1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "xattr.h" 29 #include "print-tree.h" 30 31 /* 32 * Maximum number of references an extent can have in order for us to attempt to 33 * issue clone operations instead of write operations. This currently exists to 34 * avoid hitting limitations of the backreference walking code (taking a lot of 35 * time and using too much memory for extents with large number of references). 36 */ 37 #define SEND_MAX_EXTENT_REFS 64 38 39 /* 40 * A fs_path is a helper to dynamically build path names with unknown size. 41 * It reallocates the internal buffer on demand. 42 * It allows fast adding of path elements on the right side (normal path) and 43 * fast adding to the left side (reversed path). A reversed path can also be 44 * unreversed if needed. 45 */ 46 struct fs_path { 47 union { 48 struct { 49 char *start; 50 char *end; 51 52 char *buf; 53 unsigned short buf_len:15; 54 unsigned short reversed:1; 55 char inline_buf[]; 56 }; 57 /* 58 * Average path length does not exceed 200 bytes, we'll have 59 * better packing in the slab and higher chance to satisfy 60 * a allocation later during send. 61 */ 62 char pad[256]; 63 }; 64 }; 65 #define FS_PATH_INLINE_SIZE \ 66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 67 68 69 /* reused for each extent */ 70 struct clone_root { 71 struct btrfs_root *root; 72 u64 ino; 73 u64 offset; 74 75 u64 found_refs; 76 }; 77 78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 80 81 struct send_ctx { 82 struct file *send_filp; 83 loff_t send_off; 84 char *send_buf; 85 u32 send_size; 86 u32 send_max_size; 87 /* 88 * Whether BTRFS_SEND_A_DATA attribute was already added to current 89 * command (since protocol v2, data must be the last attribute). 90 */ 91 bool put_data; 92 struct page **send_buf_pages; 93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 94 /* Protocol version compatibility requested */ 95 u32 proto; 96 97 struct btrfs_root *send_root; 98 struct btrfs_root *parent_root; 99 struct clone_root *clone_roots; 100 int clone_roots_cnt; 101 102 /* current state of the compare_tree call */ 103 struct btrfs_path *left_path; 104 struct btrfs_path *right_path; 105 struct btrfs_key *cmp_key; 106 107 /* 108 * Keep track of the generation of the last transaction that was used 109 * for relocating a block group. This is periodically checked in order 110 * to detect if a relocation happened since the last check, so that we 111 * don't operate on stale extent buffers for nodes (level >= 1) or on 112 * stale disk_bytenr values of file extent items. 113 */ 114 u64 last_reloc_trans; 115 116 /* 117 * infos of the currently processed inode. In case of deleted inodes, 118 * these are the values from the deleted inode. 119 */ 120 u64 cur_ino; 121 u64 cur_inode_gen; 122 u64 cur_inode_size; 123 u64 cur_inode_mode; 124 u64 cur_inode_rdev; 125 u64 cur_inode_last_extent; 126 u64 cur_inode_next_write_offset; 127 bool cur_inode_new; 128 bool cur_inode_new_gen; 129 bool cur_inode_deleted; 130 bool ignore_cur_inode; 131 bool cur_inode_needs_verity; 132 void *verity_descriptor; 133 134 u64 send_progress; 135 136 struct list_head new_refs; 137 struct list_head deleted_refs; 138 139 struct radix_tree_root name_cache; 140 struct list_head name_cache_list; 141 int name_cache_size; 142 143 /* 144 * The inode we are currently processing. It's not NULL only when we 145 * need to issue write commands for data extents from this inode. 146 */ 147 struct inode *cur_inode; 148 struct file_ra_state ra; 149 u64 page_cache_clear_start; 150 bool clean_page_cache; 151 152 /* 153 * We process inodes by their increasing order, so if before an 154 * incremental send we reverse the parent/child relationship of 155 * directories such that a directory with a lower inode number was 156 * the parent of a directory with a higher inode number, and the one 157 * becoming the new parent got renamed too, we can't rename/move the 158 * directory with lower inode number when we finish processing it - we 159 * must process the directory with higher inode number first, then 160 * rename/move it and then rename/move the directory with lower inode 161 * number. Example follows. 162 * 163 * Tree state when the first send was performed: 164 * 165 * . 166 * |-- a (ino 257) 167 * |-- b (ino 258) 168 * | 169 * | 170 * |-- c (ino 259) 171 * | |-- d (ino 260) 172 * | 173 * |-- c2 (ino 261) 174 * 175 * Tree state when the second (incremental) send is performed: 176 * 177 * . 178 * |-- a (ino 257) 179 * |-- b (ino 258) 180 * |-- c2 (ino 261) 181 * |-- d2 (ino 260) 182 * |-- cc (ino 259) 183 * 184 * The sequence of steps that lead to the second state was: 185 * 186 * mv /a/b/c/d /a/b/c2/d2 187 * mv /a/b/c /a/b/c2/d2/cc 188 * 189 * "c" has lower inode number, but we can't move it (2nd mv operation) 190 * before we move "d", which has higher inode number. 191 * 192 * So we just memorize which move/rename operations must be performed 193 * later when their respective parent is processed and moved/renamed. 194 */ 195 196 /* Indexed by parent directory inode number. */ 197 struct rb_root pending_dir_moves; 198 199 /* 200 * Reverse index, indexed by the inode number of a directory that 201 * is waiting for the move/rename of its immediate parent before its 202 * own move/rename can be performed. 203 */ 204 struct rb_root waiting_dir_moves; 205 206 /* 207 * A directory that is going to be rm'ed might have a child directory 208 * which is in the pending directory moves index above. In this case, 209 * the directory can only be removed after the move/rename of its child 210 * is performed. Example: 211 * 212 * Parent snapshot: 213 * 214 * . (ino 256) 215 * |-- a/ (ino 257) 216 * |-- b/ (ino 258) 217 * |-- c/ (ino 259) 218 * | |-- x/ (ino 260) 219 * | 220 * |-- y/ (ino 261) 221 * 222 * Send snapshot: 223 * 224 * . (ino 256) 225 * |-- a/ (ino 257) 226 * |-- b/ (ino 258) 227 * |-- YY/ (ino 261) 228 * |-- x/ (ino 260) 229 * 230 * Sequence of steps that lead to the send snapshot: 231 * rm -f /a/b/c/foo.txt 232 * mv /a/b/y /a/b/YY 233 * mv /a/b/c/x /a/b/YY 234 * rmdir /a/b/c 235 * 236 * When the child is processed, its move/rename is delayed until its 237 * parent is processed (as explained above), but all other operations 238 * like update utimes, chown, chgrp, etc, are performed and the paths 239 * that it uses for those operations must use the orphanized name of 240 * its parent (the directory we're going to rm later), so we need to 241 * memorize that name. 242 * 243 * Indexed by the inode number of the directory to be deleted. 244 */ 245 struct rb_root orphan_dirs; 246 247 struct rb_root rbtree_new_refs; 248 struct rb_root rbtree_deleted_refs; 249 }; 250 251 struct pending_dir_move { 252 struct rb_node node; 253 struct list_head list; 254 u64 parent_ino; 255 u64 ino; 256 u64 gen; 257 struct list_head update_refs; 258 }; 259 260 struct waiting_dir_move { 261 struct rb_node node; 262 u64 ino; 263 /* 264 * There might be some directory that could not be removed because it 265 * was waiting for this directory inode to be moved first. Therefore 266 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 267 */ 268 u64 rmdir_ino; 269 u64 rmdir_gen; 270 bool orphanized; 271 }; 272 273 struct orphan_dir_info { 274 struct rb_node node; 275 u64 ino; 276 u64 gen; 277 u64 last_dir_index_offset; 278 }; 279 280 struct name_cache_entry { 281 struct list_head list; 282 /* 283 * radix_tree has only 32bit entries but we need to handle 64bit inums. 284 * We use the lower 32bit of the 64bit inum to store it in the tree. If 285 * more then one inum would fall into the same entry, we use radix_list 286 * to store the additional entries. radix_list is also used to store 287 * entries where two entries have the same inum but different 288 * generations. 289 */ 290 struct list_head radix_list; 291 u64 ino; 292 u64 gen; 293 u64 parent_ino; 294 u64 parent_gen; 295 int ret; 296 int need_later_update; 297 int name_len; 298 char name[]; 299 }; 300 301 #define ADVANCE 1 302 #define ADVANCE_ONLY_NEXT -1 303 304 enum btrfs_compare_tree_result { 305 BTRFS_COMPARE_TREE_NEW, 306 BTRFS_COMPARE_TREE_DELETED, 307 BTRFS_COMPARE_TREE_CHANGED, 308 BTRFS_COMPARE_TREE_SAME, 309 }; 310 311 __cold 312 static void inconsistent_snapshot_error(struct send_ctx *sctx, 313 enum btrfs_compare_tree_result result, 314 const char *what) 315 { 316 const char *result_string; 317 318 switch (result) { 319 case BTRFS_COMPARE_TREE_NEW: 320 result_string = "new"; 321 break; 322 case BTRFS_COMPARE_TREE_DELETED: 323 result_string = "deleted"; 324 break; 325 case BTRFS_COMPARE_TREE_CHANGED: 326 result_string = "updated"; 327 break; 328 case BTRFS_COMPARE_TREE_SAME: 329 ASSERT(0); 330 result_string = "unchanged"; 331 break; 332 default: 333 ASSERT(0); 334 result_string = "unexpected"; 335 } 336 337 btrfs_err(sctx->send_root->fs_info, 338 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 339 result_string, what, sctx->cmp_key->objectid, 340 sctx->send_root->root_key.objectid, 341 (sctx->parent_root ? 342 sctx->parent_root->root_key.objectid : 0)); 343 } 344 345 __maybe_unused 346 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 347 { 348 switch (sctx->proto) { 349 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 350 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 351 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 352 default: return false; 353 } 354 } 355 356 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 357 358 static struct waiting_dir_move * 359 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 360 361 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 362 363 static int need_send_hole(struct send_ctx *sctx) 364 { 365 return (sctx->parent_root && !sctx->cur_inode_new && 366 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 367 S_ISREG(sctx->cur_inode_mode)); 368 } 369 370 static void fs_path_reset(struct fs_path *p) 371 { 372 if (p->reversed) { 373 p->start = p->buf + p->buf_len - 1; 374 p->end = p->start; 375 *p->start = 0; 376 } else { 377 p->start = p->buf; 378 p->end = p->start; 379 *p->start = 0; 380 } 381 } 382 383 static struct fs_path *fs_path_alloc(void) 384 { 385 struct fs_path *p; 386 387 p = kmalloc(sizeof(*p), GFP_KERNEL); 388 if (!p) 389 return NULL; 390 p->reversed = 0; 391 p->buf = p->inline_buf; 392 p->buf_len = FS_PATH_INLINE_SIZE; 393 fs_path_reset(p); 394 return p; 395 } 396 397 static struct fs_path *fs_path_alloc_reversed(void) 398 { 399 struct fs_path *p; 400 401 p = fs_path_alloc(); 402 if (!p) 403 return NULL; 404 p->reversed = 1; 405 fs_path_reset(p); 406 return p; 407 } 408 409 static void fs_path_free(struct fs_path *p) 410 { 411 if (!p) 412 return; 413 if (p->buf != p->inline_buf) 414 kfree(p->buf); 415 kfree(p); 416 } 417 418 static int fs_path_len(struct fs_path *p) 419 { 420 return p->end - p->start; 421 } 422 423 static int fs_path_ensure_buf(struct fs_path *p, int len) 424 { 425 char *tmp_buf; 426 int path_len; 427 int old_buf_len; 428 429 len++; 430 431 if (p->buf_len >= len) 432 return 0; 433 434 if (len > PATH_MAX) { 435 WARN_ON(1); 436 return -ENOMEM; 437 } 438 439 path_len = p->end - p->start; 440 old_buf_len = p->buf_len; 441 442 /* 443 * First time the inline_buf does not suffice 444 */ 445 if (p->buf == p->inline_buf) { 446 tmp_buf = kmalloc(len, GFP_KERNEL); 447 if (tmp_buf) 448 memcpy(tmp_buf, p->buf, old_buf_len); 449 } else { 450 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 451 } 452 if (!tmp_buf) 453 return -ENOMEM; 454 p->buf = tmp_buf; 455 /* 456 * The real size of the buffer is bigger, this will let the fast path 457 * happen most of the time 458 */ 459 p->buf_len = ksize(p->buf); 460 461 if (p->reversed) { 462 tmp_buf = p->buf + old_buf_len - path_len - 1; 463 p->end = p->buf + p->buf_len - 1; 464 p->start = p->end - path_len; 465 memmove(p->start, tmp_buf, path_len + 1); 466 } else { 467 p->start = p->buf; 468 p->end = p->start + path_len; 469 } 470 return 0; 471 } 472 473 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 474 char **prepared) 475 { 476 int ret; 477 int new_len; 478 479 new_len = p->end - p->start + name_len; 480 if (p->start != p->end) 481 new_len++; 482 ret = fs_path_ensure_buf(p, new_len); 483 if (ret < 0) 484 goto out; 485 486 if (p->reversed) { 487 if (p->start != p->end) 488 *--p->start = '/'; 489 p->start -= name_len; 490 *prepared = p->start; 491 } else { 492 if (p->start != p->end) 493 *p->end++ = '/'; 494 *prepared = p->end; 495 p->end += name_len; 496 *p->end = 0; 497 } 498 499 out: 500 return ret; 501 } 502 503 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 504 { 505 int ret; 506 char *prepared; 507 508 ret = fs_path_prepare_for_add(p, name_len, &prepared); 509 if (ret < 0) 510 goto out; 511 memcpy(prepared, name, name_len); 512 513 out: 514 return ret; 515 } 516 517 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 518 { 519 int ret; 520 char *prepared; 521 522 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 523 if (ret < 0) 524 goto out; 525 memcpy(prepared, p2->start, p2->end - p2->start); 526 527 out: 528 return ret; 529 } 530 531 static int fs_path_add_from_extent_buffer(struct fs_path *p, 532 struct extent_buffer *eb, 533 unsigned long off, int len) 534 { 535 int ret; 536 char *prepared; 537 538 ret = fs_path_prepare_for_add(p, len, &prepared); 539 if (ret < 0) 540 goto out; 541 542 read_extent_buffer(eb, prepared, off, len); 543 544 out: 545 return ret; 546 } 547 548 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 549 { 550 p->reversed = from->reversed; 551 fs_path_reset(p); 552 553 return fs_path_add_path(p, from); 554 } 555 556 static void fs_path_unreverse(struct fs_path *p) 557 { 558 char *tmp; 559 int len; 560 561 if (!p->reversed) 562 return; 563 564 tmp = p->start; 565 len = p->end - p->start; 566 p->start = p->buf; 567 p->end = p->start + len; 568 memmove(p->start, tmp, len + 1); 569 p->reversed = 0; 570 } 571 572 static struct btrfs_path *alloc_path_for_send(void) 573 { 574 struct btrfs_path *path; 575 576 path = btrfs_alloc_path(); 577 if (!path) 578 return NULL; 579 path->search_commit_root = 1; 580 path->skip_locking = 1; 581 path->need_commit_sem = 1; 582 return path; 583 } 584 585 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 586 { 587 int ret; 588 u32 pos = 0; 589 590 while (pos < len) { 591 ret = kernel_write(filp, buf + pos, len - pos, off); 592 if (ret < 0) 593 return ret; 594 if (ret == 0) 595 return -EIO; 596 pos += ret; 597 } 598 599 return 0; 600 } 601 602 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 603 { 604 struct btrfs_tlv_header *hdr; 605 int total_len = sizeof(*hdr) + len; 606 int left = sctx->send_max_size - sctx->send_size; 607 608 if (WARN_ON_ONCE(sctx->put_data)) 609 return -EINVAL; 610 611 if (unlikely(left < total_len)) 612 return -EOVERFLOW; 613 614 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 615 put_unaligned_le16(attr, &hdr->tlv_type); 616 put_unaligned_le16(len, &hdr->tlv_len); 617 memcpy(hdr + 1, data, len); 618 sctx->send_size += total_len; 619 620 return 0; 621 } 622 623 #define TLV_PUT_DEFINE_INT(bits) \ 624 static int tlv_put_u##bits(struct send_ctx *sctx, \ 625 u##bits attr, u##bits value) \ 626 { \ 627 __le##bits __tmp = cpu_to_le##bits(value); \ 628 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 629 } 630 631 TLV_PUT_DEFINE_INT(8) 632 TLV_PUT_DEFINE_INT(32) 633 TLV_PUT_DEFINE_INT(64) 634 635 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 636 const char *str, int len) 637 { 638 if (len == -1) 639 len = strlen(str); 640 return tlv_put(sctx, attr, str, len); 641 } 642 643 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 644 const u8 *uuid) 645 { 646 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 647 } 648 649 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 650 struct extent_buffer *eb, 651 struct btrfs_timespec *ts) 652 { 653 struct btrfs_timespec bts; 654 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 655 return tlv_put(sctx, attr, &bts, sizeof(bts)); 656 } 657 658 659 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 660 do { \ 661 ret = tlv_put(sctx, attrtype, data, attrlen); \ 662 if (ret < 0) \ 663 goto tlv_put_failure; \ 664 } while (0) 665 666 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 667 do { \ 668 ret = tlv_put_u##bits(sctx, attrtype, value); \ 669 if (ret < 0) \ 670 goto tlv_put_failure; \ 671 } while (0) 672 673 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 674 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 675 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 676 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 677 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 678 do { \ 679 ret = tlv_put_string(sctx, attrtype, str, len); \ 680 if (ret < 0) \ 681 goto tlv_put_failure; \ 682 } while (0) 683 #define TLV_PUT_PATH(sctx, attrtype, p) \ 684 do { \ 685 ret = tlv_put_string(sctx, attrtype, p->start, \ 686 p->end - p->start); \ 687 if (ret < 0) \ 688 goto tlv_put_failure; \ 689 } while(0) 690 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 691 do { \ 692 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 693 if (ret < 0) \ 694 goto tlv_put_failure; \ 695 } while (0) 696 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 697 do { \ 698 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 699 if (ret < 0) \ 700 goto tlv_put_failure; \ 701 } while (0) 702 703 static int send_header(struct send_ctx *sctx) 704 { 705 struct btrfs_stream_header hdr; 706 707 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 708 hdr.version = cpu_to_le32(sctx->proto); 709 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 710 &sctx->send_off); 711 } 712 713 /* 714 * For each command/item we want to send to userspace, we call this function. 715 */ 716 static int begin_cmd(struct send_ctx *sctx, int cmd) 717 { 718 struct btrfs_cmd_header *hdr; 719 720 if (WARN_ON(!sctx->send_buf)) 721 return -EINVAL; 722 723 BUG_ON(sctx->send_size); 724 725 sctx->send_size += sizeof(*hdr); 726 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 727 put_unaligned_le16(cmd, &hdr->cmd); 728 729 return 0; 730 } 731 732 static int send_cmd(struct send_ctx *sctx) 733 { 734 int ret; 735 struct btrfs_cmd_header *hdr; 736 u32 crc; 737 738 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 739 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 740 put_unaligned_le32(0, &hdr->crc); 741 742 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 743 put_unaligned_le32(crc, &hdr->crc); 744 745 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 746 &sctx->send_off); 747 748 sctx->send_size = 0; 749 sctx->put_data = false; 750 751 return ret; 752 } 753 754 /* 755 * Sends a move instruction to user space 756 */ 757 static int send_rename(struct send_ctx *sctx, 758 struct fs_path *from, struct fs_path *to) 759 { 760 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 761 int ret; 762 763 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 764 765 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 766 if (ret < 0) 767 goto out; 768 769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 771 772 ret = send_cmd(sctx); 773 774 tlv_put_failure: 775 out: 776 return ret; 777 } 778 779 /* 780 * Sends a link instruction to user space 781 */ 782 static int send_link(struct send_ctx *sctx, 783 struct fs_path *path, struct fs_path *lnk) 784 { 785 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 786 int ret; 787 788 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 789 790 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 791 if (ret < 0) 792 goto out; 793 794 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 795 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 796 797 ret = send_cmd(sctx); 798 799 tlv_put_failure: 800 out: 801 return ret; 802 } 803 804 /* 805 * Sends an unlink instruction to user space 806 */ 807 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 808 { 809 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 810 int ret; 811 812 btrfs_debug(fs_info, "send_unlink %s", path->start); 813 814 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 815 if (ret < 0) 816 goto out; 817 818 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 819 820 ret = send_cmd(sctx); 821 822 tlv_put_failure: 823 out: 824 return ret; 825 } 826 827 /* 828 * Sends a rmdir instruction to user space 829 */ 830 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 831 { 832 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 833 int ret; 834 835 btrfs_debug(fs_info, "send_rmdir %s", path->start); 836 837 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 838 if (ret < 0) 839 goto out; 840 841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 842 843 ret = send_cmd(sctx); 844 845 tlv_put_failure: 846 out: 847 return ret; 848 } 849 850 struct btrfs_inode_info { 851 u64 size; 852 u64 gen; 853 u64 mode; 854 u64 uid; 855 u64 gid; 856 u64 rdev; 857 u64 fileattr; 858 u64 nlink; 859 }; 860 861 /* 862 * Helper function to retrieve some fields from an inode item. 863 */ 864 static int get_inode_info(struct btrfs_root *root, u64 ino, 865 struct btrfs_inode_info *info) 866 { 867 int ret; 868 struct btrfs_path *path; 869 struct btrfs_inode_item *ii; 870 struct btrfs_key key; 871 872 path = alloc_path_for_send(); 873 if (!path) 874 return -ENOMEM; 875 876 key.objectid = ino; 877 key.type = BTRFS_INODE_ITEM_KEY; 878 key.offset = 0; 879 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 880 if (ret) { 881 if (ret > 0) 882 ret = -ENOENT; 883 goto out; 884 } 885 886 if (!info) 887 goto out; 888 889 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 890 struct btrfs_inode_item); 891 info->size = btrfs_inode_size(path->nodes[0], ii); 892 info->gen = btrfs_inode_generation(path->nodes[0], ii); 893 info->mode = btrfs_inode_mode(path->nodes[0], ii); 894 info->uid = btrfs_inode_uid(path->nodes[0], ii); 895 info->gid = btrfs_inode_gid(path->nodes[0], ii); 896 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 897 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 898 /* 899 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 900 * otherwise logically split to 32/32 parts. 901 */ 902 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 903 904 out: 905 btrfs_free_path(path); 906 return ret; 907 } 908 909 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 910 { 911 int ret; 912 struct btrfs_inode_info info; 913 914 if (!gen) 915 return -EPERM; 916 917 ret = get_inode_info(root, ino, &info); 918 if (!ret) 919 *gen = info.gen; 920 return ret; 921 } 922 923 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 924 struct fs_path *p, 925 void *ctx); 926 927 /* 928 * Helper function to iterate the entries in ONE btrfs_inode_ref or 929 * btrfs_inode_extref. 930 * The iterate callback may return a non zero value to stop iteration. This can 931 * be a negative value for error codes or 1 to simply stop it. 932 * 933 * path must point to the INODE_REF or INODE_EXTREF when called. 934 */ 935 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 936 struct btrfs_key *found_key, int resolve, 937 iterate_inode_ref_t iterate, void *ctx) 938 { 939 struct extent_buffer *eb = path->nodes[0]; 940 struct btrfs_inode_ref *iref; 941 struct btrfs_inode_extref *extref; 942 struct btrfs_path *tmp_path; 943 struct fs_path *p; 944 u32 cur = 0; 945 u32 total; 946 int slot = path->slots[0]; 947 u32 name_len; 948 char *start; 949 int ret = 0; 950 int num = 0; 951 int index; 952 u64 dir; 953 unsigned long name_off; 954 unsigned long elem_size; 955 unsigned long ptr; 956 957 p = fs_path_alloc_reversed(); 958 if (!p) 959 return -ENOMEM; 960 961 tmp_path = alloc_path_for_send(); 962 if (!tmp_path) { 963 fs_path_free(p); 964 return -ENOMEM; 965 } 966 967 968 if (found_key->type == BTRFS_INODE_REF_KEY) { 969 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 970 struct btrfs_inode_ref); 971 total = btrfs_item_size(eb, slot); 972 elem_size = sizeof(*iref); 973 } else { 974 ptr = btrfs_item_ptr_offset(eb, slot); 975 total = btrfs_item_size(eb, slot); 976 elem_size = sizeof(*extref); 977 } 978 979 while (cur < total) { 980 fs_path_reset(p); 981 982 if (found_key->type == BTRFS_INODE_REF_KEY) { 983 iref = (struct btrfs_inode_ref *)(ptr + cur); 984 name_len = btrfs_inode_ref_name_len(eb, iref); 985 name_off = (unsigned long)(iref + 1); 986 index = btrfs_inode_ref_index(eb, iref); 987 dir = found_key->offset; 988 } else { 989 extref = (struct btrfs_inode_extref *)(ptr + cur); 990 name_len = btrfs_inode_extref_name_len(eb, extref); 991 name_off = (unsigned long)&extref->name; 992 index = btrfs_inode_extref_index(eb, extref); 993 dir = btrfs_inode_extref_parent(eb, extref); 994 } 995 996 if (resolve) { 997 start = btrfs_ref_to_path(root, tmp_path, name_len, 998 name_off, eb, dir, 999 p->buf, p->buf_len); 1000 if (IS_ERR(start)) { 1001 ret = PTR_ERR(start); 1002 goto out; 1003 } 1004 if (start < p->buf) { 1005 /* overflow , try again with larger buffer */ 1006 ret = fs_path_ensure_buf(p, 1007 p->buf_len + p->buf - start); 1008 if (ret < 0) 1009 goto out; 1010 start = btrfs_ref_to_path(root, tmp_path, 1011 name_len, name_off, 1012 eb, dir, 1013 p->buf, p->buf_len); 1014 if (IS_ERR(start)) { 1015 ret = PTR_ERR(start); 1016 goto out; 1017 } 1018 BUG_ON(start < p->buf); 1019 } 1020 p->start = start; 1021 } else { 1022 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1023 name_len); 1024 if (ret < 0) 1025 goto out; 1026 } 1027 1028 cur += elem_size + name_len; 1029 ret = iterate(num, dir, index, p, ctx); 1030 if (ret) 1031 goto out; 1032 num++; 1033 } 1034 1035 out: 1036 btrfs_free_path(tmp_path); 1037 fs_path_free(p); 1038 return ret; 1039 } 1040 1041 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1042 const char *name, int name_len, 1043 const char *data, int data_len, 1044 void *ctx); 1045 1046 /* 1047 * Helper function to iterate the entries in ONE btrfs_dir_item. 1048 * The iterate callback may return a non zero value to stop iteration. This can 1049 * be a negative value for error codes or 1 to simply stop it. 1050 * 1051 * path must point to the dir item when called. 1052 */ 1053 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1054 iterate_dir_item_t iterate, void *ctx) 1055 { 1056 int ret = 0; 1057 struct extent_buffer *eb; 1058 struct btrfs_dir_item *di; 1059 struct btrfs_key di_key; 1060 char *buf = NULL; 1061 int buf_len; 1062 u32 name_len; 1063 u32 data_len; 1064 u32 cur; 1065 u32 len; 1066 u32 total; 1067 int slot; 1068 int num; 1069 1070 /* 1071 * Start with a small buffer (1 page). If later we end up needing more 1072 * space, which can happen for xattrs on a fs with a leaf size greater 1073 * then the page size, attempt to increase the buffer. Typically xattr 1074 * values are small. 1075 */ 1076 buf_len = PATH_MAX; 1077 buf = kmalloc(buf_len, GFP_KERNEL); 1078 if (!buf) { 1079 ret = -ENOMEM; 1080 goto out; 1081 } 1082 1083 eb = path->nodes[0]; 1084 slot = path->slots[0]; 1085 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1086 cur = 0; 1087 len = 0; 1088 total = btrfs_item_size(eb, slot); 1089 1090 num = 0; 1091 while (cur < total) { 1092 name_len = btrfs_dir_name_len(eb, di); 1093 data_len = btrfs_dir_data_len(eb, di); 1094 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1095 1096 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) { 1097 if (name_len > XATTR_NAME_MAX) { 1098 ret = -ENAMETOOLONG; 1099 goto out; 1100 } 1101 if (name_len + data_len > 1102 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1103 ret = -E2BIG; 1104 goto out; 1105 } 1106 } else { 1107 /* 1108 * Path too long 1109 */ 1110 if (name_len + data_len > PATH_MAX) { 1111 ret = -ENAMETOOLONG; 1112 goto out; 1113 } 1114 } 1115 1116 if (name_len + data_len > buf_len) { 1117 buf_len = name_len + data_len; 1118 if (is_vmalloc_addr(buf)) { 1119 vfree(buf); 1120 buf = NULL; 1121 } else { 1122 char *tmp = krealloc(buf, buf_len, 1123 GFP_KERNEL | __GFP_NOWARN); 1124 1125 if (!tmp) 1126 kfree(buf); 1127 buf = tmp; 1128 } 1129 if (!buf) { 1130 buf = kvmalloc(buf_len, GFP_KERNEL); 1131 if (!buf) { 1132 ret = -ENOMEM; 1133 goto out; 1134 } 1135 } 1136 } 1137 1138 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1139 name_len + data_len); 1140 1141 len = sizeof(*di) + name_len + data_len; 1142 di = (struct btrfs_dir_item *)((char *)di + len); 1143 cur += len; 1144 1145 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1146 data_len, ctx); 1147 if (ret < 0) 1148 goto out; 1149 if (ret) { 1150 ret = 0; 1151 goto out; 1152 } 1153 1154 num++; 1155 } 1156 1157 out: 1158 kvfree(buf); 1159 return ret; 1160 } 1161 1162 static int __copy_first_ref(int num, u64 dir, int index, 1163 struct fs_path *p, void *ctx) 1164 { 1165 int ret; 1166 struct fs_path *pt = ctx; 1167 1168 ret = fs_path_copy(pt, p); 1169 if (ret < 0) 1170 return ret; 1171 1172 /* we want the first only */ 1173 return 1; 1174 } 1175 1176 /* 1177 * Retrieve the first path of an inode. If an inode has more then one 1178 * ref/hardlink, this is ignored. 