1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/falloc.h> 8 #include <linux/fs.h> 9 #include <linux/file.h> 10 #include <linux/sort.h> 11 #include <linux/mount.h> 12 #include <linux/xattr.h> 13 #include <linux/posix_acl_xattr.h> 14 #include <linux/radix-tree.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/compat.h> 18 #include <linux/crc32c.h> 19 #include <linux/fsverity.h> 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * an allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 308 /* Must be last as it ends in a flexible-array member. */ 309 struct fs_path cur_inode_path; 310 }; 311 312 struct pending_dir_move { 313 struct rb_node node; 314 struct list_head list; 315 u64 parent_ino; 316 u64 ino; 317 u64 gen; 318 struct list_head update_refs; 319 }; 320 321 struct waiting_dir_move { 322 struct rb_node node; 323 u64 ino; 324 /* 325 * There might be some directory that could not be removed because it 326 * was waiting for this directory inode to be moved first. Therefore 327 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 328 */ 329 u64 rmdir_ino; 330 u64 rmdir_gen; 331 bool orphanized; 332 }; 333 334 struct orphan_dir_info { 335 struct rb_node node; 336 u64 ino; 337 u64 gen; 338 u64 last_dir_index_offset; 339 u64 dir_high_seq_ino; 340 }; 341 342 struct name_cache_entry { 343 /* 344 * The key in the entry is an inode number, and the generation matches 345 * the inode's generation. 346 */ 347 struct btrfs_lru_cache_entry entry; 348 u64 parent_ino; 349 u64 parent_gen; 350 int ret; 351 int need_later_update; 352 /* Name length without NUL terminator. */ 353 int name_len; 354 /* Not NUL terminated. */ 355 char name[] __counted_by(name_len) __nonstring; 356 }; 357 358 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 359 static_assert(offsetof(struct name_cache_entry, entry) == 0); 360 361 #define ADVANCE 1 362 #define ADVANCE_ONLY_NEXT -1 363 364 enum btrfs_compare_tree_result { 365 BTRFS_COMPARE_TREE_NEW, 366 BTRFS_COMPARE_TREE_DELETED, 367 BTRFS_COMPARE_TREE_CHANGED, 368 BTRFS_COMPARE_TREE_SAME, 369 }; 370 371 __cold 372 static void inconsistent_snapshot_error(struct send_ctx *sctx, 373 enum btrfs_compare_tree_result result, 374 const char *what) 375 { 376 const char *result_string; 377 378 switch (result) { 379 case BTRFS_COMPARE_TREE_NEW: 380 result_string = "new"; 381 break; 382 case BTRFS_COMPARE_TREE_DELETED: 383 result_string = "deleted"; 384 break; 385 case BTRFS_COMPARE_TREE_CHANGED: 386 result_string = "updated"; 387 break; 388 case BTRFS_COMPARE_TREE_SAME: 389 DEBUG_WARN("no change between trees"); 390 result_string = "unchanged"; 391 break; 392 default: 393 DEBUG_WARN("unexpected comparison result %d", result); 394 result_string = "unexpected"; 395 } 396 397 btrfs_err(sctx->send_root->fs_info, 398 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 399 result_string, what, sctx->cmp_key->objectid, 400 btrfs_root_id(sctx->send_root), 401 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 402 } 403 404 __maybe_unused 405 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 406 { 407 switch (sctx->proto) { 408 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 409 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 410 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 411 default: return false; 412 } 413 } 414 415 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 416 417 static struct waiting_dir_move * 418 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 419 420 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 421 422 static int need_send_hole(struct send_ctx *sctx) 423 { 424 return (sctx->parent_root && !sctx->cur_inode_new && 425 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 426 S_ISREG(sctx->cur_inode_mode)); 427 } 428 429 static void fs_path_reset(struct fs_path *p) 430 { 431 if (p->reversed) 432 p->start = p->buf + p->buf_len - 1; 433 else 434 p->start = p->buf; 435 436 p->end = p->start; 437 *p->start = 0; 438 } 439 440 static void init_path(struct fs_path *p) 441 { 442 p->reversed = 0; 443 p->buf = p->inline_buf; 444 p->buf_len = FS_PATH_INLINE_SIZE; 445 fs_path_reset(p); 446 } 447 448 static struct fs_path *fs_path_alloc(void) 449 { 450 struct fs_path *p; 451 452 p = kmalloc(sizeof(*p), GFP_KERNEL); 453 if (!p) 454 return NULL; 455 init_path(p); 456 return p; 457 } 458 459 static struct fs_path *fs_path_alloc_reversed(void) 460 { 461 struct fs_path *p; 462 463 p = fs_path_alloc(); 464 if (!p) 465 return NULL; 466 p->reversed = 1; 467 fs_path_reset(p); 468 return p; 469 } 470 471 static void fs_path_free(struct fs_path *p) 472 { 473 if (!p) 474 return; 475 if (p->buf != p->inline_buf) 476 kfree(p->buf); 477 kfree(p); 478 } 479 480 static inline int fs_path_len(const struct fs_path *p) 481 { 482 return p->end - p->start; 483 } 484 485 static int fs_path_ensure_buf(struct fs_path *p, int len) 486 { 487 char *tmp_buf; 488 int path_len; 489 int old_buf_len; 490 491 len++; 492 493 if (p->buf_len >= len) 494 return 0; 495 496 if (WARN_ON(len > PATH_MAX)) 497 return -ENAMETOOLONG; 498 499 path_len = fs_path_len(p); 500 old_buf_len = p->buf_len; 501 502 /* 503 * Allocate to the next largest kmalloc bucket size, to let 504 * the fast path happen most of the time. 505 */ 506 len = kmalloc_size_roundup(len); 507 /* 508 * First time the inline_buf does not suffice 509 */ 510 if (p->buf == p->inline_buf) { 511 tmp_buf = kmalloc(len, GFP_KERNEL); 512 if (tmp_buf) 513 memcpy(tmp_buf, p->buf, old_buf_len); 514 } else { 515 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 516 } 517 if (!tmp_buf) 518 return -ENOMEM; 519 p->buf = tmp_buf; 520 p->buf_len = len; 521 522 if (p->reversed) { 523 tmp_buf = p->buf + old_buf_len - path_len - 1; 524 p->end = p->buf + p->buf_len - 1; 525 p->start = p->end - path_len; 526 memmove(p->start, tmp_buf, path_len + 1); 527 } else { 528 p->start = p->buf; 529 p->end = p->start + path_len; 530 } 531 return 0; 532 } 533 534 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 535 char **prepared) 536 { 537 int ret; 538 int new_len; 539 540 new_len = fs_path_len(p) + name_len; 541 if (p->start != p->end) 542 new_len++; 543 ret = fs_path_ensure_buf(p, new_len); 544 if (ret < 0) 545 return ret; 546 547 if (p->reversed) { 548 if (p->start != p->end) 549 *--p->start = '/'; 550 p->start -= name_len; 551 *prepared = p->start; 552 } else { 553 if (p->start != p->end) 554 *p->end++ = '/'; 555 *prepared = p->end; 556 p->end += name_len; 557 *p->end = 0; 558 } 559 560 return 0; 561 } 562 563 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 564 { 565 int ret; 566 char *prepared; 567 568 ret = fs_path_prepare_for_add(p, name_len, &prepared); 569 if (ret < 0) 570 return ret; 571 