930 	}
1931 
1932 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1933 			NULL, NULL);
1934 	if (ret < 0)
1935 		goto out;
1936 
1937 	if (ow_inode == ino && gen == ino_gen) {
1938 		ret = 0;
1939 		goto out;
1940 	}
1941 
1942 	/*
1943 	 * We know that it is or will be overwritten. Check this now.
1944 	 * The current inode being processed might have been the one that caused
1945 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1946 	 * the current inode being processed.
1947 	 */
1948 	if ((ow_inode < sctx->send_progress) ||
1949 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1950 	     gen == sctx->cur_inode_gen))
1951 		ret = 1;
1952 	else
1953 		ret = 0;
1954 
1955 out:
1956 	return ret;
1957 }
1958 
1959 /*
1960  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1961  * that got overwritten. This is used by process_recorded_refs to determine
1962  * if it has to use the path as returned by get_cur_path or the orphan name.
1963  */
1964 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1965 {
1966 	int ret = 0;
1967 	struct fs_path *name = NULL;
1968 	u64 dir;
1969 	u64 dir_gen;
1970 
1971 	if (!sctx->parent_root)
1972 		goto out;
1973 
1974 	name = fs_path_alloc();
1975 	if (!name)
1976 		return -ENOMEM;
1977 
1978 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1979 	if (ret < 0)
1980 		goto out;
1981 
1982 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1983 			name->start, fs_path_len(name));
1984 
1985 out:
1986 	fs_path_free(name);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1992  * so we need to do some special handling in case we have clashes. This function
1993  * takes care of this with the help of name_cache_entry::radix_list.
1994  * In case of error, nce is kfreed.
1995  */
1996 static int name_cache_insert(struct send_ctx *sctx,
1997 			     struct name_cache_entry *nce)
1998 {
1999 	int ret = 0;
2000 	struct list_head *nce_head;
2001 
2002 	nce_head = radix_tree_lookup(&sctx->name_cache,
2003 			(unsigned long)nce->ino);
2004 	if (!nce_head) {
2005 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2006 		if (!nce_head) {
2007 			kfree(nce);
2008 			return -ENOMEM;
2009 		}
2010 		INIT_LIST_HEAD(nce_head);
2011 
2012 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2013 		if (ret < 0) {
2014 			kfree(nce_head);
2015 			kfree(nce);
2016 			return ret;
2017 		}
2018 	}
2019 	list_add_tail(&nce->radix_list, nce_head);
2020 	list_add_tail(&nce->list, &sctx->name_cache_list);
2021 	sctx->name_cache_size++;
2022 
2023 	return ret;
2024 }
2025 
2026 static void name_cache_delete(struct send_ctx *sctx,
2027 			      struct name_cache_entry *nce)
2028 {
2029 	struct list_head *nce_head;
2030 
2031 	nce_head = radix_tree_lookup(&sctx->name_cache,
2032 			(unsigned long)nce->ino);
2033 	if (!nce_head) {
2034 		btrfs_err(sctx->send_root->fs_info,
2035 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2036 			nce->ino, sctx->name_cache_size);
2037 	}
2038 
2039 	list_del(&nce->radix_list);
2040 	list_del(&nce->list);
2041 	sctx->name_cache_size--;
2042 
2043 	/*
2044 	 * We may not get to the final release of nce_head if the lookup fails
2045 	 */
2046 	if (nce_head && list_empty(nce_head)) {
2047 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2048 		kfree(nce_head);
2049 	}
2050 }
2051 
2052 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2053 						    u64 ino, u64 gen)
2054 {
2055 	struct list_head *nce_head;
2056 	struct name_cache_entry *cur;
2057 
2058 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2059 	if (!nce_head)
2060 		return NULL;
2061 
2062 	list_for_each_entry(cur, nce_head, radix_list) {
2063 		if (cur->ino == ino && cur->gen == gen)
2064 			return cur;
2065 	}
2066 	return NULL;
2067 }
2068 
2069 /*
2070  * Removes the entry from the list and adds it back to the end. This marks the
2071  * entry as recently used so that name_cache_clean_unused does not remove it.
2072  */
2073 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2074 {
2075 	list_del(&nce->list);
2076 	list_add_tail(&nce->list, &sctx->name_cache_list);
2077 }
2078 
2079 /*
2080  * Remove some entries from the beginning of name_cache_list.
2081  */
2082 static void name_cache_clean_unused(struct send_ctx *sctx)
2083 {
2084 	struct name_cache_entry *nce;
2085 
2086 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2087 		return;
2088 
2089 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2090 		nce = list_entry(sctx->name_cache_list.next,
2091 				struct name_cache_entry, list);
2092 		name_cache_delete(sctx, nce);
2093 		kfree(nce);
2094 	}
2095 }
2096 
2097 static void name_cache_free(struct send_ctx *sctx)
2098 {
2099 	struct name_cache_entry *nce;
2100 
2101 	while (!list_empty(&sctx->name_cache_list)) {
2102 		nce = list_entry(sctx->name_cache_list.next,
2103 				struct name_cache_entry, list);
2104 		name_cache_delete(sctx, nce);
2105 		kfree(nce);
2106 	}
2107 }
2108 
2109 /*
2110  * Used by get_cur_path for each ref up to the root.
2111  * Returns 0 if it succeeded.
2112  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2113  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2114  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2115  * Returns <0 in case of error.
2116  */
2117 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2118 				     u64 ino, u64 gen,
2119 				     u64 *parent_ino,
2120 				     u64 *parent_gen,
2121 				     struct fs_path *dest)
2122 {
2123 	int ret;
2124 	int nce_ret;
2125 	struct name_cache_entry *nce = NULL;
2126 
2127 	/*
2128 	 * First check if we already did a call to this function with the same
2129 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2130 	 * return the cached result.
2131 	 */
2132 	nce = name_cache_search(sctx, ino, gen);
2133 	if (nce) {
2134 		if (ino < sctx->send_progress && nce->need_later_update) {
2135 			name_cache_delete(sctx, nce);
2136 			kfree(nce);
2137 			nce = NULL;
2138 		} else {
2139 			name_cache_used(sctx, nce);
2140 			*parent_ino = nce->parent_ino;
2141 			*parent_gen = nce->parent_gen;
2142 			ret = fs_path_add(dest, nce->name, nce->name_len);
2143 			if (ret < 0)
2144 				goto out;
2145 			ret = nce->ret;
2146 			goto out;
2147 		}
2148 	}
2149 
2150 	/*
2151 	 * If the inode is not existent yet, add the orphan name and return 1.
2152 	 * This should only happen for the parent dir that we determine in
2153 	 * __record_new_ref
2154 	 */
2155 	ret = is_inode_existent(sctx, ino, gen);
2156 	if (ret < 0)
2157 		goto out;
2158 
2159 	if (!ret) {
2160 		ret = gen_unique_name(sctx, ino, gen, dest);
2161 		if (ret < 0)
2162 			goto out;
2163 		ret = 1;
2164 		goto out_cache;
2165 	}
2166 
2167 	/*
2168 	 * Depending on whether the inode was already processed or not, use
2169 	 * send_root or parent_root for ref lookup.
2170 	 */
2171 	if (ino < sctx->send_progress)
2172 		ret = get_first_ref(sctx->send_root, ino,
2173 				    parent_ino, parent_gen, dest);
2174 	else
2175 		ret = get_first_ref(sctx->parent_root, ino,
2176 				    parent_ino, parent_gen, dest);
2177 	if (ret < 0)
2178 		goto out;
2179 
2180 	/*
2181 	 * Check if the ref was overwritten by an inode's ref that was processed
2182 	 * earlier. If yes, treat as orphan and return 1.
2183 	 */
2184 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2185 			dest->start, dest->end - dest->start);
2186 	if (ret < 0)
2187 		goto out;
2188 	if (ret) {
2189 		fs_path_reset(dest);
2190 		ret = gen_unique_name(sctx, ino, gen, dest);
2191 		if (ret < 0)
2192 			goto out;
2193 		ret = 1;
2194 	}
2195 
2196 out_cache:
2197 	/*
2198 	 * Store the result of the lookup in the name cache.
2199 	 */
2200 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2201 	if (!nce) {
2202 		ret = -ENOMEM;
2203 		goto out;
2204 	}
2205 
2206 	nce->ino = ino;
2207 	nce->gen = gen;
2208 	nce->parent_ino = *parent_ino;
2209 	nce->parent_gen = *parent_gen;
2210 	nce->name_len = fs_path_len(dest);
2211 	nce->ret = ret;
2212 	strcpy(nce->name, dest->start);
2213 
2214 	if (ino < sctx->send_progress)
2215 		nce->need_later_update = 0;
2216 	else
2217 		nce->need_later_update = 1;
2218 
2219 	nce_ret = name_cache_insert(sctx, nce);
2220 	if (nce_ret < 0)
2221 		ret = nce_ret;
2222 	name_cache_clean_unused(sctx);
2223 
2224 out:
2225 	return ret;
2226 }
2227 
2228 /*
2229  * Magic happens here. This function returns the first ref to an inode as it
2230  * would look like while receiving the stream at this point in time.
2231  * We walk the path up to the root. For every inode in between, we check if it
2232  * was already processed/sent. If yes, we continue with the parent as found
2233  * in send_root. If not, we continue with the parent as found in parent_root.
2234  * If we encounter an inode that was deleted at this point in time, we use the
2235  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2236  * that were not created yet and overwritten inodes/refs.
2237  *
2238  * When do we have orphan inodes:
2239  * 1. When an inode is freshly created and thus no valid refs are available yet
2240  * 2. When a directory lost all it's refs (deleted) but still has dir items
2241  *    inside which were not processed yet (pending for move/delete). If anyone
2242  *    tried to get the path to the dir items, it would get a path inside that
2243  *    orphan directory.
2244  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2245  *    of an unprocessed inode. If in that case the first ref would be
2246  *    overwritten, the overwritten inode gets "orphanized". Later when we
2247  *    process this overwritten inode, it is restored at a new place by moving
2248  *    the orphan inode.
2249  *
2250  * sctx->send_progress tells this function at which point in time receiving
2251  * would be.
2252  */
2253 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2254 			struct fs_path *dest)
2255 {
2256 	int ret = 0;
2257 	struct fs_path *name = NULL;
2258 	u64 parent_inode = 0;
2259 	u64 parent_gen = 0;
2260 	int stop = 0;
2261 
2262 	name = fs_path_alloc();
2263 	if (!name) {
2264 		ret = -ENOMEM;
2265 		goto out;
2266 	}
2267 
2268 	dest->reversed = 1;
2269 	fs_path_reset(dest);
2270 
2271 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2272 		struct waiting_dir_move *wdm;
2273 
2274 		fs_path_reset(name);
2275 
2276 		if (is_waiting_for_rm(sctx, ino)) {
2277 			ret = gen_unique_name(sctx, ino, gen, name);
2278 			if (ret < 0)
2279 				goto out;
2280 			ret = fs_path_add_path(dest, name);
2281 			break;
2282 		}
2283 
2284 		wdm = get_waiting_dir_move(sctx, ino);
2285 		if (wdm && wdm->orphanized) {
2286 			ret = gen_unique_name(sctx, ino, gen, name);
2287 			stop = 1;
2288 		} else if (wdm) {
2289 			ret = get_first_ref(sctx->parent_root, ino,
2290 					    &parent_inode, &parent_gen, name);
2291 		} else {
2292 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2293 							&parent_inode,
2294 							&parent_gen, name);
2295 			if (ret)
2296 				stop = 1;
2297 		}
2298 
2299 		if (ret < 0)
2300 			goto out;
2301 
2302 		ret = fs_path_add_path(dest, name);
2303 		if (ret < 0)
2304 			goto out;
2305 
2306 		ino = parent_inode;
2307 		gen = parent_gen;
2308 	}
2309 
2310 out:
2311 	fs_path_free(name);
2312 	if (!ret)
2313 		fs_path_unreverse(dest);
2314 	return ret;
2315 }
2316 
2317 /*
2318  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2319  */
2320 static int send_subvol_begin(struct send_ctx *sctx)
2321 {
2322 	int ret;
2323 	struct btrfs_root *send_root = sctx->send_root;
2324 	struct btrfs_root *parent_root = sctx->parent_root;
2325 	struct btrfs_path *path;
2326 	struct btrfs_key key;
2327 	struct btrfs_root_ref *ref;
2328 	struct extent_buffer *leaf;
2329 	char *name = NULL;
2330 	int namelen;
2331 
2332 	path = btrfs_alloc_path();
2333 	if (!path)
2334 		return -ENOMEM;
2335 
2336 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2337 	if (!name) {
2338 		btrfs_free_path(path);
2339 		return -ENOMEM;
2340 	}
2341 
2342 	key.objectid = send_root->root_key.objectid;
2343 	key.type = BTRFS_ROOT_BACKREF_KEY;
2344 	key.offset = 0;
2345 
2346 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2347 				&key, path, 1, 0);
2348 	if (ret < 0)
2349 		goto out;
2350 	if (ret) {
2351 		ret = -ENOENT;
2352 		goto out;
2353 	}
2354 
2355 	leaf = path->nodes[0];
2356 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2357 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2358 	    key.objectid != send_root->root_key.objectid) {
2359 		ret = -ENOENT;
2360 		goto out;
2361 	}
2362 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2363 	namelen = btrfs_root_ref_name_len(leaf, ref);
2364 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2365 	btrfs_release_path(path);
2366 
2367 	if (parent_root) {
2368 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2369 		if (ret < 0)
2370 			goto out;
2371 	} else {
2372 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2373 		if (ret < 0)
2374 			goto out;
2375 	}
2376 
2377 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2378 
2379 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2380 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2381 			    sctx->send_root->root_item.received_uuid);
2382 	else
2383 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2384 			    sctx->send_root->root_item.uuid);
2385 
2386 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2387 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2388 	if (parent_root) {
2389 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2390 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2391 				     parent_root->root_item.received_uuid);
2392 		else
2393 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2394 				     parent_root->root_item.uuid);
2395 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2396 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2397 	}
2398 
2399 	ret = send_cmd(sctx);
2400 
2401 tlv_put_failure:
2402 out:
2403 	btrfs_free_path(path);
2404 	kfree(name);
2405 	return ret;
2406 }
2407 
2408 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2409 {
2410 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2411 	int ret = 0;
2412 	struct fs_path *p;
2413 
2414 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2415 
2416 	p = fs_path_alloc();
2417 	if (!p)
2418 		return -ENOMEM;
2419 
2420 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2421 	if (ret < 0)
2422 		goto out;
2423 
2424 	ret = get_cur_path(sctx, ino, gen, p);
2425 	if (ret < 0)
2426 		goto out;
2427 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2428 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2429 
2430 	ret = send_cmd(sctx);
2431 
2432 tlv_put_failure:
2433 out:
2434 	fs_path_free(p);
2435 	return ret;
2436 }
2437 
2438 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2439 {
2440 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2441 	int ret = 0;
2442 	struct fs_path *p;
2443 
2444 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2445 
2446 	p = fs_path_alloc();
2447 	if (!p)
2448 		return -ENOMEM;
2449 
2450 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2451 	if (ret < 0)
2452 		goto out;
2453 
2454 	ret = get_cur_path(sctx, ino, gen, p);
2455 	if (ret < 0)
2456 		goto out;
2457 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2458 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2459 
2460 	ret = send_cmd(sctx);
2461 
2462 tlv_put_failure:
2463 out:
2464 	fs_path_free(p);
2465 	return ret;
2466 }
2467 
2468 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2469 {
2470 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2471 	int ret = 0;
2472 	struct fs_path *p;
2473 
2474 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2475 		    ino, uid, gid);
2476 
2477 	p = fs_path_alloc();
2478 	if (!p)
2479 		return -ENOMEM;
2480 
2481 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2482 	if (ret < 0)
2483 		goto out;
2484 
2485 	ret = get_cur_path(sctx, ino, gen, p);
2486 	if (ret < 0)
2487 		goto out;
2488 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2489 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2490 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2491 
2492 	ret = send_cmd(sctx);
2493 
2494 tlv_put_failure:
2495 out:
2496 	fs_path_free(p);
2497 	return ret;
2498 }
2499 
2500 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2501 {
2502 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2503 	int ret = 0;
2504 	struct fs_path *p = NULL;
2505 	struct btrfs_inode_item *ii;
2506 	struct btrfs_path *path = NULL;
2507 	struct extent_buffer *eb;
2508 	struct btrfs_key key;
2509 	int slot;
2510 
2511 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2512 
2513 	p = fs_path_alloc();
2514 	if (!p)
2515 		return -ENOMEM;
2516 
2517 	path = alloc_path_for_send();
2518 	if (!path) {
2519 		ret = -ENOMEM;
2520 		goto out;
2521 	}
2522 
2523 	key.objectid = ino;
2524 	key.type = BTRFS_INODE_ITEM_KEY;
2525 	key.offset = 0;
2526 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2527 	if (ret > 0)
2528 		ret = -ENOENT;
2529 	if (ret < 0)
2530 		goto out;
2531 
2532 	eb = path->nodes[0];
2533 	slot = path->slots[0];
2534 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2535 
2536 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2537 	if (ret < 0)
2538 		goto out;
2539 
2540 	ret = get_cur_path(sctx, ino, gen, p);
2541 	if (ret < 0)
2542 		goto out;
2543 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2544 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2545 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2546 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2547 	/* TODO Add otime support when the otime patches get into upstream */
2548 
2549 	ret = send_cmd(sctx);
2550 
2551 tlv_put_failure:
2552 out:
2553 	fs_path_free(p);
2554 	btrfs_free_path(path);
2555 	return ret;
2556 }
2557 
2558 /*
2559  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2560  * a valid path yet because we did not process the refs yet. So, the inode
2561  * is created as orphan.
2562  */
2563 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2564 {
2565 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2566 	int ret = 0;
2567 	struct fs_path *p;
2568 	int cmd;
2569 	u64 gen;
2570 	u64 mode;
2571 	u64 rdev;
2572 
2573 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2574 
2575 	p = fs_path_alloc();
2576 	if (!p)
2577 		return -ENOMEM;
2578 
2579 	if (ino != sctx->cur_ino) {
2580 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2581 				     NULL, NULL, &rdev);
2582 		if (ret < 0)
2583 			goto out;
2584 	} else {
2585 		gen = sctx->cur_inode_gen;
2586 		mode = sctx->cur_inode_mode;
2587 		rdev = sctx->cur_inode_rdev;
2588 	}
2589 
2590 	if (S_ISREG(mode)) {
2591 		cmd = BTRFS_SEND_C_MKFILE;
2592 	} else if (S_ISDIR(mode)) {
2593 		cmd = BTRFS_SEND_C_MKDIR;
2594 	} else if (S_ISLNK(mode)) {
2595 		cmd = BTRFS_SEND_C_SYMLINK;
2596 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2597 		cmd = BTRFS_SEND_C_MKNOD;
2598 	} else if (S_ISFIFO(mode)) {
2599 		cmd = BTRFS_SEND_C_MKFIFO;
2600 	} else if (S_ISSOCK(mode)) {
2601 		cmd = BTRFS_SEND_C_MKSOCK;
2602 	} else {
2603 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2604 				(int)(mode & S_IFMT));
2605 		ret = -EOPNOTSUPP;
2606 		goto out;
2607 	}
2608 
2609 	ret = begin_cmd(sctx, cmd);
2610 	if (ret < 0)
2611 		goto out;
2612 
2613 	ret = gen_unique_name(sctx, ino, gen, p);
2614 	if (ret < 0)
2615 		goto out;
2616 
2617 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2618 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2619 
2620 	if (S_ISLNK(mode)) {
2621 		fs_path_reset(p);
2622 		ret = read_symlink(sctx->send_root, ino, p);
2623 		if (ret < 0)
2624 			goto out;
2625 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2626 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2627 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2628 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2629 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2630 	}
2631 
2632 	ret = send_cmd(sctx);
2633 	if (ret < 0)
2634 		goto out;
2635 
2636 
2637 tlv_put_failure:
2638 out:
2639 	fs_path_free(p);
2640 	return ret;
2641 }
2642 
2643 /*
2644  * We need some special handling for inodes that get processed before the parent
2645  * directory got created. See process_recorded_refs for details.
2646  * This function does the check if we already created the dir out of order.
