1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "xattr.h" 29 #include "print-tree.h" 30 #include "accessors.h" 31 #include "dir-item.h" 32 #include "file-item.h" 33 #include "ioctl.h" 34 #include "verity.h" 35 #include "lru_cache.h" 36 37 /* 38 * Maximum number of references an extent can have in order for us to attempt to 39 * issue clone operations instead of write operations. This currently exists to 40 * avoid hitting limitations of the backreference walking code (taking a lot of 41 * time and using too much memory for extents with large number of references). 42 */ 43 #define SEND_MAX_EXTENT_REFS 1024 44 45 /* 46 * A fs_path is a helper to dynamically build path names with unknown size. 47 * It reallocates the internal buffer on demand. 48 * It allows fast adding of path elements on the right side (normal path) and 49 * fast adding to the left side (reversed path). A reversed path can also be 50 * unreversed if needed. 51 */ 52 struct fs_path { 53 union { 54 struct { 55 char *start; 56 char *end; 57 58 char *buf; 59 unsigned short buf_len:15; 60 unsigned short reversed:1; 61 char inline_buf[]; 62 }; 63 /* 64 * Average path length does not exceed 200 bytes, we'll have 65 * better packing in the slab and higher chance to satisfy 66 * a allocation later during send. 67 */ 68 char pad[256]; 69 }; 70 }; 71 #define FS_PATH_INLINE_SIZE \ 72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 73 74 75 /* reused for each extent */ 76 struct clone_root { 77 struct btrfs_root *root; 78 u64 ino; 79 u64 offset; 80 u64 num_bytes; 81 bool found_ref; 82 }; 83 84 #define SEND_MAX_NAME_CACHE_SIZE 256 85 86 /* 87 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 89 * can be satisfied from the kmalloc-192 slab, without wasting any space. 90 * The most common case is to have a single root for cloning, which corresponds 91 * to the send root. Having the user specify more than 16 clone roots is not 92 * common, and in such rare cases we simply don't use caching if the number of 93 * cloning roots that lead down to a leaf is more than 17. 94 */ 95 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 96 97 /* 98 * Max number of entries in the cache. 99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 100 * maple tree's internal nodes, is 24K. 101 */ 102 #define SEND_MAX_BACKREF_CACHE_SIZE 128 103 104 /* 105 * A backref cache entry maps a leaf to a list of IDs of roots from which the 106 * leaf is accessible and we can use for clone operations. 107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 108 * x86_64). 109 */ 110 struct backref_cache_entry { 111 struct btrfs_lru_cache_entry entry; 112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 113 /* Number of valid elements in the root_ids array. */ 114 int num_roots; 115 }; 116 117 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 118 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 119 120 /* 121 * Max number of entries in the cache that stores directories that were already 122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 125 */ 126 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 127 128 /* 129 * Max number of entries in the cache that stores directories that were already 130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 133 */ 134 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 135 136 struct send_ctx { 137 struct file *send_filp; 138 loff_t send_off; 139 char *send_buf; 140 u32 send_size; 141 u32 send_max_size; 142 /* 143 * Whether BTRFS_SEND_A_DATA attribute was already added to current 144 * command (since protocol v2, data must be the last attribute). 145 */ 146 bool put_data; 147 struct page **send_buf_pages; 148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 149 /* Protocol version compatibility requested */ 150 u32 proto; 151 152 struct btrfs_root *send_root; 153 struct btrfs_root *parent_root; 154 struct clone_root *clone_roots; 155 int clone_roots_cnt; 156 157 /* current state of the compare_tree call */ 158 struct btrfs_path *left_path; 159 struct btrfs_path *right_path; 160 struct btrfs_key *cmp_key; 161 162 /* 163 * Keep track of the generation of the last transaction that was used 164 * for relocating a block group. This is periodically checked in order 165 * to detect if a relocation happened since the last check, so that we 166 * don't operate on stale extent buffers for nodes (level >= 1) or on 167 * stale disk_bytenr values of file extent items. 168 */ 169 u64 last_reloc_trans; 170 171 /* 172 * infos of the currently processed inode. In case of deleted inodes, 173 * these are the values from the deleted inode. 174 */ 175 u64 cur_ino; 176 u64 cur_inode_gen; 177 u64 cur_inode_size; 178 u64 cur_inode_mode; 179 u64 cur_inode_rdev; 180 u64 cur_inode_last_extent; 181 u64 cur_inode_next_write_offset; 182 bool cur_inode_new; 183 bool cur_inode_new_gen; 184 bool cur_inode_deleted; 185 bool ignore_cur_inode; 186 bool cur_inode_needs_verity; 187 void *verity_descriptor; 188 189 u64 send_progress; 190 191 struct list_head new_refs; 192 struct list_head deleted_refs; 193 194 struct btrfs_lru_cache name_cache; 195 196 /* 197 * The inode we are currently processing. It's not NULL only when we 198 * need to issue write commands for data extents from this inode. 199 */ 200 struct inode *cur_inode; 201 struct file_ra_state ra; 202 u64 page_cache_clear_start; 203 bool clean_page_cache; 204 205 /* 206 * We process inodes by their increasing order, so if before an 207 * incremental send we reverse the parent/child relationship of 208 * directories such that a directory with a lower inode number was 209 * the parent of a directory with a higher inode number, and the one 210 * becoming the new parent got renamed too, we can't rename/move the 211 * directory with lower inode number when we finish processing it - we 212 * must process the directory with higher inode number first, then 213 * rename/move it and then rename/move the directory with lower inode 214 * number. Example follows. 215 * 216 * Tree state when the first send was performed: 217 * 218 * . 219 * |-- a (ino 257) 220 * |-- b (ino 258) 221 * | 222 * | 223 * |-- c (ino 259) 224 * | |-- d (ino 260) 225 * | 226 * |-- c2 (ino 261) 227 * 228 * Tree state when the second (incremental) send is performed: 229 * 230 * . 231 * |-- a (ino 257) 232 * |-- b (ino 258) 233 * |-- c2 (ino 261) 234 * |-- d2 (ino 260) 235 * |-- cc (ino 259) 236 * 237 * The sequence of steps that lead to the second state was: 238 * 239 * mv /a/b/c/d /a/b/c2/d2 240 * mv /a/b/c /a/b/c2/d2/cc 241 * 242 * "c" has lower inode number, but we can't move it (2nd mv operation) 243 * before we move "d", which has higher inode number. 244 * 245 * So we just memorize which move/rename operations must be performed 246 * later when their respective parent is processed and moved/renamed. 247 */ 248 249 /* Indexed by parent directory inode number. */ 250 struct rb_root pending_dir_moves; 251 252 /* 253 * Reverse index, indexed by the inode number of a directory that 254 * is waiting for the move/rename of its immediate parent before its 255 * own move/rename can be performed. 256 */ 257 struct rb_root waiting_dir_moves; 258 259 /* 260 * A directory that is going to be rm'ed might have a child directory 261 * which is in the pending directory moves index above. In this case, 262 * the directory can only be removed after the move/rename of its child 263 * is performed. Example: 264 * 265 * Parent snapshot: 266 * 267 * . (ino 256) 268 * |-- a/ (ino 257) 269 * |-- b/ (ino 258) 270 * |-- c/ (ino 259) 271 * | |-- x/ (ino 260) 272 * | 273 * |-- y/ (ino 261) 274 * 275 * Send snapshot: 276 * 277 * . (ino 256) 278 * |-- a/ (ino 257) 279 * |-- b/ (ino 258) 280 * |-- YY/ (ino 261) 281 * |-- x/ (ino 260) 282 * 283 * Sequence of steps that lead to the send snapshot: 284 * rm -f /a/b/c/foo.txt 285 * mv /a/b/y /a/b/YY 286 * mv /a/b/c/x /a/b/YY 287 * rmdir /a/b/c 288 * 289 * When the child is processed, its move/rename is delayed until its 290 * parent is processed (as explained above), but all other operations 291 * like update utimes, chown, chgrp, etc, are performed and the paths 292 * that it uses for those operations must use the orphanized name of 293 * its parent (the directory we're going to rm later), so we need to 294 * memorize that name. 295 * 296 * Indexed by the inode number of the directory to be deleted. 297 */ 298 struct rb_root orphan_dirs; 299 300 struct rb_root rbtree_new_refs; 301 struct rb_root rbtree_deleted_refs; 302 303 struct btrfs_lru_cache backref_cache; 304 u64 backref_cache_last_reloc_trans; 305 306 struct btrfs_lru_cache dir_created_cache; 307 struct btrfs_lru_cache dir_utimes_cache; 308 }; 309 310 struct pending_dir_move { 311 struct rb_node node; 312 struct list_head list; 313 u64 parent_ino; 314 u64 ino; 315 u64 gen; 316 struct list_head update_refs; 317 }; 318 319 struct waiting_dir_move { 320 struct rb_node node; 321 u64 ino; 322 /* 323 * There might be some directory that could not be removed because it 324 * was waiting for this directory inode to be moved first. Therefore 325 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 326 */ 327 u64 rmdir_ino; 328 u64 rmdir_gen; 329 bool orphanized; 330 }; 331 332 struct orphan_dir_info { 333 struct rb_node node; 334 u64 ino; 335 u64 gen; 336 u64 last_dir_index_offset; 337 u64 dir_high_seq_ino; 338 }; 339 340 struct name_cache_entry { 341 /* 342 * The key in the entry is an inode number, and the generation matches 343 * the inode's generation. 344 */ 345 struct btrfs_lru_cache_entry entry; 346 u64 parent_ino; 347 u64 parent_gen; 348 int ret; 349 int need_later_update; 350 int name_len; 351 char name[]; 352 }; 353 354 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 355 static_assert(offsetof(struct name_cache_entry, entry) == 0); 356 357 #define ADVANCE 1 358 #define ADVANCE_ONLY_NEXT -1 359 360 enum btrfs_compare_tree_result { 361 BTRFS_COMPARE_TREE_NEW, 362 BTRFS_COMPARE_TREE_DELETED, 363 BTRFS_COMPARE_TREE_CHANGED, 364 BTRFS_COMPARE_TREE_SAME, 365 }; 366 367 __cold 368 static void inconsistent_snapshot_error(struct send_ctx *sctx, 369 enum btrfs_compare_tree_result result, 370 const char *what) 371 { 372 const char *result_string; 373 374 switch (result) { 375 case BTRFS_COMPARE_TREE_NEW: 376 result_string = "new"; 377 break; 378 case BTRFS_COMPARE_TREE_DELETED: 379 result_string = "deleted"; 380 break; 381 case BTRFS_COMPARE_TREE_CHANGED: 382 result_string = "updated"; 383 break; 384 case BTRFS_COMPARE_TREE_SAME: 385 ASSERT(0); 386 result_string = "unchanged"; 387 break; 388 default: 389 ASSERT(0); 390 result_string = "unexpected"; 391 } 392 393 btrfs_err(sctx->send_root->fs_info, 394 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 395 result_string, what, sctx->cmp_key->objectid, 396 sctx->send_root->root_key.objectid, 397 (sctx->parent_root ? 398 sctx->parent_root->root_key.objectid : 0)); 399 } 400 401 __maybe_unused 402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 403 { 404 switch (sctx->proto) { 405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 408 default: return false; 409 } 410 } 411 412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 413 414 static struct waiting_dir_move * 415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 416 417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 418 419 static int need_send_hole(struct send_ctx *sctx) 420 { 421 return (sctx->parent_root && !sctx->cur_inode_new && 422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 423 S_ISREG(sctx->cur_inode_mode)); 424 } 425 426 static void fs_path_reset(struct fs_path *p) 427 { 428 if (p->reversed) { 429 p->start = p->buf + p->buf_len - 1; 430 p->end = p->start; 431 *p->start = 0; 432 } else { 433 p->start = p->buf; 434 p->end = p->start; 435 *p->start = 0; 436 } 437 } 438 439 static struct fs_path *fs_path_alloc(void) 440 { 441 struct fs_path *p; 442 443 p = kmalloc(sizeof(*p), GFP_KERNEL); 444 if (!p) 445 return NULL; 446 p->reversed = 0; 447 p->buf = p->inline_buf; 448 p->buf_len = FS_PATH_INLINE_SIZE; 449 fs_path_reset(p); 450 return p; 451 } 452 453 static struct fs_path *fs_path_alloc_reversed(void) 454 { 455 struct fs_path *p; 456 457 p = fs_path_alloc(); 458 if (!p) 459 return NULL; 460 p->reversed = 1; 461 fs_path_reset(p); 462 return p; 463 } 464 465 static void fs_path_free(struct fs_path *p) 466 { 467 if (!p) 468 return; 469 if (p->buf != p->inline_buf) 470 kfree(p->buf); 471 kfree(p); 472 } 473 474 static int fs_path_len(struct fs_path *p) 475 { 476 return p->end - p->start; 477 } 478 479 static int fs_path_ensure_buf(struct fs_path *p, int len) 480 { 481 char *tmp_buf; 482 int path_len; 483 int old_buf_len; 484 485 len++; 486 487 if (p->buf_len >= len) 488 return 0; 489 490 if (len > PATH_MAX) { 491 WARN_ON(1); 492 return -ENOMEM; 493 } 494 495 path_len = p->end - p->start; 496 old_buf_len = p->buf_len; 497 498 /* 499 * Allocate to the next largest kmalloc bucket size, to let 500 * the fast path happen most of the time. 501 */ 502 len = kmalloc_size_roundup(len); 503 /* 504 * First time the inline_buf does not suffice 505 */ 506 if (p->buf == p->inline_buf) { 507 tmp_buf = kmalloc(len, GFP_KERNEL); 508 if (tmp_buf) 509 memcpy(tmp_buf, p->buf, old_buf_len); 510 } else { 511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 512 } 513 if (!tmp_buf) 514 return -ENOMEM; 515 p->buf = tmp_buf; 516 p->buf_len = len; 517 518 if (p->reversed) { 519 tmp_buf = p->buf + old_buf_len - path_len - 1; 520 p->end = p->buf + p->buf_len - 1; 521 p->start = p->end - path_len; 522 memmove(p->start, tmp_buf, path_len + 1); 523 } else { 524 p->start = p->buf; 525 p->end = p->start + path_len; 526 } 527 return 0; 528 } 529 530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 531 char **prepared) 532 { 533 int ret; 534 int new_len; 535 536 new_len = p->end - p->start + name_len; 537 if (p->start != p->end) 538 new_len++; 539 ret = fs_path_ensure_buf(p, new_len); 540 if (ret < 0) 541 goto out; 542 543 if (p->reversed) { 544 if (p->start != p->end) 545 *--p->start = '/'; 546 p->start -= name_len; 547 *prepared = p->start; 548 } else { 549 if (p->start != p->end) 550 *p->end++ = '/'; 551 *prepared = p->end; 552 p->end += name_len; 553 *p->end = 0; 554 } 555 556 out: 557 return ret; 558 } 559 560 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 561 { 562 int ret; 563 char *prepared; 564 565 ret = fs_path_prepare_for_add(p, name_len, &prepared); 566 if (ret < 0) 567 goto out; 568 memcpy(prepared, name, name_len); 569 570 out: 571 return ret; 572 } 573 574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 575 { 576 int ret; 577 char *prepared; 578 579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 580 if (ret < 0) 581 goto out; 582 memcpy(prepared, p2->start, p2->end - p2->start); 583 584 out: 585 return ret; 586 } 587 588 static int fs_path_add_from_extent_buffer(struct fs_path *p, 589 struct extent_buffer *eb, 590 unsigned long off, int len) 591 { 592 int ret; 593 char *prepared; 594 595 ret = fs_path_prepare_for_add(p, len, &prepared); 596 if (ret < 0) 597 goto out; 598 599 read_extent_buffer(eb, prepared, off, len); 600 601 out: 602 return ret; 603 } 604 605 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 606 { 607 p->reversed = from->reversed; 608 fs_path_reset(p); 609 610 return fs_path_add_path(p, from); 611 } 612 613 static void fs_path_unreverse(struct fs_path *p) 614 { 615 char *tmp; 616 int len; 617 618 if (!p->reversed) 619 return; 620 621 tmp = p->start; 622 len = p->end - p->start; 623 p->start = p->buf; 624 p->end = p->start + len; 625 memmove(p->start, tmp, len + 1); 626 p->reversed = 0; 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (ret == 0) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 p->end - p->start); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 BUG_ON(sctx->send_size); 781 782 sctx->send_size += sizeof(*hdr); 783 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 784 put_unaligned_le16(cmd, &hdr->cmd); 785 786 return 0; 787 } 788 789 static int send_cmd(struct send_ctx *sctx) 790 { 791 int ret; 792 struct btrfs_cmd_header *hdr; 793 u32 crc; 794 795 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 796 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 797 put_unaligned_le32(0, &hdr->crc); 798 799 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 800 put_unaligned_le32(crc, &hdr->crc); 801 802 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 803 &sctx->send_off); 804 805 sctx->send_size = 0; 806 sctx->put_data = false; 807 808 return ret; 809 } 810 811 /* 812 * Sends a move instruction to user space 813 */ 814 static int send_rename(struct send_ctx *sctx, 815 struct fs_path *from, struct fs_path *to) 816 { 817 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 818 int ret; 819 820 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 821 822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 823 if (ret < 0) 824 goto out; 825 826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 828 829 ret = send_cmd(sctx); 830 831 tlv_put_failure: 832 out: 833 return ret; 834 } 835 836 /* 837 * Sends a link instruction to user space 838 */ 839 static int send_link(struct send_ctx *sctx, 840 struct fs_path *path, struct fs_path *lnk) 841 { 842 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 843 int ret; 844 845 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 846 847 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 848 if (ret < 0) 849 goto out; 850 851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 852 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 853 854 ret = send_cmd(sctx); 855 856 tlv_put_failure: 857 out: 858 return ret; 859 } 860 861 /* 862 * Sends an unlink instruction to user space 863 */ 864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 865 { 866 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 867 int ret; 868 869 btrfs_debug(fs_info, "send_unlink %s", path->start); 870 871 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 872 if (ret < 0) 873 goto out; 874 875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 876 877 ret = send_cmd(sctx); 878 879 tlv_put_failure: 880 out: 881 return ret; 882 } 883 884 /* 885 * Sends a rmdir instruction to user space 886 */ 887 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 888 { 889 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 890 int ret; 891 892 btrfs_debug(fs_info, "send_rmdir %s", path->start); 893 894 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 895 if (ret < 0) 896 goto out; 897 898 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 899 900 ret = send_cmd(sctx); 901 902 tlv_put_failure: 903 out: 904 return ret; 905 } 906 907 struct btrfs_inode_info { 908 u64 size; 909 u64 gen; 910 u64 mode; 911 u64 uid; 912 u64 gid; 913 u64 rdev; 914 u64 fileattr; 915 u64 nlink; 916 }; 917 918 /* 919 * Helper function to retrieve some fields from an inode item. 920 */ 921 static int get_inode_info(struct btrfs_root *root, u64 ino, 922 struct btrfs_inode_info *info) 923 { 924 int ret; 925 struct btrfs_path *path; 926 struct btrfs_inode_item *ii; 927 struct btrfs_key key; 928 929 path = alloc_path_for_send(); 930 if (!path) 931 return -ENOMEM; 932 933 key.objectid = ino; 934 key.type = BTRFS_INODE_ITEM_KEY; 935 key.offset = 0; 936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 937 if (ret) { 938 if (ret > 0) 939 ret = -ENOENT; 940 goto out; 941 } 942 943 if (!info) 944 goto out; 945 946 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 947 struct btrfs_inode_item); 948 info->size = btrfs_inode_size(path->nodes[0], ii); 949 info->gen = btrfs_inode_generation(path->nodes[0], ii); 950 info->mode = btrfs_inode_mode(path->nodes[0], ii); 951 info->uid = btrfs_inode_uid(path->nodes[0], ii); 952 info->gid = btrfs_inode_gid(path->nodes[0], ii); 953 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 954 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 955 /* 956 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 957 * otherwise logically split to 32/32 parts. 958 */ 959 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 960 961 out: 962 btrfs_free_path(path); 963 return ret; 964 } 965 966 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 967 { 968 int ret; 969 struct btrfs_inode_info info = { 0 }; 970 971 ASSERT(gen); 972 973 ret = get_inode_info(root, ino, &info); 974 *gen = info.gen; 975 return ret; 976 } 977 978 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 979 struct fs_path *p, 980 void *ctx); 981 982 /* 983 * Helper function to iterate the entries in ONE btrfs_inode_ref or 984 * btrfs_inode_extref. 985 * The iterate callback may return a non zero value to stop iteration. This can 986 * be a negative value for error codes or 1 to simply stop it. 987 * 988 * path must point to the INODE_REF or INODE_EXTREF when called. 989 */ 990 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 991 struct btrfs_key *found_key, int resolve, 992 iterate_inode_ref_t iterate, void *ctx) 993 { 994 struct extent_buffer *eb = path->nodes[0]; 995 struct btrfs_inode_ref *iref; 996 struct btrfs_inode_extref *extref; 997 struct btrfs_path *tmp_path; 998 struct fs_path *p; 999 u32 cur = 0; 1000 u32 total; 1001 int slot = path->slots[0]; 1002 u32 name_len; 1003 char *start; 1004 int ret = 0; 1005 int num = 0; 1006 int index; 1007 u64 dir; 1008 unsigned long name_off; 1009 unsigned long elem_size; 1010 unsigned long ptr; 1011 1012 p = fs_path_alloc_reversed(); 1013 if (!p) 1014 return -ENOMEM; 1015 1016 tmp_path = alloc_path_for_send(); 1017 if (!tmp_path) { 1018 fs_path_free(p); 1019 return -ENOMEM; 1020 } 1021 1022 1023 if (found_key->type == BTRFS_INODE_REF_KEY) { 1024 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1025 struct btrfs_inode_ref); 1026 total = btrfs_item_size(eb, slot); 1027 elem_size = sizeof(*iref); 1028 } else { 1029 ptr = btrfs_item_ptr_offset(eb, slot); 1030 total = btrfs_item_size(eb, slot); 1031 elem_size = sizeof(*extref); 1032 } 1033 1034 while (cur < total) { 1035 fs_path_reset(p); 1036 1037 if (found_key->type == BTRFS_INODE_REF_KEY) { 1038 iref = (struct btrfs_inode_ref *)(ptr + cur); 1039 name_len = btrfs_inode_ref_name_len(eb, iref); 1040 name_off = (unsigned long)(iref + 1); 1041 index = btrfs_inode_ref_index(eb, iref); 1042 dir = found_key->offset; 1043 } else { 1044 extref = (struct btrfs_inode_extref *)(ptr + cur); 1045 name_len = btrfs_inode_extref_name_len(eb, extref); 1046 name_off = (unsigned long)&extref->name; 1047 index = btrfs_inode_extref_index(eb, extref); 1048 dir = btrfs_inode_extref_parent(eb, extref); 1049 } 1050 1051 if (resolve) { 1052 start = btrfs_ref_to_path(root, tmp_path, name_len, 1053 name_off, eb, dir, 1054 p->buf, p->buf_len); 1055 if (IS_ERR(start)) { 1056 ret = PTR_ERR(start); 1057 goto out; 1058 } 1059 if (start < p->buf) { 1060 /* overflow , try again with larger buffer */ 1061 ret = fs_path_ensure_buf(p, 1062 p->buf_len + p->buf - start); 1063 if (ret < 0) 1064 goto out; 1065 start = btrfs_ref_to_path(root, tmp_path, 1066 name_len, name_off, 1067 eb, dir, 1068 p->buf, p->buf_len); 1069 if (IS_ERR(start)) { 1070 ret = PTR_ERR(start); 1071 goto out; 1072 } 1073 BUG_ON(start < p->buf); 1074 } 1075 p->start = start; 1076 } else { 1077 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1078 name_len); 1079 if (ret < 0) 1080 goto out; 1081 } 1082 1083 cur += elem_size + name_len; 1084 ret = iterate(num, dir, index, p, ctx); 1085 if (ret) 1086 goto out; 1087 num++; 1088 } 1089 1090 out: 1091 btrfs_free_path(tmp_path); 1092 fs_path_free(p); 1093 return ret; 1094 } 1095 1096 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1097 const char *name, int name_len, 1098 const char *data, int data_len, 1099 void *ctx); 1100 1101 /* 1102 * Helper function to iterate the entries in ONE btrfs_dir_item. 1103 * The iterate callback may return a non zero value to stop iteration. This can 1104 * be a negative value for error codes or 1 to simply stop it. 1105 * 1106 * path must point to the dir item when called. 1107 */ 1108 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1109 iterate_dir_item_t iterate, void *ctx) 1110 { 1111 int ret = 0; 1112 struct extent_buffer *eb; 1113 struct btrfs_dir_item *di; 1114 struct btrfs_key di_key; 1115 char *buf = NULL; 1116 int buf_len; 1117 u32 name_len; 1118 u32 data_len; 1119 u32 cur; 1120 u32 len; 1121 u32 total; 1122 int slot; 1123 int num; 1124 1125 /* 1126 * Start with a small buffer (1 page). If later we end up needing more 1127 * space, which can happen for xattrs on a fs with a leaf size greater 1128 * then the page size, attempt to increase the buffer. Typically xattr 1129 * values are small. 1130 */ 1131 buf_len = PATH_MAX; 1132 buf = kmalloc(buf_len, GFP_KERNEL); 1133 if (!buf) { 1134 ret = -ENOMEM; 1135 goto out; 1136 } 1137 1138 eb = path->nodes[0]; 1139 slot = path->slots[0]; 1140 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1141 cur = 0; 1142 len = 0; 1143 total = btrfs_item_size(eb, slot); 1144 1145 num = 0; 1146 while (cur < total) { 1147 name_len = btrfs_dir_name_len(eb, di); 1148 data_len = btrfs_dir_data_len(eb, di); 1149 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1150 1151 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1152 if (name_len > XATTR_NAME_MAX) { 1153 ret = -ENAMETOOLONG; 1154 goto out; 1155 } 1156 if (name_len + data_len > 1157 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1158 ret = -E2BIG; 1159 goto out; 1160 } 1161 } else { 1162 /* 1163 * Path too long 1164 */ 1165 if (name_len + data_len > PATH_MAX) { 1166 ret = -ENAMETOOLONG; 1167 goto out; 1168 } 1169 } 1170 1171 if (name_len + data_len > buf_len) { 1172 buf_len = name_len + data_len; 1173 if (is_vmalloc_addr(buf)) { 1174 vfree(buf); 1175 buf = NULL; 1176 } else { 1177 char *tmp = krealloc(buf, buf_len, 1178 GFP_KERNEL | __GFP_NOWARN); 1179 1180 if (!tmp) 1181 kfree(buf); 1182 buf = tmp; 1183 } 1184 if (!buf) { 1185 buf = kvmalloc(buf_len, GFP_KERNEL); 1186 if (!buf) { 1187 ret = -ENOMEM; 1188 goto out; 1189 } 1190 } 1191 } 1192 1193 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1194 name_len + data_len); 1195 1196 len = sizeof(*di) + name_len + data_len; 1197 di = (struct btrfs_dir_item *)((char *)di + len); 1198 cur += len; 1199 1200 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1201 data_len, ctx); 1202 if (ret < 0) 1203 goto out; 1204 if (ret) { 1205 ret = 0; 1206 goto out; 1207 } 1208 1209 num++; 1210 } 1211 1212 out: 1213 kvfree(buf); 1214 return ret; 1215 } 1216 1217 static int __copy_first_ref(int num, u64 dir, int index, 1218 struct fs_path *p, void *ctx) 1219 { 1220 int ret; 1221 struct fs_path *pt = ctx; 1222 1223 ret = fs_path_copy(pt, p); 1224 if (ret < 0) 1225 return ret; 1226 1227 /* we want the first only */ 1228 return 1; 1229 } 1230 1231 /* 1232 * Retrieve the first path of an inode. If an inode has more then one 1233 * ref/hardlink, this is ignored. 1234 */ 1235 static int get_inode_path(struct btrfs_root *root, 1236 u64 ino, struct fs_path *path) 1237 { 1238 int ret; 1239 struct btrfs_key key, found_key; 1240 struct btrfs_path *p; 1241 1242 p = alloc_path_for_send(); 1243 if (!p) 1244 return -ENOMEM; 1245 1246 fs_path_reset(path); 1247 1248 key.objectid = ino; 1249 key.type = BTRFS_INODE_REF_KEY; 1250 key.offset = 0; 1251 1252 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1253 if (ret < 0) 1254 goto out; 1255 if (ret) { 1256 ret = 1; 1257 goto out; 1258 } 1259 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1260 if (found_key.objectid != ino || 1261 (found_key.type != BTRFS_INODE_REF_KEY && 1262 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1263 ret = -ENOENT; 1264 goto out; 1265 } 1266 1267 ret = iterate_inode_ref(root, p, &found_key, 1, 1268 __copy_first_ref, path); 1269 if (ret < 0) 1270 goto out; 1271 ret = 0; 1272 1273 out: 1274 btrfs_free_path(p); 1275 return ret; 1276 } 1277 1278 struct backref_ctx { 1279 struct send_ctx *sctx; 1280 1281 /* number of total found references */ 1282 u64 found; 1283 1284 /* 1285 * used for clones found in send_root. clones found behind cur_objectid 1286 * and cur_offset are not considered as allowed clones. 1287 */ 1288 u64 cur_objectid; 1289 u64 cur_offset; 1290 1291 /* may be truncated in case it's the last extent in a file */ 1292 u64 extent_len; 1293 1294 /* The bytenr the file extent item we are processing refers to. */ 1295 u64 bytenr; 1296 /* The owner (root id) of the data backref for the current extent. */ 1297 u64 backref_owner; 1298 /* The offset of the data backref for the current extent. */ 1299 u64 backref_offset; 1300 }; 1301 1302 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1303 { 1304 u64 root = (u64)(uintptr_t)key; 1305 const struct clone_root *cr = elt; 1306 1307 if (root < cr->root->root_key.objectid) 1308 return -1; 1309 if (root > cr->root->root_key.objectid) 1310 return 1; 1311 return 0; 1312 } 1313 1314 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1315 { 1316 const struct clone_root *cr1 = e1; 1317 const struct clone_root *cr2 = e2; 1318 1319 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1320 return -1; 1321 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1322 return 1; 1323 return 0; 1324 } 1325 1326 /* 1327 * Called for every backref that is found for the current extent. 1328 * Results are collected in sctx->clone_roots->ino/offset. 