memcpy(prepared, name, name_len); 572 573 return 0; 574 } 575 576 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) 577 { 578 return fs_path_add(p, p2->start, fs_path_len(p2)); 579 } 580 581 static int fs_path_add_from_extent_buffer(struct fs_path *p, 582 struct extent_buffer *eb, 583 unsigned long off, int len) 584 { 585 int ret; 586 char *prepared; 587 588 ret = fs_path_prepare_for_add(p, len, &prepared); 589 if (ret < 0) 590 return ret; 591 592 read_extent_buffer(eb, prepared, off, len); 593 594 return 0; 595 } 596 597 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 598 { 599 p->reversed = from->reversed; 600 fs_path_reset(p); 601 602 return fs_path_add_path(p, from); 603 } 604 605 static void fs_path_unreverse(struct fs_path *p) 606 { 607 char *tmp; 608 int len; 609 610 if (!p->reversed) 611 return; 612 613 tmp = p->start; 614 len = fs_path_len(p); 615 p->start = p->buf; 616 p->end = p->start + len; 617 memmove(p->start, tmp, len + 1); 618 p->reversed = 0; 619 } 620 621 static inline bool is_current_inode_path(const struct send_ctx *sctx, 622 const struct fs_path *path) 623 { 624 const struct fs_path *cur = &sctx->cur_inode_path; 625 626 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (unlikely(ret == 0)) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 fs_path_len((p))); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 if (unlikely(sctx->send_size != 0)) { 781 btrfs_err(sctx->send_root->fs_info, 782 "send: command header buffer not empty cmd %d offset %llu", 783 cmd, sctx->send_off); 784 return -EINVAL; 785 } 786 787 sctx->send_size += sizeof(*hdr); 788 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 789 put_unaligned_le16(cmd, &hdr->cmd); 790 791 return 0; 792 } 793 794 static int send_cmd(struct send_ctx *sctx) 795 { 796 int ret; 797 struct btrfs_cmd_header *hdr; 798 u32 crc; 799 800 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 802 put_unaligned_le32(0, &hdr->crc); 803 804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 805 put_unaligned_le32(crc, &hdr->crc); 806 807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 808 &sctx->send_off); 809 810 sctx->send_size = 0; 811 sctx->put_data = false; 812 813 return ret; 814 } 815 816 /* 817 * Sends a move instruction to user space 818 */ 819 static int send_rename(struct send_ctx *sctx, 820 struct fs_path *from, struct fs_path *to) 821 { 822 int ret; 823 824 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 825 if (ret < 0) 826 return ret; 827 828 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 830 831 ret = send_cmd(sctx); 832 833 tlv_put_failure: 834 return ret; 835 } 836 837 /* 838 * Sends a link instruction to user space 839 */ 840 static int send_link(struct send_ctx *sctx, 841 struct fs_path *path, struct fs_path *lnk) 842 { 843 int ret; 844 845 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 846 if (ret < 0) 847 return ret; 848 849 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 851 852 ret = send_cmd(sctx); 853 854 tlv_put_failure: 855 return ret; 856 } 857 858 /* 859 * Sends an unlink instruction to user space 860 */ 861 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 862 { 863 int ret; 864 865 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 866 if (ret < 0) 867 return ret; 868 869 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 870 871 ret = send_cmd(sctx); 872 873 tlv_put_failure: 874 return ret; 875 } 876 877 /* 878 * Sends a rmdir instruction to user space 879 */ 880 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 881 { 882 int ret; 883 884 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 885 if (ret < 0) 886 return ret; 887 888 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 889 890 ret = send_cmd(sctx); 891 892 tlv_put_failure: 893 return ret; 894 } 895 896 struct btrfs_inode_info { 897 u64 size; 898 u64 gen; 899 u64 mode; 900 u64 uid; 901 u64 gid; 902 u64 rdev; 903 u64 fileattr; 904 u64 nlink; 905 }; 906 907 /* 908 * Helper function to retrieve some fields from an inode item. 909 */ 910 static int get_inode_info(struct btrfs_root *root, u64 ino, 911 struct btrfs_inode_info *info) 912 { 913 int ret; 914 BTRFS_PATH_AUTO_FREE(path); 915 struct btrfs_inode_item *ii; 916 struct btrfs_key key; 917 918 path = alloc_path_for_send(); 919 if (!path) 920 return -ENOMEM; 921 922 key.objectid = ino; 923 key.type = BTRFS_INODE_ITEM_KEY; 924 key.offset = 0; 925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 926 if (ret) { 927 if (ret > 0) 928 ret = -ENOENT; 929 return ret; 930 } 931 932 if (!info) 933 return 0; 934 935 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 936 struct btrfs_inode_item); 937 info->size = btrfs_inode_size(path->nodes[0], ii); 938 info->gen = btrfs_inode_generation(path->nodes[0], ii); 939 info->mode = btrfs_inode_mode(path->nodes[0], ii); 940 info->uid = btrfs_inode_uid(path->nodes[0], ii); 941 info->gid = btrfs_inode_gid(path->nodes[0], ii); 942 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 943 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 944 /* 945 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 946 * otherwise logically split to 32/32 parts. 947 */ 948 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 949 950 return 0; 951 } 952 953 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 954 { 955 int ret; 956 struct btrfs_inode_info info = { 0 }; 957 958 ASSERT(gen); 959 960 ret = get_inode_info(root, ino, &info); 961 *gen = info.gen; 962 return ret; 963 } 964 965 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 966 967 /* 968 * Helper function to iterate the entries in ONE btrfs_inode_ref or 969 * btrfs_inode_extref. 970 * The iterate callback may return a non zero value to stop iteration. This can 971 * be a negative value for error codes or 1 to simply stop it. 972 * 973 * path must point to the INODE_REF or INODE_EXTREF when called. 