1179 */ 1180 static int get_inode_path(struct btrfs_root *root, 1181 u64 ino, struct fs_path *path) 1182 { 1183 int ret; 1184 struct btrfs_key key, found_key; 1185 struct btrfs_path *p; 1186 1187 p = alloc_path_for_send(); 1188 if (!p) 1189 return -ENOMEM; 1190 1191 fs_path_reset(path); 1192 1193 key.objectid = ino; 1194 key.type = BTRFS_INODE_REF_KEY; 1195 key.offset = 0; 1196 1197 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1198 if (ret < 0) 1199 goto out; 1200 if (ret) { 1201 ret = 1; 1202 goto out; 1203 } 1204 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1205 if (found_key.objectid != ino || 1206 (found_key.type != BTRFS_INODE_REF_KEY && 1207 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1208 ret = -ENOENT; 1209 goto out; 1210 } 1211 1212 ret = iterate_inode_ref(root, p, &found_key, 1, 1213 __copy_first_ref, path); 1214 if (ret < 0) 1215 goto out; 1216 ret = 0; 1217 1218 out: 1219 btrfs_free_path(p); 1220 return ret; 1221 } 1222 1223 struct backref_ctx { 1224 struct send_ctx *sctx; 1225 1226 /* number of total found references */ 1227 u64 found; 1228 1229 /* 1230 * used for clones found in send_root. clones found behind cur_objectid 1231 * and cur_offset are not considered as allowed clones. 1232 */ 1233 u64 cur_objectid; 1234 u64 cur_offset; 1235 1236 /* may be truncated in case it's the last extent in a file */ 1237 u64 extent_len; 1238 1239 /* Just to check for bugs in backref resolving */ 1240 int found_itself; 1241 }; 1242 1243 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1244 { 1245 u64 root = (u64)(uintptr_t)key; 1246 const struct clone_root *cr = elt; 1247 1248 if (root < cr->root->root_key.objectid) 1249 return -1; 1250 if (root > cr->root->root_key.objectid) 1251 return 1; 1252 return 0; 1253 } 1254 1255 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1256 { 1257 const struct clone_root *cr1 = e1; 1258 const struct clone_root *cr2 = e2; 1259 1260 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1261 return -1; 1262 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1263 return 1; 1264 return 0; 1265 } 1266 1267 /* 1268 * Called for every backref that is found for the current extent. 1269 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1270 */ 1271 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1272 { 1273 struct backref_ctx *bctx = ctx_; 1274 struct clone_root *found; 1275 1276 /* First check if the root is in the list of accepted clone sources */ 1277 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1278 bctx->sctx->clone_roots_cnt, 1279 sizeof(struct clone_root), 1280 __clone_root_cmp_bsearch); 1281 if (!found) 1282 return 0; 1283 1284 if (found->root == bctx->sctx->send_root && 1285 ino == bctx->cur_objectid && 1286 offset == bctx->cur_offset) { 1287 bctx->found_itself = 1; 1288 } 1289 1290 /* 1291 * Make sure we don't consider clones from send_root that are 1292 * behind the current inode/offset. 1293 */ 1294 if (found->root == bctx->sctx->send_root) { 1295 /* 1296 * If the source inode was not yet processed we can't issue a 1297 * clone operation, as the source extent does not exist yet at 1298 * the destination of the stream. 1299 */ 1300 if (ino > bctx->cur_objectid) 1301 return 0; 1302 /* 1303 * We clone from the inode currently being sent as long as the 1304 * source extent is already processed, otherwise we could try 1305 * to clone from an extent that does not exist yet at the 1306 * destination of the stream. 1307 */ 1308 if (ino == bctx->cur_objectid && 1309 offset + bctx->extent_len > 1310 bctx->sctx->cur_inode_next_write_offset) 1311 return 0; 1312 } 1313 1314 bctx->found++; 1315 found->found_refs++; 1316 if (ino < found->ino) { 1317 found->ino = ino; 1318 found->offset = offset; 1319 } else if (found->ino == ino) { 1320 /* 1321 * same extent found more then once in the same file. 1322 */ 1323 if (found->offset > offset + bctx->extent_len) 1324 found->offset = offset; 1325 } 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * Given an inode, offset and extent item, it finds a good clone for a clone 1332 * instruction. Returns -ENOENT when none could be found. The function makes 1333 * sure that the returned clone is usable at the point where sending is at the 1334 * moment. This means, that no clones are accepted which lie behind the current 1335 * inode+offset. 1336 * 1337 * path must point to the extent item when called. 1338 */ 1339 static int find_extent_clone(struct send_ctx *sctx, 1340 struct btrfs_path *path, 1341 u64 ino, u64 data_offset, 1342 u64 ino_size, 1343 struct clone_root **found) 1344 { 1345 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1346 int ret; 1347 int extent_type; 1348 u64 logical; 1349 u64 disk_byte; 1350 u64 num_bytes; 1351 u64 extent_item_pos; 1352 u64 flags = 0; 1353 struct btrfs_file_extent_item *fi; 1354 struct extent_buffer *eb = path->nodes[0]; 1355 struct backref_ctx backref_ctx = {0}; 1356 struct clone_root *cur_clone_root; 1357 struct btrfs_key found_key; 1358 struct btrfs_path *tmp_path; 1359 struct btrfs_extent_item *ei; 1360 int compressed; 1361 u32 i; 1362 1363 tmp_path = alloc_path_for_send(); 1364 if (!tmp_path) 1365 return -ENOMEM; 1366 1367 /* We only use this path under the commit sem */ 1368 tmp_path->need_commit_sem = 0; 1369 1370 if (data_offset >= ino_size) { 1371 /* 1372 * There may be extents that lie behind the file's size. 1373 * I at least had this in combination with snapshotting while 1374 * writing large files. 1375 */ 1376 ret = 0; 1377 goto out; 1378 } 1379 1380 fi = btrfs_item_ptr(eb, path->slots[0], 1381 struct btrfs_file_extent_item); 1382 extent_type = btrfs_file_extent_type(eb, fi); 1383 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1384 ret = -ENOENT; 1385 goto out; 1386 } 1387 compressed = btrfs_file_extent_compression(eb, fi); 1388 1389 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1390 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1391 if (disk_byte == 0) { 1392 ret = -ENOENT; 1393 goto out; 1394 } 1395 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1396 1397 down_read(&fs_info->commit_root_sem); 1398 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1399 &found_key, &flags); 1400 up_read(&fs_info->commit_root_sem); 1401 1402 if (ret < 0) 1403 goto out; 1404 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1405 ret = -EIO; 1406 goto out; 1407 } 1408 1409 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0], 1410 struct btrfs_extent_item); 1411 /* 1412 * Backreference walking (iterate_extent_inodes() below) is currently 1413 * too expensive when an extent has a large number of references, both 1414 * in time spent and used memory. So for now just fallback to write 1415 * operations instead of clone operations when an extent has more than 1416 * a certain amount of references. 1417 */ 1418 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) { 1419 ret = -ENOENT; 1420 goto out; 1421 } 1422 btrfs_release_path(tmp_path); 1423 1424 /* 1425 * Setup the clone roots. 1426 */ 1427 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1428 cur_clone_root = sctx->clone_roots + i; 1429 cur_clone_root->ino = (u64)-1; 1430 cur_clone_root->offset = 0; 1431 cur_clone_root->found_refs = 0; 1432 } 1433 1434 backref_ctx.sctx = sctx; 1435 backref_ctx.found = 0; 1436 backref_ctx.cur_objectid = ino; 1437 backref_ctx.cur_offset = data_offset; 1438 backref_ctx.found_itself = 0; 1439 backref_ctx.extent_len = num_bytes; 1440 1441 /* 1442 * The last extent of a file may be too large due to page alignment. 1443 * We need to adjust extent_len in this case so that the checks in 1444 * __iterate_backrefs work. 1445 */ 1446 if (data_offset + num_bytes >= ino_size) 1447 backref_ctx.extent_len = ino_size - data_offset; 1448 1449 /* 1450 * Now collect all backrefs. 1451 */ 1452 if (compressed == BTRFS_COMPRESS_NONE) 1453 extent_item_pos = logical - found_key.objectid; 1454 else 1455 extent_item_pos = 0; 1456 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1457 extent_item_pos, 1, __iterate_backrefs, 1458 &backref_ctx, false); 1459 1460 if (ret < 0) 1461 goto out; 1462 1463 down_read(&fs_info->commit_root_sem); 1464 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1465 /* 1466 * A transaction commit for a transaction in which block group 1467 * relocation was done just happened. 1468 * The disk_bytenr of the file extent item we processed is 1469 * possibly stale, referring to the extent's location before 1470 * relocation. So act as if we haven't found any clone sources 1471 * and fallback to write commands, which will read the correct 1472 * data from the new extent location. Otherwise we will fail 1473 * below because we haven't found our own back reference or we 1474 * could be getting incorrect sources in case the old extent 1475 * was already reallocated after the relocation. 1476 */ 1477 up_read(&fs_info->commit_root_sem); 1478 ret = -ENOENT; 1479 goto out; 1480 } 1481 up_read(&fs_info->commit_root_sem); 1482 1483 if (!backref_ctx.found_itself) { 1484 /* found a bug in backref code? */ 1485 ret = -EIO; 1486 btrfs_err(fs_info, 1487 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1488 ino, data_offset, disk_byte, found_key.objectid); 1489 goto out; 1490 } 1491 1492 btrfs_debug(fs_info, 1493 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1494 data_offset, ino, num_bytes, logical); 1495 1496 if (!backref_ctx.found) 1497 btrfs_debug(fs_info, "no clones found"); 1498 1499 cur_clone_root = NULL; 1500 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1501 if (sctx->clone_roots[i].found_refs) { 1502 if (!cur_clone_root) 1503 cur_clone_root = sctx->clone_roots + i; 1504 else if (sctx->clone_roots[i].root == sctx->send_root) 1505 /* prefer clones from send_root over others */ 1506 cur_clone_root = sctx->clone_roots + i; 1507 } 1508 1509 } 1510 1511 if (cur_clone_root) { 1512 *found = cur_clone_root; 1513 ret = 0; 1514 } else { 1515 ret = -ENOENT; 1516 } 1517 1518 out: 1519 btrfs_free_path(tmp_path); 1520 return ret; 1521 } 1522 1523 static int read_symlink(struct btrfs_root *root, 1524 u64 ino, 1525 struct fs_path *dest) 1526 { 1527 int ret; 1528 struct btrfs_path *path; 1529 struct btrfs_key key; 1530 struct btrfs_file_extent_item *ei; 1531 u8 type; 1532 u8 compression; 1533 unsigned long off; 1534 int len; 1535 1536 path = alloc_path_for_send(); 1537 if (!path) 1538 return -ENOMEM; 1539 1540 key.objectid = ino; 1541 key.type = BTRFS_EXTENT_DATA_KEY; 1542 key.offset = 0; 1543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1544 if (ret < 0) 1545 goto out; 1546 if (ret) { 1547 /* 1548 * An empty symlink inode. Can happen in rare error paths when 1549 * creating a symlink (transaction committed before the inode 1550 * eviction handler removed the symlink inode items and a crash 1551 * happened in between or the subvol was snapshoted in between). 1552 * Print an informative message to dmesg/syslog so that the user 1553 * can delete the symlink. 1554 */ 1555 btrfs_err(root->fs_info, 1556 "Found empty symlink inode %llu at root %llu", 1557 ino, root->root_key.objectid); 1558 ret = -EIO; 1559 goto out; 1560 } 1561 1562 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1563 struct btrfs_file_extent_item); 1564 type = btrfs_file_extent_type(path->nodes[0], ei); 1565 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1566 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1567 BUG_ON(compression); 1568 1569 off = btrfs_file_extent_inline_start(ei); 1570 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1571 1572 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1573 1574 out: 1575 btrfs_free_path(path); 1576 return ret; 1577 } 1578 1579 /* 1580 * Helper function to generate a file name that is unique in the root of 1581 * send_root and parent_root. This is used to generate names for orphan inodes. 1582 */ 1583 static int gen_unique_name(struct send_ctx *sctx, 1584 u64 ino, u64 gen, 1585 struct fs_path *dest) 1586 { 1587 int ret = 0; 1588 struct btrfs_path *path; 1589 struct btrfs_dir_item *di; 1590 char tmp[64]; 1591 int len; 1592 u64 idx = 0; 1593 1594 path = alloc_path_for_send(); 1595 if (!path) 1596 return -ENOMEM; 1597 1598 while (1) { 1599 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1600 ino, gen, idx); 1601 ASSERT(len < sizeof(tmp)); 1602 1603 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1604 path, BTRFS_FIRST_FREE_OBJECTID, 1605 tmp, strlen(tmp), 0); 1606 btrfs_release_path(path); 1607 if (IS_ERR(di)) { 1608 ret = PTR_ERR(di); 1609 goto out; 1610 } 1611 if (di) { 1612 /* not unique, try again */ 1613 idx++; 1614 continue; 1615 } 1616 1617 if (!sctx->parent_root) { 1618 /* unique */ 1619 ret = 0; 1620 break; 1621 } 1622 1623 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1624 path, BTRFS_FIRST_FREE_OBJECTID, 1625 tmp, strlen(tmp), 0); 1626 btrfs_release_path(path); 1627 if (IS_ERR(di)) { 1628 ret = PTR_ERR(di); 1629 goto out; 1630 } 1631 if (di) { 1632 /* not unique, try again */ 1633 idx++; 1634 continue; 1635 } 1636 /* unique */ 1637 break; 1638 } 1639 1640 ret = fs_path_add(dest, tmp, strlen(tmp)); 1641 1642 out: 1643 btrfs_free_path(path); 1644 return ret; 1645 } 1646 1647 enum inode_state { 1648 inode_state_no_change, 1649 inode_state_will_create, 1650 inode_state_did_create, 1651 inode_state_will_delete, 1652 inode_state_did_delete, 1653 }; 1654 1655 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1656 { 1657 int ret; 1658 int left_ret; 1659 int right_ret; 1660 u64 left_gen; 1661 u64 right_gen; 1662 struct btrfs_inode_info info; 1663 1664 ret = get_inode_info(sctx->send_root, ino, &info); 1665 if (ret < 0 && ret != -ENOENT) 1666 goto out; 1667 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1668 left_gen = info.gen; 1669 1670 if (!sctx->parent_root) { 1671 right_ret = -ENOENT; 1672 } else { 1673 ret = get_inode_info(sctx->parent_root, ino, &info); 1674 if (ret < 0 && ret != -ENOENT) 1675 goto out; 1676 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1677 right_gen = info.gen; 1678 } 1679 1680 if (!left_ret && !right_ret) { 1681 if (left_gen == gen && right_gen == gen) { 1682 ret = inode_state_no_change; 1683 } else if (left_gen == gen) { 1684 if (ino < sctx->send_progress) 1685 ret = inode_state_did_create; 1686 else 1687 ret = inode_state_will_create; 1688 } else if (right_gen == gen) { 1689 if (ino < sctx->send_progress) 1690 ret = inode_state_did_delete; 1691 else 1692 ret = inode_state_will_delete; 1693 } else { 1694 ret = -ENOENT; 1695 } 1696 } else if (!left_ret) { 1697 if (left_gen == gen) { 1698 if (ino < sctx->send_progress) 1699 ret = inode_state_did_create; 1700 else 1701 ret = inode_state_will_create; 1702 } else { 1703 ret = -ENOENT; 1704 } 1705 } else if (!right_ret) { 1706 if (right_gen == gen) { 1707 if (ino < sctx->send_progress) 1708 ret = inode_state_did_delete; 1709 else 1710 ret = inode_state_will_delete; 1711 } else { 1712 ret = -ENOENT; 1713 } 1714 } else { 1715 ret = -ENOENT; 1716 } 1717 1718 out: 1719 return ret; 1720 } 1721 1722 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1723 { 1724 int ret; 1725 1726 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1727 return 1; 1728 1729 ret = get_cur_inode_state(sctx, ino, gen); 1730 if (ret < 0) 1731 goto out; 1732 1733 if (ret == inode_state_no_change || 1734 ret == inode_state_did_create || 1735 ret == inode_state_will_delete) 1736 ret = 1; 1737 else 1738 ret = 0; 1739 1740 out: 1741 return ret; 1742 } 1743 1744 /* 1745 * Helper function to lookup a dir item in a dir. 1746 */ 1747 static int lookup_dir_item_inode(struct btrfs_root *root, 1748 u64 dir, const char *name, int name_len, 1749 u64 *found_inode) 1750 { 1751 int ret = 0; 1752 struct btrfs_dir_item *di; 1753 struct btrfs_key key; 1754 struct btrfs_path *path; 1755 1756 path = alloc_path_for_send(); 1757 if (!path) 1758 return -ENOMEM; 1759 1760 di = btrfs_lookup_dir_item(NULL, root, path, 1761 dir, name, name_len, 0); 1762 if (IS_ERR_OR_NULL(di)) { 1763 ret = di ? PTR_ERR(di) : -ENOENT; 1764 goto out; 1765 } 1766 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1767 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1768 ret = -ENOENT; 1769 goto out; 1770 } 1771 *found_inode = key.objectid; 1772 1773 out: 1774 btrfs_free_path(path); 1775 return ret; 1776 } 1777 1778 /* 1779 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1780 * generation of the parent dir and the name of the dir entry. 1781 */ 1782 static int get_first_ref(struct btrfs_root *root, u64 ino, 1783 u64 *dir, u64 *dir_gen, struct fs_path *name) 1784 { 1785 int ret; 1786 struct btrfs_key key; 1787 struct btrfs_key found_key; 1788 struct btrfs_path *path; 1789 int len; 1790 u64 parent_dir; 1791 1792 path = alloc_path_for_send(); 1793 if (!path) 1794 return -ENOMEM; 1795 1796 key.objectid = ino; 1797 key.type = BTRFS_INODE_REF_KEY; 1798 key.offset = 0; 1799 1800 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1801 if (ret < 0) 1802 goto out; 1803 if (!ret) 1804 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1805 path->slots[0]); 1806 if (ret || found_key.objectid != ino || 1807 (found_key.type != BTRFS_INODE_REF_KEY && 1808 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1809 ret = -ENOENT; 1810 goto out; 1811 } 1812 1813 if (found_key.type == BTRFS_INODE_REF_KEY) { 1814 struct btrfs_inode_ref *iref; 1815 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1816 struct btrfs_inode_ref); 1817 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1818 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1819 (unsigned long)(iref + 1), 1820 len); 1821 parent_dir = found_key.offset; 1822 } else { 1823 struct btrfs_inode_extref *extref; 1824 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1825 struct btrfs_inode_extref); 1826 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1827 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1828 (unsigned long)&extref->name, len); 1829 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1830 } 1831 if (ret < 0) 1832 goto out; 1833 btrfs_release_path(path); 1834 1835 if (dir_gen) { 1836 ret = get_inode_gen(root, parent_dir, dir_gen); 1837 if (ret < 0) 1838 goto out; 1839 } 1840 1841 *dir = parent_dir; 1842 1843 out: 1844 btrfs_free_path(path); 1845 return ret; 1846 } 1847 1848 static int is_first_ref(struct btrfs_root *root, 1849 u64 ino, u64 dir, 1850 const char *name, int name_len) 1851 { 1852 int ret; 1853 struct fs_path *tmp_name; 1854 u64 tmp_dir; 1855 1856 tmp_name = fs_path_alloc(); 1857 if (!tmp_name) 1858 return -ENOMEM; 1859 1860 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1861 if (ret < 0) 1862 goto out; 1863 1864 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1865 ret = 0; 1866 goto out; 1867 } 1868 1869 ret = !memcmp(tmp_name->start, name, name_len); 1870 1871 out: 1872 fs_path_free(tmp_name); 1873 return ret; 1874 } 1875 1876 /* 1877 * Used by process_recorded_refs to determine if a new ref would overwrite an 1878 * already existing ref. In case it detects an overwrite, it returns the 1879 * inode/gen in who_ino/who_gen. 1880 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1881 * to make sure later references to the overwritten inode are possible. 1882 * Orphanizing is however only required for the first ref of an inode. 1883 * process_recorded_refs does an additional is_first_ref check to see if 1884 * orphanizing is really required. 1885 */ 1886 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1887 const char *name, int name_len, 1888 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1889 { 1890 int ret = 0; 1891 u64 gen; 1892 u64 other_inode = 0; 1893 struct btrfs_inode_info info; 1894 1895 if (!sctx->parent_root) 1896 goto out; 1897 1898 ret = is_inode_existent(sctx, dir, dir_gen); 1899 if (ret <= 0) 1900 goto out; 1901 1902 /* 1903 * If we have a parent root we need to verify that the parent dir was 1904 * not deleted and then re-created, if it was then we have no overwrite 1905 * and we can just unlink this entry. 1906 */ 1907 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1908 ret = get_inode_gen(sctx->parent_root, dir, &gen); 1909 if (ret < 0 && ret != -ENOENT) 1910 goto out; 1911 if (ret) { 1912 ret = 0; 1913 goto out; 1914 } 1915 if (gen != dir_gen) 1916 goto out; 1917 } 1918 1919 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1920 &other_inode); 1921 if (ret < 0 && ret != -ENOENT) 1922 goto out; 1923 if (ret) { 1924 ret = 0; 1925 goto out; 1926 } 1927 1928 /* 1929 * Check if the overwritten ref was already processed. If yes, the ref 1930 * was already unlinked/moved, so we can safely assume that we will not 1931 * overwrite anything at this point in time. 1932 */ 1933 if (other_inode > sctx->send_progress || 1934 is_waiting_for_move(sctx, other_inode)) { 1935 ret = get_inode_info(sctx->parent_root, other_inode, &info); 1936 if (ret < 0) 1937 goto out; 1938 1939 ret = 1; 1940 *who_ino = other_inode; 1941 *who_gen = info.gen; 1942 *who_mode = info.mode; 1943 } else { 1944 ret = 0; 1945 } 1946 1947 out: 1948 return ret; 1949 } 1950 1951 /* 1952 * Checks if the ref was overwritten by an already processed inode. This is 1953 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1954 * thus the orphan name needs be used. 1955 * process_recorded_refs also uses it to avoid unlinking of refs that were 1956 * overwritten. 1957 */ 1958 static int did_overwrite_ref(struct send_ctx *sctx, 1959 u64 dir, u64 dir_gen, 1960 u64 ino, u64 ino_gen, 1961 const char *name, int name_len) 1962 { 1963 int ret = 0; 1964 u64 gen; 1965 u64 ow_inode; 1966 1967 if (!sctx->parent_root) 1968 goto out; 1969 1970 ret = is_inode_existent(sctx, dir, dir_gen); 1971 if (ret <= 0) 1972 goto out; 1973 1974 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1975 ret = get_inode_gen(sctx->send_root, dir, &gen); 1976 if (ret < 0 && ret != -ENOENT) 1977 goto out; 1978 if (ret) { 1979 ret = 0; 1980 goto out; 1981 } 1982 if (gen != dir_gen) 1983 goto out; 1984 } 1985 1986 /* check if the ref was overwritten by another ref */ 1987 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1988 &ow_inode); 1989 if (ret < 0 && ret != -ENOENT) 1990 goto out; 1991 if (ret) { 1992 /* was never and will never be overwritten */ 1993 ret = 0; 1994 goto out; 1995 } 1996 1997 ret = get_inode_gen(sctx->send_root, ow_inode, &gen); 1998 if (ret < 0) 1999 goto out; 2000 2001 if (ow_inode == ino && gen == ino_gen) { 2002 ret = 0; 2003 goto out; 2004 } 2005 2006 /* 2007 * We know that it is or will be overwritten. Check this now. 2008 * The current inode being processed might have been the one that caused 2009 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2010 * the current inode being processed. 2011 */ 2012 if ((ow_inode < sctx->send_progress) || 2013 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 2014 gen == sctx->cur_inode_gen)) 2015 ret = 1; 2016 else 2017 ret = 0; 2018 2019 out: 2020 return ret; 2021 } 2022 2023 /* 2024 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2025 * that got overwritten. This is used by process_recorded_refs to determine 2026 * if it has to use the path as returned by get_cur_path or the orphan name. 2027 */ 2028 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2029 { 2030 int ret = 0; 2031 struct fs_path *name = NULL; 2032 u64 dir; 2033 u64 dir_gen; 2034 2035 if (!sctx->parent_root) 2036 goto out; 2037 2038 name = fs_path_alloc(); 2039 if (!name) 2040 return -ENOMEM; 2041 2042 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2043 if (ret < 0) 2044 goto out; 2045 2046 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2047 name->start, fs_path_len(name)); 2048 2049 out: 2050 fs_path_free(name); 2051 return ret; 2052 } 2053 2054 /* 2055 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 2056 * so we need to do some special handling in case we have clashes. This function 2057 * takes care of this with the help of name_cache_entry::radix_list. 2058 * In case of error, nce is kfreed. 2059 */ 2060 static int name_cache_insert(struct send_ctx *sctx, 2061 struct name_cache_entry *nce) 2062 { 2063 int ret = 0; 2064 struct list_head *nce_head; 2065 2066 nce_head = radix_tree_lookup(&sctx->name_cache, 2067 (unsigned long)nce->ino); 2068 if (!nce_head) { 2069 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2070 if (!nce_head) { 2071 kfree(nce); 2072 return -ENOMEM; 2073 } 2074 INIT_LIST_HEAD(nce_head); 2075 2076 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2077 if (ret < 0) { 2078 kfree(nce_head); 2079 kfree(nce); 2080 return ret; 2081 } 2082 } 2083 list_add_tail(&nce->radix_list, nce_head); 2084 list_add_tail(&nce->list, &sctx->name_cache_list); 2085 sctx->name_cache_size++; 2086 2087 return ret; 2088 } 2089 2090 static void name_cache_delete(struct send_ctx *sctx, 2091 struct name_cache_entry *nce) 2092 { 2093 struct list_head *nce_head; 2094 2095 nce_head = radix_tree_lookup(&sctx->name_cache, 2096 (unsigned long)nce->ino); 2097 if (!nce_head) { 2098 btrfs_err(sctx->send_root->fs_info, 2099 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2100 nce->ino, sctx->name_cache_size); 2101 } 2102 2103 list_del(&nce->radix_list); 2104 list_del(&nce->list); 2105 sctx->name_cache_size--; 2106 2107 /* 2108 * We may not get to the final release of nce_head if the lookup fails 2109 */ 2110 if (nce_head && list_empty(nce_head)) { 2111 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2112 kfree(nce_head); 2113 } 2114 } 2115 2116 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2117 u64 ino, u64 gen) 2118 { 2119 struct list_head *nce_head; 2120 struct name_cache_entry *cur; 2121 2122 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2123 if (!nce_head) 2124 return NULL; 2125 2126 list_for_each_entry(cur, nce_head, radix_list) { 2127 if (cur->ino == ino && cur->gen == gen) 2128 return cur; 2129 } 2130 return NULL; 2131 } 2132 2133 /* 2134 * Remove some entries from the beginning of name_cache_list. 2135 */ 2136 static void name_cache_clean_unused(struct send_ctx *sctx) 2137 { 2138 struct name_cache_entry *nce; 2139 2140 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2141 return; 2142 2143 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2144 nce = list_entry(sctx->name_cache_list.next, 2145 struct name_cache_entry, list); 2146 name_cache_delete(sctx, nce); 2147 kfree(nce); 2148 } 2149 } 2150 2151 static void name_cache_free(struct send_ctx *sctx) 2152 { 2153 struct name_cache_entry *nce; 2154 2155 while (!list_empty(&sctx->name_cache_list)) { 2156 nce = list_entry(sctx->name_cache_list.next, 2157 struct name_cache_entry, list); 2158 name_cache_delete(sctx, nce); 2159 kfree(nce); 2160 } 2161 } 2162 2163 /* 2164 * Used by get_cur_path for each ref up to the root. 2165 * Returns 0 if it succeeded. 2166 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2167 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2168 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2169 * Returns <0 in case of error. 2170 */ 2171 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2172 u64 ino, u64 gen, 2173 u64 *parent_ino, 2174 u64 *parent_gen, 2175 struct fs_path *dest) 2176 { 2177 int ret; 2178 int nce_ret; 2179 struct name_cache_entry *nce = NULL; 2180 2181 /* 2182 * First check if we already did a call to this function with the same 2183 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2184 * return the cached result. 