1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 19 #include "send.h" 20 #include "backref.h" 21 #include "locking.h" 22 #include "disk-io.h" 23 #include "btrfs_inode.h" 24 #include "transaction.h" 25 #include "compression.h" 26 27 /* 28 * A fs_path is a helper to dynamically build path names with unknown size. 29 * It reallocates the internal buffer on demand. 30 * It allows fast adding of path elements on the right side (normal path) and 31 * fast adding to the left side (reversed path). A reversed path can also be 32 * unreversed if needed. 33 */ 34 struct fs_path { 35 union { 36 struct { 37 char *start; 38 char *end; 39 40 char *buf; 41 unsigned short buf_len:15; 42 unsigned short reversed:1; 43 char inline_buf[]; 44 }; 45 /* 46 * Average path length does not exceed 200 bytes, we'll have 47 * better packing in the slab and higher chance to satisfy 48 * a allocation later during send. 49 */ 50 char pad[256]; 51 }; 52 }; 53 #define FS_PATH_INLINE_SIZE \ 54 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 55 56 57 /* reused for each extent */ 58 struct clone_root { 59 struct btrfs_root *root; 60 u64 ino; 61 u64 offset; 62 63 u64 found_refs; 64 }; 65 66 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 67 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 68 69 struct send_ctx { 70 struct file *send_filp; 71 loff_t send_off; 72 char *send_buf; 73 u32 send_size; 74 u32 send_max_size; 75 u64 total_send_size; 76 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 77 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 78 79 struct btrfs_root *send_root; 80 struct btrfs_root *parent_root; 81 struct clone_root *clone_roots; 82 int clone_roots_cnt; 83 84 /* current state of the compare_tree call */ 85 struct btrfs_path *left_path; 86 struct btrfs_path *right_path; 87 struct btrfs_key *cmp_key; 88 89 /* 90 * infos of the currently processed inode. In case of deleted inodes, 91 * these are the values from the deleted inode. 92 */ 93 u64 cur_ino; 94 u64 cur_inode_gen; 95 int cur_inode_new; 96 int cur_inode_new_gen; 97 int cur_inode_deleted; 98 u64 cur_inode_size; 99 u64 cur_inode_mode; 100 u64 cur_inode_rdev; 101 u64 cur_inode_last_extent; 102 u64 cur_inode_next_write_offset; 103 bool ignore_cur_inode; 104 105 u64 send_progress; 106 107 struct list_head new_refs; 108 struct list_head deleted_refs; 109 110 struct radix_tree_root name_cache; 111 struct list_head name_cache_list; 112 int name_cache_size; 113 114 struct file_ra_state ra; 115 116 char *read_buf; 117 118 /* 119 * We process inodes by their increasing order, so if before an 120 * incremental send we reverse the parent/child relationship of 121 * directories such that a directory with a lower inode number was 122 * the parent of a directory with a higher inode number, and the one 123 * becoming the new parent got renamed too, we can't rename/move the 124 * directory with lower inode number when we finish processing it - we 125 * must process the directory with higher inode number first, then 126 * rename/move it and then rename/move the directory with lower inode 127 * number. Example follows. 128 * 129 * Tree state when the first send was performed: 130 * 131 * . 132 * |-- a (ino 257) 133 * |-- b (ino 258) 134 * | 135 * | 136 * |-- c (ino 259) 137 * | |-- d (ino 260) 138 * | 139 * |-- c2 (ino 261) 140 * 141 * Tree state when the second (incremental) send is performed: 142 * 143 * . 144 * |-- a (ino 257) 145 * |-- b (ino 258) 146 * |-- c2 (ino 261) 147 * |-- d2 (ino 260) 148 * |-- cc (ino 259) 149 * 150 * The sequence of steps that lead to the second state was: 151 * 152 * mv /a/b/c/d /a/b/c2/d2 153 * mv /a/b/c /a/b/c2/d2/cc 154 * 155 * "c" has lower inode number, but we can't move it (2nd mv operation) 156 * before we move "d", which has higher inode number. 157 * 158 * So we just memorize which move/rename operations must be performed 159 * later when their respective parent is processed and moved/renamed. 160 */ 161 162 /* Indexed by parent directory inode number. */ 163 struct rb_root pending_dir_moves; 164 165 /* 166 * Reverse index, indexed by the inode number of a directory that 167 * is waiting for the move/rename of its immediate parent before its 168 * own move/rename can be performed. 169 */ 170 struct rb_root waiting_dir_moves; 171 172 /* 173 * A directory that is going to be rm'ed might have a child directory 174 * which is in the pending directory moves index above. In this case, 175 * the directory can only be removed after the move/rename of its child 176 * is performed. Example: 177 * 178 * Parent snapshot: 179 * 180 * . (ino 256) 181 * |-- a/ (ino 257) 182 * |-- b/ (ino 258) 183 * |-- c/ (ino 259) 184 * | |-- x/ (ino 260) 185 * | 186 * |-- y/ (ino 261) 187 * 188 * Send snapshot: 189 * 190 * . (ino 256) 191 * |-- a/ (ino 257) 192 * |-- b/ (ino 258) 193 * |-- YY/ (ino 261) 194 * |-- x/ (ino 260) 195 * 196 * Sequence of steps that lead to the send snapshot: 197 * rm -f /a/b/c/foo.txt 198 * mv /a/b/y /a/b/YY 199 * mv /a/b/c/x /a/b/YY 200 * rmdir /a/b/c 201 * 202 * When the child is processed, its move/rename is delayed until its 203 * parent is processed (as explained above), but all other operations 204 * like update utimes, chown, chgrp, etc, are performed and the paths 205 * that it uses for those operations must use the orphanized name of 206 * its parent (the directory we're going to rm later), so we need to 207 * memorize that name. 208 * 209 * Indexed by the inode number of the directory to be deleted. 210 */ 211 struct rb_root orphan_dirs; 212 }; 213 214 struct pending_dir_move { 215 struct rb_node node; 216 struct list_head list; 217 u64 parent_ino; 218 u64 ino; 219 u64 gen; 220 struct list_head update_refs; 221 }; 222 223 struct waiting_dir_move { 224 struct rb_node node; 225 u64 ino; 226 /* 227 * There might be some directory that could not be removed because it 228 * was waiting for this directory inode to be moved first. Therefore 229 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 230 */ 231 u64 rmdir_ino; 232 bool orphanized; 233 }; 234 235 struct orphan_dir_info { 236 struct rb_node node; 237 u64 ino; 238 u64 gen; 239 u64 last_dir_index_offset; 240 }; 241 242 struct name_cache_entry { 243 struct list_head list; 244 /* 245 * radix_tree has only 32bit entries but we need to handle 64bit inums. 246 * We use the lower 32bit of the 64bit inum to store it in the tree. If 247 * more then one inum would fall into the same entry, we use radix_list 248 * to store the additional entries. radix_list is also used to store 249 * entries where two entries have the same inum but different 250 * generations. 251 */ 252 struct list_head radix_list; 253 u64 ino; 254 u64 gen; 255 u64 parent_ino; 256 u64 parent_gen; 257 int ret; 258 int need_later_update; 259 int name_len; 260 char name[]; 261 }; 262 263 #define ADVANCE 1 264 #define ADVANCE_ONLY_NEXT -1 265 266 enum btrfs_compare_tree_result { 267 BTRFS_COMPARE_TREE_NEW, 268 BTRFS_COMPARE_TREE_DELETED, 269 BTRFS_COMPARE_TREE_CHANGED, 270 BTRFS_COMPARE_TREE_SAME, 271 }; 272 typedef int (*btrfs_changed_cb_t)(struct btrfs_path *left_path, 273 struct btrfs_path *right_path, 274 struct btrfs_key *key, 275 enum btrfs_compare_tree_result result, 276 void *ctx); 277 278 __cold 279 static void inconsistent_snapshot_error(struct send_ctx *sctx, 280 enum btrfs_compare_tree_result result, 281 const char *what) 282 { 283 const char *result_string; 284 285 switch (result) { 286 case BTRFS_COMPARE_TREE_NEW: 287 result_string = "new"; 288 break; 289 case BTRFS_COMPARE_TREE_DELETED: 290 result_string = "deleted"; 291 break; 292 case BTRFS_COMPARE_TREE_CHANGED: 293 result_string = "updated"; 294 break; 295 case BTRFS_COMPARE_TREE_SAME: 296 ASSERT(0); 297 result_string = "unchanged"; 298 break; 299 default: 300 ASSERT(0); 301 result_string = "unexpected"; 302 } 303 304 btrfs_err(sctx->send_root->fs_info, 305 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 306 result_string, what, sctx->cmp_key->objectid, 307 sctx->send_root->root_key.objectid, 308 (sctx->parent_root ? 309 sctx->parent_root->root_key.objectid : 0)); 310 } 311 312 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 313 314 static struct waiting_dir_move * 315 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 316 317 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino); 318 319 static int need_send_hole(struct send_ctx *sctx) 320 { 321 return (sctx->parent_root && !sctx->cur_inode_new && 322 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 323 S_ISREG(sctx->cur_inode_mode)); 324 } 325 326 static void fs_path_reset(struct fs_path *p) 327 { 328 if (p->reversed) { 329 p->start = p->buf + p->buf_len - 1; 330 p->end = p->start; 331 *p->start = 0; 332 } else { 333 p->start = p->buf; 334 p->end = p->start; 335 *p->start = 0; 336 } 337 } 338 339 static struct fs_path *fs_path_alloc(void) 340 { 341 struct fs_path *p; 342 343 p = kmalloc(sizeof(*p), GFP_KERNEL); 344 if (!p) 345 return NULL; 346 p->reversed = 0; 347 p->buf = p->inline_buf; 348 p->buf_len = FS_PATH_INLINE_SIZE; 349 fs_path_reset(p); 350 return p; 351 } 352 353 static struct fs_path *fs_path_alloc_reversed(void) 354 { 355 struct fs_path *p; 356 357 p = fs_path_alloc(); 358 if (!p) 359 return NULL; 360 p->reversed = 1; 361 fs_path_reset(p); 362 return p; 363 } 364 365 static void fs_path_free(struct fs_path *p) 366 { 367 if (!p) 368 return; 369 if (p->buf != p->inline_buf) 370 kfree(p->buf); 371 kfree(p); 372 } 373 374 static int fs_path_len(struct fs_path *p) 375 { 376 return p->end - p->start; 377 } 378 379 static int fs_path_ensure_buf(struct fs_path *p, int len) 380 { 381 char *tmp_buf; 382 int path_len; 383 int old_buf_len; 384 385 len++; 386 387 if (p->buf_len >= len) 388 return 0; 389 390 if (len > PATH_MAX) { 391 WARN_ON(1); 392 return -ENOMEM; 393 } 394 395 path_len = p->end - p->start; 396 old_buf_len = p->buf_len; 397 398 /* 399 * First time the inline_buf does not suffice 400 */ 401 if (p->buf == p->inline_buf) { 402 tmp_buf = kmalloc(len, GFP_KERNEL); 403 if (tmp_buf) 404 memcpy(tmp_buf, p->buf, old_buf_len); 405 } else { 406 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 407 } 408 if (!tmp_buf) 409 return -ENOMEM; 410 p->buf = tmp_buf; 411 /* 412 * The real size of the buffer is bigger, this will let the fast path 413 * happen most of the time 414 */ 415 p->buf_len = ksize(p->buf); 416 417 if (p->reversed) { 418 tmp_buf = p->buf + old_buf_len - path_len - 1; 419 p->end = p->buf + p->buf_len - 1; 420 p->start = p->end - path_len; 421 memmove(p->start, tmp_buf, path_len + 1); 422 } else { 423 p->start = p->buf; 424 p->end = p->start + path_len; 425 } 426 return 0; 427 } 428 429 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 430 char **prepared) 431 { 432 int ret; 433 int new_len; 434 435 new_len = p->end - p->start + name_len; 436 if (p->start != p->end) 437 new_len++; 438 ret = fs_path_ensure_buf(p, new_len); 439 if (ret < 0) 440 goto out; 441 442 if (p->reversed) { 443 if (p->start != p->end) 444 *--p->start = '/'; 445 p->start -= name_len; 446 *prepared = p->start; 447 } else { 448 if (p->start != p->end) 449 *p->end++ = '/'; 450 *prepared = p->end; 451 p->end += name_len; 452 *p->end = 0; 453 } 454 455 out: 456 return ret; 457 } 458 459 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 460 { 461 int ret; 462 char *prepared; 463 464 ret = fs_path_prepare_for_add(p, name_len, &prepared); 465 if (ret < 0) 466 goto out; 467 memcpy(prepared, name, name_len); 468 469 out: 470 return ret; 471 } 472 473 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 474 { 475 int ret; 476 char *prepared; 477 478 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared); 479 if (ret < 0) 480 goto out; 481 memcpy(prepared, p2->start, p2->end - p2->start); 482 483 out: 484 return ret; 485 } 486 487 static int fs_path_add_from_extent_buffer(struct fs_path *p, 488 struct extent_buffer *eb, 489 unsigned long off, int len) 490 { 491 int ret; 492 char *prepared; 493 494 ret = fs_path_prepare_for_add(p, len, &prepared); 495 if (ret < 0) 496 goto out; 497 498 read_extent_buffer(eb, prepared, off, len); 499 500 out: 501 return ret; 502 } 503 504 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 505 { 506 int ret; 507 508 p->reversed = from->reversed; 509 fs_path_reset(p); 510 511 ret = fs_path_add_path(p, from); 512 513 return ret; 514 } 515 516 517 static void fs_path_unreverse(struct fs_path *p) 518 { 519 char *tmp; 520 int len; 521 522 if (!p->reversed) 523 return; 524 525 tmp = p->start; 526 len = p->end - p->start; 527 p->start = p->buf; 528 p->end = p->start + len; 529 memmove(p->start, tmp, len + 1); 530 p->reversed = 0; 531 } 532 533 static struct btrfs_path *alloc_path_for_send(void) 534 { 535 struct btrfs_path *path; 536 537 path = btrfs_alloc_path(); 538 if (!path) 539 return NULL; 540 path->search_commit_root = 1; 541 path->skip_locking = 1; 542 path->need_commit_sem = 1; 543 return path; 544 } 545 546 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 547 { 548 int ret; 549 u32 pos = 0; 550 551 while (pos < len) { 552 ret = kernel_write(filp, buf + pos, len - pos, off); 553 /* TODO handle that correctly */ 554 /*if (ret == -ERESTARTSYS) { 555 continue; 556 }*/ 557 if (ret < 0) 558 return ret; 559 if (ret == 0) { 560 return -EIO; 561 } 562 pos += ret; 563 } 564 565 return 0; 566 } 567 568 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 569 { 570 struct btrfs_tlv_header *hdr; 571 int total_len = sizeof(*hdr) + len; 572 int left = sctx->send_max_size - sctx->send_size; 573 574 if (unlikely(left < total_len)) 575 return -EOVERFLOW; 576 577 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 578 hdr->tlv_type = cpu_to_le16(attr); 579 hdr->tlv_len = cpu_to_le16(len); 580 memcpy(hdr + 1, data, len); 581 sctx->send_size += total_len; 582 583 return 0; 584 } 585 586 #define TLV_PUT_DEFINE_INT(bits) \ 587 static int tlv_put_u##bits(struct send_ctx *sctx, \ 588 u##bits attr, u##bits value) \ 589 { \ 590 __le##bits __tmp = cpu_to_le##bits(value); \ 591 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 592 } 593 594 TLV_PUT_DEFINE_INT(64) 595 596 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 597 const char *str, int len) 598 { 599 if (len == -1) 600 len = strlen(str); 601 return tlv_put(sctx, attr, str, len); 602 } 603 604 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 605 const u8 *uuid) 606 { 607 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 608 } 609 610 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 611 struct extent_buffer *eb, 612 struct btrfs_timespec *ts) 613 { 614 struct btrfs_timespec bts; 615 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 616 return tlv_put(sctx, attr, &bts, sizeof(bts)); 617 } 618 619 620 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 621 do { \ 622 ret = tlv_put(sctx, attrtype, data, attrlen); \ 623 if (ret < 0) \ 624 goto tlv_put_failure; \ 625 } while (0) 626 627 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 628 do { \ 629 ret = tlv_put_u##bits(sctx, attrtype, value); \ 630 if (ret < 0) \ 631 goto tlv_put_failure; \ 632 } while (0) 633 634 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 635 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 636 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 637 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 638 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 639 do { \ 640 ret = tlv_put_string(sctx, attrtype, str, len); \ 641 if (ret < 0) \ 642 goto tlv_put_failure; \ 643 } while (0) 644 #define TLV_PUT_PATH(sctx, attrtype, p) \ 645 do { \ 646 ret = tlv_put_string(sctx, attrtype, p->start, \ 647 p->end - p->start); \ 648 if (ret < 0) \ 649 goto tlv_put_failure; \ 650 } while(0) 651 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 652 do { \ 653 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 654 if (ret < 0) \ 655 goto tlv_put_failure; \ 656 } while (0) 657 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 658 do { \ 659 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 660 if (ret < 0) \ 661 goto tlv_put_failure; \ 662 } while (0) 663 664 static int send_header(struct send_ctx *sctx) 665 { 666 struct btrfs_stream_header hdr; 667 668 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 669 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 670 671 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 672 &sctx->send_off); 673 } 674 675 /* 676 * For each command/item we want to send to userspace, we call this function. 677 */ 678 static int begin_cmd(struct send_ctx *sctx, int cmd) 679 { 680 struct btrfs_cmd_header *hdr; 681 682 if (WARN_ON(!sctx->send_buf)) 683 return -EINVAL; 684 685 BUG_ON(sctx->send_size); 686 687 sctx->send_size += sizeof(*hdr); 688 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 689 hdr->cmd = cpu_to_le16(cmd); 690 691 return 0; 692 } 693 694 static int send_cmd(struct send_ctx *sctx) 695 { 696 int ret; 697 struct btrfs_cmd_header *hdr; 698 u32 crc; 699 700 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 701 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 702 hdr->crc = 0; 703 704 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 705 hdr->crc = cpu_to_le32(crc); 706 707 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 708 &sctx->send_off); 709 710 sctx->total_send_size += sctx->send_size; 711 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 712 sctx->send_size = 0; 713 714 return ret; 715 } 716 717 /* 718 * Sends a move instruction to user space 719 */ 720 static int send_rename(struct send_ctx *sctx, 721 struct fs_path *from, struct fs_path *to) 722 { 723 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 724 int ret; 725 726 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 727 728 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 729 if (ret < 0) 730 goto out; 731 732 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 733 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 734 735 ret = send_cmd(sctx); 736 737 tlv_put_failure: 738 out: 739 return ret; 740 } 741 742 /* 743 * Sends a link instruction to user space 744 */ 745 static int send_link(struct send_ctx *sctx, 746 struct fs_path *path, struct fs_path *lnk) 747 { 748 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 749 int ret; 750 751 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 752 753 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 754 if (ret < 0) 755 goto out; 756 757 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 758 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 759 760 ret = send_cmd(sctx); 761 762 tlv_put_failure: 763 out: 764 return ret; 765 } 766 767 /* 768 * Sends an unlink instruction to user space 769 */ 770 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 771 { 772 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 773 int ret; 774 775 btrfs_debug(fs_info, "send_unlink %s", path->start); 776 777 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 778 if (ret < 0) 779 goto out; 780 781 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 782 783 ret = send_cmd(sctx); 784 785 tlv_put_failure: 786 out: 787 return ret; 788 } 789 790 /* 791 * Sends a rmdir instruction to user space 792 */ 793 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 794 { 795 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 796 int ret; 797 798 btrfs_debug(fs_info, "send_rmdir %s", path->start); 799 800 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 801 if (ret < 0) 802 goto out; 803 804 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 805 806 ret = send_cmd(sctx); 807 808 tlv_put_failure: 809 out: 810 return ret; 811 } 812 813 /* 814 * Helper function to retrieve some fields from an inode item. 815 */ 816 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path, 817 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid, 818 u64 *gid, u64 *rdev) 819 { 820 int ret; 821 struct btrfs_inode_item *ii; 822 struct btrfs_key key; 823 824 key.objectid = ino; 825 key.type = BTRFS_INODE_ITEM_KEY; 826 key.offset = 0; 827 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 828 if (ret) { 829 if (ret > 0) 830 ret = -ENOENT; 831 return ret; 832 } 833 834 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 835 struct btrfs_inode_item); 836 if (size) 837 *size = btrfs_inode_size(path->nodes[0], ii); 838 if (gen) 839 *gen = btrfs_inode_generation(path->nodes[0], ii); 840 if (mode) 841 *mode = btrfs_inode_mode(path->nodes[0], ii); 842 if (uid) 843 *uid = btrfs_inode_uid(path->nodes[0], ii); 844 if (gid) 845 *gid = btrfs_inode_gid(path->nodes[0], ii); 846 if (rdev) 847 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 848 849 return ret; 850 } 851 852 static int get_inode_info(struct btrfs_root *root, 853 u64 ino, u64 *size, u64 *gen, 854 u64 *mode, u64 *uid, u64 *gid, 855 u64 *rdev) 856 { 857 struct btrfs_path *path; 858 int ret; 859 860 path = alloc_path_for_send(); 861 if (!path) 862 return -ENOMEM; 863 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid, 864 rdev); 865 btrfs_free_path(path); 866 return ret; 867 } 868 869 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 870 struct fs_path *p, 871 void *ctx); 872 873 /* 874 * Helper function to iterate the entries in ONE btrfs_inode_ref or 875 * btrfs_inode_extref. 876 * The iterate callback may return a non zero value to stop iteration. This can 877 * be a negative value for error codes or 1 to simply stop it. 878 * 879 * path must point to the INODE_REF or INODE_EXTREF when called. 880 */ 881 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 882 struct btrfs_key *found_key, int resolve, 883 iterate_inode_ref_t iterate, void *ctx) 884 { 885 struct extent_buffer *eb = path->nodes[0]; 886 struct btrfs_item *item; 887 struct btrfs_inode_ref *iref; 888 struct btrfs_inode_extref *extref; 889 struct btrfs_path *tmp_path; 890 struct fs_path *p; 891 u32 cur = 0; 892 u32 total; 893 int slot = path->slots[0]; 894 u32 name_len; 895 char *start; 896 int ret = 0; 897 int num = 0; 898 int index; 899 u64 dir; 900 unsigned long name_off; 901 unsigned long elem_size; 902 unsigned long ptr; 903 904 p = fs_path_alloc_reversed(); 905 if (!p) 906 return -ENOMEM; 907 908 tmp_path = alloc_path_for_send(); 909 if (!tmp_path) { 910 fs_path_free(p); 911 return -ENOMEM; 912 } 913 914 915 if (found_key->type == BTRFS_INODE_REF_KEY) { 916 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 917 struct btrfs_inode_ref); 918 item = btrfs_item_nr(slot); 919 total = btrfs_item_size(eb, item); 920 elem_size = sizeof(*iref); 921 } else { 922 ptr = btrfs_item_ptr_offset(eb, slot); 923 total = btrfs_item_size_nr(eb, slot); 924 elem_size = sizeof(*extref); 925 } 926 927 while (cur < total) { 928 fs_path_reset(p); 929 930 if (found_key->type == BTRFS_INODE_REF_KEY) { 931 iref = (struct btrfs_inode_ref *)(ptr + cur); 932 name_len = btrfs_inode_ref_name_len(eb, iref); 933 name_off = (unsigned long)(iref + 1); 934 index = btrfs_inode_ref_index(eb, iref); 935 dir = found_key->offset; 936 } else { 937 extref = (struct btrfs_inode_extref *)(ptr + cur); 938 name_len = btrfs_inode_extref_name_len(eb, extref); 939 name_off = (unsigned long)&extref->name; 940 index = btrfs_inode_extref_index(eb, extref); 941 dir = btrfs_inode_extref_parent(eb, extref); 942 } 943 944 if (resolve) { 945 start = btrfs_ref_to_path(root, tmp_path, name_len, 946 name_off, eb, dir, 947 p->buf, p->buf_len); 948 if (IS_ERR(start)) { 949 ret = PTR_ERR(start); 950 goto out; 951 } 952 if (start < p->buf) { 953 /* overflow , try again with larger buffer */ 954 ret = fs_path_ensure_buf(p, 955 p->buf_len + p->buf - start); 956 if (ret < 0) 957 goto out; 958 start = btrfs_ref_to_path(root, tmp_path, 959 name_len, name_off, 960 eb, dir, 961 p->buf, p->buf_len); 962 if (IS_ERR(start)) { 963 ret = PTR_ERR(start); 964 goto out; 965 } 966 BUG_ON(start < p->buf); 967 } 968 p->start = start; 969 } else { 970 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 971 name_len); 972 if (ret < 0) 973 goto out; 974 } 975 976 cur += elem_size + name_len; 977 ret = iterate(num, dir, index, p, ctx); 978 if (ret) 979 goto out; 980 num++; 981 } 982 983 out: 984 btrfs_free_path(tmp_path); 985 fs_path_free(p); 986 return ret; 987 } 988 989 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 990 const char *name, int name_len, 991 const char *data, int data_len, 992 u8 type, void *ctx); 993 994 /* 995 * Helper function to iterate the entries in ONE btrfs_dir_item. 996 * The iterate callback may return a non zero value to stop iteration. This can 997 * be a negative value for error codes or 1 to simply stop it. 998 * 999 * path must point to the dir item when called. 