xref: /linux/fs/btrfs/send.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2012 Alexander Block.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29 #include <linux/compat.h>
30 
31 #include "send.h"
32 #include "backref.h"
33 #include "hash.h"
34 #include "locking.h"
35 #include "disk-io.h"
36 #include "btrfs_inode.h"
37 #include "transaction.h"
38 #include "compression.h"
39 
40 /*
41  * A fs_path is a helper to dynamically build path names with unknown size.
42  * It reallocates the internal buffer on demand.
43  * It allows fast adding of path elements on the right side (normal path) and
44  * fast adding to the left side (reversed path). A reversed path can also be
45  * unreversed if needed.
46  */
47 struct fs_path {
48 	union {
49 		struct {
50 			char *start;
51 			char *end;
52 
53 			char *buf;
54 			unsigned short buf_len:15;
55 			unsigned short reversed:1;
56 			char inline_buf[];
57 		};
58 		/*
59 		 * Average path length does not exceed 200 bytes, we'll have
60 		 * better packing in the slab and higher chance to satisfy
61 		 * a allocation later during send.
62 		 */
63 		char pad[256];
64 	};
65 };
66 #define FS_PATH_INLINE_SIZE \
67 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68 
69 
70 /* reused for each extent */
71 struct clone_root {
72 	struct btrfs_root *root;
73 	u64 ino;
74 	u64 offset;
75 
76 	u64 found_refs;
77 };
78 
79 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81 
82 struct send_ctx {
83 	struct file *send_filp;
84 	loff_t send_off;
85 	char *send_buf;
86 	u32 send_size;
87 	u32 send_max_size;
88 	u64 total_send_size;
89 	u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
90 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
91 
92 	struct btrfs_root *send_root;
93 	struct btrfs_root *parent_root;
94 	struct clone_root *clone_roots;
95 	int clone_roots_cnt;
96 
97 	/* current state of the compare_tree call */
98 	struct btrfs_path *left_path;
99 	struct btrfs_path *right_path;
100 	struct btrfs_key *cmp_key;
101 
102 	/*
103 	 * infos of the currently processed inode. In case of deleted inodes,
104 	 * these are the values from the deleted inode.
105 	 */
106 	u64 cur_ino;
107 	u64 cur_inode_gen;
108 	int cur_inode_new;
109 	int cur_inode_new_gen;
110 	int cur_inode_deleted;
111 	u64 cur_inode_size;
112 	u64 cur_inode_mode;
113 	u64 cur_inode_rdev;
114 	u64 cur_inode_last_extent;
115 
116 	u64 send_progress;
117 
118 	struct list_head new_refs;
119 	struct list_head deleted_refs;
120 
121 	struct radix_tree_root name_cache;
122 	struct list_head name_cache_list;
123 	int name_cache_size;
124 
125 	struct file_ra_state ra;
126 
127 	char *read_buf;
128 
129 	/*
130 	 * We process inodes by their increasing order, so if before an
131 	 * incremental send we reverse the parent/child relationship of
132 	 * directories such that a directory with a lower inode number was
133 	 * the parent of a directory with a higher inode number, and the one
134 	 * becoming the new parent got renamed too, we can't rename/move the
135 	 * directory with lower inode number when we finish processing it - we
136 	 * must process the directory with higher inode number first, then
137 	 * rename/move it and then rename/move the directory with lower inode
138 	 * number. Example follows.
139 	 *
140 	 * Tree state when the first send was performed:
141 	 *
142 	 * .
143 	 * |-- a                   (ino 257)
144 	 *     |-- b               (ino 258)
145 	 *         |
146 	 *         |
147 	 *         |-- c           (ino 259)
148 	 *         |   |-- d       (ino 260)
149 	 *         |
150 	 *         |-- c2          (ino 261)
151 	 *
152 	 * Tree state when the second (incremental) send is performed:
153 	 *
154 	 * .
155 	 * |-- a                   (ino 257)
156 	 *     |-- b               (ino 258)
157 	 *         |-- c2          (ino 261)
158 	 *             |-- d2      (ino 260)
159 	 *                 |-- cc  (ino 259)
160 	 *
161 	 * The sequence of steps that lead to the second state was:
162 	 *
163 	 * mv /a/b/c/d /a/b/c2/d2
164 	 * mv /a/b/c /a/b/c2/d2/cc
165 	 *
166 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
167 	 * before we move "d", which has higher inode number.
168 	 *
169 	 * So we just memorize which move/rename operations must be performed
170 	 * later when their respective parent is processed and moved/renamed.
171 	 */
172 
173 	/* Indexed by parent directory inode number. */
174 	struct rb_root pending_dir_moves;
175 
176 	/*
177 	 * Reverse index, indexed by the inode number of a directory that
178 	 * is waiting for the move/rename of its immediate parent before its
179 	 * own move/rename can be performed.
180 	 */
181 	struct rb_root waiting_dir_moves;
182 
183 	/*
184 	 * A directory that is going to be rm'ed might have a child directory
185 	 * which is in the pending directory moves index above. In this case,
186 	 * the directory can only be removed after the move/rename of its child
187 	 * is performed. Example:
188 	 *
189 	 * Parent snapshot:
190 	 *
191 	 * .                        (ino 256)
192 	 * |-- a/                   (ino 257)
193 	 *     |-- b/               (ino 258)
194 	 *         |-- c/           (ino 259)
195 	 *         |   |-- x/       (ino 260)
196 	 *         |
197 	 *         |-- y/           (ino 261)
198 	 *
199 	 * Send snapshot:
200 	 *
201 	 * .                        (ino 256)
202 	 * |-- a/                   (ino 257)
203 	 *     |-- b/               (ino 258)
204 	 *         |-- YY/          (ino 261)
205 	 *              |-- x/      (ino 260)
206 	 *
207 	 * Sequence of steps that lead to the send snapshot:
208 	 * rm -f /a/b/c/foo.txt
209 	 * mv /a/b/y /a/b/YY
210 	 * mv /a/b/c/x /a/b/YY
211 	 * rmdir /a/b/c
212 	 *
213 	 * When the child is processed, its move/rename is delayed until its
214 	 * parent is processed (as explained above), but all other operations
215 	 * like update utimes, chown, chgrp, etc, are performed and the paths
216 	 * that it uses for those operations must use the orphanized name of
217 	 * its parent (the directory we're going to rm later), so we need to
218 	 * memorize that name.
219 	 *
220 	 * Indexed by the inode number of the directory to be deleted.
221 	 */
222 	struct rb_root orphan_dirs;
223 };
224 
225 struct pending_dir_move {
226 	struct rb_node node;
227 	struct list_head list;
228 	u64 parent_ino;
229 	u64 ino;
230 	u64 gen;
231 	struct list_head update_refs;
232 };
233 
234 struct waiting_dir_move {
235 	struct rb_node node;
236 	u64 ino;
237 	/*
238 	 * There might be some directory that could not be removed because it
239 	 * was waiting for this directory inode to be moved first. Therefore
240 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
241 	 */
242 	u64 rmdir_ino;
243 	bool orphanized;
244 };
245 
246 struct orphan_dir_info {
247 	struct rb_node node;
248 	u64 ino;
249 	u64 gen;
250 };
251 
252 struct name_cache_entry {
253 	struct list_head list;
254 	/*
255 	 * radix_tree has only 32bit entries but we need to handle 64bit inums.
256 	 * We use the lower 32bit of the 64bit inum to store it in the tree. If
257 	 * more then one inum would fall into the same entry, we use radix_list
258 	 * to store the additional entries. radix_list is also used to store
259 	 * entries where two entries have the same inum but different
260 	 * generations.
261 	 */
262 	struct list_head radix_list;
263 	u64 ino;
264 	u64 gen;
265 	u64 parent_ino;
266 	u64 parent_gen;
267 	int ret;
268 	int need_later_update;
269 	int name_len;
270 	char name[];
271 };
272 
273 static void inconsistent_snapshot_error(struct send_ctx *sctx,
274 					enum btrfs_compare_tree_result result,
275 					const char *what)
276 {
277 	const char *result_string;
278 
279 	switch (result) {
280 	case BTRFS_COMPARE_TREE_NEW:
281 		result_string = "new";
282 		break;
283 	case BTRFS_COMPARE_TREE_DELETED:
284 		result_string = "deleted";
285 		break;
286 	case BTRFS_COMPARE_TREE_CHANGED:
287 		result_string = "updated";
288 		break;
289 	case BTRFS_COMPARE_TREE_SAME:
290 		ASSERT(0);
291 		result_string = "unchanged";
292 		break;
293 	default:
294 		ASSERT(0);
295 		result_string = "unexpected";
296 	}
297 
298 	btrfs_err(sctx->send_root->fs_info,
299 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
300 		  result_string, what, sctx->cmp_key->objectid,
301 		  sctx->send_root->root_key.objectid,
302 		  (sctx->parent_root ?
303 		   sctx->parent_root->root_key.objectid : 0));
304 }
305 
306 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
307 
308 static struct waiting_dir_move *
309 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
310 
311 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
312 
313 static int need_send_hole(struct send_ctx *sctx)
314 {
315 	return (sctx->parent_root && !sctx->cur_inode_new &&
316 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
317 		S_ISREG(sctx->cur_inode_mode));
318 }
319 
320 static void fs_path_reset(struct fs_path *p)
321 {
322 	if (p->reversed) {
323 		p->start = p->buf + p->buf_len - 1;
324 		p->end = p->start;
325 		*p->start = 0;
326 	} else {
327 		p->start = p->buf;
328 		p->end = p->start;
329 		*p->start = 0;
330 	}
331 }
332 
333 static struct fs_path *fs_path_alloc(void)
334 {
335 	struct fs_path *p;
336 
337 	p = kmalloc(sizeof(*p), GFP_KERNEL);
338 	if (!p)
339 		return NULL;
340 	p->reversed = 0;
341 	p->buf = p->inline_buf;
342 	p->buf_len = FS_PATH_INLINE_SIZE;
343 	fs_path_reset(p);
344 	return p;
345 }
346 
347 static struct fs_path *fs_path_alloc_reversed(void)
348 {
349 	struct fs_path *p;
350 
351 	p = fs_path_alloc();
352 	if (!p)
353 		return NULL;
354 	p->reversed = 1;
355 	fs_path_reset(p);
356 	return p;
357 }
358 
359 static void fs_path_free(struct fs_path *p)
360 {
361 	if (!p)
362 		return;
363 	if (p->buf != p->inline_buf)
364 		kfree(p->buf);
365 	kfree(p);
366 }
367 
368 static int fs_path_len(struct fs_path *p)
369 {
370 	return p->end - p->start;
371 }
372 
373 static int fs_path_ensure_buf(struct fs_path *p, int len)
374 {
375 	char *tmp_buf;
376 	int path_len;
377 	int old_buf_len;
378 
379 	len++;
380 
381 	if (p->buf_len >= len)
382 		return 0;
383 
384 	if (len > PATH_MAX) {
385 		WARN_ON(1);
386 		return -ENOMEM;
387 	}
388 
389 	path_len = p->end - p->start;
390 	old_buf_len = p->buf_len;
391 
392 	/*
393 	 * First time the inline_buf does not suffice
394 	 */
395 	if (p->buf == p->inline_buf) {
396 		tmp_buf = kmalloc(len, GFP_KERNEL);
397 		if (tmp_buf)
398 			memcpy(tmp_buf, p->buf, old_buf_len);
399 	} else {
400 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
401 	}
402 	if (!tmp_buf)
403 		return -ENOMEM;
404 	p->buf = tmp_buf;
405 	/*
406 	 * The real size of the buffer is bigger, this will let the fast path
407 	 * happen most of the time
408 	 */
409 	p->buf_len = ksize(p->buf);
410 
411 	if (p->reversed) {
412 		tmp_buf = p->buf + old_buf_len - path_len - 1;
413 		p->end = p->buf + p->buf_len - 1;
414 		p->start = p->end - path_len;
415 		memmove(p->start, tmp_buf, path_len + 1);
416 	} else {
417 		p->start = p->buf;
418 		p->end = p->start + path_len;
419 	}
420 	return 0;
421 }
422 
423 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
424 				   char **prepared)
425 {
426 	int ret;
427 	int new_len;
428 
429 	new_len = p->end - p->start + name_len;
430 	if (p->start != p->end)
431 		new_len++;
432 	ret = fs_path_ensure_buf(p, new_len);
433 	if (ret < 0)
434 		goto out;
435 
436 	if (p->reversed) {
437 		if (p->start != p->end)
438 			*--p->start = '/';
439 		p->start -= name_len;
440 		*prepared = p->start;
441 	} else {
442 		if (p->start != p->end)
443 			*p->end++ = '/';
444 		*prepared = p->end;
445 		p->end += name_len;
446 		*p->end = 0;
447 	}
448 
449 out:
450 	return ret;
451 }
452 
453 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
454 {
455 	int ret;
456 	char *prepared;
457 
458 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
459 	if (ret < 0)
460 		goto out;
461 	memcpy(prepared, name, name_len);
462 
463 out:
464 	return ret;
465 }
466 
467 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
468 {
469 	int ret;
470 	char *prepared;
471 
472 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
473 	if (ret < 0)
474 		goto out;
475 	memcpy(prepared, p2->start, p2->end - p2->start);
476 
477 out:
478 	return ret;
479 }
480 
481 static int fs_path_add_from_extent_buffer(struct fs_path *p,
482 					  struct extent_buffer *eb,
483 					  unsigned long off, int len)
484 {
485 	int ret;
486 	char *prepared;
487 
488 	ret = fs_path_prepare_for_add(p, len, &prepared);
489 	if (ret < 0)
490 		goto out;
491 
492 	read_extent_buffer(eb, prepared, off, len);
493 
494 out:
495 	return ret;
496 }
497 
498 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
499 {
500 	int ret;
501 
502 	p->reversed = from->reversed;
503 	fs_path_reset(p);
504 
505 	ret = fs_path_add_path(p, from);
506 
507 	return ret;
508 }
509 
510 
511 static void fs_path_unreverse(struct fs_path *p)
512 {
513 	char *tmp;
514 	int len;
515 
516 	if (!p->reversed)
517 		return;
518 
519 	tmp = p->start;
520 	len = p->end - p->start;
521 	p->start = p->buf;
522 	p->end = p->start + len;
523 	memmove(p->start, tmp, len + 1);
524 	p->reversed = 0;
525 }
526 
527 static struct btrfs_path *alloc_path_for_send(void)
528 {
529 	struct btrfs_path *path;
530 
531 	path = btrfs_alloc_path();
532 	if (!path)
533 		return NULL;
534 	path->search_commit_root = 1;
535 	path->skip_locking = 1;
536 	path->need_commit_sem = 1;
537 	return path;
538 }
539 
540 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
541 {
542 	int ret;
543 	u32 pos = 0;
544 
545 	while (pos < len) {
546 		ret = kernel_write(filp, buf + pos, len - pos, off);
547 		/* TODO handle that correctly */
548 		/*if (ret == -ERESTARTSYS) {
549 			continue;
550 		}*/
551 		if (ret < 0)
552 			return ret;
553 		if (ret == 0) {
554 			return -EIO;
555 		}
556 		pos += ret;
557 	}
558 
559 	return 0;
560 }
561 
562 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
563 {
564 	struct btrfs_tlv_header *hdr;
565 	int total_len = sizeof(*hdr) + len;
566 	int left = sctx->send_max_size - sctx->send_size;
567 
568 	if (unlikely(left < total_len))
569 		return -EOVERFLOW;
570 
571 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
572 	hdr->tlv_type = cpu_to_le16(attr);
573 	hdr->tlv_len = cpu_to_le16(len);
574 	memcpy(hdr + 1, data, len);
575 	sctx->send_size += total_len;
576 
577 	return 0;
578 }
579 
580 #define TLV_PUT_DEFINE_INT(bits) \
581 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
582 			u##bits attr, u##bits value)			\
583 	{								\
584 		__le##bits __tmp = cpu_to_le##bits(value);		\
585 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
586 	}
587 
588 TLV_PUT_DEFINE_INT(64)
589 
590 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
591 			  const char *str, int len)
592 {
593 	if (len == -1)
594 		len = strlen(str);
595 	return tlv_put(sctx, attr, str, len);
596 }
597 
598 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
599 			const u8 *uuid)
600 {
601 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
602 }
603 
604 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
605 				  struct extent_buffer *eb,
606 				  struct btrfs_timespec *ts)
607 {
608 	struct btrfs_timespec bts;
609 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
610 	return tlv_put(sctx, attr, &bts, sizeof(bts));
611 }
612 
613 
614 #define TLV_PUT(sctx, attrtype, attrlen, data) \
615 	do { \
616 		ret = tlv_put(sctx, attrtype, attrlen, data); \
617 		if (ret < 0) \
618 			goto tlv_put_failure; \
619 	} while (0)
620 
621 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
622 	do { \
623 		ret = tlv_put_u##bits(sctx, attrtype, value); \
624 		if (ret < 0) \
625 			goto tlv_put_failure; \
626 	} while (0)
627 
628 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
629 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
630 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
631 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
632 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
633 	do { \
634 		ret = tlv_put_string(sctx, attrtype, str, len); \
635 		if (ret < 0) \
636 			goto tlv_put_failure; \
637 	} while (0)
638 #define TLV_PUT_PATH(sctx, attrtype, p) \
639 	do { \
640 		ret = tlv_put_string(sctx, attrtype, p->start, \
641 			p->end - p->start); \
642 		if (ret < 0) \
643 			goto tlv_put_failure; \
644 	} while(0)
645 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
646 	do { \
647 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
648 		if (ret < 0) \
649 			goto tlv_put_failure; \
650 	} while (0)
651 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
652 	do { \
653 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
654 		if (ret < 0) \
655 			goto tlv_put_failure; \
656 	} while (0)
657 
658 static int send_header(struct send_ctx *sctx)
659 {
660 	struct btrfs_stream_header hdr;
661 
662 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
663 	hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
664 
665 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
666 					&sctx->send_off);
667 }
668 
669 /*
670  * For each command/item we want to send to userspace, we call this function.
671  */
672 static int begin_cmd(struct send_ctx *sctx, int cmd)
673 {
674 	struct btrfs_cmd_header *hdr;
675 
676 	if (WARN_ON(!sctx->send_buf))
677 		return -EINVAL;
678 
679 	BUG_ON(sctx->send_size);
680 
681 	sctx->send_size += sizeof(*hdr);
682 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
683 	hdr->cmd = cpu_to_le16(cmd);
684 
685 	return 0;
686 }
687 
688 static int send_cmd(struct send_ctx *sctx)
689 {
690 	int ret;
691 	struct btrfs_cmd_header *hdr;
692 	u32 crc;
693 
694 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
695 	hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
696 	hdr->crc = 0;
697 
698 	crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
699 	hdr->crc = cpu_to_le32(crc);
700 
701 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
702 					&sctx->send_off);
703 
704 	sctx->total_send_size += sctx->send_size;
705 	sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
706 	sctx->send_size = 0;
707 
708 	return ret;
709 }
710 
711 /*
712  * Sends a move instruction to user space
713  */
714 static int send_rename(struct send_ctx *sctx,
715 		     struct fs_path *from, struct fs_path *to)
716 {
717 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
718 	int ret;
719 
720 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
721 
722 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
723 	if (ret < 0)
724 		goto out;
725 
726 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
727 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
728 
729 	ret = send_cmd(sctx);
730 
731 tlv_put_failure:
732 out:
733 	return ret;
734 }
735 
736 /*
737  * Sends a link instruction to user space
738  */
739 static int send_link(struct send_ctx *sctx,
740 		     struct fs_path *path, struct fs_path *lnk)
741 {
742 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
743 	int ret;
744 
745 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
746 
747 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
748 	if (ret < 0)
749 		goto out;
750 
751 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
752 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
753 
754 	ret = send_cmd(sctx);
755 
756 tlv_put_failure:
757 out:
758 	return ret;
759 }
760 
761 /*
762  * Sends an unlink instruction to user space
763  */
764 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
765 {
766 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
767 	int ret;
768 
769 	btrfs_debug(fs_info, "send_unlink %s", path->start);
770 
771 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
772 	if (ret < 0)
773 		goto out;
774 
775 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
776 
777 	ret = send_cmd(sctx);
778 
779 tlv_put_failure:
780 out:
781 	return ret;
782 }
783 
784 /*
785  * Sends a rmdir instruction to user space
786  */
787 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
788 {
789 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
790 	int ret;
791 
792 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
793 
794 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
795 	if (ret < 0)
796 		goto out;
797 
798 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
799 
800 	ret = send_cmd(sctx);
801 
802 tlv_put_failure:
803 out:
804 	return ret;
805 }
806 
807 /*
808  * Helper function to retrieve some fields from an inode item.
809  */
810 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
811 			  u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
812 			  u64 *gid, u64 *rdev)
813 {
814 	int ret;
815 	struct btrfs_inode_item *ii;
816 	struct btrfs_key key;
817 
818 	key.objectid = ino;
819 	key.type = BTRFS_INODE_ITEM_KEY;
820 	key.offset = 0;
821 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
822 	if (ret) {
823 		if (ret > 0)
824 			ret = -ENOENT;
825 		return ret;
826 	}
827 
828 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
829 			struct btrfs_inode_item);
830 	if (size)
831 		*size = btrfs_inode_size(path->nodes[0], ii);
832 	if (gen)
833 		*gen = btrfs_inode_generation(path->nodes[0], ii);
834 	if (mode)
835 		*mode = btrfs_inode_mode(path->nodes[0], ii);
836 	if (uid)
837 		*uid = btrfs_inode_uid(path->nodes[0], ii);
838 	if (gid)
839 		*gid = btrfs_inode_gid(path->nodes[0], ii);
840 	if (rdev)
841 		*rdev = btrfs_inode_rdev(path->nodes[0], ii);
842 
843 	return ret;
844 }
845 
846 static int get_inode_info(struct btrfs_root *root,
847 			  u64 ino, u64 *size, u64 *gen,
848 			  u64 *mode, u64 *uid, u64 *gid,
849 			  u64 *rdev)
850 {
851 	struct btrfs_path *path;
852 	int ret;
853 
854 	path = alloc_path_for_send();
855 	if (!path)
856 		return -ENOMEM;
857 	ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
858 			       rdev);
859 	btrfs_free_path(path);
860 	return ret;
861 }
862 
863 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
864 				   struct fs_path *p,
865 				   void *ctx);
866 
867 /*
868  * Helper function to iterate the entries in ONE btrfs_inode_ref or
869  * btrfs_inode_extref.
870  * The iterate callback may return a non zero value to stop iteration. This can
871  * be a negative value for error codes or 1 to simply stop it.
872  *
873  * path must point to the INODE_REF or INODE_EXTREF when called.
874  */
875 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
876 			     struct btrfs_key *found_key, int resolve,
877 			     iterate_inode_ref_t iterate, void *ctx)
878 {
879 	struct extent_buffer *eb = path->nodes[0];
880 	struct btrfs_item *item;
881 	struct btrfs_inode_ref *iref;
882 	struct btrfs_inode_extref *extref;
883 	struct btrfs_path *tmp_path;
884 	struct fs_path *p;
885 	u32 cur = 0;
886 	u32 total;
887 	int slot = path->slots[0];
888 	u32 name_len;
889 	char *start;
890 	int ret = 0;
891 	int num = 0;
892 	int index;
893 	u64 dir;
894 	unsigned long name_off;
895 	unsigned long elem_size;
896 	unsigned long ptr;
897 
898 	p = fs_path_alloc_reversed();
899 	if (!p)
900 		return -ENOMEM;
901 
902 	tmp_path = alloc_path_for_send();
903 	if (!tmp_path) {
904 		fs_path_free(p);
905 		return -ENOMEM;
906 	}
907 
908 
909 	if (found_key->type == BTRFS_INODE_REF_KEY) {
910 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
911 						    struct btrfs_inode_ref);
912 		item = btrfs_item_nr(slot);
913 		total = btrfs_item_size(eb, item);
914 		elem_size = sizeof(*iref);
915 	} else {
916 		ptr = btrfs_item_ptr_offset(eb, slot);
917 		total = btrfs_item_size_nr(eb, slot);
918 		elem_size = sizeof(*extref);
919 	}
920 
921 	while (cur < total) {
922 		fs_path_reset(p);
923 
924 		if (found_key->type == BTRFS_INODE_REF_KEY) {
925 			iref = (struct btrfs_inode_ref *)(ptr + cur);
926 			name_len = btrfs_inode_ref_name_len(eb, iref);
927 			name_off = (unsigned long)(iref + 1);
928 			index = btrfs_inode_ref_index(eb, iref);
929 			dir = found_key->offset;
930 		} else {
931 			extref = (struct btrfs_inode_extref *)(ptr + cur);
932 			name_len = btrfs_inode_extref_name_len(eb, extref);
933 			name_off = (unsigned long)&extref->name;
934 			index = btrfs_inode_extref_index(eb, extref);
935 			dir = btrfs_inode_extref_parent(eb, extref);
936 		}
937 
938 		if (resolve) {
939 			start = btrfs_ref_to_path(root, tmp_path, name_len,
940 						  name_off, eb, dir,
941 						  p->buf, p->buf_len);
942 			if (IS_ERR(start)) {
943 				ret = PTR_ERR(start);
944 				goto out;
945 			}
946 			if (start < p->buf) {
947 				/* overflow , try again with larger buffer */
948 				ret = fs_path_ensure_buf(p,
949 						p->buf_len + p->buf - start);
950 				if (ret < 0)
951 					goto out;
952 				start = btrfs_ref_to_path(root, tmp_path,
953 							  name_len, name_off,
954 							  eb, dir,
955 							  p->buf, p->buf_len);
956 				if (IS_ERR(start)) {
957 					ret = PTR_ERR(start);
958 					goto out;
959 				}
960 				BUG_ON(start < p->buf);
961 			}
962 			p->start = start;
963 		} else {
964 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
965 							     name_len);
966 			if (ret < 0)
967 				goto out;
968 		}
969 
970 		cur += elem_size + name_len;
971 		ret = iterate(num, dir, index, p, ctx);
972 		if (ret)
973 			goto out;
974 		num++;
975 	}
976 
977 out:
978 	btrfs_free_path(tmp_path);
979 	fs_path_free(p);
980 	return ret;
981 }
982 
983 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
984 				  const char *name, int name_len,
985 				  const char *data, int data_len,
986 				  u8 type, void *ctx);
987 
988 /*
989  * Helper function to iterate the entries in ONE btrfs_dir_item.