2185 */ 2186 nce = name_cache_search(sctx, ino, gen); 2187 if (nce) { 2188 if (ino < sctx->send_progress && nce->need_later_update) { 2189 name_cache_delete(sctx, nce); 2190 kfree(nce); 2191 nce = NULL; 2192 } else { 2193 /* 2194 * Removes the entry from the list and adds it back to 2195 * the end. This marks the entry as recently used so 2196 * that name_cache_clean_unused does not remove it. 2197 */ 2198 list_move_tail(&nce->list, &sctx->name_cache_list); 2199 2200 *parent_ino = nce->parent_ino; 2201 *parent_gen = nce->parent_gen; 2202 ret = fs_path_add(dest, nce->name, nce->name_len); 2203 if (ret < 0) 2204 goto out; 2205 ret = nce->ret; 2206 goto out; 2207 } 2208 } 2209 2210 /* 2211 * If the inode is not existent yet, add the orphan name and return 1. 2212 * This should only happen for the parent dir that we determine in 2213 * record_new_ref_if_needed(). 2214 */ 2215 ret = is_inode_existent(sctx, ino, gen); 2216 if (ret < 0) 2217 goto out; 2218 2219 if (!ret) { 2220 ret = gen_unique_name(sctx, ino, gen, dest); 2221 if (ret < 0) 2222 goto out; 2223 ret = 1; 2224 goto out_cache; 2225 } 2226 2227 /* 2228 * Depending on whether the inode was already processed or not, use 2229 * send_root or parent_root for ref lookup. 2230 */ 2231 if (ino < sctx->send_progress) 2232 ret = get_first_ref(sctx->send_root, ino, 2233 parent_ino, parent_gen, dest); 2234 else 2235 ret = get_first_ref(sctx->parent_root, ino, 2236 parent_ino, parent_gen, dest); 2237 if (ret < 0) 2238 goto out; 2239 2240 /* 2241 * Check if the ref was overwritten by an inode's ref that was processed 2242 * earlier. If yes, treat as orphan and return 1. 2243 */ 2244 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2245 dest->start, dest->end - dest->start); 2246 if (ret < 0) 2247 goto out; 2248 if (ret) { 2249 fs_path_reset(dest); 2250 ret = gen_unique_name(sctx, ino, gen, dest); 2251 if (ret < 0) 2252 goto out; 2253 ret = 1; 2254 } 2255 2256 out_cache: 2257 /* 2258 * Store the result of the lookup in the name cache. 2259 */ 2260 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2261 if (!nce) { 2262 ret = -ENOMEM; 2263 goto out; 2264 } 2265 2266 nce->ino = ino; 2267 nce->gen = gen; 2268 nce->parent_ino = *parent_ino; 2269 nce->parent_gen = *parent_gen; 2270 nce->name_len = fs_path_len(dest); 2271 nce->ret = ret; 2272 strcpy(nce->name, dest->start); 2273 2274 if (ino < sctx->send_progress) 2275 nce->need_later_update = 0; 2276 else 2277 nce->need_later_update = 1; 2278 2279 nce_ret = name_cache_insert(sctx, nce); 2280 if (nce_ret < 0) 2281 ret = nce_ret; 2282 name_cache_clean_unused(sctx); 2283 2284 out: 2285 return ret; 2286 } 2287 2288 /* 2289 * Magic happens here. This function returns the first ref to an inode as it 2290 * would look like while receiving the stream at this point in time. 2291 * We walk the path up to the root. For every inode in between, we check if it 2292 * was already processed/sent. If yes, we continue with the parent as found 2293 * in send_root. If not, we continue with the parent as found in parent_root. 2294 * If we encounter an inode that was deleted at this point in time, we use the 2295 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2296 * that were not created yet and overwritten inodes/refs. 2297 * 2298 * When do we have orphan inodes: 2299 * 1. When an inode is freshly created and thus no valid refs are available yet 2300 * 2. When a directory lost all it's refs (deleted) but still has dir items 2301 * inside which were not processed yet (pending for move/delete). If anyone 2302 * tried to get the path to the dir items, it would get a path inside that 2303 * orphan directory. 2304 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2305 * of an unprocessed inode. If in that case the first ref would be 2306 * overwritten, the overwritten inode gets "orphanized". Later when we 2307 * process this overwritten inode, it is restored at a new place by moving 2308 * the orphan inode. 2309 * 2310 * sctx->send_progress tells this function at which point in time receiving 2311 * would be. 2312 */ 2313 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2314 struct fs_path *dest) 2315 { 2316 int ret = 0; 2317 struct fs_path *name = NULL; 2318 u64 parent_inode = 0; 2319 u64 parent_gen = 0; 2320 int stop = 0; 2321 2322 name = fs_path_alloc(); 2323 if (!name) { 2324 ret = -ENOMEM; 2325 goto out; 2326 } 2327 2328 dest->reversed = 1; 2329 fs_path_reset(dest); 2330 2331 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2332 struct waiting_dir_move *wdm; 2333 2334 fs_path_reset(name); 2335 2336 if (is_waiting_for_rm(sctx, ino, gen)) { 2337 ret = gen_unique_name(sctx, ino, gen, name); 2338 if (ret < 0) 2339 goto out; 2340 ret = fs_path_add_path(dest, name); 2341 break; 2342 } 2343 2344 wdm = get_waiting_dir_move(sctx, ino); 2345 if (wdm && wdm->orphanized) { 2346 ret = gen_unique_name(sctx, ino, gen, name); 2347 stop = 1; 2348 } else if (wdm) { 2349 ret = get_first_ref(sctx->parent_root, ino, 2350 &parent_inode, &parent_gen, name); 2351 } else { 2352 ret = __get_cur_name_and_parent(sctx, ino, gen, 2353 &parent_inode, 2354 &parent_gen, name); 2355 if (ret) 2356 stop = 1; 2357 } 2358 2359 if (ret < 0) 2360 goto out; 2361 2362 ret = fs_path_add_path(dest, name); 2363 if (ret < 0) 2364 goto out; 2365 2366 ino = parent_inode; 2367 gen = parent_gen; 2368 } 2369 2370 out: 2371 fs_path_free(name); 2372 if (!ret) 2373 fs_path_unreverse(dest); 2374 return ret; 2375 } 2376 2377 /* 2378 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2379 */ 2380 static int send_subvol_begin(struct send_ctx *sctx) 2381 { 2382 int ret; 2383 struct btrfs_root *send_root = sctx->send_root; 2384 struct btrfs_root *parent_root = sctx->parent_root; 2385 struct btrfs_path *path; 2386 struct btrfs_key key; 2387 struct btrfs_root_ref *ref; 2388 struct extent_buffer *leaf; 2389 char *name = NULL; 2390 int namelen; 2391 2392 path = btrfs_alloc_path(); 2393 if (!path) 2394 return -ENOMEM; 2395 2396 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2397 if (!name) { 2398 btrfs_free_path(path); 2399 return -ENOMEM; 2400 } 2401 2402 key.objectid = send_root->root_key.objectid; 2403 key.type = BTRFS_ROOT_BACKREF_KEY; 2404 key.offset = 0; 2405 2406 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2407 &key, path, 1, 0); 2408 if (ret < 0) 2409 goto out; 2410 if (ret) { 2411 ret = -ENOENT; 2412 goto out; 2413 } 2414 2415 leaf = path->nodes[0]; 2416 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2417 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2418 key.objectid != send_root->root_key.objectid) { 2419 ret = -ENOENT; 2420 goto out; 2421 } 2422 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2423 namelen = btrfs_root_ref_name_len(leaf, ref); 2424 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2425 btrfs_release_path(path); 2426 2427 if (parent_root) { 2428 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2429 if (ret < 0) 2430 goto out; 2431 } else { 2432 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2433 if (ret < 0) 2434 goto out; 2435 } 2436 2437 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2438 2439 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2440 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2441 sctx->send_root->root_item.received_uuid); 2442 else 2443 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2444 sctx->send_root->root_item.uuid); 2445 2446 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2447 btrfs_root_ctransid(&sctx->send_root->root_item)); 2448 if (parent_root) { 2449 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2450 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2451 parent_root->root_item.received_uuid); 2452 else 2453 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2454 parent_root->root_item.uuid); 2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2456 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2457 } 2458 2459 ret = send_cmd(sctx); 2460 2461 tlv_put_failure: 2462 out: 2463 btrfs_free_path(path); 2464 kfree(name); 2465 return ret; 2466 } 2467 2468 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2469 { 2470 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2471 int ret = 0; 2472 struct fs_path *p; 2473 2474 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2475 2476 p = fs_path_alloc(); 2477 if (!p) 2478 return -ENOMEM; 2479 2480 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2481 if (ret < 0) 2482 goto out; 2483 2484 ret = get_cur_path(sctx, ino, gen, p); 2485 if (ret < 0) 2486 goto out; 2487 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2488 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2489 2490 ret = send_cmd(sctx); 2491 2492 tlv_put_failure: 2493 out: 2494 fs_path_free(p); 2495 return ret; 2496 } 2497 2498 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2499 { 2500 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2501 int ret = 0; 2502 struct fs_path *p; 2503 2504 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2505 2506 p = fs_path_alloc(); 2507 if (!p) 2508 return -ENOMEM; 2509 2510 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2511 if (ret < 0) 2512 goto out; 2513 2514 ret = get_cur_path(sctx, ino, gen, p); 2515 if (ret < 0) 2516 goto out; 2517 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2519 2520 ret = send_cmd(sctx); 2521 2522 tlv_put_failure: 2523 out: 2524 fs_path_free(p); 2525 return ret; 2526 } 2527 2528 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2529 { 2530 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2531 int ret = 0; 2532 struct fs_path *p; 2533 2534 if (sctx->proto < 2) 2535 return 0; 2536 2537 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2538 2539 p = fs_path_alloc(); 2540 if (!p) 2541 return -ENOMEM; 2542 2543 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2544 if (ret < 0) 2545 goto out; 2546 2547 ret = get_cur_path(sctx, ino, gen, p); 2548 if (ret < 0) 2549 goto out; 2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2551 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2552 2553 ret = send_cmd(sctx); 2554 2555 tlv_put_failure: 2556 out: 2557 fs_path_free(p); 2558 return ret; 2559 } 2560 2561 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2562 { 2563 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2564 int ret = 0; 2565 struct fs_path *p; 2566 2567 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2568 ino, uid, gid); 2569 2570 p = fs_path_alloc(); 2571 if (!p) 2572 return -ENOMEM; 2573 2574 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2575 if (ret < 0) 2576 goto out; 2577 2578 ret = get_cur_path(sctx, ino, gen, p); 2579 if (ret < 0) 2580 goto out; 2581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2582 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2583 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2584 2585 ret = send_cmd(sctx); 2586 2587 tlv_put_failure: 2588 out: 2589 fs_path_free(p); 2590 return ret; 2591 } 2592 2593 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2594 { 2595 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2596 int ret = 0; 2597 struct fs_path *p = NULL; 2598 struct btrfs_inode_item *ii; 2599 struct btrfs_path *path = NULL; 2600 struct extent_buffer *eb; 2601 struct btrfs_key key; 2602 int slot; 2603 2604 btrfs_debug(fs_info, "send_utimes %llu", ino); 2605 2606 p = fs_path_alloc(); 2607 if (!p) 2608 return -ENOMEM; 2609 2610 path = alloc_path_for_send(); 2611 if (!path) { 2612 ret = -ENOMEM; 2613 goto out; 2614 } 2615 2616 key.objectid = ino; 2617 key.type = BTRFS_INODE_ITEM_KEY; 2618 key.offset = 0; 2619 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2620 if (ret > 0) 2621 ret = -ENOENT; 2622 if (ret < 0) 2623 goto out; 2624 2625 eb = path->nodes[0]; 2626 slot = path->slots[0]; 2627 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2628 2629 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2630 if (ret < 0) 2631 goto out; 2632 2633 ret = get_cur_path(sctx, ino, gen, p); 2634 if (ret < 0) 2635 goto out; 2636 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2637 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2638 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2639 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2640 if (sctx->proto >= 2) 2641 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2642 2643 ret = send_cmd(sctx); 2644 2645 tlv_put_failure: 2646 out: 2647 fs_path_free(p); 2648 btrfs_free_path(path); 2649 return ret; 2650 } 2651 2652 /* 2653 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2654 * a valid path yet because we did not process the refs yet. So, the inode 2655 * is created as orphan. 2656 */ 2657 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2658 { 2659 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2660 int ret = 0; 2661 struct fs_path *p; 2662 int cmd; 2663 struct btrfs_inode_info info; 2664 u64 gen; 2665 u64 mode; 2666 u64 rdev; 2667 2668 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2669 2670 p = fs_path_alloc(); 2671 if (!p) 2672 return -ENOMEM; 2673 2674 if (ino != sctx->cur_ino) { 2675 ret = get_inode_info(sctx->send_root, ino, &info); 2676 if (ret < 0) 2677 goto out; 2678 gen = info.gen; 2679 mode = info.mode; 2680 rdev = info.rdev; 2681 } else { 2682 gen = sctx->cur_inode_gen; 2683 mode = sctx->cur_inode_mode; 2684 rdev = sctx->cur_inode_rdev; 2685 } 2686 2687 if (S_ISREG(mode)) { 2688 cmd = BTRFS_SEND_C_MKFILE; 2689 } else if (S_ISDIR(mode)) { 2690 cmd = BTRFS_SEND_C_MKDIR; 2691 } else if (S_ISLNK(mode)) { 2692 cmd = BTRFS_SEND_C_SYMLINK; 2693 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2694 cmd = BTRFS_SEND_C_MKNOD; 2695 } else if (S_ISFIFO(mode)) { 2696 cmd = BTRFS_SEND_C_MKFIFO; 2697 } else if (S_ISSOCK(mode)) { 2698 cmd = BTRFS_SEND_C_MKSOCK; 2699 } else { 2700 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2701 (int)(mode & S_IFMT)); 2702 ret = -EOPNOTSUPP; 2703 goto out; 2704 } 2705 2706 ret = begin_cmd(sctx, cmd); 2707 if (ret < 0) 2708 goto out; 2709 2710 ret = gen_unique_name(sctx, ino, gen, p); 2711 if (ret < 0) 2712 goto out; 2713 2714 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2715 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2716 2717 if (S_ISLNK(mode)) { 2718 fs_path_reset(p); 2719 ret = read_symlink(sctx->send_root, ino, p); 2720 if (ret < 0) 2721 goto out; 2722 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2723 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2724 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2725 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2726 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2727 } 2728 2729 ret = send_cmd(sctx); 2730 if (ret < 0) 2731 goto out; 2732 2733 2734 tlv_put_failure: 2735 out: 2736 fs_path_free(p); 2737 return ret; 2738 } 2739 2740 /* 2741 * We need some special handling for inodes that get processed before the parent 2742 * directory got created. See process_recorded_refs for details. 2743 * This function does the check if we already created the dir out of order. 2744 */ 2745 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2746 { 2747 int ret = 0; 2748 int iter_ret = 0; 2749 struct btrfs_path *path = NULL; 2750 struct btrfs_key key; 2751 struct btrfs_key found_key; 2752 struct btrfs_key di_key; 2753 struct btrfs_dir_item *di; 2754 2755 path = alloc_path_for_send(); 2756 if (!path) 2757 return -ENOMEM; 2758 2759 key.objectid = dir; 2760 key.type = BTRFS_DIR_INDEX_KEY; 2761 key.offset = 0; 2762 2763 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2764 struct extent_buffer *eb = path->nodes[0]; 2765 2766 if (found_key.objectid != key.objectid || 2767 found_key.type != key.type) { 2768 ret = 0; 2769 break; 2770 } 2771 2772 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2773 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2774 2775 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2776 di_key.objectid < sctx->send_progress) { 2777 ret = 1; 2778 break; 2779 } 2780 } 2781 /* Catch error found during iteration */ 2782 if (iter_ret < 0) 2783 ret = iter_ret; 2784 2785 btrfs_free_path(path); 2786 return ret; 2787 } 2788 2789 /* 2790 * Only creates the inode if it is: 2791 * 1. Not a directory 2792 * 2. Or a directory which was not created already due to out of order 2793 * directories. See did_create_dir and process_recorded_refs for details. 2794 */ 2795 static int send_create_inode_if_needed(struct send_ctx *sctx) 2796 { 2797 int ret; 2798 2799 if (S_ISDIR(sctx->cur_inode_mode)) { 2800 ret = did_create_dir(sctx, sctx->cur_ino); 2801 if (ret < 0) 2802 return ret; 2803 else if (ret > 0) 2804 return 0; 2805 } 2806 2807 return send_create_inode(sctx, sctx->cur_ino); 2808 } 2809 2810 struct recorded_ref { 2811 struct list_head list; 2812 char *name; 2813 struct fs_path *full_path; 2814 u64 dir; 2815 u64 dir_gen; 2816 int name_len; 2817 struct rb_node node; 2818 struct rb_root *root; 2819 }; 2820 2821 static struct recorded_ref *recorded_ref_alloc(void) 2822 { 2823 struct recorded_ref *ref; 2824 2825 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2826 if (!ref) 2827 return NULL; 2828 RB_CLEAR_NODE(&ref->node); 2829 INIT_LIST_HEAD(&ref->list); 2830 return ref; 2831 } 2832 2833 static void recorded_ref_free(struct recorded_ref *ref) 2834 { 2835 if (!ref) 2836 return; 2837 if (!RB_EMPTY_NODE(&ref->node)) 2838 rb_erase(&ref->node, ref->root); 2839 list_del(&ref->list); 2840 fs_path_free(ref->full_path); 2841 kfree(ref); 2842 } 2843 2844 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2845 { 2846 ref->full_path = path; 2847 ref->name = (char *)kbasename(ref->full_path->start); 2848 ref->name_len = ref->full_path->end - ref->name; 2849 } 2850 2851 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2852 { 2853 struct recorded_ref *new; 2854 2855 new = recorded_ref_alloc(); 2856 if (!new) 2857 return -ENOMEM; 2858 2859 new->dir = ref->dir; 2860 new->dir_gen = ref->dir_gen; 2861 list_add_tail(&new->list, list); 2862 return 0; 2863 } 2864 2865 static void __free_recorded_refs(struct list_head *head) 2866 { 2867 struct recorded_ref *cur; 2868 2869 while (!list_empty(head)) { 2870 cur = list_entry(head->next, struct recorded_ref, list); 2871 recorded_ref_free(cur); 2872 } 2873 } 2874 2875 static void free_recorded_refs(struct send_ctx *sctx) 2876 { 2877 __free_recorded_refs(&sctx->new_refs); 2878 __free_recorded_refs(&sctx->deleted_refs); 2879 } 2880 2881 /* 2882 * Renames/moves a file/dir to its orphan name. Used when the first 2883 * ref of an unprocessed inode gets overwritten and for all non empty 2884 * directories. 2885 */ 2886 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2887 struct fs_path *path) 2888 { 2889 int ret; 2890 struct fs_path *orphan; 2891 2892 orphan = fs_path_alloc(); 2893 if (!orphan) 2894 return -ENOMEM; 2895 2896 ret = gen_unique_name(sctx, ino, gen, orphan); 2897 if (ret < 0) 2898 goto out; 2899 2900 ret = send_rename(sctx, path, orphan); 2901 2902 out: 2903 fs_path_free(orphan); 2904 return ret; 2905 } 2906 2907 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 2908 u64 dir_ino, u64 dir_gen) 2909 { 2910 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2911 struct rb_node *parent = NULL; 2912 struct orphan_dir_info *entry, *odi; 2913 2914 while (*p) { 2915 parent = *p; 2916 entry = rb_entry(parent, struct orphan_dir_info, node); 2917 if (dir_ino < entry->ino) 2918 p = &(*p)->rb_left; 2919 else if (dir_ino > entry->ino) 2920 p = &(*p)->rb_right; 2921 else if (dir_gen < entry->gen) 2922 p = &(*p)->rb_left; 2923 else if (dir_gen > entry->gen) 2924 p = &(*p)->rb_right; 2925 else 2926 return entry; 2927 } 2928 2929 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2930 if (!odi) 2931 return ERR_PTR(-ENOMEM); 2932 odi->ino = dir_ino; 2933 odi->gen = dir_gen; 2934 odi->last_dir_index_offset = 0; 2935 2936 rb_link_node(&odi->node, parent, p); 2937 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2938 return odi; 2939 } 2940 2941 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 2942 u64 dir_ino, u64 gen) 2943 { 2944 struct rb_node *n = sctx->orphan_dirs.rb_node; 2945 struct orphan_dir_info *entry; 2946 2947 while (n) { 2948 entry = rb_entry(n, struct orphan_dir_info, node); 2949 if (dir_ino < entry->ino) 2950 n = n->rb_left; 2951 else if (dir_ino > entry->ino) 2952 n = n->rb_right; 2953 else if (gen < entry->gen) 2954 n = n->rb_left; 2955 else if (gen > entry->gen) 2956 n = n->rb_right; 2957 else 2958 return entry; 2959 } 2960 return NULL; 2961 } 2962 2963 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 2964 { 2965 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 2966 2967 return odi != NULL; 2968 } 2969 2970 static void free_orphan_dir_info(struct send_ctx *sctx, 2971 struct orphan_dir_info *odi) 2972 { 2973 if (!odi) 2974 return; 2975 rb_erase(&odi->node, &sctx->orphan_dirs); 2976 kfree(odi); 2977 } 2978 2979 /* 2980 * Returns 1 if a directory can be removed at this point in time. 2981 * We check this by iterating all dir items and checking if the inode behind 2982 * the dir item was already processed. 2983 */ 2984 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2985 u64 send_progress) 2986 { 2987 int ret = 0; 2988 int iter_ret = 0; 2989 struct btrfs_root *root = sctx->parent_root; 2990 struct btrfs_path *path; 2991 struct btrfs_key key; 2992 struct btrfs_key found_key; 2993 struct btrfs_key loc; 2994 struct btrfs_dir_item *di; 2995 struct orphan_dir_info *odi = NULL; 2996 2997 /* 2998 * Don't try to rmdir the top/root subvolume dir. 2999 */ 3000 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3001 return 0; 3002 3003 path = alloc_path_for_send(); 3004 if (!path) 3005 return -ENOMEM; 3006 3007 key.objectid = dir; 3008 key.type = BTRFS_DIR_INDEX_KEY; 3009 key.offset = 0; 3010 3011 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3012 if (odi) 3013 key.offset = odi->last_dir_index_offset; 3014 3015 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3016 struct waiting_dir_move *dm; 3017 3018 if (found_key.objectid != key.objectid || 3019 found_key.type != key.type) 3020 break; 3021 3022 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3023 struct btrfs_dir_item); 3024 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3025 3026 dm = get_waiting_dir_move(sctx, loc.objectid); 3027 if (dm) { 3028 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3029 if (IS_ERR(odi)) { 3030 ret = PTR_ERR(odi); 3031 goto out; 3032 } 3033 odi->gen = dir_gen; 3034 odi->last_dir_index_offset = found_key.offset; 3035 dm->rmdir_ino = dir; 3036 dm->rmdir_gen = dir_gen; 3037 ret = 0; 3038 goto out; 3039 } 3040 3041 if (loc.objectid > send_progress) { 3042 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3043 if (IS_ERR(odi)) { 3044 ret = PTR_ERR(odi); 3045 goto out; 3046 } 3047 odi->gen = dir_gen; 3048 odi->last_dir_index_offset = found_key.offset; 3049 ret = 0; 3050 goto out; 3051 } 3052 } 3053 if (iter_ret < 0) { 3054 ret = iter_ret; 3055 goto out; 3056 } 3057 free_orphan_dir_info(sctx, odi); 3058 3059 ret = 1; 3060 3061 out: 3062 btrfs_free_path(path); 3063 return ret; 3064 } 3065 3066 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3067 { 3068 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3069 3070 return entry != NULL; 3071 } 3072 3073 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3074 { 3075 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3076 struct rb_node *parent = NULL; 3077 struct waiting_dir_move *entry, *dm; 3078 3079 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3080 if (!dm) 3081 return -ENOMEM; 3082 dm->ino = ino; 3083 dm->rmdir_ino = 0; 3084 dm->rmdir_gen = 0; 3085 dm->orphanized = orphanized; 3086 3087 while (*p) { 3088 parent = *p; 3089 entry = rb_entry(parent, struct waiting_dir_move, node); 3090 if (ino < entry->ino) { 3091 p = &(*p)->rb_left; 3092 } else if (ino > entry->ino) { 3093 p = &(*p)->rb_right; 3094 } else { 3095 kfree(dm); 3096 return -EEXIST; 3097 } 3098 } 3099 3100 rb_link_node(&dm->node, parent, p); 3101 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3102 return 0; 3103 } 3104 3105 static struct waiting_dir_move * 3106 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3107 { 3108 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3109 struct waiting_dir_move *entry; 3110 3111 while (n) { 3112 entry = rb_entry(n, struct waiting_dir_move, node); 3113 if (ino < entry->ino) 3114 n = n->rb_left; 3115 else if (ino > entry->ino) 3116 n = n->rb_right; 3117 else 3118 return entry; 3119 } 3120 return NULL; 3121 } 3122 3123 static void free_waiting_dir_move(struct send_ctx *sctx, 3124 struct waiting_dir_move *dm) 3125 { 3126 if (!dm) 3127 return; 3128 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3129 kfree(dm); 3130 } 3131 3132 static int add_pending_dir_move(struct send_ctx *sctx, 3133 u64 ino, 3134 u64 ino_gen, 3135 u64 parent_ino, 3136 struct list_head *new_refs, 3137 struct list_head *deleted_refs, 3138 const bool is_orphan) 3139 { 3140 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3141 struct rb_node *parent = NULL; 3142 struct pending_dir_move *entry = NULL, *pm; 3143 struct recorded_ref *cur; 3144 int exists = 0; 3145 int ret; 3146 3147 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3148 if (!pm) 3149 return -ENOMEM; 3150 pm->parent_ino = parent_ino; 3151 pm->ino = ino; 3152 pm->gen = ino_gen; 3153 INIT_LIST_HEAD(&pm->list); 3154 INIT_LIST_HEAD(&pm->update_refs); 3155 RB_CLEAR_NODE(&pm->node); 3156 3157 while (*p) { 3158 parent = *p; 3159 entry = rb_entry(parent, struct pending_dir_move, node); 3160 if (parent_ino < entry->parent_ino) { 3161 p = &(*p)->rb_left; 3162 } else if (parent_ino > entry->parent_ino) { 3163 p = &(*p)->rb_right; 3164 } else { 3165 exists = 1; 3166 break; 3167 } 3168 } 3169 3170 list_for_each_entry(cur, deleted_refs, list) { 3171 ret = dup_ref(cur, &pm->update_refs); 3172 if (ret < 0) 3173 goto out; 3174 } 3175 list_for_each_entry(cur, new_refs, list) { 3176 ret = dup_ref(cur, &pm->update_refs); 3177 if (ret < 0) 3178 goto out; 3179 } 3180 3181 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3182 if (ret) 3183 goto out; 3184 3185 if (exists) { 3186 list_add_tail(&pm->list, &entry->list); 3187 } else { 3188 rb_link_node(&pm->node, parent, p); 3189 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3190 } 3191 ret = 0; 3192 out: 3193 if (ret) { 3194 __free_recorded_refs(&pm->update_refs); 3195 kfree(pm); 3196 } 3197 return ret; 3198 } 3199 3200 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3201 u64 parent_ino) 3202 { 3203 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3204 struct pending_dir_move *entry; 3205 3206 while (n) { 3207 entry = rb_entry(n, struct pending_dir_move, node); 3208 if (parent_ino < entry->parent_ino) 3209 n = n->rb_left; 3210 else if (parent_ino > entry->parent_ino) 3211 n = n->rb_right; 3212 else 3213 return entry; 3214 } 3215 return NULL; 3216 } 3217 3218 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3219 u64 ino, u64 gen, u64 *ancestor_ino) 3220 { 3221 int ret = 0; 3222 u64 parent_inode = 0; 3223 u64 parent_gen = 0; 3224 u64 start_ino = ino; 3225 3226 *ancestor_ino = 0; 3227 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3228 fs_path_reset(name); 3229 3230 if (is_waiting_for_rm(sctx, ino, gen)) 3231 break; 3232 if (is_waiting_for_move(sctx, ino)) { 3233 if (*ancestor_ino == 0) 3234 *ancestor_ino = ino; 3235 ret = get_first_ref(sctx->parent_root, ino, 3236 &parent_inode, &parent_gen, name); 3237 } else { 3238 ret = __get_cur_name_and_parent(sctx, ino, gen, 3239 &parent_inode, 3240 &parent_gen, name); 3241 if (ret > 0) { 3242 ret = 0; 3243 break; 3244 } 3245 } 3246 if (ret < 0) 3247 break; 3248 if (parent_inode == start_ino) { 3249 ret = 1; 3250 if (*ancestor_ino == 0) 3251 *ancestor_ino = ino; 3252 break; 3253 } 3254 ino = parent_inode; 3255 gen = parent_gen; 3256 } 3257 return ret; 3258 } 3259 3260 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3261 { 3262 struct fs_path *from_path = NULL; 3263 struct fs_path *to_path = NULL; 3264 struct fs_path *name = NULL; 3265 u64 orig_progress = sctx->send_progress; 3266 struct recorded_ref *cur; 3267 u64 parent_ino, parent_gen; 3268 struct waiting_dir_move *dm = NULL; 3269 u64 rmdir_ino = 0; 3270 u64 rmdir_gen; 3271 u64 ancestor; 3272 bool is_orphan; 3273 int ret; 3274 3275 name = fs_path_alloc(); 3276 from_path = fs_path_alloc(); 3277 if (!name || !from_path) { 3278 ret = -ENOMEM; 3279 goto out; 3280 } 3281 3282 dm = get_waiting_dir_move(sctx, pm->ino); 3283 ASSERT(dm); 3284 rmdir_ino = dm->rmdir_ino; 3285 rmdir_gen = dm->rmdir_gen; 3286 is_orphan = dm->orphanized; 3287 free_waiting_dir_move(sctx, dm); 3288 3289 if (is_orphan) { 3290 ret = gen_unique_name(sctx, pm->ino, 3291 pm->gen, from_path); 3292 } else { 3293 ret = get_first_ref(sctx->parent_root, pm->ino, 3294 &parent_ino, &parent_gen, name); 3295 if (ret < 0) 3296 goto out; 3297 ret = get_cur_path(sctx, parent_ino, parent_gen, 3298 from_path); 3299 if (ret < 0) 3300 goto out; 3301 ret = fs_path_add_path(from_path, name); 3302 } 3303 if (ret < 0) 3304 goto out; 3305 3306 sctx->send_progress = sctx->cur_ino + 1; 3307 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3308 if (ret < 0) 3309 goto out; 3310 if (ret) { 3311 LIST_HEAD(deleted_refs); 3312 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3313 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3314 &pm->update_refs, &deleted_refs, 3315 is_orphan); 3316 if (ret < 0) 3317 goto out; 3318 if (rmdir_ino) { 3319 dm = get_waiting_dir_move(sctx, pm->ino); 3320 ASSERT(dm); 3321 dm->rmdir_ino = rmdir_ino; 3322 dm->rmdir_gen = rmdir_gen; 3323 } 3324 goto out; 3325 } 3326 fs_path_reset(name); 3327 to_path = name; 3328 name = NULL; 3329 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3330 if (ret < 0) 3331 goto out; 3332 3333 ret = send_rename(sctx, from_path, to_path); 3334 if (ret < 0) 3335 goto out; 3336 3337 if (rmdir_ino) { 3338 struct orphan_dir_info *odi; 3339 u64 gen; 3340 3341 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3342 if (!odi) { 3343 /* already deleted */ 3344 goto finish; 3345 } 3346 gen = odi->gen; 3347 3348 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3349 if (ret < 0) 3350 goto out; 3351 if (!ret) 3352 goto finish; 3353 3354 name = fs_path_alloc(); 3355 if (!name) { 3356 ret = -ENOMEM; 3357 goto out; 3358 } 3359 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3360 if (ret < 0) 3361 goto out; 3362 ret = send_rmdir(sctx, name); 3363 if (ret < 0) 3364 goto out; 3365 } 3366 3367 finish: 3368 ret = send_utimes(sctx, pm->ino, pm->gen); 3369 if (ret < 0) 3370 goto out; 3371 3372 /* 3373 * After rename/move, need to update the utimes of both new parent(s) 3374 * and old parent(s). 