1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/falloc.h> 8 #include <linux/fs.h> 9 #include <linux/file.h> 10 #include <linux/sort.h> 11 #include <linux/mount.h> 12 #include <linux/xattr.h> 13 #include <linux/posix_acl_xattr.h> 14 #include <linux/radix-tree.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/compat.h> 18 #include <linux/crc32c.h> 19 #include <linux/fsverity.h> 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * an allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 struct fs_path cur_inode_path; 182 bool cur_inode_new; 183 bool cur_inode_new_gen; 184 bool cur_inode_deleted; 185 bool ignore_cur_inode; 186 bool cur_inode_needs_verity; 187 void *verity_descriptor; 188 189 u64 send_progress; 190 191 struct list_head new_refs; 192 struct list_head deleted_refs; 193 194 struct btrfs_lru_cache name_cache; 195 196 /* 197 * The inode we are currently processing. It's not NULL only when we 198 * need to issue write commands for data extents from this inode. 199 */ 200 struct inode *cur_inode; 201 struct file_ra_state ra; 202 u64 page_cache_clear_start; 203 bool clean_page_cache; 204 205 /* 206 * We process inodes by their increasing order, so if before an 207 * incremental send we reverse the parent/child relationship of 208 * directories such that a directory with a lower inode number was 209 * the parent of a directory with a higher inode number, and the one 210 * becoming the new parent got renamed too, we can't rename/move the 211 * directory with lower inode number when we finish processing it - we 212 * must process the directory with higher inode number first, then 213 * rename/move it and then rename/move the directory with lower inode 214 * number. Example follows. 215 * 216 * Tree state when the first send was performed: 217 * 218 * . 219 * |-- a (ino 257) 220 * |-- b (ino 258) 221 * | 222 * | 223 * |-- c (ino 259) 224 * | |-- d (ino 260) 225 * | 226 * |-- c2 (ino 261) 227 * 228 * Tree state when the second (incremental) send is performed: 229 * 230 * . 231 * |-- a (ino 257) 232 * |-- b (ino 258) 233 * |-- c2 (ino 261) 234 * |-- d2 (ino 260) 235 * |-- cc (ino 259) 236 * 237 * The sequence of steps that lead to the second state was: 238 * 239 * mv /a/b/c/d /a/b/c2/d2 240 * mv /a/b/c /a/b/c2/d2/cc 241 * 242 * "c" has lower inode number, but we can't move it (2nd mv operation) 243 * before we move "d", which has higher inode number. 244 * 245 * So we just memorize which move/rename operations must be performed 246 * later when their respective parent is processed and moved/renamed. 247 */ 248 249 /* Indexed by parent directory inode number. */ 250 struct rb_root pending_dir_moves; 251 252 /* 253 * Reverse index, indexed by the inode number of a directory that 254 * is waiting for the move/rename of its immediate parent before its 255 * own move/rename can be performed. 256 */ 257 struct rb_root waiting_dir_moves; 258 259 /* 260 * A directory that is going to be rm'ed might have a child directory 261 * which is in the pending directory moves index above. In this case, 262 * the directory can only be removed after the move/rename of its child 263 * is performed. Example: 264 * 265 * Parent snapshot: 266 * 267 * . (ino 256) 268 * |-- a/ (ino 257) 269 * |-- b/ (ino 258) 270 * |-- c/ (ino 259) 271 * | |-- x/ (ino 260) 272 * | 273 * |-- y/ (ino 261) 274 * 275 * Send snapshot: 276 * 277 * . (ino 256) 278 * |-- a/ (ino 257) 279 * |-- b/ (ino 258) 280 * |-- YY/ (ino 261) 281 * |-- x/ (ino 260) 282 * 283 * Sequence of steps that lead to the send snapshot: 284 * rm -f /a/b/c/foo.txt 285 * mv /a/b/y /a/b/YY 286 * mv /a/b/c/x /a/b/YY 287 * rmdir /a/b/c 288 * 289 * When the child is processed, its move/rename is delayed until its 290 * parent is processed (as explained above), but all other operations 291 * like update utimes, chown, chgrp, etc, are performed and the paths 292 * that it uses for those operations must use the orphanized name of 293 * its parent (the directory we're going to rm later), so we need to 294 * memorize that name. 295 * 296 * Indexed by the inode number of the directory to be deleted. 297 */ 298 struct rb_root orphan_dirs; 299 300 struct rb_root rbtree_new_refs; 301 struct rb_root rbtree_deleted_refs; 302 303 struct btrfs_lru_cache backref_cache; 304 u64 backref_cache_last_reloc_trans; 305 306 struct btrfs_lru_cache dir_created_cache; 307 struct btrfs_lru_cache dir_utimes_cache; 308 }; 309 310 struct pending_dir_move { 311 struct rb_node node; 312 struct list_head list; 313 u64 parent_ino; 314 u64 ino; 315 u64 gen; 316 struct list_head update_refs; 317 }; 318 319 struct waiting_dir_move { 320 struct rb_node node; 321 u64 ino; 322 /* 323 * There might be some directory that could not be removed because it 324 * was waiting for this directory inode to be moved first. Therefore 325 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 326 */ 327 u64 rmdir_ino; 328 u64 rmdir_gen; 329 bool orphanized; 330 }; 331 332 struct orphan_dir_info { 333 struct rb_node node; 334 u64 ino; 335 u64 gen; 336 u64 last_dir_index_offset; 337 u64 dir_high_seq_ino; 338 }; 339 340 struct name_cache_entry { 341 /* 342 * The key in the entry is an inode number, and the generation matches 343 * the inode's generation. 344 */ 345 struct btrfs_lru_cache_entry entry; 346 u64 parent_ino; 347 u64 parent_gen; 348 int ret; 349 int need_later_update; 350 /* Name length without NUL terminator. */ 351 int name_len; 352 /* Not NUL terminated. */ 353 char name[] __counted_by(name_len) __nonstring; 354 }; 355 356 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 357 static_assert(offsetof(struct name_cache_entry, entry) == 0); 358 359 #define ADVANCE 1 360 #define ADVANCE_ONLY_NEXT -1 361 362 enum btrfs_compare_tree_result { 363 BTRFS_COMPARE_TREE_NEW, 364 BTRFS_COMPARE_TREE_DELETED, 365 BTRFS_COMPARE_TREE_CHANGED, 366 BTRFS_COMPARE_TREE_SAME, 367 }; 368 369 __cold 370 static void inconsistent_snapshot_error(struct send_ctx *sctx, 371 enum btrfs_compare_tree_result result, 372 const char *what) 373 { 374 const char *result_string; 375 376 switch (result) { 377 case BTRFS_COMPARE_TREE_NEW: 378 result_string = "new"; 379 break; 380 case BTRFS_COMPARE_TREE_DELETED: 381 result_string = "deleted"; 382 break; 383 case BTRFS_COMPARE_TREE_CHANGED: 384 result_string = "updated"; 385 break; 386 case BTRFS_COMPARE_TREE_SAME: 387 DEBUG_WARN("no change between trees"); 388 result_string = "unchanged"; 389 break; 390 default: 391 DEBUG_WARN("unexpected comparison result %d", result); 392 result_string = "unexpected"; 393 } 394 395 btrfs_err(sctx->send_root->fs_info, 396 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 397 result_string, what, sctx->cmp_key->objectid, 398 btrfs_root_id(sctx->send_root), 399 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 400 } 401 402 __maybe_unused 403 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 404 { 405 switch (sctx->proto) { 406 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 407 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 408 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 409 default: return false; 410 } 411 } 412 413 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 414 415 static struct waiting_dir_move * 416 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 417 418 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 419 420 static int need_send_hole(struct send_ctx *sctx) 421 { 422 return (sctx->parent_root && !sctx->cur_inode_new && 423 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 424 S_ISREG(sctx->cur_inode_mode)); 425 } 426 427 static void fs_path_reset(struct fs_path *p) 428 { 429 if (p->reversed) 430 p->start = p->buf + p->buf_len - 1; 431 else 432 p->start = p->buf; 433 434 p->end = p->start; 435 *p->start = 0; 436 } 437 438 static void init_path(struct fs_path *p) 439 { 440 p->reversed = 0; 441 p->buf = p->inline_buf; 442 p->buf_len = FS_PATH_INLINE_SIZE; 443 fs_path_reset(p); 444 } 445 446 static struct fs_path *fs_path_alloc(void) 447 { 448 struct fs_path *p; 449 450 p = kmalloc(sizeof(*p), GFP_KERNEL); 451 if (!p) 452 return NULL; 453 init_path(p); 454 return p; 455 } 456 457 static struct fs_path *fs_path_alloc_reversed(void) 458 { 459 struct fs_path *p; 460 461 p = fs_path_alloc(); 462 if (!p) 463 return NULL; 464 p->reversed = 1; 465 fs_path_reset(p); 466 return p; 467 } 468 469 static void fs_path_free(struct fs_path *p) 470 { 471 if (!p) 472 return; 473 if (p->buf != p->inline_buf) 474 kfree(p->buf); 475 kfree(p); 476 } 477 478 static inline int fs_path_len(const struct fs_path *p) 479 { 480 return p->end - p->start; 481 } 482 483 static int fs_path_ensure_buf(struct fs_path *p, int len) 484 { 485 char *tmp_buf; 486 int path_len; 487 int old_buf_len; 488 489 len++; 490 491 if (p->buf_len >= len) 492 return 0; 493 494 if (WARN_ON(len > PATH_MAX)) 495 return -ENAMETOOLONG; 496 497 path_len = fs_path_len(p); 498 old_buf_len = p->buf_len; 499 500 /* 501 * Allocate to the next largest kmalloc bucket size, to let 502 * the fast path happen most of the time. 503 */ 504 len = kmalloc_size_roundup(len); 505 /* 506 * First time the inline_buf does not suffice 507 */ 508 if (p->buf == p->inline_buf) { 509 tmp_buf = kmalloc(len, GFP_KERNEL); 510 if (tmp_buf) 511 memcpy(tmp_buf, p->buf, old_buf_len); 512 } else { 513 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 514 } 515 if (!tmp_buf) 516 return -ENOMEM; 517 p->buf = tmp_buf; 518 p->buf_len = len; 519 520 if (p->reversed) { 521 tmp_buf = p->buf + old_buf_len - path_len - 1; 522 p->end = p->buf + p->buf_len - 1; 523 p->start = p->end - path_len; 524 memmove(p->start, tmp_buf, path_len + 1); 525 } else { 526 p->start = p->buf; 527 p->end = p->start + path_len; 528 } 529 return 0; 530 } 531 532 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 533 char **prepared) 534 { 535 int ret; 536 int new_len; 537 538 new_len = fs_path_len(p) + name_len; 539 if (p->start != p->end) 540 new_len++; 541 ret = fs_path_ensure_buf(p, new_len); 542 if (ret < 0) 543 return ret; 544 545 if (p->reversed) { 546 if (p->start != p->end) 547 *--p->start = '/'; 548 p->start -= name_len; 549 *prepared = p->start; 550 } else { 551 if (p->start != p->end) 552 *p->end++ = '/'; 553 *prepared = p->end; 554 p->end += name_len; 555 *p->end = 0; 556 } 557 558 return 0; 559 } 560 561 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 562 { 563 int ret; 564 char *prepared; 565 566 ret = fs_path_prepare_for_add(p, name_len, &prepared); 567 if (ret < 0) 568 return ret; 569 memcpy(prepared, name, name_len); 570 571 return 0; 572 } 573 574 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) 575 { 576 return fs_path_add(p, p2->start, fs_path_len(p2)); 577 } 578 579 static int fs_path_add_from_extent_buffer(struct fs_path *p, 580 struct extent_buffer *eb, 581 unsigned long off, int len) 582 { 583 int ret; 584 char *prepared; 585 586 ret = fs_path_prepare_for_add(p, len, &prepared); 587 if (ret < 0) 588 return ret; 589 590 read_extent_buffer(eb, prepared, off, len); 591 592 return 0; 593 } 594 595 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 596 { 597 p->reversed = from->reversed; 598 fs_path_reset(p); 599 600 return fs_path_add_path(p, from); 601 } 602 603 static void fs_path_unreverse(struct fs_path *p) 604 { 605 char *tmp; 606 int len; 607 608 if (!p->reversed) 609 return; 610 611 tmp = p->start; 612 len = fs_path_len(p); 613 p->start = p->buf; 614 p->end = p->start + len; 615 memmove(p->start, tmp, len + 1); 616 p->reversed = 0; 617 } 618 619 static inline bool is_current_inode_path(const struct send_ctx *sctx, 620 const struct fs_path *path) 621 { 622 const struct fs_path *cur = &sctx->cur_inode_path; 623 624 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); 625 } 626 627 static struct btrfs_path *alloc_path_for_send(void) 628 { 629 struct btrfs_path *path; 630 631 path = btrfs_alloc_path(); 632 if (!path) 633 return NULL; 634 path->search_commit_root = 1; 635 path->skip_locking = 1; 636 path->need_commit_sem = 1; 637 return path; 638 } 639 640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 641 { 642 int ret; 643 u32 pos = 0; 644 645 while (pos < len) { 646 ret = kernel_write(filp, buf + pos, len - pos, off); 647 if (ret < 0) 648 return ret; 649 if (ret == 0) 650 return -EIO; 651 pos += ret; 652 } 653 654 return 0; 655 } 656 657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 658 { 659 struct btrfs_tlv_header *hdr; 660 int total_len = sizeof(*hdr) + len; 661 int left = sctx->send_max_size - sctx->send_size; 662 663 if (WARN_ON_ONCE(sctx->put_data)) 664 return -EINVAL; 665 666 if (unlikely(left < total_len)) 667 return -EOVERFLOW; 668 669 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 670 put_unaligned_le16(attr, &hdr->tlv_type); 671 put_unaligned_le16(len, &hdr->tlv_len); 672 memcpy(hdr + 1, data, len); 673 sctx->send_size += total_len; 674 675 return 0; 676 } 677 678 #define TLV_PUT_DEFINE_INT(bits) \ 679 static int tlv_put_u##bits(struct send_ctx *sctx, \ 680 u##bits attr, u##bits value) \ 681 { \ 682 __le##bits __tmp = cpu_to_le##bits(value); \ 683 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 684 } 685 686 TLV_PUT_DEFINE_INT(8) 687 TLV_PUT_DEFINE_INT(32) 688 TLV_PUT_DEFINE_INT(64) 689 690 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 691 const char *str, int len) 692 { 693 if (len == -1) 694 len = strlen(str); 695 return tlv_put(sctx, attr, str, len); 696 } 697 698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 699 const u8 *uuid) 700 { 701 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 702 } 703 704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 705 struct extent_buffer *eb, 706 struct btrfs_timespec *ts) 707 { 708 struct btrfs_timespec bts; 709 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 710 return tlv_put(sctx, attr, &bts, sizeof(bts)); 711 } 712 713 714 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 715 do { \ 716 ret = tlv_put(sctx, attrtype, data, attrlen); \ 717 if (ret < 0) \ 718 goto tlv_put_failure; \ 719 } while (0) 720 721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 722 do { \ 723 ret = tlv_put_u##bits(sctx, attrtype, value); \ 724 if (ret < 0) \ 725 goto tlv_put_failure; \ 726 } while (0) 727 728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 733 do { \ 734 ret = tlv_put_string(sctx, attrtype, str, len); \ 735 if (ret < 0) \ 736 goto tlv_put_failure; \ 737 } while (0) 738 #define TLV_PUT_PATH(sctx, attrtype, p) \ 739 do { \ 740 ret = tlv_put_string(sctx, attrtype, p->start, \ 741 fs_path_len((p))); \ 742 if (ret < 0) \ 743 goto tlv_put_failure; \ 744 } while(0) 745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 746 do { \ 747 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 748 if (ret < 0) \ 749 goto tlv_put_failure; \ 750 } while (0) 751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 752 do { \ 753 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 754 if (ret < 0) \ 755 goto tlv_put_failure; \ 756 } while (0) 757 758 static int send_header(struct send_ctx *sctx) 759 { 760 struct btrfs_stream_header hdr; 761 762 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 763 hdr.version = cpu_to_le32(sctx->proto); 764 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 765 &sctx->send_off); 766 } 767 768 /* 769 * For each command/item we want to send to userspace, we call this function. 770 */ 771 static int begin_cmd(struct send_ctx *sctx, int cmd) 772 { 773 struct btrfs_cmd_header *hdr; 774 775 if (WARN_ON(!sctx->send_buf)) 776 return -EINVAL; 777 778 if (unlikely(sctx->send_size != 0)) { 779 btrfs_err(sctx->send_root->fs_info, 780 "send: command header buffer not empty cmd %d offset %llu", 781 cmd, sctx->send_off); 782 return -EINVAL; 783 } 784 785 sctx->send_size += sizeof(*hdr); 786 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 787 put_unaligned_le16(cmd, &hdr->cmd); 788 789 return 0; 790 } 791 792 static int send_cmd(struct send_ctx *sctx) 793 { 794 int ret; 795 struct btrfs_cmd_header *hdr; 796 u32 crc; 797 798 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 799 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 800 put_unaligned_le32(0, &hdr->crc); 801 802 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 803 put_unaligned_le32(crc, &hdr->crc); 804 805 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 806 &sctx->send_off); 807 808 sctx->send_size = 0; 809 sctx->put_data = false; 810 811 return ret; 812 } 813 814 /* 815 * Sends a move instruction to user space 816 */ 817 static int send_rename(struct send_ctx *sctx, 818 struct fs_path *from, struct fs_path *to) 819 { 820 int ret; 821 822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 823 if (ret < 0) 824 return ret; 825 826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 828 829 ret = send_cmd(sctx); 830 831 tlv_put_failure: 832 return ret; 833 } 834 835 /* 836 * Sends a link instruction to user space 837 */ 838 static int send_link(struct send_ctx *sctx, 839 struct fs_path *path, struct fs_path *lnk) 840 { 841 int ret; 842 843 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 844 if (ret < 0) 845 return ret; 846 847 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 848 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 849 850 ret = send_cmd(sctx); 851 852 tlv_put_failure: 853 return ret; 854 } 855 856 /* 857 * Sends an unlink instruction to user space 858 */ 859 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 860 { 861 int ret; 862 863 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 864 if (ret < 0) 865 return ret; 866 867 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 868 869 ret = send_cmd(sctx); 870 871 tlv_put_failure: 872 return ret; 873 } 874 875 /* 876 * Sends a rmdir instruction to user space 877 */ 878 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 879 { 880 int ret; 881 882 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 883 if (ret < 0) 884 return ret; 885 886 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 887 888 ret = send_cmd(sctx); 889 890 tlv_put_failure: 891 return ret; 892 } 893 894 struct btrfs_inode_info { 895 u64 size; 896 u64 gen; 897 u64 mode; 898 u64 uid; 899 u64 gid; 900 u64 rdev; 901 u64 fileattr; 902 u64 nlink; 903 }; 904 905 /* 906 * Helper function to retrieve some fields from an inode item. 907 */ 908 static int get_inode_info(struct btrfs_root *root, u64 ino, 909 struct btrfs_inode_info *info) 910 { 911 int ret; 912 struct btrfs_path *path; 913 struct btrfs_inode_item *ii; 914 struct btrfs_key key; 915 916 path = alloc_path_for_send(); 917 if (!path) 918 return -ENOMEM; 919 920 key.objectid = ino; 921 key.type = BTRFS_INODE_ITEM_KEY; 922 key.offset = 0; 923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 924 if (ret) { 925 if (ret > 0) 926 ret = -ENOENT; 927 goto out; 928 } 929 930 if (!info) 931 goto out; 932 933 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 934 struct btrfs_inode_item); 935 info->size = btrfs_inode_size(path->nodes[0], ii); 936 info->gen = btrfs_inode_generation(path->nodes[0], ii); 937 info->mode = btrfs_inode_mode(path->nodes[0], ii); 938 info->uid = btrfs_inode_uid(path->nodes[0], ii); 939 info->gid = btrfs_inode_gid(path->nodes[0], ii); 940 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 941 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 942 /* 943 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 944 * otherwise logically split to 32/32 parts. 945 */ 946 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 947 948 out: 949 btrfs_free_path(path); 950 return ret; 951 } 952 953 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 954 { 955 int ret; 956 struct btrfs_inode_info info = { 0 }; 957 958 ASSERT(gen); 959 960 ret = get_inode_info(root, ino, &info); 961 *gen = info.gen; 962 return ret; 963 } 964 965 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 966 967 /* 968 * Helper function to iterate the entries in ONE btrfs_inode_ref or 969 * btrfs_inode_extref. 970 * The iterate callback may return a non zero value to stop iteration. This can 971 * be a negative value for error codes or 1 to simply stop it. 972 * 973 * path must point to the INODE_REF or INODE_EXTREF when called. 974 */ 975 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 976 struct btrfs_key *found_key, int resolve, 977 iterate_inode_ref_t iterate, void *ctx) 978 { 979 struct extent_buffer *eb = path->nodes[0]; 980 struct btrfs_inode_ref *iref; 981 struct btrfs_inode_extref *extref; 982 struct btrfs_path *tmp_path; 983 struct fs_path *p; 984 u32 cur = 0; 985 u32 total; 986 int slot = path->slots[0]; 987 u32 name_len; 988 char *start; 989 int ret = 0; 990 u64 dir; 991 unsigned long name_off; 992 unsigned long elem_size; 993 unsigned long ptr; 994 995 p = fs_path_alloc_reversed(); 996 if (!p) 997 return -ENOMEM; 998 999 tmp_path = alloc_path_for_send(); 1000 if (!tmp_path) { 1001 fs_path_free(p); 1002 return -ENOMEM; 1003 } 1004 1005 1006 if (found_key->type == BTRFS_INODE_REF_KEY) { 1007 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1008 struct btrfs_inode_ref); 1009 total = btrfs_item_size(eb, slot); 1010 elem_size = sizeof(*iref); 1011 } else { 1012 ptr = btrfs_item_ptr_offset(eb, slot); 1013 total = btrfs_item_size(eb, slot); 1014 elem_size = sizeof(*extref); 1015 } 1016 1017 while (cur < total) { 1018 fs_path_reset(p); 1019 1020 if (found_key->type == BTRFS_INODE_REF_KEY) { 1021 iref = (struct btrfs_inode_ref *)(ptr + cur); 1022 name_len = btrfs_inode_ref_name_len(eb, iref); 1023 name_off = (unsigned long)(iref + 1); 1024 dir = found_key->offset; 1025 } else { 1026 extref = (struct btrfs_inode_extref *)(ptr + cur); 1027 name_len = btrfs_inode_extref_name_len(eb, extref); 1028 name_off = (unsigned long)&extref->name; 1029 dir = btrfs_inode_extref_parent(eb, extref); 1030 } 1031 1032 if (resolve) { 1033 start = btrfs_ref_to_path(root, tmp_path, name_len, 1034 name_off, eb, dir, 1035 p->buf, p->buf_len); 1036 if (IS_ERR(start)) { 1037 ret = PTR_ERR(start); 1038 goto out; 1039 } 1040 if (start < p->buf) { 1041 /* overflow , try again with larger buffer */ 1042 ret = fs_path_ensure_buf(p, 1043 p->buf_len + p->buf - start); 1044 if (ret < 0) 1045 goto out; 1046 start = btrfs_ref_to_path(root, tmp_path, 1047 name_len, name_off, 1048 eb, dir, 1049 p->buf, p->buf_len); 1050 if (IS_ERR(start)) { 1051 ret = PTR_ERR(start); 1052 goto out; 1053 } 1054 if (unlikely(start < p->buf)) { 1055 btrfs_err(root->fs_info, 1056 "send: path ref buffer underflow for key (%llu %u %llu)", 1057 found_key->objectid, 1058 found_key->type, 1059 found_key->offset); 1060 ret = -EINVAL; 1061 goto out; 1062 } 1063 } 1064 p->start = start; 1065 } else { 1066 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1067 name_len); 1068 if (ret < 0) 1069 goto out; 1070 } 1071 1072 cur += elem_size + name_len; 1073 ret = iterate(dir, p, ctx); 1074 if (ret) 1075 goto out; 1076 } 1077 1078 out: 1079 btrfs_free_path(tmp_path); 1080 fs_path_free(p); 1081 return ret; 1082 } 1083 1084 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1085 const char *name, int name_len, 1086 const char *data, int data_len, 1087 void *ctx); 1088 1089 /* 1090 * Helper function to iterate the entries in ONE btrfs_dir_item. 1091 * The iterate callback may return a non zero value to stop iteration. This can 1092 * be a negative value for error codes or 1 to simply stop it. 1093 * 1094 * path must point to the dir item when called. 1095 */ 1096 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1097 iterate_dir_item_t iterate, void *ctx) 1098 { 1099 int ret = 0; 1100 struct extent_buffer *eb; 1101 struct btrfs_dir_item *di; 1102 struct btrfs_key di_key; 1103 char *buf = NULL; 1104 int buf_len; 1105 u32 name_len; 1106 u32 data_len; 1107 u32 cur; 1108 u32 len; 1109 u32 total; 1110 int slot; 1111 int num; 1112 1113 /* 1114 * Start with a small buffer (1 page). If later we end up needing more 1115 * space, which can happen for xattrs on a fs with a leaf size greater 1116 * than the page size, attempt to increase the buffer. Typically xattr 1117 * values are small. 1118 */ 1119 buf_len = PATH_MAX; 1120 buf = kmalloc(buf_len, GFP_KERNEL); 1121 if (!buf) { 1122 ret = -ENOMEM; 1123 goto out; 1124 } 1125 1126 eb = path->nodes[0]; 1127 slot = path->slots[0]; 1128 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1129 cur = 0; 1130 len = 0; 1131 total = btrfs_item_size(eb, slot); 1132 1133 num = 0; 1134 while (cur < total) { 1135 name_len = btrfs_dir_name_len(eb, di); 1136 data_len = btrfs_dir_data_len(eb, di); 1137 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1138 1139 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1140 if (name_len > XATTR_NAME_MAX) { 1141 ret = -ENAMETOOLONG; 1142 goto out; 1143 } 1144 if (name_len + data_len > 1145 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1146 ret = -E2BIG; 1147 goto out; 1148 } 1149 } else { 1150 /* 1151 * Path too long 1152 */ 1153 if (name_len + data_len > PATH_MAX) { 1154 ret = -ENAMETOOLONG; 1155 goto out; 1156 } 1157 } 1158 1159 if (name_len + data_len > buf_len) { 1160 buf_len = name_len + data_len; 1161 if (is_vmalloc_addr(buf)) { 1162 vfree(buf); 1163 buf = NULL; 1164 } else { 1165 char *tmp = krealloc(buf, buf_len, 1166 GFP_KERNEL | __GFP_NOWARN); 1167 1168 if (!tmp) 1169 kfree(buf); 1170 buf = tmp; 1171 } 1172 if (!buf) { 1173 buf = kvmalloc(buf_len, GFP_KERNEL); 1174 if (!buf) { 1175 ret = -ENOMEM; 1176 goto out; 1177 } 1178 } 1179 } 1180 1181 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1182 name_len + data_len); 1183 1184 len = sizeof(*di) + name_len + data_len; 1185 di = (struct btrfs_dir_item *)((char *)di + len); 1186 cur += len; 1187 1188 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1189 data_len, ctx); 1190 if (ret < 0) 1191 goto out; 1192 if (ret) { 1193 ret = 0; 1194 goto out; 1195 } 1196 1197 num++; 1198 } 1199 1200 out: 1201 kvfree(buf); 1202 return ret; 1203 } 1204 1205 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1206 { 1207 int ret; 1208 struct fs_path *pt = ctx; 1209 1210 ret = fs_path_copy(pt, p); 1211 if (ret < 0) 1212 return ret; 1213 1214 /* we want the first only */ 1215 return 1; 1216 } 1217 1218 /* 1219 * Retrieve the first path of an inode. If an inode has more then one 1220 * ref/hardlink, this is ignored. 1221 */ 1222 static int get_inode_path(struct btrfs_root *root, 1223 u64 ino, struct fs_path *path) 1224 { 1225 int ret; 1226 struct btrfs_key key, found_key; 1227 struct btrfs_path *p; 1228 1229 p = alloc_path_for_send(); 1230 if (!p) 1231 return -ENOMEM; 1232 1233 fs_path_reset(path); 1234 1235 key.objectid = ino; 1236 key.type = BTRFS_INODE_REF_KEY; 1237 key.offset = 0; 1238 1239 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1240 if (ret < 0) 1241 goto out; 1242 if (ret) { 1243 ret = 1; 1244 goto out; 1245 } 1246 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1247 if (found_key.objectid != ino || 1248 (found_key.type != BTRFS_INODE_REF_KEY && 1249 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1250 ret = -ENOENT; 1251 goto out; 1252 } 1253 1254 ret = iterate_inode_ref(root, p, &found_key, 1, 1255 __copy_first_ref, path); 1256 if (ret < 0) 1257 goto out; 1258 ret = 0; 1259 1260 out: 1261 btrfs_free_path(p); 1262 return ret; 1263 } 1264 1265 struct backref_ctx { 1266 struct send_ctx *sctx; 1267 1268 /* number of total found references */ 1269 u64 found; 1270 1271 /* 1272 * used for clones found in send_root. clones found behind cur_objectid 1273 * and cur_offset are not considered as allowed clones. 1274 */ 1275 u64 cur_objectid; 1276 u64 cur_offset; 1277 1278 /* may be truncated in case it's the last extent in a file */ 1279 u64 extent_len; 1280 1281 /* The bytenr the file extent item we are processing refers to. */ 1282 u64 bytenr; 1283 /* The owner (root id) of the data backref for the current extent. */ 1284 u64 backref_owner; 1285 /* The offset of the data backref for the current extent. */ 1286 u64 backref_offset; 1287 }; 1288 1289 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1290 { 1291 u64 root = (u64)(uintptr_t)key; 1292 const struct clone_root *cr = elt; 1293 1294 if (root < btrfs_root_id(cr->root)) 1295 return -1; 1296 if (root > btrfs_root_id(cr->root)) 1297 return 1; 1298 return 0; 1299 } 1300 1301 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1302 { 1303 const struct clone_root *cr1 = e1; 1304 const struct clone_root *cr2 = e2; 1305 1306 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1307 return -1; 1308 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1309 return 1; 1310 return 0; 1311 } 1312 1313 /* 1314 * Called for every backref that is found for the current extent. 1315 * Results are collected in sctx->clone_roots->ino/offset. 1316 */ 1317 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1318 void *ctx_) 1319 { 1320 struct backref_ctx *bctx = ctx_; 1321 struct clone_root *clone_root; 1322 1323 /* First check if the root is in the list of accepted clone sources */ 1324 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1325 bctx->sctx->clone_roots_cnt, 1326 sizeof(struct clone_root), 1327 __clone_root_cmp_bsearch); 1328 if (!clone_root) 1329 return 0; 1330 1331 /* This is our own reference, bail out as we can't clone from it. */ 1332 if (clone_root->root == bctx->sctx->send_root && 1333 ino == bctx->cur_objectid && 1334 offset == bctx->cur_offset) 1335 return 0; 1336 1337 /* 1338 * Make sure we don't consider clones from send_root that are 1339 * behind the current inode/offset. 