1000 */ 1001 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1002 iterate_dir_item_t iterate, void *ctx) 1003 { 1004 int ret = 0; 1005 struct extent_buffer *eb; 1006 struct btrfs_item *item; 1007 struct btrfs_dir_item *di; 1008 struct btrfs_key di_key; 1009 char *buf = NULL; 1010 int buf_len; 1011 u32 name_len; 1012 u32 data_len; 1013 u32 cur; 1014 u32 len; 1015 u32 total; 1016 int slot; 1017 int num; 1018 u8 type; 1019 1020 /* 1021 * Start with a small buffer (1 page). If later we end up needing more 1022 * space, which can happen for xattrs on a fs with a leaf size greater 1023 * then the page size, attempt to increase the buffer. Typically xattr 1024 * values are small. 1025 */ 1026 buf_len = PATH_MAX; 1027 buf = kmalloc(buf_len, GFP_KERNEL); 1028 if (!buf) { 1029 ret = -ENOMEM; 1030 goto out; 1031 } 1032 1033 eb = path->nodes[0]; 1034 slot = path->slots[0]; 1035 item = btrfs_item_nr(slot); 1036 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1037 cur = 0; 1038 len = 0; 1039 total = btrfs_item_size(eb, item); 1040 1041 num = 0; 1042 while (cur < total) { 1043 name_len = btrfs_dir_name_len(eb, di); 1044 data_len = btrfs_dir_data_len(eb, di); 1045 type = btrfs_dir_type(eb, di); 1046 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1047 1048 if (type == BTRFS_FT_XATTR) { 1049 if (name_len > XATTR_NAME_MAX) { 1050 ret = -ENAMETOOLONG; 1051 goto out; 1052 } 1053 if (name_len + data_len > 1054 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1055 ret = -E2BIG; 1056 goto out; 1057 } 1058 } else { 1059 /* 1060 * Path too long 1061 */ 1062 if (name_len + data_len > PATH_MAX) { 1063 ret = -ENAMETOOLONG; 1064 goto out; 1065 } 1066 } 1067 1068 if (name_len + data_len > buf_len) { 1069 buf_len = name_len + data_len; 1070 if (is_vmalloc_addr(buf)) { 1071 vfree(buf); 1072 buf = NULL; 1073 } else { 1074 char *tmp = krealloc(buf, buf_len, 1075 GFP_KERNEL | __GFP_NOWARN); 1076 1077 if (!tmp) 1078 kfree(buf); 1079 buf = tmp; 1080 } 1081 if (!buf) { 1082 buf = kvmalloc(buf_len, GFP_KERNEL); 1083 if (!buf) { 1084 ret = -ENOMEM; 1085 goto out; 1086 } 1087 } 1088 } 1089 1090 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1091 name_len + data_len); 1092 1093 len = sizeof(*di) + name_len + data_len; 1094 di = (struct btrfs_dir_item *)((char *)di + len); 1095 cur += len; 1096 1097 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1098 data_len, type, ctx); 1099 if (ret < 0) 1100 goto out; 1101 if (ret) { 1102 ret = 0; 1103 goto out; 1104 } 1105 1106 num++; 1107 } 1108 1109 out: 1110 kvfree(buf); 1111 return ret; 1112 } 1113 1114 static int __copy_first_ref(int num, u64 dir, int index, 1115 struct fs_path *p, void *ctx) 1116 { 1117 int ret; 1118 struct fs_path *pt = ctx; 1119 1120 ret = fs_path_copy(pt, p); 1121 if (ret < 0) 1122 return ret; 1123 1124 /* we want the first only */ 1125 return 1; 1126 } 1127 1128 /* 1129 * Retrieve the first path of an inode. If an inode has more then one 1130 * ref/hardlink, this is ignored. 1131 */ 1132 static int get_inode_path(struct btrfs_root *root, 1133 u64 ino, struct fs_path *path) 1134 { 1135 int ret; 1136 struct btrfs_key key, found_key; 1137 struct btrfs_path *p; 1138 1139 p = alloc_path_for_send(); 1140 if (!p) 1141 return -ENOMEM; 1142 1143 fs_path_reset(path); 1144 1145 key.objectid = ino; 1146 key.type = BTRFS_INODE_REF_KEY; 1147 key.offset = 0; 1148 1149 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1150 if (ret < 0) 1151 goto out; 1152 if (ret) { 1153 ret = 1; 1154 goto out; 1155 } 1156 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1157 if (found_key.objectid != ino || 1158 (found_key.type != BTRFS_INODE_REF_KEY && 1159 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1160 ret = -ENOENT; 1161 goto out; 1162 } 1163 1164 ret = iterate_inode_ref(root, p, &found_key, 1, 1165 __copy_first_ref, path); 1166 if (ret < 0) 1167 goto out; 1168 ret = 0; 1169 1170 out: 1171 btrfs_free_path(p); 1172 return ret; 1173 } 1174 1175 struct backref_ctx { 1176 struct send_ctx *sctx; 1177 1178 /* number of total found references */ 1179 u64 found; 1180 1181 /* 1182 * used for clones found in send_root. clones found behind cur_objectid 1183 * and cur_offset are not considered as allowed clones. 1184 */ 1185 u64 cur_objectid; 1186 u64 cur_offset; 1187 1188 /* may be truncated in case it's the last extent in a file */ 1189 u64 extent_len; 1190 1191 /* data offset in the file extent item */ 1192 u64 data_offset; 1193 1194 /* Just to check for bugs in backref resolving */ 1195 int found_itself; 1196 }; 1197 1198 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1199 { 1200 u64 root = (u64)(uintptr_t)key; 1201 struct clone_root *cr = (struct clone_root *)elt; 1202 1203 if (root < cr->root->root_key.objectid) 1204 return -1; 1205 if (root > cr->root->root_key.objectid) 1206 return 1; 1207 return 0; 1208 } 1209 1210 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1211 { 1212 struct clone_root *cr1 = (struct clone_root *)e1; 1213 struct clone_root *cr2 = (struct clone_root *)e2; 1214 1215 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid) 1216 return -1; 1217 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid) 1218 return 1; 1219 return 0; 1220 } 1221 1222 /* 1223 * Called for every backref that is found for the current extent. 1224 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1225 */ 1226 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1227 { 1228 struct backref_ctx *bctx = ctx_; 1229 struct clone_root *found; 1230 1231 /* First check if the root is in the list of accepted clone sources */ 1232 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1233 bctx->sctx->clone_roots_cnt, 1234 sizeof(struct clone_root), 1235 __clone_root_cmp_bsearch); 1236 if (!found) 1237 return 0; 1238 1239 if (found->root == bctx->sctx->send_root && 1240 ino == bctx->cur_objectid && 1241 offset == bctx->cur_offset) { 1242 bctx->found_itself = 1; 1243 } 1244 1245 /* 1246 * Make sure we don't consider clones from send_root that are 1247 * behind the current inode/offset. 1248 */ 1249 if (found->root == bctx->sctx->send_root) { 1250 /* 1251 * TODO for the moment we don't accept clones from the inode 1252 * that is currently send. We may change this when 1253 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1254 * file. 1255 */ 1256 if (ino >= bctx->cur_objectid) 1257 return 0; 1258 } 1259 1260 bctx->found++; 1261 found->found_refs++; 1262 if (ino < found->ino) { 1263 found->ino = ino; 1264 found->offset = offset; 1265 } else if (found->ino == ino) { 1266 /* 1267 * same extent found more then once in the same file. 1268 */ 1269 if (found->offset > offset + bctx->extent_len) 1270 found->offset = offset; 1271 } 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Given an inode, offset and extent item, it finds a good clone for a clone 1278 * instruction. Returns -ENOENT when none could be found. The function makes 1279 * sure that the returned clone is usable at the point where sending is at the 1280 * moment. This means, that no clones are accepted which lie behind the current 1281 * inode+offset. 1282 * 1283 * path must point to the extent item when called. 1284 */ 1285 static int find_extent_clone(struct send_ctx *sctx, 1286 struct btrfs_path *path, 1287 u64 ino, u64 data_offset, 1288 u64 ino_size, 1289 struct clone_root **found) 1290 { 1291 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1292 int ret; 1293 int extent_type; 1294 u64 logical; 1295 u64 disk_byte; 1296 u64 num_bytes; 1297 u64 extent_item_pos; 1298 u64 flags = 0; 1299 struct btrfs_file_extent_item *fi; 1300 struct extent_buffer *eb = path->nodes[0]; 1301 struct backref_ctx *backref_ctx = NULL; 1302 struct clone_root *cur_clone_root; 1303 struct btrfs_key found_key; 1304 struct btrfs_path *tmp_path; 1305 int compressed; 1306 u32 i; 1307 1308 tmp_path = alloc_path_for_send(); 1309 if (!tmp_path) 1310 return -ENOMEM; 1311 1312 /* We only use this path under the commit sem */ 1313 tmp_path->need_commit_sem = 0; 1314 1315 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL); 1316 if (!backref_ctx) { 1317 ret = -ENOMEM; 1318 goto out; 1319 } 1320 1321 if (data_offset >= ino_size) { 1322 /* 1323 * There may be extents that lie behind the file's size. 1324 * I at least had this in combination with snapshotting while 1325 * writing large files. 1326 */ 1327 ret = 0; 1328 goto out; 1329 } 1330 1331 fi = btrfs_item_ptr(eb, path->slots[0], 1332 struct btrfs_file_extent_item); 1333 extent_type = btrfs_file_extent_type(eb, fi); 1334 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1335 ret = -ENOENT; 1336 goto out; 1337 } 1338 compressed = btrfs_file_extent_compression(eb, fi); 1339 1340 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1341 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1342 if (disk_byte == 0) { 1343 ret = -ENOENT; 1344 goto out; 1345 } 1346 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1347 1348 down_read(&fs_info->commit_root_sem); 1349 ret = extent_from_logical(fs_info, disk_byte, tmp_path, 1350 &found_key, &flags); 1351 up_read(&fs_info->commit_root_sem); 1352 btrfs_release_path(tmp_path); 1353 1354 if (ret < 0) 1355 goto out; 1356 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1357 ret = -EIO; 1358 goto out; 1359 } 1360 1361 /* 1362 * Setup the clone roots. 1363 */ 1364 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1365 cur_clone_root = sctx->clone_roots + i; 1366 cur_clone_root->ino = (u64)-1; 1367 cur_clone_root->offset = 0; 1368 cur_clone_root->found_refs = 0; 1369 } 1370 1371 backref_ctx->sctx = sctx; 1372 backref_ctx->found = 0; 1373 backref_ctx->cur_objectid = ino; 1374 backref_ctx->cur_offset = data_offset; 1375 backref_ctx->found_itself = 0; 1376 backref_ctx->extent_len = num_bytes; 1377 /* 1378 * For non-compressed extents iterate_extent_inodes() gives us extent 1379 * offsets that already take into account the data offset, but not for 1380 * compressed extents, since the offset is logical and not relative to 1381 * the physical extent locations. We must take this into account to 1382 * avoid sending clone offsets that go beyond the source file's size, 1383 * which would result in the clone ioctl failing with -EINVAL on the 1384 * receiving end. 1385 */ 1386 if (compressed == BTRFS_COMPRESS_NONE) 1387 backref_ctx->data_offset = 0; 1388 else 1389 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi); 1390 1391 /* 1392 * The last extent of a file may be too large due to page alignment. 1393 * We need to adjust extent_len in this case so that the checks in 1394 * __iterate_backrefs work. 1395 */ 1396 if (data_offset + num_bytes >= ino_size) 1397 backref_ctx->extent_len = ino_size - data_offset; 1398 1399 /* 1400 * Now collect all backrefs. 1401 */ 1402 if (compressed == BTRFS_COMPRESS_NONE) 1403 extent_item_pos = logical - found_key.objectid; 1404 else 1405 extent_item_pos = 0; 1406 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1407 extent_item_pos, 1, __iterate_backrefs, 1408 backref_ctx, false); 1409 1410 if (ret < 0) 1411 goto out; 1412 1413 if (!backref_ctx->found_itself) { 1414 /* found a bug in backref code? */ 1415 ret = -EIO; 1416 btrfs_err(fs_info, 1417 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu", 1418 ino, data_offset, disk_byte, found_key.objectid); 1419 goto out; 1420 } 1421 1422 btrfs_debug(fs_info, 1423 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1424 data_offset, ino, num_bytes, logical); 1425 1426 if (!backref_ctx->found) 1427 btrfs_debug(fs_info, "no clones found"); 1428 1429 cur_clone_root = NULL; 1430 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1431 if (sctx->clone_roots[i].found_refs) { 1432 if (!cur_clone_root) 1433 cur_clone_root = sctx->clone_roots + i; 1434 else if (sctx->clone_roots[i].root == sctx->send_root) 1435 /* prefer clones from send_root over others */ 1436 cur_clone_root = sctx->clone_roots + i; 1437 } 1438 1439 } 1440 1441 if (cur_clone_root) { 1442 *found = cur_clone_root; 1443 ret = 0; 1444 } else { 1445 ret = -ENOENT; 1446 } 1447 1448 out: 1449 btrfs_free_path(tmp_path); 1450 kfree(backref_ctx); 1451 return ret; 1452 } 1453 1454 static int read_symlink(struct btrfs_root *root, 1455 u64 ino, 1456 struct fs_path *dest) 1457 { 1458 int ret; 1459 struct btrfs_path *path; 1460 struct btrfs_key key; 1461 struct btrfs_file_extent_item *ei; 1462 u8 type; 1463 u8 compression; 1464 unsigned long off; 1465 int len; 1466 1467 path = alloc_path_for_send(); 1468 if (!path) 1469 return -ENOMEM; 1470 1471 key.objectid = ino; 1472 key.type = BTRFS_EXTENT_DATA_KEY; 1473 key.offset = 0; 1474 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1475 if (ret < 0) 1476 goto out; 1477 if (ret) { 1478 /* 1479 * An empty symlink inode. Can happen in rare error paths when 1480 * creating a symlink (transaction committed before the inode 1481 * eviction handler removed the symlink inode items and a crash 1482 * happened in between or the subvol was snapshoted in between). 1483 * Print an informative message to dmesg/syslog so that the user 1484 * can delete the symlink. 1485 */ 1486 btrfs_err(root->fs_info, 1487 "Found empty symlink inode %llu at root %llu", 1488 ino, root->root_key.objectid); 1489 ret = -EIO; 1490 goto out; 1491 } 1492 1493 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1494 struct btrfs_file_extent_item); 1495 type = btrfs_file_extent_type(path->nodes[0], ei); 1496 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1497 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1498 BUG_ON(compression); 1499 1500 off = btrfs_file_extent_inline_start(ei); 1501 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1502 1503 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1504 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 /* 1511 * Helper function to generate a file name that is unique in the root of 1512 * send_root and parent_root. This is used to generate names for orphan inodes. 1513 */ 1514 static int gen_unique_name(struct send_ctx *sctx, 1515 u64 ino, u64 gen, 1516 struct fs_path *dest) 1517 { 1518 int ret = 0; 1519 struct btrfs_path *path; 1520 struct btrfs_dir_item *di; 1521 char tmp[64]; 1522 int len; 1523 u64 idx = 0; 1524 1525 path = alloc_path_for_send(); 1526 if (!path) 1527 return -ENOMEM; 1528 1529 while (1) { 1530 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1531 ino, gen, idx); 1532 ASSERT(len < sizeof(tmp)); 1533 1534 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1535 path, BTRFS_FIRST_FREE_OBJECTID, 1536 tmp, strlen(tmp), 0); 1537 btrfs_release_path(path); 1538 if (IS_ERR(di)) { 1539 ret = PTR_ERR(di); 1540 goto out; 1541 } 1542 if (di) { 1543 /* not unique, try again */ 1544 idx++; 1545 continue; 1546 } 1547 1548 if (!sctx->parent_root) { 1549 /* unique */ 1550 ret = 0; 1551 break; 1552 } 1553 1554 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1555 path, BTRFS_FIRST_FREE_OBJECTID, 1556 tmp, strlen(tmp), 0); 1557 btrfs_release_path(path); 1558 if (IS_ERR(di)) { 1559 ret = PTR_ERR(di); 1560 goto out; 1561 } 1562 if (di) { 1563 /* not unique, try again */ 1564 idx++; 1565 continue; 1566 } 1567 /* unique */ 1568 break; 1569 } 1570 1571 ret = fs_path_add(dest, tmp, strlen(tmp)); 1572 1573 out: 1574 btrfs_free_path(path); 1575 return ret; 1576 } 1577 1578 enum inode_state { 1579 inode_state_no_change, 1580 inode_state_will_create, 1581 inode_state_did_create, 1582 inode_state_will_delete, 1583 inode_state_did_delete, 1584 }; 1585 1586 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1587 { 1588 int ret; 1589 int left_ret; 1590 int right_ret; 1591 u64 left_gen; 1592 u64 right_gen; 1593 1594 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1595 NULL, NULL); 1596 if (ret < 0 && ret != -ENOENT) 1597 goto out; 1598 left_ret = ret; 1599 1600 if (!sctx->parent_root) { 1601 right_ret = -ENOENT; 1602 } else { 1603 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1604 NULL, NULL, NULL, NULL); 1605 if (ret < 0 && ret != -ENOENT) 1606 goto out; 1607 right_ret = ret; 1608 } 1609 1610 if (!left_ret && !right_ret) { 1611 if (left_gen == gen && right_gen == gen) { 1612 ret = inode_state_no_change; 1613 } else if (left_gen == gen) { 1614 if (ino < sctx->send_progress) 1615 ret = inode_state_did_create; 1616 else 1617 ret = inode_state_will_create; 1618 } else if (right_gen == gen) { 1619 if (ino < sctx->send_progress) 1620 ret = inode_state_did_delete; 1621 else 1622 ret = inode_state_will_delete; 1623 } else { 1624 ret = -ENOENT; 1625 } 1626 } else if (!left_ret) { 1627 if (left_gen == gen) { 1628 if (ino < sctx->send_progress) 1629 ret = inode_state_did_create; 1630 else 1631 ret = inode_state_will_create; 1632 } else { 1633 ret = -ENOENT; 1634 } 1635 } else if (!right_ret) { 1636 if (right_gen == gen) { 1637 if (ino < sctx->send_progress) 1638 ret = inode_state_did_delete; 1639 else 1640 ret = inode_state_will_delete; 1641 } else { 1642 ret = -ENOENT; 1643 } 1644 } else { 1645 ret = -ENOENT; 1646 } 1647 1648 out: 1649 return ret; 1650 } 1651 1652 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1653 { 1654 int ret; 1655 1656 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1657 return 1; 1658 1659 ret = get_cur_inode_state(sctx, ino, gen); 1660 if (ret < 0) 1661 goto out; 1662 1663 if (ret == inode_state_no_change || 1664 ret == inode_state_did_create || 1665 ret == inode_state_will_delete) 1666 ret = 1; 1667 else 1668 ret = 0; 1669 1670 out: 1671 return ret; 1672 } 1673 1674 /* 1675 * Helper function to lookup a dir item in a dir. 1676 */ 1677 static int lookup_dir_item_inode(struct btrfs_root *root, 1678 u64 dir, const char *name, int name_len, 1679 u64 *found_inode, 1680 u8 *found_type) 1681 { 1682 int ret = 0; 1683 struct btrfs_dir_item *di; 1684 struct btrfs_key key; 1685 struct btrfs_path *path; 1686 1687 path = alloc_path_for_send(); 1688 if (!path) 1689 return -ENOMEM; 1690 1691 di = btrfs_lookup_dir_item(NULL, root, path, 1692 dir, name, name_len, 0); 1693 if (IS_ERR_OR_NULL(di)) { 1694 ret = di ? PTR_ERR(di) : -ENOENT; 1695 goto out; 1696 } 1697 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1698 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1699 ret = -ENOENT; 1700 goto out; 1701 } 1702 *found_inode = key.objectid; 1703 *found_type = btrfs_dir_type(path->nodes[0], di); 1704 1705 out: 1706 btrfs_free_path(path); 1707 return ret; 1708 } 1709 1710 /* 1711 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1712 * generation of the parent dir and the name of the dir entry. 1713 */ 1714 static int get_first_ref(struct btrfs_root *root, u64 ino, 1715 u64 *dir, u64 *dir_gen, struct fs_path *name) 1716 { 1717 int ret; 1718 struct btrfs_key key; 1719 struct btrfs_key found_key; 1720 struct btrfs_path *path; 1721 int len; 1722 u64 parent_dir; 1723 1724 path = alloc_path_for_send(); 1725 if (!path) 1726 return -ENOMEM; 1727 1728 key.objectid = ino; 1729 key.type = BTRFS_INODE_REF_KEY; 1730 key.offset = 0; 1731 1732 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1733 if (ret < 0) 1734 goto out; 1735 if (!ret) 1736 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1737 path->slots[0]); 1738 if (ret || found_key.objectid != ino || 1739 (found_key.type != BTRFS_INODE_REF_KEY && 1740 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1741 ret = -ENOENT; 1742 goto out; 1743 } 1744 1745 if (found_key.type == BTRFS_INODE_REF_KEY) { 1746 struct btrfs_inode_ref *iref; 1747 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1748 struct btrfs_inode_ref); 1749 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1750 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1751 (unsigned long)(iref + 1), 1752 len); 1753 parent_dir = found_key.offset; 1754 } else { 1755 struct btrfs_inode_extref *extref; 1756 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1757 struct btrfs_inode_extref); 1758 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 1759 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1760 (unsigned long)&extref->name, len); 1761 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 1762 } 1763 if (ret < 0) 1764 goto out; 1765 btrfs_release_path(path); 1766 1767 if (dir_gen) { 1768 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, 1769 NULL, NULL, NULL); 1770 if (ret < 0) 1771 goto out; 1772 } 1773 1774 *dir = parent_dir; 1775 1776 out: 1777 btrfs_free_path(path); 1778 return ret; 1779 } 1780 1781 static int is_first_ref(struct btrfs_root *root, 1782 u64 ino, u64 dir, 1783 const char *name, int name_len) 1784 { 1785 int ret; 1786 struct fs_path *tmp_name; 1787 u64 tmp_dir; 1788 1789 tmp_name = fs_path_alloc(); 1790 if (!tmp_name) 1791 return -ENOMEM; 1792 1793 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 1794 if (ret < 0) 1795 goto out; 1796 1797 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1798 ret = 0; 1799 goto out; 1800 } 1801 1802 ret = !memcmp(tmp_name->start, name, name_len); 1803 1804 out: 1805 fs_path_free(tmp_name); 1806 return ret; 1807 } 1808 1809 /* 1810 * Used by process_recorded_refs to determine if a new ref would overwrite an 1811 * already existing ref. In case it detects an overwrite, it returns the 1812 * inode/gen in who_ino/who_gen. 1813 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1814 * to make sure later references to the overwritten inode are possible. 1815 * Orphanizing is however only required for the first ref of an inode. 1816 * process_recorded_refs does an additional is_first_ref check to see if 1817 * orphanizing is really required. 1818 */ 1819 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1820 const char *name, int name_len, 1821 u64 *who_ino, u64 *who_gen, u64 *who_mode) 1822 { 1823 int ret = 0; 1824 u64 gen; 1825 u64 other_inode = 0; 1826 u8 other_type = 0; 1827 1828 if (!sctx->parent_root) 1829 goto out; 1830 1831 ret = is_inode_existent(sctx, dir, dir_gen); 1832 if (ret <= 0) 1833 goto out; 1834 1835 /* 1836 * If we have a parent root we need to verify that the parent dir was 1837 * not deleted and then re-created, if it was then we have no overwrite 1838 * and we can just unlink this entry. 1839 */ 1840 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) { 1841 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, 1842 NULL, NULL, NULL); 1843 if (ret < 0 && ret != -ENOENT) 1844 goto out; 1845 if (ret) { 1846 ret = 0; 1847 goto out; 1848 } 1849 if (gen != dir_gen) 1850 goto out; 1851 } 1852 1853 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1854 &other_inode, &other_type); 1855 if (ret < 0 && ret != -ENOENT) 1856 goto out; 1857 if (ret) { 1858 ret = 0; 1859 goto out; 1860 } 1861 1862 /* 1863 * Check if the overwritten ref was already processed. If yes, the ref 1864 * was already unlinked/moved, so we can safely assume that we will not 1865 * overwrite anything at this point in time. 1866 */ 1867 if (other_inode > sctx->send_progress || 1868 is_waiting_for_move(sctx, other_inode)) { 1869 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1870 who_gen, who_mode, NULL, NULL, NULL); 1871 if (ret < 0) 1872 goto out; 1873 1874 ret = 1; 1875 *who_ino = other_inode; 1876 } else { 1877 ret = 0; 1878 } 1879 1880 out: 1881 return ret; 1882 } 1883 1884 /* 1885 * Checks if the ref was overwritten by an already processed inode. This is 1886 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1887 * thus the orphan name needs be used. 1888 * process_recorded_refs also uses it to avoid unlinking of refs that were 1889 * overwritten. 1890 */ 1891 static int did_overwrite_ref(struct send_ctx *sctx, 1892 u64 dir, u64 dir_gen, 1893 u64 ino, u64 ino_gen, 1894 const char *name, int name_len) 1895 { 1896 int ret = 0; 1897 u64 gen; 1898 u64 ow_inode; 1899 u8 other_type; 1900 1901 if (!sctx->parent_root) 1902 goto out; 1903 1904 ret = is_inode_existent(sctx, dir, dir_gen); 1905 if (ret <= 0) 1906 goto out; 1907 1908 if (dir != BTRFS_FIRST_FREE_OBJECTID) { 1909 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, 1910 NULL, NULL, NULL); 1911 if (ret < 0 && ret != -ENOENT) 1912 goto out; 1913 if (ret) { 1914 ret = 0; 1915 goto out; 1916 } 1917 if (gen != dir_gen) 1918 goto out; 1919 } 1920 1921 /* check if the ref was overwritten by another ref */ 1922 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1923 &ow_inode, &other_type); 1924 if (ret < 0 && ret != -ENOENT) 1925 goto out; 1926 if (ret) { 1927 /* was never and will never be overwritten */ 1928 ret = 0; 1929 goto out; 1930 } 1931 1932 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1933 NULL, NULL); 1934 if (ret < 0) 1935 goto out; 1936 1937 if (ow_inode == ino && gen == ino_gen) { 1938 ret = 0; 1939 goto out; 1940 } 1941 1942 /* 1943 * We know that it is or will be overwritten. Check this now. 1944 * The current inode being processed might have been the one that caused 1945 * inode 'ino' to be orphanized, therefore check if ow_inode matches 1946 * the current inode being processed. 