3375 */ 3376 list_for_each_entry(cur, &pm->update_refs, list) { 3377 /* 3378 * The parent inode might have been deleted in the send snapshot 3379 */ 3380 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3381 if (ret == -ENOENT) { 3382 ret = 0; 3383 continue; 3384 } 3385 if (ret < 0) 3386 goto out; 3387 3388 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3389 if (ret < 0) 3390 goto out; 3391 } 3392 3393 out: 3394 fs_path_free(name); 3395 fs_path_free(from_path); 3396 fs_path_free(to_path); 3397 sctx->send_progress = orig_progress; 3398 3399 return ret; 3400 } 3401 3402 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3403 { 3404 if (!list_empty(&m->list)) 3405 list_del(&m->list); 3406 if (!RB_EMPTY_NODE(&m->node)) 3407 rb_erase(&m->node, &sctx->pending_dir_moves); 3408 __free_recorded_refs(&m->update_refs); 3409 kfree(m); 3410 } 3411 3412 static void tail_append_pending_moves(struct send_ctx *sctx, 3413 struct pending_dir_move *moves, 3414 struct list_head *stack) 3415 { 3416 if (list_empty(&moves->list)) { 3417 list_add_tail(&moves->list, stack); 3418 } else { 3419 LIST_HEAD(list); 3420 list_splice_init(&moves->list, &list); 3421 list_add_tail(&moves->list, stack); 3422 list_splice_tail(&list, stack); 3423 } 3424 if (!RB_EMPTY_NODE(&moves->node)) { 3425 rb_erase(&moves->node, &sctx->pending_dir_moves); 3426 RB_CLEAR_NODE(&moves->node); 3427 } 3428 } 3429 3430 static int apply_children_dir_moves(struct send_ctx *sctx) 3431 { 3432 struct pending_dir_move *pm; 3433 struct list_head stack; 3434 u64 parent_ino = sctx->cur_ino; 3435 int ret = 0; 3436 3437 pm = get_pending_dir_moves(sctx, parent_ino); 3438 if (!pm) 3439 return 0; 3440 3441 INIT_LIST_HEAD(&stack); 3442 tail_append_pending_moves(sctx, pm, &stack); 3443 3444 while (!list_empty(&stack)) { 3445 pm = list_first_entry(&stack, struct pending_dir_move, list); 3446 parent_ino = pm->ino; 3447 ret = apply_dir_move(sctx, pm); 3448 free_pending_move(sctx, pm); 3449 if (ret) 3450 goto out; 3451 pm = get_pending_dir_moves(sctx, parent_ino); 3452 if (pm) 3453 tail_append_pending_moves(sctx, pm, &stack); 3454 } 3455 return 0; 3456 3457 out: 3458 while (!list_empty(&stack)) { 3459 pm = list_first_entry(&stack, struct pending_dir_move, list); 3460 free_pending_move(sctx, pm); 3461 } 3462 return ret; 3463 } 3464 3465 /* 3466 * We might need to delay a directory rename even when no ancestor directory 3467 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3468 * renamed. This happens when we rename a directory to the old name (the name 3469 * in the parent root) of some other unrelated directory that got its rename 3470 * delayed due to some ancestor with higher number that got renamed. 3471 * 3472 * Example: 3473 * 3474 * Parent snapshot: 3475 * . (ino 256) 3476 * |---- a/ (ino 257) 3477 * | |---- file (ino 260) 3478 * | 3479 * |---- b/ (ino 258) 3480 * |---- c/ (ino 259) 3481 * 3482 * Send snapshot: 3483 * . (ino 256) 3484 * |---- a/ (ino 258) 3485 * |---- x/ (ino 259) 3486 * |---- y/ (ino 257) 3487 * |----- file (ino 260) 3488 * 3489 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3490 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3491 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3492 * must issue is: 3493 * 3494 * 1 - rename 259 from 'c' to 'x' 3495 * 2 - rename 257 from 'a' to 'x/y' 3496 * 3 - rename 258 from 'b' to 'a' 3497 * 3498 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3499 * be done right away and < 0 on error. 3500 */ 3501 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3502 struct recorded_ref *parent_ref, 3503 const bool is_orphan) 3504 { 3505 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3506 struct btrfs_path *path; 3507 struct btrfs_key key; 3508 struct btrfs_key di_key; 3509 struct btrfs_dir_item *di; 3510 u64 left_gen; 3511 u64 right_gen; 3512 int ret = 0; 3513 struct waiting_dir_move *wdm; 3514 3515 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3516 return 0; 3517 3518 path = alloc_path_for_send(); 3519 if (!path) 3520 return -ENOMEM; 3521 3522 key.objectid = parent_ref->dir; 3523 key.type = BTRFS_DIR_ITEM_KEY; 3524 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3525 3526 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3527 if (ret < 0) { 3528 goto out; 3529 } else if (ret > 0) { 3530 ret = 0; 3531 goto out; 3532 } 3533 3534 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3535 parent_ref->name_len); 3536 if (!di) { 3537 ret = 0; 3538 goto out; 3539 } 3540 /* 3541 * di_key.objectid has the number of the inode that has a dentry in the 3542 * parent directory with the same name that sctx->cur_ino is being 3543 * renamed to. We need to check if that inode is in the send root as 3544 * well and if it is currently marked as an inode with a pending rename, 3545 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3546 * that it happens after that other inode is renamed. 3547 */ 3548 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3549 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3550 ret = 0; 3551 goto out; 3552 } 3553 3554 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3555 if (ret < 0) 3556 goto out; 3557 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3558 if (ret < 0) { 3559 if (ret == -ENOENT) 3560 ret = 0; 3561 goto out; 3562 } 3563 3564 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3565 if (right_gen != left_gen) { 3566 ret = 0; 3567 goto out; 3568 } 3569 3570 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3571 if (wdm && !wdm->orphanized) { 3572 ret = add_pending_dir_move(sctx, 3573 sctx->cur_ino, 3574 sctx->cur_inode_gen, 3575 di_key.objectid, 3576 &sctx->new_refs, 3577 &sctx->deleted_refs, 3578 is_orphan); 3579 if (!ret) 3580 ret = 1; 3581 } 3582 out: 3583 btrfs_free_path(path); 3584 return ret; 3585 } 3586 3587 /* 3588 * Check if inode ino2, or any of its ancestors, is inode ino1. 3589 * Return 1 if true, 0 if false and < 0 on error. 3590 */ 3591 static int check_ino_in_path(struct btrfs_root *root, 3592 const u64 ino1, 3593 const u64 ino1_gen, 3594 const u64 ino2, 3595 const u64 ino2_gen, 3596 struct fs_path *fs_path) 3597 { 3598 u64 ino = ino2; 3599 3600 if (ino1 == ino2) 3601 return ino1_gen == ino2_gen; 3602 3603 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3604 u64 parent; 3605 u64 parent_gen; 3606 int ret; 3607 3608 fs_path_reset(fs_path); 3609 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3610 if (ret < 0) 3611 return ret; 3612 if (parent == ino1) 3613 return parent_gen == ino1_gen; 3614 ino = parent; 3615 } 3616 return 0; 3617 } 3618 3619 /* 3620 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3621 * possible path (in case ino2 is not a directory and has multiple hard links). 3622 * Return 1 if true, 0 if false and < 0 on error. 3623 */ 3624 static int is_ancestor(struct btrfs_root *root, 3625 const u64 ino1, 3626 const u64 ino1_gen, 3627 const u64 ino2, 3628 struct fs_path *fs_path) 3629 { 3630 bool free_fs_path = false; 3631 int ret = 0; 3632 int iter_ret = 0; 3633 struct btrfs_path *path = NULL; 3634 struct btrfs_key key; 3635 3636 if (!fs_path) { 3637 fs_path = fs_path_alloc(); 3638 if (!fs_path) 3639 return -ENOMEM; 3640 free_fs_path = true; 3641 } 3642 3643 path = alloc_path_for_send(); 3644 if (!path) { 3645 ret = -ENOMEM; 3646 goto out; 3647 } 3648 3649 key.objectid = ino2; 3650 key.type = BTRFS_INODE_REF_KEY; 3651 key.offset = 0; 3652 3653 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3654 struct extent_buffer *leaf = path->nodes[0]; 3655 int slot = path->slots[0]; 3656 u32 cur_offset = 0; 3657 u32 item_size; 3658 3659 if (key.objectid != ino2) 3660 break; 3661 if (key.type != BTRFS_INODE_REF_KEY && 3662 key.type != BTRFS_INODE_EXTREF_KEY) 3663 break; 3664 3665 item_size = btrfs_item_size(leaf, slot); 3666 while (cur_offset < item_size) { 3667 u64 parent; 3668 u64 parent_gen; 3669 3670 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3671 unsigned long ptr; 3672 struct btrfs_inode_extref *extref; 3673 3674 ptr = btrfs_item_ptr_offset(leaf, slot); 3675 extref = (struct btrfs_inode_extref *) 3676 (ptr + cur_offset); 3677 parent = btrfs_inode_extref_parent(leaf, 3678 extref); 3679 cur_offset += sizeof(*extref); 3680 cur_offset += btrfs_inode_extref_name_len(leaf, 3681 extref); 3682 } else { 3683 parent = key.offset; 3684 cur_offset = item_size; 3685 } 3686 3687 ret = get_inode_gen(root, parent, &parent_gen); 3688 if (ret < 0) 3689 goto out; 3690 ret = check_ino_in_path(root, ino1, ino1_gen, 3691 parent, parent_gen, fs_path); 3692 if (ret) 3693 goto out; 3694 } 3695 } 3696 ret = 0; 3697 if (iter_ret < 0) 3698 ret = iter_ret; 3699 3700 out: 3701 btrfs_free_path(path); 3702 if (free_fs_path) 3703 fs_path_free(fs_path); 3704 return ret; 3705 } 3706 3707 static int wait_for_parent_move(struct send_ctx *sctx, 3708 struct recorded_ref *parent_ref, 3709 const bool is_orphan) 3710 { 3711 int ret = 0; 3712 u64 ino = parent_ref->dir; 3713 u64 ino_gen = parent_ref->dir_gen; 3714 u64 parent_ino_before, parent_ino_after; 3715 struct fs_path *path_before = NULL; 3716 struct fs_path *path_after = NULL; 3717 int len1, len2; 3718 3719 path_after = fs_path_alloc(); 3720 path_before = fs_path_alloc(); 3721 if (!path_after || !path_before) { 3722 ret = -ENOMEM; 3723 goto out; 3724 } 3725 3726 /* 3727 * Our current directory inode may not yet be renamed/moved because some 3728 * ancestor (immediate or not) has to be renamed/moved first. So find if 3729 * such ancestor exists and make sure our own rename/move happens after 3730 * that ancestor is processed to avoid path build infinite loops (done 3731 * at get_cur_path()). 3732 */ 3733 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3734 u64 parent_ino_after_gen; 3735 3736 if (is_waiting_for_move(sctx, ino)) { 3737 /* 3738 * If the current inode is an ancestor of ino in the 3739 * parent root, we need to delay the rename of the 3740 * current inode, otherwise don't delayed the rename 3741 * because we can end up with a circular dependency 3742 * of renames, resulting in some directories never 3743 * getting the respective rename operations issued in 3744 * the send stream or getting into infinite path build 3745 * loops. 3746 */ 3747 ret = is_ancestor(sctx->parent_root, 3748 sctx->cur_ino, sctx->cur_inode_gen, 3749 ino, path_before); 3750 if (ret) 3751 break; 3752 } 3753 3754 fs_path_reset(path_before); 3755 fs_path_reset(path_after); 3756 3757 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3758 &parent_ino_after_gen, path_after); 3759 if (ret < 0) 3760 goto out; 3761 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3762 NULL, path_before); 3763 if (ret < 0 && ret != -ENOENT) { 3764 goto out; 3765 } else if (ret == -ENOENT) { 3766 ret = 0; 3767 break; 3768 } 3769 3770 len1 = fs_path_len(path_before); 3771 len2 = fs_path_len(path_after); 3772 if (ino > sctx->cur_ino && 3773 (parent_ino_before != parent_ino_after || len1 != len2 || 3774 memcmp(path_before->start, path_after->start, len1))) { 3775 u64 parent_ino_gen; 3776 3777 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 3778 if (ret < 0) 3779 goto out; 3780 if (ino_gen == parent_ino_gen) { 3781 ret = 1; 3782 break; 3783 } 3784 } 3785 ino = parent_ino_after; 3786 ino_gen = parent_ino_after_gen; 3787 } 3788 3789 out: 3790 fs_path_free(path_before); 3791 fs_path_free(path_after); 3792 3793 if (ret == 1) { 3794 ret = add_pending_dir_move(sctx, 3795 sctx->cur_ino, 3796 sctx->cur_inode_gen, 3797 ino, 3798 &sctx->new_refs, 3799 &sctx->deleted_refs, 3800 is_orphan); 3801 if (!ret) 3802 ret = 1; 3803 } 3804 3805 return ret; 3806 } 3807 3808 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3809 { 3810 int ret; 3811 struct fs_path *new_path; 3812 3813 /* 3814 * Our reference's name member points to its full_path member string, so 3815 * we use here a new path. 3816 */ 3817 new_path = fs_path_alloc(); 3818 if (!new_path) 3819 return -ENOMEM; 3820 3821 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3822 if (ret < 0) { 3823 fs_path_free(new_path); 3824 return ret; 3825 } 3826 ret = fs_path_add(new_path, ref->name, ref->name_len); 3827 if (ret < 0) { 3828 fs_path_free(new_path); 3829 return ret; 3830 } 3831 3832 fs_path_free(ref->full_path); 3833 set_ref_path(ref, new_path); 3834 3835 return 0; 3836 } 3837 3838 /* 3839 * When processing the new references for an inode we may orphanize an existing 3840 * directory inode because its old name conflicts with one of the new references 3841 * of the current inode. Later, when processing another new reference of our 3842 * inode, we might need to orphanize another inode, but the path we have in the 3843 * reference reflects the pre-orphanization name of the directory we previously 3844 * orphanized. For example: 3845 * 3846 * parent snapshot looks like: 3847 * 3848 * . (ino 256) 3849 * |----- f1 (ino 257) 3850 * |----- f2 (ino 258) 3851 * |----- d1/ (ino 259) 3852 * |----- d2/ (ino 260) 3853 * 3854 * send snapshot looks like: 3855 * 3856 * . (ino 256) 3857 * |----- d1 (ino 258) 3858 * |----- f2/ (ino 259) 3859 * |----- f2_link/ (ino 260) 3860 * | |----- f1 (ino 257) 3861 * | 3862 * |----- d2 (ino 258) 3863 * 3864 * When processing inode 257 we compute the name for inode 259 as "d1", and we 3865 * cache it in the name cache. Later when we start processing inode 258, when 3866 * collecting all its new references we set a full path of "d1/d2" for its new 3867 * reference with name "d2". When we start processing the new references we 3868 * start by processing the new reference with name "d1", and this results in 3869 * orphanizing inode 259, since its old reference causes a conflict. Then we 3870 * move on the next new reference, with name "d2", and we find out we must 3871 * orphanize inode 260, as its old reference conflicts with ours - but for the 3872 * orphanization we use a source path corresponding to the path we stored in the 3873 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 3874 * receiver fail since the path component "d1/" no longer exists, it was renamed 3875 * to "o259-6-0/" when processing the previous new reference. So in this case we 3876 * must recompute the path in the new reference and use it for the new 3877 * orphanization operation. 3878 */ 3879 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3880 { 3881 char *name; 3882 int ret; 3883 3884 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 3885 if (!name) 3886 return -ENOMEM; 3887 3888 fs_path_reset(ref->full_path); 3889 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 3890 if (ret < 0) 3891 goto out; 3892 3893 ret = fs_path_add(ref->full_path, name, ref->name_len); 3894 if (ret < 0) 3895 goto out; 3896 3897 /* Update the reference's base name pointer. */ 3898 set_ref_path(ref, ref->full_path); 3899 out: 3900 kfree(name); 3901 return ret; 3902 } 3903 3904 /* 3905 * This does all the move/link/unlink/rmdir magic. 3906 */ 3907 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3908 { 3909 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3910 int ret = 0; 3911 struct recorded_ref *cur; 3912 struct recorded_ref *cur2; 3913 struct list_head check_dirs; 3914 struct fs_path *valid_path = NULL; 3915 u64 ow_inode = 0; 3916 u64 ow_gen; 3917 u64 ow_mode; 3918 int did_overwrite = 0; 3919 int is_orphan = 0; 3920 u64 last_dir_ino_rm = 0; 3921 bool can_rename = true; 3922 bool orphanized_dir = false; 3923 bool orphanized_ancestor = false; 3924 3925 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3926 3927 /* 3928 * This should never happen as the root dir always has the same ref 3929 * which is always '..' 3930 */ 3931 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3932 INIT_LIST_HEAD(&check_dirs); 3933 3934 valid_path = fs_path_alloc(); 3935 if (!valid_path) { 3936 ret = -ENOMEM; 3937 goto out; 3938 } 3939 3940 /* 3941 * First, check if the first ref of the current inode was overwritten 3942 * before. If yes, we know that the current inode was already orphanized 3943 * and thus use the orphan name. If not, we can use get_cur_path to 3944 * get the path of the first ref as it would like while receiving at 3945 * this point in time. 3946 * New inodes are always orphan at the beginning, so force to use the 3947 * orphan name in this case. 3948 * The first ref is stored in valid_path and will be updated if it 3949 * gets moved around. 3950 */ 3951 if (!sctx->cur_inode_new) { 3952 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3953 sctx->cur_inode_gen); 3954 if (ret < 0) 3955 goto out; 3956 if (ret) 3957 did_overwrite = 1; 3958 } 3959 if (sctx->cur_inode_new || did_overwrite) { 3960 ret = gen_unique_name(sctx, sctx->cur_ino, 3961 sctx->cur_inode_gen, valid_path); 3962 if (ret < 0) 3963 goto out; 3964 is_orphan = 1; 3965 } else { 3966 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3967 valid_path); 3968 if (ret < 0) 3969 goto out; 3970 } 3971 3972 /* 3973 * Before doing any rename and link operations, do a first pass on the 3974 * new references to orphanize any unprocessed inodes that may have a 3975 * reference that conflicts with one of the new references of the current 3976 * inode. This needs to happen first because a new reference may conflict 3977 * with the old reference of a parent directory, so we must make sure 3978 * that the path used for link and rename commands don't use an 3979 * orphanized name when an ancestor was not yet orphanized. 3980 * 3981 * Example: 3982 * 3983 * Parent snapshot: 3984 * 3985 * . (ino 256) 3986 * |----- testdir/ (ino 259) 3987 * | |----- a (ino 257) 3988 * | 3989 * |----- b (ino 258) 3990 * 3991 * Send snapshot: 3992 * 3993 * . (ino 256) 3994 * |----- testdir_2/ (ino 259) 3995 * | |----- a (ino 260) 3996 * | 3997 * |----- testdir (ino 257) 3998 * |----- b (ino 257) 3999 * |----- b2 (ino 258) 4000 * 4001 * Processing the new reference for inode 257 with name "b" may happen 4002 * before processing the new reference with name "testdir". If so, we 4003 * must make sure that by the time we send a link command to create the 4004 * hard link "b", inode 259 was already orphanized, since the generated 4005 * path in "valid_path" already contains the orphanized name for 259. 4006 * We are processing inode 257, so only later when processing 259 we do 4007 * the rename operation to change its temporary (orphanized) name to 4008 * "testdir_2". 4009 */ 4010 list_for_each_entry(cur, &sctx->new_refs, list) { 4011 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4012 if (ret < 0) 4013 goto out; 4014 if (ret == inode_state_will_create) 4015 continue; 4016 4017 /* 4018 * Check if this new ref would overwrite the first ref of another 4019 * unprocessed inode. If yes, orphanize the overwritten inode. 4020 * If we find an overwritten ref that is not the first ref, 4021 * simply unlink it. 4022 */ 4023 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4024 cur->name, cur->name_len, 4025 &ow_inode, &ow_gen, &ow_mode); 4026 if (ret < 0) 4027 goto out; 4028 if (ret) { 4029 ret = is_first_ref(sctx->parent_root, 4030 ow_inode, cur->dir, cur->name, 4031 cur->name_len); 4032 if (ret < 0) 4033 goto out; 4034 if (ret) { 4035 struct name_cache_entry *nce; 4036 struct waiting_dir_move *wdm; 4037 4038 if (orphanized_dir) { 4039 ret = refresh_ref_path(sctx, cur); 4040 if (ret < 0) 4041 goto out; 4042 } 4043 4044 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4045 cur->full_path); 4046 if (ret < 0) 4047 goto out; 4048 if (S_ISDIR(ow_mode)) 4049 orphanized_dir = true; 4050 4051 /* 4052 * If ow_inode has its rename operation delayed 4053 * make sure that its orphanized name is used in 4054 * the source path when performing its rename 4055 * operation. 4056 */ 4057 if (is_waiting_for_move(sctx, ow_inode)) { 4058 wdm = get_waiting_dir_move(sctx, 4059 ow_inode); 4060 ASSERT(wdm); 4061 wdm->orphanized = true; 4062 } 4063 4064 /* 4065 * Make sure we clear our orphanized inode's 4066 * name from the name cache. This is because the 4067 * inode ow_inode might be an ancestor of some 4068 * other inode that will be orphanized as well 4069 * later and has an inode number greater than 4070 * sctx->send_progress. We need to prevent 4071 * future name lookups from using the old name 4072 * and get instead the orphan name. 4073 */ 4074 nce = name_cache_search(sctx, ow_inode, ow_gen); 4075 if (nce) { 4076 name_cache_delete(sctx, nce); 4077 kfree(nce); 4078 } 4079 4080 /* 4081 * ow_inode might currently be an ancestor of 4082 * cur_ino, therefore compute valid_path (the 4083 * current path of cur_ino) again because it 4084 * might contain the pre-orphanization name of 4085 * ow_inode, which is no longer valid. 4086 */ 4087 ret = is_ancestor(sctx->parent_root, 4088 ow_inode, ow_gen, 4089 sctx->cur_ino, NULL); 4090 if (ret > 0) { 4091 orphanized_ancestor = true; 4092 fs_path_reset(valid_path); 4093 ret = get_cur_path(sctx, sctx->cur_ino, 4094 sctx->cur_inode_gen, 4095 valid_path); 4096 } 4097 if (ret < 0) 4098 goto out; 4099 } else { 4100 /* 4101 * If we previously orphanized a directory that 4102 * collided with a new reference that we already 4103 * processed, recompute the current path because 4104 * that directory may be part of the path. 4105 */ 4106 if (orphanized_dir) { 4107 ret = refresh_ref_path(sctx, cur); 4108 if (ret < 0) 4109 goto out; 4110 } 4111 ret = send_unlink(sctx, cur->full_path); 4112 if (ret < 0) 4113 goto out; 4114 } 4115 } 4116 4117 } 4118 4119 list_for_each_entry(cur, &sctx->new_refs, list) { 4120 /* 4121 * We may have refs where the parent directory does not exist 4122 * yet. This happens if the parent directories inum is higher 4123 * than the current inum. To handle this case, we create the 4124 * parent directory out of order. But we need to check if this 4125 * did already happen before due to other refs in the same dir. 4126 */ 4127 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4128 if (ret < 0) 4129 goto out; 4130 if (ret == inode_state_will_create) { 4131 ret = 0; 4132 /* 4133 * First check if any of the current inodes refs did 4134 * already create the dir. 4135 */ 4136 list_for_each_entry(cur2, &sctx->new_refs, list) { 4137 if (cur == cur2) 4138 break; 4139 if (cur2->dir == cur->dir) { 4140 ret = 1; 4141 break; 4142 } 4143 } 4144 4145 /* 4146 * If that did not happen, check if a previous inode 4147 * did already create the dir. 4148 */ 4149 if (!ret) 4150 ret = did_create_dir(sctx, cur->dir); 4151 if (ret < 0) 4152 goto out; 4153 if (!ret) { 4154 ret = send_create_inode(sctx, cur->dir); 4155 if (ret < 0) 4156 goto out; 4157 } 4158 } 4159 4160 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4161 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4162 if (ret < 0) 4163 goto out; 4164 if (ret == 1) { 4165 can_rename = false; 4166 *pending_move = 1; 4167 } 4168 } 4169 4170 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4171 can_rename) { 4172 ret = wait_for_parent_move(sctx, cur, is_orphan); 4173 if (ret < 0) 4174 goto out; 4175 if (ret == 1) { 4176 can_rename = false; 4177 *pending_move = 1; 4178 } 4179 } 4180 4181 /* 4182 * link/move the ref to the new place. If we have an orphan 4183 * inode, move it and update valid_path. If not, link or move 4184 * it depending on the inode mode. 4185 */ 4186 if (is_orphan && can_rename) { 4187 ret = send_rename(sctx, valid_path, cur->full_path); 4188 if (ret < 0) 4189 goto out; 4190 is_orphan = 0; 4191 ret = fs_path_copy(valid_path, cur->full_path); 4192 if (ret < 0) 4193 goto out; 4194 } else if (can_rename) { 4195 if (S_ISDIR(sctx->cur_inode_mode)) { 4196 /* 4197 * Dirs can't be linked, so move it. For moved 4198 * dirs, we always have one new and one deleted 4199 * ref. The deleted ref is ignored later. 4200 */ 4201 ret = send_rename(sctx, valid_path, 4202 cur->full_path); 4203 if (!ret) 4204 ret = fs_path_copy(valid_path, 4205 cur->full_path); 4206 if (ret < 0) 4207 goto out; 4208 } else { 4209 /* 4210 * We might have previously orphanized an inode 4211 * which is an ancestor of our current inode, 4212 * so our reference's full path, which was 4213 * computed before any such orphanizations, must 4214 * be updated. 4215 */ 4216 if (orphanized_dir) { 4217 ret = update_ref_path(sctx, cur); 4218 if (ret < 0) 4219 goto out; 4220 } 4221 ret = send_link(sctx, cur->full_path, 4222 valid_path); 4223 if (ret < 0) 4224 goto out; 4225 } 4226 } 4227 ret = dup_ref(cur, &check_dirs); 4228 if (ret < 0) 4229 goto out; 4230 } 4231 4232 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4233 /* 4234 * Check if we can already rmdir the directory. If not, 4235 * orphanize it. For every dir item inside that gets deleted 4236 * later, we do this check again and rmdir it then if possible. 4237 * See the use of check_dirs for more details. 4238 */ 4239 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4240 sctx->cur_ino); 4241 if (ret < 0) 4242 goto out; 4243 if (ret) { 4244 ret = send_rmdir(sctx, valid_path); 4245 if (ret < 0) 4246 goto out; 4247 } else if (!is_orphan) { 4248 ret = orphanize_inode(sctx, sctx->cur_ino, 4249 sctx->cur_inode_gen, valid_path); 4250 if (ret < 0) 4251 goto out; 4252 is_orphan = 1; 4253 } 4254 4255 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4256 ret = dup_ref(cur, &check_dirs); 4257 if (ret < 0) 4258 goto out; 4259 } 4260 } else if (S_ISDIR(sctx->cur_inode_mode) && 4261 !list_empty(&sctx->deleted_refs)) { 4262 /* 4263 * We have a moved dir. Add the old parent to check_dirs 4264 */ 4265 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4266 list); 4267 ret = dup_ref(cur, &check_dirs); 4268 if (ret < 0) 4269 goto out; 4270 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4271 /* 4272 * We have a non dir inode. Go through all deleted refs and 4273 * unlink them if they were not already overwritten by other 4274 * inodes. 4275 */ 4276 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4277 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4278 sctx->cur_ino, sctx->cur_inode_gen, 4279 cur->name, cur->name_len); 4280 if (ret < 0) 4281 goto out; 4282 if (!ret) { 4283 /* 4284 * If we orphanized any ancestor before, we need 4285 * to recompute the full path for deleted names, 4286 * since any such path was computed before we 4287 * processed any references and orphanized any 4288 * ancestor inode. 