1340 */ 1341 if (clone_root->root == bctx->sctx->send_root) { 1342 /* 1343 * If the source inode was not yet processed we can't issue a 1344 * clone operation, as the source extent does not exist yet at 1345 * the destination of the stream. 1346 */ 1347 if (ino > bctx->cur_objectid) 1348 return 0; 1349 /* 1350 * We clone from the inode currently being sent as long as the 1351 * source extent is already processed, otherwise we could try 1352 * to clone from an extent that does not exist yet at the 1353 * destination of the stream. 1354 */ 1355 if (ino == bctx->cur_objectid && 1356 offset + bctx->extent_len > 1357 bctx->sctx->cur_inode_next_write_offset) 1358 return 0; 1359 } 1360 1361 bctx->found++; 1362 clone_root->found_ref = true; 1363 1364 /* 1365 * If the given backref refers to a file extent item with a larger 1366 * number of bytes than what we found before, use the new one so that 1367 * we clone more optimally and end up doing less writes and getting 1368 * less exclusive, non-shared extents at the destination. 1369 */ 1370 if (num_bytes > clone_root->num_bytes) { 1371 clone_root->ino = ino; 1372 clone_root->offset = offset; 1373 clone_root->num_bytes = num_bytes; 1374 1375 /* 1376 * Found a perfect candidate, so there's no need to continue 1377 * backref walking. 1378 */ 1379 if (num_bytes >= bctx->extent_len) 1380 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1381 } 1382 1383 return 0; 1384 } 1385 1386 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1387 const u64 **root_ids_ret, int *root_count_ret) 1388 { 1389 struct backref_ctx *bctx = ctx; 1390 struct send_ctx *sctx = bctx->sctx; 1391 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1392 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1393 struct btrfs_lru_cache_entry *raw_entry; 1394 struct backref_cache_entry *entry; 1395 1396 if (sctx->backref_cache.size == 0) 1397 return false; 1398 1399 /* 1400 * If relocation happened since we first filled the cache, then we must 1401 * empty the cache and can not use it, because even though we operate on 1402 * read-only roots, their leaves and nodes may have been reallocated and 1403 * now be used for different nodes/leaves of the same tree or some other 1404 * tree. 1405 * 1406 * We are called from iterate_extent_inodes() while either holding a 1407 * transaction handle or holding fs_info->commit_root_sem, so no need 1408 * to take any lock here. 1409 */ 1410 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1411 btrfs_lru_cache_clear(&sctx->backref_cache); 1412 return false; 1413 } 1414 1415 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1416 if (!raw_entry) 1417 return false; 1418 1419 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1420 *root_ids_ret = entry->root_ids; 1421 *root_count_ret = entry->num_roots; 1422 1423 return true; 1424 } 1425 1426 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1427 void *ctx) 1428 { 1429 struct backref_ctx *bctx = ctx; 1430 struct send_ctx *sctx = bctx->sctx; 1431 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1432 struct backref_cache_entry *new_entry; 1433 struct ulist_iterator uiter; 1434 struct ulist_node *node; 1435 int ret; 1436 1437 /* 1438 * We're called while holding a transaction handle or while holding 1439 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1440 * NOFS allocation. 1441 */ 1442 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1443 /* No worries, cache is optional. */ 1444 if (!new_entry) 1445 return; 1446 1447 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1448 new_entry->entry.gen = 0; 1449 new_entry->num_roots = 0; 1450 ULIST_ITER_INIT(&uiter); 1451 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1452 const u64 root_id = node->val; 1453 struct clone_root *root; 1454 1455 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1456 sctx->clone_roots_cnt, sizeof(struct clone_root), 1457 __clone_root_cmp_bsearch); 1458 if (!root) 1459 continue; 1460 1461 /* Too many roots, just exit, no worries as caching is optional. */ 1462 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1463 kfree(new_entry); 1464 return; 1465 } 1466 1467 new_entry->root_ids[new_entry->num_roots] = root_id; 1468 new_entry->num_roots++; 1469 } 1470 1471 /* 1472 * We may have not added any roots to the new cache entry, which means 1473 * none of the roots is part of the list of roots from which we are 1474 * allowed to clone. Cache the new entry as it's still useful to avoid 1475 * backref walking to determine which roots have a path to the leaf. 1476 * 1477 * Also use GFP_NOFS because we're called while holding a transaction 1478 * handle or while holding fs_info->commit_root_sem. 1479 */ 1480 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1481 GFP_NOFS); 1482 ASSERT(ret == 0 || ret == -ENOMEM); 1483 if (ret) { 1484 /* Caching is optional, no worries. */ 1485 kfree(new_entry); 1486 return; 1487 } 1488 1489 /* 1490 * We are called from iterate_extent_inodes() while either holding a 1491 * transaction handle or holding fs_info->commit_root_sem, so no need 1492 * to take any lock here. 1493 */ 1494 if (sctx->backref_cache.size == 1) 1495 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1496 } 1497 1498 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1499 const struct extent_buffer *leaf, void *ctx) 1500 { 1501 const u64 refs = btrfs_extent_refs(leaf, ei); 1502 const struct backref_ctx *bctx = ctx; 1503 const struct send_ctx *sctx = bctx->sctx; 1504 1505 if (bytenr == bctx->bytenr) { 1506 const u64 flags = btrfs_extent_flags(leaf, ei); 1507 1508 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1509 return -EUCLEAN; 1510 1511 /* 1512 * If we have only one reference and only the send root as a 1513 * clone source - meaning no clone roots were given in the 1514 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1515 * it's our reference and there's no point in doing backref 1516 * walking which is expensive, so exit early. 1517 */ 1518 if (refs == 1 && sctx->clone_roots_cnt == 1) 1519 return -ENOENT; 1520 } 1521 1522 /* 1523 * Backreference walking (iterate_extent_inodes() below) is currently 1524 * too expensive when an extent has a large number of references, both 1525 * in time spent and used memory. So for now just fallback to write 1526 * operations instead of clone operations when an extent has more than 1527 * a certain amount of references. 1528 */ 1529 if (refs > SEND_MAX_EXTENT_REFS) 1530 return -ENOENT; 1531 1532 return 0; 1533 } 1534 1535 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1536 { 1537 const struct backref_ctx *bctx = ctx; 1538 1539 if (ino == bctx->cur_objectid && 1540 root == bctx->backref_owner && 1541 offset == bctx->backref_offset) 1542 return true; 1543 1544 return false; 1545 } 1546 1547 /* 1548 * Given an inode, offset and extent item, it finds a good clone for a clone 1549 * instruction. Returns -ENOENT when none could be found. The function makes 1550 * sure that the returned clone is usable at the point where sending is at the 1551 * moment. This means, that no clones are accepted which lie behind the current 1552 * inode+offset. 1553 * 1554 * path must point to the extent item when called. 1555 */ 1556 static int find_extent_clone(struct send_ctx *sctx, 1557 struct btrfs_path *path, 1558 u64 ino, u64 data_offset, 1559 u64 ino_size, 1560 struct clone_root **found) 1561 { 1562 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1563 int ret; 1564 int extent_type; 1565 u64 disk_byte; 1566 u64 num_bytes; 1567 struct btrfs_file_extent_item *fi; 1568 struct extent_buffer *eb = path->nodes[0]; 1569 struct backref_ctx backref_ctx = { 0 }; 1570 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1571 struct clone_root *cur_clone_root; 1572 int compressed; 1573 u32 i; 1574 1575 /* 1576 * With fallocate we can get prealloc extents beyond the inode's i_size, 1577 * so we don't do anything here because clone operations can not clone 1578 * to a range beyond i_size without increasing the i_size of the 1579 * destination inode. 1580 */ 1581 if (data_offset >= ino_size) 1582 return 0; 1583 1584 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1585 extent_type = btrfs_file_extent_type(eb, fi); 1586 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1587 return -ENOENT; 1588 1589 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1590 if (disk_byte == 0) 1591 return -ENOENT; 1592 1593 compressed = btrfs_file_extent_compression(eb, fi); 1594 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1595 1596 /* 1597 * Setup the clone roots. 1598 */ 1599 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1600 cur_clone_root = sctx->clone_roots + i; 1601 cur_clone_root->ino = (u64)-1; 1602 cur_clone_root->offset = 0; 1603 cur_clone_root->num_bytes = 0; 1604 cur_clone_root->found_ref = false; 1605 } 1606 1607 backref_ctx.sctx = sctx; 1608 backref_ctx.cur_objectid = ino; 1609 backref_ctx.cur_offset = data_offset; 1610 backref_ctx.bytenr = disk_byte; 1611 /* 1612 * Use the header owner and not the send root's id, because in case of a 1613 * snapshot we can have shared subtrees. 1614 */ 1615 backref_ctx.backref_owner = btrfs_header_owner(eb); 1616 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1617 1618 /* 1619 * The last extent of a file may be too large due to page alignment. 1620 * We need to adjust extent_len in this case so that the checks in 1621 * iterate_backrefs() work. 1622 */ 1623 if (data_offset + num_bytes >= ino_size) 1624 backref_ctx.extent_len = ino_size - data_offset; 1625 else 1626 backref_ctx.extent_len = num_bytes; 1627 1628 /* 1629 * Now collect all backrefs. 1630 */ 1631 backref_walk_ctx.bytenr = disk_byte; 1632 if (compressed == BTRFS_COMPRESS_NONE) 1633 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1634 backref_walk_ctx.fs_info = fs_info; 1635 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1636 backref_walk_ctx.cache_store = store_backref_cache; 1637 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1638 backref_walk_ctx.check_extent_item = check_extent_item; 1639 backref_walk_ctx.user_ctx = &backref_ctx; 1640 1641 /* 1642 * If have a single clone root, then it's the send root and we can tell 1643 * the backref walking code to skip our own backref and not resolve it, 1644 * since we can not use it for cloning - the source and destination 1645 * ranges can't overlap and in case the leaf is shared through a subtree 1646 * due to snapshots, we can't use those other roots since they are not 1647 * in the list of clone roots. 1648 */ 1649 if (sctx->clone_roots_cnt == 1) 1650 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1651 1652 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1653 &backref_ctx); 1654 if (ret < 0) 1655 return ret; 1656 1657 down_read(&fs_info->commit_root_sem); 1658 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1659 /* 1660 * A transaction commit for a transaction in which block group 1661 * relocation was done just happened. 1662 * The disk_bytenr of the file extent item we processed is 1663 * possibly stale, referring to the extent's location before 1664 * relocation. So act as if we haven't found any clone sources 1665 * and fallback to write commands, which will read the correct 1666 * data from the new extent location. Otherwise we will fail 1667 * below because we haven't found our own back reference or we 1668 * could be getting incorrect sources in case the old extent 1669 * was already reallocated after the relocation. 1670 */ 1671 up_read(&fs_info->commit_root_sem); 1672 return -ENOENT; 1673 } 1674 up_read(&fs_info->commit_root_sem); 1675 1676 if (!backref_ctx.found) 1677 return -ENOENT; 1678 1679 cur_clone_root = NULL; 1680 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1681 struct clone_root *clone_root = &sctx->clone_roots[i]; 1682 1683 if (!clone_root->found_ref) 1684 continue; 1685 1686 /* 1687 * Choose the root from which we can clone more bytes, to 1688 * minimize write operations and therefore have more extent 1689 * sharing at the destination (the same as in the source). 1690 */ 1691 if (!cur_clone_root || 1692 clone_root->num_bytes > cur_clone_root->num_bytes) { 1693 cur_clone_root = clone_root; 1694 1695 /* 1696 * We found an optimal clone candidate (any inode from 1697 * any root is fine), so we're done. 1698 */ 1699 if (clone_root->num_bytes >= backref_ctx.extent_len) 1700 break; 1701 } 1702 } 1703 1704 if (cur_clone_root) { 1705 *found = cur_clone_root; 1706 ret = 0; 1707 } else { 1708 ret = -ENOENT; 1709 } 1710 1711 return ret; 1712 } 1713 1714 static int read_symlink(struct btrfs_root *root, 1715 u64 ino, 1716 struct fs_path *dest) 1717 { 1718 int ret; 1719 struct btrfs_path *path; 1720 struct btrfs_key key; 1721 struct btrfs_file_extent_item *ei; 1722 u8 type; 1723 u8 compression; 1724 unsigned long off; 1725 int len; 1726 1727 path = alloc_path_for_send(); 1728 if (!path) 1729 return -ENOMEM; 1730 1731 key.objectid = ino; 1732 key.type = BTRFS_EXTENT_DATA_KEY; 1733 key.offset = 0; 1734 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1735 if (ret < 0) 1736 goto out; 1737 if (ret) { 1738 /* 1739 * An empty symlink inode. Can happen in rare error paths when 1740 * creating a symlink (transaction committed before the inode 1741 * eviction handler removed the symlink inode items and a crash 1742 * happened in between or the subvol was snapshoted in between). 1743 * Print an informative message to dmesg/syslog so that the user 1744 * can delete the symlink. 1745 */ 1746 btrfs_err(root->fs_info, 1747 "Found empty symlink inode %llu at root %llu", 1748 ino, btrfs_root_id(root)); 1749 ret = -EIO; 1750 goto out; 1751 } 1752 1753 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1754 struct btrfs_file_extent_item); 1755 type = btrfs_file_extent_type(path->nodes[0], ei); 1756 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1757 ret = -EUCLEAN; 1758 btrfs_crit(root->fs_info, 1759 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1760 ino, btrfs_root_id(root), type); 1761 goto out; 1762 } 1763 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1764 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1765 ret = -EUCLEAN; 1766 btrfs_crit(root->fs_info, 1767 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1768 ino, btrfs_root_id(root), compression); 1769 goto out; 1770 } 1771 1772 off = btrfs_file_extent_inline_start(ei); 1773 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1774 1775 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1776 1777 out: 1778 btrfs_free_path(path); 1779 return ret; 1780 } 1781 1782 /* 1783 * Helper function to generate a file name that is unique in the root of 1784 * send_root and parent_root. This is used to generate names for orphan inodes. 1785 */ 1786 static int gen_unique_name(struct send_ctx *sctx, 1787 u64 ino, u64 gen, 1788 struct fs_path *dest) 1789 { 1790 int ret = 0; 1791 struct btrfs_path *path; 1792 struct btrfs_dir_item *di; 1793 char tmp[64]; 1794 int len; 1795 u64 idx = 0; 1796 1797 path = alloc_path_for_send(); 1798 if (!path) 1799 return -ENOMEM; 1800 1801 while (1) { 1802 struct fscrypt_str tmp_name; 1803 1804 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1805 ino, gen, idx); 1806 ASSERT(len < sizeof(tmp)); 1807 tmp_name.name = tmp; 1808 tmp_name.len = len; 1809 1810 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1811 path, BTRFS_FIRST_FREE_OBJECTID, 1812 &tmp_name, 0); 1813 btrfs_release_path(path); 1814 if (IS_ERR(di)) { 1815 ret = PTR_ERR(di); 1816 goto out; 1817 } 1818 if (di) { 1819 /* not unique, try again */ 1820 idx++; 1821 continue; 1822 } 1823 1824 if (!sctx->parent_root) { 1825 /* unique */ 1826 ret = 0; 1827 break; 1828 } 1829 1830 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1831 path, BTRFS_FIRST_FREE_OBJECTID, 1832 &tmp_name, 0); 1833 btrfs_release_path(path); 1834 if (IS_ERR(di)) { 1835 ret = PTR_ERR(di); 1836 goto out; 1837 } 1838 if (di) { 1839 /* not unique, try again */ 1840 idx++; 1841 continue; 1842 } 1843 /* unique */ 1844 break; 1845 } 1846 1847 ret = fs_path_add(dest, tmp, len); 1848 1849 out: 1850 btrfs_free_path(path); 1851 return ret; 1852 } 1853 1854 enum inode_state { 1855 inode_state_no_change, 1856 inode_state_will_create, 1857 inode_state_did_create, 1858 inode_state_will_delete, 1859 inode_state_did_delete, 1860 }; 1861 1862 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1863 u64 *send_gen, u64 *parent_gen) 1864 { 1865 int ret; 1866 int left_ret; 1867 int right_ret; 1868 u64 left_gen; 1869 u64 right_gen = 0; 1870 struct btrfs_inode_info info; 1871 1872 ret = get_inode_info(sctx->send_root, ino, &info); 1873 if (ret < 0 && ret != -ENOENT) 1874 return ret; 1875 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1876 left_gen = info.gen; 1877 if (send_gen) 1878 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1879 1880 if (!sctx->parent_root) { 1881 right_ret = -ENOENT; 1882 } else { 1883 ret = get_inode_info(sctx->parent_root, ino, &info); 1884 if (ret < 0 && ret != -ENOENT) 1885 return ret; 1886 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1887 right_gen = info.gen; 1888 if (parent_gen) 1889 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1890 } 1891 1892 if (!left_ret && !right_ret) { 1893 if (left_gen == gen && right_gen == gen) { 1894 ret = inode_state_no_change; 1895 } else if (left_gen == gen) { 1896 if (ino < sctx->send_progress) 1897 ret = inode_state_did_create; 1898 else 1899 ret = inode_state_will_create; 1900 } else if (right_gen == gen) { 1901 if (ino < sctx->send_progress) 1902 ret = inode_state_did_delete; 1903 else 1904 ret = inode_state_will_delete; 1905 } else { 1906 ret = -ENOENT; 1907 } 1908 } else if (!left_ret) { 1909 if (left_gen == gen) { 1910 if (ino < sctx->send_progress) 1911 ret = inode_state_did_create; 1912 else 1913 ret = inode_state_will_create; 1914 } else { 1915 ret = -ENOENT; 1916 } 1917 } else if (!right_ret) { 1918 if (right_gen == gen) { 1919 if (ino < sctx->send_progress) 1920 ret = inode_state_did_delete; 1921 else 1922 ret = inode_state_will_delete; 1923 } else { 1924 ret = -ENOENT; 1925 } 1926 } else { 1927 ret = -ENOENT; 1928 } 1929 1930 return ret; 1931 } 1932 1933 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1934 u64 *send_gen, u64 *parent_gen) 1935 { 1936 int ret; 1937 1938 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1939 return 1; 1940 1941 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1942 if (ret < 0) 1943 return ret; 1944 1945 if (ret == inode_state_no_change || 1946 ret == inode_state_did_create || 1947 ret == inode_state_will_delete) 1948 return 1; 1949 1950 return 0; 1951 } 1952 1953 /* 1954 * Helper function to lookup a dir item in a dir. 1955 */ 1956 static int lookup_dir_item_inode(struct btrfs_root *root, 1957 u64 dir, const char *name, int name_len, 1958 u64 *found_inode) 1959 { 1960 int ret = 0; 1961 struct btrfs_dir_item *di; 1962 struct btrfs_key key; 1963 struct btrfs_path *path; 1964 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1965 1966 path = alloc_path_for_send(); 1967 if (!path) 1968 return -ENOMEM; 1969 1970 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1971 if (IS_ERR_OR_NULL(di)) { 1972 ret = di ? PTR_ERR(di) : -ENOENT; 1973 goto out; 1974 } 1975 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1976 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1977 ret = -ENOENT; 1978 goto out; 1979 } 1980 *found_inode = key.objectid; 1981 1982 out: 1983 btrfs_free_path(path); 1984 return ret; 1985 } 1986 1987 /* 1988 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1989 * generation of the parent dir and the name of the dir entry. 1990 */ 1991 static int get_first_ref(struct btrfs_root *root, u64 ino, 1992 u64 *dir, u64 *dir_gen, struct fs_path *name) 1993 { 1994 int ret; 1995 struct btrfs_key key; 1996 struct btrfs_key found_key; 1997 struct btrfs_path *path; 1998 int len; 1999 u64 parent_dir; 2000 2001 path = alloc_path_for_send(); 2002 if (!path) 2003 return -ENOMEM; 2004 2005 key.objectid = ino; 2006 key.type = BTRFS_INODE_REF_KEY; 2007 key.offset = 0; 2008 2009 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2010 if (ret < 0) 2011 goto out; 2012 if (!ret) 2013 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2014 path->slots[0]); 2015 if (ret || found_key.objectid != ino || 2016 (found_key.type != BTRFS_INODE_REF_KEY && 2017 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2018 ret = -ENOENT; 2019 goto out; 2020 } 2021 2022 if (found_key.type == BTRFS_INODE_REF_KEY) { 2023 struct btrfs_inode_ref *iref; 2024 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2025 struct btrfs_inode_ref); 2026 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2027 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2028 (unsigned long)(iref + 1), 2029 len); 2030 parent_dir = found_key.offset; 2031 } else { 2032 struct btrfs_inode_extref *extref; 2033 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2034 struct btrfs_inode_extref); 2035 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2036 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2037 (unsigned long)&extref->name, len); 2038 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2039 } 2040 if (ret < 0) 2041 goto out; 2042 btrfs_release_path(path); 2043 2044 if (dir_gen) { 2045 ret = get_inode_gen(root, parent_dir, dir_gen); 2046 if (ret < 0) 2047 goto out; 2048 } 2049 2050 *dir = parent_dir; 2051 2052 out: 2053 btrfs_free_path(path); 2054 return ret; 2055 } 2056 2057 static int is_first_ref(struct btrfs_root *root, 2058 u64 ino, u64 dir, 2059 const char *name, int name_len) 2060 { 2061 int ret; 2062 struct fs_path *tmp_name; 2063 u64 tmp_dir; 2064 2065 tmp_name = fs_path_alloc(); 2066 if (!tmp_name) 2067 return -ENOMEM; 2068 2069 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2070 if (ret < 0) 2071 goto out; 2072 2073 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2074 ret = 0; 2075 goto out; 2076 } 2077 2078 ret = !memcmp(tmp_name->start, name, name_len); 2079 2080 out: 2081 fs_path_free(tmp_name); 2082 return ret; 2083 } 2084 2085 /* 2086 * Used by process_recorded_refs to determine if a new ref would overwrite an 2087 * already existing ref. In case it detects an overwrite, it returns the 2088 * inode/gen in who_ino/who_gen. 2089 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2090 * to make sure later references to the overwritten inode are possible. 2091 * Orphanizing is however only required for the first ref of an inode. 2092 * process_recorded_refs does an additional is_first_ref check to see if 2093 * orphanizing is really required. 2094 */ 2095 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2096 const char *name, int name_len, 2097 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2098 { 2099 int ret; 2100 u64 parent_root_dir_gen; 2101 u64 other_inode = 0; 2102 struct btrfs_inode_info info; 2103 2104 if (!sctx->parent_root) 2105 return 0; 2106 2107 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2108 if (ret <= 0) 2109 return 0; 2110 2111 /* 2112 * If we have a parent root we need to verify that the parent dir was 2113 * not deleted and then re-created, if it was then we have no overwrite 2114 * and we can just unlink this entry. 2115 * 2116 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2117 * parent root. 2118 */ 2119 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2120 parent_root_dir_gen != dir_gen) 2121 return 0; 2122 2123 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2124 &other_inode); 2125 if (ret == -ENOENT) 2126 return 0; 2127 else if (ret < 0) 2128 return ret; 2129 2130 /* 2131 * Check if the overwritten ref was already processed. If yes, the ref 2132 * was already unlinked/moved, so we can safely assume that we will not 2133 * overwrite anything at this point in time. 2134 */ 2135 if (other_inode > sctx->send_progress || 2136 is_waiting_for_move(sctx, other_inode)) { 2137 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2138 if (ret < 0) 2139 return ret; 2140 2141 *who_ino = other_inode; 2142 *who_gen = info.gen; 2143 *who_mode = info.mode; 2144 return 1; 2145 } 2146 2147 return 0; 2148 } 2149 2150 /* 2151 * Checks if the ref was overwritten by an already processed inode. This is 2152 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2153 * thus the orphan name needs be used. 2154 * process_recorded_refs also uses it to avoid unlinking of refs that were 2155 * overwritten. 2156 */ 2157 static int did_overwrite_ref(struct send_ctx *sctx, 2158 u64 dir, u64 dir_gen, 2159 u64 ino, u64 ino_gen, 2160 const char *name, int name_len) 2161 { 2162 int ret; 2163 u64 ow_inode; 2164 u64 ow_gen = 0; 2165 u64 send_root_dir_gen; 2166 2167 if (!sctx->parent_root) 2168 return 0; 2169 2170 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2171 if (ret <= 0) 2172 return ret; 2173 2174 /* 2175 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2176 * send root. 2177 */ 2178 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2179 return 0; 2180 2181 /* check if the ref was overwritten by another ref */ 2182 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2183 &ow_inode); 2184 if (ret == -ENOENT) { 2185 /* was never and will never be overwritten */ 2186 return 0; 2187 } else if (ret < 0) { 2188 return ret; 2189 } 2190 2191 if (ow_inode == ino) { 2192 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2193 if (ret < 0) 2194 return ret; 2195 2196 /* It's the same inode, so no overwrite happened. */ 2197 if (ow_gen == ino_gen) 2198 return 0; 2199 } 2200 2201 /* 2202 * We know that it is or will be overwritten. Check this now. 2203 * The current inode being processed might have been the one that caused 2204 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2205 * the current inode being processed. 2206 */ 2207 if (ow_inode < sctx->send_progress) 2208 return 1; 2209 2210 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2211 if (ow_gen == 0) { 2212 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2213 if (ret < 0) 2214 return ret; 2215 } 2216 if (ow_gen == sctx->cur_inode_gen) 2217 return 1; 2218 } 2219 2220 return 0; 2221 } 2222 2223 /* 2224 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2225 * that got overwritten. This is used by process_recorded_refs to determine 2226 * if it has to use the path as returned by get_cur_path or the orphan name. 2227 */ 2228 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2229 { 2230 int ret = 0; 2231 struct fs_path *name = NULL; 2232 u64 dir; 2233 u64 dir_gen; 2234 2235 if (!sctx->parent_root) 2236 goto out; 2237 2238 name = fs_path_alloc(); 2239 if (!name) 2240 return -ENOMEM; 2241 2242 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2243 if (ret < 0) 2244 goto out; 2245 2246 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2247 name->start, fs_path_len(name)); 2248 2249 out: 2250 fs_path_free(name); 2251 return ret; 2252 } 2253 2254 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2255 u64 ino, u64 gen) 2256 { 2257 struct btrfs_lru_cache_entry *entry; 2258 2259 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2260 if (!entry) 2261 return NULL; 2262 2263 return container_of(entry, struct name_cache_entry, entry); 2264 } 2265 2266 /* 2267 * Used by get_cur_path for each ref up to the root. 2268 * Returns 0 if it succeeded. 2269 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2270 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2271 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2272 * Returns <0 in case of error. 2273 */ 2274 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2275 u64 ino, u64 gen, 2276 u64 *parent_ino, 2277 u64 *parent_gen, 2278 struct fs_path *dest) 2279 { 2280 int ret; 2281 int nce_ret; 2282 struct name_cache_entry *nce; 2283 2284 /* 2285 * First check if we already did a call to this function with the same 2286 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2287 * return the cached result. 2288 */ 2289 nce = name_cache_search(sctx, ino, gen); 2290 if (nce) { 2291 if (ino < sctx->send_progress && nce->need_later_update) { 2292 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2293 nce = NULL; 2294 } else { 2295 *parent_ino = nce->parent_ino; 2296 *parent_gen = nce->parent_gen; 2297 ret = fs_path_add(dest, nce->name, nce->name_len); 2298 if (ret < 0) 2299 return ret; 2300 return nce->ret; 2301 } 2302 } 2303 2304 /* 2305 * If the inode is not existent yet, add the orphan name and return 1. 2306 * This should only happen for the parent dir that we determine in 2307 * record_new_ref_if_needed(). 2308 */ 2309 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2310 if (ret < 0) 2311 return ret; 2312 2313 if (!ret) { 2314 ret = gen_unique_name(sctx, ino, gen, dest); 2315 if (ret < 0) 2316 return ret; 2317 ret = 1; 2318 goto out_cache; 2319 } 2320 2321 /* 2322 * Depending on whether the inode was already processed or not, use 2323 * send_root or parent_root for ref lookup. 2324 */ 2325 if (ino < sctx->send_progress) 2326 ret = get_first_ref(sctx->send_root, ino, 2327 parent_ino, parent_gen, dest); 2328 else 2329 ret = get_first_ref(sctx->parent_root, ino, 2330 parent_ino, parent_gen, dest); 2331 if (ret < 0) 2332 return ret; 2333 2334 /* 2335 * Check if the ref was overwritten by an inode's ref that was processed 2336 * earlier. If yes, treat as orphan and return 1. 