974 */ 975 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 976 struct btrfs_key *found_key, bool resolve, 977 iterate_inode_ref_t iterate, void *ctx) 978 { 979 struct extent_buffer *eb = path->nodes[0]; 980 struct btrfs_inode_ref *iref; 981 struct btrfs_inode_extref *extref; 982 BTRFS_PATH_AUTO_FREE(tmp_path); 983 struct fs_path *p; 984 u32 cur = 0; 985 u32 total; 986 int slot = path->slots[0]; 987 u32 name_len; 988 char *start; 989 int ret = 0; 990 u64 dir; 991 unsigned long name_off; 992 unsigned long elem_size; 993 unsigned long ptr; 994 995 p = fs_path_alloc_reversed(); 996 if (!p) 997 return -ENOMEM; 998 999 tmp_path = alloc_path_for_send(); 1000 if (!tmp_path) { 1001 fs_path_free(p); 1002 return -ENOMEM; 1003 } 1004 1005 1006 if (found_key->type == BTRFS_INODE_REF_KEY) { 1007 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1008 struct btrfs_inode_ref); 1009 total = btrfs_item_size(eb, slot); 1010 elem_size = sizeof(*iref); 1011 } else { 1012 ptr = btrfs_item_ptr_offset(eb, slot); 1013 total = btrfs_item_size(eb, slot); 1014 elem_size = sizeof(*extref); 1015 } 1016 1017 while (cur < total) { 1018 fs_path_reset(p); 1019 1020 if (found_key->type == BTRFS_INODE_REF_KEY) { 1021 iref = (struct btrfs_inode_ref *)(ptr + cur); 1022 name_len = btrfs_inode_ref_name_len(eb, iref); 1023 name_off = (unsigned long)(iref + 1); 1024 dir = found_key->offset; 1025 } else { 1026 extref = (struct btrfs_inode_extref *)(ptr + cur); 1027 name_len = btrfs_inode_extref_name_len(eb, extref); 1028 name_off = (unsigned long)&extref->name; 1029 dir = btrfs_inode_extref_parent(eb, extref); 1030 } 1031 1032 if (resolve) { 1033 start = btrfs_ref_to_path(root, tmp_path, name_len, 1034 name_off, eb, dir, 1035 p->buf, p->buf_len); 1036 if (IS_ERR(start)) { 1037 ret = PTR_ERR(start); 1038 goto out; 1039 } 1040 if (start < p->buf) { 1041 /* overflow , try again with larger buffer */ 1042 ret = fs_path_ensure_buf(p, 1043 p->buf_len + p->buf - start); 1044 if (ret < 0) 1045 goto out; 1046 start = btrfs_ref_to_path(root, tmp_path, 1047 name_len, name_off, 1048 eb, dir, 1049 p->buf, p->buf_len); 1050 if (IS_ERR(start)) { 1051 ret = PTR_ERR(start); 1052 goto out; 1053 } 1054 if (unlikely(start < p->buf)) { 1055 btrfs_err(root->fs_info, 1056 "send: path ref buffer underflow for key (%llu %u %llu)", 1057 found_key->objectid, 1058 found_key->type, 1059 found_key->offset); 1060 ret = -EINVAL; 1061 goto out; 1062 } 1063 } 1064 p->start = start; 1065 } else { 1066 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1067 name_len); 1068 if (ret < 0) 1069 goto out; 1070 } 1071 1072 cur += elem_size + name_len; 1073 ret = iterate(dir, p, ctx); 1074 if (ret) 1075 goto out; 1076 } 1077 1078 out: 1079 fs_path_free(p); 1080 return ret; 1081 } 1082 1083 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1084 const char *name, int name_len, 1085 const char *data, int data_len, 1086 void *ctx); 1087 1088 /* 1089 * Helper function to iterate the entries in ONE btrfs_dir_item. 1090 * The iterate callback may return a non zero value to stop iteration. This can 1091 * be a negative value for error codes or 1 to simply stop it. 1092 * 1093 * path must point to the dir item when called. 1094 */ 1095 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1096 iterate_dir_item_t iterate, void *ctx) 1097 { 1098 int ret = 0; 1099 struct extent_buffer *eb; 1100 struct btrfs_dir_item *di; 1101 struct btrfs_key di_key; 1102 char *buf = NULL; 1103 int buf_len; 1104 u32 name_len; 1105 u32 data_len; 1106 u32 cur; 1107 u32 len; 1108 u32 total; 1109 int slot; 1110 int num; 1111 1112 /* 1113 * Start with a small buffer (1 page). If later we end up needing more 1114 * space, which can happen for xattrs on a fs with a leaf size greater 1115 * than the page size, attempt to increase the buffer. Typically xattr 1116 * values are small. 1117 */ 1118 buf_len = PATH_MAX; 1119 buf = kmalloc(buf_len, GFP_KERNEL); 1120 if (!buf) { 1121 ret = -ENOMEM; 1122 goto out; 1123 } 1124 1125 eb = path->nodes[0]; 1126 slot = path->slots[0]; 1127 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1128 cur = 0; 1129 len = 0; 1130 total = btrfs_item_size(eb, slot); 1131 1132 num = 0; 1133 while (cur < total) { 1134 name_len = btrfs_dir_name_len(eb, di); 1135 data_len = btrfs_dir_data_len(eb, di); 1136 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1137 1138 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1139 if (name_len > XATTR_NAME_MAX) { 1140 ret = -ENAMETOOLONG; 1141 goto out; 1142 } 1143 if (name_len + data_len > 1144 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1145 ret = -E2BIG; 1146 goto out; 1147 } 1148 } else { 1149 /* 1150 * Path too long 1151 */ 1152 if (name_len + data_len > PATH_MAX) { 1153 ret = -ENAMETOOLONG; 1154 goto out; 1155 } 1156 } 1157 1158 if (name_len + data_len > buf_len) { 1159 buf_len = name_len + data_len; 1160 if (is_vmalloc_addr(buf)) { 1161 vfree(buf); 1162 buf = NULL; 1163 } else { 1164 char *tmp = krealloc(buf, buf_len, 1165 GFP_KERNEL | __GFP_NOWARN); 1166 1167 if (!tmp) 1168 kfree(buf); 1169 buf = tmp; 1170 } 1171 if (!buf) { 1172 buf = kvmalloc(buf_len, GFP_KERNEL); 1173 if (!buf) { 1174 ret = -ENOMEM; 1175 goto out; 1176 } 1177 } 1178 } 1179 1180 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1181 name_len + data_len); 1182 1183 len = sizeof(*di) + name_len + data_len; 1184 di = (struct btrfs_dir_item *)((char *)di + len); 1185 cur += len; 1186 1187 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1188 data_len, ctx); 1189 if (ret < 0) 1190 goto out; 1191 if (ret) { 1192 ret = 0; 1193 goto out; 1194 } 1195 1196 num++; 1197 } 1198 1199 out: 1200 kvfree(buf); 1201 return ret; 1202 } 1203 1204 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1205 { 1206 int ret; 1207 struct fs_path *pt = ctx; 1208 1209 ret = fs_path_copy(pt, p); 1210 if (ret < 0) 1211 return ret; 1212 1213 /* we want the first only */ 1214 return 1; 1215 } 1216 1217 /* 1218 * Retrieve the first path of an inode. If an inode has more then one 1219 * ref/hardlink, this is ignored. 1220 */ 1221 static int get_inode_path(struct btrfs_root *root, 1222 u64 ino, struct fs_path *path) 1223 { 1224 int ret; 1225 struct btrfs_key key, found_key; 1226 BTRFS_PATH_AUTO_FREE(p); 1227 1228 p = alloc_path_for_send(); 1229 if (!p) 1230 return -ENOMEM; 1231 1232 fs_path_reset(path); 1233 1234 key.objectid = ino; 1235 key.type = BTRFS_INODE_REF_KEY; 1236 key.offset = 0; 1237 1238 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1239 if (ret < 0) 1240 return ret; 1241 if (ret) 1242 return 1; 1243 1244 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1245 if (found_key.objectid != ino || 1246 (found_key.type != BTRFS_INODE_REF_KEY && 1247 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1248 return -ENOENT; 1249 1250 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path); 1251 if (ret < 0) 1252 return ret; 1253 return 0; 1254 } 1255 1256 struct backref_ctx { 1257 struct send_ctx *sctx; 1258 1259 /* number of total found references */ 1260 u64 found; 1261 1262 /* 1263 * used for clones found in send_root. clones found behind cur_objectid 1264 * and cur_offset are not considered as allowed clones. 