4289 */ 4290 if (orphanized_ancestor) { 4291 ret = update_ref_path(sctx, cur); 4292 if (ret < 0) 4293 goto out; 4294 } 4295 ret = send_unlink(sctx, cur->full_path); 4296 if (ret < 0) 4297 goto out; 4298 } 4299 ret = dup_ref(cur, &check_dirs); 4300 if (ret < 0) 4301 goto out; 4302 } 4303 /* 4304 * If the inode is still orphan, unlink the orphan. This may 4305 * happen when a previous inode did overwrite the first ref 4306 * of this inode and no new refs were added for the current 4307 * inode. Unlinking does not mean that the inode is deleted in 4308 * all cases. There may still be links to this inode in other 4309 * places. 4310 */ 4311 if (is_orphan) { 4312 ret = send_unlink(sctx, valid_path); 4313 if (ret < 0) 4314 goto out; 4315 } 4316 } 4317 4318 /* 4319 * We did collect all parent dirs where cur_inode was once located. We 4320 * now go through all these dirs and check if they are pending for 4321 * deletion and if it's finally possible to perform the rmdir now. 4322 * We also update the inode stats of the parent dirs here. 4323 */ 4324 list_for_each_entry(cur, &check_dirs, list) { 4325 /* 4326 * In case we had refs into dirs that were not processed yet, 4327 * we don't need to do the utime and rmdir logic for these dirs. 4328 * The dir will be processed later. 4329 */ 4330 if (cur->dir > sctx->cur_ino) 4331 continue; 4332 4333 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4334 if (ret < 0) 4335 goto out; 4336 4337 if (ret == inode_state_did_create || 4338 ret == inode_state_no_change) { 4339 /* TODO delayed utimes */ 4340 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4341 if (ret < 0) 4342 goto out; 4343 } else if (ret == inode_state_did_delete && 4344 cur->dir != last_dir_ino_rm) { 4345 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4346 sctx->cur_ino); 4347 if (ret < 0) 4348 goto out; 4349 if (ret) { 4350 ret = get_cur_path(sctx, cur->dir, 4351 cur->dir_gen, valid_path); 4352 if (ret < 0) 4353 goto out; 4354 ret = send_rmdir(sctx, valid_path); 4355 if (ret < 0) 4356 goto out; 4357 last_dir_ino_rm = cur->dir; 4358 } 4359 } 4360 } 4361 4362 ret = 0; 4363 4364 out: 4365 __free_recorded_refs(&check_dirs); 4366 free_recorded_refs(sctx); 4367 fs_path_free(valid_path); 4368 return ret; 4369 } 4370 4371 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4372 { 4373 const struct recorded_ref *data = k; 4374 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4375 int result; 4376 4377 if (data->dir > ref->dir) 4378 return 1; 4379 if (data->dir < ref->dir) 4380 return -1; 4381 if (data->dir_gen > ref->dir_gen) 4382 return 1; 4383 if (data->dir_gen < ref->dir_gen) 4384 return -1; 4385 if (data->name_len > ref->name_len) 4386 return 1; 4387 if (data->name_len < ref->name_len) 4388 return -1; 4389 result = strcmp(data->name, ref->name); 4390 if (result > 0) 4391 return 1; 4392 if (result < 0) 4393 return -1; 4394 return 0; 4395 } 4396 4397 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4398 { 4399 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4400 4401 return rbtree_ref_comp(entry, parent) < 0; 4402 } 4403 4404 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4405 struct fs_path *name, u64 dir, u64 dir_gen, 4406 struct send_ctx *sctx) 4407 { 4408 int ret = 0; 4409 struct fs_path *path = NULL; 4410 struct recorded_ref *ref = NULL; 4411 4412 path = fs_path_alloc(); 4413 if (!path) { 4414 ret = -ENOMEM; 4415 goto out; 4416 } 4417 4418 ref = recorded_ref_alloc(); 4419 if (!ref) { 4420 ret = -ENOMEM; 4421 goto out; 4422 } 4423 4424 ret = get_cur_path(sctx, dir, dir_gen, path); 4425 if (ret < 0) 4426 goto out; 4427 ret = fs_path_add_path(path, name); 4428 if (ret < 0) 4429 goto out; 4430 4431 ref->dir = dir; 4432 ref->dir_gen = dir_gen; 4433 set_ref_path(ref, path); 4434 list_add_tail(&ref->list, refs); 4435 rb_add(&ref->node, root, rbtree_ref_less); 4436 ref->root = root; 4437 out: 4438 if (ret) { 4439 if (path && (!ref || !ref->full_path)) 4440 fs_path_free(path); 4441 recorded_ref_free(ref); 4442 } 4443 return ret; 4444 } 4445 4446 static int record_new_ref_if_needed(int num, u64 dir, int index, 4447 struct fs_path *name, void *ctx) 4448 { 4449 int ret = 0; 4450 struct send_ctx *sctx = ctx; 4451 struct rb_node *node = NULL; 4452 struct recorded_ref data; 4453 struct recorded_ref *ref; 4454 u64 dir_gen; 4455 4456 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4457 if (ret < 0) 4458 goto out; 4459 4460 data.dir = dir; 4461 data.dir_gen = dir_gen; 4462 set_ref_path(&data, name); 4463 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4464 if (node) { 4465 ref = rb_entry(node, struct recorded_ref, node); 4466 recorded_ref_free(ref); 4467 } else { 4468 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4469 &sctx->new_refs, name, dir, dir_gen, 4470 sctx); 4471 } 4472 out: 4473 return ret; 4474 } 4475 4476 static int record_deleted_ref_if_needed(int num, u64 dir, int index, 4477 struct fs_path *name, void *ctx) 4478 { 4479 int ret = 0; 4480 struct send_ctx *sctx = ctx; 4481 struct rb_node *node = NULL; 4482 struct recorded_ref data; 4483 struct recorded_ref *ref; 4484 u64 dir_gen; 4485 4486 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4487 if (ret < 0) 4488 goto out; 4489 4490 data.dir = dir; 4491 data.dir_gen = dir_gen; 4492 set_ref_path(&data, name); 4493 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4494 if (node) { 4495 ref = rb_entry(node, struct recorded_ref, node); 4496 recorded_ref_free(ref); 4497 } else { 4498 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4499 &sctx->deleted_refs, name, dir, 4500 dir_gen, sctx); 4501 } 4502 out: 4503 return ret; 4504 } 4505 4506 static int record_new_ref(struct send_ctx *sctx) 4507 { 4508 int ret; 4509 4510 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4511 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4512 if (ret < 0) 4513 goto out; 4514 ret = 0; 4515 4516 out: 4517 return ret; 4518 } 4519 4520 static int record_deleted_ref(struct send_ctx *sctx) 4521 { 4522 int ret; 4523 4524 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4525 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4526 sctx); 4527 if (ret < 0) 4528 goto out; 4529 ret = 0; 4530 4531 out: 4532 return ret; 4533 } 4534 4535 static int record_changed_ref(struct send_ctx *sctx) 4536 { 4537 int ret = 0; 4538 4539 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4540 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4541 if (ret < 0) 4542 goto out; 4543 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4544 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4545 if (ret < 0) 4546 goto out; 4547 ret = 0; 4548 4549 out: 4550 return ret; 4551 } 4552 4553 /* 4554 * Record and process all refs at once. Needed when an inode changes the 4555 * generation number, which means that it was deleted and recreated. 4556 */ 4557 static int process_all_refs(struct send_ctx *sctx, 4558 enum btrfs_compare_tree_result cmd) 4559 { 4560 int ret = 0; 4561 int iter_ret = 0; 4562 struct btrfs_root *root; 4563 struct btrfs_path *path; 4564 struct btrfs_key key; 4565 struct btrfs_key found_key; 4566 iterate_inode_ref_t cb; 4567 int pending_move = 0; 4568 4569 path = alloc_path_for_send(); 4570 if (!path) 4571 return -ENOMEM; 4572 4573 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4574 root = sctx->send_root; 4575 cb = record_new_ref_if_needed; 4576 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4577 root = sctx->parent_root; 4578 cb = record_deleted_ref_if_needed; 4579 } else { 4580 btrfs_err(sctx->send_root->fs_info, 4581 "Wrong command %d in process_all_refs", cmd); 4582 ret = -EINVAL; 4583 goto out; 4584 } 4585 4586 key.objectid = sctx->cmp_key->objectid; 4587 key.type = BTRFS_INODE_REF_KEY; 4588 key.offset = 0; 4589 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4590 if (found_key.objectid != key.objectid || 4591 (found_key.type != BTRFS_INODE_REF_KEY && 4592 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4593 break; 4594 4595 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4596 if (ret < 0) 4597 goto out; 4598 } 4599 /* Catch error found during iteration */ 4600 if (iter_ret < 0) { 4601 ret = iter_ret; 4602 goto out; 4603 } 4604 btrfs_release_path(path); 4605 4606 /* 4607 * We don't actually care about pending_move as we are simply 4608 * re-creating this inode and will be rename'ing it into place once we 4609 * rename the parent directory. 4610 */ 4611 ret = process_recorded_refs(sctx, &pending_move); 4612 out: 4613 btrfs_free_path(path); 4614 return ret; 4615 } 4616 4617 static int send_set_xattr(struct send_ctx *sctx, 4618 struct fs_path *path, 4619 const char *name, int name_len, 4620 const char *data, int data_len) 4621 { 4622 int ret = 0; 4623 4624 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4625 if (ret < 0) 4626 goto out; 4627 4628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4629 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4630 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4631 4632 ret = send_cmd(sctx); 4633 4634 tlv_put_failure: 4635 out: 4636 return ret; 4637 } 4638 4639 static int send_remove_xattr(struct send_ctx *sctx, 4640 struct fs_path *path, 4641 const char *name, int name_len) 4642 { 4643 int ret = 0; 4644 4645 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4646 if (ret < 0) 4647 goto out; 4648 4649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4650 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4651 4652 ret = send_cmd(sctx); 4653 4654 tlv_put_failure: 4655 out: 4656 return ret; 4657 } 4658 4659 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4660 const char *name, int name_len, const char *data, 4661 int data_len, void *ctx) 4662 { 4663 int ret; 4664 struct send_ctx *sctx = ctx; 4665 struct fs_path *p; 4666 struct posix_acl_xattr_header dummy_acl; 4667 4668 /* Capabilities are emitted by finish_inode_if_needed */ 4669 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4670 return 0; 4671 4672 p = fs_path_alloc(); 4673 if (!p) 4674 return -ENOMEM; 4675 4676 /* 4677 * This hack is needed because empty acls are stored as zero byte 4678 * data in xattrs. Problem with that is, that receiving these zero byte 4679 * acls will fail later. To fix this, we send a dummy acl list that 4680 * only contains the version number and no entries. 4681 */ 4682 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4683 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4684 if (data_len == 0) { 4685 dummy_acl.a_version = 4686 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4687 data = (char *)&dummy_acl; 4688 data_len = sizeof(dummy_acl); 4689 } 4690 } 4691 4692 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4693 if (ret < 0) 4694 goto out; 4695 4696 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4697 4698 out: 4699 fs_path_free(p); 4700 return ret; 4701 } 4702 4703 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4704 const char *name, int name_len, 4705 const char *data, int data_len, void *ctx) 4706 { 4707 int ret; 4708 struct send_ctx *sctx = ctx; 4709 struct fs_path *p; 4710 4711 p = fs_path_alloc(); 4712 if (!p) 4713 return -ENOMEM; 4714 4715 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4716 if (ret < 0) 4717 goto out; 4718 4719 ret = send_remove_xattr(sctx, p, name, name_len); 4720 4721 out: 4722 fs_path_free(p); 4723 return ret; 4724 } 4725 4726 static int process_new_xattr(struct send_ctx *sctx) 4727 { 4728 int ret = 0; 4729 4730 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4731 __process_new_xattr, sctx); 4732 4733 return ret; 4734 } 4735 4736 static int process_deleted_xattr(struct send_ctx *sctx) 4737 { 4738 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4739 __process_deleted_xattr, sctx); 4740 } 4741 4742 struct find_xattr_ctx { 4743 const char *name; 4744 int name_len; 4745 int found_idx; 4746 char *found_data; 4747 int found_data_len; 4748 }; 4749 4750 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4751 int name_len, const char *data, int data_len, void *vctx) 4752 { 4753 struct find_xattr_ctx *ctx = vctx; 4754 4755 if (name_len == ctx->name_len && 4756 strncmp(name, ctx->name, name_len) == 0) { 4757 ctx->found_idx = num; 4758 ctx->found_data_len = data_len; 4759 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4760 if (!ctx->found_data) 4761 return -ENOMEM; 4762 return 1; 4763 } 4764 return 0; 4765 } 4766 4767 static int find_xattr(struct btrfs_root *root, 4768 struct btrfs_path *path, 4769 struct btrfs_key *key, 4770 const char *name, int name_len, 4771 char **data, int *data_len) 4772 { 4773 int ret; 4774 struct find_xattr_ctx ctx; 4775 4776 ctx.name = name; 4777 ctx.name_len = name_len; 4778 ctx.found_idx = -1; 4779 ctx.found_data = NULL; 4780 ctx.found_data_len = 0; 4781 4782 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4783 if (ret < 0) 4784 return ret; 4785 4786 if (ctx.found_idx == -1) 4787 return -ENOENT; 4788 if (data) { 4789 *data = ctx.found_data; 4790 *data_len = ctx.found_data_len; 4791 } else { 4792 kfree(ctx.found_data); 4793 } 4794 return ctx.found_idx; 4795 } 4796 4797 4798 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4799 const char *name, int name_len, 4800 const char *data, int data_len, 4801 void *ctx) 4802 { 4803 int ret; 4804 struct send_ctx *sctx = ctx; 4805 char *found_data = NULL; 4806 int found_data_len = 0; 4807 4808 ret = find_xattr(sctx->parent_root, sctx->right_path, 4809 sctx->cmp_key, name, name_len, &found_data, 4810 &found_data_len); 4811 if (ret == -ENOENT) { 4812 ret = __process_new_xattr(num, di_key, name, name_len, data, 4813 data_len, ctx); 4814 } else if (ret >= 0) { 4815 if (data_len != found_data_len || 4816 memcmp(data, found_data, data_len)) { 4817 ret = __process_new_xattr(num, di_key, name, name_len, 4818 data, data_len, ctx); 4819 } else { 4820 ret = 0; 4821 } 4822 } 4823 4824 kfree(found_data); 4825 return ret; 4826 } 4827 4828 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4829 const char *name, int name_len, 4830 const char *data, int data_len, 4831 void *ctx) 4832 { 4833 int ret; 4834 struct send_ctx *sctx = ctx; 4835 4836 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4837 name, name_len, NULL, NULL); 4838 if (ret == -ENOENT) 4839 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4840 data_len, ctx); 4841 else if (ret >= 0) 4842 ret = 0; 4843 4844 return ret; 4845 } 4846 4847 static int process_changed_xattr(struct send_ctx *sctx) 4848 { 4849 int ret = 0; 4850 4851 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4852 __process_changed_new_xattr, sctx); 4853 if (ret < 0) 4854 goto out; 4855 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4856 __process_changed_deleted_xattr, sctx); 4857 4858 out: 4859 return ret; 4860 } 4861 4862 static int process_all_new_xattrs(struct send_ctx *sctx) 4863 { 4864 int ret = 0; 4865 int iter_ret = 0; 4866 struct btrfs_root *root; 4867 struct btrfs_path *path; 4868 struct btrfs_key key; 4869 struct btrfs_key found_key; 4870 4871 path = alloc_path_for_send(); 4872 if (!path) 4873 return -ENOMEM; 4874 4875 root = sctx->send_root; 4876 4877 key.objectid = sctx->cmp_key->objectid; 4878 key.type = BTRFS_XATTR_ITEM_KEY; 4879 key.offset = 0; 4880 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4881 if (found_key.objectid != key.objectid || 4882 found_key.type != key.type) { 4883 ret = 0; 4884 break; 4885 } 4886 4887 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4888 if (ret < 0) 4889 break; 4890 } 4891 /* Catch error found during iteration */ 4892 if (iter_ret < 0) 4893 ret = iter_ret; 4894 4895 btrfs_free_path(path); 4896 return ret; 4897 } 4898 4899 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 4900 struct fsverity_descriptor *desc) 4901 { 4902 int ret; 4903 4904 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 4905 if (ret < 0) 4906 goto out; 4907 4908 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4909 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 4910 le8_to_cpu(desc->hash_algorithm)); 4911 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 4912 1U << le8_to_cpu(desc->log_blocksize)); 4913 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 4914 le8_to_cpu(desc->salt_size)); 4915 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 4916 le32_to_cpu(desc->sig_size)); 4917 4918 ret = send_cmd(sctx); 4919 4920 tlv_put_failure: 4921 out: 4922 return ret; 4923 } 4924 4925 static int process_verity(struct send_ctx *sctx) 4926 { 4927 int ret = 0; 4928 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4929 struct inode *inode; 4930 struct fs_path *p; 4931 4932 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root); 4933 if (IS_ERR(inode)) 4934 return PTR_ERR(inode); 4935 4936 ret = btrfs_get_verity_descriptor(inode, NULL, 0); 4937 if (ret < 0) 4938 goto iput; 4939 4940 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 4941 ret = -EMSGSIZE; 4942 goto iput; 4943 } 4944 if (!sctx->verity_descriptor) { 4945 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 4946 GFP_KERNEL); 4947 if (!sctx->verity_descriptor) { 4948 ret = -ENOMEM; 4949 goto iput; 4950 } 4951 } 4952 4953 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret); 4954 if (ret < 0) 4955 goto iput; 4956 4957 p = fs_path_alloc(); 4958 if (!p) { 4959 ret = -ENOMEM; 4960 goto iput; 4961 } 4962 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4963 if (ret < 0) 4964 goto free_path; 4965 4966 ret = send_verity(sctx, p, sctx->verity_descriptor); 4967 if (ret < 0) 4968 goto free_path; 4969 4970 free_path: 4971 fs_path_free(p); 4972 iput: 4973 iput(inode); 4974 return ret; 4975 } 4976 4977 static inline u64 max_send_read_size(const struct send_ctx *sctx) 4978 { 4979 return sctx->send_max_size - SZ_16K; 4980 } 4981 4982 static int put_data_header(struct send_ctx *sctx, u32 len) 4983 { 4984 if (WARN_ON_ONCE(sctx->put_data)) 4985 return -EINVAL; 4986 sctx->put_data = true; 4987 if (sctx->proto >= 2) { 4988 /* 4989 * Since v2, the data attribute header doesn't include a length, 4990 * it is implicitly to the end of the command. 4991 */ 4992 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 4993 return -EOVERFLOW; 4994 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 4995 sctx->send_size += sizeof(__le16); 4996 } else { 4997 struct btrfs_tlv_header *hdr; 4998 4999 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5000 return -EOVERFLOW; 5001 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5002 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5003 put_unaligned_le16(len, &hdr->tlv_len); 5004 sctx->send_size += sizeof(*hdr); 5005 } 5006 return 0; 5007 } 5008 5009 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5010 { 5011 struct btrfs_root *root = sctx->send_root; 5012 struct btrfs_fs_info *fs_info = root->fs_info; 5013 struct page *page; 5014 pgoff_t index = offset >> PAGE_SHIFT; 5015 pgoff_t last_index; 5016 unsigned pg_offset = offset_in_page(offset); 5017 int ret; 5018 5019 ret = put_data_header(sctx, len); 5020 if (ret) 5021 return ret; 5022 5023 last_index = (offset + len - 1) >> PAGE_SHIFT; 5024 5025 while (index <= last_index) { 5026 unsigned cur_len = min_t(unsigned, len, 5027 PAGE_SIZE - pg_offset); 5028 5029 page = find_lock_page(sctx->cur_inode->i_mapping, index); 5030 if (!page) { 5031 page_cache_sync_readahead(sctx->cur_inode->i_mapping, 5032 &sctx->ra, NULL, index, 5033 last_index + 1 - index); 5034 5035 page = find_or_create_page(sctx->cur_inode->i_mapping, 5036 index, GFP_KERNEL); 5037 if (!page) { 5038 ret = -ENOMEM; 5039 break; 5040 } 5041 } 5042 5043 if (PageReadahead(page)) 5044 page_cache_async_readahead(sctx->cur_inode->i_mapping, 5045 &sctx->ra, NULL, page_folio(page), 5046 index, last_index + 1 - index); 5047 5048 if (!PageUptodate(page)) { 5049 btrfs_read_folio(NULL, page_folio(page)); 5050 lock_page(page); 5051 if (!PageUptodate(page)) { 5052 unlock_page(page); 5053 btrfs_err(fs_info, 5054 "send: IO error at offset %llu for inode %llu root %llu", 5055 page_offset(page), sctx->cur_ino, 5056 sctx->send_root->root_key.objectid); 5057 put_page(page); 5058 ret = -EIO; 5059 break; 5060 } 5061 } 5062 5063 memcpy_from_page(sctx->send_buf + sctx->send_size, page, 5064 pg_offset, cur_len); 5065 unlock_page(page); 5066 put_page(page); 5067 index++; 5068 pg_offset = 0; 5069 len -= cur_len; 5070 sctx->send_size += cur_len; 5071 } 5072 5073 return ret; 5074 } 5075 5076 /* 5077 * Read some bytes from the current inode/file and send a write command to 5078 * user space. 5079 */ 5080 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5081 { 5082 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5083 int ret = 0; 5084 struct fs_path *p; 5085 5086 p = fs_path_alloc(); 5087 if (!p) 5088 return -ENOMEM; 5089 5090 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5091 5092 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5093 if (ret < 0) 5094 goto out; 5095 5096 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5097 if (ret < 0) 5098 goto out; 5099 5100 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5101 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5102 ret = put_file_data(sctx, offset, len); 5103 if (ret < 0) 5104 goto out; 5105 5106 ret = send_cmd(sctx); 5107 5108 tlv_put_failure: 5109 out: 5110 fs_path_free(p); 5111 return ret; 5112 } 5113 5114 /* 5115 * Send a clone command to user space. 5116 */ 5117 static int send_clone(struct send_ctx *sctx, 5118 u64 offset, u32 len, 5119 struct clone_root *clone_root) 5120 { 5121 int ret = 0; 5122 struct fs_path *p; 5123 u64 gen; 5124 5125 btrfs_debug(sctx->send_root->fs_info, 5126 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5127 offset, len, clone_root->root->root_key.objectid, 5128 clone_root->ino, clone_root->offset); 5129 5130 p = fs_path_alloc(); 5131 if (!p) 5132 return -ENOMEM; 5133 5134 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5135 if (ret < 0) 5136 goto out; 5137 5138 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5139 if (ret < 0) 5140 goto out; 5141 5142 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5143 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5144 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5145 5146 if (clone_root->root == sctx->send_root) { 5147 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5148 if (ret < 0) 5149 goto out; 5150 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5151 } else { 5152 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5153 } 5154 if (ret < 0) 5155 goto out; 5156 5157 /* 5158 * If the parent we're using has a received_uuid set then use that as 5159 * our clone source as that is what we will look for when doing a 5160 * receive. 5161 * 5162 * This covers the case that we create a snapshot off of a received 5163 * subvolume and then use that as the parent and try to receive on a 5164 * different host. 5165 */ 5166 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5167 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5168 clone_root->root->root_item.received_uuid); 5169 else 5170 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5171 clone_root->root->root_item.uuid); 5172 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5173 btrfs_root_ctransid(&clone_root->root->root_item)); 5174 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5175 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5176 clone_root->offset); 5177 5178 ret = send_cmd(sctx); 5179 5180 tlv_put_failure: 5181 out: 5182 fs_path_free(p); 5183 return ret; 5184 } 5185 5186 /* 5187 * Send an update extent command to user space. 5188 */ 5189 static int send_update_extent(struct send_ctx *sctx, 5190 u64 offset, u32 len) 5191 { 5192 int ret = 0; 5193 struct fs_path *p; 5194 5195 p = fs_path_alloc(); 5196 if (!p) 5197 return -ENOMEM; 5198 5199 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5200 if (ret < 0) 5201 goto out; 5202 5203 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5204 if (ret < 0) 5205 goto out; 5206 5207 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5208 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5209 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5210 5211 ret = send_cmd(sctx); 5212 5213 tlv_put_failure: 5214 out: 5215 fs_path_free(p); 5216 return ret; 5217 } 5218 5219 static int send_hole(struct send_ctx *sctx, u64 end) 5220 { 5221 struct fs_path *p = NULL; 5222 u64 read_size = max_send_read_size(sctx); 5223 u64 offset = sctx->cur_inode_last_extent; 5224 int ret = 0; 5225 5226 /* 5227 * A hole that starts at EOF or beyond it. Since we do not yet support 5228 * fallocate (for extent preallocation and hole punching), sending a 5229 * write of zeroes starting at EOF or beyond would later require issuing 5230 * a truncate operation which would undo the write and achieve nothing. 5231 */ 5232 if (offset >= sctx->cur_inode_size) 5233 return 0; 5234 5235 /* 5236 * Don't go beyond the inode's i_size due to prealloc extents that start 5237 * after the i_size. 5238 */ 5239 end = min_t(u64, end, sctx->cur_inode_size); 5240 5241 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5242 return send_update_extent(sctx, offset, end - offset); 5243 5244 p = fs_path_alloc(); 5245 if (!p) 5246 return -ENOMEM; 5247 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5248 if (ret < 0) 5249 goto tlv_put_failure; 5250 while (offset < end) { 5251 u64 len = min(end - offset, read_size); 5252 5253 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5254 if (ret < 0) 5255 break; 5256 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5257 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5258 ret = put_data_header(sctx, len); 5259 if (ret < 0) 5260 break; 5261 memset(sctx->send_buf + sctx->send_size, 0, len); 5262 sctx->send_size += len; 5263 ret = send_cmd(sctx); 5264 if (ret < 0) 5265 break; 5266 offset += len; 5267 } 5268 sctx->cur_inode_next_write_offset = offset; 5269 tlv_put_failure: 5270 fs_path_free(p); 5271 return ret; 5272 } 5273 5274 static int send_encoded_inline_extent(struct send_ctx *sctx, 5275 struct btrfs_path *path, u64 offset, 5276 u64 len) 5277 { 5278 struct btrfs_root *root = sctx->send_root; 5279 struct btrfs_fs_info *fs_info = root->fs_info; 5280 struct inode *inode; 5281 struct fs_path *fspath; 5282 struct extent_buffer *leaf = path->nodes[0]; 5283 struct btrfs_key key; 5284 struct btrfs_file_extent_item *ei; 5285 u64 ram_bytes; 5286 size_t inline_size; 5287 int ret; 5288 5289 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5290 if (IS_ERR(inode)) 5291 return PTR_ERR(inode); 5292 5293 fspath = fs_path_alloc(); 5294 if (!fspath) { 5295 ret = -ENOMEM; 5296 goto out; 5297 } 5298 5299 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5300 if (ret < 0) 5301 goto out; 5302 5303 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5304 if (ret < 0) 5305 goto out; 5306 5307 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5308 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5309 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5310 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5311 5312 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5313 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5314 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5315 min(key.offset + ram_bytes - offset, len)); 5316 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5317 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5318 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5319 btrfs_file_extent_compression(leaf, ei)); 5320 if (ret < 0) 5321 goto out; 5322 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5323 5324 ret = put_data_header(sctx, inline_size); 5325 if (ret < 0) 5326 goto out; 5327 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5328 btrfs_file_extent_inline_start(ei), inline_size); 5329 sctx->send_size += inline_size; 5330 5331 ret = send_cmd(sctx); 5332 5333 tlv_put_failure: 5334 out: 5335 fs_path_free(fspath); 5336 iput(inode); 5337 return ret; 5338 } 5339 5340 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5341 u64 offset, u64 len) 5342 { 5343 struct btrfs_root *root = sctx->send_root; 5344 struct btrfs_fs_info *fs_info = root->fs_info; 5345 struct inode *inode; 5346 struct fs_path *fspath; 5347 struct extent_buffer *leaf = path->nodes[0]; 5348 struct btrfs_key key; 5349 struct btrfs_file_extent_item *ei; 5350 u64 disk_bytenr, disk_num_bytes; 5351 u32 data_offset; 5352 struct btrfs_cmd_header *hdr; 5353 u32 crc; 5354 int ret; 5355 5356 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root); 5357 if (IS_ERR(inode)) 5358 return PTR_ERR(inode); 5359 5360 fspath = fs_path_alloc(); 5361 if (!fspath) { 5362 ret = -ENOMEM; 5363 goto out; 5364 } 5365 5366 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5367 if (ret < 0) 5368 goto out; 5369 5370 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5371 if (ret < 0) 5372 goto out; 5373 5374 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5376 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5377 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5378 5379 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5380 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5381 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5382 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5383 len)); 5384 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5385 btrfs_file_extent_ram_bytes(leaf, ei)); 5386 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5387 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5388 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5389 btrfs_file_extent_compression(leaf, ei)); 5390 if (ret < 0) 5391 goto out; 5392 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5393 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5394 5395 ret = put_data_header(sctx, disk_num_bytes); 5396 if (ret < 0) 5397 goto out; 5398 5399 /* 5400 * We want to do I/O directly into the send buffer, so get the next page 5401 * boundary in the send buffer. This means that there may be a gap 5402 * between the beginning of the command and the file data. 5403 */ 5404 data_offset = ALIGN(sctx->send_size, PAGE_SIZE); 5405 if (data_offset > sctx->send_max_size || 5406 sctx->send_max_size - data_offset < disk_num_bytes) { 5407 ret = -EOVERFLOW; 5408 goto out; 5409 } 5410 5411 /* 5412 * Note that send_buf is a mapping of send_buf_pages, so this is really 5413 * reading into send_buf. 5414 */ 5415 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset, 5416 disk_bytenr, disk_num_bytes, 5417 sctx->send_buf_pages + 5418 (data_offset >> PAGE_SHIFT)); 5419 if (ret) 5420 goto out; 5421 5422 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5423 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5424 hdr->crc = 0; 5425 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size); 5426 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5427 hdr->crc = cpu_to_le32(crc); 5428 5429 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5430 &sctx->send_off); 5431 if (!ret) { 5432 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5433 disk_num_bytes, &sctx->send_off); 5434 } 5435 sctx->send_size = 0; 5436 sctx->put_data = false; 5437 5438 tlv_put_failure: 5439 out: 5440 fs_path_free(fspath); 5441 iput(inode); 5442 return ret; 5443 } 5444 5445 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5446 const u64 offset, const u64 len) 5447 { 5448 const u64 end = offset + len; 5449 struct extent_buffer *leaf = path->nodes[0]; 5450 struct btrfs_file_extent_item *ei; 5451 u64 read_size = max_send_read_size(sctx); 5452 u64 sent = 0; 5453 5454 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5455 return send_update_extent(sctx, offset, len); 5456 5457 ei = btrfs_item_ptr(leaf, path->slots[0], 5458 struct btrfs_file_extent_item); 5459 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5460 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5461 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5462 BTRFS_FILE_EXTENT_INLINE); 5463 5464 /* 5465 * Send the compressed extent unless the compressed data is 5466 * larger than the decompressed data. This can happen if we're 5467 * not sending the entire extent, either because it has been 5468 * partially overwritten/truncated or because this is a part of 5469 * the extent that we couldn't clone in clone_range(). 