1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 27 /* 28 * Maximum number of references an extent can have in order for us to attempt to 29 * issue clone operations instead of write operations. This currently exists to 30 * avoid hitting limitations of the backreference walking code (taking a lot of 31 * time and using too much memory for extents with large number of references). 32 */ 33 #define SEND_MAX_EXTENT_REFS 64 34 35 /* 36 * A fs_path is a helper to dynamically build path names with unknown size. 37 * It reallocates the internal buffer on demand. 38 * It allows fast adding of path elements on the right side (normal path) and 39 * fast adding to the left side (reversed path). A reversed path can also be 40 * unreversed if needed. 41 */ 42 struct fs_path { 43 union { 44 struct { 45 char *start; 46 char *end; 47 48 char *buf; 49 unsigned short buf_len:15; 50 unsigned short reversed:1; 51 char inline_buf[]; 52 }; 53 /* 54 * Average path length does not exceed 200 bytes, we'll have 55 * better packing in the slab and higher chance to satisfy 56 * a allocation later during send. 57 */ 58 char pad[256]; 59 }; 60 }; 61 #define FS_PATH_INLINE_SIZE \ 62 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 63 64 65 /* reused for each extent */ 66 struct clone_root { 67 struct btrfs_root *root; 68 u64 ino; 69 u64 offset; 70 71 u64 found_refs; 72 }; 73 74 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 75 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 76 77 struct send_ctx { 78 struct file *send_filp; 79 loff_t send_off; 80 char *send_buf; 81 u32 send_size; 82 u32 send_max_size; 83 u64 total_send_size; 84 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 85 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 86 87 struct btrfs_root *send_root; 88 struct btrfs_root *parent_root; 89 struct clone_root *clone_roots; 90 int clone_roots_cnt; 91 92 /* current state of the compare_tree call */ 93 struct btrfs_path *left_path; 94 struct btrfs_path *right_path; 95 struct btrfs_key *cmp_key; 96 97 /* 98 * infos of the currently processed inode. In case of deleted inodes, 99 * these are the values from the deleted inode. 100 */ 101 u64 cur_ino; 102 u64 cur_inode_gen; 103 int cur_inode_new; 104 int cur_inode_new_gen; 105 int cur_inode_deleted; 106 u64 cur_inode_size; 107 u64 cur_inode_mode; 108 u64 cur_inode_rdev; 109 u64 cur_inode_last_extent; 110 u64 cur_inode_next_write_offset; 111 bool ignore_cur_inode; 112 113 u64 send_progress; 114 115 struct list_head new_refs; 116 struct list_head deleted_refs; 117 118 struct radix_tree_root name_cache; 119 struct list_head name_cache_list; 120 int name_cache_size; 121 122 struct file_ra_state ra; 123 124 char *read_buf; 125 126 /* 127 * We process inodes by their increasing order, so if before an 128 * incremental send we reverse the parent/child relationship of 129 * directories such that a directory with a lower inode number was 130 * the parent of a directory with a higher inode number, and the one 131 * becoming the new parent got renamed too, we can't rename/move the 132 * directory with lower inode number when we finish processing it - we 133 * must process the directory with higher inode number first, then 134 * rename/move it and then rename/move the directory with lower inode 135 * number. Example follows. 136 * 137 * Tree state when the first send was performed: 138 * 139 * . 140 * |-- a (ino 257) 141 * |-- b (ino 258) 142 * | 143 * | 144 * |-- c (ino 259) 145 * | |-- d (ino 260) 146 * | 147 * |-- c2 (ino 261) 148 * 149 * Tree state when the second (incremental) send is performed: 150 * 151 * . 152 * |-- a (ino 257) 153 * |-- b (ino 258) 154 * |-- c2 (ino 261) 155 * |-- d2 (ino 260) 156 * |-- cc (ino 259) 157 * 158 * The sequence of steps that lead to the second state was: 159 * 160 * mv /a/b/c/d /a/b/c2/d2 161 * mv /a/b/c /a/b/c2/d2/cc 162 * 163 * "c" has lower inode number, but we can't move it (2nd mv operation) 164 * before we move "d", which has higher inode number. 165 * 166 * So we just memorize which move/rename operations must be performed 167 * later when their respective parent is processed and moved/renamed. 168 */ 169 170 /* Indexed by parent directory inode number. */ 171 struct rb_root pending_dir_moves; 172 173 /* 174 * Reverse index, indexed by the inode number of a directory that 175 * is waiting for the move/rename of its immediate parent before its 176 * own move/rename can be performed. 177 */ 178 struct rb_root waiting_dir_moves; 179 180 /* 181 * A directory that is going to be rm'ed might have a child directory 182 * which is in the pending directory moves index above. In this case, 183 * the directory can only be removed after the move/rename of its child 184 * is performed. Example: 185 * 186 * Parent snapshot: 187 * 188 * . (ino 256) 189 * |-- a/ (ino 257) 190 * |-- b/ (ino 258) 191 * |-- c/ (ino 259) 192 * | |-- x/ (ino 260) 193 * | 194 * |-- y/ (ino 261) 195 * 196 * Send snapshot: 197 * 198 * . (ino 256) 199 * |-- a/ (ino 257) 200 * |-- b/ (ino 258) 201 * |-- YY/ (ino 261) 202 * |-- x/ (ino 260) 203 * 204 * Sequence of steps that lead to the send snapshot: 205 * rm -f /a/b/c/foo.txt 206 * mv /a/b/y /a/b/YY 207 * mv /a/b/c/x /a/b/YY 208 * rmdir /a/b/c 209 * 210 * When the child is processed, its move/rename is delayed until its 211 * parent is processed (as explained above), but all other operations 212 * like update utimes, chown, chgrp, etc, are performed and the paths 213 * that it uses for those operations must use the orphanized name of 214 * its parent (the directory we're going to rm later), so we need to 215 * memorize that name. 216 * 217 * Indexed by the inode number of the directory to be deleted. 218 */ 219 struct rb_root orphan_dirs; 220 }; 221 222 struct pending_dir_move { 223 struct rb_node node; 224 struct list_head list; 225 u64 parent_ino; 226 u64 ino; 227 u64 gen; 228 struct list_head update_refs; 229 }; 230 231 struct waiting_dir_move { 232 struct rb_node node; 233 u64 ino; 234 /* 235 * There might be some directory that could not be removed because it 236 * was waiting for this directory inode to be moved first. Therefore 237 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 238 */ 239 u64 rmdir_ino; 240 bool orphanized; 241 }; 242 243 struct orphan_dir_info { 244 struct rb_node node; 245 u64 ino; 246 u64 gen; 247 u64 last_dir_index_offset; 248 }; 249 250 struct name_cache_entry { 251 struct list_head list; 252 /* 253 * radix_tree has only 32bit entries but we need to handle 64bit inums. 254 * We use the lower 32bit of the 64bit inum to store it in the tree. If 255 * more then one inum would fall into the same entry, we use radix_list 256 * to store the additional entries. radix_list is also used to store 257 * entries where two entries have the same inum but different 258 * generations. 259 */ 260 struct list_head radix_list; 261 u64 ino; 262 u64 gen; 263 u64 parent_ino; 264 u64 parent_gen; 265 int ret; 266 int need_later_update; 267 int name_len; 268 char name[]; 269 }; 270 271 #define ADVANCE 1 272 #define ADVANCE_ONLY_NEXT -1 273 274 enum btrfs_compare_tree_result { 275 BTRFS_COMPARE_TREE_NEW, 276 BTRFS_COMPARE_TREE_DELETED, 277 BTRFS_COMPARE_TREE_CHANGED, 278 BTRFS_COMPARE_TREE_SAME, 279 }; 280 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path, 281 struct btrfs_path *right_path, 282 struct btrfs_key *key, 283 enum btrfs_compare_tree_result result, 284 void *ctx); 285 286 __cold 287 static void inconsistent_snapshot_error(struct send_ctx *sctx, 288 enum btrfs_compare_tree_result result, 289 const char *what) 290 { 291 const char *result_string; 292 293 switch (result) { 294 case BTRFS_COMPARE_TREE_NEW: 295 result_string = "new"; 296 break; 297 case BTRFS_COMPARE_TREE_DELETED: 298 result_string = "deleted"; 299 break; 300 case BTRFS_COMPARE_TREE_CHANGED: 301 result_string = "updated"; 302 break; 303 case BTRFS_COMPARE_TREE_SAME: 304 ASSERT(0); 305 result_string = "unchanged"; 306 break; 307 default: 308 ASSERT(0); 309 result_string = "unexpected"; 310 } 311 312 btrfs_err(sctx->send_root->fs_info, 313 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 314 result_string, what, sctx->cmp_key->objectid, 315 sctx->send_root->root_key.objectid, 316 (sctx->parent_root ? 317 sctx->parent_root->root_key.objectid : 0)); 318 } 319 320 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 321 322 static struct waiting_dir_move * 323 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 324 325 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 326 327 static int need_send_hole(struct send_ctx *sctx) 328 { 329 return (sctx->parent_root && !sctx->cur_inode_new && 330 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 331 S_ISREG(sctx->cur_inode_mode)); 332 } 333 334 static void fs_path_reset(struct fs_path *p) 335 { 336 if (p->reversed) { 337 p->start = p->buf + p->buf_len - 1; 338 p->end = p->start; 339 *p->start = 0; 340 } else { 341 p->start = p->buf; 342 p->end = p->start; 343 *p->start = 0; 344 } 345 } 346 347 static struct fs_path *fs_path_alloc(void) 348 { 349 struct fs_path *p; 350 351 p = kmalloc(sizeof(*p), GFP_KERNEL); 352 if (!p) 353 return NULL; 354 p->reversed = 0; 355 p->buf = p->inline_buf; 356 p->buf_len = FS_PATH_INLINE_SIZE; 357 fs_path_reset(p); 358 return p; 359 } 360 361 static struct fs_path *fs_path_alloc_reversed(void) 362 { 363 struct fs_path *p; 364 365 p = fs_path_alloc(); 366 if (!p) 367 return NULL; 368 p->reversed = 1; 369 fs_path_reset(p); 370 return p; 371 } 372 373 static void fs_path_free(struct fs_path *p) 374 { 375 if (!p) 376 return; 377 if (p->buf != p->inline_buf) 378 kfree(p->buf); 379 kfree(p); 380 } 381 382 static int fs_path_len(struct fs_path *p) 383 { 384 return p->end - p->start; 385 } 386 387 static int fs_path_ensure_buf(struct fs_path *p, int len) 388 { 389 char *tmp_buf; 390 int path_len; 391 int old_buf_len; 392 393 len++; 394 395 if (p->buf_len >= len) 396 return 0; 397 398 if (len > PATH_MAX) { 399 WARN_ON(1); 400 return -ENOMEM; 401 } 402 403 path_len = p->end - p->start; 404 old_buf_len = p->buf_len; 405 406 /* 407 * First time the inline_buf does not suffice 408 */ 409 if (p->buf == p->inline_buf) { 410 tmp_buf = kmalloc(len, GFP_KERNEL); 411 if (tmp_buf) 412 memcpy(tmp_buf, p->buf, old_buf_len); 413 } else { 414 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 415 } 416 if (!tmp_buf) 417 return -ENOMEM; 418 p->buf = tmp_buf; 419 /* 420 * The real size of the buffer is bigger, this will let the fast path 421 * happen most of the time 422 */ 423 p->buf_len = ksize(p->buf); 424 425 if (p->reversed) { 426 tmp_buf = p->buf + old_buf_len - path_len - 1; 427 p->end = p->buf + p->buf_len - 1; 428 p->start = p->end - path_len; 429 memmove(p->start, tmp_buf, path_len + 1); 430 } else { 431 p->start = p->buf; 432 p->end = p->start + path_len; 433 } 434 return 0; 435 } 436 437 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 438 char **prepared) 439 { 440 int ret; 441 int new_len; 442 443 new_len = p->end - p->start + name_len; 444 if (p->start != p->end) 445 new_len++; 446 ret = fs_path_ensure_buf(p, new_len); 447 if (ret < 0) 448 goto out; 449 450 if (p->reversed) { 451 if (p->start != p->end) 452 *--p->start = '/'; 453 p->start -= name_len; 454 *prepared = p->start; 455 } else { 456 if (p->start != p->end) 457 *p->end++ = '/'; 458 *prepared = p->end; 459 p->end += name_len; 460 *p->end = 0; 461 } 462 463 out: 464 return ret; 465 } 466 467 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 468 { 469 int ret; 470 char *prepared; 471 472 ret = fs_path_prepare_for_add(p, name_len, &prepared); 473 if (ret < 0) 474 goto out; 475 memcpy(prepared, name, name_len); 476 477 out: 478 return ret; 479 } 480 481 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 482 { 483 int ret; 484 char *prepared; 485 486 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 487 if (ret < 0) 488 goto out; 489 memcpy(prepared, p2->start, p2->end - p2->start); 490 491 out: 492 return ret; 493 } 494 495 static int fs_path_add_from_extent_buffer(struct fs_path *p, 496 struct extent_buffer *eb, 497 unsigned long off, int len) 498 { 499 int ret; 500 char *prepared; 501 502 ret = fs_path_prepare_for_add(p, len, &prepared); 503 if (ret < 0) 504 goto out; 505 506 read_extent_buffer(eb, prepared, off, len); 507 508 out: 509 return ret; 510 } 511 512 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 513 { 514 int ret; 515 516 p->reversed = from->reversed; 517 fs_path_reset(p); 518 519 ret = fs_path_add_path(p, from); 520 521 return ret; 522 } 523 524 525 static void fs_path_unreverse(struct fs_path *p) 526 { 527 char *tmp; 528 int len; 529 530 if (!p->reversed) 531 return; 532 533 tmp = p->start; 534 len = p->end - p->start; 535 p->start = p->buf; 536 p->end = p->start + len; 537 memmove(p->start, tmp, len + 1); 538 p->reversed = 0; 539 } 540 541 static struct btrfs_path *alloc_path_for_send(void) 542 { 543 struct btrfs_path *path; 544 545 path = btrfs_alloc_path(); 546 if (!path) 547 return NULL; 548 path->search_commit_root = 1; 549 path->skip_locking = 1; 550 path->need_commit_sem = 1; 551 return path; 552 } 553 554 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 555 { 556 int ret; 557 u32 pos = 0; 558 559 while (pos < len) { 560 ret = kernel_write(filp, buf + pos, len - pos, off); 561 /* TODO handle that correctly */ 562 /*if (ret == -ERESTARTSYS) { 563 continue; 564 }*/ 565 if (ret < 0) 566 return ret; 567 if (ret == 0) { 568 return -EIO; 569 } 570 pos += ret; 571 } 572 573 return 0; 574 } 575 576 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 577 { 578 struct btrfs_tlv_header *hdr; 579 int total_len = sizeof(*hdr) + len; 580 int left = sctx->send_max_size - sctx->send_size; 581 582 if (unlikely(left < total_len)) 583 return -EOVERFLOW; 584 585 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 586 hdr->tlv_type = cpu_to_le16(attr); 587 hdr->tlv_len = cpu_to_le16(len); 588 memcpy(hdr + 1, data, len); 589 sctx->send_size += total_len; 590 591 return 0; 592 } 593 594 #define TLV_PUT_DEFINE_INT(bits) \ 595 static int tlv_put_u##bits(struct send_ctx *sctx, \ 596 u##bits attr, u##bits value) \ 597 { \ 598 __le##bits __tmp = cpu_to_le##bits(value); \ 599 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 600 } 601 602 TLV_PUT_DEFINE_INT(64) 603 604 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 605 const char *str, int len) 606 { 607 if (len == -1) 608 len = strlen(str); 609 return tlv_put(sctx, attr, str, len); 610 } 611 612 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 613 const u8 *uuid) 614 { 615 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 616 } 617 618 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 619 struct extent_buffer *eb, 620 struct btrfs_timespec *ts) 621 { 622 struct btrfs_timespec bts; 623 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 624 return tlv_put(sctx, attr, &bts, sizeof(bts)); 625 } 626 627 628 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 629 do { \ 630 ret = tlv_put(sctx, attrtype, data, attrlen); \ 631 if (ret < 0) \ 632 goto tlv_put_failure; \ 633 } while (0) 634 635 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 636 do { \ 637 ret = tlv_put_u##bits(sctx, attrtype, value); \ 638 if (ret < 0) \ 639 goto tlv_put_failure; \ 640 } while (0) 641 642 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 643 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 644 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 645 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 646 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 647 do { \ 648 ret = tlv_put_string(sctx, attrtype, str, len); \ 649 if (ret < 0) \ 650 goto tlv_put_failure; \ 651 } while (0) 652 #define TLV_PUT_PATH(sctx, attrtype, p) \ 653 do { \ 654 ret = tlv_put_string(sctx, attrtype, p->start, \ 655 p->end - p->start); \ 656 if (ret < 0) \ 657 goto tlv_put_failure; \ 658 } while(0) 659 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 660 do { \ 661 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 662 if (ret < 0) \ 663 goto tlv_put_failure; \ 664 } while (0) 665 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 666 do { \ 667 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 668 if (ret < 0) \ 669 goto tlv_put_failure; \ 670 } while (0) 671 672 static int send_header(struct send_ctx *sctx) 673 { 674 struct btrfs_stream_header hdr; 675 676 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 677 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 678 679 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 680 &sctx->send_off); 681 } 682 683 /* 684 * For each command/item we want to send to userspace, we call this function. 685 */ 686 static int begin_cmd(struct send_ctx *sctx, int cmd) 687 { 688 struct btrfs_cmd_header *hdr; 689 690 if (WARN_ON(!sctx->send_buf)) 691 return -EINVAL; 692 693 BUG_ON(sctx->send_size); 694 695 sctx->send_size += sizeof(*hdr); 696 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 697 hdr->cmd = cpu_to_le16(cmd); 698 699 return 0; 700 } 701 702 static int send_cmd(struct send_ctx *sctx) 703 { 704 int ret; 705 struct btrfs_cmd_header *hdr; 706 u32 crc; 707 708 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 709 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 710 hdr->crc = 0; 711 712 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 713 hdr->crc = cpu_to_le32(crc); 714 715 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 716 &sctx->send_off); 717 718 sctx->total_send_size += sctx->send_size; 719 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 720 sctx->send_size = 0; 721 722 return ret; 723 } 724 725 /* 726 * Sends a move instruction to user space 727 */ 728 static int send_rename(struct send_ctx *sctx, 729 struct fs_path *from, struct fs_path *to) 730 { 731 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 732 int ret; 733 734 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 735 736 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 737 if (ret < 0) 738 goto out; 739 740 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 742 743 ret = send_cmd(sctx); 744 745 tlv_put_failure: 746 out: 747 return ret; 748 } 749 750 /* 751 * Sends a link instruction to user space 752 */ 753 static int send_link(struct send_ctx *sctx, 754 struct fs_path *path, struct fs_path *lnk) 755 { 756 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 757 int ret; 758 759 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 760 761 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 762 if (ret < 0) 763 goto out; 764 765 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 766 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 767 768 ret = send_cmd(sctx); 769 770 tlv_put_failure: 771 out: 772 return ret; 773 } 774 775 /* 776 * Sends an unlink instruction to user space 777 */ 778 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 779 { 780 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 781 int ret; 782 783 btrfs_debug(fs_info, "send_unlink %s", path->start); 784 785 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 786 if (ret < 0) 787 goto out; 788 789 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 790 791 ret = send_cmd(sctx); 792 793 tlv_put_failure: 794 out: 795 return ret; 796 } 797 798 /* 799 * Sends a rmdir instruction to user space 800 */ 801 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 802 { 803 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 804 int ret; 805 806 btrfs_debug(fs_info, "send_rmdir %s", path->start); 807 808 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 809 if (ret < 0) 810 goto out; 811 812 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 813 814 ret = send_cmd(sctx); 815 816 tlv_put_failure: 817 out: 818 return ret; 819 } 820 821 /* 822 * Helper function to retrieve some fields from an inode item. 823 */ 824 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 825 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 826 u64 *gid, u64 *rdev) 827 { 828 int ret; 829 struct btrfs_inode_item *ii; 830 struct btrfs_key key; 831 832 key.objectid = ino; 833 key.type = BTRFS_INODE_ITEM_KEY; 834 key.offset = 0; 835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 836 if (ret) { 837 if (ret > 0) 838 ret = -ENOENT; 839 return ret; 840 } 841 842 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 843 struct btrfs_inode_item); 844 if (size) 845 *size = btrfs_inode_size(path->nodes[0], ii); 846 if (gen) 847 *gen = btrfs_inode_generation(path->nodes[0], ii); 848 if (mode) 849 *mode = btrfs_inode_mode(path->nodes[0], ii); 850 if (uid) 851 *uid = btrfs_inode_uid(path->nodes[0], ii); 852 if (gid) 853 *gid = btrfs_inode_gid(path->nodes[0], ii); 854 if (rdev) 855 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 856 857 return ret; 858 } 859 860 static int get_inode_info(struct btrfs_root *root, 861 u64 ino, u64 *size, u64 *gen, 862 u64 *mode, u64 *uid, u64 *gid, 863 u64 *rdev) 864 { 865 struct btrfs_path *path; 866 int ret; 867 868 path = alloc_path_for_send(); 869 if (!path) 870 return -ENOMEM; 871 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 872 rdev); 873 btrfs_free_path(path); 874 return ret; 875 } 876 877 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 878 struct fs_path *p, 879 void *ctx); 880 881 /* 882 * Helper function to iterate the entries in ONE btrfs_inode_ref or 883 * btrfs_inode_extref. 884 * The iterate callback may return a non zero value to stop iteration. This can 885 * be a negative value for error codes or 1 to simply stop it. 886 * 887 * path must point to the INODE_REF or INODE_EXTREF when called. 888 */ 889 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 890 struct btrfs_key *found_key, int resolve, 891 iterate_inode_ref_t iterate, void *ctx) 892 { 893 struct extent_buffer *eb = path->nodes[0]; 894 struct btrfs_item *item; 895 struct btrfs_inode_ref *iref; 896 struct btrfs_inode_extref *extref; 897 struct btrfs_path *tmp_path; 898 struct fs_path *p; 899 u32 cur = 0; 900 u32 total; 901 int slot = path->slots[0]; 902 u32 name_len; 903 char *start; 904 int ret = 0; 905 int num = 0; 906 int index; 907 u64 dir; 908 unsigned long name_off; 909 unsigned long elem_size; 910 unsigned long ptr; 911 912 p = fs_path_alloc_reversed(); 913 if (!p) 914 return -ENOMEM; 915 916 tmp_path = alloc_path_for_send(); 917 if (!tmp_path) { 918 fs_path_free(p); 919 return -ENOMEM; 920 } 921 922 923 if (found_key->type == BTRFS_INODE_REF_KEY) { 924 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 925 struct btrfs_inode_ref); 926 item = btrfs_item_nr(slot); 927 total = btrfs_item_size(eb, item); 928 elem_size = sizeof(*iref); 929 } else { 930 ptr = btrfs_item_ptr_offset(eb, slot); 931 total = btrfs_item_size_nr(eb, slot); 932 elem_size = sizeof(*extref); 933 } 934 935 while (cur < total) { 936 fs_path_reset(p); 937 938 if (found_key->type == BTRFS_INODE_REF_KEY) { 939 iref = (struct btrfs_inode_ref *)(ptr + cur); 940 name_len = btrfs_inode_ref_name_len(eb, iref); 941 name_off = (unsigned long)(iref + 1); 942 index = btrfs_inode_ref_index(eb, iref); 943 dir = found_key->offset; 944 } else { 945 extref = (struct btrfs_inode_extref *)(ptr + cur); 946 name_len = btrfs_inode_extref_name_len(eb, extref); 947 name_off = (unsigned long)&extref->name; 948 index = btrfs_inode_extref_index(eb, extref); 949 dir = btrfs_inode_extref_parent(eb, extref); 950 } 951 952 if (resolve) { 953 start = btrfs_ref_to_path(root, tmp_path, name_len, 954 name_off, eb, dir, 955 p->buf, p->buf_len); 956 if (IS_ERR(start)) { 957 ret = PTR_ERR(start); 958 goto out; 959 } 960 if (start < p->buf) { 961 /* overflow , try again with larger buffer */ 962 ret = fs_path_ensure_buf(p, 963 p->buf_len + p->buf - start); 964 if (ret < 0) 965 goto out; 966 start = btrfs_ref_to_path(root, tmp_path, 967 name_len, name_off, 968 eb, dir, 969 p->buf, p->buf_len); 970 if (IS_ERR(start)) { 971 ret = PTR_ERR(start); 972 goto out; 973 } 974 BUG_ON(start < p->buf); 975 } 976 p->start = start; 977 } else { 978 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 979 name_len); 980 if (ret < 0) 981 goto out; 982 } 983 984 cur += elem_size + name_len; 985 ret = iterate(num, dir, index, p, ctx); 986 if (ret) 987 goto out; 988 num++; 989 } 990 991 out: 992 btrfs_free_path(tmp_path); 993 fs_path_free(p); 994 return ret; 995 } 996 997 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 998 const char *name, int name_len, 999 const char *data, int data_len, 1000 u8 type, void *ctx); 1001 1002 /* 1003 * Helper function to iterate the entries in ONE btrfs_dir_item. 1004 * The iterate callback may return a non zero value to stop iteration. This can 1005 * be a negative value for error codes or 1 to simply stop it. 1006 * 1007 * path must point to the dir item when called. 