1265 */ 1266 u64 cur_objectid; 1267 u64 cur_offset; 1268 1269 /* may be truncated in case it's the last extent in a file */ 1270 u64 extent_len; 1271 1272 /* The bytenr the file extent item we are processing refers to. */ 1273 u64 bytenr; 1274 /* The owner (root id) of the data backref for the current extent. */ 1275 u64 backref_owner; 1276 /* The offset of the data backref for the current extent. */ 1277 u64 backref_offset; 1278 }; 1279 1280 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1281 { 1282 u64 root = (u64)(uintptr_t)key; 1283 const struct clone_root *cr = elt; 1284 1285 if (root < btrfs_root_id(cr->root)) 1286 return -1; 1287 if (root > btrfs_root_id(cr->root)) 1288 return 1; 1289 return 0; 1290 } 1291 1292 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1293 { 1294 const struct clone_root *cr1 = e1; 1295 const struct clone_root *cr2 = e2; 1296 1297 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1298 return -1; 1299 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1300 return 1; 1301 return 0; 1302 } 1303 1304 /* 1305 * Called for every backref that is found for the current extent. 1306 * Results are collected in sctx->clone_roots->ino/offset. 1307 */ 1308 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1309 void *ctx_) 1310 { 1311 struct backref_ctx *bctx = ctx_; 1312 struct clone_root *clone_root; 1313 1314 /* First check if the root is in the list of accepted clone sources */ 1315 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1316 bctx->sctx->clone_roots_cnt, 1317 sizeof(struct clone_root), 1318 __clone_root_cmp_bsearch); 1319 if (!clone_root) 1320 return 0; 1321 1322 /* This is our own reference, bail out as we can't clone from it. */ 1323 if (clone_root->root == bctx->sctx->send_root && 1324 ino == bctx->cur_objectid && 1325 offset == bctx->cur_offset) 1326 return 0; 1327 1328 /* 1329 * Make sure we don't consider clones from send_root that are 1330 * behind the current inode/offset. 1331 */ 1332 if (clone_root->root == bctx->sctx->send_root) { 1333 /* 1334 * If the source inode was not yet processed we can't issue a 1335 * clone operation, as the source extent does not exist yet at 1336 * the destination of the stream. 1337 */ 1338 if (ino > bctx->cur_objectid) 1339 return 0; 1340 /* 1341 * We clone from the inode currently being sent as long as the 1342 * source extent is already processed, otherwise we could try 1343 * to clone from an extent that does not exist yet at the 1344 * destination of the stream. 1345 */ 1346 if (ino == bctx->cur_objectid && 1347 offset + bctx->extent_len > 1348 bctx->sctx->cur_inode_next_write_offset) 1349 return 0; 1350 } 1351 1352 bctx->found++; 1353 clone_root->found_ref = true; 1354 1355 /* 1356 * If the given backref refers to a file extent item with a larger 1357 * number of bytes than what we found before, use the new one so that 1358 * we clone more optimally and end up doing less writes and getting 1359 * less exclusive, non-shared extents at the destination. 1360 */ 1361 if (num_bytes > clone_root->num_bytes) { 1362 clone_root->ino = ino; 1363 clone_root->offset = offset; 1364 clone_root->num_bytes = num_bytes; 1365 1366 /* 1367 * Found a perfect candidate, so there's no need to continue 1368 * backref walking. 1369 */ 1370 if (num_bytes >= bctx->extent_len) 1371 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1378 const u64 **root_ids_ret, int *root_count_ret) 1379 { 1380 struct backref_ctx *bctx = ctx; 1381 struct send_ctx *sctx = bctx->sctx; 1382 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1383 const u64 key = leaf_bytenr >> fs_info->nodesize_bits; 1384 struct btrfs_lru_cache_entry *raw_entry; 1385 struct backref_cache_entry *entry; 1386 1387 if (sctx->backref_cache.size == 0) 1388 return false; 1389 1390 /* 1391 * If relocation happened since we first filled the cache, then we must 1392 * empty the cache and can not use it, because even though we operate on 1393 * read-only roots, their leaves and nodes may have been reallocated and 1394 * now be used for different nodes/leaves of the same tree or some other 1395 * tree. 1396 * 1397 * We are called from iterate_extent_inodes() while either holding a 1398 * transaction handle or holding fs_info->commit_root_sem, so no need 1399 * to take any lock here. 1400 */ 1401 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1402 btrfs_lru_cache_clear(&sctx->backref_cache); 1403 return false; 1404 } 1405 1406 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1407 if (!raw_entry) 1408 return false; 1409 1410 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1411 *root_ids_ret = entry->root_ids; 1412 *root_count_ret = entry->num_roots; 1413 1414 return true; 1415 } 1416 1417 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1418 void *ctx) 1419 { 1420 struct backref_ctx *bctx = ctx; 1421 struct send_ctx *sctx = bctx->sctx; 1422 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1423 struct backref_cache_entry *new_entry; 1424 struct ulist_iterator uiter; 1425 struct ulist_node *node; 1426 int ret; 1427 1428 /* 1429 * We're called while holding a transaction handle or while holding 1430 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1431 * NOFS allocation. 1432 */ 1433 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1434 /* No worries, cache is optional. */ 1435 if (!new_entry) 1436 return; 1437 1438 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits; 1439 new_entry->entry.gen = 0; 1440 new_entry->num_roots = 0; 1441 ULIST_ITER_INIT(&uiter); 1442 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1443 const u64 root_id = node->val; 1444 struct clone_root *root; 1445 1446 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1447 sctx->clone_roots_cnt, sizeof(struct clone_root), 1448 __clone_root_cmp_bsearch); 1449 if (!root) 1450 continue; 1451 1452 /* Too many roots, just exit, no worries as caching is optional. */ 1453 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1454 kfree(new_entry); 1455 return; 1456 } 1457 1458 new_entry->root_ids[new_entry->num_roots] = root_id; 1459 new_entry->num_roots++; 1460 } 1461 1462 /* 1463 * We may have not added any roots to the new cache entry, which means 1464 * none of the roots is part of the list of roots from which we are 1465 * allowed to clone. Cache the new entry as it's still useful to avoid 1466 * backref walking to determine which roots have a path to the leaf. 1467 * 1468 * Also use GFP_NOFS because we're called while holding a transaction 1469 * handle or while holding fs_info->commit_root_sem. 1470 */ 1471 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1472 GFP_NOFS); 1473 ASSERT(ret == 0 || ret == -ENOMEM); 1474 if (ret) { 1475 /* Caching is optional, no worries. */ 1476 kfree(new_entry); 1477 return; 1478 } 1479 1480 /* 1481 * We are called from iterate_extent_inodes() while either holding a 1482 * transaction handle or holding fs_info->commit_root_sem, so no need 1483 * to take any lock here. 1484 */ 1485 if (sctx->backref_cache.size == 1) 1486 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1487 } 1488 1489 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1490 const struct extent_buffer *leaf, void *ctx) 1491 { 1492 const u64 refs = btrfs_extent_refs(leaf, ei); 1493 const struct backref_ctx *bctx = ctx; 1494 const struct send_ctx *sctx = bctx->sctx; 1495 1496 if (bytenr == bctx->bytenr) { 1497 const u64 flags = btrfs_extent_flags(leaf, ei); 1498 1499 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1500 return -EUCLEAN; 1501 1502 /* 1503 * If we have only one reference and only the send root as a 1504 * clone source - meaning no clone roots were given in the 1505 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1506 * it's our reference and there's no point in doing backref 1507 * walking which is expensive, so exit early. 