5470 */ 5471 if (is_inline && 5472 btrfs_file_extent_inline_item_len(leaf, 5473 path->slots[0]) <= len) { 5474 return send_encoded_inline_extent(sctx, path, offset, 5475 len); 5476 } else if (!is_inline && 5477 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5478 return send_encoded_extent(sctx, path, offset, len); 5479 } 5480 } 5481 5482 if (sctx->cur_inode == NULL) { 5483 struct btrfs_root *root = sctx->send_root; 5484 5485 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root); 5486 if (IS_ERR(sctx->cur_inode)) { 5487 int err = PTR_ERR(sctx->cur_inode); 5488 5489 sctx->cur_inode = NULL; 5490 return err; 5491 } 5492 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5493 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5494 5495 /* 5496 * It's very likely there are no pages from this inode in the page 5497 * cache, so after reading extents and sending their data, we clean 5498 * the page cache to avoid trashing the page cache (adding pressure 5499 * to the page cache and forcing eviction of other data more useful 5500 * for applications). 5501 * 5502 * We decide if we should clean the page cache simply by checking 5503 * if the inode's mapping nrpages is 0 when we first open it, and 5504 * not by using something like filemap_range_has_page() before 5505 * reading an extent because when we ask the readahead code to 5506 * read a given file range, it may (and almost always does) read 5507 * pages from beyond that range (see the documentation for 5508 * page_cache_sync_readahead()), so it would not be reliable, 5509 * because after reading the first extent future calls to 5510 * filemap_range_has_page() would return true because the readahead 5511 * on the previous extent resulted in reading pages of the current 5512 * extent as well. 5513 */ 5514 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5515 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5516 } 5517 5518 while (sent < len) { 5519 u64 size = min(len - sent, read_size); 5520 int ret; 5521 5522 ret = send_write(sctx, offset + sent, size); 5523 if (ret < 0) 5524 return ret; 5525 sent += size; 5526 } 5527 5528 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) { 5529 /* 5530 * Always operate only on ranges that are a multiple of the page 5531 * size. This is not only to prevent zeroing parts of a page in 5532 * the case of subpage sector size, but also to guarantee we evict 5533 * pages, as passing a range that is smaller than page size does 5534 * not evict the respective page (only zeroes part of its content). 5535 * 5536 * Always start from the end offset of the last range cleared. 5537 * This is because the readahead code may (and very often does) 5538 * reads pages beyond the range we request for readahead. So if 5539 * we have an extent layout like this: 5540 * 5541 * [ extent A ] [ extent B ] [ extent C ] 5542 * 5543 * When we ask page_cache_sync_readahead() to read extent A, it 5544 * may also trigger reads for pages of extent B. If we are doing 5545 * an incremental send and extent B has not changed between the 5546 * parent and send snapshots, some or all of its pages may end 5547 * up being read and placed in the page cache. So when truncating 5548 * the page cache we always start from the end offset of the 5549 * previously processed extent up to the end of the current 5550 * extent. 5551 */ 5552 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5553 sctx->page_cache_clear_start, 5554 end - 1); 5555 sctx->page_cache_clear_start = end; 5556 } 5557 5558 return 0; 5559 } 5560 5561 /* 5562 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5563 * found, call send_set_xattr function to emit it. 5564 * 5565 * Return 0 if there isn't a capability, or when the capability was emitted 5566 * successfully, or < 0 if an error occurred. 5567 */ 5568 static int send_capabilities(struct send_ctx *sctx) 5569 { 5570 struct fs_path *fspath = NULL; 5571 struct btrfs_path *path; 5572 struct btrfs_dir_item *di; 5573 struct extent_buffer *leaf; 5574 unsigned long data_ptr; 5575 char *buf = NULL; 5576 int buf_len; 5577 int ret = 0; 5578 5579 path = alloc_path_for_send(); 5580 if (!path) 5581 return -ENOMEM; 5582 5583 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5584 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5585 if (!di) { 5586 /* There is no xattr for this inode */ 5587 goto out; 5588 } else if (IS_ERR(di)) { 5589 ret = PTR_ERR(di); 5590 goto out; 5591 } 5592 5593 leaf = path->nodes[0]; 5594 buf_len = btrfs_dir_data_len(leaf, di); 5595 5596 fspath = fs_path_alloc(); 5597 buf = kmalloc(buf_len, GFP_KERNEL); 5598 if (!fspath || !buf) { 5599 ret = -ENOMEM; 5600 goto out; 5601 } 5602 5603 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath); 5604 if (ret < 0) 5605 goto out; 5606 5607 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5608 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5609 5610 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS, 5611 strlen(XATTR_NAME_CAPS), buf, buf_len); 5612 out: 5613 kfree(buf); 5614 fs_path_free(fspath); 5615 btrfs_free_path(path); 5616 return ret; 5617 } 5618 5619 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5620 struct clone_root *clone_root, const u64 disk_byte, 5621 u64 data_offset, u64 offset, u64 len) 5622 { 5623 struct btrfs_path *path; 5624 struct btrfs_key key; 5625 int ret; 5626 struct btrfs_inode_info info; 5627 u64 clone_src_i_size = 0; 5628 5629 /* 5630 * Prevent cloning from a zero offset with a length matching the sector 5631 * size because in some scenarios this will make the receiver fail. 5632 * 5633 * For example, if in the source filesystem the extent at offset 0 5634 * has a length of sectorsize and it was written using direct IO, then 5635 * it can never be an inline extent (even if compression is enabled). 5636 * Then this extent can be cloned in the original filesystem to a non 5637 * zero file offset, but it may not be possible to clone in the 5638 * destination filesystem because it can be inlined due to compression 5639 * on the destination filesystem (as the receiver's write operations are 5640 * always done using buffered IO). The same happens when the original 5641 * filesystem does not have compression enabled but the destination 5642 * filesystem has. 5643 */ 5644 if (clone_root->offset == 0 && 5645 len == sctx->send_root->fs_info->sectorsize) 5646 return send_extent_data(sctx, dst_path, offset, len); 5647 5648 path = alloc_path_for_send(); 5649 if (!path) 5650 return -ENOMEM; 5651 5652 /* 5653 * There are inodes that have extents that lie behind its i_size. Don't 5654 * accept clones from these extents. 5655 */ 5656 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5657 btrfs_release_path(path); 5658 if (ret < 0) 5659 goto out; 5660 clone_src_i_size = info.size; 5661 5662 /* 5663 * We can't send a clone operation for the entire range if we find 5664 * extent items in the respective range in the source file that 5665 * refer to different extents or if we find holes. 5666 * So check for that and do a mix of clone and regular write/copy 5667 * operations if needed. 5668 * 5669 * Example: 5670 * 5671 * mkfs.btrfs -f /dev/sda 5672 * mount /dev/sda /mnt 5673 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5674 * cp --reflink=always /mnt/foo /mnt/bar 5675 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5676 * btrfs subvolume snapshot -r /mnt /mnt/snap 5677 * 5678 * If when we send the snapshot and we are processing file bar (which 5679 * has a higher inode number than foo) we blindly send a clone operation 5680 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5681 * a file bar that matches the content of file foo - iow, doesn't match 5682 * the content from bar in the original filesystem. 5683 */ 5684 key.objectid = clone_root->ino; 5685 key.type = BTRFS_EXTENT_DATA_KEY; 5686 key.offset = clone_root->offset; 5687 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5688 if (ret < 0) 5689 goto out; 5690 if (ret > 0 && path->slots[0] > 0) { 5691 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5692 if (key.objectid == clone_root->ino && 5693 key.type == BTRFS_EXTENT_DATA_KEY) 5694 path->slots[0]--; 5695 } 5696 5697 while (true) { 5698 struct extent_buffer *leaf = path->nodes[0]; 5699 int slot = path->slots[0]; 5700 struct btrfs_file_extent_item *ei; 5701 u8 type; 5702 u64 ext_len; 5703 u64 clone_len; 5704 u64 clone_data_offset; 5705 5706 if (slot >= btrfs_header_nritems(leaf)) { 5707 ret = btrfs_next_leaf(clone_root->root, path); 5708 if (ret < 0) 5709 goto out; 5710 else if (ret > 0) 5711 break; 5712 continue; 5713 } 5714 5715 btrfs_item_key_to_cpu(leaf, &key, slot); 5716 5717 /* 5718 * We might have an implicit trailing hole (NO_HOLES feature 5719 * enabled). We deal with it after leaving this loop. 5720 */ 5721 if (key.objectid != clone_root->ino || 5722 key.type != BTRFS_EXTENT_DATA_KEY) 5723 break; 5724 5725 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5726 type = btrfs_file_extent_type(leaf, ei); 5727 if (type == BTRFS_FILE_EXTENT_INLINE) { 5728 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5729 ext_len = PAGE_ALIGN(ext_len); 5730 } else { 5731 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5732 } 5733 5734 if (key.offset + ext_len <= clone_root->offset) 5735 goto next; 5736 5737 if (key.offset > clone_root->offset) { 5738 /* Implicit hole, NO_HOLES feature enabled. */ 5739 u64 hole_len = key.offset - clone_root->offset; 5740 5741 if (hole_len > len) 5742 hole_len = len; 5743 ret = send_extent_data(sctx, dst_path, offset, 5744 hole_len); 5745 if (ret < 0) 5746 goto out; 5747 5748 len -= hole_len; 5749 if (len == 0) 5750 break; 5751 offset += hole_len; 5752 clone_root->offset += hole_len; 5753 data_offset += hole_len; 5754 } 5755 5756 if (key.offset >= clone_root->offset + len) 5757 break; 5758 5759 if (key.offset >= clone_src_i_size) 5760 break; 5761 5762 if (key.offset + ext_len > clone_src_i_size) 5763 ext_len = clone_src_i_size - key.offset; 5764 5765 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5766 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5767 clone_root->offset = key.offset; 5768 if (clone_data_offset < data_offset && 5769 clone_data_offset + ext_len > data_offset) { 5770 u64 extent_offset; 5771 5772 extent_offset = data_offset - clone_data_offset; 5773 ext_len -= extent_offset; 5774 clone_data_offset += extent_offset; 5775 clone_root->offset += extent_offset; 5776 } 5777 } 5778 5779 clone_len = min_t(u64, ext_len, len); 5780 5781 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5782 clone_data_offset == data_offset) { 5783 const u64 src_end = clone_root->offset + clone_len; 5784 const u64 sectorsize = SZ_64K; 5785 5786 /* 5787 * We can't clone the last block, when its size is not 5788 * sector size aligned, into the middle of a file. If we 5789 * do so, the receiver will get a failure (-EINVAL) when 5790 * trying to clone or will silently corrupt the data in 5791 * the destination file if it's on a kernel without the 5792 * fix introduced by commit ac765f83f1397646 5793 * ("Btrfs: fix data corruption due to cloning of eof 5794 * block). 5795 * 5796 * So issue a clone of the aligned down range plus a 5797 * regular write for the eof block, if we hit that case. 5798 * 5799 * Also, we use the maximum possible sector size, 64K, 5800 * because we don't know what's the sector size of the 5801 * filesystem that receives the stream, so we have to 5802 * assume the largest possible sector size. 5803 */ 5804 if (src_end == clone_src_i_size && 5805 !IS_ALIGNED(src_end, sectorsize) && 5806 offset + clone_len < sctx->cur_inode_size) { 5807 u64 slen; 5808 5809 slen = ALIGN_DOWN(src_end - clone_root->offset, 5810 sectorsize); 5811 if (slen > 0) { 5812 ret = send_clone(sctx, offset, slen, 5813 clone_root); 5814 if (ret < 0) 5815 goto out; 5816 } 5817 ret = send_extent_data(sctx, dst_path, 5818 offset + slen, 5819 clone_len - slen); 5820 } else { 5821 ret = send_clone(sctx, offset, clone_len, 5822 clone_root); 5823 } 5824 } else { 5825 ret = send_extent_data(sctx, dst_path, offset, 5826 clone_len); 5827 } 5828 5829 if (ret < 0) 5830 goto out; 5831 5832 len -= clone_len; 5833 if (len == 0) 5834 break; 5835 offset += clone_len; 5836 clone_root->offset += clone_len; 5837 5838 /* 5839 * If we are cloning from the file we are currently processing, 5840 * and using the send root as the clone root, we must stop once 5841 * the current clone offset reaches the current eof of the file 5842 * at the receiver, otherwise we would issue an invalid clone 5843 * operation (source range going beyond eof) and cause the 5844 * receiver to fail. So if we reach the current eof, bail out 5845 * and fallback to a regular write. 5846 */ 5847 if (clone_root->root == sctx->send_root && 5848 clone_root->ino == sctx->cur_ino && 5849 clone_root->offset >= sctx->cur_inode_next_write_offset) 5850 break; 5851 5852 data_offset += clone_len; 5853 next: 5854 path->slots[0]++; 5855 } 5856 5857 if (len > 0) 5858 ret = send_extent_data(sctx, dst_path, offset, len); 5859 else 5860 ret = 0; 5861 out: 5862 btrfs_free_path(path); 5863 return ret; 5864 } 5865 5866 static int send_write_or_clone(struct send_ctx *sctx, 5867 struct btrfs_path *path, 5868 struct btrfs_key *key, 5869 struct clone_root *clone_root) 5870 { 5871 int ret = 0; 5872 u64 offset = key->offset; 5873 u64 end; 5874 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5875 5876 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 5877 if (offset >= end) 5878 return 0; 5879 5880 if (clone_root && IS_ALIGNED(end, bs)) { 5881 struct btrfs_file_extent_item *ei; 5882 u64 disk_byte; 5883 u64 data_offset; 5884 5885 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5886 struct btrfs_file_extent_item); 5887 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5888 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5889 ret = clone_range(sctx, path, clone_root, disk_byte, 5890 data_offset, offset, end - offset); 5891 } else { 5892 ret = send_extent_data(sctx, path, offset, end - offset); 5893 } 5894 sctx->cur_inode_next_write_offset = end; 5895 return ret; 5896 } 5897 5898 static int is_extent_unchanged(struct send_ctx *sctx, 5899 struct btrfs_path *left_path, 5900 struct btrfs_key *ekey) 5901 { 5902 int ret = 0; 5903 struct btrfs_key key; 5904 struct btrfs_path *path = NULL; 5905 struct extent_buffer *eb; 5906 int slot; 5907 struct btrfs_key found_key; 5908 struct btrfs_file_extent_item *ei; 5909 u64 left_disknr; 5910 u64 right_disknr; 5911 u64 left_offset; 5912 u64 right_offset; 5913 u64 left_offset_fixed; 5914 u64 left_len; 5915 u64 right_len; 5916 u64 left_gen; 5917 u64 right_gen; 5918 u8 left_type; 5919 u8 right_type; 5920 5921 path = alloc_path_for_send(); 5922 if (!path) 5923 return -ENOMEM; 5924 5925 eb = left_path->nodes[0]; 5926 slot = left_path->slots[0]; 5927 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5928 left_type = btrfs_file_extent_type(eb, ei); 5929 5930 if (left_type != BTRFS_FILE_EXTENT_REG) { 5931 ret = 0; 5932 goto out; 5933 } 5934 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5935 left_len = btrfs_file_extent_num_bytes(eb, ei); 5936 left_offset = btrfs_file_extent_offset(eb, ei); 5937 left_gen = btrfs_file_extent_generation(eb, ei); 5938 5939 /* 5940 * Following comments will refer to these graphics. L is the left 5941 * extents which we are checking at the moment. 1-8 are the right 5942 * extents that we iterate. 5943 * 5944 * |-----L-----| 5945 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5946 * 5947 * |-----L-----| 5948 * |--1--|-2b-|...(same as above) 5949 * 5950 * Alternative situation. Happens on files where extents got split. 5951 * |-----L-----| 5952 * |-----------7-----------|-6-| 5953 * 5954 * Alternative situation. Happens on files which got larger. 5955 * |-----L-----| 5956 * |-8-| 5957 * Nothing follows after 8. 5958 */ 5959 5960 key.objectid = ekey->objectid; 5961 key.type = BTRFS_EXTENT_DATA_KEY; 5962 key.offset = ekey->offset; 5963 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5964 if (ret < 0) 5965 goto out; 5966 if (ret) { 5967 ret = 0; 5968 goto out; 5969 } 5970 5971 /* 5972 * Handle special case where the right side has no extents at all. 5973 */ 5974 eb = path->nodes[0]; 5975 slot = path->slots[0]; 5976 btrfs_item_key_to_cpu(eb, &found_key, slot); 5977 if (found_key.objectid != key.objectid || 5978 found_key.type != key.type) { 5979 /* If we're a hole then just pretend nothing changed */ 5980 ret = (left_disknr) ? 0 : 1; 5981 goto out; 5982 } 5983 5984 /* 5985 * We're now on 2a, 2b or 7. 5986 */ 5987 key = found_key; 5988 while (key.offset < ekey->offset + left_len) { 5989 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5990 right_type = btrfs_file_extent_type(eb, ei); 5991 if (right_type != BTRFS_FILE_EXTENT_REG && 5992 right_type != BTRFS_FILE_EXTENT_INLINE) { 5993 ret = 0; 5994 goto out; 5995 } 5996 5997 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5998 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5999 right_len = PAGE_ALIGN(right_len); 6000 } else { 6001 right_len = btrfs_file_extent_num_bytes(eb, ei); 6002 } 6003 6004 /* 6005 * Are we at extent 8? If yes, we know the extent is changed. 6006 * This may only happen on the first iteration. 6007 */ 6008 if (found_key.offset + right_len <= ekey->offset) { 6009 /* If we're a hole just pretend nothing changed */ 6010 ret = (left_disknr) ? 0 : 1; 6011 goto out; 6012 } 6013 6014 /* 6015 * We just wanted to see if when we have an inline extent, what 6016 * follows it is a regular extent (wanted to check the above 6017 * condition for inline extents too). This should normally not 6018 * happen but it's possible for example when we have an inline 6019 * compressed extent representing data with a size matching 6020 * the page size (currently the same as sector size). 6021 */ 6022 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6023 ret = 0; 6024 goto out; 6025 } 6026 6027 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6028 right_offset = btrfs_file_extent_offset(eb, ei); 6029 right_gen = btrfs_file_extent_generation(eb, ei); 6030 6031 left_offset_fixed = left_offset; 6032 if (key.offset < ekey->offset) { 6033 /* Fix the right offset for 2a and 7. */ 6034 right_offset += ekey->offset - key.offset; 6035 } else { 6036 /* Fix the left offset for all behind 2a and 2b */ 6037 left_offset_fixed += key.offset - ekey->offset; 6038 } 6039 6040 /* 6041 * Check if we have the same extent. 6042 */ 6043 if (left_disknr != right_disknr || 6044 left_offset_fixed != right_offset || 6045 left_gen != right_gen) { 6046 ret = 0; 6047 goto out; 6048 } 6049 6050 /* 6051 * Go to the next extent. 6052 */ 6053 ret = btrfs_next_item(sctx->parent_root, path); 6054 if (ret < 0) 6055 goto out; 6056 if (!ret) { 6057 eb = path->nodes[0]; 6058 slot = path->slots[0]; 6059 btrfs_item_key_to_cpu(eb, &found_key, slot); 6060 } 6061 if (ret || found_key.objectid != key.objectid || 6062 found_key.type != key.type) { 6063 key.offset += right_len; 6064 break; 6065 } 6066 if (found_key.offset != key.offset + right_len) { 6067 ret = 0; 6068 goto out; 6069 } 6070 key = found_key; 6071 } 6072 6073 /* 6074 * We're now behind the left extent (treat as unchanged) or at the end 6075 * of the right side (treat as changed). 6076 */ 6077 if (key.offset >= ekey->offset + left_len) 6078 ret = 1; 6079 else 6080 ret = 0; 6081 6082 6083 out: 6084 btrfs_free_path(path); 6085 return ret; 6086 } 6087 6088 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6089 { 6090 struct btrfs_path *path; 6091 struct btrfs_root *root = sctx->send_root; 6092 struct btrfs_key key; 6093 int ret; 6094 6095 path = alloc_path_for_send(); 6096 if (!path) 6097 return -ENOMEM; 6098 6099 sctx->cur_inode_last_extent = 0; 6100 6101 key.objectid = sctx->cur_ino; 6102 key.type = BTRFS_EXTENT_DATA_KEY; 6103 key.offset = offset; 6104 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6105 if (ret < 0) 6106 goto out; 6107 ret = 0; 6108 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6109 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6110 goto out; 6111 6112 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6113 out: 6114 btrfs_free_path(path); 6115 return ret; 6116 } 6117 6118 static int range_is_hole_in_parent(struct send_ctx *sctx, 6119 const u64 start, 6120 const u64 end) 6121 { 6122 struct btrfs_path *path; 6123 struct btrfs_key key; 6124 struct btrfs_root *root = sctx->parent_root; 6125 u64 search_start = start; 6126 int ret; 6127 6128 path = alloc_path_for_send(); 6129 if (!path) 6130 return -ENOMEM; 6131 6132 key.objectid = sctx->cur_ino; 6133 key.type = BTRFS_EXTENT_DATA_KEY; 6134 key.offset = search_start; 6135 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6136 if (ret < 0) 6137 goto out; 6138 if (ret > 0 && path->slots[0] > 0) 6139 path->slots[0]--; 6140 6141 while (search_start < end) { 6142 struct extent_buffer *leaf = path->nodes[0]; 6143 int slot = path->slots[0]; 6144 struct btrfs_file_extent_item *fi; 6145 u64 extent_end; 6146 6147 if (slot >= btrfs_header_nritems(leaf)) { 6148 ret = btrfs_next_leaf(root, path); 6149 if (ret < 0) 6150 goto out; 6151 else if (ret > 0) 6152 break; 6153 continue; 6154 } 6155 6156 btrfs_item_key_to_cpu(leaf, &key, slot); 6157 if (key.objectid < sctx->cur_ino || 6158 key.type < BTRFS_EXTENT_DATA_KEY) 6159 goto next; 6160 if (key.objectid > sctx->cur_ino || 6161 key.type > BTRFS_EXTENT_DATA_KEY || 6162 key.offset >= end) 6163 break; 6164 6165 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6166 extent_end = btrfs_file_extent_end(path); 6167 if (extent_end <= start) 6168 goto next; 6169 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6170 search_start = extent_end; 6171 goto next; 6172 } 6173 ret = 0; 6174 goto out; 6175 next: 6176 path->slots[0]++; 6177 } 6178 ret = 1; 6179 out: 6180 btrfs_free_path(path); 6181 return ret; 6182 } 6183 6184 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6185 struct btrfs_key *key) 6186 { 6187 int ret = 0; 6188 6189 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6190 return 0; 6191 6192 if (sctx->cur_inode_last_extent == (u64)-1) { 6193 ret = get_last_extent(sctx, key->offset - 1); 6194 if (ret) 6195 return ret; 6196 } 6197 6198 if (path->slots[0] == 0 && 6199 sctx->cur_inode_last_extent < key->offset) { 6200 /* 6201 * We might have skipped entire leafs that contained only 6202 * file extent items for our current inode. These leafs have 6203 * a generation number smaller (older) than the one in the 6204 * current leaf and the leaf our last extent came from, and 6205 * are located between these 2 leafs. 