2337 */ 2338 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2339 dest->start, fs_path_len(dest)); 2340 if (ret < 0) 2341 return ret; 2342 if (ret) { 2343 fs_path_reset(dest); 2344 ret = gen_unique_name(sctx, ino, gen, dest); 2345 if (ret < 0) 2346 return ret; 2347 ret = 1; 2348 } 2349 2350 out_cache: 2351 /* 2352 * Store the result of the lookup in the name cache. 2353 */ 2354 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2355 if (!nce) 2356 return -ENOMEM; 2357 2358 nce->entry.key = ino; 2359 nce->entry.gen = gen; 2360 nce->parent_ino = *parent_ino; 2361 nce->parent_gen = *parent_gen; 2362 nce->name_len = fs_path_len(dest); 2363 nce->ret = ret; 2364 memcpy(nce->name, dest->start, nce->name_len); 2365 2366 if (ino < sctx->send_progress) 2367 nce->need_later_update = 0; 2368 else 2369 nce->need_later_update = 1; 2370 2371 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2372 if (nce_ret < 0) { 2373 kfree(nce); 2374 return nce_ret; 2375 } 2376 2377 return ret; 2378 } 2379 2380 /* 2381 * Magic happens here. This function returns the first ref to an inode as it 2382 * would look like while receiving the stream at this point in time. 2383 * We walk the path up to the root. For every inode in between, we check if it 2384 * was already processed/sent. If yes, we continue with the parent as found 2385 * in send_root. If not, we continue with the parent as found in parent_root. 2386 * If we encounter an inode that was deleted at this point in time, we use the 2387 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2388 * that were not created yet and overwritten inodes/refs. 2389 * 2390 * When do we have orphan inodes: 2391 * 1. When an inode is freshly created and thus no valid refs are available yet 2392 * 2. When a directory lost all it's refs (deleted) but still has dir items 2393 * inside which were not processed yet (pending for move/delete). If anyone 2394 * tried to get the path to the dir items, it would get a path inside that 2395 * orphan directory. 2396 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2397 * of an unprocessed inode. If in that case the first ref would be 2398 * overwritten, the overwritten inode gets "orphanized". Later when we 2399 * process this overwritten inode, it is restored at a new place by moving 2400 * the orphan inode. 2401 * 2402 * sctx->send_progress tells this function at which point in time receiving 2403 * would be. 2404 */ 2405 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2406 struct fs_path *dest) 2407 { 2408 int ret = 0; 2409 struct fs_path *name = NULL; 2410 u64 parent_inode = 0; 2411 u64 parent_gen = 0; 2412 int stop = 0; 2413 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); 2414 2415 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { 2416 if (dest != &sctx->cur_inode_path) 2417 return fs_path_copy(dest, &sctx->cur_inode_path); 2418 2419 return 0; 2420 } 2421 2422 name = fs_path_alloc(); 2423 if (!name) { 2424 ret = -ENOMEM; 2425 goto out; 2426 } 2427 2428 dest->reversed = 1; 2429 fs_path_reset(dest); 2430 2431 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2432 struct waiting_dir_move *wdm; 2433 2434 fs_path_reset(name); 2435 2436 if (is_waiting_for_rm(sctx, ino, gen)) { 2437 ret = gen_unique_name(sctx, ino, gen, name); 2438 if (ret < 0) 2439 goto out; 2440 ret = fs_path_add_path(dest, name); 2441 break; 2442 } 2443 2444 wdm = get_waiting_dir_move(sctx, ino); 2445 if (wdm && wdm->orphanized) { 2446 ret = gen_unique_name(sctx, ino, gen, name); 2447 stop = 1; 2448 } else if (wdm) { 2449 ret = get_first_ref(sctx->parent_root, ino, 2450 &parent_inode, &parent_gen, name); 2451 } else { 2452 ret = __get_cur_name_and_parent(sctx, ino, gen, 2453 &parent_inode, 2454 &parent_gen, name); 2455 if (ret) 2456 stop = 1; 2457 } 2458 2459 if (ret < 0) 2460 goto out; 2461 2462 ret = fs_path_add_path(dest, name); 2463 if (ret < 0) 2464 goto out; 2465 2466 ino = parent_inode; 2467 gen = parent_gen; 2468 } 2469 2470 out: 2471 fs_path_free(name); 2472 if (!ret) { 2473 fs_path_unreverse(dest); 2474 if (is_cur_inode && dest != &sctx->cur_inode_path) 2475 ret = fs_path_copy(&sctx->cur_inode_path, dest); 2476 } 2477 2478 return ret; 2479 } 2480 2481 /* 2482 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2483 */ 2484 static int send_subvol_begin(struct send_ctx *sctx) 2485 { 2486 int ret; 2487 struct btrfs_root *send_root = sctx->send_root; 2488 struct btrfs_root *parent_root = sctx->parent_root; 2489 struct btrfs_path *path; 2490 struct btrfs_key key; 2491 struct btrfs_root_ref *ref; 2492 struct extent_buffer *leaf; 2493 char *name = NULL; 2494 int namelen; 2495 2496 path = btrfs_alloc_path(); 2497 if (!path) 2498 return -ENOMEM; 2499 2500 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2501 if (!name) { 2502 btrfs_free_path(path); 2503 return -ENOMEM; 2504 } 2505 2506 key.objectid = btrfs_root_id(send_root); 2507 key.type = BTRFS_ROOT_BACKREF_KEY; 2508 key.offset = 0; 2509 2510 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2511 &key, path, 1, 0); 2512 if (ret < 0) 2513 goto out; 2514 if (ret) { 2515 ret = -ENOENT; 2516 goto out; 2517 } 2518 2519 leaf = path->nodes[0]; 2520 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2521 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2522 key.objectid != btrfs_root_id(send_root)) { 2523 ret = -ENOENT; 2524 goto out; 2525 } 2526 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2527 namelen = btrfs_root_ref_name_len(leaf, ref); 2528 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2529 btrfs_release_path(path); 2530 2531 if (parent_root) { 2532 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2533 if (ret < 0) 2534 goto out; 2535 } else { 2536 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2537 if (ret < 0) 2538 goto out; 2539 } 2540 2541 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2542 2543 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2544 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2545 sctx->send_root->root_item.received_uuid); 2546 else 2547 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2548 sctx->send_root->root_item.uuid); 2549 2550 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2551 btrfs_root_ctransid(&sctx->send_root->root_item)); 2552 if (parent_root) { 2553 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2554 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2555 parent_root->root_item.received_uuid); 2556 else 2557 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2558 parent_root->root_item.uuid); 2559 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2560 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2561 } 2562 2563 ret = send_cmd(sctx); 2564 2565 tlv_put_failure: 2566 out: 2567 btrfs_free_path(path); 2568 kfree(name); 2569 return ret; 2570 } 2571 2572 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) 2573 { 2574 if (fs_path_len(&sctx->cur_inode_path) == 0) { 2575 int ret; 2576 2577 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2578 &sctx->cur_inode_path); 2579 if (ret < 0) 2580 return ERR_PTR(ret); 2581 } 2582 2583 return &sctx->cur_inode_path; 2584 } 2585 2586 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) 2587 { 2588 struct fs_path *path; 2589 int ret; 2590 2591 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 2592 return get_cur_inode_path(sctx); 2593 2594 path = fs_path_alloc(); 2595 if (!path) 2596 return ERR_PTR(-ENOMEM); 2597 2598 ret = get_cur_path(sctx, ino, gen, path); 2599 if (ret < 0) { 2600 fs_path_free(path); 2601 return ERR_PTR(ret); 2602 } 2603 2604 return path; 2605 } 2606 2607 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) 2608 { 2609 if (path != &sctx->cur_inode_path) 2610 fs_path_free(path); 2611 } 2612 2613 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2614 { 2615 int ret = 0; 2616 struct fs_path *p; 2617 2618 p = get_path_for_command(sctx, ino, gen); 2619 if (IS_ERR(p)) 2620 return PTR_ERR(p); 2621 2622 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2623 if (ret < 0) 2624 goto out; 2625 2626 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2627 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2628 2629 ret = send_cmd(sctx); 2630 2631 tlv_put_failure: 2632 out: 2633 free_path_for_command(sctx, p); 2634 return ret; 2635 } 2636 2637 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2638 { 2639 int ret = 0; 2640 struct fs_path *p; 2641 2642 p = get_path_for_command(sctx, ino, gen); 2643 if (IS_ERR(p)) 2644 return PTR_ERR(p); 2645 2646 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2647 if (ret < 0) 2648 goto out; 2649 2650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2652 2653 ret = send_cmd(sctx); 2654 2655 tlv_put_failure: 2656 out: 2657 free_path_for_command(sctx, p); 2658 return ret; 2659 } 2660 2661 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2662 { 2663 int ret = 0; 2664 struct fs_path *p; 2665 2666 if (sctx->proto < 2) 2667 return 0; 2668 2669 p = get_path_for_command(sctx, ino, gen); 2670 if (IS_ERR(p)) 2671 return PTR_ERR(p); 2672 2673 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2674 if (ret < 0) 2675 goto out; 2676 2677 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2678 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2679 2680 ret = send_cmd(sctx); 2681 2682 tlv_put_failure: 2683 out: 2684 free_path_for_command(sctx, p); 2685 return ret; 2686 } 2687 2688 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2689 { 2690 int ret = 0; 2691 struct fs_path *p; 2692 2693 p = get_path_for_command(sctx, ino, gen); 2694 if (IS_ERR(p)) 2695 return PTR_ERR(p); 2696 2697 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2698 if (ret < 0) 2699 goto out; 2700 2701 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2702 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2703 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2704 2705 ret = send_cmd(sctx); 2706 2707 tlv_put_failure: 2708 out: 2709 free_path_for_command(sctx, p); 2710 return ret; 2711 } 2712 2713 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2714 { 2715 int ret = 0; 2716 struct fs_path *p = NULL; 2717 struct btrfs_inode_item *ii; 2718 struct btrfs_path *path = NULL; 2719 struct extent_buffer *eb; 2720 struct btrfs_key key; 2721 int slot; 2722 2723 p = get_path_for_command(sctx, ino, gen); 2724 if (IS_ERR(p)) 2725 return PTR_ERR(p); 2726 2727 path = alloc_path_for_send(); 2728 if (!path) { 2729 ret = -ENOMEM; 2730 goto out; 2731 } 2732 2733 key.objectid = ino; 2734 key.type = BTRFS_INODE_ITEM_KEY; 2735 key.offset = 0; 2736 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2737 if (ret > 0) 2738 ret = -ENOENT; 2739 if (ret < 0) 2740 goto out; 2741 2742 eb = path->nodes[0]; 2743 slot = path->slots[0]; 2744 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2745 2746 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2747 if (ret < 0) 2748 goto out; 2749 2750 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2751 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2752 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2753 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2754 if (sctx->proto >= 2) 2755 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2756 2757 ret = send_cmd(sctx); 2758 2759 tlv_put_failure: 2760 out: 2761 free_path_for_command(sctx, p); 2762 btrfs_free_path(path); 2763 return ret; 2764 } 2765 2766 /* 2767 * If the cache is full, we can't remove entries from it and do a call to 2768 * send_utimes() for each respective inode, because we might be finishing 2769 * processing an inode that is a directory and it just got renamed, and existing 2770 * entries in the cache may refer to inodes that have the directory in their 2771 * full path - in which case we would generate outdated paths (pre-rename) 2772 * for the inodes that the cache entries point to. Instead of prunning the 2773 * cache when inserting, do it after we finish processing each inode at 2774 * finish_inode_if_needed(). 2775 */ 2776 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2777 { 2778 struct btrfs_lru_cache_entry *entry; 2779 int ret; 2780 2781 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2782 if (entry != NULL) 2783 return 0; 2784 2785 /* Caching is optional, don't fail if we can't allocate memory. */ 2786 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2787 if (!entry) 2788 return send_utimes(sctx, dir, gen); 2789 2790 entry->key = dir; 2791 entry->gen = gen; 2792 2793 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2794 ASSERT(ret != -EEXIST); 2795 if (ret) { 2796 kfree(entry); 2797 return send_utimes(sctx, dir, gen); 2798 } 2799 2800 return 0; 2801 } 2802 2803 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2804 { 2805 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2806 struct btrfs_lru_cache_entry *lru; 2807 int ret; 2808 2809 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2810 ASSERT(lru != NULL); 2811 2812 ret = send_utimes(sctx, lru->key, lru->gen); 2813 if (ret) 2814 return ret; 2815 2816 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2817 } 2818 2819 return 0; 2820 } 2821 2822 /* 2823 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2824 * a valid path yet because we did not process the refs yet. So, the inode 2825 * is created as orphan. 2826 */ 2827 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2828 { 2829 int ret = 0; 2830 struct fs_path *p; 2831 int cmd; 2832 struct btrfs_inode_info info; 2833 u64 gen; 2834 u64 mode; 2835 u64 rdev; 2836 2837 p = fs_path_alloc(); 2838 if (!p) 2839 return -ENOMEM; 2840 2841 if (ino != sctx->cur_ino) { 2842 ret = get_inode_info(sctx->send_root, ino, &info); 2843 if (ret < 0) 2844 goto out; 2845 gen = info.gen; 2846 mode = info.mode; 2847 rdev = info.rdev; 2848 } else { 2849 gen = sctx->cur_inode_gen; 2850 mode = sctx->cur_inode_mode; 2851 rdev = sctx->cur_inode_rdev; 2852 } 2853 2854 if (S_ISREG(mode)) { 2855 cmd = BTRFS_SEND_C_MKFILE; 2856 } else if (S_ISDIR(mode)) { 2857 cmd = BTRFS_SEND_C_MKDIR; 2858 } else if (S_ISLNK(mode)) { 2859 cmd = BTRFS_SEND_C_SYMLINK; 2860 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2861 cmd = BTRFS_SEND_C_MKNOD; 2862 } else if (S_ISFIFO(mode)) { 2863 cmd = BTRFS_SEND_C_MKFIFO; 2864 } else if (S_ISSOCK(mode)) { 2865 cmd = BTRFS_SEND_C_MKSOCK; 2866 } else { 2867 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2868 (int)(mode & S_IFMT)); 2869 ret = -EOPNOTSUPP; 2870 goto out; 2871 } 2872 2873 ret = begin_cmd(sctx, cmd); 2874 if (ret < 0) 2875 goto out; 2876 2877 ret = gen_unique_name(sctx, ino, gen, p); 2878 if (ret < 0) 2879 goto out; 2880 2881 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2882 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2883 2884 if (S_ISLNK(mode)) { 2885 fs_path_reset(p); 2886 ret = read_symlink(sctx->send_root, ino, p); 2887 if (ret < 0) 2888 goto out; 2889 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2890 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2891 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2892 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2893 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2894 } 2895 2896 ret = send_cmd(sctx); 2897 if (ret < 0) 2898 goto out; 2899 2900 2901 tlv_put_failure: 2902 out: 2903 fs_path_free(p); 2904 return ret; 2905 } 2906 2907 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2908 { 2909 struct btrfs_lru_cache_entry *entry; 2910 int ret; 2911 2912 /* Caching is optional, ignore any failures. */ 2913 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2914 if (!entry) 2915 return; 2916 2917 entry->key = dir; 2918 entry->gen = 0; 2919 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2920 if (ret < 0) 2921 kfree(entry); 2922 } 2923 2924 /* 2925 * We need some special handling for inodes that get processed before the parent 2926 * directory got created. See process_recorded_refs for details. 2927 * This function does the check if we already created the dir out of order. 2928 */ 2929 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2930 { 2931 int ret = 0; 2932 int iter_ret = 0; 2933 struct btrfs_path *path = NULL; 2934 struct btrfs_key key; 2935 struct btrfs_key found_key; 2936 struct btrfs_key di_key; 2937 struct btrfs_dir_item *di; 2938 2939 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2940 return 1; 2941 2942 path = alloc_path_for_send(); 2943 if (!path) 2944 return -ENOMEM; 2945 2946 key.objectid = dir; 2947 key.type = BTRFS_DIR_INDEX_KEY; 2948 key.offset = 0; 2949 2950 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2951 struct extent_buffer *eb = path->nodes[0]; 2952 2953 if (found_key.objectid != key.objectid || 2954 found_key.type != key.type) { 2955 ret = 0; 2956 break; 2957 } 2958 2959 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2960 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2961 2962 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2963 di_key.objectid < sctx->send_progress) { 2964 ret = 1; 2965 cache_dir_created(sctx, dir); 2966 break; 2967 } 2968 } 2969 /* Catch error found during iteration */ 2970 if (iter_ret < 0) 2971 ret = iter_ret; 2972 2973 btrfs_free_path(path); 2974 return ret; 2975 } 2976 2977 /* 2978 * Only creates the inode if it is: 2979 * 1. Not a directory 2980 * 2. Or a directory which was not created already due to out of order 2981 * directories. See did_create_dir and process_recorded_refs for details. 2982 */ 2983 static int send_create_inode_if_needed(struct send_ctx *sctx) 2984 { 2985 int ret; 2986 2987 if (S_ISDIR(sctx->cur_inode_mode)) { 2988 ret = did_create_dir(sctx, sctx->cur_ino); 2989 if (ret < 0) 2990 return ret; 2991 else if (ret > 0) 2992 return 0; 2993 } 2994 2995 ret = send_create_inode(sctx, sctx->cur_ino); 2996 2997 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 2998 cache_dir_created(sctx, sctx->cur_ino); 2999 3000 return ret; 3001 } 3002 3003 struct recorded_ref { 3004 struct list_head list; 3005 char *name; 3006 struct fs_path *full_path; 3007 u64 dir; 3008 u64 dir_gen; 3009 int name_len; 3010 struct rb_node node; 3011 struct rb_root *root; 3012 }; 3013 3014 static struct recorded_ref *recorded_ref_alloc(void) 3015 { 3016 struct recorded_ref *ref; 3017 3018 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3019 if (!ref) 3020 return NULL; 3021 RB_CLEAR_NODE(&ref->node); 3022 INIT_LIST_HEAD(&ref->list); 3023 return ref; 3024 } 3025 3026 static void recorded_ref_free(struct recorded_ref *ref) 3027 { 3028 if (!ref) 3029 return; 3030 if (!RB_EMPTY_NODE(&ref->node)) 3031 rb_erase(&ref->node, ref->root); 3032 list_del(&ref->list); 3033 fs_path_free(ref->full_path); 3034 kfree(ref); 3035 } 3036 3037 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3038 { 3039 ref->full_path = path; 3040 ref->name = (char *)kbasename(ref->full_path->start); 3041 ref->name_len = ref->full_path->end - ref->name; 3042 } 3043 3044 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3045 { 3046 struct recorded_ref *new; 3047 3048 new = recorded_ref_alloc(); 3049 if (!new) 3050 return -ENOMEM; 3051 3052 new->dir = ref->dir; 3053 new->dir_gen = ref->dir_gen; 3054 list_add_tail(&new->list, list); 3055 return 0; 3056 } 3057 3058 static void __free_recorded_refs(struct list_head *head) 3059 { 3060 struct recorded_ref *cur; 3061 3062 while (!list_empty(head)) { 3063 cur = list_first_entry(head, struct recorded_ref, list); 3064 recorded_ref_free(cur); 3065 } 3066 } 3067 3068 static void free_recorded_refs(struct send_ctx *sctx) 3069 { 3070 __free_recorded_refs(&sctx->new_refs); 3071 __free_recorded_refs(&sctx->deleted_refs); 3072 } 3073 3074 /* 3075 * Renames/moves a file/dir to its orphan name. Used when the first 3076 * ref of an unprocessed inode gets overwritten and for all non empty 3077 * directories. 3078 */ 3079 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3080 struct fs_path *path) 3081 { 3082 int ret; 3083 struct fs_path *orphan; 3084 3085 orphan = fs_path_alloc(); 3086 if (!orphan) 3087 return -ENOMEM; 3088 3089 ret = gen_unique_name(sctx, ino, gen, orphan); 3090 if (ret < 0) 3091 goto out; 3092 3093 ret = send_rename(sctx, path, orphan); 3094 if (ret < 0) 3095 goto out; 3096 3097 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 3098 ret = fs_path_copy(&sctx->cur_inode_path, orphan); 3099 3100 out: 3101 fs_path_free(orphan); 3102 return ret; 3103 } 3104 3105 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3106 u64 dir_ino, u64 dir_gen) 3107 { 3108 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3109 struct rb_node *parent = NULL; 3110 struct orphan_dir_info *entry, *odi; 3111 3112 while (*p) { 3113 parent = *p; 3114 entry = rb_entry(parent, struct orphan_dir_info, node); 3115 if (dir_ino < entry->ino) 3116 p = &(*p)->rb_left; 3117 else if (dir_ino > entry->ino) 3118 p = &(*p)->rb_right; 3119 else if (dir_gen < entry->gen) 3120 p = &(*p)->rb_left; 3121 else if (dir_gen > entry->gen) 3122 p = &(*p)->rb_right; 3123 else 3124 return entry; 3125 } 3126 3127 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3128 if (!odi) 3129 return ERR_PTR(-ENOMEM); 3130 odi->ino = dir_ino; 3131 odi->gen = dir_gen; 3132 odi->last_dir_index_offset = 0; 3133 odi->dir_high_seq_ino = 0; 3134 3135 rb_link_node(&odi->node, parent, p); 3136 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3137 return odi; 3138 } 3139 3140 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3141 u64 dir_ino, u64 gen) 3142 { 3143 struct rb_node *n = sctx->orphan_dirs.rb_node; 3144 struct orphan_dir_info *entry; 3145 3146 while (n) { 3147 entry = rb_entry(n, struct orphan_dir_info, node); 3148 if (dir_ino < entry->ino) 3149 n = n->rb_left; 3150 else if (dir_ino > entry->ino) 3151 n = n->rb_right; 3152 else if (gen < entry->gen) 3153 n = n->rb_left; 3154 else if (gen > entry->gen) 3155 n = n->rb_right; 3156 else 3157 return entry; 3158 } 3159 return NULL; 3160 } 3161 3162 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3163 { 3164 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3165 3166 return odi != NULL; 3167 } 3168 3169 static void free_orphan_dir_info(struct send_ctx *sctx, 3170 struct orphan_dir_info *odi) 3171 { 3172 if (!odi) 3173 return; 3174 rb_erase(&odi->node, &sctx->orphan_dirs); 3175 kfree(odi); 3176 } 3177 3178 /* 3179 * Returns 1 if a directory can be removed at this point in time. 3180 * We check this by iterating all dir items and checking if the inode behind 3181 * the dir item was already processed. 3182 */ 3183 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3184 { 3185 int ret = 0; 3186 int iter_ret = 0; 3187 struct btrfs_root *root = sctx->parent_root; 3188 struct btrfs_path *path; 3189 struct btrfs_key key; 3190 struct btrfs_key found_key; 3191 struct btrfs_key loc; 3192 struct btrfs_dir_item *di; 3193 struct orphan_dir_info *odi = NULL; 3194 u64 dir_high_seq_ino = 0; 3195 u64 last_dir_index_offset = 0; 3196 3197 /* 3198 * Don't try to rmdir the top/root subvolume dir. 3199 */ 3200 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3201 return 0; 3202 3203 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3204 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3205 return 0; 3206 3207 path = alloc_path_for_send(); 3208 if (!path) 3209 return -ENOMEM; 3210 3211 if (!odi) { 3212 /* 3213 * Find the inode number associated with the last dir index 3214 * entry. This is very likely the inode with the highest number 3215 * of all inodes that have an entry in the directory. We can 3216 * then use it to avoid future calls to can_rmdir(), when 3217 * processing inodes with a lower number, from having to search 3218 * the parent root b+tree for dir index keys. 3219 */ 3220 key.objectid = dir; 3221 key.type = BTRFS_DIR_INDEX_KEY; 3222 key.offset = (u64)-1; 3223 3224 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3225 if (ret < 0) { 3226 goto out; 3227 } else if (ret > 0) { 3228 /* Can't happen, the root is never empty. */ 3229 ASSERT(path->slots[0] > 0); 3230 if (WARN_ON(path->slots[0] == 0)) { 3231 ret = -EUCLEAN; 3232 goto out; 3233 } 3234 path->slots[0]--; 3235 } 3236 3237 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3238 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3239 /* No index keys, dir can be removed. */ 3240 ret = 1; 3241 goto out; 3242 } 3243 3244 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3245 struct btrfs_dir_item); 3246 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3247 dir_high_seq_ino = loc.objectid; 3248 if (sctx->cur_ino < dir_high_seq_ino) { 3249 ret = 0; 3250 goto out; 3251 } 3252 3253 btrfs_release_path(path); 3254 } 3255 3256 key.objectid = dir; 3257 key.type = BTRFS_DIR_INDEX_KEY; 3258 key.offset = (odi ? odi->last_dir_index_offset : 0); 3259 3260 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3261 struct waiting_dir_move *dm; 3262 3263 if (found_key.objectid != key.objectid || 3264 found_key.type != key.type) 3265 break; 3266 3267 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3268 struct btrfs_dir_item); 3269 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3270 3271 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3272 last_dir_index_offset = found_key.offset; 3273 3274 dm = get_waiting_dir_move(sctx, loc.objectid); 3275 if (dm) { 3276 dm->rmdir_ino = dir; 3277 dm->rmdir_gen = dir_gen; 3278 ret = 0; 3279 goto out; 3280 } 3281 3282 if (loc.objectid > sctx->cur_ino) { 3283 ret = 0; 3284 goto out; 3285 } 3286 } 3287 if (iter_ret < 0) { 3288 ret = iter_ret; 3289 goto out; 3290 } 3291 free_orphan_dir_info(sctx, odi); 3292 3293 ret = 1; 3294 3295 out: 3296 btrfs_free_path(path); 3297 3298 if (ret) 3299 return ret; 3300 3301 if (!odi) { 3302 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3303 if (IS_ERR(odi)) 3304 return PTR_ERR(odi); 3305 3306 odi->gen = dir_gen; 3307 } 3308 3309 odi->last_dir_index_offset = last_dir_index_offset; 3310 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3311 3312 return 0; 3313 } 3314 3315 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3316 { 3317 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3318 3319 return entry != NULL; 3320 } 3321 3322 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3323 { 3324 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3325 struct rb_node *parent = NULL; 3326 struct waiting_dir_move *entry, *dm; 3327 3328 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3329 if (!dm) 3330 return -ENOMEM; 3331 dm->ino = ino; 3332 dm->rmdir_ino = 0; 3333 dm->rmdir_gen = 0; 3334 dm->orphanized = orphanized; 3335 3336 while (*p) { 3337 parent = *p; 3338 entry = rb_entry(parent, struct waiting_dir_move, node); 3339 if (ino < entry->ino) { 3340 p = &(*p)->rb_left; 3341 } else if (ino > entry->ino) { 3342 p = &(*p)->rb_right; 3343 } else { 3344 kfree(dm); 3345 return -EEXIST; 3346 } 3347 } 3348 3349 rb_link_node(&dm->node, parent, p); 3350 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3351 return 0; 3352 } 3353 3354 static struct waiting_dir_move * 3355 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3356 { 3357 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3358 struct waiting_dir_move *entry; 3359 3360 while (n) { 3361 entry = rb_entry(n, struct waiting_dir_move, node); 3362 if (ino < entry->ino) 3363 n = n->rb_left; 3364 else if (ino > entry->ino) 3365 n = n->rb_right; 3366 else 3367 return entry; 3368 } 3369 return NULL; 3370 } 3371 3372 static void free_waiting_dir_move(struct send_ctx *sctx, 3373 struct waiting_dir_move *dm) 3374 { 3375 if (!dm) 3376 return; 3377 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3378 kfree(dm); 3379 } 3380 3381 static int add_pending_dir_move(struct send_ctx *sctx, 3382 u64 ino, 3383 u64 ino_gen, 3384 u64 parent_ino, 3385 struct list_head *new_refs, 3386 struct list_head *deleted_refs, 3387 const bool is_orphan) 3388 { 3389 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3390 struct rb_node *parent = NULL; 3391 struct pending_dir_move *entry = NULL, *pm; 3392 struct recorded_ref *cur; 3393 int exists = 0; 3394 int ret; 3395 3396 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3397 if (!pm) 3398 return -ENOMEM; 3399 pm->parent_ino = parent_ino; 3400 pm->ino = ino; 3401 pm->gen = ino_gen; 3402 INIT_LIST_HEAD(&pm->list); 3403 INIT_LIST_HEAD(&pm->update_refs); 3404 RB_CLEAR_NODE(&pm->node); 3405 3406 while (*p) { 3407 parent = *p; 3408 entry = rb_entry(parent, struct pending_dir_move, node); 3409 if (parent_ino < entry->parent_ino) { 3410 p = &(*p)->rb_left; 3411 } else if (parent_ino > entry->parent_ino) { 3412 p = &(*p)->rb_right; 3413 } else { 3414 exists = 1; 3415 break; 3416 } 3417 } 3418 3419 list_for_each_entry(cur, deleted_refs, list) { 3420 ret = dup_ref(cur, &pm->update_refs); 3421 if (ret < 0) 3422 goto out; 3423 } 3424 list_for_each_entry(cur, new_refs, list) { 3425 ret = dup_ref(cur, &pm->update_refs); 3426 if (ret < 0) 3427 goto out; 3428 } 3429 3430 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3431 if (ret) 3432 goto out; 3433 3434 if (exists) { 3435 list_add_tail(&pm->list, &entry->list); 3436 } else { 3437 rb_link_node(&pm->node, parent, p); 3438 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3439 } 3440 ret = 0; 3441 out: 3442 if (ret) { 3443 __free_recorded_refs(&pm->update_refs); 3444 kfree(pm); 3445 } 3446 return ret; 3447 } 3448 3449 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3450 u64 parent_ino) 3451 { 3452 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3453 struct pending_dir_move *entry; 3454 3455 while (n) { 3456 entry = rb_entry(n, struct pending_dir_move, node); 3457 if (parent_ino < entry->parent_ino) 3458 n = n->rb_left; 3459 else if (parent_ino > entry->parent_ino) 3460 n = n->rb_right; 3461 else 3462 return entry; 3463 } 3464 return NULL; 3465 } 3466 3467 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3468 u64 ino, u64 gen, u64 *ancestor_ino) 3469 { 3470 int ret = 0; 3471 u64 parent_inode = 0; 3472 u64 parent_gen = 0; 3473 u64 start_ino = ino; 3474 3475 *ancestor_ino = 0; 3476 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3477 fs_path_reset(name); 3478 3479 if (is_waiting_for_rm(sctx, ino, gen)) 3480 break; 3481 if (is_waiting_for_move(sctx, ino)) { 3482 if (*ancestor_ino == 0) 3483 *ancestor_ino = ino; 3484 ret = get_first_ref(sctx->parent_root, ino, 3485 &parent_inode, &parent_gen, name); 3486 } else { 3487 ret = __get_cur_name_and_parent(sctx, ino, gen, 3488 &parent_inode, 3489 &parent_gen, name); 3490 if (ret > 0) { 3491 ret = 0; 3492 break; 3493 } 3494 } 3495 if (ret < 0) 3496 break; 3497 if (parent_inode == start_ino) { 3498 ret = 1; 3499 if (*ancestor_ino == 0) 3500 *ancestor_ino = ino; 3501 break; 3502 } 3503 ino = parent_inode; 3504 gen = parent_gen; 3505 } 3506 return ret; 3507 } 3508 3509 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3510 { 3511 struct fs_path *from_path = NULL; 3512 struct fs_path *to_path = NULL; 3513 struct fs_path *name = NULL; 3514 u64 orig_progress = sctx->send_progress; 3515 struct recorded_ref *cur; 3516 u64 parent_ino, parent_gen; 3517 struct waiting_dir_move *dm = NULL; 3518 u64 rmdir_ino = 0; 3519 u64 rmdir_gen; 3520 u64 ancestor; 3521 bool is_orphan; 3522 int ret; 3523 3524 name = fs_path_alloc(); 3525 from_path = fs_path_alloc(); 3526 if (!name || !from_path) { 3527 ret = -ENOMEM; 3528 goto out; 3529 } 3530 3531 dm = get_waiting_dir_move(sctx, pm->ino); 3532 ASSERT(dm); 3533 rmdir_ino = dm->rmdir_ino; 3534 rmdir_gen = dm->rmdir_gen; 3535 is_orphan = dm->orphanized; 3536 free_waiting_dir_move(sctx, dm); 3537 3538 if (is_orphan) { 3539 ret = gen_unique_name(sctx, pm->ino, 3540 pm->gen, from_path); 3541 } else { 3542 ret = get_first_ref(sctx->parent_root, pm->ino, 3543 &parent_ino, &parent_gen, name); 3544 if (ret < 0) 3545 goto out; 3546 ret = get_cur_path(sctx, parent_ino, parent_gen, 3547 from_path); 3548 if (ret < 0) 3549 goto out; 3550 ret = fs_path_add_path(from_path, name); 3551 } 3552 if (ret < 0) 3553 goto out; 3554 3555 sctx->send_progress = sctx->cur_ino + 1; 3556 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3557 if (ret < 0) 3558 goto out; 3559 if (ret) { 3560 LIST_HEAD(deleted_refs); 3561 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3562 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3563 &pm->update_refs, &deleted_refs, 3564 is_orphan); 3565 if (ret < 0) 3566 goto out; 3567 if (rmdir_ino) { 3568 dm = get_waiting_dir_move(sctx, pm->ino); 3569 ASSERT(dm); 3570 dm->rmdir_ino = rmdir_ino; 3571 dm->rmdir_gen = rmdir_gen; 3572 } 3573 goto out; 3574 } 3575 fs_path_reset(name); 3576 to_path = name; 3577 name = NULL; 3578 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3579 if (ret < 0) 3580 goto out; 3581 3582 ret = send_rename(sctx, from_path, to_path); 3583 if (ret < 0) 3584 goto out; 3585 3586 if (rmdir_ino) { 3587 struct orphan_dir_info *odi; 3588 u64 gen; 3589 3590 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3591 if (!odi) { 3592 /* already deleted */ 3593 goto finish; 3594 } 3595 gen = odi->gen; 3596 3597 ret = can_rmdir(sctx, rmdir_ino, gen); 3598 if (ret < 0) 3599 goto out; 3600 if (!ret) 3601 goto finish; 3602 3603 name = fs_path_alloc(); 3604 if (!name) { 3605 ret = -ENOMEM; 3606 goto out; 3607 } 3608 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3609 if (ret < 0) 3610 goto out; 3611 ret = send_rmdir(sctx, name); 3612 if (ret < 0) 3613 goto out; 3614 } 3615 3616 finish: 3617 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3618 if (ret < 0) 3619 goto out; 3620 3621 /* 3622 * After rename/move, need to update the utimes of both new parent(s) 3623 * and old parent(s). 