1947 */ 1948 if ((ow_inode < sctx->send_progress) || 1949 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino && 1950 gen == sctx->cur_inode_gen)) 1951 ret = 1; 1952 else 1953 ret = 0; 1954 1955 out: 1956 return ret; 1957 } 1958 1959 /* 1960 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1961 * that got overwritten. This is used by process_recorded_refs to determine 1962 * if it has to use the path as returned by get_cur_path or the orphan name. 1963 */ 1964 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1965 { 1966 int ret = 0; 1967 struct fs_path *name = NULL; 1968 u64 dir; 1969 u64 dir_gen; 1970 1971 if (!sctx->parent_root) 1972 goto out; 1973 1974 name = fs_path_alloc(); 1975 if (!name) 1976 return -ENOMEM; 1977 1978 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 1979 if (ret < 0) 1980 goto out; 1981 1982 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1983 name->start, fs_path_len(name)); 1984 1985 out: 1986 fs_path_free(name); 1987 return ret; 1988 } 1989 1990 /* 1991 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1992 * so we need to do some special handling in case we have clashes. This function 1993 * takes care of this with the help of name_cache_entry::radix_list. 1994 * In case of error, nce is kfreed. 1995 */ 1996 static int name_cache_insert(struct send_ctx *sctx, 1997 struct name_cache_entry *nce) 1998 { 1999 int ret = 0; 2000 struct list_head *nce_head; 2001 2002 nce_head = radix_tree_lookup(&sctx->name_cache, 2003 (unsigned long)nce->ino); 2004 if (!nce_head) { 2005 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL); 2006 if (!nce_head) { 2007 kfree(nce); 2008 return -ENOMEM; 2009 } 2010 INIT_LIST_HEAD(nce_head); 2011 2012 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 2013 if (ret < 0) { 2014 kfree(nce_head); 2015 kfree(nce); 2016 return ret; 2017 } 2018 } 2019 list_add_tail(&nce->radix_list, nce_head); 2020 list_add_tail(&nce->list, &sctx->name_cache_list); 2021 sctx->name_cache_size++; 2022 2023 return ret; 2024 } 2025 2026 static void name_cache_delete(struct send_ctx *sctx, 2027 struct name_cache_entry *nce) 2028 { 2029 struct list_head *nce_head; 2030 2031 nce_head = radix_tree_lookup(&sctx->name_cache, 2032 (unsigned long)nce->ino); 2033 if (!nce_head) { 2034 btrfs_err(sctx->send_root->fs_info, 2035 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory", 2036 nce->ino, sctx->name_cache_size); 2037 } 2038 2039 list_del(&nce->radix_list); 2040 list_del(&nce->list); 2041 sctx->name_cache_size--; 2042 2043 /* 2044 * We may not get to the final release of nce_head if the lookup fails 2045 */ 2046 if (nce_head && list_empty(nce_head)) { 2047 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 2048 kfree(nce_head); 2049 } 2050 } 2051 2052 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2053 u64 ino, u64 gen) 2054 { 2055 struct list_head *nce_head; 2056 struct name_cache_entry *cur; 2057 2058 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 2059 if (!nce_head) 2060 return NULL; 2061 2062 list_for_each_entry(cur, nce_head, radix_list) { 2063 if (cur->ino == ino && cur->gen == gen) 2064 return cur; 2065 } 2066 return NULL; 2067 } 2068 2069 /* 2070 * Removes the entry from the list and adds it back to the end. This marks the 2071 * entry as recently used so that name_cache_clean_unused does not remove it. 2072 */ 2073 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 2074 { 2075 list_del(&nce->list); 2076 list_add_tail(&nce->list, &sctx->name_cache_list); 2077 } 2078 2079 /* 2080 * Remove some entries from the beginning of name_cache_list. 2081 */ 2082 static void name_cache_clean_unused(struct send_ctx *sctx) 2083 { 2084 struct name_cache_entry *nce; 2085 2086 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 2087 return; 2088 2089 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 2090 nce = list_entry(sctx->name_cache_list.next, 2091 struct name_cache_entry, list); 2092 name_cache_delete(sctx, nce); 2093 kfree(nce); 2094 } 2095 } 2096 2097 static void name_cache_free(struct send_ctx *sctx) 2098 { 2099 struct name_cache_entry *nce; 2100 2101 while (!list_empty(&sctx->name_cache_list)) { 2102 nce = list_entry(sctx->name_cache_list.next, 2103 struct name_cache_entry, list); 2104 name_cache_delete(sctx, nce); 2105 kfree(nce); 2106 } 2107 } 2108 2109 /* 2110 * Used by get_cur_path for each ref up to the root. 2111 * Returns 0 if it succeeded. 2112 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2113 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2114 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2115 * Returns <0 in case of error. 2116 */ 2117 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2118 u64 ino, u64 gen, 2119 u64 *parent_ino, 2120 u64 *parent_gen, 2121 struct fs_path *dest) 2122 { 2123 int ret; 2124 int nce_ret; 2125 struct name_cache_entry *nce = NULL; 2126 2127 /* 2128 * First check if we already did a call to this function with the same 2129 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2130 * return the cached result. 2131 */ 2132 nce = name_cache_search(sctx, ino, gen); 2133 if (nce) { 2134 if (ino < sctx->send_progress && nce->need_later_update) { 2135 name_cache_delete(sctx, nce); 2136 kfree(nce); 2137 nce = NULL; 2138 } else { 2139 name_cache_used(sctx, nce); 2140 *parent_ino = nce->parent_ino; 2141 *parent_gen = nce->parent_gen; 2142 ret = fs_path_add(dest, nce->name, nce->name_len); 2143 if (ret < 0) 2144 goto out; 2145 ret = nce->ret; 2146 goto out; 2147 } 2148 } 2149 2150 /* 2151 * If the inode is not existent yet, add the orphan name and return 1. 2152 * This should only happen for the parent dir that we determine in 2153 * __record_new_ref 2154 */ 2155 ret = is_inode_existent(sctx, ino, gen); 2156 if (ret < 0) 2157 goto out; 2158 2159 if (!ret) { 2160 ret = gen_unique_name(sctx, ino, gen, dest); 2161 if (ret < 0) 2162 goto out; 2163 ret = 1; 2164 goto out_cache; 2165 } 2166 2167 /* 2168 * Depending on whether the inode was already processed or not, use 2169 * send_root or parent_root for ref lookup. 2170 */ 2171 if (ino < sctx->send_progress) 2172 ret = get_first_ref(sctx->send_root, ino, 2173 parent_ino, parent_gen, dest); 2174 else 2175 ret = get_first_ref(sctx->parent_root, ino, 2176 parent_ino, parent_gen, dest); 2177 if (ret < 0) 2178 goto out; 2179 2180 /* 2181 * Check if the ref was overwritten by an inode's ref that was processed 2182 * earlier. If yes, treat as orphan and return 1. 2183 */ 2184 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2185 dest->start, dest->end - dest->start); 2186 if (ret < 0) 2187 goto out; 2188 if (ret) { 2189 fs_path_reset(dest); 2190 ret = gen_unique_name(sctx, ino, gen, dest); 2191 if (ret < 0) 2192 goto out; 2193 ret = 1; 2194 } 2195 2196 out_cache: 2197 /* 2198 * Store the result of the lookup in the name cache. 2199 */ 2200 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL); 2201 if (!nce) { 2202 ret = -ENOMEM; 2203 goto out; 2204 } 2205 2206 nce->ino = ino; 2207 nce->gen = gen; 2208 nce->parent_ino = *parent_ino; 2209 nce->parent_gen = *parent_gen; 2210 nce->name_len = fs_path_len(dest); 2211 nce->ret = ret; 2212 strcpy(nce->name, dest->start); 2213 2214 if (ino < sctx->send_progress) 2215 nce->need_later_update = 0; 2216 else 2217 nce->need_later_update = 1; 2218 2219 nce_ret = name_cache_insert(sctx, nce); 2220 if (nce_ret < 0) 2221 ret = nce_ret; 2222 name_cache_clean_unused(sctx); 2223 2224 out: 2225 return ret; 2226 } 2227 2228 /* 2229 * Magic happens here. This function returns the first ref to an inode as it 2230 * would look like while receiving the stream at this point in time. 2231 * We walk the path up to the root. For every inode in between, we check if it 2232 * was already processed/sent. If yes, we continue with the parent as found 2233 * in send_root. If not, we continue with the parent as found in parent_root. 2234 * If we encounter an inode that was deleted at this point in time, we use the 2235 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2236 * that were not created yet and overwritten inodes/refs. 2237 * 2238 * When do we have orphan inodes: 2239 * 1. When an inode is freshly created and thus no valid refs are available yet 2240 * 2. When a directory lost all it's refs (deleted) but still has dir items 2241 * inside which were not processed yet (pending for move/delete). If anyone 2242 * tried to get the path to the dir items, it would get a path inside that 2243 * orphan directory. 2244 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2245 * of an unprocessed inode. If in that case the first ref would be 2246 * overwritten, the overwritten inode gets "orphanized". Later when we 2247 * process this overwritten inode, it is restored at a new place by moving 2248 * the orphan inode. 2249 * 2250 * sctx->send_progress tells this function at which point in time receiving 2251 * would be. 2252 */ 2253 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2254 struct fs_path *dest) 2255 { 2256 int ret = 0; 2257 struct fs_path *name = NULL; 2258 u64 parent_inode = 0; 2259 u64 parent_gen = 0; 2260 int stop = 0; 2261 2262 name = fs_path_alloc(); 2263 if (!name) { 2264 ret = -ENOMEM; 2265 goto out; 2266 } 2267 2268 dest->reversed = 1; 2269 fs_path_reset(dest); 2270 2271 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2272 struct waiting_dir_move *wdm; 2273 2274 fs_path_reset(name); 2275 2276 if (is_waiting_for_rm(sctx, ino)) { 2277 ret = gen_unique_name(sctx, ino, gen, name); 2278 if (ret < 0) 2279 goto out; 2280 ret = fs_path_add_path(dest, name); 2281 break; 2282 } 2283 2284 wdm = get_waiting_dir_move(sctx, ino); 2285 if (wdm && wdm->orphanized) { 2286 ret = gen_unique_name(sctx, ino, gen, name); 2287 stop = 1; 2288 } else if (wdm) { 2289 ret = get_first_ref(sctx->parent_root, ino, 2290 &parent_inode, &parent_gen, name); 2291 } else { 2292 ret = __get_cur_name_and_parent(sctx, ino, gen, 2293 &parent_inode, 2294 &parent_gen, name); 2295 if (ret) 2296 stop = 1; 2297 } 2298 2299 if (ret < 0) 2300 goto out; 2301 2302 ret = fs_path_add_path(dest, name); 2303 if (ret < 0) 2304 goto out; 2305 2306 ino = parent_inode; 2307 gen = parent_gen; 2308 } 2309 2310 out: 2311 fs_path_free(name); 2312 if (!ret) 2313 fs_path_unreverse(dest); 2314 return ret; 2315 } 2316 2317 /* 2318 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2319 */ 2320 static int send_subvol_begin(struct send_ctx *sctx) 2321 { 2322 int ret; 2323 struct btrfs_root *send_root = sctx->send_root; 2324 struct btrfs_root *parent_root = sctx->parent_root; 2325 struct btrfs_path *path; 2326 struct btrfs_key key; 2327 struct btrfs_root_ref *ref; 2328 struct extent_buffer *leaf; 2329 char *name = NULL; 2330 int namelen; 2331 2332 path = btrfs_alloc_path(); 2333 if (!path) 2334 return -ENOMEM; 2335 2336 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2337 if (!name) { 2338 btrfs_free_path(path); 2339 return -ENOMEM; 2340 } 2341 2342 key.objectid = send_root->root_key.objectid; 2343 key.type = BTRFS_ROOT_BACKREF_KEY; 2344 key.offset = 0; 2345 2346 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2347 &key, path, 1, 0); 2348 if (ret < 0) 2349 goto out; 2350 if (ret) { 2351 ret = -ENOENT; 2352 goto out; 2353 } 2354 2355 leaf = path->nodes[0]; 2356 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2357 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2358 key.objectid != send_root->root_key.objectid) { 2359 ret = -ENOENT; 2360 goto out; 2361 } 2362 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2363 namelen = btrfs_root_ref_name_len(leaf, ref); 2364 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2365 btrfs_release_path(path); 2366 2367 if (parent_root) { 2368 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2369 if (ret < 0) 2370 goto out; 2371 } else { 2372 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2373 if (ret < 0) 2374 goto out; 2375 } 2376 2377 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2378 2379 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2380 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2381 sctx->send_root->root_item.received_uuid); 2382 else 2383 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2384 sctx->send_root->root_item.uuid); 2385 2386 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2387 le64_to_cpu(sctx->send_root->root_item.ctransid)); 2388 if (parent_root) { 2389 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2391 parent_root->root_item.received_uuid); 2392 else 2393 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2394 parent_root->root_item.uuid); 2395 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2396 le64_to_cpu(sctx->parent_root->root_item.ctransid)); 2397 } 2398 2399 ret = send_cmd(sctx); 2400 2401 tlv_put_failure: 2402 out: 2403 btrfs_free_path(path); 2404 kfree(name); 2405 return ret; 2406 } 2407 2408 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2409 { 2410 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2411 int ret = 0; 2412 struct fs_path *p; 2413 2414 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2415 2416 p = fs_path_alloc(); 2417 if (!p) 2418 return -ENOMEM; 2419 2420 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2421 if (ret < 0) 2422 goto out; 2423 2424 ret = get_cur_path(sctx, ino, gen, p); 2425 if (ret < 0) 2426 goto out; 2427 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2428 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2429 2430 ret = send_cmd(sctx); 2431 2432 tlv_put_failure: 2433 out: 2434 fs_path_free(p); 2435 return ret; 2436 } 2437 2438 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2439 { 2440 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2441 int ret = 0; 2442 struct fs_path *p; 2443 2444 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2445 2446 p = fs_path_alloc(); 2447 if (!p) 2448 return -ENOMEM; 2449 2450 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2451 if (ret < 0) 2452 goto out; 2453 2454 ret = get_cur_path(sctx, ino, gen, p); 2455 if (ret < 0) 2456 goto out; 2457 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2458 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2459 2460 ret = send_cmd(sctx); 2461 2462 tlv_put_failure: 2463 out: 2464 fs_path_free(p); 2465 return ret; 2466 } 2467 2468 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2469 { 2470 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2471 int ret = 0; 2472 struct fs_path *p; 2473 2474 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2475 ino, uid, gid); 2476 2477 p = fs_path_alloc(); 2478 if (!p) 2479 return -ENOMEM; 2480 2481 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2482 if (ret < 0) 2483 goto out; 2484 2485 ret = get_cur_path(sctx, ino, gen, p); 2486 if (ret < 0) 2487 goto out; 2488 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2489 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2490 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2491 2492 ret = send_cmd(sctx); 2493 2494 tlv_put_failure: 2495 out: 2496 fs_path_free(p); 2497 return ret; 2498 } 2499 2500 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2501 { 2502 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2503 int ret = 0; 2504 struct fs_path *p = NULL; 2505 struct btrfs_inode_item *ii; 2506 struct btrfs_path *path = NULL; 2507 struct extent_buffer *eb; 2508 struct btrfs_key key; 2509 int slot; 2510 2511 btrfs_debug(fs_info, "send_utimes %llu", ino); 2512 2513 p = fs_path_alloc(); 2514 if (!p) 2515 return -ENOMEM; 2516 2517 path = alloc_path_for_send(); 2518 if (!path) { 2519 ret = -ENOMEM; 2520 goto out; 2521 } 2522 2523 key.objectid = ino; 2524 key.type = BTRFS_INODE_ITEM_KEY; 2525 key.offset = 0; 2526 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2527 if (ret > 0) 2528 ret = -ENOENT; 2529 if (ret < 0) 2530 goto out; 2531 2532 eb = path->nodes[0]; 2533 slot = path->slots[0]; 2534 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2535 2536 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2537 if (ret < 0) 2538 goto out; 2539 2540 ret = get_cur_path(sctx, ino, gen, p); 2541 if (ret < 0) 2542 goto out; 2543 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2544 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2545 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2546 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2547 /* TODO Add otime support when the otime patches get into upstream */ 2548 2549 ret = send_cmd(sctx); 2550 2551 tlv_put_failure: 2552 out: 2553 fs_path_free(p); 2554 btrfs_free_path(path); 2555 return ret; 2556 } 2557 2558 /* 2559 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2560 * a valid path yet because we did not process the refs yet. So, the inode 2561 * is created as orphan. 2562 */ 2563 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2564 { 2565 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2566 int ret = 0; 2567 struct fs_path *p; 2568 int cmd; 2569 u64 gen; 2570 u64 mode; 2571 u64 rdev; 2572 2573 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2574 2575 p = fs_path_alloc(); 2576 if (!p) 2577 return -ENOMEM; 2578 2579 if (ino != sctx->cur_ino) { 2580 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, 2581 NULL, NULL, &rdev); 2582 if (ret < 0) 2583 goto out; 2584 } else { 2585 gen = sctx->cur_inode_gen; 2586 mode = sctx->cur_inode_mode; 2587 rdev = sctx->cur_inode_rdev; 2588 } 2589 2590 if (S_ISREG(mode)) { 2591 cmd = BTRFS_SEND_C_MKFILE; 2592 } else if (S_ISDIR(mode)) { 2593 cmd = BTRFS_SEND_C_MKDIR; 2594 } else if (S_ISLNK(mode)) { 2595 cmd = BTRFS_SEND_C_SYMLINK; 2596 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2597 cmd = BTRFS_SEND_C_MKNOD; 2598 } else if (S_ISFIFO(mode)) { 2599 cmd = BTRFS_SEND_C_MKFIFO; 2600 } else if (S_ISSOCK(mode)) { 2601 cmd = BTRFS_SEND_C_MKSOCK; 2602 } else { 2603 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2604 (int)(mode & S_IFMT)); 2605 ret = -EOPNOTSUPP; 2606 goto out; 2607 } 2608 2609 ret = begin_cmd(sctx, cmd); 2610 if (ret < 0) 2611 goto out; 2612 2613 ret = gen_unique_name(sctx, ino, gen, p); 2614 if (ret < 0) 2615 goto out; 2616 2617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2618 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2619 2620 if (S_ISLNK(mode)) { 2621 fs_path_reset(p); 2622 ret = read_symlink(sctx->send_root, ino, p); 2623 if (ret < 0) 2624 goto out; 2625 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2626 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2627 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2628 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2629 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2630 } 2631 2632 ret = send_cmd(sctx); 2633 if (ret < 0) 2634 goto out; 2635 2636 2637 tlv_put_failure: 2638 out: 2639 fs_path_free(p); 2640 return ret; 2641 } 2642 2643 /* 2644 * We need some special handling for inodes that get processed before the parent 2645 * directory got created. See process_recorded_refs for details. 2646 * This function does the check if we already created the dir out of order. 2647 */ 2648 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2649 { 2650 int ret = 0; 2651 struct btrfs_path *path = NULL; 2652 struct btrfs_key key; 2653 struct btrfs_key found_key; 2654 struct btrfs_key di_key; 2655 struct extent_buffer *eb; 2656 struct btrfs_dir_item *di; 2657 int slot; 2658 2659 path = alloc_path_for_send(); 2660 if (!path) { 2661 ret = -ENOMEM; 2662 goto out; 2663 } 2664 2665 key.objectid = dir; 2666 key.type = BTRFS_DIR_INDEX_KEY; 2667 key.offset = 0; 2668 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2669 if (ret < 0) 2670 goto out; 2671 2672 while (1) { 2673 eb = path->nodes[0]; 2674 slot = path->slots[0]; 2675 if (slot >= btrfs_header_nritems(eb)) { 2676 ret = btrfs_next_leaf(sctx->send_root, path); 2677 if (ret < 0) { 2678 goto out; 2679 } else if (ret > 0) { 2680 ret = 0; 2681 break; 2682 } 2683 continue; 2684 } 2685 2686 btrfs_item_key_to_cpu(eb, &found_key, slot); 2687 if (found_key.objectid != key.objectid || 2688 found_key.type != key.type) { 2689 ret = 0; 2690 goto out; 2691 } 2692 2693 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2694 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2695 2696 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2697 di_key.objectid < sctx->send_progress) { 2698 ret = 1; 2699 goto out; 2700 } 2701 2702 path->slots[0]++; 2703 } 2704 2705 out: 2706 btrfs_free_path(path); 2707 return ret; 2708 } 2709 2710 /* 2711 * Only creates the inode if it is: 2712 * 1. Not a directory 2713 * 2. Or a directory which was not created already due to out of order 2714 * directories. See did_create_dir and process_recorded_refs for details. 2715 */ 2716 static int send_create_inode_if_needed(struct send_ctx *sctx) 2717 { 2718 int ret; 2719 2720 if (S_ISDIR(sctx->cur_inode_mode)) { 2721 ret = did_create_dir(sctx, sctx->cur_ino); 2722 if (ret < 0) 2723 goto out; 2724 if (ret) { 2725 ret = 0; 2726 goto out; 2727 } 2728 } 2729 2730 ret = send_create_inode(sctx, sctx->cur_ino); 2731 if (ret < 0) 2732 goto out; 2733 2734 out: 2735 return ret; 2736 } 2737 2738 struct recorded_ref { 2739 struct list_head list; 2740 char *name; 2741 struct fs_path *full_path; 2742 u64 dir; 2743 u64 dir_gen; 2744 int name_len; 2745 }; 2746 2747 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 2748 { 2749 ref->full_path = path; 2750 ref->name = (char *)kbasename(ref->full_path->start); 2751 ref->name_len = ref->full_path->end - ref->name; 2752 } 2753 2754 /* 2755 * We need to process new refs before deleted refs, but compare_tree gives us 2756 * everything mixed. So we first record all refs and later process them. 2757 * This function is a helper to record one ref. 2758 */ 2759 static int __record_ref(struct list_head *head, u64 dir, 2760 u64 dir_gen, struct fs_path *path) 2761 { 2762 struct recorded_ref *ref; 2763 2764 ref = kmalloc(sizeof(*ref), GFP_KERNEL); 2765 if (!ref) 2766 return -ENOMEM; 2767 2768 ref->dir = dir; 2769 ref->dir_gen = dir_gen; 2770 set_ref_path(ref, path); 2771 list_add_tail(&ref->list, head); 2772 return 0; 2773 } 2774 2775 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 2776 { 2777 struct recorded_ref *new; 2778 2779 new = kmalloc(sizeof(*ref), GFP_KERNEL); 2780 if (!new) 2781 return -ENOMEM; 2782 2783 new->dir = ref->dir; 2784 new->dir_gen = ref->dir_gen; 2785 new->full_path = NULL; 2786 INIT_LIST_HEAD(&new->list); 2787 list_add_tail(&new->list, list); 2788 return 0; 2789 } 2790 2791 static void __free_recorded_refs(struct list_head *head) 2792 { 2793 struct recorded_ref *cur; 2794 2795 while (!list_empty(head)) { 2796 cur = list_entry(head->next, struct recorded_ref, list); 2797 fs_path_free(cur->full_path); 2798 list_del(&cur->list); 2799 kfree(cur); 2800 } 2801 } 2802 2803 static void free_recorded_refs(struct send_ctx *sctx) 2804 { 2805 __free_recorded_refs(&sctx->new_refs); 2806 __free_recorded_refs(&sctx->deleted_refs); 2807 } 2808 2809 /* 2810 * Renames/moves a file/dir to its orphan name. Used when the first 2811 * ref of an unprocessed inode gets overwritten and for all non empty 2812 * directories. 2813 */ 2814 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2815 struct fs_path *path) 2816 { 2817 int ret; 2818 struct fs_path *orphan; 2819 2820 orphan = fs_path_alloc(); 2821 if (!orphan) 2822 return -ENOMEM; 2823 2824 ret = gen_unique_name(sctx, ino, gen, orphan); 2825 if (ret < 0) 2826 goto out; 2827 2828 ret = send_rename(sctx, path, orphan); 2829 2830 out: 2831 fs_path_free(orphan); 2832 return ret; 2833 } 2834 2835 static struct orphan_dir_info * 2836 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2837 { 2838 struct rb_node **p = &sctx->orphan_dirs.rb_node; 2839 struct rb_node *parent = NULL; 2840 struct orphan_dir_info *entry, *odi; 2841 2842 while (*p) { 2843 parent = *p; 2844 entry = rb_entry(parent, struct orphan_dir_info, node); 2845 if (dir_ino < entry->ino) { 2846 p = &(*p)->rb_left; 2847 } else if (dir_ino > entry->ino) { 2848 p = &(*p)->rb_right; 2849 } else { 2850 return entry; 2851 } 2852 } 2853 2854 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 2855 if (!odi) 2856 return ERR_PTR(-ENOMEM); 2857 odi->ino = dir_ino; 2858 odi->gen = 0; 2859 odi->last_dir_index_offset = 0; 2860 2861 rb_link_node(&odi->node, parent, p); 2862 rb_insert_color(&odi->node, &sctx->orphan_dirs); 2863 return odi; 2864 } 2865 2866 static struct orphan_dir_info * 2867 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino) 2868 { 2869 struct rb_node *n = sctx->orphan_dirs.rb_node; 2870 struct orphan_dir_info *entry; 2871 2872 while (n) { 2873 entry = rb_entry(n, struct orphan_dir_info, node); 2874 if (dir_ino < entry->ino) 2875 n = n->rb_left; 2876 else if (dir_ino > entry->ino) 2877 n = n->rb_right; 2878 else 2879 return entry; 2880 } 2881 return NULL; 2882 } 2883 2884 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino) 2885 { 2886 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino); 2887 2888 return odi != NULL; 2889 } 2890 2891 static void free_orphan_dir_info(struct send_ctx *sctx, 2892 struct orphan_dir_info *odi) 2893 { 2894 if (!odi) 2895 return; 2896 rb_erase(&odi->node, &sctx->orphan_dirs); 2897 kfree(odi); 2898 } 2899 2900 /* 2901 * Returns 1 if a directory can be removed at this point in time. 2902 * We check this by iterating all dir items and checking if the inode behind 2903 * the dir item was already processed. 