1008 */ 1009 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1010 iterate_dir_item_t iterate, void *ctx) 1011 { 1012 int ret = 0; 1013 struct extent_buffer *eb; 1014 struct btrfs_item *item; 1015 struct btrfs_dir_item *di; 1016 struct btrfs_key di_key; 1017 char *buf = NULL; 1018 int buf_len; 1019 u32 name_len; 1020 u32 data_len; 1021 u32 cur; 1022 u32 len; 1023 u32 total; 1024 int slot; 1025 int num; 1026 u8 type; 1027 1028 /* 1029 * Start with a small buffer (1 page). If later we end up needing more 1030 * space, which can happen for xattrs on a fs with a leaf size greater 1031 * then the page size, attempt to increase the buffer. Typically xattr 1032 * values are small. 1033 */ 1034 buf_len = PATH_MAX; 1035 buf = kmalloc(buf_len, GFP_KERNEL); 1036 if (!buf) { 1037 ret = -ENOMEM; 1038 goto out; 1039 } 1040 1041 eb = path->nodes[0]; 1042 slot = path->slots[0]; 1043 item = btrfs_item_nr(slot); 1044 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1045 cur = 0; 1046 len = 0; 1047 total = btrfs_item_size(eb, item); 1048 1049 num = 0; 1050 while (cur < total) { 1051 name_len = btrfs_dir_name_len(eb, di); 1052 data_len = btrfs_dir_data_len(eb, di); 1053 type = btrfs_dir_type(eb, di); 1054 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1055 1056 if (type == BTRFS_FT_XATTR) { 1057 if (name_len > XATTR_NAME_MAX) { 1058 ret = -ENAMETOOLONG; 1059 goto out; 1060 } 1061 if (name_len + data_len > 1062 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1063 ret = -E2BIG; 1064 goto out; 1065 } 1066 } else { 1067 /* 1068 * Path too long 1069 */ 1070 if (name_len + data_len > PATH_MAX) { 1071 ret = -ENAMETOOLONG; 1072 goto out; 1073 } 1074 } 1075 1076 if (name_len + data_len > buf_len) { 1077 buf_len = name_len + data_len; 1078 if (is_vmalloc_addr(buf)) { 1079 vfree(buf); 1080 buf = NULL; 1081 } else { 1082 char *tmp = krealloc(buf, buf_len, 1083 GFP_KERNEL | __GFP_NOWARN); 1084 1085 if (!tmp) 1086 kfree(buf); 1087 buf = tmp; 1088 } 1089 if (!buf) { 1090 buf = kvmalloc(buf_len, GFP_KERNEL); 1091 if (!buf) { 1092 ret = -ENOMEM; 1093 goto out; 1094 } 1095 } 1096 } 1097 1098 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1099 name_len + data_len); 1100 1101 len = sizeof(*di) + name_len + data_len; 1102 di = (struct btrfs_dir_item *)((char *)di + len); 1103 cur += len; 1104 1105 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1106 data_len, type, ctx); 1107 if (ret < 0) 1108 goto out; 1109 if (ret) { 1110 ret = 0; 1111 goto out; 1112 } 1113 1114 num++; 1115 } 1116 1117 out: 1118 kvfree(buf); 1119 return ret; 1120 } 1121 1122 static int __copy_first_ref(int num, u64 dir, int index, 1123 struct fs_path *p, void *ctx) 1124 { 1125 int ret; 1126 struct fs_path *pt = ctx; 1127 1128 ret = fs_path_copy(pt, p); 1129 if (ret < 0) 1130 return ret; 1131 1132 /* we want the first only */ 1133 return 1; 1134 } 1135 1136 /* 1137 * Retrieve the first path of an inode. If an inode has more then one 1138 * ref/hardlink, this is ignored. 1139 */ 1140 static int get_inode_path(struct btrfs_root *root, 1141 u64 ino, struct fs_path *path) 1142 { 1143 int ret; 1144 struct btrfs_key key, found_key; 1145 struct btrfs_path *p; 1146 1147 p = alloc_path_for_send(); 1148 if (!p) 1149 return -ENOMEM; 1150 1151 fs_path_reset(path); 1152 1153 key.objectid = ino; 1154 key.type = BTRFS_INODE_REF_KEY; 1155 key.offset = 0; 1156 1157 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1158 if (ret < 0) 1159 goto out; 1160 if (ret) { 1161 ret = 1; 1162 goto out; 1163 } 1164 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1165 if (found_key.objectid != ino || 1166 (found_key.type != BTRFS_INODE_REF_KEY && 1167 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1168 ret = -ENOENT; 1169 goto out; 1170 } 1171 1172 ret = iterate_inode_ref(root, p, &found_key, 1, 1173 __copy_first_ref, path); 1174 if (ret < 0) 1175 goto out; 1176 ret = 0; 1177 1178 out: 1179 btrfs_free_path(p); 1180 return ret; 1181 } 1182 1183 struct backref_ctx { 1184 struct send_ctx *sctx; 1185 1186 /* number of total found references */ 1187 u64 found; 1188 1189 /* 1190 * used for clones found in send_root. clones found behind cur_objectid 1191 * and cur_offset are not considered as allowed clones. 1192 */ 1193 u64 cur_objectid; 1194 u64 cur_offset; 1195 1196 /* may be truncated in case it's the last extent in a file */ 1197 u64 extent_len; 1198 1199 /* data offset in the file extent item */ 1200 u64 data_offset; 1201 1202 /* Just to check for bugs in backref resolving */ 1203 int found_itself; 1204 }; 1205 1206 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1207 { 1208 u64 root = (u64)(uintptr_t)key; 1209 struct clone_root *cr = (struct clone_root *)elt; 1210 1211 if (root < cr->root->root_key.objectid) 1212 return -1; 1213 if (root > cr->root->root_key.objectid) 1214 return 1; 1215 return 0; 1216 } 1217 1218 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1219 { 1220 struct clone_root *cr1 = (struct clone_root *)e1; 1221 struct clone_root *cr2 = (struct clone_root *)e2; 1222 1223 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1224 return -1; 1225 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1226 return 1; 1227 return 0; 1228 } 1229 1230 /* 1231 * Called for every backref that is found for the current extent. 1232 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1233 */ 1234 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1235 { 1236 struct backref_ctx *bctx = ctx_; 1237 struct clone_root *found; 1238 1239 /* First check if the root is in the list of accepted clone sources */ 1240 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1241 bctx->sctx->clone_roots_cnt, 1242 sizeof(struct clone_root), 1243 __clone_root_cmp_bsearch); 1244 if (!found) 1245 return 0; 1246 1247 if (found->root == bctx->sctx->send_root && 1248 ino == bctx->cur_objectid && 1249 offset == bctx->cur_offset) { 1250 bctx->found_itself = 1; 1251 } 1252 1253 /* 1254 * Make sure we don't consider clones from send_root that are 1255 * behind the current inode/offset. 1256 */ 1257 if (found->root == bctx->sctx->send_root) { 1258 /* 1259 * If the source inode was not yet processed we can't issue a 1260 * clone operation, as the source extent does not exist yet at 1261 * the destination of the stream. 1262 */ 1263 if (ino > bctx->cur_objectid) 1264 return 0; 1265 /* 1266 * We clone from the inode currently being sent as long as the 1267 * source extent is already processed, otherwise we could try 1268 * to clone from an extent that does not exist yet at the 1269 * destination of the stream. 1270 */ 1271 if (ino == bctx->cur_objectid && 1272 offset + bctx->extent_len > 1273 bctx->sctx->cur_inode_next_write_offset) 1274 return 0; 1275 } 1276 1277 bctx->found++; 1278 found->found_refs++; 1279 if (ino < found->ino) { 1280 found->ino = ino; 1281 found->offset = offset; 1282 } else if (found->ino == ino) { 1283 /* 1284 * same extent found more then once in the same file. 1285 */ 1286 if (found->offset > offset + bctx->extent_len) 1287 found->offset = offset; 1288 } 1289 1290 return 0; 1291 } 1292 1293 /* 1294 * Given an inode, offset and extent item, it finds a good clone for a clone 1295 * instruction. Returns -ENOENT when none could be found. The function makes 1296 * sure that the returned clone is usable at the point where sending is at the 1297 * moment. This means, that no clones are accepted which lie behind the current 1298 * inode+offset. 1299 * 1300 * path must point to the extent item when called. 1301 */ 1302 static int find_extent_clone(struct send_ctx *sctx, 1303 struct btrfs_path *path, 1304 u64 ino, u64 data_offset, 1305 u64 ino_size, 1306 struct clone_root **found) 1307 { 1308 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1309 int ret; 1310 int extent_type; 1311 u64 logical; 1312 u64 disk_byte; 1313 u64 num_bytes; 1314 u64 extent_item_pos; 1315 u64 flags = 0; 1316 struct btrfs_file_extent_item *fi; 1317 struct extent_buffer *eb = path->nodes[0]; 1318 struct backref_ctx *backref_ctx = NULL; 1319 struct clone_root *cur_clone_root; 1320 struct btrfs_key found_key; 1321 struct btrfs_path *tmp_path; 1322 struct btrfs_extent_item *ei; 1323 int compressed; 1324 u32 i; 1325 1326 tmp_path = alloc_path_for_send(); 1327 if (!tmp_path) 1328 return -ENOMEM; 1329 1330 /* We only use this path under the commit sem */ 1331 tmp_path->need_commit_sem = 0; 1332 1333 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1334 if (!backref_ctx) { 1335 ret = -ENOMEM; 1336 goto out; 1337 } 1338 1339 if (data_offset >= ino_size) { 1340 /* 1341 * There may be extents that lie behind the file's size. 1342 * I at least had this in combination with snapshotting while 1343 * writing large files. 1344 */ 1345 ret = 0; 1346 goto out; 1347 } 1348 1349 fi = btrfs_item_ptr(eb, path->slots[0], 1350 struct btrfs_file_extent_item); 1351 extent_type = btrfs_file_extent_type(eb, fi); 1352 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1353 ret = -ENOENT; 1354 goto out; 1355 } 1356 compressed = btrfs_file_extent_compression(eb, fi); 1357 1358 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1359 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1360 if (disk_byte == 0) { 1361 ret = -ENOENT; 1362 goto out; 1363 } 1364 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1365 1366 down_read(&fs_info->commit_root_sem); 1367 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1368 &found_key, &flags); 1369 up_read(&fs_info->commit_root_sem); 1370 1371 if (ret < 0) 1372 goto out; 1373 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1374 ret = -EIO; 1375 goto out; 1376 } 1377 1378 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1379 struct btrfs_extent_item); 1380 /* 1381 * Backreference walking (iterate_extent_inodes() below) is currently 1382 * too expensive when an extent has a large number of references, both 1383 * in time spent and used memory. So for now just fallback to write 1384 * operations instead of clone operations when an extent has more than 1385 * a certain amount of references. 1386 */ 1387 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1388 ret = -ENOENT; 1389 goto out; 1390 } 1391 btrfs_release_path(tmp_path); 1392 1393 /* 1394 * Setup the clone roots. 1395 */ 1396 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1397 cur_clone_root = sctx->clone_roots + i; 1398 cur_clone_root->ino = (u64)-1; 1399 cur_clone_root->offset = 0; 1400 cur_clone_root->found_refs = 0; 1401 } 1402 1403 backref_ctx->sctx = sctx; 1404 backref_ctx->found = 0; 1405 backref_ctx->cur_objectid = ino; 1406 backref_ctx->cur_offset = data_offset; 1407 backref_ctx->found_itself = 0; 1408 backref_ctx->extent_len = num_bytes; 1409 /* 1410 * For non-compressed extents iterate_extent_inodes() gives us extent 1411 * offsets that already take into account the data offset, but not for 1412 * compressed extents, since the offset is logical and not relative to 1413 * the physical extent locations. We must take this into account to 1414 * avoid sending clone offsets that go beyond the source file's size, 1415 * which would result in the clone ioctl failing with -EINVAL on the 1416 * receiving end. 1417 */ 1418 if (compressed == BTRFS_COMPRESS_NONE) 1419 backref_ctx->data_offset = 0; 1420 else 1421 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1422 1423 /* 1424 * The last extent of a file may be too large due to page alignment. 1425 * We need to adjust extent_len in this case so that the checks in 1426 * __iterate_backrefs work. 1427 */ 1428 if (data_offset + num_bytes >= ino_size) 1429 backref_ctx->extent_len = ino_size - data_offset; 1430 1431 /* 1432 * Now collect all backrefs. 1433 */ 1434 if (compressed == BTRFS_COMPRESS_NONE) 1435 extent_item_pos = logical - found_key.objectid; 1436 else 1437 extent_item_pos = 0; 1438 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1439 extent_item_pos, 1, __iterate_backrefs, 1440 backref_ctx, false); 1441 1442 if (ret < 0) 1443 goto out; 1444 1445 if (!backref_ctx->found_itself) { 1446 /* found a bug in backref code? */ 1447 ret = -EIO; 1448 btrfs_err(fs_info, 1449 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1450 ino, data_offset, disk_byte, found_key.objectid); 1451 goto out; 1452 } 1453 1454 btrfs_debug(fs_info, 1455 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1456 data_offset, ino, num_bytes, logical); 1457 1458 if (!backref_ctx->found) 1459 btrfs_debug(fs_info, "no clones found"); 1460 1461 cur_clone_root = NULL; 1462 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1463 if (sctx->clone_roots[i].found_refs) { 1464 if (!cur_clone_root) 1465 cur_clone_root = sctx->clone_roots + i; 1466 else if (sctx->clone_roots[i].root == sctx->send_root) 1467 /* prefer clones from send_root over others */ 1468 cur_clone_root = sctx->clone_roots + i; 1469 } 1470 1471 } 1472 1473 if (cur_clone_root) { 1474 *found = cur_clone_root; 1475 ret = 0; 1476 } else { 1477 ret = -ENOENT; 1478 } 1479 1480 out: 1481 btrfs_free_path(tmp_path); 1482 kfree(backref_ctx); 1483 return ret; 1484 } 1485 1486 static int read_symlink(struct btrfs_root *root, 1487 u64 ino, 1488 struct fs_path *dest) 1489 { 1490 int ret; 1491 struct btrfs_path *path; 1492 struct btrfs_key key; 1493 struct btrfs_file_extent_item *ei; 1494 u8 type; 1495 u8 compression; 1496 unsigned long off; 1497 int len; 1498 1499 path = alloc_path_for_send(); 1500 if (!path) 1501 return -ENOMEM; 1502 1503 key.objectid = ino; 1504 key.type = BTRFS_EXTENT_DATA_KEY; 1505 key.offset = 0; 1506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1507 if (ret < 0) 1508 goto out; 1509 if (ret) { 1510 /* 1511 * An empty symlink inode. Can happen in rare error paths when 1512 * creating a symlink (transaction committed before the inode 1513 * eviction handler removed the symlink inode items and a crash 1514 * happened in between or the subvol was snapshoted in between). 1515 * Print an informative message to dmesg/syslog so that the user 1516 * can delete the symlink. 1517 */ 1518 btrfs_err(root->fs_info, 1519 "Found empty symlink inode %llu at root %llu", 1520 ino, root->root_key.objectid); 1521 ret = -EIO; 1522 goto out; 1523 } 1524 1525 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1526 struct btrfs_file_extent_item); 1527 type = btrfs_file_extent_type(path->nodes[0], ei); 1528 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1529 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1530 BUG_ON(compression); 1531 1532 off = btrfs_file_extent_inline_start(ei); 1533 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1534 1535 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1536 1537 out: 1538 btrfs_free_path(path); 1539 return ret; 1540 } 1541 1542 /* 1543 * Helper function to generate a file name that is unique in the root of 1544 * send_root and parent_root. This is used to generate names for orphan inodes. 1545 */ 1546 static int gen_unique_name(struct send_ctx *sctx, 1547 u64 ino, u64 gen, 1548 struct fs_path *dest) 1549 { 1550 int ret = 0; 1551 struct btrfs_path *path; 1552 struct btrfs_dir_item *di; 1553 char tmp[64]; 1554 int len; 1555 u64 idx = 0; 1556 1557 path = alloc_path_for_send(); 1558 if (!path) 1559 return -ENOMEM; 1560 1561 while (1) { 1562 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1563 ino, gen, idx); 1564 ASSERT(len < sizeof(tmp)); 1565 1566 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1567 path, BTRFS_FIRST_FREE_OBJECTID, 1568 tmp, strlen(tmp), 0); 1569 btrfs_release_path(path); 1570 if (IS_ERR(di)) { 1571 ret = PTR_ERR(di); 1572 goto out; 1573 } 1574 if (di) { 1575 /* not unique, try again */ 1576 idx++; 1577 continue; 1578 } 1579 1580 if (!sctx->parent_root) { 1581 /* unique */ 1582 ret = 0; 1583 break; 1584 } 1585 1586 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1587 path, BTRFS_FIRST_FREE_OBJECTID, 1588 tmp, strlen(tmp), 0); 1589 btrfs_release_path(path); 1590 if (IS_ERR(di)) { 1591 ret = PTR_ERR(di); 1592 goto out; 1593 } 1594 if (di) { 1595 /* not unique, try again */ 1596 idx++; 1597 continue; 1598 } 1599 /* unique */ 1600 break; 1601 } 1602 1603 ret = fs_path_add(dest, tmp, strlen(tmp)); 1604 1605 out: 1606 btrfs_free_path(path); 1607 return ret; 1608 } 1609 1610 enum inode_state { 1611 inode_state_no_change, 1612 inode_state_will_create, 1613 inode_state_did_create, 1614 inode_state_will_delete, 1615 inode_state_did_delete, 1616 }; 1617 1618 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1619 { 1620 int ret; 1621 int left_ret; 1622 int right_ret; 1623 u64 left_gen; 1624 u64 right_gen; 1625 1626 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1627 NULL, NULL); 1628 if (ret < 0 && ret != -ENOENT) 1629 goto out; 1630 left_ret = ret; 1631 1632 if (!sctx->parent_root) { 1633 right_ret = -ENOENT; 1634 } else { 1635 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1636 NULL, NULL, NULL, NULL); 1637 if (ret < 0 && ret != -ENOENT) 1638 goto out; 1639 right_ret = ret; 1640 } 1641 1642 if (!left_ret && !right_ret) { 1643 if (left_gen == gen && right_gen == gen) { 1644 ret = inode_state_no_change; 1645 } else if (left_gen == gen) { 1646 if (ino < sctx->send_progress) 1647 ret = inode_state_did_create; 1648 else 1649 ret = inode_state_will_create; 1650 } else if (right_gen == gen) { 1651 if (ino < sctx->send_progress) 1652 ret = inode_state_did_delete; 1653 else 1654 ret = inode_state_will_delete; 1655 } else { 1656 ret = -ENOENT; 1657 } 1658 } else if (!left_ret) { 1659 if (left_gen == gen) { 1660 if (ino < sctx->send_progress) 1661 ret = inode_state_did_create; 1662 else 1663 ret = inode_state_will_create; 1664 } else { 1665 ret = -ENOENT; 1666 } 1667 } else if (!right_ret) { 1668 if (right_gen == gen) { 1669 if (ino < sctx->send_progress) 1670 ret = inode_state_did_delete; 1671 else 1672 ret = inode_state_will_delete; 1673 } else { 1674 ret = -ENOENT; 1675 } 1676 } else { 1677 ret = -ENOENT; 1678 } 1679 1680 out: 1681 return ret; 1682 } 1683 1684 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1685 { 1686 int ret; 1687 1688 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1689 return 1; 1690 1691 ret = get_cur_inode_state(sctx, ino, gen); 1692 if (ret < 0) 1693 goto out; 1694 1695 if (ret == inode_state_no_change || 1696 ret == inode_state_did_create || 1697 ret == inode_state_will_delete) 1698 ret = 1; 1699 else 1700 ret = 0; 1701 1702 out: 1703 return ret; 1704 } 1705 1706 /* 1707 * Helper function to lookup a dir item in a dir. 1708 */ 1709 static int lookup_dir_item_inode(struct btrfs_root *root, 1710 u64 dir, const char *name, int name_len, 1711 u64 *found_inode, 1712 u8 *found_type) 1713 { 1714 int ret = 0; 1715 struct btrfs_dir_item *di; 1716 struct btrfs_key key; 1717 struct btrfs_path *path; 1718 1719 path = alloc_path_for_send(); 1720 if (!path) 1721 return -ENOMEM; 1722 1723 di = btrfs_lookup_dir_item(NULL, root, path, 1724 dir, name, name_len, 0); 1725 if (IS_ERR_OR_NULL(di)) { 1726 ret = di ? PTR_ERR(di) : -ENOENT; 1727 goto out; 1728 } 1729 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1730 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1731 ret = -ENOENT; 1732 goto out; 1733 } 1734 *found_inode = key.objectid; 1735 *found_type = btrfs_dir_type(path->nodes[0], di); 1736 1737 out: 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 /* 1743 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1744 * generation of the parent dir and the name of the dir entry. 1745 */ 1746 static int get_first_ref(struct btrfs_root *root, u64 ino, 1747 u64 *dir, u64 *dir_gen, struct fs_path *name) 1748 { 1749 int ret; 1750 struct btrfs_key key; 1751 struct btrfs_key found_key; 1752 struct btrfs_path *path; 1753 int len; 1754 u64 parent_dir; 1755 1756 path = alloc_path_for_send(); 1757 if (!path) 1758 return -ENOMEM; 1759 1760 key.objectid = ino; 1761 key.type = BTRFS_INODE_REF_KEY; 1762 key.offset = 0; 1763 1764 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1765 if (ret < 0) 1766 goto out; 1767 if (!ret) 1768 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1769 path->slots[0]); 1770 if (ret || found_key.objectid != ino || 1771 (found_key.type != BTRFS_INODE_REF_KEY && 1772 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1773 ret = -ENOENT; 1774 goto out; 1775 } 1776 1777 if (found_key.type == BTRFS_INODE_REF_KEY) { 1778 struct btrfs_inode_ref *iref; 1779 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1780 struct btrfs_inode_ref); 1781 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1782 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1783 (unsigned long)(iref + 1), 1784 len); 1785 parent_dir = found_key.offset; 1786 } else { 1787 struct btrfs_inode_extref *extref; 1788 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1789 struct btrfs_inode_extref); 1790 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1791 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1792 (unsigned long)&extref->name, len); 1793 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1794 } 1795 if (ret < 0) 1796 goto out; 1797 btrfs_release_path(path); 1798 1799 if (dir_gen) { 1800 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1801 NULL, NULL, NULL); 1802 if (ret < 0) 1803 goto out; 1804 } 1805 1806 *dir = parent_dir; 1807 1808 out: 1809 btrfs_free_path(path); 1810 return ret; 1811 } 1812 1813 static int is_first_ref(struct btrfs_root *root, 1814 u64 ino, u64 dir, 1815 const char *name, int name_len) 1816 { 1817 int ret; 1818 struct fs_path *tmp_name; 1819 u64 tmp_dir; 1820 1821 tmp_name = fs_path_alloc(); 1822 if (!tmp_name) 1823 return -ENOMEM; 1824 1825 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1826 if (ret < 0) 1827 goto out; 1828 1829 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1830 ret = 0; 1831 goto out; 1832 } 1833 1834 ret = !memcmp(tmp_name->start, name, name_len); 1835 1836 out: 1837 fs_path_free(tmp_name); 1838 return ret; 1839 } 1840 1841 /* 1842 * Used by process_recorded_refs to determine if a new ref would overwrite an 1843 * already existing ref. In case it detects an overwrite, it returns the 1844 * inode/gen in who_ino/who_gen. 1845 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1846 * to make sure later references to the overwritten inode are possible. 1847 * Orphanizing is however only required for the first ref of an inode. 1848 * process_recorded_refs does an additional is_first_ref check to see if 1849 * orphanizing is really required. 1850 */ 1851 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1852 const char *name, int name_len, 1853 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1854 { 1855 int ret = 0; 1856 u64 gen; 1857 u64 other_inode = 0; 1858 u8 other_type = 0; 1859 1860 if (!sctx->parent_root) 1861 goto out; 1862 1863 ret = is_inode_existent(sctx, dir, dir_gen); 1864 if (ret <= 0) 1865 goto out; 1866 1867 /* 1868 * If we have a parent root we need to verify that the parent dir was 1869 * not deleted and then re-created, if it was then we have no overwrite 1870 * and we can just unlink this entry. 1871 */ 1872 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1873 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1874 NULL, NULL, NULL); 1875 if (ret < 0 && ret != -ENOENT) 1876 goto out; 1877 if (ret) { 1878 ret = 0; 1879 goto out; 1880 } 1881 if (gen != dir_gen) 1882 goto out; 1883 } 1884 1885 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1886 &other_inode, &other_type); 1887 if (ret < 0 && ret != -ENOENT) 1888 goto out; 1889 if (ret) { 1890 ret = 0; 1891 goto out; 1892 } 1893 1894 /* 1895 * Check if the overwritten ref was already processed. If yes, the ref 1896 * was already unlinked/moved, so we can safely assume that we will not 1897 * overwrite anything at this point in time. 1898 */ 1899 if (other_inode > sctx->send_progress || 1900 is_waiting_for_move(sctx, other_inode)) { 1901 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1902 who_gen, who_mode, NULL, NULL, NULL); 1903 if (ret < 0) 1904 goto out; 1905 1906 ret = 1; 1907 *who_ino = other_inode; 1908 } else { 1909 ret = 0; 1910 } 1911 1912 out: 1913 return ret; 1914 } 1915 1916 /* 1917 * Checks if the ref was overwritten by an already processed inode. This is 1918 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1919 * thus the orphan name needs be used. 1920 * process_recorded_refs also uses it to avoid unlinking of refs that were 1921 * overwritten. 