3624 */ 3625 list_for_each_entry(cur, &pm->update_refs, list) { 3626 /* 3627 * The parent inode might have been deleted in the send snapshot 3628 */ 3629 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3630 if (ret == -ENOENT) { 3631 ret = 0; 3632 continue; 3633 } 3634 if (ret < 0) 3635 goto out; 3636 3637 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3638 if (ret < 0) 3639 goto out; 3640 } 3641 3642 out: 3643 fs_path_free(name); 3644 fs_path_free(from_path); 3645 fs_path_free(to_path); 3646 sctx->send_progress = orig_progress; 3647 3648 return ret; 3649 } 3650 3651 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3652 { 3653 if (!list_empty(&m->list)) 3654 list_del(&m->list); 3655 if (!RB_EMPTY_NODE(&m->node)) 3656 rb_erase(&m->node, &sctx->pending_dir_moves); 3657 __free_recorded_refs(&m->update_refs); 3658 kfree(m); 3659 } 3660 3661 static void tail_append_pending_moves(struct send_ctx *sctx, 3662 struct pending_dir_move *moves, 3663 struct list_head *stack) 3664 { 3665 if (list_empty(&moves->list)) { 3666 list_add_tail(&moves->list, stack); 3667 } else { 3668 LIST_HEAD(list); 3669 list_splice_init(&moves->list, &list); 3670 list_add_tail(&moves->list, stack); 3671 list_splice_tail(&list, stack); 3672 } 3673 if (!RB_EMPTY_NODE(&moves->node)) { 3674 rb_erase(&moves->node, &sctx->pending_dir_moves); 3675 RB_CLEAR_NODE(&moves->node); 3676 } 3677 } 3678 3679 static int apply_children_dir_moves(struct send_ctx *sctx) 3680 { 3681 struct pending_dir_move *pm; 3682 LIST_HEAD(stack); 3683 u64 parent_ino = sctx->cur_ino; 3684 int ret = 0; 3685 3686 pm = get_pending_dir_moves(sctx, parent_ino); 3687 if (!pm) 3688 return 0; 3689 3690 tail_append_pending_moves(sctx, pm, &stack); 3691 3692 while (!list_empty(&stack)) { 3693 pm = list_first_entry(&stack, struct pending_dir_move, list); 3694 parent_ino = pm->ino; 3695 ret = apply_dir_move(sctx, pm); 3696 free_pending_move(sctx, pm); 3697 if (ret) 3698 goto out; 3699 pm = get_pending_dir_moves(sctx, parent_ino); 3700 if (pm) 3701 tail_append_pending_moves(sctx, pm, &stack); 3702 } 3703 return 0; 3704 3705 out: 3706 while (!list_empty(&stack)) { 3707 pm = list_first_entry(&stack, struct pending_dir_move, list); 3708 free_pending_move(sctx, pm); 3709 } 3710 return ret; 3711 } 3712 3713 /* 3714 * We might need to delay a directory rename even when no ancestor directory 3715 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3716 * renamed. This happens when we rename a directory to the old name (the name 3717 * in the parent root) of some other unrelated directory that got its rename 3718 * delayed due to some ancestor with higher number that got renamed. 3719 * 3720 * Example: 3721 * 3722 * Parent snapshot: 3723 * . (ino 256) 3724 * |---- a/ (ino 257) 3725 * | |---- file (ino 260) 3726 * | 3727 * |---- b/ (ino 258) 3728 * |---- c/ (ino 259) 3729 * 3730 * Send snapshot: 3731 * . (ino 256) 3732 * |---- a/ (ino 258) 3733 * |---- x/ (ino 259) 3734 * |---- y/ (ino 257) 3735 * |----- file (ino 260) 3736 * 3737 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3738 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3739 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3740 * must issue is: 3741 * 3742 * 1 - rename 259 from 'c' to 'x' 3743 * 2 - rename 257 from 'a' to 'x/y' 3744 * 3 - rename 258 from 'b' to 'a' 3745 * 3746 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3747 * be done right away and < 0 on error. 3748 */ 3749 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3750 struct recorded_ref *parent_ref, 3751 const bool is_orphan) 3752 { 3753 struct btrfs_path *path; 3754 struct btrfs_key key; 3755 struct btrfs_key di_key; 3756 struct btrfs_dir_item *di; 3757 u64 left_gen; 3758 u64 right_gen; 3759 int ret = 0; 3760 struct waiting_dir_move *wdm; 3761 3762 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3763 return 0; 3764 3765 path = alloc_path_for_send(); 3766 if (!path) 3767 return -ENOMEM; 3768 3769 key.objectid = parent_ref->dir; 3770 key.type = BTRFS_DIR_ITEM_KEY; 3771 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3772 3773 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3774 if (ret < 0) { 3775 goto out; 3776 } else if (ret > 0) { 3777 ret = 0; 3778 goto out; 3779 } 3780 3781 di = btrfs_match_dir_item_name(path, parent_ref->name, 3782 parent_ref->name_len); 3783 if (!di) { 3784 ret = 0; 3785 goto out; 3786 } 3787 /* 3788 * di_key.objectid has the number of the inode that has a dentry in the 3789 * parent directory with the same name that sctx->cur_ino is being 3790 * renamed to. We need to check if that inode is in the send root as 3791 * well and if it is currently marked as an inode with a pending rename, 3792 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3793 * that it happens after that other inode is renamed. 3794 */ 3795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3796 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3797 ret = 0; 3798 goto out; 3799 } 3800 3801 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3802 if (ret < 0) 3803 goto out; 3804 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3805 if (ret < 0) { 3806 if (ret == -ENOENT) 3807 ret = 0; 3808 goto out; 3809 } 3810 3811 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3812 if (right_gen != left_gen) { 3813 ret = 0; 3814 goto out; 3815 } 3816 3817 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3818 if (wdm && !wdm->orphanized) { 3819 ret = add_pending_dir_move(sctx, 3820 sctx->cur_ino, 3821 sctx->cur_inode_gen, 3822 di_key.objectid, 3823 &sctx->new_refs, 3824 &sctx->deleted_refs, 3825 is_orphan); 3826 if (!ret) 3827 ret = 1; 3828 } 3829 out: 3830 btrfs_free_path(path); 3831 return ret; 3832 } 3833 3834 /* 3835 * Check if inode ino2, or any of its ancestors, is inode ino1. 3836 * Return 1 if true, 0 if false and < 0 on error. 3837 */ 3838 static int check_ino_in_path(struct btrfs_root *root, 3839 const u64 ino1, 3840 const u64 ino1_gen, 3841 const u64 ino2, 3842 const u64 ino2_gen, 3843 struct fs_path *fs_path) 3844 { 3845 u64 ino = ino2; 3846 3847 if (ino1 == ino2) 3848 return ino1_gen == ino2_gen; 3849 3850 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3851 u64 parent; 3852 u64 parent_gen; 3853 int ret; 3854 3855 fs_path_reset(fs_path); 3856 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3857 if (ret < 0) 3858 return ret; 3859 if (parent == ino1) 3860 return parent_gen == ino1_gen; 3861 ino = parent; 3862 } 3863 return 0; 3864 } 3865 3866 /* 3867 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3868 * possible path (in case ino2 is not a directory and has multiple hard links). 3869 * Return 1 if true, 0 if false and < 0 on error. 3870 */ 3871 static int is_ancestor(struct btrfs_root *root, 3872 const u64 ino1, 3873 const u64 ino1_gen, 3874 const u64 ino2, 3875 struct fs_path *fs_path) 3876 { 3877 bool free_fs_path = false; 3878 int ret = 0; 3879 int iter_ret = 0; 3880 struct btrfs_path *path = NULL; 3881 struct btrfs_key key; 3882 3883 if (!fs_path) { 3884 fs_path = fs_path_alloc(); 3885 if (!fs_path) 3886 return -ENOMEM; 3887 free_fs_path = true; 3888 } 3889 3890 path = alloc_path_for_send(); 3891 if (!path) { 3892 ret = -ENOMEM; 3893 goto out; 3894 } 3895 3896 key.objectid = ino2; 3897 key.type = BTRFS_INODE_REF_KEY; 3898 key.offset = 0; 3899 3900 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3901 struct extent_buffer *leaf = path->nodes[0]; 3902 int slot = path->slots[0]; 3903 u32 cur_offset = 0; 3904 u32 item_size; 3905 3906 if (key.objectid != ino2) 3907 break; 3908 if (key.type != BTRFS_INODE_REF_KEY && 3909 key.type != BTRFS_INODE_EXTREF_KEY) 3910 break; 3911 3912 item_size = btrfs_item_size(leaf, slot); 3913 while (cur_offset < item_size) { 3914 u64 parent; 3915 u64 parent_gen; 3916 3917 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3918 unsigned long ptr; 3919 struct btrfs_inode_extref *extref; 3920 3921 ptr = btrfs_item_ptr_offset(leaf, slot); 3922 extref = (struct btrfs_inode_extref *) 3923 (ptr + cur_offset); 3924 parent = btrfs_inode_extref_parent(leaf, 3925 extref); 3926 cur_offset += sizeof(*extref); 3927 cur_offset += btrfs_inode_extref_name_len(leaf, 3928 extref); 3929 } else { 3930 parent = key.offset; 3931 cur_offset = item_size; 3932 } 3933 3934 ret = get_inode_gen(root, parent, &parent_gen); 3935 if (ret < 0) 3936 goto out; 3937 ret = check_ino_in_path(root, ino1, ino1_gen, 3938 parent, parent_gen, fs_path); 3939 if (ret) 3940 goto out; 3941 } 3942 } 3943 ret = 0; 3944 if (iter_ret < 0) 3945 ret = iter_ret; 3946 3947 out: 3948 btrfs_free_path(path); 3949 if (free_fs_path) 3950 fs_path_free(fs_path); 3951 return ret; 3952 } 3953 3954 static int wait_for_parent_move(struct send_ctx *sctx, 3955 struct recorded_ref *parent_ref, 3956 const bool is_orphan) 3957 { 3958 int ret = 0; 3959 u64 ino = parent_ref->dir; 3960 u64 ino_gen = parent_ref->dir_gen; 3961 u64 parent_ino_before, parent_ino_after; 3962 struct fs_path *path_before = NULL; 3963 struct fs_path *path_after = NULL; 3964 int len1, len2; 3965 3966 path_after = fs_path_alloc(); 3967 path_before = fs_path_alloc(); 3968 if (!path_after || !path_before) { 3969 ret = -ENOMEM; 3970 goto out; 3971 } 3972 3973 /* 3974 * Our current directory inode may not yet be renamed/moved because some 3975 * ancestor (immediate or not) has to be renamed/moved first. So find if 3976 * such ancestor exists and make sure our own rename/move happens after 3977 * that ancestor is processed to avoid path build infinite loops (done 3978 * at get_cur_path()). 3979 */ 3980 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3981 u64 parent_ino_after_gen; 3982 3983 if (is_waiting_for_move(sctx, ino)) { 3984 /* 3985 * If the current inode is an ancestor of ino in the 3986 * parent root, we need to delay the rename of the 3987 * current inode, otherwise don't delayed the rename 3988 * because we can end up with a circular dependency 3989 * of renames, resulting in some directories never 3990 * getting the respective rename operations issued in 3991 * the send stream or getting into infinite path build 3992 * loops. 3993 */ 3994 ret = is_ancestor(sctx->parent_root, 3995 sctx->cur_ino, sctx->cur_inode_gen, 3996 ino, path_before); 3997 if (ret) 3998 break; 3999 } 4000 4001 fs_path_reset(path_before); 4002 fs_path_reset(path_after); 4003 4004 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4005 &parent_ino_after_gen, path_after); 4006 if (ret < 0) 4007 goto out; 4008 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4009 NULL, path_before); 4010 if (ret < 0 && ret != -ENOENT) { 4011 goto out; 4012 } else if (ret == -ENOENT) { 4013 ret = 0; 4014 break; 4015 } 4016 4017 len1 = fs_path_len(path_before); 4018 len2 = fs_path_len(path_after); 4019 if (ino > sctx->cur_ino && 4020 (parent_ino_before != parent_ino_after || len1 != len2 || 4021 memcmp(path_before->start, path_after->start, len1))) { 4022 u64 parent_ino_gen; 4023 4024 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4025 if (ret < 0) 4026 goto out; 4027 if (ino_gen == parent_ino_gen) { 4028 ret = 1; 4029 break; 4030 } 4031 } 4032 ino = parent_ino_after; 4033 ino_gen = parent_ino_after_gen; 4034 } 4035 4036 out: 4037 fs_path_free(path_before); 4038 fs_path_free(path_after); 4039 4040 if (ret == 1) { 4041 ret = add_pending_dir_move(sctx, 4042 sctx->cur_ino, 4043 sctx->cur_inode_gen, 4044 ino, 4045 &sctx->new_refs, 4046 &sctx->deleted_refs, 4047 is_orphan); 4048 if (!ret) 4049 ret = 1; 4050 } 4051 4052 return ret; 4053 } 4054 4055 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4056 { 4057 int ret; 4058 struct fs_path *new_path; 4059 4060 /* 4061 * Our reference's name member points to its full_path member string, so 4062 * we use here a new path. 4063 */ 4064 new_path = fs_path_alloc(); 4065 if (!new_path) 4066 return -ENOMEM; 4067 4068 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4069 if (ret < 0) { 4070 fs_path_free(new_path); 4071 return ret; 4072 } 4073 ret = fs_path_add(new_path, ref->name, ref->name_len); 4074 if (ret < 0) { 4075 fs_path_free(new_path); 4076 return ret; 4077 } 4078 4079 fs_path_free(ref->full_path); 4080 set_ref_path(ref, new_path); 4081 4082 return 0; 4083 } 4084 4085 /* 4086 * When processing the new references for an inode we may orphanize an existing 4087 * directory inode because its old name conflicts with one of the new references 4088 * of the current inode. Later, when processing another new reference of our 4089 * inode, we might need to orphanize another inode, but the path we have in the 4090 * reference reflects the pre-orphanization name of the directory we previously 4091 * orphanized. For example: 4092 * 4093 * parent snapshot looks like: 4094 * 4095 * . (ino 256) 4096 * |----- f1 (ino 257) 4097 * |----- f2 (ino 258) 4098 * |----- d1/ (ino 259) 4099 * |----- d2/ (ino 260) 4100 * 4101 * send snapshot looks like: 4102 * 4103 * . (ino 256) 4104 * |----- d1 (ino 258) 4105 * |----- f2/ (ino 259) 4106 * |----- f2_link/ (ino 260) 4107 * | |----- f1 (ino 257) 4108 * | 4109 * |----- d2 (ino 258) 4110 * 4111 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4112 * cache it in the name cache. Later when we start processing inode 258, when 4113 * collecting all its new references we set a full path of "d1/d2" for its new 4114 * reference with name "d2". When we start processing the new references we 4115 * start by processing the new reference with name "d1", and this results in 4116 * orphanizing inode 259, since its old reference causes a conflict. Then we 4117 * move on the next new reference, with name "d2", and we find out we must 4118 * orphanize inode 260, as its old reference conflicts with ours - but for the 4119 * orphanization we use a source path corresponding to the path we stored in the 4120 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4121 * receiver fail since the path component "d1/" no longer exists, it was renamed 4122 * to "o259-6-0/" when processing the previous new reference. So in this case we 4123 * must recompute the path in the new reference and use it for the new 4124 * orphanization operation. 4125 */ 4126 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4127 { 4128 char *name; 4129 int ret; 4130 4131 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4132 if (!name) 4133 return -ENOMEM; 4134 4135 fs_path_reset(ref->full_path); 4136 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4137 if (ret < 0) 4138 goto out; 4139 4140 ret = fs_path_add(ref->full_path, name, ref->name_len); 4141 if (ret < 0) 4142 goto out; 4143 4144 /* Update the reference's base name pointer. */ 4145 set_ref_path(ref, ref->full_path); 4146 out: 4147 kfree(name); 4148 return ret; 4149 } 4150 4151 static int rename_current_inode(struct send_ctx *sctx, 4152 struct fs_path *current_path, 4153 struct fs_path *new_path) 4154 { 4155 int ret; 4156 4157 ret = send_rename(sctx, current_path, new_path); 4158 if (ret < 0) 4159 return ret; 4160 4161 ret = fs_path_copy(&sctx->cur_inode_path, new_path); 4162 if (ret < 0) 4163 return ret; 4164 4165 return fs_path_copy(current_path, new_path); 4166 } 4167 4168 /* 4169 * This does all the move/link/unlink/rmdir magic. 4170 */ 4171 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4172 { 4173 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4174 int ret = 0; 4175 struct recorded_ref *cur; 4176 struct recorded_ref *cur2; 4177 LIST_HEAD(check_dirs); 4178 struct fs_path *valid_path = NULL; 4179 u64 ow_inode = 0; 4180 u64 ow_gen; 4181 u64 ow_mode; 4182 u64 last_dir_ino_rm = 0; 4183 bool did_overwrite = false; 4184 bool is_orphan = false; 4185 bool can_rename = true; 4186 bool orphanized_dir = false; 4187 bool orphanized_ancestor = false; 4188 4189 /* 4190 * This should never happen as the root dir always has the same ref 4191 * which is always '..' 4192 */ 4193 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4194 btrfs_err(fs_info, 4195 "send: unexpected inode %llu in process_recorded_refs()", 4196 sctx->cur_ino); 4197 ret = -EINVAL; 4198 goto out; 4199 } 4200 4201 valid_path = fs_path_alloc(); 4202 if (!valid_path) { 4203 ret = -ENOMEM; 4204 goto out; 4205 } 4206 4207 /* 4208 * First, check if the first ref of the current inode was overwritten 4209 * before. If yes, we know that the current inode was already orphanized 4210 * and thus use the orphan name. If not, we can use get_cur_path to 4211 * get the path of the first ref as it would like while receiving at 4212 * this point in time. 4213 * New inodes are always orphan at the beginning, so force to use the 4214 * orphan name in this case. 4215 * The first ref is stored in valid_path and will be updated if it 4216 * gets moved around. 4217 */ 4218 if (!sctx->cur_inode_new) { 4219 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4220 sctx->cur_inode_gen); 4221 if (ret < 0) 4222 goto out; 4223 if (ret) 4224 did_overwrite = true; 4225 } 4226 if (sctx->cur_inode_new || did_overwrite) { 4227 ret = gen_unique_name(sctx, sctx->cur_ino, 4228 sctx->cur_inode_gen, valid_path); 4229 if (ret < 0) 4230 goto out; 4231 is_orphan = true; 4232 } else { 4233 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4234 valid_path); 4235 if (ret < 0) 4236 goto out; 4237 } 4238 4239 /* 4240 * Before doing any rename and link operations, do a first pass on the 4241 * new references to orphanize any unprocessed inodes that may have a 4242 * reference that conflicts with one of the new references of the current 4243 * inode. This needs to happen first because a new reference may conflict 4244 * with the old reference of a parent directory, so we must make sure 4245 * that the path used for link and rename commands don't use an 4246 * orphanized name when an ancestor was not yet orphanized. 4247 * 4248 * Example: 4249 * 4250 * Parent snapshot: 4251 * 4252 * . (ino 256) 4253 * |----- testdir/ (ino 259) 4254 * | |----- a (ino 257) 4255 * | 4256 * |----- b (ino 258) 4257 * 4258 * Send snapshot: 4259 * 4260 * . (ino 256) 4261 * |----- testdir_2/ (ino 259) 4262 * | |----- a (ino 260) 4263 * | 4264 * |----- testdir (ino 257) 4265 * |----- b (ino 257) 4266 * |----- b2 (ino 258) 4267 * 4268 * Processing the new reference for inode 257 with name "b" may happen 4269 * before processing the new reference with name "testdir". If so, we 4270 * must make sure that by the time we send a link command to create the 4271 * hard link "b", inode 259 was already orphanized, since the generated 4272 * path in "valid_path" already contains the orphanized name for 259. 4273 * We are processing inode 257, so only later when processing 259 we do 4274 * the rename operation to change its temporary (orphanized) name to 4275 * "testdir_2". 4276 */ 4277 list_for_each_entry(cur, &sctx->new_refs, list) { 4278 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4279 if (ret < 0) 4280 goto out; 4281 if (ret == inode_state_will_create) 4282 continue; 4283 4284 /* 4285 * Check if this new ref would overwrite the first ref of another 4286 * unprocessed inode. If yes, orphanize the overwritten inode. 4287 * If we find an overwritten ref that is not the first ref, 4288 * simply unlink it. 4289 */ 4290 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4291 cur->name, cur->name_len, 4292 &ow_inode, &ow_gen, &ow_mode); 4293 if (ret < 0) 4294 goto out; 4295 if (ret) { 4296 ret = is_first_ref(sctx->parent_root, 4297 ow_inode, cur->dir, cur->name, 4298 cur->name_len); 4299 if (ret < 0) 4300 goto out; 4301 if (ret) { 4302 struct name_cache_entry *nce; 4303 struct waiting_dir_move *wdm; 4304 4305 if (orphanized_dir) { 4306 ret = refresh_ref_path(sctx, cur); 4307 if (ret < 0) 4308 goto out; 4309 } 4310 4311 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4312 cur->full_path); 4313 if (ret < 0) 4314 goto out; 4315 if (S_ISDIR(ow_mode)) 4316 orphanized_dir = true; 4317 4318 /* 4319 * If ow_inode has its rename operation delayed 4320 * make sure that its orphanized name is used in 4321 * the source path when performing its rename 4322 * operation. 4323 */ 4324 wdm = get_waiting_dir_move(sctx, ow_inode); 4325 if (wdm) 4326 wdm->orphanized = true; 4327 4328 /* 4329 * Make sure we clear our orphanized inode's 4330 * name from the name cache. This is because the 4331 * inode ow_inode might be an ancestor of some 4332 * other inode that will be orphanized as well 4333 * later and has an inode number greater than 4334 * sctx->send_progress. We need to prevent 4335 * future name lookups from using the old name 4336 * and get instead the orphan name. 4337 */ 4338 nce = name_cache_search(sctx, ow_inode, ow_gen); 4339 if (nce) 4340 btrfs_lru_cache_remove(&sctx->name_cache, 4341 &nce->entry); 4342 4343 /* 4344 * ow_inode might currently be an ancestor of 4345 * cur_ino, therefore compute valid_path (the 4346 * current path of cur_ino) again because it 4347 * might contain the pre-orphanization name of 4348 * ow_inode, which is no longer valid. 4349 */ 4350 ret = is_ancestor(sctx->parent_root, 4351 ow_inode, ow_gen, 4352 sctx->cur_ino, NULL); 4353 if (ret > 0) { 4354 orphanized_ancestor = true; 4355 fs_path_reset(valid_path); 4356 fs_path_reset(&sctx->cur_inode_path); 4357 ret = get_cur_path(sctx, sctx->cur_ino, 4358 sctx->cur_inode_gen, 4359 valid_path); 4360 } 4361 if (ret < 0) 4362 goto out; 4363 } else { 4364 /* 4365 * If we previously orphanized a directory that 4366 * collided with a new reference that we already 4367 * processed, recompute the current path because 4368 * that directory may be part of the path. 4369 */ 4370 if (orphanized_dir) { 4371 ret = refresh_ref_path(sctx, cur); 4372 if (ret < 0) 4373 goto out; 4374 } 4375 ret = send_unlink(sctx, cur->full_path); 4376 if (ret < 0) 4377 goto out; 4378 } 4379 } 4380 4381 } 4382 4383 list_for_each_entry(cur, &sctx->new_refs, list) { 4384 /* 4385 * We may have refs where the parent directory does not exist 4386 * yet. This happens if the parent directories inum is higher 4387 * than the current inum. To handle this case, we create the 4388 * parent directory out of order. But we need to check if this 4389 * did already happen before due to other refs in the same dir. 4390 */ 4391 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4392 if (ret < 0) 4393 goto out; 4394 if (ret == inode_state_will_create) { 4395 ret = 0; 4396 /* 4397 * First check if any of the current inodes refs did 4398 * already create the dir. 4399 */ 4400 list_for_each_entry(cur2, &sctx->new_refs, list) { 4401 if (cur == cur2) 4402 break; 4403 if (cur2->dir == cur->dir) { 4404 ret = 1; 4405 break; 4406 } 4407 } 4408 4409 /* 4410 * If that did not happen, check if a previous inode 4411 * did already create the dir. 4412 */ 4413 if (!ret) 4414 ret = did_create_dir(sctx, cur->dir); 4415 if (ret < 0) 4416 goto out; 4417 if (!ret) { 4418 ret = send_create_inode(sctx, cur->dir); 4419 if (ret < 0) 4420 goto out; 4421 cache_dir_created(sctx, cur->dir); 4422 } 4423 } 4424 4425 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4426 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4427 if (ret < 0) 4428 goto out; 4429 if (ret == 1) { 4430 can_rename = false; 4431 *pending_move = 1; 4432 } 4433 } 4434 4435 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4436 can_rename) { 4437 ret = wait_for_parent_move(sctx, cur, is_orphan); 4438 if (ret < 0) 4439 goto out; 4440 if (ret == 1) { 4441 can_rename = false; 4442 *pending_move = 1; 4443 } 4444 } 4445 4446 /* 4447 * link/move the ref to the new place. If we have an orphan 4448 * inode, move it and update valid_path. If not, link or move 4449 * it depending on the inode mode. 4450 */ 4451 if (is_orphan && can_rename) { 4452 ret = rename_current_inode(sctx, valid_path, cur->full_path); 4453 if (ret < 0) 4454 goto out; 4455 is_orphan = false; 4456 } else if (can_rename) { 4457 if (S_ISDIR(sctx->cur_inode_mode)) { 4458 /* 4459 * Dirs can't be linked, so move it. For moved 4460 * dirs, we always have one new and one deleted 4461 * ref. The deleted ref is ignored later. 4462 */ 4463 ret = rename_current_inode(sctx, valid_path, 4464 cur->full_path); 4465 if (ret < 0) 4466 goto out; 4467 } else { 4468 /* 4469 * We might have previously orphanized an inode 4470 * which is an ancestor of our current inode, 4471 * so our reference's full path, which was 4472 * computed before any such orphanizations, must 4473 * be updated. 4474 */ 4475 if (orphanized_dir) { 4476 ret = update_ref_path(sctx, cur); 4477 if (ret < 0) 4478 goto out; 4479 } 4480 ret = send_link(sctx, cur->full_path, 4481 valid_path); 4482 if (ret < 0) 4483 goto out; 4484 } 4485 } 4486 ret = dup_ref(cur, &check_dirs); 4487 if (ret < 0) 4488 goto out; 4489 } 4490 4491 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4492 /* 4493 * Check if we can already rmdir the directory. If not, 4494 * orphanize it. For every dir item inside that gets deleted 4495 * later, we do this check again and rmdir it then if possible. 4496 * See the use of check_dirs for more details. 