1329 */ 1330 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1331 void *ctx_) 1332 { 1333 struct backref_ctx *bctx = ctx_; 1334 struct clone_root *clone_root; 1335 1336 /* First check if the root is in the list of accepted clone sources */ 1337 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1338 bctx->sctx->clone_roots_cnt, 1339 sizeof(struct clone_root), 1340 __clone_root_cmp_bsearch); 1341 if (!clone_root) 1342 return 0; 1343 1344 /* This is our own reference, bail out as we can't clone from it. */ 1345 if (clone_root->root == bctx->sctx->send_root && 1346 ino == bctx->cur_objectid && 1347 offset == bctx->cur_offset) 1348 return 0; 1349 1350 /* 1351 * Make sure we don't consider clones from send_root that are 1352 * behind the current inode/offset. 1353 */ 1354 if (clone_root->root == bctx->sctx->send_root) { 1355 /* 1356 * If the source inode was not yet processed we can't issue a 1357 * clone operation, as the source extent does not exist yet at 1358 * the destination of the stream. 1359 */ 1360 if (ino > bctx->cur_objectid) 1361 return 0; 1362 /* 1363 * We clone from the inode currently being sent as long as the 1364 * source extent is already processed, otherwise we could try 1365 * to clone from an extent that does not exist yet at the 1366 * destination of the stream. 1367 */ 1368 if (ino == bctx->cur_objectid && 1369 offset + bctx->extent_len > 1370 bctx->sctx->cur_inode_next_write_offset) 1371 return 0; 1372 } 1373 1374 bctx->found++; 1375 clone_root->found_ref = true; 1376 1377 /* 1378 * If the given backref refers to a file extent item with a larger 1379 * number of bytes than what we found before, use the new one so that 1380 * we clone more optimally and end up doing less writes and getting 1381 * less exclusive, non-shared extents at the destination. 1382 */ 1383 if (num_bytes > clone_root->num_bytes) { 1384 clone_root->ino = ino; 1385 clone_root->offset = offset; 1386 clone_root->num_bytes = num_bytes; 1387 1388 /* 1389 * Found a perfect candidate, so there's no need to continue 1390 * backref walking. 1391 */ 1392 if (num_bytes >= bctx->extent_len) 1393 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1394 } 1395 1396 return 0; 1397 } 1398 1399 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1400 const u64 **root_ids_ret, int *root_count_ret) 1401 { 1402 struct backref_ctx *bctx = ctx; 1403 struct send_ctx *sctx = bctx->sctx; 1404 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1405 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1406 struct btrfs_lru_cache_entry *raw_entry; 1407 struct backref_cache_entry *entry; 1408 1409 if (btrfs_lru_cache_size(&sctx->backref_cache) == 0) 1410 return false; 1411 1412 /* 1413 * If relocation happened since we first filled the cache, then we must 1414 * empty the cache and can not use it, because even though we operate on 1415 * read-only roots, their leaves and nodes may have been reallocated and 1416 * now be used for different nodes/leaves of the same tree or some other 1417 * tree. 1418 * 1419 * We are called from iterate_extent_inodes() while either holding a 1420 * transaction handle or holding fs_info->commit_root_sem, so no need 1421 * to take any lock here. 1422 */ 1423 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1424 btrfs_lru_cache_clear(&sctx->backref_cache); 1425 return false; 1426 } 1427 1428 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1429 if (!raw_entry) 1430 return false; 1431 1432 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1433 *root_ids_ret = entry->root_ids; 1434 *root_count_ret = entry->num_roots; 1435 1436 return true; 1437 } 1438 1439 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1440 void *ctx) 1441 { 1442 struct backref_ctx *bctx = ctx; 1443 struct send_ctx *sctx = bctx->sctx; 1444 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1445 struct backref_cache_entry *new_entry; 1446 struct ulist_iterator uiter; 1447 struct ulist_node *node; 1448 int ret; 1449 1450 /* 1451 * We're called while holding a transaction handle or while holding 1452 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1453 * NOFS allocation. 1454 */ 1455 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1456 /* No worries, cache is optional. */ 1457 if (!new_entry) 1458 return; 1459 1460 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1461 new_entry->entry.gen = 0; 1462 new_entry->num_roots = 0; 1463 ULIST_ITER_INIT(&uiter); 1464 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1465 const u64 root_id = node->val; 1466 struct clone_root *root; 1467 1468 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1469 sctx->clone_roots_cnt, sizeof(struct clone_root), 1470 __clone_root_cmp_bsearch); 1471 if (!root) 1472 continue; 1473 1474 /* Too many roots, just exit, no worries as caching is optional. */ 1475 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1476 kfree(new_entry); 1477 return; 1478 } 1479 1480 new_entry->root_ids[new_entry->num_roots] = root_id; 1481 new_entry->num_roots++; 1482 } 1483 1484 /* 1485 * We may have not added any roots to the new cache entry, which means 1486 * none of the roots is part of the list of roots from which we are 1487 * allowed to clone. Cache the new entry as it's still useful to avoid 1488 * backref walking to determine which roots have a path to the leaf. 1489 * 1490 * Also use GFP_NOFS because we're called while holding a transaction 1491 * handle or while holding fs_info->commit_root_sem. 1492 */ 1493 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1494 GFP_NOFS); 1495 ASSERT(ret == 0 || ret == -ENOMEM); 1496 if (ret) { 1497 /* Caching is optional, no worries. */ 1498 kfree(new_entry); 1499 return; 1500 } 1501 1502 /* 1503 * We are called from iterate_extent_inodes() while either holding a 1504 * transaction handle or holding fs_info->commit_root_sem, so no need 1505 * to take any lock here. 1506 */ 1507 if (btrfs_lru_cache_size(&sctx->backref_cache) == 1) 1508 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1509 } 1510 1511 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1512 const struct extent_buffer *leaf, void *ctx) 1513 { 1514 const u64 refs = btrfs_extent_refs(leaf, ei); 1515 const struct backref_ctx *bctx = ctx; 1516 const struct send_ctx *sctx = bctx->sctx; 1517 1518 if (bytenr == bctx->bytenr) { 1519 const u64 flags = btrfs_extent_flags(leaf, ei); 1520 1521 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1522 return -EUCLEAN; 1523 1524 /* 1525 * If we have only one reference and only the send root as a 1526 * clone source - meaning no clone roots were given in the 1527 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1528 * it's our reference and there's no point in doing backref 1529 * walking which is expensive, so exit early. 1530 */ 1531 if (refs == 1 && sctx->clone_roots_cnt == 1) 1532 return -ENOENT; 1533 } 1534 1535 /* 1536 * Backreference walking (iterate_extent_inodes() below) is currently 1537 * too expensive when an extent has a large number of references, both 1538 * in time spent and used memory. So for now just fallback to write 1539 * operations instead of clone operations when an extent has more than 1540 * a certain amount of references. 1541 */ 1542 if (refs > SEND_MAX_EXTENT_REFS) 1543 return -ENOENT; 1544 1545 return 0; 1546 } 1547 1548 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1549 { 1550 const struct backref_ctx *bctx = ctx; 1551 1552 if (ino == bctx->cur_objectid && 1553 root == bctx->backref_owner && 1554 offset == bctx->backref_offset) 1555 return true; 1556 1557 return false; 1558 } 1559 1560 /* 1561 * Given an inode, offset and extent item, it finds a good clone for a clone 1562 * instruction. Returns -ENOENT when none could be found. The function makes 1563 * sure that the returned clone is usable at the point where sending is at the 1564 * moment. This means, that no clones are accepted which lie behind the current 1565 * inode+offset. 1566 * 1567 * path must point to the extent item when called. 1568 */ 1569 static int find_extent_clone(struct send_ctx *sctx, 1570 struct btrfs_path *path, 1571 u64 ino, u64 data_offset, 1572 u64 ino_size, 1573 struct clone_root **found) 1574 { 1575 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1576 int ret; 1577 int extent_type; 1578 u64 logical; 1579 u64 disk_byte; 1580 u64 num_bytes; 1581 struct btrfs_file_extent_item *fi; 1582 struct extent_buffer *eb = path->nodes[0]; 1583 struct backref_ctx backref_ctx = { 0 }; 1584 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1585 struct clone_root *cur_clone_root; 1586 int compressed; 1587 u32 i; 1588 1589 /* 1590 * With fallocate we can get prealloc extents beyond the inode's i_size, 1591 * so we don't do anything here because clone operations can not clone 1592 * to a range beyond i_size without increasing the i_size of the 1593 * destination inode. 1594 */ 1595 if (data_offset >= ino_size) 1596 return 0; 1597 1598 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1599 extent_type = btrfs_file_extent_type(eb, fi); 1600 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1601 return -ENOENT; 1602 1603 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1604 if (disk_byte == 0) 1605 return -ENOENT; 1606 1607 compressed = btrfs_file_extent_compression(eb, fi); 1608 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1609 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1610 1611 /* 1612 * Setup the clone roots. 1613 */ 1614 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1615 cur_clone_root = sctx->clone_roots + i; 1616 cur_clone_root->ino = (u64)-1; 1617 cur_clone_root->offset = 0; 1618 cur_clone_root->num_bytes = 0; 1619 cur_clone_root->found_ref = false; 1620 } 1621 1622 backref_ctx.sctx = sctx; 1623 backref_ctx.cur_objectid = ino; 1624 backref_ctx.cur_offset = data_offset; 1625 backref_ctx.bytenr = disk_byte; 1626 /* 1627 * Use the header owner and not the send root's id, because in case of a 1628 * snapshot we can have shared subtrees. 1629 */ 1630 backref_ctx.backref_owner = btrfs_header_owner(eb); 1631 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1632 1633 /* 1634 * The last extent of a file may be too large due to page alignment. 1635 * We need to adjust extent_len in this case so that the checks in 1636 * iterate_backrefs() work. 1637 */ 1638 if (data_offset + num_bytes >= ino_size) 1639 backref_ctx.extent_len = ino_size - data_offset; 1640 else 1641 backref_ctx.extent_len = num_bytes; 1642 1643 /* 1644 * Now collect all backrefs. 1645 */ 1646 backref_walk_ctx.bytenr = disk_byte; 1647 if (compressed == BTRFS_COMPRESS_NONE) 1648 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1649 backref_walk_ctx.fs_info = fs_info; 1650 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1651 backref_walk_ctx.cache_store = store_backref_cache; 1652 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1653 backref_walk_ctx.check_extent_item = check_extent_item; 1654 backref_walk_ctx.user_ctx = &backref_ctx; 1655 1656 /* 1657 * If have a single clone root, then it's the send root and we can tell 1658 * the backref walking code to skip our own backref and not resolve it, 1659 * since we can not use it for cloning - the source and destination 1660 * ranges can't overlap and in case the leaf is shared through a subtree 1661 * due to snapshots, we can't use those other roots since they are not 1662 * in the list of clone roots. 1663 */ 1664 if (sctx->clone_roots_cnt == 1) 1665 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1666 1667 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1668 &backref_ctx); 1669 if (ret < 0) 1670 return ret; 1671 1672 down_read(&fs_info->commit_root_sem); 1673 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1674 /* 1675 * A transaction commit for a transaction in which block group 1676 * relocation was done just happened. 1677 * The disk_bytenr of the file extent item we processed is 1678 * possibly stale, referring to the extent's location before 1679 * relocation. So act as if we haven't found any clone sources 1680 * and fallback to write commands, which will read the correct 1681 * data from the new extent location. Otherwise we will fail 1682 * below because we haven't found our own back reference or we 1683 * could be getting incorrect sources in case the old extent 1684 * was already reallocated after the relocation. 1685 */ 1686 up_read(&fs_info->commit_root_sem); 1687 return -ENOENT; 1688 } 1689 up_read(&fs_info->commit_root_sem); 1690 1691 btrfs_debug(fs_info, 1692 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1693 data_offset, ino, num_bytes, logical); 1694 1695 if (!backref_ctx.found) { 1696 btrfs_debug(fs_info, "no clones found"); 1697 return -ENOENT; 1698 } 1699 1700 cur_clone_root = NULL; 1701 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1702 struct clone_root *clone_root = &sctx->clone_roots[i]; 1703 1704 if (!clone_root->found_ref) 1705 continue; 1706 1707 /* 1708 * Choose the root from which we can clone more bytes, to 1709 * minimize write operations and therefore have more extent 1710 * sharing at the destination (the same as in the source). 1711 */ 1712 if (!cur_clone_root || 1713 clone_root->num_bytes > cur_clone_root->num_bytes) { 1714 cur_clone_root = clone_root; 1715 1716 /* 1717 * We found an optimal clone candidate (any inode from 1718 * any root is fine), so we're done. 1719 */ 1720 if (clone_root->num_bytes >= backref_ctx.extent_len) 1721 break; 1722 } 1723 } 1724 1725 if (cur_clone_root) { 1726 *found = cur_clone_root; 1727 ret = 0; 1728 } else { 1729 ret = -ENOENT; 1730 } 1731 1732 return ret; 1733 } 1734 1735 static int read_symlink(struct btrfs_root *root, 1736 u64 ino, 1737 struct fs_path *dest) 1738 { 1739 int ret; 1740 struct btrfs_path *path; 1741 struct btrfs_key key; 1742 struct btrfs_file_extent_item *ei; 1743 u8 type; 1744 u8 compression; 1745 unsigned long off; 1746 int len; 1747 1748 path = alloc_path_for_send(); 1749 if (!path) 1750 return -ENOMEM; 1751 1752 key.objectid = ino; 1753 key.type = BTRFS_EXTENT_DATA_KEY; 1754 key.offset = 0; 1755 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1756 if (ret < 0) 1757 goto out; 1758 if (ret) { 1759 /* 1760 * An empty symlink inode. Can happen in rare error paths when 1761 * creating a symlink (transaction committed before the inode 1762 * eviction handler removed the symlink inode items and a crash 1763 * happened in between or the subvol was snapshoted in between). 1764 * Print an informative message to dmesg/syslog so that the user 1765 * can delete the symlink. 1766 */ 1767 btrfs_err(root->fs_info, 1768 "Found empty symlink inode %llu at root %llu", 1769 ino, root->root_key.objectid); 1770 ret = -EIO; 1771 goto out; 1772 } 1773 1774 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1775 struct btrfs_file_extent_item); 1776 type = btrfs_file_extent_type(path->nodes[0], ei); 1777 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1778 ret = -EUCLEAN; 1779 btrfs_crit(root->fs_info, 1780 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1781 ino, btrfs_root_id(root), type); 1782 goto out; 1783 } 1784 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1785 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1786 ret = -EUCLEAN; 1787 btrfs_crit(root->fs_info, 1788 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1789 ino, btrfs_root_id(root), compression); 1790 goto out; 1791 } 1792 1793 off = btrfs_file_extent_inline_start(ei); 1794 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1795 1796 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1797 1798 out: 1799 btrfs_free_path(path); 1800 return ret; 1801 } 1802 1803 /* 1804 * Helper function to generate a file name that is unique in the root of 1805 * send_root and parent_root. This is used to generate names for orphan inodes. 1806 */ 1807 static int gen_unique_name(struct send_ctx *sctx, 1808 u64 ino, u64 gen, 1809 struct fs_path *dest) 1810 { 1811 int ret = 0; 1812 struct btrfs_path *path; 1813 struct btrfs_dir_item *di; 1814 char tmp[64]; 1815 int len; 1816 u64 idx = 0; 1817 1818 path = alloc_path_for_send(); 1819 if (!path) 1820 return -ENOMEM; 1821 1822 while (1) { 1823 struct fscrypt_str tmp_name; 1824 1825 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1826 ino, gen, idx); 1827 ASSERT(len < sizeof(tmp)); 1828 tmp_name.name = tmp; 1829 tmp_name.len = strlen(tmp); 1830 1831 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1832 path, BTRFS_FIRST_FREE_OBJECTID, 1833 &tmp_name, 0); 1834 btrfs_release_path(path); 1835 if (IS_ERR(di)) { 1836 ret = PTR_ERR(di); 1837 goto out; 1838 } 1839 if (di) { 1840 /* not unique, try again */ 1841 idx++; 1842 continue; 1843 } 1844 1845 if (!sctx->parent_root) { 1846 /* unique */ 1847 ret = 0; 1848 break; 1849 } 1850 1851 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1852 path, BTRFS_FIRST_FREE_OBJECTID, 1853 &tmp_name, 0); 1854 btrfs_release_path(path); 1855 if (IS_ERR(di)) { 1856 ret = PTR_ERR(di); 1857 goto out; 1858 } 1859 if (di) { 1860 /* not unique, try again */ 1861 idx++; 1862 continue; 1863 } 1864 /* unique */ 1865 break; 1866 } 1867 1868 ret = fs_path_add(dest, tmp, strlen(tmp)); 1869 1870 out: 1871 btrfs_free_path(path); 1872 return ret; 1873 } 1874 1875 enum inode_state { 1876 inode_state_no_change, 1877 inode_state_will_create, 1878 inode_state_did_create, 1879 inode_state_will_delete, 1880 inode_state_did_delete, 1881 }; 1882 1883 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1884 u64 *send_gen, u64 *parent_gen) 1885 { 1886 int ret; 1887 int left_ret; 1888 int right_ret; 1889 u64 left_gen; 1890 u64 right_gen = 0; 1891 struct btrfs_inode_info info; 1892 1893 ret = get_inode_info(sctx->send_root, ino, &info); 1894 if (ret < 0 && ret != -ENOENT) 1895 goto out; 1896 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1897 left_gen = info.gen; 1898 if (send_gen) 1899 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1900 1901 if (!sctx->parent_root) { 1902 right_ret = -ENOENT; 1903 } else { 1904 ret = get_inode_info(sctx->parent_root, ino, &info); 1905 if (ret < 0 && ret != -ENOENT) 1906 goto out; 1907 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1908 right_gen = info.gen; 1909 if (parent_gen) 1910 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1911 } 1912 1913 if (!left_ret && !right_ret) { 1914 if (left_gen == gen && right_gen == gen) { 1915 ret = inode_state_no_change; 1916 } else if (left_gen == gen) { 1917 if (ino < sctx->send_progress) 1918 ret = inode_state_did_create; 1919 else 1920 ret = inode_state_will_create; 1921 } else if (right_gen == gen) { 1922 if (ino < sctx->send_progress) 1923 ret = inode_state_did_delete; 1924 else 1925 ret = inode_state_will_delete; 1926 } else { 1927 ret = -ENOENT; 1928 } 1929 } else if (!left_ret) { 1930 if (left_gen == gen) { 1931 if (ino < sctx->send_progress) 1932 ret = inode_state_did_create; 1933 else 1934 ret = inode_state_will_create; 1935 } else { 1936 ret = -ENOENT; 1937 } 1938 } else if (!right_ret) { 1939 if (right_gen == gen) { 1940 if (ino < sctx->send_progress) 1941 ret = inode_state_did_delete; 1942 else 1943 ret = inode_state_will_delete; 1944 } else { 1945 ret = -ENOENT; 1946 } 1947 } else { 1948 ret = -ENOENT; 1949 } 1950 1951 out: 1952 return ret; 1953 } 1954 1955 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1956 u64 *send_gen, u64 *parent_gen) 1957 { 1958 int ret; 1959 1960 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1961 return 1; 1962 1963 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1964 if (ret < 0) 1965 goto out; 1966 1967 if (ret == inode_state_no_change || 1968 ret == inode_state_did_create || 1969 ret == inode_state_will_delete) 1970 ret = 1; 1971 else 1972 ret = 0; 1973 1974 out: 1975 return ret; 1976 } 1977 1978 /* 1979 * Helper function to lookup a dir item in a dir. 1980 */ 1981 static int lookup_dir_item_inode(struct btrfs_root *root, 1982 u64 dir, const char *name, int name_len, 1983 u64 *found_inode) 1984 { 1985 int ret = 0; 1986 struct btrfs_dir_item *di; 1987 struct btrfs_key key; 1988 struct btrfs_path *path; 1989 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1990 1991 path = alloc_path_for_send(); 1992 if (!path) 1993 return -ENOMEM; 1994 1995 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1996 if (IS_ERR_OR_NULL(di)) { 1997 ret = di ? PTR_ERR(di) : -ENOENT; 1998 goto out; 1999 } 2000 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 2001 if (key.type == BTRFS_ROOT_ITEM_KEY) { 2002 ret = -ENOENT; 2003 goto out; 2004 } 2005 *found_inode = key.objectid; 2006 2007 out: 2008 btrfs_free_path(path); 2009 return ret; 2010 } 2011 2012 /* 2013 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2014 * generation of the parent dir and the name of the dir entry. 2015 */ 2016 static int get_first_ref(struct btrfs_root *root, u64 ino, 2017 u64 *dir, u64 *dir_gen, struct fs_path *name) 2018 { 2019 int ret; 2020 struct btrfs_key key; 2021 struct btrfs_key found_key; 2022 struct btrfs_path *path; 2023 int len; 2024 u64 parent_dir; 2025 2026 path = alloc_path_for_send(); 2027 if (!path) 2028 return -ENOMEM; 2029 2030 key.objectid = ino; 2031 key.type = BTRFS_INODE_REF_KEY; 2032 key.offset = 0; 2033 2034 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2035 if (ret < 0) 2036 goto out; 2037 if (!ret) 2038 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2039 path->slots[0]); 2040 if (ret || found_key.objectid != ino || 2041 (found_key.type != BTRFS_INODE_REF_KEY && 2042 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2043 ret = -ENOENT; 2044 goto out; 2045 } 2046 2047 if (found_key.type == BTRFS_INODE_REF_KEY) { 2048 struct btrfs_inode_ref *iref; 2049 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2050 struct btrfs_inode_ref); 2051 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2052 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2053 (unsigned long)(iref + 1), 2054 len); 2055 parent_dir = found_key.offset; 2056 } else { 2057 struct btrfs_inode_extref *extref; 2058 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2059 struct btrfs_inode_extref); 2060 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2061 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2062 (unsigned long)&extref->name, len); 2063 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2064 } 2065 if (ret < 0) 2066 goto out; 2067 btrfs_release_path(path); 2068 2069 if (dir_gen) { 2070 ret = get_inode_gen(root, parent_dir, dir_gen); 2071 if (ret < 0) 2072 goto out; 2073 } 2074 2075 *dir = parent_dir; 2076 2077 out: 2078 btrfs_free_path(path); 2079 return ret; 2080 } 2081 2082 static int is_first_ref(struct btrfs_root *root, 2083 u64 ino, u64 dir, 2084 const char *name, int name_len) 2085 { 2086 int ret; 2087 struct fs_path *tmp_name; 2088 u64 tmp_dir; 2089 2090 tmp_name = fs_path_alloc(); 2091 if (!tmp_name) 2092 return -ENOMEM; 2093 2094 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2095 if (ret < 0) 2096 goto out; 2097 2098 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2099 ret = 0; 2100 goto out; 2101 } 2102 2103 ret = !memcmp(tmp_name->start, name, name_len); 2104 2105 out: 2106 fs_path_free(tmp_name); 2107 return ret; 2108 } 2109 2110 /* 2111 * Used by process_recorded_refs to determine if a new ref would overwrite an 2112 * already existing ref. In case it detects an overwrite, it returns the 2113 * inode/gen in who_ino/who_gen. 2114 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2115 * to make sure later references to the overwritten inode are possible. 2116 * Orphanizing is however only required for the first ref of an inode. 2117 * process_recorded_refs does an additional is_first_ref check to see if 2118 * orphanizing is really required. 2119 */ 2120 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2121 const char *name, int name_len, 2122 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2123 { 2124 int ret; 2125 u64 parent_root_dir_gen; 2126 u64 other_inode = 0; 2127 struct btrfs_inode_info info; 2128 2129 if (!sctx->parent_root) 2130 return 0; 2131 2132 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2133 if (ret <= 0) 2134 return 0; 2135 2136 /* 2137 * If we have a parent root we need to verify that the parent dir was 2138 * not deleted and then re-created, if it was then we have no overwrite 2139 * and we can just unlink this entry. 2140 * 2141 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2142 * parent root. 2143 */ 2144 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2145 parent_root_dir_gen != dir_gen) 2146 return 0; 2147 2148 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2149 &other_inode); 2150 if (ret == -ENOENT) 2151 return 0; 2152 else if (ret < 0) 2153 return ret; 2154 2155 /* 2156 * Check if the overwritten ref was already processed. If yes, the ref 2157 * was already unlinked/moved, so we can safely assume that we will not 2158 * overwrite anything at this point in time. 2159 */ 2160 if (other_inode > sctx->send_progress || 2161 is_waiting_for_move(sctx, other_inode)) { 2162 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2163 if (ret < 0) 2164 return ret; 2165 2166 *who_ino = other_inode; 2167 *who_gen = info.gen; 2168 *who_mode = info.mode; 2169 return 1; 2170 } 2171 2172 return 0; 2173 } 2174 2175 /* 2176 * Checks if the ref was overwritten by an already processed inode. This is 2177 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2178 * thus the orphan name needs be used. 2179 * process_recorded_refs also uses it to avoid unlinking of refs that were 2180 * overwritten. 2181 */ 2182 static int did_overwrite_ref(struct send_ctx *sctx, 2183 u64 dir, u64 dir_gen, 2184 u64 ino, u64 ino_gen, 2185 const char *name, int name_len) 2186 { 2187 int ret; 2188 u64 ow_inode; 2189 u64 ow_gen = 0; 2190 u64 send_root_dir_gen; 2191 2192 if (!sctx->parent_root) 2193 return 0; 2194 2195 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2196 if (ret <= 0) 2197 return ret; 2198 2199 /* 2200 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2201 * send root. 2202 */ 2203 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2204 return 0; 2205 2206 /* check if the ref was overwritten by another ref */ 2207 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2208 &ow_inode); 2209 if (ret == -ENOENT) { 2210 /* was never and will never be overwritten */ 2211 return 0; 2212 } else if (ret < 0) { 2213 return ret; 2214 } 2215 2216 if (ow_inode == ino) { 2217 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2218 if (ret < 0) 2219 return ret; 2220 2221 /* It's the same inode, so no overwrite happened. */ 2222 if (ow_gen == ino_gen) 2223 return 0; 2224 } 2225 2226 /* 2227 * We know that it is or will be overwritten. Check this now. 2228 * The current inode being processed might have been the one that caused 2229 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2230 * the current inode being processed. 2231 */ 2232 if (ow_inode < sctx->send_progress) 2233 return 1; 2234 2235 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2236 if (ow_gen == 0) { 2237 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2238 if (ret < 0) 2239 return ret; 2240 } 2241 if (ow_gen == sctx->cur_inode_gen) 2242 return 1; 2243 } 2244 2245 return 0; 2246 } 2247 2248 /* 2249 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2250 * that got overwritten. This is used by process_recorded_refs to determine 2251 * if it has to use the path as returned by get_cur_path or the orphan name. 2252 */ 2253 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2254 { 2255 int ret = 0; 2256 struct fs_path *name = NULL; 2257 u64 dir; 2258 u64 dir_gen; 2259 2260 if (!sctx->parent_root) 2261 goto out; 2262 2263 name = fs_path_alloc(); 2264 if (!name) 2265 return -ENOMEM; 2266 2267 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2268 if (ret < 0) 2269 goto out; 2270 2271 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2272 name->start, fs_path_len(name)); 2273 2274 out: 2275 fs_path_free(name); 2276 return ret; 2277 } 2278 2279 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2280 u64 ino, u64 gen) 2281 { 2282 struct btrfs_lru_cache_entry *entry; 2283 2284 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2285 if (!entry) 2286 return NULL; 2287 2288 return container_of(entry, struct name_cache_entry, entry); 2289 } 2290 2291 /* 2292 * Used by get_cur_path for each ref up to the root. 2293 * Returns 0 if it succeeded. 2294 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2295 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2296 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2297 * Returns <0 in case of error. 2298 */ 2299 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2300 u64 ino, u64 gen, 2301 u64 *parent_ino, 2302 u64 *parent_gen, 2303 struct fs_path *dest) 2304 { 2305 int ret; 2306 int nce_ret; 2307 struct name_cache_entry *nce; 2308 2309 /* 2310 * First check if we already did a call to this function with the same 2311 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2312 * return the cached result. 2313 */ 2314 nce = name_cache_search(sctx, ino, gen); 2315 if (nce) { 2316 if (ino < sctx->send_progress && nce->need_later_update) { 2317 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2318 nce = NULL; 2319 } else { 2320 *parent_ino = nce->parent_ino; 2321 *parent_gen = nce->parent_gen; 2322 ret = fs_path_add(dest, nce->name, nce->name_len); 2323 if (ret < 0) 2324 goto out; 2325 ret = nce->ret; 2326 goto out; 2327 } 2328 } 2329 2330 /* 2331 * If the inode is not existent yet, add the orphan name and return 1. 