990  * The iterate callback may return a non zero value to stop iteration. This can
991  * be a negative value for error codes or 1 to simply stop it.
992  *
993  * path must point to the dir item when called.
994  */
995 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
996 			    iterate_dir_item_t iterate, void *ctx)
997 {
998 	int ret = 0;
999 	struct extent_buffer *eb;
1000 	struct btrfs_item *item;
1001 	struct btrfs_dir_item *di;
1002 	struct btrfs_key di_key;
1003 	char *buf = NULL;
1004 	int buf_len;
1005 	u32 name_len;
1006 	u32 data_len;
1007 	u32 cur;
1008 	u32 len;
1009 	u32 total;
1010 	int slot;
1011 	int num;
1012 	u8 type;
1013 
1014 	/*
1015 	 * Start with a small buffer (1 page). If later we end up needing more
1016 	 * space, which can happen for xattrs on a fs with a leaf size greater
1017 	 * then the page size, attempt to increase the buffer. Typically xattr
1018 	 * values are small.
1019 	 */
1020 	buf_len = PATH_MAX;
1021 	buf = kmalloc(buf_len, GFP_KERNEL);
1022 	if (!buf) {
1023 		ret = -ENOMEM;
1024 		goto out;
1025 	}
1026 
1027 	eb = path->nodes[0];
1028 	slot = path->slots[0];
1029 	item = btrfs_item_nr(slot);
1030 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1031 	cur = 0;
1032 	len = 0;
1033 	total = btrfs_item_size(eb, item);
1034 
1035 	num = 0;
1036 	while (cur < total) {
1037 		name_len = btrfs_dir_name_len(eb, di);
1038 		data_len = btrfs_dir_data_len(eb, di);
1039 		type = btrfs_dir_type(eb, di);
1040 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1041 
1042 		if (type == BTRFS_FT_XATTR) {
1043 			if (name_len > XATTR_NAME_MAX) {
1044 				ret = -ENAMETOOLONG;
1045 				goto out;
1046 			}
1047 			if (name_len + data_len >
1048 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1049 				ret = -E2BIG;
1050 				goto out;
1051 			}
1052 		} else {
1053 			/*
1054 			 * Path too long
1055 			 */
1056 			if (name_len + data_len > PATH_MAX) {
1057 				ret = -ENAMETOOLONG;
1058 				goto out;
1059 			}
1060 		}
1061 
1062 		if (name_len + data_len > buf_len) {
1063 			buf_len = name_len + data_len;
1064 			if (is_vmalloc_addr(buf)) {
1065 				vfree(buf);
1066 				buf = NULL;
1067 			} else {
1068 				char *tmp = krealloc(buf, buf_len,
1069 						GFP_KERNEL | __GFP_NOWARN);
1070 
1071 				if (!tmp)
1072 					kfree(buf);
1073 				buf = tmp;
1074 			}
1075 			if (!buf) {
1076 				buf = kvmalloc(buf_len, GFP_KERNEL);
1077 				if (!buf) {
1078 					ret = -ENOMEM;
1079 					goto out;
1080 				}
1081 			}
1082 		}
1083 
1084 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1085 				name_len + data_len);
1086 
1087 		len = sizeof(*di) + name_len + data_len;
1088 		di = (struct btrfs_dir_item *)((char *)di + len);
1089 		cur += len;
1090 
1091 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1092 				data_len, type, ctx);
1093 		if (ret < 0)
1094 			goto out;
1095 		if (ret) {
1096 			ret = 0;
1097 			goto out;
1098 		}
1099 
1100 		num++;
1101 	}
1102 
1103 out:
1104 	kvfree(buf);
1105 	return ret;
1106 }
1107 
1108 static int __copy_first_ref(int num, u64 dir, int index,
1109 			    struct fs_path *p, void *ctx)
1110 {
1111 	int ret;
1112 	struct fs_path *pt = ctx;
1113 
1114 	ret = fs_path_copy(pt, p);
1115 	if (ret < 0)
1116 		return ret;
1117 
1118 	/* we want the first only */
1119 	return 1;
1120 }
1121 
1122 /*
1123  * Retrieve the first path of an inode. If an inode has more then one
1124  * ref/hardlink, this is ignored.
1125  */
1126 static int get_inode_path(struct btrfs_root *root,
1127 			  u64 ino, struct fs_path *path)
1128 {
1129 	int ret;
1130 	struct btrfs_key key, found_key;
1131 	struct btrfs_path *p;
1132 
1133 	p = alloc_path_for_send();
1134 	if (!p)
1135 		return -ENOMEM;
1136 
1137 	fs_path_reset(path);
1138 
1139 	key.objectid = ino;
1140 	key.type = BTRFS_INODE_REF_KEY;
1141 	key.offset = 0;
1142 
1143 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1144 	if (ret < 0)
1145 		goto out;
1146 	if (ret) {
1147 		ret = 1;
1148 		goto out;
1149 	}
1150 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1151 	if (found_key.objectid != ino ||
1152 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1153 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1154 		ret = -ENOENT;
1155 		goto out;
1156 	}
1157 
1158 	ret = iterate_inode_ref(root, p, &found_key, 1,
1159 				__copy_first_ref, path);
1160 	if (ret < 0)
1161 		goto out;
1162 	ret = 0;
1163 
1164 out:
1165 	btrfs_free_path(p);
1166 	return ret;
1167 }
1168 
1169 struct backref_ctx {
1170 	struct send_ctx *sctx;
1171 
1172 	struct btrfs_path *path;
1173 	/* number of total found references */
1174 	u64 found;
1175 
1176 	/*
1177 	 * used for clones found in send_root. clones found behind cur_objectid
1178 	 * and cur_offset are not considered as allowed clones.
1179 	 */
1180 	u64 cur_objectid;
1181 	u64 cur_offset;
1182 
1183 	/* may be truncated in case it's the last extent in a file */
1184 	u64 extent_len;
1185 
1186 	/* data offset in the file extent item */
1187 	u64 data_offset;
1188 
1189 	/* Just to check for bugs in backref resolving */
1190 	int found_itself;
1191 };
1192 
1193 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1194 {
1195 	u64 root = (u64)(uintptr_t)key;
1196 	struct clone_root *cr = (struct clone_root *)elt;
1197 
1198 	if (root < cr->root->objectid)
1199 		return -1;
1200 	if (root > cr->root->objectid)
1201 		return 1;
1202 	return 0;
1203 }
1204 
1205 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1206 {
1207 	struct clone_root *cr1 = (struct clone_root *)e1;
1208 	struct clone_root *cr2 = (struct clone_root *)e2;
1209 
1210 	if (cr1->root->objectid < cr2->root->objectid)
1211 		return -1;
1212 	if (cr1->root->objectid > cr2->root->objectid)
1213 		return 1;
1214 	return 0;
1215 }
1216 
1217 /*
1218  * Called for every backref that is found for the current extent.
1219  * Results are collected in sctx->clone_roots->ino/offset/found_refs
1220  */
1221 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1222 {
1223 	struct backref_ctx *bctx = ctx_;
1224 	struct clone_root *found;
1225 	int ret;
1226 	u64 i_size;
1227 
1228 	/* First check if the root is in the list of accepted clone sources */
1229 	found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1230 			bctx->sctx->clone_roots_cnt,
1231 			sizeof(struct clone_root),
1232 			__clone_root_cmp_bsearch);
1233 	if (!found)
1234 		return 0;
1235 
1236 	if (found->root == bctx->sctx->send_root &&
1237 	    ino == bctx->cur_objectid &&
1238 	    offset == bctx->cur_offset) {
1239 		bctx->found_itself = 1;
1240 	}
1241 
1242 	/*
1243 	 * There are inodes that have extents that lie behind its i_size. Don't
1244 	 * accept clones from these extents.
1245 	 */
1246 	ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1247 			       NULL, NULL, NULL);
1248 	btrfs_release_path(bctx->path);
1249 	if (ret < 0)
1250 		return ret;
1251 
1252 	if (offset + bctx->data_offset + bctx->extent_len > i_size)
1253 		return 0;
1254 
1255 	/*
1256 	 * Make sure we don't consider clones from send_root that are
1257 	 * behind the current inode/offset.
1258 	 */
1259 	if (found->root == bctx->sctx->send_root) {
1260 		/*
1261 		 * TODO for the moment we don't accept clones from the inode
1262 		 * that is currently send. We may change this when
1263 		 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1264 		 * file.
1265 		 */
1266 		if (ino >= bctx->cur_objectid)
1267 			return 0;
1268 	}
1269 
1270 	bctx->found++;
1271 	found->found_refs++;
1272 	if (ino < found->ino) {
1273 		found->ino = ino;
1274 		found->offset = offset;
1275 	} else if (found->ino == ino) {
1276 		/*
1277 		 * same extent found more then once in the same file.
1278 		 */
1279 		if (found->offset > offset + bctx->extent_len)
1280 			found->offset = offset;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 /*
1287  * Given an inode, offset and extent item, it finds a good clone for a clone
1288  * instruction. Returns -ENOENT when none could be found. The function makes
1289  * sure that the returned clone is usable at the point where sending is at the
1290  * moment. This means, that no clones are accepted which lie behind the current
1291  * inode+offset.
1292  *
1293  * path must point to the extent item when called.
1294  */
1295 static int find_extent_clone(struct send_ctx *sctx,
1296 			     struct btrfs_path *path,
1297 			     u64 ino, u64 data_offset,
1298 			     u64 ino_size,
1299 			     struct clone_root **found)
1300 {
1301 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1302 	int ret;
1303 	int extent_type;
1304 	u64 logical;
1305 	u64 disk_byte;
1306 	u64 num_bytes;
1307 	u64 extent_item_pos;
1308 	u64 flags = 0;
1309 	struct btrfs_file_extent_item *fi;
1310 	struct extent_buffer *eb = path->nodes[0];
1311 	struct backref_ctx *backref_ctx = NULL;
1312 	struct clone_root *cur_clone_root;
1313 	struct btrfs_key found_key;
1314 	struct btrfs_path *tmp_path;
1315 	int compressed;
1316 	u32 i;
1317 
1318 	tmp_path = alloc_path_for_send();
1319 	if (!tmp_path)
1320 		return -ENOMEM;
1321 
1322 	/* We only use this path under the commit sem */
1323 	tmp_path->need_commit_sem = 0;
1324 
1325 	backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1326 	if (!backref_ctx) {
1327 		ret = -ENOMEM;
1328 		goto out;
1329 	}
1330 
1331 	backref_ctx->path = tmp_path;
1332 
1333 	if (data_offset >= ino_size) {
1334 		/*
1335 		 * There may be extents that lie behind the file's size.
1336 		 * I at least had this in combination with snapshotting while
1337 		 * writing large files.
1338 		 */
1339 		ret = 0;
1340 		goto out;
1341 	}
1342 
1343 	fi = btrfs_item_ptr(eb, path->slots[0],
1344 			struct btrfs_file_extent_item);
1345 	extent_type = btrfs_file_extent_type(eb, fi);
1346 	if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1347 		ret = -ENOENT;
1348 		goto out;
1349 	}
1350 	compressed = btrfs_file_extent_compression(eb, fi);
1351 
1352 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1353 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1354 	if (disk_byte == 0) {
1355 		ret = -ENOENT;
1356 		goto out;
1357 	}
1358 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1359 
1360 	down_read(&fs_info->commit_root_sem);
1361 	ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1362 				  &found_key, &flags);
1363 	up_read(&fs_info->commit_root_sem);
1364 	btrfs_release_path(tmp_path);
1365 
1366 	if (ret < 0)
1367 		goto out;
1368 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1369 		ret = -EIO;
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Setup the clone roots.
1375 	 */
1376 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1377 		cur_clone_root = sctx->clone_roots + i;
1378 		cur_clone_root->ino = (u64)-1;
1379 		cur_clone_root->offset = 0;
1380 		cur_clone_root->found_refs = 0;
1381 	}
1382 
1383 	backref_ctx->sctx = sctx;
1384 	backref_ctx->found = 0;
1385 	backref_ctx->cur_objectid = ino;
1386 	backref_ctx->cur_offset = data_offset;
1387 	backref_ctx->found_itself = 0;
1388 	backref_ctx->extent_len = num_bytes;
1389 	/*
1390 	 * For non-compressed extents iterate_extent_inodes() gives us extent
1391 	 * offsets that already take into account the data offset, but not for
1392 	 * compressed extents, since the offset is logical and not relative to
1393 	 * the physical extent locations. We must take this into account to
1394 	 * avoid sending clone offsets that go beyond the source file's size,
1395 	 * which would result in the clone ioctl failing with -EINVAL on the
1396 	 * receiving end.
1397 	 */
1398 	if (compressed == BTRFS_COMPRESS_NONE)
1399 		backref_ctx->data_offset = 0;
1400 	else
1401 		backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1402 
1403 	/*
1404 	 * The last extent of a file may be too large due to page alignment.
1405 	 * We need to adjust extent_len in this case so that the checks in
1406 	 * __iterate_backrefs work.
1407 	 */
1408 	if (data_offset + num_bytes >= ino_size)
1409 		backref_ctx->extent_len = ino_size - data_offset;
1410 
1411 	/*
1412 	 * Now collect all backrefs.
1413 	 */
1414 	if (compressed == BTRFS_COMPRESS_NONE)
1415 		extent_item_pos = logical - found_key.objectid;
1416 	else
1417 		extent_item_pos = 0;
1418 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1419 				    extent_item_pos, 1, __iterate_backrefs,
1420 				    backref_ctx, false);
1421 
1422 	if (ret < 0)
1423 		goto out;
1424 
1425 	if (!backref_ctx->found_itself) {
1426 		/* found a bug in backref code? */
1427 		ret = -EIO;
1428 		btrfs_err(fs_info,
1429 			  "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1430 			  ino, data_offset, disk_byte, found_key.objectid);
1431 		goto out;
1432 	}
1433 
1434 	btrfs_debug(fs_info,
1435 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1436 		    data_offset, ino, num_bytes, logical);
1437 
1438 	if (!backref_ctx->found)
1439 		btrfs_debug(fs_info, "no clones found");
1440 
1441 	cur_clone_root = NULL;
1442 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1443 		if (sctx->clone_roots[i].found_refs) {
1444 			if (!cur_clone_root)
1445 				cur_clone_root = sctx->clone_roots + i;
1446 			else if (sctx->clone_roots[i].root == sctx->send_root)
1447 				/* prefer clones from send_root over others */
1448 				cur_clone_root = sctx->clone_roots + i;
1449 		}
1450 
1451 	}
1452 
1453 	if (cur_clone_root) {
1454 		*found = cur_clone_root;
1455 		ret = 0;
1456 	} else {
1457 		ret = -ENOENT;
1458 	}
1459 
1460 out:
1461 	btrfs_free_path(tmp_path);
1462 	kfree(backref_ctx);
1463 	return ret;
1464 }
1465 
1466 static int read_symlink(struct btrfs_root *root,
1467 			u64 ino,
1468 			struct fs_path *dest)
1469 {
1470 	int ret;
1471 	struct btrfs_path *path;
1472 	struct btrfs_key key;
1473 	struct btrfs_file_extent_item *ei;
1474 	u8 type;
1475 	u8 compression;
1476 	unsigned long off;
1477 	int len;
1478 
1479 	path = alloc_path_for_send();
1480 	if (!path)
1481 		return -ENOMEM;
1482 
1483 	key.objectid = ino;
1484 	key.type = BTRFS_EXTENT_DATA_KEY;
1485 	key.offset = 0;
1486 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1487 	if (ret < 0)
1488 		goto out;
1489 	if (ret) {
1490 		/*
1491 		 * An empty symlink inode. Can happen in rare error paths when
1492 		 * creating a symlink (transaction committed before the inode
1493 		 * eviction handler removed the symlink inode items and a crash
1494 		 * happened in between or the subvol was snapshoted in between).
1495 		 * Print an informative message to dmesg/syslog so that the user
1496 		 * can delete the symlink.
1497 		 */
1498 		btrfs_err(root->fs_info,
1499 			  "Found empty symlink inode %llu at root %llu",
1500 			  ino, root->root_key.objectid);
1501 		ret = -EIO;
1502 		goto out;
1503 	}
1504 
1505 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1506 			struct btrfs_file_extent_item);
1507 	type = btrfs_file_extent_type(path->nodes[0], ei);
1508 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1509 	BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1510 	BUG_ON(compression);
1511 
1512 	off = btrfs_file_extent_inline_start(ei);
1513 	len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1514 
1515 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1516 
1517 out:
1518 	btrfs_free_path(path);
1519 	return ret;
1520 }
1521 
1522 /*
1523  * Helper function to generate a file name that is unique in the root of
1524  * send_root and parent_root. This is used to generate names for orphan inodes.
1525  */
1526 static int gen_unique_name(struct send_ctx *sctx,
1527 			   u64 ino, u64 gen,
1528 			   struct fs_path *dest)
1529 {
1530 	int ret = 0;
1531 	struct btrfs_path *path;
1532 	struct btrfs_dir_item *di;
1533 	char tmp[64];
1534 	int len;
1535 	u64 idx = 0;
1536 
1537 	path = alloc_path_for_send();
1538 	if (!path)
1539 		return -ENOMEM;
1540 
1541 	while (1) {
1542 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1543 				ino, gen, idx);
1544 		ASSERT(len < sizeof(tmp));
1545 
1546 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1547 				path, BTRFS_FIRST_FREE_OBJECTID,
1548 				tmp, strlen(tmp), 0);
1549 		btrfs_release_path(path);
1550 		if (IS_ERR(di)) {
1551 			ret = PTR_ERR(di);
1552 			goto out;
1553 		}
1554 		if (di) {
1555 			/* not unique, try again */
1556 			idx++;
1557 			continue;
1558 		}
1559 
1560 		if (!sctx->parent_root) {
1561 			/* unique */
1562 			ret = 0;
1563 			break;
1564 		}
1565 
1566 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1567 				path, BTRFS_FIRST_FREE_OBJECTID,
1568 				tmp, strlen(tmp), 0);
1569 		btrfs_release_path(path);
1570 		if (IS_ERR(di)) {
1571 			ret = PTR_ERR(di);
1572 			goto out;
1573 		}
1574 		if (di) {
1575 			/* not unique, try again */
1576 			idx++;
1577 			continue;
1578 		}
1579 		/* unique */
1580 		break;
1581 	}
1582 
1583 	ret = fs_path_add(dest, tmp, strlen(tmp));
1584 
1585 out:
1586 	btrfs_free_path(path);
1587 	return ret;
1588 }
1589 
1590 enum inode_state {
1591 	inode_state_no_change,
1592 	inode_state_will_create,
1593 	inode_state_did_create,
1594 	inode_state_will_delete,
1595 	inode_state_did_delete,
1596 };
1597 
1598 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1599 {
1600 	int ret;
1601 	int left_ret;
1602 	int right_ret;
1603 	u64 left_gen;
1604 	u64 right_gen;
1605 
1606 	ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1607 			NULL, NULL);
1608 	if (ret < 0 && ret != -ENOENT)
1609 		goto out;
1610 	left_ret = ret;
1611 
1612 	if (!sctx->parent_root) {
1613 		right_ret = -ENOENT;
1614 	} else {
1615 		ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1616 				NULL, NULL, NULL, NULL);
1617 		if (ret < 0 && ret != -ENOENT)
1618 			goto out;
1619 		right_ret = ret;
1620 	}
1621 
1622 	if (!left_ret && !right_ret) {
1623 		if (left_gen == gen && right_gen == gen) {
1624 			ret = inode_state_no_change;
1625 		} else if (left_gen == gen) {
1626 			if (ino < sctx->send_progress)
1627 				ret = inode_state_did_create;
1628 			else
1629 				ret = inode_state_will_create;
1630 		} else if (right_gen == gen) {
1631 			if (ino < sctx->send_progress)
1632 				ret = inode_state_did_delete;
1633 			else
1634 				ret = inode_state_will_delete;
1635 		} else  {
1636 			ret = -ENOENT;
1637 		}
1638 	} else if (!left_ret) {
1639 		if (left_gen == gen) {
1640 			if (ino < sctx->send_progress)
1641 				ret = inode_state_did_create;
1642 			else
1643 				ret = inode_state_will_create;
1644 		} else {
1645 			ret = -ENOENT;
1646 		}
1647 	} else if (!right_ret) {
1648 		if (right_gen == gen) {
1649 			if (ino < sctx->send_progress)
1650 				ret = inode_state_did_delete;
1651 			else
1652 				ret = inode_state_will_delete;
1653 		} else {
1654 			ret = -ENOENT;
1655 		}
1656 	} else {
1657 		ret = -ENOENT;
1658 	}
1659 
1660 out:
1661 	return ret;
1662 }
1663 
1664 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1665 {
1666 	int ret;
1667 
1668 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1669 		return 1;
1670 
1671 	ret = get_cur_inode_state(sctx, ino, gen);
1672 	if (ret < 0)
1673 		goto out;
1674 
1675 	if (ret == inode_state_no_change ||
1676 	    ret == inode_state_did_create ||
1677 	    ret == inode_state_will_delete)
1678 		ret = 1;
1679 	else
1680 		ret = 0;
1681 
1682 out:
1683 	return ret;
1684 }
1685 
1686 /*
1687  * Helper function to lookup a dir item in a dir.
1688  */
1689 static int lookup_dir_item_inode(struct btrfs_root *root,
1690 				 u64 dir, const char *name, int name_len,
1691 				 u64 *found_inode,
1692 				 u8 *found_type)
1693 {
1694 	int ret = 0;
1695 	struct btrfs_dir_item *di;
1696 	struct btrfs_key key;
1697 	struct btrfs_path *path;
1698 
1699 	path = alloc_path_for_send();
1700 	if (!path)
1701 		return -ENOMEM;
1702 
1703 	di = btrfs_lookup_dir_item(NULL, root, path,
1704 			dir, name, name_len, 0);
1705 	if (!di) {
1706 		ret = -ENOENT;
1707 		goto out;
1708 	}
1709 	if (IS_ERR(di)) {
1710 		ret = PTR_ERR(di);
1711 		goto out;
1712 	}
1713 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1714 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
1715 		ret = -ENOENT;
1716 		goto out;
1717 	}
1718 	*found_inode = key.objectid;
1719 	*found_type = btrfs_dir_type(path->nodes[0], di);
1720 
1721 out:
1722 	btrfs_free_path(path);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1728  * generation of the parent dir and the name of the dir entry.
1729  */
1730 static int get_first_ref(struct btrfs_root *root, u64 ino,
1731 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
1732 {
1733 	int ret;
1734 	struct btrfs_key key;
1735 	struct btrfs_key found_key;
1736 	struct btrfs_path *path;
1737 	int len;
1738 	u64 parent_dir;
1739 
1740 	path = alloc_path_for_send();
1741 	if (!path)
1742 		return -ENOMEM;
1743 
1744 	key.objectid = ino;
1745 	key.type = BTRFS_INODE_REF_KEY;
1746 	key.offset = 0;
1747 
1748 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1749 	if (ret < 0)
1750 		goto out;
1751 	if (!ret)
1752 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1753 				path->slots[0]);
1754 	if (ret || found_key.objectid != ino ||
1755 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1756 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1757 		ret = -ENOENT;
1758 		goto out;
1759 	}
1760 
1761 	if (found_key.type == BTRFS_INODE_REF_KEY) {
1762 		struct btrfs_inode_ref *iref;
1763 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1764 				      struct btrfs_inode_ref);
1765 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1766 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1767 						     (unsigned long)(iref + 1),
1768 						     len);
1769 		parent_dir = found_key.offset;
1770 	} else {
1771 		struct btrfs_inode_extref *extref;
1772 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1773 					struct btrfs_inode_extref);
1774 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1775 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1776 					(unsigned long)&extref->name, len);
1777 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1778 	}
1779 	if (ret < 0)
1780 		goto out;
1781 	btrfs_release_path(path);
1782 
1783 	if (dir_gen) {
1784 		ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1785 				     NULL, NULL, NULL);
1786 		if (ret < 0)
1787 			goto out;
1788 	}
1789 
1790 	*dir = parent_dir;
1791 
1792 out:
1793 	btrfs_free_path(path);
1794 	return ret;
1795 }
1796 
1797 static int is_first_ref(struct btrfs_root *root,
1798 			u64 ino, u64 dir,
1799 			const char *name, int name_len)
1800 {
1801 	int ret;
1802 	struct fs_path *tmp_name;
1803 	u64 tmp_dir;
1804 
1805 	tmp_name = fs_path_alloc();
1806 	if (!tmp_name)
1807 		return -ENOMEM;
1808 
1809 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1810 	if (ret < 0)
1811 		goto out;
1812 
1813 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1814 		ret = 0;
1815 		goto out;
1816 	}
1817 
1818 	ret = !memcmp(tmp_name->start, name, name_len);
1819 
1820 out:
1821 	fs_path_free(tmp_name);
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Used by process_recorded_refs to determine if a new ref would overwrite an
1827  * already existing ref. In case it detects an overwrite, it returns the
1828  * inode/gen in who_ino/who_gen.