1508 */ 1509 if (refs == 1 && sctx->clone_roots_cnt == 1) 1510 return -ENOENT; 1511 } 1512 1513 /* 1514 * Backreference walking (iterate_extent_inodes() below) is currently 1515 * too expensive when an extent has a large number of references, both 1516 * in time spent and used memory. So for now just fallback to write 1517 * operations instead of clone operations when an extent has more than 1518 * a certain amount of references. 1519 */ 1520 if (refs > SEND_MAX_EXTENT_REFS) 1521 return -ENOENT; 1522 1523 return 0; 1524 } 1525 1526 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1527 { 1528 const struct backref_ctx *bctx = ctx; 1529 1530 if (ino == bctx->cur_objectid && 1531 root == bctx->backref_owner && 1532 offset == bctx->backref_offset) 1533 return true; 1534 1535 return false; 1536 } 1537 1538 /* 1539 * Given an inode, offset and extent item, it finds a good clone for a clone 1540 * instruction. Returns -ENOENT when none could be found. The function makes 1541 * sure that the returned clone is usable at the point where sending is at the 1542 * moment. This means, that no clones are accepted which lie behind the current 1543 * inode+offset. 1544 * 1545 * path must point to the extent item when called. 1546 */ 1547 static int find_extent_clone(struct send_ctx *sctx, 1548 struct btrfs_path *path, 1549 u64 ino, u64 data_offset, 1550 u64 ino_size, 1551 struct clone_root **found) 1552 { 1553 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1554 int ret; 1555 int extent_type; 1556 u64 disk_byte; 1557 u64 num_bytes; 1558 struct btrfs_file_extent_item *fi; 1559 struct extent_buffer *eb = path->nodes[0]; 1560 struct backref_ctx backref_ctx = { 0 }; 1561 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1562 struct clone_root *cur_clone_root; 1563 int compressed; 1564 u32 i; 1565 1566 /* 1567 * With fallocate we can get prealloc extents beyond the inode's i_size, 1568 * so we don't do anything here because clone operations can not clone 1569 * to a range beyond i_size without increasing the i_size of the 1570 * destination inode. 1571 */ 1572 if (data_offset >= ino_size) 1573 return 0; 1574 1575 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1576 extent_type = btrfs_file_extent_type(eb, fi); 1577 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1578 return -ENOENT; 1579 1580 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1581 if (disk_byte == 0) 1582 return -ENOENT; 1583 1584 compressed = btrfs_file_extent_compression(eb, fi); 1585 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1586 1587 /* 1588 * Setup the clone roots. 1589 */ 1590 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1591 cur_clone_root = sctx->clone_roots + i; 1592 cur_clone_root->ino = (u64)-1; 1593 cur_clone_root->offset = 0; 1594 cur_clone_root->num_bytes = 0; 1595 cur_clone_root->found_ref = false; 1596 } 1597 1598 backref_ctx.sctx = sctx; 1599 backref_ctx.cur_objectid = ino; 1600 backref_ctx.cur_offset = data_offset; 1601 backref_ctx.bytenr = disk_byte; 1602 /* 1603 * Use the header owner and not the send root's id, because in case of a 1604 * snapshot we can have shared subtrees. 1605 */ 1606 backref_ctx.backref_owner = btrfs_header_owner(eb); 1607 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1608 1609 /* 1610 * The last extent of a file may be too large due to page alignment. 1611 * We need to adjust extent_len in this case so that the checks in 1612 * iterate_backrefs() work. 1613 */ 1614 if (data_offset + num_bytes >= ino_size) 1615 backref_ctx.extent_len = ino_size - data_offset; 1616 else 1617 backref_ctx.extent_len = num_bytes; 1618 1619 /* 1620 * Now collect all backrefs. 1621 */ 1622 backref_walk_ctx.bytenr = disk_byte; 1623 if (compressed == BTRFS_COMPRESS_NONE) 1624 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1625 backref_walk_ctx.fs_info = fs_info; 1626 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1627 backref_walk_ctx.cache_store = store_backref_cache; 1628 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1629 backref_walk_ctx.check_extent_item = check_extent_item; 1630 backref_walk_ctx.user_ctx = &backref_ctx; 1631 1632 /* 1633 * If have a single clone root, then it's the send root and we can tell 1634 * the backref walking code to skip our own backref and not resolve it, 1635 * since we can not use it for cloning - the source and destination 1636 * ranges can't overlap and in case the leaf is shared through a subtree 1637 * due to snapshots, we can't use those other roots since they are not 1638 * in the list of clone roots. 1639 */ 1640 if (sctx->clone_roots_cnt == 1) 1641 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1642 1643 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1644 &backref_ctx); 1645 if (ret < 0) 1646 return ret; 1647 1648 down_read(&fs_info->commit_root_sem); 1649 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1650 /* 1651 * A transaction commit for a transaction in which block group 1652 * relocation was done just happened. 1653 * The disk_bytenr of the file extent item we processed is 1654 * possibly stale, referring to the extent's location before 1655 * relocation. So act as if we haven't found any clone sources 1656 * and fallback to write commands, which will read the correct 1657 * data from the new extent location. Otherwise we will fail 1658 * below because we haven't found our own back reference or we 1659 * could be getting incorrect sources in case the old extent 1660 * was already reallocated after the relocation. 1661 */ 1662 up_read(&fs_info->commit_root_sem); 1663 return -ENOENT; 1664 } 1665 up_read(&fs_info->commit_root_sem); 1666 1667 if (!backref_ctx.found) 1668 return -ENOENT; 1669 1670 cur_clone_root = NULL; 1671 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1672 struct clone_root *clone_root = &sctx->clone_roots[i]; 1673 1674 if (!clone_root->found_ref) 1675 continue; 1676 1677 /* 1678 * Choose the root from which we can clone more bytes, to 1679 * minimize write operations and therefore have more extent 1680 * sharing at the destination (the same as in the source). 