2332 * This should only happen for the parent dir that we determine in 2333 * record_new_ref_if_needed(). 2334 */ 2335 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2336 if (ret < 0) 2337 goto out; 2338 2339 if (!ret) { 2340 ret = gen_unique_name(sctx, ino, gen, dest); 2341 if (ret < 0) 2342 goto out; 2343 ret = 1; 2344 goto out_cache; 2345 } 2346 2347 /* 2348 * Depending on whether the inode was already processed or not, use 2349 * send_root or parent_root for ref lookup. 2350 */ 2351 if (ino < sctx->send_progress) 2352 ret = get_first_ref(sctx->send_root, ino, 2353 parent_ino, parent_gen, dest); 2354 else 2355 ret = get_first_ref(sctx->parent_root, ino, 2356 parent_ino, parent_gen, dest); 2357 if (ret < 0) 2358 goto out; 2359 2360 /* 2361 * Check if the ref was overwritten by an inode's ref that was processed 2362 * earlier. If yes, treat as orphan and return 1. 2363 */ 2364 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2365 dest->start, dest->end - dest->start); 2366 if (ret < 0) 2367 goto out; 2368 if (ret) { 2369 fs_path_reset(dest); 2370 ret = gen_unique_name(sctx, ino, gen, dest); 2371 if (ret < 0) 2372 goto out; 2373 ret = 1; 2374 } 2375 2376 out_cache: 2377 /* 2378 * Store the result of the lookup in the name cache. 2379 */ 2380 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2381 if (!nce) { 2382 ret = -ENOMEM; 2383 goto out; 2384 } 2385 2386 nce->entry.key = ino; 2387 nce->entry.gen = gen; 2388 nce->parent_ino = *parent_ino; 2389 nce->parent_gen = *parent_gen; 2390 nce->name_len = fs_path_len(dest); 2391 nce->ret = ret; 2392 strcpy(nce->name, dest->start); 2393 2394 if (ino < sctx->send_progress) 2395 nce->need_later_update = 0; 2396 else 2397 nce->need_later_update = 1; 2398 2399 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2400 if (nce_ret < 0) { 2401 kfree(nce); 2402 ret = nce_ret; 2403 } 2404 2405 out: 2406 return ret; 2407 } 2408 2409 /* 2410 * Magic happens here. This function returns the first ref to an inode as it 2411 * would look like while receiving the stream at this point in time. 2412 * We walk the path up to the root. For every inode in between, we check if it 2413 * was already processed/sent. If yes, we continue with the parent as found 2414 * in send_root. If not, we continue with the parent as found in parent_root. 2415 * If we encounter an inode that was deleted at this point in time, we use the 2416 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2417 * that were not created yet and overwritten inodes/refs. 2418 * 2419 * When do we have orphan inodes: 2420 * 1. When an inode is freshly created and thus no valid refs are available yet 2421 * 2. When a directory lost all it's refs (deleted) but still has dir items 2422 * inside which were not processed yet (pending for move/delete). If anyone 2423 * tried to get the path to the dir items, it would get a path inside that 2424 * orphan directory. 2425 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2426 * of an unprocessed inode. If in that case the first ref would be 2427 * overwritten, the overwritten inode gets "orphanized". Later when we 2428 * process this overwritten inode, it is restored at a new place by moving 2429 * the orphan inode. 2430 * 2431 * sctx->send_progress tells this function at which point in time receiving 2432 * would be. 2433 */ 2434 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2435 struct fs_path *dest) 2436 { 2437 int ret = 0; 2438 struct fs_path *name = NULL; 2439 u64 parent_inode = 0; 2440 u64 parent_gen = 0; 2441 int stop = 0; 2442 2443 name = fs_path_alloc(); 2444 if (!name) { 2445 ret = -ENOMEM; 2446 goto out; 2447 } 2448 2449 dest->reversed = 1; 2450 fs_path_reset(dest); 2451 2452 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2453 struct waiting_dir_move *wdm; 2454 2455 fs_path_reset(name); 2456 2457 if (is_waiting_for_rm(sctx, ino, gen)) { 2458 ret = gen_unique_name(sctx, ino, gen, name); 2459 if (ret < 0) 2460 goto out; 2461 ret = fs_path_add_path(dest, name); 2462 break; 2463 } 2464 2465 wdm = get_waiting_dir_move(sctx, ino); 2466 if (wdm && wdm->orphanized) { 2467 ret = gen_unique_name(sctx, ino, gen, name); 2468 stop = 1; 2469 } else if (wdm) { 2470 ret = get_first_ref(sctx->parent_root, ino, 2471 &parent_inode, &parent_gen, name); 2472 } else { 2473 ret = __get_cur_name_and_parent(sctx, ino, gen, 2474 &parent_inode, 2475 &parent_gen, name); 2476 if (ret) 2477 stop = 1; 2478 } 2479 2480 if (ret < 0) 2481 goto out; 2482 2483 ret = fs_path_add_path(dest, name); 2484 if (ret < 0) 2485 goto out; 2486 2487 ino = parent_inode; 2488 gen = parent_gen; 2489 } 2490 2491 out: 2492 fs_path_free(name); 2493 if (!ret) 2494 fs_path_unreverse(dest); 2495 return ret; 2496 } 2497 2498 /* 2499 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2500 */ 2501 static int send_subvol_begin(struct send_ctx *sctx) 2502 { 2503 int ret; 2504 struct btrfs_root *send_root = sctx->send_root; 2505 struct btrfs_root *parent_root = sctx->parent_root; 2506 struct btrfs_path *path; 2507 struct btrfs_key key; 2508 struct btrfs_root_ref *ref; 2509 struct extent_buffer *leaf; 2510 char *name = NULL; 2511 int namelen; 2512 2513 path = btrfs_alloc_path(); 2514 if (!path) 2515 return -ENOMEM; 2516 2517 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2518 if (!name) { 2519 btrfs_free_path(path); 2520 return -ENOMEM; 2521 } 2522 2523 key.objectid = send_root->root_key.objectid; 2524 key.type = BTRFS_ROOT_BACKREF_KEY; 2525 key.offset = 0; 2526 2527 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2528 &key, path, 1, 0); 2529 if (ret < 0) 2530 goto out; 2531 if (ret) { 2532 ret = -ENOENT; 2533 goto out; 2534 } 2535 2536 leaf = path->nodes[0]; 2537 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2538 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2539 key.objectid != send_root->root_key.objectid) { 2540 ret = -ENOENT; 2541 goto out; 2542 } 2543 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2544 namelen = btrfs_root_ref_name_len(leaf, ref); 2545 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2546 btrfs_release_path(path); 2547 2548 if (parent_root) { 2549 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2550 if (ret < 0) 2551 goto out; 2552 } else { 2553 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2554 if (ret < 0) 2555 goto out; 2556 } 2557 2558 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2559 2560 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2561 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2562 sctx->send_root->root_item.received_uuid); 2563 else 2564 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2565 sctx->send_root->root_item.uuid); 2566 2567 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2568 btrfs_root_ctransid(&sctx->send_root->root_item)); 2569 if (parent_root) { 2570 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2571 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2572 parent_root->root_item.received_uuid); 2573 else 2574 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2575 parent_root->root_item.uuid); 2576 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2577 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2578 } 2579 2580 ret = send_cmd(sctx); 2581 2582 tlv_put_failure: 2583 out: 2584 btrfs_free_path(path); 2585 kfree(name); 2586 return ret; 2587 } 2588 2589 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2590 { 2591 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2592 int ret = 0; 2593 struct fs_path *p; 2594 2595 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2596 2597 p = fs_path_alloc(); 2598 if (!p) 2599 return -ENOMEM; 2600 2601 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2602 if (ret < 0) 2603 goto out; 2604 2605 ret = get_cur_path(sctx, ino, gen, p); 2606 if (ret < 0) 2607 goto out; 2608 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2609 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2610 2611 ret = send_cmd(sctx); 2612 2613 tlv_put_failure: 2614 out: 2615 fs_path_free(p); 2616 return ret; 2617 } 2618 2619 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2620 { 2621 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2622 int ret = 0; 2623 struct fs_path *p; 2624 2625 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2626 2627 p = fs_path_alloc(); 2628 if (!p) 2629 return -ENOMEM; 2630 2631 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2632 if (ret < 0) 2633 goto out; 2634 2635 ret = get_cur_path(sctx, ino, gen, p); 2636 if (ret < 0) 2637 goto out; 2638 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2639 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2640 2641 ret = send_cmd(sctx); 2642 2643 tlv_put_failure: 2644 out: 2645 fs_path_free(p); 2646 return ret; 2647 } 2648 2649 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2650 { 2651 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2652 int ret = 0; 2653 struct fs_path *p; 2654 2655 if (sctx->proto < 2) 2656 return 0; 2657 2658 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2659 2660 p = fs_path_alloc(); 2661 if (!p) 2662 return -ENOMEM; 2663 2664 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2665 if (ret < 0) 2666 goto out; 2667 2668 ret = get_cur_path(sctx, ino, gen, p); 2669 if (ret < 0) 2670 goto out; 2671 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2672 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2673 2674 ret = send_cmd(sctx); 2675 2676 tlv_put_failure: 2677 out: 2678 fs_path_free(p); 2679 return ret; 2680 } 2681 2682 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2683 { 2684 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2685 int ret = 0; 2686 struct fs_path *p; 2687 2688 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2689 ino, uid, gid); 2690 2691 p = fs_path_alloc(); 2692 if (!p) 2693 return -ENOMEM; 2694 2695 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2696 if (ret < 0) 2697 goto out; 2698 2699 ret = get_cur_path(sctx, ino, gen, p); 2700 if (ret < 0) 2701 goto out; 2702 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2703 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2704 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2705 2706 ret = send_cmd(sctx); 2707 2708 tlv_put_failure: 2709 out: 2710 fs_path_free(p); 2711 return ret; 2712 } 2713 2714 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2715 { 2716 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2717 int ret = 0; 2718 struct fs_path *p = NULL; 2719 struct btrfs_inode_item *ii; 2720 struct btrfs_path *path = NULL; 2721 struct extent_buffer *eb; 2722 struct btrfs_key key; 2723 int slot; 2724 2725 btrfs_debug(fs_info, "send_utimes %llu", ino); 2726 2727 p = fs_path_alloc(); 2728 if (!p) 2729 return -ENOMEM; 2730 2731 path = alloc_path_for_send(); 2732 if (!path) { 2733 ret = -ENOMEM; 2734 goto out; 2735 } 2736 2737 key.objectid = ino; 2738 key.type = BTRFS_INODE_ITEM_KEY; 2739 key.offset = 0; 2740 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2741 if (ret > 0) 2742 ret = -ENOENT; 2743 if (ret < 0) 2744 goto out; 2745 2746 eb = path->nodes[0]; 2747 slot = path->slots[0]; 2748 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2749 2750 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2751 if (ret < 0) 2752 goto out; 2753 2754 ret = get_cur_path(sctx, ino, gen, p); 2755 if (ret < 0) 2756 goto out; 2757 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2758 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2759 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2760 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2761 if (sctx->proto >= 2) 2762 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2763 2764 ret = send_cmd(sctx); 2765 2766 tlv_put_failure: 2767 out: 2768 fs_path_free(p); 2769 btrfs_free_path(path); 2770 return ret; 2771 } 2772 2773 /* 2774 * If the cache is full, we can't remove entries from it and do a call to 2775 * send_utimes() for each respective inode, because we might be finishing 2776 * processing an inode that is a directory and it just got renamed, and existing 2777 * entries in the cache may refer to inodes that have the directory in their 2778 * full path - in which case we would generate outdated paths (pre-rename) 2779 * for the inodes that the cache entries point to. Instead of prunning the 2780 * cache when inserting, do it after we finish processing each inode at 2781 * finish_inode_if_needed(). 2782 */ 2783 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2784 { 2785 struct btrfs_lru_cache_entry *entry; 2786 int ret; 2787 2788 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2789 if (entry != NULL) 2790 return 0; 2791 2792 /* Caching is optional, don't fail if we can't allocate memory. */ 2793 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2794 if (!entry) 2795 return send_utimes(sctx, dir, gen); 2796 2797 entry->key = dir; 2798 entry->gen = gen; 2799 2800 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2801 ASSERT(ret != -EEXIST); 2802 if (ret) { 2803 kfree(entry); 2804 return send_utimes(sctx, dir, gen); 2805 } 2806 2807 return 0; 2808 } 2809 2810 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2811 { 2812 while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) > 2813 SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2814 struct btrfs_lru_cache_entry *lru; 2815 int ret; 2816 2817 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2818 ASSERT(lru != NULL); 2819 2820 ret = send_utimes(sctx, lru->key, lru->gen); 2821 if (ret) 2822 return ret; 2823 2824 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2825 } 2826 2827 return 0; 2828 } 2829 2830 /* 2831 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2832 * a valid path yet because we did not process the refs yet. So, the inode 2833 * is created as orphan. 2834 */ 2835 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2836 { 2837 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2838 int ret = 0; 2839 struct fs_path *p; 2840 int cmd; 2841 struct btrfs_inode_info info; 2842 u64 gen; 2843 u64 mode; 2844 u64 rdev; 2845 2846 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2847 2848 p = fs_path_alloc(); 2849 if (!p) 2850 return -ENOMEM; 2851 2852 if (ino != sctx->cur_ino) { 2853 ret = get_inode_info(sctx->send_root, ino, &info); 2854 if (ret < 0) 2855 goto out; 2856 gen = info.gen; 2857 mode = info.mode; 2858 rdev = info.rdev; 2859 } else { 2860 gen = sctx->cur_inode_gen; 2861 mode = sctx->cur_inode_mode; 2862 rdev = sctx->cur_inode_rdev; 2863 } 2864 2865 if (S_ISREG(mode)) { 2866 cmd = BTRFS_SEND_C_MKFILE; 2867 } else if (S_ISDIR(mode)) { 2868 cmd = BTRFS_SEND_C_MKDIR; 2869 } else if (S_ISLNK(mode)) { 2870 cmd = BTRFS_SEND_C_SYMLINK; 2871 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2872 cmd = BTRFS_SEND_C_MKNOD; 2873 } else if (S_ISFIFO(mode)) { 2874 cmd = BTRFS_SEND_C_MKFIFO; 2875 } else if (S_ISSOCK(mode)) { 2876 cmd = BTRFS_SEND_C_MKSOCK; 2877 } else { 2878 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2879 (int)(mode & S_IFMT)); 2880 ret = -EOPNOTSUPP; 2881 goto out; 2882 } 2883 2884 ret = begin_cmd(sctx, cmd); 2885 if (ret < 0) 2886 goto out; 2887 2888 ret = gen_unique_name(sctx, ino, gen, p); 2889 if (ret < 0) 2890 goto out; 2891 2892 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2893 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2894 2895 if (S_ISLNK(mode)) { 2896 fs_path_reset(p); 2897 ret = read_symlink(sctx->send_root, ino, p); 2898 if (ret < 0) 2899 goto out; 2900 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2901 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2902 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2903 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2904 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2905 } 2906 2907 ret = send_cmd(sctx); 2908 if (ret < 0) 2909 goto out; 2910 2911 2912 tlv_put_failure: 2913 out: 2914 fs_path_free(p); 2915 return ret; 2916 } 2917 2918 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2919 { 2920 struct btrfs_lru_cache_entry *entry; 2921 int ret; 2922 2923 /* Caching is optional, ignore any failures. */ 2924 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2925 if (!entry) 2926 return; 2927 2928 entry->key = dir; 2929 entry->gen = 0; 2930 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2931 if (ret < 0) 2932 kfree(entry); 2933 } 2934 2935 /* 2936 * We need some special handling for inodes that get processed before the parent 2937 * directory got created. See process_recorded_refs for details. 2938 * This function does the check if we already created the dir out of order. 2939 */ 2940 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2941 { 2942 int ret = 0; 2943 int iter_ret = 0; 2944 struct btrfs_path *path = NULL; 2945 struct btrfs_key key; 2946 struct btrfs_key found_key; 2947 struct btrfs_key di_key; 2948 struct btrfs_dir_item *di; 2949 2950 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2951 return 1; 2952 2953 path = alloc_path_for_send(); 2954 if (!path) 2955 return -ENOMEM; 2956 2957 key.objectid = dir; 2958 key.type = BTRFS_DIR_INDEX_KEY; 2959 key.offset = 0; 2960 2961 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2962 struct extent_buffer *eb = path->nodes[0]; 2963 2964 if (found_key.objectid != key.objectid || 2965 found_key.type != key.type) { 2966 ret = 0; 2967 break; 2968 } 2969 2970 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2971 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2972 2973 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2974 di_key.objectid < sctx->send_progress) { 2975 ret = 1; 2976 cache_dir_created(sctx, dir); 2977 break; 2978 } 2979 } 2980 /* Catch error found during iteration */ 2981 if (iter_ret < 0) 2982 ret = iter_ret; 2983 2984 btrfs_free_path(path); 2985 return ret; 2986 } 2987 2988 /* 2989 * Only creates the inode if it is: 2990 * 1. Not a directory 2991 * 2. Or a directory which was not created already due to out of order 2992 * directories. See did_create_dir and process_recorded_refs for details. 2993 */ 2994 static int send_create_inode_if_needed(struct send_ctx *sctx) 2995 { 2996 int ret; 2997 2998 if (S_ISDIR(sctx->cur_inode_mode)) { 2999 ret = did_create_dir(sctx, sctx->cur_ino); 3000 if (ret < 0) 3001 return ret; 3002 else if (ret > 0) 3003 return 0; 3004 } 3005 3006 ret = send_create_inode(sctx, sctx->cur_ino); 3007 3008 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3009 cache_dir_created(sctx, sctx->cur_ino); 3010 3011 return ret; 3012 } 3013 3014 struct recorded_ref { 3015 struct list_head list; 3016 char *name; 3017 struct fs_path *full_path; 3018 u64 dir; 3019 u64 dir_gen; 3020 int name_len; 3021 struct rb_node node; 3022 struct rb_root *root; 3023 }; 3024 3025 static struct recorded_ref *recorded_ref_alloc(void) 3026 { 3027 struct recorded_ref *ref; 3028 3029 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3030 if (!ref) 3031 return NULL; 3032 RB_CLEAR_NODE(&ref->node); 3033 INIT_LIST_HEAD(&ref->list); 3034 return ref; 3035 } 3036 3037 static void recorded_ref_free(struct recorded_ref *ref) 3038 { 3039 if (!ref) 3040 return; 3041 if (!RB_EMPTY_NODE(&ref->node)) 3042 rb_erase(&ref->node, ref->root); 3043 list_del(&ref->list); 3044 fs_path_free(ref->full_path); 3045 kfree(ref); 3046 } 3047 3048 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3049 { 3050 ref->full_path = path; 3051 ref->name = (char *)kbasename(ref->full_path->start); 3052 ref->name_len = ref->full_path->end - ref->name; 3053 } 3054 3055 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3056 { 3057 struct recorded_ref *new; 3058 3059 new = recorded_ref_alloc(); 3060 if (!new) 3061 return -ENOMEM; 3062 3063 new->dir = ref->dir; 3064 new->dir_gen = ref->dir_gen; 3065 list_add_tail(&new->list, list); 3066 return 0; 3067 } 3068 3069 static void __free_recorded_refs(struct list_head *head) 3070 { 3071 struct recorded_ref *cur; 3072 3073 while (!list_empty(head)) { 3074 cur = list_entry(head->next, struct recorded_ref, list); 3075 recorded_ref_free(cur); 3076 } 3077 } 3078 3079 static void free_recorded_refs(struct send_ctx *sctx) 3080 { 3081 __free_recorded_refs(&sctx->new_refs); 3082 __free_recorded_refs(&sctx->deleted_refs); 3083 } 3084 3085 /* 3086 * Renames/moves a file/dir to its orphan name. Used when the first 3087 * ref of an unprocessed inode gets overwritten and for all non empty 3088 * directories. 3089 */ 3090 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3091 struct fs_path *path) 3092 { 3093 int ret; 3094 struct fs_path *orphan; 3095 3096 orphan = fs_path_alloc(); 3097 if (!orphan) 3098 return -ENOMEM; 3099 3100 ret = gen_unique_name(sctx, ino, gen, orphan); 3101 if (ret < 0) 3102 goto out; 3103 3104 ret = send_rename(sctx, path, orphan); 3105 3106 out: 3107 fs_path_free(orphan); 3108 return ret; 3109 } 3110 3111 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3112 u64 dir_ino, u64 dir_gen) 3113 { 3114 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3115 struct rb_node *parent = NULL; 3116 struct orphan_dir_info *entry, *odi; 3117 3118 while (*p) { 3119 parent = *p; 3120 entry = rb_entry(parent, struct orphan_dir_info, node); 3121 if (dir_ino < entry->ino) 3122 p = &(*p)->rb_left; 3123 else if (dir_ino > entry->ino) 3124 p = &(*p)->rb_right; 3125 else if (dir_gen < entry->gen) 3126 p = &(*p)->rb_left; 3127 else if (dir_gen > entry->gen) 3128 p = &(*p)->rb_right; 3129 else 3130 return entry; 3131 } 3132 3133 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3134 if (!odi) 3135 return ERR_PTR(-ENOMEM); 3136 odi->ino = dir_ino; 3137 odi->gen = dir_gen; 3138 odi->last_dir_index_offset = 0; 3139 odi->dir_high_seq_ino = 0; 3140 3141 rb_link_node(&odi->node, parent, p); 3142 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3143 return odi; 3144 } 3145 3146 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3147 u64 dir_ino, u64 gen) 3148 { 3149 struct rb_node *n = sctx->orphan_dirs.rb_node; 3150 struct orphan_dir_info *entry; 3151 3152 while (n) { 3153 entry = rb_entry(n, struct orphan_dir_info, node); 3154 if (dir_ino < entry->ino) 3155 n = n->rb_left; 3156 else if (dir_ino > entry->ino) 3157 n = n->rb_right; 3158 else if (gen < entry->gen) 3159 n = n->rb_left; 3160 else if (gen > entry->gen) 3161 n = n->rb_right; 3162 else 3163 return entry; 3164 } 3165 return NULL; 3166 } 3167 3168 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3169 { 3170 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3171 3172 return odi != NULL; 3173 } 3174 3175 static void free_orphan_dir_info(struct send_ctx *sctx, 3176 struct orphan_dir_info *odi) 3177 { 3178 if (!odi) 3179 return; 3180 rb_erase(&odi->node, &sctx->orphan_dirs); 3181 kfree(odi); 3182 } 3183 3184 /* 3185 * Returns 1 if a directory can be removed at this point in time. 3186 * We check this by iterating all dir items and checking if the inode behind 3187 * the dir item was already processed. 3188 */ 3189 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3190 { 3191 int ret = 0; 3192 int iter_ret = 0; 3193 struct btrfs_root *root = sctx->parent_root; 3194 struct btrfs_path *path; 3195 struct btrfs_key key; 3196 struct btrfs_key found_key; 3197 struct btrfs_key loc; 3198 struct btrfs_dir_item *di; 3199 struct orphan_dir_info *odi = NULL; 3200 u64 dir_high_seq_ino = 0; 3201 u64 last_dir_index_offset = 0; 3202 3203 /* 3204 * Don't try to rmdir the top/root subvolume dir. 3205 */ 3206 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3207 return 0; 3208 3209 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3210 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3211 return 0; 3212 3213 path = alloc_path_for_send(); 3214 if (!path) 3215 return -ENOMEM; 3216 3217 if (!odi) { 3218 /* 3219 * Find the inode number associated with the last dir index 3220 * entry. This is very likely the inode with the highest number 3221 * of all inodes that have an entry in the directory. We can 3222 * then use it to avoid future calls to can_rmdir(), when 3223 * processing inodes with a lower number, from having to search 3224 * the parent root b+tree for dir index keys. 3225 */ 3226 key.objectid = dir; 3227 key.type = BTRFS_DIR_INDEX_KEY; 3228 key.offset = (u64)-1; 3229 3230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3231 if (ret < 0) { 3232 goto out; 3233 } else if (ret > 0) { 3234 /* Can't happen, the root is never empty. */ 3235 ASSERT(path->slots[0] > 0); 3236 if (WARN_ON(path->slots[0] == 0)) { 3237 ret = -EUCLEAN; 3238 goto out; 3239 } 3240 path->slots[0]--; 3241 } 3242 3243 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3244 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3245 /* No index keys, dir can be removed. */ 3246 ret = 1; 3247 goto out; 3248 } 3249 3250 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3251 struct btrfs_dir_item); 3252 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3253 dir_high_seq_ino = loc.objectid; 3254 if (sctx->cur_ino < dir_high_seq_ino) { 3255 ret = 0; 3256 goto out; 3257 } 3258 3259 btrfs_release_path(path); 3260 } 3261 3262 key.objectid = dir; 3263 key.type = BTRFS_DIR_INDEX_KEY; 3264 key.offset = (odi ? odi->last_dir_index_offset : 0); 3265 3266 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3267 struct waiting_dir_move *dm; 3268 3269 if (found_key.objectid != key.objectid || 3270 found_key.type != key.type) 3271 break; 3272 3273 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3274 struct btrfs_dir_item); 3275 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3276 3277 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3278 last_dir_index_offset = found_key.offset; 3279 3280 dm = get_waiting_dir_move(sctx, loc.objectid); 3281 if (dm) { 3282 dm->rmdir_ino = dir; 3283 dm->rmdir_gen = dir_gen; 3284 ret = 0; 3285 goto out; 3286 } 3287 3288 if (loc.objectid > sctx->cur_ino) { 3289 ret = 0; 3290 goto out; 3291 } 3292 } 3293 if (iter_ret < 0) { 3294 ret = iter_ret; 3295 goto out; 3296 } 3297 free_orphan_dir_info(sctx, odi); 3298 3299 ret = 1; 3300 3301 out: 3302 btrfs_free_path(path); 3303 3304 if (ret) 3305 return ret; 3306 3307 if (!odi) { 3308 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3309 if (IS_ERR(odi)) 3310 return PTR_ERR(odi); 3311 3312 odi->gen = dir_gen; 3313 } 3314 3315 odi->last_dir_index_offset = last_dir_index_offset; 3316 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3317 3318 return 0; 3319 } 3320 3321 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3322 { 3323 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3324 3325 return entry != NULL; 3326 } 3327 3328 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3329 { 3330 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3331 struct rb_node *parent = NULL; 3332 struct waiting_dir_move *entry, *dm; 3333 3334 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3335 if (!dm) 3336 return -ENOMEM; 3337 dm->ino = ino; 3338 dm->rmdir_ino = 0; 3339 dm->rmdir_gen = 0; 3340 dm->orphanized = orphanized; 3341 3342 while (*p) { 3343 parent = *p; 3344 entry = rb_entry(parent, struct waiting_dir_move, node); 3345 if (ino < entry->ino) { 3346 p = &(*p)->rb_left; 3347 } else if (ino > entry->ino) { 3348 p = &(*p)->rb_right; 3349 } else { 3350 kfree(dm); 3351 return -EEXIST; 3352 } 3353 } 3354 3355 rb_link_node(&dm->node, parent, p); 3356 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3357 return 0; 3358 } 3359 3360 static struct waiting_dir_move * 3361 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3362 { 3363 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3364 struct waiting_dir_move *entry; 3365 3366 while (n) { 3367 entry = rb_entry(n, struct waiting_dir_move, node); 3368 if (ino < entry->ino) 3369 n = n->rb_left; 3370 else if (ino > entry->ino) 3371 n = n->rb_right; 3372 else 3373 return entry; 3374 } 3375 return NULL; 3376 } 3377 3378 static void free_waiting_dir_move(struct send_ctx *sctx, 3379 struct waiting_dir_move *dm) 3380 { 3381 if (!dm) 3382 return; 3383 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3384 kfree(dm); 3385 } 3386 3387 static int add_pending_dir_move(struct send_ctx *sctx, 3388 u64 ino, 3389 u64 ino_gen, 3390 u64 parent_ino, 3391 struct list_head *new_refs, 3392 struct list_head *deleted_refs, 3393 const bool is_orphan) 3394 { 3395 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3396 struct rb_node *parent = NULL; 3397 struct pending_dir_move *entry = NULL, *pm; 3398 struct recorded_ref *cur; 3399 int exists = 0; 3400 int ret; 3401 3402 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3403 if (!pm) 3404 return -ENOMEM; 3405 pm->parent_ino = parent_ino; 3406 pm->ino = ino; 3407 pm->gen = ino_gen; 3408 INIT_LIST_HEAD(&pm->list); 3409 INIT_LIST_HEAD(&pm->update_refs); 3410 RB_CLEAR_NODE(&pm->node); 3411 3412 while (*p) { 3413 parent = *p; 3414 entry = rb_entry(parent, struct pending_dir_move, node); 3415 if (parent_ino < entry->parent_ino) { 3416 p = &(*p)->rb_left; 3417 } else if (parent_ino > entry->parent_ino) { 3418 p = &(*p)->rb_right; 3419 } else { 3420 exists = 1; 3421 break; 3422 } 3423 } 3424 3425 list_for_each_entry(cur, deleted_refs, list) { 3426 ret = dup_ref(cur, &pm->update_refs); 3427 if (ret < 0) 3428 goto out; 3429 } 3430 list_for_each_entry(cur, new_refs, list) { 3431 ret = dup_ref(cur, &pm->update_refs); 3432 if (ret < 0) 3433 goto out; 3434 } 3435 3436 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3437 if (ret) 3438 goto out; 3439 3440 if (exists) { 3441 list_add_tail(&pm->list, &entry->list); 3442 } else { 3443 rb_link_node(&pm->node, parent, p); 3444 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3445 } 3446 ret = 0; 3447 out: 3448 if (ret) { 3449 __free_recorded_refs(&pm->update_refs); 3450 kfree(pm); 3451 } 3452 return ret; 3453 } 3454 3455 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3456 u64 parent_ino) 3457 { 3458 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3459 struct pending_dir_move *entry; 3460 3461 while (n) { 3462 entry = rb_entry(n, struct pending_dir_move, node); 3463 if (parent_ino < entry->parent_ino) 3464 n = n->rb_left; 3465 else if (parent_ino > entry->parent_ino) 3466 n = n->rb_right; 3467 else 3468 return entry; 3469 } 3470 return NULL; 3471 } 3472 3473 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3474 u64 ino, u64 gen, u64 *ancestor_ino) 3475 { 3476 int ret = 0; 3477 u64 parent_inode = 0; 3478 u64 parent_gen = 0; 3479 u64 start_ino = ino; 3480 3481 *ancestor_ino = 0; 3482 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3483 fs_path_reset(name); 3484 3485 if (is_waiting_for_rm(sctx, ino, gen)) 3486 break; 3487 if (is_waiting_for_move(sctx, ino)) { 3488 if (*ancestor_ino == 0) 3489 *ancestor_ino = ino; 3490 ret = get_first_ref(sctx->parent_root, ino, 3491 &parent_inode, &parent_gen, name); 3492 } else { 3493 ret = __get_cur_name_and_parent(sctx, ino, gen, 3494 &parent_inode, 3495 &parent_gen, name); 3496 if (ret > 0) { 3497 ret = 0; 3498 break; 3499 } 3500 } 3501 if (ret < 0) 3502 break; 3503 if (parent_inode == start_ino) { 3504 ret = 1; 3505 if (*ancestor_ino == 0) 3506 *ancestor_ino = ino; 3507 break; 3508 } 3509 ino = parent_inode; 3510 gen = parent_gen; 3511 } 3512 return ret; 3513 } 3514 3515 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3516 { 3517 struct fs_path *from_path = NULL; 3518 struct fs_path *to_path = NULL; 3519 struct fs_path *name = NULL; 3520 u64 orig_progress = sctx->send_progress; 3521 struct recorded_ref *cur; 3522 u64 parent_ino, parent_gen; 3523 struct waiting_dir_move *dm = NULL; 3524 u64 rmdir_ino = 0; 3525 u64 rmdir_gen; 3526 u64 ancestor; 3527 bool is_orphan; 3528 int ret; 3529 3530 name = fs_path_alloc(); 3531 from_path = fs_path_alloc(); 3532 if (!name || !from_path) { 3533 ret = -ENOMEM; 3534 goto out; 3535 } 3536 3537 dm = get_waiting_dir_move(sctx, pm->ino); 3538 ASSERT(dm); 3539 rmdir_ino = dm->rmdir_ino; 3540 rmdir_gen = dm->rmdir_gen; 3541 is_orphan = dm->orphanized; 3542 free_waiting_dir_move(sctx, dm); 3543 3544 if (is_orphan) { 3545 ret = gen_unique_name(sctx, pm->ino, 3546 pm->gen, from_path); 3547 } else { 3548 ret = get_first_ref(sctx->parent_root, pm->ino, 3549 &parent_ino, &parent_gen, name); 3550 if (ret < 0) 3551 goto out; 3552 ret = get_cur_path(sctx, parent_ino, parent_gen, 3553 from_path); 3554 if (ret < 0) 3555 goto out; 3556 ret = fs_path_add_path(from_path, name); 3557 } 3558 if (ret < 0) 3559 goto out; 3560 3561 sctx->send_progress = sctx->cur_ino + 1; 3562 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3563 if (ret < 0) 3564 goto out; 3565 if (ret) { 3566 LIST_HEAD(deleted_refs); 3567 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3568 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3569 &pm->update_refs, &deleted_refs, 3570 is_orphan); 3571 if (ret < 0) 3572 goto out; 3573 if (rmdir_ino) { 3574 dm = get_waiting_dir_move(sctx, pm->ino); 3575 ASSERT(dm); 3576 dm->rmdir_ino = rmdir_ino; 3577 dm->rmdir_gen = rmdir_gen; 3578 } 3579 goto out; 3580 } 3581 fs_path_reset(name); 3582 to_path = name; 3583 name = NULL; 3584 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3585 if (ret < 0) 3586 goto out; 3587 3588 ret = send_rename(sctx, from_path, to_path); 3589 if (ret < 0) 3590 goto out; 3591 3592 if (rmdir_ino) { 3593 struct orphan_dir_info *odi; 3594 u64 gen; 3595 3596 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3597 if (!odi) { 3598 /* already deleted */ 3599 goto finish; 3600 } 3601 gen = odi->gen; 3602 3603 ret = can_rmdir(sctx, rmdir_ino, gen); 3604 if (ret < 0) 3605 goto out; 3606 if (!ret) 3607 goto finish; 3608 3609 name = fs_path_alloc(); 3610 if (!name) { 3611 ret = -ENOMEM; 3612 goto out; 3613 } 3614 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3615 if (ret < 0) 3616 goto out; 3617 ret = send_rmdir(sctx, name); 3618 if (ret < 0) 3619 goto out; 3620 } 3621 3622 finish: 3623 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3624 if (ret < 0) 3625 goto out; 3626 3627 /* 3628 * After rename/move, need to update the utimes of both new parent(s) 3629 * and old parent(s). 3630 */ 3631 list_for_each_entry(cur, &pm->update_refs, list) { 3632 /* 3633 * The parent inode might have been deleted in the send snapshot 3634 */ 3635 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3636 if (ret == -ENOENT) { 3637 ret = 0; 3638 continue; 3639 } 3640 if (ret < 0) 3641 goto out; 3642 3643 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3644 if (ret < 0) 3645 goto out; 3646 } 3647 3648 out: 3649 fs_path_free(name); 3650 fs_path_free(from_path); 3651 fs_path_free(to_path); 3652 sctx->send_progress = orig_progress; 3653 3654 return ret; 3655 } 3656 3657 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3658 { 3659 if (!list_empty(&m->list)) 3660 list_del(&m->list); 3661 if (!RB_EMPTY_NODE(&m->node)) 3662 rb_erase(&m->node, &sctx->pending_dir_moves); 3663 __free_recorded_refs(&m->update_refs); 3664 kfree(m); 3665 } 3666 3667 static void tail_append_pending_moves(struct send_ctx *sctx, 3668 struct pending_dir_move *moves, 3669 struct list_head *stack) 3670 { 3671 if (list_empty(&moves->list)) { 3672 list_add_tail(&moves->list, stack); 3673 } else { 3674 LIST_HEAD(list); 3675 list_splice_init(&moves->list, &list); 3676 list_add_tail(&moves->list, stack); 3677 list_splice_tail(&list, stack); 3678 } 3679 if (!RB_EMPTY_NODE(&moves->node)) { 3680 rb_erase(&moves->node, &sctx->pending_dir_moves); 3681 RB_CLEAR_NODE(&moves->node); 3682 } 3683 } 3684 3685 static int apply_children_dir_moves(struct send_ctx *sctx) 3686 { 3687 struct pending_dir_move *pm; 3688 LIST_HEAD(stack); 3689 u64 parent_ino = sctx->cur_ino; 3690 int ret = 0; 3691 3692 pm = get_pending_dir_moves(sctx, parent_ino); 3693 if (!pm) 3694 return 0; 3695 3696 tail_append_pending_moves(sctx, pm, &stack); 3697 3698 while (!list_empty(&stack)) { 3699 pm = list_first_entry(&stack, struct pending_dir_move, list); 3700 parent_ino = pm->ino; 3701 ret = apply_dir_move(sctx, pm); 3702 free_pending_move(sctx, pm); 3703 if (ret) 3704 goto out; 3705 pm = get_pending_dir_moves(sctx, parent_ino); 3706 if (pm) 3707 tail_append_pending_moves(sctx, pm, &stack); 3708 } 3709 return 0; 3710 3711 out: 3712 while (!list_empty(&stack)) { 3713 pm = list_first_entry(&stack, struct pending_dir_move, list); 3714 free_pending_move(sctx, pm); 3715 } 3716 return ret; 3717 } 3718 3719 /* 3720 * We might need to delay a directory rename even when no ancestor directory 3721 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3722 * renamed. This happens when we rename a directory to the old name (the name 3723 * in the parent root) of some other unrelated directory that got its rename 3724 * delayed due to some ancestor with higher number that got renamed. 3725 * 3726 * Example: 3727 * 3728 * Parent snapshot: 3729 * . (ino 256) 3730 * |---- a/ (ino 257) 3731 * | |---- file (ino 260) 3732 * | 3733 * |---- b/ (ino 258) 3734 * |---- c/ (ino 259) 3735 * 3736 * Send snapshot: 3737 * . (ino 256) 3738 * |---- a/ (ino 258) 3739 * |---- x/ (ino 259) 3740 * |---- y/ (ino 257) 3741 * |----- file (ino 260) 3742 * 3743 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3744 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3745 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3746 * must issue is: 3747 * 3748 * 1 - rename 259 from 'c' to 'x' 3749 * 2 - rename 257 from 'a' to 'x/y' 3750 * 3 - rename 258 from 'b' to 'a' 3751 * 3752 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3753 * be done right away and < 0 on error. 3754 */ 3755 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3756 struct recorded_ref *parent_ref, 3757 const bool is_orphan) 3758 { 3759 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3760 struct btrfs_path *path; 3761 struct btrfs_key key; 3762 struct btrfs_key di_key; 3763 struct btrfs_dir_item *di; 3764 u64 left_gen; 3765 u64 right_gen; 3766 int ret = 0; 3767 struct waiting_dir_move *wdm; 3768 3769 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3770 return 0; 3771 3772 path = alloc_path_for_send(); 3773 if (!path) 3774 return -ENOMEM; 3775 3776 key.objectid = parent_ref->dir; 3777 key.type = BTRFS_DIR_ITEM_KEY; 3778 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3779 3780 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3781 if (ret < 0) { 3782 goto out; 3783 } else if (ret > 0) { 3784 ret = 0; 3785 goto out; 3786 } 3787 3788 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3789 parent_ref->name_len); 3790 if (!di) { 3791 ret = 0; 3792 goto out; 3793 } 3794 /* 3795 * di_key.objectid has the number of the inode that has a dentry in the 3796 * parent directory with the same name that sctx->cur_ino is being 3797 * renamed to. We need to check if that inode is in the send root as 3798 * well and if it is currently marked as an inode with a pending rename, 3799 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3800 * that it happens after that other inode is renamed. 3801 */ 3802 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3803 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3804 ret = 0; 3805 goto out; 3806 } 3807 3808 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3809 if (ret < 0) 3810 goto out; 3811 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3812 if (ret < 0) { 3813 if (ret == -ENOENT) 3814 ret = 0; 3815 goto out; 3816 } 3817 3818 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3819 if (right_gen != left_gen) { 3820 ret = 0; 3821 goto out; 3822 } 3823 3824 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3825 if (wdm && !wdm->orphanized) { 3826 ret = add_pending_dir_move(sctx, 3827 sctx->cur_ino, 3828 sctx->cur_inode_gen, 3829 di_key.objectid, 3830 &sctx->new_refs, 3831 &sctx->deleted_refs, 3832 is_orphan); 3833 if (!ret) 3834 ret = 1; 3835 } 3836 out: 3837 btrfs_free_path(path); 3838 return ret; 3839 } 3840 3841 /* 3842 * Check if inode ino2, or any of its ancestors, is inode ino1. 3843 * Return 1 if true, 0 if false and < 0 on error. 3844 */ 3845 static int check_ino_in_path(struct btrfs_root *root, 3846 const u64 ino1, 3847 const u64 ino1_gen, 3848 const u64 ino2, 3849 const u64 ino2_gen, 3850 struct fs_path *fs_path) 3851 { 3852 u64 ino = ino2; 3853 3854 if (ino1 == ino2) 3855 return ino1_gen == ino2_gen; 3856 3857 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3858 u64 parent; 3859 u64 parent_gen; 3860 int ret; 3861 3862 fs_path_reset(fs_path); 3863 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3864 if (ret < 0) 3865 return ret; 3866 if (parent == ino1) 3867 return parent_gen == ino1_gen; 3868 ino = parent; 3869 } 3870 return 0; 3871 } 3872 3873 /* 3874 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3875 * possible path (in case ino2 is not a directory and has multiple hard links). 3876 * Return 1 if true, 0 if false and < 0 on error. 3877 */ 3878 static int is_ancestor(struct btrfs_root *root, 3879 const u64 ino1, 3880 const u64 ino1_gen, 3881 const u64 ino2, 3882 struct fs_path *fs_path) 3883 { 3884 bool free_fs_path = false; 3885 int ret = 0; 3886 int iter_ret = 0; 3887 struct btrfs_path *path = NULL; 3888 struct btrfs_key key; 3889 3890 if (!fs_path) { 3891 fs_path = fs_path_alloc(); 3892 if (!fs_path) 3893 return -ENOMEM; 3894 free_fs_path = true; 3895 } 3896 3897 path = alloc_path_for_send(); 3898 if (!path) { 3899 ret = -ENOMEM; 3900 goto out; 3901 } 3902 3903 key.objectid = ino2; 3904 key.type = BTRFS_INODE_REF_KEY; 3905 key.offset = 0; 3906 3907 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3908 struct extent_buffer *leaf = path->nodes[0]; 3909 int slot = path->slots[0]; 3910 u32 cur_offset = 0; 3911 u32 item_size; 3912 3913 if (key.objectid != ino2) 3914 break; 3915 if (key.type != BTRFS_INODE_REF_KEY && 3916 key.type != BTRFS_INODE_EXTREF_KEY) 3917 break; 3918 3919 item_size = btrfs_item_size(leaf, slot); 3920 while (cur_offset < item_size) { 3921 u64 parent; 3922 u64 parent_gen; 3923 3924 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3925 unsigned long ptr; 3926 struct btrfs_inode_extref *extref; 3927 3928 ptr = btrfs_item_ptr_offset(leaf, slot); 3929 extref = (struct btrfs_inode_extref *) 3930 (ptr + cur_offset); 3931 parent = btrfs_inode_extref_parent(leaf, 3932 extref); 3933 cur_offset += sizeof(*extref); 3934 cur_offset += btrfs_inode_extref_name_len(leaf, 3935 extref); 3936 } else { 3937 parent = key.offset; 3938 cur_offset = item_size; 3939 } 3940 3941 ret = get_inode_gen(root, parent, &parent_gen); 3942 if (ret < 0) 3943 goto out; 3944 ret = check_ino_in_path(root, ino1, ino1_gen, 3945 parent, parent_gen, fs_path); 3946 if (ret) 3947 goto out; 3948 } 3949 } 3950 ret = 0; 3951 if (iter_ret < 0) 3952 ret = iter_ret; 3953 3954 out: 3955 btrfs_free_path(path); 3956 if (free_fs_path) 3957 fs_path_free(fs_path); 3958 return ret; 3959 } 3960 3961 static int wait_for_parent_move(struct send_ctx *sctx, 3962 struct recorded_ref *parent_ref, 3963 const bool is_orphan) 3964 { 3965 int ret = 0; 3966 u64 ino = parent_ref->dir; 3967 u64 ino_gen = parent_ref->dir_gen; 3968 u64 parent_ino_before, parent_ino_after; 3969 struct fs_path *path_before = NULL; 3970 struct fs_path *path_after = NULL; 3971 int len1, len2; 3972 3973 path_after = fs_path_alloc(); 3974 path_before = fs_path_alloc(); 3975 if (!path_after || !path_before) { 3976 ret = -ENOMEM; 3977 goto out; 3978 } 3979 3980 /* 3981 * Our current directory inode may not yet be renamed/moved because some 3982 * ancestor (immediate or not) has to be renamed/moved first. So find if 3983 * such ancestor exists and make sure our own rename/move happens after 3984 * that ancestor is processed to avoid path build infinite loops (done 3985 * at get_cur_path()). 3986 */ 3987 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3988 u64 parent_ino_after_gen; 3989 3990 if (is_waiting_for_move(sctx, ino)) { 3991 /* 3992 * If the current inode is an ancestor of ino in the 3993 * parent root, we need to delay the rename of the 3994 * current inode, otherwise don't delayed the rename 3995 * because we can end up with a circular dependency 3996 * of renames, resulting in some directories never 3997 * getting the respective rename operations issued in 3998 * the send stream or getting into infinite path build 3999 * loops. 4000 */ 4001 ret = is_ancestor(sctx->parent_root, 4002 sctx->cur_ino, sctx->cur_inode_gen, 4003 ino, path_before); 4004 if (ret) 4005 break; 4006 } 4007 4008 fs_path_reset(path_before); 4009 fs_path_reset(path_after); 4010 4011 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4012 &parent_ino_after_gen, path_after); 4013 if (ret < 0) 4014 goto out; 4015 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4016 NULL, path_before); 4017 if (ret < 0 && ret != -ENOENT) { 4018 goto out; 4019 } else if (ret == -ENOENT) { 4020 ret = 0; 4021 break; 4022 } 4023 4024 len1 = fs_path_len(path_before); 4025 len2 = fs_path_len(path_after); 4026 if (ino > sctx->cur_ino && 4027 (parent_ino_before != parent_ino_after || len1 != len2 || 4028 memcmp(path_before->start, path_after->start, len1))) { 4029 u64 parent_ino_gen; 4030 4031 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4032 if (ret < 0) 4033 goto out; 4034 if (ino_gen == parent_ino_gen) { 4035 ret = 1; 4036 break; 4037 } 4038 } 4039 ino = parent_ino_after; 4040 ino_gen = parent_ino_after_gen; 4041 } 4042 4043 out: 4044 fs_path_free(path_before); 4045 fs_path_free(path_after); 4046 4047 if (ret == 1) { 4048 ret = add_pending_dir_move(sctx, 4049 sctx->cur_ino, 4050 sctx->cur_inode_gen, 4051 ino, 4052 &sctx->new_refs, 4053 &sctx->deleted_refs, 4054 is_orphan); 4055 if (!ret) 4056 ret = 1; 4057 } 4058 4059 return ret; 4060 } 4061 4062 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4063 { 4064 int ret; 4065 struct fs_path *new_path; 4066 4067 /* 4068 * Our reference's name member points to its full_path member string, so 4069 * we use here a new path. 4070 */ 4071 new_path = fs_path_alloc(); 4072 if (!new_path) 4073 return -ENOMEM; 4074 4075 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4076 if (ret < 0) { 4077 fs_path_free(new_path); 4078 return ret; 4079 } 4080 ret = fs_path_add(new_path, ref->name, ref->name_len); 4081 if (ret < 0) { 4082 fs_path_free(new_path); 4083 return ret; 4084 } 4085 4086 fs_path_free(ref->full_path); 4087 set_ref_path(ref, new_path); 4088 4089 return 0; 4090 } 4091 4092 /* 4093 * When processing the new references for an inode we may orphanize an existing 4094 * directory inode because its old name conflicts with one of the new references 4095 * of the current inode. Later, when processing another new reference of our 4096 * inode, we might need to orphanize another inode, but the path we have in the 4097 * reference reflects the pre-orphanization name of the directory we previously 4098 * orphanized. For example: 4099 * 4100 * parent snapshot looks like: 4101 * 4102 * . (ino 256) 4103 * |----- f1 (ino 257) 4104 * |----- f2 (ino 258) 4105 * |----- d1/ (ino 259) 4106 * |----- d2/ (ino 260) 4107 * 4108 * send snapshot looks like: 4109 * 4110 * . (ino 256) 4111 * |----- d1 (ino 258) 4112 * |----- f2/ (ino 259) 4113 * |----- f2_link/ (ino 260) 4114 * | |----- f1 (ino 257) 4115 * | 4116 * |----- d2 (ino 258) 4117 * 4118 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4119 * cache it in the name cache. Later when we start processing inode 258, when 4120 * collecting all its new references we set a full path of "d1/d2" for its new 4121 * reference with name "d2". When we start processing the new references we 4122 * start by processing the new reference with name "d1", and this results in 4123 * orphanizing inode 259, since its old reference causes a conflict. Then we 4124 * move on the next new reference, with name "d2", and we find out we must 4125 * orphanize inode 260, as its old reference conflicts with ours - but for the 4126 * orphanization we use a source path corresponding to the path we stored in the 4127 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4128 * receiver fail since the path component "d1/" no longer exists, it was renamed 4129 * to "o259-6-0/" when processing the previous new reference. So in this case we 4130 * must recompute the path in the new reference and use it for the new 4131 * orphanization operation. 4132 */ 4133 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4134 { 4135 char *name; 4136 int ret; 4137 4138 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4139 if (!name) 4140 return -ENOMEM; 4141 4142 fs_path_reset(ref->full_path); 4143 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4144 if (ret < 0) 4145 goto out; 4146 4147 ret = fs_path_add(ref->full_path, name, ref->name_len); 4148 if (ret < 0) 4149 goto out; 4150 4151 /* Update the reference's base name pointer. */ 4152 set_ref_path(ref, ref->full_path); 4153 out: 4154 kfree(name); 4155 return ret; 4156 } 4157 4158 /* 4159 * This does all the move/link/unlink/rmdir magic. 4160 */ 4161 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4162 { 4163 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4164 int ret = 0; 4165 struct recorded_ref *cur; 4166 struct recorded_ref *cur2; 4167 LIST_HEAD(check_dirs); 4168 struct fs_path *valid_path = NULL; 4169 u64 ow_inode = 0; 4170 u64 ow_gen; 4171 u64 ow_mode; 4172 int did_overwrite = 0; 4173 int is_orphan = 0; 4174 u64 last_dir_ino_rm = 0; 4175 bool can_rename = true; 4176 bool orphanized_dir = false; 4177 bool orphanized_ancestor = false; 4178 4179 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4180 4181 /* 4182 * This should never happen as the root dir always has the same ref 4183 * which is always '..' 4184 */ 4185 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 4186 4187 valid_path = fs_path_alloc(); 4188 if (!valid_path) { 4189 ret = -ENOMEM; 4190 goto out; 4191 } 4192 4193 /* 4194 * First, check if the first ref of the current inode was overwritten 4195 * before. If yes, we know that the current inode was already orphanized 4196 * and thus use the orphan name. If not, we can use get_cur_path to 4197 * get the path of the first ref as it would like while receiving at 4198 * this point in time. 4199 * New inodes are always orphan at the beginning, so force to use the 4200 * orphan name in this case. 4201 * The first ref is stored in valid_path and will be updated if it 4202 * gets moved around. 4203 */ 4204 if (!sctx->cur_inode_new) { 4205 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4206 sctx->cur_inode_gen); 4207 if (ret < 0) 4208 goto out; 4209 if (ret) 4210 did_overwrite = 1; 4211 } 4212 if (sctx->cur_inode_new || did_overwrite) { 4213 ret = gen_unique_name(sctx, sctx->cur_ino, 4214 sctx->cur_inode_gen, valid_path); 4215 if (ret < 0) 4216 goto out; 4217 is_orphan = 1; 4218 } else { 4219 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4220 valid_path); 4221 if (ret < 0) 4222 goto out; 4223 } 4224 4225 /* 4226 * Before doing any rename and link operations, do a first pass on the 4227 * new references to orphanize any unprocessed inodes that may have a 4228 * reference that conflicts with one of the new references of the current 4229 * inode. This needs to happen first because a new reference may conflict 4230 * with the old reference of a parent directory, so we must make sure 4231 * that the path used for link and rename commands don't use an 4232 * orphanized name when an ancestor was not yet orphanized. 4233 * 4234 * Example: 4235 * 4236 * Parent snapshot: 4237 * 4238 * . (ino 256) 4239 * |----- testdir/ (ino 259) 4240 * | |----- a (ino 257) 4241 * | 4242 * |----- b (ino 258) 4243 * 4244 * Send snapshot: 4245 * 4246 * . (ino 256) 4247 * |----- testdir_2/ (ino 259) 4248 * | |----- a (ino 260) 4249 * | 4250 * |----- testdir (ino 257) 4251 * |----- b (ino 257) 4252 * |----- b2 (ino 258) 4253 * 4254 * Processing the new reference for inode 257 with name "b" may happen 4255 * before processing the new reference with name "testdir". If so, we 4256 * must make sure that by the time we send a link command to create the 4257 * hard link "b", inode 259 was already orphanized, since the generated 4258 * path in "valid_path" already contains the orphanized name for 259. 4259 * We are processing inode 257, so only later when processing 259 we do 4260 * the rename operation to change its temporary (orphanized) name to 4261 * "testdir_2". 4262 */ 4263 list_for_each_entry(cur, &sctx->new_refs, list) { 4264 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4265 if (ret < 0) 4266 goto out; 4267 if (ret == inode_state_will_create) 4268 continue; 4269 4270 /* 4271 * Check if this new ref would overwrite the first ref of another 4272 * unprocessed inode. If yes, orphanize the overwritten inode. 4273 * If we find an overwritten ref that is not the first ref, 4274 * simply unlink it. 4275 */ 4276 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4277 cur->name, cur->name_len, 4278 &ow_inode, &ow_gen, &ow_mode); 4279 if (ret < 0) 4280 goto out; 4281 if (ret) { 4282 ret = is_first_ref(sctx->parent_root, 4283 ow_inode, cur->dir, cur->name, 4284 cur->name_len); 4285 if (ret < 0) 4286 goto out; 4287 if (ret) { 4288 struct name_cache_entry *nce; 4289 struct waiting_dir_move *wdm; 4290 4291 if (orphanized_dir) { 4292 ret = refresh_ref_path(sctx, cur); 4293 if (ret < 0) 4294 goto out; 4295 } 4296 4297 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4298 cur->full_path); 4299 if (ret < 0) 4300 goto out; 4301 if (S_ISDIR(ow_mode)) 4302 orphanized_dir = true; 4303 4304 /* 4305 * If ow_inode has its rename operation delayed 4306 * make sure that its orphanized name is used in 4307 * the source path when performing its rename 4308 * operation. 4309 */ 4310 wdm = get_waiting_dir_move(sctx, ow_inode); 4311 if (wdm) 4312 wdm->orphanized = true; 4313 4314 /* 4315 * Make sure we clear our orphanized inode's 4316 * name from the name cache. This is because the 4317 * inode ow_inode might be an ancestor of some 4318 * other inode that will be orphanized as well 4319 * later and has an inode number greater than 4320 * sctx->send_progress. We need to prevent 4321 * future name lookups from using the old name 4322 * and get instead the orphan name. 4323 */ 4324 nce = name_cache_search(sctx, ow_inode, ow_gen); 4325 if (nce) 4326 btrfs_lru_cache_remove(&sctx->name_cache, 4327 &nce->entry); 4328 4329 /* 4330 * ow_inode might currently be an ancestor of 4331 * cur_ino, therefore compute valid_path (the 4332 * current path of cur_ino) again because it 4333 * might contain the pre-orphanization name of 4334 * ow_inode, which is no longer valid. 4335 */ 4336 ret = is_ancestor(sctx->parent_root, 4337 ow_inode, ow_gen, 4338 sctx->cur_ino, NULL); 4339 if (ret > 0) { 4340 orphanized_ancestor = true; 4341 fs_path_reset(valid_path); 4342 ret = get_cur_path(sctx, sctx->cur_ino, 4343 sctx->cur_inode_gen, 4344 valid_path); 4345 } 4346 if (ret < 0) 4347 goto out; 4348 } else { 4349 /* 4350 * If we previously orphanized a directory that 4351 * collided with a new reference that we already 4352 * processed, recompute the current path because 4353 * that directory may be part of the path. 4354 */ 4355 if (orphanized_dir) { 4356 ret = refresh_ref_path(sctx, cur); 4357 if (ret < 0) 4358 goto out; 4359 } 4360 ret = send_unlink(sctx, cur->full_path); 4361 if (ret < 0) 4362 goto out; 4363 } 4364 } 4365 4366 } 4367 4368 list_for_each_entry(cur, &sctx->new_refs, list) { 4369 /* 4370 * We may have refs where the parent directory does not exist 4371 * yet. This happens if the parent directories inum is higher 4372 * than the current inum. To handle this case, we create the 4373 * parent directory out of order. But we need to check if this 4374 * did already happen before due to other refs in the same dir. 4375 */ 4376 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4377 if (ret < 0) 4378 goto out; 4379 if (ret == inode_state_will_create) { 4380 ret = 0; 4381 /* 4382 * First check if any of the current inodes refs did 4383 * already create the dir. 4384 */ 4385 list_for_each_entry(cur2, &sctx->new_refs, list) { 4386 if (cur == cur2) 4387 break; 4388 if (cur2->dir == cur->dir) { 4389 ret = 1; 4390 break; 4391 } 4392 } 4393 4394 /* 4395 * If that did not happen, check if a previous inode 4396 * did already create the dir. 4397 */ 4398 if (!ret) 4399 ret = did_create_dir(sctx, cur->dir); 4400 if (ret < 0) 4401 goto out; 4402 if (!ret) { 4403 ret = send_create_inode(sctx, cur->dir); 4404 if (ret < 0) 4405 goto out; 4406 cache_dir_created(sctx, cur->dir); 4407 } 4408 } 4409 4410 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4411 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4412 if (ret < 0) 4413 goto out; 4414 if (ret == 1) { 4415 can_rename = false; 4416 *pending_move = 1; 4417 } 4418 } 4419 4420 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4421 can_rename) { 4422 ret = wait_for_parent_move(sctx, cur, is_orphan); 4423 if (ret < 0) 4424 goto out; 4425 if (ret == 1) { 4426 can_rename = false; 4427 *pending_move = 1; 4428 } 4429 } 4430 4431 /* 4432 * link/move the ref to the new place. If we have an orphan 4433 * inode, move it and update valid_path. If not, link or move 4434 * it depending on the inode mode. 4435 */ 4436 if (is_orphan && can_rename) { 4437 ret = send_rename(sctx, valid_path, cur->full_path); 4438 if (ret < 0) 4439 goto out; 4440 is_orphan = 0; 4441 ret = fs_path_copy(valid_path, cur->full_path); 4442 if (ret < 0) 4443 goto out; 4444 } else if (can_rename) { 4445 if (S_ISDIR(sctx->cur_inode_mode)) { 4446 /* 4447 * Dirs can't be linked, so move it. For moved 4448 * dirs, we always have one new and one deleted 4449 * ref. The deleted ref is ignored later. 4450 */ 4451 ret = send_rename(sctx, valid_path, 4452 cur->full_path); 4453 if (!ret) 4454 ret = fs_path_copy(valid_path, 4455 cur->full_path); 4456 if (ret < 0) 4457 goto out; 4458 } else { 4459 /* 4460 * We might have previously orphanized an inode 4461 * which is an ancestor of our current inode, 4462 * so our reference's full path, which was 4463 * computed before any such orphanizations, must 4464 * be updated. 4465 */ 4466 if (orphanized_dir) { 4467 ret = update_ref_path(sctx, cur); 4468 if (ret < 0) 4469 goto out; 4470 } 4471 ret = send_link(sctx, cur->full_path, 4472 valid_path); 4473 if (ret < 0) 4474 goto out; 4475 } 4476 } 4477 ret = dup_ref(cur, &check_dirs); 4478 if (ret < 0) 4479 goto out; 4480 } 4481 4482 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4483 /* 4484 * Check if we can already rmdir the directory. If not, 4485 * orphanize it. For every dir item inside that gets deleted 4486 * later, we do this check again and rmdir it then if possible. 