2904 */ 2905 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2906 u64 send_progress) 2907 { 2908 int ret = 0; 2909 struct btrfs_root *root = sctx->parent_root; 2910 struct btrfs_path *path; 2911 struct btrfs_key key; 2912 struct btrfs_key found_key; 2913 struct btrfs_key loc; 2914 struct btrfs_dir_item *di; 2915 struct orphan_dir_info *odi = NULL; 2916 2917 /* 2918 * Don't try to rmdir the top/root subvolume dir. 2919 */ 2920 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2921 return 0; 2922 2923 path = alloc_path_for_send(); 2924 if (!path) 2925 return -ENOMEM; 2926 2927 key.objectid = dir; 2928 key.type = BTRFS_DIR_INDEX_KEY; 2929 key.offset = 0; 2930 2931 odi = get_orphan_dir_info(sctx, dir); 2932 if (odi) 2933 key.offset = odi->last_dir_index_offset; 2934 2935 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2936 if (ret < 0) 2937 goto out; 2938 2939 while (1) { 2940 struct waiting_dir_move *dm; 2941 2942 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2943 ret = btrfs_next_leaf(root, path); 2944 if (ret < 0) 2945 goto out; 2946 else if (ret > 0) 2947 break; 2948 continue; 2949 } 2950 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2951 path->slots[0]); 2952 if (found_key.objectid != key.objectid || 2953 found_key.type != key.type) 2954 break; 2955 2956 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2957 struct btrfs_dir_item); 2958 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2959 2960 dm = get_waiting_dir_move(sctx, loc.objectid); 2961 if (dm) { 2962 odi = add_orphan_dir_info(sctx, dir); 2963 if (IS_ERR(odi)) { 2964 ret = PTR_ERR(odi); 2965 goto out; 2966 } 2967 odi->gen = dir_gen; 2968 odi->last_dir_index_offset = found_key.offset; 2969 dm->rmdir_ino = dir; 2970 ret = 0; 2971 goto out; 2972 } 2973 2974 if (loc.objectid > send_progress) { 2975 odi = add_orphan_dir_info(sctx, dir); 2976 if (IS_ERR(odi)) { 2977 ret = PTR_ERR(odi); 2978 goto out; 2979 } 2980 odi->gen = dir_gen; 2981 odi->last_dir_index_offset = found_key.offset; 2982 ret = 0; 2983 goto out; 2984 } 2985 2986 path->slots[0]++; 2987 } 2988 free_orphan_dir_info(sctx, odi); 2989 2990 ret = 1; 2991 2992 out: 2993 btrfs_free_path(path); 2994 return ret; 2995 } 2996 2997 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 2998 { 2999 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3000 3001 return entry != NULL; 3002 } 3003 3004 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3005 { 3006 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3007 struct rb_node *parent = NULL; 3008 struct waiting_dir_move *entry, *dm; 3009 3010 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3011 if (!dm) 3012 return -ENOMEM; 3013 dm->ino = ino; 3014 dm->rmdir_ino = 0; 3015 dm->orphanized = orphanized; 3016 3017 while (*p) { 3018 parent = *p; 3019 entry = rb_entry(parent, struct waiting_dir_move, node); 3020 if (ino < entry->ino) { 3021 p = &(*p)->rb_left; 3022 } else if (ino > entry->ino) { 3023 p = &(*p)->rb_right; 3024 } else { 3025 kfree(dm); 3026 return -EEXIST; 3027 } 3028 } 3029 3030 rb_link_node(&dm->node, parent, p); 3031 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3032 return 0; 3033 } 3034 3035 static struct waiting_dir_move * 3036 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3037 { 3038 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3039 struct waiting_dir_move *entry; 3040 3041 while (n) { 3042 entry = rb_entry(n, struct waiting_dir_move, node); 3043 if (ino < entry->ino) 3044 n = n->rb_left; 3045 else if (ino > entry->ino) 3046 n = n->rb_right; 3047 else 3048 return entry; 3049 } 3050 return NULL; 3051 } 3052 3053 static void free_waiting_dir_move(struct send_ctx *sctx, 3054 struct waiting_dir_move *dm) 3055 { 3056 if (!dm) 3057 return; 3058 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3059 kfree(dm); 3060 } 3061 3062 static int add_pending_dir_move(struct send_ctx *sctx, 3063 u64 ino, 3064 u64 ino_gen, 3065 u64 parent_ino, 3066 struct list_head *new_refs, 3067 struct list_head *deleted_refs, 3068 const bool is_orphan) 3069 { 3070 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3071 struct rb_node *parent = NULL; 3072 struct pending_dir_move *entry = NULL, *pm; 3073 struct recorded_ref *cur; 3074 int exists = 0; 3075 int ret; 3076 3077 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3078 if (!pm) 3079 return -ENOMEM; 3080 pm->parent_ino = parent_ino; 3081 pm->ino = ino; 3082 pm->gen = ino_gen; 3083 INIT_LIST_HEAD(&pm->list); 3084 INIT_LIST_HEAD(&pm->update_refs); 3085 RB_CLEAR_NODE(&pm->node); 3086 3087 while (*p) { 3088 parent = *p; 3089 entry = rb_entry(parent, struct pending_dir_move, node); 3090 if (parent_ino < entry->parent_ino) { 3091 p = &(*p)->rb_left; 3092 } else if (parent_ino > entry->parent_ino) { 3093 p = &(*p)->rb_right; 3094 } else { 3095 exists = 1; 3096 break; 3097 } 3098 } 3099 3100 list_for_each_entry(cur, deleted_refs, list) { 3101 ret = dup_ref(cur, &pm->update_refs); 3102 if (ret < 0) 3103 goto out; 3104 } 3105 list_for_each_entry(cur, new_refs, list) { 3106 ret = dup_ref(cur, &pm->update_refs); 3107 if (ret < 0) 3108 goto out; 3109 } 3110 3111 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3112 if (ret) 3113 goto out; 3114 3115 if (exists) { 3116 list_add_tail(&pm->list, &entry->list); 3117 } else { 3118 rb_link_node(&pm->node, parent, p); 3119 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3120 } 3121 ret = 0; 3122 out: 3123 if (ret) { 3124 __free_recorded_refs(&pm->update_refs); 3125 kfree(pm); 3126 } 3127 return ret; 3128 } 3129 3130 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3131 u64 parent_ino) 3132 { 3133 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3134 struct pending_dir_move *entry; 3135 3136 while (n) { 3137 entry = rb_entry(n, struct pending_dir_move, node); 3138 if (parent_ino < entry->parent_ino) 3139 n = n->rb_left; 3140 else if (parent_ino > entry->parent_ino) 3141 n = n->rb_right; 3142 else 3143 return entry; 3144 } 3145 return NULL; 3146 } 3147 3148 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3149 u64 ino, u64 gen, u64 *ancestor_ino) 3150 { 3151 int ret = 0; 3152 u64 parent_inode = 0; 3153 u64 parent_gen = 0; 3154 u64 start_ino = ino; 3155 3156 *ancestor_ino = 0; 3157 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3158 fs_path_reset(name); 3159 3160 if (is_waiting_for_rm(sctx, ino)) 3161 break; 3162 if (is_waiting_for_move(sctx, ino)) { 3163 if (*ancestor_ino == 0) 3164 *ancestor_ino = ino; 3165 ret = get_first_ref(sctx->parent_root, ino, 3166 &parent_inode, &parent_gen, name); 3167 } else { 3168 ret = __get_cur_name_and_parent(sctx, ino, gen, 3169 &parent_inode, 3170 &parent_gen, name); 3171 if (ret > 0) { 3172 ret = 0; 3173 break; 3174 } 3175 } 3176 if (ret < 0) 3177 break; 3178 if (parent_inode == start_ino) { 3179 ret = 1; 3180 if (*ancestor_ino == 0) 3181 *ancestor_ino = ino; 3182 break; 3183 } 3184 ino = parent_inode; 3185 gen = parent_gen; 3186 } 3187 return ret; 3188 } 3189 3190 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3191 { 3192 struct fs_path *from_path = NULL; 3193 struct fs_path *to_path = NULL; 3194 struct fs_path *name = NULL; 3195 u64 orig_progress = sctx->send_progress; 3196 struct recorded_ref *cur; 3197 u64 parent_ino, parent_gen; 3198 struct waiting_dir_move *dm = NULL; 3199 u64 rmdir_ino = 0; 3200 u64 ancestor; 3201 bool is_orphan; 3202 int ret; 3203 3204 name = fs_path_alloc(); 3205 from_path = fs_path_alloc(); 3206 if (!name || !from_path) { 3207 ret = -ENOMEM; 3208 goto out; 3209 } 3210 3211 dm = get_waiting_dir_move(sctx, pm->ino); 3212 ASSERT(dm); 3213 rmdir_ino = dm->rmdir_ino; 3214 is_orphan = dm->orphanized; 3215 free_waiting_dir_move(sctx, dm); 3216 3217 if (is_orphan) { 3218 ret = gen_unique_name(sctx, pm->ino, 3219 pm->gen, from_path); 3220 } else { 3221 ret = get_first_ref(sctx->parent_root, pm->ino, 3222 &parent_ino, &parent_gen, name); 3223 if (ret < 0) 3224 goto out; 3225 ret = get_cur_path(sctx, parent_ino, parent_gen, 3226 from_path); 3227 if (ret < 0) 3228 goto out; 3229 ret = fs_path_add_path(from_path, name); 3230 } 3231 if (ret < 0) 3232 goto out; 3233 3234 sctx->send_progress = sctx->cur_ino + 1; 3235 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3236 if (ret < 0) 3237 goto out; 3238 if (ret) { 3239 LIST_HEAD(deleted_refs); 3240 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3241 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3242 &pm->update_refs, &deleted_refs, 3243 is_orphan); 3244 if (ret < 0) 3245 goto out; 3246 if (rmdir_ino) { 3247 dm = get_waiting_dir_move(sctx, pm->ino); 3248 ASSERT(dm); 3249 dm->rmdir_ino = rmdir_ino; 3250 } 3251 goto out; 3252 } 3253 fs_path_reset(name); 3254 to_path = name; 3255 name = NULL; 3256 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3257 if (ret < 0) 3258 goto out; 3259 3260 ret = send_rename(sctx, from_path, to_path); 3261 if (ret < 0) 3262 goto out; 3263 3264 if (rmdir_ino) { 3265 struct orphan_dir_info *odi; 3266 u64 gen; 3267 3268 odi = get_orphan_dir_info(sctx, rmdir_ino); 3269 if (!odi) { 3270 /* already deleted */ 3271 goto finish; 3272 } 3273 gen = odi->gen; 3274 3275 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino); 3276 if (ret < 0) 3277 goto out; 3278 if (!ret) 3279 goto finish; 3280 3281 name = fs_path_alloc(); 3282 if (!name) { 3283 ret = -ENOMEM; 3284 goto out; 3285 } 3286 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3287 if (ret < 0) 3288 goto out; 3289 ret = send_rmdir(sctx, name); 3290 if (ret < 0) 3291 goto out; 3292 } 3293 3294 finish: 3295 ret = send_utimes(sctx, pm->ino, pm->gen); 3296 if (ret < 0) 3297 goto out; 3298 3299 /* 3300 * After rename/move, need to update the utimes of both new parent(s) 3301 * and old parent(s). 3302 */ 3303 list_for_each_entry(cur, &pm->update_refs, list) { 3304 /* 3305 * The parent inode might have been deleted in the send snapshot 3306 */ 3307 ret = get_inode_info(sctx->send_root, cur->dir, NULL, 3308 NULL, NULL, NULL, NULL, NULL); 3309 if (ret == -ENOENT) { 3310 ret = 0; 3311 continue; 3312 } 3313 if (ret < 0) 3314 goto out; 3315 3316 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 3317 if (ret < 0) 3318 goto out; 3319 } 3320 3321 out: 3322 fs_path_free(name); 3323 fs_path_free(from_path); 3324 fs_path_free(to_path); 3325 sctx->send_progress = orig_progress; 3326 3327 return ret; 3328 } 3329 3330 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3331 { 3332 if (!list_empty(&m->list)) 3333 list_del(&m->list); 3334 if (!RB_EMPTY_NODE(&m->node)) 3335 rb_erase(&m->node, &sctx->pending_dir_moves); 3336 __free_recorded_refs(&m->update_refs); 3337 kfree(m); 3338 } 3339 3340 static void tail_append_pending_moves(struct send_ctx *sctx, 3341 struct pending_dir_move *moves, 3342 struct list_head *stack) 3343 { 3344 if (list_empty(&moves->list)) { 3345 list_add_tail(&moves->list, stack); 3346 } else { 3347 LIST_HEAD(list); 3348 list_splice_init(&moves->list, &list); 3349 list_add_tail(&moves->list, stack); 3350 list_splice_tail(&list, stack); 3351 } 3352 if (!RB_EMPTY_NODE(&moves->node)) { 3353 rb_erase(&moves->node, &sctx->pending_dir_moves); 3354 RB_CLEAR_NODE(&moves->node); 3355 } 3356 } 3357 3358 static int apply_children_dir_moves(struct send_ctx *sctx) 3359 { 3360 struct pending_dir_move *pm; 3361 struct list_head stack; 3362 u64 parent_ino = sctx->cur_ino; 3363 int ret = 0; 3364 3365 pm = get_pending_dir_moves(sctx, parent_ino); 3366 if (!pm) 3367 return 0; 3368 3369 INIT_LIST_HEAD(&stack); 3370 tail_append_pending_moves(sctx, pm, &stack); 3371 3372 while (!list_empty(&stack)) { 3373 pm = list_first_entry(&stack, struct pending_dir_move, list); 3374 parent_ino = pm->ino; 3375 ret = apply_dir_move(sctx, pm); 3376 free_pending_move(sctx, pm); 3377 if (ret) 3378 goto out; 3379 pm = get_pending_dir_moves(sctx, parent_ino); 3380 if (pm) 3381 tail_append_pending_moves(sctx, pm, &stack); 3382 } 3383 return 0; 3384 3385 out: 3386 while (!list_empty(&stack)) { 3387 pm = list_first_entry(&stack, struct pending_dir_move, list); 3388 free_pending_move(sctx, pm); 3389 } 3390 return ret; 3391 } 3392 3393 /* 3394 * We might need to delay a directory rename even when no ancestor directory 3395 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3396 * renamed. This happens when we rename a directory to the old name (the name 3397 * in the parent root) of some other unrelated directory that got its rename 3398 * delayed due to some ancestor with higher number that got renamed. 3399 * 3400 * Example: 3401 * 3402 * Parent snapshot: 3403 * . (ino 256) 3404 * |---- a/ (ino 257) 3405 * | |---- file (ino 260) 3406 * | 3407 * |---- b/ (ino 258) 3408 * |---- c/ (ino 259) 3409 * 3410 * Send snapshot: 3411 * . (ino 256) 3412 * |---- a/ (ino 258) 3413 * |---- x/ (ino 259) 3414 * |---- y/ (ino 257) 3415 * |----- file (ino 260) 3416 * 3417 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3418 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3419 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3420 * must issue is: 3421 * 3422 * 1 - rename 259 from 'c' to 'x' 3423 * 2 - rename 257 from 'a' to 'x/y' 3424 * 3 - rename 258 from 'b' to 'a' 3425 * 3426 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3427 * be done right away and < 0 on error. 3428 */ 3429 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3430 struct recorded_ref *parent_ref, 3431 const bool is_orphan) 3432 { 3433 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info; 3434 struct btrfs_path *path; 3435 struct btrfs_key key; 3436 struct btrfs_key di_key; 3437 struct btrfs_dir_item *di; 3438 u64 left_gen; 3439 u64 right_gen; 3440 int ret = 0; 3441 struct waiting_dir_move *wdm; 3442 3443 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3444 return 0; 3445 3446 path = alloc_path_for_send(); 3447 if (!path) 3448 return -ENOMEM; 3449 3450 key.objectid = parent_ref->dir; 3451 key.type = BTRFS_DIR_ITEM_KEY; 3452 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3453 3454 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3455 if (ret < 0) { 3456 goto out; 3457 } else if (ret > 0) { 3458 ret = 0; 3459 goto out; 3460 } 3461 3462 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name, 3463 parent_ref->name_len); 3464 if (!di) { 3465 ret = 0; 3466 goto out; 3467 } 3468 /* 3469 * di_key.objectid has the number of the inode that has a dentry in the 3470 * parent directory with the same name that sctx->cur_ino is being 3471 * renamed to. We need to check if that inode is in the send root as 3472 * well and if it is currently marked as an inode with a pending rename, 3473 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3474 * that it happens after that other inode is renamed. 3475 */ 3476 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3477 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3478 ret = 0; 3479 goto out; 3480 } 3481 3482 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL, 3483 &left_gen, NULL, NULL, NULL, NULL); 3484 if (ret < 0) 3485 goto out; 3486 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL, 3487 &right_gen, NULL, NULL, NULL, NULL); 3488 if (ret < 0) { 3489 if (ret == -ENOENT) 3490 ret = 0; 3491 goto out; 3492 } 3493 3494 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3495 if (right_gen != left_gen) { 3496 ret = 0; 3497 goto out; 3498 } 3499 3500 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3501 if (wdm && !wdm->orphanized) { 3502 ret = add_pending_dir_move(sctx, 3503 sctx->cur_ino, 3504 sctx->cur_inode_gen, 3505 di_key.objectid, 3506 &sctx->new_refs, 3507 &sctx->deleted_refs, 3508 is_orphan); 3509 if (!ret) 3510 ret = 1; 3511 } 3512 out: 3513 btrfs_free_path(path); 3514 return ret; 3515 } 3516 3517 /* 3518 * Check if inode ino2, or any of its ancestors, is inode ino1. 3519 * Return 1 if true, 0 if false and < 0 on error. 3520 */ 3521 static int check_ino_in_path(struct btrfs_root *root, 3522 const u64 ino1, 3523 const u64 ino1_gen, 3524 const u64 ino2, 3525 const u64 ino2_gen, 3526 struct fs_path *fs_path) 3527 { 3528 u64 ino = ino2; 3529 3530 if (ino1 == ino2) 3531 return ino1_gen == ino2_gen; 3532 3533 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3534 u64 parent; 3535 u64 parent_gen; 3536 int ret; 3537 3538 fs_path_reset(fs_path); 3539 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3540 if (ret < 0) 3541 return ret; 3542 if (parent == ino1) 3543 return parent_gen == ino1_gen; 3544 ino = parent; 3545 } 3546 return 0; 3547 } 3548 3549 /* 3550 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any 3551 * possible path (in case ino2 is not a directory and has multiple hard links). 3552 * Return 1 if true, 0 if false and < 0 on error. 3553 */ 3554 static int is_ancestor(struct btrfs_root *root, 3555 const u64 ino1, 3556 const u64 ino1_gen, 3557 const u64 ino2, 3558 struct fs_path *fs_path) 3559 { 3560 bool free_fs_path = false; 3561 int ret = 0; 3562 struct btrfs_path *path = NULL; 3563 struct btrfs_key key; 3564 3565 if (!fs_path) { 3566 fs_path = fs_path_alloc(); 3567 if (!fs_path) 3568 return -ENOMEM; 3569 free_fs_path = true; 3570 } 3571 3572 path = alloc_path_for_send(); 3573 if (!path) { 3574 ret = -ENOMEM; 3575 goto out; 3576 } 3577 3578 key.objectid = ino2; 3579 key.type = BTRFS_INODE_REF_KEY; 3580 key.offset = 0; 3581 3582 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3583 if (ret < 0) 3584 goto out; 3585 3586 while (true) { 3587 struct extent_buffer *leaf = path->nodes[0]; 3588 int slot = path->slots[0]; 3589 u32 cur_offset = 0; 3590 u32 item_size; 3591 3592 if (slot >= btrfs_header_nritems(leaf)) { 3593 ret = btrfs_next_leaf(root, path); 3594 if (ret < 0) 3595 goto out; 3596 if (ret > 0) 3597 break; 3598 continue; 3599 } 3600 3601 btrfs_item_key_to_cpu(leaf, &key, slot); 3602 if (key.objectid != ino2) 3603 break; 3604 if (key.type != BTRFS_INODE_REF_KEY && 3605 key.type != BTRFS_INODE_EXTREF_KEY) 3606 break; 3607 3608 item_size = btrfs_item_size_nr(leaf, slot); 3609 while (cur_offset < item_size) { 3610 u64 parent; 3611 u64 parent_gen; 3612 3613 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3614 unsigned long ptr; 3615 struct btrfs_inode_extref *extref; 3616 3617 ptr = btrfs_item_ptr_offset(leaf, slot); 3618 extref = (struct btrfs_inode_extref *) 3619 (ptr + cur_offset); 3620 parent = btrfs_inode_extref_parent(leaf, 3621 extref); 3622 cur_offset += sizeof(*extref); 3623 cur_offset += btrfs_inode_extref_name_len(leaf, 3624 extref); 3625 } else { 3626 parent = key.offset; 3627 cur_offset = item_size; 3628 } 3629 3630 ret = get_inode_info(root, parent, NULL, &parent_gen, 3631 NULL, NULL, NULL, NULL); 3632 if (ret < 0) 3633 goto out; 3634 ret = check_ino_in_path(root, ino1, ino1_gen, 3635 parent, parent_gen, fs_path); 3636 if (ret) 3637 goto out; 3638 } 3639 path->slots[0]++; 3640 } 3641 ret = 0; 3642 out: 3643 btrfs_free_path(path); 3644 if (free_fs_path) 3645 fs_path_free(fs_path); 3646 return ret; 3647 } 3648 3649 static int wait_for_parent_move(struct send_ctx *sctx, 3650 struct recorded_ref *parent_ref, 3651 const bool is_orphan) 3652 { 3653 int ret = 0; 3654 u64 ino = parent_ref->dir; 3655 u64 ino_gen = parent_ref->dir_gen; 3656 u64 parent_ino_before, parent_ino_after; 3657 struct fs_path *path_before = NULL; 3658 struct fs_path *path_after = NULL; 3659 int len1, len2; 3660 3661 path_after = fs_path_alloc(); 3662 path_before = fs_path_alloc(); 3663 if (!path_after || !path_before) { 3664 ret = -ENOMEM; 3665 goto out; 3666 } 3667 3668 /* 3669 * Our current directory inode may not yet be renamed/moved because some 3670 * ancestor (immediate or not) has to be renamed/moved first. So find if 3671 * such ancestor exists and make sure our own rename/move happens after 3672 * that ancestor is processed to avoid path build infinite loops (done 3673 * at get_cur_path()). 3674 */ 3675 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3676 u64 parent_ino_after_gen; 3677 3678 if (is_waiting_for_move(sctx, ino)) { 3679 /* 3680 * If the current inode is an ancestor of ino in the 3681 * parent root, we need to delay the rename of the 3682 * current inode, otherwise don't delayed the rename 3683 * because we can end up with a circular dependency 3684 * of renames, resulting in some directories never 3685 * getting the respective rename operations issued in 3686 * the send stream or getting into infinite path build 3687 * loops. 3688 */ 3689 ret = is_ancestor(sctx->parent_root, 3690 sctx->cur_ino, sctx->cur_inode_gen, 3691 ino, path_before); 3692 if (ret) 3693 break; 3694 } 3695 3696 fs_path_reset(path_before); 3697 fs_path_reset(path_after); 3698 3699 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3700 &parent_ino_after_gen, path_after); 3701 if (ret < 0) 3702 goto out; 3703 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3704 NULL, path_before); 3705 if (ret < 0 && ret != -ENOENT) { 3706 goto out; 3707 } else if (ret == -ENOENT) { 3708 ret = 0; 3709 break; 3710 } 3711 3712 len1 = fs_path_len(path_before); 3713 len2 = fs_path_len(path_after); 3714 if (ino > sctx->cur_ino && 3715 (parent_ino_before != parent_ino_after || len1 != len2 || 3716 memcmp(path_before->start, path_after->start, len1))) { 3717 u64 parent_ino_gen; 3718 3719 ret = get_inode_info(sctx->parent_root, ino, NULL, 3720 &parent_ino_gen, NULL, NULL, NULL, 3721 NULL); 3722 if (ret < 0) 3723 goto out; 3724 if (ino_gen == parent_ino_gen) { 3725 ret = 1; 3726 break; 3727 } 3728 } 3729 ino = parent_ino_after; 3730 ino_gen = parent_ino_after_gen; 3731 } 3732 3733 out: 3734 fs_path_free(path_before); 3735 fs_path_free(path_after); 3736 3737 if (ret == 1) { 3738 ret = add_pending_dir_move(sctx, 3739 sctx->cur_ino, 3740 sctx->cur_inode_gen, 3741 ino, 3742 &sctx->new_refs, 3743 &sctx->deleted_refs, 3744 is_orphan); 3745 if (!ret) 3746 ret = 1; 3747 } 3748 3749 return ret; 3750 } 3751 3752 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 3753 { 3754 int ret; 3755 struct fs_path *new_path; 3756 3757 /* 3758 * Our reference's name member points to its full_path member string, so 3759 * we use here a new path. 3760 */ 3761 new_path = fs_path_alloc(); 3762 if (!new_path) 3763 return -ENOMEM; 3764 3765 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 3766 if (ret < 0) { 3767 fs_path_free(new_path); 3768 return ret; 3769 } 3770 ret = fs_path_add(new_path, ref->name, ref->name_len); 3771 if (ret < 0) { 3772 fs_path_free(new_path); 3773 return ret; 3774 } 3775 3776 fs_path_free(ref->full_path); 3777 set_ref_path(ref, new_path); 3778 3779 return 0; 3780 } 3781 3782 /* 3783 * This does all the move/link/unlink/rmdir magic. 3784 */ 3785 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 3786 { 3787 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 3788 int ret = 0; 3789 struct recorded_ref *cur; 3790 struct recorded_ref *cur2; 3791 struct list_head check_dirs; 3792 struct fs_path *valid_path = NULL; 3793 u64 ow_inode = 0; 3794 u64 ow_gen; 3795 u64 ow_mode; 3796 int did_overwrite = 0; 3797 int is_orphan = 0; 3798 u64 last_dir_ino_rm = 0; 3799 bool can_rename = true; 3800 bool orphanized_dir = false; 3801 bool orphanized_ancestor = false; 3802 3803 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 3804 3805 /* 3806 * This should never happen as the root dir always has the same ref 3807 * which is always '..' 3808 */ 3809 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 3810 INIT_LIST_HEAD(&check_dirs); 3811 3812 valid_path = fs_path_alloc(); 3813 if (!valid_path) { 3814 ret = -ENOMEM; 3815 goto out; 3816 } 3817 3818 /* 3819 * First, check if the first ref of the current inode was overwritten 3820 * before. If yes, we know that the current inode was already orphanized 3821 * and thus use the orphan name. If not, we can use get_cur_path to 3822 * get the path of the first ref as it would like while receiving at 3823 * this point in time. 3824 * New inodes are always orphan at the beginning, so force to use the 3825 * orphan name in this case. 3826 * The first ref is stored in valid_path and will be updated if it 3827 * gets moved around. 