1681 */ 1682 if (!cur_clone_root || 1683 clone_root->num_bytes > cur_clone_root->num_bytes) { 1684 cur_clone_root = clone_root; 1685 1686 /* 1687 * We found an optimal clone candidate (any inode from 1688 * any root is fine), so we're done. 1689 */ 1690 if (clone_root->num_bytes >= backref_ctx.extent_len) 1691 break; 1692 } 1693 } 1694 1695 if (cur_clone_root) { 1696 *found = cur_clone_root; 1697 ret = 0; 1698 } else { 1699 ret = -ENOENT; 1700 } 1701 1702 return ret; 1703 } 1704 1705 static int read_symlink(struct btrfs_root *root, 1706 u64 ino, 1707 struct fs_path *dest) 1708 { 1709 int ret; 1710 BTRFS_PATH_AUTO_FREE(path); 1711 struct btrfs_key key; 1712 struct btrfs_file_extent_item *ei; 1713 u8 type; 1714 u8 compression; 1715 unsigned long off; 1716 int len; 1717 1718 path = alloc_path_for_send(); 1719 if (!path) 1720 return -ENOMEM; 1721 1722 key.objectid = ino; 1723 key.type = BTRFS_EXTENT_DATA_KEY; 1724 key.offset = 0; 1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1726 if (ret < 0) 1727 return ret; 1728 if (unlikely(ret)) { 1729 /* 1730 * An empty symlink inode. Can happen in rare error paths when 1731 * creating a symlink (transaction committed before the inode 1732 * eviction handler removed the symlink inode items and a crash 1733 * happened in between or the subvol was snapshotted in between). 1734 * Print an informative message to dmesg/syslog so that the user 1735 * can delete the symlink. 1736 */ 1737 btrfs_err(root->fs_info, 1738 "Found empty symlink inode %llu at root %llu", 1739 ino, btrfs_root_id(root)); 1740 return -EIO; 1741 } 1742 1743 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1744 struct btrfs_file_extent_item); 1745 type = btrfs_file_extent_type(path->nodes[0], ei); 1746 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1747 ret = -EUCLEAN; 1748 btrfs_crit(root->fs_info, 1749 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1750 ino, btrfs_root_id(root), type); 1751 return ret; 1752 } 1753 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1754 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1755 ret = -EUCLEAN; 1756 btrfs_crit(root->fs_info, 1757 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1758 ino, btrfs_root_id(root), compression); 1759 return ret; 1760 } 1761 1762 off = btrfs_file_extent_inline_start(ei); 1763 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1764 1765 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1766 } 1767 1768 /* 1769 * Helper function to generate a file name that is unique in the root of 1770 * send_root and parent_root. This is used to generate names for orphan inodes. 1771 */ 1772 static int gen_unique_name(struct send_ctx *sctx, 1773 u64 ino, u64 gen, 1774 struct fs_path *dest) 1775 { 1776 BTRFS_PATH_AUTO_FREE(path); 1777 struct btrfs_dir_item *di; 1778 char tmp[64]; 1779 int len; 1780 u64 idx = 0; 1781 1782 path = alloc_path_for_send(); 1783 if (!path) 1784 return -ENOMEM; 1785 1786 while (1) { 1787 struct fscrypt_str tmp_name; 1788 1789 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1790 ino, gen, idx); 1791 ASSERT(len < sizeof(tmp)); 1792 tmp_name.name = tmp; 1793 tmp_name.len = len; 1794 1795 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1796 path, BTRFS_FIRST_FREE_OBJECTID, 1797 &tmp_name, 0); 1798 btrfs_release_path(path); 1799 if (IS_ERR(di)) 1800 return PTR_ERR(di); 1801 1802 if (di) { 1803 /* not unique, try again */ 1804 idx++; 1805 continue; 1806 } 1807 1808 if (!sctx->parent_root) { 1809 /* unique */ 1810 break; 1811 } 1812 1813 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1814 path, BTRFS_FIRST_FREE_OBJECTID, 1815 &tmp_name, 0); 1816 btrfs_release_path(path); 1817 if (IS_ERR(di)) 1818 return PTR_ERR(di); 1819 1820 if (di) { 1821 /* not unique, try again */ 1822 idx++; 1823 continue; 1824 } 1825 /* unique */ 1826 break; 1827 } 1828 1829 return fs_path_add(dest, tmp, len); 1830 } 1831 1832 enum inode_state { 1833 inode_state_no_change, 1834 inode_state_will_create, 1835 inode_state_did_create, 1836 inode_state_will_delete, 1837 inode_state_did_delete, 1838 }; 1839 1840 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1841 u64 *send_gen, u64 *parent_gen) 1842 { 1843 int ret; 1844 int left_ret; 1845 int right_ret; 1846 u64 left_gen; 1847 u64 right_gen = 0; 1848 struct btrfs_inode_info info; 1849 1850 ret = get_inode_info(sctx->send_root, ino, &info); 1851 if (ret < 0 && ret != -ENOENT) 1852 return ret; 1853 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1854 left_gen = info.gen; 1855 if (send_gen) 1856 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1857 1858 if (!sctx->parent_root) { 1859 right_ret = -ENOENT; 1860 } else { 1861 ret = get_inode_info(sctx->parent_root, ino, &info); 1862 if (ret < 0 && ret != -ENOENT) 1863 return ret; 1864 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1865 right_gen = info.gen; 1866 if (parent_gen) 1867 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1868 } 1869 1870 if (!left_ret && !right_ret) { 1871 if (left_gen == gen && right_gen == gen) { 1872 ret = inode_state_no_change; 1873 } else if (left_gen == gen) { 1874 if (ino < sctx->send_progress) 1875 ret = inode_state_did_create; 1876 else 1877 ret = inode_state_will_create; 1878 } else if (right_gen == gen) { 1879 if (ino < sctx->send_progress) 1880 ret = inode_state_did_delete; 1881 else 1882 ret = inode_state_will_delete; 1883 } else { 1884 ret = -ENOENT; 1885 } 1886 } else if (!left_ret) { 1887 if (left_gen == gen) { 1888 if (ino < sctx->send_progress) 1889 ret = inode_state_did_create; 1890 else 1891 ret = inode_state_will_create; 1892 } else { 1893 ret = -ENOENT; 1894 } 1895 } else if (!right_ret) { 1896 if (right_gen == gen) { 1897 if (ino < sctx->send_progress) 1898 ret = inode_state_did_delete; 1899 else 1900 ret = inode_state_will_delete; 1901 } else { 1902 ret = -ENOENT; 1903 } 1904 } else { 1905 ret = -ENOENT; 1906 } 1907 1908 return ret; 1909 } 1910 1911 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1912 u64 *send_gen, u64 *parent_gen) 1913 { 1914 int ret; 1915 1916 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1917 return 1; 1918 1919 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1920 if (ret < 0) 1921 return ret; 1922 1923 if (ret == inode_state_no_change || 1924 ret == inode_state_did_create || 1925 ret == inode_state_will_delete) 1926 return 1; 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * Helper function to lookup a dir item in a dir. 1933 */ 1934 static int lookup_dir_item_inode(struct btrfs_root *root, 1935 u64 dir, const char *name, int name_len, 1936 u64 *found_inode) 1937 { 1938 int ret = 0; 1939 struct btrfs_dir_item *di; 1940 struct btrfs_key key; 1941 BTRFS_PATH_AUTO_FREE(path); 1942 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1943 1944 path = alloc_path_for_send(); 1945 if (!path) 1946 return -ENOMEM; 1947 1948 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1949 if (IS_ERR_OR_NULL(di)) 1950 return di ? PTR_ERR(di) : -ENOENT; 1951 1952 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1953 if (key.type == BTRFS_ROOT_ITEM_KEY) 1954 return -ENOENT; 1955 1956 *found_inode = key.objectid; 1957 1958 return ret; 1959 } 1960 1961 /* 1962 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1963 * generation of the parent dir and the name of the dir entry. 