2647  */
2648 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2649 {
2650 	int ret = 0;
2651 	struct btrfs_path *path = NULL;
2652 	struct btrfs_key key;
2653 	struct btrfs_key found_key;
2654 	struct btrfs_key di_key;
2655 	struct extent_buffer *eb;
2656 	struct btrfs_dir_item *di;
2657 	int slot;
2658 
2659 	path = alloc_path_for_send();
2660 	if (!path) {
2661 		ret = -ENOMEM;
2662 		goto out;
2663 	}
2664 
2665 	key.objectid = dir;
2666 	key.type = BTRFS_DIR_INDEX_KEY;
2667 	key.offset = 0;
2668 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2669 	if (ret < 0)
2670 		goto out;
2671 
2672 	while (1) {
2673 		eb = path->nodes[0];
2674 		slot = path->slots[0];
2675 		if (slot >= btrfs_header_nritems(eb)) {
2676 			ret = btrfs_next_leaf(sctx->send_root, path);
2677 			if (ret < 0) {
2678 				goto out;
2679 			} else if (ret > 0) {
2680 				ret = 0;
2681 				break;
2682 			}
2683 			continue;
2684 		}
2685 
2686 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2687 		if (found_key.objectid != key.objectid ||
2688 		    found_key.type != key.type) {
2689 			ret = 0;
2690 			goto out;
2691 		}
2692 
2693 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2694 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2695 
2696 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2697 		    di_key.objectid < sctx->send_progress) {
2698 			ret = 1;
2699 			goto out;
2700 		}
2701 
2702 		path->slots[0]++;
2703 	}
2704 
2705 out:
2706 	btrfs_free_path(path);
2707 	return ret;
2708 }
2709 
2710 /*
2711  * Only creates the inode if it is:
2712  * 1. Not a directory
2713  * 2. Or a directory which was not created already due to out of order
2714  *    directories. See did_create_dir and process_recorded_refs for details.
2715  */
2716 static int send_create_inode_if_needed(struct send_ctx *sctx)
2717 {
2718 	int ret;
2719 
2720 	if (S_ISDIR(sctx->cur_inode_mode)) {
2721 		ret = did_create_dir(sctx, sctx->cur_ino);
2722 		if (ret < 0)
2723 			goto out;
2724 		if (ret) {
2725 			ret = 0;
2726 			goto out;
2727 		}
2728 	}
2729 
2730 	ret = send_create_inode(sctx, sctx->cur_ino);
2731 	if (ret < 0)
2732 		goto out;
2733 
2734 out:
2735 	return ret;
2736 }
2737 
2738 struct recorded_ref {
2739 	struct list_head list;
2740 	char *name;
2741 	struct fs_path *full_path;
2742 	u64 dir;
2743 	u64 dir_gen;
2744 	int name_len;
2745 };
2746 
2747 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2748 {
2749 	ref->full_path = path;
2750 	ref->name = (char *)kbasename(ref->full_path->start);
2751 	ref->name_len = ref->full_path->end - ref->name;
2752 }
2753 
2754 /*
2755  * We need to process new refs before deleted refs, but compare_tree gives us
2756  * everything mixed. So we first record all refs and later process them.
2757  * This function is a helper to record one ref.
2758  */
2759 static int __record_ref(struct list_head *head, u64 dir,
2760 		      u64 dir_gen, struct fs_path *path)
2761 {
2762 	struct recorded_ref *ref;
2763 
2764 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2765 	if (!ref)
2766 		return -ENOMEM;
2767 
2768 	ref->dir = dir;
2769 	ref->dir_gen = dir_gen;
2770 	set_ref_path(ref, path);
2771 	list_add_tail(&ref->list, head);
2772 	return 0;
2773 }
2774 
2775 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2776 {
2777 	struct recorded_ref *new;
2778 
2779 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2780 	if (!new)
2781 		return -ENOMEM;
2782 
2783 	new->dir = ref->dir;
2784 	new->dir_gen = ref->dir_gen;
2785 	new->full_path = NULL;
2786 	INIT_LIST_HEAD(&new->list);
2787 	list_add_tail(&new->list, list);
2788 	return 0;
2789 }
2790 
2791 static void __free_recorded_refs(struct list_head *head)
2792 {
2793 	struct recorded_ref *cur;
2794 
2795 	while (!list_empty(head)) {
2796 		cur = list_entry(head->next, struct recorded_ref, list);
2797 		fs_path_free(cur->full_path);
2798 		list_del(&cur->list);
2799 		kfree(cur);
2800 	}
2801 }
2802 
2803 static void free_recorded_refs(struct send_ctx *sctx)
2804 {
2805 	__free_recorded_refs(&sctx->new_refs);
2806 	__free_recorded_refs(&sctx->deleted_refs);
2807 }
2808 
2809 /*
2810  * Renames/moves a file/dir to its orphan name. Used when the first
2811  * ref of an unprocessed inode gets overwritten and for all non empty
2812  * directories.
2813  */
2814 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2815 			  struct fs_path *path)
2816 {
2817 	int ret;
2818 	struct fs_path *orphan;
2819 
2820 	orphan = fs_path_alloc();
2821 	if (!orphan)
2822 		return -ENOMEM;
2823 
2824 	ret = gen_unique_name(sctx, ino, gen, orphan);
2825 	if (ret < 0)
2826 		goto out;
2827 
2828 	ret = send_rename(sctx, path, orphan);
2829 
2830 out:
2831 	fs_path_free(orphan);
2832 	return ret;
2833 }
2834 
2835 static struct orphan_dir_info *
2836 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2837 {
2838 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2839 	struct rb_node *parent = NULL;
2840 	struct orphan_dir_info *entry, *odi;
2841 
2842 	while (*p) {
2843 		parent = *p;
2844 		entry = rb_entry(parent, struct orphan_dir_info, node);
2845 		if (dir_ino < entry->ino) {
2846 			p = &(*p)->rb_left;
2847 		} else if (dir_ino > entry->ino) {
2848 			p = &(*p)->rb_right;
2849 		} else {
2850 			return entry;
2851 		}
2852 	}
2853 
2854 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2855 	if (!odi)
2856 		return ERR_PTR(-ENOMEM);
2857 	odi->ino = dir_ino;
2858 	odi->gen = 0;
2859 	odi->last_dir_index_offset = 0;
2860 
2861 	rb_link_node(&odi->node, parent, p);
2862 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2863 	return odi;
2864 }
2865 
2866 static struct orphan_dir_info *
2867 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2868 {
2869 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2870 	struct orphan_dir_info *entry;
2871 
2872 	while (n) {
2873 		entry = rb_entry(n, struct orphan_dir_info, node);
2874 		if (dir_ino < entry->ino)
2875 			n = n->rb_left;
2876 		else if (dir_ino > entry->ino)
2877 			n = n->rb_right;
2878 		else
2879 			return entry;
2880 	}
2881 	return NULL;
2882 }
2883 
2884 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2885 {
2886 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2887 
2888 	return odi != NULL;
2889 }
2890 
2891 static void free_orphan_dir_info(struct send_ctx *sctx,
2892 				 struct orphan_dir_info *odi)
2893 {
2894 	if (!odi)
2895 		return;
2896 	rb_erase(&odi->node, &sctx->orphan_dirs);
2897 	kfree(odi);
2898 }
2899 
2900 /*
2901  * Returns 1 if a directory can be removed at this point in time.
2902  * We check this by iterating all dir items and checking if the inode behind
2903  * the dir item was already processed.
2904  */
2905 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2906 		     u64 send_progress)
2907 {
2908 	int ret = 0;
2909 	struct btrfs_root *root = sctx->parent_root;
2910 	struct btrfs_path *path;
2911 	struct btrfs_key key;
2912 	struct btrfs_key found_key;
2913 	struct btrfs_key loc;
2914 	struct btrfs_dir_item *di;
2915 	struct orphan_dir_info *odi = NULL;
2916 
2917 	/*
2918 	 * Don't try to rmdir the top/root subvolume dir.
2919 	 */
2920 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2921 		return 0;
2922 
2923 	path = alloc_path_for_send();
2924 	if (!path)
2925 		return -ENOMEM;
2926 
2927 	key.objectid = dir;
2928 	key.type = BTRFS_DIR_INDEX_KEY;
2929 	key.offset = 0;
2930 
2931 	odi = get_orphan_dir_info(sctx, dir);
2932 	if (odi)
2933 		key.offset = odi->last_dir_index_offset;
2934 
2935 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2936 	if (ret < 0)
2937 		goto out;
2938 
2939 	while (1) {
2940 		struct waiting_dir_move *dm;
2941 
2942 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2943 			ret = btrfs_next_leaf(root, path);
2944 			if (ret < 0)
2945 				goto out;
2946 			else if (ret > 0)
2947 				break;
2948 			continue;
2949 		}
2950 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2951 				      path->slots[0]);
2952 		if (found_key.objectid != key.objectid ||
2953 		    found_key.type != key.type)
2954 			break;
2955 
2956 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2957 				struct btrfs_dir_item);
2958 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2959 
2960 		dm = get_waiting_dir_move(sctx, loc.objectid);
2961 		if (dm) {
2962 			odi = add_orphan_dir_info(sctx, dir);
2963 			if (IS_ERR(odi)) {
2964 				ret = PTR_ERR(odi);
2965 				goto out;
2966 			}
2967 			odi->gen = dir_gen;
2968 			odi->last_dir_index_offset = found_key.offset;
2969 			dm->rmdir_ino = dir;
2970 			ret = 0;
2971 			goto out;
2972 		}
2973 
2974 		if (loc.objectid > send_progress) {
2975 			odi = add_orphan_dir_info(sctx, dir);
2976 			if (IS_ERR(odi)) {
2977 				ret = PTR_ERR(odi);
2978 				goto out;
2979 			}
2980 			odi->gen = dir_gen;
2981 			odi->last_dir_index_offset = found_key.offset;
2982 			ret = 0;
2983 			goto out;
2984 		}
2985 
2986 		path->slots[0]++;
2987 	}
2988 	free_orphan_dir_info(sctx, odi);
2989 
2990 	ret = 1;
2991 
2992 out:
2993 	btrfs_free_path(path);
2994 	return ret;
2995 }
2996 
2997 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2998 {
2999 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3000 
3001 	return entry != NULL;
3002 }
3003 
3004 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3005 {
3006 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3007 	struct rb_node *parent = NULL;
3008 	struct waiting_dir_move *entry, *dm;
3009 
3010 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3011 	if (!dm)
3012 		return -ENOMEM;
3013 	dm->ino = ino;
3014 	dm->rmdir_ino = 0;
3015 	dm->orphanized = orphanized;
3016 
3017 	while (*p) {
3018 		parent = *p;
3019 		entry = rb_entry(parent, struct waiting_dir_move, node);
3020 		if (ino < entry->ino) {
3021 			p = &(*p)->rb_left;
3022 		} else if (ino > entry->ino) {
3023 			p = &(*p)->rb_right;
3024 		} else {
3025 			kfree(dm);
3026 			return -EEXIST;
3027 		}
3028 	}
3029 
3030 	rb_link_node(&dm->node, parent, p);
3031 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3032 	return 0;
3033 }
3034 
3035 static struct waiting_dir_move *
3036 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3037 {
3038 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3039 	struct waiting_dir_move *entry;
3040 
3041 	while (n) {
3042 		entry = rb_entry(n, struct waiting_dir_move, node);
3043 		if (ino < entry->ino)
3044 			n = n->rb_left;
3045 		else if (ino > entry->ino)
3046 			n = n->rb_right;
3047 		else
3048 			return entry;
3049 	}
3050 	return NULL;
3051 }
3052 
3053 static void free_waiting_dir_move(struct send_ctx *sctx,
3054 				  struct waiting_dir_move *dm)
3055 {
3056 	if (!dm)
3057 		return;
3058 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3059 	kfree(dm);
3060 }
3061 
3062 static int add_pending_dir_move(struct send_ctx *sctx,
3063 				u64 ino,
3064 				u64 ino_gen,
3065 				u64 parent_ino,
3066 				struct list_head *new_refs,
3067 				struct list_head *deleted_refs,
3068 				const bool is_orphan)
3069 {
3070 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3071 	struct rb_node *parent = NULL;
3072 	struct pending_dir_move *entry = NULL, *pm;
3073 	struct recorded_ref *cur;
3074 	int exists = 0;
3075 	int ret;
3076 
3077 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3078 	if (!pm)
3079 		return -ENOMEM;
3080 	pm->parent_ino = parent_ino;
3081 	pm->ino = ino;
3082 	pm->gen = ino_gen;
3083 	INIT_LIST_HEAD(&pm->list);
3084 	INIT_LIST_HEAD(&pm->update_refs);
3085 	RB_CLEAR_NODE(&pm->node);
3086 
3087 	while (*p) {
3088 		parent = *p;
3089 		entry = rb_entry(parent, struct pending_dir_move, node);
3090 		if (parent_ino < entry->parent_ino) {
3091 			p = &(*p)->rb_left;
3092 		} else if (parent_ino > entry->parent_ino) {
3093 			p = &(*p)->rb_right;
3094 		} else {
3095 			exists = 1;
3096 			break;
3097 		}
3098 	}
3099 
3100 	list_for_each_entry(cur, deleted_refs, list) {
3101 		ret = dup_ref(cur, &pm->update_refs);
3102 		if (ret < 0)
3103 			goto out;
3104 	}
3105 	list_for_each_entry(cur, new_refs, list) {
3106 		ret = dup_ref(cur, &pm->update_refs);
3107 		if (ret < 0)
3108 			goto out;
3109 	}
3110 
3111 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3112 	if (ret)
3113 		goto out;
3114 
3115 	if (exists) {
3116 		list_add_tail(&pm->list, &entry->list);
3117 	} else {
3118 		rb_link_node(&pm->node, parent, p);
3119 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3120 	}
3121 	ret = 0;
3122 out:
3123 	if (ret) {
3124 		__free_recorded_refs(&pm->update_refs);
3125 		kfree(pm);
3126 	}
3127 	return ret;
3128 }
3129 
3130 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3131 						      u64 parent_ino)
3132 {
3133 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3134 	struct pending_dir_move *entry;
3135 
3136 	while (n) {
3137 		entry = rb_entry(n, struct pending_dir_move, node);
3138 		if (parent_ino < entry->parent_ino)
3139 			n = n->rb_left;
3140 		else if (parent_ino > entry->parent_ino)
3141 			n = n->rb_right;
3142 		else
3143 			return entry;
3144 	}
3145 	return NULL;
3146 }
3147 
3148 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3149 		     u64 ino, u64 gen, u64 *ancestor_ino)
3150 {
3151 	int ret = 0;
3152 	u64 parent_inode = 0;
3153 	u64 parent_gen = 0;
3154 	u64 start_ino = ino;
3155 
3156 	*ancestor_ino = 0;
3157 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3158 		fs_path_reset(name);
3159 
3160 		if (is_waiting_for_rm(sctx, ino))
3161 			break;
3162 		if (is_waiting_for_move(sctx, ino)) {
3163 			if (*ancestor_ino == 0)
3164 				*ancestor_ino = ino;
3165 			ret = get_first_ref(sctx->parent_root, ino,
3166 					    &parent_inode, &parent_gen, name);
3167 		} else {
3168 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3169 							&parent_inode,
3170 							&parent_gen, name);
3171 			if (ret > 0) {
3172 				ret = 0;
3173 				break;
3174 			}
3175 		}
3176 		if (ret < 0)
3177 			break;
3178 		if (parent_inode == start_ino) {
3179 			ret = 1;
3180 			if (*ancestor_ino == 0)
3181 				*ancestor_ino = ino;
3182 			break;
3183 		}
3184 		ino = parent_inode;
3185 		gen = parent_gen;
3186 	}
3187 	return ret;
3188 }
3189 
3190 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3191 {
3192 	struct fs_path *from_path = NULL;
3193 	struct fs_path *to_path = NULL;
3194 	struct fs_path *name = NULL;
3195 	u64 orig_progress = sctx->send_progress;
3196 	struct recorded_ref *cur;
3197 	u64 parent_ino, parent_gen;
3198 	struct waiting_dir_move *dm = NULL;
3199 	u64 rmdir_ino = 0;
3200 	u64 ancestor;
3201 	bool is_orphan;
3202 	int ret;
3203 
3204 	name = fs_path_alloc();
3205 	from_path = fs_path_alloc();
3206 	if (!name || !from_path) {
3207 		ret = -ENOMEM;
3208 		goto out;
3209 	}
3210 
3211 	dm = get_waiting_dir_move(sctx, pm->ino);
3212 	ASSERT(dm);
3213 	rmdir_ino = dm->rmdir_ino;
3214 	is_orphan = dm->orphanized;
3215 	free_waiting_dir_move(sctx, dm);
3216 
3217 	if (is_orphan) {
3218 		ret = gen_unique_name(sctx, pm->ino,
3219 				      pm->gen, from_path);
3220 	} else {
3221 		ret = get_first_ref(sctx->parent_root, pm->ino,
3222 				    &parent_ino, &parent_gen, name);
3223 		if (ret < 0)
3224 			goto out;
3225 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3226 				   from_path);
3227 		if (ret < 0)
3228 			goto out;
3229 		ret = fs_path_add_path(from_path, name);
3230 	}
3231 	if (ret < 0)
3232 		goto out;
3233 
3234 	sctx->send_progress = sctx->cur_ino + 1;
3235 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3236 	if (ret < 0)
3237 		goto out;
3238 	if (ret) {
3239 		LIST_HEAD(deleted_refs);
3240 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3241 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3242 					   &pm->update_refs, &deleted_refs,
3243 					   is_orphan);
3244 		if (ret < 0)
3245 			goto out;
3246 		if (rmdir_ino) {
3247 			dm = get_waiting_dir_move(sctx, pm->ino);
3248 			ASSERT(dm);
3249 			dm->rmdir_ino = rmdir_ino;
3250 		}
3251 		goto out;
3252 	}
3253 	fs_path_reset(name);
3254 	to_path = name;
3255 	name = NULL;
3256 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3257 	if (ret < 0)
3258 		goto out;
3259 
3260 	ret = send_rename(sctx, from_path, to_path);
3261 	if (ret < 0)
3262 		goto out;
3263 
3264 	if (rmdir_ino) {
3265 		struct orphan_dir_info *odi;
3266 		u64 gen;
3267 
3268 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3269 		if (!odi) {
3270 			/* already deleted */
3271 			goto finish;
3272 		}
3273 		gen = odi->gen;
3274 
3275 		ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3276 		if (ret < 0)
3277 			goto out;
3278 		if (!ret)
3279 			goto finish;
3280 
3281 		name = fs_path_alloc();
3282 		if (!name) {
3283 			ret = -ENOMEM;
3284 			goto out;
3285 		}
3286 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3287 		if (ret < 0)
3288 			goto out;
3289 		ret = send_rmdir(sctx, name);
3290 		if (ret < 0)
3291 			goto out;
3292 	}
3293 
3294 finish:
3295 	ret = send_utimes(sctx, pm->ino, pm->gen);
3296 	if (ret < 0)
3297 		goto out;
3298 
3299 	/*
3300 	 * After rename/move, need to update the utimes of both new parent(s)
3301 	 * and old parent(s).
3302 	 */
3303 	list_for_each_entry(cur, &pm->update_refs, list) {
3304 		/*
3305 		 * The parent inode might have been deleted in the send snapshot
3306 		 */
3307 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3308 				     NULL, NULL, NULL, NULL, NULL);
3309 		if (ret == -ENOENT) {
3310 			ret = 0;
3311 			continue;
3312 		}
3313 		if (ret < 0)
3314 			goto out;
3315 
3316 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3317 		if (ret < 0)
3318 			goto out;
3319 	}
3320 
3321 out:
3322 	fs_path_free(name);
3323 	fs_path_free(from_path);
3324 	fs_path_free(to_path);
3325 	sctx->send_progress = orig_progress;
3326 
3327 	return ret;
3328 }
3329 
3330 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3331 {
3332 	if (!list_empty(&m->list))
3333 		list_del(&m->list);
3334 	if (!RB_EMPTY_NODE(&m->node))
3335 		rb_erase(&m->node, &sctx->pending_dir_moves);
3336 	__free_recorded_refs(&m->update_refs);
3337 	kfree(m);
3338 }
3339 
3340 static void tail_append_pending_moves(struct send_ctx *sctx,
3341 				      struct pending_dir_move *moves,
3342 				      struct list_head *stack)
3343 {
3344 	if (list_empty(&moves->list)) {
3345 		list_add_tail(&moves->list, stack);
3346 	} else {
3347 		LIST_HEAD(list);
3348 		list_splice_init(&moves->list, &list);
3349 		list_add_tail(&moves->list, stack);
3350 		list_splice_tail(&list, stack);
3351 	}
3352 	if (!RB_EMPTY_NODE(&moves->node)) {
3353 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3354 		RB_CLEAR_NODE(&moves->node);
3355 	}
3356 }
3357 
3358 static int apply_children_dir_moves(struct send_ctx *sctx)
3359 {
3360 	struct pending_dir_move *pm;
3361 	struct list_head stack;
3362 	u64 parent_ino = sctx->cur_ino;
3363 	int ret = 0;
3364 
3365 	pm = get_pending_dir_moves(sctx, parent_ino);
3366 	if (!pm)
3367 		return 0;
3368 
3369 	INIT_LIST_HEAD(&stack);
3370 	tail_append_pending_moves(sctx, pm, &stack);
3371 
3372 	while (!list_empty(&stack)) {
3373 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3374 		parent_ino = pm->ino;
3375 		ret = apply_dir_move(sctx, pm);
3376 		free_pending_move(sctx, pm);
3377 		if (ret)
3378 			goto out;
3379 		pm = get_pending_dir_moves(sctx, parent_ino);
3380 		if (pm)
3381 			tail_append_pending_moves(sctx, pm, &stack);
3382 	}
3383 	return 0;
3384 
3385 out:
3386 	while (!list_empty(&stack)) {
3387 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3388 		free_pending_move(sctx, pm);
3389 	}
3390 	return ret;
3391 }
3392 
3393 /*
3394  * We might need to delay a directory rename even when no ancestor directory
3395  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3396  * renamed. This happens when we rename a directory to the old name (the name
3397  * in the parent root) of some other unrelated directory that got its rename
3398  * delayed due to some ancestor with higher number that got renamed.