1829  * When an overwrite is detected, process_recorded_refs does proper orphanizing
1830  * to make sure later references to the overwritten inode are possible.
1831  * Orphanizing is however only required for the first ref of an inode.
1832  * process_recorded_refs does an additional is_first_ref check to see if
1833  * orphanizing is really required.
1834  */
1835 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1836 			      const char *name, int name_len,
1837 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
1838 {
1839 	int ret = 0;
1840 	u64 gen;
1841 	u64 other_inode = 0;
1842 	u8 other_type = 0;
1843 
1844 	if (!sctx->parent_root)
1845 		goto out;
1846 
1847 	ret = is_inode_existent(sctx, dir, dir_gen);
1848 	if (ret <= 0)
1849 		goto out;
1850 
1851 	/*
1852 	 * If we have a parent root we need to verify that the parent dir was
1853 	 * not deleted and then re-created, if it was then we have no overwrite
1854 	 * and we can just unlink this entry.
1855 	 */
1856 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1857 		ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1858 				     NULL, NULL, NULL);
1859 		if (ret < 0 && ret != -ENOENT)
1860 			goto out;
1861 		if (ret) {
1862 			ret = 0;
1863 			goto out;
1864 		}
1865 		if (gen != dir_gen)
1866 			goto out;
1867 	}
1868 
1869 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1870 			&other_inode, &other_type);
1871 	if (ret < 0 && ret != -ENOENT)
1872 		goto out;
1873 	if (ret) {
1874 		ret = 0;
1875 		goto out;
1876 	}
1877 
1878 	/*
1879 	 * Check if the overwritten ref was already processed. If yes, the ref
1880 	 * was already unlinked/moved, so we can safely assume that we will not
1881 	 * overwrite anything at this point in time.
1882 	 */
1883 	if (other_inode > sctx->send_progress ||
1884 	    is_waiting_for_move(sctx, other_inode)) {
1885 		ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1886 				who_gen, who_mode, NULL, NULL, NULL);
1887 		if (ret < 0)
1888 			goto out;
1889 
1890 		ret = 1;
1891 		*who_ino = other_inode;
1892 	} else {
1893 		ret = 0;
1894 	}
1895 
1896 out:
1897 	return ret;
1898 }
1899 
1900 /*
1901  * Checks if the ref was overwritten by an already processed inode. This is
1902  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1903  * thus the orphan name needs be used.
1904  * process_recorded_refs also uses it to avoid unlinking of refs that were
1905  * overwritten.
1906  */
1907 static int did_overwrite_ref(struct send_ctx *sctx,
1908 			    u64 dir, u64 dir_gen,
1909 			    u64 ino, u64 ino_gen,
1910 			    const char *name, int name_len)
1911 {
1912 	int ret = 0;
1913 	u64 gen;
1914 	u64 ow_inode;
1915 	u8 other_type;
1916 
1917 	if (!sctx->parent_root)
1918 		goto out;
1919 
1920 	ret = is_inode_existent(sctx, dir, dir_gen);
1921 	if (ret <= 0)
1922 		goto out;
1923 
1924 	if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1925 		ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1926 				     NULL, NULL, NULL);
1927 		if (ret < 0 && ret != -ENOENT)
1928 			goto out;
1929 		if (ret) {
1930 			ret = 0;
1931 			goto out;
1932 		}
1933 		if (gen != dir_gen)
1934 			goto out;
1935 	}
1936 
1937 	/* check if the ref was overwritten by another ref */
1938 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 			&ow_inode, &other_type);
1940 	if (ret < 0 && ret != -ENOENT)
1941 		goto out;
1942 	if (ret) {
1943 		/* was never and will never be overwritten */
1944 		ret = 0;
1945 		goto out;
1946 	}
1947 
1948 	ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1949 			NULL, NULL);
1950 	if (ret < 0)
1951 		goto out;
1952 
1953 	if (ow_inode == ino && gen == ino_gen) {
1954 		ret = 0;
1955 		goto out;
1956 	}
1957 
1958 	/*
1959 	 * We know that it is or will be overwritten. Check this now.
1960 	 * The current inode being processed might have been the one that caused
1961 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 	 * the current inode being processed.
1963 	 */
1964 	if ((ow_inode < sctx->send_progress) ||
1965 	    (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 	     gen == sctx->cur_inode_gen))
1967 		ret = 1;
1968 	else
1969 		ret = 0;
1970 
1971 out:
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977  * that got overwritten. This is used by process_recorded_refs to determine
1978  * if it has to use the path as returned by get_cur_path or the orphan name.
1979  */
1980 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1981 {
1982 	int ret = 0;
1983 	struct fs_path *name = NULL;
1984 	u64 dir;
1985 	u64 dir_gen;
1986 
1987 	if (!sctx->parent_root)
1988 		goto out;
1989 
1990 	name = fs_path_alloc();
1991 	if (!name)
1992 		return -ENOMEM;
1993 
1994 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1995 	if (ret < 0)
1996 		goto out;
1997 
1998 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 			name->start, fs_path_len(name));
2000 
2001 out:
2002 	fs_path_free(name);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008  * so we need to do some special handling in case we have clashes. This function
2009  * takes care of this with the help of name_cache_entry::radix_list.
2010  * In case of error, nce is kfreed.
2011  */
2012 static int name_cache_insert(struct send_ctx *sctx,
2013 			     struct name_cache_entry *nce)
2014 {
2015 	int ret = 0;
2016 	struct list_head *nce_head;
2017 
2018 	nce_head = radix_tree_lookup(&sctx->name_cache,
2019 			(unsigned long)nce->ino);
2020 	if (!nce_head) {
2021 		nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2022 		if (!nce_head) {
2023 			kfree(nce);
2024 			return -ENOMEM;
2025 		}
2026 		INIT_LIST_HEAD(nce_head);
2027 
2028 		ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2029 		if (ret < 0) {
2030 			kfree(nce_head);
2031 			kfree(nce);
2032 			return ret;
2033 		}
2034 	}
2035 	list_add_tail(&nce->radix_list, nce_head);
2036 	list_add_tail(&nce->list, &sctx->name_cache_list);
2037 	sctx->name_cache_size++;
2038 
2039 	return ret;
2040 }
2041 
2042 static void name_cache_delete(struct send_ctx *sctx,
2043 			      struct name_cache_entry *nce)
2044 {
2045 	struct list_head *nce_head;
2046 
2047 	nce_head = radix_tree_lookup(&sctx->name_cache,
2048 			(unsigned long)nce->ino);
2049 	if (!nce_head) {
2050 		btrfs_err(sctx->send_root->fs_info,
2051 	      "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 			nce->ino, sctx->name_cache_size);
2053 	}
2054 
2055 	list_del(&nce->radix_list);
2056 	list_del(&nce->list);
2057 	sctx->name_cache_size--;
2058 
2059 	/*
2060 	 * We may not get to the final release of nce_head if the lookup fails
2061 	 */
2062 	if (nce_head && list_empty(nce_head)) {
2063 		radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2064 		kfree(nce_head);
2065 	}
2066 }
2067 
2068 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2069 						    u64 ino, u64 gen)
2070 {
2071 	struct list_head *nce_head;
2072 	struct name_cache_entry *cur;
2073 
2074 	nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2075 	if (!nce_head)
2076 		return NULL;
2077 
2078 	list_for_each_entry(cur, nce_head, radix_list) {
2079 		if (cur->ino == ino && cur->gen == gen)
2080 			return cur;
2081 	}
2082 	return NULL;
2083 }
2084 
2085 /*
2086  * Removes the entry from the list and adds it back to the end. This marks the
2087  * entry as recently used so that name_cache_clean_unused does not remove it.
2088  */
2089 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2090 {
2091 	list_del(&nce->list);
2092 	list_add_tail(&nce->list, &sctx->name_cache_list);
2093 }
2094 
2095 /*
2096  * Remove some entries from the beginning of name_cache_list.
2097  */
2098 static void name_cache_clean_unused(struct send_ctx *sctx)
2099 {
2100 	struct name_cache_entry *nce;
2101 
2102 	if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2103 		return;
2104 
2105 	while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 		nce = list_entry(sctx->name_cache_list.next,
2107 				struct name_cache_entry, list);
2108 		name_cache_delete(sctx, nce);
2109 		kfree(nce);
2110 	}
2111 }
2112 
2113 static void name_cache_free(struct send_ctx *sctx)
2114 {
2115 	struct name_cache_entry *nce;
2116 
2117 	while (!list_empty(&sctx->name_cache_list)) {
2118 		nce = list_entry(sctx->name_cache_list.next,
2119 				struct name_cache_entry, list);
2120 		name_cache_delete(sctx, nce);
2121 		kfree(nce);
2122 	}
2123 }
2124 
2125 /*
2126  * Used by get_cur_path for each ref up to the root.
2127  * Returns 0 if it succeeded.
2128  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131  * Returns <0 in case of error.
2132  */
2133 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2134 				     u64 ino, u64 gen,
2135 				     u64 *parent_ino,
2136 				     u64 *parent_gen,
2137 				     struct fs_path *dest)
2138 {
2139 	int ret;
2140 	int nce_ret;
2141 	struct name_cache_entry *nce = NULL;
2142 
2143 	/*
2144 	 * First check if we already did a call to this function with the same
2145 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 	 * return the cached result.
2147 	 */
2148 	nce = name_cache_search(sctx, ino, gen);
2149 	if (nce) {
2150 		if (ino < sctx->send_progress && nce->need_later_update) {
2151 			name_cache_delete(sctx, nce);
2152 			kfree(nce);
2153 			nce = NULL;
2154 		} else {
2155 			name_cache_used(sctx, nce);
2156 			*parent_ino = nce->parent_ino;
2157 			*parent_gen = nce->parent_gen;
2158 			ret = fs_path_add(dest, nce->name, nce->name_len);
2159 			if (ret < 0)
2160 				goto out;
2161 			ret = nce->ret;
2162 			goto out;
2163 		}
2164 	}
2165 
2166 	/*
2167 	 * If the inode is not existent yet, add the orphan name and return 1.
2168 	 * This should only happen for the parent dir that we determine in
2169 	 * __record_new_ref
2170 	 */
2171 	ret = is_inode_existent(sctx, ino, gen);
2172 	if (ret < 0)
2173 		goto out;
2174 
2175 	if (!ret) {
2176 		ret = gen_unique_name(sctx, ino, gen, dest);
2177 		if (ret < 0)
2178 			goto out;
2179 		ret = 1;
2180 		goto out_cache;
2181 	}
2182 
2183 	/*
2184 	 * Depending on whether the inode was already processed or not, use
2185 	 * send_root or parent_root for ref lookup.
2186 	 */
2187 	if (ino < sctx->send_progress)
2188 		ret = get_first_ref(sctx->send_root, ino,
2189 				    parent_ino, parent_gen, dest);
2190 	else
2191 		ret = get_first_ref(sctx->parent_root, ino,
2192 				    parent_ino, parent_gen, dest);
2193 	if (ret < 0)
2194 		goto out;
2195 
2196 	/*
2197 	 * Check if the ref was overwritten by an inode's ref that was processed
2198 	 * earlier. If yes, treat as orphan and return 1.
2199 	 */
2200 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 			dest->start, dest->end - dest->start);
2202 	if (ret < 0)
2203 		goto out;
2204 	if (ret) {
2205 		fs_path_reset(dest);
2206 		ret = gen_unique_name(sctx, ino, gen, dest);
2207 		if (ret < 0)
2208 			goto out;
2209 		ret = 1;
2210 	}
2211 
2212 out_cache:
2213 	/*
2214 	 * Store the result of the lookup in the name cache.
2215 	 */
2216 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2217 	if (!nce) {
2218 		ret = -ENOMEM;
2219 		goto out;
2220 	}
2221 
2222 	nce->ino = ino;
2223 	nce->gen = gen;
2224 	nce->parent_ino = *parent_ino;
2225 	nce->parent_gen = *parent_gen;
2226 	nce->name_len = fs_path_len(dest);
2227 	nce->ret = ret;
2228 	strcpy(nce->name, dest->start);
2229 
2230 	if (ino < sctx->send_progress)
2231 		nce->need_later_update = 0;
2232 	else
2233 		nce->need_later_update = 1;
2234 
2235 	nce_ret = name_cache_insert(sctx, nce);
2236 	if (nce_ret < 0)
2237 		ret = nce_ret;
2238 	name_cache_clean_unused(sctx);
2239 
2240 out:
2241 	return ret;
2242 }
2243 
2244 /*
2245  * Magic happens here. This function returns the first ref to an inode as it
2246  * would look like while receiving the stream at this point in time.
2247  * We walk the path up to the root. For every inode in between, we check if it
2248  * was already processed/sent. If yes, we continue with the parent as found
2249  * in send_root. If not, we continue with the parent as found in parent_root.
2250  * If we encounter an inode that was deleted at this point in time, we use the
2251  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252  * that were not created yet and overwritten inodes/refs.
2253  *
2254  * When do we have have orphan inodes:
2255  * 1. When an inode is freshly created and thus no valid refs are available yet
2256  * 2. When a directory lost all it's refs (deleted) but still has dir items
2257  *    inside which were not processed yet (pending for move/delete). If anyone
2258  *    tried to get the path to the dir items, it would get a path inside that
2259  *    orphan directory.
2260  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261  *    of an unprocessed inode. If in that case the first ref would be
2262  *    overwritten, the overwritten inode gets "orphanized". Later when we
2263  *    process this overwritten inode, it is restored at a new place by moving
2264  *    the orphan inode.
2265  *
2266  * sctx->send_progress tells this function at which point in time receiving
2267  * would be.
2268  */
2269 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 			struct fs_path *dest)
2271 {
2272 	int ret = 0;
2273 	struct fs_path *name = NULL;
2274 	u64 parent_inode = 0;
2275 	u64 parent_gen = 0;
2276 	int stop = 0;
2277 
2278 	name = fs_path_alloc();
2279 	if (!name) {
2280 		ret = -ENOMEM;
2281 		goto out;
2282 	}
2283 
2284 	dest->reversed = 1;
2285 	fs_path_reset(dest);
2286 
2287 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2288 		struct waiting_dir_move *wdm;
2289 
2290 		fs_path_reset(name);
2291 
2292 		if (is_waiting_for_rm(sctx, ino)) {
2293 			ret = gen_unique_name(sctx, ino, gen, name);
2294 			if (ret < 0)
2295 				goto out;
2296 			ret = fs_path_add_path(dest, name);
2297 			break;
2298 		}
2299 
2300 		wdm = get_waiting_dir_move(sctx, ino);
2301 		if (wdm && wdm->orphanized) {
2302 			ret = gen_unique_name(sctx, ino, gen, name);
2303 			stop = 1;
2304 		} else if (wdm) {
2305 			ret = get_first_ref(sctx->parent_root, ino,
2306 					    &parent_inode, &parent_gen, name);
2307 		} else {
2308 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 							&parent_inode,
2310 							&parent_gen, name);
2311 			if (ret)
2312 				stop = 1;
2313 		}
2314 
2315 		if (ret < 0)
2316 			goto out;
2317 
2318 		ret = fs_path_add_path(dest, name);
2319 		if (ret < 0)
2320 			goto out;
2321 
2322 		ino = parent_inode;
2323 		gen = parent_gen;
2324 	}
2325 
2326 out:
2327 	fs_path_free(name);
2328 	if (!ret)
2329 		fs_path_unreverse(dest);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2335  */
2336 static int send_subvol_begin(struct send_ctx *sctx)
2337 {
2338 	int ret;
2339 	struct btrfs_root *send_root = sctx->send_root;
2340 	struct btrfs_root *parent_root = sctx->parent_root;
2341 	struct btrfs_path *path;
2342 	struct btrfs_key key;
2343 	struct btrfs_root_ref *ref;
2344 	struct extent_buffer *leaf;
2345 	char *name = NULL;
2346 	int namelen;
2347 
2348 	path = btrfs_alloc_path();
2349 	if (!path)
2350 		return -ENOMEM;
2351 
2352 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2353 	if (!name) {
2354 		btrfs_free_path(path);
2355 		return -ENOMEM;
2356 	}
2357 
2358 	key.objectid = send_root->objectid;
2359 	key.type = BTRFS_ROOT_BACKREF_KEY;
2360 	key.offset = 0;
2361 
2362 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2363 				&key, path, 1, 0);
2364 	if (ret < 0)
2365 		goto out;
2366 	if (ret) {
2367 		ret = -ENOENT;
2368 		goto out;
2369 	}
2370 
2371 	leaf = path->nodes[0];
2372 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 	    key.objectid != send_root->objectid) {
2375 		ret = -ENOENT;
2376 		goto out;
2377 	}
2378 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 	namelen = btrfs_root_ref_name_len(leaf, ref);
2380 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 	btrfs_release_path(path);
2382 
2383 	if (parent_root) {
2384 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2385 		if (ret < 0)
2386 			goto out;
2387 	} else {
2388 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2389 		if (ret < 0)
2390 			goto out;
2391 	}
2392 
2393 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2394 
2395 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 			    sctx->send_root->root_item.received_uuid);
2398 	else
2399 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 			    sctx->send_root->root_item.uuid);
2401 
2402 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2403 		    le64_to_cpu(sctx->send_root->root_item.ctransid));
2404 	if (parent_root) {
2405 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 				     parent_root->root_item.received_uuid);
2408 		else
2409 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 				     parent_root->root_item.uuid);
2411 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2412 			    le64_to_cpu(sctx->parent_root->root_item.ctransid));
2413 	}
2414 
2415 	ret = send_cmd(sctx);
2416 
2417 tlv_put_failure:
2418 out:
2419 	btrfs_free_path(path);
2420 	kfree(name);
2421 	return ret;
2422 }
2423 
2424 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2425 {
2426 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2427 	int ret = 0;
2428 	struct fs_path *p;
2429 
2430 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2431 
2432 	p = fs_path_alloc();
2433 	if (!p)
2434 		return -ENOMEM;
2435 
2436 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2437 	if (ret < 0)
2438 		goto out;
2439 
2440 	ret = get_cur_path(sctx, ino, gen, p);
2441 	if (ret < 0)
2442 		goto out;
2443 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2444 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2445 
2446 	ret = send_cmd(sctx);
2447 
2448 tlv_put_failure:
2449 out:
2450 	fs_path_free(p);
2451 	return ret;
2452 }
2453 
2454 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2455 {
2456 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2457 	int ret = 0;
2458 	struct fs_path *p;
2459 
2460 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2461 
2462 	p = fs_path_alloc();
2463 	if (!p)
2464 		return -ENOMEM;
2465 
2466 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2467 	if (ret < 0)
2468 		goto out;
2469 
2470 	ret = get_cur_path(sctx, ino, gen, p);
2471 	if (ret < 0)
2472 		goto out;
2473 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2475 
2476 	ret = send_cmd(sctx);
2477 
2478 tlv_put_failure:
2479 out:
2480 	fs_path_free(p);
2481 	return ret;
2482 }
2483 
2484 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2485 {
2486 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2487 	int ret = 0;
2488 	struct fs_path *p;
2489 
2490 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2491 		    ino, uid, gid);
2492 
2493 	p = fs_path_alloc();
2494 	if (!p)
2495 		return -ENOMEM;
2496 
2497 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2498 	if (ret < 0)
2499 		goto out;
2500 
2501 	ret = get_cur_path(sctx, ino, gen, p);
2502 	if (ret < 0)
2503 		goto out;
2504 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2506 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2507 
2508 	ret = send_cmd(sctx);
2509 
2510 tlv_put_failure:
2511 out:
2512 	fs_path_free(p);
2513 	return ret;
2514 }
2515 
2516 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2517 {
2518 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2519 	int ret = 0;
2520 	struct fs_path *p = NULL;
2521 	struct btrfs_inode_item *ii;
2522 	struct btrfs_path *path = NULL;
2523 	struct extent_buffer *eb;
2524 	struct btrfs_key key;
2525 	int slot;
2526 
2527 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2528 
2529 	p = fs_path_alloc();
2530 	if (!p)
2531 		return -ENOMEM;
2532 
2533 	path = alloc_path_for_send();
2534 	if (!path) {
2535 		ret = -ENOMEM;
2536 		goto out;
2537 	}
2538 
2539 	key.objectid = ino;
2540 	key.type = BTRFS_INODE_ITEM_KEY;
2541 	key.offset = 0;
2542 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2543 	if (ret > 0)
2544 		ret = -ENOENT;
2545 	if (ret < 0)
2546 		goto out;
2547 
2548 	eb = path->nodes[0];
2549 	slot = path->slots[0];
2550 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2551 
2552 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2553 	if (ret < 0)
2554 		goto out;
2555 
2556 	ret = get_cur_path(sctx, ino, gen, p);
2557 	if (ret < 0)
2558 		goto out;
2559 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2560 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2561 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2562 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2563 	/* TODO Add otime support when the otime patches get into upstream */
2564 
2565 	ret = send_cmd(sctx);
2566 
2567 tlv_put_failure:
2568 out:
2569 	fs_path_free(p);
2570 	btrfs_free_path(path);
2571 	return ret;
2572 }
2573 
2574 /*
2575  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2576  * a valid path yet because we did not process the refs yet. So, the inode
2577  * is created as orphan.
2578  */
2579 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2580 {
2581 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2582 	int ret = 0;
2583 	struct fs_path *p;
2584 	int cmd;
2585 	u64 gen;
2586 	u64 mode;
2587 	u64 rdev;
2588 
2589 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2590 
2591 	p = fs_path_alloc();
2592 	if (!p)
2593 		return -ENOMEM;
2594 
2595 	if (ino != sctx->cur_ino) {
2596 		ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2597 				     NULL, NULL, &rdev);
2598 		if (ret < 0)
2599 			goto out;
2600 	} else {
2601 		gen = sctx->cur_inode_gen;
2602 		mode = sctx->cur_inode_mode;
2603 		rdev = sctx->cur_inode_rdev;
2604 	}
2605 
2606 	if (S_ISREG(mode)) {
2607 		cmd = BTRFS_SEND_C_MKFILE;
2608 	} else if (S_ISDIR(mode)) {
2609 		cmd = BTRFS_SEND_C_MKDIR;
2610 	} else if (S_ISLNK(mode)) {
2611 		cmd = BTRFS_SEND_C_SYMLINK;
2612 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2613 		cmd = BTRFS_SEND_C_MKNOD;
2614 	} else if (S_ISFIFO(mode)) {
2615 		cmd = BTRFS_SEND_C_MKFIFO;
2616 	} else if (S_ISSOCK(mode)) {
2617 		cmd = BTRFS_SEND_C_MKSOCK;
2618 	} else {
2619 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2620 				(int)(mode & S_IFMT));
2621 		ret = -EOPNOTSUPP;
2622 		goto out;
2623 	}
2624 
2625 	ret = begin_cmd(sctx, cmd);
2626 	if (ret < 0)
2627 		goto out;
2628 
2629 	ret = gen_unique_name(sctx, ino, gen, p);
2630 	if (ret < 0)
2631 		goto out;
2632 
2633 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2634 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2635 
2636 	if (S_ISLNK(mode)) {
2637 		fs_path_reset(p);
2638 		ret = read_symlink(sctx->send_root, ino, p);
2639 		if (ret < 0)
2640 			goto out;
2641 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2642 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2643 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2644 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2645 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2646 	}
2647 
2648 	ret = send_cmd(sctx);
2649 	if (ret < 0)
2650 		goto out;
2651 
2652 
2653 tlv_put_failure:
2654 out:
2655 	fs_path_free(p);
2656 	return ret;
2657 }
2658 
2659 /*
2660  * We need some special handling for inodes that get processed before the parent
2661  * directory got created. See process_recorded_refs for details.
2662  * This function does the check if we already created the dir out of order.
2663  */
2664 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2665 {
2666 	int ret = 0;
2667 	struct btrfs_path *path = NULL;
2668 	struct btrfs_key key;
2669 	struct btrfs_key found_key;
2670 	struct btrfs_key di_key;
2671 	struct extent_buffer *eb;
2672 	struct btrfs_dir_item *di;
2673 	int slot;
2674 
2675 	path = alloc_path_for_send();
2676 	if (!path) {
2677 		ret = -ENOMEM;
2678 		goto out;
2679 	}
2680 
2681 	key.objectid = dir;
2682 	key.type = BTRFS_DIR_INDEX_KEY;
2683 	key.offset = 0;
2684 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2685 	if (ret < 0)
2686 		goto out;
2687 
2688 	while (1) {
2689 		eb = path->nodes[0];
2690 		slot = path->slots[0];
2691 		if (slot >= btrfs_header_nritems(eb)) {
2692 			ret = btrfs_next_leaf(sctx->send_root, path);
2693 			if (ret < 0) {
2694 				goto out;
2695 			} else if (ret > 0) {
2696 				ret = 0;
2697 				break;
2698 			}
2699 			continue;
2700 		}
2701 
2702 		btrfs_item_key_to_cpu(eb, &found_key, slot);
2703 		if (found_key.objectid != key.objectid ||
2704 		    found_key.type != key.type) {
2705 			ret = 0;
2706 			goto out;
2707 		}
2708 
2709 		di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2710 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2711 
2712 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2713 		    di_key.objectid < sctx->send_progress) {
2714 			ret = 1;
2715 			goto out;
2716 		}
2717 
2718 		path->slots[0]++;
2719 	}
2720 
2721 out:
2722 	btrfs_free_path(path);
2723 	return ret;
2724 }
2725 
2726 /*
2727  * Only creates the inode if it is:
2728  * 1. Not a directory
2729  * 2. Or a directory which was not created already due to out of order
2730  *    directories. See did_create_dir and process_recorded_refs for details.