4497 */ 4498 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4499 if (ret < 0) 4500 goto out; 4501 if (ret) { 4502 ret = send_rmdir(sctx, valid_path); 4503 if (ret < 0) 4504 goto out; 4505 } else if (!is_orphan) { 4506 ret = orphanize_inode(sctx, sctx->cur_ino, 4507 sctx->cur_inode_gen, valid_path); 4508 if (ret < 0) 4509 goto out; 4510 is_orphan = true; 4511 } 4512 4513 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4514 ret = dup_ref(cur, &check_dirs); 4515 if (ret < 0) 4516 goto out; 4517 } 4518 } else if (S_ISDIR(sctx->cur_inode_mode) && 4519 !list_empty(&sctx->deleted_refs)) { 4520 /* 4521 * We have a moved dir. Add the old parent to check_dirs 4522 */ 4523 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list); 4524 ret = dup_ref(cur, &check_dirs); 4525 if (ret < 0) 4526 goto out; 4527 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4528 /* 4529 * We have a non dir inode. Go through all deleted refs and 4530 * unlink them if they were not already overwritten by other 4531 * inodes. 4532 */ 4533 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4534 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4535 sctx->cur_ino, sctx->cur_inode_gen, 4536 cur->name, cur->name_len); 4537 if (ret < 0) 4538 goto out; 4539 if (!ret) { 4540 /* 4541 * If we orphanized any ancestor before, we need 4542 * to recompute the full path for deleted names, 4543 * since any such path was computed before we 4544 * processed any references and orphanized any 4545 * ancestor inode. 4546 */ 4547 if (orphanized_ancestor) { 4548 ret = update_ref_path(sctx, cur); 4549 if (ret < 0) 4550 goto out; 4551 } 4552 ret = send_unlink(sctx, cur->full_path); 4553 if (ret < 0) 4554 goto out; 4555 if (is_current_inode_path(sctx, cur->full_path)) 4556 fs_path_reset(&sctx->cur_inode_path); 4557 } 4558 ret = dup_ref(cur, &check_dirs); 4559 if (ret < 0) 4560 goto out; 4561 } 4562 /* 4563 * If the inode is still orphan, unlink the orphan. This may 4564 * happen when a previous inode did overwrite the first ref 4565 * of this inode and no new refs were added for the current 4566 * inode. Unlinking does not mean that the inode is deleted in 4567 * all cases. There may still be links to this inode in other 4568 * places. 4569 */ 4570 if (is_orphan) { 4571 ret = send_unlink(sctx, valid_path); 4572 if (ret < 0) 4573 goto out; 4574 } 4575 } 4576 4577 /* 4578 * We did collect all parent dirs where cur_inode was once located. We 4579 * now go through all these dirs and check if they are pending for 4580 * deletion and if it's finally possible to perform the rmdir now. 4581 * We also update the inode stats of the parent dirs here. 4582 */ 4583 list_for_each_entry(cur, &check_dirs, list) { 4584 /* 4585 * In case we had refs into dirs that were not processed yet, 4586 * we don't need to do the utime and rmdir logic for these dirs. 4587 * The dir will be processed later. 4588 */ 4589 if (cur->dir > sctx->cur_ino) 4590 continue; 4591 4592 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4593 if (ret < 0) 4594 goto out; 4595 4596 if (ret == inode_state_did_create || 4597 ret == inode_state_no_change) { 4598 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4599 if (ret < 0) 4600 goto out; 4601 } else if (ret == inode_state_did_delete && 4602 cur->dir != last_dir_ino_rm) { 4603 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4604 if (ret < 0) 4605 goto out; 4606 if (ret) { 4607 ret = get_cur_path(sctx, cur->dir, 4608 cur->dir_gen, valid_path); 4609 if (ret < 0) 4610 goto out; 4611 ret = send_rmdir(sctx, valid_path); 4612 if (ret < 0) 4613 goto out; 4614 last_dir_ino_rm = cur->dir; 4615 } 4616 } 4617 } 4618 4619 ret = 0; 4620 4621 out: 4622 __free_recorded_refs(&check_dirs); 4623 free_recorded_refs(sctx); 4624 fs_path_free(valid_path); 4625 return ret; 4626 } 4627 4628 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4629 { 4630 const struct recorded_ref *data = k; 4631 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4632 4633 if (data->dir > ref->dir) 4634 return 1; 4635 if (data->dir < ref->dir) 4636 return -1; 4637 if (data->dir_gen > ref->dir_gen) 4638 return 1; 4639 if (data->dir_gen < ref->dir_gen) 4640 return -1; 4641 if (data->name_len > ref->name_len) 4642 return 1; 4643 if (data->name_len < ref->name_len) 4644 return -1; 4645 return strcmp(data->name, ref->name); 4646 } 4647 4648 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4649 { 4650 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4651 4652 return rbtree_ref_comp(entry, parent) < 0; 4653 } 4654 4655 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4656 struct fs_path *name, u64 dir, u64 dir_gen, 4657 struct send_ctx *sctx) 4658 { 4659 int ret = 0; 4660 struct fs_path *path = NULL; 4661 struct recorded_ref *ref = NULL; 4662 4663 path = fs_path_alloc(); 4664 if (!path) { 4665 ret = -ENOMEM; 4666 goto out; 4667 } 4668 4669 ref = recorded_ref_alloc(); 4670 if (!ref) { 4671 ret = -ENOMEM; 4672 goto out; 4673 } 4674 4675 ret = get_cur_path(sctx, dir, dir_gen, path); 4676 if (ret < 0) 4677 goto out; 4678 ret = fs_path_add_path(path, name); 4679 if (ret < 0) 4680 goto out; 4681 4682 ref->dir = dir; 4683 ref->dir_gen = dir_gen; 4684 set_ref_path(ref, path); 4685 list_add_tail(&ref->list, refs); 4686 rb_add(&ref->node, root, rbtree_ref_less); 4687 ref->root = root; 4688 out: 4689 if (ret) { 4690 if (path && (!ref || !ref->full_path)) 4691 fs_path_free(path); 4692 recorded_ref_free(ref); 4693 } 4694 return ret; 4695 } 4696 4697 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4698 { 4699 int ret; 4700 struct send_ctx *sctx = ctx; 4701 struct rb_node *node = NULL; 4702 struct recorded_ref data; 4703 struct recorded_ref *ref; 4704 u64 dir_gen; 4705 4706 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4707 if (ret < 0) 4708 return ret; 4709 4710 data.dir = dir; 4711 data.dir_gen = dir_gen; 4712 set_ref_path(&data, name); 4713 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4714 if (node) { 4715 ref = rb_entry(node, struct recorded_ref, node); 4716 recorded_ref_free(ref); 4717 } else { 4718 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4719 &sctx->new_refs, name, dir, dir_gen, 4720 sctx); 4721 } 4722 4723 return ret; 4724 } 4725 4726 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4727 { 4728 int ret; 4729 struct send_ctx *sctx = ctx; 4730 struct rb_node *node = NULL; 4731 struct recorded_ref data; 4732 struct recorded_ref *ref; 4733 u64 dir_gen; 4734 4735 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4736 if (ret < 0) 4737 return ret; 4738 4739 data.dir = dir; 4740 data.dir_gen = dir_gen; 4741 set_ref_path(&data, name); 4742 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4743 if (node) { 4744 ref = rb_entry(node, struct recorded_ref, node); 4745 recorded_ref_free(ref); 4746 } else { 4747 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4748 &sctx->deleted_refs, name, dir, 4749 dir_gen, sctx); 4750 } 4751 4752 return ret; 4753 } 4754 4755 static int record_new_ref(struct send_ctx *sctx) 4756 { 4757 int ret; 4758 4759 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4760 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4761 if (ret < 0) 4762 return ret; 4763 4764 return 0; 4765 } 4766 4767 static int record_deleted_ref(struct send_ctx *sctx) 4768 { 4769 int ret; 4770 4771 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4772 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4773 sctx); 4774 if (ret < 0) 4775 return ret; 4776 4777 return 0; 4778 } 4779 4780 static int record_changed_ref(struct send_ctx *sctx) 4781 { 4782 int ret; 4783 4784 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4785 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4786 if (ret < 0) 4787 return ret; 4788 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4789 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4790 if (ret < 0) 4791 return ret; 4792 4793 return 0; 4794 } 4795 4796 /* 4797 * Record and process all refs at once. Needed when an inode changes the 4798 * generation number, which means that it was deleted and recreated. 4799 */ 4800 static int process_all_refs(struct send_ctx *sctx, 4801 enum btrfs_compare_tree_result cmd) 4802 { 4803 int ret = 0; 4804 int iter_ret = 0; 4805 struct btrfs_root *root; 4806 struct btrfs_path *path; 4807 struct btrfs_key key; 4808 struct btrfs_key found_key; 4809 iterate_inode_ref_t cb; 4810 int pending_move = 0; 4811 4812 path = alloc_path_for_send(); 4813 if (!path) 4814 return -ENOMEM; 4815 4816 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4817 root = sctx->send_root; 4818 cb = record_new_ref_if_needed; 4819 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4820 root = sctx->parent_root; 4821 cb = record_deleted_ref_if_needed; 4822 } else { 4823 btrfs_err(sctx->send_root->fs_info, 4824 "Wrong command %d in process_all_refs", cmd); 4825 ret = -EINVAL; 4826 goto out; 4827 } 4828 4829 key.objectid = sctx->cmp_key->objectid; 4830 key.type = BTRFS_INODE_REF_KEY; 4831 key.offset = 0; 4832 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4833 if (found_key.objectid != key.objectid || 4834 (found_key.type != BTRFS_INODE_REF_KEY && 4835 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4836 break; 4837 4838 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4839 if (ret < 0) 4840 goto out; 4841 } 4842 /* Catch error found during iteration */ 4843 if (iter_ret < 0) { 4844 ret = iter_ret; 4845 goto out; 4846 } 4847 btrfs_release_path(path); 4848 4849 /* 4850 * We don't actually care about pending_move as we are simply 4851 * re-creating this inode and will be rename'ing it into place once we 4852 * rename the parent directory. 4853 */ 4854 ret = process_recorded_refs(sctx, &pending_move); 4855 out: 4856 btrfs_free_path(path); 4857 return ret; 4858 } 4859 4860 static int send_set_xattr(struct send_ctx *sctx, 4861 const char *name, int name_len, 4862 const char *data, int data_len) 4863 { 4864 struct fs_path *path; 4865 int ret; 4866 4867 path = get_cur_inode_path(sctx); 4868 if (IS_ERR(path)) 4869 return PTR_ERR(path); 4870 4871 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4872 if (ret < 0) 4873 return ret; 4874 4875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4876 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4877 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4878 4879 ret = send_cmd(sctx); 4880 4881 tlv_put_failure: 4882 return ret; 4883 } 4884 4885 static int send_remove_xattr(struct send_ctx *sctx, 4886 struct fs_path *path, 4887 const char *name, int name_len) 4888 { 4889 int ret; 4890 4891 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4892 if (ret < 0) 4893 return ret; 4894 4895 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4896 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4897 4898 ret = send_cmd(sctx); 4899 4900 tlv_put_failure: 4901 return ret; 4902 } 4903 4904 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4905 const char *name, int name_len, const char *data, 4906 int data_len, void *ctx) 4907 { 4908 struct send_ctx *sctx = ctx; 4909 struct posix_acl_xattr_header dummy_acl; 4910 4911 /* Capabilities are emitted by finish_inode_if_needed */ 4912 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4913 return 0; 4914 4915 /* 4916 * This hack is needed because empty acls are stored as zero byte 4917 * data in xattrs. Problem with that is, that receiving these zero byte 4918 * acls will fail later. To fix this, we send a dummy acl list that 4919 * only contains the version number and no entries. 4920 */ 4921 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4922 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4923 if (data_len == 0) { 4924 dummy_acl.a_version = 4925 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4926 data = (char *)&dummy_acl; 4927 data_len = sizeof(dummy_acl); 4928 } 4929 } 4930 4931 return send_set_xattr(sctx, name, name_len, data, data_len); 4932 } 4933 4934 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4935 const char *name, int name_len, 4936 const char *data, int data_len, void *ctx) 4937 { 4938 struct send_ctx *sctx = ctx; 4939 struct fs_path *p; 4940 4941 p = get_cur_inode_path(sctx); 4942 if (IS_ERR(p)) 4943 return PTR_ERR(p); 4944 4945 return send_remove_xattr(sctx, p, name, name_len); 4946 } 4947 4948 static int process_new_xattr(struct send_ctx *sctx) 4949 { 4950 return iterate_dir_item(sctx->send_root, sctx->left_path, 4951 __process_new_xattr, sctx); 4952 } 4953 4954 static int process_deleted_xattr(struct send_ctx *sctx) 4955 { 4956 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4957 __process_deleted_xattr, sctx); 4958 } 4959 4960 struct find_xattr_ctx { 4961 const char *name; 4962 int name_len; 4963 int found_idx; 4964 char *found_data; 4965 int found_data_len; 4966 }; 4967 4968 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4969 int name_len, const char *data, int data_len, void *vctx) 4970 { 4971 struct find_xattr_ctx *ctx = vctx; 4972 4973 if (name_len == ctx->name_len && 4974 strncmp(name, ctx->name, name_len) == 0) { 4975 ctx->found_idx = num; 4976 ctx->found_data_len = data_len; 4977 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4978 if (!ctx->found_data) 4979 return -ENOMEM; 4980 return 1; 4981 } 4982 return 0; 4983 } 4984 4985 static int find_xattr(struct btrfs_root *root, 4986 struct btrfs_path *path, 4987 struct btrfs_key *key, 4988 const char *name, int name_len, 4989 char **data, int *data_len) 4990 { 4991 int ret; 4992 struct find_xattr_ctx ctx; 4993 4994 ctx.name = name; 4995 ctx.name_len = name_len; 4996 ctx.found_idx = -1; 4997 ctx.found_data = NULL; 4998 ctx.found_data_len = 0; 4999 5000 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5001 if (ret < 0) 5002 return ret; 5003 5004 if (ctx.found_idx == -1) 5005 return -ENOENT; 5006 if (data) { 5007 *data = ctx.found_data; 5008 *data_len = ctx.found_data_len; 5009 } else { 5010 kfree(ctx.found_data); 5011 } 5012 return ctx.found_idx; 5013 } 5014 5015 5016 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5017 const char *name, int name_len, 5018 const char *data, int data_len, 5019 void *ctx) 5020 { 5021 int ret; 5022 struct send_ctx *sctx = ctx; 5023 char *found_data = NULL; 5024 int found_data_len = 0; 5025 5026 ret = find_xattr(sctx->parent_root, sctx->right_path, 5027 sctx->cmp_key, name, name_len, &found_data, 5028 &found_data_len); 5029 if (ret == -ENOENT) { 5030 ret = __process_new_xattr(num, di_key, name, name_len, data, 5031 data_len, ctx); 5032 } else if (ret >= 0) { 5033 if (data_len != found_data_len || 5034 memcmp(data, found_data, data_len)) { 5035 ret = __process_new_xattr(num, di_key, name, name_len, 5036 data, data_len, ctx); 5037 } else { 5038 ret = 0; 5039 } 5040 } 5041 5042 kfree(found_data); 5043 return ret; 5044 } 5045 5046 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5047 const char *name, int name_len, 5048 const char *data, int data_len, 5049 void *ctx) 5050 { 5051 int ret; 5052 struct send_ctx *sctx = ctx; 5053 5054 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5055 name, name_len, NULL, NULL); 5056 if (ret == -ENOENT) 5057 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5058 data_len, ctx); 5059 else if (ret >= 0) 5060 ret = 0; 5061 5062 return ret; 5063 } 5064 5065 static int process_changed_xattr(struct send_ctx *sctx) 5066 { 5067 int ret; 5068 5069 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5070 __process_changed_new_xattr, sctx); 5071 if (ret < 0) 5072 return ret; 5073 5074 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5075 __process_changed_deleted_xattr, sctx); 5076 } 5077 5078 static int process_all_new_xattrs(struct send_ctx *sctx) 5079 { 5080 int ret = 0; 5081 int iter_ret = 0; 5082 struct btrfs_root *root; 5083 struct btrfs_path *path; 5084 struct btrfs_key key; 5085 struct btrfs_key found_key; 5086 5087 path = alloc_path_for_send(); 5088 if (!path) 5089 return -ENOMEM; 5090 5091 root = sctx->send_root; 5092 5093 key.objectid = sctx->cmp_key->objectid; 5094 key.type = BTRFS_XATTR_ITEM_KEY; 5095 key.offset = 0; 5096 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5097 if (found_key.objectid != key.objectid || 5098 found_key.type != key.type) { 5099 ret = 0; 5100 break; 5101 } 5102 5103 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5104 if (ret < 0) 5105 break; 5106 } 5107 /* Catch error found during iteration */ 5108 if (iter_ret < 0) 5109 ret = iter_ret; 5110 5111 btrfs_free_path(path); 5112 return ret; 5113 } 5114 5115 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5116 struct fsverity_descriptor *desc) 5117 { 5118 int ret; 5119 5120 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5121 if (ret < 0) 5122 return ret; 5123 5124 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5125 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5126 le8_to_cpu(desc->hash_algorithm)); 5127 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5128 1U << le8_to_cpu(desc->log_blocksize)); 5129 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5130 le8_to_cpu(desc->salt_size)); 5131 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5132 le32_to_cpu(desc->sig_size)); 5133 5134 ret = send_cmd(sctx); 5135 5136 tlv_put_failure: 5137 return ret; 5138 } 5139 5140 static int process_verity(struct send_ctx *sctx) 5141 { 5142 int ret = 0; 5143 struct btrfs_inode *inode; 5144 struct fs_path *p; 5145 5146 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5147 if (IS_ERR(inode)) 5148 return PTR_ERR(inode); 5149 5150 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); 5151 if (ret < 0) 5152 goto iput; 5153 5154 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5155 ret = -EMSGSIZE; 5156 goto iput; 5157 } 5158 if (!sctx->verity_descriptor) { 5159 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5160 GFP_KERNEL); 5161 if (!sctx->verity_descriptor) { 5162 ret = -ENOMEM; 5163 goto iput; 5164 } 5165 } 5166 5167 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); 5168 if (ret < 0) 5169 goto iput; 5170 5171 p = get_cur_inode_path(sctx); 5172 if (IS_ERR(p)) { 5173 ret = PTR_ERR(p); 5174 goto iput; 5175 } 5176 5177 ret = send_verity(sctx, p, sctx->verity_descriptor); 5178 iput: 5179 iput(&inode->vfs_inode); 5180 return ret; 5181 } 5182 5183 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5184 { 5185 return sctx->send_max_size - SZ_16K; 5186 } 5187 5188 static int put_data_header(struct send_ctx *sctx, u32 len) 5189 { 5190 if (WARN_ON_ONCE(sctx->put_data)) 5191 return -EINVAL; 5192 sctx->put_data = true; 5193 if (sctx->proto >= 2) { 5194 /* 5195 * Since v2, the data attribute header doesn't include a length, 5196 * it is implicitly to the end of the command. 5197 */ 5198 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5199 return -EOVERFLOW; 5200 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5201 sctx->send_size += sizeof(__le16); 5202 } else { 5203 struct btrfs_tlv_header *hdr; 5204 5205 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5206 return -EOVERFLOW; 5207 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5208 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5209 put_unaligned_le16(len, &hdr->tlv_len); 5210 sctx->send_size += sizeof(*hdr); 5211 } 5212 return 0; 5213 } 5214 5215 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5216 { 5217 struct btrfs_root *root = sctx->send_root; 5218 struct btrfs_fs_info *fs_info = root->fs_info; 5219 u64 cur = offset; 5220 const u64 end = offset + len; 5221 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT); 5222 struct address_space *mapping = sctx->cur_inode->i_mapping; 5223 int ret; 5224 5225 ret = put_data_header(sctx, len); 5226 if (ret) 5227 return ret; 5228 5229 while (cur < end) { 5230 pgoff_t index = (cur >> PAGE_SHIFT); 5231 unsigned int cur_len; 5232 unsigned int pg_offset; 5233 struct folio *folio; 5234 5235 folio = filemap_lock_folio(mapping, index); 5236 if (IS_ERR(folio)) { 5237 page_cache_sync_readahead(mapping, 5238 &sctx->ra, NULL, index, 5239 last_index + 1 - index); 5240 5241 folio = filemap_grab_folio(mapping, index); 5242 if (IS_ERR(folio)) { 5243 ret = PTR_ERR(folio); 5244 break; 5245 } 5246 } 5247 pg_offset = offset_in_folio(folio, cur); 5248 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset); 5249 5250 if (folio_test_readahead(folio)) 5251 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5252 last_index + 1 - index); 5253 5254 if (!folio_test_uptodate(folio)) { 5255 btrfs_read_folio(NULL, folio); 5256 folio_lock(folio); 5257 if (!folio_test_uptodate(folio)) { 5258 folio_unlock(folio); 5259 btrfs_err(fs_info, 5260 "send: IO error at offset %llu for inode %llu root %llu", 5261 folio_pos(folio), sctx->cur_ino, 5262 btrfs_root_id(sctx->send_root)); 5263 folio_put(folio); 5264 ret = -EIO; 5265 break; 5266 } 5267 if (folio->mapping != mapping) { 5268 folio_unlock(folio); 5269 folio_put(folio); 5270 continue; 5271 } 5272 } 5273 5274 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5275 pg_offset, cur_len); 5276 folio_unlock(folio); 5277 folio_put(folio); 5278 cur += cur_len; 5279 sctx->send_size += cur_len; 5280 } 5281 5282 return ret; 5283 } 5284 5285 /* 5286 * Read some bytes from the current inode/file and send a write command to 5287 * user space. 5288 */ 5289 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5290 { 5291 int ret = 0; 5292 struct fs_path *p; 5293 5294 p = get_cur_inode_path(sctx); 5295 if (IS_ERR(p)) 5296 return PTR_ERR(p); 5297 5298 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5299 if (ret < 0) 5300 return ret; 5301 5302 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5303 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5304 ret = put_file_data(sctx, offset, len); 5305 if (ret < 0) 5306 return ret; 5307 5308 ret = send_cmd(sctx); 5309 5310 tlv_put_failure: 5311 return ret; 5312 } 5313 5314 /* 5315 * Send a clone command to user space. 5316 */ 5317 static int send_clone(struct send_ctx *sctx, 5318 u64 offset, u32 len, 5319 struct clone_root *clone_root) 5320 { 5321 int ret = 0; 5322 struct fs_path *p; 5323 struct fs_path *cur_inode_path; 5324 u64 gen; 5325 5326 cur_inode_path = get_cur_inode_path(sctx); 5327 if (IS_ERR(cur_inode_path)) 5328 return PTR_ERR(cur_inode_path); 5329 5330 p = fs_path_alloc(); 5331 if (!p) 5332 return -ENOMEM; 5333 5334 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5335 if (ret < 0) 5336 goto out; 5337 5338 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5339 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5340 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); 5341 5342 if (clone_root->root == sctx->send_root) { 5343 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5344 if (ret < 0) 5345 goto out; 5346 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5347 } else { 5348 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5349 } 5350 if (ret < 0) 5351 goto out; 5352 5353 /* 5354 * If the parent we're using has a received_uuid set then use that as 5355 * our clone source as that is what we will look for when doing a 5356 * receive. 5357 * 5358 * This covers the case that we create a snapshot off of a received 5359 * subvolume and then use that as the parent and try to receive on a 5360 * different host. 5361 */ 5362 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5364 clone_root->root->root_item.received_uuid); 5365 else 5366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5367 clone_root->root->root_item.uuid); 5368 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5369 btrfs_root_ctransid(&clone_root->root->root_item)); 5370 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5371 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5372 clone_root->offset); 5373 5374 ret = send_cmd(sctx); 5375 5376 tlv_put_failure: 5377 out: 5378 fs_path_free(p); 5379 return ret; 5380 } 5381 5382 /* 5383 * Send an update extent command to user space. 5384 */ 5385 static int send_update_extent(struct send_ctx *sctx, 5386 u64 offset, u32 len) 5387 { 5388 int ret = 0; 5389 struct fs_path *p; 5390 5391 p = get_cur_inode_path(sctx); 5392 if (IS_ERR(p)) 5393 return PTR_ERR(p); 5394 5395 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5396 if (ret < 0) 5397 return ret; 5398 5399 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5400 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5401 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5402 5403 ret = send_cmd(sctx); 5404 5405 tlv_put_failure: 5406 return ret; 5407 } 5408 5409 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len) 5410 { 5411 struct fs_path *path; 5412 int ret; 5413 5414 path = get_cur_inode_path(sctx); 5415 if (IS_ERR(path)) 5416 return PTR_ERR(path); 5417 5418 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE); 5419 if (ret < 0) 5420 return ret; 5421 5422 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5423 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode); 5424 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5425 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5426 5427 ret = send_cmd(sctx); 5428 5429 tlv_put_failure: 5430 return ret; 5431 } 5432 5433 static int send_hole(struct send_ctx *sctx, u64 end) 5434 { 5435 struct fs_path *p = NULL; 5436 u64 read_size = max_send_read_size(sctx); 5437 u64 offset = sctx->cur_inode_last_extent; 5438 int ret = 0; 5439 5440 /* 5441 * Starting with send stream v2 we have fallocate and can use it to 5442 * punch holes instead of sending writes full of zeroes. 5443 */ 5444 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE)) 5445 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 5446 offset, end - offset); 5447 5448 /* 5449 * A hole that starts at EOF or beyond it. Since we do not yet support 5450 * fallocate (for extent preallocation and hole punching), sending a 5451 * write of zeroes starting at EOF or beyond would later require issuing 5452 * a truncate operation which would undo the write and achieve nothing. 5453 */ 5454 if (offset >= sctx->cur_inode_size) 5455 return 0; 5456 5457 /* 5458 * Don't go beyond the inode's i_size due to prealloc extents that start 5459 * after the i_size. 5460 */ 5461 end = min_t(u64, end, sctx->cur_inode_size); 5462 5463 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5464 return send_update_extent(sctx, offset, end - offset); 5465 5466 p = get_cur_inode_path(sctx); 5467 if (IS_ERR(p)) 5468 return PTR_ERR(p); 5469 5470 while (offset < end) { 5471 u64 len = min(end - offset, read_size); 5472 5473 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5474 if (ret < 0) 5475 break; 5476 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5477 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5478 ret = put_data_header(sctx, len); 5479 if (ret < 0) 5480 break; 5481 memset(sctx->send_buf + sctx->send_size, 0, len); 5482 sctx->send_size += len; 5483 ret = send_cmd(sctx); 5484 if (ret < 0) 5485 break; 5486 offset += len; 5487 } 5488 sctx->cur_inode_next_write_offset = offset; 5489 tlv_put_failure: 5490 return ret; 5491 } 5492 5493 static int send_encoded_inline_extent(struct send_ctx *sctx, 5494 struct btrfs_path *path, u64 offset, 5495 u64 len) 5496 { 5497 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5498 struct fs_path *fspath; 5499 struct extent_buffer *leaf = path->nodes[0]; 5500 struct btrfs_key key; 5501 struct btrfs_file_extent_item *ei; 5502 u64 ram_bytes; 5503 size_t inline_size; 5504 int ret; 5505 5506 fspath = get_cur_inode_path(sctx); 5507 if (IS_ERR(fspath)) 5508 return PTR_ERR(fspath); 5509 5510 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5511 if (ret < 0) 5512 return ret; 5513 5514 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5515 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5516 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5517 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5518 5519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5520 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5521 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5522 min(key.offset + ram_bytes - offset, len)); 5523 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5524 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5525 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5526 btrfs_file_extent_compression(leaf, ei)); 5527 if (ret < 0) 5528 return ret; 5529 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5530 5531 ret = put_data_header(sctx, inline_size); 5532 if (ret < 0) 5533 return ret; 5534 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5535 btrfs_file_extent_inline_start(ei), inline_size); 5536 sctx->send_size += inline_size; 5537 5538 ret = send_cmd(sctx); 5539 5540 tlv_put_failure: 5541 return ret; 5542 } 5543 5544 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5545 u64 offset, u64 len) 5546 { 5547 struct btrfs_root *root = sctx->send_root; 5548 struct btrfs_fs_info *fs_info = root->fs_info; 5549 struct btrfs_inode *inode; 5550 struct fs_path *fspath; 5551 struct extent_buffer *leaf = path->nodes[0]; 5552 struct btrfs_key key; 5553 struct btrfs_file_extent_item *ei; 5554 u64 disk_bytenr, disk_num_bytes; 5555 u32 data_offset; 5556 struct btrfs_cmd_header *hdr; 5557 u32 crc; 5558 int ret; 5559 5560 inode = btrfs_iget(sctx->cur_ino, root); 5561 if (IS_ERR(inode)) 5562 return PTR_ERR(inode); 5563 5564 fspath = get_cur_inode_path(sctx); 5565 if (IS_ERR(fspath)) { 5566 ret = PTR_ERR(fspath); 5567 goto out; 5568 } 5569 5570 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5571 if (ret < 0) 5572 goto out; 5573 5574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5575 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5576 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5577 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5578 5579 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5582 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5583 len)); 5584 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5585 btrfs_file_extent_ram_bytes(leaf, ei)); 5586 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5587 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5588 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5589 btrfs_file_extent_compression(leaf, ei)); 5590 if (ret < 0) 5591 goto out; 5592 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5593 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5594 5595 ret = put_data_header(sctx, disk_num_bytes); 5596 if (ret < 0) 5597 goto out; 5598 5599 /* 5600 * We want to do I/O directly into the send buffer, so get the next page 5601 * boundary in the send buffer. This means that there may be a gap 5602 * between the beginning of the command and the file data. 5603 */ 5604 data_offset = PAGE_ALIGN(sctx->send_size); 5605 if (data_offset > sctx->send_max_size || 5606 sctx->send_max_size - data_offset < disk_num_bytes) { 5607 ret = -EOVERFLOW; 5608 goto out; 5609 } 5610 5611 /* 5612 * Note that send_buf is a mapping of send_buf_pages, so this is really 5613 * reading into send_buf. 5614 */ 5615 ret = btrfs_encoded_read_regular_fill_pages(inode, 5616 disk_bytenr, disk_num_bytes, 5617 sctx->send_buf_pages + 5618 (data_offset >> PAGE_SHIFT), 5619 NULL); 5620 if (ret) 5621 goto out; 5622 5623 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5624 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5625 hdr->crc = 0; 5626 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5627 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5628 hdr->crc = cpu_to_le32(crc); 5629 5630 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5631 &sctx->send_off); 5632 if (!ret) { 5633 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5634 disk_num_bytes, &sctx->send_off); 5635 } 5636 sctx->send_size = 0; 5637 sctx->put_data = false; 5638 5639 tlv_put_failure: 5640 out: 5641 iput(&inode->vfs_inode); 5642 return ret; 5643 } 5644 5645 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5646 const u64 offset, const u64 len) 5647 { 5648 const u64 end = offset + len; 5649 struct extent_buffer *leaf = path->nodes[0]; 5650 struct btrfs_file_extent_item *ei; 5651 u64 read_size = max_send_read_size(sctx); 5652 u64 sent = 0; 5653 5654 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5655 return send_update_extent(sctx, offset, len); 5656 5657 ei = btrfs_item_ptr(leaf, path->slots[0], 5658 struct btrfs_file_extent_item); 5659 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5660 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5661 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5662 BTRFS_FILE_EXTENT_INLINE); 5663 5664 /* 5665 * Send the compressed extent unless the compressed data is 5666 * larger than the decompressed data. This can happen if we're 5667 * not sending the entire extent, either because it has been 5668 * partially overwritten/truncated or because this is a part of 5669 * the extent that we couldn't clone in clone_range(). 