3828 */ 3829 if (!sctx->cur_inode_new) { 3830 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 3831 sctx->cur_inode_gen); 3832 if (ret < 0) 3833 goto out; 3834 if (ret) 3835 did_overwrite = 1; 3836 } 3837 if (sctx->cur_inode_new || did_overwrite) { 3838 ret = gen_unique_name(sctx, sctx->cur_ino, 3839 sctx->cur_inode_gen, valid_path); 3840 if (ret < 0) 3841 goto out; 3842 is_orphan = 1; 3843 } else { 3844 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 3845 valid_path); 3846 if (ret < 0) 3847 goto out; 3848 } 3849 3850 list_for_each_entry(cur, &sctx->new_refs, list) { 3851 /* 3852 * We may have refs where the parent directory does not exist 3853 * yet. This happens if the parent directories inum is higher 3854 * than the current inum. To handle this case, we create the 3855 * parent directory out of order. But we need to check if this 3856 * did already happen before due to other refs in the same dir. 3857 */ 3858 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 3859 if (ret < 0) 3860 goto out; 3861 if (ret == inode_state_will_create) { 3862 ret = 0; 3863 /* 3864 * First check if any of the current inodes refs did 3865 * already create the dir. 3866 */ 3867 list_for_each_entry(cur2, &sctx->new_refs, list) { 3868 if (cur == cur2) 3869 break; 3870 if (cur2->dir == cur->dir) { 3871 ret = 1; 3872 break; 3873 } 3874 } 3875 3876 /* 3877 * If that did not happen, check if a previous inode 3878 * did already create the dir. 3879 */ 3880 if (!ret) 3881 ret = did_create_dir(sctx, cur->dir); 3882 if (ret < 0) 3883 goto out; 3884 if (!ret) { 3885 ret = send_create_inode(sctx, cur->dir); 3886 if (ret < 0) 3887 goto out; 3888 } 3889 } 3890 3891 /* 3892 * Check if this new ref would overwrite the first ref of 3893 * another unprocessed inode. If yes, orphanize the 3894 * overwritten inode. If we find an overwritten ref that is 3895 * not the first ref, simply unlink it. 3896 */ 3897 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 3898 cur->name, cur->name_len, 3899 &ow_inode, &ow_gen, &ow_mode); 3900 if (ret < 0) 3901 goto out; 3902 if (ret) { 3903 ret = is_first_ref(sctx->parent_root, 3904 ow_inode, cur->dir, cur->name, 3905 cur->name_len); 3906 if (ret < 0) 3907 goto out; 3908 if (ret) { 3909 struct name_cache_entry *nce; 3910 struct waiting_dir_move *wdm; 3911 3912 ret = orphanize_inode(sctx, ow_inode, ow_gen, 3913 cur->full_path); 3914 if (ret < 0) 3915 goto out; 3916 if (S_ISDIR(ow_mode)) 3917 orphanized_dir = true; 3918 3919 /* 3920 * If ow_inode has its rename operation delayed 3921 * make sure that its orphanized name is used in 3922 * the source path when performing its rename 3923 * operation. 3924 */ 3925 if (is_waiting_for_move(sctx, ow_inode)) { 3926 wdm = get_waiting_dir_move(sctx, 3927 ow_inode); 3928 ASSERT(wdm); 3929 wdm->orphanized = true; 3930 } 3931 3932 /* 3933 * Make sure we clear our orphanized inode's 3934 * name from the name cache. This is because the 3935 * inode ow_inode might be an ancestor of some 3936 * other inode that will be orphanized as well 3937 * later and has an inode number greater than 3938 * sctx->send_progress. We need to prevent 3939 * future name lookups from using the old name 3940 * and get instead the orphan name. 3941 */ 3942 nce = name_cache_search(sctx, ow_inode, ow_gen); 3943 if (nce) { 3944 name_cache_delete(sctx, nce); 3945 kfree(nce); 3946 } 3947 3948 /* 3949 * ow_inode might currently be an ancestor of 3950 * cur_ino, therefore compute valid_path (the 3951 * current path of cur_ino) again because it 3952 * might contain the pre-orphanization name of 3953 * ow_inode, which is no longer valid. 3954 */ 3955 ret = is_ancestor(sctx->parent_root, 3956 ow_inode, ow_gen, 3957 sctx->cur_ino, NULL); 3958 if (ret > 0) { 3959 orphanized_ancestor = true; 3960 fs_path_reset(valid_path); 3961 ret = get_cur_path(sctx, sctx->cur_ino, 3962 sctx->cur_inode_gen, 3963 valid_path); 3964 } 3965 if (ret < 0) 3966 goto out; 3967 } else { 3968 ret = send_unlink(sctx, cur->full_path); 3969 if (ret < 0) 3970 goto out; 3971 } 3972 } 3973 3974 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 3975 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 3976 if (ret < 0) 3977 goto out; 3978 if (ret == 1) { 3979 can_rename = false; 3980 *pending_move = 1; 3981 } 3982 } 3983 3984 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 3985 can_rename) { 3986 ret = wait_for_parent_move(sctx, cur, is_orphan); 3987 if (ret < 0) 3988 goto out; 3989 if (ret == 1) { 3990 can_rename = false; 3991 *pending_move = 1; 3992 } 3993 } 3994 3995 /* 3996 * link/move the ref to the new place. If we have an orphan 3997 * inode, move it and update valid_path. If not, link or move 3998 * it depending on the inode mode. 3999 */ 4000 if (is_orphan && can_rename) { 4001 ret = send_rename(sctx, valid_path, cur->full_path); 4002 if (ret < 0) 4003 goto out; 4004 is_orphan = 0; 4005 ret = fs_path_copy(valid_path, cur->full_path); 4006 if (ret < 0) 4007 goto out; 4008 } else if (can_rename) { 4009 if (S_ISDIR(sctx->cur_inode_mode)) { 4010 /* 4011 * Dirs can't be linked, so move it. For moved 4012 * dirs, we always have one new and one deleted 4013 * ref. The deleted ref is ignored later. 4014 */ 4015 ret = send_rename(sctx, valid_path, 4016 cur->full_path); 4017 if (!ret) 4018 ret = fs_path_copy(valid_path, 4019 cur->full_path); 4020 if (ret < 0) 4021 goto out; 4022 } else { 4023 /* 4024 * We might have previously orphanized an inode 4025 * which is an ancestor of our current inode, 4026 * so our reference's full path, which was 4027 * computed before any such orphanizations, must 4028 * be updated. 4029 */ 4030 if (orphanized_dir) { 4031 ret = update_ref_path(sctx, cur); 4032 if (ret < 0) 4033 goto out; 4034 } 4035 ret = send_link(sctx, cur->full_path, 4036 valid_path); 4037 if (ret < 0) 4038 goto out; 4039 } 4040 } 4041 ret = dup_ref(cur, &check_dirs); 4042 if (ret < 0) 4043 goto out; 4044 } 4045 4046 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4047 /* 4048 * Check if we can already rmdir the directory. If not, 4049 * orphanize it. For every dir item inside that gets deleted 4050 * later, we do this check again and rmdir it then if possible. 4051 * See the use of check_dirs for more details. 4052 */ 4053 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4054 sctx->cur_ino); 4055 if (ret < 0) 4056 goto out; 4057 if (ret) { 4058 ret = send_rmdir(sctx, valid_path); 4059 if (ret < 0) 4060 goto out; 4061 } else if (!is_orphan) { 4062 ret = orphanize_inode(sctx, sctx->cur_ino, 4063 sctx->cur_inode_gen, valid_path); 4064 if (ret < 0) 4065 goto out; 4066 is_orphan = 1; 4067 } 4068 4069 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4070 ret = dup_ref(cur, &check_dirs); 4071 if (ret < 0) 4072 goto out; 4073 } 4074 } else if (S_ISDIR(sctx->cur_inode_mode) && 4075 !list_empty(&sctx->deleted_refs)) { 4076 /* 4077 * We have a moved dir. Add the old parent to check_dirs 4078 */ 4079 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4080 list); 4081 ret = dup_ref(cur, &check_dirs); 4082 if (ret < 0) 4083 goto out; 4084 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4085 /* 4086 * We have a non dir inode. Go through all deleted refs and 4087 * unlink them if they were not already overwritten by other 4088 * inodes. 4089 */ 4090 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4091 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4092 sctx->cur_ino, sctx->cur_inode_gen, 4093 cur->name, cur->name_len); 4094 if (ret < 0) 4095 goto out; 4096 if (!ret) { 4097 /* 4098 * If we orphanized any ancestor before, we need 4099 * to recompute the full path for deleted names, 4100 * since any such path was computed before we 4101 * processed any references and orphanized any 4102 * ancestor inode. 4103 */ 4104 if (orphanized_ancestor) { 4105 ret = update_ref_path(sctx, cur); 4106 if (ret < 0) 4107 goto out; 4108 } 4109 ret = send_unlink(sctx, cur->full_path); 4110 if (ret < 0) 4111 goto out; 4112 } 4113 ret = dup_ref(cur, &check_dirs); 4114 if (ret < 0) 4115 goto out; 4116 } 4117 /* 4118 * If the inode is still orphan, unlink the orphan. This may 4119 * happen when a previous inode did overwrite the first ref 4120 * of this inode and no new refs were added for the current 4121 * inode. Unlinking does not mean that the inode is deleted in 4122 * all cases. There may still be links to this inode in other 4123 * places. 4124 */ 4125 if (is_orphan) { 4126 ret = send_unlink(sctx, valid_path); 4127 if (ret < 0) 4128 goto out; 4129 } 4130 } 4131 4132 /* 4133 * We did collect all parent dirs where cur_inode was once located. We 4134 * now go through all these dirs and check if they are pending for 4135 * deletion and if it's finally possible to perform the rmdir now. 4136 * We also update the inode stats of the parent dirs here. 4137 */ 4138 list_for_each_entry(cur, &check_dirs, list) { 4139 /* 4140 * In case we had refs into dirs that were not processed yet, 4141 * we don't need to do the utime and rmdir logic for these dirs. 4142 * The dir will be processed later. 4143 */ 4144 if (cur->dir > sctx->cur_ino) 4145 continue; 4146 4147 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 4148 if (ret < 0) 4149 goto out; 4150 4151 if (ret == inode_state_did_create || 4152 ret == inode_state_no_change) { 4153 /* TODO delayed utimes */ 4154 ret = send_utimes(sctx, cur->dir, cur->dir_gen); 4155 if (ret < 0) 4156 goto out; 4157 } else if (ret == inode_state_did_delete && 4158 cur->dir != last_dir_ino_rm) { 4159 ret = can_rmdir(sctx, cur->dir, cur->dir_gen, 4160 sctx->cur_ino); 4161 if (ret < 0) 4162 goto out; 4163 if (ret) { 4164 ret = get_cur_path(sctx, cur->dir, 4165 cur->dir_gen, valid_path); 4166 if (ret < 0) 4167 goto out; 4168 ret = send_rmdir(sctx, valid_path); 4169 if (ret < 0) 4170 goto out; 4171 last_dir_ino_rm = cur->dir; 4172 } 4173 } 4174 } 4175 4176 ret = 0; 4177 4178 out: 4179 __free_recorded_refs(&check_dirs); 4180 free_recorded_refs(sctx); 4181 fs_path_free(valid_path); 4182 return ret; 4183 } 4184 4185 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name, 4186 void *ctx, struct list_head *refs) 4187 { 4188 int ret = 0; 4189 struct send_ctx *sctx = ctx; 4190 struct fs_path *p; 4191 u64 gen; 4192 4193 p = fs_path_alloc(); 4194 if (!p) 4195 return -ENOMEM; 4196 4197 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL, 4198 NULL, NULL); 4199 if (ret < 0) 4200 goto out; 4201 4202 ret = get_cur_path(sctx, dir, gen, p); 4203 if (ret < 0) 4204 goto out; 4205 ret = fs_path_add_path(p, name); 4206 if (ret < 0) 4207 goto out; 4208 4209 ret = __record_ref(refs, dir, gen, p); 4210 4211 out: 4212 if (ret) 4213 fs_path_free(p); 4214 return ret; 4215 } 4216 4217 static int __record_new_ref(int num, u64 dir, int index, 4218 struct fs_path *name, 4219 void *ctx) 4220 { 4221 struct send_ctx *sctx = ctx; 4222 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs); 4223 } 4224 4225 4226 static int __record_deleted_ref(int num, u64 dir, int index, 4227 struct fs_path *name, 4228 void *ctx) 4229 { 4230 struct send_ctx *sctx = ctx; 4231 return record_ref(sctx->parent_root, dir, name, ctx, 4232 &sctx->deleted_refs); 4233 } 4234 4235 static int record_new_ref(struct send_ctx *sctx) 4236 { 4237 int ret; 4238 4239 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4240 sctx->cmp_key, 0, __record_new_ref, sctx); 4241 if (ret < 0) 4242 goto out; 4243 ret = 0; 4244 4245 out: 4246 return ret; 4247 } 4248 4249 static int record_deleted_ref(struct send_ctx *sctx) 4250 { 4251 int ret; 4252 4253 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4254 sctx->cmp_key, 0, __record_deleted_ref, sctx); 4255 if (ret < 0) 4256 goto out; 4257 ret = 0; 4258 4259 out: 4260 return ret; 4261 } 4262 4263 struct find_ref_ctx { 4264 u64 dir; 4265 u64 dir_gen; 4266 struct btrfs_root *root; 4267 struct fs_path *name; 4268 int found_idx; 4269 }; 4270 4271 static int __find_iref(int num, u64 dir, int index, 4272 struct fs_path *name, 4273 void *ctx_) 4274 { 4275 struct find_ref_ctx *ctx = ctx_; 4276 u64 dir_gen; 4277 int ret; 4278 4279 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 4280 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 4281 /* 4282 * To avoid doing extra lookups we'll only do this if everything 4283 * else matches. 4284 */ 4285 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL, 4286 NULL, NULL, NULL); 4287 if (ret) 4288 return ret; 4289 if (dir_gen != ctx->dir_gen) 4290 return 0; 4291 ctx->found_idx = num; 4292 return 1; 4293 } 4294 return 0; 4295 } 4296 4297 static int find_iref(struct btrfs_root *root, 4298 struct btrfs_path *path, 4299 struct btrfs_key *key, 4300 u64 dir, u64 dir_gen, struct fs_path *name) 4301 { 4302 int ret; 4303 struct find_ref_ctx ctx; 4304 4305 ctx.dir = dir; 4306 ctx.name = name; 4307 ctx.dir_gen = dir_gen; 4308 ctx.found_idx = -1; 4309 ctx.root = root; 4310 4311 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx); 4312 if (ret < 0) 4313 return ret; 4314 4315 if (ctx.found_idx == -1) 4316 return -ENOENT; 4317 4318 return ctx.found_idx; 4319 } 4320 4321 static int __record_changed_new_ref(int num, u64 dir, int index, 4322 struct fs_path *name, 4323 void *ctx) 4324 { 4325 u64 dir_gen; 4326 int ret; 4327 struct send_ctx *sctx = ctx; 4328 4329 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL, 4330 NULL, NULL, NULL); 4331 if (ret) 4332 return ret; 4333 4334 ret = find_iref(sctx->parent_root, sctx->right_path, 4335 sctx->cmp_key, dir, dir_gen, name); 4336 if (ret == -ENOENT) 4337 ret = __record_new_ref(num, dir, index, name, sctx); 4338 else if (ret > 0) 4339 ret = 0; 4340 4341 return ret; 4342 } 4343 4344 static int __record_changed_deleted_ref(int num, u64 dir, int index, 4345 struct fs_path *name, 4346 void *ctx) 4347 { 4348 u64 dir_gen; 4349 int ret; 4350 struct send_ctx *sctx = ctx; 4351 4352 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL, 4353 NULL, NULL, NULL); 4354 if (ret) 4355 return ret; 4356 4357 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4358 dir, dir_gen, name); 4359 if (ret == -ENOENT) 4360 ret = __record_deleted_ref(num, dir, index, name, sctx); 4361 else if (ret > 0) 4362 ret = 0; 4363 4364 return ret; 4365 } 4366 4367 static int record_changed_ref(struct send_ctx *sctx) 4368 { 4369 int ret = 0; 4370 4371 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4372 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 4373 if (ret < 0) 4374 goto out; 4375 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4376 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 4377 if (ret < 0) 4378 goto out; 4379 ret = 0; 4380 4381 out: 4382 return ret; 4383 } 4384 4385 /* 4386 * Record and process all refs at once. Needed when an inode changes the 4387 * generation number, which means that it was deleted and recreated. 4388 */ 4389 static int process_all_refs(struct send_ctx *sctx, 4390 enum btrfs_compare_tree_result cmd) 4391 { 4392 int ret; 4393 struct btrfs_root *root; 4394 struct btrfs_path *path; 4395 struct btrfs_key key; 4396 struct btrfs_key found_key; 4397 struct extent_buffer *eb; 4398 int slot; 4399 iterate_inode_ref_t cb; 4400 int pending_move = 0; 4401 4402 path = alloc_path_for_send(); 4403 if (!path) 4404 return -ENOMEM; 4405 4406 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4407 root = sctx->send_root; 4408 cb = __record_new_ref; 4409 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4410 root = sctx->parent_root; 4411 cb = __record_deleted_ref; 4412 } else { 4413 btrfs_err(sctx->send_root->fs_info, 4414 "Wrong command %d in process_all_refs", cmd); 4415 ret = -EINVAL; 4416 goto out; 4417 } 4418 4419 key.objectid = sctx->cmp_key->objectid; 4420 key.type = BTRFS_INODE_REF_KEY; 4421 key.offset = 0; 4422 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4423 if (ret < 0) 4424 goto out; 4425 4426 while (1) { 4427 eb = path->nodes[0]; 4428 slot = path->slots[0]; 4429 if (slot >= btrfs_header_nritems(eb)) { 4430 ret = btrfs_next_leaf(root, path); 4431 if (ret < 0) 4432 goto out; 4433 else if (ret > 0) 4434 break; 4435 continue; 4436 } 4437 4438 btrfs_item_key_to_cpu(eb, &found_key, slot); 4439 4440 if (found_key.objectid != key.objectid || 4441 (found_key.type != BTRFS_INODE_REF_KEY && 4442 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4443 break; 4444 4445 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4446 if (ret < 0) 4447 goto out; 4448 4449 path->slots[0]++; 4450 } 4451 btrfs_release_path(path); 4452 4453 /* 4454 * We don't actually care about pending_move as we are simply 4455 * re-creating this inode and will be rename'ing it into place once we 4456 * rename the parent directory. 4457 */ 4458 ret = process_recorded_refs(sctx, &pending_move); 4459 out: 4460 btrfs_free_path(path); 4461 return ret; 4462 } 4463 4464 static int send_set_xattr(struct send_ctx *sctx, 4465 struct fs_path *path, 4466 const char *name, int name_len, 4467 const char *data, int data_len) 4468 { 4469 int ret = 0; 4470 4471 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4472 if (ret < 0) 4473 goto out; 4474 4475 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4476 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4477 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4478 4479 ret = send_cmd(sctx); 4480 4481 tlv_put_failure: 4482 out: 4483 return ret; 4484 } 4485 4486 static int send_remove_xattr(struct send_ctx *sctx, 4487 struct fs_path *path, 4488 const char *name, int name_len) 4489 { 4490 int ret = 0; 4491 4492 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4493 if (ret < 0) 4494 goto out; 4495 4496 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4497 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4498 4499 ret = send_cmd(sctx); 4500 4501 tlv_put_failure: 4502 out: 4503 return ret; 4504 } 4505 4506 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4507 const char *name, int name_len, 4508 const char *data, int data_len, 4509 u8 type, void *ctx) 4510 { 4511 int ret; 4512 struct send_ctx *sctx = ctx; 4513 struct fs_path *p; 4514 struct posix_acl_xattr_header dummy_acl; 4515 4516 p = fs_path_alloc(); 4517 if (!p) 4518 return -ENOMEM; 4519 4520 /* 4521 * This hack is needed because empty acls are stored as zero byte 4522 * data in xattrs. Problem with that is, that receiving these zero byte 4523 * acls will fail later. To fix this, we send a dummy acl list that 4524 * only contains the version number and no entries. 4525 */ 4526 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4527 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4528 if (data_len == 0) { 4529 dummy_acl.a_version = 4530 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4531 data = (char *)&dummy_acl; 4532 data_len = sizeof(dummy_acl); 4533 } 4534 } 4535 4536 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4537 if (ret < 0) 4538 goto out; 4539 4540 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 4541 4542 out: 4543 fs_path_free(p); 4544 return ret; 4545 } 4546 4547 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4548 const char *name, int name_len, 4549 const char *data, int data_len, 4550 u8 type, void *ctx) 4551 { 4552 int ret; 4553 struct send_ctx *sctx = ctx; 4554 struct fs_path *p; 4555 4556 p = fs_path_alloc(); 4557 if (!p) 4558 return -ENOMEM; 4559 4560 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4561 if (ret < 0) 4562 goto out; 4563 4564 ret = send_remove_xattr(sctx, p, name, name_len); 4565 4566 out: 4567 fs_path_free(p); 4568 return ret; 4569 } 4570 4571 static int process_new_xattr(struct send_ctx *sctx) 4572 { 4573 int ret = 0; 4574 4575 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4576 __process_new_xattr, sctx); 4577 4578 return ret; 4579 } 4580 4581 static int process_deleted_xattr(struct send_ctx *sctx) 4582 { 4583 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4584 __process_deleted_xattr, sctx); 4585 } 4586 4587 struct find_xattr_ctx { 4588 const char *name; 4589 int name_len; 4590 int found_idx; 4591 char *found_data; 4592 int found_data_len; 4593 }; 4594 4595 static int __find_xattr(int num, struct btrfs_key *di_key, 4596 const char *name, int name_len, 4597 const char *data, int data_len, 4598 u8 type, void *vctx) 4599 { 4600 struct find_xattr_ctx *ctx = vctx; 4601 4602 if (name_len == ctx->name_len && 4603 strncmp(name, ctx->name, name_len) == 0) { 4604 ctx->found_idx = num; 4605 ctx->found_data_len = data_len; 4606 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4607 if (!ctx->found_data) 4608 return -ENOMEM; 4609 return 1; 4610 } 4611 return 0; 4612 } 4613 4614 static int find_xattr(struct btrfs_root *root, 4615 struct btrfs_path *path, 4616 struct btrfs_key *key, 4617 const char *name, int name_len, 4618 char **data, int *data_len) 4619 { 4620 int ret; 4621 struct find_xattr_ctx ctx; 4622 4623 ctx.name = name; 4624 ctx.name_len = name_len; 4625 ctx.found_idx = -1; 4626 ctx.found_data = NULL; 4627 ctx.found_data_len = 0; 4628 4629 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4630 if (ret < 0) 4631 return ret; 4632 4633 if (ctx.found_idx == -1) 4634 return -ENOENT; 4635 if (data) { 4636 *data = ctx.found_data; 4637 *data_len = ctx.found_data_len; 4638 } else { 4639 kfree(ctx.found_data); 4640 } 4641 return ctx.found_idx; 4642 } 4643 4644 4645 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4646 const char *name, int name_len, 4647 const char *data, int data_len, 4648 u8 type, void *ctx) 4649 { 4650 int ret; 4651 struct send_ctx *sctx = ctx; 4652 char *found_data = NULL; 4653 int found_data_len = 0; 4654 4655 ret = find_xattr(sctx->parent_root, sctx->right_path, 4656 sctx->cmp_key, name, name_len, &found_data, 4657 &found_data_len); 4658 if (ret == -ENOENT) { 4659 ret = __process_new_xattr(num, di_key, name, name_len, data, 4660 data_len, type, ctx); 4661 } else if (ret >= 0) { 4662 if (data_len != found_data_len || 4663 memcmp(data, found_data, data_len)) { 4664 ret = __process_new_xattr(num, di_key, name, name_len, 4665 data, data_len, type, ctx); 4666 } else { 4667 ret = 0; 4668 } 4669 } 4670 4671 kfree(found_data); 4672 return ret; 4673 } 4674 4675 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4676 const char *name, int name_len, 4677 const char *data, int data_len, 4678 u8 type, void *ctx) 4679 { 4680 int ret; 4681 struct send_ctx *sctx = ctx; 4682 4683 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 4684 name, name_len, NULL, NULL); 4685 if (ret == -ENOENT) 4686 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 4687 data_len, type, ctx); 4688 else if (ret >= 0) 4689 ret = 0; 4690 4691 return ret; 4692 } 4693 4694 static int process_changed_xattr(struct send_ctx *sctx) 4695 { 4696 int ret = 0; 4697 4698 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 4699 __process_changed_new_xattr, sctx); 4700 if (ret < 0) 4701 goto out; 4702 ret = iterate_dir_item(sctx->parent_root, sctx->right_path, 4703 __process_changed_deleted_xattr, sctx); 4704 4705 out: 4706 return ret; 4707 } 4708 4709 static int process_all_new_xattrs(struct send_ctx *sctx) 4710 { 4711 int ret; 4712 struct btrfs_root *root; 4713 struct btrfs_path *path; 4714 struct btrfs_key key; 4715 struct btrfs_key found_key; 4716 struct extent_buffer *eb; 4717 int slot; 4718 4719 path = alloc_path_for_send(); 4720 if (!path) 4721 return -ENOMEM; 4722 4723 root = sctx->send_root; 4724 4725 key.objectid = sctx->cmp_key->objectid; 4726 key.type = BTRFS_XATTR_ITEM_KEY; 4727 key.offset = 0; 4728 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4729 if (ret < 0) 4730 goto out; 4731 4732 while (1) { 4733 eb = path->nodes[0]; 4734 slot = path->slots[0]; 4735 if (slot >= btrfs_header_nritems(eb)) { 4736 ret = btrfs_next_leaf(root, path); 4737 if (ret < 0) { 4738 goto out; 4739 } else if (ret > 0) { 4740 ret = 0; 4741 break; 4742 } 4743 continue; 4744 } 4745 4746 btrfs_item_key_to_cpu(eb, &found_key, slot); 4747 if (found_key.objectid != key.objectid || 4748 found_key.type != key.type) { 4749 ret = 0; 4750 goto out; 4751 } 4752 4753 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 4754 if (ret < 0) 4755 goto out; 4756 4757 path->slots[0]++; 4758 } 4759 4760 out: 4761 btrfs_free_path(path); 4762 return ret; 4763 } 4764 4765 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len) 4766 { 4767 struct btrfs_root *root = sctx->send_root; 4768 struct btrfs_fs_info *fs_info = root->fs_info; 4769 struct inode *inode; 4770 struct page *page; 4771 char *addr; 4772 struct btrfs_key key; 4773 pgoff_t index = offset >> PAGE_SHIFT; 4774 pgoff_t last_index; 4775 unsigned pg_offset = offset_in_page(offset); 4776 ssize_t ret = 0; 4777 4778 key.objectid = sctx->cur_ino; 4779 key.type = BTRFS_INODE_ITEM_KEY; 4780 key.offset = 0; 4781 4782 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4783 if (IS_ERR(inode)) 4784 return PTR_ERR(inode); 4785 4786 if (offset + len > i_size_read(inode)) { 4787 if (offset > i_size_read(inode)) 4788 len = 0; 4789 else 4790 len = offset - i_size_read(inode); 4791 } 4792 if (len == 0) 4793 goto out; 4794 4795 last_index = (offset + len - 1) >> PAGE_SHIFT; 4796 4797 /* initial readahead */ 4798 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 4799 file_ra_state_init(&sctx->ra, inode->i_mapping); 4800 4801 while (index <= last_index) { 4802 unsigned cur_len = min_t(unsigned, len, 4803 PAGE_SIZE - pg_offset); 4804 4805 page = find_lock_page(inode->i_mapping, index); 4806 if (!page) { 4807 page_cache_sync_readahead(inode->i_mapping, &sctx->ra, 4808 NULL, index, last_index + 1 - index); 4809 4810 page = find_or_create_page(inode->i_mapping, index, 4811 GFP_KERNEL); 4812 if (!page) { 4813 ret = -ENOMEM; 4814 break; 4815 } 4816 } 4817 4818 if (PageReadahead(page)) { 4819 page_cache_async_readahead(inode->i_mapping, &sctx->ra, 4820 NULL, page, index, last_index + 1 - index); 4821 } 4822 4823 if (!PageUptodate(page)) { 4824 btrfs_readpage(NULL, page); 4825 lock_page(page); 4826 if (!PageUptodate(page)) { 4827 unlock_page(page); 4828 put_page(page); 4829 ret = -EIO; 4830 break; 4831 } 4832 } 4833 4834 addr = kmap(page); 4835 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len); 4836 kunmap(page); 4837 unlock_page(page); 4838 put_page(page); 4839 index++; 4840 pg_offset = 0; 4841 len -= cur_len; 4842 ret += cur_len; 4843 } 4844 out: 4845 iput(inode); 4846 return ret; 4847 } 4848 4849 /* 4850 * Read some bytes from the current inode/file and send a write command to 4851 * user space. 