2731  */
2732 static int send_create_inode_if_needed(struct send_ctx *sctx)
2733 {
2734 	int ret;
2735 
2736 	if (S_ISDIR(sctx->cur_inode_mode)) {
2737 		ret = did_create_dir(sctx, sctx->cur_ino);
2738 		if (ret < 0)
2739 			goto out;
2740 		if (ret) {
2741 			ret = 0;
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	ret = send_create_inode(sctx, sctx->cur_ino);
2747 	if (ret < 0)
2748 		goto out;
2749 
2750 out:
2751 	return ret;
2752 }
2753 
2754 struct recorded_ref {
2755 	struct list_head list;
2756 	char *name;
2757 	struct fs_path *full_path;
2758 	u64 dir;
2759 	u64 dir_gen;
2760 	int name_len;
2761 };
2762 
2763 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2764 {
2765 	ref->full_path = path;
2766 	ref->name = (char *)kbasename(ref->full_path->start);
2767 	ref->name_len = ref->full_path->end - ref->name;
2768 }
2769 
2770 /*
2771  * We need to process new refs before deleted refs, but compare_tree gives us
2772  * everything mixed. So we first record all refs and later process them.
2773  * This function is a helper to record one ref.
2774  */
2775 static int __record_ref(struct list_head *head, u64 dir,
2776 		      u64 dir_gen, struct fs_path *path)
2777 {
2778 	struct recorded_ref *ref;
2779 
2780 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2781 	if (!ref)
2782 		return -ENOMEM;
2783 
2784 	ref->dir = dir;
2785 	ref->dir_gen = dir_gen;
2786 	set_ref_path(ref, path);
2787 	list_add_tail(&ref->list, head);
2788 	return 0;
2789 }
2790 
2791 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2792 {
2793 	struct recorded_ref *new;
2794 
2795 	new = kmalloc(sizeof(*ref), GFP_KERNEL);
2796 	if (!new)
2797 		return -ENOMEM;
2798 
2799 	new->dir = ref->dir;
2800 	new->dir_gen = ref->dir_gen;
2801 	new->full_path = NULL;
2802 	INIT_LIST_HEAD(&new->list);
2803 	list_add_tail(&new->list, list);
2804 	return 0;
2805 }
2806 
2807 static void __free_recorded_refs(struct list_head *head)
2808 {
2809 	struct recorded_ref *cur;
2810 
2811 	while (!list_empty(head)) {
2812 		cur = list_entry(head->next, struct recorded_ref, list);
2813 		fs_path_free(cur->full_path);
2814 		list_del(&cur->list);
2815 		kfree(cur);
2816 	}
2817 }
2818 
2819 static void free_recorded_refs(struct send_ctx *sctx)
2820 {
2821 	__free_recorded_refs(&sctx->new_refs);
2822 	__free_recorded_refs(&sctx->deleted_refs);
2823 }
2824 
2825 /*
2826  * Renames/moves a file/dir to its orphan name. Used when the first
2827  * ref of an unprocessed inode gets overwritten and for all non empty
2828  * directories.
2829  */
2830 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2831 			  struct fs_path *path)
2832 {
2833 	int ret;
2834 	struct fs_path *orphan;
2835 
2836 	orphan = fs_path_alloc();
2837 	if (!orphan)
2838 		return -ENOMEM;
2839 
2840 	ret = gen_unique_name(sctx, ino, gen, orphan);
2841 	if (ret < 0)
2842 		goto out;
2843 
2844 	ret = send_rename(sctx, path, orphan);
2845 
2846 out:
2847 	fs_path_free(orphan);
2848 	return ret;
2849 }
2850 
2851 static struct orphan_dir_info *
2852 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2853 {
2854 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
2855 	struct rb_node *parent = NULL;
2856 	struct orphan_dir_info *entry, *odi;
2857 
2858 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2859 	if (!odi)
2860 		return ERR_PTR(-ENOMEM);
2861 	odi->ino = dir_ino;
2862 	odi->gen = 0;
2863 
2864 	while (*p) {
2865 		parent = *p;
2866 		entry = rb_entry(parent, struct orphan_dir_info, node);
2867 		if (dir_ino < entry->ino) {
2868 			p = &(*p)->rb_left;
2869 		} else if (dir_ino > entry->ino) {
2870 			p = &(*p)->rb_right;
2871 		} else {
2872 			kfree(odi);
2873 			return entry;
2874 		}
2875 	}
2876 
2877 	rb_link_node(&odi->node, parent, p);
2878 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
2879 	return odi;
2880 }
2881 
2882 static struct orphan_dir_info *
2883 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2884 {
2885 	struct rb_node *n = sctx->orphan_dirs.rb_node;
2886 	struct orphan_dir_info *entry;
2887 
2888 	while (n) {
2889 		entry = rb_entry(n, struct orphan_dir_info, node);
2890 		if (dir_ino < entry->ino)
2891 			n = n->rb_left;
2892 		else if (dir_ino > entry->ino)
2893 			n = n->rb_right;
2894 		else
2895 			return entry;
2896 	}
2897 	return NULL;
2898 }
2899 
2900 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2901 {
2902 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2903 
2904 	return odi != NULL;
2905 }
2906 
2907 static void free_orphan_dir_info(struct send_ctx *sctx,
2908 				 struct orphan_dir_info *odi)
2909 {
2910 	if (!odi)
2911 		return;
2912 	rb_erase(&odi->node, &sctx->orphan_dirs);
2913 	kfree(odi);
2914 }
2915 
2916 /*
2917  * Returns 1 if a directory can be removed at this point in time.
2918  * We check this by iterating all dir items and checking if the inode behind
2919  * the dir item was already processed.
2920  */
2921 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2922 		     u64 send_progress)
2923 {
2924 	int ret = 0;
2925 	struct btrfs_root *root = sctx->parent_root;
2926 	struct btrfs_path *path;
2927 	struct btrfs_key key;
2928 	struct btrfs_key found_key;
2929 	struct btrfs_key loc;
2930 	struct btrfs_dir_item *di;
2931 
2932 	/*
2933 	 * Don't try to rmdir the top/root subvolume dir.
2934 	 */
2935 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
2936 		return 0;
2937 
2938 	path = alloc_path_for_send();
2939 	if (!path)
2940 		return -ENOMEM;
2941 
2942 	key.objectid = dir;
2943 	key.type = BTRFS_DIR_INDEX_KEY;
2944 	key.offset = 0;
2945 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2946 	if (ret < 0)
2947 		goto out;
2948 
2949 	while (1) {
2950 		struct waiting_dir_move *dm;
2951 
2952 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2953 			ret = btrfs_next_leaf(root, path);
2954 			if (ret < 0)
2955 				goto out;
2956 			else if (ret > 0)
2957 				break;
2958 			continue;
2959 		}
2960 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2961 				      path->slots[0]);
2962 		if (found_key.objectid != key.objectid ||
2963 		    found_key.type != key.type)
2964 			break;
2965 
2966 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2967 				struct btrfs_dir_item);
2968 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2969 
2970 		dm = get_waiting_dir_move(sctx, loc.objectid);
2971 		if (dm) {
2972 			struct orphan_dir_info *odi;
2973 
2974 			odi = add_orphan_dir_info(sctx, dir);
2975 			if (IS_ERR(odi)) {
2976 				ret = PTR_ERR(odi);
2977 				goto out;
2978 			}
2979 			odi->gen = dir_gen;
2980 			dm->rmdir_ino = dir;
2981 			ret = 0;
2982 			goto out;
2983 		}
2984 
2985 		if (loc.objectid > send_progress) {
2986 			struct orphan_dir_info *odi;
2987 
2988 			odi = get_orphan_dir_info(sctx, dir);
2989 			free_orphan_dir_info(sctx, odi);
2990 			ret = 0;
2991 			goto out;
2992 		}
2993 
2994 		path->slots[0]++;
2995 	}
2996 
2997 	ret = 1;
2998 
2999 out:
3000 	btrfs_free_path(path);
3001 	return ret;
3002 }
3003 
3004 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3005 {
3006 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3007 
3008 	return entry != NULL;
3009 }
3010 
3011 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3012 {
3013 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3014 	struct rb_node *parent = NULL;
3015 	struct waiting_dir_move *entry, *dm;
3016 
3017 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3018 	if (!dm)
3019 		return -ENOMEM;
3020 	dm->ino = ino;
3021 	dm->rmdir_ino = 0;
3022 	dm->orphanized = orphanized;
3023 
3024 	while (*p) {
3025 		parent = *p;
3026 		entry = rb_entry(parent, struct waiting_dir_move, node);
3027 		if (ino < entry->ino) {
3028 			p = &(*p)->rb_left;
3029 		} else if (ino > entry->ino) {
3030 			p = &(*p)->rb_right;
3031 		} else {
3032 			kfree(dm);
3033 			return -EEXIST;
3034 		}
3035 	}
3036 
3037 	rb_link_node(&dm->node, parent, p);
3038 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3039 	return 0;
3040 }
3041 
3042 static struct waiting_dir_move *
3043 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3044 {
3045 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3046 	struct waiting_dir_move *entry;
3047 
3048 	while (n) {
3049 		entry = rb_entry(n, struct waiting_dir_move, node);
3050 		if (ino < entry->ino)
3051 			n = n->rb_left;
3052 		else if (ino > entry->ino)
3053 			n = n->rb_right;
3054 		else
3055 			return entry;
3056 	}
3057 	return NULL;
3058 }
3059 
3060 static void free_waiting_dir_move(struct send_ctx *sctx,
3061 				  struct waiting_dir_move *dm)
3062 {
3063 	if (!dm)
3064 		return;
3065 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3066 	kfree(dm);
3067 }
3068 
3069 static int add_pending_dir_move(struct send_ctx *sctx,
3070 				u64 ino,
3071 				u64 ino_gen,
3072 				u64 parent_ino,
3073 				struct list_head *new_refs,
3074 				struct list_head *deleted_refs,
3075 				const bool is_orphan)
3076 {
3077 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3078 	struct rb_node *parent = NULL;
3079 	struct pending_dir_move *entry = NULL, *pm;
3080 	struct recorded_ref *cur;
3081 	int exists = 0;
3082 	int ret;
3083 
3084 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3085 	if (!pm)
3086 		return -ENOMEM;
3087 	pm->parent_ino = parent_ino;
3088 	pm->ino = ino;
3089 	pm->gen = ino_gen;
3090 	INIT_LIST_HEAD(&pm->list);
3091 	INIT_LIST_HEAD(&pm->update_refs);
3092 	RB_CLEAR_NODE(&pm->node);
3093 
3094 	while (*p) {
3095 		parent = *p;
3096 		entry = rb_entry(parent, struct pending_dir_move, node);
3097 		if (parent_ino < entry->parent_ino) {
3098 			p = &(*p)->rb_left;
3099 		} else if (parent_ino > entry->parent_ino) {
3100 			p = &(*p)->rb_right;
3101 		} else {
3102 			exists = 1;
3103 			break;
3104 		}
3105 	}
3106 
3107 	list_for_each_entry(cur, deleted_refs, list) {
3108 		ret = dup_ref(cur, &pm->update_refs);
3109 		if (ret < 0)
3110 			goto out;
3111 	}
3112 	list_for_each_entry(cur, new_refs, list) {
3113 		ret = dup_ref(cur, &pm->update_refs);
3114 		if (ret < 0)
3115 			goto out;
3116 	}
3117 
3118 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3119 	if (ret)
3120 		goto out;
3121 
3122 	if (exists) {
3123 		list_add_tail(&pm->list, &entry->list);
3124 	} else {
3125 		rb_link_node(&pm->node, parent, p);
3126 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3127 	}
3128 	ret = 0;
3129 out:
3130 	if (ret) {
3131 		__free_recorded_refs(&pm->update_refs);
3132 		kfree(pm);
3133 	}
3134 	return ret;
3135 }
3136 
3137 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3138 						      u64 parent_ino)
3139 {
3140 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3141 	struct pending_dir_move *entry;
3142 
3143 	while (n) {
3144 		entry = rb_entry(n, struct pending_dir_move, node);
3145 		if (parent_ino < entry->parent_ino)
3146 			n = n->rb_left;
3147 		else if (parent_ino > entry->parent_ino)
3148 			n = n->rb_right;
3149 		else
3150 			return entry;
3151 	}
3152 	return NULL;
3153 }
3154 
3155 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3156 		     u64 ino, u64 gen, u64 *ancestor_ino)
3157 {
3158 	int ret = 0;
3159 	u64 parent_inode = 0;
3160 	u64 parent_gen = 0;
3161 	u64 start_ino = ino;
3162 
3163 	*ancestor_ino = 0;
3164 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3165 		fs_path_reset(name);
3166 
3167 		if (is_waiting_for_rm(sctx, ino))
3168 			break;
3169 		if (is_waiting_for_move(sctx, ino)) {
3170 			if (*ancestor_ino == 0)
3171 				*ancestor_ino = ino;
3172 			ret = get_first_ref(sctx->parent_root, ino,
3173 					    &parent_inode, &parent_gen, name);
3174 		} else {
3175 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3176 							&parent_inode,
3177 							&parent_gen, name);
3178 			if (ret > 0) {
3179 				ret = 0;
3180 				break;
3181 			}
3182 		}
3183 		if (ret < 0)
3184 			break;
3185 		if (parent_inode == start_ino) {
3186 			ret = 1;
3187 			if (*ancestor_ino == 0)
3188 				*ancestor_ino = ino;
3189 			break;
3190 		}
3191 		ino = parent_inode;
3192 		gen = parent_gen;
3193 	}
3194 	return ret;
3195 }
3196 
3197 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3198 {
3199 	struct fs_path *from_path = NULL;
3200 	struct fs_path *to_path = NULL;
3201 	struct fs_path *name = NULL;
3202 	u64 orig_progress = sctx->send_progress;
3203 	struct recorded_ref *cur;
3204 	u64 parent_ino, parent_gen;
3205 	struct waiting_dir_move *dm = NULL;
3206 	u64 rmdir_ino = 0;
3207 	u64 ancestor;
3208 	bool is_orphan;
3209 	int ret;
3210 
3211 	name = fs_path_alloc();
3212 	from_path = fs_path_alloc();
3213 	if (!name || !from_path) {
3214 		ret = -ENOMEM;
3215 		goto out;
3216 	}
3217 
3218 	dm = get_waiting_dir_move(sctx, pm->ino);
3219 	ASSERT(dm);
3220 	rmdir_ino = dm->rmdir_ino;
3221 	is_orphan = dm->orphanized;
3222 	free_waiting_dir_move(sctx, dm);
3223 
3224 	if (is_orphan) {
3225 		ret = gen_unique_name(sctx, pm->ino,
3226 				      pm->gen, from_path);
3227 	} else {
3228 		ret = get_first_ref(sctx->parent_root, pm->ino,
3229 				    &parent_ino, &parent_gen, name);
3230 		if (ret < 0)
3231 			goto out;
3232 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3233 				   from_path);
3234 		if (ret < 0)
3235 			goto out;
3236 		ret = fs_path_add_path(from_path, name);
3237 	}
3238 	if (ret < 0)
3239 		goto out;
3240 
3241 	sctx->send_progress = sctx->cur_ino + 1;
3242 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3243 	if (ret < 0)
3244 		goto out;
3245 	if (ret) {
3246 		LIST_HEAD(deleted_refs);
3247 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3248 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3249 					   &pm->update_refs, &deleted_refs,
3250 					   is_orphan);
3251 		if (ret < 0)
3252 			goto out;
3253 		if (rmdir_ino) {
3254 			dm = get_waiting_dir_move(sctx, pm->ino);
3255 			ASSERT(dm);
3256 			dm->rmdir_ino = rmdir_ino;
3257 		}
3258 		goto out;
3259 	}
3260 	fs_path_reset(name);
3261 	to_path = name;
3262 	name = NULL;
3263 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3264 	if (ret < 0)
3265 		goto out;
3266 
3267 	ret = send_rename(sctx, from_path, to_path);
3268 	if (ret < 0)
3269 		goto out;
3270 
3271 	if (rmdir_ino) {
3272 		struct orphan_dir_info *odi;
3273 
3274 		odi = get_orphan_dir_info(sctx, rmdir_ino);
3275 		if (!odi) {
3276 			/* already deleted */
3277 			goto finish;
3278 		}
3279 		ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3280 		if (ret < 0)
3281 			goto out;
3282 		if (!ret)
3283 			goto finish;
3284 
3285 		name = fs_path_alloc();
3286 		if (!name) {
3287 			ret = -ENOMEM;
3288 			goto out;
3289 		}
3290 		ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3291 		if (ret < 0)
3292 			goto out;
3293 		ret = send_rmdir(sctx, name);
3294 		if (ret < 0)
3295 			goto out;
3296 		free_orphan_dir_info(sctx, odi);
3297 	}
3298 
3299 finish:
3300 	ret = send_utimes(sctx, pm->ino, pm->gen);
3301 	if (ret < 0)
3302 		goto out;
3303 
3304 	/*
3305 	 * After rename/move, need to update the utimes of both new parent(s)
3306 	 * and old parent(s).
3307 	 */
3308 	list_for_each_entry(cur, &pm->update_refs, list) {
3309 		/*
3310 		 * The parent inode might have been deleted in the send snapshot
3311 		 */
3312 		ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3313 				     NULL, NULL, NULL, NULL, NULL);
3314 		if (ret == -ENOENT) {
3315 			ret = 0;
3316 			continue;
3317 		}
3318 		if (ret < 0)
3319 			goto out;
3320 
3321 		ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3322 		if (ret < 0)
3323 			goto out;
3324 	}
3325 
3326 out:
3327 	fs_path_free(name);
3328 	fs_path_free(from_path);
3329 	fs_path_free(to_path);
3330 	sctx->send_progress = orig_progress;
3331 
3332 	return ret;
3333 }
3334 
3335 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3336 {
3337 	if (!list_empty(&m->list))
3338 		list_del(&m->list);
3339 	if (!RB_EMPTY_NODE(&m->node))
3340 		rb_erase(&m->node, &sctx->pending_dir_moves);
3341 	__free_recorded_refs(&m->update_refs);
3342 	kfree(m);
3343 }
3344 
3345 static void tail_append_pending_moves(struct pending_dir_move *moves,
3346 				      struct list_head *stack)
3347 {
3348 	if (list_empty(&moves->list)) {
3349 		list_add_tail(&moves->list, stack);
3350 	} else {
3351 		LIST_HEAD(list);
3352 		list_splice_init(&moves->list, &list);
3353 		list_add_tail(&moves->list, stack);
3354 		list_splice_tail(&list, stack);
3355 	}
3356 }
3357 
3358 static int apply_children_dir_moves(struct send_ctx *sctx)
3359 {
3360 	struct pending_dir_move *pm;
3361 	struct list_head stack;
3362 	u64 parent_ino = sctx->cur_ino;
3363 	int ret = 0;
3364 
3365 	pm = get_pending_dir_moves(sctx, parent_ino);
3366 	if (!pm)
3367 		return 0;
3368 
3369 	INIT_LIST_HEAD(&stack);
3370 	tail_append_pending_moves(pm, &stack);
3371 
3372 	while (!list_empty(&stack)) {
3373 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3374 		parent_ino = pm->ino;
3375 		ret = apply_dir_move(sctx, pm);
3376 		free_pending_move(sctx, pm);
3377 		if (ret)
3378 			goto out;
3379 		pm = get_pending_dir_moves(sctx, parent_ino);
3380 		if (pm)
3381 			tail_append_pending_moves(pm, &stack);
3382 	}
3383 	return 0;
3384 
3385 out:
3386 	while (!list_empty(&stack)) {
3387 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3388 		free_pending_move(sctx, pm);
3389 	}
3390 	return ret;
3391 }
3392 
3393 /*
3394  * We might need to delay a directory rename even when no ancestor directory
3395  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3396  * renamed. This happens when we rename a directory to the old name (the name
3397  * in the parent root) of some other unrelated directory that got its rename
3398  * delayed due to some ancestor with higher number that got renamed.
3399  *
3400  * Example:
3401  *
3402  * Parent snapshot:
3403  * .                                       (ino 256)
3404  * |---- a/                                (ino 257)
3405  * |     |---- file                        (ino 260)
3406  * |
3407  * |---- b/                                (ino 258)
3408  * |---- c/                                (ino 259)
3409  *
3410  * Send snapshot:
3411  * .                                       (ino 256)
3412  * |---- a/                                (ino 258)
3413  * |---- x/                                (ino 259)
3414  *       |---- y/                          (ino 257)
3415  *             |----- file                 (ino 260)
3416  *
3417  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3418  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3419  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3420  * must issue is:
3421  *
3422  * 1 - rename 259 from 'c' to 'x'
3423  * 2 - rename 257 from 'a' to 'x/y'
3424  * 3 - rename 258 from 'b' to 'a'
3425  *
3426  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3427  * be done right away and < 0 on error.
3428  */
3429 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3430 				  struct recorded_ref *parent_ref,
3431 				  const bool is_orphan)
3432 {
3433 	struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3434 	struct btrfs_path *path;
3435 	struct btrfs_key key;
3436 	struct btrfs_key di_key;
3437 	struct btrfs_dir_item *di;
3438 	u64 left_gen;
3439 	u64 right_gen;
3440 	int ret = 0;
3441 	struct waiting_dir_move *wdm;
3442 
3443 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3444 		return 0;
3445 
3446 	path = alloc_path_for_send();
3447 	if (!path)
3448 		return -ENOMEM;
3449 
3450 	key.objectid = parent_ref->dir;
3451 	key.type = BTRFS_DIR_ITEM_KEY;
3452 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3453 
3454 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3455 	if (ret < 0) {
3456 		goto out;
3457 	} else if (ret > 0) {
3458 		ret = 0;
3459 		goto out;
3460 	}
3461 
3462 	di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3463 				       parent_ref->name_len);
3464 	if (!di) {
3465 		ret = 0;
3466 		goto out;
3467 	}
3468 	/*
3469 	 * di_key.objectid has the number of the inode that has a dentry in the
3470 	 * parent directory with the same name that sctx->cur_ino is being
3471 	 * renamed to. We need to check if that inode is in the send root as
3472 	 * well and if it is currently marked as an inode with a pending rename,
3473 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3474 	 * that it happens after that other inode is renamed.
3475 	 */
3476 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3477 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3478 		ret = 0;
3479 		goto out;
3480 	}
3481 
3482 	ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3483 			     &left_gen, NULL, NULL, NULL, NULL);
3484 	if (ret < 0)
3485 		goto out;
3486 	ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3487 			     &right_gen, NULL, NULL, NULL, NULL);
3488 	if (ret < 0) {
3489 		if (ret == -ENOENT)
3490 			ret = 0;
3491 		goto out;
3492 	}
3493 
3494 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3495 	if (right_gen != left_gen) {
3496 		ret = 0;
3497 		goto out;
3498 	}
3499 
3500 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3501 	if (wdm && !wdm->orphanized) {
3502 		ret = add_pending_dir_move(sctx,
3503 					   sctx->cur_ino,
3504 					   sctx->cur_inode_gen,
3505 					   di_key.objectid,
3506 					   &sctx->new_refs,
3507 					   &sctx->deleted_refs,
3508 					   is_orphan);
3509 		if (!ret)
3510 			ret = 1;
3511 	}
3512 out:
3513 	btrfs_free_path(path);
3514 	return ret;
3515 }
3516 
3517 /*
3518  * Check if inode ino2, or any of its ancestors, is inode ino1.
3519  * Return 1 if true, 0 if false and < 0 on error.
3520  */
3521 static int check_ino_in_path(struct btrfs_root *root,
3522 			     const u64 ino1,
3523 			     const u64 ino1_gen,
3524 			     const u64 ino2,
3525 			     const u64 ino2_gen,
3526 			     struct fs_path *fs_path)
3527 {
3528 	u64 ino = ino2;
3529 
3530 	if (ino1 == ino2)
3531 		return ino1_gen == ino2_gen;
3532 
3533 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3534 		u64 parent;
3535 		u64 parent_gen;
3536 		int ret;
3537 
3538 		fs_path_reset(fs_path);
3539 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3540 		if (ret < 0)
3541 			return ret;
3542 		if (parent == ino1)
3543 			return parent_gen == ino1_gen;
3544 		ino = parent;
3545 	}
3546 	return 0;
3547 }
3548 
3549 /*
3550  * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3551  * possible path (in case ino2 is not a directory and has multiple hard links).
3552  * Return 1 if true, 0 if false and < 0 on error.