1922 */ 1923 static int did_overwrite_ref(struct send_ctx *sctx, 1924 u64 dir, u64 dir_gen, 1925 u64 ino, u64 ino_gen, 1926 const char *name, int name_len) 1927 { 1928 int ret = 0; 1929 u64 gen; 1930 u64 ow_inode; 1931 u8 other_type; 1932 1933 if (!sctx->parent_root) 1934 goto out; 1935 1936 ret = is_inode_existent(sctx, dir, dir_gen); 1937 if (ret <= 0) 1938 goto out; 1939 1940 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1941 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1942 NULL, NULL, NULL); 1943 if (ret < 0 && ret != -ENOENT) 1944 goto out; 1945 if (ret) { 1946 ret = 0; 1947 goto out; 1948 } 1949 if (gen != dir_gen) 1950 goto out; 1951 } 1952 1953 /* check if the ref was overwritten by another ref */ 1954 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1955 &ow_inode, &other_type); 1956 if (ret < 0 && ret != -ENOENT) 1957 goto out; 1958 if (ret) { 1959 /* was never and will never be overwritten */ 1960 ret = 0; 1961 goto out; 1962 } 1963 1964 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1965 NULL, NULL); 1966 if (ret < 0) 1967 goto out; 1968 1969 if (ow_inode == ino && gen == ino_gen) { 1970 ret = 0; 1971 goto out; 1972 } 1973 1974 /* 1975 * We know that it is or will be overwritten. Check this now. 1976 * The current inode being processed might have been the one that caused 1977 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1978 * the current inode being processed. 1979 */ 1980 if ((ow_inode < sctx->send_progress) || 1981 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1982 gen == sctx->cur_inode_gen)) 1983 ret = 1; 1984 else 1985 ret = 0; 1986 1987 out: 1988 return ret; 1989 } 1990 1991 /* 1992 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1993 * that got overwritten. This is used by process_recorded_refs to determine 1994 * if it has to use the path as returned by get_cur_path or the orphan name. 1995 */ 1996 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1997 { 1998 int ret = 0; 1999 struct fs_path *name = NULL; 2000 u64 dir; 2001 u64 dir_gen; 2002 2003 if (!sctx->parent_root) 2004 goto out; 2005 2006 name = fs_path_alloc(); 2007 if (!name) 2008 return -ENOMEM; 2009 2010 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2011 if (ret < 0) 2012 goto out; 2013 2014 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2015 name->start, fs_path_len(name)); 2016 2017 out: 2018 fs_path_free(name); 2019 return ret; 2020 } 2021 2022 /* 2023 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2024 * so we need to do some special handling in case we have clashes. This function 2025 * takes care of this with the help of name_cache_entry::radix_list. 2026 * In case of error, nce is kfreed. 2027 */ 2028 static int name_cache_insert(struct send_ctx *sctx, 2029 struct name_cache_entry *nce) 2030 { 2031 int ret = 0; 2032 struct list_head *nce_head; 2033 2034 nce_head = radix_tree_lookup(&sctx->name_cache, 2035 (unsigned long)nce->ino); 2036 if (!nce_head) { 2037 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2038 if (!nce_head) { 2039 kfree(nce); 2040 return -ENOMEM; 2041 } 2042 INIT_LIST_HEAD(nce_head); 2043 2044 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2045 if (ret < 0) { 2046 kfree(nce_head); 2047 kfree(nce); 2048 return ret; 2049 } 2050 } 2051 list_add_tail(&nce->radix_list, nce_head); 2052 list_add_tail(&nce->list, &sctx->name_cache_list); 2053 sctx->name_cache_size++; 2054 2055 return ret; 2056 } 2057 2058 static void name_cache_delete(struct send_ctx *sctx, 2059 struct name_cache_entry *nce) 2060 { 2061 struct list_head *nce_head; 2062 2063 nce_head = radix_tree_lookup(&sctx->name_cache, 2064 (unsigned long)nce->ino); 2065 if (!nce_head) { 2066 btrfs_err(sctx->send_root->fs_info, 2067 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2068 nce->ino, sctx->name_cache_size); 2069 } 2070 2071 list_del(&nce->radix_list); 2072 list_del(&nce->list); 2073 sctx->name_cache_size--; 2074 2075 /* 2076 * We may not get to the final release of nce_head if the lookup fails 2077 */ 2078 if (nce_head && list_empty(nce_head)) { 2079 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2080 kfree(nce_head); 2081 } 2082 } 2083 2084 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2085 u64 ino, u64 gen) 2086 { 2087 struct list_head *nce_head; 2088 struct name_cache_entry *cur; 2089 2090 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2091 if (!nce_head) 2092 return NULL; 2093 2094 list_for_each_entry(cur, nce_head, radix_list) { 2095 if (cur->ino == ino && cur->gen == gen) 2096 return cur; 2097 } 2098 return NULL; 2099 } 2100 2101 /* 2102 * Removes the entry from the list and adds it back to the end. This marks the 2103 * entry as recently used so that name_cache_clean_unused does not remove it. 2104 */ 2105 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2106 { 2107 list_del(&nce->list); 2108 list_add_tail(&nce->list, &sctx->name_cache_list); 2109 } 2110 2111 /* 2112 * Remove some entries from the beginning of name_cache_list. 2113 */ 2114 static void name_cache_clean_unused(struct send_ctx *sctx) 2115 { 2116 struct name_cache_entry *nce; 2117 2118 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2119 return; 2120 2121 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2122 nce = list_entry(sctx->name_cache_list.next, 2123 struct name_cache_entry, list); 2124 name_cache_delete(sctx, nce); 2125 kfree(nce); 2126 } 2127 } 2128 2129 static void name_cache_free(struct send_ctx *sctx) 2130 { 2131 struct name_cache_entry *nce; 2132 2133 while (!list_empty(&sctx->name_cache_list)) { 2134 nce = list_entry(sctx->name_cache_list.next, 2135 struct name_cache_entry, list); 2136 name_cache_delete(sctx, nce); 2137 kfree(nce); 2138 } 2139 } 2140 2141 /* 2142 * Used by get_cur_path for each ref up to the root. 2143 * Returns 0 if it succeeded. 2144 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2145 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2146 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2147 * Returns <0 in case of error. 2148 */ 2149 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2150 u64 ino, u64 gen, 2151 u64 *parent_ino, 2152 u64 *parent_gen, 2153 struct fs_path *dest) 2154 { 2155 int ret; 2156 int nce_ret; 2157 struct name_cache_entry *nce = NULL; 2158 2159 /* 2160 * First check if we already did a call to this function with the same 2161 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2162 * return the cached result. 2163 */ 2164 nce = name_cache_search(sctx, ino, gen); 2165 if (nce) { 2166 if (ino < sctx->send_progress && nce->need_later_update) { 2167 name_cache_delete(sctx, nce); 2168 kfree(nce); 2169 nce = NULL; 2170 } else { 2171 name_cache_used(sctx, nce); 2172 *parent_ino = nce->parent_ino; 2173 *parent_gen = nce->parent_gen; 2174 ret = fs_path_add(dest, nce->name, nce->name_len); 2175 if (ret < 0) 2176 goto out; 2177 ret = nce->ret; 2178 goto out; 2179 } 2180 } 2181 2182 /* 2183 * If the inode is not existent yet, add the orphan name and return 1. 2184 * This should only happen for the parent dir that we determine in 2185 * __record_new_ref 2186 */ 2187 ret = is_inode_existent(sctx, ino, gen); 2188 if (ret < 0) 2189 goto out; 2190 2191 if (!ret) { 2192 ret = gen_unique_name(sctx, ino, gen, dest); 2193 if (ret < 0) 2194 goto out; 2195 ret = 1; 2196 goto out_cache; 2197 } 2198 2199 /* 2200 * Depending on whether the inode was already processed or not, use 2201 * send_root or parent_root for ref lookup. 2202 */ 2203 if (ino < sctx->send_progress) 2204 ret = get_first_ref(sctx->send_root, ino, 2205 parent_ino, parent_gen, dest); 2206 else 2207 ret = get_first_ref(sctx->parent_root, ino, 2208 parent_ino, parent_gen, dest); 2209 if (ret < 0) 2210 goto out; 2211 2212 /* 2213 * Check if the ref was overwritten by an inode's ref that was processed 2214 * earlier. If yes, treat as orphan and return 1. 2215 */ 2216 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2217 dest->start, dest->end - dest->start); 2218 if (ret < 0) 2219 goto out; 2220 if (ret) { 2221 fs_path_reset(dest); 2222 ret = gen_unique_name(sctx, ino, gen, dest); 2223 if (ret < 0) 2224 goto out; 2225 ret = 1; 2226 } 2227 2228 out_cache: 2229 /* 2230 * Store the result of the lookup in the name cache. 2231 */ 2232 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2233 if (!nce) { 2234 ret = -ENOMEM; 2235 goto out; 2236 } 2237 2238 nce->ino = ino; 2239 nce->gen = gen; 2240 nce->parent_ino = *parent_ino; 2241 nce->parent_gen = *parent_gen; 2242 nce->name_len = fs_path_len(dest); 2243 nce->ret = ret; 2244 strcpy(nce->name, dest->start); 2245 2246 if (ino < sctx->send_progress) 2247 nce->need_later_update = 0; 2248 else 2249 nce->need_later_update = 1; 2250 2251 nce_ret = name_cache_insert(sctx, nce); 2252 if (nce_ret < 0) 2253 ret = nce_ret; 2254 name_cache_clean_unused(sctx); 2255 2256 out: 2257 return ret; 2258 } 2259 2260 /* 2261 * Magic happens here. This function returns the first ref to an inode as it 2262 * would look like while receiving the stream at this point in time. 2263 * We walk the path up to the root. For every inode in between, we check if it 2264 * was already processed/sent. If yes, we continue with the parent as found 2265 * in send_root. If not, we continue with the parent as found in parent_root. 2266 * If we encounter an inode that was deleted at this point in time, we use the 2267 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2268 * that were not created yet and overwritten inodes/refs. 2269 * 2270 * When do we have orphan inodes: 2271 * 1. When an inode is freshly created and thus no valid refs are available yet 2272 * 2. When a directory lost all it's refs (deleted) but still has dir items 2273 * inside which were not processed yet (pending for move/delete). If anyone 2274 * tried to get the path to the dir items, it would get a path inside that 2275 * orphan directory. 2276 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2277 * of an unprocessed inode. If in that case the first ref would be 2278 * overwritten, the overwritten inode gets "orphanized". Later when we 2279 * process this overwritten inode, it is restored at a new place by moving 2280 * the orphan inode. 2281 * 2282 * sctx->send_progress tells this function at which point in time receiving 2283 * would be. 2284 */ 2285 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2286 struct fs_path *dest) 2287 { 2288 int ret = 0; 2289 struct fs_path *name = NULL; 2290 u64 parent_inode = 0; 2291 u64 parent_gen = 0; 2292 int stop = 0; 2293 2294 name = fs_path_alloc(); 2295 if (!name) { 2296 ret = -ENOMEM; 2297 goto out; 2298 } 2299 2300 dest->reversed = 1; 2301 fs_path_reset(dest); 2302 2303 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2304 struct waiting_dir_move *wdm; 2305 2306 fs_path_reset(name); 2307 2308 if (is_waiting_for_rm(sctx, ino)) { 2309 ret = gen_unique_name(sctx, ino, gen, name); 2310 if (ret < 0) 2311 goto out; 2312 ret = fs_path_add_path(dest, name); 2313 break; 2314 } 2315 2316 wdm = get_waiting_dir_move(sctx, ino); 2317 if (wdm && wdm->orphanized) { 2318 ret = gen_unique_name(sctx, ino, gen, name); 2319 stop = 1; 2320 } else if (wdm) { 2321 ret = get_first_ref(sctx->parent_root, ino, 2322 &parent_inode, &parent_gen, name); 2323 } else { 2324 ret = __get_cur_name_and_parent(sctx, ino, gen, 2325 &parent_inode, 2326 &parent_gen, name); 2327 if (ret) 2328 stop = 1; 2329 } 2330 2331 if (ret < 0) 2332 goto out; 2333 2334 ret = fs_path_add_path(dest, name); 2335 if (ret < 0) 2336 goto out; 2337 2338 ino = parent_inode; 2339 gen = parent_gen; 2340 } 2341 2342 out: 2343 fs_path_free(name); 2344 if (!ret) 2345 fs_path_unreverse(dest); 2346 return ret; 2347 } 2348 2349 /* 2350 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2351 */ 2352 static int send_subvol_begin(struct send_ctx *sctx) 2353 { 2354 int ret; 2355 struct btrfs_root *send_root = sctx->send_root; 2356 struct btrfs_root *parent_root = sctx->parent_root; 2357 struct btrfs_path *path; 2358 struct btrfs_key key; 2359 struct btrfs_root_ref *ref; 2360 struct extent_buffer *leaf; 2361 char *name = NULL; 2362 int namelen; 2363 2364 path = btrfs_alloc_path(); 2365 if (!path) 2366 return -ENOMEM; 2367 2368 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2369 if (!name) { 2370 btrfs_free_path(path); 2371 return -ENOMEM; 2372 } 2373 2374 key.objectid = send_root->root_key.objectid; 2375 key.type = BTRFS_ROOT_BACKREF_KEY; 2376 key.offset = 0; 2377 2378 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2379 &key, path, 1, 0); 2380 if (ret < 0) 2381 goto out; 2382 if (ret) { 2383 ret = -ENOENT; 2384 goto out; 2385 } 2386 2387 leaf = path->nodes[0]; 2388 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2389 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2390 key.objectid != send_root->root_key.objectid) { 2391 ret = -ENOENT; 2392 goto out; 2393 } 2394 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2395 namelen = btrfs_root_ref_name_len(leaf, ref); 2396 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2397 btrfs_release_path(path); 2398 2399 if (parent_root) { 2400 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2401 if (ret < 0) 2402 goto out; 2403 } else { 2404 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2405 if (ret < 0) 2406 goto out; 2407 } 2408 2409 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2410 2411 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2412 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2413 sctx->send_root->root_item.received_uuid); 2414 else 2415 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2416 sctx->send_root->root_item.uuid); 2417 2418 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2419 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2420 if (parent_root) { 2421 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2423 parent_root->root_item.received_uuid); 2424 else 2425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2426 parent_root->root_item.uuid); 2427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2428 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2429 } 2430 2431 ret = send_cmd(sctx); 2432 2433 tlv_put_failure: 2434 out: 2435 btrfs_free_path(path); 2436 kfree(name); 2437 return ret; 2438 } 2439 2440 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2441 { 2442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2443 int ret = 0; 2444 struct fs_path *p; 2445 2446 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2447 2448 p = fs_path_alloc(); 2449 if (!p) 2450 return -ENOMEM; 2451 2452 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2453 if (ret < 0) 2454 goto out; 2455 2456 ret = get_cur_path(sctx, ino, gen, p); 2457 if (ret < 0) 2458 goto out; 2459 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2460 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2461 2462 ret = send_cmd(sctx); 2463 2464 tlv_put_failure: 2465 out: 2466 fs_path_free(p); 2467 return ret; 2468 } 2469 2470 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2471 { 2472 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2473 int ret = 0; 2474 struct fs_path *p; 2475 2476 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2477 2478 p = fs_path_alloc(); 2479 if (!p) 2480 return -ENOMEM; 2481 2482 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2483 if (ret < 0) 2484 goto out; 2485 2486 ret = get_cur_path(sctx, ino, gen, p); 2487 if (ret < 0) 2488 goto out; 2489 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2490 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2491 2492 ret = send_cmd(sctx); 2493 2494 tlv_put_failure: 2495 out: 2496 fs_path_free(p); 2497 return ret; 2498 } 2499 2500 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2501 { 2502 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2503 int ret = 0; 2504 struct fs_path *p; 2505 2506 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2507 ino, uid, gid); 2508 2509 p = fs_path_alloc(); 2510 if (!p) 2511 return -ENOMEM; 2512 2513 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2514 if (ret < 0) 2515 goto out; 2516 2517 ret = get_cur_path(sctx, ino, gen, p); 2518 if (ret < 0) 2519 goto out; 2520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2521 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2522 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2523 2524 ret = send_cmd(sctx); 2525 2526 tlv_put_failure: 2527 out: 2528 fs_path_free(p); 2529 return ret; 2530 } 2531 2532 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2533 { 2534 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2535 int ret = 0; 2536 struct fs_path *p = NULL; 2537 struct btrfs_inode_item *ii; 2538 struct btrfs_path *path = NULL; 2539 struct extent_buffer *eb; 2540 struct btrfs_key key; 2541 int slot; 2542 2543 btrfs_debug(fs_info, "send_utimes %llu", ino); 2544 2545 p = fs_path_alloc(); 2546 if (!p) 2547 return -ENOMEM; 2548 2549 path = alloc_path_for_send(); 2550 if (!path) { 2551 ret = -ENOMEM; 2552 goto out; 2553 } 2554 2555 key.objectid = ino; 2556 key.type = BTRFS_INODE_ITEM_KEY; 2557 key.offset = 0; 2558 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2559 if (ret > 0) 2560 ret = -ENOENT; 2561 if (ret < 0) 2562 goto out; 2563 2564 eb = path->nodes[0]; 2565 slot = path->slots[0]; 2566 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2567 2568 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2569 if (ret < 0) 2570 goto out; 2571 2572 ret = get_cur_path(sctx, ino, gen, p); 2573 if (ret < 0) 2574 goto out; 2575 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2576 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2577 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2578 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2579 /* TODO Add otime support when the otime patches get into upstream */ 2580 2581 ret = send_cmd(sctx); 2582 2583 tlv_put_failure: 2584 out: 2585 fs_path_free(p); 2586 btrfs_free_path(path); 2587 return ret; 2588 } 2589 2590 /* 2591 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2592 * a valid path yet because we did not process the refs yet. So, the inode 2593 * is created as orphan. 2594 */ 2595 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2596 { 2597 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2598 int ret = 0; 2599 struct fs_path *p; 2600 int cmd; 2601 u64 gen; 2602 u64 mode; 2603 u64 rdev; 2604 2605 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2606 2607 p = fs_path_alloc(); 2608 if (!p) 2609 return -ENOMEM; 2610 2611 if (ino != sctx->cur_ino) { 2612 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2613 NULL, NULL, &rdev); 2614 if (ret < 0) 2615 goto out; 2616 } else { 2617 gen = sctx->cur_inode_gen; 2618 mode = sctx->cur_inode_mode; 2619 rdev = sctx->cur_inode_rdev; 2620 } 2621 2622 if (S_ISREG(mode)) { 2623 cmd = BTRFS_SEND_C_MKFILE; 2624 } else if (S_ISDIR(mode)) { 2625 cmd = BTRFS_SEND_C_MKDIR; 2626 } else if (S_ISLNK(mode)) { 2627 cmd = BTRFS_SEND_C_SYMLINK; 2628 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2629 cmd = BTRFS_SEND_C_MKNOD; 2630 } else if (S_ISFIFO(mode)) { 2631 cmd = BTRFS_SEND_C_MKFIFO; 2632 } else if (S_ISSOCK(mode)) { 2633 cmd = BTRFS_SEND_C_MKSOCK; 2634 } else { 2635 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2636 (int)(mode & S_IFMT)); 2637 ret = -EOPNOTSUPP; 2638 goto out; 2639 } 2640 2641 ret = begin_cmd(sctx, cmd); 2642 if (ret < 0) 2643 goto out; 2644 2645 ret = gen_unique_name(sctx, ino, gen, p); 2646 if (ret < 0) 2647 goto out; 2648 2649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2650 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2651 2652 if (S_ISLNK(mode)) { 2653 fs_path_reset(p); 2654 ret = read_symlink(sctx->send_root, ino, p); 2655 if (ret < 0) 2656 goto out; 2657 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2658 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2659 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2661 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2662 } 2663 2664 ret = send_cmd(sctx); 2665 if (ret < 0) 2666 goto out; 2667 2668 2669 tlv_put_failure: 2670 out: 2671 fs_path_free(p); 2672 return ret; 2673 } 2674 2675 /* 2676 * We need some special handling for inodes that get processed before the parent 2677 * directory got created. See process_recorded_refs for details. 2678 * This function does the check if we already created the dir out of order. 2679 */ 2680 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2681 { 2682 int ret = 0; 2683 struct btrfs_path *path = NULL; 2684 struct btrfs_key key; 2685 struct btrfs_key found_key; 2686 struct btrfs_key di_key; 2687 struct extent_buffer *eb; 2688 struct btrfs_dir_item *di; 2689 int slot; 2690 2691 path = alloc_path_for_send(); 2692 if (!path) { 2693 ret = -ENOMEM; 2694 goto out; 2695 } 2696 2697 key.objectid = dir; 2698 key.type = BTRFS_DIR_INDEX_KEY; 2699 key.offset = 0; 2700 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2701 if (ret < 0) 2702 goto out; 2703 2704 while (1) { 2705 eb = path->nodes[0]; 2706 slot = path->slots[0]; 2707 if (slot >= btrfs_header_nritems(eb)) { 2708 ret = btrfs_next_leaf(sctx->send_root, path); 2709 if (ret < 0) { 2710 goto out; 2711 } else if (ret > 0) { 2712 ret = 0; 2713 break; 2714 } 2715 continue; 2716 } 2717 2718 btrfs_item_key_to_cpu(eb, &found_key, slot); 2719 if (found_key.objectid != key.objectid || 2720 found_key.type != key.type) { 2721 ret = 0; 2722 goto out; 2723 } 2724 2725 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2726 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2727 2728 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2729 di_key.objectid < sctx->send_progress) { 2730 ret = 1; 2731 goto out; 2732 } 2733 2734 path->slots[0]++; 2735 } 2736 2737 out: 2738 btrfs_free_path(path); 2739 return ret; 2740 } 2741 2742 /* 2743 * Only creates the inode if it is: 2744 * 1. Not a directory 2745 * 2. Or a directory which was not created already due to out of order 2746 * directories. See did_create_dir and process_recorded_refs for details. 2747 */ 2748 static int send_create_inode_if_needed(struct send_ctx *sctx) 2749 { 2750 int ret; 2751 2752 if (S_ISDIR(sctx->cur_inode_mode)) { 2753 ret = did_create_dir(sctx, sctx->cur_ino); 2754 if (ret < 0) 2755 goto out; 2756 if (ret) { 2757 ret = 0; 2758 goto out; 2759 } 2760 } 2761 2762 ret = send_create_inode(sctx, sctx->cur_ino); 2763 if (ret < 0) 2764 goto out; 2765 2766 out: 2767 return ret; 2768 } 2769 2770 struct recorded_ref { 2771 struct list_head list; 2772 char *name; 2773 struct fs_path *full_path; 2774 u64 dir; 2775 u64 dir_gen; 2776 int name_len; 2777 }; 2778 2779 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2780 { 2781 ref->full_path = path; 2782 ref->name = (char *)kbasename(ref->full_path->start); 2783 ref->name_len = ref->full_path->end - ref->name; 2784 } 2785 2786 /* 2787 * We need to process new refs before deleted refs, but compare_tree gives us 2788 * everything mixed. So we first record all refs and later process them. 2789 * This function is a helper to record one ref. 2790 */ 2791 static int __record_ref(struct list_head *head, u64 dir, 2792 u64 dir_gen, struct fs_path *path) 2793 { 2794 struct recorded_ref *ref; 2795 2796 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2797 if (!ref) 2798 return -ENOMEM; 2799 2800 ref->dir = dir; 2801 ref->dir_gen = dir_gen; 2802 set_ref_path(ref, path); 2803 list_add_tail(&ref->list, head); 2804 return 0; 2805 } 2806 2807 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2808 { 2809 struct recorded_ref *new; 2810 2811 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2812 if (!new) 2813 return -ENOMEM; 2814 2815 new->dir = ref->dir; 2816 new->dir_gen = ref->dir_gen; 2817 new->full_path = NULL; 2818 INIT_LIST_HEAD(&new->list); 2819 list_add_tail(&new->list, list); 2820 return 0; 2821 } 2822 2823 static void __free_recorded_refs(struct list_head *head) 2824 { 2825 struct recorded_ref *cur; 2826 2827 while (!list_empty(head)) { 2828 cur = list_entry(head->next, struct recorded_ref, list); 2829 fs_path_free(cur->full_path); 2830 list_del(&cur->list); 2831 kfree(cur); 2832 } 2833 } 2834 2835 static void free_recorded_refs(struct send_ctx *sctx) 2836 { 2837 __free_recorded_refs(&sctx->new_refs); 2838 __free_recorded_refs(&sctx->deleted_refs); 2839 } 2840 2841 /* 2842 * Renames/moves a file/dir to its orphan name. Used when the first 2843 * ref of an unprocessed inode gets overwritten and for all non empty 2844 * directories. 