4487 * See the use of check_dirs for more details. 4488 */ 4489 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4490 if (ret < 0) 4491 goto out; 4492 if (ret) { 4493 ret = send_rmdir(sctx, valid_path); 4494 if (ret < 0) 4495 goto out; 4496 } else if (!is_orphan) { 4497 ret = orphanize_inode(sctx, sctx->cur_ino, 4498 sctx->cur_inode_gen, valid_path); 4499 if (ret < 0) 4500 goto out; 4501 is_orphan = 1; 4502 } 4503 4504 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4505 ret = dup_ref(cur, &check_dirs); 4506 if (ret < 0) 4507 goto out; 4508 } 4509 } else if (S_ISDIR(sctx->cur_inode_mode) && 4510 !list_empty(&sctx->deleted_refs)) { 4511 /* 4512 * We have a moved dir. Add the old parent to check_dirs 4513 */ 4514 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4515 list); 4516 ret = dup_ref(cur, &check_dirs); 4517 if (ret < 0) 4518 goto out; 4519 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4520 /* 4521 * We have a non dir inode. Go through all deleted refs and 4522 * unlink them if they were not already overwritten by other 4523 * inodes. 4524 */ 4525 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4526 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4527 sctx->cur_ino, sctx->cur_inode_gen, 4528 cur->name, cur->name_len); 4529 if (ret < 0) 4530 goto out; 4531 if (!ret) { 4532 /* 4533 * If we orphanized any ancestor before, we need 4534 * to recompute the full path for deleted names, 4535 * since any such path was computed before we 4536 * processed any references and orphanized any 4537 * ancestor inode. 4538 */ 4539 if (orphanized_ancestor) { 4540 ret = update_ref_path(sctx, cur); 4541 if (ret < 0) 4542 goto out; 4543 } 4544 ret = send_unlink(sctx, cur->full_path); 4545 if (ret < 0) 4546 goto out; 4547 } 4548 ret = dup_ref(cur, &check_dirs); 4549 if (ret < 0) 4550 goto out; 4551 } 4552 /* 4553 * If the inode is still orphan, unlink the orphan. This may 4554 * happen when a previous inode did overwrite the first ref 4555 * of this inode and no new refs were added for the current 4556 * inode. Unlinking does not mean that the inode is deleted in 4557 * all cases. There may still be links to this inode in other 4558 * places. 4559 */ 4560 if (is_orphan) { 4561 ret = send_unlink(sctx, valid_path); 4562 if (ret < 0) 4563 goto out; 4564 } 4565 } 4566 4567 /* 4568 * We did collect all parent dirs where cur_inode was once located. We 4569 * now go through all these dirs and check if they are pending for 4570 * deletion and if it's finally possible to perform the rmdir now. 4571 * We also update the inode stats of the parent dirs here. 4572 */ 4573 list_for_each_entry(cur, &check_dirs, list) { 4574 /* 4575 * In case we had refs into dirs that were not processed yet, 4576 * we don't need to do the utime and rmdir logic for these dirs. 4577 * The dir will be processed later. 4578 */ 4579 if (cur->dir > sctx->cur_ino) 4580 continue; 4581 4582 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4583 if (ret < 0) 4584 goto out; 4585 4586 if (ret == inode_state_did_create || 4587 ret == inode_state_no_change) { 4588 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4589 if (ret < 0) 4590 goto out; 4591 } else if (ret == inode_state_did_delete && 4592 cur->dir != last_dir_ino_rm) { 4593 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4594 if (ret < 0) 4595 goto out; 4596 if (ret) { 4597 ret = get_cur_path(sctx, cur->dir, 4598 cur->dir_gen, valid_path); 4599 if (ret < 0) 4600 goto out; 4601 ret = send_rmdir(sctx, valid_path); 4602 if (ret < 0) 4603 goto out; 4604 last_dir_ino_rm = cur->dir; 4605 } 4606 } 4607 } 4608 4609 ret = 0; 4610 4611 out: 4612 __free_recorded_refs(&check_dirs); 4613 free_recorded_refs(sctx); 4614 fs_path_free(valid_path); 4615 return ret; 4616 } 4617 4618 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4619 { 4620 const struct recorded_ref *data = k; 4621 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4622 int result; 4623 4624 if (data->dir > ref->dir) 4625 return 1; 4626 if (data->dir < ref->dir) 4627 return -1; 4628 if (data->dir_gen > ref->dir_gen) 4629 return 1; 4630 if (data->dir_gen < ref->dir_gen) 4631 return -1; 4632 if (data->name_len > ref->name_len) 4633 return 1; 4634 if (data->name_len < ref->name_len) 4635 return -1; 4636 result = strcmp(data->name, ref->name); 4637 if (result > 0) 4638 return 1; 4639 if (result < 0) 4640 return -1; 4641 return 0; 4642 } 4643 4644 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4645 { 4646 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4647 4648 return rbtree_ref_comp(entry, parent) < 0; 4649 } 4650 4651 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4652 struct fs_path *name, u64 dir, u64 dir_gen, 4653 struct send_ctx *sctx) 4654 { 4655 int ret = 0; 4656 struct fs_path *path = NULL; 4657 struct recorded_ref *ref = NULL; 4658 4659 path = fs_path_alloc(); 4660 if (!path) { 4661 ret = -ENOMEM; 4662 goto out; 4663 } 4664 4665 ref = recorded_ref_alloc(); 4666 if (!ref) { 4667 ret = -ENOMEM; 4668 goto out; 4669 } 4670 4671 ret = get_cur_path(sctx, dir, dir_gen, path); 4672 if (ret < 0) 4673 goto out; 4674 ret = fs_path_add_path(path, name); 4675 if (ret < 0) 4676 goto out; 4677 4678 ref->dir = dir; 4679 ref->dir_gen = dir_gen; 4680 set_ref_path(ref, path); 4681 list_add_tail(&ref->list, refs); 4682 rb_add(&ref->node, root, rbtree_ref_less); 4683 ref->root = root; 4684 out: 4685 if (ret) { 4686 if (path && (!ref || !ref->full_path)) 4687 fs_path_free(path); 4688 recorded_ref_free(ref); 4689 } 4690 return ret; 4691 } 4692 4693 static int record_new_ref_if_needed(int num, u64 dir, int index, 4694 struct fs_path *name, void *ctx) 4695 { 4696 int ret = 0; 4697 struct send_ctx *sctx = ctx; 4698 struct rb_node *node = NULL; 4699 struct recorded_ref data; 4700 struct recorded_ref *ref; 4701 u64 dir_gen; 4702 4703 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4704 if (ret < 0) 4705 goto out; 4706 4707 data.dir = dir; 4708 data.dir_gen = dir_gen; 4709 set_ref_path(&data, name); 4710 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4711 if (node) { 4712 ref = rb_entry(node, struct recorded_ref, node); 4713 recorded_ref_free(ref); 4714 } else { 4715 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4716 &sctx->new_refs, name, dir, dir_gen, 4717 sctx); 4718 } 4719 out: 4720 return ret; 4721 } 4722 4723 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4724 struct fs_path *name, void *ctx) 4725 { 4726 int ret = 0; 4727 struct send_ctx *sctx = ctx; 4728 struct rb_node *node = NULL; 4729 struct recorded_ref data; 4730 struct recorded_ref *ref; 4731 u64 dir_gen; 4732 4733 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4734 if (ret < 0) 4735 goto out; 4736 4737 data.dir = dir; 4738 data.dir_gen = dir_gen; 4739 set_ref_path(&data, name); 4740 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4741 if (node) { 4742 ref = rb_entry(node, struct recorded_ref, node); 4743 recorded_ref_free(ref); 4744 } else { 4745 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4746 &sctx->deleted_refs, name, dir, 4747 dir_gen, sctx); 4748 } 4749 out: 4750 return ret; 4751 } 4752 4753 static int record_new_ref(struct send_ctx *sctx) 4754 { 4755 int ret; 4756 4757 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4758 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4759 if (ret < 0) 4760 goto out; 4761 ret = 0; 4762 4763 out: 4764 return ret; 4765 } 4766 4767 static int record_deleted_ref(struct send_ctx *sctx) 4768 { 4769 int ret; 4770 4771 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4772 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4773 sctx); 4774 if (ret < 0) 4775 goto out; 4776 ret = 0; 4777 4778 out: 4779 return ret; 4780 } 4781 4782 static int record_changed_ref(struct send_ctx *sctx) 4783 { 4784 int ret = 0; 4785 4786 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4787 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4788 if (ret < 0) 4789 goto out; 4790 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4791 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4792 if (ret < 0) 4793 goto out; 4794 ret = 0; 4795 4796 out: 4797 return ret; 4798 } 4799 4800 /* 4801 * Record and process all refs at once. Needed when an inode changes the 4802 * generation number, which means that it was deleted and recreated. 4803 */ 4804 static int process_all_refs(struct send_ctx *sctx, 4805 enum btrfs_compare_tree_result cmd) 4806 { 4807 int ret = 0; 4808 int iter_ret = 0; 4809 struct btrfs_root *root; 4810 struct btrfs_path *path; 4811 struct btrfs_key key; 4812 struct btrfs_key found_key; 4813 iterate_inode_ref_t cb; 4814 int pending_move = 0; 4815 4816 path = alloc_path_for_send(); 4817 if (!path) 4818 return -ENOMEM; 4819 4820 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4821 root = sctx->send_root; 4822 cb = record_new_ref_if_needed; 4823 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4824 root = sctx->parent_root; 4825 cb = record_deleted_ref_if_needed; 4826 } else { 4827 btrfs_err(sctx->send_root->fs_info, 4828 "Wrong command %d in process_all_refs", cmd); 4829 ret = -EINVAL; 4830 goto out; 4831 } 4832 4833 key.objectid = sctx->cmp_key->objectid; 4834 key.type = BTRFS_INODE_REF_KEY; 4835 key.offset = 0; 4836 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4837 if (found_key.objectid != key.objectid || 4838 (found_key.type != BTRFS_INODE_REF_KEY && 4839 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4840 break; 4841 4842 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4843 if (ret < 0) 4844 goto out; 4845 } 4846 /* Catch error found during iteration */ 4847 if (iter_ret < 0) { 4848 ret = iter_ret; 4849 goto out; 4850 } 4851 btrfs_release_path(path); 4852 4853 /* 4854 * We don't actually care about pending_move as we are simply 4855 * re-creating this inode and will be rename'ing it into place once we 4856 * rename the parent directory. 4857 */ 4858 ret = process_recorded_refs(sctx, &pending_move); 4859 out: 4860 btrfs_free_path(path); 4861 return ret; 4862 } 4863 4864 static int send_set_xattr(struct send_ctx *sctx, 4865 struct fs_path *path, 4866 const char *name, int name_len, 4867 const char *data, int data_len) 4868 { 4869 int ret = 0; 4870 4871 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4872 if (ret < 0) 4873 goto out; 4874 4875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4876 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4877 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4878 4879 ret = send_cmd(sctx); 4880 4881 tlv_put_failure: 4882 out: 4883 return ret; 4884 } 4885 4886 static int send_remove_xattr(struct send_ctx *sctx, 4887 struct fs_path *path, 4888 const char *name, int name_len) 4889 { 4890 int ret = 0; 4891 4892 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4893 if (ret < 0) 4894 goto out; 4895 4896 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4897 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4898 4899 ret = send_cmd(sctx); 4900 4901 tlv_put_failure: 4902 out: 4903 return ret; 4904 } 4905 4906 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4907 const char *name, int name_len, const char *data, 4908 int data_len, void *ctx) 4909 { 4910 int ret; 4911 struct send_ctx *sctx = ctx; 4912 struct fs_path *p; 4913 struct posix_acl_xattr_header dummy_acl; 4914 4915 /* Capabilities are emitted by finish_inode_if_needed */ 4916 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4917 return 0; 4918 4919 p = fs_path_alloc(); 4920 if (!p) 4921 return -ENOMEM; 4922 4923 /* 4924 * This hack is needed because empty acls are stored as zero byte 4925 * data in xattrs. Problem with that is, that receiving these zero byte 4926 * acls will fail later. To fix this, we send a dummy acl list that 4927 * only contains the version number and no entries. 4928 */ 4929 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4930 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4931 if (data_len == 0) { 4932 dummy_acl.a_version = 4933 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4934 data = (char *)&dummy_acl; 4935 data_len = sizeof(dummy_acl); 4936 } 4937 } 4938 4939 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4940 if (ret < 0) 4941 goto out; 4942 4943 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4944 4945 out: 4946 fs_path_free(p); 4947 return ret; 4948 } 4949 4950 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4951 const char *name, int name_len, 4952 const char *data, int data_len, void *ctx) 4953 { 4954 int ret; 4955 struct send_ctx *sctx = ctx; 4956 struct fs_path *p; 4957 4958 p = fs_path_alloc(); 4959 if (!p) 4960 return -ENOMEM; 4961 4962 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4963 if (ret < 0) 4964 goto out; 4965 4966 ret = send_remove_xattr(sctx, p, name, name_len); 4967 4968 out: 4969 fs_path_free(p); 4970 return ret; 4971 } 4972 4973 static int process_new_xattr(struct send_ctx *sctx) 4974 { 4975 int ret = 0; 4976 4977 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4978 __process_new_xattr, sctx); 4979 4980 return ret; 4981 } 4982 4983 static int process_deleted_xattr(struct send_ctx *sctx) 4984 { 4985 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4986 __process_deleted_xattr, sctx); 4987 } 4988 4989 struct find_xattr_ctx { 4990 const char *name; 4991 int name_len; 4992 int found_idx; 4993 char *found_data; 4994 int found_data_len; 4995 }; 4996 4997 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4998 int name_len, const char *data, int data_len, void *vctx) 4999 { 5000 struct find_xattr_ctx *ctx = vctx; 5001 5002 if (name_len == ctx->name_len && 5003 strncmp(name, ctx->name, name_len) == 0) { 5004 ctx->found_idx = num; 5005 ctx->found_data_len = data_len; 5006 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5007 if (!ctx->found_data) 5008 return -ENOMEM; 5009 return 1; 5010 } 5011 return 0; 5012 } 5013 5014 static int find_xattr(struct btrfs_root *root, 5015 struct btrfs_path *path, 5016 struct btrfs_key *key, 5017 const char *name, int name_len, 5018 char **data, int *data_len) 5019 { 5020 int ret; 5021 struct find_xattr_ctx ctx; 5022 5023 ctx.name = name; 5024 ctx.name_len = name_len; 5025 ctx.found_idx = -1; 5026 ctx.found_data = NULL; 5027 ctx.found_data_len = 0; 5028 5029 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5030 if (ret < 0) 5031 return ret; 5032 5033 if (ctx.found_idx == -1) 5034 return -ENOENT; 5035 if (data) { 5036 *data = ctx.found_data; 5037 *data_len = ctx.found_data_len; 5038 } else { 5039 kfree(ctx.found_data); 5040 } 5041 return ctx.found_idx; 5042 } 5043 5044 5045 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5046 const char *name, int name_len, 5047 const char *data, int data_len, 5048 void *ctx) 5049 { 5050 int ret; 5051 struct send_ctx *sctx = ctx; 5052 char *found_data = NULL; 5053 int found_data_len = 0; 5054 5055 ret = find_xattr(sctx->parent_root, sctx->right_path, 5056 sctx->cmp_key, name, name_len, &found_data, 5057 &found_data_len); 5058 if (ret == -ENOENT) { 5059 ret = __process_new_xattr(num, di_key, name, name_len, data, 5060 data_len, ctx); 5061 } else if (ret >= 0) { 5062 if (data_len != found_data_len || 5063 memcmp(data, found_data, data_len)) { 5064 ret = __process_new_xattr(num, di_key, name, name_len, 5065 data, data_len, ctx); 5066 } else { 5067 ret = 0; 5068 } 5069 } 5070 5071 kfree(found_data); 5072 return ret; 5073 } 5074 5075 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5076 const char *name, int name_len, 5077 const char *data, int data_len, 5078 void *ctx) 5079 { 5080 int ret; 5081 struct send_ctx *sctx = ctx; 5082 5083 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5084 name, name_len, NULL, NULL); 5085 if (ret == -ENOENT) 5086 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5087 data_len, ctx); 5088 else if (ret >= 0) 5089 ret = 0; 5090 5091 return ret; 5092 } 5093 5094 static int process_changed_xattr(struct send_ctx *sctx) 5095 { 5096 int ret = 0; 5097 5098 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5099 __process_changed_new_xattr, sctx); 5100 if (ret < 0) 5101 goto out; 5102 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 5103 __process_changed_deleted_xattr, sctx); 5104 5105 out: 5106 return ret; 5107 } 5108 5109 static int process_all_new_xattrs(struct send_ctx *sctx) 5110 { 5111 int ret = 0; 5112 int iter_ret = 0; 5113 struct btrfs_root *root; 5114 struct btrfs_path *path; 5115 struct btrfs_key key; 5116 struct btrfs_key found_key; 5117 5118 path = alloc_path_for_send(); 5119 if (!path) 5120 return -ENOMEM; 5121 5122 root = sctx->send_root; 5123 5124 key.objectid = sctx->cmp_key->objectid; 5125 key.type = BTRFS_XATTR_ITEM_KEY; 5126 key.offset = 0; 5127 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5128 if (found_key.objectid != key.objectid || 5129 found_key.type != key.type) { 5130 ret = 0; 5131 break; 5132 } 5133 5134 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5135 if (ret < 0) 5136 break; 5137 } 5138 /* Catch error found during iteration */ 5139 if (iter_ret < 0) 5140 ret = iter_ret; 5141 5142 btrfs_free_path(path); 5143 return ret; 5144 } 5145 5146 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5147 struct fsverity_descriptor *desc) 5148 { 5149 int ret; 5150 5151 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5152 if (ret < 0) 5153 goto out; 5154 5155 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5156 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5157 le8_to_cpu(desc->hash_algorithm)); 5158 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5159 1U << le8_to_cpu(desc->log_blocksize)); 5160 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5161 le8_to_cpu(desc->salt_size)); 5162 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5163 le32_to_cpu(desc->sig_size)); 5164 5165 ret = send_cmd(sctx); 5166 5167 tlv_put_failure: 5168 out: 5169 return ret; 5170 } 5171 5172 static int process_verity(struct send_ctx *sctx) 5173 { 5174 int ret = 0; 5175 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5176 struct inode *inode; 5177 struct fs_path *p; 5178 5179 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 5180 if (IS_ERR(inode)) 5181 return PTR_ERR(inode); 5182 5183 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 5184 if (ret < 0) 5185 goto iput; 5186 5187 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5188 ret = -EMSGSIZE; 5189 goto iput; 5190 } 5191 if (!sctx->verity_descriptor) { 5192 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5193 GFP_KERNEL); 5194 if (!sctx->verity_descriptor) { 5195 ret = -ENOMEM; 5196 goto iput; 5197 } 5198 } 5199 5200 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 5201 if (ret < 0) 5202 goto iput; 5203 5204 p = fs_path_alloc(); 5205 if (!p) { 5206 ret = -ENOMEM; 5207 goto iput; 5208 } 5209 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5210 if (ret < 0) 5211 goto free_path; 5212 5213 ret = send_verity(sctx, p, sctx->verity_descriptor); 5214 if (ret < 0) 5215 goto free_path; 5216 5217 free_path: 5218 fs_path_free(p); 5219 iput: 5220 iput(inode); 5221 return ret; 5222 } 5223 5224 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5225 { 5226 return sctx->send_max_size - SZ_16K; 5227 } 5228 5229 static int put_data_header(struct send_ctx *sctx, u32 len) 5230 { 5231 if (WARN_ON_ONCE(sctx->put_data)) 5232 return -EINVAL; 5233 sctx->put_data = true; 5234 if (sctx->proto >= 2) { 5235 /* 5236 * Since v2, the data attribute header doesn't include a length, 5237 * it is implicitly to the end of the command. 5238 */ 5239 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5240 return -EOVERFLOW; 5241 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5242 sctx->send_size += sizeof(__le16); 5243 } else { 5244 struct btrfs_tlv_header *hdr; 5245 5246 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5247 return -EOVERFLOW; 5248 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5249 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5250 put_unaligned_le16(len, &hdr->tlv_len); 5251 sctx->send_size += sizeof(*hdr); 5252 } 5253 return 0; 5254 } 5255 5256 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5257 { 5258 struct btrfs_root *root = sctx->send_root; 5259 struct btrfs_fs_info *fs_info = root->fs_info; 5260 struct page *page; 5261 pgoff_t index = offset >> PAGE_SHIFT; 5262 pgoff_t last_index; 5263 unsigned pg_offset = offset_in_page(offset); 5264 int ret; 5265 5266 ret = put_data_header(sctx, len); 5267 if (ret) 5268 return ret; 5269 5270 last_index = (offset + len - 1) >> PAGE_SHIFT; 5271 5272 while (index <= last_index) { 5273 unsigned cur_len = min_t(unsigned, len, 5274 PAGE_SIZE - pg_offset); 5275 5276 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5277 if (!page) { 5278 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5279 &sctx->ra, NULL, index, 5280 last_index + 1 - index); 5281 5282 page = find_or_create_page(sctx->cur_inode->i_mapping, 5283 index, GFP_KERNEL); 5284 if (!page) { 5285 ret = -ENOMEM; 5286 break; 5287 } 5288 } 5289 5290 if (PageReadahead(page)) 5291 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5292 &sctx->ra, NULL, page_folio(page), 5293 index, last_index + 1 - index); 5294 5295 if (!PageUptodate(page)) { 5296 btrfs_read_folio(NULL, page_folio(page)); 5297 lock_page(page); 5298 if (!PageUptodate(page)) { 5299 unlock_page(page); 5300 btrfs_err(fs_info, 5301 "send: IO error at offset %llu for inode %llu root %llu", 5302 page_offset(page), sctx->cur_ino, 5303 sctx->send_root->root_key.objectid); 5304 put_page(page); 5305 ret = -EIO; 5306 break; 5307 } 5308 } 5309 5310 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5311 pg_offset, cur_len); 5312 unlock_page(page); 5313 put_page(page); 5314 index++; 5315 pg_offset = 0; 5316 len -= cur_len; 5317 sctx->send_size += cur_len; 5318 } 5319 5320 return ret; 5321 } 5322 5323 /* 5324 * Read some bytes from the current inode/file and send a write command to 5325 * user space. 5326 */ 5327 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5328 { 5329 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5330 int ret = 0; 5331 struct fs_path *p; 5332 5333 p = fs_path_alloc(); 5334 if (!p) 5335 return -ENOMEM; 5336 5337 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5338 5339 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5340 if (ret < 0) 5341 goto out; 5342 5343 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5344 if (ret < 0) 5345 goto out; 5346 5347 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5348 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5349 ret = put_file_data(sctx, offset, len); 5350 if (ret < 0) 5351 goto out; 5352 5353 ret = send_cmd(sctx); 5354 5355 tlv_put_failure: 5356 out: 5357 fs_path_free(p); 5358 return ret; 5359 } 5360 5361 /* 5362 * Send a clone command to user space. 5363 */ 5364 static int send_clone(struct send_ctx *sctx, 5365 u64 offset, u32 len, 5366 struct clone_root *clone_root) 5367 { 5368 int ret = 0; 5369 struct fs_path *p; 5370 u64 gen; 5371 5372 btrfs_debug(sctx->send_root->fs_info, 5373 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5374 offset, len, clone_root->root->root_key.objectid, 5375 clone_root->ino, clone_root->offset); 5376 5377 p = fs_path_alloc(); 5378 if (!p) 5379 return -ENOMEM; 5380 5381 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5382 if (ret < 0) 5383 goto out; 5384 5385 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5386 if (ret < 0) 5387 goto out; 5388 5389 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5390 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5391 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5392 5393 if (clone_root->root == sctx->send_root) { 5394 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5395 if (ret < 0) 5396 goto out; 5397 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5398 } else { 5399 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5400 } 5401 if (ret < 0) 5402 goto out; 5403 5404 /* 5405 * If the parent we're using has a received_uuid set then use that as 5406 * our clone source as that is what we will look for when doing a 5407 * receive. 5408 * 5409 * This covers the case that we create a snapshot off of a received 5410 * subvolume and then use that as the parent and try to receive on a 5411 * different host. 5412 */ 5413 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5414 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5415 clone_root->root->root_item.received_uuid); 5416 else 5417 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5418 clone_root->root->root_item.uuid); 5419 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5420 btrfs_root_ctransid(&clone_root->root->root_item)); 5421 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5422 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5423 clone_root->offset); 5424 5425 ret = send_cmd(sctx); 5426 5427 tlv_put_failure: 5428 out: 5429 fs_path_free(p); 5430 return ret; 5431 } 5432 5433 /* 5434 * Send an update extent command to user space. 5435 */ 5436 static int send_update_extent(struct send_ctx *sctx, 5437 u64 offset, u32 len) 5438 { 5439 int ret = 0; 5440 struct fs_path *p; 5441 5442 p = fs_path_alloc(); 5443 if (!p) 5444 return -ENOMEM; 5445 5446 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5447 if (ret < 0) 5448 goto out; 5449 5450 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5451 if (ret < 0) 5452 goto out; 5453 5454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5455 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5456 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5457 5458 ret = send_cmd(sctx); 5459 5460 tlv_put_failure: 5461 out: 5462 fs_path_free(p); 5463 return ret; 5464 } 5465 5466 static int send_hole(struct send_ctx *sctx, u64 end) 5467 { 5468 struct fs_path *p = NULL; 5469 u64 read_size = max_send_read_size(sctx); 5470 u64 offset = sctx->cur_inode_last_extent; 5471 int ret = 0; 5472 5473 /* 5474 * A hole that starts at EOF or beyond it. Since we do not yet support 5475 * fallocate (for extent preallocation and hole punching), sending a 5476 * write of zeroes starting at EOF or beyond would later require issuing 5477 * a truncate operation which would undo the write and achieve nothing. 