5670 */ 5671 if (is_inline && 5672 btrfs_file_extent_inline_item_len(leaf, 5673 path->slots[0]) <= len) { 5674 return send_encoded_inline_extent(sctx, path, offset, 5675 len); 5676 } else if (!is_inline && 5677 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5678 return send_encoded_extent(sctx, path, offset, len); 5679 } 5680 } 5681 5682 if (sctx->cur_inode == NULL) { 5683 struct btrfs_inode *btrfs_inode; 5684 struct btrfs_root *root = sctx->send_root; 5685 5686 btrfs_inode = btrfs_iget(sctx->cur_ino, root); 5687 if (IS_ERR(btrfs_inode)) 5688 return PTR_ERR(btrfs_inode); 5689 5690 sctx->cur_inode = &btrfs_inode->vfs_inode; 5691 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5692 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5693 5694 /* 5695 * It's very likely there are no pages from this inode in the page 5696 * cache, so after reading extents and sending their data, we clean 5697 * the page cache to avoid trashing the page cache (adding pressure 5698 * to the page cache and forcing eviction of other data more useful 5699 * for applications). 5700 * 5701 * We decide if we should clean the page cache simply by checking 5702 * if the inode's mapping nrpages is 0 when we first open it, and 5703 * not by using something like filemap_range_has_page() before 5704 * reading an extent because when we ask the readahead code to 5705 * read a given file range, it may (and almost always does) read 5706 * pages from beyond that range (see the documentation for 5707 * page_cache_sync_readahead()), so it would not be reliable, 5708 * because after reading the first extent future calls to 5709 * filemap_range_has_page() would return true because the readahead 5710 * on the previous extent resulted in reading pages of the current 5711 * extent as well. 5712 */ 5713 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5714 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5715 } 5716 5717 while (sent < len) { 5718 u64 size = min(len - sent, read_size); 5719 int ret; 5720 5721 ret = send_write(sctx, offset + sent, size); 5722 if (ret < 0) 5723 return ret; 5724 sent += size; 5725 } 5726 5727 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5728 /* 5729 * Always operate only on ranges that are a multiple of the page 5730 * size. This is not only to prevent zeroing parts of a page in 5731 * the case of subpage sector size, but also to guarantee we evict 5732 * pages, as passing a range that is smaller than page size does 5733 * not evict the respective page (only zeroes part of its content). 5734 * 5735 * Always start from the end offset of the last range cleared. 5736 * This is because the readahead code may (and very often does) 5737 * reads pages beyond the range we request for readahead. So if 5738 * we have an extent layout like this: 5739 * 5740 * [ extent A ] [ extent B ] [ extent C ] 5741 * 5742 * When we ask page_cache_sync_readahead() to read extent A, it 5743 * may also trigger reads for pages of extent B. If we are doing 5744 * an incremental send and extent B has not changed between the 5745 * parent and send snapshots, some or all of its pages may end 5746 * up being read and placed in the page cache. So when truncating 5747 * the page cache we always start from the end offset of the 5748 * previously processed extent up to the end of the current 5749 * extent. 5750 */ 5751 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5752 sctx->page_cache_clear_start, 5753 end - 1); 5754 sctx->page_cache_clear_start = end; 5755 } 5756 5757 return 0; 5758 } 5759 5760 /* 5761 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5762 * found, call send_set_xattr function to emit it. 5763 * 5764 * Return 0 if there isn't a capability, or when the capability was emitted 5765 * successfully, or < 0 if an error occurred. 5766 */ 5767 static int send_capabilities(struct send_ctx *sctx) 5768 { 5769 struct btrfs_path *path; 5770 struct btrfs_dir_item *di; 5771 struct extent_buffer *leaf; 5772 unsigned long data_ptr; 5773 char *buf = NULL; 5774 int buf_len; 5775 int ret = 0; 5776 5777 path = alloc_path_for_send(); 5778 if (!path) 5779 return -ENOMEM; 5780 5781 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5782 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5783 if (!di) { 5784 /* There is no xattr for this inode */ 5785 goto out; 5786 } else if (IS_ERR(di)) { 5787 ret = PTR_ERR(di); 5788 goto out; 5789 } 5790 5791 leaf = path->nodes[0]; 5792 buf_len = btrfs_dir_data_len(leaf, di); 5793 5794 buf = kmalloc(buf_len, GFP_KERNEL); 5795 if (!buf) { 5796 ret = -ENOMEM; 5797 goto out; 5798 } 5799 5800 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5801 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5802 5803 ret = send_set_xattr(sctx, XATTR_NAME_CAPS, 5804 strlen(XATTR_NAME_CAPS), buf, buf_len); 5805 out: 5806 kfree(buf); 5807 btrfs_free_path(path); 5808 return ret; 5809 } 5810 5811 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5812 struct clone_root *clone_root, const u64 disk_byte, 5813 u64 data_offset, u64 offset, u64 len) 5814 { 5815 struct btrfs_path *path; 5816 struct btrfs_key key; 5817 int ret; 5818 struct btrfs_inode_info info; 5819 u64 clone_src_i_size = 0; 5820 5821 /* 5822 * Prevent cloning from a zero offset with a length matching the sector 5823 * size because in some scenarios this will make the receiver fail. 5824 * 5825 * For example, if in the source filesystem the extent at offset 0 5826 * has a length of sectorsize and it was written using direct IO, then 5827 * it can never be an inline extent (even if compression is enabled). 5828 * Then this extent can be cloned in the original filesystem to a non 5829 * zero file offset, but it may not be possible to clone in the 5830 * destination filesystem because it can be inlined due to compression 5831 * on the destination filesystem (as the receiver's write operations are 5832 * always done using buffered IO). The same happens when the original 5833 * filesystem does not have compression enabled but the destination 5834 * filesystem has. 5835 */ 5836 if (clone_root->offset == 0 && 5837 len == sctx->send_root->fs_info->sectorsize) 5838 return send_extent_data(sctx, dst_path, offset, len); 5839 5840 path = alloc_path_for_send(); 5841 if (!path) 5842 return -ENOMEM; 5843 5844 /* 5845 * There are inodes that have extents that lie behind its i_size. Don't 5846 * accept clones from these extents. 5847 */ 5848 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5849 btrfs_release_path(path); 5850 if (ret < 0) 5851 goto out; 5852 clone_src_i_size = info.size; 5853 5854 /* 5855 * We can't send a clone operation for the entire range if we find 5856 * extent items in the respective range in the source file that 5857 * refer to different extents or if we find holes. 5858 * So check for that and do a mix of clone and regular write/copy 5859 * operations if needed. 5860 * 5861 * Example: 5862 * 5863 * mkfs.btrfs -f /dev/sda 5864 * mount /dev/sda /mnt 5865 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5866 * cp --reflink=always /mnt/foo /mnt/bar 5867 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5868 * btrfs subvolume snapshot -r /mnt /mnt/snap 5869 * 5870 * If when we send the snapshot and we are processing file bar (which 5871 * has a higher inode number than foo) we blindly send a clone operation 5872 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5873 * a file bar that matches the content of file foo - iow, doesn't match 5874 * the content from bar in the original filesystem. 5875 */ 5876 key.objectid = clone_root->ino; 5877 key.type = BTRFS_EXTENT_DATA_KEY; 5878 key.offset = clone_root->offset; 5879 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5880 if (ret < 0) 5881 goto out; 5882 if (ret > 0 && path->slots[0] > 0) { 5883 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5884 if (key.objectid == clone_root->ino && 5885 key.type == BTRFS_EXTENT_DATA_KEY) 5886 path->slots[0]--; 5887 } 5888 5889 while (true) { 5890 struct extent_buffer *leaf = path->nodes[0]; 5891 int slot = path->slots[0]; 5892 struct btrfs_file_extent_item *ei; 5893 u8 type; 5894 u64 ext_len; 5895 u64 clone_len; 5896 u64 clone_data_offset; 5897 bool crossed_src_i_size = false; 5898 5899 if (slot >= btrfs_header_nritems(leaf)) { 5900 ret = btrfs_next_leaf(clone_root->root, path); 5901 if (ret < 0) 5902 goto out; 5903 else if (ret > 0) 5904 break; 5905 continue; 5906 } 5907 5908 btrfs_item_key_to_cpu(leaf, &key, slot); 5909 5910 /* 5911 * We might have an implicit trailing hole (NO_HOLES feature 5912 * enabled). We deal with it after leaving this loop. 5913 */ 5914 if (key.objectid != clone_root->ino || 5915 key.type != BTRFS_EXTENT_DATA_KEY) 5916 break; 5917 5918 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5919 type = btrfs_file_extent_type(leaf, ei); 5920 if (type == BTRFS_FILE_EXTENT_INLINE) { 5921 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5922 ext_len = PAGE_ALIGN(ext_len); 5923 } else { 5924 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5925 } 5926 5927 if (key.offset + ext_len <= clone_root->offset) 5928 goto next; 5929 5930 if (key.offset > clone_root->offset) { 5931 /* Implicit hole, NO_HOLES feature enabled. */ 5932 u64 hole_len = key.offset - clone_root->offset; 5933 5934 if (hole_len > len) 5935 hole_len = len; 5936 ret = send_extent_data(sctx, dst_path, offset, 5937 hole_len); 5938 if (ret < 0) 5939 goto out; 5940 5941 len -= hole_len; 5942 if (len == 0) 5943 break; 5944 offset += hole_len; 5945 clone_root->offset += hole_len; 5946 data_offset += hole_len; 5947 } 5948 5949 if (key.offset >= clone_root->offset + len) 5950 break; 5951 5952 if (key.offset >= clone_src_i_size) 5953 break; 5954 5955 if (key.offset + ext_len > clone_src_i_size) { 5956 ext_len = clone_src_i_size - key.offset; 5957 crossed_src_i_size = true; 5958 } 5959 5960 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5961 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5962 clone_root->offset = key.offset; 5963 if (clone_data_offset < data_offset && 5964 clone_data_offset + ext_len > data_offset) { 5965 u64 extent_offset; 5966 5967 extent_offset = data_offset - clone_data_offset; 5968 ext_len -= extent_offset; 5969 clone_data_offset += extent_offset; 5970 clone_root->offset += extent_offset; 5971 } 5972 } 5973 5974 clone_len = min_t(u64, ext_len, len); 5975 5976 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5977 clone_data_offset == data_offset) { 5978 const u64 src_end = clone_root->offset + clone_len; 5979 const u64 sectorsize = SZ_64K; 5980 5981 /* 5982 * We can't clone the last block, when its size is not 5983 * sector size aligned, into the middle of a file. If we 5984 * do so, the receiver will get a failure (-EINVAL) when 5985 * trying to clone or will silently corrupt the data in 5986 * the destination file if it's on a kernel without the 5987 * fix introduced by commit ac765f83f1397646 5988 * ("Btrfs: fix data corruption due to cloning of eof 5989 * block). 5990 * 5991 * So issue a clone of the aligned down range plus a 5992 * regular write for the eof block, if we hit that case. 5993 * 5994 * Also, we use the maximum possible sector size, 64K, 5995 * because we don't know what's the sector size of the 5996 * filesystem that receives the stream, so we have to 5997 * assume the largest possible sector size. 5998 */ 5999 if (src_end == clone_src_i_size && 6000 !IS_ALIGNED(src_end, sectorsize) && 6001 offset + clone_len < sctx->cur_inode_size) { 6002 u64 slen; 6003 6004 slen = ALIGN_DOWN(src_end - clone_root->offset, 6005 sectorsize); 6006 if (slen > 0) { 6007 ret = send_clone(sctx, offset, slen, 6008 clone_root); 6009 if (ret < 0) 6010 goto out; 6011 } 6012 ret = send_extent_data(sctx, dst_path, 6013 offset + slen, 6014 clone_len - slen); 6015 } else { 6016 ret = send_clone(sctx, offset, clone_len, 6017 clone_root); 6018 } 6019 } else if (crossed_src_i_size && clone_len < len) { 6020 /* 6021 * If we are at i_size of the clone source inode and we 6022 * can not clone from it, terminate the loop. This is 6023 * to avoid sending two write operations, one with a 6024 * length matching clone_len and the final one after 6025 * this loop with a length of len - clone_len. 6026 * 6027 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6028 * was passed to the send ioctl), this helps avoid 6029 * sending an encoded write for an offset that is not 6030 * sector size aligned, in case the i_size of the source 6031 * inode is not sector size aligned. That will make the 6032 * receiver fallback to decompression of the data and 6033 * writing it using regular buffered IO, therefore while 6034 * not incorrect, it's not optimal due decompression and 6035 * possible re-compression at the receiver. 6036 */ 6037 break; 6038 } else { 6039 ret = send_extent_data(sctx, dst_path, offset, 6040 clone_len); 6041 } 6042 6043 if (ret < 0) 6044 goto out; 6045 6046 len -= clone_len; 6047 if (len == 0) 6048 break; 6049 offset += clone_len; 6050 clone_root->offset += clone_len; 6051 6052 /* 6053 * If we are cloning from the file we are currently processing, 6054 * and using the send root as the clone root, we must stop once 6055 * the current clone offset reaches the current eof of the file 6056 * at the receiver, otherwise we would issue an invalid clone 6057 * operation (source range going beyond eof) and cause the 6058 * receiver to fail. So if we reach the current eof, bail out 6059 * and fallback to a regular write. 6060 */ 6061 if (clone_root->root == sctx->send_root && 6062 clone_root->ino == sctx->cur_ino && 6063 clone_root->offset >= sctx->cur_inode_next_write_offset) 6064 break; 6065 6066 data_offset += clone_len; 6067 next: 6068 path->slots[0]++; 6069 } 6070 6071 if (len > 0) 6072 ret = send_extent_data(sctx, dst_path, offset, len); 6073 else 6074 ret = 0; 6075 out: 6076 btrfs_free_path(path); 6077 return ret; 6078 } 6079 6080 static int send_write_or_clone(struct send_ctx *sctx, 6081 struct btrfs_path *path, 6082 struct btrfs_key *key, 6083 struct clone_root *clone_root) 6084 { 6085 int ret = 0; 6086 u64 offset = key->offset; 6087 u64 end; 6088 u64 bs = sctx->send_root->fs_info->sectorsize; 6089 struct btrfs_file_extent_item *ei; 6090 u64 disk_byte; 6091 u64 data_offset; 6092 u64 num_bytes; 6093 struct btrfs_inode_info info = { 0 }; 6094 6095 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6096 if (offset >= end) 6097 return 0; 6098 6099 num_bytes = end - offset; 6100 6101 if (!clone_root) 6102 goto write_data; 6103 6104 if (IS_ALIGNED(end, bs)) 6105 goto clone_data; 6106 6107 /* 6108 * If the extent end is not aligned, we can clone if the extent ends at 6109 * the i_size of the inode and the clone range ends at the i_size of the 6110 * source inode, otherwise the clone operation fails with -EINVAL. 6111 */ 6112 if (end != sctx->cur_inode_size) 6113 goto write_data; 6114 6115 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6116 if (ret < 0) 6117 return ret; 6118 6119 if (clone_root->offset + num_bytes == info.size) { 6120 /* 6121 * The final size of our file matches the end offset, but it may 6122 * be that its current size is larger, so we have to truncate it 6123 * to any value between the start offset of the range and the 6124 * final i_size, otherwise the clone operation is invalid 6125 * because it's unaligned and it ends before the current EOF. 6126 * We do this truncate to the final i_size when we finish 6127 * processing the inode, but it's too late by then. And here we 6128 * truncate to the start offset of the range because it's always 6129 * sector size aligned while if it were the final i_size it 6130 * would result in dirtying part of a page, filling part of a 6131 * page with zeroes and then having the clone operation at the 6132 * receiver trigger IO and wait for it due to the dirty page. 6133 */ 6134 if (sctx->parent_root != NULL) { 6135 ret = send_truncate(sctx, sctx->cur_ino, 6136 sctx->cur_inode_gen, offset); 6137 if (ret < 0) 6138 return ret; 6139 } 6140 goto clone_data; 6141 } 6142 6143 write_data: 6144 ret = send_extent_data(sctx, path, offset, num_bytes); 6145 sctx->cur_inode_next_write_offset = end; 6146 return ret; 6147 6148 clone_data: 6149 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6150 struct btrfs_file_extent_item); 6151 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6152 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6153 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6154 num_bytes); 6155 sctx->cur_inode_next_write_offset = end; 6156 return ret; 6157 } 6158 6159 static int is_extent_unchanged(struct send_ctx *sctx, 6160 struct btrfs_path *left_path, 6161 struct btrfs_key *ekey) 6162 { 6163 int ret = 0; 6164 struct btrfs_key key; 6165 struct btrfs_path *path = NULL; 6166 struct extent_buffer *eb; 6167 int slot; 6168 struct btrfs_key found_key; 6169 struct btrfs_file_extent_item *ei; 6170 u64 left_disknr; 6171 u64 right_disknr; 6172 u64 left_offset; 6173 u64 right_offset; 6174 u64 left_offset_fixed; 6175 u64 left_len; 6176 u64 right_len; 6177 u64 left_gen; 6178 u64 right_gen; 6179 u8 left_type; 6180 u8 right_type; 6181 6182 path = alloc_path_for_send(); 6183 if (!path) 6184 return -ENOMEM; 6185 6186 eb = left_path->nodes[0]; 6187 slot = left_path->slots[0]; 6188 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6189 left_type = btrfs_file_extent_type(eb, ei); 6190 6191 if (left_type != BTRFS_FILE_EXTENT_REG) { 6192 ret = 0; 6193 goto out; 6194 } 6195 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6196 left_len = btrfs_file_extent_num_bytes(eb, ei); 6197 left_offset = btrfs_file_extent_offset(eb, ei); 6198 left_gen = btrfs_file_extent_generation(eb, ei); 6199 6200 /* 6201 * Following comments will refer to these graphics. L is the left 6202 * extents which we are checking at the moment. 1-8 are the right 6203 * extents that we iterate. 6204 * 6205 * |-----L-----| 6206 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6207 * 6208 * |-----L-----| 6209 * |--1--|-2b-|...(same as above) 6210 * 6211 * Alternative situation. Happens on files where extents got split. 6212 * |-----L-----| 6213 * |-----------7-----------|-6-| 6214 * 6215 * Alternative situation. Happens on files which got larger. 6216 * |-----L-----| 6217 * |-8-| 6218 * Nothing follows after 8. 6219 */ 6220 6221 key.objectid = ekey->objectid; 6222 key.type = BTRFS_EXTENT_DATA_KEY; 6223 key.offset = ekey->offset; 6224 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6225 if (ret < 0) 6226 goto out; 6227 if (ret) { 6228 ret = 0; 6229 goto out; 6230 } 6231 6232 /* 6233 * Handle special case where the right side has no extents at all. 6234 */ 6235 eb = path->nodes[0]; 6236 slot = path->slots[0]; 6237 btrfs_item_key_to_cpu(eb, &found_key, slot); 6238 if (found_key.objectid != key.objectid || 6239 found_key.type != key.type) { 6240 /* If we're a hole then just pretend nothing changed */ 6241 ret = (left_disknr) ? 0 : 1; 6242 goto out; 6243 } 6244 6245 /* 6246 * We're now on 2a, 2b or 7. 6247 */ 6248 key = found_key; 6249 while (key.offset < ekey->offset + left_len) { 6250 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6251 right_type = btrfs_file_extent_type(eb, ei); 6252 if (right_type != BTRFS_FILE_EXTENT_REG && 6253 right_type != BTRFS_FILE_EXTENT_INLINE) { 6254 ret = 0; 6255 goto out; 6256 } 6257 6258 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6259 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6260 right_len = PAGE_ALIGN(right_len); 6261 } else { 6262 right_len = btrfs_file_extent_num_bytes(eb, ei); 6263 } 6264 6265 /* 6266 * Are we at extent 8? If yes, we know the extent is changed. 6267 * This may only happen on the first iteration. 6268 */ 6269 if (found_key.offset + right_len <= ekey->offset) { 6270 /* If we're a hole just pretend nothing changed */ 6271 ret = (left_disknr) ? 0 : 1; 6272 goto out; 6273 } 6274 6275 /* 6276 * We just wanted to see if when we have an inline extent, what 6277 * follows it is a regular extent (wanted to check the above 6278 * condition for inline extents too). This should normally not 6279 * happen but it's possible for example when we have an inline 6280 * compressed extent representing data with a size matching 6281 * the page size (currently the same as sector size). 6282 */ 6283 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6284 ret = 0; 6285 goto out; 6286 } 6287 6288 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6289 right_offset = btrfs_file_extent_offset(eb, ei); 6290 right_gen = btrfs_file_extent_generation(eb, ei); 6291 6292 left_offset_fixed = left_offset; 6293 if (key.offset < ekey->offset) { 6294 /* Fix the right offset for 2a and 7. */ 6295 right_offset += ekey->offset - key.offset; 6296 } else { 6297 /* Fix the left offset for all behind 2a and 2b */ 6298 left_offset_fixed += key.offset - ekey->offset; 6299 } 6300 6301 /* 6302 * Check if we have the same extent. 6303 */ 6304 if (left_disknr != right_disknr || 6305 left_offset_fixed != right_offset || 6306 left_gen != right_gen) { 6307 ret = 0; 6308 goto out; 6309 } 6310 6311 /* 6312 * Go to the next extent. 6313 */ 6314 ret = btrfs_next_item(sctx->parent_root, path); 6315 if (ret < 0) 6316 goto out; 6317 if (!ret) { 6318 eb = path->nodes[0]; 6319 slot = path->slots[0]; 6320 btrfs_item_key_to_cpu(eb, &found_key, slot); 6321 } 6322 if (ret || found_key.objectid != key.objectid || 6323 found_key.type != key.type) { 6324 key.offset += right_len; 6325 break; 6326 } 6327 if (found_key.offset != key.offset + right_len) { 6328 ret = 0; 6329 goto out; 6330 } 6331 key = found_key; 6332 } 6333 6334 /* 6335 * We're now behind the left extent (treat as unchanged) or at the end 6336 * of the right side (treat as changed). 6337 */ 6338 if (key.offset >= ekey->offset + left_len) 6339 ret = 1; 6340 else 6341 ret = 0; 6342 6343 6344 out: 6345 btrfs_free_path(path); 6346 return ret; 6347 } 6348 6349 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6350 { 6351 struct btrfs_path *path; 6352 struct btrfs_root *root = sctx->send_root; 6353 struct btrfs_key key; 6354 int ret; 6355 6356 path = alloc_path_for_send(); 6357 if (!path) 6358 return -ENOMEM; 6359 6360 sctx->cur_inode_last_extent = 0; 6361 6362 key.objectid = sctx->cur_ino; 6363 key.type = BTRFS_EXTENT_DATA_KEY; 6364 key.offset = offset; 6365 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6366 if (ret < 0) 6367 goto out; 6368 ret = 0; 6369 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6370 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6371 goto out; 6372 6373 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6374 out: 6375 btrfs_free_path(path); 6376 return ret; 6377 } 6378 6379 static int range_is_hole_in_parent(struct send_ctx *sctx, 6380 const u64 start, 6381 const u64 end) 6382 { 6383 struct btrfs_path *path; 6384 struct btrfs_key key; 6385 struct btrfs_root *root = sctx->parent_root; 6386 u64 search_start = start; 6387 int ret; 6388 6389 path = alloc_path_for_send(); 6390 if (!path) 6391 return -ENOMEM; 6392 6393 key.objectid = sctx->cur_ino; 6394 key.type = BTRFS_EXTENT_DATA_KEY; 6395 key.offset = search_start; 6396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6397 if (ret < 0) 6398 goto out; 6399 if (ret > 0 && path->slots[0] > 0) 6400 path->slots[0]--; 6401 6402 while (search_start < end) { 6403 struct extent_buffer *leaf = path->nodes[0]; 6404 int slot = path->slots[0]; 6405 struct btrfs_file_extent_item *fi; 6406 u64 extent_end; 6407 6408 if (slot >= btrfs_header_nritems(leaf)) { 6409 ret = btrfs_next_leaf(root, path); 6410 if (ret < 0) 6411 goto out; 6412 else if (ret > 0) 6413 break; 6414 continue; 6415 } 6416 6417 btrfs_item_key_to_cpu(leaf, &key, slot); 6418 if (key.objectid < sctx->cur_ino || 6419 key.type < BTRFS_EXTENT_DATA_KEY) 6420 goto next; 6421 if (key.objectid > sctx->cur_ino || 6422 key.type > BTRFS_EXTENT_DATA_KEY || 6423 key.offset >= end) 6424 break; 6425 6426 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6427 extent_end = btrfs_file_extent_end(path); 6428 if (extent_end <= start) 6429 goto next; 6430 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6431 search_start = extent_end; 6432 goto next; 6433 } 6434 ret = 0; 6435 goto out; 6436 next: 6437 path->slots[0]++; 6438 } 6439 ret = 1; 6440 out: 6441 btrfs_free_path(path); 6442 return ret; 6443 } 6444 6445 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6446 struct btrfs_key *key) 6447 { 6448 int ret = 0; 6449 6450 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6451 return 0; 6452 6453 /* 6454 * Get last extent's end offset (exclusive) if we haven't determined it 6455 * yet (we're processing the first file extent item that is new), or if 6456 * we're at the first slot of a leaf and the last extent's end is less 6457 * than the current extent's offset, because we might have skipped 6458 * entire leaves that contained only file extent items for our current 6459 * inode. These leaves have a generation number smaller (older) than the 6460 * one in the current leaf and the leaf our last extent came from, and 6461 * are located between these 2 leaves. 