2845 */ 2846 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2847 struct fs_path *path) 2848 { 2849 int ret; 2850 struct fs_path *orphan; 2851 2852 orphan = fs_path_alloc(); 2853 if (!orphan) 2854 return -ENOMEM; 2855 2856 ret = gen_unique_name(sctx, ino, gen, orphan); 2857 if (ret < 0) 2858 goto out; 2859 2860 ret = send_rename(sctx, path, orphan); 2861 2862 out: 2863 fs_path_free(orphan); 2864 return ret; 2865 } 2866 2867 static struct orphan_dir_info * 2868 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2869 { 2870 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2871 struct rb_node *parent = NULL; 2872 struct orphan_dir_info *entry, *odi; 2873 2874 while (*p) { 2875 parent = *p; 2876 entry = rb_entry(parent, struct orphan_dir_info, node); 2877 if (dir_ino < entry->ino) { 2878 p = &(*p)->rb_left; 2879 } else if (dir_ino > entry->ino) { 2880 p = &(*p)->rb_right; 2881 } else { 2882 return entry; 2883 } 2884 } 2885 2886 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2887 if (!odi) 2888 return ERR_PTR(-ENOMEM); 2889 odi->ino = dir_ino; 2890 odi->gen = 0; 2891 odi->last_dir_index_offset = 0; 2892 2893 rb_link_node(&odi->node, parent, p); 2894 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2895 return odi; 2896 } 2897 2898 static struct orphan_dir_info * 2899 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2900 { 2901 struct rb_node *n = sctx->orphan_dirs.rb_node; 2902 struct orphan_dir_info *entry; 2903 2904 while (n) { 2905 entry = rb_entry(n, struct orphan_dir_info, node); 2906 if (dir_ino < entry->ino) 2907 n = n->rb_left; 2908 else if (dir_ino > entry->ino) 2909 n = n->rb_right; 2910 else 2911 return entry; 2912 } 2913 return NULL; 2914 } 2915 2916 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2917 { 2918 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2919 2920 return odi != NULL; 2921 } 2922 2923 static void free_orphan_dir_info(struct send_ctx *sctx, 2924 struct orphan_dir_info *odi) 2925 { 2926 if (!odi) 2927 return; 2928 rb_erase(&odi->node, &sctx->orphan_dirs); 2929 kfree(odi); 2930 } 2931 2932 /* 2933 * Returns 1 if a directory can be removed at this point in time. 2934 * We check this by iterating all dir items and checking if the inode behind 2935 * the dir item was already processed. 2936 */ 2937 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2938 u64 send_progress) 2939 { 2940 int ret = 0; 2941 struct btrfs_root *root = sctx->parent_root; 2942 struct btrfs_path *path; 2943 struct btrfs_key key; 2944 struct btrfs_key found_key; 2945 struct btrfs_key loc; 2946 struct btrfs_dir_item *di; 2947 struct orphan_dir_info *odi = NULL; 2948 2949 /* 2950 * Don't try to rmdir the top/root subvolume dir. 2951 */ 2952 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2953 return 0; 2954 2955 path = alloc_path_for_send(); 2956 if (!path) 2957 return -ENOMEM; 2958 2959 key.objectid = dir; 2960 key.type = BTRFS_DIR_INDEX_KEY; 2961 key.offset = 0; 2962 2963 odi = get_orphan_dir_info(sctx, dir); 2964 if (odi) 2965 key.offset = odi->last_dir_index_offset; 2966 2967 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2968 if (ret < 0) 2969 goto out; 2970 2971 while (1) { 2972 struct waiting_dir_move *dm; 2973 2974 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2975 ret = btrfs_next_leaf(root, path); 2976 if (ret < 0) 2977 goto out; 2978 else if (ret > 0) 2979 break; 2980 continue; 2981 } 2982 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2983 path->slots[0]); 2984 if (found_key.objectid != key.objectid || 2985 found_key.type != key.type) 2986 break; 2987 2988 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2989 struct btrfs_dir_item); 2990 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2991 2992 dm = get_waiting_dir_move(sctx, loc.objectid); 2993 if (dm) { 2994 odi = add_orphan_dir_info(sctx, dir); 2995 if (IS_ERR(odi)) { 2996 ret = PTR_ERR(odi); 2997 goto out; 2998 } 2999 odi->gen = dir_gen; 3000 odi->last_dir_index_offset = found_key.offset; 3001 dm->rmdir_ino = dir; 3002 ret = 0; 3003 goto out; 3004 } 3005 3006 if (loc.objectid > send_progress) { 3007 odi = add_orphan_dir_info(sctx, dir); 3008 if (IS_ERR(odi)) { 3009 ret = PTR_ERR(odi); 3010 goto out; 3011 } 3012 odi->gen = dir_gen; 3013 odi->last_dir_index_offset = found_key.offset; 3014 ret = 0; 3015 goto out; 3016 } 3017 3018 path->slots[0]++; 3019 } 3020 free_orphan_dir_info(sctx, odi); 3021 3022 ret = 1; 3023 3024 out: 3025 btrfs_free_path(path); 3026 return ret; 3027 } 3028 3029 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3030 { 3031 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3032 3033 return entry != NULL; 3034 } 3035 3036 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3037 { 3038 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3039 struct rb_node *parent = NULL; 3040 struct waiting_dir_move *entry, *dm; 3041 3042 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3043 if (!dm) 3044 return -ENOMEM; 3045 dm->ino = ino; 3046 dm->rmdir_ino = 0; 3047 dm->orphanized = orphanized; 3048 3049 while (*p) { 3050 parent = *p; 3051 entry = rb_entry(parent, struct waiting_dir_move, node); 3052 if (ino < entry->ino) { 3053 p = &(*p)->rb_left; 3054 } else if (ino > entry->ino) { 3055 p = &(*p)->rb_right; 3056 } else { 3057 kfree(dm); 3058 return -EEXIST; 3059 } 3060 } 3061 3062 rb_link_node(&dm->node, parent, p); 3063 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3064 return 0; 3065 } 3066 3067 static struct waiting_dir_move * 3068 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3069 { 3070 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3071 struct waiting_dir_move *entry; 3072 3073 while (n) { 3074 entry = rb_entry(n, struct waiting_dir_move, node); 3075 if (ino < entry->ino) 3076 n = n->rb_left; 3077 else if (ino > entry->ino) 3078 n = n->rb_right; 3079 else 3080 return entry; 3081 } 3082 return NULL; 3083 } 3084 3085 static void free_waiting_dir_move(struct send_ctx *sctx, 3086 struct waiting_dir_move *dm) 3087 { 3088 if (!dm) 3089 return; 3090 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3091 kfree(dm); 3092 } 3093 3094 static int add_pending_dir_move(struct send_ctx *sctx, 3095 u64 ino, 3096 u64 ino_gen, 3097 u64 parent_ino, 3098 struct list_head *new_refs, 3099 struct list_head *deleted_refs, 3100 const bool is_orphan) 3101 { 3102 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3103 struct rb_node *parent = NULL; 3104 struct pending_dir_move *entry = NULL, *pm; 3105 struct recorded_ref *cur; 3106 int exists = 0; 3107 int ret; 3108 3109 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3110 if (!pm) 3111 return -ENOMEM; 3112 pm->parent_ino = parent_ino; 3113 pm->ino = ino; 3114 pm->gen = ino_gen; 3115 INIT_LIST_HEAD(&pm->list); 3116 INIT_LIST_HEAD(&pm->update_refs); 3117 RB_CLEAR_NODE(&pm->node); 3118 3119 while (*p) { 3120 parent = *p; 3121 entry = rb_entry(parent, struct pending_dir_move, node); 3122 if (parent_ino < entry->parent_ino) { 3123 p = &(*p)->rb_left; 3124 } else if (parent_ino > entry->parent_ino) { 3125 p = &(*p)->rb_right; 3126 } else { 3127 exists = 1; 3128 break; 3129 } 3130 } 3131 3132 list_for_each_entry(cur, deleted_refs, list) { 3133 ret = dup_ref(cur, &pm->update_refs); 3134 if (ret < 0) 3135 goto out; 3136 } 3137 list_for_each_entry(cur, new_refs, list) { 3138 ret = dup_ref(cur, &pm->update_refs); 3139 if (ret < 0) 3140 goto out; 3141 } 3142 3143 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3144 if (ret) 3145 goto out; 3146 3147 if (exists) { 3148 list_add_tail(&pm->list, &entry->list); 3149 } else { 3150 rb_link_node(&pm->node, parent, p); 3151 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3152 } 3153 ret = 0; 3154 out: 3155 if (ret) { 3156 __free_recorded_refs(&pm->update_refs); 3157 kfree(pm); 3158 } 3159 return ret; 3160 } 3161 3162 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3163 u64 parent_ino) 3164 { 3165 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3166 struct pending_dir_move *entry; 3167 3168 while (n) { 3169 entry = rb_entry(n, struct pending_dir_move, node); 3170 if (parent_ino < entry->parent_ino) 3171 n = n->rb_left; 3172 else if (parent_ino > entry->parent_ino) 3173 n = n->rb_right; 3174 else 3175 return entry; 3176 } 3177 return NULL; 3178 } 3179 3180 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3181 u64 ino, u64 gen, u64 *ancestor_ino) 3182 { 3183 int ret = 0; 3184 u64 parent_inode = 0; 3185 u64 parent_gen = 0; 3186 u64 start_ino = ino; 3187 3188 *ancestor_ino = 0; 3189 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3190 fs_path_reset(name); 3191 3192 if (is_waiting_for_rm(sctx, ino)) 3193 break; 3194 if (is_waiting_for_move(sctx, ino)) { 3195 if (*ancestor_ino == 0) 3196 *ancestor_ino = ino; 3197 ret = get_first_ref(sctx->parent_root, ino, 3198 &parent_inode, &parent_gen, name); 3199 } else { 3200 ret = __get_cur_name_and_parent(sctx, ino, gen, 3201 &parent_inode, 3202 &parent_gen, name); 3203 if (ret > 0) { 3204 ret = 0; 3205 break; 3206 } 3207 } 3208 if (ret < 0) 3209 break; 3210 if (parent_inode == start_ino) { 3211 ret = 1; 3212 if (*ancestor_ino == 0) 3213 *ancestor_ino = ino; 3214 break; 3215 } 3216 ino = parent_inode; 3217 gen = parent_gen; 3218 } 3219 return ret; 3220 } 3221 3222 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3223 { 3224 struct fs_path *from_path = NULL; 3225 struct fs_path *to_path = NULL; 3226 struct fs_path *name = NULL; 3227 u64 orig_progress = sctx->send_progress; 3228 struct recorded_ref *cur; 3229 u64 parent_ino, parent_gen; 3230 struct waiting_dir_move *dm = NULL; 3231 u64 rmdir_ino = 0; 3232 u64 ancestor; 3233 bool is_orphan; 3234 int ret; 3235 3236 name = fs_path_alloc(); 3237 from_path = fs_path_alloc(); 3238 if (!name || !from_path) { 3239 ret = -ENOMEM; 3240 goto out; 3241 } 3242 3243 dm = get_waiting_dir_move(sctx, pm->ino); 3244 ASSERT(dm); 3245 rmdir_ino = dm->rmdir_ino; 3246 is_orphan = dm->orphanized; 3247 free_waiting_dir_move(sctx, dm); 3248 3249 if (is_orphan) { 3250 ret = gen_unique_name(sctx, pm->ino, 3251 pm->gen, from_path); 3252 } else { 3253 ret = get_first_ref(sctx->parent_root, pm->ino, 3254 &parent_ino, &parent_gen, name); 3255 if (ret < 0) 3256 goto out; 3257 ret = get_cur_path(sctx, parent_ino, parent_gen, 3258 from_path); 3259 if (ret < 0) 3260 goto out; 3261 ret = fs_path_add_path(from_path, name); 3262 } 3263 if (ret < 0) 3264 goto out; 3265 3266 sctx->send_progress = sctx->cur_ino + 1; 3267 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3268 if (ret < 0) 3269 goto out; 3270 if (ret) { 3271 LIST_HEAD(deleted_refs); 3272 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3273 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3274 &pm->update_refs, &deleted_refs, 3275 is_orphan); 3276 if (ret < 0) 3277 goto out; 3278 if (rmdir_ino) { 3279 dm = get_waiting_dir_move(sctx, pm->ino); 3280 ASSERT(dm); 3281 dm->rmdir_ino = rmdir_ino; 3282 } 3283 goto out; 3284 } 3285 fs_path_reset(name); 3286 to_path = name; 3287 name = NULL; 3288 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3289 if (ret < 0) 3290 goto out; 3291 3292 ret = send_rename(sctx, from_path, to_path); 3293 if (ret < 0) 3294 goto out; 3295 3296 if (rmdir_ino) { 3297 struct orphan_dir_info *odi; 3298 u64 gen; 3299 3300 odi = get_orphan_dir_info(sctx, rmdir_ino); 3301 if (!odi) { 3302 /* already deleted */ 3303 goto finish; 3304 } 3305 gen = odi->gen; 3306 3307 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3308 if (ret < 0) 3309 goto out; 3310 if (!ret) 3311 goto finish; 3312 3313 name = fs_path_alloc(); 3314 if (!name) { 3315 ret = -ENOMEM; 3316 goto out; 3317 } 3318 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3319 if (ret < 0) 3320 goto out; 3321 ret = send_rmdir(sctx, name); 3322 if (ret < 0) 3323 goto out; 3324 } 3325 3326 finish: 3327 ret = send_utimes(sctx, pm->ino, pm->gen); 3328 if (ret < 0) 3329 goto out; 3330 3331 /* 3332 * After rename/move, need to update the utimes of both new parent(s) 3333 * and old parent(s). 3334 */ 3335 list_for_each_entry(cur, &pm->update_refs, list) { 3336 /* 3337 * The parent inode might have been deleted in the send snapshot 3338 */ 3339 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3340 NULL, NULL, NULL, NULL, NULL); 3341 if (ret == -ENOENT) { 3342 ret = 0; 3343 continue; 3344 } 3345 if (ret < 0) 3346 goto out; 3347 3348 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3349 if (ret < 0) 3350 goto out; 3351 } 3352 3353 out: 3354 fs_path_free(name); 3355 fs_path_free(from_path); 3356 fs_path_free(to_path); 3357 sctx->send_progress = orig_progress; 3358 3359 return ret; 3360 } 3361 3362 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3363 { 3364 if (!list_empty(&m->list)) 3365 list_del(&m->list); 3366 if (!RB_EMPTY_NODE(&m->node)) 3367 rb_erase(&m->node, &sctx->pending_dir_moves); 3368 __free_recorded_refs(&m->update_refs); 3369 kfree(m); 3370 } 3371 3372 static void tail_append_pending_moves(struct send_ctx *sctx, 3373 struct pending_dir_move *moves, 3374 struct list_head *stack) 3375 { 3376 if (list_empty(&moves->list)) { 3377 list_add_tail(&moves->list, stack); 3378 } else { 3379 LIST_HEAD(list); 3380 list_splice_init(&moves->list, &list); 3381 list_add_tail(&moves->list, stack); 3382 list_splice_tail(&list, stack); 3383 } 3384 if (!RB_EMPTY_NODE(&moves->node)) { 3385 rb_erase(&moves->node, &sctx->pending_dir_moves); 3386 RB_CLEAR_NODE(&moves->node); 3387 } 3388 } 3389 3390 static int apply_children_dir_moves(struct send_ctx *sctx) 3391 { 3392 struct pending_dir_move *pm; 3393 struct list_head stack; 3394 u64 parent_ino = sctx->cur_ino; 3395 int ret = 0; 3396 3397 pm = get_pending_dir_moves(sctx, parent_ino); 3398 if (!pm) 3399 return 0; 3400 3401 INIT_LIST_HEAD(&stack); 3402 tail_append_pending_moves(sctx, pm, &stack); 3403 3404 while (!list_empty(&stack)) { 3405 pm = list_first_entry(&stack, struct pending_dir_move, list); 3406 parent_ino = pm->ino; 3407 ret = apply_dir_move(sctx, pm); 3408 free_pending_move(sctx, pm); 3409 if (ret) 3410 goto out; 3411 pm = get_pending_dir_moves(sctx, parent_ino); 3412 if (pm) 3413 tail_append_pending_moves(sctx, pm, &stack); 3414 } 3415 return 0; 3416 3417 out: 3418 while (!list_empty(&stack)) { 3419 pm = list_first_entry(&stack, struct pending_dir_move, list); 3420 free_pending_move(sctx, pm); 3421 } 3422 return ret; 3423 } 3424 3425 /* 3426 * We might need to delay a directory rename even when no ancestor directory 3427 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3428 * renamed. This happens when we rename a directory to the old name (the name 3429 * in the parent root) of some other unrelated directory that got its rename 3430 * delayed due to some ancestor with higher number that got renamed. 3431 * 3432 * Example: 3433 * 3434 * Parent snapshot: 3435 * . (ino 256) 3436 * |---- a/ (ino 257) 3437 * | |---- file (ino 260) 3438 * | 3439 * |---- b/ (ino 258) 3440 * |---- c/ (ino 259) 3441 * 3442 * Send snapshot: 3443 * . (ino 256) 3444 * |---- a/ (ino 258) 3445 * |---- x/ (ino 259) 3446 * |---- y/ (ino 257) 3447 * |----- file (ino 260) 3448 * 3449 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3450 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3451 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3452 * must issue is: 3453 * 3454 * 1 - rename 259 from 'c' to 'x' 3455 * 2 - rename 257 from 'a' to 'x/y' 3456 * 3 - rename 258 from 'b' to 'a' 3457 * 3458 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3459 * be done right away and < 0 on error. 3460 */ 3461 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3462 struct recorded_ref *parent_ref, 3463 const bool is_orphan) 3464 { 3465 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3466 struct btrfs_path *path; 3467 struct btrfs_key key; 3468 struct btrfs_key di_key; 3469 struct btrfs_dir_item *di; 3470 u64 left_gen; 3471 u64 right_gen; 3472 int ret = 0; 3473 struct waiting_dir_move *wdm; 3474 3475 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3476 return 0; 3477 3478 path = alloc_path_for_send(); 3479 if (!path) 3480 return -ENOMEM; 3481 3482 key.objectid = parent_ref->dir; 3483 key.type = BTRFS_DIR_ITEM_KEY; 3484 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3485 3486 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3487 if (ret < 0) { 3488 goto out; 3489 } else if (ret > 0) { 3490 ret = 0; 3491 goto out; 3492 } 3493 3494 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3495 parent_ref->name_len); 3496 if (!di) { 3497 ret = 0; 3498 goto out; 3499 } 3500 /* 3501 * di_key.objectid has the number of the inode that has a dentry in the 3502 * parent directory with the same name that sctx->cur_ino is being 3503 * renamed to. We need to check if that inode is in the send root as 3504 * well and if it is currently marked as an inode with a pending rename, 3505 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3506 * that it happens after that other inode is renamed. 3507 */ 3508 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3509 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3510 ret = 0; 3511 goto out; 3512 } 3513 3514 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3515 &left_gen, NULL, NULL, NULL, NULL); 3516 if (ret < 0) 3517 goto out; 3518 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3519 &right_gen, NULL, NULL, NULL, NULL); 3520 if (ret < 0) { 3521 if (ret == -ENOENT) 3522 ret = 0; 3523 goto out; 3524 } 3525 3526 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3527 if (right_gen != left_gen) { 3528 ret = 0; 3529 goto out; 3530 } 3531 3532 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3533 if (wdm && !wdm->orphanized) { 3534 ret = add_pending_dir_move(sctx, 3535 sctx->cur_ino, 3536 sctx->cur_inode_gen, 3537 di_key.objectid, 3538 &sctx->new_refs, 3539 &sctx->deleted_refs, 3540 is_orphan); 3541 if (!ret) 3542 ret = 1; 3543 } 3544 out: 3545 btrfs_free_path(path); 3546 return ret; 3547 } 3548 3549 /* 3550 * Check if inode ino2, or any of its ancestors, is inode ino1. 3551 * Return 1 if true, 0 if false and < 0 on error. 3552 */ 3553 static int check_ino_in_path(struct btrfs_root *root, 3554 const u64 ino1, 3555 const u64 ino1_gen, 3556 const u64 ino2, 3557 const u64 ino2_gen, 3558 struct fs_path *fs_path) 3559 { 3560 u64 ino = ino2; 3561 3562 if (ino1 == ino2) 3563 return ino1_gen == ino2_gen; 3564 3565 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3566 u64 parent; 3567 u64 parent_gen; 3568 int ret; 3569 3570 fs_path_reset(fs_path); 3571 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3572 if (ret < 0) 3573 return ret; 3574 if (parent == ino1) 3575 return parent_gen == ino1_gen; 3576 ino = parent; 3577 } 3578 return 0; 3579 } 3580 3581 /* 3582 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3583 * possible path (in case ino2 is not a directory and has multiple hard links). 3584 * Return 1 if true, 0 if false and < 0 on error. 3585 */ 3586 static int is_ancestor(struct btrfs_root *root, 3587 const u64 ino1, 3588 const u64 ino1_gen, 3589 const u64 ino2, 3590 struct fs_path *fs_path) 3591 { 3592 bool free_fs_path = false; 3593 int ret = 0; 3594 struct btrfs_path *path = NULL; 3595 struct btrfs_key key; 3596 3597 if (!fs_path) { 3598 fs_path = fs_path_alloc(); 3599 if (!fs_path) 3600 return -ENOMEM; 3601 free_fs_path = true; 3602 } 3603 3604 path = alloc_path_for_send(); 3605 if (!path) { 3606 ret = -ENOMEM; 3607 goto out; 3608 } 3609 3610 key.objectid = ino2; 3611 key.type = BTRFS_INODE_REF_KEY; 3612 key.offset = 0; 3613 3614 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3615 if (ret < 0) 3616 goto out; 3617 3618 while (true) { 3619 struct extent_buffer *leaf = path->nodes[0]; 3620 int slot = path->slots[0]; 3621 u32 cur_offset = 0; 3622 u32 item_size; 3623 3624 if (slot >= btrfs_header_nritems(leaf)) { 3625 ret = btrfs_next_leaf(root, path); 3626 if (ret < 0) 3627 goto out; 3628 if (ret > 0) 3629 break; 3630 continue; 3631 } 3632 3633 btrfs_item_key_to_cpu(leaf, &key, slot); 3634 if (key.objectid != ino2) 3635 break; 3636 if (key.type != BTRFS_INODE_REF_KEY && 3637 key.type != BTRFS_INODE_EXTREF_KEY) 3638 break; 3639 3640 item_size = btrfs_item_size_nr(leaf, slot); 3641 while (cur_offset < item_size) { 3642 u64 parent; 3643 u64 parent_gen; 3644 3645 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3646 unsigned long ptr; 3647 struct btrfs_inode_extref *extref; 3648 3649 ptr = btrfs_item_ptr_offset(leaf, slot); 3650 extref = (struct btrfs_inode_extref *) 3651 (ptr + cur_offset); 3652 parent = btrfs_inode_extref_parent(leaf, 3653 extref); 3654 cur_offset += sizeof(*extref); 3655 cur_offset += btrfs_inode_extref_name_len(leaf, 3656 extref); 3657 } else { 3658 parent = key.offset; 3659 cur_offset = item_size; 3660 } 3661 3662 ret = get_inode_info(root, parent, NULL, &parent_gen, 3663 NULL, NULL, NULL, NULL); 3664 if (ret < 0) 3665 goto out; 3666 ret = check_ino_in_path(root, ino1, ino1_gen, 3667 parent, parent_gen, fs_path); 3668 if (ret) 3669 goto out; 3670 } 3671 path->slots[0]++; 3672 } 3673 ret = 0; 3674 out: 3675 btrfs_free_path(path); 3676 if (free_fs_path) 3677 fs_path_free(fs_path); 3678 return ret; 3679 } 3680 3681 static int wait_for_parent_move(struct send_ctx *sctx, 3682 struct recorded_ref *parent_ref, 3683 const bool is_orphan) 3684 { 3685 int ret = 0; 3686 u64 ino = parent_ref->dir; 3687 u64 ino_gen = parent_ref->dir_gen; 3688 u64 parent_ino_before, parent_ino_after; 3689 struct fs_path *path_before = NULL; 3690 struct fs_path *path_after = NULL; 3691 int len1, len2; 3692 3693 path_after = fs_path_alloc(); 3694 path_before = fs_path_alloc(); 3695 if (!path_after || !path_before) { 3696 ret = -ENOMEM; 3697 goto out; 3698 } 3699 3700 /* 3701 * Our current directory inode may not yet be renamed/moved because some 3702 * ancestor (immediate or not) has to be renamed/moved first. So find if 3703 * such ancestor exists and make sure our own rename/move happens after 3704 * that ancestor is processed to avoid path build infinite loops (done 3705 * at get_cur_path()). 3706 */ 3707 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3708 u64 parent_ino_after_gen; 3709 3710 if (is_waiting_for_move(sctx, ino)) { 3711 /* 3712 * If the current inode is an ancestor of ino in the 3713 * parent root, we need to delay the rename of the 3714 * current inode, otherwise don't delayed the rename 3715 * because we can end up with a circular dependency 3716 * of renames, resulting in some directories never 3717 * getting the respective rename operations issued in 3718 * the send stream or getting into infinite path build 3719 * loops. 3720 */ 3721 ret = is_ancestor(sctx->parent_root, 3722 sctx->cur_ino, sctx->cur_inode_gen, 3723 ino, path_before); 3724 if (ret) 3725 break; 3726 } 3727 3728 fs_path_reset(path_before); 3729 fs_path_reset(path_after); 3730 3731 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3732 &parent_ino_after_gen, path_after); 3733 if (ret < 0) 3734 goto out; 3735 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3736 NULL, path_before); 3737 if (ret < 0 && ret != -ENOENT) { 3738 goto out; 3739 } else if (ret == -ENOENT) { 3740 ret = 0; 3741 break; 3742 } 3743 3744 len1 = fs_path_len(path_before); 3745 len2 = fs_path_len(path_after); 3746 if (ino > sctx->cur_ino && 3747 (parent_ino_before != parent_ino_after || len1 != len2 || 3748 memcmp(path_before->start, path_after->start, len1))) { 3749 u64 parent_ino_gen; 3750 3751 ret = get_inode_info(sctx->parent_root, ino, NULL, 3752 &parent_ino_gen, NULL, NULL, NULL, 3753 NULL); 3754 if (ret < 0) 3755 goto out; 3756 if (ino_gen == parent_ino_gen) { 3757 ret = 1; 3758 break; 3759 } 3760 } 3761 ino = parent_ino_after; 3762 ino_gen = parent_ino_after_gen; 3763 } 3764 3765 out: 3766 fs_path_free(path_before); 3767 fs_path_free(path_after); 3768 3769 if (ret == 1) { 3770 ret = add_pending_dir_move(sctx, 3771 sctx->cur_ino, 3772 sctx->cur_inode_gen, 3773 ino, 3774 &sctx->new_refs, 3775 &sctx->deleted_refs, 3776 is_orphan); 3777 if (!ret) 3778 ret = 1; 3779 } 3780 3781 return ret; 3782 } 3783 3784 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3785 { 3786 int ret; 3787 struct fs_path *new_path; 3788 3789 /* 3790 * Our reference's name member points to its full_path member string, so 3791 * we use here a new path. 3792 */ 3793 new_path = fs_path_alloc(); 3794 if (!new_path) 3795 return -ENOMEM; 3796 3797 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3798 if (ret < 0) { 3799 fs_path_free(new_path); 3800 return ret; 3801 } 3802 ret = fs_path_add(new_path, ref->name, ref->name_len); 3803 if (ret < 0) { 3804 fs_path_free(new_path); 3805 return ret; 3806 } 3807 3808 fs_path_free(ref->full_path); 3809 set_ref_path(ref, new_path); 3810 3811 return 0; 3812 } 3813 3814 /* 3815 * This does all the move/link/unlink/rmdir magic. 