3399  *
3400  * Example:
3401  *
3402  * Parent snapshot:
3403  * .                                       (ino 256)
3404  * |---- a/                                (ino 257)
3405  * |     |---- file                        (ino 260)
3406  * |
3407  * |---- b/                                (ino 258)
3408  * |---- c/                                (ino 259)
3409  *
3410  * Send snapshot:
3411  * .                                       (ino 256)
3412  * |---- a/                                (ino 258)
3413  * |---- x/                                (ino 259)
3414  *       |---- y/                          (ino 257)
3415  *             |----- file                 (ino 260)
3416  *
3417  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3418  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3419  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3420  * must issue is:
3421  *
3422  * 1 - rename 259 from 'c' to 'x'
3423  * 2 - rename 257 from 'a' to 'x/y'
3424  * 3 - rename 258 from 'b' to 'a'
3425  *
3426  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3427  * be done right away and < 0 on error.
3428  */
3429 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3430 				  struct recorded_ref *parent_ref,
3431 				  const bool is_orphan)
3432 {
3433 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3434 	struct btrfs_path *path;
3435 	struct btrfs_key key;
3436 	struct btrfs_key di_key;
3437 	struct btrfs_dir_item *di;
3438 	u64 left_gen;
3439 	u64 right_gen;
3440 	int ret = 0;
3441 	struct waiting_dir_move *wdm;
3442 
3443 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3444 		return 0;
3445 
3446 	path = alloc_path_for_send();
3447 	if (!path)
3448 		return -ENOMEM;
3449 
3450 	key.objectid = parent_ref->dir;
3451 	key.type = BTRFS_DIR_ITEM_KEY;
3452 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3453 
3454 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3455 	if (ret < 0) {
3456 		goto out;
3457 	} else if (ret > 0) {
3458 		ret = 0;
3459 		goto out;
3460 	}
3461 
3462 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3463 				       parent_ref->name_len);
3464 	if (!di) {
3465 		ret = 0;
3466 		goto out;
3467 	}
3468 	/*
3469 	 * di_key.objectid has the number of the inode that has a dentry in the
3470 	 * parent directory with the same name that sctx->cur_ino is being
3471 	 * renamed to. We need to check if that inode is in the send root as
3472 	 * well and if it is currently marked as an inode with a pending rename,
3473 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3474 	 * that it happens after that other inode is renamed.
3475 	 */
3476 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3477 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3478 		ret = 0;
3479 		goto out;
3480 	}
3481 
3482 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3483 			     &left_gen, NULL, NULL, NULL, NULL);
3484 	if (ret < 0)
3485 		goto out;
3486 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3487 			     &right_gen, NULL, NULL, NULL, NULL);
3488 	if (ret < 0) {
3489 		if (ret == -ENOENT)
3490 			ret = 0;
3491 		goto out;
3492 	}
3493 
3494 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3495 	if (right_gen != left_gen) {
3496 		ret = 0;
3497 		goto out;
3498 	}
3499 
3500 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3501 	if (wdm && !wdm->orphanized) {
3502 		ret = add_pending_dir_move(sctx,
3503 					   sctx->cur_ino,
3504 					   sctx->cur_inode_gen,
3505 					   di_key.objectid,
3506 					   &sctx->new_refs,
3507 					   &sctx->deleted_refs,
3508 					   is_orphan);
3509 		if (!ret)
3510 			ret = 1;
3511 	}
3512 out:
3513 	btrfs_free_path(path);
3514 	return ret;
3515 }
3516 
3517 /*
3518  * Check if inode ino2, or any of its ancestors, is inode ino1.
3519  * Return 1 if true, 0 if false and < 0 on error.
3520  */
3521 static int check_ino_in_path(struct btrfs_root *root,
3522 			     const u64 ino1,
3523 			     const u64 ino1_gen,
3524 			     const u64 ino2,
3525 			     const u64 ino2_gen,
3526 			     struct fs_path *fs_path)
3527 {
3528 	u64 ino = ino2;
3529 
3530 	if (ino1 == ino2)
3531 		return ino1_gen == ino2_gen;
3532 
3533 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3534 		u64 parent;
3535 		u64 parent_gen;
3536 		int ret;
3537 
3538 		fs_path_reset(fs_path);
3539 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3540 		if (ret < 0)
3541 			return ret;
3542 		if (parent == ino1)
3543 			return parent_gen == ino1_gen;
3544 		ino = parent;
3545 	}
3546 	return 0;
3547 }
3548 
3549 /*
3550  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3551  * possible path (in case ino2 is not a directory and has multiple hard links).
3552  * Return 1 if true, 0 if false and < 0 on error.
3553  */
3554 static int is_ancestor(struct btrfs_root *root,
3555 		       const u64 ino1,
3556 		       const u64 ino1_gen,
3557 		       const u64 ino2,
3558 		       struct fs_path *fs_path)
3559 {
3560 	bool free_fs_path = false;
3561 	int ret = 0;
3562 	struct btrfs_path *path = NULL;
3563 	struct btrfs_key key;
3564 
3565 	if (!fs_path) {
3566 		fs_path = fs_path_alloc();
3567 		if (!fs_path)
3568 			return -ENOMEM;
3569 		free_fs_path = true;
3570 	}
3571 
3572 	path = alloc_path_for_send();
3573 	if (!path) {
3574 		ret = -ENOMEM;
3575 		goto out;
3576 	}
3577 
3578 	key.objectid = ino2;
3579 	key.type = BTRFS_INODE_REF_KEY;
3580 	key.offset = 0;
3581 
3582 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3583 	if (ret < 0)
3584 		goto out;
3585 
3586 	while (true) {
3587 		struct extent_buffer *leaf = path->nodes[0];
3588 		int slot = path->slots[0];
3589 		u32 cur_offset = 0;
3590 		u32 item_size;
3591 
3592 		if (slot >= btrfs_header_nritems(leaf)) {
3593 			ret = btrfs_next_leaf(root, path);
3594 			if (ret < 0)
3595 				goto out;
3596 			if (ret > 0)
3597 				break;
3598 			continue;
3599 		}
3600 
3601 		btrfs_item_key_to_cpu(leaf, &key, slot);
3602 		if (key.objectid != ino2)
3603 			break;
3604 		if (key.type != BTRFS_INODE_REF_KEY &&
3605 		    key.type != BTRFS_INODE_EXTREF_KEY)
3606 			break;
3607 
3608 		item_size = btrfs_item_size_nr(leaf, slot);
3609 		while (cur_offset < item_size) {
3610 			u64 parent;
3611 			u64 parent_gen;
3612 
3613 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3614 				unsigned long ptr;
3615 				struct btrfs_inode_extref *extref;
3616 
3617 				ptr = btrfs_item_ptr_offset(leaf, slot);
3618 				extref = (struct btrfs_inode_extref *)
3619 					(ptr + cur_offset);
3620 				parent = btrfs_inode_extref_parent(leaf,
3621 								   extref);
3622 				cur_offset += sizeof(*extref);
3623 				cur_offset += btrfs_inode_extref_name_len(leaf,
3624 								  extref);
3625 			} else {
3626 				parent = key.offset;
3627 				cur_offset = item_size;
3628 			}
3629 
3630 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3631 					     NULL, NULL, NULL, NULL);
3632 			if (ret < 0)
3633 				goto out;
3634 			ret = check_ino_in_path(root, ino1, ino1_gen,
3635 						parent, parent_gen, fs_path);
3636 			if (ret)
3637 				goto out;
3638 		}
3639 		path->slots[0]++;
3640 	}
3641 	ret = 0;
3642  out:
3643 	btrfs_free_path(path);
3644 	if (free_fs_path)
3645 		fs_path_free(fs_path);
3646 	return ret;
3647 }
3648 
3649 static int wait_for_parent_move(struct send_ctx *sctx,
3650 				struct recorded_ref *parent_ref,
3651 				const bool is_orphan)
3652 {
3653 	int ret = 0;
3654 	u64 ino = parent_ref->dir;
3655 	u64 ino_gen = parent_ref->dir_gen;
3656 	u64 parent_ino_before, parent_ino_after;
3657 	struct fs_path *path_before = NULL;
3658 	struct fs_path *path_after = NULL;
3659 	int len1, len2;
3660 
3661 	path_after = fs_path_alloc();
3662 	path_before = fs_path_alloc();
3663 	if (!path_after || !path_before) {
3664 		ret = -ENOMEM;
3665 		goto out;
3666 	}
3667 
3668 	/*
3669 	 * Our current directory inode may not yet be renamed/moved because some
3670 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3671 	 * such ancestor exists and make sure our own rename/move happens after
3672 	 * that ancestor is processed to avoid path build infinite loops (done
3673 	 * at get_cur_path()).
3674 	 */
3675 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3676 		u64 parent_ino_after_gen;
3677 
3678 		if (is_waiting_for_move(sctx, ino)) {
3679 			/*
3680 			 * If the current inode is an ancestor of ino in the
3681 			 * parent root, we need to delay the rename of the
3682 			 * current inode, otherwise don't delayed the rename
3683 			 * because we can end up with a circular dependency
3684 			 * of renames, resulting in some directories never
3685 			 * getting the respective rename operations issued in
3686 			 * the send stream or getting into infinite path build
3687 			 * loops.
3688 			 */
3689 			ret = is_ancestor(sctx->parent_root,
3690 					  sctx->cur_ino, sctx->cur_inode_gen,
3691 					  ino, path_before);
3692 			if (ret)
3693 				break;
3694 		}
3695 
3696 		fs_path_reset(path_before);
3697 		fs_path_reset(path_after);
3698 
3699 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3700 				    &parent_ino_after_gen, path_after);
3701 		if (ret < 0)
3702 			goto out;
3703 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3704 				    NULL, path_before);
3705 		if (ret < 0 && ret != -ENOENT) {
3706 			goto out;
3707 		} else if (ret == -ENOENT) {
3708 			ret = 0;
3709 			break;
3710 		}
3711 
3712 		len1 = fs_path_len(path_before);
3713 		len2 = fs_path_len(path_after);
3714 		if (ino > sctx->cur_ino &&
3715 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3716 		     memcmp(path_before->start, path_after->start, len1))) {
3717 			u64 parent_ino_gen;
3718 
3719 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3720 					     &parent_ino_gen, NULL, NULL, NULL,
3721 					     NULL);
3722 			if (ret < 0)
3723 				goto out;
3724 			if (ino_gen == parent_ino_gen) {
3725 				ret = 1;
3726 				break;
3727 			}
3728 		}
3729 		ino = parent_ino_after;
3730 		ino_gen = parent_ino_after_gen;
3731 	}
3732 
3733 out:
3734 	fs_path_free(path_before);
3735 	fs_path_free(path_after);
3736 
3737 	if (ret == 1) {
3738 		ret = add_pending_dir_move(sctx,
3739 					   sctx->cur_ino,
3740 					   sctx->cur_inode_gen,
3741 					   ino,
3742 					   &sctx->new_refs,
3743 					   &sctx->deleted_refs,
3744 					   is_orphan);
3745 		if (!ret)
3746 			ret = 1;
3747 	}
3748 
3749 	return ret;
3750 }
3751 
3752 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3753 {
3754 	int ret;
3755 	struct fs_path *new_path;
3756 
3757 	/*
3758 	 * Our reference's name member points to its full_path member string, so
3759 	 * we use here a new path.
3760 	 */
3761 	new_path = fs_path_alloc();
3762 	if (!new_path)
3763 		return -ENOMEM;
3764 
3765 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3766 	if (ret < 0) {
3767 		fs_path_free(new_path);
3768 		return ret;
3769 	}
3770 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3771 	if (ret < 0) {
3772 		fs_path_free(new_path);
3773 		return ret;
3774 	}
3775 
3776 	fs_path_free(ref->full_path);
3777 	set_ref_path(ref, new_path);
3778 
3779 	return 0;
3780 }
3781 
3782 /*
3783  * This does all the move/link/unlink/rmdir magic.
3784  */
3785 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3786 {
3787 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3788 	int ret = 0;
3789 	struct recorded_ref *cur;
3790 	struct recorded_ref *cur2;
3791 	struct list_head check_dirs;
3792 	struct fs_path *valid_path = NULL;
3793 	u64 ow_inode = 0;
3794 	u64 ow_gen;
3795 	u64 ow_mode;
3796 	int did_overwrite = 0;
3797 	int is_orphan = 0;
3798 	u64 last_dir_ino_rm = 0;
3799 	bool can_rename = true;
3800 	bool orphanized_dir = false;
3801 	bool orphanized_ancestor = false;
3802 
3803 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3804 
3805 	/*
3806 	 * This should never happen as the root dir always has the same ref
3807 	 * which is always '..'
3808 	 */
3809 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3810 	INIT_LIST_HEAD(&check_dirs);
3811 
3812 	valid_path = fs_path_alloc();
3813 	if (!valid_path) {
3814 		ret = -ENOMEM;
3815 		goto out;
3816 	}
3817 
3818 	/*
3819 	 * First, check if the first ref of the current inode was overwritten
3820 	 * before. If yes, we know that the current inode was already orphanized
3821 	 * and thus use the orphan name. If not, we can use get_cur_path to
3822 	 * get the path of the first ref as it would like while receiving at
3823 	 * this point in time.
3824 	 * New inodes are always orphan at the beginning, so force to use the
3825 	 * orphan name in this case.
3826 	 * The first ref is stored in valid_path and will be updated if it
3827 	 * gets moved around.
3828 	 */
3829 	if (!sctx->cur_inode_new) {
3830 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3831 				sctx->cur_inode_gen);
3832 		if (ret < 0)
3833 			goto out;
3834 		if (ret)
3835 			did_overwrite = 1;
3836 	}
3837 	if (sctx->cur_inode_new || did_overwrite) {
3838 		ret = gen_unique_name(sctx, sctx->cur_ino,
3839 				sctx->cur_inode_gen, valid_path);
3840 		if (ret < 0)
3841 			goto out;
3842 		is_orphan = 1;
3843 	} else {
3844 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3845 				valid_path);
3846 		if (ret < 0)
3847 			goto out;
3848 	}
3849 
3850 	list_for_each_entry(cur, &sctx->new_refs, list) {
3851 		/*
3852 		 * We may have refs where the parent directory does not exist
3853 		 * yet. This happens if the parent directories inum is higher
3854 		 * than the current inum. To handle this case, we create the
3855 		 * parent directory out of order. But we need to check if this
3856 		 * did already happen before due to other refs in the same dir.
3857 		 */
3858 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3859 		if (ret < 0)
3860 			goto out;
3861 		if (ret == inode_state_will_create) {
3862 			ret = 0;
3863 			/*
3864 			 * First check if any of the current inodes refs did
3865 			 * already create the dir.
3866 			 */
3867 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3868 				if (cur == cur2)
3869 					break;
3870 				if (cur2->dir == cur->dir) {
3871 					ret = 1;
3872 					break;
3873 				}
3874 			}
3875 
3876 			/*
3877 			 * If that did not happen, check if a previous inode
3878 			 * did already create the dir.
3879 			 */
3880 			if (!ret)
3881 				ret = did_create_dir(sctx, cur->dir);
3882 			if (ret < 0)
3883 				goto out;
3884 			if (!ret) {
3885 				ret = send_create_inode(sctx, cur->dir);
3886 				if (ret < 0)
3887 					goto out;
3888 			}
3889 		}
3890 
3891 		/*
3892 		 * Check if this new ref would overwrite the first ref of
3893 		 * another unprocessed inode. If yes, orphanize the
3894 		 * overwritten inode. If we find an overwritten ref that is
3895 		 * not the first ref, simply unlink it.
3896 		 */
3897 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3898 				cur->name, cur->name_len,
3899 				&ow_inode, &ow_gen, &ow_mode);
3900 		if (ret < 0)
3901 			goto out;
3902 		if (ret) {
3903 			ret = is_first_ref(sctx->parent_root,
3904 					   ow_inode, cur->dir, cur->name,
3905 					   cur->name_len);
3906 			if (ret < 0)
3907 				goto out;
3908 			if (ret) {
3909 				struct name_cache_entry *nce;
3910 				struct waiting_dir_move *wdm;
3911 
3912 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3913 						cur->full_path);
3914 				if (ret < 0)
3915 					goto out;
3916 				if (S_ISDIR(ow_mode))
3917 					orphanized_dir = true;
3918 
3919 				/*
3920 				 * If ow_inode has its rename operation delayed
3921 				 * make sure that its orphanized name is used in
3922 				 * the source path when performing its rename
3923 				 * operation.
3924 				 */
3925 				if (is_waiting_for_move(sctx, ow_inode)) {
3926 					wdm = get_waiting_dir_move(sctx,
3927 								   ow_inode);
3928 					ASSERT(wdm);
3929 					wdm->orphanized = true;
3930 				}
3931 
3932 				/*
3933 				 * Make sure we clear our orphanized inode's
3934 				 * name from the name cache. This is because the
3935 				 * inode ow_inode might be an ancestor of some
3936 				 * other inode that will be orphanized as well
3937 				 * later and has an inode number greater than
3938 				 * sctx->send_progress. We need to prevent
3939 				 * future name lookups from using the old name
3940 				 * and get instead the orphan name.
3941 				 */
3942 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3943 				if (nce) {
3944 					name_cache_delete(sctx, nce);
3945 					kfree(nce);
3946 				}
3947 
3948 				/*
3949 				 * ow_inode might currently be an ancestor of
3950 				 * cur_ino, therefore compute valid_path (the
3951 				 * current path of cur_ino) again because it
3952 				 * might contain the pre-orphanization name of
3953 				 * ow_inode, which is no longer valid.
3954 				 */
3955 				ret = is_ancestor(sctx->parent_root,
3956 						  ow_inode, ow_gen,
3957 						  sctx->cur_ino, NULL);
3958 				if (ret > 0) {
3959 					orphanized_ancestor = true;
3960 					fs_path_reset(valid_path);
3961 					ret = get_cur_path(sctx, sctx->cur_ino,
3962 							   sctx->cur_inode_gen,
3963 							   valid_path);
3964 				}
3965 				if (ret < 0)
3966 					goto out;
3967 			} else {
3968 				ret = send_unlink(sctx, cur->full_path);
3969 				if (ret < 0)
3970 					goto out;
3971 			}
3972 		}
3973 
3974 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3975 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3976 			if (ret < 0)
3977 				goto out;
3978 			if (ret == 1) {
3979 				can_rename = false;
3980 				*pending_move = 1;
3981 			}
3982 		}
3983 
3984 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3985 		    can_rename) {
3986 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3987 			if (ret < 0)
3988 				goto out;
3989 			if (ret == 1) {
3990 				can_rename = false;
3991 				*pending_move = 1;
3992 			}
3993 		}
3994 
3995 		/*
3996 		 * link/move the ref to the new place. If we have an orphan
3997 		 * inode, move it and update valid_path. If not, link or move
3998 		 * it depending on the inode mode.
3999 		 */
4000 		if (is_orphan && can_rename) {
4001 			ret = send_rename(sctx, valid_path, cur->full_path);
4002 			if (ret < 0)
4003 				goto out;
4004 			is_orphan = 0;
4005 			ret = fs_path_copy(valid_path, cur->full_path);
4006 			if (ret < 0)
4007 				goto out;
4008 		} else if (can_rename) {
4009 			if (S_ISDIR(sctx->cur_inode_mode)) {
4010 				/*
4011 				 * Dirs can't be linked, so move it. For moved
4012 				 * dirs, we always have one new and one deleted
4013 				 * ref. The deleted ref is ignored later.
4014 				 */
4015 				ret = send_rename(sctx, valid_path,
4016 						  cur->full_path);
4017 				if (!ret)
4018 					ret = fs_path_copy(valid_path,
4019 							   cur->full_path);
4020 				if (ret < 0)
4021 					goto out;
4022 			} else {
4023 				/*
4024 				 * We might have previously orphanized an inode
4025 				 * which is an ancestor of our current inode,
4026 				 * so our reference's full path, which was
4027 				 * computed before any such orphanizations, must
4028 				 * be updated.