5478 */ 5479 if (offset >= sctx->cur_inode_size) 5480 return 0; 5481 5482 /* 5483 * Don't go beyond the inode's i_size due to prealloc extents that start 5484 * after the i_size. 5485 */ 5486 end = min_t(u64, end, sctx->cur_inode_size); 5487 5488 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5489 return send_update_extent(sctx, offset, end - offset); 5490 5491 p = fs_path_alloc(); 5492 if (!p) 5493 return -ENOMEM; 5494 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5495 if (ret < 0) 5496 goto tlv_put_failure; 5497 while (offset < end) { 5498 u64 len = min(end - offset, read_size); 5499 5500 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5501 if (ret < 0) 5502 break; 5503 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5504 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5505 ret = put_data_header(sctx, len); 5506 if (ret < 0) 5507 break; 5508 memset(sctx->send_buf + sctx->send_size, 0, len); 5509 sctx->send_size += len; 5510 ret = send_cmd(sctx); 5511 if (ret < 0) 5512 break; 5513 offset += len; 5514 } 5515 sctx->cur_inode_next_write_offset = offset; 5516 tlv_put_failure: 5517 fs_path_free(p); 5518 return ret; 5519 } 5520 5521 static int send_encoded_inline_extent(struct send_ctx *sctx, 5522 struct btrfs_path *path, u64 offset, 5523 u64 len) 5524 { 5525 struct btrfs_root *root = sctx->send_root; 5526 struct btrfs_fs_info *fs_info = root->fs_info; 5527 struct inode *inode; 5528 struct fs_path *fspath; 5529 struct extent_buffer *leaf = path->nodes[0]; 5530 struct btrfs_key key; 5531 struct btrfs_file_extent_item *ei; 5532 u64 ram_bytes; 5533 size_t inline_size; 5534 int ret; 5535 5536 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5537 if (IS_ERR(inode)) 5538 return PTR_ERR(inode); 5539 5540 fspath = fs_path_alloc(); 5541 if (!fspath) { 5542 ret = -ENOMEM; 5543 goto out; 5544 } 5545 5546 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5547 if (ret < 0) 5548 goto out; 5549 5550 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5551 if (ret < 0) 5552 goto out; 5553 5554 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5555 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5556 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5557 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5558 5559 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5560 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5561 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5562 min(key.offset + ram_bytes - offset, len)); 5563 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5564 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5565 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5566 btrfs_file_extent_compression(leaf, ei)); 5567 if (ret < 0) 5568 goto out; 5569 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5570 5571 ret = put_data_header(sctx, inline_size); 5572 if (ret < 0) 5573 goto out; 5574 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5575 btrfs_file_extent_inline_start(ei), inline_size); 5576 sctx->send_size += inline_size; 5577 5578 ret = send_cmd(sctx); 5579 5580 tlv_put_failure: 5581 out: 5582 fs_path_free(fspath); 5583 iput(inode); 5584 return ret; 5585 } 5586 5587 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5588 u64 offset, u64 len) 5589 { 5590 struct btrfs_root *root = sctx->send_root; 5591 struct btrfs_fs_info *fs_info = root->fs_info; 5592 struct inode *inode; 5593 struct fs_path *fspath; 5594 struct extent_buffer *leaf = path->nodes[0]; 5595 struct btrfs_key key; 5596 struct btrfs_file_extent_item *ei; 5597 u64 disk_bytenr, disk_num_bytes; 5598 u32 data_offset; 5599 struct btrfs_cmd_header *hdr; 5600 u32 crc; 5601 int ret; 5602 5603 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5604 if (IS_ERR(inode)) 5605 return PTR_ERR(inode); 5606 5607 fspath = fs_path_alloc(); 5608 if (!fspath) { 5609 ret = -ENOMEM; 5610 goto out; 5611 } 5612 5613 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5614 if (ret < 0) 5615 goto out; 5616 5617 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5618 if (ret < 0) 5619 goto out; 5620 5621 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5623 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5624 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5625 5626 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5627 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5628 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5629 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5630 len)); 5631 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5632 btrfs_file_extent_ram_bytes(leaf, ei)); 5633 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5634 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5635 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5636 btrfs_file_extent_compression(leaf, ei)); 5637 if (ret < 0) 5638 goto out; 5639 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5640 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5641 5642 ret = put_data_header(sctx, disk_num_bytes); 5643 if (ret < 0) 5644 goto out; 5645 5646 /* 5647 * We want to do I/O directly into the send buffer, so get the next page 5648 * boundary in the send buffer. This means that there may be a gap 5649 * between the beginning of the command and the file data. 5650 */ 5651 data_offset = PAGE_ALIGN(sctx->send_size); 5652 if (data_offset > sctx->send_max_size || 5653 sctx->send_max_size - data_offset < disk_num_bytes) { 5654 ret = -EOVERFLOW; 5655 goto out; 5656 } 5657 5658 /* 5659 * Note that send_buf is a mapping of send_buf_pages, so this is really 5660 * reading into send_buf. 5661 */ 5662 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5663 disk_bytenr, disk_num_bytes, 5664 sctx->send_buf_pages + 5665 (data_offset >> PAGE_SHIFT)); 5666 if (ret) 5667 goto out; 5668 5669 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5670 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5671 hdr->crc = 0; 5672 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5673 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5674 hdr->crc = cpu_to_le32(crc); 5675 5676 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5677 &sctx->send_off); 5678 if (!ret) { 5679 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5680 disk_num_bytes, &sctx->send_off); 5681 } 5682 sctx->send_size = 0; 5683 sctx->put_data = false; 5684 5685 tlv_put_failure: 5686 out: 5687 fs_path_free(fspath); 5688 iput(inode); 5689 return ret; 5690 } 5691 5692 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5693 const u64 offset, const u64 len) 5694 { 5695 const u64 end = offset + len; 5696 struct extent_buffer *leaf = path->nodes[0]; 5697 struct btrfs_file_extent_item *ei; 5698 u64 read_size = max_send_read_size(sctx); 5699 u64 sent = 0; 5700 5701 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5702 return send_update_extent(sctx, offset, len); 5703 5704 ei = btrfs_item_ptr(leaf, path->slots[0], 5705 struct btrfs_file_extent_item); 5706 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5707 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5708 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5709 BTRFS_FILE_EXTENT_INLINE); 5710 5711 /* 5712 * Send the compressed extent unless the compressed data is 5713 * larger than the decompressed data. This can happen if we're 5714 * not sending the entire extent, either because it has been 5715 * partially overwritten/truncated or because this is a part of 5716 * the extent that we couldn't clone in clone_range(). 5717 */ 5718 if (is_inline && 5719 btrfs_file_extent_inline_item_len(leaf, 5720 path->slots[0]) <= len) { 5721 return send_encoded_inline_extent(sctx, path, offset, 5722 len); 5723 } else if (!is_inline && 5724 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5725 return send_encoded_extent(sctx, path, offset, len); 5726 } 5727 } 5728 5729 if (sctx->cur_inode == NULL) { 5730 struct btrfs_root *root = sctx->send_root; 5731 5732 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5733 if (IS_ERR(sctx->cur_inode)) { 5734 int err = PTR_ERR(sctx->cur_inode); 5735 5736 sctx->cur_inode = NULL; 5737 return err; 5738 } 5739 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5740 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5741 5742 /* 5743 * It's very likely there are no pages from this inode in the page 5744 * cache, so after reading extents and sending their data, we clean 5745 * the page cache to avoid trashing the page cache (adding pressure 5746 * to the page cache and forcing eviction of other data more useful 5747 * for applications). 5748 * 5749 * We decide if we should clean the page cache simply by checking 5750 * if the inode's mapping nrpages is 0 when we first open it, and 5751 * not by using something like filemap_range_has_page() before 5752 * reading an extent because when we ask the readahead code to 5753 * read a given file range, it may (and almost always does) read 5754 * pages from beyond that range (see the documentation for 5755 * page_cache_sync_readahead()), so it would not be reliable, 5756 * because after reading the first extent future calls to 5757 * filemap_range_has_page() would return true because the readahead 5758 * on the previous extent resulted in reading pages of the current 5759 * extent as well. 5760 */ 5761 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5762 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5763 } 5764 5765 while (sent < len) { 5766 u64 size = min(len - sent, read_size); 5767 int ret; 5768 5769 ret = send_write(sctx, offset + sent, size); 5770 if (ret < 0) 5771 return ret; 5772 sent += size; 5773 } 5774 5775 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5776 /* 5777 * Always operate only on ranges that are a multiple of the page 5778 * size. This is not only to prevent zeroing parts of a page in 5779 * the case of subpage sector size, but also to guarantee we evict 5780 * pages, as passing a range that is smaller than page size does 5781 * not evict the respective page (only zeroes part of its content). 5782 * 5783 * Always start from the end offset of the last range cleared. 5784 * This is because the readahead code may (and very often does) 5785 * reads pages beyond the range we request for readahead. So if 5786 * we have an extent layout like this: 5787 * 5788 * [ extent A ] [ extent B ] [ extent C ] 5789 * 5790 * When we ask page_cache_sync_readahead() to read extent A, it 5791 * may also trigger reads for pages of extent B. If we are doing 5792 * an incremental send and extent B has not changed between the 5793 * parent and send snapshots, some or all of its pages may end 5794 * up being read and placed in the page cache. So when truncating 5795 * the page cache we always start from the end offset of the 5796 * previously processed extent up to the end of the current 5797 * extent. 5798 */ 5799 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5800 sctx->page_cache_clear_start, 5801 end - 1); 5802 sctx->page_cache_clear_start = end; 5803 } 5804 5805 return 0; 5806 } 5807 5808 /* 5809 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5810 * found, call send_set_xattr function to emit it. 5811 * 5812 * Return 0 if there isn't a capability, or when the capability was emitted 5813 * successfully, or < 0 if an error occurred. 5814 */ 5815 static int send_capabilities(struct send_ctx *sctx) 5816 { 5817 struct fs_path *fspath = NULL; 5818 struct btrfs_path *path; 5819 struct btrfs_dir_item *di; 5820 struct extent_buffer *leaf; 5821 unsigned long data_ptr; 5822 char *buf = NULL; 5823 int buf_len; 5824 int ret = 0; 5825 5826 path = alloc_path_for_send(); 5827 if (!path) 5828 return -ENOMEM; 5829 5830 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5831 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5832 if (!di) { 5833 /* There is no xattr for this inode */ 5834 goto out; 5835 } else if (IS_ERR(di)) { 5836 ret = PTR_ERR(di); 5837 goto out; 5838 } 5839 5840 leaf = path->nodes[0]; 5841 buf_len = btrfs_dir_data_len(leaf, di); 5842 5843 fspath = fs_path_alloc(); 5844 buf = kmalloc(buf_len, GFP_KERNEL); 5845 if (!fspath || !buf) { 5846 ret = -ENOMEM; 5847 goto out; 5848 } 5849 5850 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5851 if (ret < 0) 5852 goto out; 5853 5854 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5855 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5856 5857 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5858 strlen(XATTR_NAME_CAPS), buf, buf_len); 5859 out: 5860 kfree(buf); 5861 fs_path_free(fspath); 5862 btrfs_free_path(path); 5863 return ret; 5864 } 5865 5866 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5867 struct clone_root *clone_root, const u64 disk_byte, 5868 u64 data_offset, u64 offset, u64 len) 5869 { 5870 struct btrfs_path *path; 5871 struct btrfs_key key; 5872 int ret; 5873 struct btrfs_inode_info info; 5874 u64 clone_src_i_size = 0; 5875 5876 /* 5877 * Prevent cloning from a zero offset with a length matching the sector 5878 * size because in some scenarios this will make the receiver fail. 5879 * 5880 * For example, if in the source filesystem the extent at offset 0 5881 * has a length of sectorsize and it was written using direct IO, then 5882 * it can never be an inline extent (even if compression is enabled). 5883 * Then this extent can be cloned in the original filesystem to a non 5884 * zero file offset, but it may not be possible to clone in the 5885 * destination filesystem because it can be inlined due to compression 5886 * on the destination filesystem (as the receiver's write operations are 5887 * always done using buffered IO). The same happens when the original 5888 * filesystem does not have compression enabled but the destination 5889 * filesystem has. 5890 */ 5891 if (clone_root->offset == 0 && 5892 len == sctx->send_root->fs_info->sectorsize) 5893 return send_extent_data(sctx, dst_path, offset, len); 5894 5895 path = alloc_path_for_send(); 5896 if (!path) 5897 return -ENOMEM; 5898 5899 /* 5900 * There are inodes that have extents that lie behind its i_size. Don't 5901 * accept clones from these extents. 5902 */ 5903 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5904 btrfs_release_path(path); 5905 if (ret < 0) 5906 goto out; 5907 clone_src_i_size = info.size; 5908 5909 /* 5910 * We can't send a clone operation for the entire range if we find 5911 * extent items in the respective range in the source file that 5912 * refer to different extents or if we find holes. 5913 * So check for that and do a mix of clone and regular write/copy 5914 * operations if needed. 5915 * 5916 * Example: 5917 * 5918 * mkfs.btrfs -f /dev/sda 5919 * mount /dev/sda /mnt 5920 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5921 * cp --reflink=always /mnt/foo /mnt/bar 5922 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5923 * btrfs subvolume snapshot -r /mnt /mnt/snap 5924 * 5925 * If when we send the snapshot and we are processing file bar (which 5926 * has a higher inode number than foo) we blindly send a clone operation 5927 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5928 * a file bar that matches the content of file foo - iow, doesn't match 5929 * the content from bar in the original filesystem. 5930 */ 5931 key.objectid = clone_root->ino; 5932 key.type = BTRFS_EXTENT_DATA_KEY; 5933 key.offset = clone_root->offset; 5934 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5935 if (ret < 0) 5936 goto out; 5937 if (ret > 0 && path->slots[0] > 0) { 5938 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5939 if (key.objectid == clone_root->ino && 5940 key.type == BTRFS_EXTENT_DATA_KEY) 5941 path->slots[0]--; 5942 } 5943 5944 while (true) { 5945 struct extent_buffer *leaf = path->nodes[0]; 5946 int slot = path->slots[0]; 5947 struct btrfs_file_extent_item *ei; 5948 u8 type; 5949 u64 ext_len; 5950 u64 clone_len; 5951 u64 clone_data_offset; 5952 bool crossed_src_i_size = false; 5953 5954 if (slot >= btrfs_header_nritems(leaf)) { 5955 ret = btrfs_next_leaf(clone_root->root, path); 5956 if (ret < 0) 5957 goto out; 5958 else if (ret > 0) 5959 break; 5960 continue; 5961 } 5962 5963 btrfs_item_key_to_cpu(leaf, &key, slot); 5964 5965 /* 5966 * We might have an implicit trailing hole (NO_HOLES feature 5967 * enabled). We deal with it after leaving this loop. 5968 */ 5969 if (key.objectid != clone_root->ino || 5970 key.type != BTRFS_EXTENT_DATA_KEY) 5971 break; 5972 5973 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5974 type = btrfs_file_extent_type(leaf, ei); 5975 if (type == BTRFS_FILE_EXTENT_INLINE) { 5976 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5977 ext_len = PAGE_ALIGN(ext_len); 5978 } else { 5979 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5980 } 5981 5982 if (key.offset + ext_len <= clone_root->offset) 5983 goto next; 5984 5985 if (key.offset > clone_root->offset) { 5986 /* Implicit hole, NO_HOLES feature enabled. */ 5987 u64 hole_len = key.offset - clone_root->offset; 5988 5989 if (hole_len > len) 5990 hole_len = len; 5991 ret = send_extent_data(sctx, dst_path, offset, 5992 hole_len); 5993 if (ret < 0) 5994 goto out; 5995 5996 len -= hole_len; 5997 if (len == 0) 5998 break; 5999 offset += hole_len; 6000 clone_root->offset += hole_len; 6001 data_offset += hole_len; 6002 } 6003 6004 if (key.offset >= clone_root->offset + len) 6005 break; 6006 6007 if (key.offset >= clone_src_i_size) 6008 break; 6009 6010 if (key.offset + ext_len > clone_src_i_size) { 6011 ext_len = clone_src_i_size - key.offset; 6012 crossed_src_i_size = true; 6013 } 6014 6015 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 6016 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 6017 clone_root->offset = key.offset; 6018 if (clone_data_offset < data_offset && 6019 clone_data_offset + ext_len > data_offset) { 6020 u64 extent_offset; 6021 6022 extent_offset = data_offset - clone_data_offset; 6023 ext_len -= extent_offset; 6024 clone_data_offset += extent_offset; 6025 clone_root->offset += extent_offset; 6026 } 6027 } 6028 6029 clone_len = min_t(u64, ext_len, len); 6030 6031 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6032 clone_data_offset == data_offset) { 6033 const u64 src_end = clone_root->offset + clone_len; 6034 const u64 sectorsize = SZ_64K; 6035 6036 /* 6037 * We can't clone the last block, when its size is not 6038 * sector size aligned, into the middle of a file. If we 6039 * do so, the receiver will get a failure (-EINVAL) when 6040 * trying to clone or will silently corrupt the data in 6041 * the destination file if it's on a kernel without the 6042 * fix introduced by commit ac765f83f1397646 6043 * ("Btrfs: fix data corruption due to cloning of eof 6044 * block). 6045 * 6046 * So issue a clone of the aligned down range plus a 6047 * regular write for the eof block, if we hit that case. 6048 * 6049 * Also, we use the maximum possible sector size, 64K, 6050 * because we don't know what's the sector size of the 6051 * filesystem that receives the stream, so we have to 6052 * assume the largest possible sector size. 6053 */ 6054 if (src_end == clone_src_i_size && 6055 !IS_ALIGNED(src_end, sectorsize) && 6056 offset + clone_len < sctx->cur_inode_size) { 6057 u64 slen; 6058 6059 slen = ALIGN_DOWN(src_end - clone_root->offset, 6060 sectorsize); 6061 if (slen > 0) { 6062 ret = send_clone(sctx, offset, slen, 6063 clone_root); 6064 if (ret < 0) 6065 goto out; 6066 } 6067 ret = send_extent_data(sctx, dst_path, 6068 offset + slen, 6069 clone_len - slen); 6070 } else { 6071 ret = send_clone(sctx, offset, clone_len, 6072 clone_root); 6073 } 6074 } else if (crossed_src_i_size && clone_len < len) { 6075 /* 6076 * If we are at i_size of the clone source inode and we 6077 * can not clone from it, terminate the loop. This is 6078 * to avoid sending two write operations, one with a 6079 * length matching clone_len and the final one after 6080 * this loop with a length of len - clone_len. 6081 * 6082 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6083 * was passed to the send ioctl), this helps avoid 6084 * sending an encoded write for an offset that is not 6085 * sector size aligned, in case the i_size of the source 6086 * inode is not sector size aligned. That will make the 6087 * receiver fallback to decompression of the data and 6088 * writing it using regular buffered IO, therefore while 6089 * not incorrect, it's not optimal due decompression and 6090 * possible re-compression at the receiver. 6091 */ 6092 break; 6093 } else { 6094 ret = send_extent_data(sctx, dst_path, offset, 6095 clone_len); 6096 } 6097 6098 if (ret < 0) 6099 goto out; 6100 6101 len -= clone_len; 6102 if (len == 0) 6103 break; 6104 offset += clone_len; 6105 clone_root->offset += clone_len; 6106 6107 /* 6108 * If we are cloning from the file we are currently processing, 6109 * and using the send root as the clone root, we must stop once 6110 * the current clone offset reaches the current eof of the file 6111 * at the receiver, otherwise we would issue an invalid clone 6112 * operation (source range going beyond eof) and cause the 6113 * receiver to fail. So if we reach the current eof, bail out 6114 * and fallback to a regular write. 6115 */ 6116 if (clone_root->root == sctx->send_root && 6117 clone_root->ino == sctx->cur_ino && 6118 clone_root->offset >= sctx->cur_inode_next_write_offset) 6119 break; 6120 6121 data_offset += clone_len; 6122 next: 6123 path->slots[0]++; 6124 } 6125 6126 if (len > 0) 6127 ret = send_extent_data(sctx, dst_path, offset, len); 6128 else 6129 ret = 0; 6130 out: 6131 btrfs_free_path(path); 6132 return ret; 6133 } 6134 6135 static int send_write_or_clone(struct send_ctx *sctx, 6136 struct btrfs_path *path, 6137 struct btrfs_key *key, 6138 struct clone_root *clone_root) 6139 { 6140 int ret = 0; 6141 u64 offset = key->offset; 6142 u64 end; 6143 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 6144 6145 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6146 if (offset >= end) 6147 return 0; 6148 6149 if (clone_root && IS_ALIGNED(end, bs)) { 6150 struct btrfs_file_extent_item *ei; 6151 u64 disk_byte; 6152 u64 data_offset; 6153 6154 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6155 struct btrfs_file_extent_item); 6156 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6157 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6158 ret = clone_range(sctx, path, clone_root, disk_byte, 6159 data_offset, offset, end - offset); 6160 } else { 6161 ret = send_extent_data(sctx, path, offset, end - offset); 6162 } 6163 sctx->cur_inode_next_write_offset = end; 6164 return ret; 6165 } 6166 6167 static int is_extent_unchanged(struct send_ctx *sctx, 6168 struct btrfs_path *left_path, 6169 struct btrfs_key *ekey) 6170 { 6171 int ret = 0; 6172 struct btrfs_key key; 6173 struct btrfs_path *path = NULL; 6174 struct extent_buffer *eb; 6175 int slot; 6176 struct btrfs_key found_key; 6177 struct btrfs_file_extent_item *ei; 6178 u64 left_disknr; 6179 u64 right_disknr; 6180 u64 left_offset; 6181 u64 right_offset; 6182 u64 left_offset_fixed; 6183 u64 left_len; 6184 u64 right_len; 6185 u64 left_gen; 6186 u64 right_gen; 6187 u8 left_type; 6188 u8 right_type; 6189 6190 path = alloc_path_for_send(); 6191 if (!path) 6192 return -ENOMEM; 6193 6194 eb = left_path->nodes[0]; 6195 slot = left_path->slots[0]; 6196 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6197 left_type = btrfs_file_extent_type(eb, ei); 6198 6199 if (left_type != BTRFS_FILE_EXTENT_REG) { 6200 ret = 0; 6201 goto out; 6202 } 6203 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6204 left_len = btrfs_file_extent_num_bytes(eb, ei); 6205 left_offset = btrfs_file_extent_offset(eb, ei); 6206 left_gen = btrfs_file_extent_generation(eb, ei); 6207 6208 /* 6209 * Following comments will refer to these graphics. L is the left 6210 * extents which we are checking at the moment. 1-8 are the right 6211 * extents that we iterate. 6212 * 6213 * |-----L-----| 6214 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6215 * 6216 * |-----L-----| 6217 * |--1--|-2b-|...(same as above) 6218 * 6219 * Alternative situation. Happens on files where extents got split. 6220 * |-----L-----| 6221 * |-----------7-----------|-6-| 6222 * 6223 * Alternative situation. Happens on files which got larger. 6224 * |-----L-----| 6225 * |-8-| 6226 * Nothing follows after 8. 6227 */ 6228 6229 key.objectid = ekey->objectid; 6230 key.type = BTRFS_EXTENT_DATA_KEY; 6231 key.offset = ekey->offset; 6232 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6233 if (ret < 0) 6234 goto out; 6235 if (ret) { 6236 ret = 0; 6237 goto out; 6238 } 6239 6240 /* 6241 * Handle special case where the right side has no extents at all. 6242 */ 6243 eb = path->nodes[0]; 6244 slot = path->slots[0]; 6245 btrfs_item_key_to_cpu(eb, &found_key, slot); 6246 if (found_key.objectid != key.objectid || 6247 found_key.type != key.type) { 6248 /* If we're a hole then just pretend nothing changed */ 6249 ret = (left_disknr) ? 0 : 1; 6250 goto out; 6251 } 6252 6253 /* 6254 * We're now on 2a, 2b or 7. 6255 */ 6256 key = found_key; 6257 while (key.offset < ekey->offset + left_len) { 6258 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6259 right_type = btrfs_file_extent_type(eb, ei); 6260 if (right_type != BTRFS_FILE_EXTENT_REG && 6261 right_type != BTRFS_FILE_EXTENT_INLINE) { 6262 ret = 0; 6263 goto out; 6264 } 6265 6266 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6267 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6268 right_len = PAGE_ALIGN(right_len); 6269 } else { 6270 right_len = btrfs_file_extent_num_bytes(eb, ei); 6271 } 6272 6273 /* 6274 * Are we at extent 8? If yes, we know the extent is changed. 6275 * This may only happen on the first iteration. 6276 */ 6277 if (found_key.offset + right_len <= ekey->offset) { 6278 /* If we're a hole just pretend nothing changed */ 6279 ret = (left_disknr) ? 0 : 1; 6280 goto out; 6281 } 6282 6283 /* 6284 * We just wanted to see if when we have an inline extent, what 6285 * follows it is a regular extent (wanted to check the above 6286 * condition for inline extents too). This should normally not 6287 * happen but it's possible for example when we have an inline 6288 * compressed extent representing data with a size matching 6289 * the page size (currently the same as sector size). 6290 */ 6291 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6292 ret = 0; 6293 goto out; 6294 } 6295 6296 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6297 right_offset = btrfs_file_extent_offset(eb, ei); 6298 right_gen = btrfs_file_extent_generation(eb, ei); 6299 6300 left_offset_fixed = left_offset; 6301 if (key.offset < ekey->offset) { 6302 /* Fix the right offset for 2a and 7. */ 6303 right_offset += ekey->offset - key.offset; 6304 } else { 6305 /* Fix the left offset for all behind 2a and 2b */ 6306 left_offset_fixed += key.offset - ekey->offset; 6307 } 6308 6309 /* 6310 * Check if we have the same extent. 6311 */ 6312 if (left_disknr != right_disknr || 6313 left_offset_fixed != right_offset || 6314 left_gen != right_gen) { 6315 ret = 0; 6316 goto out; 6317 } 6318 6319 /* 6320 * Go to the next extent. 6321 */ 6322 ret = btrfs_next_item(sctx->parent_root, path); 6323 if (ret < 0) 6324 goto out; 6325 if (!ret) { 6326 eb = path->nodes[0]; 6327 slot = path->slots[0]; 6328 btrfs_item_key_to_cpu(eb, &found_key, slot); 6329 } 6330 if (ret || found_key.objectid != key.objectid || 6331 found_key.type != key.type) { 6332 key.offset += right_len; 6333 break; 6334 } 6335 if (found_key.offset != key.offset + right_len) { 6336 ret = 0; 6337 goto out; 6338 } 6339 key = found_key; 6340 } 6341 6342 /* 6343 * We're now behind the left extent (treat as unchanged) or at the end 6344 * of the right side (treat as changed). 6345 */ 6346 if (key.offset >= ekey->offset + left_len) 6347 ret = 1; 6348 else 6349 ret = 0; 6350 6351 6352 out: 6353 btrfs_free_path(path); 6354 return ret; 6355 } 6356 6357 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6358 { 6359 struct btrfs_path *path; 6360 struct btrfs_root *root = sctx->send_root; 6361 struct btrfs_key key; 6362 int ret; 6363 6364 path = alloc_path_for_send(); 6365 if (!path) 6366 return -ENOMEM; 6367 6368 sctx->cur_inode_last_extent = 0; 6369 6370 key.objectid = sctx->cur_ino; 6371 key.type = BTRFS_EXTENT_DATA_KEY; 6372 key.offset = offset; 6373 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6374 if (ret < 0) 6375 goto out; 6376 ret = 0; 6377 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6378 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6379 goto out; 6380 6381 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6382 out: 6383 btrfs_free_path(path); 6384 return ret; 6385 } 6386 6387 static int range_is_hole_in_parent(struct send_ctx *sctx, 6388 const u64 start, 6389 const u64 end) 6390 { 6391 struct btrfs_path *path; 6392 struct btrfs_key key; 6393 struct btrfs_root *root = sctx->parent_root; 6394 u64 search_start = start; 6395 int ret; 6396 6397 path = alloc_path_for_send(); 6398 if (!path) 6399 return -ENOMEM; 6400 6401 key.objectid = sctx->cur_ino; 6402 key.type = BTRFS_EXTENT_DATA_KEY; 6403 key.offset = search_start; 6404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6405 if (ret < 0) 6406 goto out; 6407 if (ret > 0 && path->slots[0] > 0) 6408 path->slots[0]--; 6409 6410 while (search_start < end) { 6411 struct extent_buffer *leaf = path->nodes[0]; 6412 int slot = path->slots[0]; 6413 struct btrfs_file_extent_item *fi; 6414 u64 extent_end; 6415 6416 if (slot >= btrfs_header_nritems(leaf)) { 6417 ret = btrfs_next_leaf(root, path); 6418 if (ret < 0) 6419 goto out; 6420 else if (ret > 0) 6421 break; 6422 continue; 6423 } 6424 6425 btrfs_item_key_to_cpu(leaf, &key, slot); 6426 if (key.objectid < sctx->cur_ino || 6427 key.type < BTRFS_EXTENT_DATA_KEY) 6428 goto next; 6429 if (key.objectid > sctx->cur_ino || 6430 key.type > BTRFS_EXTENT_DATA_KEY || 6431 key.offset >= end) 6432 break; 6433 6434 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6435 extent_end = btrfs_file_extent_end(path); 6436 if (extent_end <= start) 6437 goto next; 6438 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6439 search_start = extent_end; 6440 goto next; 6441 } 6442 ret = 0; 6443 goto out; 6444 next: 6445 path->slots[0]++; 6446 } 6447 ret = 1; 6448 out: 6449 btrfs_free_path(path); 6450 return ret; 6451 } 6452 6453 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6454 struct btrfs_key *key) 6455 { 6456 int ret = 0; 6457 6458 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6459 return 0; 6460 6461 if (sctx->cur_inode_last_extent == (u64)-1) { 6462 ret = get_last_extent(sctx, key->offset - 1); 6463 if (ret) 6464 return ret; 6465 } 6466 6467 if (path->slots[0] == 0 && 6468 sctx->cur_inode_last_extent < key->offset) { 6469 /* 6470 * We might have skipped entire leafs that contained only 6471 * file extent items for our current inode. These leafs have 6472 * a generation number smaller (older) than the one in the 6473 * current leaf and the leaf our last extent came from, and 6474 * are located between these 2 leafs. 