3816 */ 3817 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3818 { 3819 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3820 int ret = 0; 3821 struct recorded_ref *cur; 3822 struct recorded_ref *cur2; 3823 struct list_head check_dirs; 3824 struct fs_path *valid_path = NULL; 3825 u64 ow_inode = 0; 3826 u64 ow_gen; 3827 u64 ow_mode; 3828 int did_overwrite = 0; 3829 int is_orphan = 0; 3830 u64 last_dir_ino_rm = 0; 3831 bool can_rename = true; 3832 bool orphanized_dir = false; 3833 bool orphanized_ancestor = false; 3834 3835 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3836 3837 /* 3838 * This should never happen as the root dir always has the same ref 3839 * which is always '..' 3840 */ 3841 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3842 INIT_LIST_HEAD(&check_dirs); 3843 3844 valid_path = fs_path_alloc(); 3845 if (!valid_path) { 3846 ret = -ENOMEM; 3847 goto out; 3848 } 3849 3850 /* 3851 * First, check if the first ref of the current inode was overwritten 3852 * before. If yes, we know that the current inode was already orphanized 3853 * and thus use the orphan name. If not, we can use get_cur_path to 3854 * get the path of the first ref as it would like while receiving at 3855 * this point in time. 3856 * New inodes are always orphan at the beginning, so force to use the 3857 * orphan name in this case. 3858 * The first ref is stored in valid_path and will be updated if it 3859 * gets moved around. 3860 */ 3861 if (!sctx->cur_inode_new) { 3862 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3863 sctx->cur_inode_gen); 3864 if (ret < 0) 3865 goto out; 3866 if (ret) 3867 did_overwrite = 1; 3868 } 3869 if (sctx->cur_inode_new || did_overwrite) { 3870 ret = gen_unique_name(sctx, sctx->cur_ino, 3871 sctx->cur_inode_gen, valid_path); 3872 if (ret < 0) 3873 goto out; 3874 is_orphan = 1; 3875 } else { 3876 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3877 valid_path); 3878 if (ret < 0) 3879 goto out; 3880 } 3881 3882 list_for_each_entry(cur, &sctx->new_refs, list) { 3883 /* 3884 * We may have refs where the parent directory does not exist 3885 * yet. This happens if the parent directories inum is higher 3886 * than the current inum. To handle this case, we create the 3887 * parent directory out of order. But we need to check if this 3888 * did already happen before due to other refs in the same dir. 3889 */ 3890 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3891 if (ret < 0) 3892 goto out; 3893 if (ret == inode_state_will_create) { 3894 ret = 0; 3895 /* 3896 * First check if any of the current inodes refs did 3897 * already create the dir. 3898 */ 3899 list_for_each_entry(cur2, &sctx->new_refs, list) { 3900 if (cur == cur2) 3901 break; 3902 if (cur2->dir == cur->dir) { 3903 ret = 1; 3904 break; 3905 } 3906 } 3907 3908 /* 3909 * If that did not happen, check if a previous inode 3910 * did already create the dir. 3911 */ 3912 if (!ret) 3913 ret = did_create_dir(sctx, cur->dir); 3914 if (ret < 0) 3915 goto out; 3916 if (!ret) { 3917 ret = send_create_inode(sctx, cur->dir); 3918 if (ret < 0) 3919 goto out; 3920 } 3921 } 3922 3923 /* 3924 * Check if this new ref would overwrite the first ref of 3925 * another unprocessed inode. If yes, orphanize the 3926 * overwritten inode. If we find an overwritten ref that is 3927 * not the first ref, simply unlink it. 3928 */ 3929 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3930 cur->name, cur->name_len, 3931 &ow_inode, &ow_gen, &ow_mode); 3932 if (ret < 0) 3933 goto out; 3934 if (ret) { 3935 ret = is_first_ref(sctx->parent_root, 3936 ow_inode, cur->dir, cur->name, 3937 cur->name_len); 3938 if (ret < 0) 3939 goto out; 3940 if (ret) { 3941 struct name_cache_entry *nce; 3942 struct waiting_dir_move *wdm; 3943 3944 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3945 cur->full_path); 3946 if (ret < 0) 3947 goto out; 3948 if (S_ISDIR(ow_mode)) 3949 orphanized_dir = true; 3950 3951 /* 3952 * If ow_inode has its rename operation delayed 3953 * make sure that its orphanized name is used in 3954 * the source path when performing its rename 3955 * operation. 3956 */ 3957 if (is_waiting_for_move(sctx, ow_inode)) { 3958 wdm = get_waiting_dir_move(sctx, 3959 ow_inode); 3960 ASSERT(wdm); 3961 wdm->orphanized = true; 3962 } 3963 3964 /* 3965 * Make sure we clear our orphanized inode's 3966 * name from the name cache. This is because the 3967 * inode ow_inode might be an ancestor of some 3968 * other inode that will be orphanized as well 3969 * later and has an inode number greater than 3970 * sctx->send_progress. We need to prevent 3971 * future name lookups from using the old name 3972 * and get instead the orphan name. 3973 */ 3974 nce = name_cache_search(sctx, ow_inode, ow_gen); 3975 if (nce) { 3976 name_cache_delete(sctx, nce); 3977 kfree(nce); 3978 } 3979 3980 /* 3981 * ow_inode might currently be an ancestor of 3982 * cur_ino, therefore compute valid_path (the 3983 * current path of cur_ino) again because it 3984 * might contain the pre-orphanization name of 3985 * ow_inode, which is no longer valid. 3986 */ 3987 ret = is_ancestor(sctx->parent_root, 3988 ow_inode, ow_gen, 3989 sctx->cur_ino, NULL); 3990 if (ret > 0) { 3991 orphanized_ancestor = true; 3992 fs_path_reset(valid_path); 3993 ret = get_cur_path(sctx, sctx->cur_ino, 3994 sctx->cur_inode_gen, 3995 valid_path); 3996 } 3997 if (ret < 0) 3998 goto out; 3999 } else { 4000 ret = send_unlink(sctx, cur->full_path); 4001 if (ret < 0) 4002 goto out; 4003 } 4004 } 4005 4006 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4007 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4008 if (ret < 0) 4009 goto out; 4010 if (ret == 1) { 4011 can_rename = false; 4012 *pending_move = 1; 4013 } 4014 } 4015 4016 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4017 can_rename) { 4018 ret = wait_for_parent_move(sctx, cur, is_orphan); 4019 if (ret < 0) 4020 goto out; 4021 if (ret == 1) { 4022 can_rename = false; 4023 *pending_move = 1; 4024 } 4025 } 4026 4027 /* 4028 * link/move the ref to the new place. If we have an orphan 4029 * inode, move it and update valid_path. If not, link or move 4030 * it depending on the inode mode. 4031 */ 4032 if (is_orphan && can_rename) { 4033 ret = send_rename(sctx, valid_path, cur->full_path); 4034 if (ret < 0) 4035 goto out; 4036 is_orphan = 0; 4037 ret = fs_path_copy(valid_path, cur->full_path); 4038 if (ret < 0) 4039 goto out; 4040 } else if (can_rename) { 4041 if (S_ISDIR(sctx->cur_inode_mode)) { 4042 /* 4043 * Dirs can't be linked, so move it. For moved 4044 * dirs, we always have one new and one deleted 4045 * ref. The deleted ref is ignored later. 4046 */ 4047 ret = send_rename(sctx, valid_path, 4048 cur->full_path); 4049 if (!ret) 4050 ret = fs_path_copy(valid_path, 4051 cur->full_path); 4052 if (ret < 0) 4053 goto out; 4054 } else { 4055 /* 4056 * We might have previously orphanized an inode 4057 * which is an ancestor of our current inode, 4058 * so our reference's full path, which was 4059 * computed before any such orphanizations, must 4060 * be updated. 4061 */ 4062 if (orphanized_dir) { 4063 ret = update_ref_path(sctx, cur); 4064 if (ret < 0) 4065 goto out; 4066 } 4067 ret = send_link(sctx, cur->full_path, 4068 valid_path); 4069 if (ret < 0) 4070 goto out; 4071 } 4072 } 4073 ret = dup_ref(cur, &check_dirs); 4074 if (ret < 0) 4075 goto out; 4076 } 4077 4078 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4079 /* 4080 * Check if we can already rmdir the directory. If not, 4081 * orphanize it. For every dir item inside that gets deleted 4082 * later, we do this check again and rmdir it then if possible. 4083 * See the use of check_dirs for more details. 4084 */ 4085 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4086 sctx->cur_ino); 4087 if (ret < 0) 4088 goto out; 4089 if (ret) { 4090 ret = send_rmdir(sctx, valid_path); 4091 if (ret < 0) 4092 goto out; 4093 } else if (!is_orphan) { 4094 ret = orphanize_inode(sctx, sctx->cur_ino, 4095 sctx->cur_inode_gen, valid_path); 4096 if (ret < 0) 4097 goto out; 4098 is_orphan = 1; 4099 } 4100 4101 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4102 ret = dup_ref(cur, &check_dirs); 4103 if (ret < 0) 4104 goto out; 4105 } 4106 } else if (S_ISDIR(sctx->cur_inode_mode) && 4107 !list_empty(&sctx->deleted_refs)) { 4108 /* 4109 * We have a moved dir. Add the old parent to check_dirs 4110 */ 4111 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4112 list); 4113 ret = dup_ref(cur, &check_dirs); 4114 if (ret < 0) 4115 goto out; 4116 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4117 /* 4118 * We have a non dir inode. Go through all deleted refs and 4119 * unlink them if they were not already overwritten by other 4120 * inodes. 4121 */ 4122 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4123 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4124 sctx->cur_ino, sctx->cur_inode_gen, 4125 cur->name, cur->name_len); 4126 if (ret < 0) 4127 goto out; 4128 if (!ret) { 4129 /* 4130 * If we orphanized any ancestor before, we need 4131 * to recompute the full path for deleted names, 4132 * since any such path was computed before we 4133 * processed any references and orphanized any 4134 * ancestor inode. 4135 */ 4136 if (orphanized_ancestor) { 4137 ret = update_ref_path(sctx, cur); 4138 if (ret < 0) 4139 goto out; 4140 } 4141 ret = send_unlink(sctx, cur->full_path); 4142 if (ret < 0) 4143 goto out; 4144 } 4145 ret = dup_ref(cur, &check_dirs); 4146 if (ret < 0) 4147 goto out; 4148 } 4149 /* 4150 * If the inode is still orphan, unlink the orphan. This may 4151 * happen when a previous inode did overwrite the first ref 4152 * of this inode and no new refs were added for the current 4153 * inode. Unlinking does not mean that the inode is deleted in 4154 * all cases. There may still be links to this inode in other 4155 * places. 4156 */ 4157 if (is_orphan) { 4158 ret = send_unlink(sctx, valid_path); 4159 if (ret < 0) 4160 goto out; 4161 } 4162 } 4163 4164 /* 4165 * We did collect all parent dirs where cur_inode was once located. We 4166 * now go through all these dirs and check if they are pending for 4167 * deletion and if it's finally possible to perform the rmdir now. 4168 * We also update the inode stats of the parent dirs here. 4169 */ 4170 list_for_each_entry(cur, &check_dirs, list) { 4171 /* 4172 * In case we had refs into dirs that were not processed yet, 4173 * we don't need to do the utime and rmdir logic for these dirs. 4174 * The dir will be processed later. 4175 */ 4176 if (cur->dir > sctx->cur_ino) 4177 continue; 4178 4179 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4180 if (ret < 0) 4181 goto out; 4182 4183 if (ret == inode_state_did_create || 4184 ret == inode_state_no_change) { 4185 /* TODO delayed utimes */ 4186 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4187 if (ret < 0) 4188 goto out; 4189 } else if (ret == inode_state_did_delete && 4190 cur->dir != last_dir_ino_rm) { 4191 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4192 sctx->cur_ino); 4193 if (ret < 0) 4194 goto out; 4195 if (ret) { 4196 ret = get_cur_path(sctx, cur->dir, 4197 cur->dir_gen, valid_path); 4198 if (ret < 0) 4199 goto out; 4200 ret = send_rmdir(sctx, valid_path); 4201 if (ret < 0) 4202 goto out; 4203 last_dir_ino_rm = cur->dir; 4204 } 4205 } 4206 } 4207 4208 ret = 0; 4209 4210 out: 4211 __free_recorded_refs(&check_dirs); 4212 free_recorded_refs(sctx); 4213 fs_path_free(valid_path); 4214 return ret; 4215 } 4216 4217 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4218 void *ctx, struct list_head *refs) 4219 { 4220 int ret = 0; 4221 struct send_ctx *sctx = ctx; 4222 struct fs_path *p; 4223 u64 gen; 4224 4225 p = fs_path_alloc(); 4226 if (!p) 4227 return -ENOMEM; 4228 4229 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4230 NULL, NULL); 4231 if (ret < 0) 4232 goto out; 4233 4234 ret = get_cur_path(sctx, dir, gen, p); 4235 if (ret < 0) 4236 goto out; 4237 ret = fs_path_add_path(p, name); 4238 if (ret < 0) 4239 goto out; 4240 4241 ret = __record_ref(refs, dir, gen, p); 4242 4243 out: 4244 if (ret) 4245 fs_path_free(p); 4246 return ret; 4247 } 4248 4249 static int __record_new_ref(int num, u64 dir, int index, 4250 struct fs_path *name, 4251 void *ctx) 4252 { 4253 struct send_ctx *sctx = ctx; 4254 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4255 } 4256 4257 4258 static int __record_deleted_ref(int num, u64 dir, int index, 4259 struct fs_path *name, 4260 void *ctx) 4261 { 4262 struct send_ctx *sctx = ctx; 4263 return record_ref(sctx->parent_root, dir, name, ctx, 4264 &sctx->deleted_refs); 4265 } 4266 4267 static int record_new_ref(struct send_ctx *sctx) 4268 { 4269 int ret; 4270 4271 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4272 sctx->cmp_key, 0, __record_new_ref, sctx); 4273 if (ret < 0) 4274 goto out; 4275 ret = 0; 4276 4277 out: 4278 return ret; 4279 } 4280 4281 static int record_deleted_ref(struct send_ctx *sctx) 4282 { 4283 int ret; 4284 4285 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4286 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4287 if (ret < 0) 4288 goto out; 4289 ret = 0; 4290 4291 out: 4292 return ret; 4293 } 4294 4295 struct find_ref_ctx { 4296 u64 dir; 4297 u64 dir_gen; 4298 struct btrfs_root *root; 4299 struct fs_path *name; 4300 int found_idx; 4301 }; 4302 4303 static int __find_iref(int num, u64 dir, int index, 4304 struct fs_path *name, 4305 void *ctx_) 4306 { 4307 struct find_ref_ctx *ctx = ctx_; 4308 u64 dir_gen; 4309 int ret; 4310 4311 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4312 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4313 /* 4314 * To avoid doing extra lookups we'll only do this if everything 4315 * else matches. 4316 */ 4317 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4318 NULL, NULL, NULL); 4319 if (ret) 4320 return ret; 4321 if (dir_gen != ctx->dir_gen) 4322 return 0; 4323 ctx->found_idx = num; 4324 return 1; 4325 } 4326 return 0; 4327 } 4328 4329 static int find_iref(struct btrfs_root *root, 4330 struct btrfs_path *path, 4331 struct btrfs_key *key, 4332 u64 dir, u64 dir_gen, struct fs_path *name) 4333 { 4334 int ret; 4335 struct find_ref_ctx ctx; 4336 4337 ctx.dir = dir; 4338 ctx.name = name; 4339 ctx.dir_gen = dir_gen; 4340 ctx.found_idx = -1; 4341 ctx.root = root; 4342 4343 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4344 if (ret < 0) 4345 return ret; 4346 4347 if (ctx.found_idx == -1) 4348 return -ENOENT; 4349 4350 return ctx.found_idx; 4351 } 4352 4353 static int __record_changed_new_ref(int num, u64 dir, int index, 4354 struct fs_path *name, 4355 void *ctx) 4356 { 4357 u64 dir_gen; 4358 int ret; 4359 struct send_ctx *sctx = ctx; 4360 4361 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4362 NULL, NULL, NULL); 4363 if (ret) 4364 return ret; 4365 4366 ret = find_iref(sctx->parent_root, sctx->right_path, 4367 sctx->cmp_key, dir, dir_gen, name); 4368 if (ret == -ENOENT) 4369 ret = __record_new_ref(num, dir, index, name, sctx); 4370 else if (ret > 0) 4371 ret = 0; 4372 4373 return ret; 4374 } 4375 4376 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4377 struct fs_path *name, 4378 void *ctx) 4379 { 4380 u64 dir_gen; 4381 int ret; 4382 struct send_ctx *sctx = ctx; 4383 4384 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4385 NULL, NULL, NULL); 4386 if (ret) 4387 return ret; 4388 4389 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4390 dir, dir_gen, name); 4391 if (ret == -ENOENT) 4392 ret = __record_deleted_ref(num, dir, index, name, sctx); 4393 else if (ret > 0) 4394 ret = 0; 4395 4396 return ret; 4397 } 4398 4399 static int record_changed_ref(struct send_ctx *sctx) 4400 { 4401 int ret = 0; 4402 4403 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4404 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4405 if (ret < 0) 4406 goto out; 4407 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4408 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4409 if (ret < 0) 4410 goto out; 4411 ret = 0; 4412 4413 out: 4414 return ret; 4415 } 4416 4417 /* 4418 * Record and process all refs at once. Needed when an inode changes the 4419 * generation number, which means that it was deleted and recreated. 4420 */ 4421 static int process_all_refs(struct send_ctx *sctx, 4422 enum btrfs_compare_tree_result cmd) 4423 { 4424 int ret; 4425 struct btrfs_root *root; 4426 struct btrfs_path *path; 4427 struct btrfs_key key; 4428 struct btrfs_key found_key; 4429 struct extent_buffer *eb; 4430 int slot; 4431 iterate_inode_ref_t cb; 4432 int pending_move = 0; 4433 4434 path = alloc_path_for_send(); 4435 if (!path) 4436 return -ENOMEM; 4437 4438 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4439 root = sctx->send_root; 4440 cb = __record_new_ref; 4441 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4442 root = sctx->parent_root; 4443 cb = __record_deleted_ref; 4444 } else { 4445 btrfs_err(sctx->send_root->fs_info, 4446 "Wrong command %d in process_all_refs", cmd); 4447 ret = -EINVAL; 4448 goto out; 4449 } 4450 4451 key.objectid = sctx->cmp_key->objectid; 4452 key.type = BTRFS_INODE_REF_KEY; 4453 key.offset = 0; 4454 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4455 if (ret < 0) 4456 goto out; 4457 4458 while (1) { 4459 eb = path->nodes[0]; 4460 slot = path->slots[0]; 4461 if (slot >= btrfs_header_nritems(eb)) { 4462 ret = btrfs_next_leaf(root, path); 4463 if (ret < 0) 4464 goto out; 4465 else if (ret > 0) 4466 break; 4467 continue; 4468 } 4469 4470 btrfs_item_key_to_cpu(eb, &found_key, slot); 4471 4472 if (found_key.objectid != key.objectid || 4473 (found_key.type != BTRFS_INODE_REF_KEY && 4474 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4475 break; 4476 4477 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4478 if (ret < 0) 4479 goto out; 4480 4481 path->slots[0]++; 4482 } 4483 btrfs_release_path(path); 4484 4485 /* 4486 * We don't actually care about pending_move as we are simply 4487 * re-creating this inode and will be rename'ing it into place once we 4488 * rename the parent directory. 4489 */ 4490 ret = process_recorded_refs(sctx, &pending_move); 4491 out: 4492 btrfs_free_path(path); 4493 return ret; 4494 } 4495 4496 static int send_set_xattr(struct send_ctx *sctx, 4497 struct fs_path *path, 4498 const char *name, int name_len, 4499 const char *data, int data_len) 4500 { 4501 int ret = 0; 4502 4503 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4504 if (ret < 0) 4505 goto out; 4506 4507 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4508 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4509 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4510 4511 ret = send_cmd(sctx); 4512 4513 tlv_put_failure: 4514 out: 4515 return ret; 4516 } 4517 4518 static int send_remove_xattr(struct send_ctx *sctx, 4519 struct fs_path *path, 4520 const char *name, int name_len) 4521 { 4522 int ret = 0; 4523 4524 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4525 if (ret < 0) 4526 goto out; 4527 4528 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4529 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4530 4531 ret = send_cmd(sctx); 4532 4533 tlv_put_failure: 4534 out: 4535 return ret; 4536 } 4537 4538 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4539 const char *name, int name_len, 4540 const char *data, int data_len, 4541 u8 type, void *ctx) 4542 { 4543 int ret; 4544 struct send_ctx *sctx = ctx; 4545 struct fs_path *p; 4546 struct posix_acl_xattr_header dummy_acl; 4547 4548 p = fs_path_alloc(); 4549 if (!p) 4550 return -ENOMEM; 4551 4552 /* 4553 * This hack is needed because empty acls are stored as zero byte 4554 * data in xattrs. Problem with that is, that receiving these zero byte 4555 * acls will fail later. To fix this, we send a dummy acl list that 4556 * only contains the version number and no entries. 4557 */ 4558 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4559 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4560 if (data_len == 0) { 4561 dummy_acl.a_version = 4562 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4563 data = (char *)&dummy_acl; 4564 data_len = sizeof(dummy_acl); 4565 } 4566 } 4567 4568 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4569 if (ret < 0) 4570 goto out; 4571 4572 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4573 4574 out: 4575 fs_path_free(p); 4576 return ret; 4577 } 4578 4579 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4580 const char *name, int name_len, 4581 const char *data, int data_len, 4582 u8 type, void *ctx) 4583 { 4584 int ret; 4585 struct send_ctx *sctx = ctx; 4586 struct fs_path *p; 4587 4588 p = fs_path_alloc(); 4589 if (!p) 4590 return -ENOMEM; 4591 4592 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4593 if (ret < 0) 4594 goto out; 4595 4596 ret = send_remove_xattr(sctx, p, name, name_len); 4597 4598 out: 4599 fs_path_free(p); 4600 return ret; 4601 } 4602 4603 static int process_new_xattr(struct send_ctx *sctx) 4604 { 4605 int ret = 0; 4606 4607 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4608 __process_new_xattr, sctx); 4609 4610 return ret; 4611 } 4612 4613 static int process_deleted_xattr(struct send_ctx *sctx) 4614 { 4615 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4616 __process_deleted_xattr, sctx); 4617 } 4618 4619 struct find_xattr_ctx { 4620 const char *name; 4621 int name_len; 4622 int found_idx; 4623 char *found_data; 4624 int found_data_len; 4625 }; 4626 4627 static int __find_xattr(int num, struct btrfs_key *di_key, 4628 const char *name, int name_len, 4629 const char *data, int data_len, 4630 u8 type, void *vctx) 4631 { 4632 struct find_xattr_ctx *ctx = vctx; 4633 4634 if (name_len == ctx->name_len && 4635 strncmp(name, ctx->name, name_len) == 0) { 4636 ctx->found_idx = num; 4637 ctx->found_data_len = data_len; 4638 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4639 if (!ctx->found_data) 4640 return -ENOMEM; 4641 return 1; 4642 } 4643 return 0; 4644 } 4645 4646 static int find_xattr(struct btrfs_root *root, 4647 struct btrfs_path *path, 4648 struct btrfs_key *key, 4649 const char *name, int name_len, 4650 char **data, int *data_len) 4651 { 4652 int ret; 4653 struct find_xattr_ctx ctx; 4654 4655 ctx.name = name; 4656 ctx.name_len = name_len; 4657 ctx.found_idx = -1; 4658 ctx.found_data = NULL; 4659 ctx.found_data_len = 0; 4660 4661 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4662 if (ret < 0) 4663 return ret; 4664 4665 if (ctx.found_idx == -1) 4666 return -ENOENT; 4667 if (data) { 4668 *data = ctx.found_data; 4669 *data_len = ctx.found_data_len; 4670 } else { 4671 kfree(ctx.found_data); 4672 } 4673 return ctx.found_idx; 4674 } 4675 4676 4677 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4678 const char *name, int name_len, 4679 const char *data, int data_len, 4680 u8 type, void *ctx) 4681 { 4682 int ret; 4683 struct send_ctx *sctx = ctx; 4684 char *found_data = NULL; 4685 int found_data_len = 0; 4686 4687 ret = find_xattr(sctx->parent_root, sctx->right_path, 4688 sctx->cmp_key, name, name_len, &found_data, 4689 &found_data_len); 4690 if (ret == -ENOENT) { 4691 ret = __process_new_xattr(num, di_key, name, name_len, data, 4692 data_len, type, ctx); 4693 } else if (ret >= 0) { 4694 if (data_len != found_data_len || 4695 memcmp(data, found_data, data_len)) { 4696 ret = __process_new_xattr(num, di_key, name, name_len, 4697 data, data_len, type, ctx); 4698 } else { 4699 ret = 0; 4700 } 4701 } 4702 4703 kfree(found_data); 4704 return ret; 4705 } 4706 4707 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4708 const char *name, int name_len, 4709 const char *data, int data_len, 4710 u8 type, void *ctx) 4711 { 4712 int ret; 4713 struct send_ctx *sctx = ctx; 4714 4715 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4716 name, name_len, NULL, NULL); 4717 if (ret == -ENOENT) 4718 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4719 data_len, type, ctx); 4720 else if (ret >= 0) 4721 ret = 0; 4722 4723 return ret; 4724 } 4725 4726 static int process_changed_xattr(struct send_ctx *sctx) 4727 { 4728 int ret = 0; 4729 4730 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4731 __process_changed_new_xattr, sctx); 4732 if (ret < 0) 4733 goto out; 4734 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4735 __process_changed_deleted_xattr, sctx); 4736 4737 out: 4738 return ret; 4739 } 4740 4741 static int process_all_new_xattrs(struct send_ctx *sctx) 4742 { 4743 int ret; 4744 struct btrfs_root *root; 4745 struct btrfs_path *path; 4746 struct btrfs_key key; 4747 struct btrfs_key found_key; 4748 struct extent_buffer *eb; 4749 int slot; 4750 4751 path = alloc_path_for_send(); 4752 if (!path) 4753 return -ENOMEM; 4754 4755 root = sctx->send_root; 4756 4757 key.objectid = sctx->cmp_key->objectid; 4758 key.type = BTRFS_XATTR_ITEM_KEY; 4759 key.offset = 0; 4760 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4761 if (ret < 0) 4762 goto out; 4763 4764 while (1) { 4765 eb = path->nodes[0]; 4766 slot = path->slots[0]; 4767 if (slot >= btrfs_header_nritems(eb)) { 4768 ret = btrfs_next_leaf(root, path); 4769 if (ret < 0) { 4770 goto out; 4771 } else if (ret > 0) { 4772 ret = 0; 4773 break; 4774 } 4775 continue; 4776 } 4777 4778 btrfs_item_key_to_cpu(eb, &found_key, slot); 4779 if (found_key.objectid != key.objectid || 4780 found_key.type != key.type) { 4781 ret = 0; 4782 goto out; 4783 } 4784 4785 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4786 if (ret < 0) 4787 goto out; 4788 4789 path->slots[0]++; 4790 } 4791 4792 out: 4793 btrfs_free_path(path); 4794 return ret; 4795 } 4796 4797 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4798 { 4799 struct btrfs_root *root = sctx->send_root; 4800 struct btrfs_fs_info *fs_info = root->fs_info; 4801 struct inode *inode; 4802 struct page *page; 4803 char *addr; 4804 struct btrfs_key key; 4805 pgoff_t index = offset >> PAGE_SHIFT; 4806 pgoff_t last_index; 4807 unsigned pg_offset = offset_in_page(offset); 4808 ssize_t ret = 0; 4809 4810 key.objectid = sctx->cur_ino; 4811 key.type = BTRFS_INODE_ITEM_KEY; 4812 key.offset = 0; 4813 4814 inode = btrfs_iget(fs_info->sb, &key, root); 4815 if (IS_ERR(inode)) 4816 return PTR_ERR(inode); 4817 4818 if (offset + len > i_size_read(inode)) { 4819 if (offset > i_size_read(inode)) 4820 len = 0; 4821 else 4822 len = offset - i_size_read(inode); 4823 } 4824 if (len == 0) 4825 goto out; 4826 4827 last_index = (offset + len - 1) >> PAGE_SHIFT; 4828 4829 /* initial readahead */ 4830 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4831 file_ra_state_init(&sctx->ra, inode->i_mapping); 4832 4833 while (index <= last_index) { 4834 unsigned cur_len = min_t(unsigned, len, 4835 PAGE_SIZE - pg_offset); 4836 4837 page = find_lock_page(inode->i_mapping, index); 4838 if (!page) { 4839 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4840 NULL, index, last_index + 1 - index); 4841 4842 page = find_or_create_page(inode->i_mapping, index, 4843 GFP_KERNEL); 4844 if (!page) { 4845 ret = -ENOMEM; 4846 break; 4847 } 4848 } 4849 4850 if (PageReadahead(page)) { 4851 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4852 NULL, page, index, last_index + 1 - index); 4853 } 4854 4855 if (!PageUptodate(page)) { 4856 btrfs_readpage(NULL, page); 4857 lock_page(page); 4858 if (!PageUptodate(page)) { 4859 unlock_page(page); 4860 put_page(page); 4861 ret = -EIO; 4862 break; 4863 } 4864 } 4865 4866 addr = kmap(page); 4867 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4868 kunmap(page); 4869 unlock_page(page); 4870 put_page(page); 4871 index++; 4872 pg_offset = 0; 4873 len -= cur_len; 4874 ret += cur_len; 4875 } 4876 out: 4877 iput(inode); 4878 return ret; 4879 } 4880 4881 /* 4882 * Read some bytes from the current inode/file and send a write command to 4883 * user space. 