1964 */ 1965 static int get_first_ref(struct btrfs_root *root, u64 ino, 1966 u64 *dir, u64 *dir_gen, struct fs_path *name) 1967 { 1968 int ret; 1969 struct btrfs_key key; 1970 struct btrfs_key found_key; 1971 BTRFS_PATH_AUTO_FREE(path); 1972 int len; 1973 u64 parent_dir; 1974 1975 path = alloc_path_for_send(); 1976 if (!path) 1977 return -ENOMEM; 1978 1979 key.objectid = ino; 1980 key.type = BTRFS_INODE_REF_KEY; 1981 key.offset = 0; 1982 1983 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1984 if (ret < 0) 1985 return ret; 1986 if (!ret) 1987 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1988 path->slots[0]); 1989 if (ret || found_key.objectid != ino || 1990 (found_key.type != BTRFS_INODE_REF_KEY && 1991 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1992 return -ENOENT; 1993 1994 if (found_key.type == BTRFS_INODE_REF_KEY) { 1995 struct btrfs_inode_ref *iref; 1996 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1997 struct btrfs_inode_ref); 1998 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1999 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2000 (unsigned long)(iref + 1), 2001 len); 2002 parent_dir = found_key.offset; 2003 } else { 2004 struct btrfs_inode_extref *extref; 2005 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2006 struct btrfs_inode_extref); 2007 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2008 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2009 (unsigned long)&extref->name, len); 2010 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2011 } 2012 if (ret < 0) 2013 return ret; 2014 btrfs_release_path(path); 2015 2016 if (dir_gen) { 2017 ret = get_inode_gen(root, parent_dir, dir_gen); 2018 if (ret < 0) 2019 return ret; 2020 } 2021 2022 *dir = parent_dir; 2023 2024 return ret; 2025 } 2026 2027 static int is_first_ref(struct btrfs_root *root, 2028 u64 ino, u64 dir, 2029 const char *name, int name_len) 2030 { 2031 int ret; 2032 struct fs_path *tmp_name; 2033 u64 tmp_dir; 2034 2035 tmp_name = fs_path_alloc(); 2036 if (!tmp_name) 2037 return -ENOMEM; 2038 2039 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2040 if (ret < 0) 2041 goto out; 2042 2043 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2044 ret = 0; 2045 goto out; 2046 } 2047 2048 ret = !memcmp(tmp_name->start, name, name_len); 2049 2050 out: 2051 fs_path_free(tmp_name); 2052 return ret; 2053 } 2054 2055 /* 2056 * Used by process_recorded_refs to determine if a new ref would overwrite an 2057 * already existing ref. In case it detects an overwrite, it returns the 2058 * inode/gen in who_ino/who_gen. 2059 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2060 * to make sure later references to the overwritten inode are possible. 2061 * Orphanizing is however only required for the first ref of an inode. 2062 * process_recorded_refs does an additional is_first_ref check to see if 2063 * orphanizing is really required. 2064 */ 2065 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2066 const char *name, int name_len, 2067 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2068 { 2069 int ret; 2070 u64 parent_root_dir_gen; 2071 u64 other_inode = 0; 2072 struct btrfs_inode_info info; 2073 2074 if (!sctx->parent_root) 2075 return 0; 2076 2077 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2078 if (ret <= 0) 2079 return 0; 2080 2081 /* 2082 * If we have a parent root we need to verify that the parent dir was 2083 * not deleted and then re-created, if it was then we have no overwrite 2084 * and we can just unlink this entry. 2085 * 2086 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2087 * parent root. 2088 */ 2089 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2090 parent_root_dir_gen != dir_gen) 2091 return 0; 2092 2093 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2094 &other_inode); 2095 if (ret == -ENOENT) 2096 return 0; 2097 else if (ret < 0) 2098 return ret; 2099 2100 /* 2101 * Check if the overwritten ref was already processed. If yes, the ref 2102 * was already unlinked/moved, so we can safely assume that we will not 2103 * overwrite anything at this point in time. 2104 */ 2105 if (other_inode > sctx->send_progress || 2106 is_waiting_for_move(sctx, other_inode)) { 2107 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2108 if (ret < 0) 2109 return ret; 2110 2111 *who_ino = other_inode; 2112 *who_gen = info.gen; 2113 *who_mode = info.mode; 2114 return 1; 2115 } 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * Checks if the ref was overwritten by an already processed inode. This is 2122 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2123 * thus the orphan name needs be used. 2124 * process_recorded_refs also uses it to avoid unlinking of refs that were 2125 * overwritten. 2126 */ 2127 static int did_overwrite_ref(struct send_ctx *sctx, 2128 u64 dir, u64 dir_gen, 2129 u64 ino, u64 ino_gen, 2130 const char *name, int name_len) 2131 { 2132 int ret; 2133 u64 ow_inode; 2134 u64 ow_gen = 0; 2135 u64 send_root_dir_gen; 2136 2137 if (!sctx->parent_root) 2138 return 0; 2139 2140 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2141 if (ret <= 0) 2142 return ret; 2143 2144 /* 2145 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2146 * send root. 2147 */ 2148 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2149 return 0; 2150 2151 /* check if the ref was overwritten by another ref */ 2152 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2153 &ow_inode); 2154 if (ret == -ENOENT) { 2155 /* was never and will never be overwritten */ 2156 return 0; 2157 } else if (ret < 0) { 2158 return ret; 2159 } 2160 2161 if (ow_inode == ino) { 2162 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2163 if (ret < 0) 2164 return ret; 2165 2166 /* It's the same inode, so no overwrite happened. */ 2167 if (ow_gen == ino_gen) 2168 return 0; 2169 } 2170 2171 /* 2172 * We know that it is or will be overwritten. Check this now. 2173 * The current inode being processed might have been the one that caused 2174 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2175 * the current inode being processed. 