6475 */ 6476 ret = get_last_extent(sctx, key->offset - 1); 6477 if (ret) 6478 return ret; 6479 } 6480 6481 if (sctx->cur_inode_last_extent < key->offset) { 6482 ret = range_is_hole_in_parent(sctx, 6483 sctx->cur_inode_last_extent, 6484 key->offset); 6485 if (ret < 0) 6486 return ret; 6487 else if (ret == 0) 6488 ret = send_hole(sctx, key->offset); 6489 else 6490 ret = 0; 6491 } 6492 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6493 return ret; 6494 } 6495 6496 static int process_extent(struct send_ctx *sctx, 6497 struct btrfs_path *path, 6498 struct btrfs_key *key) 6499 { 6500 struct clone_root *found_clone = NULL; 6501 int ret = 0; 6502 6503 if (S_ISLNK(sctx->cur_inode_mode)) 6504 return 0; 6505 6506 if (sctx->parent_root && !sctx->cur_inode_new) { 6507 ret = is_extent_unchanged(sctx, path, key); 6508 if (ret < 0) 6509 goto out; 6510 if (ret) { 6511 ret = 0; 6512 goto out_hole; 6513 } 6514 } else { 6515 struct btrfs_file_extent_item *ei; 6516 u8 type; 6517 6518 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6519 struct btrfs_file_extent_item); 6520 type = btrfs_file_extent_type(path->nodes[0], ei); 6521 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6522 type == BTRFS_FILE_EXTENT_REG) { 6523 /* 6524 * The send spec does not have a prealloc command yet, 6525 * so just leave a hole for prealloc'ed extents until 6526 * we have enough commands queued up to justify rev'ing 6527 * the send spec. 6528 */ 6529 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6530 ret = 0; 6531 goto out; 6532 } 6533 6534 /* Have a hole, just skip it. */ 6535 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6536 ret = 0; 6537 goto out; 6538 } 6539 } 6540 } 6541 6542 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6543 sctx->cur_inode_size, &found_clone); 6544 if (ret != -ENOENT && ret < 0) 6545 goto out; 6546 6547 ret = send_write_or_clone(sctx, path, key, found_clone); 6548 if (ret) 6549 goto out; 6550 out_hole: 6551 ret = maybe_send_hole(sctx, path, key); 6552 out: 6553 return ret; 6554 } 6555 6556 static int process_all_extents(struct send_ctx *sctx) 6557 { 6558 int ret = 0; 6559 int iter_ret = 0; 6560 struct btrfs_root *root; 6561 struct btrfs_path *path; 6562 struct btrfs_key key; 6563 struct btrfs_key found_key; 6564 6565 root = sctx->send_root; 6566 path = alloc_path_for_send(); 6567 if (!path) 6568 return -ENOMEM; 6569 6570 key.objectid = sctx->cmp_key->objectid; 6571 key.type = BTRFS_EXTENT_DATA_KEY; 6572 key.offset = 0; 6573 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6574 if (found_key.objectid != key.objectid || 6575 found_key.type != key.type) { 6576 ret = 0; 6577 break; 6578 } 6579 6580 ret = process_extent(sctx, path, &found_key); 6581 if (ret < 0) 6582 break; 6583 } 6584 /* Catch error found during iteration */ 6585 if (iter_ret < 0) 6586 ret = iter_ret; 6587 6588 btrfs_free_path(path); 6589 return ret; 6590 } 6591 6592 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6593 int *pending_move, 6594 int *refs_processed) 6595 { 6596 int ret = 0; 6597 6598 if (sctx->cur_ino == 0) 6599 goto out; 6600 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6601 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6602 goto out; 6603 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6604 goto out; 6605 6606 ret = process_recorded_refs(sctx, pending_move); 6607 if (ret < 0) 6608 goto out; 6609 6610 *refs_processed = 1; 6611 out: 6612 return ret; 6613 } 6614 6615 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6616 { 6617 int ret = 0; 6618 struct btrfs_inode_info info; 6619 u64 left_mode; 6620 u64 left_uid; 6621 u64 left_gid; 6622 u64 left_fileattr; 6623 u64 right_mode; 6624 u64 right_uid; 6625 u64 right_gid; 6626 u64 right_fileattr; 6627 int need_chmod = 0; 6628 int need_chown = 0; 6629 bool need_fileattr = false; 6630 int need_truncate = 1; 6631 int pending_move = 0; 6632 int refs_processed = 0; 6633 6634 if (sctx->ignore_cur_inode) 6635 return 0; 6636 6637 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6638 &refs_processed); 6639 if (ret < 0) 6640 goto out; 6641 6642 /* 6643 * We have processed the refs and thus need to advance send_progress. 6644 * Now, calls to get_cur_xxx will take the updated refs of the current 6645 * inode into account. 6646 * 6647 * On the other hand, if our current inode is a directory and couldn't 6648 * be moved/renamed because its parent was renamed/moved too and it has 6649 * a higher inode number, we can only move/rename our current inode 6650 * after we moved/renamed its parent. Therefore in this case operate on 6651 * the old path (pre move/rename) of our current inode, and the 6652 * move/rename will be performed later. 6653 */ 6654 if (refs_processed && !pending_move) 6655 sctx->send_progress = sctx->cur_ino + 1; 6656 6657 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6658 goto out; 6659 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6660 goto out; 6661 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6662 if (ret < 0) 6663 goto out; 6664 left_mode = info.mode; 6665 left_uid = info.uid; 6666 left_gid = info.gid; 6667 left_fileattr = info.fileattr; 6668 6669 if (!sctx->parent_root || sctx->cur_inode_new) { 6670 need_chown = 1; 6671 if (!S_ISLNK(sctx->cur_inode_mode)) 6672 need_chmod = 1; 6673 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6674 need_truncate = 0; 6675 } else { 6676 u64 old_size; 6677 6678 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6679 if (ret < 0) 6680 goto out; 6681 old_size = info.size; 6682 right_mode = info.mode; 6683 right_uid = info.uid; 6684 right_gid = info.gid; 6685 right_fileattr = info.fileattr; 6686 6687 if (left_uid != right_uid || left_gid != right_gid) 6688 need_chown = 1; 6689 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6690 need_chmod = 1; 6691 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6692 need_fileattr = true; 6693 if ((old_size == sctx->cur_inode_size) || 6694 (sctx->cur_inode_size > old_size && 6695 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6696 need_truncate = 0; 6697 } 6698 6699 if (S_ISREG(sctx->cur_inode_mode)) { 6700 if (need_send_hole(sctx)) { 6701 if (sctx->cur_inode_last_extent == (u64)-1 || 6702 sctx->cur_inode_last_extent < 6703 sctx->cur_inode_size) { 6704 ret = get_last_extent(sctx, (u64)-1); 6705 if (ret) 6706 goto out; 6707 } 6708 if (sctx->cur_inode_last_extent < 6709 sctx->cur_inode_size) { 6710 ret = send_hole(sctx, sctx->cur_inode_size); 6711 if (ret) 6712 goto out; 6713 } 6714 } 6715 if (need_truncate) { 6716 ret = send_truncate(sctx, sctx->cur_ino, 6717 sctx->cur_inode_gen, 6718 sctx->cur_inode_size); 6719 if (ret < 0) 6720 goto out; 6721 } 6722 } 6723 6724 if (need_chown) { 6725 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6726 left_uid, left_gid); 6727 if (ret < 0) 6728 goto out; 6729 } 6730 if (need_chmod) { 6731 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6732 left_mode); 6733 if (ret < 0) 6734 goto out; 6735 } 6736 if (need_fileattr) { 6737 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6738 left_fileattr); 6739 if (ret < 0) 6740 goto out; 6741 } 6742 6743 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6744 && sctx->cur_inode_needs_verity) { 6745 ret = process_verity(sctx); 6746 if (ret < 0) 6747 goto out; 6748 } 6749 6750 ret = send_capabilities(sctx); 6751 if (ret < 0) 6752 goto out; 6753 6754 /* 6755 * If other directory inodes depended on our current directory 6756 * inode's move/rename, now do their move/rename operations. 6757 */ 6758 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6759 ret = apply_children_dir_moves(sctx); 6760 if (ret) 6761 goto out; 6762 /* 6763 * Need to send that every time, no matter if it actually 6764 * changed between the two trees as we have done changes to 6765 * the inode before. If our inode is a directory and it's 6766 * waiting to be moved/renamed, we will send its utimes when 6767 * it's moved/renamed, therefore we don't need to do it here. 6768 */ 6769 sctx->send_progress = sctx->cur_ino + 1; 6770 6771 /* 6772 * If the current inode is a non-empty directory, delay issuing 6773 * the utimes command for it, as it's very likely we have inodes 6774 * with an higher number inside it. We want to issue the utimes 6775 * command only after adding all dentries to it. 6776 */ 6777 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6778 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6779 else 6780 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6781 6782 if (ret < 0) 6783 goto out; 6784 } 6785 6786 out: 6787 if (!ret) 6788 ret = trim_dir_utimes_cache(sctx); 6789 6790 return ret; 6791 } 6792 6793 static void close_current_inode(struct send_ctx *sctx) 6794 { 6795 u64 i_size; 6796 6797 if (sctx->cur_inode == NULL) 6798 return; 6799 6800 i_size = i_size_read(sctx->cur_inode); 6801 6802 /* 6803 * If we are doing an incremental send, we may have extents between the 6804 * last processed extent and the i_size that have not been processed 6805 * because they haven't changed but we may have read some of their pages 6806 * through readahead, see the comments at send_extent_data(). 6807 */ 6808 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6809 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6810 sctx->page_cache_clear_start, 6811 round_up(i_size, PAGE_SIZE) - 1); 6812 6813 iput(sctx->cur_inode); 6814 sctx->cur_inode = NULL; 6815 } 6816 6817 static int changed_inode(struct send_ctx *sctx, 6818 enum btrfs_compare_tree_result result) 6819 { 6820 int ret = 0; 6821 struct btrfs_key *key = sctx->cmp_key; 6822 struct btrfs_inode_item *left_ii = NULL; 6823 struct btrfs_inode_item *right_ii = NULL; 6824 u64 left_gen = 0; 6825 u64 right_gen = 0; 6826 6827 close_current_inode(sctx); 6828 6829 sctx->cur_ino = key->objectid; 6830 sctx->cur_inode_new_gen = false; 6831 sctx->cur_inode_last_extent = (u64)-1; 6832 sctx->cur_inode_next_write_offset = 0; 6833 sctx->ignore_cur_inode = false; 6834 6835 /* 6836 * Set send_progress to current inode. This will tell all get_cur_xxx 6837 * functions that the current inode's refs are not updated yet. Later, 6838 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6839 */ 6840 sctx->send_progress = sctx->cur_ino; 6841 6842 if (result == BTRFS_COMPARE_TREE_NEW || 6843 result == BTRFS_COMPARE_TREE_CHANGED) { 6844 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6845 sctx->left_path->slots[0], 6846 struct btrfs_inode_item); 6847 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6848 left_ii); 6849 } else { 6850 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6851 sctx->right_path->slots[0], 6852 struct btrfs_inode_item); 6853 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6854 right_ii); 6855 } 6856 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6857 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6858 sctx->right_path->slots[0], 6859 struct btrfs_inode_item); 6860 6861 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6862 right_ii); 6863 6864 /* 6865 * The cur_ino = root dir case is special here. We can't treat 6866 * the inode as deleted+reused because it would generate a 6867 * stream that tries to delete/mkdir the root dir. 6868 */ 6869 if (left_gen != right_gen && 6870 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6871 sctx->cur_inode_new_gen = true; 6872 } 6873 6874 /* 6875 * Normally we do not find inodes with a link count of zero (orphans) 6876 * because the most common case is to create a snapshot and use it 6877 * for a send operation. However other less common use cases involve 6878 * using a subvolume and send it after turning it to RO mode just 6879 * after deleting all hard links of a file while holding an open 6880 * file descriptor against it or turning a RO snapshot into RW mode, 6881 * keep an open file descriptor against a file, delete it and then 6882 * turn the snapshot back to RO mode before using it for a send 6883 * operation. The former is what the receiver operation does. 6884 * Therefore, if we want to send these snapshots soon after they're 6885 * received, we need to handle orphan inodes as well. Moreover, orphans 6886 * can appear not only in the send snapshot but also in the parent 6887 * snapshot. Here are several cases: 6888 * 6889 * Case 1: BTRFS_COMPARE_TREE_NEW 6890 * | send snapshot | action 6891 * -------------------------------- 6892 * nlink | 0 | ignore 6893 * 6894 * Case 2: BTRFS_COMPARE_TREE_DELETED 6895 * | parent snapshot | action 6896 * ---------------------------------- 6897 * nlink | 0 | as usual 6898 * Note: No unlinks will be sent because there're no paths for it. 6899 * 6900 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6901 * | | parent snapshot | send snapshot | action 6902 * ----------------------------------------------------------------------- 6903 * subcase 1 | nlink | 0 | 0 | ignore 6904 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6905 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6906 * 6907 */ 6908 if (result == BTRFS_COMPARE_TREE_NEW) { 6909 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6910 sctx->ignore_cur_inode = true; 6911 goto out; 6912 } 6913 sctx->cur_inode_gen = left_gen; 6914 sctx->cur_inode_new = true; 6915 sctx->cur_inode_deleted = false; 6916 sctx->cur_inode_size = btrfs_inode_size( 6917 sctx->left_path->nodes[0], left_ii); 6918 sctx->cur_inode_mode = btrfs_inode_mode( 6919 sctx->left_path->nodes[0], left_ii); 6920 sctx->cur_inode_rdev = btrfs_inode_rdev( 6921 sctx->left_path->nodes[0], left_ii); 6922 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6923 ret = send_create_inode_if_needed(sctx); 6924 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6925 sctx->cur_inode_gen = right_gen; 6926 sctx->cur_inode_new = false; 6927 sctx->cur_inode_deleted = true; 6928 sctx->cur_inode_size = btrfs_inode_size( 6929 sctx->right_path->nodes[0], right_ii); 6930 sctx->cur_inode_mode = btrfs_inode_mode( 6931 sctx->right_path->nodes[0], right_ii); 6932 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6933 u32 new_nlinks, old_nlinks; 6934 6935 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6936 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6937 if (new_nlinks == 0 && old_nlinks == 0) { 6938 sctx->ignore_cur_inode = true; 6939 goto out; 6940 } else if (new_nlinks == 0 || old_nlinks == 0) { 6941 sctx->cur_inode_new_gen = 1; 6942 } 6943 /* 6944 * We need to do some special handling in case the inode was 6945 * reported as changed with a changed generation number. This 6946 * means that the original inode was deleted and new inode 6947 * reused the same inum. So we have to treat the old inode as 6948 * deleted and the new one as new. 6949 */ 6950 if (sctx->cur_inode_new_gen) { 6951 /* 6952 * First, process the inode as if it was deleted. 6953 */ 6954 if (old_nlinks > 0) { 6955 sctx->cur_inode_gen = right_gen; 6956 sctx->cur_inode_new = false; 6957 sctx->cur_inode_deleted = true; 6958 sctx->cur_inode_size = btrfs_inode_size( 6959 sctx->right_path->nodes[0], right_ii); 6960 sctx->cur_inode_mode = btrfs_inode_mode( 6961 sctx->right_path->nodes[0], right_ii); 6962 ret = process_all_refs(sctx, 6963 BTRFS_COMPARE_TREE_DELETED); 6964 if (ret < 0) 6965 goto out; 6966 } 6967 6968 /* 6969 * Now process the inode as if it was new. 6970 */ 6971 if (new_nlinks > 0) { 6972 sctx->cur_inode_gen = left_gen; 6973 sctx->cur_inode_new = true; 6974 sctx->cur_inode_deleted = false; 6975 sctx->cur_inode_size = btrfs_inode_size( 6976 sctx->left_path->nodes[0], 6977 left_ii); 6978 sctx->cur_inode_mode = btrfs_inode_mode( 6979 sctx->left_path->nodes[0], 6980 left_ii); 6981 sctx->cur_inode_rdev = btrfs_inode_rdev( 6982 sctx->left_path->nodes[0], 6983 left_ii); 6984 ret = send_create_inode_if_needed(sctx); 6985 if (ret < 0) 6986 goto out; 6987 6988 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6989 if (ret < 0) 6990 goto out; 6991 /* 6992 * Advance send_progress now as we did not get 6993 * into process_recorded_refs_if_needed in the 6994 * new_gen case. 6995 */ 6996 sctx->send_progress = sctx->cur_ino + 1; 6997 6998 /* 6999 * Now process all extents and xattrs of the 7000 * inode as if they were all new. 7001 */ 7002 ret = process_all_extents(sctx); 7003 if (ret < 0) 7004 goto out; 7005 ret = process_all_new_xattrs(sctx); 7006 if (ret < 0) 7007 goto out; 7008 } 7009 } else { 7010 sctx->cur_inode_gen = left_gen; 7011 sctx->cur_inode_new = false; 7012 sctx->cur_inode_new_gen = false; 7013 sctx->cur_inode_deleted = false; 7014 sctx->cur_inode_size = btrfs_inode_size( 7015 sctx->left_path->nodes[0], left_ii); 7016 sctx->cur_inode_mode = btrfs_inode_mode( 7017 sctx->left_path->nodes[0], left_ii); 7018 } 7019 } 7020 7021 out: 7022 return ret; 7023 } 7024 7025 /* 7026 * We have to process new refs before deleted refs, but compare_trees gives us 7027 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7028 * first and later process them in process_recorded_refs. 7029 * For the cur_inode_new_gen case, we skip recording completely because 7030 * changed_inode did already initiate processing of refs. The reason for this is 7031 * that in this case, compare_tree actually compares the refs of 2 different 7032 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7033 * refs of the right tree as deleted and all refs of the left tree as new. 7034 */ 7035 static int changed_ref(struct send_ctx *sctx, 7036 enum btrfs_compare_tree_result result) 7037 { 7038 int ret = 0; 7039 7040 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7041 inconsistent_snapshot_error(sctx, result, "reference"); 7042 return -EIO; 7043 } 7044 7045 if (!sctx->cur_inode_new_gen && 7046 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7047 if (result == BTRFS_COMPARE_TREE_NEW) 7048 ret = record_new_ref(sctx); 7049 else if (result == BTRFS_COMPARE_TREE_DELETED) 7050 ret = record_deleted_ref(sctx); 7051 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7052 ret = record_changed_ref(sctx); 7053 } 7054 7055 return ret; 7056 } 7057 7058 /* 7059 * Process new/deleted/changed xattrs. We skip processing in the 7060 * cur_inode_new_gen case because changed_inode did already initiate processing 7061 * of xattrs. The reason is the same as in changed_ref 7062 */ 7063 static int changed_xattr(struct send_ctx *sctx, 7064 enum btrfs_compare_tree_result result) 7065 { 7066 int ret = 0; 7067 7068 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7069 inconsistent_snapshot_error(sctx, result, "xattr"); 7070 return -EIO; 7071 } 7072 7073 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7074 if (result == BTRFS_COMPARE_TREE_NEW) 7075 ret = process_new_xattr(sctx); 7076 else if (result == BTRFS_COMPARE_TREE_DELETED) 7077 ret = process_deleted_xattr(sctx); 7078 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7079 ret = process_changed_xattr(sctx); 7080 } 7081 7082 return ret; 7083 } 7084 7085 /* 7086 * Process new/deleted/changed extents. We skip processing in the 7087 * cur_inode_new_gen case because changed_inode did already initiate processing 7088 * of extents. The reason is the same as in changed_ref 7089 */ 7090 static int changed_extent(struct send_ctx *sctx, 7091 enum btrfs_compare_tree_result result) 7092 { 7093 int ret = 0; 7094 7095 /* 7096 * We have found an extent item that changed without the inode item 7097 * having changed. This can happen either after relocation (where the 7098 * disk_bytenr of an extent item is replaced at 7099 * relocation.c:replace_file_extents()) or after deduplication into a 7100 * file in both the parent and send snapshots (where an extent item can 7101 * get modified or replaced with a new one). Note that deduplication 7102 * updates the inode item, but it only changes the iversion (sequence 7103 * field in the inode item) of the inode, so if a file is deduplicated 7104 * the same amount of times in both the parent and send snapshots, its 7105 * iversion becomes the same in both snapshots, whence the inode item is 7106 * the same on both snapshots. 7107 */ 7108 if (sctx->cur_ino != sctx->cmp_key->objectid) 7109 return 0; 7110 7111 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7112 if (result != BTRFS_COMPARE_TREE_DELETED) 7113 ret = process_extent(sctx, sctx->left_path, 7114 sctx->cmp_key); 7115 } 7116 7117 return ret; 7118 } 7119 7120 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7121 { 7122 int ret = 0; 7123 7124 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7125 if (result == BTRFS_COMPARE_TREE_NEW) 7126 sctx->cur_inode_needs_verity = true; 7127 } 7128 return ret; 7129 } 7130 7131 static int dir_changed(struct send_ctx *sctx, u64 dir) 7132 { 7133 u64 orig_gen, new_gen; 7134 int ret; 7135 7136 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7137 if (ret) 7138 return ret; 7139 7140 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7141 if (ret) 7142 return ret; 7143 7144 return (orig_gen != new_gen) ? 1 : 0; 7145 } 7146 7147 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7148 struct btrfs_key *key) 7149 { 7150 struct btrfs_inode_extref *extref; 7151 struct extent_buffer *leaf; 7152 u64 dirid = 0, last_dirid = 0; 7153 unsigned long ptr; 7154 u32 item_size; 7155 u32 cur_offset = 0; 7156 int ref_name_len; 7157 int ret = 0; 7158 7159 /* Easy case, just check this one dirid */ 7160 if (key->type == BTRFS_INODE_REF_KEY) { 7161 dirid = key->offset; 7162 7163 ret = dir_changed(sctx, dirid); 7164 goto out; 7165 } 7166 7167 leaf = path->nodes[0]; 7168 item_size = btrfs_item_size(leaf, path->slots[0]); 7169 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7170 while (cur_offset < item_size) { 7171 extref = (struct btrfs_inode_extref *)(ptr + 7172 cur_offset); 7173 dirid = btrfs_inode_extref_parent(leaf, extref); 7174 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7175 cur_offset += ref_name_len + sizeof(*extref); 7176 if (dirid == last_dirid) 7177 continue; 7178 ret = dir_changed(sctx, dirid); 7179 if (ret) 7180 break; 7181 last_dirid = dirid; 7182 } 7183 out: 7184 return ret; 7185 } 7186 7187 /* 7188 * Updates compare related fields in sctx and simply forwards to the actual 7189 * changed_xxx functions. 7190 */ 7191 static int changed_cb(struct btrfs_path *left_path, 7192 struct btrfs_path *right_path, 7193 struct btrfs_key *key, 7194 enum btrfs_compare_tree_result result, 7195 struct send_ctx *sctx) 7196 { 7197 int ret = 0; 7198 7199 /* 7200 * We can not hold the commit root semaphore here. This is because in 7201 * the case of sending and receiving to the same filesystem, using a 7202 * pipe, could result in a deadlock: 7203 * 7204 * 1) The task running send blocks on the pipe because it's full; 7205 * 7206 * 2) The task running receive, which is the only consumer of the pipe, 7207 * is waiting for a transaction commit (for example due to a space 7208 * reservation when doing a write or triggering a transaction commit 7209 * when creating a subvolume); 7210 * 7211 * 3) The transaction is waiting to write lock the commit root semaphore, 7212 * but can not acquire it since it's being held at 1). 7213 * 7214 * Down this call chain we write to the pipe through kernel_write(). 7215 * The same type of problem can also happen when sending to a file that 7216 * is stored in the same filesystem - when reserving space for a write 7217 * into the file, we can trigger a transaction commit. 7218 * 7219 * Our caller has supplied us with clones of leaves from the send and 7220 * parent roots, so we're safe here from a concurrent relocation and 7221 * further reallocation of metadata extents while we are here. Below we 7222 * also assert that the leaves are clones. 7223 */ 7224 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7225 7226 /* 7227 * We always have a send root, so left_path is never NULL. We will not 7228 * have a leaf when we have reached the end of the send root but have 7229 * not yet reached the end of the parent root. 7230 */ 7231 if (left_path->nodes[0]) 7232 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7233 &left_path->nodes[0]->bflags)); 7234 /* 7235 * When doing a full send we don't have a parent root, so right_path is 7236 * NULL. When doing an incremental send, we may have reached the end of 7237 * the parent root already, so we don't have a leaf at right_path. 7238 */ 7239 if (right_path && right_path->nodes[0]) 7240 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7241 &right_path->nodes[0]->bflags)); 7242 7243 if (result == BTRFS_COMPARE_TREE_SAME) { 7244 if (key->type == BTRFS_INODE_REF_KEY || 7245 key->type == BTRFS_INODE_EXTREF_KEY) { 7246 ret = compare_refs(sctx, left_path, key); 7247 if (!ret) 7248 return 0; 7249 if (ret < 0) 7250 return ret; 7251 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7252 return maybe_send_hole(sctx, left_path, key); 7253 } else { 7254 return 0; 7255 } 7256 result = BTRFS_COMPARE_TREE_CHANGED; 7257 ret = 0; 7258 } 7259 7260 sctx->left_path = left_path; 7261 sctx->right_path = right_path; 7262 sctx->cmp_key = key; 7263 7264 ret = finish_inode_if_needed(sctx, 0); 7265 if (ret < 0) 7266 goto out; 7267 7268 /* Ignore non-FS objects */ 7269 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7270 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7271 goto out; 7272 7273 if (key->type == BTRFS_INODE_ITEM_KEY) { 7274 ret = changed_inode(sctx, result); 7275 } else if (!sctx->ignore_cur_inode) { 7276 if (key->type == BTRFS_INODE_REF_KEY || 7277 key->type == BTRFS_INODE_EXTREF_KEY) 7278 ret = changed_ref(sctx, result); 7279 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7280 ret = changed_xattr(sctx, result); 7281 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7282 ret = changed_extent(sctx, result); 7283 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7284 key->offset == 0) 7285 ret = changed_verity(sctx, result); 7286 } 7287 7288 out: 7289 return ret; 7290 } 7291 7292 static int search_key_again(const struct send_ctx *sctx, 7293 struct btrfs_root *root, 7294 struct btrfs_path *path, 7295 const struct btrfs_key *key) 7296 { 7297 int ret; 7298 7299 if (!path->need_commit_sem) 7300 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7301 7302 /* 7303 * Roots used for send operations are readonly and no one can add, 7304 * update or remove keys from them, so we should be able to find our 7305 * key again. The only exception is deduplication, which can operate on 7306 * readonly roots and add, update or remove keys to/from them - but at 7307 * the moment we don't allow it to run in parallel with send. 7308 */ 7309 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7310 ASSERT(ret <= 0); 7311 if (ret > 0) { 7312 btrfs_print_tree(path->nodes[path->lowest_level], false); 7313 btrfs_err(root->fs_info, 7314 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7315 key->objectid, key->type, key->offset, 7316 (root == sctx->parent_root ? "parent" : "send"), 7317 root->root_key.objectid, path->lowest_level, 7318 path->slots[path->lowest_level]); 7319 return -EUCLEAN; 7320 } 7321 7322 return ret; 7323 } 7324 7325 static int full_send_tree(struct send_ctx *sctx) 7326 { 7327 int ret; 7328 struct btrfs_root *send_root = sctx->send_root; 7329 struct btrfs_key key; 7330 struct btrfs_fs_info *fs_info = send_root->fs_info; 7331 struct btrfs_path *path; 7332 7333 path = alloc_path_for_send(); 7334 if (!path) 7335 return -ENOMEM; 7336 path->reada = READA_FORWARD_ALWAYS; 7337 7338 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7339 key.type = BTRFS_INODE_ITEM_KEY; 7340 key.offset = 0; 7341 7342 down_read(&fs_info->commit_root_sem); 7343 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7344 up_read(&fs_info->commit_root_sem); 7345 7346 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7347 if (ret < 0) 7348 goto out; 7349 if (ret) 7350 goto out_finish; 7351 7352 while (1) { 7353 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7354 7355 ret = changed_cb(path, NULL, &key, 7356 BTRFS_COMPARE_TREE_NEW, sctx); 7357 if (ret < 0) 7358 goto out; 7359 7360 down_read(&fs_info->commit_root_sem); 7361 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7362 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7363 up_read(&fs_info->commit_root_sem); 7364 /* 7365 * A transaction used for relocating a block group was 7366 * committed or is about to finish its commit. Release 7367 * our path (leaf) and restart the search, so that we 7368 * avoid operating on any file extent items that are 7369 * stale, with a disk_bytenr that reflects a pre 7370 * relocation value. This way we avoid as much as 7371 * possible to fallback to regular writes when checking 7372 * if we can clone file ranges. 7373 */ 7374 btrfs_release_path(path); 7375 ret = search_key_again(sctx, send_root, path, &key); 7376 if (ret < 0) 7377 goto out; 7378 } else { 7379 up_read(&fs_info->commit_root_sem); 7380 } 7381 7382 ret = btrfs_next_item(send_root, path); 7383 if (ret < 0) 7384 goto out; 7385 if (ret) { 7386 ret = 0; 7387 break; 7388 } 7389 } 7390 7391 out_finish: 7392 ret = finish_inode_if_needed(sctx, 1); 7393 7394 out: 7395 btrfs_free_path(path); 7396 return ret; 7397 } 7398 7399 static int replace_node_with_clone(struct btrfs_path *path, int level) 7400 { 7401 struct extent_buffer *clone; 7402 7403 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7404 if (!clone) 7405 return -ENOMEM; 7406 7407 free_extent_buffer(path->nodes[level]); 7408 path->nodes[level] = clone; 7409 7410 return 0; 7411 } 7412 7413 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7414 { 7415 struct extent_buffer *eb; 7416 struct extent_buffer *parent = path->nodes[*level]; 7417 int slot = path->slots[*level]; 7418 const int nritems = btrfs_header_nritems(parent); 7419 u64 reada_max; 7420 u64 reada_done = 0; 7421 7422 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7423 7424 BUG_ON(*level == 0); 7425 eb = btrfs_read_node_slot(parent, slot); 7426 if (IS_ERR(eb)) 7427 return PTR_ERR(eb); 7428 7429 /* 7430 * Trigger readahead for the next leaves we will process, so that it is 7431 * very likely that when we need them they are already in memory and we 7432 * will not block on disk IO. For nodes we only do readahead for one, 7433 * since the time window between processing nodes is typically larger. 