4884 */ 4885 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4886 { 4887 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4888 int ret = 0; 4889 struct fs_path *p; 4890 ssize_t num_read = 0; 4891 4892 p = fs_path_alloc(); 4893 if (!p) 4894 return -ENOMEM; 4895 4896 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4897 4898 num_read = fill_read_buf(sctx, offset, len); 4899 if (num_read <= 0) { 4900 if (num_read < 0) 4901 ret = num_read; 4902 goto out; 4903 } 4904 4905 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4906 if (ret < 0) 4907 goto out; 4908 4909 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4910 if (ret < 0) 4911 goto out; 4912 4913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4914 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4915 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4916 4917 ret = send_cmd(sctx); 4918 4919 tlv_put_failure: 4920 out: 4921 fs_path_free(p); 4922 if (ret < 0) 4923 return ret; 4924 return num_read; 4925 } 4926 4927 /* 4928 * Send a clone command to user space. 4929 */ 4930 static int send_clone(struct send_ctx *sctx, 4931 u64 offset, u32 len, 4932 struct clone_root *clone_root) 4933 { 4934 int ret = 0; 4935 struct fs_path *p; 4936 u64 gen; 4937 4938 btrfs_debug(sctx->send_root->fs_info, 4939 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4940 offset, len, clone_root->root->root_key.objectid, 4941 clone_root->ino, clone_root->offset); 4942 4943 p = fs_path_alloc(); 4944 if (!p) 4945 return -ENOMEM; 4946 4947 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4948 if (ret < 0) 4949 goto out; 4950 4951 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4952 if (ret < 0) 4953 goto out; 4954 4955 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4956 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4957 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4958 4959 if (clone_root->root == sctx->send_root) { 4960 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4961 &gen, NULL, NULL, NULL, NULL); 4962 if (ret < 0) 4963 goto out; 4964 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4965 } else { 4966 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4967 } 4968 if (ret < 0) 4969 goto out; 4970 4971 /* 4972 * If the parent we're using has a received_uuid set then use that as 4973 * our clone source as that is what we will look for when doing a 4974 * receive. 4975 * 4976 * This covers the case that we create a snapshot off of a received 4977 * subvolume and then use that as the parent and try to receive on a 4978 * different host. 4979 */ 4980 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4981 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4982 clone_root->root->root_item.received_uuid); 4983 else 4984 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4985 clone_root->root->root_item.uuid); 4986 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4987 le64_to_cpu(clone_root->root->root_item.ctransid)); 4988 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4989 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4990 clone_root->offset); 4991 4992 ret = send_cmd(sctx); 4993 4994 tlv_put_failure: 4995 out: 4996 fs_path_free(p); 4997 return ret; 4998 } 4999 5000 /* 5001 * Send an update extent command to user space. 5002 */ 5003 static int send_update_extent(struct send_ctx *sctx, 5004 u64 offset, u32 len) 5005 { 5006 int ret = 0; 5007 struct fs_path *p; 5008 5009 p = fs_path_alloc(); 5010 if (!p) 5011 return -ENOMEM; 5012 5013 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5014 if (ret < 0) 5015 goto out; 5016 5017 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5018 if (ret < 0) 5019 goto out; 5020 5021 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5022 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5023 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5024 5025 ret = send_cmd(sctx); 5026 5027 tlv_put_failure: 5028 out: 5029 fs_path_free(p); 5030 return ret; 5031 } 5032 5033 static int send_hole(struct send_ctx *sctx, u64 end) 5034 { 5035 struct fs_path *p = NULL; 5036 u64 offset = sctx->cur_inode_last_extent; 5037 u64 len; 5038 int ret = 0; 5039 5040 /* 5041 * A hole that starts at EOF or beyond it. Since we do not yet support 5042 * fallocate (for extent preallocation and hole punching), sending a 5043 * write of zeroes starting at EOF or beyond would later require issuing 5044 * a truncate operation which would undo the write and achieve nothing. 5045 */ 5046 if (offset >= sctx->cur_inode_size) 5047 return 0; 5048 5049 /* 5050 * Don't go beyond the inode's i_size due to prealloc extents that start 5051 * after the i_size. 5052 */ 5053 end = min_t(u64, end, sctx->cur_inode_size); 5054 5055 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5056 return send_update_extent(sctx, offset, end - offset); 5057 5058 p = fs_path_alloc(); 5059 if (!p) 5060 return -ENOMEM; 5061 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5062 if (ret < 0) 5063 goto tlv_put_failure; 5064 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5065 while (offset < end) { 5066 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5067 5068 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5069 if (ret < 0) 5070 break; 5071 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5072 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5073 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5074 ret = send_cmd(sctx); 5075 if (ret < 0) 5076 break; 5077 offset += len; 5078 } 5079 sctx->cur_inode_next_write_offset = offset; 5080 tlv_put_failure: 5081 fs_path_free(p); 5082 return ret; 5083 } 5084 5085 static int send_extent_data(struct send_ctx *sctx, 5086 const u64 offset, 5087 const u64 len) 5088 { 5089 u64 sent = 0; 5090 5091 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5092 return send_update_extent(sctx, offset, len); 5093 5094 while (sent < len) { 5095 u64 size = len - sent; 5096 int ret; 5097 5098 if (size > BTRFS_SEND_READ_SIZE) 5099 size = BTRFS_SEND_READ_SIZE; 5100 ret = send_write(sctx, offset + sent, size); 5101 if (ret < 0) 5102 return ret; 5103 if (!ret) 5104 break; 5105 sent += ret; 5106 } 5107 return 0; 5108 } 5109 5110 static int clone_range(struct send_ctx *sctx, 5111 struct clone_root *clone_root, 5112 const u64 disk_byte, 5113 u64 data_offset, 5114 u64 offset, 5115 u64 len) 5116 { 5117 struct btrfs_path *path; 5118 struct btrfs_key key; 5119 int ret; 5120 u64 clone_src_i_size = 0; 5121 5122 /* 5123 * Prevent cloning from a zero offset with a length matching the sector 5124 * size because in some scenarios this will make the receiver fail. 5125 * 5126 * For example, if in the source filesystem the extent at offset 0 5127 * has a length of sectorsize and it was written using direct IO, then 5128 * it can never be an inline extent (even if compression is enabled). 5129 * Then this extent can be cloned in the original filesystem to a non 5130 * zero file offset, but it may not be possible to clone in the 5131 * destination filesystem because it can be inlined due to compression 5132 * on the destination filesystem (as the receiver's write operations are 5133 * always done using buffered IO). The same happens when the original 5134 * filesystem does not have compression enabled but the destination 5135 * filesystem has. 5136 */ 5137 if (clone_root->offset == 0 && 5138 len == sctx->send_root->fs_info->sectorsize) 5139 return send_extent_data(sctx, offset, len); 5140 5141 path = alloc_path_for_send(); 5142 if (!path) 5143 return -ENOMEM; 5144 5145 /* 5146 * There are inodes that have extents that lie behind its i_size. Don't 5147 * accept clones from these extents. 5148 */ 5149 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5150 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5151 btrfs_release_path(path); 5152 if (ret < 0) 5153 goto out; 5154 5155 /* 5156 * We can't send a clone operation for the entire range if we find 5157 * extent items in the respective range in the source file that 5158 * refer to different extents or if we find holes. 5159 * So check for that and do a mix of clone and regular write/copy 5160 * operations if needed. 5161 * 5162 * Example: 5163 * 5164 * mkfs.btrfs -f /dev/sda 5165 * mount /dev/sda /mnt 5166 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5167 * cp --reflink=always /mnt/foo /mnt/bar 5168 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5169 * btrfs subvolume snapshot -r /mnt /mnt/snap 5170 * 5171 * If when we send the snapshot and we are processing file bar (which 5172 * has a higher inode number than foo) we blindly send a clone operation 5173 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5174 * a file bar that matches the content of file foo - iow, doesn't match 5175 * the content from bar in the original filesystem. 5176 */ 5177 key.objectid = clone_root->ino; 5178 key.type = BTRFS_EXTENT_DATA_KEY; 5179 key.offset = clone_root->offset; 5180 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5181 if (ret < 0) 5182 goto out; 5183 if (ret > 0 && path->slots[0] > 0) { 5184 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5185 if (key.objectid == clone_root->ino && 5186 key.type == BTRFS_EXTENT_DATA_KEY) 5187 path->slots[0]--; 5188 } 5189 5190 while (true) { 5191 struct extent_buffer *leaf = path->nodes[0]; 5192 int slot = path->slots[0]; 5193 struct btrfs_file_extent_item *ei; 5194 u8 type; 5195 u64 ext_len; 5196 u64 clone_len; 5197 u64 clone_data_offset; 5198 5199 if (slot >= btrfs_header_nritems(leaf)) { 5200 ret = btrfs_next_leaf(clone_root->root, path); 5201 if (ret < 0) 5202 goto out; 5203 else if (ret > 0) 5204 break; 5205 continue; 5206 } 5207 5208 btrfs_item_key_to_cpu(leaf, &key, slot); 5209 5210 /* 5211 * We might have an implicit trailing hole (NO_HOLES feature 5212 * enabled). We deal with it after leaving this loop. 5213 */ 5214 if (key.objectid != clone_root->ino || 5215 key.type != BTRFS_EXTENT_DATA_KEY) 5216 break; 5217 5218 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5219 type = btrfs_file_extent_type(leaf, ei); 5220 if (type == BTRFS_FILE_EXTENT_INLINE) { 5221 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5222 ext_len = PAGE_ALIGN(ext_len); 5223 } else { 5224 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5225 } 5226 5227 if (key.offset + ext_len <= clone_root->offset) 5228 goto next; 5229 5230 if (key.offset > clone_root->offset) { 5231 /* Implicit hole, NO_HOLES feature enabled. */ 5232 u64 hole_len = key.offset - clone_root->offset; 5233 5234 if (hole_len > len) 5235 hole_len = len; 5236 ret = send_extent_data(sctx, offset, hole_len); 5237 if (ret < 0) 5238 goto out; 5239 5240 len -= hole_len; 5241 if (len == 0) 5242 break; 5243 offset += hole_len; 5244 clone_root->offset += hole_len; 5245 data_offset += hole_len; 5246 } 5247 5248 if (key.offset >= clone_root->offset + len) 5249 break; 5250 5251 if (key.offset >= clone_src_i_size) 5252 break; 5253 5254 if (key.offset + ext_len > clone_src_i_size) 5255 ext_len = clone_src_i_size - key.offset; 5256 5257 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5258 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5259 clone_root->offset = key.offset; 5260 if (clone_data_offset < data_offset && 5261 clone_data_offset + ext_len > data_offset) { 5262 u64 extent_offset; 5263 5264 extent_offset = data_offset - clone_data_offset; 5265 ext_len -= extent_offset; 5266 clone_data_offset += extent_offset; 5267 clone_root->offset += extent_offset; 5268 } 5269 } 5270 5271 clone_len = min_t(u64, ext_len, len); 5272 5273 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5274 clone_data_offset == data_offset) { 5275 const u64 src_end = clone_root->offset + clone_len; 5276 const u64 sectorsize = SZ_64K; 5277 5278 /* 5279 * We can't clone the last block, when its size is not 5280 * sector size aligned, into the middle of a file. If we 5281 * do so, the receiver will get a failure (-EINVAL) when 5282 * trying to clone or will silently corrupt the data in 5283 * the destination file if it's on a kernel without the 5284 * fix introduced by commit ac765f83f1397646 5285 * ("Btrfs: fix data corruption due to cloning of eof 5286 * block). 5287 * 5288 * So issue a clone of the aligned down range plus a 5289 * regular write for the eof block, if we hit that case. 5290 * 5291 * Also, we use the maximum possible sector size, 64K, 5292 * because we don't know what's the sector size of the 5293 * filesystem that receives the stream, so we have to 5294 * assume the largest possible sector size. 5295 */ 5296 if (src_end == clone_src_i_size && 5297 !IS_ALIGNED(src_end, sectorsize) && 5298 offset + clone_len < sctx->cur_inode_size) { 5299 u64 slen; 5300 5301 slen = ALIGN_DOWN(src_end - clone_root->offset, 5302 sectorsize); 5303 if (slen > 0) { 5304 ret = send_clone(sctx, offset, slen, 5305 clone_root); 5306 if (ret < 0) 5307 goto out; 5308 } 5309 ret = send_extent_data(sctx, offset + slen, 5310 clone_len - slen); 5311 } else { 5312 ret = send_clone(sctx, offset, clone_len, 5313 clone_root); 5314 } 5315 } else { 5316 ret = send_extent_data(sctx, offset, clone_len); 5317 } 5318 5319 if (ret < 0) 5320 goto out; 5321 5322 len -= clone_len; 5323 if (len == 0) 5324 break; 5325 offset += clone_len; 5326 clone_root->offset += clone_len; 5327 data_offset += clone_len; 5328 next: 5329 path->slots[0]++; 5330 } 5331 5332 if (len > 0) 5333 ret = send_extent_data(sctx, offset, len); 5334 else 5335 ret = 0; 5336 out: 5337 btrfs_free_path(path); 5338 return ret; 5339 } 5340 5341 static int send_write_or_clone(struct send_ctx *sctx, 5342 struct btrfs_path *path, 5343 struct btrfs_key *key, 5344 struct clone_root *clone_root) 5345 { 5346 int ret = 0; 5347 struct btrfs_file_extent_item *ei; 5348 u64 offset = key->offset; 5349 u64 len; 5350 u8 type; 5351 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5352 5353 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5354 struct btrfs_file_extent_item); 5355 type = btrfs_file_extent_type(path->nodes[0], ei); 5356 if (type == BTRFS_FILE_EXTENT_INLINE) { 5357 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 5358 /* 5359 * it is possible the inline item won't cover the whole page, 5360 * but there may be items after this page. Make 5361 * sure to send the whole thing 5362 */ 5363 len = PAGE_ALIGN(len); 5364 } else { 5365 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5366 } 5367 5368 if (offset >= sctx->cur_inode_size) { 5369 ret = 0; 5370 goto out; 5371 } 5372 if (offset + len > sctx->cur_inode_size) 5373 len = sctx->cur_inode_size - offset; 5374 if (len == 0) { 5375 ret = 0; 5376 goto out; 5377 } 5378 5379 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5380 u64 disk_byte; 5381 u64 data_offset; 5382 5383 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5384 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5385 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5386 offset, len); 5387 } else { 5388 ret = send_extent_data(sctx, offset, len); 5389 } 5390 sctx->cur_inode_next_write_offset = offset + len; 5391 out: 5392 return ret; 5393 } 5394 5395 static int is_extent_unchanged(struct send_ctx *sctx, 5396 struct btrfs_path *left_path, 5397 struct btrfs_key *ekey) 5398 { 5399 int ret = 0; 5400 struct btrfs_key key; 5401 struct btrfs_path *path = NULL; 5402 struct extent_buffer *eb; 5403 int slot; 5404 struct btrfs_key found_key; 5405 struct btrfs_file_extent_item *ei; 5406 u64 left_disknr; 5407 u64 right_disknr; 5408 u64 left_offset; 5409 u64 right_offset; 5410 u64 left_offset_fixed; 5411 u64 left_len; 5412 u64 right_len; 5413 u64 left_gen; 5414 u64 right_gen; 5415 u8 left_type; 5416 u8 right_type; 5417 5418 path = alloc_path_for_send(); 5419 if (!path) 5420 return -ENOMEM; 5421 5422 eb = left_path->nodes[0]; 5423 slot = left_path->slots[0]; 5424 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5425 left_type = btrfs_file_extent_type(eb, ei); 5426 5427 if (left_type != BTRFS_FILE_EXTENT_REG) { 5428 ret = 0; 5429 goto out; 5430 } 5431 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5432 left_len = btrfs_file_extent_num_bytes(eb, ei); 5433 left_offset = btrfs_file_extent_offset(eb, ei); 5434 left_gen = btrfs_file_extent_generation(eb, ei); 5435 5436 /* 5437 * Following comments will refer to these graphics. L is the left 5438 * extents which we are checking at the moment. 1-8 are the right 5439 * extents that we iterate. 5440 * 5441 * |-----L-----| 5442 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5443 * 5444 * |-----L-----| 5445 * |--1--|-2b-|...(same as above) 5446 * 5447 * Alternative situation. Happens on files where extents got split. 5448 * |-----L-----| 5449 * |-----------7-----------|-6-| 5450 * 5451 * Alternative situation. Happens on files which got larger. 5452 * |-----L-----| 5453 * |-8-| 5454 * Nothing follows after 8. 5455 */ 5456 5457 key.objectid = ekey->objectid; 5458 key.type = BTRFS_EXTENT_DATA_KEY; 5459 key.offset = ekey->offset; 5460 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5461 if (ret < 0) 5462 goto out; 5463 if (ret) { 5464 ret = 0; 5465 goto out; 5466 } 5467 5468 /* 5469 * Handle special case where the right side has no extents at all. 5470 */ 5471 eb = path->nodes[0]; 5472 slot = path->slots[0]; 5473 btrfs_item_key_to_cpu(eb, &found_key, slot); 5474 if (found_key.objectid != key.objectid || 5475 found_key.type != key.type) { 5476 /* If we're a hole then just pretend nothing changed */ 5477 ret = (left_disknr) ? 0 : 1; 5478 goto out; 5479 } 5480 5481 /* 5482 * We're now on 2a, 2b or 7. 5483 */ 5484 key = found_key; 5485 while (key.offset < ekey->offset + left_len) { 5486 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5487 right_type = btrfs_file_extent_type(eb, ei); 5488 if (right_type != BTRFS_FILE_EXTENT_REG && 5489 right_type != BTRFS_FILE_EXTENT_INLINE) { 5490 ret = 0; 5491 goto out; 5492 } 5493 5494 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5495 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5496 right_len = PAGE_ALIGN(right_len); 5497 } else { 5498 right_len = btrfs_file_extent_num_bytes(eb, ei); 5499 } 5500 5501 /* 5502 * Are we at extent 8? If yes, we know the extent is changed. 5503 * This may only happen on the first iteration. 5504 */ 5505 if (found_key.offset + right_len <= ekey->offset) { 5506 /* If we're a hole just pretend nothing changed */ 5507 ret = (left_disknr) ? 0 : 1; 5508 goto out; 5509 } 5510 5511 /* 5512 * We just wanted to see if when we have an inline extent, what 5513 * follows it is a regular extent (wanted to check the above 5514 * condition for inline extents too). This should normally not 5515 * happen but it's possible for example when we have an inline 5516 * compressed extent representing data with a size matching 5517 * the page size (currently the same as sector size). 5518 */ 5519 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5520 ret = 0; 5521 goto out; 5522 } 5523 5524 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5525 right_offset = btrfs_file_extent_offset(eb, ei); 5526 right_gen = btrfs_file_extent_generation(eb, ei); 5527 5528 left_offset_fixed = left_offset; 5529 if (key.offset < ekey->offset) { 5530 /* Fix the right offset for 2a and 7. */ 5531 right_offset += ekey->offset - key.offset; 5532 } else { 5533 /* Fix the left offset for all behind 2a and 2b */ 5534 left_offset_fixed += key.offset - ekey->offset; 5535 } 5536 5537 /* 5538 * Check if we have the same extent. 5539 */ 5540 if (left_disknr != right_disknr || 5541 left_offset_fixed != right_offset || 5542 left_gen != right_gen) { 5543 ret = 0; 5544 goto out; 5545 } 5546 5547 /* 5548 * Go to the next extent. 5549 */ 5550 ret = btrfs_next_item(sctx->parent_root, path); 5551 if (ret < 0) 5552 goto out; 5553 if (!ret) { 5554 eb = path->nodes[0]; 5555 slot = path->slots[0]; 5556 btrfs_item_key_to_cpu(eb, &found_key, slot); 5557 } 5558 if (ret || found_key.objectid != key.objectid || 5559 found_key.type != key.type) { 5560 key.offset += right_len; 5561 break; 5562 } 5563 if (found_key.offset != key.offset + right_len) { 5564 ret = 0; 5565 goto out; 5566 } 5567 key = found_key; 5568 } 5569 5570 /* 5571 * We're now behind the left extent (treat as unchanged) or at the end 5572 * of the right side (treat as changed). 