4029 				 */
4030 				if (orphanized_dir) {
4031 					ret = update_ref_path(sctx, cur);
4032 					if (ret < 0)
4033 						goto out;
4034 				}
4035 				ret = send_link(sctx, cur->full_path,
4036 						valid_path);
4037 				if (ret < 0)
4038 					goto out;
4039 			}
4040 		}
4041 		ret = dup_ref(cur, &check_dirs);
4042 		if (ret < 0)
4043 			goto out;
4044 	}
4045 
4046 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4047 		/*
4048 		 * Check if we can already rmdir the directory. If not,
4049 		 * orphanize it. For every dir item inside that gets deleted
4050 		 * later, we do this check again and rmdir it then if possible.
4051 		 * See the use of check_dirs for more details.
4052 		 */
4053 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4054 				sctx->cur_ino);
4055 		if (ret < 0)
4056 			goto out;
4057 		if (ret) {
4058 			ret = send_rmdir(sctx, valid_path);
4059 			if (ret < 0)
4060 				goto out;
4061 		} else if (!is_orphan) {
4062 			ret = orphanize_inode(sctx, sctx->cur_ino,
4063 					sctx->cur_inode_gen, valid_path);
4064 			if (ret < 0)
4065 				goto out;
4066 			is_orphan = 1;
4067 		}
4068 
4069 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4070 			ret = dup_ref(cur, &check_dirs);
4071 			if (ret < 0)
4072 				goto out;
4073 		}
4074 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4075 		   !list_empty(&sctx->deleted_refs)) {
4076 		/*
4077 		 * We have a moved dir. Add the old parent to check_dirs
4078 		 */
4079 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4080 				list);
4081 		ret = dup_ref(cur, &check_dirs);
4082 		if (ret < 0)
4083 			goto out;
4084 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4085 		/*
4086 		 * We have a non dir inode. Go through all deleted refs and
4087 		 * unlink them if they were not already overwritten by other
4088 		 * inodes.
4089 		 */
4090 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4091 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4092 					sctx->cur_ino, sctx->cur_inode_gen,
4093 					cur->name, cur->name_len);
4094 			if (ret < 0)
4095 				goto out;
4096 			if (!ret) {
4097 				/*
4098 				 * If we orphanized any ancestor before, we need
4099 				 * to recompute the full path for deleted names,
4100 				 * since any such path was computed before we
4101 				 * processed any references and orphanized any
4102 				 * ancestor inode.
4103 				 */
4104 				if (orphanized_ancestor) {
4105 					ret = update_ref_path(sctx, cur);
4106 					if (ret < 0)
4107 						goto out;
4108 				}
4109 				ret = send_unlink(sctx, cur->full_path);
4110 				if (ret < 0)
4111 					goto out;
4112 			}
4113 			ret = dup_ref(cur, &check_dirs);
4114 			if (ret < 0)
4115 				goto out;
4116 		}
4117 		/*
4118 		 * If the inode is still orphan, unlink the orphan. This may
4119 		 * happen when a previous inode did overwrite the first ref
4120 		 * of this inode and no new refs were added for the current
4121 		 * inode. Unlinking does not mean that the inode is deleted in
4122 		 * all cases. There may still be links to this inode in other
4123 		 * places.
4124 		 */
4125 		if (is_orphan) {
4126 			ret = send_unlink(sctx, valid_path);
4127 			if (ret < 0)
4128 				goto out;
4129 		}
4130 	}
4131 
4132 	/*
4133 	 * We did collect all parent dirs where cur_inode was once located. We
4134 	 * now go through all these dirs and check if they are pending for
4135 	 * deletion and if it's finally possible to perform the rmdir now.
4136 	 * We also update the inode stats of the parent dirs here.
4137 	 */
4138 	list_for_each_entry(cur, &check_dirs, list) {
4139 		/*
4140 		 * In case we had refs into dirs that were not processed yet,
4141 		 * we don't need to do the utime and rmdir logic for these dirs.
4142 		 * The dir will be processed later.
4143 		 */
4144 		if (cur->dir > sctx->cur_ino)
4145 			continue;
4146 
4147 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4148 		if (ret < 0)
4149 			goto out;
4150 
4151 		if (ret == inode_state_did_create ||
4152 		    ret == inode_state_no_change) {
4153 			/* TODO delayed utimes */
4154 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4155 			if (ret < 0)
4156 				goto out;
4157 		} else if (ret == inode_state_did_delete &&
4158 			   cur->dir != last_dir_ino_rm) {
4159 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4160 					sctx->cur_ino);
4161 			if (ret < 0)
4162 				goto out;
4163 			if (ret) {
4164 				ret = get_cur_path(sctx, cur->dir,
4165 						   cur->dir_gen, valid_path);
4166 				if (ret < 0)
4167 					goto out;
4168 				ret = send_rmdir(sctx, valid_path);
4169 				if (ret < 0)
4170 					goto out;
4171 				last_dir_ino_rm = cur->dir;
4172 			}
4173 		}
4174 	}
4175 
4176 	ret = 0;
4177 
4178 out:
4179 	__free_recorded_refs(&check_dirs);
4180 	free_recorded_refs(sctx);
4181 	fs_path_free(valid_path);
4182 	return ret;
4183 }
4184 
4185 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4186 		      void *ctx, struct list_head *refs)
4187 {
4188 	int ret = 0;
4189 	struct send_ctx *sctx = ctx;
4190 	struct fs_path *p;
4191 	u64 gen;
4192 
4193 	p = fs_path_alloc();
4194 	if (!p)
4195 		return -ENOMEM;
4196 
4197 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4198 			NULL, NULL);
4199 	if (ret < 0)
4200 		goto out;
4201 
4202 	ret = get_cur_path(sctx, dir, gen, p);
4203 	if (ret < 0)
4204 		goto out;
4205 	ret = fs_path_add_path(p, name);
4206 	if (ret < 0)
4207 		goto out;
4208 
4209 	ret = __record_ref(refs, dir, gen, p);
4210 
4211 out:
4212 	if (ret)
4213 		fs_path_free(p);
4214 	return ret;
4215 }
4216 
4217 static int __record_new_ref(int num, u64 dir, int index,
4218 			    struct fs_path *name,
4219 			    void *ctx)
4220 {
4221 	struct send_ctx *sctx = ctx;
4222 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4223 }
4224 
4225 
4226 static int __record_deleted_ref(int num, u64 dir, int index,
4227 				struct fs_path *name,
4228 				void *ctx)
4229 {
4230 	struct send_ctx *sctx = ctx;
4231 	return record_ref(sctx->parent_root, dir, name, ctx,
4232 			  &sctx->deleted_refs);
4233 }
4234 
4235 static int record_new_ref(struct send_ctx *sctx)
4236 {
4237 	int ret;
4238 
4239 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4240 				sctx->cmp_key, 0, __record_new_ref, sctx);
4241 	if (ret < 0)
4242 		goto out;
4243 	ret = 0;
4244 
4245 out:
4246 	return ret;
4247 }
4248 
4249 static int record_deleted_ref(struct send_ctx *sctx)
4250 {
4251 	int ret;
4252 
4253 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4254 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4255 	if (ret < 0)
4256 		goto out;
4257 	ret = 0;
4258 
4259 out:
4260 	return ret;
4261 }
4262 
4263 struct find_ref_ctx {
4264 	u64 dir;
4265 	u64 dir_gen;
4266 	struct btrfs_root *root;
4267 	struct fs_path *name;
4268 	int found_idx;
4269 };
4270 
4271 static int __find_iref(int num, u64 dir, int index,
4272 		       struct fs_path *name,
4273 		       void *ctx_)
4274 {
4275 	struct find_ref_ctx *ctx = ctx_;
4276 	u64 dir_gen;
4277 	int ret;
4278 
4279 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4280 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4281 		/*
4282 		 * To avoid doing extra lookups we'll only do this if everything
4283 		 * else matches.
4284 		 */
4285 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4286 				     NULL, NULL, NULL);
4287 		if (ret)
4288 			return ret;
4289 		if (dir_gen != ctx->dir_gen)
4290 			return 0;
4291 		ctx->found_idx = num;
4292 		return 1;
4293 	}
4294 	return 0;
4295 }
4296 
4297 static int find_iref(struct btrfs_root *root,
4298 		     struct btrfs_path *path,
4299 		     struct btrfs_key *key,
4300 		     u64 dir, u64 dir_gen, struct fs_path *name)
4301 {
4302 	int ret;
4303 	struct find_ref_ctx ctx;
4304 
4305 	ctx.dir = dir;
4306 	ctx.name = name;
4307 	ctx.dir_gen = dir_gen;
4308 	ctx.found_idx = -1;
4309 	ctx.root = root;
4310 
4311 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4312 	if (ret < 0)
4313 		return ret;
4314 
4315 	if (ctx.found_idx == -1)
4316 		return -ENOENT;
4317 
4318 	return ctx.found_idx;
4319 }
4320 
4321 static int __record_changed_new_ref(int num, u64 dir, int index,
4322 				    struct fs_path *name,
4323 				    void *ctx)
4324 {
4325 	u64 dir_gen;
4326 	int ret;
4327 	struct send_ctx *sctx = ctx;
4328 
4329 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4330 			     NULL, NULL, NULL);
4331 	if (ret)
4332 		return ret;
4333 
4334 	ret = find_iref(sctx->parent_root, sctx->right_path,
4335 			sctx->cmp_key, dir, dir_gen, name);
4336 	if (ret == -ENOENT)
4337 		ret = __record_new_ref(num, dir, index, name, sctx);
4338 	else if (ret > 0)
4339 		ret = 0;
4340 
4341 	return ret;
4342 }
4343 
4344 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4345 					struct fs_path *name,
4346 					void *ctx)
4347 {
4348 	u64 dir_gen;
4349 	int ret;
4350 	struct send_ctx *sctx = ctx;
4351 
4352 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4353 			     NULL, NULL, NULL);
4354 	if (ret)
4355 		return ret;
4356 
4357 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4358 			dir, dir_gen, name);
4359 	if (ret == -ENOENT)
4360 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4361 	else if (ret > 0)
4362 		ret = 0;
4363 
4364 	return ret;
4365 }
4366 
4367 static int record_changed_ref(struct send_ctx *sctx)
4368 {
4369 	int ret = 0;
4370 
4371 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4372 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4373 	if (ret < 0)
4374 		goto out;
4375 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4376 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4377 	if (ret < 0)
4378 		goto out;
4379 	ret = 0;
4380 
4381 out:
4382 	return ret;
4383 }
4384 
4385 /*
4386  * Record and process all refs at once. Needed when an inode changes the
4387  * generation number, which means that it was deleted and recreated.
4388  */
4389 static int process_all_refs(struct send_ctx *sctx,
4390 			    enum btrfs_compare_tree_result cmd)
4391 {
4392 	int ret;
4393 	struct btrfs_root *root;
4394 	struct btrfs_path *path;
4395 	struct btrfs_key key;
4396 	struct btrfs_key found_key;
4397 	struct extent_buffer *eb;
4398 	int slot;
4399 	iterate_inode_ref_t cb;
4400 	int pending_move = 0;
4401 
4402 	path = alloc_path_for_send();
4403 	if (!path)
4404 		return -ENOMEM;
4405 
4406 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4407 		root = sctx->send_root;
4408 		cb = __record_new_ref;
4409 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4410 		root = sctx->parent_root;
4411 		cb = __record_deleted_ref;
4412 	} else {
4413 		btrfs_err(sctx->send_root->fs_info,
4414 				"Wrong command %d in process_all_refs", cmd);
4415 		ret = -EINVAL;
4416 		goto out;
4417 	}
4418 
4419 	key.objectid = sctx->cmp_key->objectid;
4420 	key.type = BTRFS_INODE_REF_KEY;
4421 	key.offset = 0;
4422 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4423 	if (ret < 0)
4424 		goto out;
4425 
4426 	while (1) {
4427 		eb = path->nodes[0];
4428 		slot = path->slots[0];
4429 		if (slot >= btrfs_header_nritems(eb)) {
4430 			ret = btrfs_next_leaf(root, path);
4431 			if (ret < 0)
4432 				goto out;
4433 			else if (ret > 0)
4434 				break;
4435 			continue;
4436 		}
4437 
4438 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4439 
4440 		if (found_key.objectid != key.objectid ||
4441 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4442 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4443 			break;
4444 
4445 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4446 		if (ret < 0)
4447 			goto out;
4448 
4449 		path->slots[0]++;
4450 	}
4451 	btrfs_release_path(path);
4452 
4453 	/*
4454 	 * We don't actually care about pending_move as we are simply
4455 	 * re-creating this inode and will be rename'ing it into place once we
4456 	 * rename the parent directory.
4457 	 */
4458 	ret = process_recorded_refs(sctx, &pending_move);
4459 out:
4460 	btrfs_free_path(path);
4461 	return ret;
4462 }
4463 
4464 static int send_set_xattr(struct send_ctx *sctx,
4465 			  struct fs_path *path,
4466 			  const char *name, int name_len,
4467 			  const char *data, int data_len)
4468 {
4469 	int ret = 0;
4470 
4471 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4472 	if (ret < 0)
4473 		goto out;
4474 
4475 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4476 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4477 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4478 
4479 	ret = send_cmd(sctx);
4480 
4481 tlv_put_failure:
4482 out:
4483 	return ret;
4484 }
4485 
4486 static int send_remove_xattr(struct send_ctx *sctx,
4487 			  struct fs_path *path,
4488 			  const char *name, int name_len)
4489 {
4490 	int ret = 0;
4491 
4492 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4493 	if (ret < 0)
4494 		goto out;
4495 
4496 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4497 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4498 
4499 	ret = send_cmd(sctx);
4500 
4501 tlv_put_failure:
4502 out:
4503 	return ret;
4504 }
4505 
4506 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4507 			       const char *name, int name_len,
4508 			       const char *data, int data_len,
4509 			       u8 type, void *ctx)
4510 {
4511 	int ret;
4512 	struct send_ctx *sctx = ctx;
4513 	struct fs_path *p;
4514 	struct posix_acl_xattr_header dummy_acl;
4515 
4516 	p = fs_path_alloc();
4517 	if (!p)
4518 		return -ENOMEM;
4519 
4520 	/*
4521 	 * This hack is needed because empty acls are stored as zero byte
4522 	 * data in xattrs. Problem with that is, that receiving these zero byte
4523 	 * acls will fail later. To fix this, we send a dummy acl list that
4524 	 * only contains the version number and no entries.
4525 	 */
4526 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4527 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4528 		if (data_len == 0) {
4529 			dummy_acl.a_version =
4530 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4531 			data = (char *)&dummy_acl;
4532 			data_len = sizeof(dummy_acl);
4533 		}
4534 	}
4535 
4536 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4537 	if (ret < 0)
4538 		goto out;
4539 
4540 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4541 
4542 out:
4543 	fs_path_free(p);
4544 	return ret;
4545 }
4546 
4547 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4548 				   const char *name, int name_len,
4549 				   const char *data, int data_len,
4550 				   u8 type, void *ctx)
4551 {
4552 	int ret;
4553 	struct send_ctx *sctx = ctx;
4554 	struct fs_path *p;
4555 
4556 	p = fs_path_alloc();
4557 	if (!p)
4558 		return -ENOMEM;
4559 
4560 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4561 	if (ret < 0)
4562 		goto out;
4563 
4564 	ret = send_remove_xattr(sctx, p, name, name_len);
4565 
4566 out:
4567 	fs_path_free(p);
4568 	return ret;
4569 }
4570 
4571 static int process_new_xattr(struct send_ctx *sctx)
4572 {
4573 	int ret = 0;
4574 
4575 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4576 			       __process_new_xattr, sctx);
4577 
4578 	return ret;
4579 }
4580 
4581 static int process_deleted_xattr(struct send_ctx *sctx)
4582 {
4583 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4584 				__process_deleted_xattr, sctx);
4585 }
4586 
4587 struct find_xattr_ctx {
4588 	const char *name;
4589 	int name_len;
4590 	int found_idx;
4591 	char *found_data;
4592 	int found_data_len;
4593 };
4594 
4595 static int __find_xattr(int num, struct btrfs_key *di_key,
4596 			const char *name, int name_len,
4597 			const char *data, int data_len,
4598 			u8 type, void *vctx)
4599 {
4600 	struct find_xattr_ctx *ctx = vctx;
4601 
4602 	if (name_len == ctx->name_len &&
4603 	    strncmp(name, ctx->name, name_len) == 0) {
4604 		ctx->found_idx = num;
4605 		ctx->found_data_len = data_len;
4606 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4607 		if (!ctx->found_data)
4608 			return -ENOMEM;
4609 		return 1;
4610 	}
4611 	return 0;
4612 }
4613 
4614 static int find_xattr(struct btrfs_root *root,
4615 		      struct btrfs_path *path,
4616 		      struct btrfs_key *key,
4617 		      const char *name, int name_len,
4618 		      char **data, int *data_len)
4619 {
4620 	int ret;
4621 	struct find_xattr_ctx ctx;
4622 
4623 	ctx.name = name;
4624 	ctx.name_len = name_len;
4625 	ctx.found_idx = -1;
4626 	ctx.found_data = NULL;
4627 	ctx.found_data_len = 0;
4628 
4629 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4630 	if (ret < 0)
4631 		return ret;
4632 
4633 	if (ctx.found_idx == -1)
4634 		return -ENOENT;
4635 	if (data) {
4636 		*data = ctx.found_data;
4637 		*data_len = ctx.found_data_len;
4638 	} else {
4639 		kfree(ctx.found_data);
4640 	}
4641 	return ctx.found_idx;
4642 }
4643 
4644 
4645 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4646 				       const char *name, int name_len,
4647 				       const char *data, int data_len,
4648 				       u8 type, void *ctx)
4649 {
4650 	int ret;
4651 	struct send_ctx *sctx = ctx;
4652 	char *found_data = NULL;
4653 	int found_data_len  = 0;
4654 
4655 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4656 			 sctx->cmp_key, name, name_len, &found_data,
4657 			 &found_data_len);
4658 	if (ret == -ENOENT) {
4659 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4660 				data_len, type, ctx);
4661 	} else if (ret >= 0) {
4662 		if (data_len != found_data_len ||
4663 		    memcmp(data, found_data, data_len)) {
4664 			ret = __process_new_xattr(num, di_key, name, name_len,
4665 					data, data_len, type, ctx);
4666 		} else {
4667 			ret = 0;
4668 		}
4669 	}
4670 
4671 	kfree(found_data);
4672 	return ret;
4673 }
4674 
4675 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4676 					   const char *name, int name_len,
4677 					   const char *data, int data_len,
4678 					   u8 type, void *ctx)
4679 {
4680 	int ret;
4681 	struct send_ctx *sctx = ctx;
4682 
4683 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4684 			 name, name_len, NULL, NULL);
4685 	if (ret == -ENOENT)
4686 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4687 				data_len, type, ctx);
4688 	else if (ret >= 0)
4689 		ret = 0;
4690 
4691 	return ret;
4692 }
4693 
4694 static int process_changed_xattr(struct send_ctx *sctx)
4695 {
4696 	int ret = 0;
4697 
4698 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4699 			__process_changed_new_xattr, sctx);
4700 	if (ret < 0)
4701 		goto out;
4702 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4703 			__process_changed_deleted_xattr, sctx);
4704 
4705 out:
4706 	return ret;
4707 }
4708 
4709 static int process_all_new_xattrs(struct send_ctx *sctx)
4710 {
4711 	int ret;
4712 	struct btrfs_root *root;
4713 	struct btrfs_path *path;
4714 	struct btrfs_key key;
4715 	struct btrfs_key found_key;
4716 	struct extent_buffer *eb;
4717 	int slot;
4718 
4719 	path = alloc_path_for_send();
4720 	if (!path)
4721 		return -ENOMEM;
4722 
4723 	root = sctx->send_root;
4724 
4725 	key.objectid = sctx->cmp_key->objectid;
4726 	key.type = BTRFS_XATTR_ITEM_KEY;
4727 	key.offset = 0;
4728 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729 	if (ret < 0)
4730 		goto out;
4731 
4732 	while (1) {
4733 		eb = path->nodes[0];
4734 		slot = path->slots[0];
4735 		if (slot >= btrfs_header_nritems(eb)) {
4736 			ret = btrfs_next_leaf(root, path);
4737 			if (ret < 0) {
4738 				goto out;
4739 			} else if (ret > 0) {
4740 				ret = 0;
4741 				break;
4742 			}
4743 			continue;
4744 		}
4745 
4746 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4747 		if (found_key.objectid != key.objectid ||
4748 		    found_key.type != key.type) {
4749 			ret = 0;
4750 			goto out;
4751 		}
4752 
4753 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4754 		if (ret < 0)
4755 			goto out;
4756 
4757 		path->slots[0]++;
4758 	}
4759 
4760 out:
4761 	btrfs_free_path(path);
4762 	return ret;
4763 }
4764 
4765 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4766 {
4767 	struct btrfs_root *root = sctx->send_root;
4768 	struct btrfs_fs_info *fs_info = root->fs_info;
4769 	struct inode *inode;
4770 	struct page *page;
4771 	char *addr;
4772 	struct btrfs_key key;
4773 	pgoff_t index = offset >> PAGE_SHIFT;
4774 	pgoff_t last_index;
4775 	unsigned pg_offset = offset_in_page(offset);
4776 	ssize_t ret = 0;
4777 
4778 	key.objectid = sctx->cur_ino;
4779 	key.type = BTRFS_INODE_ITEM_KEY;
4780 	key.offset = 0;
4781 
4782 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4783 	if (IS_ERR(inode))
4784 		return PTR_ERR(inode);
4785 
4786 	if (offset + len > i_size_read(inode)) {
4787 		if (offset > i_size_read(inode))
4788 			len = 0;
4789 		else
4790 			len = offset - i_size_read(inode);
4791 	}
4792 	if (len == 0)
4793 		goto out;
4794 
4795 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4796 
4797 	/* initial readahead */
4798 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4799 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4800 
4801 	while (index <= last_index) {
4802 		unsigned cur_len = min_t(unsigned, len,
4803 					 PAGE_SIZE - pg_offset);
4804 
4805 		page = find_lock_page(inode->i_mapping, index);
4806 		if (!page) {
4807 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4808 				NULL, index, last_index + 1 - index);
4809 
4810 			page = find_or_create_page(inode->i_mapping, index,
4811 					GFP_KERNEL);
4812 			if (!page) {
4813 				ret = -ENOMEM;
4814 				break;
4815 			}
4816 		}
4817 
4818 		if (PageReadahead(page)) {
4819 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4820 				NULL, page, index, last_index + 1 - index);
4821 		}
4822 
4823 		if (!PageUptodate(page)) {
4824 			btrfs_readpage(NULL, page);
4825 			lock_page(page);
4826 			if (!PageUptodate(page)) {
4827 				unlock_page(page);
4828 				put_page(page);
4829 				ret = -EIO;
4830 				break;
4831 			}
4832 		}
4833 
4834 		addr = kmap(page);
4835 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4836 		kunmap(page);
4837 		unlock_page(page);
4838 		put_page(page);
4839 		index++;
4840 		pg_offset = 0;
4841 		len -= cur_len;
4842 		ret += cur_len;
4843 	}
4844 out:
4845 	iput(inode);
4846 	return ret;
4847 }
4848 
4849 /*
4850  * Read some bytes from the current inode/file and send a write command to
4851  * user space.