7434 */ 7435 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7436 7437 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7438 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7439 btrfs_readahead_node_child(parent, slot); 7440 reada_done += eb->fs_info->nodesize; 7441 } 7442 } 7443 7444 path->nodes[*level - 1] = eb; 7445 path->slots[*level - 1] = 0; 7446 (*level)--; 7447 7448 if (*level == 0) 7449 return replace_node_with_clone(path, 0); 7450 7451 return 0; 7452 } 7453 7454 static int tree_move_next_or_upnext(struct btrfs_path *path, 7455 int *level, int root_level) 7456 { 7457 int ret = 0; 7458 int nritems; 7459 nritems = btrfs_header_nritems(path->nodes[*level]); 7460 7461 path->slots[*level]++; 7462 7463 while (path->slots[*level] >= nritems) { 7464 if (*level == root_level) { 7465 path->slots[*level] = nritems - 1; 7466 return -1; 7467 } 7468 7469 /* move upnext */ 7470 path->slots[*level] = 0; 7471 free_extent_buffer(path->nodes[*level]); 7472 path->nodes[*level] = NULL; 7473 (*level)++; 7474 path->slots[*level]++; 7475 7476 nritems = btrfs_header_nritems(path->nodes[*level]); 7477 ret = 1; 7478 } 7479 return ret; 7480 } 7481 7482 /* 7483 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7484 * or down. 7485 */ 7486 static int tree_advance(struct btrfs_path *path, 7487 int *level, int root_level, 7488 int allow_down, 7489 struct btrfs_key *key, 7490 u64 reada_min_gen) 7491 { 7492 int ret; 7493 7494 if (*level == 0 || !allow_down) { 7495 ret = tree_move_next_or_upnext(path, level, root_level); 7496 } else { 7497 ret = tree_move_down(path, level, reada_min_gen); 7498 } 7499 7500 /* 7501 * Even if we have reached the end of a tree, ret is -1, update the key 7502 * anyway, so that in case we need to restart due to a block group 7503 * relocation, we can assert that the last key of the root node still 7504 * exists in the tree. 7505 */ 7506 if (*level == 0) 7507 btrfs_item_key_to_cpu(path->nodes[*level], key, 7508 path->slots[*level]); 7509 else 7510 btrfs_node_key_to_cpu(path->nodes[*level], key, 7511 path->slots[*level]); 7512 7513 return ret; 7514 } 7515 7516 static int tree_compare_item(struct btrfs_path *left_path, 7517 struct btrfs_path *right_path, 7518 char *tmp_buf) 7519 { 7520 int cmp; 7521 int len1, len2; 7522 unsigned long off1, off2; 7523 7524 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7525 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7526 if (len1 != len2) 7527 return 1; 7528 7529 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7530 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7531 right_path->slots[0]); 7532 7533 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7534 7535 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7536 if (cmp) 7537 return 1; 7538 return 0; 7539 } 7540 7541 /* 7542 * A transaction used for relocating a block group was committed or is about to 7543 * finish its commit. Release our paths and restart the search, so that we are 7544 * not using stale extent buffers: 7545 * 7546 * 1) For levels > 0, we are only holding references of extent buffers, without 7547 * any locks on them, which does not prevent them from having been relocated 7548 * and reallocated after the last time we released the commit root semaphore. 7549 * The exception are the root nodes, for which we always have a clone, see 7550 * the comment at btrfs_compare_trees(); 7551 * 7552 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7553 * we are safe from the concurrent relocation and reallocation. However they 7554 * can have file extent items with a pre relocation disk_bytenr value, so we 7555 * restart the start from the current commit roots and clone the new leaves so 7556 * that we get the post relocation disk_bytenr values. Not doing so, could 7557 * make us clone the wrong data in case there are new extents using the old 7558 * disk_bytenr that happen to be shared. 7559 */ 7560 static int restart_after_relocation(struct btrfs_path *left_path, 7561 struct btrfs_path *right_path, 7562 const struct btrfs_key *left_key, 7563 const struct btrfs_key *right_key, 7564 int left_level, 7565 int right_level, 7566 const struct send_ctx *sctx) 7567 { 7568 int root_level; 7569 int ret; 7570 7571 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7572 7573 btrfs_release_path(left_path); 7574 btrfs_release_path(right_path); 7575 7576 /* 7577 * Since keys can not be added or removed to/from our roots because they 7578 * are readonly and we do not allow deduplication to run in parallel 7579 * (which can add, remove or change keys), the layout of the trees should 7580 * not change. 7581 */ 7582 left_path->lowest_level = left_level; 7583 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7584 if (ret < 0) 7585 return ret; 7586 7587 right_path->lowest_level = right_level; 7588 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7589 if (ret < 0) 7590 return ret; 7591 7592 /* 7593 * If the lowest level nodes are leaves, clone them so that they can be 7594 * safely used by changed_cb() while not under the protection of the 7595 * commit root semaphore, even if relocation and reallocation happens in 7596 * parallel. 7597 */ 7598 if (left_level == 0) { 7599 ret = replace_node_with_clone(left_path, 0); 7600 if (ret < 0) 7601 return ret; 7602 } 7603 7604 if (right_level == 0) { 7605 ret = replace_node_with_clone(right_path, 0); 7606 if (ret < 0) 7607 return ret; 7608 } 7609 7610 /* 7611 * Now clone the root nodes (unless they happen to be the leaves we have 7612 * already cloned). This is to protect against concurrent snapshotting of 7613 * the send and parent roots (see the comment at btrfs_compare_trees()). 7614 */ 7615 root_level = btrfs_header_level(sctx->send_root->commit_root); 7616 if (root_level > 0) { 7617 ret = replace_node_with_clone(left_path, root_level); 7618 if (ret < 0) 7619 return ret; 7620 } 7621 7622 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7623 if (root_level > 0) { 7624 ret = replace_node_with_clone(right_path, root_level); 7625 if (ret < 0) 7626 return ret; 7627 } 7628 7629 return 0; 7630 } 7631 7632 /* 7633 * This function compares two trees and calls the provided callback for 7634 * every changed/new/deleted item it finds. 7635 * If shared tree blocks are encountered, whole subtrees are skipped, making 7636 * the compare pretty fast on snapshotted subvolumes. 7637 * 7638 * This currently works on commit roots only. As commit roots are read only, 7639 * we don't do any locking. The commit roots are protected with transactions. 7640 * Transactions are ended and rejoined when a commit is tried in between. 7641 * 7642 * This function checks for modifications done to the trees while comparing. 7643 * If it detects a change, it aborts immediately. 7644 */ 7645 static int btrfs_compare_trees(struct btrfs_root *left_root, 7646 struct btrfs_root *right_root, struct send_ctx *sctx) 7647 { 7648 struct btrfs_fs_info *fs_info = left_root->fs_info; 7649 int ret; 7650 int cmp; 7651 struct btrfs_path *left_path = NULL; 7652 struct btrfs_path *right_path = NULL; 7653 struct btrfs_key left_key; 7654 struct btrfs_key right_key; 7655 char *tmp_buf = NULL; 7656 int left_root_level; 7657 int right_root_level; 7658 int left_level; 7659 int right_level; 7660 int left_end_reached = 0; 7661 int right_end_reached = 0; 7662 int advance_left = 0; 7663 int advance_right = 0; 7664 u64 left_blockptr; 7665 u64 right_blockptr; 7666 u64 left_gen; 7667 u64 right_gen; 7668 u64 reada_min_gen; 7669 7670 left_path = btrfs_alloc_path(); 7671 if (!left_path) { 7672 ret = -ENOMEM; 7673 goto out; 7674 } 7675 right_path = btrfs_alloc_path(); 7676 if (!right_path) { 7677 ret = -ENOMEM; 7678 goto out; 7679 } 7680 7681 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7682 if (!tmp_buf) { 7683 ret = -ENOMEM; 7684 goto out; 7685 } 7686 7687 left_path->search_commit_root = 1; 7688 left_path->skip_locking = 1; 7689 right_path->search_commit_root = 1; 7690 right_path->skip_locking = 1; 7691 7692 /* 7693 * Strategy: Go to the first items of both trees. Then do 7694 * 7695 * If both trees are at level 0 7696 * Compare keys of current items 7697 * If left < right treat left item as new, advance left tree 7698 * and repeat 7699 * If left > right treat right item as deleted, advance right tree 7700 * and repeat 7701 * If left == right do deep compare of items, treat as changed if 7702 * needed, advance both trees and repeat 7703 * If both trees are at the same level but not at level 0 7704 * Compare keys of current nodes/leafs 7705 * If left < right advance left tree and repeat 7706 * If left > right advance right tree and repeat 7707 * If left == right compare blockptrs of the next nodes/leafs 7708 * If they match advance both trees but stay at the same level 7709 * and repeat 7710 * If they don't match advance both trees while allowing to go 7711 * deeper and repeat 7712 * If tree levels are different 7713 * Advance the tree that needs it and repeat 7714 * 7715 * Advancing a tree means: 7716 * If we are at level 0, try to go to the next slot. If that's not 7717 * possible, go one level up and repeat. Stop when we found a level 7718 * where we could go to the next slot. We may at this point be on a 7719 * node or a leaf. 7720 * 7721 * If we are not at level 0 and not on shared tree blocks, go one 7722 * level deeper. 7723 * 7724 * If we are not at level 0 and on shared tree blocks, go one slot to 7725 * the right if possible or go up and right. 7726 */ 7727 7728 down_read(&fs_info->commit_root_sem); 7729 left_level = btrfs_header_level(left_root->commit_root); 7730 left_root_level = left_level; 7731 /* 7732 * We clone the root node of the send and parent roots to prevent races 7733 * with snapshot creation of these roots. Snapshot creation COWs the 7734 * root node of a tree, so after the transaction is committed the old 7735 * extent can be reallocated while this send operation is still ongoing. 7736 * So we clone them, under the commit root semaphore, to be race free. 7737 */ 7738 left_path->nodes[left_level] = 7739 btrfs_clone_extent_buffer(left_root->commit_root); 7740 if (!left_path->nodes[left_level]) { 7741 ret = -ENOMEM; 7742 goto out_unlock; 7743 } 7744 7745 right_level = btrfs_header_level(right_root->commit_root); 7746 right_root_level = right_level; 7747 right_path->nodes[right_level] = 7748 btrfs_clone_extent_buffer(right_root->commit_root); 7749 if (!right_path->nodes[right_level]) { 7750 ret = -ENOMEM; 7751 goto out_unlock; 7752 } 7753 /* 7754 * Our right root is the parent root, while the left root is the "send" 7755 * root. We know that all new nodes/leaves in the left root must have 7756 * a generation greater than the right root's generation, so we trigger 7757 * readahead for those nodes and leaves of the left root, as we know we 7758 * will need to read them at some point. 7759 */ 7760 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7761 7762 if (left_level == 0) 7763 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7764 &left_key, left_path->slots[left_level]); 7765 else 7766 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7767 &left_key, left_path->slots[left_level]); 7768 if (right_level == 0) 7769 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7770 &right_key, right_path->slots[right_level]); 7771 else 7772 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7773 &right_key, right_path->slots[right_level]); 7774 7775 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7776 7777 while (1) { 7778 if (need_resched() || 7779 rwsem_is_contended(&fs_info->commit_root_sem)) { 7780 up_read(&fs_info->commit_root_sem); 7781 cond_resched(); 7782 down_read(&fs_info->commit_root_sem); 7783 } 7784 7785 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7786 ret = restart_after_relocation(left_path, right_path, 7787 &left_key, &right_key, 7788 left_level, right_level, 7789 sctx); 7790 if (ret < 0) 7791 goto out_unlock; 7792 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7793 } 7794 7795 if (advance_left && !left_end_reached) { 7796 ret = tree_advance(left_path, &left_level, 7797 left_root_level, 7798 advance_left != ADVANCE_ONLY_NEXT, 7799 &left_key, reada_min_gen); 7800 if (ret == -1) 7801 left_end_reached = ADVANCE; 7802 else if (ret < 0) 7803 goto out_unlock; 7804 advance_left = 0; 7805 } 7806 if (advance_right && !right_end_reached) { 7807 ret = tree_advance(right_path, &right_level, 7808 right_root_level, 7809 advance_right != ADVANCE_ONLY_NEXT, 7810 &right_key, reada_min_gen); 7811 if (ret == -1) 7812 right_end_reached = ADVANCE; 7813 else if (ret < 0) 7814 goto out_unlock; 7815 advance_right = 0; 7816 } 7817 7818 if (left_end_reached && right_end_reached) { 7819 ret = 0; 7820 goto out_unlock; 7821 } else if (left_end_reached) { 7822 if (right_level == 0) { 7823 up_read(&fs_info->commit_root_sem); 7824 ret = changed_cb(left_path, right_path, 7825 &right_key, 7826 BTRFS_COMPARE_TREE_DELETED, 7827 sctx); 7828 if (ret < 0) 7829 goto out; 7830 down_read(&fs_info->commit_root_sem); 7831 } 7832 advance_right = ADVANCE; 7833 continue; 7834 } else if (right_end_reached) { 7835 if (left_level == 0) { 7836 up_read(&fs_info->commit_root_sem); 7837 ret = changed_cb(left_path, right_path, 7838 &left_key, 7839 BTRFS_COMPARE_TREE_NEW, 7840 sctx); 7841 if (ret < 0) 7842 goto out; 7843 down_read(&fs_info->commit_root_sem); 7844 } 7845 advance_left = ADVANCE; 7846 continue; 7847 } 7848 7849 if (left_level == 0 && right_level == 0) { 7850 up_read(&fs_info->commit_root_sem); 7851 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7852 if (cmp < 0) { 7853 ret = changed_cb(left_path, right_path, 7854 &left_key, 7855 BTRFS_COMPARE_TREE_NEW, 7856 sctx); 7857 advance_left = ADVANCE; 7858 } else if (cmp > 0) { 7859 ret = changed_cb(left_path, right_path, 7860 &right_key, 7861 BTRFS_COMPARE_TREE_DELETED, 7862 sctx); 7863 advance_right = ADVANCE; 7864 } else { 7865 enum btrfs_compare_tree_result result; 7866 7867 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7868 ret = tree_compare_item(left_path, right_path, 7869 tmp_buf); 7870 if (ret) 7871 result = BTRFS_COMPARE_TREE_CHANGED; 7872 else 7873 result = BTRFS_COMPARE_TREE_SAME; 7874 ret = changed_cb(left_path, right_path, 7875 &left_key, result, sctx); 7876 advance_left = ADVANCE; 7877 advance_right = ADVANCE; 7878 } 7879 7880 if (ret < 0) 7881 goto out; 7882 down_read(&fs_info->commit_root_sem); 7883 } else if (left_level == right_level) { 7884 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7885 if (cmp < 0) { 7886 advance_left = ADVANCE; 7887 } else if (cmp > 0) { 7888 advance_right = ADVANCE; 7889 } else { 7890 left_blockptr = btrfs_node_blockptr( 7891 left_path->nodes[left_level], 7892 left_path->slots[left_level]); 7893 right_blockptr = btrfs_node_blockptr( 7894 right_path->nodes[right_level], 7895 right_path->slots[right_level]); 7896 left_gen = btrfs_node_ptr_generation( 7897 left_path->nodes[left_level], 7898 left_path->slots[left_level]); 7899 right_gen = btrfs_node_ptr_generation( 7900 right_path->nodes[right_level], 7901 right_path->slots[right_level]); 7902 if (left_blockptr == right_blockptr && 7903 left_gen == right_gen) { 7904 /* 7905 * As we're on a shared block, don't 7906 * allow to go deeper. 7907 */ 7908 advance_left = ADVANCE_ONLY_NEXT; 7909 advance_right = ADVANCE_ONLY_NEXT; 7910 } else { 7911 advance_left = ADVANCE; 7912 advance_right = ADVANCE; 7913 } 7914 } 7915 } else if (left_level < right_level) { 7916 advance_right = ADVANCE; 7917 } else { 7918 advance_left = ADVANCE; 7919 } 7920 } 7921 7922 out_unlock: 7923 up_read(&fs_info->commit_root_sem); 7924 out: 7925 btrfs_free_path(left_path); 7926 btrfs_free_path(right_path); 7927 kvfree(tmp_buf); 7928 return ret; 7929 } 7930 7931 static int send_subvol(struct send_ctx *sctx) 7932 { 7933 int ret; 7934 7935 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7936 ret = send_header(sctx); 7937 if (ret < 0) 7938 goto out; 7939 } 7940 7941 ret = send_subvol_begin(sctx); 7942 if (ret < 0) 7943 goto out; 7944 7945 if (sctx->parent_root) { 7946 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7947 if (ret < 0) 7948 goto out; 7949 ret = finish_inode_if_needed(sctx, 1); 7950 if (ret < 0) 7951 goto out; 7952 } else { 7953 ret = full_send_tree(sctx); 7954 if (ret < 0) 7955 goto out; 7956 } 7957 7958 out: 7959 free_recorded_refs(sctx); 7960 return ret; 7961 } 7962 7963 /* 7964 * If orphan cleanup did remove any orphans from a root, it means the tree 7965 * was modified and therefore the commit root is not the same as the current 7966 * root anymore. This is a problem, because send uses the commit root and 7967 * therefore can see inode items that don't exist in the current root anymore, 7968 * and for example make calls to btrfs_iget, which will do tree lookups based 7969 * on the current root and not on the commit root. Those lookups will fail, 7970 * returning a -ESTALE error, and making send fail with that error. So make 7971 * sure a send does not see any orphans we have just removed, and that it will 7972 * see the same inodes regardless of whether a transaction commit happened 7973 * before it started (meaning that the commit root will be the same as the 7974 * current root) or not. 7975 */ 7976 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7977 { 7978 int i; 7979 struct btrfs_trans_handle *trans = NULL; 7980 7981 again: 7982 if (sctx->parent_root && 7983 sctx->parent_root->node != sctx->parent_root->commit_root) 7984 goto commit_trans; 7985 7986 for (i = 0; i < sctx->clone_roots_cnt; i++) 7987 if (sctx->clone_roots[i].root->node != 7988 sctx->clone_roots[i].root->commit_root) 7989 goto commit_trans; 7990 7991 if (trans) 7992 return btrfs_end_transaction(trans); 7993 7994 return 0; 7995 7996 commit_trans: 7997 /* Use any root, all fs roots will get their commit roots updated. */ 7998 if (!trans) { 7999 trans = btrfs_join_transaction(sctx->send_root); 8000 if (IS_ERR(trans)) 8001 return PTR_ERR(trans); 8002 goto again; 8003 } 8004 8005 return btrfs_commit_transaction(trans); 8006 } 8007 8008 /* 8009 * Make sure any existing dellaloc is flushed for any root used by a send 8010 * operation so that we do not miss any data and we do not race with writeback 8011 * finishing and changing a tree while send is using the tree. This could 8012 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8013 * a send operation then uses the subvolume. 8014 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8015 */ 8016 static int flush_delalloc_roots(struct send_ctx *sctx) 8017 { 8018 struct btrfs_root *root = sctx->parent_root; 8019 int ret; 8020 int i; 8021 8022 if (root) { 8023 ret = btrfs_start_delalloc_snapshot(root, false); 8024 if (ret) 8025 return ret; 8026 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8027 } 8028 8029 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8030 root = sctx->clone_roots[i].root; 8031 ret = btrfs_start_delalloc_snapshot(root, false); 8032 if (ret) 8033 return ret; 8034 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 8035 } 8036 8037 return 0; 8038 } 8039 8040 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8041 { 8042 spin_lock(&root->root_item_lock); 8043 root->send_in_progress--; 8044 /* 8045 * Not much left to do, we don't know why it's unbalanced and 8046 * can't blindly reset it to 0. 8047 */ 8048 if (root->send_in_progress < 0) 8049 btrfs_err(root->fs_info, 8050 "send_in_progress unbalanced %d root %llu", 8051 root->send_in_progress, root->root_key.objectid); 8052 spin_unlock(&root->root_item_lock); 8053 } 8054 8055 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8056 { 8057 btrfs_warn_rl(root->fs_info, 8058 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8059 root->root_key.objectid, root->dedupe_in_progress); 8060 } 8061 8062 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 8063 { 8064 int ret = 0; 8065 struct btrfs_root *send_root = BTRFS_I(inode)->root; 8066 struct btrfs_fs_info *fs_info = send_root->fs_info; 8067 struct btrfs_root *clone_root; 8068 struct send_ctx *sctx = NULL; 8069 u32 i; 8070 u64 *clone_sources_tmp = NULL; 8071 int clone_sources_to_rollback = 0; 8072 size_t alloc_size; 8073 int sort_clone_roots = 0; 8074 struct btrfs_lru_cache_entry *entry; 8075 struct btrfs_lru_cache_entry *tmp; 8076 8077 if (!capable(CAP_SYS_ADMIN)) 8078 return -EPERM; 8079 8080 /* 8081 * The subvolume must remain read-only during send, protect against 8082 * making it RW. This also protects against deletion. 8083 */ 8084 spin_lock(&send_root->root_item_lock); 8085 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 8086 dedupe_in_progress_warn(send_root); 8087 spin_unlock(&send_root->root_item_lock); 8088 return -EAGAIN; 8089 } 8090 send_root->send_in_progress++; 8091 spin_unlock(&send_root->root_item_lock); 8092 8093 /* 8094 * Userspace tools do the checks and warn the user if it's 8095 * not RO. 8096 */ 8097 if (!btrfs_root_readonly(send_root)) { 8098 ret = -EPERM; 8099 goto out; 8100 } 8101 8102 /* 8103 * Check that we don't overflow at later allocations, we request 8104 * clone_sources_count + 1 items, and compare to unsigned long inside 8105 * access_ok. Also set an upper limit for allocation size so this can't 8106 * easily exhaust memory. Max number of clone sources is about 200K. 8107 */ 8108 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8109 ret = -EINVAL; 8110 goto out; 8111 } 8112 8113 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8114 ret = -EINVAL; 8115 goto out; 8116 } 8117 8118 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8119 if (!sctx) { 8120 ret = -ENOMEM; 8121 goto out; 8122 } 8123 8124 INIT_LIST_HEAD(&sctx->new_refs); 8125 INIT_LIST_HEAD(&sctx->deleted_refs); 8126 8127 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8128 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8129 btrfs_lru_cache_init(&sctx->dir_created_cache, 8130 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8131 /* 8132 * This cache is periodically trimmed to a fixed size elsewhere, see 8133 * cache_dir_utimes() and trim_dir_utimes_cache(). 8134 */ 8135 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8136 8137 sctx->pending_dir_moves = RB_ROOT; 8138 sctx->waiting_dir_moves = RB_ROOT; 8139 sctx->orphan_dirs = RB_ROOT; 8140 sctx->rbtree_new_refs = RB_ROOT; 8141 sctx->rbtree_deleted_refs = RB_ROOT; 8142 8143 sctx->flags = arg->flags; 8144 8145 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8146 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8147 ret = -EPROTO; 8148 goto out; 8149 } 8150 /* Zero means "use the highest version" */ 8151 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8152 } else { 8153 sctx->proto = 1; 8154 } 8155 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8156 ret = -EINVAL; 8157 goto out; 8158 } 8159 8160 sctx->send_filp = fget(arg->send_fd); 8161 if (!sctx->send_filp) { 8162 ret = -EBADF; 8163 goto out; 8164 } 8165 8166 sctx->send_root = send_root; 8167 /* 8168 * Unlikely but possible, if the subvolume is marked for deletion but 8169 * is slow to remove the directory entry, send can still be started 8170 */ 8171 if (btrfs_root_dead(sctx->send_root)) { 8172 ret = -EPERM; 8173 goto out; 8174 } 8175 8176 sctx->clone_roots_cnt = arg->clone_sources_count; 8177 8178 if (sctx->proto >= 2) { 8179 u32 send_buf_num_pages; 8180 8181 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8182 sctx->send_buf = vmalloc(sctx->send_max_size); 8183 if (!sctx->send_buf) { 8184 ret = -ENOMEM; 8185 goto out; 8186 } 8187 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8188 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8189 sizeof(*sctx->send_buf_pages), 8190 GFP_KERNEL); 8191 if (!sctx->send_buf_pages) { 8192 ret = -ENOMEM; 8193 goto out; 8194 } 8195 for (i = 0; i < send_buf_num_pages; i++) { 8196 sctx->send_buf_pages[i] = 8197 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8198 } 8199 } else { 8200 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8201 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8202 } 8203 if (!sctx->send_buf) { 8204 ret = -ENOMEM; 8205 goto out; 8206 } 8207 8208 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 8209 arg->clone_sources_count + 1, 8210 GFP_KERNEL); 8211 if (!sctx->clone_roots) { 8212 ret = -ENOMEM; 8213 goto out; 8214 } 8215 8216 alloc_size = array_size(sizeof(*arg->clone_sources), 8217 arg->clone_sources_count); 8218 8219 if (arg->clone_sources_count) { 8220 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8221 if (!clone_sources_tmp) { 8222 ret = -ENOMEM; 8223 goto out; 8224 } 8225 8226 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8227 alloc_size); 8228 if (ret) { 8229 ret = -EFAULT; 8230 goto out; 8231 } 8232 8233 for (i = 0; i < arg->clone_sources_count; i++) { 8234 clone_root = btrfs_get_fs_root(fs_info, 8235 clone_sources_tmp[i], true); 8236 if (IS_ERR(clone_root)) { 8237 ret = PTR_ERR(clone_root); 8238 goto out; 8239 } 8240 spin_lock(&clone_root->root_item_lock); 8241 if (!btrfs_root_readonly(clone_root) || 8242 btrfs_root_dead(clone_root)) { 8243 spin_unlock(&clone_root->root_item_lock); 8244 btrfs_put_root(clone_root); 8245 ret = -EPERM; 8246 goto out; 8247 } 8248 if (clone_root->dedupe_in_progress) { 8249 dedupe_in_progress_warn(clone_root); 8250 spin_unlock(&clone_root->root_item_lock); 8251 btrfs_put_root(clone_root); 8252 ret = -EAGAIN; 8253 goto out; 8254 } 8255 clone_root->send_in_progress++; 8256 spin_unlock(&clone_root->root_item_lock); 8257 8258 sctx->clone_roots[i].root = clone_root; 8259 clone_sources_to_rollback = i + 1; 8260 } 8261 kvfree(clone_sources_tmp); 8262 clone_sources_tmp = NULL; 8263 } 8264 8265 if (arg->parent_root) { 8266 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8267 true); 8268 if (IS_ERR(sctx->parent_root)) { 8269 ret = PTR_ERR(sctx->parent_root); 8270 goto out; 8271 } 8272 8273 spin_lock(&sctx->parent_root->root_item_lock); 8274 sctx->parent_root->send_in_progress++; 8275 if (!btrfs_root_readonly(sctx->parent_root) || 8276 btrfs_root_dead(sctx->parent_root)) { 8277 spin_unlock(&sctx->parent_root->root_item_lock); 8278 ret = -EPERM; 8279 goto out; 8280 } 8281 if (sctx->parent_root->dedupe_in_progress) { 8282 dedupe_in_progress_warn(sctx->parent_root); 8283 spin_unlock(&sctx->parent_root->root_item_lock); 8284 ret = -EAGAIN; 8285 goto out; 8286 } 8287 spin_unlock(&sctx->parent_root->root_item_lock); 8288 } 8289 8290 /* 8291 * Clones from send_root are allowed, but only if the clone source 8292 * is behind the current send position. This is checked while searching 8293 * for possible clone sources. 8294 */ 8295 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8296 btrfs_grab_root(sctx->send_root); 8297 8298 /* We do a bsearch later */ 8299 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8300 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8301 NULL); 8302 sort_clone_roots = 1; 8303 8304 ret = flush_delalloc_roots(sctx); 8305 if (ret) 8306 goto out; 8307 8308 ret = ensure_commit_roots_uptodate(sctx); 8309 if (ret) 8310 goto out; 8311 8312 ret = send_subvol(sctx); 8313 if (ret < 0) 8314 goto out; 8315 8316 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8317 ret = send_utimes(sctx, entry->key, entry->gen); 8318 if (ret < 0) 8319 goto out; 8320 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8321 } 8322 8323 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8324 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8325 if (ret < 0) 8326 goto out; 8327 ret = send_cmd(sctx); 8328 if (ret < 0) 8329 goto out; 8330 } 8331 8332 out: 8333 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8334 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8335 struct rb_node *n; 8336 struct pending_dir_move *pm; 8337 8338 n = rb_first(&sctx->pending_dir_moves); 8339 pm = rb_entry(n, struct pending_dir_move, node); 8340 while (!list_empty(&pm->list)) { 8341 struct pending_dir_move *pm2; 8342 8343 pm2 = list_first_entry(&pm->list, 8344 struct pending_dir_move, list); 8345 free_pending_move(sctx, pm2); 8346 } 8347 free_pending_move(sctx, pm); 8348 } 8349 8350 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8351 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8352 struct rb_node *n; 8353 struct waiting_dir_move *dm; 8354 8355 n = rb_first(&sctx->waiting_dir_moves); 8356 dm = rb_entry(n, struct waiting_dir_move, node); 8357 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8358 kfree(dm); 8359 } 8360 8361 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8362 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8363 struct rb_node *n; 8364 struct orphan_dir_info *odi; 8365 8366 n = rb_first(&sctx->orphan_dirs); 8367 odi = rb_entry(n, struct orphan_dir_info, node); 8368 free_orphan_dir_info(sctx, odi); 8369 } 8370 8371 if (sort_clone_roots) { 8372 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8373 btrfs_root_dec_send_in_progress( 8374 sctx->clone_roots[i].root); 8375 btrfs_put_root(sctx->clone_roots[i].root); 8376 } 8377 } else { 8378 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8379 btrfs_root_dec_send_in_progress( 8380 sctx->clone_roots[i].root); 8381 btrfs_put_root(sctx->clone_roots[i].root); 8382 } 8383 8384 btrfs_root_dec_send_in_progress(send_root); 8385 } 8386 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8387 btrfs_root_dec_send_in_progress(sctx->parent_root); 8388 btrfs_put_root(sctx->parent_root); 8389 } 8390 8391 kvfree(clone_sources_tmp); 8392 8393 if (sctx) { 8394 if (sctx->send_filp) 8395 fput(sctx->send_filp); 8396 8397 kvfree(sctx->clone_roots); 8398 kfree(sctx->send_buf_pages); 8399 kvfree(sctx->send_buf); 8400 kvfree(sctx->verity_descriptor); 8401 8402 close_current_inode(sctx); 8403 8404 btrfs_lru_cache_clear(&sctx->name_cache); 8405 btrfs_lru_cache_clear(&sctx->backref_cache); 8406 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8407 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8408 8409 kfree(sctx); 8410 } 8411 8412 return ret; 8413 } 8414