5573 */ 5574 if (key.offset >= ekey->offset + left_len) 5575 ret = 1; 5576 else 5577 ret = 0; 5578 5579 5580 out: 5581 btrfs_free_path(path); 5582 return ret; 5583 } 5584 5585 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5586 { 5587 struct btrfs_path *path; 5588 struct btrfs_root *root = sctx->send_root; 5589 struct btrfs_key key; 5590 int ret; 5591 5592 path = alloc_path_for_send(); 5593 if (!path) 5594 return -ENOMEM; 5595 5596 sctx->cur_inode_last_extent = 0; 5597 5598 key.objectid = sctx->cur_ino; 5599 key.type = BTRFS_EXTENT_DATA_KEY; 5600 key.offset = offset; 5601 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5602 if (ret < 0) 5603 goto out; 5604 ret = 0; 5605 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5606 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5607 goto out; 5608 5609 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5610 out: 5611 btrfs_free_path(path); 5612 return ret; 5613 } 5614 5615 static int range_is_hole_in_parent(struct send_ctx *sctx, 5616 const u64 start, 5617 const u64 end) 5618 { 5619 struct btrfs_path *path; 5620 struct btrfs_key key; 5621 struct btrfs_root *root = sctx->parent_root; 5622 u64 search_start = start; 5623 int ret; 5624 5625 path = alloc_path_for_send(); 5626 if (!path) 5627 return -ENOMEM; 5628 5629 key.objectid = sctx->cur_ino; 5630 key.type = BTRFS_EXTENT_DATA_KEY; 5631 key.offset = search_start; 5632 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5633 if (ret < 0) 5634 goto out; 5635 if (ret > 0 && path->slots[0] > 0) 5636 path->slots[0]--; 5637 5638 while (search_start < end) { 5639 struct extent_buffer *leaf = path->nodes[0]; 5640 int slot = path->slots[0]; 5641 struct btrfs_file_extent_item *fi; 5642 u64 extent_end; 5643 5644 if (slot >= btrfs_header_nritems(leaf)) { 5645 ret = btrfs_next_leaf(root, path); 5646 if (ret < 0) 5647 goto out; 5648 else if (ret > 0) 5649 break; 5650 continue; 5651 } 5652 5653 btrfs_item_key_to_cpu(leaf, &key, slot); 5654 if (key.objectid < sctx->cur_ino || 5655 key.type < BTRFS_EXTENT_DATA_KEY) 5656 goto next; 5657 if (key.objectid > sctx->cur_ino || 5658 key.type > BTRFS_EXTENT_DATA_KEY || 5659 key.offset >= end) 5660 break; 5661 5662 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5663 extent_end = btrfs_file_extent_end(path); 5664 if (extent_end <= start) 5665 goto next; 5666 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5667 search_start = extent_end; 5668 goto next; 5669 } 5670 ret = 0; 5671 goto out; 5672 next: 5673 path->slots[0]++; 5674 } 5675 ret = 1; 5676 out: 5677 btrfs_free_path(path); 5678 return ret; 5679 } 5680 5681 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5682 struct btrfs_key *key) 5683 { 5684 int ret = 0; 5685 5686 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5687 return 0; 5688 5689 if (sctx->cur_inode_last_extent == (u64)-1) { 5690 ret = get_last_extent(sctx, key->offset - 1); 5691 if (ret) 5692 return ret; 5693 } 5694 5695 if (path->slots[0] == 0 && 5696 sctx->cur_inode_last_extent < key->offset) { 5697 /* 5698 * We might have skipped entire leafs that contained only 5699 * file extent items for our current inode. These leafs have 5700 * a generation number smaller (older) than the one in the 5701 * current leaf and the leaf our last extent came from, and 5702 * are located between these 2 leafs. 5703 */ 5704 ret = get_last_extent(sctx, key->offset - 1); 5705 if (ret) 5706 return ret; 5707 } 5708 5709 if (sctx->cur_inode_last_extent < key->offset) { 5710 ret = range_is_hole_in_parent(sctx, 5711 sctx->cur_inode_last_extent, 5712 key->offset); 5713 if (ret < 0) 5714 return ret; 5715 else if (ret == 0) 5716 ret = send_hole(sctx, key->offset); 5717 else 5718 ret = 0; 5719 } 5720 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 5721 return ret; 5722 } 5723 5724 static int process_extent(struct send_ctx *sctx, 5725 struct btrfs_path *path, 5726 struct btrfs_key *key) 5727 { 5728 struct clone_root *found_clone = NULL; 5729 int ret = 0; 5730 5731 if (S_ISLNK(sctx->cur_inode_mode)) 5732 return 0; 5733 5734 if (sctx->parent_root && !sctx->cur_inode_new) { 5735 ret = is_extent_unchanged(sctx, path, key); 5736 if (ret < 0) 5737 goto out; 5738 if (ret) { 5739 ret = 0; 5740 goto out_hole; 5741 } 5742 } else { 5743 struct btrfs_file_extent_item *ei; 5744 u8 type; 5745 5746 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5747 struct btrfs_file_extent_item); 5748 type = btrfs_file_extent_type(path->nodes[0], ei); 5749 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5750 type == BTRFS_FILE_EXTENT_REG) { 5751 /* 5752 * The send spec does not have a prealloc command yet, 5753 * so just leave a hole for prealloc'ed extents until 5754 * we have enough commands queued up to justify rev'ing 5755 * the send spec. 5756 */ 5757 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5758 ret = 0; 5759 goto out; 5760 } 5761 5762 /* Have a hole, just skip it. */ 5763 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5764 ret = 0; 5765 goto out; 5766 } 5767 } 5768 } 5769 5770 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5771 sctx->cur_inode_size, &found_clone); 5772 if (ret != -ENOENT && ret < 0) 5773 goto out; 5774 5775 ret = send_write_or_clone(sctx, path, key, found_clone); 5776 if (ret) 5777 goto out; 5778 out_hole: 5779 ret = maybe_send_hole(sctx, path, key); 5780 out: 5781 return ret; 5782 } 5783 5784 static int process_all_extents(struct send_ctx *sctx) 5785 { 5786 int ret; 5787 struct btrfs_root *root; 5788 struct btrfs_path *path; 5789 struct btrfs_key key; 5790 struct btrfs_key found_key; 5791 struct extent_buffer *eb; 5792 int slot; 5793 5794 root = sctx->send_root; 5795 path = alloc_path_for_send(); 5796 if (!path) 5797 return -ENOMEM; 5798 5799 key.objectid = sctx->cmp_key->objectid; 5800 key.type = BTRFS_EXTENT_DATA_KEY; 5801 key.offset = 0; 5802 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5803 if (ret < 0) 5804 goto out; 5805 5806 while (1) { 5807 eb = path->nodes[0]; 5808 slot = path->slots[0]; 5809 5810 if (slot >= btrfs_header_nritems(eb)) { 5811 ret = btrfs_next_leaf(root, path); 5812 if (ret < 0) { 5813 goto out; 5814 } else if (ret > 0) { 5815 ret = 0; 5816 break; 5817 } 5818 continue; 5819 } 5820 5821 btrfs_item_key_to_cpu(eb, &found_key, slot); 5822 5823 if (found_key.objectid != key.objectid || 5824 found_key.type != key.type) { 5825 ret = 0; 5826 goto out; 5827 } 5828 5829 ret = process_extent(sctx, path, &found_key); 5830 if (ret < 0) 5831 goto out; 5832 5833 path->slots[0]++; 5834 } 5835 5836 out: 5837 btrfs_free_path(path); 5838 return ret; 5839 } 5840 5841 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5842 int *pending_move, 5843 int *refs_processed) 5844 { 5845 int ret = 0; 5846 5847 if (sctx->cur_ino == 0) 5848 goto out; 5849 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5850 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5851 goto out; 5852 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5853 goto out; 5854 5855 ret = process_recorded_refs(sctx, pending_move); 5856 if (ret < 0) 5857 goto out; 5858 5859 *refs_processed = 1; 5860 out: 5861 return ret; 5862 } 5863 5864 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5865 { 5866 int ret = 0; 5867 u64 left_mode; 5868 u64 left_uid; 5869 u64 left_gid; 5870 u64 right_mode; 5871 u64 right_uid; 5872 u64 right_gid; 5873 int need_chmod = 0; 5874 int need_chown = 0; 5875 int need_truncate = 1; 5876 int pending_move = 0; 5877 int refs_processed = 0; 5878 5879 if (sctx->ignore_cur_inode) 5880 return 0; 5881 5882 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5883 &refs_processed); 5884 if (ret < 0) 5885 goto out; 5886 5887 /* 5888 * We have processed the refs and thus need to advance send_progress. 5889 * Now, calls to get_cur_xxx will take the updated refs of the current 5890 * inode into account. 5891 * 5892 * On the other hand, if our current inode is a directory and couldn't 5893 * be moved/renamed because its parent was renamed/moved too and it has 5894 * a higher inode number, we can only move/rename our current inode 5895 * after we moved/renamed its parent. Therefore in this case operate on 5896 * the old path (pre move/rename) of our current inode, and the 5897 * move/rename will be performed later. 5898 */ 5899 if (refs_processed && !pending_move) 5900 sctx->send_progress = sctx->cur_ino + 1; 5901 5902 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5903 goto out; 5904 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5905 goto out; 5906 5907 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5908 &left_mode, &left_uid, &left_gid, NULL); 5909 if (ret < 0) 5910 goto out; 5911 5912 if (!sctx->parent_root || sctx->cur_inode_new) { 5913 need_chown = 1; 5914 if (!S_ISLNK(sctx->cur_inode_mode)) 5915 need_chmod = 1; 5916 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5917 need_truncate = 0; 5918 } else { 5919 u64 old_size; 5920 5921 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5922 &old_size, NULL, &right_mode, &right_uid, 5923 &right_gid, NULL); 5924 if (ret < 0) 5925 goto out; 5926 5927 if (left_uid != right_uid || left_gid != right_gid) 5928 need_chown = 1; 5929 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5930 need_chmod = 1; 5931 if ((old_size == sctx->cur_inode_size) || 5932 (sctx->cur_inode_size > old_size && 5933 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5934 need_truncate = 0; 5935 } 5936 5937 if (S_ISREG(sctx->cur_inode_mode)) { 5938 if (need_send_hole(sctx)) { 5939 if (sctx->cur_inode_last_extent == (u64)-1 || 5940 sctx->cur_inode_last_extent < 5941 sctx->cur_inode_size) { 5942 ret = get_last_extent(sctx, (u64)-1); 5943 if (ret) 5944 goto out; 5945 } 5946 if (sctx->cur_inode_last_extent < 5947 sctx->cur_inode_size) { 5948 ret = send_hole(sctx, sctx->cur_inode_size); 5949 if (ret) 5950 goto out; 5951 } 5952 } 5953 if (need_truncate) { 5954 ret = send_truncate(sctx, sctx->cur_ino, 5955 sctx->cur_inode_gen, 5956 sctx->cur_inode_size); 5957 if (ret < 0) 5958 goto out; 5959 } 5960 } 5961 5962 if (need_chown) { 5963 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5964 left_uid, left_gid); 5965 if (ret < 0) 5966 goto out; 5967 } 5968 if (need_chmod) { 5969 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5970 left_mode); 5971 if (ret < 0) 5972 goto out; 5973 } 5974 5975 /* 5976 * If other directory inodes depended on our current directory 5977 * inode's move/rename, now do their move/rename operations. 5978 */ 5979 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5980 ret = apply_children_dir_moves(sctx); 5981 if (ret) 5982 goto out; 5983 /* 5984 * Need to send that every time, no matter if it actually 5985 * changed between the two trees as we have done changes to 5986 * the inode before. If our inode is a directory and it's 5987 * waiting to be moved/renamed, we will send its utimes when 5988 * it's moved/renamed, therefore we don't need to do it here. 5989 */ 5990 sctx->send_progress = sctx->cur_ino + 1; 5991 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5992 if (ret < 0) 5993 goto out; 5994 } 5995 5996 out: 5997 return ret; 5998 } 5999 6000 struct parent_paths_ctx { 6001 struct list_head *refs; 6002 struct send_ctx *sctx; 6003 }; 6004 6005 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6006 void *ctx) 6007 { 6008 struct parent_paths_ctx *ppctx = ctx; 6009 6010 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6011 ppctx->refs); 6012 } 6013 6014 /* 6015 * Issue unlink operations for all paths of the current inode found in the 6016 * parent snapshot. 6017 */ 6018 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6019 { 6020 LIST_HEAD(deleted_refs); 6021 struct btrfs_path *path; 6022 struct btrfs_key key; 6023 struct parent_paths_ctx ctx; 6024 int ret; 6025 6026 path = alloc_path_for_send(); 6027 if (!path) 6028 return -ENOMEM; 6029 6030 key.objectid = sctx->cur_ino; 6031 key.type = BTRFS_INODE_REF_KEY; 6032 key.offset = 0; 6033 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6034 if (ret < 0) 6035 goto out; 6036 6037 ctx.refs = &deleted_refs; 6038 ctx.sctx = sctx; 6039 6040 while (true) { 6041 struct extent_buffer *eb = path->nodes[0]; 6042 int slot = path->slots[0]; 6043 6044 if (slot >= btrfs_header_nritems(eb)) { 6045 ret = btrfs_next_leaf(sctx->parent_root, path); 6046 if (ret < 0) 6047 goto out; 6048 else if (ret > 0) 6049 break; 6050 continue; 6051 } 6052 6053 btrfs_item_key_to_cpu(eb, &key, slot); 6054 if (key.objectid != sctx->cur_ino) 6055 break; 6056 if (key.type != BTRFS_INODE_REF_KEY && 6057 key.type != BTRFS_INODE_EXTREF_KEY) 6058 break; 6059 6060 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6061 record_parent_ref, &ctx); 6062 if (ret < 0) 6063 goto out; 6064 6065 path->slots[0]++; 6066 } 6067 6068 while (!list_empty(&deleted_refs)) { 6069 struct recorded_ref *ref; 6070 6071 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6072 ret = send_unlink(sctx, ref->full_path); 6073 if (ret < 0) 6074 goto out; 6075 fs_path_free(ref->full_path); 6076 list_del(&ref->list); 6077 kfree(ref); 6078 } 6079 ret = 0; 6080 out: 6081 btrfs_free_path(path); 6082 if (ret) 6083 __free_recorded_refs(&deleted_refs); 6084 return ret; 6085 } 6086 6087 static int changed_inode(struct send_ctx *sctx, 6088 enum btrfs_compare_tree_result result) 6089 { 6090 int ret = 0; 6091 struct btrfs_key *key = sctx->cmp_key; 6092 struct btrfs_inode_item *left_ii = NULL; 6093 struct btrfs_inode_item *right_ii = NULL; 6094 u64 left_gen = 0; 6095 u64 right_gen = 0; 6096 6097 sctx->cur_ino = key->objectid; 6098 sctx->cur_inode_new_gen = 0; 6099 sctx->cur_inode_last_extent = (u64)-1; 6100 sctx->cur_inode_next_write_offset = 0; 6101 sctx->ignore_cur_inode = false; 6102 6103 /* 6104 * Set send_progress to current inode. This will tell all get_cur_xxx 6105 * functions that the current inode's refs are not updated yet. Later, 6106 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6107 */ 6108 sctx->send_progress = sctx->cur_ino; 6109 6110 if (result == BTRFS_COMPARE_TREE_NEW || 6111 result == BTRFS_COMPARE_TREE_CHANGED) { 6112 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6113 sctx->left_path->slots[0], 6114 struct btrfs_inode_item); 6115 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6116 left_ii); 6117 } else { 6118 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6119 sctx->right_path->slots[0], 6120 struct btrfs_inode_item); 6121 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6122 right_ii); 6123 } 6124 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6125 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6126 sctx->right_path->slots[0], 6127 struct btrfs_inode_item); 6128 6129 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6130 right_ii); 6131 6132 /* 6133 * The cur_ino = root dir case is special here. We can't treat 6134 * the inode as deleted+reused because it would generate a 6135 * stream that tries to delete/mkdir the root dir. 6136 */ 6137 if (left_gen != right_gen && 6138 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6139 sctx->cur_inode_new_gen = 1; 6140 } 6141 6142 /* 6143 * Normally we do not find inodes with a link count of zero (orphans) 6144 * because the most common case is to create a snapshot and use it 6145 * for a send operation. However other less common use cases involve 6146 * using a subvolume and send it after turning it to RO mode just 6147 * after deleting all hard links of a file while holding an open 6148 * file descriptor against it or turning a RO snapshot into RW mode, 6149 * keep an open file descriptor against a file, delete it and then 6150 * turn the snapshot back to RO mode before using it for a send 6151 * operation. So if we find such cases, ignore the inode and all its 6152 * items completely if it's a new inode, or if it's a changed inode 6153 * make sure all its previous paths (from the parent snapshot) are all 6154 * unlinked and all other the inode items are ignored. 6155 */ 6156 if (result == BTRFS_COMPARE_TREE_NEW || 6157 result == BTRFS_COMPARE_TREE_CHANGED) { 6158 u32 nlinks; 6159 6160 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6161 if (nlinks == 0) { 6162 sctx->ignore_cur_inode = true; 6163 if (result == BTRFS_COMPARE_TREE_CHANGED) 6164 ret = btrfs_unlink_all_paths(sctx); 6165 goto out; 6166 } 6167 } 6168 6169 if (result == BTRFS_COMPARE_TREE_NEW) { 6170 sctx->cur_inode_gen = left_gen; 6171 sctx->cur_inode_new = 1; 6172 sctx->cur_inode_deleted = 0; 6173 sctx->cur_inode_size = btrfs_inode_size( 6174 sctx->left_path->nodes[0], left_ii); 6175 sctx->cur_inode_mode = btrfs_inode_mode( 6176 sctx->left_path->nodes[0], left_ii); 6177 sctx->cur_inode_rdev = btrfs_inode_rdev( 6178 sctx->left_path->nodes[0], left_ii); 6179 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6180 ret = send_create_inode_if_needed(sctx); 6181 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6182 sctx->cur_inode_gen = right_gen; 6183 sctx->cur_inode_new = 0; 6184 sctx->cur_inode_deleted = 1; 6185 sctx->cur_inode_size = btrfs_inode_size( 6186 sctx->right_path->nodes[0], right_ii); 6187 sctx->cur_inode_mode = btrfs_inode_mode( 6188 sctx->right_path->nodes[0], right_ii); 6189 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6190 /* 6191 * We need to do some special handling in case the inode was 6192 * reported as changed with a changed generation number. This 6193 * means that the original inode was deleted and new inode 6194 * reused the same inum. So we have to treat the old inode as 6195 * deleted and the new one as new. 6196 */ 6197 if (sctx->cur_inode_new_gen) { 6198 /* 6199 * First, process the inode as if it was deleted. 6200 */ 6201 sctx->cur_inode_gen = right_gen; 6202 sctx->cur_inode_new = 0; 6203 sctx->cur_inode_deleted = 1; 6204 sctx->cur_inode_size = btrfs_inode_size( 6205 sctx->right_path->nodes[0], right_ii); 6206 sctx->cur_inode_mode = btrfs_inode_mode( 6207 sctx->right_path->nodes[0], right_ii); 6208 ret = process_all_refs(sctx, 6209 BTRFS_COMPARE_TREE_DELETED); 6210 if (ret < 0) 6211 goto out; 6212 6213 /* 6214 * Now process the inode as if it was new. 6215 */ 6216 sctx->cur_inode_gen = left_gen; 6217 sctx->cur_inode_new = 1; 6218 sctx->cur_inode_deleted = 0; 6219 sctx->cur_inode_size = btrfs_inode_size( 6220 sctx->left_path->nodes[0], left_ii); 6221 sctx->cur_inode_mode = btrfs_inode_mode( 6222 sctx->left_path->nodes[0], left_ii); 6223 sctx->cur_inode_rdev = btrfs_inode_rdev( 6224 sctx->left_path->nodes[0], left_ii); 6225 ret = send_create_inode_if_needed(sctx); 6226 if (ret < 0) 6227 goto out; 6228 6229 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6230 if (ret < 0) 6231 goto out; 6232 /* 6233 * Advance send_progress now as we did not get into 6234 * process_recorded_refs_if_needed in the new_gen case. 6235 */ 6236 sctx->send_progress = sctx->cur_ino + 1; 6237 6238 /* 6239 * Now process all extents and xattrs of the inode as if 6240 * they were all new. 6241 */ 6242 ret = process_all_extents(sctx); 6243 if (ret < 0) 6244 goto out; 6245 ret = process_all_new_xattrs(sctx); 6246 if (ret < 0) 6247 goto out; 6248 } else { 6249 sctx->cur_inode_gen = left_gen; 6250 sctx->cur_inode_new = 0; 6251 sctx->cur_inode_new_gen = 0; 6252 sctx->cur_inode_deleted = 0; 6253 sctx->cur_inode_size = btrfs_inode_size( 6254 sctx->left_path->nodes[0], left_ii); 6255 sctx->cur_inode_mode = btrfs_inode_mode( 6256 sctx->left_path->nodes[0], left_ii); 6257 } 6258 } 6259 6260 out: 6261 return ret; 6262 } 6263 6264 /* 6265 * We have to process new refs before deleted refs, but compare_trees gives us 6266 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6267 * first and later process them in process_recorded_refs. 6268 * For the cur_inode_new_gen case, we skip recording completely because 6269 * changed_inode did already initiate processing of refs. The reason for this is 6270 * that in this case, compare_tree actually compares the refs of 2 different 6271 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6272 * refs of the right tree as deleted and all refs of the left tree as new. 6273 */ 6274 static int changed_ref(struct send_ctx *sctx, 6275 enum btrfs_compare_tree_result result) 6276 { 6277 int ret = 0; 6278 6279 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6280 inconsistent_snapshot_error(sctx, result, "reference"); 6281 return -EIO; 6282 } 6283 6284 if (!sctx->cur_inode_new_gen && 6285 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6286 if (result == BTRFS_COMPARE_TREE_NEW) 6287 ret = record_new_ref(sctx); 6288 else if (result == BTRFS_COMPARE_TREE_DELETED) 6289 ret = record_deleted_ref(sctx); 6290 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6291 ret = record_changed_ref(sctx); 6292 } 6293 6294 return ret; 6295 } 6296 6297 /* 6298 * Process new/deleted/changed xattrs. We skip processing in the 6299 * cur_inode_new_gen case because changed_inode did already initiate processing 6300 * of xattrs. The reason is the same as in changed_ref 6301 */ 6302 static int changed_xattr(struct send_ctx *sctx, 6303 enum btrfs_compare_tree_result result) 6304 { 6305 int ret = 0; 6306 6307 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6308 inconsistent_snapshot_error(sctx, result, "xattr"); 6309 return -EIO; 6310 } 6311 6312 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6313 if (result == BTRFS_COMPARE_TREE_NEW) 6314 ret = process_new_xattr(sctx); 6315 else if (result == BTRFS_COMPARE_TREE_DELETED) 6316 ret = process_deleted_xattr(sctx); 6317 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6318 ret = process_changed_xattr(sctx); 6319 } 6320 6321 return ret; 6322 } 6323 6324 /* 6325 * Process new/deleted/changed extents. We skip processing in the 6326 * cur_inode_new_gen case because changed_inode did already initiate processing 6327 * of extents. The reason is the same as in changed_ref 6328 */ 6329 static int changed_extent(struct send_ctx *sctx, 6330 enum btrfs_compare_tree_result result) 6331 { 6332 int ret = 0; 6333 6334 /* 6335 * We have found an extent item that changed without the inode item 6336 * having changed. This can happen either after relocation (where the 6337 * disk_bytenr of an extent item is replaced at 6338 * relocation.c:replace_file_extents()) or after deduplication into a 6339 * file in both the parent and send snapshots (where an extent item can 6340 * get modified or replaced with a new one). Note that deduplication 6341 * updates the inode item, but it only changes the iversion (sequence 6342 * field in the inode item) of the inode, so if a file is deduplicated 6343 * the same amount of times in both the parent and send snapshots, its 6344 * iversion becames the same in both snapshots, whence the inode item is 6345 * the same on both snapshots. 6346 */ 6347 if (sctx->cur_ino != sctx->cmp_key->objectid) 6348 return 0; 6349 6350 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6351 if (result != BTRFS_COMPARE_TREE_DELETED) 6352 ret = process_extent(sctx, sctx->left_path, 6353 sctx->cmp_key); 6354 } 6355 6356 return ret; 6357 } 6358 6359 static int dir_changed(struct send_ctx *sctx, u64 dir) 6360 { 6361 u64 orig_gen, new_gen; 6362 int ret; 6363 6364 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6365 NULL, NULL); 6366 if (ret) 6367 return ret; 6368 6369 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6370 NULL, NULL, NULL); 6371 if (ret) 6372 return ret; 6373 6374 return (orig_gen != new_gen) ? 1 : 0; 6375 } 6376 6377 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6378 struct btrfs_key *key) 6379 { 6380 struct btrfs_inode_extref *extref; 6381 struct extent_buffer *leaf; 6382 u64 dirid = 0, last_dirid = 0; 6383 unsigned long ptr; 6384 u32 item_size; 6385 u32 cur_offset = 0; 6386 int ref_name_len; 6387 int ret = 0; 6388 6389 /* Easy case, just check this one dirid */ 6390 if (key->type == BTRFS_INODE_REF_KEY) { 6391 dirid = key->offset; 6392 6393 ret = dir_changed(sctx, dirid); 6394 goto out; 6395 } 6396 6397 leaf = path->nodes[0]; 6398 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6399 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6400 while (cur_offset < item_size) { 6401 extref = (struct btrfs_inode_extref *)(ptr + 6402 cur_offset); 6403 dirid = btrfs_inode_extref_parent(leaf, extref); 6404 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6405 cur_offset += ref_name_len + sizeof(*extref); 6406 if (dirid == last_dirid) 6407 continue; 6408 ret = dir_changed(sctx, dirid); 6409 if (ret) 6410 break; 6411 last_dirid = dirid; 6412 } 6413 out: 6414 return ret; 6415 } 6416 6417 /* 6418 * Updates compare related fields in sctx and simply forwards to the actual 6419 * changed_xxx functions. 