3553  */
3554 static int is_ancestor(struct btrfs_root *root,
3555 		       const u64 ino1,
3556 		       const u64 ino1_gen,
3557 		       const u64 ino2,
3558 		       struct fs_path *fs_path)
3559 {
3560 	bool free_fs_path = false;
3561 	int ret = 0;
3562 	struct btrfs_path *path = NULL;
3563 	struct btrfs_key key;
3564 
3565 	if (!fs_path) {
3566 		fs_path = fs_path_alloc();
3567 		if (!fs_path)
3568 			return -ENOMEM;
3569 		free_fs_path = true;
3570 	}
3571 
3572 	path = alloc_path_for_send();
3573 	if (!path) {
3574 		ret = -ENOMEM;
3575 		goto out;
3576 	}
3577 
3578 	key.objectid = ino2;
3579 	key.type = BTRFS_INODE_REF_KEY;
3580 	key.offset = 0;
3581 
3582 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3583 	if (ret < 0)
3584 		goto out;
3585 
3586 	while (true) {
3587 		struct extent_buffer *leaf = path->nodes[0];
3588 		int slot = path->slots[0];
3589 		u32 cur_offset = 0;
3590 		u32 item_size;
3591 
3592 		if (slot >= btrfs_header_nritems(leaf)) {
3593 			ret = btrfs_next_leaf(root, path);
3594 			if (ret < 0)
3595 				goto out;
3596 			if (ret > 0)
3597 				break;
3598 			continue;
3599 		}
3600 
3601 		btrfs_item_key_to_cpu(leaf, &key, slot);
3602 		if (key.objectid != ino2)
3603 			break;
3604 		if (key.type != BTRFS_INODE_REF_KEY &&
3605 		    key.type != BTRFS_INODE_EXTREF_KEY)
3606 			break;
3607 
3608 		item_size = btrfs_item_size_nr(leaf, slot);
3609 		while (cur_offset < item_size) {
3610 			u64 parent;
3611 			u64 parent_gen;
3612 
3613 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3614 				unsigned long ptr;
3615 				struct btrfs_inode_extref *extref;
3616 
3617 				ptr = btrfs_item_ptr_offset(leaf, slot);
3618 				extref = (struct btrfs_inode_extref *)
3619 					(ptr + cur_offset);
3620 				parent = btrfs_inode_extref_parent(leaf,
3621 								   extref);
3622 				cur_offset += sizeof(*extref);
3623 				cur_offset += btrfs_inode_extref_name_len(leaf,
3624 								  extref);
3625 			} else {
3626 				parent = key.offset;
3627 				cur_offset = item_size;
3628 			}
3629 
3630 			ret = get_inode_info(root, parent, NULL, &parent_gen,
3631 					     NULL, NULL, NULL, NULL);
3632 			if (ret < 0)
3633 				goto out;
3634 			ret = check_ino_in_path(root, ino1, ino1_gen,
3635 						parent, parent_gen, fs_path);
3636 			if (ret)
3637 				goto out;
3638 		}
3639 		path->slots[0]++;
3640 	}
3641 	ret = 0;
3642  out:
3643 	btrfs_free_path(path);
3644 	if (free_fs_path)
3645 		fs_path_free(fs_path);
3646 	return ret;
3647 }
3648 
3649 static int wait_for_parent_move(struct send_ctx *sctx,
3650 				struct recorded_ref *parent_ref,
3651 				const bool is_orphan)
3652 {
3653 	int ret = 0;
3654 	u64 ino = parent_ref->dir;
3655 	u64 ino_gen = parent_ref->dir_gen;
3656 	u64 parent_ino_before, parent_ino_after;
3657 	struct fs_path *path_before = NULL;
3658 	struct fs_path *path_after = NULL;
3659 	int len1, len2;
3660 
3661 	path_after = fs_path_alloc();
3662 	path_before = fs_path_alloc();
3663 	if (!path_after || !path_before) {
3664 		ret = -ENOMEM;
3665 		goto out;
3666 	}
3667 
3668 	/*
3669 	 * Our current directory inode may not yet be renamed/moved because some
3670 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3671 	 * such ancestor exists and make sure our own rename/move happens after
3672 	 * that ancestor is processed to avoid path build infinite loops (done
3673 	 * at get_cur_path()).
3674 	 */
3675 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3676 		u64 parent_ino_after_gen;
3677 
3678 		if (is_waiting_for_move(sctx, ino)) {
3679 			/*
3680 			 * If the current inode is an ancestor of ino in the
3681 			 * parent root, we need to delay the rename of the
3682 			 * current inode, otherwise don't delayed the rename
3683 			 * because we can end up with a circular dependency
3684 			 * of renames, resulting in some directories never
3685 			 * getting the respective rename operations issued in
3686 			 * the send stream or getting into infinite path build
3687 			 * loops.
3688 			 */
3689 			ret = is_ancestor(sctx->parent_root,
3690 					  sctx->cur_ino, sctx->cur_inode_gen,
3691 					  ino, path_before);
3692 			if (ret)
3693 				break;
3694 		}
3695 
3696 		fs_path_reset(path_before);
3697 		fs_path_reset(path_after);
3698 
3699 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3700 				    &parent_ino_after_gen, path_after);
3701 		if (ret < 0)
3702 			goto out;
3703 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3704 				    NULL, path_before);
3705 		if (ret < 0 && ret != -ENOENT) {
3706 			goto out;
3707 		} else if (ret == -ENOENT) {
3708 			ret = 0;
3709 			break;
3710 		}
3711 
3712 		len1 = fs_path_len(path_before);
3713 		len2 = fs_path_len(path_after);
3714 		if (ino > sctx->cur_ino &&
3715 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
3716 		     memcmp(path_before->start, path_after->start, len1))) {
3717 			u64 parent_ino_gen;
3718 
3719 			ret = get_inode_info(sctx->parent_root, ino, NULL,
3720 					     &parent_ino_gen, NULL, NULL, NULL,
3721 					     NULL);
3722 			if (ret < 0)
3723 				goto out;
3724 			if (ino_gen == parent_ino_gen) {
3725 				ret = 1;
3726 				break;
3727 			}
3728 		}
3729 		ino = parent_ino_after;
3730 		ino_gen = parent_ino_after_gen;
3731 	}
3732 
3733 out:
3734 	fs_path_free(path_before);
3735 	fs_path_free(path_after);
3736 
3737 	if (ret == 1) {
3738 		ret = add_pending_dir_move(sctx,
3739 					   sctx->cur_ino,
3740 					   sctx->cur_inode_gen,
3741 					   ino,
3742 					   &sctx->new_refs,
3743 					   &sctx->deleted_refs,
3744 					   is_orphan);
3745 		if (!ret)
3746 			ret = 1;
3747 	}
3748 
3749 	return ret;
3750 }
3751 
3752 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3753 {
3754 	int ret;
3755 	struct fs_path *new_path;
3756 
3757 	/*
3758 	 * Our reference's name member points to its full_path member string, so
3759 	 * we use here a new path.
3760 	 */
3761 	new_path = fs_path_alloc();
3762 	if (!new_path)
3763 		return -ENOMEM;
3764 
3765 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3766 	if (ret < 0) {
3767 		fs_path_free(new_path);
3768 		return ret;
3769 	}
3770 	ret = fs_path_add(new_path, ref->name, ref->name_len);
3771 	if (ret < 0) {
3772 		fs_path_free(new_path);
3773 		return ret;
3774 	}
3775 
3776 	fs_path_free(ref->full_path);
3777 	set_ref_path(ref, new_path);
3778 
3779 	return 0;
3780 }
3781 
3782 /*
3783  * This does all the move/link/unlink/rmdir magic.
3784  */
3785 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3786 {
3787 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3788 	int ret = 0;
3789 	struct recorded_ref *cur;
3790 	struct recorded_ref *cur2;
3791 	struct list_head check_dirs;
3792 	struct fs_path *valid_path = NULL;
3793 	u64 ow_inode = 0;
3794 	u64 ow_gen;
3795 	u64 ow_mode;
3796 	int did_overwrite = 0;
3797 	int is_orphan = 0;
3798 	u64 last_dir_ino_rm = 0;
3799 	bool can_rename = true;
3800 	bool orphanized_dir = false;
3801 	bool orphanized_ancestor = false;
3802 
3803 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3804 
3805 	/*
3806 	 * This should never happen as the root dir always has the same ref
3807 	 * which is always '..'
3808 	 */
3809 	BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3810 	INIT_LIST_HEAD(&check_dirs);
3811 
3812 	valid_path = fs_path_alloc();
3813 	if (!valid_path) {
3814 		ret = -ENOMEM;
3815 		goto out;
3816 	}
3817 
3818 	/*
3819 	 * First, check if the first ref of the current inode was overwritten
3820 	 * before. If yes, we know that the current inode was already orphanized
3821 	 * and thus use the orphan name. If not, we can use get_cur_path to
3822 	 * get the path of the first ref as it would like while receiving at
3823 	 * this point in time.
3824 	 * New inodes are always orphan at the beginning, so force to use the
3825 	 * orphan name in this case.
3826 	 * The first ref is stored in valid_path and will be updated if it
3827 	 * gets moved around.
3828 	 */
3829 	if (!sctx->cur_inode_new) {
3830 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3831 				sctx->cur_inode_gen);
3832 		if (ret < 0)
3833 			goto out;
3834 		if (ret)
3835 			did_overwrite = 1;
3836 	}
3837 	if (sctx->cur_inode_new || did_overwrite) {
3838 		ret = gen_unique_name(sctx, sctx->cur_ino,
3839 				sctx->cur_inode_gen, valid_path);
3840 		if (ret < 0)
3841 			goto out;
3842 		is_orphan = 1;
3843 	} else {
3844 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3845 				valid_path);
3846 		if (ret < 0)
3847 			goto out;
3848 	}
3849 
3850 	list_for_each_entry(cur, &sctx->new_refs, list) {
3851 		/*
3852 		 * We may have refs where the parent directory does not exist
3853 		 * yet. This happens if the parent directories inum is higher
3854 		 * the the current inum. To handle this case, we create the
3855 		 * parent directory out of order. But we need to check if this
3856 		 * did already happen before due to other refs in the same dir.
3857 		 */
3858 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3859 		if (ret < 0)
3860 			goto out;
3861 		if (ret == inode_state_will_create) {
3862 			ret = 0;
3863 			/*
3864 			 * First check if any of the current inodes refs did
3865 			 * already create the dir.
3866 			 */
3867 			list_for_each_entry(cur2, &sctx->new_refs, list) {
3868 				if (cur == cur2)
3869 					break;
3870 				if (cur2->dir == cur->dir) {
3871 					ret = 1;
3872 					break;
3873 				}
3874 			}
3875 
3876 			/*
3877 			 * If that did not happen, check if a previous inode
3878 			 * did already create the dir.
3879 			 */
3880 			if (!ret)
3881 				ret = did_create_dir(sctx, cur->dir);
3882 			if (ret < 0)
3883 				goto out;
3884 			if (!ret) {
3885 				ret = send_create_inode(sctx, cur->dir);
3886 				if (ret < 0)
3887 					goto out;
3888 			}
3889 		}
3890 
3891 		/*
3892 		 * Check if this new ref would overwrite the first ref of
3893 		 * another unprocessed inode. If yes, orphanize the
3894 		 * overwritten inode. If we find an overwritten ref that is
3895 		 * not the first ref, simply unlink it.
3896 		 */
3897 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3898 				cur->name, cur->name_len,
3899 				&ow_inode, &ow_gen, &ow_mode);
3900 		if (ret < 0)
3901 			goto out;
3902 		if (ret) {
3903 			ret = is_first_ref(sctx->parent_root,
3904 					   ow_inode, cur->dir, cur->name,
3905 					   cur->name_len);
3906 			if (ret < 0)
3907 				goto out;
3908 			if (ret) {
3909 				struct name_cache_entry *nce;
3910 				struct waiting_dir_move *wdm;
3911 
3912 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
3913 						cur->full_path);
3914 				if (ret < 0)
3915 					goto out;
3916 				if (S_ISDIR(ow_mode))
3917 					orphanized_dir = true;
3918 
3919 				/*
3920 				 * If ow_inode has its rename operation delayed
3921 				 * make sure that its orphanized name is used in
3922 				 * the source path when performing its rename
3923 				 * operation.
3924 				 */
3925 				if (is_waiting_for_move(sctx, ow_inode)) {
3926 					wdm = get_waiting_dir_move(sctx,
3927 								   ow_inode);
3928 					ASSERT(wdm);
3929 					wdm->orphanized = true;
3930 				}
3931 
3932 				/*
3933 				 * Make sure we clear our orphanized inode's
3934 				 * name from the name cache. This is because the
3935 				 * inode ow_inode might be an ancestor of some
3936 				 * other inode that will be orphanized as well
3937 				 * later and has an inode number greater than
3938 				 * sctx->send_progress. We need to prevent
3939 				 * future name lookups from using the old name
3940 				 * and get instead the orphan name.
3941 				 */
3942 				nce = name_cache_search(sctx, ow_inode, ow_gen);
3943 				if (nce) {
3944 					name_cache_delete(sctx, nce);
3945 					kfree(nce);
3946 				}
3947 
3948 				/*
3949 				 * ow_inode might currently be an ancestor of
3950 				 * cur_ino, therefore compute valid_path (the
3951 				 * current path of cur_ino) again because it
3952 				 * might contain the pre-orphanization name of
3953 				 * ow_inode, which is no longer valid.
3954 				 */
3955 				ret = is_ancestor(sctx->parent_root,
3956 						  ow_inode, ow_gen,
3957 						  sctx->cur_ino, NULL);
3958 				if (ret > 0) {
3959 					orphanized_ancestor = true;
3960 					fs_path_reset(valid_path);
3961 					ret = get_cur_path(sctx, sctx->cur_ino,
3962 							   sctx->cur_inode_gen,
3963 							   valid_path);
3964 				}
3965 				if (ret < 0)
3966 					goto out;
3967 			} else {
3968 				ret = send_unlink(sctx, cur->full_path);
3969 				if (ret < 0)
3970 					goto out;
3971 			}
3972 		}
3973 
3974 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3975 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3976 			if (ret < 0)
3977 				goto out;
3978 			if (ret == 1) {
3979 				can_rename = false;
3980 				*pending_move = 1;
3981 			}
3982 		}
3983 
3984 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3985 		    can_rename) {
3986 			ret = wait_for_parent_move(sctx, cur, is_orphan);
3987 			if (ret < 0)
3988 				goto out;
3989 			if (ret == 1) {
3990 				can_rename = false;
3991 				*pending_move = 1;
3992 			}
3993 		}
3994 
3995 		/*
3996 		 * link/move the ref to the new place. If we have an orphan
3997 		 * inode, move it and update valid_path. If not, link or move
3998 		 * it depending on the inode mode.
3999 		 */
4000 		if (is_orphan && can_rename) {
4001 			ret = send_rename(sctx, valid_path, cur->full_path);
4002 			if (ret < 0)
4003 				goto out;
4004 			is_orphan = 0;
4005 			ret = fs_path_copy(valid_path, cur->full_path);
4006 			if (ret < 0)
4007 				goto out;
4008 		} else if (can_rename) {
4009 			if (S_ISDIR(sctx->cur_inode_mode)) {
4010 				/*
4011 				 * Dirs can't be linked, so move it. For moved
4012 				 * dirs, we always have one new and one deleted
4013 				 * ref. The deleted ref is ignored later.
4014 				 */
4015 				ret = send_rename(sctx, valid_path,
4016 						  cur->full_path);
4017 				if (!ret)
4018 					ret = fs_path_copy(valid_path,
4019 							   cur->full_path);
4020 				if (ret < 0)
4021 					goto out;
4022 			} else {
4023 				/*
4024 				 * We might have previously orphanized an inode
4025 				 * which is an ancestor of our current inode,
4026 				 * so our reference's full path, which was
4027 				 * computed before any such orphanizations, must
4028 				 * be updated.
4029 				 */
4030 				if (orphanized_dir) {
4031 					ret = update_ref_path(sctx, cur);
4032 					if (ret < 0)
4033 						goto out;
4034 				}
4035 				ret = send_link(sctx, cur->full_path,
4036 						valid_path);
4037 				if (ret < 0)
4038 					goto out;
4039 			}
4040 		}
4041 		ret = dup_ref(cur, &check_dirs);
4042 		if (ret < 0)
4043 			goto out;
4044 	}
4045 
4046 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4047 		/*
4048 		 * Check if we can already rmdir the directory. If not,
4049 		 * orphanize it. For every dir item inside that gets deleted
4050 		 * later, we do this check again and rmdir it then if possible.
4051 		 * See the use of check_dirs for more details.
4052 		 */
4053 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4054 				sctx->cur_ino);
4055 		if (ret < 0)
4056 			goto out;
4057 		if (ret) {
4058 			ret = send_rmdir(sctx, valid_path);
4059 			if (ret < 0)
4060 				goto out;
4061 		} else if (!is_orphan) {
4062 			ret = orphanize_inode(sctx, sctx->cur_ino,
4063 					sctx->cur_inode_gen, valid_path);
4064 			if (ret < 0)
4065 				goto out;
4066 			is_orphan = 1;
4067 		}
4068 
4069 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4070 			ret = dup_ref(cur, &check_dirs);
4071 			if (ret < 0)
4072 				goto out;
4073 		}
4074 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4075 		   !list_empty(&sctx->deleted_refs)) {
4076 		/*
4077 		 * We have a moved dir. Add the old parent to check_dirs
4078 		 */
4079 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4080 				list);
4081 		ret = dup_ref(cur, &check_dirs);
4082 		if (ret < 0)
4083 			goto out;
4084 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4085 		/*
4086 		 * We have a non dir inode. Go through all deleted refs and
4087 		 * unlink them if they were not already overwritten by other
4088 		 * inodes.
4089 		 */
4090 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4091 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4092 					sctx->cur_ino, sctx->cur_inode_gen,
4093 					cur->name, cur->name_len);
4094 			if (ret < 0)
4095 				goto out;
4096 			if (!ret) {
4097 				/*
4098 				 * If we orphanized any ancestor before, we need
4099 				 * to recompute the full path for deleted names,
4100 				 * since any such path was computed before we
4101 				 * processed any references and orphanized any
4102 				 * ancestor inode.
4103 				 */
4104 				if (orphanized_ancestor) {
4105 					ret = update_ref_path(sctx, cur);
4106 					if (ret < 0)
4107 						goto out;
4108 				}
4109 				ret = send_unlink(sctx, cur->full_path);
4110 				if (ret < 0)
4111 					goto out;
4112 			}
4113 			ret = dup_ref(cur, &check_dirs);
4114 			if (ret < 0)
4115 				goto out;
4116 		}
4117 		/*
4118 		 * If the inode is still orphan, unlink the orphan. This may
4119 		 * happen when a previous inode did overwrite the first ref
4120 		 * of this inode and no new refs were added for the current
4121 		 * inode. Unlinking does not mean that the inode is deleted in
4122 		 * all cases. There may still be links to this inode in other
4123 		 * places.
4124 		 */
4125 		if (is_orphan) {
4126 			ret = send_unlink(sctx, valid_path);
4127 			if (ret < 0)
4128 				goto out;
4129 		}
4130 	}
4131 
4132 	/*
4133 	 * We did collect all parent dirs where cur_inode was once located. We
4134 	 * now go through all these dirs and check if they are pending for
4135 	 * deletion and if it's finally possible to perform the rmdir now.
4136 	 * We also update the inode stats of the parent dirs here.
4137 	 */
4138 	list_for_each_entry(cur, &check_dirs, list) {
4139 		/*
4140 		 * In case we had refs into dirs that were not processed yet,
4141 		 * we don't need to do the utime and rmdir logic for these dirs.
4142 		 * The dir will be processed later.
4143 		 */
4144 		if (cur->dir > sctx->cur_ino)
4145 			continue;
4146 
4147 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4148 		if (ret < 0)
4149 			goto out;
4150 
4151 		if (ret == inode_state_did_create ||
4152 		    ret == inode_state_no_change) {
4153 			/* TODO delayed utimes */
4154 			ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4155 			if (ret < 0)
4156 				goto out;
4157 		} else if (ret == inode_state_did_delete &&
4158 			   cur->dir != last_dir_ino_rm) {
4159 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4160 					sctx->cur_ino);
4161 			if (ret < 0)
4162 				goto out;
4163 			if (ret) {
4164 				ret = get_cur_path(sctx, cur->dir,
4165 						   cur->dir_gen, valid_path);
4166 				if (ret < 0)
4167 					goto out;
4168 				ret = send_rmdir(sctx, valid_path);
4169 				if (ret < 0)
4170 					goto out;
4171 				last_dir_ino_rm = cur->dir;
4172 			}
4173 		}
4174 	}
4175 
4176 	ret = 0;
4177 
4178 out:
4179 	__free_recorded_refs(&check_dirs);
4180 	free_recorded_refs(sctx);
4181 	fs_path_free(valid_path);
4182 	return ret;
4183 }
4184 
4185 static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4186 		      void *ctx, struct list_head *refs)
4187 {
4188 	int ret = 0;
4189 	struct send_ctx *sctx = ctx;
4190 	struct fs_path *p;
4191 	u64 gen;
4192 
4193 	p = fs_path_alloc();
4194 	if (!p)
4195 		return -ENOMEM;
4196 
4197 	ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4198 			NULL, NULL);
4199 	if (ret < 0)
4200 		goto out;
4201 
4202 	ret = get_cur_path(sctx, dir, gen, p);
4203 	if (ret < 0)
4204 		goto out;
4205 	ret = fs_path_add_path(p, name);
4206 	if (ret < 0)
4207 		goto out;
4208 
4209 	ret = __record_ref(refs, dir, gen, p);
4210 
4211 out:
4212 	if (ret)
4213 		fs_path_free(p);
4214 	return ret;
4215 }
4216 
4217 static int __record_new_ref(int num, u64 dir, int index,
4218 			    struct fs_path *name,
4219 			    void *ctx)
4220 {
4221 	struct send_ctx *sctx = ctx;
4222 	return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
4223 }
4224 
4225 
4226 static int __record_deleted_ref(int num, u64 dir, int index,
4227 				struct fs_path *name,
4228 				void *ctx)
4229 {
4230 	struct send_ctx *sctx = ctx;
4231 	return record_ref(sctx->parent_root, dir, name, ctx,
4232 			  &sctx->deleted_refs);
4233 }
4234 
4235 static int record_new_ref(struct send_ctx *sctx)
4236 {
4237 	int ret;
4238 
4239 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4240 				sctx->cmp_key, 0, __record_new_ref, sctx);
4241 	if (ret < 0)
4242 		goto out;
4243 	ret = 0;
4244 
4245 out:
4246 	return ret;
4247 }
4248 
4249 static int record_deleted_ref(struct send_ctx *sctx)
4250 {
4251 	int ret;
4252 
4253 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4254 				sctx->cmp_key, 0, __record_deleted_ref, sctx);
4255 	if (ret < 0)
4256 		goto out;
4257 	ret = 0;
4258 
4259 out:
4260 	return ret;
4261 }
4262 
4263 struct find_ref_ctx {
4264 	u64 dir;
4265 	u64 dir_gen;
4266 	struct btrfs_root *root;
4267 	struct fs_path *name;
4268 	int found_idx;
4269 };
4270 
4271 static int __find_iref(int num, u64 dir, int index,
4272 		       struct fs_path *name,
4273 		       void *ctx_)
4274 {
4275 	struct find_ref_ctx *ctx = ctx_;
4276 	u64 dir_gen;
4277 	int ret;
4278 
4279 	if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4280 	    strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4281 		/*
4282 		 * To avoid doing extra lookups we'll only do this if everything
4283 		 * else matches.
4284 		 */
4285 		ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4286 				     NULL, NULL, NULL);
4287 		if (ret)
4288 			return ret;
4289 		if (dir_gen != ctx->dir_gen)
4290 			return 0;
4291 		ctx->found_idx = num;
4292 		return 1;
4293 	}
4294 	return 0;
4295 }
4296 
4297 static int find_iref(struct btrfs_root *root,
4298 		     struct btrfs_path *path,
4299 		     struct btrfs_key *key,
4300 		     u64 dir, u64 dir_gen, struct fs_path *name)
4301 {
4302 	int ret;
4303 	struct find_ref_ctx ctx;
4304 
4305 	ctx.dir = dir;
4306 	ctx.name = name;
4307 	ctx.dir_gen = dir_gen;
4308 	ctx.found_idx = -1;
4309 	ctx.root = root;
4310 
4311 	ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4312 	if (ret < 0)
4313 		return ret;
4314 
4315 	if (ctx.found_idx == -1)
4316 		return -ENOENT;
4317 
4318 	return ctx.found_idx;
4319 }
4320 
4321 static int __record_changed_new_ref(int num, u64 dir, int index,
4322 				    struct fs_path *name,
4323 				    void *ctx)
4324 {
4325 	u64 dir_gen;
4326 	int ret;
4327 	struct send_ctx *sctx = ctx;
4328 
4329 	ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4330 			     NULL, NULL, NULL);
4331 	if (ret)
4332 		return ret;
4333 
4334 	ret = find_iref(sctx->parent_root, sctx->right_path,
4335 			sctx->cmp_key, dir, dir_gen, name);
4336 	if (ret == -ENOENT)
4337 		ret = __record_new_ref(num, dir, index, name, sctx);
4338 	else if (ret > 0)
4339 		ret = 0;
4340 
4341 	return ret;
4342 }
4343 
4344 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4345 					struct fs_path *name,
4346 					void *ctx)
4347 {
4348 	u64 dir_gen;
4349 	int ret;
4350 	struct send_ctx *sctx = ctx;
4351 
4352 	ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4353 			     NULL, NULL, NULL);
4354 	if (ret)
4355 		return ret;
4356 
4357 	ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4358 			dir, dir_gen, name);
4359 	if (ret == -ENOENT)
4360 		ret = __record_deleted_ref(num, dir, index, name, sctx);
4361 	else if (ret > 0)
4362 		ret = 0;
4363 
4364 	return ret;
4365 }
4366 
4367 static int record_changed_ref(struct send_ctx *sctx)
4368 {
4369 	int ret = 0;
4370 
4371 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4372 			sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4373 	if (ret < 0)
4374 		goto out;
4375 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4376 			sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4377 	if (ret < 0)
4378 		goto out;
4379 	ret = 0;
4380 
4381 out:
4382 	return ret;
4383 }
4384 
4385 /*
4386  * Record and process all refs at once. Needed when an inode changes the
4387  * generation number, which means that it was deleted and recreated.