6206 */ 6207 ret = get_last_extent(sctx, key->offset - 1); 6208 if (ret) 6209 return ret; 6210 } 6211 6212 if (sctx->cur_inode_last_extent < key->offset) { 6213 ret = range_is_hole_in_parent(sctx, 6214 sctx->cur_inode_last_extent, 6215 key->offset); 6216 if (ret < 0) 6217 return ret; 6218 else if (ret == 0) 6219 ret = send_hole(sctx, key->offset); 6220 else 6221 ret = 0; 6222 } 6223 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6224 return ret; 6225 } 6226 6227 static int process_extent(struct send_ctx *sctx, 6228 struct btrfs_path *path, 6229 struct btrfs_key *key) 6230 { 6231 struct clone_root *found_clone = NULL; 6232 int ret = 0; 6233 6234 if (S_ISLNK(sctx->cur_inode_mode)) 6235 return 0; 6236 6237 if (sctx->parent_root && !sctx->cur_inode_new) { 6238 ret = is_extent_unchanged(sctx, path, key); 6239 if (ret < 0) 6240 goto out; 6241 if (ret) { 6242 ret = 0; 6243 goto out_hole; 6244 } 6245 } else { 6246 struct btrfs_file_extent_item *ei; 6247 u8 type; 6248 6249 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6250 struct btrfs_file_extent_item); 6251 type = btrfs_file_extent_type(path->nodes[0], ei); 6252 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6253 type == BTRFS_FILE_EXTENT_REG) { 6254 /* 6255 * The send spec does not have a prealloc command yet, 6256 * so just leave a hole for prealloc'ed extents until 6257 * we have enough commands queued up to justify rev'ing 6258 * the send spec. 6259 */ 6260 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6261 ret = 0; 6262 goto out; 6263 } 6264 6265 /* Have a hole, just skip it. */ 6266 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6267 ret = 0; 6268 goto out; 6269 } 6270 } 6271 } 6272 6273 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6274 sctx->cur_inode_size, &found_clone); 6275 if (ret != -ENOENT && ret < 0) 6276 goto out; 6277 6278 ret = send_write_or_clone(sctx, path, key, found_clone); 6279 if (ret) 6280 goto out; 6281 out_hole: 6282 ret = maybe_send_hole(sctx, path, key); 6283 out: 6284 return ret; 6285 } 6286 6287 static int process_all_extents(struct send_ctx *sctx) 6288 { 6289 int ret = 0; 6290 int iter_ret = 0; 6291 struct btrfs_root *root; 6292 struct btrfs_path *path; 6293 struct btrfs_key key; 6294 struct btrfs_key found_key; 6295 6296 root = sctx->send_root; 6297 path = alloc_path_for_send(); 6298 if (!path) 6299 return -ENOMEM; 6300 6301 key.objectid = sctx->cmp_key->objectid; 6302 key.type = BTRFS_EXTENT_DATA_KEY; 6303 key.offset = 0; 6304 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6305 if (found_key.objectid != key.objectid || 6306 found_key.type != key.type) { 6307 ret = 0; 6308 break; 6309 } 6310 6311 ret = process_extent(sctx, path, &found_key); 6312 if (ret < 0) 6313 break; 6314 } 6315 /* Catch error found during iteration */ 6316 if (iter_ret < 0) 6317 ret = iter_ret; 6318 6319 btrfs_free_path(path); 6320 return ret; 6321 } 6322 6323 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6324 int *pending_move, 6325 int *refs_processed) 6326 { 6327 int ret = 0; 6328 6329 if (sctx->cur_ino == 0) 6330 goto out; 6331 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6332 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6333 goto out; 6334 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6335 goto out; 6336 6337 ret = process_recorded_refs(sctx, pending_move); 6338 if (ret < 0) 6339 goto out; 6340 6341 *refs_processed = 1; 6342 out: 6343 return ret; 6344 } 6345 6346 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6347 { 6348 int ret = 0; 6349 struct btrfs_inode_info info; 6350 u64 left_mode; 6351 u64 left_uid; 6352 u64 left_gid; 6353 u64 left_fileattr; 6354 u64 right_mode; 6355 u64 right_uid; 6356 u64 right_gid; 6357 u64 right_fileattr; 6358 int need_chmod = 0; 6359 int need_chown = 0; 6360 bool need_fileattr = false; 6361 int need_truncate = 1; 6362 int pending_move = 0; 6363 int refs_processed = 0; 6364 6365 if (sctx->ignore_cur_inode) 6366 return 0; 6367 6368 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6369 &refs_processed); 6370 if (ret < 0) 6371 goto out; 6372 6373 /* 6374 * We have processed the refs and thus need to advance send_progress. 6375 * Now, calls to get_cur_xxx will take the updated refs of the current 6376 * inode into account. 6377 * 6378 * On the other hand, if our current inode is a directory and couldn't 6379 * be moved/renamed because its parent was renamed/moved too and it has 6380 * a higher inode number, we can only move/rename our current inode 6381 * after we moved/renamed its parent. Therefore in this case operate on 6382 * the old path (pre move/rename) of our current inode, and the 6383 * move/rename will be performed later. 6384 */ 6385 if (refs_processed && !pending_move) 6386 sctx->send_progress = sctx->cur_ino + 1; 6387 6388 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6389 goto out; 6390 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6391 goto out; 6392 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6393 if (ret < 0) 6394 goto out; 6395 left_mode = info.mode; 6396 left_uid = info.uid; 6397 left_gid = info.gid; 6398 left_fileattr = info.fileattr; 6399 6400 if (!sctx->parent_root || sctx->cur_inode_new) { 6401 need_chown = 1; 6402 if (!S_ISLNK(sctx->cur_inode_mode)) 6403 need_chmod = 1; 6404 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6405 need_truncate = 0; 6406 } else { 6407 u64 old_size; 6408 6409 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6410 if (ret < 0) 6411 goto out; 6412 old_size = info.size; 6413 right_mode = info.mode; 6414 right_uid = info.uid; 6415 right_gid = info.gid; 6416 right_fileattr = info.fileattr; 6417 6418 if (left_uid != right_uid || left_gid != right_gid) 6419 need_chown = 1; 6420 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6421 need_chmod = 1; 6422 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6423 need_fileattr = true; 6424 if ((old_size == sctx->cur_inode_size) || 6425 (sctx->cur_inode_size > old_size && 6426 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6427 need_truncate = 0; 6428 } 6429 6430 if (S_ISREG(sctx->cur_inode_mode)) { 6431 if (need_send_hole(sctx)) { 6432 if (sctx->cur_inode_last_extent == (u64)-1 || 6433 sctx->cur_inode_last_extent < 6434 sctx->cur_inode_size) { 6435 ret = get_last_extent(sctx, (u64)-1); 6436 if (ret) 6437 goto out; 6438 } 6439 if (sctx->cur_inode_last_extent < 6440 sctx->cur_inode_size) { 6441 ret = send_hole(sctx, sctx->cur_inode_size); 6442 if (ret) 6443 goto out; 6444 } 6445 } 6446 if (need_truncate) { 6447 ret = send_truncate(sctx, sctx->cur_ino, 6448 sctx->cur_inode_gen, 6449 sctx->cur_inode_size); 6450 if (ret < 0) 6451 goto out; 6452 } 6453 } 6454 6455 if (need_chown) { 6456 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6457 left_uid, left_gid); 6458 if (ret < 0) 6459 goto out; 6460 } 6461 if (need_chmod) { 6462 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6463 left_mode); 6464 if (ret < 0) 6465 goto out; 6466 } 6467 if (need_fileattr) { 6468 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6469 left_fileattr); 6470 if (ret < 0) 6471 goto out; 6472 } 6473 6474 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6475 && sctx->cur_inode_needs_verity) { 6476 ret = process_verity(sctx); 6477 if (ret < 0) 6478 goto out; 6479 } 6480 6481 ret = send_capabilities(sctx); 6482 if (ret < 0) 6483 goto out; 6484 6485 /* 6486 * If other directory inodes depended on our current directory 6487 * inode's move/rename, now do their move/rename operations. 6488 */ 6489 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6490 ret = apply_children_dir_moves(sctx); 6491 if (ret) 6492 goto out; 6493 /* 6494 * Need to send that every time, no matter if it actually 6495 * changed between the two trees as we have done changes to 6496 * the inode before. If our inode is a directory and it's 6497 * waiting to be moved/renamed, we will send its utimes when 6498 * it's moved/renamed, therefore we don't need to do it here. 6499 */ 6500 sctx->send_progress = sctx->cur_ino + 1; 6501 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6502 if (ret < 0) 6503 goto out; 6504 } 6505 6506 out: 6507 return ret; 6508 } 6509 6510 static void close_current_inode(struct send_ctx *sctx) 6511 { 6512 u64 i_size; 6513 6514 if (sctx->cur_inode == NULL) 6515 return; 6516 6517 i_size = i_size_read(sctx->cur_inode); 6518 6519 /* 6520 * If we are doing an incremental send, we may have extents between the 6521 * last processed extent and the i_size that have not been processed 6522 * because they haven't changed but we may have read some of their pages 6523 * through readahead, see the comments at send_extent_data(). 6524 */ 6525 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6526 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6527 sctx->page_cache_clear_start, 6528 round_up(i_size, PAGE_SIZE) - 1); 6529 6530 iput(sctx->cur_inode); 6531 sctx->cur_inode = NULL; 6532 } 6533 6534 static int changed_inode(struct send_ctx *sctx, 6535 enum btrfs_compare_tree_result result) 6536 { 6537 int ret = 0; 6538 struct btrfs_key *key = sctx->cmp_key; 6539 struct btrfs_inode_item *left_ii = NULL; 6540 struct btrfs_inode_item *right_ii = NULL; 6541 u64 left_gen = 0; 6542 u64 right_gen = 0; 6543 6544 close_current_inode(sctx); 6545 6546 sctx->cur_ino = key->objectid; 6547 sctx->cur_inode_new_gen = false; 6548 sctx->cur_inode_last_extent = (u64)-1; 6549 sctx->cur_inode_next_write_offset = 0; 6550 sctx->ignore_cur_inode = false; 6551 6552 /* 6553 * Set send_progress to current inode. This will tell all get_cur_xxx 6554 * functions that the current inode's refs are not updated yet. Later, 6555 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6556 */ 6557 sctx->send_progress = sctx->cur_ino; 6558 6559 if (result == BTRFS_COMPARE_TREE_NEW || 6560 result == BTRFS_COMPARE_TREE_CHANGED) { 6561 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6562 sctx->left_path->slots[0], 6563 struct btrfs_inode_item); 6564 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6565 left_ii); 6566 } else { 6567 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6568 sctx->right_path->slots[0], 6569 struct btrfs_inode_item); 6570 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6571 right_ii); 6572 } 6573 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6574 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6575 sctx->right_path->slots[0], 6576 struct btrfs_inode_item); 6577 6578 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6579 right_ii); 6580 6581 /* 6582 * The cur_ino = root dir case is special here. We can't treat 6583 * the inode as deleted+reused because it would generate a 6584 * stream that tries to delete/mkdir the root dir. 6585 */ 6586 if (left_gen != right_gen && 6587 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6588 sctx->cur_inode_new_gen = true; 6589 } 6590 6591 /* 6592 * Normally we do not find inodes with a link count of zero (orphans) 6593 * because the most common case is to create a snapshot and use it 6594 * for a send operation. However other less common use cases involve 6595 * using a subvolume and send it after turning it to RO mode just 6596 * after deleting all hard links of a file while holding an open 6597 * file descriptor against it or turning a RO snapshot into RW mode, 6598 * keep an open file descriptor against a file, delete it and then 6599 * turn the snapshot back to RO mode before using it for a send 6600 * operation. The former is what the receiver operation does. 6601 * Therefore, if we want to send these snapshots soon after they're 6602 * received, we need to handle orphan inodes as well. Moreover, orphans 6603 * can appear not only in the send snapshot but also in the parent 6604 * snapshot. Here are several cases: 6605 * 6606 * Case 1: BTRFS_COMPARE_TREE_NEW 6607 * | send snapshot | action 6608 * -------------------------------- 6609 * nlink | 0 | ignore 6610 * 6611 * Case 2: BTRFS_COMPARE_TREE_DELETED 6612 * | parent snapshot | action 6613 * ---------------------------------- 6614 * nlink | 0 | as usual 6615 * Note: No unlinks will be sent because there're no paths for it. 6616 * 6617 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6618 * | | parent snapshot | send snapshot | action 6619 * ----------------------------------------------------------------------- 6620 * subcase 1 | nlink | 0 | 0 | ignore 6621 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6622 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6623 * 6624 */ 6625 if (result == BTRFS_COMPARE_TREE_NEW) { 6626 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6627 sctx->ignore_cur_inode = true; 6628 goto out; 6629 } 6630 sctx->cur_inode_gen = left_gen; 6631 sctx->cur_inode_new = true; 6632 sctx->cur_inode_deleted = false; 6633 sctx->cur_inode_size = btrfs_inode_size( 6634 sctx->left_path->nodes[0], left_ii); 6635 sctx->cur_inode_mode = btrfs_inode_mode( 6636 sctx->left_path->nodes[0], left_ii); 6637 sctx->cur_inode_rdev = btrfs_inode_rdev( 6638 sctx->left_path->nodes[0], left_ii); 6639 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6640 ret = send_create_inode_if_needed(sctx); 6641 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6642 sctx->cur_inode_gen = right_gen; 6643 sctx->cur_inode_new = false; 6644 sctx->cur_inode_deleted = true; 6645 sctx->cur_inode_size = btrfs_inode_size( 6646 sctx->right_path->nodes[0], right_ii); 6647 sctx->cur_inode_mode = btrfs_inode_mode( 6648 sctx->right_path->nodes[0], right_ii); 6649 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6650 u32 new_nlinks, old_nlinks; 6651 6652 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6653 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6654 if (new_nlinks == 0 && old_nlinks == 0) { 6655 sctx->ignore_cur_inode = true; 6656 goto out; 6657 } else if (new_nlinks == 0 || old_nlinks == 0) { 6658 sctx->cur_inode_new_gen = 1; 6659 } 6660 /* 6661 * We need to do some special handling in case the inode was 6662 * reported as changed with a changed generation number. This 6663 * means that the original inode was deleted and new inode 6664 * reused the same inum. So we have to treat the old inode as 6665 * deleted and the new one as new. 6666 */ 6667 if (sctx->cur_inode_new_gen) { 6668 /* 6669 * First, process the inode as if it was deleted. 6670 */ 6671 sctx->cur_inode_gen = right_gen; 6672 sctx->cur_inode_new = false; 6673 sctx->cur_inode_deleted = true; 6674 sctx->cur_inode_size = btrfs_inode_size( 6675 sctx->right_path->nodes[0], right_ii); 6676 sctx->cur_inode_mode = btrfs_inode_mode( 6677 sctx->right_path->nodes[0], right_ii); 6678 ret = process_all_refs(sctx, 6679 BTRFS_COMPARE_TREE_DELETED); 6680 if (ret < 0) 6681 goto out; 6682 6683 /* 6684 * Now process the inode as if it was new. 6685 */ 6686 if (new_nlinks > 0) { 6687 sctx->cur_inode_gen = left_gen; 6688 sctx->cur_inode_new = true; 6689 sctx->cur_inode_deleted = false; 6690 sctx->cur_inode_size = btrfs_inode_size( 6691 sctx->left_path->nodes[0], 6692 left_ii); 6693 sctx->cur_inode_mode = btrfs_inode_mode( 6694 sctx->left_path->nodes[0], 6695 left_ii); 6696 sctx->cur_inode_rdev = btrfs_inode_rdev( 6697 sctx->left_path->nodes[0], 6698 left_ii); 6699 ret = send_create_inode_if_needed(sctx); 6700 if (ret < 0) 6701 goto out; 6702 6703 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6704 if (ret < 0) 6705 goto out; 6706 /* 6707 * Advance send_progress now as we did not get 6708 * into process_recorded_refs_if_needed in the 6709 * new_gen case. 6710 */ 6711 sctx->send_progress = sctx->cur_ino + 1; 6712 6713 /* 6714 * Now process all extents and xattrs of the 6715 * inode as if they were all new. 6716 */ 6717 ret = process_all_extents(sctx); 6718 if (ret < 0) 6719 goto out; 6720 ret = process_all_new_xattrs(sctx); 6721 if (ret < 0) 6722 goto out; 6723 } 6724 } else { 6725 sctx->cur_inode_gen = left_gen; 6726 sctx->cur_inode_new = false; 6727 sctx->cur_inode_new_gen = false; 6728 sctx->cur_inode_deleted = false; 6729 sctx->cur_inode_size = btrfs_inode_size( 6730 sctx->left_path->nodes[0], left_ii); 6731 sctx->cur_inode_mode = btrfs_inode_mode( 6732 sctx->left_path->nodes[0], left_ii); 6733 } 6734 } 6735 6736 out: 6737 return ret; 6738 } 6739 6740 /* 6741 * We have to process new refs before deleted refs, but compare_trees gives us 6742 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6743 * first and later process them in process_recorded_refs. 6744 * For the cur_inode_new_gen case, we skip recording completely because 6745 * changed_inode did already initiate processing of refs. The reason for this is 6746 * that in this case, compare_tree actually compares the refs of 2 different 6747 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6748 * refs of the right tree as deleted and all refs of the left tree as new. 6749 */ 6750 static int changed_ref(struct send_ctx *sctx, 6751 enum btrfs_compare_tree_result result) 6752 { 6753 int ret = 0; 6754 6755 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6756 inconsistent_snapshot_error(sctx, result, "reference"); 6757 return -EIO; 6758 } 6759 6760 if (!sctx->cur_inode_new_gen && 6761 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6762 if (result == BTRFS_COMPARE_TREE_NEW) 6763 ret = record_new_ref(sctx); 6764 else if (result == BTRFS_COMPARE_TREE_DELETED) 6765 ret = record_deleted_ref(sctx); 6766 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6767 ret = record_changed_ref(sctx); 6768 } 6769 6770 return ret; 6771 } 6772 6773 /* 6774 * Process new/deleted/changed xattrs. We skip processing in the 6775 * cur_inode_new_gen case because changed_inode did already initiate processing 6776 * of xattrs. The reason is the same as in changed_ref 6777 */ 6778 static int changed_xattr(struct send_ctx *sctx, 6779 enum btrfs_compare_tree_result result) 6780 { 6781 int ret = 0; 6782 6783 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6784 inconsistent_snapshot_error(sctx, result, "xattr"); 6785 return -EIO; 6786 } 6787 6788 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6789 if (result == BTRFS_COMPARE_TREE_NEW) 6790 ret = process_new_xattr(sctx); 6791 else if (result == BTRFS_COMPARE_TREE_DELETED) 6792 ret = process_deleted_xattr(sctx); 6793 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6794 ret = process_changed_xattr(sctx); 6795 } 6796 6797 return ret; 6798 } 6799 6800 /* 6801 * Process new/deleted/changed extents. We skip processing in the 6802 * cur_inode_new_gen case because changed_inode did already initiate processing 6803 * of extents. The reason is the same as in changed_ref 6804 */ 6805 static int changed_extent(struct send_ctx *sctx, 6806 enum btrfs_compare_tree_result result) 6807 { 6808 int ret = 0; 6809 6810 /* 6811 * We have found an extent item that changed without the inode item 6812 * having changed. This can happen either after relocation (where the 6813 * disk_bytenr of an extent item is replaced at 6814 * relocation.c:replace_file_extents()) or after deduplication into a 6815 * file in both the parent and send snapshots (where an extent item can 6816 * get modified or replaced with a new one). Note that deduplication 6817 * updates the inode item, but it only changes the iversion (sequence 6818 * field in the inode item) of the inode, so if a file is deduplicated 6819 * the same amount of times in both the parent and send snapshots, its 6820 * iversion becomes the same in both snapshots, whence the inode item is 6821 * the same on both snapshots. 6822 */ 6823 if (sctx->cur_ino != sctx->cmp_key->objectid) 6824 return 0; 6825 6826 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6827 if (result != BTRFS_COMPARE_TREE_DELETED) 6828 ret = process_extent(sctx, sctx->left_path, 6829 sctx->cmp_key); 6830 } 6831 6832 return ret; 6833 } 6834 6835 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 6836 { 6837 int ret = 0; 6838 6839 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6840 if (result == BTRFS_COMPARE_TREE_NEW) 6841 sctx->cur_inode_needs_verity = true; 6842 } 6843 return ret; 6844 } 6845 6846 static int dir_changed(struct send_ctx *sctx, u64 dir) 6847 { 6848 u64 orig_gen, new_gen; 6849 int ret; 6850 6851 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 6852 if (ret) 6853 return ret; 6854 6855 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 6856 if (ret) 6857 return ret; 6858 6859 return (orig_gen != new_gen) ? 1 : 0; 6860 } 6861 6862 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6863 struct btrfs_key *key) 6864 { 6865 struct btrfs_inode_extref *extref; 6866 struct extent_buffer *leaf; 6867 u64 dirid = 0, last_dirid = 0; 6868 unsigned long ptr; 6869 u32 item_size; 6870 u32 cur_offset = 0; 6871 int ref_name_len; 6872 int ret = 0; 6873 6874 /* Easy case, just check this one dirid */ 6875 if (key->type == BTRFS_INODE_REF_KEY) { 6876 dirid = key->offset; 6877 6878 ret = dir_changed(sctx, dirid); 6879 goto out; 6880 } 6881 6882 leaf = path->nodes[0]; 6883 item_size = btrfs_item_size(leaf, path->slots[0]); 6884 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6885 while (cur_offset < item_size) { 6886 extref = (struct btrfs_inode_extref *)(ptr + 6887 cur_offset); 6888 dirid = btrfs_inode_extref_parent(leaf, extref); 6889 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6890 cur_offset += ref_name_len + sizeof(*extref); 6891 if (dirid == last_dirid) 6892 continue; 6893 ret = dir_changed(sctx, dirid); 6894 if (ret) 6895 break; 6896 last_dirid = dirid; 6897 } 6898 out: 6899 return ret; 6900 } 6901 6902 /* 6903 * Updates compare related fields in sctx and simply forwards to the actual 6904 * changed_xxx functions. 6905 */ 6906 static int changed_cb(struct btrfs_path *left_path, 6907 struct btrfs_path *right_path, 6908 struct btrfs_key *key, 6909 enum btrfs_compare_tree_result result, 6910 struct send_ctx *sctx) 6911 { 6912 int ret = 0; 6913 6914 /* 6915 * We can not hold the commit root semaphore here. This is because in 6916 * the case of sending and receiving to the same filesystem, using a 6917 * pipe, could result in a deadlock: 6918 * 6919 * 1) The task running send blocks on the pipe because it's full; 6920 * 6921 * 2) The task running receive, which is the only consumer of the pipe, 6922 * is waiting for a transaction commit (for example due to a space 6923 * reservation when doing a write or triggering a transaction commit 6924 * when creating a subvolume); 6925 * 6926 * 3) The transaction is waiting to write lock the commit root semaphore, 6927 * but can not acquire it since it's being held at 1). 6928 * 6929 * Down this call chain we write to the pipe through kernel_write(). 6930 * The same type of problem can also happen when sending to a file that 6931 * is stored in the same filesystem - when reserving space for a write 6932 * into the file, we can trigger a transaction commit. 6933 * 6934 * Our caller has supplied us with clones of leaves from the send and 6935 * parent roots, so we're safe here from a concurrent relocation and 6936 * further reallocation of metadata extents while we are here. Below we 6937 * also assert that the leaves are clones. 6938 */ 6939 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 6940 6941 /* 6942 * We always have a send root, so left_path is never NULL. We will not 6943 * have a leaf when we have reached the end of the send root but have 6944 * not yet reached the end of the parent root. 6945 */ 6946 if (left_path->nodes[0]) 6947 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6948 &left_path->nodes[0]->bflags)); 6949 /* 6950 * When doing a full send we don't have a parent root, so right_path is 6951 * NULL. When doing an incremental send, we may have reached the end of 6952 * the parent root already, so we don't have a leaf at right_path. 6953 */ 6954 if (right_path && right_path->nodes[0]) 6955 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 6956 &right_path->nodes[0]->bflags)); 6957 6958 if (result == BTRFS_COMPARE_TREE_SAME) { 6959 if (key->type == BTRFS_INODE_REF_KEY || 6960 key->type == BTRFS_INODE_EXTREF_KEY) { 6961 ret = compare_refs(sctx, left_path, key); 6962 if (!ret) 6963 return 0; 6964 if (ret < 0) 6965 return ret; 6966 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6967 return maybe_send_hole(sctx, left_path, key); 6968 } else { 6969 return 0; 6970 } 6971 result = BTRFS_COMPARE_TREE_CHANGED; 6972 ret = 0; 6973 } 6974 6975 sctx->left_path = left_path; 6976 sctx->right_path = right_path; 6977 sctx->cmp_key = key; 6978 6979 ret = finish_inode_if_needed(sctx, 0); 6980 if (ret < 0) 6981 goto out; 6982 6983 /* Ignore non-FS objects */ 6984 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6985 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6986 goto out; 6987 6988 if (key->type == BTRFS_INODE_ITEM_KEY) { 6989 ret = changed_inode(sctx, result); 6990 } else if (!sctx->ignore_cur_inode) { 6991 if (key->type == BTRFS_INODE_REF_KEY || 6992 key->type == BTRFS_INODE_EXTREF_KEY) 6993 ret = changed_ref(sctx, result); 6994 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6995 ret = changed_xattr(sctx, result); 6996 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6997 ret = changed_extent(sctx, result); 6998 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 6999 key->offset == 0) 7000 ret = changed_verity(sctx, result); 7001 } 7002 7003 out: 7004 return ret; 7005 } 7006 7007 static int search_key_again(const struct send_ctx *sctx, 7008 struct btrfs_root *root, 7009 struct btrfs_path *path, 7010 const struct btrfs_key *key) 7011 { 7012 int ret; 7013 7014 if (!path->need_commit_sem) 7015 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7016 7017 /* 7018 * Roots used for send operations are readonly and no one can add, 7019 * update or remove keys from them, so we should be able to find our 7020 * key again. The only exception is deduplication, which can operate on 7021 * readonly roots and add, update or remove keys to/from them - but at 7022 * the moment we don't allow it to run in parallel with send. 7023 */ 7024 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7025 ASSERT(ret <= 0); 7026 if (ret > 0) { 7027 btrfs_print_tree(path->nodes[path->lowest_level], false); 7028 btrfs_err(root->fs_info, 7029 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7030 key->objectid, key->type, key->offset, 7031 (root == sctx->parent_root ? "parent" : "send"), 7032 root->root_key.objectid, path->lowest_level, 7033 path->slots[path->lowest_level]); 7034 return -EUCLEAN; 7035 } 7036 7037 return ret; 7038 } 7039 7040 static int full_send_tree(struct send_ctx *sctx) 7041 { 7042 int ret; 7043 struct btrfs_root *send_root = sctx->send_root; 7044 struct btrfs_key key; 7045 struct btrfs_fs_info *fs_info = send_root->fs_info; 7046 struct btrfs_path *path; 7047 7048 path = alloc_path_for_send(); 7049 if (!path) 7050 return -ENOMEM; 7051 path->reada = READA_FORWARD_ALWAYS; 7052 7053 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7054 key.type = BTRFS_INODE_ITEM_KEY; 7055 key.offset = 0; 7056 7057 down_read(&fs_info->commit_root_sem); 7058 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7059 up_read(&fs_info->commit_root_sem); 7060 7061 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7062 if (ret < 0) 7063 goto out; 7064 if (ret) 7065 goto out_finish; 7066 7067 while (1) { 7068 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7069 7070 ret = changed_cb(path, NULL, &key, 7071 BTRFS_COMPARE_TREE_NEW, sctx); 7072 if (ret < 0) 7073 goto out; 7074 7075 down_read(&fs_info->commit_root_sem); 7076 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7077 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7078 up_read(&fs_info->commit_root_sem); 7079 /* 7080 * A transaction used for relocating a block group was 7081 * committed or is about to finish its commit. Release 7082 * our path (leaf) and restart the search, so that we 7083 * avoid operating on any file extent items that are 7084 * stale, with a disk_bytenr that reflects a pre 7085 * relocation value. This way we avoid as much as 7086 * possible to fallback to regular writes when checking 7087 * if we can clone file ranges. 7088 */ 7089 btrfs_release_path(path); 7090 ret = search_key_again(sctx, send_root, path, &key); 7091 if (ret < 0) 7092 goto out; 7093 } else { 7094 up_read(&fs_info->commit_root_sem); 7095 } 7096 7097 ret = btrfs_next_item(send_root, path); 7098 if (ret < 0) 7099 goto out; 7100 if (ret) { 7101 ret = 0; 7102 break; 7103 } 7104 } 7105 7106 out_finish: 7107 ret = finish_inode_if_needed(sctx, 1); 7108 7109 out: 7110 btrfs_free_path(path); 7111 return ret; 7112 } 7113 7114 static int replace_node_with_clone(struct btrfs_path *path, int level) 7115 { 7116 struct extent_buffer *clone; 7117 7118 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7119 if (!clone) 7120 return -ENOMEM; 7121 7122 free_extent_buffer(path->nodes[level]); 7123 path->nodes[level] = clone; 7124 7125 return 0; 7126 } 7127 7128 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7129 { 7130 struct extent_buffer *eb; 7131 struct extent_buffer *parent = path->nodes[*level]; 7132 int slot = path->slots[*level]; 7133 const int nritems = btrfs_header_nritems(parent); 7134 u64 reada_max; 7135 u64 reada_done = 0; 7136 7137 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7138 7139 BUG_ON(*level == 0); 7140 eb = btrfs_read_node_slot(parent, slot); 7141 if (IS_ERR(eb)) 7142 return PTR_ERR(eb); 7143 7144 /* 7145 * Trigger readahead for the next leaves we will process, so that it is 7146 * very likely that when we need them they are already in memory and we 7147 * will not block on disk IO. For nodes we only do readahead for one, 7148 * since the time window between processing nodes is typically larger. 