4852  */
4853 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4854 {
4855 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4856 	int ret = 0;
4857 	struct fs_path *p;
4858 	ssize_t num_read = 0;
4859 
4860 	p = fs_path_alloc();
4861 	if (!p)
4862 		return -ENOMEM;
4863 
4864 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4865 
4866 	num_read = fill_read_buf(sctx, offset, len);
4867 	if (num_read <= 0) {
4868 		if (num_read < 0)
4869 			ret = num_read;
4870 		goto out;
4871 	}
4872 
4873 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4874 	if (ret < 0)
4875 		goto out;
4876 
4877 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4878 	if (ret < 0)
4879 		goto out;
4880 
4881 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4882 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4883 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4884 
4885 	ret = send_cmd(sctx);
4886 
4887 tlv_put_failure:
4888 out:
4889 	fs_path_free(p);
4890 	if (ret < 0)
4891 		return ret;
4892 	return num_read;
4893 }
4894 
4895 /*
4896  * Send a clone command to user space.
4897  */
4898 static int send_clone(struct send_ctx *sctx,
4899 		      u64 offset, u32 len,
4900 		      struct clone_root *clone_root)
4901 {
4902 	int ret = 0;
4903 	struct fs_path *p;
4904 	u64 gen;
4905 
4906 	btrfs_debug(sctx->send_root->fs_info,
4907 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4908 		    offset, len, clone_root->root->root_key.objectid,
4909 		    clone_root->ino, clone_root->offset);
4910 
4911 	p = fs_path_alloc();
4912 	if (!p)
4913 		return -ENOMEM;
4914 
4915 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4916 	if (ret < 0)
4917 		goto out;
4918 
4919 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4920 	if (ret < 0)
4921 		goto out;
4922 
4923 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4924 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4925 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4926 
4927 	if (clone_root->root == sctx->send_root) {
4928 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4929 				&gen, NULL, NULL, NULL, NULL);
4930 		if (ret < 0)
4931 			goto out;
4932 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4933 	} else {
4934 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4935 	}
4936 	if (ret < 0)
4937 		goto out;
4938 
4939 	/*
4940 	 * If the parent we're using has a received_uuid set then use that as
4941 	 * our clone source as that is what we will look for when doing a
4942 	 * receive.
4943 	 *
4944 	 * This covers the case that we create a snapshot off of a received
4945 	 * subvolume and then use that as the parent and try to receive on a
4946 	 * different host.
4947 	 */
4948 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4949 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4950 			     clone_root->root->root_item.received_uuid);
4951 	else
4952 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4953 			     clone_root->root->root_item.uuid);
4954 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4955 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4956 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4957 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4958 			clone_root->offset);
4959 
4960 	ret = send_cmd(sctx);
4961 
4962 tlv_put_failure:
4963 out:
4964 	fs_path_free(p);
4965 	return ret;
4966 }
4967 
4968 /*
4969  * Send an update extent command to user space.
4970  */
4971 static int send_update_extent(struct send_ctx *sctx,
4972 			      u64 offset, u32 len)
4973 {
4974 	int ret = 0;
4975 	struct fs_path *p;
4976 
4977 	p = fs_path_alloc();
4978 	if (!p)
4979 		return -ENOMEM;
4980 
4981 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4982 	if (ret < 0)
4983 		goto out;
4984 
4985 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4986 	if (ret < 0)
4987 		goto out;
4988 
4989 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4990 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4991 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4992 
4993 	ret = send_cmd(sctx);
4994 
4995 tlv_put_failure:
4996 out:
4997 	fs_path_free(p);
4998 	return ret;
4999 }
5000 
5001 static int send_hole(struct send_ctx *sctx, u64 end)
5002 {
5003 	struct fs_path *p = NULL;
5004 	u64 offset = sctx->cur_inode_last_extent;
5005 	u64 len;
5006 	int ret = 0;
5007 
5008 	/*
5009 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5010 	 * fallocate (for extent preallocation and hole punching), sending a
5011 	 * write of zeroes starting at EOF or beyond would later require issuing
5012 	 * a truncate operation which would undo the write and achieve nothing.
5013 	 */
5014 	if (offset >= sctx->cur_inode_size)
5015 		return 0;
5016 
5017 	/*
5018 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5019 	 * after the i_size.
5020 	 */
5021 	end = min_t(u64, end, sctx->cur_inode_size);
5022 
5023 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5024 		return send_update_extent(sctx, offset, end - offset);
5025 
5026 	p = fs_path_alloc();
5027 	if (!p)
5028 		return -ENOMEM;
5029 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5030 	if (ret < 0)
5031 		goto tlv_put_failure;
5032 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5033 	while (offset < end) {
5034 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5035 
5036 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5037 		if (ret < 0)
5038 			break;
5039 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5040 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5041 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5042 		ret = send_cmd(sctx);
5043 		if (ret < 0)
5044 			break;
5045 		offset += len;
5046 	}
5047 	sctx->cur_inode_next_write_offset = offset;
5048 tlv_put_failure:
5049 	fs_path_free(p);
5050 	return ret;
5051 }
5052 
5053 static int send_extent_data(struct send_ctx *sctx,
5054 			    const u64 offset,
5055 			    const u64 len)
5056 {
5057 	u64 sent = 0;
5058 
5059 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5060 		return send_update_extent(sctx, offset, len);
5061 
5062 	while (sent < len) {
5063 		u64 size = len - sent;
5064 		int ret;
5065 
5066 		if (size > BTRFS_SEND_READ_SIZE)
5067 			size = BTRFS_SEND_READ_SIZE;
5068 		ret = send_write(sctx, offset + sent, size);
5069 		if (ret < 0)
5070 			return ret;
5071 		if (!ret)
5072 			break;
5073 		sent += ret;
5074 	}
5075 	return 0;
5076 }
5077 
5078 static int clone_range(struct send_ctx *sctx,
5079 		       struct clone_root *clone_root,
5080 		       const u64 disk_byte,
5081 		       u64 data_offset,
5082 		       u64 offset,
5083 		       u64 len)
5084 {
5085 	struct btrfs_path *path;
5086 	struct btrfs_key key;
5087 	int ret;
5088 	u64 clone_src_i_size;
5089 
5090 	/*
5091 	 * Prevent cloning from a zero offset with a length matching the sector
5092 	 * size because in some scenarios this will make the receiver fail.
5093 	 *
5094 	 * For example, if in the source filesystem the extent at offset 0
5095 	 * has a length of sectorsize and it was written using direct IO, then
5096 	 * it can never be an inline extent (even if compression is enabled).
5097 	 * Then this extent can be cloned in the original filesystem to a non
5098 	 * zero file offset, but it may not be possible to clone in the
5099 	 * destination filesystem because it can be inlined due to compression
5100 	 * on the destination filesystem (as the receiver's write operations are
5101 	 * always done using buffered IO). The same happens when the original
5102 	 * filesystem does not have compression enabled but the destination
5103 	 * filesystem has.
5104 	 */
5105 	if (clone_root->offset == 0 &&
5106 	    len == sctx->send_root->fs_info->sectorsize)
5107 		return send_extent_data(sctx, offset, len);
5108 
5109 	path = alloc_path_for_send();
5110 	if (!path)
5111 		return -ENOMEM;
5112 
5113 	/*
5114 	 * There are inodes that have extents that lie behind its i_size. Don't
5115 	 * accept clones from these extents.
5116 	 */
5117 	ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5118 			       &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5119 	btrfs_release_path(path);
5120 	if (ret < 0)
5121 		goto out;
5122 
5123 	/*
5124 	 * We can't send a clone operation for the entire range if we find
5125 	 * extent items in the respective range in the source file that
5126 	 * refer to different extents or if we find holes.
5127 	 * So check for that and do a mix of clone and regular write/copy
5128 	 * operations if needed.
5129 	 *
5130 	 * Example:
5131 	 *
5132 	 * mkfs.btrfs -f /dev/sda
5133 	 * mount /dev/sda /mnt
5134 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5135 	 * cp --reflink=always /mnt/foo /mnt/bar
5136 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5137 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5138 	 *
5139 	 * If when we send the snapshot and we are processing file bar (which
5140 	 * has a higher inode number than foo) we blindly send a clone operation
5141 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5142 	 * a file bar that matches the content of file foo - iow, doesn't match
5143 	 * the content from bar in the original filesystem.
5144 	 */
5145 	key.objectid = clone_root->ino;
5146 	key.type = BTRFS_EXTENT_DATA_KEY;
5147 	key.offset = clone_root->offset;
5148 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5149 	if (ret < 0)
5150 		goto out;
5151 	if (ret > 0 && path->slots[0] > 0) {
5152 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5153 		if (key.objectid == clone_root->ino &&
5154 		    key.type == BTRFS_EXTENT_DATA_KEY)
5155 			path->slots[0]--;
5156 	}
5157 
5158 	while (true) {
5159 		struct extent_buffer *leaf = path->nodes[0];
5160 		int slot = path->slots[0];
5161 		struct btrfs_file_extent_item *ei;
5162 		u8 type;
5163 		u64 ext_len;
5164 		u64 clone_len;
5165 		u64 clone_data_offset;
5166 
5167 		if (slot >= btrfs_header_nritems(leaf)) {
5168 			ret = btrfs_next_leaf(clone_root->root, path);
5169 			if (ret < 0)
5170 				goto out;
5171 			else if (ret > 0)
5172 				break;
5173 			continue;
5174 		}
5175 
5176 		btrfs_item_key_to_cpu(leaf, &key, slot);
5177 
5178 		/*
5179 		 * We might have an implicit trailing hole (NO_HOLES feature
5180 		 * enabled). We deal with it after leaving this loop.
5181 		 */
5182 		if (key.objectid != clone_root->ino ||
5183 		    key.type != BTRFS_EXTENT_DATA_KEY)
5184 			break;
5185 
5186 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5187 		type = btrfs_file_extent_type(leaf, ei);
5188 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5189 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5190 			ext_len = PAGE_ALIGN(ext_len);
5191 		} else {
5192 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5193 		}
5194 
5195 		if (key.offset + ext_len <= clone_root->offset)
5196 			goto next;
5197 
5198 		if (key.offset > clone_root->offset) {
5199 			/* Implicit hole, NO_HOLES feature enabled. */
5200 			u64 hole_len = key.offset - clone_root->offset;
5201 
5202 			if (hole_len > len)
5203 				hole_len = len;
5204 			ret = send_extent_data(sctx, offset, hole_len);
5205 			if (ret < 0)
5206 				goto out;
5207 
5208 			len -= hole_len;
5209 			if (len == 0)
5210 				break;
5211 			offset += hole_len;
5212 			clone_root->offset += hole_len;
5213 			data_offset += hole_len;
5214 		}
5215 
5216 		if (key.offset >= clone_root->offset + len)
5217 			break;
5218 
5219 		if (key.offset >= clone_src_i_size)
5220 			break;
5221 
5222 		if (key.offset + ext_len > clone_src_i_size)
5223 			ext_len = clone_src_i_size - key.offset;
5224 
5225 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5226 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5227 			clone_root->offset = key.offset;
5228 			if (clone_data_offset < data_offset &&
5229 				clone_data_offset + ext_len > data_offset) {
5230 				u64 extent_offset;
5231 
5232 				extent_offset = data_offset - clone_data_offset;
5233 				ext_len -= extent_offset;
5234 				clone_data_offset += extent_offset;
5235 				clone_root->offset += extent_offset;
5236 			}
5237 		}
5238 
5239 		clone_len = min_t(u64, ext_len, len);
5240 
5241 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5242 		    clone_data_offset == data_offset) {
5243 			const u64 src_end = clone_root->offset + clone_len;
5244 			const u64 sectorsize = SZ_64K;
5245 
5246 			/*
5247 			 * We can't clone the last block, when its size is not
5248 			 * sector size aligned, into the middle of a file. If we
5249 			 * do so, the receiver will get a failure (-EINVAL) when
5250 			 * trying to clone or will silently corrupt the data in
5251 			 * the destination file if it's on a kernel without the
5252 			 * fix introduced by commit ac765f83f1397646
5253 			 * ("Btrfs: fix data corruption due to cloning of eof
5254 			 * block).
5255 			 *
5256 			 * So issue a clone of the aligned down range plus a
5257 			 * regular write for the eof block, if we hit that case.
5258 			 *
5259 			 * Also, we use the maximum possible sector size, 64K,
5260 			 * because we don't know what's the sector size of the
5261 			 * filesystem that receives the stream, so we have to
5262 			 * assume the largest possible sector size.
5263 			 */
5264 			if (src_end == clone_src_i_size &&
5265 			    !IS_ALIGNED(src_end, sectorsize) &&
5266 			    offset + clone_len < sctx->cur_inode_size) {
5267 				u64 slen;
5268 
5269 				slen = ALIGN_DOWN(src_end - clone_root->offset,
5270 						  sectorsize);
5271 				if (slen > 0) {
5272 					ret = send_clone(sctx, offset, slen,
5273 							 clone_root);
5274 					if (ret < 0)
5275 						goto out;
5276 				}
5277 				ret = send_extent_data(sctx, offset + slen,
5278 						       clone_len - slen);
5279 			} else {
5280 				ret = send_clone(sctx, offset, clone_len,
5281 						 clone_root);
5282 			}
5283 		} else {
5284 			ret = send_extent_data(sctx, offset, clone_len);
5285 		}
5286 
5287 		if (ret < 0)
5288 			goto out;
5289 
5290 		len -= clone_len;
5291 		if (len == 0)
5292 			break;
5293 		offset += clone_len;
5294 		clone_root->offset += clone_len;
5295 		data_offset += clone_len;
5296 next:
5297 		path->slots[0]++;
5298 	}
5299 
5300 	if (len > 0)
5301 		ret = send_extent_data(sctx, offset, len);
5302 	else
5303 		ret = 0;
5304 out:
5305 	btrfs_free_path(path);
5306 	return ret;
5307 }
5308 
5309 static int send_write_or_clone(struct send_ctx *sctx,
5310 			       struct btrfs_path *path,
5311 			       struct btrfs_key *key,
5312 			       struct clone_root *clone_root)
5313 {
5314 	int ret = 0;
5315 	struct btrfs_file_extent_item *ei;
5316 	u64 offset = key->offset;
5317 	u64 len;
5318 	u8 type;
5319 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5320 
5321 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5322 			struct btrfs_file_extent_item);
5323 	type = btrfs_file_extent_type(path->nodes[0], ei);
5324 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5325 		len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
5326 		/*
5327 		 * it is possible the inline item won't cover the whole page,
5328 		 * but there may be items after this page.  Make
5329 		 * sure to send the whole thing
5330 		 */
5331 		len = PAGE_ALIGN(len);
5332 	} else {
5333 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5334 	}
5335 
5336 	if (offset >= sctx->cur_inode_size) {
5337 		ret = 0;
5338 		goto out;
5339 	}
5340 	if (offset + len > sctx->cur_inode_size)
5341 		len = sctx->cur_inode_size - offset;
5342 	if (len == 0) {
5343 		ret = 0;
5344 		goto out;
5345 	}
5346 
5347 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5348 		u64 disk_byte;
5349 		u64 data_offset;
5350 
5351 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5352 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5353 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5354 				  offset, len);
5355 	} else {
5356 		ret = send_extent_data(sctx, offset, len);
5357 	}
5358 	sctx->cur_inode_next_write_offset = offset + len;
5359 out:
5360 	return ret;
5361 }
5362 
5363 static int is_extent_unchanged(struct send_ctx *sctx,
5364 			       struct btrfs_path *left_path,
5365 			       struct btrfs_key *ekey)
5366 {
5367 	int ret = 0;
5368 	struct btrfs_key key;
5369 	struct btrfs_path *path = NULL;
5370 	struct extent_buffer *eb;
5371 	int slot;
5372 	struct btrfs_key found_key;
5373 	struct btrfs_file_extent_item *ei;
5374 	u64 left_disknr;
5375 	u64 right_disknr;
5376 	u64 left_offset;
5377 	u64 right_offset;
5378 	u64 left_offset_fixed;
5379 	u64 left_len;
5380 	u64 right_len;
5381 	u64 left_gen;
5382 	u64 right_gen;
5383 	u8 left_type;
5384 	u8 right_type;
5385 
5386 	path = alloc_path_for_send();
5387 	if (!path)
5388 		return -ENOMEM;
5389 
5390 	eb = left_path->nodes[0];
5391 	slot = left_path->slots[0];
5392 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5393 	left_type = btrfs_file_extent_type(eb, ei);
5394 
5395 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5396 		ret = 0;
5397 		goto out;
5398 	}
5399 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5400 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5401 	left_offset = btrfs_file_extent_offset(eb, ei);
5402 	left_gen = btrfs_file_extent_generation(eb, ei);
5403 
5404 	/*
5405 	 * Following comments will refer to these graphics. L is the left
5406 	 * extents which we are checking at the moment. 1-8 are the right
5407 	 * extents that we iterate.
5408 	 *
5409 	 *       |-----L-----|
5410 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5411 	 *
5412 	 *       |-----L-----|
5413 	 * |--1--|-2b-|...(same as above)
5414 	 *
5415 	 * Alternative situation. Happens on files where extents got split.
5416 	 *       |-----L-----|
5417 	 * |-----------7-----------|-6-|
5418 	 *
5419 	 * Alternative situation. Happens on files which got larger.
5420 	 *       |-----L-----|
5421 	 * |-8-|
5422 	 * Nothing follows after 8.
5423 	 */
5424 
5425 	key.objectid = ekey->objectid;
5426 	key.type = BTRFS_EXTENT_DATA_KEY;
5427 	key.offset = ekey->offset;
5428 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5429 	if (ret < 0)
5430 		goto out;
5431 	if (ret) {
5432 		ret = 0;
5433 		goto out;
5434 	}
5435 
5436 	/*
5437 	 * Handle special case where the right side has no extents at all.
5438 	 */
5439 	eb = path->nodes[0];
5440 	slot = path->slots[0];
5441 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5442 	if (found_key.objectid != key.objectid ||
5443 	    found_key.type != key.type) {
5444 		/* If we're a hole then just pretend nothing changed */
5445 		ret = (left_disknr) ? 0 : 1;
5446 		goto out;
5447 	}
5448 
5449 	/*
5450 	 * We're now on 2a, 2b or 7.