6420 */ 6421 static int changed_cb(struct btrfs_path *left_path, 6422 struct btrfs_path *right_path, 6423 struct btrfs_key *key, 6424 enum btrfs_compare_tree_result result, 6425 void *ctx) 6426 { 6427 int ret = 0; 6428 struct send_ctx *sctx = ctx; 6429 6430 if (result == BTRFS_COMPARE_TREE_SAME) { 6431 if (key->type == BTRFS_INODE_REF_KEY || 6432 key->type == BTRFS_INODE_EXTREF_KEY) { 6433 ret = compare_refs(sctx, left_path, key); 6434 if (!ret) 6435 return 0; 6436 if (ret < 0) 6437 return ret; 6438 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6439 return maybe_send_hole(sctx, left_path, key); 6440 } else { 6441 return 0; 6442 } 6443 result = BTRFS_COMPARE_TREE_CHANGED; 6444 ret = 0; 6445 } 6446 6447 sctx->left_path = left_path; 6448 sctx->right_path = right_path; 6449 sctx->cmp_key = key; 6450 6451 ret = finish_inode_if_needed(sctx, 0); 6452 if (ret < 0) 6453 goto out; 6454 6455 /* Ignore non-FS objects */ 6456 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6457 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6458 goto out; 6459 6460 if (key->type == BTRFS_INODE_ITEM_KEY) { 6461 ret = changed_inode(sctx, result); 6462 } else if (!sctx->ignore_cur_inode) { 6463 if (key->type == BTRFS_INODE_REF_KEY || 6464 key->type == BTRFS_INODE_EXTREF_KEY) 6465 ret = changed_ref(sctx, result); 6466 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6467 ret = changed_xattr(sctx, result); 6468 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6469 ret = changed_extent(sctx, result); 6470 } 6471 6472 out: 6473 return ret; 6474 } 6475 6476 static int full_send_tree(struct send_ctx *sctx) 6477 { 6478 int ret; 6479 struct btrfs_root *send_root = sctx->send_root; 6480 struct btrfs_key key; 6481 struct btrfs_path *path; 6482 struct extent_buffer *eb; 6483 int slot; 6484 6485 path = alloc_path_for_send(); 6486 if (!path) 6487 return -ENOMEM; 6488 6489 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6490 key.type = BTRFS_INODE_ITEM_KEY; 6491 key.offset = 0; 6492 6493 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6494 if (ret < 0) 6495 goto out; 6496 if (ret) 6497 goto out_finish; 6498 6499 while (1) { 6500 eb = path->nodes[0]; 6501 slot = path->slots[0]; 6502 btrfs_item_key_to_cpu(eb, &key, slot); 6503 6504 ret = changed_cb(path, NULL, &key, 6505 BTRFS_COMPARE_TREE_NEW, sctx); 6506 if (ret < 0) 6507 goto out; 6508 6509 ret = btrfs_next_item(send_root, path); 6510 if (ret < 0) 6511 goto out; 6512 if (ret) { 6513 ret = 0; 6514 break; 6515 } 6516 } 6517 6518 out_finish: 6519 ret = finish_inode_if_needed(sctx, 1); 6520 6521 out: 6522 btrfs_free_path(path); 6523 return ret; 6524 } 6525 6526 static int tree_move_down(struct btrfs_path *path, int *level) 6527 { 6528 struct extent_buffer *eb; 6529 6530 BUG_ON(*level == 0); 6531 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]); 6532 if (IS_ERR(eb)) 6533 return PTR_ERR(eb); 6534 6535 path->nodes[*level - 1] = eb; 6536 path->slots[*level - 1] = 0; 6537 (*level)--; 6538 return 0; 6539 } 6540 6541 static int tree_move_next_or_upnext(struct btrfs_path *path, 6542 int *level, int root_level) 6543 { 6544 int ret = 0; 6545 int nritems; 6546 nritems = btrfs_header_nritems(path->nodes[*level]); 6547 6548 path->slots[*level]++; 6549 6550 while (path->slots[*level] >= nritems) { 6551 if (*level == root_level) 6552 return -1; 6553 6554 /* move upnext */ 6555 path->slots[*level] = 0; 6556 free_extent_buffer(path->nodes[*level]); 6557 path->nodes[*level] = NULL; 6558 (*level)++; 6559 path->slots[*level]++; 6560 6561 nritems = btrfs_header_nritems(path->nodes[*level]); 6562 ret = 1; 6563 } 6564 return ret; 6565 } 6566 6567 /* 6568 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6569 * or down. 6570 */ 6571 static int tree_advance(struct btrfs_path *path, 6572 int *level, int root_level, 6573 int allow_down, 6574 struct btrfs_key *key) 6575 { 6576 int ret; 6577 6578 if (*level == 0 || !allow_down) { 6579 ret = tree_move_next_or_upnext(path, level, root_level); 6580 } else { 6581 ret = tree_move_down(path, level); 6582 } 6583 if (ret >= 0) { 6584 if (*level == 0) 6585 btrfs_item_key_to_cpu(path->nodes[*level], key, 6586 path->slots[*level]); 6587 else 6588 btrfs_node_key_to_cpu(path->nodes[*level], key, 6589 path->slots[*level]); 6590 } 6591 return ret; 6592 } 6593 6594 static int tree_compare_item(struct btrfs_path *left_path, 6595 struct btrfs_path *right_path, 6596 char *tmp_buf) 6597 { 6598 int cmp; 6599 int len1, len2; 6600 unsigned long off1, off2; 6601 6602 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6603 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6604 if (len1 != len2) 6605 return 1; 6606 6607 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6608 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6609 right_path->slots[0]); 6610 6611 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6612 6613 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6614 if (cmp) 6615 return 1; 6616 return 0; 6617 } 6618 6619 /* 6620 * This function compares two trees and calls the provided callback for 6621 * every changed/new/deleted item it finds. 6622 * If shared tree blocks are encountered, whole subtrees are skipped, making 6623 * the compare pretty fast on snapshotted subvolumes. 6624 * 6625 * This currently works on commit roots only. As commit roots are read only, 6626 * we don't do any locking. The commit roots are protected with transactions. 6627 * Transactions are ended and rejoined when a commit is tried in between. 6628 * 6629 * This function checks for modifications done to the trees while comparing. 6630 * If it detects a change, it aborts immediately. 6631 */ 6632 static int btrfs_compare_trees(struct btrfs_root *left_root, 6633 struct btrfs_root *right_root, 6634 btrfs_changed_cb_t changed_cb, void *ctx) 6635 { 6636 struct btrfs_fs_info *fs_info = left_root->fs_info; 6637 int ret; 6638 int cmp; 6639 struct btrfs_path *left_path = NULL; 6640 struct btrfs_path *right_path = NULL; 6641 struct btrfs_key left_key; 6642 struct btrfs_key right_key; 6643 char *tmp_buf = NULL; 6644 int left_root_level; 6645 int right_root_level; 6646 int left_level; 6647 int right_level; 6648 int left_end_reached; 6649 int right_end_reached; 6650 int advance_left; 6651 int advance_right; 6652 u64 left_blockptr; 6653 u64 right_blockptr; 6654 u64 left_gen; 6655 u64 right_gen; 6656 6657 left_path = btrfs_alloc_path(); 6658 if (!left_path) { 6659 ret = -ENOMEM; 6660 goto out; 6661 } 6662 right_path = btrfs_alloc_path(); 6663 if (!right_path) { 6664 ret = -ENOMEM; 6665 goto out; 6666 } 6667 6668 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6669 if (!tmp_buf) { 6670 ret = -ENOMEM; 6671 goto out; 6672 } 6673 6674 left_path->search_commit_root = 1; 6675 left_path->skip_locking = 1; 6676 right_path->search_commit_root = 1; 6677 right_path->skip_locking = 1; 6678 6679 /* 6680 * Strategy: Go to the first items of both trees. Then do 6681 * 6682 * If both trees are at level 0 6683 * Compare keys of current items 6684 * If left < right treat left item as new, advance left tree 6685 * and repeat 6686 * If left > right treat right item as deleted, advance right tree 6687 * and repeat 6688 * If left == right do deep compare of items, treat as changed if 6689 * needed, advance both trees and repeat 6690 * If both trees are at the same level but not at level 0 6691 * Compare keys of current nodes/leafs 6692 * If left < right advance left tree and repeat 6693 * If left > right advance right tree and repeat 6694 * If left == right compare blockptrs of the next nodes/leafs 6695 * If they match advance both trees but stay at the same level 6696 * and repeat 6697 * If they don't match advance both trees while allowing to go 6698 * deeper and repeat 6699 * If tree levels are different 6700 * Advance the tree that needs it and repeat 6701 * 6702 * Advancing a tree means: 6703 * If we are at level 0, try to go to the next slot. If that's not 6704 * possible, go one level up and repeat. Stop when we found a level 6705 * where we could go to the next slot. We may at this point be on a 6706 * node or a leaf. 6707 * 6708 * If we are not at level 0 and not on shared tree blocks, go one 6709 * level deeper. 6710 * 6711 * If we are not at level 0 and on shared tree blocks, go one slot to 6712 * the right if possible or go up and right. 6713 */ 6714 6715 down_read(&fs_info->commit_root_sem); 6716 left_level = btrfs_header_level(left_root->commit_root); 6717 left_root_level = left_level; 6718 left_path->nodes[left_level] = 6719 btrfs_clone_extent_buffer(left_root->commit_root); 6720 if (!left_path->nodes[left_level]) { 6721 up_read(&fs_info->commit_root_sem); 6722 ret = -ENOMEM; 6723 goto out; 6724 } 6725 6726 right_level = btrfs_header_level(right_root->commit_root); 6727 right_root_level = right_level; 6728 right_path->nodes[right_level] = 6729 btrfs_clone_extent_buffer(right_root->commit_root); 6730 if (!right_path->nodes[right_level]) { 6731 up_read(&fs_info->commit_root_sem); 6732 ret = -ENOMEM; 6733 goto out; 6734 } 6735 up_read(&fs_info->commit_root_sem); 6736 6737 if (left_level == 0) 6738 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6739 &left_key, left_path->slots[left_level]); 6740 else 6741 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6742 &left_key, left_path->slots[left_level]); 6743 if (right_level == 0) 6744 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6745 &right_key, right_path->slots[right_level]); 6746 else 6747 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6748 &right_key, right_path->slots[right_level]); 6749 6750 left_end_reached = right_end_reached = 0; 6751 advance_left = advance_right = 0; 6752 6753 while (1) { 6754 cond_resched(); 6755 if (advance_left && !left_end_reached) { 6756 ret = tree_advance(left_path, &left_level, 6757 left_root_level, 6758 advance_left != ADVANCE_ONLY_NEXT, 6759 &left_key); 6760 if (ret == -1) 6761 left_end_reached = ADVANCE; 6762 else if (ret < 0) 6763 goto out; 6764 advance_left = 0; 6765 } 6766 if (advance_right && !right_end_reached) { 6767 ret = tree_advance(right_path, &right_level, 6768 right_root_level, 6769 advance_right != ADVANCE_ONLY_NEXT, 6770 &right_key); 6771 if (ret == -1) 6772 right_end_reached = ADVANCE; 6773 else if (ret < 0) 6774 goto out; 6775 advance_right = 0; 6776 } 6777 6778 if (left_end_reached && right_end_reached) { 6779 ret = 0; 6780 goto out; 6781 } else if (left_end_reached) { 6782 if (right_level == 0) { 6783 ret = changed_cb(left_path, right_path, 6784 &right_key, 6785 BTRFS_COMPARE_TREE_DELETED, 6786 ctx); 6787 if (ret < 0) 6788 goto out; 6789 } 6790 advance_right = ADVANCE; 6791 continue; 6792 } else if (right_end_reached) { 6793 if (left_level == 0) { 6794 ret = changed_cb(left_path, right_path, 6795 &left_key, 6796 BTRFS_COMPARE_TREE_NEW, 6797 ctx); 6798 if (ret < 0) 6799 goto out; 6800 } 6801 advance_left = ADVANCE; 6802 continue; 6803 } 6804 6805 if (left_level == 0 && right_level == 0) { 6806 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6807 if (cmp < 0) { 6808 ret = changed_cb(left_path, right_path, 6809 &left_key, 6810 BTRFS_COMPARE_TREE_NEW, 6811 ctx); 6812 if (ret < 0) 6813 goto out; 6814 advance_left = ADVANCE; 6815 } else if (cmp > 0) { 6816 ret = changed_cb(left_path, right_path, 6817 &right_key, 6818 BTRFS_COMPARE_TREE_DELETED, 6819 ctx); 6820 if (ret < 0) 6821 goto out; 6822 advance_right = ADVANCE; 6823 } else { 6824 enum btrfs_compare_tree_result result; 6825 6826 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 6827 ret = tree_compare_item(left_path, right_path, 6828 tmp_buf); 6829 if (ret) 6830 result = BTRFS_COMPARE_TREE_CHANGED; 6831 else 6832 result = BTRFS_COMPARE_TREE_SAME; 6833 ret = changed_cb(left_path, right_path, 6834 &left_key, result, ctx); 6835 if (ret < 0) 6836 goto out; 6837 advance_left = ADVANCE; 6838 advance_right = ADVANCE; 6839 } 6840 } else if (left_level == right_level) { 6841 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6842 if (cmp < 0) { 6843 advance_left = ADVANCE; 6844 } else if (cmp > 0) { 6845 advance_right = ADVANCE; 6846 } else { 6847 left_blockptr = btrfs_node_blockptr( 6848 left_path->nodes[left_level], 6849 left_path->slots[left_level]); 6850 right_blockptr = btrfs_node_blockptr( 6851 right_path->nodes[right_level], 6852 right_path->slots[right_level]); 6853 left_gen = btrfs_node_ptr_generation( 6854 left_path->nodes[left_level], 6855 left_path->slots[left_level]); 6856 right_gen = btrfs_node_ptr_generation( 6857 right_path->nodes[right_level], 6858 right_path->slots[right_level]); 6859 if (left_blockptr == right_blockptr && 6860 left_gen == right_gen) { 6861 /* 6862 * As we're on a shared block, don't 6863 * allow to go deeper. 6864 */ 6865 advance_left = ADVANCE_ONLY_NEXT; 6866 advance_right = ADVANCE_ONLY_NEXT; 6867 } else { 6868 advance_left = ADVANCE; 6869 advance_right = ADVANCE; 6870 } 6871 } 6872 } else if (left_level < right_level) { 6873 advance_right = ADVANCE; 6874 } else { 6875 advance_left = ADVANCE; 6876 } 6877 } 6878 6879 out: 6880 btrfs_free_path(left_path); 6881 btrfs_free_path(right_path); 6882 kvfree(tmp_buf); 6883 return ret; 6884 } 6885 6886 static int send_subvol(struct send_ctx *sctx) 6887 { 6888 int ret; 6889 6890 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6891 ret = send_header(sctx); 6892 if (ret < 0) 6893 goto out; 6894 } 6895 6896 ret = send_subvol_begin(sctx); 6897 if (ret < 0) 6898 goto out; 6899 6900 if (sctx->parent_root) { 6901 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6902 changed_cb, sctx); 6903 if (ret < 0) 6904 goto out; 6905 ret = finish_inode_if_needed(sctx, 1); 6906 if (ret < 0) 6907 goto out; 6908 } else { 6909 ret = full_send_tree(sctx); 6910 if (ret < 0) 6911 goto out; 6912 } 6913 6914 out: 6915 free_recorded_refs(sctx); 6916 return ret; 6917 } 6918 6919 /* 6920 * If orphan cleanup did remove any orphans from a root, it means the tree 6921 * was modified and therefore the commit root is not the same as the current 6922 * root anymore. This is a problem, because send uses the commit root and 6923 * therefore can see inode items that don't exist in the current root anymore, 6924 * and for example make calls to btrfs_iget, which will do tree lookups based 6925 * on the current root and not on the commit root. Those lookups will fail, 6926 * returning a -ESTALE error, and making send fail with that error. So make 6927 * sure a send does not see any orphans we have just removed, and that it will 6928 * see the same inodes regardless of whether a transaction commit happened 6929 * before it started (meaning that the commit root will be the same as the 6930 * current root) or not. 6931 */ 6932 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6933 { 6934 int i; 6935 struct btrfs_trans_handle *trans = NULL; 6936 6937 again: 6938 if (sctx->parent_root && 6939 sctx->parent_root->node != sctx->parent_root->commit_root) 6940 goto commit_trans; 6941 6942 for (i = 0; i < sctx->clone_roots_cnt; i++) 6943 if (sctx->clone_roots[i].root->node != 6944 sctx->clone_roots[i].root->commit_root) 6945 goto commit_trans; 6946 6947 if (trans) 6948 return btrfs_end_transaction(trans); 6949 6950 return 0; 6951 6952 commit_trans: 6953 /* Use any root, all fs roots will get their commit roots updated. */ 6954 if (!trans) { 6955 trans = btrfs_join_transaction(sctx->send_root); 6956 if (IS_ERR(trans)) 6957 return PTR_ERR(trans); 6958 goto again; 6959 } 6960 6961 return btrfs_commit_transaction(trans); 6962 } 6963 6964 /* 6965 * Make sure any existing dellaloc is flushed for any root used by a send 6966 * operation so that we do not miss any data and we do not race with writeback 6967 * finishing and changing a tree while send is using the tree. This could 6968 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 6969 * a send operation then uses the subvolume. 6970 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 6971 */ 6972 static int flush_delalloc_roots(struct send_ctx *sctx) 6973 { 6974 struct btrfs_root *root = sctx->parent_root; 6975 int ret; 6976 int i; 6977 6978 if (root) { 6979 ret = btrfs_start_delalloc_snapshot(root); 6980 if (ret) 6981 return ret; 6982 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 6983 } 6984 6985 for (i = 0; i < sctx->clone_roots_cnt; i++) { 6986 root = sctx->clone_roots[i].root; 6987 ret = btrfs_start_delalloc_snapshot(root); 6988 if (ret) 6989 return ret; 6990 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 6991 } 6992 6993 return 0; 6994 } 6995 6996 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 6997 { 6998 spin_lock(&root->root_item_lock); 6999 root->send_in_progress--; 7000 /* 7001 * Not much left to do, we don't know why it's unbalanced and 7002 * can't blindly reset it to 0. 7003 */ 7004 if (root->send_in_progress < 0) 7005 btrfs_err(root->fs_info, 7006 "send_in_progress unbalanced %d root %llu", 7007 root->send_in_progress, root->root_key.objectid); 7008 spin_unlock(&root->root_item_lock); 7009 } 7010 7011 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7012 { 7013 btrfs_warn_rl(root->fs_info, 7014 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7015 root->root_key.objectid, root->dedupe_in_progress); 7016 } 7017 7018 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7019 { 7020 int ret = 0; 7021 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7022 struct btrfs_fs_info *fs_info = send_root->fs_info; 7023 struct btrfs_root *clone_root; 7024 struct btrfs_key key; 7025 struct send_ctx *sctx = NULL; 7026 u32 i; 7027 u64 *clone_sources_tmp = NULL; 7028 int clone_sources_to_rollback = 0; 7029 unsigned alloc_size; 7030 int sort_clone_roots = 0; 7031 7032 if (!capable(CAP_SYS_ADMIN)) 7033 return -EPERM; 7034 7035 /* 7036 * The subvolume must remain read-only during send, protect against 7037 * making it RW. This also protects against deletion. 7038 */ 7039 spin_lock(&send_root->root_item_lock); 7040 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7041 dedupe_in_progress_warn(send_root); 7042 spin_unlock(&send_root->root_item_lock); 7043 return -EAGAIN; 7044 } 7045 send_root->send_in_progress++; 7046 spin_unlock(&send_root->root_item_lock); 7047 7048 /* 7049 * Userspace tools do the checks and warn the user if it's 7050 * not RO. 7051 */ 7052 if (!btrfs_root_readonly(send_root)) { 7053 ret = -EPERM; 7054 goto out; 7055 } 7056 7057 /* 7058 * Check that we don't overflow at later allocations, we request 7059 * clone_sources_count + 1 items, and compare to unsigned long inside 7060 * access_ok. 7061 */ 7062 if (arg->clone_sources_count > 7063 ULONG_MAX / sizeof(struct clone_root) - 1) { 7064 ret = -EINVAL; 7065 goto out; 7066 } 7067 7068 if (!access_ok(arg->clone_sources, 7069 sizeof(*arg->clone_sources) * 7070 arg->clone_sources_count)) { 7071 ret = -EFAULT; 7072 goto out; 7073 } 7074 7075 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7076 ret = -EINVAL; 7077 goto out; 7078 } 7079 7080 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7081 if (!sctx) { 7082 ret = -ENOMEM; 7083 goto out; 7084 } 7085 7086 INIT_LIST_HEAD(&sctx->new_refs); 7087 INIT_LIST_HEAD(&sctx->deleted_refs); 7088 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7089 INIT_LIST_HEAD(&sctx->name_cache_list); 7090 7091 sctx->flags = arg->flags; 7092 7093 sctx->send_filp = fget(arg->send_fd); 7094 if (!sctx->send_filp) { 7095 ret = -EBADF; 7096 goto out; 7097 } 7098 7099 sctx->send_root = send_root; 7100 /* 7101 * Unlikely but possible, if the subvolume is marked for deletion but 7102 * is slow to remove the directory entry, send can still be started 7103 */ 7104 if (btrfs_root_dead(sctx->send_root)) { 7105 ret = -EPERM; 7106 goto out; 7107 } 7108 7109 sctx->clone_roots_cnt = arg->clone_sources_count; 7110 7111 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7112 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7113 if (!sctx->send_buf) { 7114 ret = -ENOMEM; 7115 goto out; 7116 } 7117 7118 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 7119 if (!sctx->read_buf) { 7120 ret = -ENOMEM; 7121 goto out; 7122 } 7123 7124 sctx->pending_dir_moves = RB_ROOT; 7125 sctx->waiting_dir_moves = RB_ROOT; 7126 sctx->orphan_dirs = RB_ROOT; 7127 7128 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 7129 7130 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 7131 if (!sctx->clone_roots) { 7132 ret = -ENOMEM; 7133 goto out; 7134 } 7135 7136 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 7137 7138 if (arg->clone_sources_count) { 7139 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7140 if (!clone_sources_tmp) { 7141 ret = -ENOMEM; 7142 goto out; 7143 } 7144 7145 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7146 alloc_size); 7147 if (ret) { 7148 ret = -EFAULT; 7149 goto out; 7150 } 7151 7152 for (i = 0; i < arg->clone_sources_count; i++) { 7153 key.objectid = clone_sources_tmp[i]; 7154 key.type = BTRFS_ROOT_ITEM_KEY; 7155 key.offset = (u64)-1; 7156 7157 clone_root = btrfs_get_fs_root(fs_info, &key, true); 7158 if (IS_ERR(clone_root)) { 7159 ret = PTR_ERR(clone_root); 7160 goto out; 7161 } 7162 spin_lock(&clone_root->root_item_lock); 7163 if (!btrfs_root_readonly(clone_root) || 7164 btrfs_root_dead(clone_root)) { 7165 spin_unlock(&clone_root->root_item_lock); 7166 btrfs_put_root(clone_root); 7167 ret = -EPERM; 7168 goto out; 7169 } 7170 if (clone_root->dedupe_in_progress) { 7171 dedupe_in_progress_warn(clone_root); 7172 spin_unlock(&clone_root->root_item_lock); 7173 btrfs_put_root(clone_root); 7174 ret = -EAGAIN; 7175 goto out; 7176 } 7177 clone_root->send_in_progress++; 7178 spin_unlock(&clone_root->root_item_lock); 7179 7180 sctx->clone_roots[i].root = clone_root; 7181 clone_sources_to_rollback = i + 1; 7182 } 7183 kvfree(clone_sources_tmp); 7184 clone_sources_tmp = NULL; 7185 } 7186 7187 if (arg->parent_root) { 7188 key.objectid = arg->parent_root; 7189 key.type = BTRFS_ROOT_ITEM_KEY; 7190 key.offset = (u64)-1; 7191 7192 sctx->parent_root = btrfs_get_fs_root(fs_info, &key, true); 7193 if (IS_ERR(sctx->parent_root)) { 7194 ret = PTR_ERR(sctx->parent_root); 7195 goto out; 7196 } 7197 7198 spin_lock(&sctx->parent_root->root_item_lock); 7199 sctx->parent_root->send_in_progress++; 7200 if (!btrfs_root_readonly(sctx->parent_root) || 7201 btrfs_root_dead(sctx->parent_root)) { 7202 spin_unlock(&sctx->parent_root->root_item_lock); 7203 ret = -EPERM; 7204 goto out; 7205 } 7206 if (sctx->parent_root->dedupe_in_progress) { 7207 dedupe_in_progress_warn(sctx->parent_root); 7208 spin_unlock(&sctx->parent_root->root_item_lock); 7209 ret = -EAGAIN; 7210 goto out; 7211 } 7212 spin_unlock(&sctx->parent_root->root_item_lock); 7213 } 7214 7215 /* 7216 * Clones from send_root are allowed, but only if the clone source 7217 * is behind the current send position. This is checked while searching 7218 * for possible clone sources. 7219 */ 7220 sctx->clone_roots[sctx->clone_roots_cnt++].root = 7221 btrfs_grab_root(sctx->send_root); 7222 7223 /* We do a bsearch later */ 7224 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7225 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7226 NULL); 7227 sort_clone_roots = 1; 7228 7229 ret = flush_delalloc_roots(sctx); 7230 if (ret) 7231 goto out; 7232 7233 ret = ensure_commit_roots_uptodate(sctx); 7234 if (ret) 7235 goto out; 7236 7237 mutex_lock(&fs_info->balance_mutex); 7238 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 7239 mutex_unlock(&fs_info->balance_mutex); 7240 btrfs_warn_rl(fs_info, 7241 "cannot run send because a balance operation is in progress"); 7242 ret = -EAGAIN; 7243 goto out; 7244 } 7245 fs_info->send_in_progress++; 7246 mutex_unlock(&fs_info->balance_mutex); 7247 7248 current->journal_info = BTRFS_SEND_TRANS_STUB; 7249 ret = send_subvol(sctx); 7250 current->journal_info = NULL; 7251 mutex_lock(&fs_info->balance_mutex); 7252 fs_info->send_in_progress--; 7253 mutex_unlock(&fs_info->balance_mutex); 7254 if (ret < 0) 7255 goto out; 7256 7257 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7258 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7259 if (ret < 0) 7260 goto out; 7261 ret = send_cmd(sctx); 7262 if (ret < 0) 7263 goto out; 7264 } 7265 7266 out: 7267 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7268 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7269 struct rb_node *n; 7270 struct pending_dir_move *pm; 7271 7272 n = rb_first(&sctx->pending_dir_moves); 7273 pm = rb_entry(n, struct pending_dir_move, node); 7274 while (!list_empty(&pm->list)) { 7275 struct pending_dir_move *pm2; 7276 7277 pm2 = list_first_entry(&pm->list, 7278 struct pending_dir_move, list); 7279 free_pending_move(sctx, pm2); 7280 } 7281 free_pending_move(sctx, pm); 7282 } 7283 7284 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7285 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7286 struct rb_node *n; 7287 struct waiting_dir_move *dm; 7288 7289 n = rb_first(&sctx->waiting_dir_moves); 7290 dm = rb_entry(n, struct waiting_dir_move, node); 7291 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7292 kfree(dm); 7293 } 7294 7295 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7296 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7297 struct rb_node *n; 7298 struct orphan_dir_info *odi; 7299 7300 n = rb_first(&sctx->orphan_dirs); 7301 odi = rb_entry(n, struct orphan_dir_info, node); 7302 free_orphan_dir_info(sctx, odi); 7303 } 7304 7305 if (sort_clone_roots) { 7306 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7307 btrfs_root_dec_send_in_progress( 7308 sctx->clone_roots[i].root); 7309 btrfs_put_root(sctx->clone_roots[i].root); 7310 } 7311 } else { 7312 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 7313 btrfs_root_dec_send_in_progress( 7314 sctx->clone_roots[i].root); 7315 btrfs_put_root(sctx->clone_roots[i].root); 7316 } 7317 7318 btrfs_root_dec_send_in_progress(send_root); 7319 } 7320 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 7321 btrfs_root_dec_send_in_progress(sctx->parent_root); 7322 btrfs_put_root(sctx->parent_root); 7323 } 7324 7325 kvfree(clone_sources_tmp); 7326 7327 if (sctx) { 7328 if (sctx->send_filp) 7329 fput(sctx->send_filp); 7330 7331 kvfree(sctx->clone_roots); 7332 kvfree(sctx->send_buf); 7333 kvfree(sctx->read_buf); 7334 7335 name_cache_free(sctx); 7336 7337 kfree(sctx); 7338 } 7339 7340 return ret; 7341 } 7342