4388  */
4389 static int process_all_refs(struct send_ctx *sctx,
4390 			    enum btrfs_compare_tree_result cmd)
4391 {
4392 	int ret;
4393 	struct btrfs_root *root;
4394 	struct btrfs_path *path;
4395 	struct btrfs_key key;
4396 	struct btrfs_key found_key;
4397 	struct extent_buffer *eb;
4398 	int slot;
4399 	iterate_inode_ref_t cb;
4400 	int pending_move = 0;
4401 
4402 	path = alloc_path_for_send();
4403 	if (!path)
4404 		return -ENOMEM;
4405 
4406 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4407 		root = sctx->send_root;
4408 		cb = __record_new_ref;
4409 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4410 		root = sctx->parent_root;
4411 		cb = __record_deleted_ref;
4412 	} else {
4413 		btrfs_err(sctx->send_root->fs_info,
4414 				"Wrong command %d in process_all_refs", cmd);
4415 		ret = -EINVAL;
4416 		goto out;
4417 	}
4418 
4419 	key.objectid = sctx->cmp_key->objectid;
4420 	key.type = BTRFS_INODE_REF_KEY;
4421 	key.offset = 0;
4422 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4423 	if (ret < 0)
4424 		goto out;
4425 
4426 	while (1) {
4427 		eb = path->nodes[0];
4428 		slot = path->slots[0];
4429 		if (slot >= btrfs_header_nritems(eb)) {
4430 			ret = btrfs_next_leaf(root, path);
4431 			if (ret < 0)
4432 				goto out;
4433 			else if (ret > 0)
4434 				break;
4435 			continue;
4436 		}
4437 
4438 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4439 
4440 		if (found_key.objectid != key.objectid ||
4441 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4442 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4443 			break;
4444 
4445 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4446 		if (ret < 0)
4447 			goto out;
4448 
4449 		path->slots[0]++;
4450 	}
4451 	btrfs_release_path(path);
4452 
4453 	/*
4454 	 * We don't actually care about pending_move as we are simply
4455 	 * re-creating this inode and will be rename'ing it into place once we
4456 	 * rename the parent directory.
4457 	 */
4458 	ret = process_recorded_refs(sctx, &pending_move);
4459 out:
4460 	btrfs_free_path(path);
4461 	return ret;
4462 }
4463 
4464 static int send_set_xattr(struct send_ctx *sctx,
4465 			  struct fs_path *path,
4466 			  const char *name, int name_len,
4467 			  const char *data, int data_len)
4468 {
4469 	int ret = 0;
4470 
4471 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4472 	if (ret < 0)
4473 		goto out;
4474 
4475 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4476 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4477 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4478 
4479 	ret = send_cmd(sctx);
4480 
4481 tlv_put_failure:
4482 out:
4483 	return ret;
4484 }
4485 
4486 static int send_remove_xattr(struct send_ctx *sctx,
4487 			  struct fs_path *path,
4488 			  const char *name, int name_len)
4489 {
4490 	int ret = 0;
4491 
4492 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4493 	if (ret < 0)
4494 		goto out;
4495 
4496 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4497 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4498 
4499 	ret = send_cmd(sctx);
4500 
4501 tlv_put_failure:
4502 out:
4503 	return ret;
4504 }
4505 
4506 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4507 			       const char *name, int name_len,
4508 			       const char *data, int data_len,
4509 			       u8 type, void *ctx)
4510 {
4511 	int ret;
4512 	struct send_ctx *sctx = ctx;
4513 	struct fs_path *p;
4514 	struct posix_acl_xattr_header dummy_acl;
4515 
4516 	p = fs_path_alloc();
4517 	if (!p)
4518 		return -ENOMEM;
4519 
4520 	/*
4521 	 * This hack is needed because empty acls are stored as zero byte
4522 	 * data in xattrs. Problem with that is, that receiving these zero byte
4523 	 * acls will fail later. To fix this, we send a dummy acl list that
4524 	 * only contains the version number and no entries.
4525 	 */
4526 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4527 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4528 		if (data_len == 0) {
4529 			dummy_acl.a_version =
4530 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4531 			data = (char *)&dummy_acl;
4532 			data_len = sizeof(dummy_acl);
4533 		}
4534 	}
4535 
4536 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4537 	if (ret < 0)
4538 		goto out;
4539 
4540 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4541 
4542 out:
4543 	fs_path_free(p);
4544 	return ret;
4545 }
4546 
4547 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4548 				   const char *name, int name_len,
4549 				   const char *data, int data_len,
4550 				   u8 type, void *ctx)
4551 {
4552 	int ret;
4553 	struct send_ctx *sctx = ctx;
4554 	struct fs_path *p;
4555 
4556 	p = fs_path_alloc();
4557 	if (!p)
4558 		return -ENOMEM;
4559 
4560 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4561 	if (ret < 0)
4562 		goto out;
4563 
4564 	ret = send_remove_xattr(sctx, p, name, name_len);
4565 
4566 out:
4567 	fs_path_free(p);
4568 	return ret;
4569 }
4570 
4571 static int process_new_xattr(struct send_ctx *sctx)
4572 {
4573 	int ret = 0;
4574 
4575 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4576 			       __process_new_xattr, sctx);
4577 
4578 	return ret;
4579 }
4580 
4581 static int process_deleted_xattr(struct send_ctx *sctx)
4582 {
4583 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4584 				__process_deleted_xattr, sctx);
4585 }
4586 
4587 struct find_xattr_ctx {
4588 	const char *name;
4589 	int name_len;
4590 	int found_idx;
4591 	char *found_data;
4592 	int found_data_len;
4593 };
4594 
4595 static int __find_xattr(int num, struct btrfs_key *di_key,
4596 			const char *name, int name_len,
4597 			const char *data, int data_len,
4598 			u8 type, void *vctx)
4599 {
4600 	struct find_xattr_ctx *ctx = vctx;
4601 
4602 	if (name_len == ctx->name_len &&
4603 	    strncmp(name, ctx->name, name_len) == 0) {
4604 		ctx->found_idx = num;
4605 		ctx->found_data_len = data_len;
4606 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4607 		if (!ctx->found_data)
4608 			return -ENOMEM;
4609 		return 1;
4610 	}
4611 	return 0;
4612 }
4613 
4614 static int find_xattr(struct btrfs_root *root,
4615 		      struct btrfs_path *path,
4616 		      struct btrfs_key *key,
4617 		      const char *name, int name_len,
4618 		      char **data, int *data_len)
4619 {
4620 	int ret;
4621 	struct find_xattr_ctx ctx;
4622 
4623 	ctx.name = name;
4624 	ctx.name_len = name_len;
4625 	ctx.found_idx = -1;
4626 	ctx.found_data = NULL;
4627 	ctx.found_data_len = 0;
4628 
4629 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4630 	if (ret < 0)
4631 		return ret;
4632 
4633 	if (ctx.found_idx == -1)
4634 		return -ENOENT;
4635 	if (data) {
4636 		*data = ctx.found_data;
4637 		*data_len = ctx.found_data_len;
4638 	} else {
4639 		kfree(ctx.found_data);
4640 	}
4641 	return ctx.found_idx;
4642 }
4643 
4644 
4645 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4646 				       const char *name, int name_len,
4647 				       const char *data, int data_len,
4648 				       u8 type, void *ctx)
4649 {
4650 	int ret;
4651 	struct send_ctx *sctx = ctx;
4652 	char *found_data = NULL;
4653 	int found_data_len  = 0;
4654 
4655 	ret = find_xattr(sctx->parent_root, sctx->right_path,
4656 			 sctx->cmp_key, name, name_len, &found_data,
4657 			 &found_data_len);
4658 	if (ret == -ENOENT) {
4659 		ret = __process_new_xattr(num, di_key, name, name_len, data,
4660 				data_len, type, ctx);
4661 	} else if (ret >= 0) {
4662 		if (data_len != found_data_len ||
4663 		    memcmp(data, found_data, data_len)) {
4664 			ret = __process_new_xattr(num, di_key, name, name_len,
4665 					data, data_len, type, ctx);
4666 		} else {
4667 			ret = 0;
4668 		}
4669 	}
4670 
4671 	kfree(found_data);
4672 	return ret;
4673 }
4674 
4675 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4676 					   const char *name, int name_len,
4677 					   const char *data, int data_len,
4678 					   u8 type, void *ctx)
4679 {
4680 	int ret;
4681 	struct send_ctx *sctx = ctx;
4682 
4683 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4684 			 name, name_len, NULL, NULL);
4685 	if (ret == -ENOENT)
4686 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4687 				data_len, type, ctx);
4688 	else if (ret >= 0)
4689 		ret = 0;
4690 
4691 	return ret;
4692 }
4693 
4694 static int process_changed_xattr(struct send_ctx *sctx)
4695 {
4696 	int ret = 0;
4697 
4698 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4699 			__process_changed_new_xattr, sctx);
4700 	if (ret < 0)
4701 		goto out;
4702 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4703 			__process_changed_deleted_xattr, sctx);
4704 
4705 out:
4706 	return ret;
4707 }
4708 
4709 static int process_all_new_xattrs(struct send_ctx *sctx)
4710 {
4711 	int ret;
4712 	struct btrfs_root *root;
4713 	struct btrfs_path *path;
4714 	struct btrfs_key key;
4715 	struct btrfs_key found_key;
4716 	struct extent_buffer *eb;
4717 	int slot;
4718 
4719 	path = alloc_path_for_send();
4720 	if (!path)
4721 		return -ENOMEM;
4722 
4723 	root = sctx->send_root;
4724 
4725 	key.objectid = sctx->cmp_key->objectid;
4726 	key.type = BTRFS_XATTR_ITEM_KEY;
4727 	key.offset = 0;
4728 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729 	if (ret < 0)
4730 		goto out;
4731 
4732 	while (1) {
4733 		eb = path->nodes[0];
4734 		slot = path->slots[0];
4735 		if (slot >= btrfs_header_nritems(eb)) {
4736 			ret = btrfs_next_leaf(root, path);
4737 			if (ret < 0) {
4738 				goto out;
4739 			} else if (ret > 0) {
4740 				ret = 0;
4741 				break;
4742 			}
4743 			continue;
4744 		}
4745 
4746 		btrfs_item_key_to_cpu(eb, &found_key, slot);
4747 		if (found_key.objectid != key.objectid ||
4748 		    found_key.type != key.type) {
4749 			ret = 0;
4750 			goto out;
4751 		}
4752 
4753 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4754 		if (ret < 0)
4755 			goto out;
4756 
4757 		path->slots[0]++;
4758 	}
4759 
4760 out:
4761 	btrfs_free_path(path);
4762 	return ret;
4763 }
4764 
4765 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4766 {
4767 	struct btrfs_root *root = sctx->send_root;
4768 	struct btrfs_fs_info *fs_info = root->fs_info;
4769 	struct inode *inode;
4770 	struct page *page;
4771 	char *addr;
4772 	struct btrfs_key key;
4773 	pgoff_t index = offset >> PAGE_SHIFT;
4774 	pgoff_t last_index;
4775 	unsigned pg_offset = offset & ~PAGE_MASK;
4776 	ssize_t ret = 0;
4777 
4778 	key.objectid = sctx->cur_ino;
4779 	key.type = BTRFS_INODE_ITEM_KEY;
4780 	key.offset = 0;
4781 
4782 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4783 	if (IS_ERR(inode))
4784 		return PTR_ERR(inode);
4785 
4786 	if (offset + len > i_size_read(inode)) {
4787 		if (offset > i_size_read(inode))
4788 			len = 0;
4789 		else
4790 			len = offset - i_size_read(inode);
4791 	}
4792 	if (len == 0)
4793 		goto out;
4794 
4795 	last_index = (offset + len - 1) >> PAGE_SHIFT;
4796 
4797 	/* initial readahead */
4798 	memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4799 	file_ra_state_init(&sctx->ra, inode->i_mapping);
4800 
4801 	while (index <= last_index) {
4802 		unsigned cur_len = min_t(unsigned, len,
4803 					 PAGE_SIZE - pg_offset);
4804 
4805 		page = find_lock_page(inode->i_mapping, index);
4806 		if (!page) {
4807 			page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4808 				NULL, index, last_index + 1 - index);
4809 
4810 			page = find_or_create_page(inode->i_mapping, index,
4811 					GFP_KERNEL);
4812 			if (!page) {
4813 				ret = -ENOMEM;
4814 				break;
4815 			}
4816 		}
4817 
4818 		if (PageReadahead(page)) {
4819 			page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4820 				NULL, page, index, last_index + 1 - index);
4821 		}
4822 
4823 		if (!PageUptodate(page)) {
4824 			btrfs_readpage(NULL, page);
4825 			lock_page(page);
4826 			if (!PageUptodate(page)) {
4827 				unlock_page(page);
4828 				put_page(page);
4829 				ret = -EIO;
4830 				break;
4831 			}
4832 		}
4833 
4834 		addr = kmap(page);
4835 		memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4836 		kunmap(page);
4837 		unlock_page(page);
4838 		put_page(page);
4839 		index++;
4840 		pg_offset = 0;
4841 		len -= cur_len;
4842 		ret += cur_len;
4843 	}
4844 out:
4845 	iput(inode);
4846 	return ret;
4847 }
4848 
4849 /*
4850  * Read some bytes from the current inode/file and send a write command to
4851  * user space.
4852  */
4853 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4854 {
4855 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4856 	int ret = 0;
4857 	struct fs_path *p;
4858 	ssize_t num_read = 0;
4859 
4860 	p = fs_path_alloc();
4861 	if (!p)
4862 		return -ENOMEM;
4863 
4864 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4865 
4866 	num_read = fill_read_buf(sctx, offset, len);
4867 	if (num_read <= 0) {
4868 		if (num_read < 0)
4869 			ret = num_read;
4870 		goto out;
4871 	}
4872 
4873 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4874 	if (ret < 0)
4875 		goto out;
4876 
4877 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4878 	if (ret < 0)
4879 		goto out;
4880 
4881 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4882 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4883 	TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4884 
4885 	ret = send_cmd(sctx);
4886 
4887 tlv_put_failure:
4888 out:
4889 	fs_path_free(p);
4890 	if (ret < 0)
4891 		return ret;
4892 	return num_read;
4893 }
4894 
4895 /*
4896  * Send a clone command to user space.
4897  */
4898 static int send_clone(struct send_ctx *sctx,
4899 		      u64 offset, u32 len,
4900 		      struct clone_root *clone_root)
4901 {
4902 	int ret = 0;
4903 	struct fs_path *p;
4904 	u64 gen;
4905 
4906 	btrfs_debug(sctx->send_root->fs_info,
4907 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4908 		    offset, len, clone_root->root->objectid, clone_root->ino,
4909 		    clone_root->offset);
4910 
4911 	p = fs_path_alloc();
4912 	if (!p)
4913 		return -ENOMEM;
4914 
4915 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4916 	if (ret < 0)
4917 		goto out;
4918 
4919 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4920 	if (ret < 0)
4921 		goto out;
4922 
4923 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4924 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4925 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4926 
4927 	if (clone_root->root == sctx->send_root) {
4928 		ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4929 				&gen, NULL, NULL, NULL, NULL);
4930 		if (ret < 0)
4931 			goto out;
4932 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
4933 	} else {
4934 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
4935 	}
4936 	if (ret < 0)
4937 		goto out;
4938 
4939 	/*
4940 	 * If the parent we're using has a received_uuid set then use that as
4941 	 * our clone source as that is what we will look for when doing a
4942 	 * receive.
4943 	 *
4944 	 * This covers the case that we create a snapshot off of a received
4945 	 * subvolume and then use that as the parent and try to receive on a
4946 	 * different host.
4947 	 */
4948 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4949 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4950 			     clone_root->root->root_item.received_uuid);
4951 	else
4952 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4953 			     clone_root->root->root_item.uuid);
4954 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4955 		    le64_to_cpu(clone_root->root->root_item.ctransid));
4956 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4957 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4958 			clone_root->offset);
4959 
4960 	ret = send_cmd(sctx);
4961 
4962 tlv_put_failure:
4963 out:
4964 	fs_path_free(p);
4965 	return ret;
4966 }
4967 
4968 /*
4969  * Send an update extent command to user space.
4970  */
4971 static int send_update_extent(struct send_ctx *sctx,
4972 			      u64 offset, u32 len)
4973 {
4974 	int ret = 0;
4975 	struct fs_path *p;
4976 
4977 	p = fs_path_alloc();
4978 	if (!p)
4979 		return -ENOMEM;
4980 
4981 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4982 	if (ret < 0)
4983 		goto out;
4984 
4985 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4986 	if (ret < 0)
4987 		goto out;
4988 
4989 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4990 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4991 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4992 
4993 	ret = send_cmd(sctx);
4994 
4995 tlv_put_failure:
4996 out:
4997 	fs_path_free(p);
4998 	return ret;
4999 }
5000 
5001 static int send_hole(struct send_ctx *sctx, u64 end)
5002 {
5003 	struct fs_path *p = NULL;
5004 	u64 offset = sctx->cur_inode_last_extent;
5005 	u64 len;
5006 	int ret = 0;
5007 
5008 	p = fs_path_alloc();
5009 	if (!p)
5010 		return -ENOMEM;
5011 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5012 	if (ret < 0)
5013 		goto tlv_put_failure;
5014 	memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
5015 	while (offset < end) {
5016 		len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
5017 
5018 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5019 		if (ret < 0)
5020 			break;
5021 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5022 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5023 		TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
5024 		ret = send_cmd(sctx);
5025 		if (ret < 0)
5026 			break;
5027 		offset += len;
5028 	}
5029 tlv_put_failure:
5030 	fs_path_free(p);
5031 	return ret;
5032 }
5033 
5034 static int send_extent_data(struct send_ctx *sctx,
5035 			    const u64 offset,
5036 			    const u64 len)
5037 {
5038 	u64 sent = 0;
5039 
5040 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5041 		return send_update_extent(sctx, offset, len);
5042 
5043 	while (sent < len) {
5044 		u64 size = len - sent;
5045 		int ret;
5046 
5047 		if (size > BTRFS_SEND_READ_SIZE)
5048 			size = BTRFS_SEND_READ_SIZE;
5049 		ret = send_write(sctx, offset + sent, size);
5050 		if (ret < 0)
5051 			return ret;
5052 		if (!ret)
5053 			break;
5054 		sent += ret;
5055 	}
5056 	return 0;
5057 }
5058 
5059 static int clone_range(struct send_ctx *sctx,
5060 		       struct clone_root *clone_root,
5061 		       const u64 disk_byte,
5062 		       u64 data_offset,
5063 		       u64 offset,
5064 		       u64 len)
5065 {
5066 	struct btrfs_path *path;
5067 	struct btrfs_key key;
5068 	int ret;
5069 
5070 	/*
5071 	 * Prevent cloning from a zero offset with a length matching the sector
5072 	 * size because in some scenarios this will make the receiver fail.
5073 	 *
5074 	 * For example, if in the source filesystem the extent at offset 0
5075 	 * has a length of sectorsize and it was written using direct IO, then
5076 	 * it can never be an inline extent (even if compression is enabled).
5077 	 * Then this extent can be cloned in the original filesystem to a non
5078 	 * zero file offset, but it may not be possible to clone in the
5079 	 * destination filesystem because it can be inlined due to compression
5080 	 * on the destination filesystem (as the receiver's write operations are
5081 	 * always done using buffered IO). The same happens when the original
5082 	 * filesystem does not have compression enabled but the destination
5083 	 * filesystem has.
5084 	 */
5085 	if (clone_root->offset == 0 &&
5086 	    len == sctx->send_root->fs_info->sectorsize)
5087 		return send_extent_data(sctx, offset, len);
5088 
5089 	path = alloc_path_for_send();
5090 	if (!path)
5091 		return -ENOMEM;
5092 
5093 	/*
5094 	 * We can't send a clone operation for the entire range if we find
5095 	 * extent items in the respective range in the source file that
5096 	 * refer to different extents or if we find holes.
5097 	 * So check for that and do a mix of clone and regular write/copy
5098 	 * operations if needed.
5099 	 *
5100 	 * Example:
5101 	 *
5102 	 * mkfs.btrfs -f /dev/sda
5103 	 * mount /dev/sda /mnt
5104 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5105 	 * cp --reflink=always /mnt/foo /mnt/bar
5106 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5107 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5108 	 *
5109 	 * If when we send the snapshot and we are processing file bar (which
5110 	 * has a higher inode number than foo) we blindly send a clone operation
5111 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5112 	 * a file bar that matches the content of file foo - iow, doesn't match
5113 	 * the content from bar in the original filesystem.
5114 	 */
5115 	key.objectid = clone_root->ino;
5116 	key.type = BTRFS_EXTENT_DATA_KEY;
5117 	key.offset = clone_root->offset;
5118 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5119 	if (ret < 0)
5120 		goto out;
5121 	if (ret > 0 && path->slots[0] > 0) {
5122 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5123 		if (key.objectid == clone_root->ino &&
5124 		    key.type == BTRFS_EXTENT_DATA_KEY)
5125 			path->slots[0]--;
5126 	}
5127 
5128 	while (true) {
5129 		struct extent_buffer *leaf = path->nodes[0];
5130 		int slot = path->slots[0];
5131 		struct btrfs_file_extent_item *ei;
5132 		u8 type;
5133 		u64 ext_len;
5134 		u64 clone_len;
5135 
5136 		if (slot >= btrfs_header_nritems(leaf)) {
5137 			ret = btrfs_next_leaf(clone_root->root, path);
5138 			if (ret < 0)
5139 				goto out;
5140 			else if (ret > 0)
5141 				break;
5142 			continue;
5143 		}
5144 
5145 		btrfs_item_key_to_cpu(leaf, &key, slot);
5146 
5147 		/*
5148 		 * We might have an implicit trailing hole (NO_HOLES feature
5149 		 * enabled). We deal with it after leaving this loop.