5451 	 */
5452 	key = found_key;
5453 	while (key.offset < ekey->offset + left_len) {
5454 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5455 		right_type = btrfs_file_extent_type(eb, ei);
5456 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5457 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5458 			ret = 0;
5459 			goto out;
5460 		}
5461 
5462 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5463 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
5464 			right_len = PAGE_ALIGN(right_len);
5465 		} else {
5466 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5467 		}
5468 
5469 		/*
5470 		 * Are we at extent 8? If yes, we know the extent is changed.
5471 		 * This may only happen on the first iteration.
5472 		 */
5473 		if (found_key.offset + right_len <= ekey->offset) {
5474 			/* If we're a hole just pretend nothing changed */
5475 			ret = (left_disknr) ? 0 : 1;
5476 			goto out;
5477 		}
5478 
5479 		/*
5480 		 * We just wanted to see if when we have an inline extent, what
5481 		 * follows it is a regular extent (wanted to check the above
5482 		 * condition for inline extents too). This should normally not
5483 		 * happen but it's possible for example when we have an inline
5484 		 * compressed extent representing data with a size matching
5485 		 * the page size (currently the same as sector size).
5486 		 */
5487 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5488 			ret = 0;
5489 			goto out;
5490 		}
5491 
5492 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5493 		right_offset = btrfs_file_extent_offset(eb, ei);
5494 		right_gen = btrfs_file_extent_generation(eb, ei);
5495 
5496 		left_offset_fixed = left_offset;
5497 		if (key.offset < ekey->offset) {
5498 			/* Fix the right offset for 2a and 7. */
5499 			right_offset += ekey->offset - key.offset;
5500 		} else {
5501 			/* Fix the left offset for all behind 2a and 2b */
5502 			left_offset_fixed += key.offset - ekey->offset;
5503 		}
5504 
5505 		/*
5506 		 * Check if we have the same extent.
5507 		 */
5508 		if (left_disknr != right_disknr ||
5509 		    left_offset_fixed != right_offset ||
5510 		    left_gen != right_gen) {
5511 			ret = 0;
5512 			goto out;
5513 		}
5514 
5515 		/*
5516 		 * Go to the next extent.
5517 		 */
5518 		ret = btrfs_next_item(sctx->parent_root, path);
5519 		if (ret < 0)
5520 			goto out;
5521 		if (!ret) {
5522 			eb = path->nodes[0];
5523 			slot = path->slots[0];
5524 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5525 		}
5526 		if (ret || found_key.objectid != key.objectid ||
5527 		    found_key.type != key.type) {
5528 			key.offset += right_len;
5529 			break;
5530 		}
5531 		if (found_key.offset != key.offset + right_len) {
5532 			ret = 0;
5533 			goto out;
5534 		}
5535 		key = found_key;
5536 	}
5537 
5538 	/*
5539 	 * We're now behind the left extent (treat as unchanged) or at the end
5540 	 * of the right side (treat as changed).
5541 	 */
5542 	if (key.offset >= ekey->offset + left_len)
5543 		ret = 1;
5544 	else
5545 		ret = 0;
5546 
5547 
5548 out:
5549 	btrfs_free_path(path);
5550 	return ret;
5551 }
5552 
5553 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5554 {
5555 	struct btrfs_path *path;
5556 	struct btrfs_root *root = sctx->send_root;
5557 	struct btrfs_file_extent_item *fi;
5558 	struct btrfs_key key;
5559 	u64 extent_end;
5560 	u8 type;
5561 	int ret;
5562 
5563 	path = alloc_path_for_send();
5564 	if (!path)
5565 		return -ENOMEM;
5566 
5567 	sctx->cur_inode_last_extent = 0;
5568 
5569 	key.objectid = sctx->cur_ino;
5570 	key.type = BTRFS_EXTENT_DATA_KEY;
5571 	key.offset = offset;
5572 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5573 	if (ret < 0)
5574 		goto out;
5575 	ret = 0;
5576 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5577 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5578 		goto out;
5579 
5580 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5581 			    struct btrfs_file_extent_item);
5582 	type = btrfs_file_extent_type(path->nodes[0], fi);
5583 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5584 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5585 		extent_end = ALIGN(key.offset + size,
5586 				   sctx->send_root->fs_info->sectorsize);
5587 	} else {
5588 		extent_end = key.offset +
5589 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5590 	}
5591 	sctx->cur_inode_last_extent = extent_end;
5592 out:
5593 	btrfs_free_path(path);
5594 	return ret;
5595 }
5596 
5597 static int range_is_hole_in_parent(struct send_ctx *sctx,
5598 				   const u64 start,
5599 				   const u64 end)
5600 {
5601 	struct btrfs_path *path;
5602 	struct btrfs_key key;
5603 	struct btrfs_root *root = sctx->parent_root;
5604 	u64 search_start = start;
5605 	int ret;
5606 
5607 	path = alloc_path_for_send();
5608 	if (!path)
5609 		return -ENOMEM;
5610 
5611 	key.objectid = sctx->cur_ino;
5612 	key.type = BTRFS_EXTENT_DATA_KEY;
5613 	key.offset = search_start;
5614 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5615 	if (ret < 0)
5616 		goto out;
5617 	if (ret > 0 && path->slots[0] > 0)
5618 		path->slots[0]--;
5619 
5620 	while (search_start < end) {
5621 		struct extent_buffer *leaf = path->nodes[0];
5622 		int slot = path->slots[0];
5623 		struct btrfs_file_extent_item *fi;
5624 		u64 extent_end;
5625 
5626 		if (slot >= btrfs_header_nritems(leaf)) {
5627 			ret = btrfs_next_leaf(root, path);
5628 			if (ret < 0)
5629 				goto out;
5630 			else if (ret > 0)
5631 				break;
5632 			continue;
5633 		}
5634 
5635 		btrfs_item_key_to_cpu(leaf, &key, slot);
5636 		if (key.objectid < sctx->cur_ino ||
5637 		    key.type < BTRFS_EXTENT_DATA_KEY)
5638 			goto next;
5639 		if (key.objectid > sctx->cur_ino ||
5640 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5641 		    key.offset >= end)
5642 			break;
5643 
5644 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5645 		if (btrfs_file_extent_type(leaf, fi) ==
5646 		    BTRFS_FILE_EXTENT_INLINE) {
5647 			u64 size = btrfs_file_extent_ram_bytes(leaf, fi);
5648 
5649 			extent_end = ALIGN(key.offset + size,
5650 					   root->fs_info->sectorsize);
5651 		} else {
5652 			extent_end = key.offset +
5653 				btrfs_file_extent_num_bytes(leaf, fi);
5654 		}
5655 		if (extent_end <= start)
5656 			goto next;
5657 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5658 			search_start = extent_end;
5659 			goto next;
5660 		}
5661 		ret = 0;
5662 		goto out;
5663 next:
5664 		path->slots[0]++;
5665 	}
5666 	ret = 1;
5667 out:
5668 	btrfs_free_path(path);
5669 	return ret;
5670 }
5671 
5672 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5673 			   struct btrfs_key *key)
5674 {
5675 	struct btrfs_file_extent_item *fi;
5676 	u64 extent_end;
5677 	u8 type;
5678 	int ret = 0;
5679 
5680 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5681 		return 0;
5682 
5683 	if (sctx->cur_inode_last_extent == (u64)-1) {
5684 		ret = get_last_extent(sctx, key->offset - 1);
5685 		if (ret)
5686 			return ret;
5687 	}
5688 
5689 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5690 			    struct btrfs_file_extent_item);
5691 	type = btrfs_file_extent_type(path->nodes[0], fi);
5692 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5693 		u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi);
5694 		extent_end = ALIGN(key->offset + size,
5695 				   sctx->send_root->fs_info->sectorsize);
5696 	} else {
5697 		extent_end = key->offset +
5698 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5699 	}
5700 
5701 	if (path->slots[0] == 0 &&
5702 	    sctx->cur_inode_last_extent < key->offset) {
5703 		/*
5704 		 * We might have skipped entire leafs that contained only
5705 		 * file extent items for our current inode. These leafs have
5706 		 * a generation number smaller (older) than the one in the
5707 		 * current leaf and the leaf our last extent came from, and
5708 		 * are located between these 2 leafs.
5709 		 */
5710 		ret = get_last_extent(sctx, key->offset - 1);
5711 		if (ret)
5712 			return ret;
5713 	}
5714 
5715 	if (sctx->cur_inode_last_extent < key->offset) {
5716 		ret = range_is_hole_in_parent(sctx,
5717 					      sctx->cur_inode_last_extent,
5718 					      key->offset);
5719 		if (ret < 0)
5720 			return ret;
5721 		else if (ret == 0)
5722 			ret = send_hole(sctx, key->offset);
5723 		else
5724 			ret = 0;
5725 	}
5726 	sctx->cur_inode_last_extent = extent_end;
5727 	return ret;
5728 }
5729 
5730 static int process_extent(struct send_ctx *sctx,
5731 			  struct btrfs_path *path,
5732 			  struct btrfs_key *key)
5733 {
5734 	struct clone_root *found_clone = NULL;
5735 	int ret = 0;
5736 
5737 	if (S_ISLNK(sctx->cur_inode_mode))
5738 		return 0;
5739 
5740 	if (sctx->parent_root && !sctx->cur_inode_new) {
5741 		ret = is_extent_unchanged(sctx, path, key);
5742 		if (ret < 0)
5743 			goto out;
5744 		if (ret) {
5745 			ret = 0;
5746 			goto out_hole;
5747 		}
5748 	} else {
5749 		struct btrfs_file_extent_item *ei;
5750 		u8 type;
5751 
5752 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5753 				    struct btrfs_file_extent_item);
5754 		type = btrfs_file_extent_type(path->nodes[0], ei);
5755 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5756 		    type == BTRFS_FILE_EXTENT_REG) {
5757 			/*
5758 			 * The send spec does not have a prealloc command yet,
5759 			 * so just leave a hole for prealloc'ed extents until
5760 			 * we have enough commands queued up to justify rev'ing
5761 			 * the send spec.
5762 			 */
5763 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5764 				ret = 0;
5765 				goto out;
5766 			}
5767 
5768 			/* Have a hole, just skip it. */
5769 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5770 				ret = 0;
5771 				goto out;
5772 			}
5773 		}
5774 	}
5775 
5776 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5777 			sctx->cur_inode_size, &found_clone);
5778 	if (ret != -ENOENT && ret < 0)
5779 		goto out;
5780 
5781 	ret = send_write_or_clone(sctx, path, key, found_clone);
5782 	if (ret)
5783 		goto out;
5784 out_hole:
5785 	ret = maybe_send_hole(sctx, path, key);
5786 out:
5787 	return ret;
5788 }
5789 
5790 static int process_all_extents(struct send_ctx *sctx)
5791 {
5792 	int ret;
5793 	struct btrfs_root *root;
5794 	struct btrfs_path *path;
5795 	struct btrfs_key key;
5796 	struct btrfs_key found_key;
5797 	struct extent_buffer *eb;
5798 	int slot;
5799 
5800 	root = sctx->send_root;
5801 	path = alloc_path_for_send();
5802 	if (!path)
5803 		return -ENOMEM;
5804 
5805 	key.objectid = sctx->cmp_key->objectid;
5806 	key.type = BTRFS_EXTENT_DATA_KEY;
5807 	key.offset = 0;
5808 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5809 	if (ret < 0)
5810 		goto out;
5811 
5812 	while (1) {
5813 		eb = path->nodes[0];
5814 		slot = path->slots[0];
5815 
5816 		if (slot >= btrfs_header_nritems(eb)) {
5817 			ret = btrfs_next_leaf(root, path);
5818 			if (ret < 0) {
5819 				goto out;
5820 			} else if (ret > 0) {
5821 				ret = 0;
5822 				break;
5823 			}
5824 			continue;
5825 		}
5826 
5827 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5828 
5829 		if (found_key.objectid != key.objectid ||
5830 		    found_key.type != key.type) {
5831 			ret = 0;
5832 			goto out;
5833 		}
5834 
5835 		ret = process_extent(sctx, path, &found_key);
5836 		if (ret < 0)
5837 			goto out;
5838 
5839 		path->slots[0]++;
5840 	}
5841 
5842 out:
5843 	btrfs_free_path(path);
5844 	return ret;
5845 }
5846 
5847 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5848 					   int *pending_move,
5849 					   int *refs_processed)
5850 {
5851 	int ret = 0;
5852 
5853 	if (sctx->cur_ino == 0)
5854 		goto out;
5855 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5856 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5857 		goto out;
5858 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5859 		goto out;
5860 
5861 	ret = process_recorded_refs(sctx, pending_move);
5862 	if (ret < 0)
5863 		goto out;
5864 
5865 	*refs_processed = 1;
5866 out:
5867 	return ret;
5868 }
5869 
5870 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5871 {
5872 	int ret = 0;
5873 	u64 left_mode;
5874 	u64 left_uid;
5875 	u64 left_gid;
5876 	u64 right_mode;
5877 	u64 right_uid;
5878 	u64 right_gid;
5879 	int need_chmod = 0;
5880 	int need_chown = 0;
5881 	int need_truncate = 1;
5882 	int pending_move = 0;
5883 	int refs_processed = 0;
5884 
5885 	if (sctx->ignore_cur_inode)
5886 		return 0;
5887 
5888 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5889 					      &refs_processed);
5890 	if (ret < 0)
5891 		goto out;
5892 
5893 	/*
5894 	 * We have processed the refs and thus need to advance send_progress.
5895 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5896 	 * inode into account.
5897 	 *
5898 	 * On the other hand, if our current inode is a directory and couldn't
5899 	 * be moved/renamed because its parent was renamed/moved too and it has
5900 	 * a higher inode number, we can only move/rename our current inode
5901 	 * after we moved/renamed its parent. Therefore in this case operate on
5902 	 * the old path (pre move/rename) of our current inode, and the
5903 	 * move/rename will be performed later.
5904 	 */
5905 	if (refs_processed && !pending_move)
5906 		sctx->send_progress = sctx->cur_ino + 1;
5907 
5908 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5909 		goto out;
5910 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5911 		goto out;
5912 
5913 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5914 			&left_mode, &left_uid, &left_gid, NULL);
5915 	if (ret < 0)
5916 		goto out;
5917 
5918 	if (!sctx->parent_root || sctx->cur_inode_new) {
5919 		need_chown = 1;
5920 		if (!S_ISLNK(sctx->cur_inode_mode))
5921 			need_chmod = 1;
5922 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5923 			need_truncate = 0;
5924 	} else {
5925 		u64 old_size;
5926 
5927 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5928 				&old_size, NULL, &right_mode, &right_uid,
5929 				&right_gid, NULL);
5930 		if (ret < 0)
5931 			goto out;
5932 
5933 		if (left_uid != right_uid || left_gid != right_gid)
5934 			need_chown = 1;
5935 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5936 			need_chmod = 1;
5937 		if ((old_size == sctx->cur_inode_size) ||
5938 		    (sctx->cur_inode_size > old_size &&
5939 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5940 			need_truncate = 0;
5941 	}
5942 
5943 	if (S_ISREG(sctx->cur_inode_mode)) {
5944 		if (need_send_hole(sctx)) {
5945 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5946 			    sctx->cur_inode_last_extent <
5947 			    sctx->cur_inode_size) {
5948 				ret = get_last_extent(sctx, (u64)-1);
5949 				if (ret)
5950 					goto out;
5951 			}
5952 			if (sctx->cur_inode_last_extent <
5953 			    sctx->cur_inode_size) {
5954 				ret = send_hole(sctx, sctx->cur_inode_size);
5955 				if (ret)
5956 					goto out;
5957 			}
5958 		}
5959 		if (need_truncate) {
5960 			ret = send_truncate(sctx, sctx->cur_ino,
5961 					    sctx->cur_inode_gen,
5962 					    sctx->cur_inode_size);
5963 			if (ret < 0)
5964 				goto out;
5965 		}
5966 	}
5967 
5968 	if (need_chown) {
5969 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5970 				left_uid, left_gid);
5971 		if (ret < 0)
5972 			goto out;
5973 	}
5974 	if (need_chmod) {
5975 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5976 				left_mode);
5977 		if (ret < 0)
5978 			goto out;
5979 	}
5980 
5981 	/*
5982 	 * If other directory inodes depended on our current directory
5983 	 * inode's move/rename, now do their move/rename operations.
5984 	 */
5985 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5986 		ret = apply_children_dir_moves(sctx);
5987 		if (ret)
5988 			goto out;
5989 		/*
5990 		 * Need to send that every time, no matter if it actually
5991 		 * changed between the two trees as we have done changes to
5992 		 * the inode before. If our inode is a directory and it's
5993 		 * waiting to be moved/renamed, we will send its utimes when
5994 		 * it's moved/renamed, therefore we don't need to do it here.
5995 		 */
5996 		sctx->send_progress = sctx->cur_ino + 1;
5997 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5998 		if (ret < 0)
5999 			goto out;
6000 	}
6001 
6002 out:
6003 	return ret;
6004 }
6005 
6006 struct parent_paths_ctx {
6007 	struct list_head *refs;
6008 	struct send_ctx *sctx;
6009 };
6010 
6011 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6012 			     void *ctx)
6013 {
6014 	struct parent_paths_ctx *ppctx = ctx;
6015 
6016 	return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6017 			  ppctx->refs);
6018 }
6019 
6020 /*
6021  * Issue unlink operations for all paths of the current inode found in the
6022  * parent snapshot.
6023  */
6024 static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6025 {
6026 	LIST_HEAD(deleted_refs);
6027 	struct btrfs_path *path;
6028 	struct btrfs_key key;
6029 	struct parent_paths_ctx ctx;
6030 	int ret;
6031 
6032 	path = alloc_path_for_send();
6033 	if (!path)
6034 		return -ENOMEM;
6035 
6036 	key.objectid = sctx->cur_ino;
6037 	key.type = BTRFS_INODE_REF_KEY;
6038 	key.offset = 0;
6039 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6040 	if (ret < 0)
6041 		goto out;
6042 
6043 	ctx.refs = &deleted_refs;
6044 	ctx.sctx = sctx;
6045 
6046 	while (true) {
6047 		struct extent_buffer *eb = path->nodes[0];
6048 		int slot = path->slots[0];
6049 
6050 		if (slot >= btrfs_header_nritems(eb)) {
6051 			ret = btrfs_next_leaf(sctx->parent_root, path);
6052 			if (ret < 0)
6053 				goto out;
6054 			else if (ret > 0)
6055 				break;
6056 			continue;
6057 		}
6058 
6059 		btrfs_item_key_to_cpu(eb, &key, slot);
6060 		if (key.objectid != sctx->cur_ino)
6061 			break;
6062 		if (key.type != BTRFS_INODE_REF_KEY &&
6063 		    key.type != BTRFS_INODE_EXTREF_KEY)
6064 			break;
6065 
6066 		ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6067 					record_parent_ref, &ctx);
6068 		if (ret < 0)
6069 			goto out;
6070 
6071 		path->slots[0]++;
6072 	}
6073 
6074 	while (!list_empty(&deleted_refs)) {
6075 		struct recorded_ref *ref;
6076 
6077 		ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6078 		ret = send_unlink(sctx, ref->full_path);
6079 		if (ret < 0)
6080 			goto out;
6081 		fs_path_free(ref->full_path);
6082 		list_del(&ref->list);
6083 		kfree(ref);
6084 	}
6085 	ret = 0;
6086 out:
6087 	btrfs_free_path(path);
6088 	if (ret)
6089 		__free_recorded_refs(&deleted_refs);
6090 	return ret;
6091 }
6092 
6093 static int changed_inode(struct send_ctx *sctx,
6094 			 enum btrfs_compare_tree_result result)
6095 {
6096 	int ret = 0;
6097 	struct btrfs_key *key = sctx->cmp_key;
6098 	struct btrfs_inode_item *left_ii = NULL;
6099 	struct btrfs_inode_item *right_ii = NULL;
6100 	u64 left_gen = 0;
6101 	u64 right_gen = 0;
6102 
6103 	sctx->cur_ino = key->objectid;
6104 	sctx->cur_inode_new_gen = 0;
6105 	sctx->cur_inode_last_extent = (u64)-1;
6106 	sctx->cur_inode_next_write_offset = 0;
6107 	sctx->ignore_cur_inode = false;
6108 
6109 	/*
6110 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6111 	 * functions that the current inode's refs are not updated yet. Later,
6112 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6113 	 */
6114 	sctx->send_progress = sctx->cur_ino;
6115 
6116 	if (result == BTRFS_COMPARE_TREE_NEW ||
6117 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6118 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6119 				sctx->left_path->slots[0],
6120 				struct btrfs_inode_item);
6121 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6122 				left_ii);
6123 	} else {
6124 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6125 				sctx->right_path->slots[0],
6126 				struct btrfs_inode_item);
6127 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6128 				right_ii);
6129 	}
6130 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6131 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6132 				sctx->right_path->slots[0],
6133 				struct btrfs_inode_item);
6134 
6135 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6136 				right_ii);
6137 
6138 		/*
6139 		 * The cur_ino = root dir case is special here. We can't treat
6140 		 * the inode as deleted+reused because it would generate a
6141 		 * stream that tries to delete/mkdir the root dir.