6462 */ 6463 if ((sctx->cur_inode_last_extent == (u64)-1) || 6464 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6465 ret = get_last_extent(sctx, key->offset - 1); 6466 if (ret) 6467 return ret; 6468 } 6469 6470 if (sctx->cur_inode_last_extent < key->offset) { 6471 ret = range_is_hole_in_parent(sctx, 6472 sctx->cur_inode_last_extent, 6473 key->offset); 6474 if (ret < 0) 6475 return ret; 6476 else if (ret == 0) 6477 ret = send_hole(sctx, key->offset); 6478 else 6479 ret = 0; 6480 } 6481 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6482 return ret; 6483 } 6484 6485 static int process_extent(struct send_ctx *sctx, 6486 struct btrfs_path *path, 6487 struct btrfs_key *key) 6488 { 6489 struct clone_root *found_clone = NULL; 6490 int ret = 0; 6491 6492 if (S_ISLNK(sctx->cur_inode_mode)) 6493 return 0; 6494 6495 if (sctx->parent_root && !sctx->cur_inode_new) { 6496 ret = is_extent_unchanged(sctx, path, key); 6497 if (ret < 0) 6498 goto out; 6499 if (ret) { 6500 ret = 0; 6501 goto out_hole; 6502 } 6503 } else { 6504 struct btrfs_file_extent_item *ei; 6505 u8 type; 6506 6507 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6508 struct btrfs_file_extent_item); 6509 type = btrfs_file_extent_type(path->nodes[0], ei); 6510 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6511 type == BTRFS_FILE_EXTENT_REG) { 6512 /* 6513 * The send spec does not have a prealloc command yet, 6514 * so just leave a hole for prealloc'ed extents until 6515 * we have enough commands queued up to justify rev'ing 6516 * the send spec. 6517 */ 6518 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6519 ret = 0; 6520 goto out; 6521 } 6522 6523 /* Have a hole, just skip it. */ 6524 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6525 ret = 0; 6526 goto out; 6527 } 6528 } 6529 } 6530 6531 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6532 sctx->cur_inode_size, &found_clone); 6533 if (ret != -ENOENT && ret < 0) 6534 goto out; 6535 6536 ret = send_write_or_clone(sctx, path, key, found_clone); 6537 if (ret) 6538 goto out; 6539 out_hole: 6540 ret = maybe_send_hole(sctx, path, key); 6541 out: 6542 return ret; 6543 } 6544 6545 static int process_all_extents(struct send_ctx *sctx) 6546 { 6547 int ret = 0; 6548 int iter_ret = 0; 6549 struct btrfs_root *root; 6550 struct btrfs_path *path; 6551 struct btrfs_key key; 6552 struct btrfs_key found_key; 6553 6554 root = sctx->send_root; 6555 path = alloc_path_for_send(); 6556 if (!path) 6557 return -ENOMEM; 6558 6559 key.objectid = sctx->cmp_key->objectid; 6560 key.type = BTRFS_EXTENT_DATA_KEY; 6561 key.offset = 0; 6562 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6563 if (found_key.objectid != key.objectid || 6564 found_key.type != key.type) { 6565 ret = 0; 6566 break; 6567 } 6568 6569 ret = process_extent(sctx, path, &found_key); 6570 if (ret < 0) 6571 break; 6572 } 6573 /* Catch error found during iteration */ 6574 if (iter_ret < 0) 6575 ret = iter_ret; 6576 6577 btrfs_free_path(path); 6578 return ret; 6579 } 6580 6581 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6582 int *pending_move, 6583 int *refs_processed) 6584 { 6585 int ret = 0; 6586 6587 if (sctx->cur_ino == 0) 6588 goto out; 6589 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6590 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6591 goto out; 6592 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6593 goto out; 6594 6595 ret = process_recorded_refs(sctx, pending_move); 6596 if (ret < 0) 6597 goto out; 6598 6599 *refs_processed = 1; 6600 out: 6601 return ret; 6602 } 6603 6604 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6605 { 6606 int ret = 0; 6607 struct btrfs_inode_info info; 6608 u64 left_mode; 6609 u64 left_uid; 6610 u64 left_gid; 6611 u64 left_fileattr; 6612 u64 right_mode; 6613 u64 right_uid; 6614 u64 right_gid; 6615 u64 right_fileattr; 6616 int need_chmod = 0; 6617 int need_chown = 0; 6618 bool need_fileattr = false; 6619 int need_truncate = 1; 6620 int pending_move = 0; 6621 int refs_processed = 0; 6622 6623 if (sctx->ignore_cur_inode) 6624 return 0; 6625 6626 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6627 &refs_processed); 6628 if (ret < 0) 6629 goto out; 6630 6631 /* 6632 * We have processed the refs and thus need to advance send_progress. 6633 * Now, calls to get_cur_xxx will take the updated refs of the current 6634 * inode into account. 6635 * 6636 * On the other hand, if our current inode is a directory and couldn't 6637 * be moved/renamed because its parent was renamed/moved too and it has 6638 * a higher inode number, we can only move/rename our current inode 6639 * after we moved/renamed its parent. Therefore in this case operate on 6640 * the old path (pre move/rename) of our current inode, and the 6641 * move/rename will be performed later. 6642 */ 6643 if (refs_processed && !pending_move) 6644 sctx->send_progress = sctx->cur_ino + 1; 6645 6646 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6647 goto out; 6648 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6649 goto out; 6650 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6651 if (ret < 0) 6652 goto out; 6653 left_mode = info.mode; 6654 left_uid = info.uid; 6655 left_gid = info.gid; 6656 left_fileattr = info.fileattr; 6657 6658 if (!sctx->parent_root || sctx->cur_inode_new) { 6659 need_chown = 1; 6660 if (!S_ISLNK(sctx->cur_inode_mode)) 6661 need_chmod = 1; 6662 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6663 need_truncate = 0; 6664 } else { 6665 u64 old_size; 6666 6667 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6668 if (ret < 0) 6669 goto out; 6670 old_size = info.size; 6671 right_mode = info.mode; 6672 right_uid = info.uid; 6673 right_gid = info.gid; 6674 right_fileattr = info.fileattr; 6675 6676 if (left_uid != right_uid || left_gid != right_gid) 6677 need_chown = 1; 6678 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6679 need_chmod = 1; 6680 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6681 need_fileattr = true; 6682 if ((old_size == sctx->cur_inode_size) || 6683 (sctx->cur_inode_size > old_size && 6684 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6685 need_truncate = 0; 6686 } 6687 6688 if (S_ISREG(sctx->cur_inode_mode)) { 6689 if (need_send_hole(sctx)) { 6690 if (sctx->cur_inode_last_extent == (u64)-1 || 6691 sctx->cur_inode_last_extent < 6692 sctx->cur_inode_size) { 6693 ret = get_last_extent(sctx, (u64)-1); 6694 if (ret) 6695 goto out; 6696 } 6697 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6698 ret = range_is_hole_in_parent(sctx, 6699 sctx->cur_inode_last_extent, 6700 sctx->cur_inode_size); 6701 if (ret < 0) { 6702 goto out; 6703 } else if (ret == 0) { 6704 ret = send_hole(sctx, sctx->cur_inode_size); 6705 if (ret < 0) 6706 goto out; 6707 } else { 6708 /* Range is already a hole, skip. */ 6709 ret = 0; 6710 } 6711 } 6712 } 6713 if (need_truncate) { 6714 ret = send_truncate(sctx, sctx->cur_ino, 6715 sctx->cur_inode_gen, 6716 sctx->cur_inode_size); 6717 if (ret < 0) 6718 goto out; 6719 } 6720 } 6721 6722 if (need_chown) { 6723 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6724 left_uid, left_gid); 6725 if (ret < 0) 6726 goto out; 6727 } 6728 if (need_chmod) { 6729 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6730 left_mode); 6731 if (ret < 0) 6732 goto out; 6733 } 6734 if (need_fileattr) { 6735 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6736 left_fileattr); 6737 if (ret < 0) 6738 goto out; 6739 } 6740 6741 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6742 && sctx->cur_inode_needs_verity) { 6743 ret = process_verity(sctx); 6744 if (ret < 0) 6745 goto out; 6746 } 6747 6748 ret = send_capabilities(sctx); 6749 if (ret < 0) 6750 goto out; 6751 6752 /* 6753 * If other directory inodes depended on our current directory 6754 * inode's move/rename, now do their move/rename operations. 6755 */ 6756 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6757 ret = apply_children_dir_moves(sctx); 6758 if (ret) 6759 goto out; 6760 /* 6761 * Need to send that every time, no matter if it actually 6762 * changed between the two trees as we have done changes to 6763 * the inode before. If our inode is a directory and it's 6764 * waiting to be moved/renamed, we will send its utimes when 6765 * it's moved/renamed, therefore we don't need to do it here. 6766 */ 6767 sctx->send_progress = sctx->cur_ino + 1; 6768 6769 /* 6770 * If the current inode is a non-empty directory, delay issuing 6771 * the utimes command for it, as it's very likely we have inodes 6772 * with an higher number inside it. We want to issue the utimes 6773 * command only after adding all dentries to it. 6774 */ 6775 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6776 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6777 else 6778 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6779 6780 if (ret < 0) 6781 goto out; 6782 } 6783 6784 out: 6785 if (!ret) 6786 ret = trim_dir_utimes_cache(sctx); 6787 6788 return ret; 6789 } 6790 6791 static void close_current_inode(struct send_ctx *sctx) 6792 { 6793 u64 i_size; 6794 6795 if (sctx->cur_inode == NULL) 6796 return; 6797 6798 i_size = i_size_read(sctx->cur_inode); 6799 6800 /* 6801 * If we are doing an incremental send, we may have extents between the 6802 * last processed extent and the i_size that have not been processed 6803 * because they haven't changed but we may have read some of their pages 6804 * through readahead, see the comments at send_extent_data(). 6805 */ 6806 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6807 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6808 sctx->page_cache_clear_start, 6809 round_up(i_size, PAGE_SIZE) - 1); 6810 6811 iput(sctx->cur_inode); 6812 sctx->cur_inode = NULL; 6813 } 6814 6815 static int changed_inode(struct send_ctx *sctx, 6816 enum btrfs_compare_tree_result result) 6817 { 6818 int ret = 0; 6819 struct btrfs_key *key = sctx->cmp_key; 6820 struct btrfs_inode_item *left_ii = NULL; 6821 struct btrfs_inode_item *right_ii = NULL; 6822 u64 left_gen = 0; 6823 u64 right_gen = 0; 6824 6825 close_current_inode(sctx); 6826 6827 sctx->cur_ino = key->objectid; 6828 sctx->cur_inode_new_gen = false; 6829 sctx->cur_inode_last_extent = (u64)-1; 6830 sctx->cur_inode_next_write_offset = 0; 6831 sctx->ignore_cur_inode = false; 6832 fs_path_reset(&sctx->cur_inode_path); 6833 6834 /* 6835 * Set send_progress to current inode. This will tell all get_cur_xxx 6836 * functions that the current inode's refs are not updated yet. Later, 6837 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6838 */ 6839 sctx->send_progress = sctx->cur_ino; 6840 6841 if (result == BTRFS_COMPARE_TREE_NEW || 6842 result == BTRFS_COMPARE_TREE_CHANGED) { 6843 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6844 sctx->left_path->slots[0], 6845 struct btrfs_inode_item); 6846 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6847 left_ii); 6848 } else { 6849 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6850 sctx->right_path->slots[0], 6851 struct btrfs_inode_item); 6852 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6853 right_ii); 6854 } 6855 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6856 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6857 sctx->right_path->slots[0], 6858 struct btrfs_inode_item); 6859 6860 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6861 right_ii); 6862 6863 /* 6864 * The cur_ino = root dir case is special here. We can't treat 6865 * the inode as deleted+reused because it would generate a 6866 * stream that tries to delete/mkdir the root dir. 6867 */ 6868 if (left_gen != right_gen && 6869 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6870 sctx->cur_inode_new_gen = true; 6871 } 6872 6873 /* 6874 * Normally we do not find inodes with a link count of zero (orphans) 6875 * because the most common case is to create a snapshot and use it 6876 * for a send operation. However other less common use cases involve 6877 * using a subvolume and send it after turning it to RO mode just 6878 * after deleting all hard links of a file while holding an open 6879 * file descriptor against it or turning a RO snapshot into RW mode, 6880 * keep an open file descriptor against a file, delete it and then 6881 * turn the snapshot back to RO mode before using it for a send 6882 * operation. The former is what the receiver operation does. 6883 * Therefore, if we want to send these snapshots soon after they're 6884 * received, we need to handle orphan inodes as well. Moreover, orphans 6885 * can appear not only in the send snapshot but also in the parent 6886 * snapshot. Here are several cases: 6887 * 6888 * Case 1: BTRFS_COMPARE_TREE_NEW 6889 * | send snapshot | action 6890 * -------------------------------- 6891 * nlink | 0 | ignore 6892 * 6893 * Case 2: BTRFS_COMPARE_TREE_DELETED 6894 * | parent snapshot | action 6895 * ---------------------------------- 6896 * nlink | 0 | as usual 6897 * Note: No unlinks will be sent because there're no paths for it. 6898 * 6899 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6900 * | | parent snapshot | send snapshot | action 6901 * ----------------------------------------------------------------------- 6902 * subcase 1 | nlink | 0 | 0 | ignore 6903 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6904 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6905 * 6906 */ 6907 if (result == BTRFS_COMPARE_TREE_NEW) { 6908 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6909 sctx->ignore_cur_inode = true; 6910 goto out; 6911 } 6912 sctx->cur_inode_gen = left_gen; 6913 sctx->cur_inode_new = true; 6914 sctx->cur_inode_deleted = false; 6915 sctx->cur_inode_size = btrfs_inode_size( 6916 sctx->left_path->nodes[0], left_ii); 6917 sctx->cur_inode_mode = btrfs_inode_mode( 6918 sctx->left_path->nodes[0], left_ii); 6919 sctx->cur_inode_rdev = btrfs_inode_rdev( 6920 sctx->left_path->nodes[0], left_ii); 6921 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6922 ret = send_create_inode_if_needed(sctx); 6923 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6924 sctx->cur_inode_gen = right_gen; 6925 sctx->cur_inode_new = false; 6926 sctx->cur_inode_deleted = true; 6927 sctx->cur_inode_size = btrfs_inode_size( 6928 sctx->right_path->nodes[0], right_ii); 6929 sctx->cur_inode_mode = btrfs_inode_mode( 6930 sctx->right_path->nodes[0], right_ii); 6931 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6932 u32 new_nlinks, old_nlinks; 6933 6934 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6935 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6936 if (new_nlinks == 0 && old_nlinks == 0) { 6937 sctx->ignore_cur_inode = true; 6938 goto out; 6939 } else if (new_nlinks == 0 || old_nlinks == 0) { 6940 sctx->cur_inode_new_gen = 1; 6941 } 6942 /* 6943 * We need to do some special handling in case the inode was 6944 * reported as changed with a changed generation number. This 6945 * means that the original inode was deleted and new inode 6946 * reused the same inum. So we have to treat the old inode as 6947 * deleted and the new one as new. 6948 */ 6949 if (sctx->cur_inode_new_gen) { 6950 /* 6951 * First, process the inode as if it was deleted. 6952 */ 6953 if (old_nlinks > 0) { 6954 sctx->cur_inode_gen = right_gen; 6955 sctx->cur_inode_new = false; 6956 sctx->cur_inode_deleted = true; 6957 sctx->cur_inode_size = btrfs_inode_size( 6958 sctx->right_path->nodes[0], right_ii); 6959 sctx->cur_inode_mode = btrfs_inode_mode( 6960 sctx->right_path->nodes[0], right_ii); 6961 ret = process_all_refs(sctx, 6962 BTRFS_COMPARE_TREE_DELETED); 6963 if (ret < 0) 6964 goto out; 6965 } 6966 6967 /* 6968 * Now process the inode as if it was new. 6969 */ 6970 if (new_nlinks > 0) { 6971 sctx->cur_inode_gen = left_gen; 6972 sctx->cur_inode_new = true; 6973 sctx->cur_inode_deleted = false; 6974 sctx->cur_inode_size = btrfs_inode_size( 6975 sctx->left_path->nodes[0], 6976 left_ii); 6977 sctx->cur_inode_mode = btrfs_inode_mode( 6978 sctx->left_path->nodes[0], 6979 left_ii); 6980 sctx->cur_inode_rdev = btrfs_inode_rdev( 6981 sctx->left_path->nodes[0], 6982 left_ii); 6983 ret = send_create_inode_if_needed(sctx); 6984 if (ret < 0) 6985 goto out; 6986 6987 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6988 if (ret < 0) 6989 goto out; 6990 /* 6991 * Advance send_progress now as we did not get 6992 * into process_recorded_refs_if_needed in the 6993 * new_gen case. 6994 */ 6995 sctx->send_progress = sctx->cur_ino + 1; 6996 6997 /* 6998 * Now process all extents and xattrs of the 6999 * inode as if they were all new. 7000 */ 7001 ret = process_all_extents(sctx); 7002 if (ret < 0) 7003 goto out; 7004 ret = process_all_new_xattrs(sctx); 7005 if (ret < 0) 7006 goto out; 7007 } 7008 } else { 7009 sctx->cur_inode_gen = left_gen; 7010 sctx->cur_inode_new = false; 7011 sctx->cur_inode_new_gen = false; 7012 sctx->cur_inode_deleted = false; 7013 sctx->cur_inode_size = btrfs_inode_size( 7014 sctx->left_path->nodes[0], left_ii); 7015 sctx->cur_inode_mode = btrfs_inode_mode( 7016 sctx->left_path->nodes[0], left_ii); 7017 } 7018 } 7019 7020 out: 7021 return ret; 7022 } 7023 7024 /* 7025 * We have to process new refs before deleted refs, but compare_trees gives us 7026 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7027 * first and later process them in process_recorded_refs. 7028 * For the cur_inode_new_gen case, we skip recording completely because 7029 * changed_inode did already initiate processing of refs. The reason for this is 7030 * that in this case, compare_tree actually compares the refs of 2 different 7031 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7032 * refs of the right tree as deleted and all refs of the left tree as new. 7033 */ 7034 static int changed_ref(struct send_ctx *sctx, 7035 enum btrfs_compare_tree_result result) 7036 { 7037 int ret = 0; 7038 7039 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7040 inconsistent_snapshot_error(sctx, result, "reference"); 7041 return -EIO; 7042 } 7043 7044 if (!sctx->cur_inode_new_gen && 7045 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7046 if (result == BTRFS_COMPARE_TREE_NEW) 7047 ret = record_new_ref(sctx); 7048 else if (result == BTRFS_COMPARE_TREE_DELETED) 7049 ret = record_deleted_ref(sctx); 7050 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7051 ret = record_changed_ref(sctx); 7052 } 7053 7054 return ret; 7055 } 7056 7057 /* 7058 * Process new/deleted/changed xattrs. We skip processing in the 7059 * cur_inode_new_gen case because changed_inode did already initiate processing 7060 * of xattrs. The reason is the same as in changed_ref 7061 */ 7062 static int changed_xattr(struct send_ctx *sctx, 7063 enum btrfs_compare_tree_result result) 7064 { 7065 int ret = 0; 7066 7067 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7068 inconsistent_snapshot_error(sctx, result, "xattr"); 7069 return -EIO; 7070 } 7071 7072 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7073 if (result == BTRFS_COMPARE_TREE_NEW) 7074 ret = process_new_xattr(sctx); 7075 else if (result == BTRFS_COMPARE_TREE_DELETED) 7076 ret = process_deleted_xattr(sctx); 7077 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7078 ret = process_changed_xattr(sctx); 7079 } 7080 7081 return ret; 7082 } 7083 7084 /* 7085 * Process new/deleted/changed extents. We skip processing in the 7086 * cur_inode_new_gen case because changed_inode did already initiate processing 7087 * of extents. The reason is the same as in changed_ref 7088 */ 7089 static int changed_extent(struct send_ctx *sctx, 7090 enum btrfs_compare_tree_result result) 7091 { 7092 int ret = 0; 7093 7094 /* 7095 * We have found an extent item that changed without the inode item 7096 * having changed. This can happen either after relocation (where the 7097 * disk_bytenr of an extent item is replaced at 7098 * relocation.c:replace_file_extents()) or after deduplication into a 7099 * file in both the parent and send snapshots (where an extent item can 7100 * get modified or replaced with a new one). Note that deduplication 7101 * updates the inode item, but it only changes the iversion (sequence 7102 * field in the inode item) of the inode, so if a file is deduplicated 7103 * the same amount of times in both the parent and send snapshots, its 7104 * iversion becomes the same in both snapshots, whence the inode item is 7105 * the same on both snapshots. 7106 */ 7107 if (sctx->cur_ino != sctx->cmp_key->objectid) 7108 return 0; 7109 7110 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7111 if (result != BTRFS_COMPARE_TREE_DELETED) 7112 ret = process_extent(sctx, sctx->left_path, 7113 sctx->cmp_key); 7114 } 7115 7116 return ret; 7117 } 7118 7119 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7120 { 7121 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7122 if (result == BTRFS_COMPARE_TREE_NEW) 7123 sctx->cur_inode_needs_verity = true; 7124 } 7125 return 0; 7126 } 7127 7128 static int dir_changed(struct send_ctx *sctx, u64 dir) 7129 { 7130 u64 orig_gen, new_gen; 7131 int ret; 7132 7133 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7134 if (ret) 7135 return ret; 7136 7137 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7138 if (ret) 7139 return ret; 7140 7141 return (orig_gen != new_gen) ? 1 : 0; 7142 } 7143 7144 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7145 struct btrfs_key *key) 7146 { 7147 struct btrfs_inode_extref *extref; 7148 struct extent_buffer *leaf; 7149 u64 dirid = 0, last_dirid = 0; 7150 unsigned long ptr; 7151 u32 item_size; 7152 u32 cur_offset = 0; 7153 int ref_name_len; 7154 int ret = 0; 7155 7156 /* Easy case, just check this one dirid */ 7157 if (key->type == BTRFS_INODE_REF_KEY) { 7158 dirid = key->offset; 7159 7160 ret = dir_changed(sctx, dirid); 7161 goto out; 7162 } 7163 7164 leaf = path->nodes[0]; 7165 item_size = btrfs_item_size(leaf, path->slots[0]); 7166 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7167 while (cur_offset < item_size) { 7168 extref = (struct btrfs_inode_extref *)(ptr + 7169 cur_offset); 7170 dirid = btrfs_inode_extref_parent(leaf, extref); 7171 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7172 cur_offset += ref_name_len + sizeof(*extref); 7173 if (dirid == last_dirid) 7174 continue; 7175 ret = dir_changed(sctx, dirid); 7176 if (ret) 7177 break; 7178 last_dirid = dirid; 7179 } 7180 out: 7181 return ret; 7182 } 7183 7184 /* 7185 * Updates compare related fields in sctx and simply forwards to the actual 7186 * changed_xxx functions. 7187 */ 7188 static int changed_cb(struct btrfs_path *left_path, 7189 struct btrfs_path *right_path, 7190 struct btrfs_key *key, 7191 enum btrfs_compare_tree_result result, 7192 struct send_ctx *sctx) 7193 { 7194 int ret; 7195 7196 /* 7197 * We can not hold the commit root semaphore here. This is because in 7198 * the case of sending and receiving to the same filesystem, using a 7199 * pipe, could result in a deadlock: 7200 * 7201 * 1) The task running send blocks on the pipe because it's full; 7202 * 7203 * 2) The task running receive, which is the only consumer of the pipe, 7204 * is waiting for a transaction commit (for example due to a space 7205 * reservation when doing a write or triggering a transaction commit 7206 * when creating a subvolume); 7207 * 7208 * 3) The transaction is waiting to write lock the commit root semaphore, 7209 * but can not acquire it since it's being held at 1). 7210 * 7211 * Down this call chain we write to the pipe through kernel_write(). 7212 * The same type of problem can also happen when sending to a file that 7213 * is stored in the same filesystem - when reserving space for a write 7214 * into the file, we can trigger a transaction commit. 7215 * 7216 * Our caller has supplied us with clones of leaves from the send and 7217 * parent roots, so we're safe here from a concurrent relocation and 7218 * further reallocation of metadata extents while we are here. Below we 7219 * also assert that the leaves are clones. 7220 */ 7221 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7222 7223 /* 7224 * We always have a send root, so left_path is never NULL. We will not 7225 * have a leaf when we have reached the end of the send root but have 7226 * not yet reached the end of the parent root. 7227 */ 7228 if (left_path->nodes[0]) 7229 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7230 &left_path->nodes[0]->bflags)); 7231 /* 7232 * When doing a full send we don't have a parent root, so right_path is 7233 * NULL. When doing an incremental send, we may have reached the end of 7234 * the parent root already, so we don't have a leaf at right_path. 7235 */ 7236 if (right_path && right_path->nodes[0]) 7237 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7238 &right_path->nodes[0]->bflags)); 7239 7240 if (result == BTRFS_COMPARE_TREE_SAME) { 7241 if (key->type == BTRFS_INODE_REF_KEY || 7242 key->type == BTRFS_INODE_EXTREF_KEY) { 7243 ret = compare_refs(sctx, left_path, key); 7244 if (!ret) 7245 return 0; 7246 if (ret < 0) 7247 return ret; 7248 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7249 return maybe_send_hole(sctx, left_path, key); 7250 } else { 7251 return 0; 7252 } 7253 result = BTRFS_COMPARE_TREE_CHANGED; 7254 } 7255 7256 sctx->left_path = left_path; 7257 sctx->right_path = right_path; 7258 sctx->cmp_key = key; 7259 7260 ret = finish_inode_if_needed(sctx, 0); 7261 if (ret < 0) 7262 goto out; 7263 7264 /* Ignore non-FS objects */ 7265 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7266 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7267 goto out; 7268 7269 if (key->type == BTRFS_INODE_ITEM_KEY) { 7270 ret = changed_inode(sctx, result); 7271 } else if (!sctx->ignore_cur_inode) { 7272 if (key->type == BTRFS_INODE_REF_KEY || 7273 key->type == BTRFS_INODE_EXTREF_KEY) 7274 ret = changed_ref(sctx, result); 7275 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7276 ret = changed_xattr(sctx, result); 7277 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7278 ret = changed_extent(sctx, result); 7279 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7280 key->offset == 0) 7281 ret = changed_verity(sctx, result); 7282 } 7283 7284 out: 7285 return ret; 7286 } 7287 7288 static int search_key_again(const struct send_ctx *sctx, 7289 struct btrfs_root *root, 7290 struct btrfs_path *path, 7291 const struct btrfs_key *key) 7292 { 7293 int ret; 7294 7295 if (!path->need_commit_sem) 7296 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7297 7298 /* 7299 * Roots used for send operations are readonly and no one can add, 7300 * update or remove keys from them, so we should be able to find our 7301 * key again. The only exception is deduplication, which can operate on 7302 * readonly roots and add, update or remove keys to/from them - but at 7303 * the moment we don't allow it to run in parallel with send. 7304 */ 7305 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7306 ASSERT(ret <= 0); 7307 if (ret > 0) { 7308 btrfs_print_tree(path->nodes[path->lowest_level], false); 7309 btrfs_err(root->fs_info, 7310 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7311 key->objectid, key->type, key->offset, 7312 (root == sctx->parent_root ? "parent" : "send"), 7313 btrfs_root_id(root), path->lowest_level, 7314 path->slots[path->lowest_level]); 7315 return -EUCLEAN; 7316 } 7317 7318 return ret; 7319 } 7320 7321 static int full_send_tree(struct send_ctx *sctx) 7322 { 7323 int ret; 7324 struct btrfs_root *send_root = sctx->send_root; 7325 struct btrfs_key key; 7326 struct btrfs_fs_info *fs_info = send_root->fs_info; 7327 struct btrfs_path *path; 7328 7329 path = alloc_path_for_send(); 7330 if (!path) 7331 return -ENOMEM; 7332 path->reada = READA_FORWARD_ALWAYS; 7333 7334 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7335 key.type = BTRFS_INODE_ITEM_KEY; 7336 key.offset = 0; 7337 7338 down_read(&fs_info->commit_root_sem); 7339 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7340 up_read(&fs_info->commit_root_sem); 7341 7342 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7343 if (ret < 0) 7344 goto out; 7345 if (ret) 7346 goto out_finish; 7347 7348 while (1) { 7349 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7350 7351 ret = changed_cb(path, NULL, &key, 7352 BTRFS_COMPARE_TREE_NEW, sctx); 7353 if (ret < 0) 7354 goto out; 7355 7356 down_read(&fs_info->commit_root_sem); 7357 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7358 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7359 up_read(&fs_info->commit_root_sem); 7360 /* 7361 * A transaction used for relocating a block group was 7362 * committed or is about to finish its commit. Release 7363 * our path (leaf) and restart the search, so that we 7364 * avoid operating on any file extent items that are 7365 * stale, with a disk_bytenr that reflects a pre 7366 * relocation value. This way we avoid as much as 7367 * possible to fallback to regular writes when checking 7368 * if we can clone file ranges. 7369 */ 7370 btrfs_release_path(path); 7371 ret = search_key_again(sctx, send_root, path, &key); 7372 if (ret < 0) 7373 goto out; 7374 } else { 7375 up_read(&fs_info->commit_root_sem); 7376 } 7377 7378 ret = btrfs_next_item(send_root, path); 7379 if (ret < 0) 7380 goto out; 7381 if (ret) { 7382 ret = 0; 7383 break; 7384 } 7385 } 7386 7387 out_finish: 7388 ret = finish_inode_if_needed(sctx, 1); 7389 7390 out: 7391 btrfs_free_path(path); 7392 return ret; 7393 } 7394 7395 static int replace_node_with_clone(struct btrfs_path *path, int level) 7396 { 7397 struct extent_buffer *clone; 7398 7399 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7400 if (!clone) 7401 return -ENOMEM; 7402 7403 free_extent_buffer(path->nodes[level]); 7404 path->nodes[level] = clone; 7405 7406 return 0; 7407 } 7408 7409 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7410 { 7411 struct extent_buffer *eb; 7412 struct extent_buffer *parent = path->nodes[*level]; 7413 int slot = path->slots[*level]; 7414 const int nritems = btrfs_header_nritems(parent); 7415 u64 reada_max; 7416 u64 reada_done = 0; 7417 7418 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7419 ASSERT(*level != 0); 7420 7421 eb = btrfs_read_node_slot(parent, slot); 7422 if (IS_ERR(eb)) 7423 return PTR_ERR(eb); 7424 7425 /* 7426 * Trigger readahead for the next leaves we will process, so that it is 7427 * very likely that when we need them they are already in memory and we 7428 * will not block on disk IO. For nodes we only do readahead for one, 7429 * since the time window between processing nodes is typically larger. 