5150 		 */
5151 		if (key.objectid != clone_root->ino ||
5152 		    key.type != BTRFS_EXTENT_DATA_KEY)
5153 			break;
5154 
5155 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5156 		type = btrfs_file_extent_type(leaf, ei);
5157 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5158 			ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
5159 			ext_len = PAGE_ALIGN(ext_len);
5160 		} else {
5161 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5162 		}
5163 
5164 		if (key.offset + ext_len <= clone_root->offset)
5165 			goto next;
5166 
5167 		if (key.offset > clone_root->offset) {
5168 			/* Implicit hole, NO_HOLES feature enabled. */
5169 			u64 hole_len = key.offset - clone_root->offset;
5170 
5171 			if (hole_len > len)
5172 				hole_len = len;
5173 			ret = send_extent_data(sctx, offset, hole_len);
5174 			if (ret < 0)
5175 				goto out;
5176 
5177 			len -= hole_len;
5178 			if (len == 0)
5179 				break;
5180 			offset += hole_len;
5181 			clone_root->offset += hole_len;
5182 			data_offset += hole_len;
5183 		}
5184 
5185 		if (key.offset >= clone_root->offset + len)
5186 			break;
5187 
5188 		clone_len = min_t(u64, ext_len, len);
5189 
5190 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5191 		    btrfs_file_extent_offset(leaf, ei) == data_offset)
5192 			ret = send_clone(sctx, offset, clone_len, clone_root);
5193 		else
5194 			ret = send_extent_data(sctx, offset, clone_len);
5195 
5196 		if (ret < 0)
5197 			goto out;
5198 
5199 		len -= clone_len;
5200 		if (len == 0)
5201 			break;
5202 		offset += clone_len;
5203 		clone_root->offset += clone_len;
5204 		data_offset += clone_len;
5205 next:
5206 		path->slots[0]++;
5207 	}
5208 
5209 	if (len > 0)
5210 		ret = send_extent_data(sctx, offset, len);
5211 	else
5212 		ret = 0;
5213 out:
5214 	btrfs_free_path(path);
5215 	return ret;
5216 }
5217 
5218 static int send_write_or_clone(struct send_ctx *sctx,
5219 			       struct btrfs_path *path,
5220 			       struct btrfs_key *key,
5221 			       struct clone_root *clone_root)
5222 {
5223 	int ret = 0;
5224 	struct btrfs_file_extent_item *ei;
5225 	u64 offset = key->offset;
5226 	u64 len;
5227 	u8 type;
5228 	u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5229 
5230 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5231 			struct btrfs_file_extent_item);
5232 	type = btrfs_file_extent_type(path->nodes[0], ei);
5233 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5234 		len = btrfs_file_extent_inline_len(path->nodes[0],
5235 						   path->slots[0], ei);
5236 		/*
5237 		 * it is possible the inline item won't cover the whole page,
5238 		 * but there may be items after this page.  Make
5239 		 * sure to send the whole thing
5240 		 */
5241 		len = PAGE_ALIGN(len);
5242 	} else {
5243 		len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5244 	}
5245 
5246 	if (offset + len > sctx->cur_inode_size)
5247 		len = sctx->cur_inode_size - offset;
5248 	if (len == 0) {
5249 		ret = 0;
5250 		goto out;
5251 	}
5252 
5253 	if (clone_root && IS_ALIGNED(offset + len, bs)) {
5254 		u64 disk_byte;
5255 		u64 data_offset;
5256 
5257 		disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5258 		data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5259 		ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5260 				  offset, len);
5261 	} else {
5262 		ret = send_extent_data(sctx, offset, len);
5263 	}
5264 out:
5265 	return ret;
5266 }
5267 
5268 static int is_extent_unchanged(struct send_ctx *sctx,
5269 			       struct btrfs_path *left_path,
5270 			       struct btrfs_key *ekey)
5271 {
5272 	int ret = 0;
5273 	struct btrfs_key key;
5274 	struct btrfs_path *path = NULL;
5275 	struct extent_buffer *eb;
5276 	int slot;
5277 	struct btrfs_key found_key;
5278 	struct btrfs_file_extent_item *ei;
5279 	u64 left_disknr;
5280 	u64 right_disknr;
5281 	u64 left_offset;
5282 	u64 right_offset;
5283 	u64 left_offset_fixed;
5284 	u64 left_len;
5285 	u64 right_len;
5286 	u64 left_gen;
5287 	u64 right_gen;
5288 	u8 left_type;
5289 	u8 right_type;
5290 
5291 	path = alloc_path_for_send();
5292 	if (!path)
5293 		return -ENOMEM;
5294 
5295 	eb = left_path->nodes[0];
5296 	slot = left_path->slots[0];
5297 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5298 	left_type = btrfs_file_extent_type(eb, ei);
5299 
5300 	if (left_type != BTRFS_FILE_EXTENT_REG) {
5301 		ret = 0;
5302 		goto out;
5303 	}
5304 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5305 	left_len = btrfs_file_extent_num_bytes(eb, ei);
5306 	left_offset = btrfs_file_extent_offset(eb, ei);
5307 	left_gen = btrfs_file_extent_generation(eb, ei);
5308 
5309 	/*
5310 	 * Following comments will refer to these graphics. L is the left
5311 	 * extents which we are checking at the moment. 1-8 are the right
5312 	 * extents that we iterate.
5313 	 *
5314 	 *       |-----L-----|
5315 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5316 	 *
5317 	 *       |-----L-----|
5318 	 * |--1--|-2b-|...(same as above)
5319 	 *
5320 	 * Alternative situation. Happens on files where extents got split.
5321 	 *       |-----L-----|
5322 	 * |-----------7-----------|-6-|
5323 	 *
5324 	 * Alternative situation. Happens on files which got larger.
5325 	 *       |-----L-----|
5326 	 * |-8-|
5327 	 * Nothing follows after 8.
5328 	 */
5329 
5330 	key.objectid = ekey->objectid;
5331 	key.type = BTRFS_EXTENT_DATA_KEY;
5332 	key.offset = ekey->offset;
5333 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5334 	if (ret < 0)
5335 		goto out;
5336 	if (ret) {
5337 		ret = 0;
5338 		goto out;
5339 	}
5340 
5341 	/*
5342 	 * Handle special case where the right side has no extents at all.
5343 	 */
5344 	eb = path->nodes[0];
5345 	slot = path->slots[0];
5346 	btrfs_item_key_to_cpu(eb, &found_key, slot);
5347 	if (found_key.objectid != key.objectid ||
5348 	    found_key.type != key.type) {
5349 		/* If we're a hole then just pretend nothing changed */
5350 		ret = (left_disknr) ? 0 : 1;
5351 		goto out;
5352 	}
5353 
5354 	/*
5355 	 * We're now on 2a, 2b or 7.
5356 	 */
5357 	key = found_key;
5358 	while (key.offset < ekey->offset + left_len) {
5359 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5360 		right_type = btrfs_file_extent_type(eb, ei);
5361 		if (right_type != BTRFS_FILE_EXTENT_REG &&
5362 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
5363 			ret = 0;
5364 			goto out;
5365 		}
5366 
5367 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5368 			right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5369 			right_len = PAGE_ALIGN(right_len);
5370 		} else {
5371 			right_len = btrfs_file_extent_num_bytes(eb, ei);
5372 		}
5373 
5374 		/*
5375 		 * Are we at extent 8? If yes, we know the extent is changed.
5376 		 * This may only happen on the first iteration.
5377 		 */
5378 		if (found_key.offset + right_len <= ekey->offset) {
5379 			/* If we're a hole just pretend nothing changed */
5380 			ret = (left_disknr) ? 0 : 1;
5381 			goto out;
5382 		}
5383 
5384 		/*
5385 		 * We just wanted to see if when we have an inline extent, what
5386 		 * follows it is a regular extent (wanted to check the above
5387 		 * condition for inline extents too). This should normally not
5388 		 * happen but it's possible for example when we have an inline
5389 		 * compressed extent representing data with a size matching
5390 		 * the page size (currently the same as sector size).
5391 		 */
5392 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5393 			ret = 0;
5394 			goto out;
5395 		}
5396 
5397 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5398 		right_offset = btrfs_file_extent_offset(eb, ei);
5399 		right_gen = btrfs_file_extent_generation(eb, ei);
5400 
5401 		left_offset_fixed = left_offset;
5402 		if (key.offset < ekey->offset) {
5403 			/* Fix the right offset for 2a and 7. */
5404 			right_offset += ekey->offset - key.offset;
5405 		} else {
5406 			/* Fix the left offset for all behind 2a and 2b */
5407 			left_offset_fixed += key.offset - ekey->offset;
5408 		}
5409 
5410 		/*
5411 		 * Check if we have the same extent.
5412 		 */
5413 		if (left_disknr != right_disknr ||
5414 		    left_offset_fixed != right_offset ||
5415 		    left_gen != right_gen) {
5416 			ret = 0;
5417 			goto out;
5418 		}
5419 
5420 		/*
5421 		 * Go to the next extent.
5422 		 */
5423 		ret = btrfs_next_item(sctx->parent_root, path);
5424 		if (ret < 0)
5425 			goto out;
5426 		if (!ret) {
5427 			eb = path->nodes[0];
5428 			slot = path->slots[0];
5429 			btrfs_item_key_to_cpu(eb, &found_key, slot);
5430 		}
5431 		if (ret || found_key.objectid != key.objectid ||
5432 		    found_key.type != key.type) {
5433 			key.offset += right_len;
5434 			break;
5435 		}
5436 		if (found_key.offset != key.offset + right_len) {
5437 			ret = 0;
5438 			goto out;
5439 		}
5440 		key = found_key;
5441 	}
5442 
5443 	/*
5444 	 * We're now behind the left extent (treat as unchanged) or at the end
5445 	 * of the right side (treat as changed).
5446 	 */
5447 	if (key.offset >= ekey->offset + left_len)
5448 		ret = 1;
5449 	else
5450 		ret = 0;
5451 
5452 
5453 out:
5454 	btrfs_free_path(path);
5455 	return ret;
5456 }
5457 
5458 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5459 {
5460 	struct btrfs_path *path;
5461 	struct btrfs_root *root = sctx->send_root;
5462 	struct btrfs_file_extent_item *fi;
5463 	struct btrfs_key key;
5464 	u64 extent_end;
5465 	u8 type;
5466 	int ret;
5467 
5468 	path = alloc_path_for_send();
5469 	if (!path)
5470 		return -ENOMEM;
5471 
5472 	sctx->cur_inode_last_extent = 0;
5473 
5474 	key.objectid = sctx->cur_ino;
5475 	key.type = BTRFS_EXTENT_DATA_KEY;
5476 	key.offset = offset;
5477 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5478 	if (ret < 0)
5479 		goto out;
5480 	ret = 0;
5481 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5482 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5483 		goto out;
5484 
5485 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5486 			    struct btrfs_file_extent_item);
5487 	type = btrfs_file_extent_type(path->nodes[0], fi);
5488 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5489 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5490 							path->slots[0], fi);
5491 		extent_end = ALIGN(key.offset + size,
5492 				   sctx->send_root->fs_info->sectorsize);
5493 	} else {
5494 		extent_end = key.offset +
5495 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5496 	}
5497 	sctx->cur_inode_last_extent = extent_end;
5498 out:
5499 	btrfs_free_path(path);
5500 	return ret;
5501 }
5502 
5503 static int range_is_hole_in_parent(struct send_ctx *sctx,
5504 				   const u64 start,
5505 				   const u64 end)
5506 {
5507 	struct btrfs_path *path;
5508 	struct btrfs_key key;
5509 	struct btrfs_root *root = sctx->parent_root;
5510 	u64 search_start = start;
5511 	int ret;
5512 
5513 	path = alloc_path_for_send();
5514 	if (!path)
5515 		return -ENOMEM;
5516 
5517 	key.objectid = sctx->cur_ino;
5518 	key.type = BTRFS_EXTENT_DATA_KEY;
5519 	key.offset = search_start;
5520 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5521 	if (ret < 0)
5522 		goto out;
5523 	if (ret > 0 && path->slots[0] > 0)
5524 		path->slots[0]--;
5525 
5526 	while (search_start < end) {
5527 		struct extent_buffer *leaf = path->nodes[0];
5528 		int slot = path->slots[0];
5529 		struct btrfs_file_extent_item *fi;
5530 		u64 extent_end;
5531 
5532 		if (slot >= btrfs_header_nritems(leaf)) {
5533 			ret = btrfs_next_leaf(root, path);
5534 			if (ret < 0)
5535 				goto out;
5536 			else if (ret > 0)
5537 				break;
5538 			continue;
5539 		}
5540 
5541 		btrfs_item_key_to_cpu(leaf, &key, slot);
5542 		if (key.objectid < sctx->cur_ino ||
5543 		    key.type < BTRFS_EXTENT_DATA_KEY)
5544 			goto next;
5545 		if (key.objectid > sctx->cur_ino ||
5546 		    key.type > BTRFS_EXTENT_DATA_KEY ||
5547 		    key.offset >= end)
5548 			break;
5549 
5550 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5551 		if (btrfs_file_extent_type(leaf, fi) ==
5552 		    BTRFS_FILE_EXTENT_INLINE) {
5553 			u64 size = btrfs_file_extent_inline_len(leaf, slot, fi);
5554 
5555 			extent_end = ALIGN(key.offset + size,
5556 					   root->fs_info->sectorsize);
5557 		} else {
5558 			extent_end = key.offset +
5559 				btrfs_file_extent_num_bytes(leaf, fi);
5560 		}
5561 		if (extent_end <= start)
5562 			goto next;
5563 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5564 			search_start = extent_end;
5565 			goto next;
5566 		}
5567 		ret = 0;
5568 		goto out;
5569 next:
5570 		path->slots[0]++;
5571 	}
5572 	ret = 1;
5573 out:
5574 	btrfs_free_path(path);
5575 	return ret;
5576 }
5577 
5578 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5579 			   struct btrfs_key *key)
5580 {
5581 	struct btrfs_file_extent_item *fi;
5582 	u64 extent_end;
5583 	u8 type;
5584 	int ret = 0;
5585 
5586 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5587 		return 0;
5588 
5589 	if (sctx->cur_inode_last_extent == (u64)-1) {
5590 		ret = get_last_extent(sctx, key->offset - 1);
5591 		if (ret)
5592 			return ret;
5593 	}
5594 
5595 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5596 			    struct btrfs_file_extent_item);
5597 	type = btrfs_file_extent_type(path->nodes[0], fi);
5598 	if (type == BTRFS_FILE_EXTENT_INLINE) {
5599 		u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5600 							path->slots[0], fi);
5601 		extent_end = ALIGN(key->offset + size,
5602 				   sctx->send_root->fs_info->sectorsize);
5603 	} else {
5604 		extent_end = key->offset +
5605 			btrfs_file_extent_num_bytes(path->nodes[0], fi);
5606 	}
5607 
5608 	if (path->slots[0] == 0 &&
5609 	    sctx->cur_inode_last_extent < key->offset) {
5610 		/*
5611 		 * We might have skipped entire leafs that contained only
5612 		 * file extent items for our current inode. These leafs have
5613 		 * a generation number smaller (older) than the one in the
5614 		 * current leaf and the leaf our last extent came from, and
5615 		 * are located between these 2 leafs.
5616 		 */
5617 		ret = get_last_extent(sctx, key->offset - 1);
5618 		if (ret)
5619 			return ret;
5620 	}
5621 
5622 	if (sctx->cur_inode_last_extent < key->offset) {
5623 		ret = range_is_hole_in_parent(sctx,
5624 					      sctx->cur_inode_last_extent,
5625 					      key->offset);
5626 		if (ret < 0)
5627 			return ret;
5628 		else if (ret == 0)
5629 			ret = send_hole(sctx, key->offset);
5630 		else
5631 			ret = 0;
5632 	}
5633 	sctx->cur_inode_last_extent = extent_end;
5634 	return ret;
5635 }
5636 
5637 static int process_extent(struct send_ctx *sctx,
5638 			  struct btrfs_path *path,
5639 			  struct btrfs_key *key)
5640 {
5641 	struct clone_root *found_clone = NULL;
5642 	int ret = 0;
5643 
5644 	if (S_ISLNK(sctx->cur_inode_mode))
5645 		return 0;
5646 
5647 	if (sctx->parent_root && !sctx->cur_inode_new) {
5648 		ret = is_extent_unchanged(sctx, path, key);
5649 		if (ret < 0)
5650 			goto out;
5651 		if (ret) {
5652 			ret = 0;
5653 			goto out_hole;
5654 		}
5655 	} else {
5656 		struct btrfs_file_extent_item *ei;
5657 		u8 type;
5658 
5659 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5660 				    struct btrfs_file_extent_item);
5661 		type = btrfs_file_extent_type(path->nodes[0], ei);
5662 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5663 		    type == BTRFS_FILE_EXTENT_REG) {
5664 			/*
5665 			 * The send spec does not have a prealloc command yet,
5666 			 * so just leave a hole for prealloc'ed extents until
5667 			 * we have enough commands queued up to justify rev'ing
5668 			 * the send spec.
5669 			 */
5670 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5671 				ret = 0;
5672 				goto out;
5673 			}
5674 
5675 			/* Have a hole, just skip it. */
5676 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5677 				ret = 0;
5678 				goto out;
5679 			}
5680 		}
5681 	}
5682 
5683 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5684 			sctx->cur_inode_size, &found_clone);
5685 	if (ret != -ENOENT && ret < 0)
5686 		goto out;
5687 
5688 	ret = send_write_or_clone(sctx, path, key, found_clone);
5689 	if (ret)
5690 		goto out;
5691 out_hole:
5692 	ret = maybe_send_hole(sctx, path, key);
5693 out:
5694 	return ret;
5695 }
5696 
5697 static int process_all_extents(struct send_ctx *sctx)
5698 {
5699 	int ret;
5700 	struct btrfs_root *root;
5701 	struct btrfs_path *path;
5702 	struct btrfs_key key;
5703 	struct btrfs_key found_key;
5704 	struct extent_buffer *eb;
5705 	int slot;
5706 
5707 	root = sctx->send_root;
5708 	path = alloc_path_for_send();
5709 	if (!path)
5710 		return -ENOMEM;
5711 
5712 	key.objectid = sctx->cmp_key->objectid;
5713 	key.type = BTRFS_EXTENT_DATA_KEY;
5714 	key.offset = 0;
5715 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5716 	if (ret < 0)
5717 		goto out;
5718 
5719 	while (1) {
5720 		eb = path->nodes[0];
5721 		slot = path->slots[0];
5722 
5723 		if (slot >= btrfs_header_nritems(eb)) {
5724 			ret = btrfs_next_leaf(root, path);
5725 			if (ret < 0) {
5726 				goto out;
5727 			} else if (ret > 0) {
5728 				ret = 0;
5729 				break;
5730 			}
5731 			continue;
5732 		}
5733 
5734 		btrfs_item_key_to_cpu(eb, &found_key, slot);
5735 
5736 		if (found_key.objectid != key.objectid ||
5737 		    found_key.type != key.type) {
5738 			ret = 0;
5739 			goto out;
5740 		}
5741 
5742 		ret = process_extent(sctx, path, &found_key);
5743 		if (ret < 0)
5744 			goto out;
5745 
5746 		path->slots[0]++;
5747 	}
5748 
5749 out:
5750 	btrfs_free_path(path);
5751 	return ret;
5752 }
5753 
5754 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5755 					   int *pending_move,
5756 					   int *refs_processed)
5757 {
5758 	int ret = 0;
5759 
5760 	if (sctx->cur_ino == 0)
5761 		goto out;
5762 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5763 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5764 		goto out;
5765 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5766 		goto out;
5767 
5768 	ret = process_recorded_refs(sctx, pending_move);
5769 	if (ret < 0)
5770 		goto out;
5771 
5772 	*refs_processed = 1;
5773 out:
5774 	return ret;
5775 }
5776 
5777 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5778 {
5779 	int ret = 0;
5780 	u64 left_mode;
5781 	u64 left_uid;
5782 	u64 left_gid;
5783 	u64 right_mode;
5784 	u64 right_uid;
5785 	u64 right_gid;
5786 	int need_chmod = 0;
5787 	int need_chown = 0;
5788 	int pending_move = 0;
5789 	int refs_processed = 0;
5790 
5791 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5792 					      &refs_processed);
5793 	if (ret < 0)
5794 		goto out;
5795 
5796 	/*
5797 	 * We have processed the refs and thus need to advance send_progress.
5798 	 * Now, calls to get_cur_xxx will take the updated refs of the current
5799 	 * inode into account.
5800 	 *
5801 	 * On the other hand, if our current inode is a directory and couldn't
5802 	 * be moved/renamed because its parent was renamed/moved too and it has
5803 	 * a higher inode number, we can only move/rename our current inode
5804 	 * after we moved/renamed its parent. Therefore in this case operate on
5805 	 * the old path (pre move/rename) of our current inode, and the
5806 	 * move/rename will be performed later.
5807 	 */
5808 	if (refs_processed && !pending_move)
5809 		sctx->send_progress = sctx->cur_ino + 1;
5810 
5811 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5812 		goto out;
5813 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5814 		goto out;
5815 
5816 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5817 			&left_mode, &left_uid, &left_gid, NULL);
5818 	if (ret < 0)
5819 		goto out;
5820 
5821 	if (!sctx->parent_root || sctx->cur_inode_new) {
5822 		need_chown = 1;
5823 		if (!S_ISLNK(sctx->cur_inode_mode))
5824 			need_chmod = 1;
5825 	} else {
5826 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5827 				NULL, NULL, &right_mode, &right_uid,
5828 				&right_gid, NULL);
5829 		if (ret < 0)
5830 			goto out;
5831 
5832 		if (left_uid != right_uid || left_gid != right_gid)
5833 			need_chown = 1;
5834 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5835 			need_chmod = 1;
5836 	}
5837 
5838 	if (S_ISREG(sctx->cur_inode_mode)) {
5839 		if (need_send_hole(sctx)) {
5840 			if (sctx->cur_inode_last_extent == (u64)-1 ||
5841 			    sctx->cur_inode_last_extent <
5842 			    sctx->cur_inode_size) {
5843 				ret = get_last_extent(sctx, (u64)-1);
5844 				if (ret)
5845 					goto out;
5846 			}
5847 			if (sctx->cur_inode_last_extent <
5848 			    sctx->cur_inode_size) {
5849 				ret = send_hole(sctx, sctx->cur_inode_size);
5850 				if (ret)
5851 					goto out;
5852 			}
5853 		}
5854 		ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5855 				sctx->cur_inode_size);
5856 		if (ret < 0)
5857 			goto out;
5858 	}
5859 
5860 	if (need_chown) {
5861 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5862 				left_uid, left_gid);
5863 		if (ret < 0)
5864 			goto out;
5865 	}
5866 	if (need_chmod) {
5867 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5868 				left_mode);
5869 		if (ret < 0)
5870 			goto out;
5871 	}
5872 
5873 	/*
5874 	 * If other directory inodes depended on our current directory
5875 	 * inode's move/rename, now do their move/rename operations.
5876 	 */
5877 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5878 		ret = apply_children_dir_moves(sctx);
5879 		if (ret)
5880 			goto out;
5881 		/*
5882 		 * Need to send that every time, no matter if it actually
5883 		 * changed between the two trees as we have done changes to
5884 		 * the inode before. If our inode is a directory and it's
5885 		 * waiting to be moved/renamed, we will send its utimes when
5886 		 * it's moved/renamed, therefore we don't need to do it here.
5887 		 */
5888 		sctx->send_progress = sctx->cur_ino + 1;
5889 		ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5890 		if (ret < 0)
5891 			goto out;
5892 	}
5893 
5894 out:
5895 	return ret;
5896 }
5897 
5898 static int changed_inode(struct send_ctx *sctx,
5899 			 enum btrfs_compare_tree_result result)
5900 {
5901 	int ret = 0;
5902 	struct btrfs_key *key = sctx->cmp_key;
5903 	struct btrfs_inode_item *left_ii = NULL;
5904 	struct btrfs_inode_item *right_ii = NULL;
5905 	u64 left_gen = 0;
5906 	u64 right_gen = 0;
5907 
5908 	sctx->cur_ino = key->objectid;
5909 	sctx->cur_inode_new_gen = 0;
5910 	sctx->cur_inode_last_extent = (u64)-1;
5911 
5912 	/*
5913 	 * Set send_progress to current inode. This will tell all get_cur_xxx
5914 	 * functions that the current inode's refs are not updated yet. Later,
5915 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5916 	 */
5917 	sctx->send_progress = sctx->cur_ino;
5918 
5919 	if (result == BTRFS_COMPARE_TREE_NEW ||
5920 	    result == BTRFS_COMPARE_TREE_CHANGED) {
5921 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5922 				sctx->left_path->slots[0],
5923 				struct btrfs_inode_item);
5924 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5925 				left_ii);
5926 	} else {
5927 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5928 				sctx->right_path->slots[0],
5929 				struct btrfs_inode_item);
5930 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5931 				right_ii);
5932 	}
5933 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
5934 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5935 				sctx->right_path->slots[0],
5936 				struct btrfs_inode_item);
5937 
5938 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5939 				right_ii);
5940 
5941 		/*
5942 		 * The cur_ino = root dir case is special here. We can't treat
5943 		 * the inode as deleted+reused because it would generate a
5944 		 * stream that tries to delete/mkdir the root dir.
5945 		 */
5946 		if (left_gen != right_gen &&
5947 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5948 			sctx->cur_inode_new_gen = 1;
5949 	}
5950 
5951 	if (result == BTRFS_COMPARE_TREE_NEW) {
5952 		sctx->cur_inode_gen = left_gen;
5953 		sctx->cur_inode_new = 1;
5954 		sctx->cur_inode_deleted = 0;
5955 		sctx->cur_inode_size = btrfs_inode_size(
5956 				sctx->left_path->nodes[0], left_ii);
5957 		sctx->cur_inode_mode = btrfs_inode_mode(
5958 				sctx->left_path->nodes[0], left_ii);
5959 		sctx->cur_inode_rdev = btrfs_inode_rdev(
5960 				sctx->left_path->nodes[0], left_ii);
5961 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5962 			ret = send_create_inode_if_needed(sctx);
5963 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
5964 		sctx->cur_inode_gen = right_gen;
5965 		sctx->cur_inode_new = 0;
5966 		sctx->cur_inode_deleted = 1;
5967 		sctx->cur_inode_size = btrfs_inode_size(
5968 				sctx->right_path->nodes[0], right_ii);
5969 		sctx->cur_inode_mode = btrfs_inode_mode(
5970 				sctx->right_path->nodes[0], right_ii);
5971 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5972 		/*
5973 		 * We need to do some special handling in case the inode was
5974 		 * reported as changed with a changed generation number. This
5975 		 * means that the original inode was deleted and new inode
5976 		 * reused the same inum. So we have to treat the old inode as
5977 		 * deleted and the new one as new.
5978 		 */
5979 		if (sctx->cur_inode_new_gen) {
5980 			/*
5981 			 * First, process the inode as if it was deleted.
5982 			 */
5983 			sctx->cur_inode_gen = right_gen;
5984 			sctx->cur_inode_new = 0;
5985 			sctx->cur_inode_deleted = 1;
5986 			sctx->cur_inode_size = btrfs_inode_size(
5987 					sctx->right_path->nodes[0], right_ii);
5988 			sctx->cur_inode_mode = btrfs_inode_mode(
5989 					sctx->right_path->nodes[0], right_ii);
5990 			ret = process_all_refs(sctx,
5991 					BTRFS_COMPARE_TREE_DELETED);
5992 			if (ret < 0)
5993 				goto out;
5994 
5995 			/*
5996 			 * Now process the inode as if it was new.