6142 		 */
6143 		if (left_gen != right_gen &&
6144 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6145 			sctx->cur_inode_new_gen = 1;
6146 	}
6147 
6148 	/*
6149 	 * Normally we do not find inodes with a link count of zero (orphans)
6150 	 * because the most common case is to create a snapshot and use it
6151 	 * for a send operation. However other less common use cases involve
6152 	 * using a subvolume and send it after turning it to RO mode just
6153 	 * after deleting all hard links of a file while holding an open
6154 	 * file descriptor against it or turning a RO snapshot into RW mode,
6155 	 * keep an open file descriptor against a file, delete it and then
6156 	 * turn the snapshot back to RO mode before using it for a send
6157 	 * operation. So if we find such cases, ignore the inode and all its
6158 	 * items completely if it's a new inode, or if it's a changed inode
6159 	 * make sure all its previous paths (from the parent snapshot) are all
6160 	 * unlinked and all other the inode items are ignored.
6161 	 */
6162 	if (result == BTRFS_COMPARE_TREE_NEW ||
6163 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6164 		u32 nlinks;
6165 
6166 		nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6167 		if (nlinks == 0) {
6168 			sctx->ignore_cur_inode = true;
6169 			if (result == BTRFS_COMPARE_TREE_CHANGED)
6170 				ret = btrfs_unlink_all_paths(sctx);
6171 			goto out;
6172 		}
6173 	}
6174 
6175 	if (result == BTRFS_COMPARE_TREE_NEW) {
6176 		sctx->cur_inode_gen = left_gen;
6177 		sctx->cur_inode_new = 1;
6178 		sctx->cur_inode_deleted = 0;
6179 		sctx->cur_inode_size = btrfs_inode_size(
6180 				sctx->left_path->nodes[0], left_ii);
6181 		sctx->cur_inode_mode = btrfs_inode_mode(
6182 				sctx->left_path->nodes[0], left_ii);
6183 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6184 				sctx->left_path->nodes[0], left_ii);
6185 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6186 			ret = send_create_inode_if_needed(sctx);
6187 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6188 		sctx->cur_inode_gen = right_gen;
6189 		sctx->cur_inode_new = 0;
6190 		sctx->cur_inode_deleted = 1;
6191 		sctx->cur_inode_size = btrfs_inode_size(
6192 				sctx->right_path->nodes[0], right_ii);
6193 		sctx->cur_inode_mode = btrfs_inode_mode(
6194 				sctx->right_path->nodes[0], right_ii);
6195 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6196 		/*
6197 		 * We need to do some special handling in case the inode was
6198 		 * reported as changed with a changed generation number. This
6199 		 * means that the original inode was deleted and new inode
6200 		 * reused the same inum. So we have to treat the old inode as
6201 		 * deleted and the new one as new.
6202 		 */
6203 		if (sctx->cur_inode_new_gen) {
6204 			/*
6205 			 * First, process the inode as if it was deleted.
6206 			 */
6207 			sctx->cur_inode_gen = right_gen;
6208 			sctx->cur_inode_new = 0;
6209 			sctx->cur_inode_deleted = 1;
6210 			sctx->cur_inode_size = btrfs_inode_size(
6211 					sctx->right_path->nodes[0], right_ii);
6212 			sctx->cur_inode_mode = btrfs_inode_mode(
6213 					sctx->right_path->nodes[0], right_ii);
6214 			ret = process_all_refs(sctx,
6215 					BTRFS_COMPARE_TREE_DELETED);
6216 			if (ret < 0)
6217 				goto out;
6218 
6219 			/*
6220 			 * Now process the inode as if it was new.
6221 			 */
6222 			sctx->cur_inode_gen = left_gen;
6223 			sctx->cur_inode_new = 1;
6224 			sctx->cur_inode_deleted = 0;
6225 			sctx->cur_inode_size = btrfs_inode_size(
6226 					sctx->left_path->nodes[0], left_ii);
6227 			sctx->cur_inode_mode = btrfs_inode_mode(
6228 					sctx->left_path->nodes[0], left_ii);
6229 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6230 					sctx->left_path->nodes[0], left_ii);
6231 			ret = send_create_inode_if_needed(sctx);
6232 			if (ret < 0)
6233 				goto out;
6234 
6235 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6236 			if (ret < 0)
6237 				goto out;
6238 			/*
6239 			 * Advance send_progress now as we did not get into
6240 			 * process_recorded_refs_if_needed in the new_gen case.
6241 			 */
6242 			sctx->send_progress = sctx->cur_ino + 1;
6243 
6244 			/*
6245 			 * Now process all extents and xattrs of the inode as if
6246 			 * they were all new.
6247 			 */
6248 			ret = process_all_extents(sctx);
6249 			if (ret < 0)
6250 				goto out;
6251 			ret = process_all_new_xattrs(sctx);
6252 			if (ret < 0)
6253 				goto out;
6254 		} else {
6255 			sctx->cur_inode_gen = left_gen;
6256 			sctx->cur_inode_new = 0;
6257 			sctx->cur_inode_new_gen = 0;
6258 			sctx->cur_inode_deleted = 0;
6259 			sctx->cur_inode_size = btrfs_inode_size(
6260 					sctx->left_path->nodes[0], left_ii);
6261 			sctx->cur_inode_mode = btrfs_inode_mode(
6262 					sctx->left_path->nodes[0], left_ii);
6263 		}
6264 	}
6265 
6266 out:
6267 	return ret;
6268 }
6269 
6270 /*
6271  * We have to process new refs before deleted refs, but compare_trees gives us
6272  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6273  * first and later process them in process_recorded_refs.
6274  * For the cur_inode_new_gen case, we skip recording completely because
6275  * changed_inode did already initiate processing of refs. The reason for this is
6276  * that in this case, compare_tree actually compares the refs of 2 different
6277  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6278  * refs of the right tree as deleted and all refs of the left tree as new.
6279  */
6280 static int changed_ref(struct send_ctx *sctx,
6281 		       enum btrfs_compare_tree_result result)
6282 {
6283 	int ret = 0;
6284 
6285 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6286 		inconsistent_snapshot_error(sctx, result, "reference");
6287 		return -EIO;
6288 	}
6289 
6290 	if (!sctx->cur_inode_new_gen &&
6291 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6292 		if (result == BTRFS_COMPARE_TREE_NEW)
6293 			ret = record_new_ref(sctx);
6294 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6295 			ret = record_deleted_ref(sctx);
6296 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6297 			ret = record_changed_ref(sctx);
6298 	}
6299 
6300 	return ret;
6301 }
6302 
6303 /*
6304  * Process new/deleted/changed xattrs. We skip processing in the
6305  * cur_inode_new_gen case because changed_inode did already initiate processing
6306  * of xattrs. The reason is the same as in changed_ref
6307  */
6308 static int changed_xattr(struct send_ctx *sctx,
6309 			 enum btrfs_compare_tree_result result)
6310 {
6311 	int ret = 0;
6312 
6313 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6314 		inconsistent_snapshot_error(sctx, result, "xattr");
6315 		return -EIO;
6316 	}
6317 
6318 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6319 		if (result == BTRFS_COMPARE_TREE_NEW)
6320 			ret = process_new_xattr(sctx);
6321 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6322 			ret = process_deleted_xattr(sctx);
6323 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6324 			ret = process_changed_xattr(sctx);
6325 	}
6326 
6327 	return ret;
6328 }
6329 
6330 /*
6331  * Process new/deleted/changed extents. We skip processing in the
6332  * cur_inode_new_gen case because changed_inode did already initiate processing
6333  * of extents. The reason is the same as in changed_ref
6334  */
6335 static int changed_extent(struct send_ctx *sctx,
6336 			  enum btrfs_compare_tree_result result)
6337 {
6338 	int ret = 0;
6339 
6340 	/*
6341 	 * We have found an extent item that changed without the inode item
6342 	 * having changed. This can happen either after relocation (where the
6343 	 * disk_bytenr of an extent item is replaced at
6344 	 * relocation.c:replace_file_extents()) or after deduplication into a
6345 	 * file in both the parent and send snapshots (where an extent item can
6346 	 * get modified or replaced with a new one). Note that deduplication
6347 	 * updates the inode item, but it only changes the iversion (sequence
6348 	 * field in the inode item) of the inode, so if a file is deduplicated
6349 	 * the same amount of times in both the parent and send snapshots, its
6350 	 * iversion becames the same in both snapshots, whence the inode item is
6351 	 * the same on both snapshots.
6352 	 */
6353 	if (sctx->cur_ino != sctx->cmp_key->objectid)
6354 		return 0;
6355 
6356 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6357 		if (result != BTRFS_COMPARE_TREE_DELETED)
6358 			ret = process_extent(sctx, sctx->left_path,
6359 					sctx->cmp_key);
6360 	}
6361 
6362 	return ret;
6363 }
6364 
6365 static int dir_changed(struct send_ctx *sctx, u64 dir)
6366 {
6367 	u64 orig_gen, new_gen;
6368 	int ret;
6369 
6370 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6371 			     NULL, NULL);
6372 	if (ret)
6373 		return ret;
6374 
6375 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6376 			     NULL, NULL, NULL);
6377 	if (ret)
6378 		return ret;
6379 
6380 	return (orig_gen != new_gen) ? 1 : 0;
6381 }
6382 
6383 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6384 			struct btrfs_key *key)
6385 {
6386 	struct btrfs_inode_extref *extref;
6387 	struct extent_buffer *leaf;
6388 	u64 dirid = 0, last_dirid = 0;
6389 	unsigned long ptr;
6390 	u32 item_size;
6391 	u32 cur_offset = 0;
6392 	int ref_name_len;
6393 	int ret = 0;
6394 
6395 	/* Easy case, just check this one dirid */
6396 	if (key->type == BTRFS_INODE_REF_KEY) {
6397 		dirid = key->offset;
6398 
6399 		ret = dir_changed(sctx, dirid);
6400 		goto out;
6401 	}
6402 
6403 	leaf = path->nodes[0];
6404 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6405 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6406 	while (cur_offset < item_size) {
6407 		extref = (struct btrfs_inode_extref *)(ptr +
6408 						       cur_offset);
6409 		dirid = btrfs_inode_extref_parent(leaf, extref);
6410 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6411 		cur_offset += ref_name_len + sizeof(*extref);
6412 		if (dirid == last_dirid)
6413 			continue;
6414 		ret = dir_changed(sctx, dirid);
6415 		if (ret)
6416 			break;
6417 		last_dirid = dirid;
6418 	}
6419 out:
6420 	return ret;
6421 }
6422 
6423 /*
6424  * Updates compare related fields in sctx and simply forwards to the actual
6425  * changed_xxx functions.
6426  */
6427 static int changed_cb(struct btrfs_path *left_path,
6428 		      struct btrfs_path *right_path,
6429 		      struct btrfs_key *key,
6430 		      enum btrfs_compare_tree_result result,
6431 		      void *ctx)
6432 {
6433 	int ret = 0;
6434 	struct send_ctx *sctx = ctx;
6435 
6436 	if (result == BTRFS_COMPARE_TREE_SAME) {
6437 		if (key->type == BTRFS_INODE_REF_KEY ||
6438 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6439 			ret = compare_refs(sctx, left_path, key);
6440 			if (!ret)
6441 				return 0;
6442 			if (ret < 0)
6443 				return ret;
6444 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6445 			return maybe_send_hole(sctx, left_path, key);
6446 		} else {
6447 			return 0;
6448 		}
6449 		result = BTRFS_COMPARE_TREE_CHANGED;
6450 		ret = 0;
6451 	}
6452 
6453 	sctx->left_path = left_path;
6454 	sctx->right_path = right_path;
6455 	sctx->cmp_key = key;
6456 
6457 	ret = finish_inode_if_needed(sctx, 0);
6458 	if (ret < 0)
6459 		goto out;
6460 
6461 	/* Ignore non-FS objects */
6462 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6463 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6464 		goto out;
6465 
6466 	if (key->type == BTRFS_INODE_ITEM_KEY) {
6467 		ret = changed_inode(sctx, result);
6468 	} else if (!sctx->ignore_cur_inode) {
6469 		if (key->type == BTRFS_INODE_REF_KEY ||
6470 		    key->type == BTRFS_INODE_EXTREF_KEY)
6471 			ret = changed_ref(sctx, result);
6472 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
6473 			ret = changed_xattr(sctx, result);
6474 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
6475 			ret = changed_extent(sctx, result);
6476 	}
6477 
6478 out:
6479 	return ret;
6480 }
6481 
6482 static int full_send_tree(struct send_ctx *sctx)
6483 {
6484 	int ret;
6485 	struct btrfs_root *send_root = sctx->send_root;
6486 	struct btrfs_key key;
6487 	struct btrfs_path *path;
6488 	struct extent_buffer *eb;
6489 	int slot;
6490 
6491 	path = alloc_path_for_send();
6492 	if (!path)
6493 		return -ENOMEM;
6494 
6495 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6496 	key.type = BTRFS_INODE_ITEM_KEY;
6497 	key.offset = 0;
6498 
6499 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6500 	if (ret < 0)
6501 		goto out;
6502 	if (ret)
6503 		goto out_finish;
6504 
6505 	while (1) {
6506 		eb = path->nodes[0];
6507 		slot = path->slots[0];
6508 		btrfs_item_key_to_cpu(eb, &key, slot);
6509 
6510 		ret = changed_cb(path, NULL, &key,
6511 				 BTRFS_COMPARE_TREE_NEW, sctx);
6512 		if (ret < 0)
6513 			goto out;
6514 
6515 		ret = btrfs_next_item(send_root, path);
6516 		if (ret < 0)
6517 			goto out;
6518 		if (ret) {
6519 			ret  = 0;
6520 			break;
6521 		}
6522 	}
6523 
6524 out_finish:
6525 	ret = finish_inode_if_needed(sctx, 1);
6526 
6527 out:
6528 	btrfs_free_path(path);
6529 	return ret;
6530 }
6531 
6532 static int tree_move_down(struct btrfs_path *path, int *level)
6533 {
6534 	struct extent_buffer *eb;
6535 
6536 	BUG_ON(*level == 0);
6537 	eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6538 	if (IS_ERR(eb))
6539 		return PTR_ERR(eb);
6540 
6541 	path->nodes[*level - 1] = eb;
6542 	path->slots[*level - 1] = 0;
6543 	(*level)--;
6544 	return 0;
6545 }
6546 
6547 static int tree_move_next_or_upnext(struct btrfs_path *path,
6548 				    int *level, int root_level)
6549 {
6550 	int ret = 0;
6551 	int nritems;
6552 	nritems = btrfs_header_nritems(path->nodes[*level]);
6553 
6554 	path->slots[*level]++;
6555 
6556 	while (path->slots[*level] >= nritems) {
6557 		if (*level == root_level)
6558 			return -1;
6559 
6560 		/* move upnext */
6561 		path->slots[*level] = 0;
6562 		free_extent_buffer(path->nodes[*level]);
6563 		path->nodes[*level] = NULL;
6564 		(*level)++;
6565 		path->slots[*level]++;
6566 
6567 		nritems = btrfs_header_nritems(path->nodes[*level]);
6568 		ret = 1;
6569 	}
6570 	return ret;
6571 }
6572 
6573 /*
6574  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6575  * or down.
6576  */
6577 static int tree_advance(struct btrfs_path *path,
6578 			int *level, int root_level,
6579 			int allow_down,
6580 			struct btrfs_key *key)
6581 {
6582 	int ret;
6583 
6584 	if (*level == 0 || !allow_down) {
6585 		ret = tree_move_next_or_upnext(path, level, root_level);
6586 	} else {
6587 		ret = tree_move_down(path, level);
6588 	}
6589 	if (ret >= 0) {
6590 		if (*level == 0)
6591 			btrfs_item_key_to_cpu(path->nodes[*level], key,
6592 					path->slots[*level]);
6593 		else
6594 			btrfs_node_key_to_cpu(path->nodes[*level], key,
6595 					path->slots[*level]);
6596 	}
6597 	return ret;
6598 }
6599 
6600 static int tree_compare_item(struct btrfs_path *left_path,
6601 			     struct btrfs_path *right_path,
6602 			     char *tmp_buf)
6603 {
6604 	int cmp;
6605 	int len1, len2;
6606 	unsigned long off1, off2;
6607 
6608 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6609 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6610 	if (len1 != len2)
6611 		return 1;
6612 
6613 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6614 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6615 				right_path->slots[0]);
6616 
6617 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6618 
6619 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6620 	if (cmp)
6621 		return 1;
6622 	return 0;
6623 }
6624 
6625 /*
6626  * This function compares two trees and calls the provided callback for
6627  * every changed/new/deleted item it finds.
6628  * If shared tree blocks are encountered, whole subtrees are skipped, making
6629  * the compare pretty fast on snapshotted subvolumes.
6630  *
6631  * This currently works on commit roots only. As commit roots are read only,
6632  * we don't do any locking. The commit roots are protected with transactions.
6633  * Transactions are ended and rejoined when a commit is tried in between.
6634  *
6635  * This function checks for modifications done to the trees while comparing.
6636  * If it detects a change, it aborts immediately.
6637  */
6638 static int btrfs_compare_trees(struct btrfs_root *left_root,
6639 			struct btrfs_root *right_root,
6640 			btrfs_changed_cb_t changed_cb, void *ctx)
6641 {
6642 	struct btrfs_fs_info *fs_info = left_root->fs_info;
6643 	int ret;
6644 	int cmp;
6645 	struct btrfs_path *left_path = NULL;
6646 	struct btrfs_path *right_path = NULL;
6647 	struct btrfs_key left_key;
6648 	struct btrfs_key right_key;
6649 	char *tmp_buf = NULL;
6650 	int left_root_level;
6651 	int right_root_level;
6652 	int left_level;
6653 	int right_level;
6654 	int left_end_reached;
6655 	int right_end_reached;
6656 	int advance_left;
6657 	int advance_right;
6658 	u64 left_blockptr;
6659 	u64 right_blockptr;
6660 	u64 left_gen;
6661 	u64 right_gen;
6662 
6663 	left_path = btrfs_alloc_path();
6664 	if (!left_path) {
6665 		ret = -ENOMEM;
6666 		goto out;
6667 	}
6668 	right_path = btrfs_alloc_path();
6669 	if (!right_path) {
6670 		ret = -ENOMEM;
6671 		goto out;
6672 	}
6673 
6674 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6675 	if (!tmp_buf) {
6676 		ret = -ENOMEM;
6677 		goto out;
6678 	}
6679 
6680 	left_path->search_commit_root = 1;
6681 	left_path->skip_locking = 1;
6682 	right_path->search_commit_root = 1;
6683 	right_path->skip_locking = 1;
6684 
6685 	/*
6686 	 * Strategy: Go to the first items of both trees. Then do
6687 	 *
6688 	 * If both trees are at level 0
6689 	 *   Compare keys of current items
6690 	 *     If left < right treat left item as new, advance left tree
6691 	 *       and repeat
6692 	 *     If left > right treat right item as deleted, advance right tree
6693 	 *       and repeat
6694 	 *     If left == right do deep compare of items, treat as changed if
6695 	 *       needed, advance both trees and repeat
6696 	 * If both trees are at the same level but not at level 0
6697 	 *   Compare keys of current nodes/leafs
6698 	 *     If left < right advance left tree and repeat
6699 	 *     If left > right advance right tree and repeat
6700 	 *     If left == right compare blockptrs of the next nodes/leafs
6701 	 *       If they match advance both trees but stay at the same level
6702 	 *         and repeat
6703 	 *       If they don't match advance both trees while allowing to go
6704 	 *         deeper and repeat
6705 	 * If tree levels are different
6706 	 *   Advance the tree that needs it and repeat
6707 	 *
6708 	 * Advancing a tree means:
6709 	 *   If we are at level 0, try to go to the next slot. If that's not
6710 	 *   possible, go one level up and repeat. Stop when we found a level
6711 	 *   where we could go to the next slot. We may at this point be on a
6712 	 *   node or a leaf.
6713 	 *
6714 	 *   If we are not at level 0 and not on shared tree blocks, go one
6715 	 *   level deeper.
6716 	 *
6717 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
6718 	 *   the right if possible or go up and right.