7430 */ 7431 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7432 7433 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7434 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7435 btrfs_readahead_node_child(parent, slot); 7436 reada_done += eb->fs_info->nodesize; 7437 } 7438 } 7439 7440 path->nodes[*level - 1] = eb; 7441 path->slots[*level - 1] = 0; 7442 (*level)--; 7443 7444 if (*level == 0) 7445 return replace_node_with_clone(path, 0); 7446 7447 return 0; 7448 } 7449 7450 static int tree_move_next_or_upnext(struct btrfs_path *path, 7451 int *level, int root_level) 7452 { 7453 int ret = 0; 7454 int nritems; 7455 nritems = btrfs_header_nritems(path->nodes[*level]); 7456 7457 path->slots[*level]++; 7458 7459 while (path->slots[*level] >= nritems) { 7460 if (*level == root_level) { 7461 path->slots[*level] = nritems - 1; 7462 return -1; 7463 } 7464 7465 /* move upnext */ 7466 path->slots[*level] = 0; 7467 free_extent_buffer(path->nodes[*level]); 7468 path->nodes[*level] = NULL; 7469 (*level)++; 7470 path->slots[*level]++; 7471 7472 nritems = btrfs_header_nritems(path->nodes[*level]); 7473 ret = 1; 7474 } 7475 return ret; 7476 } 7477 7478 /* 7479 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7480 * or down. 7481 */ 7482 static int tree_advance(struct btrfs_path *path, 7483 int *level, int root_level, 7484 int allow_down, 7485 struct btrfs_key *key, 7486 u64 reada_min_gen) 7487 { 7488 int ret; 7489 7490 if (*level == 0 || !allow_down) { 7491 ret = tree_move_next_or_upnext(path, level, root_level); 7492 } else { 7493 ret = tree_move_down(path, level, reada_min_gen); 7494 } 7495 7496 /* 7497 * Even if we have reached the end of a tree, ret is -1, update the key 7498 * anyway, so that in case we need to restart due to a block group 7499 * relocation, we can assert that the last key of the root node still 7500 * exists in the tree. 7501 */ 7502 if (*level == 0) 7503 btrfs_item_key_to_cpu(path->nodes[*level], key, 7504 path->slots[*level]); 7505 else 7506 btrfs_node_key_to_cpu(path->nodes[*level], key, 7507 path->slots[*level]); 7508 7509 return ret; 7510 } 7511 7512 static int tree_compare_item(struct btrfs_path *left_path, 7513 struct btrfs_path *right_path, 7514 char *tmp_buf) 7515 { 7516 int cmp; 7517 int len1, len2; 7518 unsigned long off1, off2; 7519 7520 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7521 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7522 if (len1 != len2) 7523 return 1; 7524 7525 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7526 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7527 right_path->slots[0]); 7528 7529 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7530 7531 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7532 if (cmp) 7533 return 1; 7534 return 0; 7535 } 7536 7537 /* 7538 * A transaction used for relocating a block group was committed or is about to 7539 * finish its commit. Release our paths and restart the search, so that we are 7540 * not using stale extent buffers: 7541 * 7542 * 1) For levels > 0, we are only holding references of extent buffers, without 7543 * any locks on them, which does not prevent them from having been relocated 7544 * and reallocated after the last time we released the commit root semaphore. 7545 * The exception are the root nodes, for which we always have a clone, see 7546 * the comment at btrfs_compare_trees(); 7547 * 7548 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7549 * we are safe from the concurrent relocation and reallocation. However they 7550 * can have file extent items with a pre relocation disk_bytenr value, so we 7551 * restart the start from the current commit roots and clone the new leaves so 7552 * that we get the post relocation disk_bytenr values. Not doing so, could 7553 * make us clone the wrong data in case there are new extents using the old 7554 * disk_bytenr that happen to be shared. 7555 */ 7556 static int restart_after_relocation(struct btrfs_path *left_path, 7557 struct btrfs_path *right_path, 7558 const struct btrfs_key *left_key, 7559 const struct btrfs_key *right_key, 7560 int left_level, 7561 int right_level, 7562 const struct send_ctx *sctx) 7563 { 7564 int root_level; 7565 int ret; 7566 7567 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7568 7569 btrfs_release_path(left_path); 7570 btrfs_release_path(right_path); 7571 7572 /* 7573 * Since keys can not be added or removed to/from our roots because they 7574 * are readonly and we do not allow deduplication to run in parallel 7575 * (which can add, remove or change keys), the layout of the trees should 7576 * not change. 7577 */ 7578 left_path->lowest_level = left_level; 7579 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7580 if (ret < 0) 7581 return ret; 7582 7583 right_path->lowest_level = right_level; 7584 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7585 if (ret < 0) 7586 return ret; 7587 7588 /* 7589 * If the lowest level nodes are leaves, clone them so that they can be 7590 * safely used by changed_cb() while not under the protection of the 7591 * commit root semaphore, even if relocation and reallocation happens in 7592 * parallel. 7593 */ 7594 if (left_level == 0) { 7595 ret = replace_node_with_clone(left_path, 0); 7596 if (ret < 0) 7597 return ret; 7598 } 7599 7600 if (right_level == 0) { 7601 ret = replace_node_with_clone(right_path, 0); 7602 if (ret < 0) 7603 return ret; 7604 } 7605 7606 /* 7607 * Now clone the root nodes (unless they happen to be the leaves we have 7608 * already cloned). This is to protect against concurrent snapshotting of 7609 * the send and parent roots (see the comment at btrfs_compare_trees()). 7610 */ 7611 root_level = btrfs_header_level(sctx->send_root->commit_root); 7612 if (root_level > 0) { 7613 ret = replace_node_with_clone(left_path, root_level); 7614 if (ret < 0) 7615 return ret; 7616 } 7617 7618 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7619 if (root_level > 0) { 7620 ret = replace_node_with_clone(right_path, root_level); 7621 if (ret < 0) 7622 return ret; 7623 } 7624 7625 return 0; 7626 } 7627 7628 /* 7629 * This function compares two trees and calls the provided callback for 7630 * every changed/new/deleted item it finds. 7631 * If shared tree blocks are encountered, whole subtrees are skipped, making 7632 * the compare pretty fast on snapshotted subvolumes. 7633 * 7634 * This currently works on commit roots only. As commit roots are read only, 7635 * we don't do any locking. The commit roots are protected with transactions. 7636 * Transactions are ended and rejoined when a commit is tried in between. 7637 * 7638 * This function checks for modifications done to the trees while comparing. 7639 * If it detects a change, it aborts immediately. 7640 */ 7641 static int btrfs_compare_trees(struct btrfs_root *left_root, 7642 struct btrfs_root *right_root, struct send_ctx *sctx) 7643 { 7644 struct btrfs_fs_info *fs_info = left_root->fs_info; 7645 int ret; 7646 int cmp; 7647 struct btrfs_path *left_path = NULL; 7648 struct btrfs_path *right_path = NULL; 7649 struct btrfs_key left_key; 7650 struct btrfs_key right_key; 7651 char *tmp_buf = NULL; 7652 int left_root_level; 7653 int right_root_level; 7654 int left_level; 7655 int right_level; 7656 int left_end_reached = 0; 7657 int right_end_reached = 0; 7658 int advance_left = 0; 7659 int advance_right = 0; 7660 u64 left_blockptr; 7661 u64 right_blockptr; 7662 u64 left_gen; 7663 u64 right_gen; 7664 u64 reada_min_gen; 7665 7666 left_path = btrfs_alloc_path(); 7667 if (!left_path) { 7668 ret = -ENOMEM; 7669 goto out; 7670 } 7671 right_path = btrfs_alloc_path(); 7672 if (!right_path) { 7673 ret = -ENOMEM; 7674 goto out; 7675 } 7676 7677 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7678 if (!tmp_buf) { 7679 ret = -ENOMEM; 7680 goto out; 7681 } 7682 7683 left_path->search_commit_root = 1; 7684 left_path->skip_locking = 1; 7685 right_path->search_commit_root = 1; 7686 right_path->skip_locking = 1; 7687 7688 /* 7689 * Strategy: Go to the first items of both trees. Then do 7690 * 7691 * If both trees are at level 0 7692 * Compare keys of current items 7693 * If left < right treat left item as new, advance left tree 7694 * and repeat 7695 * If left > right treat right item as deleted, advance right tree 7696 * and repeat 7697 * If left == right do deep compare of items, treat as changed if 7698 * needed, advance both trees and repeat 7699 * If both trees are at the same level but not at level 0 7700 * Compare keys of current nodes/leafs 7701 * If left < right advance left tree and repeat 7702 * If left > right advance right tree and repeat 7703 * If left == right compare blockptrs of the next nodes/leafs 7704 * If they match advance both trees but stay at the same level 7705 * and repeat 7706 * If they don't match advance both trees while allowing to go 7707 * deeper and repeat 7708 * If tree levels are different 7709 * Advance the tree that needs it and repeat 7710 * 7711 * Advancing a tree means: 7712 * If we are at level 0, try to go to the next slot. If that's not 7713 * possible, go one level up and repeat. Stop when we found a level 7714 * where we could go to the next slot. We may at this point be on a 7715 * node or a leaf. 7716 * 7717 * If we are not at level 0 and not on shared tree blocks, go one 7718 * level deeper. 7719 * 7720 * If we are not at level 0 and on shared tree blocks, go one slot to 7721 * the right if possible or go up and right. 7722 */ 7723 7724 down_read(&fs_info->commit_root_sem); 7725 left_level = btrfs_header_level(left_root->commit_root); 7726 left_root_level = left_level; 7727 /* 7728 * We clone the root node of the send and parent roots to prevent races 7729 * with snapshot creation of these roots. Snapshot creation COWs the 7730 * root node of a tree, so after the transaction is committed the old 7731 * extent can be reallocated while this send operation is still ongoing. 7732 * So we clone them, under the commit root semaphore, to be race free. 7733 */ 7734 left_path->nodes[left_level] = 7735 btrfs_clone_extent_buffer(left_root->commit_root); 7736 if (!left_path->nodes[left_level]) { 7737 ret = -ENOMEM; 7738 goto out_unlock; 7739 } 7740 7741 right_level = btrfs_header_level(right_root->commit_root); 7742 right_root_level = right_level; 7743 right_path->nodes[right_level] = 7744 btrfs_clone_extent_buffer(right_root->commit_root); 7745 if (!right_path->nodes[right_level]) { 7746 ret = -ENOMEM; 7747 goto out_unlock; 7748 } 7749 /* 7750 * Our right root is the parent root, while the left root is the "send" 7751 * root. We know that all new nodes/leaves in the left root must have 7752 * a generation greater than the right root's generation, so we trigger 7753 * readahead for those nodes and leaves of the left root, as we know we 7754 * will need to read them at some point. 7755 */ 7756 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7757 7758 if (left_level == 0) 7759 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7760 &left_key, left_path->slots[left_level]); 7761 else 7762 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7763 &left_key, left_path->slots[left_level]); 7764 if (right_level == 0) 7765 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7766 &right_key, right_path->slots[right_level]); 7767 else 7768 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7769 &right_key, right_path->slots[right_level]); 7770 7771 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7772 7773 while (1) { 7774 if (need_resched() || 7775 rwsem_is_contended(&fs_info->commit_root_sem)) { 7776 up_read(&fs_info->commit_root_sem); 7777 cond_resched(); 7778 down_read(&fs_info->commit_root_sem); 7779 } 7780 7781 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7782 ret = restart_after_relocation(left_path, right_path, 7783 &left_key, &right_key, 7784 left_level, right_level, 7785 sctx); 7786 if (ret < 0) 7787 goto out_unlock; 7788 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7789 } 7790 7791 if (advance_left && !left_end_reached) { 7792 ret = tree_advance(left_path, &left_level, 7793 left_root_level, 7794 advance_left != ADVANCE_ONLY_NEXT, 7795 &left_key, reada_min_gen); 7796 if (ret == -1) 7797 left_end_reached = ADVANCE; 7798 else if (ret < 0) 7799 goto out_unlock; 7800 advance_left = 0; 7801 } 7802 if (advance_right && !right_end_reached) { 7803 ret = tree_advance(right_path, &right_level, 7804 right_root_level, 7805 advance_right != ADVANCE_ONLY_NEXT, 7806 &right_key, reada_min_gen); 7807 if (ret == -1) 7808 right_end_reached = ADVANCE; 7809 else if (ret < 0) 7810 goto out_unlock; 7811 advance_right = 0; 7812 } 7813 7814 if (left_end_reached && right_end_reached) { 7815 ret = 0; 7816 goto out_unlock; 7817 } else if (left_end_reached) { 7818 if (right_level == 0) { 7819 up_read(&fs_info->commit_root_sem); 7820 ret = changed_cb(left_path, right_path, 7821 &right_key, 7822 BTRFS_COMPARE_TREE_DELETED, 7823 sctx); 7824 if (ret < 0) 7825 goto out; 7826 down_read(&fs_info->commit_root_sem); 7827 } 7828 advance_right = ADVANCE; 7829 continue; 7830 } else if (right_end_reached) { 7831 if (left_level == 0) { 7832 up_read(&fs_info->commit_root_sem); 7833 ret = changed_cb(left_path, right_path, 7834 &left_key, 7835 BTRFS_COMPARE_TREE_NEW, 7836 sctx); 7837 if (ret < 0) 7838 goto out; 7839 down_read(&fs_info->commit_root_sem); 7840 } 7841 advance_left = ADVANCE; 7842 continue; 7843 } 7844 7845 if (left_level == 0 && right_level == 0) { 7846 up_read(&fs_info->commit_root_sem); 7847 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7848 if (cmp < 0) { 7849 ret = changed_cb(left_path, right_path, 7850 &left_key, 7851 BTRFS_COMPARE_TREE_NEW, 7852 sctx); 7853 advance_left = ADVANCE; 7854 } else if (cmp > 0) { 7855 ret = changed_cb(left_path, right_path, 7856 &right_key, 7857 BTRFS_COMPARE_TREE_DELETED, 7858 sctx); 7859 advance_right = ADVANCE; 7860 } else { 7861 enum btrfs_compare_tree_result result; 7862 7863 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7864 ret = tree_compare_item(left_path, right_path, 7865 tmp_buf); 7866 if (ret) 7867 result = BTRFS_COMPARE_TREE_CHANGED; 7868 else 7869 result = BTRFS_COMPARE_TREE_SAME; 7870 ret = changed_cb(left_path, right_path, 7871 &left_key, result, sctx); 7872 advance_left = ADVANCE; 7873 advance_right = ADVANCE; 7874 } 7875 7876 if (ret < 0) 7877 goto out; 7878 down_read(&fs_info->commit_root_sem); 7879 } else if (left_level == right_level) { 7880 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7881 if (cmp < 0) { 7882 advance_left = ADVANCE; 7883 } else if (cmp > 0) { 7884 advance_right = ADVANCE; 7885 } else { 7886 left_blockptr = btrfs_node_blockptr( 7887 left_path->nodes[left_level], 7888 left_path->slots[left_level]); 7889 right_blockptr = btrfs_node_blockptr( 7890 right_path->nodes[right_level], 7891 right_path->slots[right_level]); 7892 left_gen = btrfs_node_ptr_generation( 7893 left_path->nodes[left_level], 7894 left_path->slots[left_level]); 7895 right_gen = btrfs_node_ptr_generation( 7896 right_path->nodes[right_level], 7897 right_path->slots[right_level]); 7898 if (left_blockptr == right_blockptr && 7899 left_gen == right_gen) { 7900 /* 7901 * As we're on a shared block, don't 7902 * allow to go deeper. 7903 */ 7904 advance_left = ADVANCE_ONLY_NEXT; 7905 advance_right = ADVANCE_ONLY_NEXT; 7906 } else { 7907 advance_left = ADVANCE; 7908 advance_right = ADVANCE; 7909 } 7910 } 7911 } else if (left_level < right_level) { 7912 advance_right = ADVANCE; 7913 } else { 7914 advance_left = ADVANCE; 7915 } 7916 } 7917 7918 out_unlock: 7919 up_read(&fs_info->commit_root_sem); 7920 out: 7921 btrfs_free_path(left_path); 7922 btrfs_free_path(right_path); 7923 kvfree(tmp_buf); 7924 return ret; 7925 } 7926 7927 static int send_subvol(struct send_ctx *sctx) 7928 { 7929 int ret; 7930 7931 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7932 ret = send_header(sctx); 7933 if (ret < 0) 7934 goto out; 7935 } 7936 7937 ret = send_subvol_begin(sctx); 7938 if (ret < 0) 7939 goto out; 7940 7941 if (sctx->parent_root) { 7942 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7943 if (ret < 0) 7944 goto out; 7945 ret = finish_inode_if_needed(sctx, 1); 7946 if (ret < 0) 7947 goto out; 7948 } else { 7949 ret = full_send_tree(sctx); 7950 if (ret < 0) 7951 goto out; 7952 } 7953 7954 out: 7955 free_recorded_refs(sctx); 7956 return ret; 7957 } 7958 7959 /* 7960 * If orphan cleanup did remove any orphans from a root, it means the tree 7961 * was modified and therefore the commit root is not the same as the current 7962 * root anymore. This is a problem, because send uses the commit root and 7963 * therefore can see inode items that don't exist in the current root anymore, 7964 * and for example make calls to btrfs_iget, which will do tree lookups based 7965 * on the current root and not on the commit root. Those lookups will fail, 7966 * returning a -ESTALE error, and making send fail with that error. So make 7967 * sure a send does not see any orphans we have just removed, and that it will 7968 * see the same inodes regardless of whether a transaction commit happened 7969 * before it started (meaning that the commit root will be the same as the 7970 * current root) or not. 7971 */ 7972 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7973 { 7974 struct btrfs_root *root = sctx->parent_root; 7975 7976 if (root && root->node != root->commit_root) 7977 return btrfs_commit_current_transaction(root); 7978 7979 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 7980 root = sctx->clone_roots[i].root; 7981 if (root->node != root->commit_root) 7982 return btrfs_commit_current_transaction(root); 7983 } 7984 7985 return 0; 7986 } 7987 7988 /* 7989 * Make sure any existing dellaloc is flushed for any root used by a send 7990 * operation so that we do not miss any data and we do not race with writeback 7991 * finishing and changing a tree while send is using the tree. This could 7992 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7993 * a send operation then uses the subvolume. 7994 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7995 */ 7996 static int flush_delalloc_roots(struct send_ctx *sctx) 7997 { 7998 struct btrfs_root *root = sctx->parent_root; 7999 int ret; 8000 int i; 8001 8002 if (root) { 8003 ret = btrfs_start_delalloc_snapshot(root, false); 8004 if (ret) 8005 return ret; 8006 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8007 } 8008 8009 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8010 root = sctx->clone_roots[i].root; 8011 ret = btrfs_start_delalloc_snapshot(root, false); 8012 if (ret) 8013 return ret; 8014 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8015 } 8016 8017 return 0; 8018 } 8019 8020 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8021 { 8022 spin_lock(&root->root_item_lock); 8023 root->send_in_progress--; 8024 /* 8025 * Not much left to do, we don't know why it's unbalanced and 8026 * can't blindly reset it to 0. 8027 */ 8028 if (root->send_in_progress < 0) 8029 btrfs_err(root->fs_info, 8030 "send_in_progress unbalanced %d root %llu", 8031 root->send_in_progress, btrfs_root_id(root)); 8032 spin_unlock(&root->root_item_lock); 8033 } 8034 8035 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8036 { 8037 btrfs_warn_rl(root->fs_info, 8038 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8039 btrfs_root_id(root), root->dedupe_in_progress); 8040 } 8041 8042 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) 8043 { 8044 int ret = 0; 8045 struct btrfs_fs_info *fs_info = send_root->fs_info; 8046 struct btrfs_root *clone_root; 8047 struct send_ctx *sctx = NULL; 8048 u32 i; 8049 u64 *clone_sources_tmp = NULL; 8050 int clone_sources_to_rollback = 0; 8051 size_t alloc_size; 8052 int sort_clone_roots = 0; 8053 struct btrfs_lru_cache_entry *entry; 8054 struct btrfs_lru_cache_entry *tmp; 8055 8056 if (!capable(CAP_SYS_ADMIN)) 8057 return -EPERM; 8058 8059 /* 8060 * The subvolume must remain read-only during send, protect against 8061 * making it RW. This also protects against deletion. 8062 */ 8063 spin_lock(&send_root->root_item_lock); 8064 /* 8065 * Unlikely but possible, if the subvolume is marked for deletion but 8066 * is slow to remove the directory entry, send can still be started. 8067 */ 8068 if (btrfs_root_dead(send_root)) { 8069 spin_unlock(&send_root->root_item_lock); 8070 return -EPERM; 8071 } 8072 /* Userspace tools do the checks and warn the user if it's not RO. */ 8073 if (!btrfs_root_readonly(send_root)) { 8074 spin_unlock(&send_root->root_item_lock); 8075 return -EPERM; 8076 } 8077 if (send_root->dedupe_in_progress) { 8078 dedupe_in_progress_warn(send_root); 8079 spin_unlock(&send_root->root_item_lock); 8080 return -EAGAIN; 8081 } 8082 send_root->send_in_progress++; 8083 spin_unlock(&send_root->root_item_lock); 8084 8085 /* 8086 * Check that we don't overflow at later allocations, we request 8087 * clone_sources_count + 1 items, and compare to unsigned long inside 8088 * access_ok. Also set an upper limit for allocation size so this can't 8089 * easily exhaust memory. Max number of clone sources is about 200K. 8090 */ 8091 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8092 ret = -EINVAL; 8093 goto out; 8094 } 8095 8096 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8097 ret = -EOPNOTSUPP; 8098 goto out; 8099 } 8100 8101 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8102 if (!sctx) { 8103 ret = -ENOMEM; 8104 goto out; 8105 } 8106 8107 init_path(&sctx->cur_inode_path); 8108 INIT_LIST_HEAD(&sctx->new_refs); 8109 INIT_LIST_HEAD(&sctx->deleted_refs); 8110 8111 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8112 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8113 btrfs_lru_cache_init(&sctx->dir_created_cache, 8114 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8115 /* 8116 * This cache is periodically trimmed to a fixed size elsewhere, see 8117 * cache_dir_utimes() and trim_dir_utimes_cache(). 8118 */ 8119 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8120 8121 sctx->pending_dir_moves = RB_ROOT; 8122 sctx->waiting_dir_moves = RB_ROOT; 8123 sctx->orphan_dirs = RB_ROOT; 8124 sctx->rbtree_new_refs = RB_ROOT; 8125 sctx->rbtree_deleted_refs = RB_ROOT; 8126 8127 sctx->flags = arg->flags; 8128 8129 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8130 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8131 ret = -EPROTO; 8132 goto out; 8133 } 8134 /* Zero means "use the highest version" */ 8135 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8136 } else { 8137 sctx->proto = 1; 8138 } 8139 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8140 ret = -EINVAL; 8141 goto out; 8142 } 8143 8144 sctx->send_filp = fget(arg->send_fd); 8145 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8146 ret = -EBADF; 8147 goto out; 8148 } 8149 8150 sctx->send_root = send_root; 8151 sctx->clone_roots_cnt = arg->clone_sources_count; 8152 8153 if (sctx->proto >= 2) { 8154 u32 send_buf_num_pages; 8155 8156 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8157 sctx->send_buf = vmalloc(sctx->send_max_size); 8158 if (!sctx->send_buf) { 8159 ret = -ENOMEM; 8160 goto out; 8161 } 8162 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8163 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8164 sizeof(*sctx->send_buf_pages), 8165 GFP_KERNEL); 8166 if (!sctx->send_buf_pages) { 8167 ret = -ENOMEM; 8168 goto out; 8169 } 8170 for (i = 0; i < send_buf_num_pages; i++) { 8171 sctx->send_buf_pages[i] = 8172 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8173 } 8174 } else { 8175 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8176 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8177 } 8178 if (!sctx->send_buf) { 8179 ret = -ENOMEM; 8180 goto out; 8181 } 8182 8183 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8184 sizeof(*sctx->clone_roots), 8185 GFP_KERNEL); 8186 if (!sctx->clone_roots) { 8187 ret = -ENOMEM; 8188 goto out; 8189 } 8190 8191 alloc_size = array_size(sizeof(*arg->clone_sources), 8192 arg->clone_sources_count); 8193 8194 if (arg->clone_sources_count) { 8195 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8196 if (!clone_sources_tmp) { 8197 ret = -ENOMEM; 8198 goto out; 8199 } 8200 8201 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8202 alloc_size); 8203 if (ret) { 8204 ret = -EFAULT; 8205 goto out; 8206 } 8207 8208 for (i = 0; i < arg->clone_sources_count; i++) { 8209 clone_root = btrfs_get_fs_root(fs_info, 8210 clone_sources_tmp[i], true); 8211 if (IS_ERR(clone_root)) { 8212 ret = PTR_ERR(clone_root); 8213 goto out; 8214 } 8215 spin_lock(&clone_root->root_item_lock); 8216 if (!btrfs_root_readonly(clone_root) || 8217 btrfs_root_dead(clone_root)) { 8218 spin_unlock(&clone_root->root_item_lock); 8219 btrfs_put_root(clone_root); 8220 ret = -EPERM; 8221 goto out; 8222 } 8223 if (clone_root->dedupe_in_progress) { 8224 dedupe_in_progress_warn(clone_root); 8225 spin_unlock(&clone_root->root_item_lock); 8226 btrfs_put_root(clone_root); 8227 ret = -EAGAIN; 8228 goto out; 8229 } 8230 clone_root->send_in_progress++; 8231 spin_unlock(&clone_root->root_item_lock); 8232 8233 sctx->clone_roots[i].root = clone_root; 8234 clone_sources_to_rollback = i + 1; 8235 } 8236 kvfree(clone_sources_tmp); 8237 clone_sources_tmp = NULL; 8238 } 8239 8240 if (arg->parent_root) { 8241 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8242 true); 8243 if (IS_ERR(sctx->parent_root)) { 8244 ret = PTR_ERR(sctx->parent_root); 8245 goto out; 8246 } 8247 8248 spin_lock(&sctx->parent_root->root_item_lock); 8249 sctx->parent_root->send_in_progress++; 8250 if (!btrfs_root_readonly(sctx->parent_root) || 8251 btrfs_root_dead(sctx->parent_root)) { 8252 spin_unlock(&sctx->parent_root->root_item_lock); 8253 ret = -EPERM; 8254 goto out; 8255 } 8256 if (sctx->parent_root->dedupe_in_progress) { 8257 dedupe_in_progress_warn(sctx->parent_root); 8258 spin_unlock(&sctx->parent_root->root_item_lock); 8259 ret = -EAGAIN; 8260 goto out; 8261 } 8262 spin_unlock(&sctx->parent_root->root_item_lock); 8263 } 8264 8265 /* 8266 * Clones from send_root are allowed, but only if the clone source 8267 * is behind the current send position. This is checked while searching 8268 * for possible clone sources. 8269 */ 8270 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8271 btrfs_grab_root(sctx->send_root); 8272 8273 /* We do a bsearch later */ 8274 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8275 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8276 NULL); 8277 sort_clone_roots = 1; 8278 8279 ret = flush_delalloc_roots(sctx); 8280 if (ret) 8281 goto out; 8282 8283 ret = ensure_commit_roots_uptodate(sctx); 8284 if (ret) 8285 goto out; 8286 8287 ret = send_subvol(sctx); 8288 if (ret < 0) 8289 goto out; 8290 8291 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8292 ret = send_utimes(sctx, entry->key, entry->gen); 8293 if (ret < 0) 8294 goto out; 8295 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8296 } 8297 8298 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8299 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8300 if (ret < 0) 8301 goto out; 8302 ret = send_cmd(sctx); 8303 if (ret < 0) 8304 goto out; 8305 } 8306 8307 out: 8308 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8309 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8310 struct rb_node *n; 8311 struct pending_dir_move *pm; 8312 8313 n = rb_first(&sctx->pending_dir_moves); 8314 pm = rb_entry(n, struct pending_dir_move, node); 8315 while (!list_empty(&pm->list)) { 8316 struct pending_dir_move *pm2; 8317 8318 pm2 = list_first_entry(&pm->list, 8319 struct pending_dir_move, list); 8320 free_pending_move(sctx, pm2); 8321 } 8322 free_pending_move(sctx, pm); 8323 } 8324 8325 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8326 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8327 struct rb_node *n; 8328 struct waiting_dir_move *dm; 8329 8330 n = rb_first(&sctx->waiting_dir_moves); 8331 dm = rb_entry(n, struct waiting_dir_move, node); 8332 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8333 kfree(dm); 8334 } 8335 8336 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8337 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8338 struct rb_node *n; 8339 struct orphan_dir_info *odi; 8340 8341 n = rb_first(&sctx->orphan_dirs); 8342 odi = rb_entry(n, struct orphan_dir_info, node); 8343 free_orphan_dir_info(sctx, odi); 8344 } 8345 8346 if (sort_clone_roots) { 8347 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8348 btrfs_root_dec_send_in_progress( 8349 sctx->clone_roots[i].root); 8350 btrfs_put_root(sctx->clone_roots[i].root); 8351 } 8352 } else { 8353 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8354 btrfs_root_dec_send_in_progress( 8355 sctx->clone_roots[i].root); 8356 btrfs_put_root(sctx->clone_roots[i].root); 8357 } 8358 8359 btrfs_root_dec_send_in_progress(send_root); 8360 } 8361 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8362 btrfs_root_dec_send_in_progress(sctx->parent_root); 8363 btrfs_put_root(sctx->parent_root); 8364 } 8365 8366 kvfree(clone_sources_tmp); 8367 8368 if (sctx) { 8369 if (sctx->send_filp) 8370 fput(sctx->send_filp); 8371 8372 kvfree(sctx->clone_roots); 8373 kfree(sctx->send_buf_pages); 8374 kvfree(sctx->send_buf); 8375 kvfree(sctx->verity_descriptor); 8376 8377 close_current_inode(sctx); 8378 8379 btrfs_lru_cache_clear(&sctx->name_cache); 8380 btrfs_lru_cache_clear(&sctx->backref_cache); 8381 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8382 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8383 8384 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) 8385 kfree(sctx->cur_inode_path.buf); 8386 8387 kfree(sctx); 8388 } 8389 8390 return ret; 8391 } 8392