5997 			 */
5998 			sctx->cur_inode_gen = left_gen;
5999 			sctx->cur_inode_new = 1;
6000 			sctx->cur_inode_deleted = 0;
6001 			sctx->cur_inode_size = btrfs_inode_size(
6002 					sctx->left_path->nodes[0], left_ii);
6003 			sctx->cur_inode_mode = btrfs_inode_mode(
6004 					sctx->left_path->nodes[0], left_ii);
6005 			sctx->cur_inode_rdev = btrfs_inode_rdev(
6006 					sctx->left_path->nodes[0], left_ii);
6007 			ret = send_create_inode_if_needed(sctx);
6008 			if (ret < 0)
6009 				goto out;
6010 
6011 			ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6012 			if (ret < 0)
6013 				goto out;
6014 			/*
6015 			 * Advance send_progress now as we did not get into
6016 			 * process_recorded_refs_if_needed in the new_gen case.
6017 			 */
6018 			sctx->send_progress = sctx->cur_ino + 1;
6019 
6020 			/*
6021 			 * Now process all extents and xattrs of the inode as if
6022 			 * they were all new.
6023 			 */
6024 			ret = process_all_extents(sctx);
6025 			if (ret < 0)
6026 				goto out;
6027 			ret = process_all_new_xattrs(sctx);
6028 			if (ret < 0)
6029 				goto out;
6030 		} else {
6031 			sctx->cur_inode_gen = left_gen;
6032 			sctx->cur_inode_new = 0;
6033 			sctx->cur_inode_new_gen = 0;
6034 			sctx->cur_inode_deleted = 0;
6035 			sctx->cur_inode_size = btrfs_inode_size(
6036 					sctx->left_path->nodes[0], left_ii);
6037 			sctx->cur_inode_mode = btrfs_inode_mode(
6038 					sctx->left_path->nodes[0], left_ii);
6039 		}
6040 	}
6041 
6042 out:
6043 	return ret;
6044 }
6045 
6046 /*
6047  * We have to process new refs before deleted refs, but compare_trees gives us
6048  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6049  * first and later process them in process_recorded_refs.
6050  * For the cur_inode_new_gen case, we skip recording completely because
6051  * changed_inode did already initiate processing of refs. The reason for this is
6052  * that in this case, compare_tree actually compares the refs of 2 different
6053  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6054  * refs of the right tree as deleted and all refs of the left tree as new.
6055  */
6056 static int changed_ref(struct send_ctx *sctx,
6057 		       enum btrfs_compare_tree_result result)
6058 {
6059 	int ret = 0;
6060 
6061 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6062 		inconsistent_snapshot_error(sctx, result, "reference");
6063 		return -EIO;
6064 	}
6065 
6066 	if (!sctx->cur_inode_new_gen &&
6067 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6068 		if (result == BTRFS_COMPARE_TREE_NEW)
6069 			ret = record_new_ref(sctx);
6070 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6071 			ret = record_deleted_ref(sctx);
6072 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6073 			ret = record_changed_ref(sctx);
6074 	}
6075 
6076 	return ret;
6077 }
6078 
6079 /*
6080  * Process new/deleted/changed xattrs. We skip processing in the
6081  * cur_inode_new_gen case because changed_inode did already initiate processing
6082  * of xattrs. The reason is the same as in changed_ref
6083  */
6084 static int changed_xattr(struct send_ctx *sctx,
6085 			 enum btrfs_compare_tree_result result)
6086 {
6087 	int ret = 0;
6088 
6089 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6090 		inconsistent_snapshot_error(sctx, result, "xattr");
6091 		return -EIO;
6092 	}
6093 
6094 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6095 		if (result == BTRFS_COMPARE_TREE_NEW)
6096 			ret = process_new_xattr(sctx);
6097 		else if (result == BTRFS_COMPARE_TREE_DELETED)
6098 			ret = process_deleted_xattr(sctx);
6099 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
6100 			ret = process_changed_xattr(sctx);
6101 	}
6102 
6103 	return ret;
6104 }
6105 
6106 /*
6107  * Process new/deleted/changed extents. We skip processing in the
6108  * cur_inode_new_gen case because changed_inode did already initiate processing
6109  * of extents. The reason is the same as in changed_ref
6110  */
6111 static int changed_extent(struct send_ctx *sctx,
6112 			  enum btrfs_compare_tree_result result)
6113 {
6114 	int ret = 0;
6115 
6116 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
6117 
6118 		if (result == BTRFS_COMPARE_TREE_CHANGED) {
6119 			struct extent_buffer *leaf_l;
6120 			struct extent_buffer *leaf_r;
6121 			struct btrfs_file_extent_item *ei_l;
6122 			struct btrfs_file_extent_item *ei_r;
6123 
6124 			leaf_l = sctx->left_path->nodes[0];
6125 			leaf_r = sctx->right_path->nodes[0];
6126 			ei_l = btrfs_item_ptr(leaf_l,
6127 					      sctx->left_path->slots[0],
6128 					      struct btrfs_file_extent_item);
6129 			ei_r = btrfs_item_ptr(leaf_r,
6130 					      sctx->right_path->slots[0],
6131 					      struct btrfs_file_extent_item);
6132 
6133 			/*
6134 			 * We may have found an extent item that has changed
6135 			 * only its disk_bytenr field and the corresponding
6136 			 * inode item was not updated. This case happens due to
6137 			 * very specific timings during relocation when a leaf
6138 			 * that contains file extent items is COWed while
6139 			 * relocation is ongoing and its in the stage where it
6140 			 * updates data pointers. So when this happens we can
6141 			 * safely ignore it since we know it's the same extent,
6142 			 * but just at different logical and physical locations
6143 			 * (when an extent is fully replaced with a new one, we
6144 			 * know the generation number must have changed too,
6145 			 * since snapshot creation implies committing the current
6146 			 * transaction, and the inode item must have been updated
6147 			 * as well).
6148 			 * This replacement of the disk_bytenr happens at
6149 			 * relocation.c:replace_file_extents() through
6150 			 * relocation.c:btrfs_reloc_cow_block().
6151 			 */
6152 			if (btrfs_file_extent_generation(leaf_l, ei_l) ==
6153 			    btrfs_file_extent_generation(leaf_r, ei_r) &&
6154 			    btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
6155 			    btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
6156 			    btrfs_file_extent_compression(leaf_l, ei_l) ==
6157 			    btrfs_file_extent_compression(leaf_r, ei_r) &&
6158 			    btrfs_file_extent_encryption(leaf_l, ei_l) ==
6159 			    btrfs_file_extent_encryption(leaf_r, ei_r) &&
6160 			    btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
6161 			    btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
6162 			    btrfs_file_extent_type(leaf_l, ei_l) ==
6163 			    btrfs_file_extent_type(leaf_r, ei_r) &&
6164 			    btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
6165 			    btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
6166 			    btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
6167 			    btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
6168 			    btrfs_file_extent_offset(leaf_l, ei_l) ==
6169 			    btrfs_file_extent_offset(leaf_r, ei_r) &&
6170 			    btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
6171 			    btrfs_file_extent_num_bytes(leaf_r, ei_r))
6172 				return 0;
6173 		}
6174 
6175 		inconsistent_snapshot_error(sctx, result, "extent");
6176 		return -EIO;
6177 	}
6178 
6179 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6180 		if (result != BTRFS_COMPARE_TREE_DELETED)
6181 			ret = process_extent(sctx, sctx->left_path,
6182 					sctx->cmp_key);
6183 	}
6184 
6185 	return ret;
6186 }
6187 
6188 static int dir_changed(struct send_ctx *sctx, u64 dir)
6189 {
6190 	u64 orig_gen, new_gen;
6191 	int ret;
6192 
6193 	ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6194 			     NULL, NULL);
6195 	if (ret)
6196 		return ret;
6197 
6198 	ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6199 			     NULL, NULL, NULL);
6200 	if (ret)
6201 		return ret;
6202 
6203 	return (orig_gen != new_gen) ? 1 : 0;
6204 }
6205 
6206 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6207 			struct btrfs_key *key)
6208 {
6209 	struct btrfs_inode_extref *extref;
6210 	struct extent_buffer *leaf;
6211 	u64 dirid = 0, last_dirid = 0;
6212 	unsigned long ptr;
6213 	u32 item_size;
6214 	u32 cur_offset = 0;
6215 	int ref_name_len;
6216 	int ret = 0;
6217 
6218 	/* Easy case, just check this one dirid */
6219 	if (key->type == BTRFS_INODE_REF_KEY) {
6220 		dirid = key->offset;
6221 
6222 		ret = dir_changed(sctx, dirid);
6223 		goto out;
6224 	}
6225 
6226 	leaf = path->nodes[0];
6227 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6228 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6229 	while (cur_offset < item_size) {
6230 		extref = (struct btrfs_inode_extref *)(ptr +
6231 						       cur_offset);
6232 		dirid = btrfs_inode_extref_parent(leaf, extref);
6233 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6234 		cur_offset += ref_name_len + sizeof(*extref);
6235 		if (dirid == last_dirid)
6236 			continue;
6237 		ret = dir_changed(sctx, dirid);
6238 		if (ret)
6239 			break;
6240 		last_dirid = dirid;
6241 	}
6242 out:
6243 	return ret;
6244 }
6245 
6246 /*
6247  * Updates compare related fields in sctx and simply forwards to the actual
6248  * changed_xxx functions.
6249  */
6250 static int changed_cb(struct btrfs_path *left_path,
6251 		      struct btrfs_path *right_path,
6252 		      struct btrfs_key *key,
6253 		      enum btrfs_compare_tree_result result,
6254 		      void *ctx)
6255 {
6256 	int ret = 0;
6257 	struct send_ctx *sctx = ctx;
6258 
6259 	if (result == BTRFS_COMPARE_TREE_SAME) {
6260 		if (key->type == BTRFS_INODE_REF_KEY ||
6261 		    key->type == BTRFS_INODE_EXTREF_KEY) {
6262 			ret = compare_refs(sctx, left_path, key);
6263 			if (!ret)
6264 				return 0;
6265 			if (ret < 0)
6266 				return ret;
6267 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6268 			return maybe_send_hole(sctx, left_path, key);
6269 		} else {
6270 			return 0;
6271 		}
6272 		result = BTRFS_COMPARE_TREE_CHANGED;
6273 		ret = 0;
6274 	}
6275 
6276 	sctx->left_path = left_path;
6277 	sctx->right_path = right_path;
6278 	sctx->cmp_key = key;
6279 
6280 	ret = finish_inode_if_needed(sctx, 0);
6281 	if (ret < 0)
6282 		goto out;
6283 
6284 	/* Ignore non-FS objects */
6285 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6286 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6287 		goto out;
6288 
6289 	if (key->type == BTRFS_INODE_ITEM_KEY)
6290 		ret = changed_inode(sctx, result);
6291 	else if (key->type == BTRFS_INODE_REF_KEY ||
6292 		 key->type == BTRFS_INODE_EXTREF_KEY)
6293 		ret = changed_ref(sctx, result);
6294 	else if (key->type == BTRFS_XATTR_ITEM_KEY)
6295 		ret = changed_xattr(sctx, result);
6296 	else if (key->type == BTRFS_EXTENT_DATA_KEY)
6297 		ret = changed_extent(sctx, result);
6298 
6299 out:
6300 	return ret;
6301 }
6302 
6303 static int full_send_tree(struct send_ctx *sctx)
6304 {
6305 	int ret;
6306 	struct btrfs_root *send_root = sctx->send_root;
6307 	struct btrfs_key key;
6308 	struct btrfs_key found_key;
6309 	struct btrfs_path *path;
6310 	struct extent_buffer *eb;
6311 	int slot;
6312 
6313 	path = alloc_path_for_send();
6314 	if (!path)
6315 		return -ENOMEM;
6316 
6317 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6318 	key.type = BTRFS_INODE_ITEM_KEY;
6319 	key.offset = 0;
6320 
6321 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6322 	if (ret < 0)
6323 		goto out;
6324 	if (ret)
6325 		goto out_finish;
6326 
6327 	while (1) {
6328 		eb = path->nodes[0];
6329 		slot = path->slots[0];
6330 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6331 
6332 		ret = changed_cb(path, NULL, &found_key,
6333 				 BTRFS_COMPARE_TREE_NEW, sctx);
6334 		if (ret < 0)
6335 			goto out;
6336 
6337 		key.objectid = found_key.objectid;
6338 		key.type = found_key.type;
6339 		key.offset = found_key.offset + 1;
6340 
6341 		ret = btrfs_next_item(send_root, path);
6342 		if (ret < 0)
6343 			goto out;
6344 		if (ret) {
6345 			ret  = 0;
6346 			break;
6347 		}
6348 	}
6349 
6350 out_finish:
6351 	ret = finish_inode_if_needed(sctx, 1);
6352 
6353 out:
6354 	btrfs_free_path(path);
6355 	return ret;
6356 }
6357 
6358 static int send_subvol(struct send_ctx *sctx)
6359 {
6360 	int ret;
6361 
6362 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6363 		ret = send_header(sctx);
6364 		if (ret < 0)
6365 			goto out;
6366 	}
6367 
6368 	ret = send_subvol_begin(sctx);
6369 	if (ret < 0)
6370 		goto out;
6371 
6372 	if (sctx->parent_root) {
6373 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6374 				changed_cb, sctx);
6375 		if (ret < 0)
6376 			goto out;
6377 		ret = finish_inode_if_needed(sctx, 1);
6378 		if (ret < 0)
6379 			goto out;
6380 	} else {
6381 		ret = full_send_tree(sctx);
6382 		if (ret < 0)
6383 			goto out;
6384 	}
6385 
6386 out:
6387 	free_recorded_refs(sctx);
6388 	return ret;
6389 }
6390 
6391 /*
6392  * If orphan cleanup did remove any orphans from a root, it means the tree
6393  * was modified and therefore the commit root is not the same as the current
6394  * root anymore. This is a problem, because send uses the commit root and
6395  * therefore can see inode items that don't exist in the current root anymore,
6396  * and for example make calls to btrfs_iget, which will do tree lookups based
6397  * on the current root and not on the commit root. Those lookups will fail,
6398  * returning a -ESTALE error, and making send fail with that error. So make
6399  * sure a send does not see any orphans we have just removed, and that it will
6400  * see the same inodes regardless of whether a transaction commit happened
6401  * before it started (meaning that the commit root will be the same as the
6402  * current root) or not.
6403  */
6404 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6405 {
6406 	int i;
6407 	struct btrfs_trans_handle *trans = NULL;
6408 
6409 again:
6410 	if (sctx->parent_root &&
6411 	    sctx->parent_root->node != sctx->parent_root->commit_root)
6412 		goto commit_trans;
6413 
6414 	for (i = 0; i < sctx->clone_roots_cnt; i++)
6415 		if (sctx->clone_roots[i].root->node !=
6416 		    sctx->clone_roots[i].root->commit_root)
6417 			goto commit_trans;
6418 
6419 	if (trans)
6420 		return btrfs_end_transaction(trans);
6421 
6422 	return 0;
6423 
6424 commit_trans:
6425 	/* Use any root, all fs roots will get their commit roots updated. */
6426 	if (!trans) {
6427 		trans = btrfs_join_transaction(sctx->send_root);
6428 		if (IS_ERR(trans))
6429 			return PTR_ERR(trans);
6430 		goto again;
6431 	}
6432 
6433 	return btrfs_commit_transaction(trans);
6434 }
6435 
6436 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6437 {
6438 	spin_lock(&root->root_item_lock);
6439 	root->send_in_progress--;
6440 	/*
6441 	 * Not much left to do, we don't know why it's unbalanced and
6442 	 * can't blindly reset it to 0.
6443 	 */
6444 	if (root->send_in_progress < 0)
6445 		btrfs_err(root->fs_info,
6446 			  "send_in_progres unbalanced %d root %llu",
6447 			  root->send_in_progress, root->root_key.objectid);
6448 	spin_unlock(&root->root_item_lock);
6449 }
6450 
6451 long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
6452 {
6453 	int ret = 0;
6454 	struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6455 	struct btrfs_fs_info *fs_info = send_root->fs_info;
6456 	struct btrfs_root *clone_root;
6457 	struct btrfs_key key;
6458 	struct send_ctx *sctx = NULL;
6459 	u32 i;
6460 	u64 *clone_sources_tmp = NULL;
6461 	int clone_sources_to_rollback = 0;
6462 	unsigned alloc_size;
6463 	int sort_clone_roots = 0;
6464 	int index;
6465 
6466 	if (!capable(CAP_SYS_ADMIN))
6467 		return -EPERM;
6468 
6469 	/*
6470 	 * The subvolume must remain read-only during send, protect against
6471 	 * making it RW. This also protects against deletion.
6472 	 */
6473 	spin_lock(&send_root->root_item_lock);
6474 	send_root->send_in_progress++;
6475 	spin_unlock(&send_root->root_item_lock);
6476 
6477 	/*
6478 	 * This is done when we lookup the root, it should already be complete
6479 	 * by the time we get here.
6480 	 */
6481 	WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6482 
6483 	/*
6484 	 * Userspace tools do the checks and warn the user if it's
6485 	 * not RO.
6486 	 */
6487 	if (!btrfs_root_readonly(send_root)) {
6488 		ret = -EPERM;
6489 		goto out;
6490 	}
6491 
6492 	/*
6493 	 * Check that we don't overflow at later allocations, we request
6494 	 * clone_sources_count + 1 items, and compare to unsigned long inside
6495 	 * access_ok.
6496 	 */
6497 	if (arg->clone_sources_count >
6498 	    ULONG_MAX / sizeof(struct clone_root) - 1) {
6499 		ret = -EINVAL;
6500 		goto out;
6501 	}
6502 
6503 	if (!access_ok(VERIFY_READ, arg->clone_sources,
6504 			sizeof(*arg->clone_sources) *
6505 			arg->clone_sources_count)) {
6506 		ret = -EFAULT;
6507 		goto out;
6508 	}
6509 
6510 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6511 		ret = -EINVAL;
6512 		goto out;
6513 	}
6514 
6515 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6516 	if (!sctx) {
6517 		ret = -ENOMEM;
6518 		goto out;
6519 	}
6520 
6521 	INIT_LIST_HEAD(&sctx->new_refs);
6522 	INIT_LIST_HEAD(&sctx->deleted_refs);
6523 	INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6524 	INIT_LIST_HEAD(&sctx->name_cache_list);
6525 
6526 	sctx->flags = arg->flags;
6527 
6528 	sctx->send_filp = fget(arg->send_fd);
6529 	if (!sctx->send_filp) {
6530 		ret = -EBADF;
6531 		goto out;
6532 	}
6533 
6534 	sctx->send_root = send_root;
6535 	/*
6536 	 * Unlikely but possible, if the subvolume is marked for deletion but
6537 	 * is slow to remove the directory entry, send can still be started
6538 	 */
6539 	if (btrfs_root_dead(sctx->send_root)) {
6540 		ret = -EPERM;
6541 		goto out;
6542 	}
6543 
6544 	sctx->clone_roots_cnt = arg->clone_sources_count;
6545 
6546 	sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6547 	sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
6548 	if (!sctx->send_buf) {
6549 		ret = -ENOMEM;
6550 		goto out;
6551 	}
6552 
6553 	sctx->read_buf = kvmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL);
6554 	if (!sctx->read_buf) {
6555 		ret = -ENOMEM;
6556 		goto out;
6557 	}
6558 
6559 	sctx->pending_dir_moves = RB_ROOT;
6560 	sctx->waiting_dir_moves = RB_ROOT;
6561 	sctx->orphan_dirs = RB_ROOT;
6562 
6563 	alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6564 
6565 	sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL);
6566 	if (!sctx->clone_roots) {
6567 		ret = -ENOMEM;
6568 		goto out;
6569 	}
6570 
6571 	alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6572 
6573 	if (arg->clone_sources_count) {
6574 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
6575 		if (!clone_sources_tmp) {
6576 			ret = -ENOMEM;
6577 			goto out;
6578 		}
6579 
6580 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6581 				alloc_size);
6582 		if (ret) {
6583 			ret = -EFAULT;
6584 			goto out;
6585 		}
6586 
6587 		for (i = 0; i < arg->clone_sources_count; i++) {
6588 			key.objectid = clone_sources_tmp[i];
6589 			key.type = BTRFS_ROOT_ITEM_KEY;
6590 			key.offset = (u64)-1;
6591 
6592 			index = srcu_read_lock(&fs_info->subvol_srcu);
6593 
6594 			clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6595 			if (IS_ERR(clone_root)) {
6596 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6597 				ret = PTR_ERR(clone_root);
6598 				goto out;
6599 			}
6600 			spin_lock(&clone_root->root_item_lock);
6601 			if (!btrfs_root_readonly(clone_root) ||
6602 			    btrfs_root_dead(clone_root)) {
6603 				spin_unlock(&clone_root->root_item_lock);
6604 				srcu_read_unlock(&fs_info->subvol_srcu, index);
6605 				ret = -EPERM;
6606 				goto out;
6607 			}
6608 			clone_root->send_in_progress++;
6609 			spin_unlock(&clone_root->root_item_lock);
6610 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6611 
6612 			sctx->clone_roots[i].root = clone_root;
6613 			clone_sources_to_rollback = i + 1;
6614 		}
6615 		kvfree(clone_sources_tmp);
6616 		clone_sources_tmp = NULL;
6617 	}
6618 
6619 	if (arg->parent_root) {
6620 		key.objectid = arg->parent_root;
6621 		key.type = BTRFS_ROOT_ITEM_KEY;
6622 		key.offset = (u64)-1;
6623 
6624 		index = srcu_read_lock(&fs_info->subvol_srcu);
6625 
6626 		sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6627 		if (IS_ERR(sctx->parent_root)) {
6628 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6629 			ret = PTR_ERR(sctx->parent_root);
6630 			goto out;
6631 		}
6632 
6633 		spin_lock(&sctx->parent_root->root_item_lock);
6634 		sctx->parent_root->send_in_progress++;
6635 		if (!btrfs_root_readonly(sctx->parent_root) ||
6636 				btrfs_root_dead(sctx->parent_root)) {
6637 			spin_unlock(&sctx->parent_root->root_item_lock);
6638 			srcu_read_unlock(&fs_info->subvol_srcu, index);
6639 			ret = -EPERM;
6640 			goto out;
6641 		}
6642 		spin_unlock(&sctx->parent_root->root_item_lock);
6643 
6644 		srcu_read_unlock(&fs_info->subvol_srcu, index);
6645 	}
6646 
6647 	/*
6648 	 * Clones from send_root are allowed, but only if the clone source
6649 	 * is behind the current send position. This is checked while searching
6650 	 * for possible clone sources.
6651 	 */
6652 	sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6653 
6654 	/* We do a bsearch later */
6655 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
6656 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6657 			NULL);
6658 	sort_clone_roots = 1;
6659 
6660 	ret = ensure_commit_roots_uptodate(sctx);
6661 	if (ret)
6662 		goto out;
6663 
6664 	current->journal_info = BTRFS_SEND_TRANS_STUB;
6665 	ret = send_subvol(sctx);
6666 	current->journal_info = NULL;
6667 	if (ret < 0)
6668 		goto out;
6669 
6670 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6671 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6672 		if (ret < 0)
6673 			goto out;
6674 		ret = send_cmd(sctx);
6675 		if (ret < 0)
6676 			goto out;
6677 	}
6678 
6679 out:
6680 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6681 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6682 		struct rb_node *n;
6683 		struct pending_dir_move *pm;
6684 
6685 		n = rb_first(&sctx->pending_dir_moves);
6686 		pm = rb_entry(n, struct pending_dir_move, node);
6687 		while (!list_empty(&pm->list)) {
6688 			struct pending_dir_move *pm2;
6689 
6690 			pm2 = list_first_entry(&pm->list,
6691 					       struct pending_dir_move, list);
6692 			free_pending_move(sctx, pm2);
6693 		}
6694 		free_pending_move(sctx, pm);
6695 	}
6696 
6697 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6698 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6699 		struct rb_node *n;
6700 		struct waiting_dir_move *dm;
6701 
6702 		n = rb_first(&sctx->waiting_dir_moves);
6703 		dm = rb_entry(n, struct waiting_dir_move, node);
6704 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
6705 		kfree(dm);
6706 	}
6707 
6708 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6709 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6710 		struct rb_node *n;
6711 		struct orphan_dir_info *odi;
6712 
6713 		n = rb_first(&sctx->orphan_dirs);
6714 		odi = rb_entry(n, struct orphan_dir_info, node);
6715 		free_orphan_dir_info(sctx, odi);
6716 	}
6717 
6718 	if (sort_clone_roots) {
6719 		for (i = 0; i < sctx->clone_roots_cnt; i++)
6720 			btrfs_root_dec_send_in_progress(
6721 					sctx->clone_roots[i].root);
6722 	} else {
6723 		for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6724 			btrfs_root_dec_send_in_progress(
6725 					sctx->clone_roots[i].root);
6726 
6727 		btrfs_root_dec_send_in_progress(send_root);
6728 	}
6729 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6730 		btrfs_root_dec_send_in_progress(sctx->parent_root);
6731 
6732 	kvfree(clone_sources_tmp);
6733 
6734 	if (sctx) {
6735 		if (sctx->send_filp)
6736 			fput(sctx->send_filp);
6737 
6738 		kvfree(sctx->clone_roots);
6739 		kvfree(sctx->send_buf);
6740 		kvfree(sctx->read_buf);
6741 
6742 		name_cache_free(sctx);
6743 
6744 		kfree(sctx);
6745 	}
6746 
6747 	return ret;
6748 }
6749