6719 	 */
6720 
6721 	down_read(&fs_info->commit_root_sem);
6722 	left_level = btrfs_header_level(left_root->commit_root);
6723 	left_root_level = left_level;
6724 	left_path->nodes[left_level] =
6725 			btrfs_clone_extent_buffer(left_root->commit_root);
6726 	if (!left_path->nodes[left_level]) {
6727 		up_read(&fs_info->commit_root_sem);
6728 		ret = -ENOMEM;
6729 		goto out;
6730 	}
6731 
6732 	right_level = btrfs_header_level(right_root->commit_root);
6733 	right_root_level = right_level;
6734 	right_path->nodes[right_level] =
6735 			btrfs_clone_extent_buffer(right_root->commit_root);
6736 	if (!right_path->nodes[right_level]) {
6737 		up_read(&fs_info->commit_root_sem);
6738 		ret = -ENOMEM;
6739 		goto out;
6740 	}
6741 	up_read(&fs_info->commit_root_sem);
6742 
6743 	if (left_level == 0)
6744 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
6745 				&left_key, left_path->slots[left_level]);
6746 	else
6747 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
6748 				&left_key, left_path->slots[left_level]);
6749 	if (right_level == 0)
6750 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
6751 				&right_key, right_path->slots[right_level]);
6752 	else
6753 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
6754 				&right_key, right_path->slots[right_level]);
6755 
6756 	left_end_reached = right_end_reached = 0;
6757 	advance_left = advance_right = 0;
6758 
6759 	while (1) {
6760 		cond_resched();
6761 		if (advance_left && !left_end_reached) {
6762 			ret = tree_advance(left_path, &left_level,
6763 					left_root_level,
6764 					advance_left != ADVANCE_ONLY_NEXT,
6765 					&left_key);
6766 			if (ret == -1)
6767 				left_end_reached = ADVANCE;
6768 			else if (ret < 0)
6769 				goto out;
6770 			advance_left = 0;
6771 		}
6772 		if (advance_right && !right_end_reached) {
6773 			ret = tree_advance(right_path, &right_level,
6774 					right_root_level,
6775 					advance_right != ADVANCE_ONLY_NEXT,
6776 					&right_key);
6777 			if (ret == -1)
6778 				right_end_reached = ADVANCE;
6779 			else if (ret < 0)
6780 				goto out;
6781 			advance_right = 0;
6782 		}
6783 
6784 		if (left_end_reached && right_end_reached) {
6785 			ret = 0;
6786 			goto out;
6787 		} else if (left_end_reached) {
6788 			if (right_level == 0) {
6789 				ret = changed_cb(left_path, right_path,
6790 						&right_key,
6791 						BTRFS_COMPARE_TREE_DELETED,
6792 						ctx);
6793 				if (ret < 0)
6794 					goto out;
6795 			}
6796 			advance_right = ADVANCE;
6797 			continue;
6798 		} else if (right_end_reached) {
6799 			if (left_level == 0) {
6800 				ret = changed_cb(left_path, right_path,
6801 						&left_key,
6802 						BTRFS_COMPARE_TREE_NEW,
6803 						ctx);
6804 				if (ret < 0)
6805 					goto out;
6806 			}
6807 			advance_left = ADVANCE;
6808 			continue;
6809 		}
6810 
6811 		if (left_level == 0 && right_level == 0) {
6812 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6813 			if (cmp < 0) {
6814 				ret = changed_cb(left_path, right_path,
6815 						&left_key,
6816 						BTRFS_COMPARE_TREE_NEW,
6817 						ctx);
6818 				if (ret < 0)
6819 					goto out;
6820 				advance_left = ADVANCE;
6821 			} else if (cmp > 0) {
6822 				ret = changed_cb(left_path, right_path,
6823 						&right_key,
6824 						BTRFS_COMPARE_TREE_DELETED,
6825 						ctx);
6826 				if (ret < 0)
6827 					goto out;
6828 				advance_right = ADVANCE;
6829 			} else {
6830 				enum btrfs_compare_tree_result result;
6831 
6832 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6833 				ret = tree_compare_item(left_path, right_path,
6834 							tmp_buf);
6835 				if (ret)
6836 					result = BTRFS_COMPARE_TREE_CHANGED;
6837 				else
6838 					result = BTRFS_COMPARE_TREE_SAME;
6839 				ret = changed_cb(left_path, right_path,
6840 						 &left_key, result, ctx);
6841 				if (ret < 0)
6842 					goto out;
6843 				advance_left = ADVANCE;
6844 				advance_right = ADVANCE;
6845 			}
6846 		} else if (left_level == right_level) {
6847 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6848 			if (cmp < 0) {
6849 				advance_left = ADVANCE;
6850 			} else if (cmp > 0) {
6851 				advance_right = ADVANCE;
6852 			} else {
6853 				left_blockptr = btrfs_node_blockptr(
6854 						left_path->nodes[left_level],
6855 						left_path->slots[left_level]);
6856 				right_blockptr = btrfs_node_blockptr(
6857 						right_path->nodes[right_level],
6858 						right_path->slots[right_level]);
6859 				left_gen = btrfs_node_ptr_generation(
6860 						left_path->nodes[left_level],
6861 						left_path->slots[left_level]);
6862 				right_gen = btrfs_node_ptr_generation(
6863 						right_path->nodes[right_level],
6864 						right_path->slots[right_level]);
6865 				if (left_blockptr == right_blockptr &&
6866 				    left_gen == right_gen) {
6867 					/*
6868 					 * As we're on a shared block, don't
6869 					 * allow to go deeper.
6870 					 */
6871 					advance_left = ADVANCE_ONLY_NEXT;
6872 					advance_right = ADVANCE_ONLY_NEXT;
6873 				} else {
6874 					advance_left = ADVANCE;
6875 					advance_right = ADVANCE;
6876 				}
6877 			}
6878 		} else if (left_level < right_level) {
6879 			advance_right = ADVANCE;
6880 		} else {
6881 			advance_left = ADVANCE;
6882 		}
6883 	}
6884 
6885 out:
6886 	btrfs_free_path(left_path);
6887 	btrfs_free_path(right_path);
6888 	kvfree(tmp_buf);
6889 	return ret;
6890 }
6891 
6892 static int send_subvol(struct send_ctx *sctx)
6893 {
6894 	int ret;
6895 
6896 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6897 		ret = send_header(sctx);
6898 		if (ret < 0)
6899 			goto out;
6900 	}
6901 
6902 	ret = send_subvol_begin(sctx);
6903 	if (ret < 0)
6904 		goto out;
6905 
6906 	if (sctx->parent_root) {
6907 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6908 				changed_cb, sctx);
6909 		if (ret < 0)
6910 			goto out;
6911 		ret = finish_inode_if_needed(sctx, 1);
6912 		if (ret < 0)
6913 			goto out;
6914 	} else {
6915 		ret = full_send_tree(sctx);
6916 		if (ret < 0)
6917 			goto out;
6918 	}
6919 
6920 out:
6921 	free_recorded_refs(sctx);
6922 	return ret;
6923 }
6924 
6925 /*
6926  * If orphan cleanup did remove any orphans from a root, it means the tree
6927  * was modified and therefore the commit root is not the same as the current
6928  * root anymore. This is a problem, because send uses the commit root and
6929  * therefore can see inode items that don't exist in the current root anymore,
6930  * and for example make calls to btrfs_iget, which will do tree lookups based
6931  * on the current root and not on the commit root. Those lookups will fail,
6932  * returning a -ESTALE error, and making send fail with that error. So make
6933  * sure a send does not see any orphans we have just removed, and that it will
6934  * see the same inodes regardless of whether a transaction commit happened
6935  * before it started (meaning that the commit root will be the same as the
6936  * current root) or not.
6937  */
6938 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6939 {
6940 	int i;
6941 	struct btrfs_trans_handle *trans = NULL;
6942 
6943 again:
6944 	if (sctx->parent_root &&
6945 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6946 		goto commit_trans;
6947 
6948 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6949 		if (sctx->clone_roots[i].root->node !=
6950 		    sctx->clone_roots[i].root->commit_root)
6951 			goto commit_trans;
6952 
6953 	if (trans)
6954 		return btrfs_end_transaction(trans);
6955 
6956 	return 0;
6957 
6958 commit_trans:
6959 	/* Use any root, all fs roots will get their commit roots updated. */
6960 	if (!trans) {
6961 		trans = btrfs_join_transaction(sctx->send_root);
6962 		if (IS_ERR(trans))
6963 			return PTR_ERR(trans);
6964 		goto again;
6965 	}
6966 
6967 	return btrfs_commit_transaction(trans);
6968 }
6969 
6970 /*
6971  * Make sure any existing dellaloc is flushed for any root used by a send
6972  * operation so that we do not miss any data and we do not race with writeback
6973  * finishing and changing a tree while send is using the tree. This could
6974  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
6975  * a send operation then uses the subvolume.
6976  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
6977  */
6978 static int flush_delalloc_roots(struct send_ctx *sctx)
6979 {
6980 	struct btrfs_root *root = sctx->parent_root;
6981 	int ret;
6982 	int i;
6983 
6984 	if (root) {
6985 		ret = btrfs_start_delalloc_snapshot(root);
6986 		if (ret)
6987 			return ret;
6988 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6989 	}
6990 
6991 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
6992 		root = sctx->clone_roots[i].root;
6993 		ret = btrfs_start_delalloc_snapshot(root);
6994 		if (ret)
6995 			return ret;
6996 		btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
6997 	}
6998 
6999 	return 0;
7000 }
7001 
7002 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7003 {
7004 	spin_lock(&root->root_item_lock);
7005 	root->send_in_progress--;
7006 	/*
7007 	 * Not much left to do, we don't know why it's unbalanced and
7008 	 * can't blindly reset it to 0.
7009 	 */
7010 	if (root->send_in_progress < 0)
7011 		btrfs_err(root->fs_info,
7012 			  "send_in_progress unbalanced %d root %llu",
7013 			  root->send_in_progress, root->root_key.objectid);
7014 	spin_unlock(&root->root_item_lock);
7015 }
7016 
7017 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7018 {
7019 	btrfs_warn_rl(root->fs_info,
7020 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7021 		      root->root_key.objectid, root->dedupe_in_progress);
7022 }
7023 
7024 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
7025 {
7026 	int ret = 0;
7027 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7028 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7029 	struct btrfs_root *clone_root;
7030 	struct btrfs_key key;
7031 	struct send_ctx *sctx = NULL;
7032 	u32 i;
7033 	u64 *clone_sources_tmp = NULL;
7034 	int clone_sources_to_rollback = 0;
7035 	unsigned alloc_size;
7036 	int sort_clone_roots = 0;
7037 	int index;
7038 
7039 	if (!capable(CAP_SYS_ADMIN))
7040 		return -EPERM;
7041 
7042 	/*
7043 	 * The subvolume must remain read-only during send, protect against
7044 	 * making it RW. This also protects against deletion.
7045 	 */
7046 	spin_lock(&send_root->root_item_lock);
7047 	if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7048 		dedupe_in_progress_warn(send_root);
7049 		spin_unlock(&send_root->root_item_lock);
7050 		return -EAGAIN;
7051 	}
7052 	send_root->send_in_progress++;
7053 	spin_unlock(&send_root->root_item_lock);
7054 
7055 	/*
7056 	 * This is done when we lookup the root, it should already be complete
7057 	 * by the time we get here.
7058 	 */
7059 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
7060 
7061 	/*
7062 	 * Userspace tools do the checks and warn the user if it's
7063 	 * not RO.
7064 	 */
7065 	if (!btrfs_root_readonly(send_root)) {
7066 		ret = -EPERM;
7067 		goto out;
7068 	}
7069 
7070 	/*
7071 	 * Check that we don't overflow at later allocations, we request
7072 	 * clone_sources_count + 1 items, and compare to unsigned long inside
7073 	 * access_ok.
7074 	 */
7075 	if (arg->clone_sources_count >
7076 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
7077 		ret = -EINVAL;
7078 		goto out;
7079 	}
7080 
7081 	if (!access_ok(arg->clone_sources,
7082 			sizeof(*arg->clone_sources) *
7083 			arg->clone_sources_count)) {
7084 		ret = -EFAULT;
7085 		goto out;
7086 	}
7087 
7088 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7089 		ret = -EINVAL;
7090 		goto out;
7091 	}
7092 
7093 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7094 	if (!sctx) {
7095 		ret = -ENOMEM;
7096 		goto out;
7097 	}
7098 
7099 	INIT_LIST_HEAD(&sctx->new_refs);
7100 	INIT_LIST_HEAD(&sctx->deleted_refs);
7101 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7102 	INIT_LIST_HEAD(&sctx->name_cache_list);
7103 
7104 	sctx->flags = arg->flags;
7105 
7106 	sctx->send_filp = fget(arg->send_fd);
7107 	if (!sctx->send_filp) {
7108 		ret = -EBADF;
7109 		goto out;
7110 	}
7111 
7112 	sctx->send_root = send_root;
7113 	/*
7114 	 * Unlikely but possible, if the subvolume is marked for deletion but
7115 	 * is slow to remove the directory entry, send can still be started
7116 	 */
7117 	if (btrfs_root_dead(sctx->send_root)) {
7118 		ret = -EPERM;
7119 		goto out;
7120 	}
7121 
7122 	sctx->clone_roots_cnt = arg->clone_sources_count;
7123 
7124 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
7125 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7126 	if (!sctx->send_buf) {
7127 		ret = -ENOMEM;
7128 		goto out;
7129 	}
7130 
7131 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
7132 	if (!sctx->read_buf) {
7133 		ret = -ENOMEM;
7134 		goto out;
7135 	}
7136 
7137 	sctx->pending_dir_moves = RB_ROOT;
7138 	sctx->waiting_dir_moves = RB_ROOT;
7139 	sctx->orphan_dirs = RB_ROOT;
7140 
7141 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7142 
7143 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
7144 	if (!sctx->clone_roots) {
7145 		ret = -ENOMEM;
7146 		goto out;
7147 	}
7148 
7149 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7150 
7151 	if (arg->clone_sources_count) {
7152 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7153 		if (!clone_sources_tmp) {
7154 			ret = -ENOMEM;
7155 			goto out;
7156 		}
7157 
7158 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7159 				alloc_size);
7160 		if (ret) {
7161 			ret = -EFAULT;
7162 			goto out;
7163 		}
7164 
7165 		for (i = 0; i < arg->clone_sources_count; i++) {
7166 			key.objectid = clone_sources_tmp[i];
7167 			key.type = BTRFS_ROOT_ITEM_KEY;
7168 			key.offset = (u64)-1;
7169 
7170 			index = srcu_read_lock(&fs_info->subvol_srcu);
7171 
7172 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
7173 			if (IS_ERR(clone_root)) {
7174 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7175 				ret = PTR_ERR(clone_root);
7176 				goto out;
7177 			}
7178 			spin_lock(&clone_root->root_item_lock);
7179 			if (!btrfs_root_readonly(clone_root) ||
7180 			    btrfs_root_dead(clone_root)) {
7181 				spin_unlock(&clone_root->root_item_lock);
7182 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7183 				ret = -EPERM;
7184 				goto out;
7185 			}
7186 			if (clone_root->dedupe_in_progress) {
7187 				dedupe_in_progress_warn(clone_root);
7188 				spin_unlock(&clone_root->root_item_lock);
7189 				srcu_read_unlock(&fs_info->subvol_srcu, index);
7190 				ret = -EAGAIN;
7191 				goto out;
7192 			}
7193 			clone_root->send_in_progress++;
7194 			spin_unlock(&clone_root->root_item_lock);
7195 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7196 
7197 			sctx->clone_roots[i].root = clone_root;
7198 			clone_sources_to_rollback = i + 1;
7199 		}
7200 		kvfree(clone_sources_tmp);
7201 		clone_sources_tmp = NULL;
7202 	}
7203 
7204 	if (arg->parent_root) {
7205 		key.objectid = arg->parent_root;
7206 		key.type = BTRFS_ROOT_ITEM_KEY;
7207 		key.offset = (u64)-1;
7208 
7209 		index = srcu_read_lock(&fs_info->subvol_srcu);
7210 
7211 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
7212 		if (IS_ERR(sctx->parent_root)) {
7213 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7214 			ret = PTR_ERR(sctx->parent_root);
7215 			goto out;
7216 		}
7217 
7218 		spin_lock(&sctx->parent_root->root_item_lock);
7219 		sctx->parent_root->send_in_progress++;
7220 		if (!btrfs_root_readonly(sctx->parent_root) ||
7221 				btrfs_root_dead(sctx->parent_root)) {
7222 			spin_unlock(&sctx->parent_root->root_item_lock);
7223 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7224 			ret = -EPERM;
7225 			goto out;
7226 		}
7227 		if (sctx->parent_root->dedupe_in_progress) {
7228 			dedupe_in_progress_warn(sctx->parent_root);
7229 			spin_unlock(&sctx->parent_root->root_item_lock);
7230 			srcu_read_unlock(&fs_info->subvol_srcu, index);
7231 			ret = -EAGAIN;
7232 			goto out;
7233 		}
7234 		spin_unlock(&sctx->parent_root->root_item_lock);
7235 
7236 		srcu_read_unlock(&fs_info->subvol_srcu, index);
7237 	}
7238 
7239 	/*
7240 	 * Clones from send_root are allowed, but only if the clone source
7241 	 * is behind the current send position. This is checked while searching
7242 	 * for possible clone sources.
7243 	 */
7244 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
7245 
7246 	/* We do a bsearch later */
7247 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
7248 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7249 			NULL);
7250 	sort_clone_roots = 1;
7251 
7252 	ret = flush_delalloc_roots(sctx);
7253 	if (ret)
7254 		goto out;
7255 
7256 	ret = ensure_commit_roots_uptodate(sctx);
7257 	if (ret)
7258 		goto out;
7259 
7260 	mutex_lock(&fs_info->balance_mutex);
7261 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7262 		mutex_unlock(&fs_info->balance_mutex);
7263 		btrfs_warn_rl(fs_info,
7264 		"cannot run send because a balance operation is in progress");
7265 		ret = -EAGAIN;
7266 		goto out;
7267 	}
7268 	fs_info->send_in_progress++;
7269 	mutex_unlock(&fs_info->balance_mutex);
7270 
7271 	current->journal_info = BTRFS_SEND_TRANS_STUB;
7272 	ret = send_subvol(sctx);
7273 	current->journal_info = NULL;
7274 	mutex_lock(&fs_info->balance_mutex);
7275 	fs_info->send_in_progress--;
7276 	mutex_unlock(&fs_info->balance_mutex);
7277 	if (ret < 0)
7278 		goto out;
7279 
7280 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7281 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7282 		if (ret < 0)
7283 			goto out;
7284 		ret = send_cmd(sctx);
7285 		if (ret < 0)
7286 			goto out;
7287 	}
7288 
7289 out:
7290 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7291 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7292 		struct rb_node *n;
7293 		struct pending_dir_move *pm;
7294 
7295 		n = rb_first(&sctx->pending_dir_moves);
7296 		pm = rb_entry(n, struct pending_dir_move, node);
7297 		while (!list_empty(&pm->list)) {
7298 			struct pending_dir_move *pm2;
7299 
7300 			pm2 = list_first_entry(&pm->list,
7301 					       struct pending_dir_move, list);
7302 			free_pending_move(sctx, pm2);
7303 		}
7304 		free_pending_move(sctx, pm);
7305 	}
7306 
7307 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7308 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7309 		struct rb_node *n;
7310 		struct waiting_dir_move *dm;
7311 
7312 		n = rb_first(&sctx->waiting_dir_moves);
7313 		dm = rb_entry(n, struct waiting_dir_move, node);
7314 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
7315 		kfree(dm);
7316 	}
7317 
7318 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7319 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7320 		struct rb_node *n;
7321 		struct orphan_dir_info *odi;
7322 
7323 		n = rb_first(&sctx->orphan_dirs);
7324 		odi = rb_entry(n, struct orphan_dir_info, node);
7325 		free_orphan_dir_info(sctx, odi);
7326 	}
7327 
7328 	if (sort_clone_roots) {
7329 		for (i = 0; i < sctx->clone_roots_cnt; i++)
7330 			btrfs_root_dec_send_in_progress(
7331 					sctx->clone_roots[i].root);
7332 	} else {
7333 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
7334 			btrfs_root_dec_send_in_progress(
7335 					sctx->clone_roots[i].root);
7336 
7337 		btrfs_root_dec_send_in_progress(send_root);
7338 	}
7339 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
7340 		btrfs_root_dec_send_in_progress(sctx->parent_root);
7341 
7342 	kvfree(clone_sources_tmp);
7343 
7344 	if (sctx) {
7345 		if (sctx->send_filp)
7346 			fput(sctx->send_filp);
7347 
7348 		kvfree(sctx->clone_roots);
7349 		kvfree(sctx->send_buf);
7350 		kvfree(sctx->read_buf);
7351 
7352 		name_cache_free(sctx);
7353 
7354 		kfree(sctx);
7355 	}
7356 
7357 	return ret;
7358 }
7359