4852 */ 4853 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 4854 { 4855 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4856 int ret = 0; 4857 struct fs_path *p; 4858 ssize_t num_read = 0; 4859 4860 p = fs_path_alloc(); 4861 if (!p) 4862 return -ENOMEM; 4863 4864 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 4865 4866 num_read = fill_read_buf(sctx, offset, len); 4867 if (num_read <= 0) { 4868 if (num_read < 0) 4869 ret = num_read; 4870 goto out; 4871 } 4872 4873 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 4874 if (ret < 0) 4875 goto out; 4876 4877 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4878 if (ret < 0) 4879 goto out; 4880 4881 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4882 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4883 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 4884 4885 ret = send_cmd(sctx); 4886 4887 tlv_put_failure: 4888 out: 4889 fs_path_free(p); 4890 if (ret < 0) 4891 return ret; 4892 return num_read; 4893 } 4894 4895 /* 4896 * Send a clone command to user space. 4897 */ 4898 static int send_clone(struct send_ctx *sctx, 4899 u64 offset, u32 len, 4900 struct clone_root *clone_root) 4901 { 4902 int ret = 0; 4903 struct fs_path *p; 4904 u64 gen; 4905 4906 btrfs_debug(sctx->send_root->fs_info, 4907 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 4908 offset, len, clone_root->root->root_key.objectid, 4909 clone_root->ino, clone_root->offset); 4910 4911 p = fs_path_alloc(); 4912 if (!p) 4913 return -ENOMEM; 4914 4915 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 4916 if (ret < 0) 4917 goto out; 4918 4919 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4920 if (ret < 0) 4921 goto out; 4922 4923 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4924 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 4925 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4926 4927 if (clone_root->root == sctx->send_root) { 4928 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 4929 &gen, NULL, NULL, NULL, NULL); 4930 if (ret < 0) 4931 goto out; 4932 ret = get_cur_path(sctx, clone_root->ino, gen, p); 4933 } else { 4934 ret = get_inode_path(clone_root->root, clone_root->ino, p); 4935 } 4936 if (ret < 0) 4937 goto out; 4938 4939 /* 4940 * If the parent we're using has a received_uuid set then use that as 4941 * our clone source as that is what we will look for when doing a 4942 * receive. 4943 * 4944 * This covers the case that we create a snapshot off of a received 4945 * subvolume and then use that as the parent and try to receive on a 4946 * different host. 4947 */ 4948 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 4949 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4950 clone_root->root->root_item.received_uuid); 4951 else 4952 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 4953 clone_root->root->root_item.uuid); 4954 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 4955 le64_to_cpu(clone_root->root->root_item.ctransid)); 4956 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 4957 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 4958 clone_root->offset); 4959 4960 ret = send_cmd(sctx); 4961 4962 tlv_put_failure: 4963 out: 4964 fs_path_free(p); 4965 return ret; 4966 } 4967 4968 /* 4969 * Send an update extent command to user space. 4970 */ 4971 static int send_update_extent(struct send_ctx *sctx, 4972 u64 offset, u32 len) 4973 { 4974 int ret = 0; 4975 struct fs_path *p; 4976 4977 p = fs_path_alloc(); 4978 if (!p) 4979 return -ENOMEM; 4980 4981 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 4982 if (ret < 0) 4983 goto out; 4984 4985 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 4986 if (ret < 0) 4987 goto out; 4988 4989 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 4990 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 4991 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 4992 4993 ret = send_cmd(sctx); 4994 4995 tlv_put_failure: 4996 out: 4997 fs_path_free(p); 4998 return ret; 4999 } 5000 5001 static int send_hole(struct send_ctx *sctx, u64 end) 5002 { 5003 struct fs_path *p = NULL; 5004 u64 offset = sctx->cur_inode_last_extent; 5005 u64 len; 5006 int ret = 0; 5007 5008 /* 5009 * A hole that starts at EOF or beyond it. Since we do not yet support 5010 * fallocate (for extent preallocation and hole punching), sending a 5011 * write of zeroes starting at EOF or beyond would later require issuing 5012 * a truncate operation which would undo the write and achieve nothing. 5013 */ 5014 if (offset >= sctx->cur_inode_size) 5015 return 0; 5016 5017 /* 5018 * Don't go beyond the inode's i_size due to prealloc extents that start 5019 * after the i_size. 5020 */ 5021 end = min_t(u64, end, sctx->cur_inode_size); 5022 5023 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5024 return send_update_extent(sctx, offset, end - offset); 5025 5026 p = fs_path_alloc(); 5027 if (!p) 5028 return -ENOMEM; 5029 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 5030 if (ret < 0) 5031 goto tlv_put_failure; 5032 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE); 5033 while (offset < end) { 5034 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE); 5035 5036 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5037 if (ret < 0) 5038 break; 5039 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5040 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5041 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len); 5042 ret = send_cmd(sctx); 5043 if (ret < 0) 5044 break; 5045 offset += len; 5046 } 5047 sctx->cur_inode_next_write_offset = offset; 5048 tlv_put_failure: 5049 fs_path_free(p); 5050 return ret; 5051 } 5052 5053 static int send_extent_data(struct send_ctx *sctx, 5054 const u64 offset, 5055 const u64 len) 5056 { 5057 u64 sent = 0; 5058 5059 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5060 return send_update_extent(sctx, offset, len); 5061 5062 while (sent < len) { 5063 u64 size = len - sent; 5064 int ret; 5065 5066 if (size > BTRFS_SEND_READ_SIZE) 5067 size = BTRFS_SEND_READ_SIZE; 5068 ret = send_write(sctx, offset + sent, size); 5069 if (ret < 0) 5070 return ret; 5071 if (!ret) 5072 break; 5073 sent += ret; 5074 } 5075 return 0; 5076 } 5077 5078 static int clone_range(struct send_ctx *sctx, 5079 struct clone_root *clone_root, 5080 const u64 disk_byte, 5081 u64 data_offset, 5082 u64 offset, 5083 u64 len) 5084 { 5085 struct btrfs_path *path; 5086 struct btrfs_key key; 5087 int ret; 5088 u64 clone_src_i_size = 0; 5089 5090 /* 5091 * Prevent cloning from a zero offset with a length matching the sector 5092 * size because in some scenarios this will make the receiver fail. 5093 * 5094 * For example, if in the source filesystem the extent at offset 0 5095 * has a length of sectorsize and it was written using direct IO, then 5096 * it can never be an inline extent (even if compression is enabled). 5097 * Then this extent can be cloned in the original filesystem to a non 5098 * zero file offset, but it may not be possible to clone in the 5099 * destination filesystem because it can be inlined due to compression 5100 * on the destination filesystem (as the receiver's write operations are 5101 * always done using buffered IO). The same happens when the original 5102 * filesystem does not have compression enabled but the destination 5103 * filesystem has. 5104 */ 5105 if (clone_root->offset == 0 && 5106 len == sctx->send_root->fs_info->sectorsize) 5107 return send_extent_data(sctx, offset, len); 5108 5109 path = alloc_path_for_send(); 5110 if (!path) 5111 return -ENOMEM; 5112 5113 /* 5114 * There are inodes that have extents that lie behind its i_size. Don't 5115 * accept clones from these extents. 5116 */ 5117 ret = __get_inode_info(clone_root->root, path, clone_root->ino, 5118 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL); 5119 btrfs_release_path(path); 5120 if (ret < 0) 5121 goto out; 5122 5123 /* 5124 * We can't send a clone operation for the entire range if we find 5125 * extent items in the respective range in the source file that 5126 * refer to different extents or if we find holes. 5127 * So check for that and do a mix of clone and regular write/copy 5128 * operations if needed. 5129 * 5130 * Example: 5131 * 5132 * mkfs.btrfs -f /dev/sda 5133 * mount /dev/sda /mnt 5134 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5135 * cp --reflink=always /mnt/foo /mnt/bar 5136 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5137 * btrfs subvolume snapshot -r /mnt /mnt/snap 5138 * 5139 * If when we send the snapshot and we are processing file bar (which 5140 * has a higher inode number than foo) we blindly send a clone operation 5141 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5142 * a file bar that matches the content of file foo - iow, doesn't match 5143 * the content from bar in the original filesystem. 5144 */ 5145 key.objectid = clone_root->ino; 5146 key.type = BTRFS_EXTENT_DATA_KEY; 5147 key.offset = clone_root->offset; 5148 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5149 if (ret < 0) 5150 goto out; 5151 if (ret > 0 && path->slots[0] > 0) { 5152 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5153 if (key.objectid == clone_root->ino && 5154 key.type == BTRFS_EXTENT_DATA_KEY) 5155 path->slots[0]--; 5156 } 5157 5158 while (true) { 5159 struct extent_buffer *leaf = path->nodes[0]; 5160 int slot = path->slots[0]; 5161 struct btrfs_file_extent_item *ei; 5162 u8 type; 5163 u64 ext_len; 5164 u64 clone_len; 5165 u64 clone_data_offset; 5166 5167 if (slot >= btrfs_header_nritems(leaf)) { 5168 ret = btrfs_next_leaf(clone_root->root, path); 5169 if (ret < 0) 5170 goto out; 5171 else if (ret > 0) 5172 break; 5173 continue; 5174 } 5175 5176 btrfs_item_key_to_cpu(leaf, &key, slot); 5177 5178 /* 5179 * We might have an implicit trailing hole (NO_HOLES feature 5180 * enabled). We deal with it after leaving this loop. 5181 */ 5182 if (key.objectid != clone_root->ino || 5183 key.type != BTRFS_EXTENT_DATA_KEY) 5184 break; 5185 5186 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5187 type = btrfs_file_extent_type(leaf, ei); 5188 if (type == BTRFS_FILE_EXTENT_INLINE) { 5189 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5190 ext_len = PAGE_ALIGN(ext_len); 5191 } else { 5192 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5193 } 5194 5195 if (key.offset + ext_len <= clone_root->offset) 5196 goto next; 5197 5198 if (key.offset > clone_root->offset) { 5199 /* Implicit hole, NO_HOLES feature enabled. */ 5200 u64 hole_len = key.offset - clone_root->offset; 5201 5202 if (hole_len > len) 5203 hole_len = len; 5204 ret = send_extent_data(sctx, offset, hole_len); 5205 if (ret < 0) 5206 goto out; 5207 5208 len -= hole_len; 5209 if (len == 0) 5210 break; 5211 offset += hole_len; 5212 clone_root->offset += hole_len; 5213 data_offset += hole_len; 5214 } 5215 5216 if (key.offset >= clone_root->offset + len) 5217 break; 5218 5219 if (key.offset >= clone_src_i_size) 5220 break; 5221 5222 if (key.offset + ext_len > clone_src_i_size) 5223 ext_len = clone_src_i_size - key.offset; 5224 5225 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5226 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5227 clone_root->offset = key.offset; 5228 if (clone_data_offset < data_offset && 5229 clone_data_offset + ext_len > data_offset) { 5230 u64 extent_offset; 5231 5232 extent_offset = data_offset - clone_data_offset; 5233 ext_len -= extent_offset; 5234 clone_data_offset += extent_offset; 5235 clone_root->offset += extent_offset; 5236 } 5237 } 5238 5239 clone_len = min_t(u64, ext_len, len); 5240 5241 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5242 clone_data_offset == data_offset) { 5243 const u64 src_end = clone_root->offset + clone_len; 5244 const u64 sectorsize = SZ_64K; 5245 5246 /* 5247 * We can't clone the last block, when its size is not 5248 * sector size aligned, into the middle of a file. If we 5249 * do so, the receiver will get a failure (-EINVAL) when 5250 * trying to clone or will silently corrupt the data in 5251 * the destination file if it's on a kernel without the 5252 * fix introduced by commit ac765f83f1397646 5253 * ("Btrfs: fix data corruption due to cloning of eof 5254 * block). 5255 * 5256 * So issue a clone of the aligned down range plus a 5257 * regular write for the eof block, if we hit that case. 5258 * 5259 * Also, we use the maximum possible sector size, 64K, 5260 * because we don't know what's the sector size of the 5261 * filesystem that receives the stream, so we have to 5262 * assume the largest possible sector size. 5263 */ 5264 if (src_end == clone_src_i_size && 5265 !IS_ALIGNED(src_end, sectorsize) && 5266 offset + clone_len < sctx->cur_inode_size) { 5267 u64 slen; 5268 5269 slen = ALIGN_DOWN(src_end - clone_root->offset, 5270 sectorsize); 5271 if (slen > 0) { 5272 ret = send_clone(sctx, offset, slen, 5273 clone_root); 5274 if (ret < 0) 5275 goto out; 5276 } 5277 ret = send_extent_data(sctx, offset + slen, 5278 clone_len - slen); 5279 } else { 5280 ret = send_clone(sctx, offset, clone_len, 5281 clone_root); 5282 } 5283 } else { 5284 ret = send_extent_data(sctx, offset, clone_len); 5285 } 5286 5287 if (ret < 0) 5288 goto out; 5289 5290 len -= clone_len; 5291 if (len == 0) 5292 break; 5293 offset += clone_len; 5294 clone_root->offset += clone_len; 5295 data_offset += clone_len; 5296 next: 5297 path->slots[0]++; 5298 } 5299 5300 if (len > 0) 5301 ret = send_extent_data(sctx, offset, len); 5302 else 5303 ret = 0; 5304 out: 5305 btrfs_free_path(path); 5306 return ret; 5307 } 5308 5309 static int send_write_or_clone(struct send_ctx *sctx, 5310 struct btrfs_path *path, 5311 struct btrfs_key *key, 5312 struct clone_root *clone_root) 5313 { 5314 int ret = 0; 5315 struct btrfs_file_extent_item *ei; 5316 u64 offset = key->offset; 5317 u64 len; 5318 u8 type; 5319 u64 bs = sctx->send_root->fs_info->sb->s_blocksize; 5320 5321 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5322 struct btrfs_file_extent_item); 5323 type = btrfs_file_extent_type(path->nodes[0], ei); 5324 if (type == BTRFS_FILE_EXTENT_INLINE) { 5325 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 5326 /* 5327 * it is possible the inline item won't cover the whole page, 5328 * but there may be items after this page. Make 5329 * sure to send the whole thing 5330 */ 5331 len = PAGE_ALIGN(len); 5332 } else { 5333 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 5334 } 5335 5336 if (offset >= sctx->cur_inode_size) { 5337 ret = 0; 5338 goto out; 5339 } 5340 if (offset + len > sctx->cur_inode_size) 5341 len = sctx->cur_inode_size - offset; 5342 if (len == 0) { 5343 ret = 0; 5344 goto out; 5345 } 5346 5347 if (clone_root && IS_ALIGNED(offset + len, bs)) { 5348 u64 disk_byte; 5349 u64 data_offset; 5350 5351 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 5352 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 5353 ret = clone_range(sctx, clone_root, disk_byte, data_offset, 5354 offset, len); 5355 } else { 5356 ret = send_extent_data(sctx, offset, len); 5357 } 5358 sctx->cur_inode_next_write_offset = offset + len; 5359 out: 5360 return ret; 5361 } 5362 5363 static int is_extent_unchanged(struct send_ctx *sctx, 5364 struct btrfs_path *left_path, 5365 struct btrfs_key *ekey) 5366 { 5367 int ret = 0; 5368 struct btrfs_key key; 5369 struct btrfs_path *path = NULL; 5370 struct extent_buffer *eb; 5371 int slot; 5372 struct btrfs_key found_key; 5373 struct btrfs_file_extent_item *ei; 5374 u64 left_disknr; 5375 u64 right_disknr; 5376 u64 left_offset; 5377 u64 right_offset; 5378 u64 left_offset_fixed; 5379 u64 left_len; 5380 u64 right_len; 5381 u64 left_gen; 5382 u64 right_gen; 5383 u8 left_type; 5384 u8 right_type; 5385 5386 path = alloc_path_for_send(); 5387 if (!path) 5388 return -ENOMEM; 5389 5390 eb = left_path->nodes[0]; 5391 slot = left_path->slots[0]; 5392 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5393 left_type = btrfs_file_extent_type(eb, ei); 5394 5395 if (left_type != BTRFS_FILE_EXTENT_REG) { 5396 ret = 0; 5397 goto out; 5398 } 5399 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5400 left_len = btrfs_file_extent_num_bytes(eb, ei); 5401 left_offset = btrfs_file_extent_offset(eb, ei); 5402 left_gen = btrfs_file_extent_generation(eb, ei); 5403 5404 /* 5405 * Following comments will refer to these graphics. L is the left 5406 * extents which we are checking at the moment. 1-8 are the right 5407 * extents that we iterate. 5408 * 5409 * |-----L-----| 5410 * |-1-|-2a-|-3-|-4-|-5-|-6-| 5411 * 5412 * |-----L-----| 5413 * |--1--|-2b-|...(same as above) 5414 * 5415 * Alternative situation. Happens on files where extents got split. 5416 * |-----L-----| 5417 * |-----------7-----------|-6-| 5418 * 5419 * Alternative situation. Happens on files which got larger. 5420 * |-----L-----| 5421 * |-8-| 5422 * Nothing follows after 8. 5423 */ 5424 5425 key.objectid = ekey->objectid; 5426 key.type = BTRFS_EXTENT_DATA_KEY; 5427 key.offset = ekey->offset; 5428 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 5429 if (ret < 0) 5430 goto out; 5431 if (ret) { 5432 ret = 0; 5433 goto out; 5434 } 5435 5436 /* 5437 * Handle special case where the right side has no extents at all. 5438 */ 5439 eb = path->nodes[0]; 5440 slot = path->slots[0]; 5441 btrfs_item_key_to_cpu(eb, &found_key, slot); 5442 if (found_key.objectid != key.objectid || 5443 found_key.type != key.type) { 5444 /* If we're a hole then just pretend nothing changed */ 5445 ret = (left_disknr) ? 0 : 1; 5446 goto out; 5447 } 5448 5449 /* 5450 * We're now on 2a, 2b or 7. 5451 */ 5452 key = found_key; 5453 while (key.offset < ekey->offset + left_len) { 5454 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 5455 right_type = btrfs_file_extent_type(eb, ei); 5456 if (right_type != BTRFS_FILE_EXTENT_REG && 5457 right_type != BTRFS_FILE_EXTENT_INLINE) { 5458 ret = 0; 5459 goto out; 5460 } 5461 5462 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5463 right_len = btrfs_file_extent_ram_bytes(eb, ei); 5464 right_len = PAGE_ALIGN(right_len); 5465 } else { 5466 right_len = btrfs_file_extent_num_bytes(eb, ei); 5467 } 5468 5469 /* 5470 * Are we at extent 8? If yes, we know the extent is changed. 5471 * This may only happen on the first iteration. 5472 */ 5473 if (found_key.offset + right_len <= ekey->offset) { 5474 /* If we're a hole just pretend nothing changed */ 5475 ret = (left_disknr) ? 0 : 1; 5476 goto out; 5477 } 5478 5479 /* 5480 * We just wanted to see if when we have an inline extent, what 5481 * follows it is a regular extent (wanted to check the above 5482 * condition for inline extents too). This should normally not 5483 * happen but it's possible for example when we have an inline 5484 * compressed extent representing data with a size matching 5485 * the page size (currently the same as sector size). 5486 */ 5487 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 5488 ret = 0; 5489 goto out; 5490 } 5491 5492 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 5493 right_offset = btrfs_file_extent_offset(eb, ei); 5494 right_gen = btrfs_file_extent_generation(eb, ei); 5495 5496 left_offset_fixed = left_offset; 5497 if (key.offset < ekey->offset) { 5498 /* Fix the right offset for 2a and 7. */ 5499 right_offset += ekey->offset - key.offset; 5500 } else { 5501 /* Fix the left offset for all behind 2a and 2b */ 5502 left_offset_fixed += key.offset - ekey->offset; 5503 } 5504 5505 /* 5506 * Check if we have the same extent. 5507 */ 5508 if (left_disknr != right_disknr || 5509 left_offset_fixed != right_offset || 5510 left_gen != right_gen) { 5511 ret = 0; 5512 goto out; 5513 } 5514 5515 /* 5516 * Go to the next extent. 5517 */ 5518 ret = btrfs_next_item(sctx->parent_root, path); 5519 if (ret < 0) 5520 goto out; 5521 if (!ret) { 5522 eb = path->nodes[0]; 5523 slot = path->slots[0]; 5524 btrfs_item_key_to_cpu(eb, &found_key, slot); 5525 } 5526 if (ret || found_key.objectid != key.objectid || 5527 found_key.type != key.type) { 5528 key.offset += right_len; 5529 break; 5530 } 5531 if (found_key.offset != key.offset + right_len) { 5532 ret = 0; 5533 goto out; 5534 } 5535 key = found_key; 5536 } 5537 5538 /* 5539 * We're now behind the left extent (treat as unchanged) or at the end 5540 * of the right side (treat as changed). 5541 */ 5542 if (key.offset >= ekey->offset + left_len) 5543 ret = 1; 5544 else 5545 ret = 0; 5546 5547 5548 out: 5549 btrfs_free_path(path); 5550 return ret; 5551 } 5552 5553 static int get_last_extent(struct send_ctx *sctx, u64 offset) 5554 { 5555 struct btrfs_path *path; 5556 struct btrfs_root *root = sctx->send_root; 5557 struct btrfs_file_extent_item *fi; 5558 struct btrfs_key key; 5559 u64 extent_end; 5560 u8 type; 5561 int ret; 5562 5563 path = alloc_path_for_send(); 5564 if (!path) 5565 return -ENOMEM; 5566 5567 sctx->cur_inode_last_extent = 0; 5568 5569 key.objectid = sctx->cur_ino; 5570 key.type = BTRFS_EXTENT_DATA_KEY; 5571 key.offset = offset; 5572 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 5573 if (ret < 0) 5574 goto out; 5575 ret = 0; 5576 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 5577 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 5578 goto out; 5579 5580 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5581 struct btrfs_file_extent_item); 5582 type = btrfs_file_extent_type(path->nodes[0], fi); 5583 if (type == BTRFS_FILE_EXTENT_INLINE) { 5584 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5585 extent_end = ALIGN(key.offset + size, 5586 sctx->send_root->fs_info->sectorsize); 5587 } else { 5588 extent_end = key.offset + 5589 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5590 } 5591 sctx->cur_inode_last_extent = extent_end; 5592 out: 5593 btrfs_free_path(path); 5594 return ret; 5595 } 5596 5597 static int range_is_hole_in_parent(struct send_ctx *sctx, 5598 const u64 start, 5599 const u64 end) 5600 { 5601 struct btrfs_path *path; 5602 struct btrfs_key key; 5603 struct btrfs_root *root = sctx->parent_root; 5604 u64 search_start = start; 5605 int ret; 5606 5607 path = alloc_path_for_send(); 5608 if (!path) 5609 return -ENOMEM; 5610 5611 key.objectid = sctx->cur_ino; 5612 key.type = BTRFS_EXTENT_DATA_KEY; 5613 key.offset = search_start; 5614 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5615 if (ret < 0) 5616 goto out; 5617 if (ret > 0 && path->slots[0] > 0) 5618 path->slots[0]--; 5619 5620 while (search_start < end) { 5621 struct extent_buffer *leaf = path->nodes[0]; 5622 int slot = path->slots[0]; 5623 struct btrfs_file_extent_item *fi; 5624 u64 extent_end; 5625 5626 if (slot >= btrfs_header_nritems(leaf)) { 5627 ret = btrfs_next_leaf(root, path); 5628 if (ret < 0) 5629 goto out; 5630 else if (ret > 0) 5631 break; 5632 continue; 5633 } 5634 5635 btrfs_item_key_to_cpu(leaf, &key, slot); 5636 if (key.objectid < sctx->cur_ino || 5637 key.type < BTRFS_EXTENT_DATA_KEY) 5638 goto next; 5639 if (key.objectid > sctx->cur_ino || 5640 key.type > BTRFS_EXTENT_DATA_KEY || 5641 key.offset >= end) 5642 break; 5643 5644 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5645 if (btrfs_file_extent_type(leaf, fi) == 5646 BTRFS_FILE_EXTENT_INLINE) { 5647 u64 size = btrfs_file_extent_ram_bytes(leaf, fi); 5648 5649 extent_end = ALIGN(key.offset + size, 5650 root->fs_info->sectorsize); 5651 } else { 5652 extent_end = key.offset + 5653 btrfs_file_extent_num_bytes(leaf, fi); 5654 } 5655 if (extent_end <= start) 5656 goto next; 5657 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 5658 search_start = extent_end; 5659 goto next; 5660 } 5661 ret = 0; 5662 goto out; 5663 next: 5664 path->slots[0]++; 5665 } 5666 ret = 1; 5667 out: 5668 btrfs_free_path(path); 5669 return ret; 5670 } 5671 5672 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 5673 struct btrfs_key *key) 5674 { 5675 struct btrfs_file_extent_item *fi; 5676 u64 extent_end; 5677 u8 type; 5678 int ret = 0; 5679 5680 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 5681 return 0; 5682 5683 if (sctx->cur_inode_last_extent == (u64)-1) { 5684 ret = get_last_extent(sctx, key->offset - 1); 5685 if (ret) 5686 return ret; 5687 } 5688 5689 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 5690 struct btrfs_file_extent_item); 5691 type = btrfs_file_extent_type(path->nodes[0], fi); 5692 if (type == BTRFS_FILE_EXTENT_INLINE) { 5693 u64 size = btrfs_file_extent_ram_bytes(path->nodes[0], fi); 5694 extent_end = ALIGN(key->offset + size, 5695 sctx->send_root->fs_info->sectorsize); 5696 } else { 5697 extent_end = key->offset + 5698 btrfs_file_extent_num_bytes(path->nodes[0], fi); 5699 } 5700 5701 if (path->slots[0] == 0 && 5702 sctx->cur_inode_last_extent < key->offset) { 5703 /* 5704 * We might have skipped entire leafs that contained only 5705 * file extent items for our current inode. These leafs have 5706 * a generation number smaller (older) than the one in the 5707 * current leaf and the leaf our last extent came from, and 5708 * are located between these 2 leafs. 