7149 */ 7150 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7151 7152 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7153 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7154 btrfs_readahead_node_child(parent, slot); 7155 reada_done += eb->fs_info->nodesize; 7156 } 7157 } 7158 7159 path->nodes[*level - 1] = eb; 7160 path->slots[*level - 1] = 0; 7161 (*level)--; 7162 7163 if (*level == 0) 7164 return replace_node_with_clone(path, 0); 7165 7166 return 0; 7167 } 7168 7169 static int tree_move_next_or_upnext(struct btrfs_path *path, 7170 int *level, int root_level) 7171 { 7172 int ret = 0; 7173 int nritems; 7174 nritems = btrfs_header_nritems(path->nodes[*level]); 7175 7176 path->slots[*level]++; 7177 7178 while (path->slots[*level] >= nritems) { 7179 if (*level == root_level) { 7180 path->slots[*level] = nritems - 1; 7181 return -1; 7182 } 7183 7184 /* move upnext */ 7185 path->slots[*level] = 0; 7186 free_extent_buffer(path->nodes[*level]); 7187 path->nodes[*level] = NULL; 7188 (*level)++; 7189 path->slots[*level]++; 7190 7191 nritems = btrfs_header_nritems(path->nodes[*level]); 7192 ret = 1; 7193 } 7194 return ret; 7195 } 7196 7197 /* 7198 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7199 * or down. 7200 */ 7201 static int tree_advance(struct btrfs_path *path, 7202 int *level, int root_level, 7203 int allow_down, 7204 struct btrfs_key *key, 7205 u64 reada_min_gen) 7206 { 7207 int ret; 7208 7209 if (*level == 0 || !allow_down) { 7210 ret = tree_move_next_or_upnext(path, level, root_level); 7211 } else { 7212 ret = tree_move_down(path, level, reada_min_gen); 7213 } 7214 7215 /* 7216 * Even if we have reached the end of a tree, ret is -1, update the key 7217 * anyway, so that in case we need to restart due to a block group 7218 * relocation, we can assert that the last key of the root node still 7219 * exists in the tree. 7220 */ 7221 if (*level == 0) 7222 btrfs_item_key_to_cpu(path->nodes[*level], key, 7223 path->slots[*level]); 7224 else 7225 btrfs_node_key_to_cpu(path->nodes[*level], key, 7226 path->slots[*level]); 7227 7228 return ret; 7229 } 7230 7231 static int tree_compare_item(struct btrfs_path *left_path, 7232 struct btrfs_path *right_path, 7233 char *tmp_buf) 7234 { 7235 int cmp; 7236 int len1, len2; 7237 unsigned long off1, off2; 7238 7239 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7240 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7241 if (len1 != len2) 7242 return 1; 7243 7244 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7245 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7246 right_path->slots[0]); 7247 7248 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7249 7250 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7251 if (cmp) 7252 return 1; 7253 return 0; 7254 } 7255 7256 /* 7257 * A transaction used for relocating a block group was committed or is about to 7258 * finish its commit. Release our paths and restart the search, so that we are 7259 * not using stale extent buffers: 7260 * 7261 * 1) For levels > 0, we are only holding references of extent buffers, without 7262 * any locks on them, which does not prevent them from having been relocated 7263 * and reallocated after the last time we released the commit root semaphore. 7264 * The exception are the root nodes, for which we always have a clone, see 7265 * the comment at btrfs_compare_trees(); 7266 * 7267 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7268 * we are safe from the concurrent relocation and reallocation. However they 7269 * can have file extent items with a pre relocation disk_bytenr value, so we 7270 * restart the start from the current commit roots and clone the new leaves so 7271 * that we get the post relocation disk_bytenr values. Not doing so, could 7272 * make us clone the wrong data in case there are new extents using the old 7273 * disk_bytenr that happen to be shared. 7274 */ 7275 static int restart_after_relocation(struct btrfs_path *left_path, 7276 struct btrfs_path *right_path, 7277 const struct btrfs_key *left_key, 7278 const struct btrfs_key *right_key, 7279 int left_level, 7280 int right_level, 7281 const struct send_ctx *sctx) 7282 { 7283 int root_level; 7284 int ret; 7285 7286 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7287 7288 btrfs_release_path(left_path); 7289 btrfs_release_path(right_path); 7290 7291 /* 7292 * Since keys can not be added or removed to/from our roots because they 7293 * are readonly and we do not allow deduplication to run in parallel 7294 * (which can add, remove or change keys), the layout of the trees should 7295 * not change. 7296 */ 7297 left_path->lowest_level = left_level; 7298 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7299 if (ret < 0) 7300 return ret; 7301 7302 right_path->lowest_level = right_level; 7303 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7304 if (ret < 0) 7305 return ret; 7306 7307 /* 7308 * If the lowest level nodes are leaves, clone them so that they can be 7309 * safely used by changed_cb() while not under the protection of the 7310 * commit root semaphore, even if relocation and reallocation happens in 7311 * parallel. 7312 */ 7313 if (left_level == 0) { 7314 ret = replace_node_with_clone(left_path, 0); 7315 if (ret < 0) 7316 return ret; 7317 } 7318 7319 if (right_level == 0) { 7320 ret = replace_node_with_clone(right_path, 0); 7321 if (ret < 0) 7322 return ret; 7323 } 7324 7325 /* 7326 * Now clone the root nodes (unless they happen to be the leaves we have 7327 * already cloned). This is to protect against concurrent snapshotting of 7328 * the send and parent roots (see the comment at btrfs_compare_trees()). 7329 */ 7330 root_level = btrfs_header_level(sctx->send_root->commit_root); 7331 if (root_level > 0) { 7332 ret = replace_node_with_clone(left_path, root_level); 7333 if (ret < 0) 7334 return ret; 7335 } 7336 7337 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7338 if (root_level > 0) { 7339 ret = replace_node_with_clone(right_path, root_level); 7340 if (ret < 0) 7341 return ret; 7342 } 7343 7344 return 0; 7345 } 7346 7347 /* 7348 * This function compares two trees and calls the provided callback for 7349 * every changed/new/deleted item it finds. 7350 * If shared tree blocks are encountered, whole subtrees are skipped, making 7351 * the compare pretty fast on snapshotted subvolumes. 7352 * 7353 * This currently works on commit roots only. As commit roots are read only, 7354 * we don't do any locking. The commit roots are protected with transactions. 7355 * Transactions are ended and rejoined when a commit is tried in between. 7356 * 7357 * This function checks for modifications done to the trees while comparing. 7358 * If it detects a change, it aborts immediately. 7359 */ 7360 static int btrfs_compare_trees(struct btrfs_root *left_root, 7361 struct btrfs_root *right_root, struct send_ctx *sctx) 7362 { 7363 struct btrfs_fs_info *fs_info = left_root->fs_info; 7364 int ret; 7365 int cmp; 7366 struct btrfs_path *left_path = NULL; 7367 struct btrfs_path *right_path = NULL; 7368 struct btrfs_key left_key; 7369 struct btrfs_key right_key; 7370 char *tmp_buf = NULL; 7371 int left_root_level; 7372 int right_root_level; 7373 int left_level; 7374 int right_level; 7375 int left_end_reached = 0; 7376 int right_end_reached = 0; 7377 int advance_left = 0; 7378 int advance_right = 0; 7379 u64 left_blockptr; 7380 u64 right_blockptr; 7381 u64 left_gen; 7382 u64 right_gen; 7383 u64 reada_min_gen; 7384 7385 left_path = btrfs_alloc_path(); 7386 if (!left_path) { 7387 ret = -ENOMEM; 7388 goto out; 7389 } 7390 right_path = btrfs_alloc_path(); 7391 if (!right_path) { 7392 ret = -ENOMEM; 7393 goto out; 7394 } 7395 7396 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7397 if (!tmp_buf) { 7398 ret = -ENOMEM; 7399 goto out; 7400 } 7401 7402 left_path->search_commit_root = 1; 7403 left_path->skip_locking = 1; 7404 right_path->search_commit_root = 1; 7405 right_path->skip_locking = 1; 7406 7407 /* 7408 * Strategy: Go to the first items of both trees. Then do 7409 * 7410 * If both trees are at level 0 7411 * Compare keys of current items 7412 * If left < right treat left item as new, advance left tree 7413 * and repeat 7414 * If left > right treat right item as deleted, advance right tree 7415 * and repeat 7416 * If left == right do deep compare of items, treat as changed if 7417 * needed, advance both trees and repeat 7418 * If both trees are at the same level but not at level 0 7419 * Compare keys of current nodes/leafs 7420 * If left < right advance left tree and repeat 7421 * If left > right advance right tree and repeat 7422 * If left == right compare blockptrs of the next nodes/leafs 7423 * If they match advance both trees but stay at the same level 7424 * and repeat 7425 * If they don't match advance both trees while allowing to go 7426 * deeper and repeat 7427 * If tree levels are different 7428 * Advance the tree that needs it and repeat 7429 * 7430 * Advancing a tree means: 7431 * If we are at level 0, try to go to the next slot. If that's not 7432 * possible, go one level up and repeat. Stop when we found a level 7433 * where we could go to the next slot. We may at this point be on a 7434 * node or a leaf. 7435 * 7436 * If we are not at level 0 and not on shared tree blocks, go one 7437 * level deeper. 7438 * 7439 * If we are not at level 0 and on shared tree blocks, go one slot to 7440 * the right if possible or go up and right. 7441 */ 7442 7443 down_read(&fs_info->commit_root_sem); 7444 left_level = btrfs_header_level(left_root->commit_root); 7445 left_root_level = left_level; 7446 /* 7447 * We clone the root node of the send and parent roots to prevent races 7448 * with snapshot creation of these roots. Snapshot creation COWs the 7449 * root node of a tree, so after the transaction is committed the old 7450 * extent can be reallocated while this send operation is still ongoing. 7451 * So we clone them, under the commit root semaphore, to be race free. 7452 */ 7453 left_path->nodes[left_level] = 7454 btrfs_clone_extent_buffer(left_root->commit_root); 7455 if (!left_path->nodes[left_level]) { 7456 ret = -ENOMEM; 7457 goto out_unlock; 7458 } 7459 7460 right_level = btrfs_header_level(right_root->commit_root); 7461 right_root_level = right_level; 7462 right_path->nodes[right_level] = 7463 btrfs_clone_extent_buffer(right_root->commit_root); 7464 if (!right_path->nodes[right_level]) { 7465 ret = -ENOMEM; 7466 goto out_unlock; 7467 } 7468 /* 7469 * Our right root is the parent root, while the left root is the "send" 7470 * root. We know that all new nodes/leaves in the left root must have 7471 * a generation greater than the right root's generation, so we trigger 7472 * readahead for those nodes and leaves of the left root, as we know we 7473 * will need to read them at some point. 7474 */ 7475 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7476 7477 if (left_level == 0) 7478 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7479 &left_key, left_path->slots[left_level]); 7480 else 7481 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7482 &left_key, left_path->slots[left_level]); 7483 if (right_level == 0) 7484 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7485 &right_key, right_path->slots[right_level]); 7486 else 7487 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7488 &right_key, right_path->slots[right_level]); 7489 7490 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7491 7492 while (1) { 7493 if (need_resched() || 7494 rwsem_is_contended(&fs_info->commit_root_sem)) { 7495 up_read(&fs_info->commit_root_sem); 7496 cond_resched(); 7497 down_read(&fs_info->commit_root_sem); 7498 } 7499 7500 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7501 ret = restart_after_relocation(left_path, right_path, 7502 &left_key, &right_key, 7503 left_level, right_level, 7504 sctx); 7505 if (ret < 0) 7506 goto out_unlock; 7507 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7508 } 7509 7510 if (advance_left && !left_end_reached) { 7511 ret = tree_advance(left_path, &left_level, 7512 left_root_level, 7513 advance_left != ADVANCE_ONLY_NEXT, 7514 &left_key, reada_min_gen); 7515 if (ret == -1) 7516 left_end_reached = ADVANCE; 7517 else if (ret < 0) 7518 goto out_unlock; 7519 advance_left = 0; 7520 } 7521 if (advance_right && !right_end_reached) { 7522 ret = tree_advance(right_path, &right_level, 7523 right_root_level, 7524 advance_right != ADVANCE_ONLY_NEXT, 7525 &right_key, reada_min_gen); 7526 if (ret == -1) 7527 right_end_reached = ADVANCE; 7528 else if (ret < 0) 7529 goto out_unlock; 7530 advance_right = 0; 7531 } 7532 7533 if (left_end_reached && right_end_reached) { 7534 ret = 0; 7535 goto out_unlock; 7536 } else if (left_end_reached) { 7537 if (right_level == 0) { 7538 up_read(&fs_info->commit_root_sem); 7539 ret = changed_cb(left_path, right_path, 7540 &right_key, 7541 BTRFS_COMPARE_TREE_DELETED, 7542 sctx); 7543 if (ret < 0) 7544 goto out; 7545 down_read(&fs_info->commit_root_sem); 7546 } 7547 advance_right = ADVANCE; 7548 continue; 7549 } else if (right_end_reached) { 7550 if (left_level == 0) { 7551 up_read(&fs_info->commit_root_sem); 7552 ret = changed_cb(left_path, right_path, 7553 &left_key, 7554 BTRFS_COMPARE_TREE_NEW, 7555 sctx); 7556 if (ret < 0) 7557 goto out; 7558 down_read(&fs_info->commit_root_sem); 7559 } 7560 advance_left = ADVANCE; 7561 continue; 7562 } 7563 7564 if (left_level == 0 && right_level == 0) { 7565 up_read(&fs_info->commit_root_sem); 7566 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7567 if (cmp < 0) { 7568 ret = changed_cb(left_path, right_path, 7569 &left_key, 7570 BTRFS_COMPARE_TREE_NEW, 7571 sctx); 7572 advance_left = ADVANCE; 7573 } else if (cmp > 0) { 7574 ret = changed_cb(left_path, right_path, 7575 &right_key, 7576 BTRFS_COMPARE_TREE_DELETED, 7577 sctx); 7578 advance_right = ADVANCE; 7579 } else { 7580 enum btrfs_compare_tree_result result; 7581 7582 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7583 ret = tree_compare_item(left_path, right_path, 7584 tmp_buf); 7585 if (ret) 7586 result = BTRFS_COMPARE_TREE_CHANGED; 7587 else 7588 result = BTRFS_COMPARE_TREE_SAME; 7589 ret = changed_cb(left_path, right_path, 7590 &left_key, result, sctx); 7591 advance_left = ADVANCE; 7592 advance_right = ADVANCE; 7593 } 7594 7595 if (ret < 0) 7596 goto out; 7597 down_read(&fs_info->commit_root_sem); 7598 } else if (left_level == right_level) { 7599 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7600 if (cmp < 0) { 7601 advance_left = ADVANCE; 7602 } else if (cmp > 0) { 7603 advance_right = ADVANCE; 7604 } else { 7605 left_blockptr = btrfs_node_blockptr( 7606 left_path->nodes[left_level], 7607 left_path->slots[left_level]); 7608 right_blockptr = btrfs_node_blockptr( 7609 right_path->nodes[right_level], 7610 right_path->slots[right_level]); 7611 left_gen = btrfs_node_ptr_generation( 7612 left_path->nodes[left_level], 7613 left_path->slots[left_level]); 7614 right_gen = btrfs_node_ptr_generation( 7615 right_path->nodes[right_level], 7616 right_path->slots[right_level]); 7617 if (left_blockptr == right_blockptr && 7618 left_gen == right_gen) { 7619 /* 7620 * As we're on a shared block, don't 7621 * allow to go deeper. 7622 */ 7623 advance_left = ADVANCE_ONLY_NEXT; 7624 advance_right = ADVANCE_ONLY_NEXT; 7625 } else { 7626 advance_left = ADVANCE; 7627 advance_right = ADVANCE; 7628 } 7629 } 7630 } else if (left_level < right_level) { 7631 advance_right = ADVANCE; 7632 } else { 7633 advance_left = ADVANCE; 7634 } 7635 } 7636 7637 out_unlock: 7638 up_read(&fs_info->commit_root_sem); 7639 out: 7640 btrfs_free_path(left_path); 7641 btrfs_free_path(right_path); 7642 kvfree(tmp_buf); 7643 return ret; 7644 } 7645 7646 static int send_subvol(struct send_ctx *sctx) 7647 { 7648 int ret; 7649 7650 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7651 ret = send_header(sctx); 7652 if (ret < 0) 7653 goto out; 7654 } 7655 7656 ret = send_subvol_begin(sctx); 7657 if (ret < 0) 7658 goto out; 7659 7660 if (sctx->parent_root) { 7661 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7662 if (ret < 0) 7663 goto out; 7664 ret = finish_inode_if_needed(sctx, 1); 7665 if (ret < 0) 7666 goto out; 7667 } else { 7668 ret = full_send_tree(sctx); 7669 if (ret < 0) 7670 goto out; 7671 } 7672 7673 out: 7674 free_recorded_refs(sctx); 7675 return ret; 7676 } 7677 7678 /* 7679 * If orphan cleanup did remove any orphans from a root, it means the tree 7680 * was modified and therefore the commit root is not the same as the current 7681 * root anymore. This is a problem, because send uses the commit root and 7682 * therefore can see inode items that don't exist in the current root anymore, 7683 * and for example make calls to btrfs_iget, which will do tree lookups based 7684 * on the current root and not on the commit root. Those lookups will fail, 7685 * returning a -ESTALE error, and making send fail with that error. So make 7686 * sure a send does not see any orphans we have just removed, and that it will 7687 * see the same inodes regardless of whether a transaction commit happened 7688 * before it started (meaning that the commit root will be the same as the 7689 * current root) or not. 7690 */ 7691 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7692 { 7693 int i; 7694 struct btrfs_trans_handle *trans = NULL; 7695 7696 again: 7697 if (sctx->parent_root && 7698 sctx->parent_root->node != sctx->parent_root->commit_root) 7699 goto commit_trans; 7700 7701 for (i = 0; i < sctx->clone_roots_cnt; i++) 7702 if (sctx->clone_roots[i].root->node != 7703 sctx->clone_roots[i].root->commit_root) 7704 goto commit_trans; 7705 7706 if (trans) 7707 return btrfs_end_transaction(trans); 7708 7709 return 0; 7710 7711 commit_trans: 7712 /* Use any root, all fs roots will get their commit roots updated. */ 7713 if (!trans) { 7714 trans = btrfs_join_transaction(sctx->send_root); 7715 if (IS_ERR(trans)) 7716 return PTR_ERR(trans); 7717 goto again; 7718 } 7719 7720 return btrfs_commit_transaction(trans); 7721 } 7722 7723 /* 7724 * Make sure any existing dellaloc is flushed for any root used by a send 7725 * operation so that we do not miss any data and we do not race with writeback 7726 * finishing and changing a tree while send is using the tree. This could 7727 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7728 * a send operation then uses the subvolume. 7729 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7730 */ 7731 static int flush_delalloc_roots(struct send_ctx *sctx) 7732 { 7733 struct btrfs_root *root = sctx->parent_root; 7734 int ret; 7735 int i; 7736 7737 if (root) { 7738 ret = btrfs_start_delalloc_snapshot(root, false); 7739 if (ret) 7740 return ret; 7741 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7742 } 7743 7744 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7745 root = sctx->clone_roots[i].root; 7746 ret = btrfs_start_delalloc_snapshot(root, false); 7747 if (ret) 7748 return ret; 7749 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 7750 } 7751 7752 return 0; 7753 } 7754 7755 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7756 { 7757 spin_lock(&root->root_item_lock); 7758 root->send_in_progress--; 7759 /* 7760 * Not much left to do, we don't know why it's unbalanced and 7761 * can't blindly reset it to 0. 7762 */ 7763 if (root->send_in_progress < 0) 7764 btrfs_err(root->fs_info, 7765 "send_in_progress unbalanced %d root %llu", 7766 root->send_in_progress, root->root_key.objectid); 7767 spin_unlock(&root->root_item_lock); 7768 } 7769 7770 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7771 { 7772 btrfs_warn_rl(root->fs_info, 7773 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7774 root->root_key.objectid, root->dedupe_in_progress); 7775 } 7776 7777 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg) 7778 { 7779 int ret = 0; 7780 struct btrfs_root *send_root = BTRFS_I(inode)->root; 7781 struct btrfs_fs_info *fs_info = send_root->fs_info; 7782 struct btrfs_root *clone_root; 7783 struct send_ctx *sctx = NULL; 7784 u32 i; 7785 u64 *clone_sources_tmp = NULL; 7786 int clone_sources_to_rollback = 0; 7787 size_t alloc_size; 7788 int sort_clone_roots = 0; 7789 7790 if (!capable(CAP_SYS_ADMIN)) 7791 return -EPERM; 7792 7793 /* 7794 * The subvolume must remain read-only during send, protect against 7795 * making it RW. This also protects against deletion. 7796 */ 7797 spin_lock(&send_root->root_item_lock); 7798 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7799 dedupe_in_progress_warn(send_root); 7800 spin_unlock(&send_root->root_item_lock); 7801 return -EAGAIN; 7802 } 7803 send_root->send_in_progress++; 7804 spin_unlock(&send_root->root_item_lock); 7805 7806 /* 7807 * Userspace tools do the checks and warn the user if it's 7808 * not RO. 7809 */ 7810 if (!btrfs_root_readonly(send_root)) { 7811 ret = -EPERM; 7812 goto out; 7813 } 7814 7815 /* 7816 * Check that we don't overflow at later allocations, we request 7817 * clone_sources_count + 1 items, and compare to unsigned long inside 7818 * access_ok. 7819 */ 7820 if (arg->clone_sources_count > 7821 ULONG_MAX / sizeof(struct clone_root) - 1) { 7822 ret = -EINVAL; 7823 goto out; 7824 } 7825 7826 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7827 ret = -EINVAL; 7828 goto out; 7829 } 7830 7831 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7832 if (!sctx) { 7833 ret = -ENOMEM; 7834 goto out; 7835 } 7836 7837 INIT_LIST_HEAD(&sctx->new_refs); 7838 INIT_LIST_HEAD(&sctx->deleted_refs); 7839 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7840 INIT_LIST_HEAD(&sctx->name_cache_list); 7841 7842 sctx->flags = arg->flags; 7843 7844 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 7845 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 7846 ret = -EPROTO; 7847 goto out; 7848 } 7849 /* Zero means "use the highest version" */ 7850 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 7851 } else { 7852 sctx->proto = 1; 7853 } 7854 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 7855 ret = -EINVAL; 7856 goto out; 7857 } 7858 7859 sctx->send_filp = fget(arg->send_fd); 7860 if (!sctx->send_filp) { 7861 ret = -EBADF; 7862 goto out; 7863 } 7864 7865 sctx->send_root = send_root; 7866 /* 7867 * Unlikely but possible, if the subvolume is marked for deletion but 7868 * is slow to remove the directory entry, send can still be started 7869 */ 7870 if (btrfs_root_dead(sctx->send_root)) { 7871 ret = -EPERM; 7872 goto out; 7873 } 7874 7875 sctx->clone_roots_cnt = arg->clone_sources_count; 7876 7877 if (sctx->proto >= 2) { 7878 u32 send_buf_num_pages; 7879 7880 sctx->send_max_size = ALIGN(SZ_16K + BTRFS_MAX_COMPRESSED, PAGE_SIZE); 7881 sctx->send_buf = vmalloc(sctx->send_max_size); 7882 if (!sctx->send_buf) { 7883 ret = -ENOMEM; 7884 goto out; 7885 } 7886 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 7887 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 7888 sizeof(*sctx->send_buf_pages), 7889 GFP_KERNEL); 7890 if (!sctx->send_buf_pages) { 7891 ret = -ENOMEM; 7892 goto out; 7893 } 7894 for (i = 0; i < send_buf_num_pages; i++) { 7895 sctx->send_buf_pages[i] = 7896 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 7897 } 7898 } else { 7899 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 7900 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7901 } 7902 if (!sctx->send_buf) { 7903 ret = -ENOMEM; 7904 goto out; 7905 } 7906 7907 sctx->pending_dir_moves = RB_ROOT; 7908 sctx->waiting_dir_moves = RB_ROOT; 7909 sctx->orphan_dirs = RB_ROOT; 7910 sctx->rbtree_new_refs = RB_ROOT; 7911 sctx->rbtree_deleted_refs = RB_ROOT; 7912 7913 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots), 7914 arg->clone_sources_count + 1, 7915 GFP_KERNEL); 7916 if (!sctx->clone_roots) { 7917 ret = -ENOMEM; 7918 goto out; 7919 } 7920 7921 alloc_size = array_size(sizeof(*arg->clone_sources), 7922 arg->clone_sources_count); 7923 7924 if (arg->clone_sources_count) { 7925 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7926 if (!clone_sources_tmp) { 7927 ret = -ENOMEM; 7928 goto out; 7929 } 7930 7931 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7932 alloc_size); 7933 if (ret) { 7934 ret = -EFAULT; 7935 goto out; 7936 } 7937 7938 for (i = 0; i < arg->clone_sources_count; i++) { 7939 clone_root = btrfs_get_fs_root(fs_info, 7940 clone_sources_tmp[i], true); 7941 if (IS_ERR(clone_root)) { 7942 ret = PTR_ERR(clone_root); 7943 goto out; 7944 } 7945 spin_lock(&clone_root->root_item_lock); 7946 if (!btrfs_root_readonly(clone_root) || 7947 btrfs_root_dead(clone_root)) { 7948 spin_unlock(&clone_root->root_item_lock); 7949 btrfs_put_root(clone_root); 7950 ret = -EPERM; 7951 goto out; 7952 } 7953 if (clone_root->dedupe_in_progress) { 7954 dedupe_in_progress_warn(clone_root); 7955 spin_unlock(&clone_root->root_item_lock); 7956 btrfs_put_root(clone_root); 7957 ret = -EAGAIN; 7958 goto out; 7959 } 7960 clone_root->send_in_progress++; 7961 spin_unlock(&clone_root->root_item_lock); 7962 7963 sctx->clone_roots[i].root = clone_root; 7964 clone_sources_to_rollback = i + 1; 7965 } 7966 kvfree(clone_sources_tmp); 7967 clone_sources_tmp = NULL; 7968 } 7969 7970 if (arg->parent_root) { 7971 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 7972 true); 7973 if (IS_ERR(sctx->parent_root)) { 7974 ret = PTR_ERR(sctx->parent_root); 7975 goto out; 7976 } 7977 7978 spin_lock(&sctx->parent_root->root_item_lock); 7979 sctx->parent_root->send_in_progress++; 7980 if (!btrfs_root_readonly(sctx->parent_root) || 7981 btrfs_root_dead(sctx->parent_root)) { 7982 spin_unlock(&sctx->parent_root->root_item_lock); 7983 ret = -EPERM; 7984 goto out; 7985 } 7986 if (sctx->parent_root->dedupe_in_progress) { 7987 dedupe_in_progress_warn(sctx->parent_root); 7988 spin_unlock(&sctx->parent_root->root_item_lock); 7989 ret = -EAGAIN; 7990 goto out; 7991 } 7992 spin_unlock(&sctx->parent_root->root_item_lock); 7993 } 7994 7995 /* 7996 * Clones from send_root are allowed, but only if the clone source 7997 * is behind the current send position. This is checked while searching 7998 * for possible clone sources. 7999 */ 8000 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8001 btrfs_grab_root(sctx->send_root); 8002 8003 /* We do a bsearch later */ 8004 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8005 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8006 NULL); 8007 sort_clone_roots = 1; 8008 8009 ret = flush_delalloc_roots(sctx); 8010 if (ret) 8011 goto out; 8012 8013 ret = ensure_commit_roots_uptodate(sctx); 8014 if (ret) 8015 goto out; 8016 8017 ret = send_subvol(sctx); 8018 if (ret < 0) 8019 goto out; 8020 8021 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8022 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8023 if (ret < 0) 8024 goto out; 8025 ret = send_cmd(sctx); 8026 if (ret < 0) 8027 goto out; 8028 } 8029 8030 out: 8031 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8032 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8033 struct rb_node *n; 8034 struct pending_dir_move *pm; 8035 8036 n = rb_first(&sctx->pending_dir_moves); 8037 pm = rb_entry(n, struct pending_dir_move, node); 8038 while (!list_empty(&pm->list)) { 8039 struct pending_dir_move *pm2; 8040 8041 pm2 = list_first_entry(&pm->list, 8042 struct pending_dir_move, list); 8043 free_pending_move(sctx, pm2); 8044 } 8045 free_pending_move(sctx, pm); 8046 } 8047 8048 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8049 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8050 struct rb_node *n; 8051 struct waiting_dir_move *dm; 8052 8053 n = rb_first(&sctx->waiting_dir_moves); 8054 dm = rb_entry(n, struct waiting_dir_move, node); 8055 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8056 kfree(dm); 8057 } 8058 8059 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8060 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8061 struct rb_node *n; 8062 struct orphan_dir_info *odi; 8063 8064 n = rb_first(&sctx->orphan_dirs); 8065 odi = rb_entry(n, struct orphan_dir_info, node); 8066 free_orphan_dir_info(sctx, odi); 8067 } 8068 8069 if (sort_clone_roots) { 8070 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8071 btrfs_root_dec_send_in_progress( 8072 sctx->clone_roots[i].root); 8073 btrfs_put_root(sctx->clone_roots[i].root); 8074 } 8075 } else { 8076 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8077 btrfs_root_dec_send_in_progress( 8078 sctx->clone_roots[i].root); 8079 btrfs_put_root(sctx->clone_roots[i].root); 8080 } 8081 8082 btrfs_root_dec_send_in_progress(send_root); 8083 } 8084 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8085 btrfs_root_dec_send_in_progress(sctx->parent_root); 8086 btrfs_put_root(sctx->parent_root); 8087 } 8088 8089 kvfree(clone_sources_tmp); 8090 8091 if (sctx) { 8092 if (sctx->send_filp) 8093 fput(sctx->send_filp); 8094 8095 kvfree(sctx->clone_roots); 8096 kfree(sctx->send_buf_pages); 8097 kvfree(sctx->send_buf); 8098 kvfree(sctx->verity_descriptor); 8099 8100 name_cache_free(sctx); 8101 8102 close_current_inode(sctx); 8103 8104 kfree(sctx); 8105 } 8106 8107 return ret; 8108 } 8109