5709 */ 5710 ret = get_last_extent(sctx, key->offset - 1); 5711 if (ret) 5712 return ret; 5713 } 5714 5715 if (sctx->cur_inode_last_extent < key->offset) { 5716 ret = range_is_hole_in_parent(sctx, 5717 sctx->cur_inode_last_extent, 5718 key->offset); 5719 if (ret < 0) 5720 return ret; 5721 else if (ret == 0) 5722 ret = send_hole(sctx, key->offset); 5723 else 5724 ret = 0; 5725 } 5726 sctx->cur_inode_last_extent = extent_end; 5727 return ret; 5728 } 5729 5730 static int process_extent(struct send_ctx *sctx, 5731 struct btrfs_path *path, 5732 struct btrfs_key *key) 5733 { 5734 struct clone_root *found_clone = NULL; 5735 int ret = 0; 5736 5737 if (S_ISLNK(sctx->cur_inode_mode)) 5738 return 0; 5739 5740 if (sctx->parent_root && !sctx->cur_inode_new) { 5741 ret = is_extent_unchanged(sctx, path, key); 5742 if (ret < 0) 5743 goto out; 5744 if (ret) { 5745 ret = 0; 5746 goto out_hole; 5747 } 5748 } else { 5749 struct btrfs_file_extent_item *ei; 5750 u8 type; 5751 5752 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 5753 struct btrfs_file_extent_item); 5754 type = btrfs_file_extent_type(path->nodes[0], ei); 5755 if (type == BTRFS_FILE_EXTENT_PREALLOC || 5756 type == BTRFS_FILE_EXTENT_REG) { 5757 /* 5758 * The send spec does not have a prealloc command yet, 5759 * so just leave a hole for prealloc'ed extents until 5760 * we have enough commands queued up to justify rev'ing 5761 * the send spec. 5762 */ 5763 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 5764 ret = 0; 5765 goto out; 5766 } 5767 5768 /* Have a hole, just skip it. */ 5769 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 5770 ret = 0; 5771 goto out; 5772 } 5773 } 5774 } 5775 5776 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 5777 sctx->cur_inode_size, &found_clone); 5778 if (ret != -ENOENT && ret < 0) 5779 goto out; 5780 5781 ret = send_write_or_clone(sctx, path, key, found_clone); 5782 if (ret) 5783 goto out; 5784 out_hole: 5785 ret = maybe_send_hole(sctx, path, key); 5786 out: 5787 return ret; 5788 } 5789 5790 static int process_all_extents(struct send_ctx *sctx) 5791 { 5792 int ret; 5793 struct btrfs_root *root; 5794 struct btrfs_path *path; 5795 struct btrfs_key key; 5796 struct btrfs_key found_key; 5797 struct extent_buffer *eb; 5798 int slot; 5799 5800 root = sctx->send_root; 5801 path = alloc_path_for_send(); 5802 if (!path) 5803 return -ENOMEM; 5804 5805 key.objectid = sctx->cmp_key->objectid; 5806 key.type = BTRFS_EXTENT_DATA_KEY; 5807 key.offset = 0; 5808 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5809 if (ret < 0) 5810 goto out; 5811 5812 while (1) { 5813 eb = path->nodes[0]; 5814 slot = path->slots[0]; 5815 5816 if (slot >= btrfs_header_nritems(eb)) { 5817 ret = btrfs_next_leaf(root, path); 5818 if (ret < 0) { 5819 goto out; 5820 } else if (ret > 0) { 5821 ret = 0; 5822 break; 5823 } 5824 continue; 5825 } 5826 5827 btrfs_item_key_to_cpu(eb, &found_key, slot); 5828 5829 if (found_key.objectid != key.objectid || 5830 found_key.type != key.type) { 5831 ret = 0; 5832 goto out; 5833 } 5834 5835 ret = process_extent(sctx, path, &found_key); 5836 if (ret < 0) 5837 goto out; 5838 5839 path->slots[0]++; 5840 } 5841 5842 out: 5843 btrfs_free_path(path); 5844 return ret; 5845 } 5846 5847 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 5848 int *pending_move, 5849 int *refs_processed) 5850 { 5851 int ret = 0; 5852 5853 if (sctx->cur_ino == 0) 5854 goto out; 5855 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 5856 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 5857 goto out; 5858 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 5859 goto out; 5860 5861 ret = process_recorded_refs(sctx, pending_move); 5862 if (ret < 0) 5863 goto out; 5864 5865 *refs_processed = 1; 5866 out: 5867 return ret; 5868 } 5869 5870 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 5871 { 5872 int ret = 0; 5873 u64 left_mode; 5874 u64 left_uid; 5875 u64 left_gid; 5876 u64 right_mode; 5877 u64 right_uid; 5878 u64 right_gid; 5879 int need_chmod = 0; 5880 int need_chown = 0; 5881 int need_truncate = 1; 5882 int pending_move = 0; 5883 int refs_processed = 0; 5884 5885 if (sctx->ignore_cur_inode) 5886 return 0; 5887 5888 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 5889 &refs_processed); 5890 if (ret < 0) 5891 goto out; 5892 5893 /* 5894 * We have processed the refs and thus need to advance send_progress. 5895 * Now, calls to get_cur_xxx will take the updated refs of the current 5896 * inode into account. 5897 * 5898 * On the other hand, if our current inode is a directory and couldn't 5899 * be moved/renamed because its parent was renamed/moved too and it has 5900 * a higher inode number, we can only move/rename our current inode 5901 * after we moved/renamed its parent. Therefore in this case operate on 5902 * the old path (pre move/rename) of our current inode, and the 5903 * move/rename will be performed later. 5904 */ 5905 if (refs_processed && !pending_move) 5906 sctx->send_progress = sctx->cur_ino + 1; 5907 5908 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 5909 goto out; 5910 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 5911 goto out; 5912 5913 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 5914 &left_mode, &left_uid, &left_gid, NULL); 5915 if (ret < 0) 5916 goto out; 5917 5918 if (!sctx->parent_root || sctx->cur_inode_new) { 5919 need_chown = 1; 5920 if (!S_ISLNK(sctx->cur_inode_mode)) 5921 need_chmod = 1; 5922 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 5923 need_truncate = 0; 5924 } else { 5925 u64 old_size; 5926 5927 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 5928 &old_size, NULL, &right_mode, &right_uid, 5929 &right_gid, NULL); 5930 if (ret < 0) 5931 goto out; 5932 5933 if (left_uid != right_uid || left_gid != right_gid) 5934 need_chown = 1; 5935 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 5936 need_chmod = 1; 5937 if ((old_size == sctx->cur_inode_size) || 5938 (sctx->cur_inode_size > old_size && 5939 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 5940 need_truncate = 0; 5941 } 5942 5943 if (S_ISREG(sctx->cur_inode_mode)) { 5944 if (need_send_hole(sctx)) { 5945 if (sctx->cur_inode_last_extent == (u64)-1 || 5946 sctx->cur_inode_last_extent < 5947 sctx->cur_inode_size) { 5948 ret = get_last_extent(sctx, (u64)-1); 5949 if (ret) 5950 goto out; 5951 } 5952 if (sctx->cur_inode_last_extent < 5953 sctx->cur_inode_size) { 5954 ret = send_hole(sctx, sctx->cur_inode_size); 5955 if (ret) 5956 goto out; 5957 } 5958 } 5959 if (need_truncate) { 5960 ret = send_truncate(sctx, sctx->cur_ino, 5961 sctx->cur_inode_gen, 5962 sctx->cur_inode_size); 5963 if (ret < 0) 5964 goto out; 5965 } 5966 } 5967 5968 if (need_chown) { 5969 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5970 left_uid, left_gid); 5971 if (ret < 0) 5972 goto out; 5973 } 5974 if (need_chmod) { 5975 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 5976 left_mode); 5977 if (ret < 0) 5978 goto out; 5979 } 5980 5981 /* 5982 * If other directory inodes depended on our current directory 5983 * inode's move/rename, now do their move/rename operations. 5984 */ 5985 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 5986 ret = apply_children_dir_moves(sctx); 5987 if (ret) 5988 goto out; 5989 /* 5990 * Need to send that every time, no matter if it actually 5991 * changed between the two trees as we have done changes to 5992 * the inode before. If our inode is a directory and it's 5993 * waiting to be moved/renamed, we will send its utimes when 5994 * it's moved/renamed, therefore we don't need to do it here. 5995 */ 5996 sctx->send_progress = sctx->cur_ino + 1; 5997 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 5998 if (ret < 0) 5999 goto out; 6000 } 6001 6002 out: 6003 return ret; 6004 } 6005 6006 struct parent_paths_ctx { 6007 struct list_head *refs; 6008 struct send_ctx *sctx; 6009 }; 6010 6011 static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name, 6012 void *ctx) 6013 { 6014 struct parent_paths_ctx *ppctx = ctx; 6015 6016 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx, 6017 ppctx->refs); 6018 } 6019 6020 /* 6021 * Issue unlink operations for all paths of the current inode found in the 6022 * parent snapshot. 6023 */ 6024 static int btrfs_unlink_all_paths(struct send_ctx *sctx) 6025 { 6026 LIST_HEAD(deleted_refs); 6027 struct btrfs_path *path; 6028 struct btrfs_key key; 6029 struct parent_paths_ctx ctx; 6030 int ret; 6031 6032 path = alloc_path_for_send(); 6033 if (!path) 6034 return -ENOMEM; 6035 6036 key.objectid = sctx->cur_ino; 6037 key.type = BTRFS_INODE_REF_KEY; 6038 key.offset = 0; 6039 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 6040 if (ret < 0) 6041 goto out; 6042 6043 ctx.refs = &deleted_refs; 6044 ctx.sctx = sctx; 6045 6046 while (true) { 6047 struct extent_buffer *eb = path->nodes[0]; 6048 int slot = path->slots[0]; 6049 6050 if (slot >= btrfs_header_nritems(eb)) { 6051 ret = btrfs_next_leaf(sctx->parent_root, path); 6052 if (ret < 0) 6053 goto out; 6054 else if (ret > 0) 6055 break; 6056 continue; 6057 } 6058 6059 btrfs_item_key_to_cpu(eb, &key, slot); 6060 if (key.objectid != sctx->cur_ino) 6061 break; 6062 if (key.type != BTRFS_INODE_REF_KEY && 6063 key.type != BTRFS_INODE_EXTREF_KEY) 6064 break; 6065 6066 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1, 6067 record_parent_ref, &ctx); 6068 if (ret < 0) 6069 goto out; 6070 6071 path->slots[0]++; 6072 } 6073 6074 while (!list_empty(&deleted_refs)) { 6075 struct recorded_ref *ref; 6076 6077 ref = list_first_entry(&deleted_refs, struct recorded_ref, list); 6078 ret = send_unlink(sctx, ref->full_path); 6079 if (ret < 0) 6080 goto out; 6081 fs_path_free(ref->full_path); 6082 list_del(&ref->list); 6083 kfree(ref); 6084 } 6085 ret = 0; 6086 out: 6087 btrfs_free_path(path); 6088 if (ret) 6089 __free_recorded_refs(&deleted_refs); 6090 return ret; 6091 } 6092 6093 static int changed_inode(struct send_ctx *sctx, 6094 enum btrfs_compare_tree_result result) 6095 { 6096 int ret = 0; 6097 struct btrfs_key *key = sctx->cmp_key; 6098 struct btrfs_inode_item *left_ii = NULL; 6099 struct btrfs_inode_item *right_ii = NULL; 6100 u64 left_gen = 0; 6101 u64 right_gen = 0; 6102 6103 sctx->cur_ino = key->objectid; 6104 sctx->cur_inode_new_gen = 0; 6105 sctx->cur_inode_last_extent = (u64)-1; 6106 sctx->cur_inode_next_write_offset = 0; 6107 sctx->ignore_cur_inode = false; 6108 6109 /* 6110 * Set send_progress to current inode. This will tell all get_cur_xxx 6111 * functions that the current inode's refs are not updated yet. Later, 6112 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6113 */ 6114 sctx->send_progress = sctx->cur_ino; 6115 6116 if (result == BTRFS_COMPARE_TREE_NEW || 6117 result == BTRFS_COMPARE_TREE_CHANGED) { 6118 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6119 sctx->left_path->slots[0], 6120 struct btrfs_inode_item); 6121 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6122 left_ii); 6123 } else { 6124 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6125 sctx->right_path->slots[0], 6126 struct btrfs_inode_item); 6127 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6128 right_ii); 6129 } 6130 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6131 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6132 sctx->right_path->slots[0], 6133 struct btrfs_inode_item); 6134 6135 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6136 right_ii); 6137 6138 /* 6139 * The cur_ino = root dir case is special here. We can't treat 6140 * the inode as deleted+reused because it would generate a 6141 * stream that tries to delete/mkdir the root dir. 6142 */ 6143 if (left_gen != right_gen && 6144 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6145 sctx->cur_inode_new_gen = 1; 6146 } 6147 6148 /* 6149 * Normally we do not find inodes with a link count of zero (orphans) 6150 * because the most common case is to create a snapshot and use it 6151 * for a send operation. However other less common use cases involve 6152 * using a subvolume and send it after turning it to RO mode just 6153 * after deleting all hard links of a file while holding an open 6154 * file descriptor against it or turning a RO snapshot into RW mode, 6155 * keep an open file descriptor against a file, delete it and then 6156 * turn the snapshot back to RO mode before using it for a send 6157 * operation. So if we find such cases, ignore the inode and all its 6158 * items completely if it's a new inode, or if it's a changed inode 6159 * make sure all its previous paths (from the parent snapshot) are all 6160 * unlinked and all other the inode items are ignored. 6161 */ 6162 if (result == BTRFS_COMPARE_TREE_NEW || 6163 result == BTRFS_COMPARE_TREE_CHANGED) { 6164 u32 nlinks; 6165 6166 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6167 if (nlinks == 0) { 6168 sctx->ignore_cur_inode = true; 6169 if (result == BTRFS_COMPARE_TREE_CHANGED) 6170 ret = btrfs_unlink_all_paths(sctx); 6171 goto out; 6172 } 6173 } 6174 6175 if (result == BTRFS_COMPARE_TREE_NEW) { 6176 sctx->cur_inode_gen = left_gen; 6177 sctx->cur_inode_new = 1; 6178 sctx->cur_inode_deleted = 0; 6179 sctx->cur_inode_size = btrfs_inode_size( 6180 sctx->left_path->nodes[0], left_ii); 6181 sctx->cur_inode_mode = btrfs_inode_mode( 6182 sctx->left_path->nodes[0], left_ii); 6183 sctx->cur_inode_rdev = btrfs_inode_rdev( 6184 sctx->left_path->nodes[0], left_ii); 6185 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6186 ret = send_create_inode_if_needed(sctx); 6187 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6188 sctx->cur_inode_gen = right_gen; 6189 sctx->cur_inode_new = 0; 6190 sctx->cur_inode_deleted = 1; 6191 sctx->cur_inode_size = btrfs_inode_size( 6192 sctx->right_path->nodes[0], right_ii); 6193 sctx->cur_inode_mode = btrfs_inode_mode( 6194 sctx->right_path->nodes[0], right_ii); 6195 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6196 /* 6197 * We need to do some special handling in case the inode was 6198 * reported as changed with a changed generation number. This 6199 * means that the original inode was deleted and new inode 6200 * reused the same inum. So we have to treat the old inode as 6201 * deleted and the new one as new. 6202 */ 6203 if (sctx->cur_inode_new_gen) { 6204 /* 6205 * First, process the inode as if it was deleted. 6206 */ 6207 sctx->cur_inode_gen = right_gen; 6208 sctx->cur_inode_new = 0; 6209 sctx->cur_inode_deleted = 1; 6210 sctx->cur_inode_size = btrfs_inode_size( 6211 sctx->right_path->nodes[0], right_ii); 6212 sctx->cur_inode_mode = btrfs_inode_mode( 6213 sctx->right_path->nodes[0], right_ii); 6214 ret = process_all_refs(sctx, 6215 BTRFS_COMPARE_TREE_DELETED); 6216 if (ret < 0) 6217 goto out; 6218 6219 /* 6220 * Now process the inode as if it was new. 6221 */ 6222 sctx->cur_inode_gen = left_gen; 6223 sctx->cur_inode_new = 1; 6224 sctx->cur_inode_deleted = 0; 6225 sctx->cur_inode_size = btrfs_inode_size( 6226 sctx->left_path->nodes[0], left_ii); 6227 sctx->cur_inode_mode = btrfs_inode_mode( 6228 sctx->left_path->nodes[0], left_ii); 6229 sctx->cur_inode_rdev = btrfs_inode_rdev( 6230 sctx->left_path->nodes[0], left_ii); 6231 ret = send_create_inode_if_needed(sctx); 6232 if (ret < 0) 6233 goto out; 6234 6235 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6236 if (ret < 0) 6237 goto out; 6238 /* 6239 * Advance send_progress now as we did not get into 6240 * process_recorded_refs_if_needed in the new_gen case. 6241 */ 6242 sctx->send_progress = sctx->cur_ino + 1; 6243 6244 /* 6245 * Now process all extents and xattrs of the inode as if 6246 * they were all new. 6247 */ 6248 ret = process_all_extents(sctx); 6249 if (ret < 0) 6250 goto out; 6251 ret = process_all_new_xattrs(sctx); 6252 if (ret < 0) 6253 goto out; 6254 } else { 6255 sctx->cur_inode_gen = left_gen; 6256 sctx->cur_inode_new = 0; 6257 sctx->cur_inode_new_gen = 0; 6258 sctx->cur_inode_deleted = 0; 6259 sctx->cur_inode_size = btrfs_inode_size( 6260 sctx->left_path->nodes[0], left_ii); 6261 sctx->cur_inode_mode = btrfs_inode_mode( 6262 sctx->left_path->nodes[0], left_ii); 6263 } 6264 } 6265 6266 out: 6267 return ret; 6268 } 6269 6270 /* 6271 * We have to process new refs before deleted refs, but compare_trees gives us 6272 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6273 * first and later process them in process_recorded_refs. 6274 * For the cur_inode_new_gen case, we skip recording completely because 6275 * changed_inode did already initiate processing of refs. The reason for this is 6276 * that in this case, compare_tree actually compares the refs of 2 different 6277 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6278 * refs of the right tree as deleted and all refs of the left tree as new. 6279 */ 6280 static int changed_ref(struct send_ctx *sctx, 6281 enum btrfs_compare_tree_result result) 6282 { 6283 int ret = 0; 6284 6285 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6286 inconsistent_snapshot_error(sctx, result, "reference"); 6287 return -EIO; 6288 } 6289 6290 if (!sctx->cur_inode_new_gen && 6291 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6292 if (result == BTRFS_COMPARE_TREE_NEW) 6293 ret = record_new_ref(sctx); 6294 else if (result == BTRFS_COMPARE_TREE_DELETED) 6295 ret = record_deleted_ref(sctx); 6296 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6297 ret = record_changed_ref(sctx); 6298 } 6299 6300 return ret; 6301 } 6302 6303 /* 6304 * Process new/deleted/changed xattrs. We skip processing in the 6305 * cur_inode_new_gen case because changed_inode did already initiate processing 6306 * of xattrs. The reason is the same as in changed_ref 6307 */ 6308 static int changed_xattr(struct send_ctx *sctx, 6309 enum btrfs_compare_tree_result result) 6310 { 6311 int ret = 0; 6312 6313 if (sctx->cur_ino != sctx->cmp_key->objectid) { 6314 inconsistent_snapshot_error(sctx, result, "xattr"); 6315 return -EIO; 6316 } 6317 6318 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6319 if (result == BTRFS_COMPARE_TREE_NEW) 6320 ret = process_new_xattr(sctx); 6321 else if (result == BTRFS_COMPARE_TREE_DELETED) 6322 ret = process_deleted_xattr(sctx); 6323 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6324 ret = process_changed_xattr(sctx); 6325 } 6326 6327 return ret; 6328 } 6329 6330 /* 6331 * Process new/deleted/changed extents. We skip processing in the 6332 * cur_inode_new_gen case because changed_inode did already initiate processing 6333 * of extents. The reason is the same as in changed_ref 6334 */ 6335 static int changed_extent(struct send_ctx *sctx, 6336 enum btrfs_compare_tree_result result) 6337 { 6338 int ret = 0; 6339 6340 /* 6341 * We have found an extent item that changed without the inode item 6342 * having changed. This can happen either after relocation (where the 6343 * disk_bytenr of an extent item is replaced at 6344 * relocation.c:replace_file_extents()) or after deduplication into a 6345 * file in both the parent and send snapshots (where an extent item can 6346 * get modified or replaced with a new one). Note that deduplication 6347 * updates the inode item, but it only changes the iversion (sequence 6348 * field in the inode item) of the inode, so if a file is deduplicated 6349 * the same amount of times in both the parent and send snapshots, its 6350 * iversion becames the same in both snapshots, whence the inode item is 6351 * the same on both snapshots. 6352 */ 6353 if (sctx->cur_ino != sctx->cmp_key->objectid) 6354 return 0; 6355 6356 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6357 if (result != BTRFS_COMPARE_TREE_DELETED) 6358 ret = process_extent(sctx, sctx->left_path, 6359 sctx->cmp_key); 6360 } 6361 6362 return ret; 6363 } 6364 6365 static int dir_changed(struct send_ctx *sctx, u64 dir) 6366 { 6367 u64 orig_gen, new_gen; 6368 int ret; 6369 6370 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL, 6371 NULL, NULL); 6372 if (ret) 6373 return ret; 6374 6375 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL, 6376 NULL, NULL, NULL); 6377 if (ret) 6378 return ret; 6379 6380 return (orig_gen != new_gen) ? 1 : 0; 6381 } 6382 6383 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 6384 struct btrfs_key *key) 6385 { 6386 struct btrfs_inode_extref *extref; 6387 struct extent_buffer *leaf; 6388 u64 dirid = 0, last_dirid = 0; 6389 unsigned long ptr; 6390 u32 item_size; 6391 u32 cur_offset = 0; 6392 int ref_name_len; 6393 int ret = 0; 6394 6395 /* Easy case, just check this one dirid */ 6396 if (key->type == BTRFS_INODE_REF_KEY) { 6397 dirid = key->offset; 6398 6399 ret = dir_changed(sctx, dirid); 6400 goto out; 6401 } 6402 6403 leaf = path->nodes[0]; 6404 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 6405 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 6406 while (cur_offset < item_size) { 6407 extref = (struct btrfs_inode_extref *)(ptr + 6408 cur_offset); 6409 dirid = btrfs_inode_extref_parent(leaf, extref); 6410 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 6411 cur_offset += ref_name_len + sizeof(*extref); 6412 if (dirid == last_dirid) 6413 continue; 6414 ret = dir_changed(sctx, dirid); 6415 if (ret) 6416 break; 6417 last_dirid = dirid; 6418 } 6419 out: 6420 return ret; 6421 } 6422 6423 /* 6424 * Updates compare related fields in sctx and simply forwards to the actual 6425 * changed_xxx functions. 6426 */ 6427 static int changed_cb(struct btrfs_path *left_path, 6428 struct btrfs_path *right_path, 6429 struct btrfs_key *key, 6430 enum btrfs_compare_tree_result result, 6431 void *ctx) 6432 { 6433 int ret = 0; 6434 struct send_ctx *sctx = ctx; 6435 6436 if (result == BTRFS_COMPARE_TREE_SAME) { 6437 if (key->type == BTRFS_INODE_REF_KEY || 6438 key->type == BTRFS_INODE_EXTREF_KEY) { 6439 ret = compare_refs(sctx, left_path, key); 6440 if (!ret) 6441 return 0; 6442 if (ret < 0) 6443 return ret; 6444 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 6445 return maybe_send_hole(sctx, left_path, key); 6446 } else { 6447 return 0; 6448 } 6449 result = BTRFS_COMPARE_TREE_CHANGED; 6450 ret = 0; 6451 } 6452 6453 sctx->left_path = left_path; 6454 sctx->right_path = right_path; 6455 sctx->cmp_key = key; 6456 6457 ret = finish_inode_if_needed(sctx, 0); 6458 if (ret < 0) 6459 goto out; 6460 6461 /* Ignore non-FS objects */ 6462 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 6463 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 6464 goto out; 6465 6466 if (key->type == BTRFS_INODE_ITEM_KEY) { 6467 ret = changed_inode(sctx, result); 6468 } else if (!sctx->ignore_cur_inode) { 6469 if (key->type == BTRFS_INODE_REF_KEY || 6470 key->type == BTRFS_INODE_EXTREF_KEY) 6471 ret = changed_ref(sctx, result); 6472 else if (key->type == BTRFS_XATTR_ITEM_KEY) 6473 ret = changed_xattr(sctx, result); 6474 else if (key->type == BTRFS_EXTENT_DATA_KEY) 6475 ret = changed_extent(sctx, result); 6476 } 6477 6478 out: 6479 return ret; 6480 } 6481 6482 static int full_send_tree(struct send_ctx *sctx) 6483 { 6484 int ret; 6485 struct btrfs_root *send_root = sctx->send_root; 6486 struct btrfs_key key; 6487 struct btrfs_path *path; 6488 struct extent_buffer *eb; 6489 int slot; 6490 6491 path = alloc_path_for_send(); 6492 if (!path) 6493 return -ENOMEM; 6494 6495 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 6496 key.type = BTRFS_INODE_ITEM_KEY; 6497 key.offset = 0; 6498 6499 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 6500 if (ret < 0) 6501 goto out; 6502 if (ret) 6503 goto out_finish; 6504 6505 while (1) { 6506 eb = path->nodes[0]; 6507 slot = path->slots[0]; 6508 btrfs_item_key_to_cpu(eb, &key, slot); 6509 6510 ret = changed_cb(path, NULL, &key, 6511 BTRFS_COMPARE_TREE_NEW, sctx); 6512 if (ret < 0) 6513 goto out; 6514 6515 ret = btrfs_next_item(send_root, path); 6516 if (ret < 0) 6517 goto out; 6518 if (ret) { 6519 ret = 0; 6520 break; 6521 } 6522 } 6523 6524 out_finish: 6525 ret = finish_inode_if_needed(sctx, 1); 6526 6527 out: 6528 btrfs_free_path(path); 6529 return ret; 6530 } 6531 6532 static int tree_move_down(struct btrfs_path *path, int *level) 6533 { 6534 struct extent_buffer *eb; 6535 6536 BUG_ON(*level == 0); 6537 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]); 6538 if (IS_ERR(eb)) 6539 return PTR_ERR(eb); 6540 6541 path->nodes[*level - 1] = eb; 6542 path->slots[*level - 1] = 0; 6543 (*level)--; 6544 return 0; 6545 } 6546 6547 static int tree_move_next_or_upnext(struct btrfs_path *path, 6548 int *level, int root_level) 6549 { 6550 int ret = 0; 6551 int nritems; 6552 nritems = btrfs_header_nritems(path->nodes[*level]); 6553 6554 path->slots[*level]++; 6555 6556 while (path->slots[*level] >= nritems) { 6557 if (*level == root_level) 6558 return -1; 6559 6560 /* move upnext */ 6561 path->slots[*level] = 0; 6562 free_extent_buffer(path->nodes[*level]); 6563 path->nodes[*level] = NULL; 6564 (*level)++; 6565 path->slots[*level]++; 6566 6567 nritems = btrfs_header_nritems(path->nodes[*level]); 6568 ret = 1; 6569 } 6570 return ret; 6571 } 6572 6573 /* 6574 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 6575 * or down. 6576 */ 6577 static int tree_advance(struct btrfs_path *path, 6578 int *level, int root_level, 6579 int allow_down, 6580 struct btrfs_key *key) 6581 { 6582 int ret; 6583 6584 if (*level == 0 || !allow_down) { 6585 ret = tree_move_next_or_upnext(path, level, root_level); 6586 } else { 6587 ret = tree_move_down(path, level); 6588 } 6589 if (ret >= 0) { 6590 if (*level == 0) 6591 btrfs_item_key_to_cpu(path->nodes[*level], key, 6592 path->slots[*level]); 6593 else 6594 btrfs_node_key_to_cpu(path->nodes[*level], key, 6595 path->slots[*level]); 6596 } 6597 return ret; 6598 } 6599 6600 static int tree_compare_item(struct btrfs_path *left_path, 6601 struct btrfs_path *right_path, 6602 char *tmp_buf) 6603 { 6604 int cmp; 6605 int len1, len2; 6606 unsigned long off1, off2; 6607 6608 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 6609 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 6610 if (len1 != len2) 6611 return 1; 6612 6613 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 6614 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 6615 right_path->slots[0]); 6616 6617 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 6618 6619 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 6620 if (cmp) 6621 return 1; 6622 return 0; 6623 } 6624 6625 /* 6626 * This function compares two trees and calls the provided callback for 6627 * every changed/new/deleted item it finds. 6628 * If shared tree blocks are encountered, whole subtrees are skipped, making 6629 * the compare pretty fast on snapshotted subvolumes. 6630 * 6631 * This currently works on commit roots only. As commit roots are read only, 6632 * we don't do any locking. The commit roots are protected with transactions. 6633 * Transactions are ended and rejoined when a commit is tried in between. 6634 * 6635 * This function checks for modifications done to the trees while comparing. 6636 * If it detects a change, it aborts immediately. 6637 */ 6638 static int btrfs_compare_trees(struct btrfs_root *left_root, 6639 struct btrfs_root *right_root, 6640 btrfs_changed_cb_t changed_cb, void *ctx) 6641 { 6642 struct btrfs_fs_info *fs_info = left_root->fs_info; 6643 int ret; 6644 int cmp; 6645 struct btrfs_path *left_path = NULL; 6646 struct btrfs_path *right_path = NULL; 6647 struct btrfs_key left_key; 6648 struct btrfs_key right_key; 6649 char *tmp_buf = NULL; 6650 int left_root_level; 6651 int right_root_level; 6652 int left_level; 6653 int right_level; 6654 int left_end_reached; 6655 int right_end_reached; 6656 int advance_left; 6657 int advance_right; 6658 u64 left_blockptr; 6659 u64 right_blockptr; 6660 u64 left_gen; 6661 u64 right_gen; 6662 6663 left_path = btrfs_alloc_path(); 6664 if (!left_path) { 6665 ret = -ENOMEM; 6666 goto out; 6667 } 6668 right_path = btrfs_alloc_path(); 6669 if (!right_path) { 6670 ret = -ENOMEM; 6671 goto out; 6672 } 6673 6674 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 6675 if (!tmp_buf) { 6676 ret = -ENOMEM; 6677 goto out; 6678 } 6679 6680 left_path->search_commit_root = 1; 6681 left_path->skip_locking = 1; 6682 right_path->search_commit_root = 1; 6683 right_path->skip_locking = 1; 6684 6685 /* 6686 * Strategy: Go to the first items of both trees. Then do 6687 * 6688 * If both trees are at level 0 6689 * Compare keys of current items 6690 * If left < right treat left item as new, advance left tree 6691 * and repeat 6692 * If left > right treat right item as deleted, advance right tree 6693 * and repeat 6694 * If left == right do deep compare of items, treat as changed if 6695 * needed, advance both trees and repeat 6696 * If both trees are at the same level but not at level 0 6697 * Compare keys of current nodes/leafs 6698 * If left < right advance left tree and repeat 6699 * If left > right advance right tree and repeat 6700 * If left == right compare blockptrs of the next nodes/leafs 6701 * If they match advance both trees but stay at the same level 6702 * and repeat 6703 * If they don't match advance both trees while allowing to go 6704 * deeper and repeat 6705 * If tree levels are different 6706 * Advance the tree that needs it and repeat 6707 * 6708 * Advancing a tree means: 6709 * If we are at level 0, try to go to the next slot. If that's not 6710 * possible, go one level up and repeat. Stop when we found a level 6711 * where we could go to the next slot. We may at this point be on a 6712 * node or a leaf. 6713 * 6714 * If we are not at level 0 and not on shared tree blocks, go one 6715 * level deeper. 6716 * 6717 * If we are not at level 0 and on shared tree blocks, go one slot to 6718 * the right if possible or go up and right. 6719 */ 6720 6721 down_read(&fs_info->commit_root_sem); 6722 left_level = btrfs_header_level(left_root->commit_root); 6723 left_root_level = left_level; 6724 left_path->nodes[left_level] = 6725 btrfs_clone_extent_buffer(left_root->commit_root); 6726 if (!left_path->nodes[left_level]) { 6727 up_read(&fs_info->commit_root_sem); 6728 ret = -ENOMEM; 6729 goto out; 6730 } 6731 6732 right_level = btrfs_header_level(right_root->commit_root); 6733 right_root_level = right_level; 6734 right_path->nodes[right_level] = 6735 btrfs_clone_extent_buffer(right_root->commit_root); 6736 if (!right_path->nodes[right_level]) { 6737 up_read(&fs_info->commit_root_sem); 6738 ret = -ENOMEM; 6739 goto out; 6740 } 6741 up_read(&fs_info->commit_root_sem); 6742 6743 if (left_level == 0) 6744 btrfs_item_key_to_cpu(left_path->nodes[left_level], 6745 &left_key, left_path->slots[left_level]); 6746 else 6747 btrfs_node_key_to_cpu(left_path->nodes[left_level], 6748 &left_key, left_path->slots[left_level]); 6749 if (right_level == 0) 6750 btrfs_item_key_to_cpu(right_path->nodes[right_level], 6751 &right_key, right_path->slots[right_level]); 6752 else 6753 btrfs_node_key_to_cpu(right_path->nodes[right_level], 6754 &right_key, right_path->slots[right_level]); 6755 6756 left_end_reached = right_end_reached = 0; 6757 advance_left = advance_right = 0; 6758 6759 while (1) { 6760 cond_resched(); 6761 if (advance_left && !left_end_reached) { 6762 ret = tree_advance(left_path, &left_level, 6763 left_root_level, 6764 advance_left != ADVANCE_ONLY_NEXT, 6765 &left_key); 6766 if (ret == -1) 6767 left_end_reached = ADVANCE; 6768 else if (ret < 0) 6769 goto out; 6770 advance_left = 0; 6771 } 6772 if (advance_right && !right_end_reached) { 6773 ret = tree_advance(right_path, &right_level, 6774 right_root_level, 6775 advance_right != ADVANCE_ONLY_NEXT, 6776 &right_key); 6777 if (ret == -1) 6778 right_end_reached = ADVANCE; 6779 else if (ret < 0) 6780 goto out; 6781 advance_right = 0; 6782 } 6783 6784 if (left_end_reached && right_end_reached) { 6785 ret = 0; 6786 goto out; 6787 } else if (left_end_reached) { 6788 if (right_level == 0) { 6789 ret = changed_cb(left_path, right_path, 6790 &right_key, 6791 BTRFS_COMPARE_TREE_DELETED, 6792 ctx); 6793 if (ret < 0) 6794 goto out; 6795 } 6796 advance_right = ADVANCE; 6797 continue; 6798 } else if (right_end_reached) { 6799 if (left_level == 0) { 6800 ret = changed_cb(left_path, right_path, 6801 &left_key, 6802 BTRFS_COMPARE_TREE_NEW, 6803 ctx); 6804 if (ret < 0) 6805 goto out; 6806 } 6807 advance_left = ADVANCE; 6808 continue; 6809 } 6810 6811 if (left_level == 0 && right_level == 0) { 6812 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6813 if (cmp < 0) { 6814 ret = changed_cb(left_path, right_path, 6815 &left_key, 6816 BTRFS_COMPARE_TREE_NEW, 6817 ctx); 6818 if (ret < 0) 6819 goto out; 6820 advance_left = ADVANCE; 6821 } else if (cmp > 0) { 6822 ret = changed_cb(left_path, right_path, 6823 &right_key, 6824 BTRFS_COMPARE_TREE_DELETED, 6825 ctx); 6826 if (ret < 0) 6827 goto out; 6828 advance_right = ADVANCE; 6829 } else { 6830 enum btrfs_compare_tree_result result; 6831 6832 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 6833 ret = tree_compare_item(left_path, right_path, 6834 tmp_buf); 6835 if (ret) 6836 result = BTRFS_COMPARE_TREE_CHANGED; 6837 else 6838 result = BTRFS_COMPARE_TREE_SAME; 6839 ret = changed_cb(left_path, right_path, 6840 &left_key, result, ctx); 6841 if (ret < 0) 6842 goto out; 6843 advance_left = ADVANCE; 6844 advance_right = ADVANCE; 6845 } 6846 } else if (left_level == right_level) { 6847 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 6848 if (cmp < 0) { 6849 advance_left = ADVANCE; 6850 } else if (cmp > 0) { 6851 advance_right = ADVANCE; 6852 } else { 6853 left_blockptr = btrfs_node_blockptr( 6854 left_path->nodes[left_level], 6855 left_path->slots[left_level]); 6856 right_blockptr = btrfs_node_blockptr( 6857 right_path->nodes[right_level], 6858 right_path->slots[right_level]); 6859 left_gen = btrfs_node_ptr_generation( 6860 left_path->nodes[left_level], 6861 left_path->slots[left_level]); 6862 right_gen = btrfs_node_ptr_generation( 6863 right_path->nodes[right_level], 6864 right_path->slots[right_level]); 6865 if (left_blockptr == right_blockptr && 6866 left_gen == right_gen) { 6867 /* 6868 * As we're on a shared block, don't 6869 * allow to go deeper. 6870 */ 6871 advance_left = ADVANCE_ONLY_NEXT; 6872 advance_right = ADVANCE_ONLY_NEXT; 6873 } else { 6874 advance_left = ADVANCE; 6875 advance_right = ADVANCE; 6876 } 6877 } 6878 } else if (left_level < right_level) { 6879 advance_right = ADVANCE; 6880 } else { 6881 advance_left = ADVANCE; 6882 } 6883 } 6884 6885 out: 6886 btrfs_free_path(left_path); 6887 btrfs_free_path(right_path); 6888 kvfree(tmp_buf); 6889 return ret; 6890 } 6891 6892 static int send_subvol(struct send_ctx *sctx) 6893 { 6894 int ret; 6895 6896 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 6897 ret = send_header(sctx); 6898 if (ret < 0) 6899 goto out; 6900 } 6901 6902 ret = send_subvol_begin(sctx); 6903 if (ret < 0) 6904 goto out; 6905 6906 if (sctx->parent_root) { 6907 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 6908 changed_cb, sctx); 6909 if (ret < 0) 6910 goto out; 6911 ret = finish_inode_if_needed(sctx, 1); 6912 if (ret < 0) 6913 goto out; 6914 } else { 6915 ret = full_send_tree(sctx); 6916 if (ret < 0) 6917 goto out; 6918 } 6919 6920 out: 6921 free_recorded_refs(sctx); 6922 return ret; 6923 } 6924 6925 /* 6926 * If orphan cleanup did remove any orphans from a root, it means the tree 6927 * was modified and therefore the commit root is not the same as the current 6928 * root anymore. This is a problem, because send uses the commit root and 6929 * therefore can see inode items that don't exist in the current root anymore, 6930 * and for example make calls to btrfs_iget, which will do tree lookups based 6931 * on the current root and not on the commit root. Those lookups will fail, 6932 * returning a -ESTALE error, and making send fail with that error. So make 6933 * sure a send does not see any orphans we have just removed, and that it will 6934 * see the same inodes regardless of whether a transaction commit happened 6935 * before it started (meaning that the commit root will be the same as the 6936 * current root) or not. 6937 */ 6938 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 6939 { 6940 int i; 6941 struct btrfs_trans_handle *trans = NULL; 6942 6943 again: 6944 if (sctx->parent_root && 6945 sctx->parent_root->node != sctx->parent_root->commit_root) 6946 goto commit_trans; 6947 6948 for (i = 0; i < sctx->clone_roots_cnt; i++) 6949 if (sctx->clone_roots[i].root->node != 6950 sctx->clone_roots[i].root->commit_root) 6951 goto commit_trans; 6952 6953 if (trans) 6954 return btrfs_end_transaction(trans); 6955 6956 return 0; 6957 6958 commit_trans: 6959 /* Use any root, all fs roots will get their commit roots updated. */ 6960 if (!trans) { 6961 trans = btrfs_join_transaction(sctx->send_root); 6962 if (IS_ERR(trans)) 6963 return PTR_ERR(trans); 6964 goto again; 6965 } 6966 6967 return btrfs_commit_transaction(trans); 6968 } 6969 6970 /* 6971 * Make sure any existing dellaloc is flushed for any root used by a send 6972 * operation so that we do not miss any data and we do not race with writeback 6973 * finishing and changing a tree while send is using the tree. This could 6974 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 6975 * a send operation then uses the subvolume. 6976 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 6977 */ 6978 static int flush_delalloc_roots(struct send_ctx *sctx) 6979 { 6980 struct btrfs_root *root = sctx->parent_root; 6981 int ret; 6982 int i; 6983 6984 if (root) { 6985 ret = btrfs_start_delalloc_snapshot(root); 6986 if (ret) 6987 return ret; 6988 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 6989 } 6990 6991 for (i = 0; i < sctx->clone_roots_cnt; i++) { 6992 root = sctx->clone_roots[i].root; 6993 ret = btrfs_start_delalloc_snapshot(root); 6994 if (ret) 6995 return ret; 6996 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX); 6997 } 6998 6999 return 0; 7000 } 7001 7002 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7003 { 7004 spin_lock(&root->root_item_lock); 7005 root->send_in_progress--; 7006 /* 7007 * Not much left to do, we don't know why it's unbalanced and 7008 * can't blindly reset it to 0. 7009 */ 7010 if (root->send_in_progress < 0) 7011 btrfs_err(root->fs_info, 7012 "send_in_progress unbalanced %d root %llu", 7013 root->send_in_progress, root->root_key.objectid); 7014 spin_unlock(&root->root_item_lock); 7015 } 7016 7017 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7018 { 7019 btrfs_warn_rl(root->fs_info, 7020 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7021 root->root_key.objectid, root->dedupe_in_progress); 7022 } 7023 7024 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg) 7025 { 7026 int ret = 0; 7027 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root; 7028 struct btrfs_fs_info *fs_info = send_root->fs_info; 7029 struct btrfs_root *clone_root; 7030 struct btrfs_key key; 7031 struct send_ctx *sctx = NULL; 7032 u32 i; 7033 u64 *clone_sources_tmp = NULL; 7034 int clone_sources_to_rollback = 0; 7035 unsigned alloc_size; 7036 int sort_clone_roots = 0; 7037 int index; 7038 7039 if (!capable(CAP_SYS_ADMIN)) 7040 return -EPERM; 7041 7042 /* 7043 * The subvolume must remain read-only during send, protect against 7044 * making it RW. This also protects against deletion. 7045 */ 7046 spin_lock(&send_root->root_item_lock); 7047 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) { 7048 dedupe_in_progress_warn(send_root); 7049 spin_unlock(&send_root->root_item_lock); 7050 return -EAGAIN; 7051 } 7052 send_root->send_in_progress++; 7053 spin_unlock(&send_root->root_item_lock); 7054 7055 /* 7056 * This is done when we lookup the root, it should already be complete 7057 * by the time we get here. 7058 */ 7059 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE); 7060 7061 /* 7062 * Userspace tools do the checks and warn the user if it's 7063 * not RO. 7064 */ 7065 if (!btrfs_root_readonly(send_root)) { 7066 ret = -EPERM; 7067 goto out; 7068 } 7069 7070 /* 7071 * Check that we don't overflow at later allocations, we request 7072 * clone_sources_count + 1 items, and compare to unsigned long inside 7073 * access_ok. 7074 */ 7075 if (arg->clone_sources_count > 7076 ULONG_MAX / sizeof(struct clone_root) - 1) { 7077 ret = -EINVAL; 7078 goto out; 7079 } 7080 7081 if (!access_ok(arg->clone_sources, 7082 sizeof(*arg->clone_sources) * 7083 arg->clone_sources_count)) { 7084 ret = -EFAULT; 7085 goto out; 7086 } 7087 7088 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 7089 ret = -EINVAL; 7090 goto out; 7091 } 7092 7093 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 7094 if (!sctx) { 7095 ret = -ENOMEM; 7096 goto out; 7097 } 7098 7099 INIT_LIST_HEAD(&sctx->new_refs); 7100 INIT_LIST_HEAD(&sctx->deleted_refs); 7101 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL); 7102 INIT_LIST_HEAD(&sctx->name_cache_list); 7103 7104 sctx->flags = arg->flags; 7105 7106 sctx->send_filp = fget(arg->send_fd); 7107 if (!sctx->send_filp) { 7108 ret = -EBADF; 7109 goto out; 7110 } 7111 7112 sctx->send_root = send_root; 7113 /* 7114 * Unlikely but possible, if the subvolume is marked for deletion but 7115 * is slow to remove the directory entry, send can still be started 7116 */ 7117 if (btrfs_root_dead(sctx->send_root)) { 7118 ret = -EPERM; 7119 goto out; 7120 } 7121 7122 sctx->clone_roots_cnt = arg->clone_sources_count; 7123 7124 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 7125 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 7126 if (!sctx->send_buf) { 7127 ret = -ENOMEM; 7128 goto out; 7129 } 7130 7131 sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL); 7132 if (!sctx->read_buf) { 7133 ret = -ENOMEM; 7134 goto out; 7135 } 7136 7137 sctx->pending_dir_moves = RB_ROOT; 7138 sctx->waiting_dir_moves = RB_ROOT; 7139 sctx->orphan_dirs = RB_ROOT; 7140 7141 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1); 7142 7143 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL); 7144 if (!sctx->clone_roots) { 7145 ret = -ENOMEM; 7146 goto out; 7147 } 7148 7149 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources); 7150 7151 if (arg->clone_sources_count) { 7152 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 7153 if (!clone_sources_tmp) { 7154 ret = -ENOMEM; 7155 goto out; 7156 } 7157 7158 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 7159 alloc_size); 7160 if (ret) { 7161 ret = -EFAULT; 7162 goto out; 7163 } 7164 7165 for (i = 0; i < arg->clone_sources_count; i++) { 7166 key.objectid = clone_sources_tmp[i]; 7167 key.type = BTRFS_ROOT_ITEM_KEY; 7168 key.offset = (u64)-1; 7169 7170 index = srcu_read_lock(&fs_info->subvol_srcu); 7171 7172 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 7173 if (IS_ERR(clone_root)) { 7174 srcu_read_unlock(&fs_info->subvol_srcu, index); 7175 ret = PTR_ERR(clone_root); 7176 goto out; 7177 } 7178 spin_lock(&clone_root->root_item_lock); 7179 if (!btrfs_root_readonly(clone_root) || 7180 btrfs_root_dead(clone_root)) { 7181 spin_unlock(&clone_root->root_item_lock); 7182 srcu_read_unlock(&fs_info->subvol_srcu, index); 7183 ret = -EPERM; 7184 goto out; 7185 } 7186 if (clone_root->dedupe_in_progress) { 7187 dedupe_in_progress_warn(clone_root); 7188 spin_unlock(&clone_root->root_item_lock); 7189 srcu_read_unlock(&fs_info->subvol_srcu, index); 7190 ret = -EAGAIN; 7191 goto out; 7192 } 7193 clone_root->send_in_progress++; 7194 spin_unlock(&clone_root->root_item_lock); 7195 srcu_read_unlock(&fs_info->subvol_srcu, index); 7196 7197 sctx->clone_roots[i].root = clone_root; 7198 clone_sources_to_rollback = i + 1; 7199 } 7200 kvfree(clone_sources_tmp); 7201 clone_sources_tmp = NULL; 7202 } 7203 7204 if (arg->parent_root) { 7205 key.objectid = arg->parent_root; 7206 key.type = BTRFS_ROOT_ITEM_KEY; 7207 key.offset = (u64)-1; 7208 7209 index = srcu_read_lock(&fs_info->subvol_srcu); 7210 7211 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 7212 if (IS_ERR(sctx->parent_root)) { 7213 srcu_read_unlock(&fs_info->subvol_srcu, index); 7214 ret = PTR_ERR(sctx->parent_root); 7215 goto out; 7216 } 7217 7218 spin_lock(&sctx->parent_root->root_item_lock); 7219 sctx->parent_root->send_in_progress++; 7220 if (!btrfs_root_readonly(sctx->parent_root) || 7221 btrfs_root_dead(sctx->parent_root)) { 7222 spin_unlock(&sctx->parent_root->root_item_lock); 7223 srcu_read_unlock(&fs_info->subvol_srcu, index); 7224 ret = -EPERM; 7225 goto out; 7226 } 7227 if (sctx->parent_root->dedupe_in_progress) { 7228 dedupe_in_progress_warn(sctx->parent_root); 7229 spin_unlock(&sctx->parent_root->root_item_lock); 7230 srcu_read_unlock(&fs_info->subvol_srcu, index); 7231 ret = -EAGAIN; 7232 goto out; 7233 } 7234 spin_unlock(&sctx->parent_root->root_item_lock); 7235 7236 srcu_read_unlock(&fs_info->subvol_srcu, index); 7237 } 7238 7239 /* 7240 * Clones from send_root are allowed, but only if the clone source 7241 * is behind the current send position. This is checked while searching 7242 * for possible clone sources. 7243 */ 7244 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 7245 7246 /* We do a bsearch later */ 7247 sort(sctx->clone_roots, sctx->clone_roots_cnt, 7248 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 7249 NULL); 7250 sort_clone_roots = 1; 7251 7252 ret = flush_delalloc_roots(sctx); 7253 if (ret) 7254 goto out; 7255 7256 ret = ensure_commit_roots_uptodate(sctx); 7257 if (ret) 7258 goto out; 7259 7260 mutex_lock(&fs_info->balance_mutex); 7261 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 7262 mutex_unlock(&fs_info->balance_mutex); 7263 btrfs_warn_rl(fs_info, 7264 "cannot run send because a balance operation is in progress"); 7265 ret = -EAGAIN; 7266 goto out; 7267 } 7268 fs_info->send_in_progress++; 7269 mutex_unlock(&fs_info->balance_mutex); 7270 7271 current->journal_info = BTRFS_SEND_TRANS_STUB; 7272 ret = send_subvol(sctx); 7273 current->journal_info = NULL; 7274 mutex_lock(&fs_info->balance_mutex); 7275 fs_info->send_in_progress--; 7276 mutex_unlock(&fs_info->balance_mutex); 7277 if (ret < 0) 7278 goto out; 7279 7280 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 7281 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 7282 if (ret < 0) 7283 goto out; 7284 ret = send_cmd(sctx); 7285 if (ret < 0) 7286 goto out; 7287 } 7288 7289 out: 7290 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 7291 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 7292 struct rb_node *n; 7293 struct pending_dir_move *pm; 7294 7295 n = rb_first(&sctx->pending_dir_moves); 7296 pm = rb_entry(n, struct pending_dir_move, node); 7297 while (!list_empty(&pm->list)) { 7298 struct pending_dir_move *pm2; 7299 7300 pm2 = list_first_entry(&pm->list, 7301 struct pending_dir_move, list); 7302 free_pending_move(sctx, pm2); 7303 } 7304 free_pending_move(sctx, pm); 7305 } 7306 7307 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 7308 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 7309 struct rb_node *n; 7310 struct waiting_dir_move *dm; 7311 7312 n = rb_first(&sctx->waiting_dir_moves); 7313 dm = rb_entry(n, struct waiting_dir_move, node); 7314 rb_erase(&dm->node, &sctx->waiting_dir_moves); 7315 kfree(dm); 7316 } 7317 7318 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 7319 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 7320 struct rb_node *n; 7321 struct orphan_dir_info *odi; 7322 7323 n = rb_first(&sctx->orphan_dirs); 7324 odi = rb_entry(n, struct orphan_dir_info, node); 7325 free_orphan_dir_info(sctx, odi); 7326 } 7327 7328 if (sort_clone_roots) { 7329 for (i = 0; i < sctx->clone_roots_cnt; i++) 7330 btrfs_root_dec_send_in_progress( 7331 sctx->clone_roots[i].root); 7332 } else { 7333 for (i = 0; sctx && i < clone_sources_to_rollback; i++) 7334 btrfs_root_dec_send_in_progress( 7335 sctx->clone_roots[i].root); 7336 7337 btrfs_root_dec_send_in_progress(send_root); 7338 } 7339 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) 7340 btrfs_root_dec_send_in_progress(sctx->parent_root); 7341 7342 kvfree(clone_sources_tmp); 7343 7344 if (sctx) { 7345 if (sctx->send_filp) 7346 fput(sctx->send_filp); 7347 7348 kvfree(sctx->clone_roots); 7349 kvfree(sctx->send_buf); 7350 kvfree(sctx->read_buf); 7351 7352 name_cache_free(sctx); 7353 7354 kfree(sctx); 7355 } 7356 7357 return ret; 7358 } 7359