2176 */ 2177 if (ow_inode < sctx->send_progress) 2178 return 1; 2179 2180 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2181 if (ow_gen == 0) { 2182 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2183 if (ret < 0) 2184 return ret; 2185 } 2186 if (ow_gen == sctx->cur_inode_gen) 2187 return 1; 2188 } 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2195 * that got overwritten. This is used by process_recorded_refs to determine 2196 * if it has to use the path as returned by get_cur_path or the orphan name. 2197 */ 2198 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2199 { 2200 int ret = 0; 2201 struct fs_path *name = NULL; 2202 u64 dir; 2203 u64 dir_gen; 2204 2205 if (!sctx->parent_root) 2206 goto out; 2207 2208 name = fs_path_alloc(); 2209 if (!name) 2210 return -ENOMEM; 2211 2212 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2213 if (ret < 0) 2214 goto out; 2215 2216 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2217 name->start, fs_path_len(name)); 2218 2219 out: 2220 fs_path_free(name); 2221 return ret; 2222 } 2223 2224 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2225 u64 ino, u64 gen) 2226 { 2227 struct btrfs_lru_cache_entry *entry; 2228 2229 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2230 if (!entry) 2231 return NULL; 2232 2233 return container_of(entry, struct name_cache_entry, entry); 2234 } 2235 2236 /* 2237 * Used by get_cur_path for each ref up to the root. 2238 * Returns 0 if it succeeded. 2239 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2240 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2241 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2242 * Returns <0 in case of error. 2243 */ 2244 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2245 u64 ino, u64 gen, 2246 u64 *parent_ino, 2247 u64 *parent_gen, 2248 struct fs_path *dest) 2249 { 2250 int ret; 2251 int nce_ret; 2252 struct name_cache_entry *nce; 2253 2254 /* 2255 * First check if we already did a call to this function with the same 2256 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2257 * return the cached result. 2258 */ 2259 nce = name_cache_search(sctx, ino, gen); 2260 if (nce) { 2261 if (ino < sctx->send_progress && nce->need_later_update) { 2262 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2263 nce = NULL; 2264 } else { 2265 *parent_ino = nce->parent_ino; 2266 *parent_gen = nce->parent_gen; 2267 ret = fs_path_add(dest, nce->name, nce->name_len); 2268 if (ret < 0) 2269 return ret; 2270 return nce->ret; 2271 } 2272 } 2273 2274 /* 2275 * If the inode is not existent yet, add the orphan name and return 1. 2276 * This should only happen for the parent dir that we determine in 2277 * record_new_ref_if_needed(). 2278 */ 2279 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2280 if (ret < 0) 2281 return ret; 2282 2283 if (!ret) { 2284 ret = gen_unique_name(sctx, ino, gen, dest); 2285 if (ret < 0) 2286 return ret; 2287 ret = 1; 2288 goto out_cache; 2289 } 2290 2291 /* 2292 * Depending on whether the inode was already processed or not, use 2293 * send_root or parent_root for ref lookup. 2294 */ 2295 if (ino < sctx->send_progress) 2296 ret = get_first_ref(sctx->send_root, ino, 2297 parent_ino, parent_gen, dest); 2298 else 2299 ret = get_first_ref(sctx->parent_root, ino, 2300 parent_ino, parent_gen, dest); 2301 if (ret < 0) 2302 return ret; 2303 2304 /* 2305 * Check if the ref was overwritten by an inode's ref that was processed 2306 * earlier. If yes, treat as orphan and return 1. 2307 */ 2308 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2309 dest->start, fs_path_len(dest)); 2310 if (ret < 0) 2311 return ret; 2312 if (ret) { 2313 fs_path_reset(dest); 2314 ret = gen_unique_name(sctx, ino, gen, dest); 2315 if (ret < 0) 2316 return ret; 2317 ret = 1; 2318 } 2319 2320 out_cache: 2321 /* 2322 * Store the result of the lookup in the name cache. 2323 */ 2324 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2325 if (!nce) 2326 return -ENOMEM; 2327 2328 nce->entry.key = ino; 2329 nce->entry.gen = gen; 2330 nce->parent_ino = *parent_ino; 2331 nce->parent_gen = *parent_gen; 2332 nce->name_len = fs_path_len(dest); 2333 nce->ret = ret; 2334 memcpy(nce->name, dest->start, nce->name_len); 2335 2336 if (ino < sctx->send_progress) 2337 nce->need_later_update = 0; 2338 else 2339 nce->need_later_update = 1; 2340 2341 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2342 if (nce_ret < 0) { 2343 kfree(nce); 2344 return nce_ret; 2345 } 2346 2347 return ret; 2348 } 2349 2350 /* 2351 * Magic happens here. This function returns the first ref to an inode as it 2352 * would look like while receiving the stream at this point in time. 2353 * We walk the path up to the root. For every inode in between, we check if it 2354 * was already processed/sent. If yes, we continue with the parent as found 2355 * in send_root. If not, we continue with the parent as found in parent_root. 2356 * If we encounter an inode that was deleted at this point in time, we use the 2357 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2358 * that were not created yet and overwritten inodes/refs. 2359 * 2360 * When do we have orphan inodes: 2361 * 1. When an inode is freshly created and thus no valid refs are available yet 2362 * 2. When a directory lost all it's refs (deleted) but still has dir items 2363 * inside which were not processed yet (pending for move/delete). If anyone 2364 * tried to get the path to the dir items, it would get a path inside that 2365 * orphan directory. 2366 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2367 * of an unprocessed inode. If in that case the first ref would be 2368 * overwritten, the overwritten inode gets "orphanized". Later when we 2369 * process this overwritten inode, it is restored at a new place by moving 2370 * the orphan inode. 2371 * 2372 * sctx->send_progress tells this function at which point in time receiving 2373 * would be. 2374 */ 2375 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2376 struct fs_path *dest) 2377 { 2378 int ret = 0; 2379 struct fs_path *name = NULL; 2380 u64 parent_inode = 0; 2381 u64 parent_gen = 0; 2382 int stop = 0; 2383 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); 2384 2385 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { 2386 if (dest != &sctx->cur_inode_path) 2387 return fs_path_copy(dest, &sctx->cur_inode_path); 2388 2389 return 0; 2390 } 2391 2392 name = fs_path_alloc(); 2393 if (!name) { 2394 ret = -ENOMEM; 2395 goto out; 2396 } 2397 2398 dest->reversed = 1; 2399 fs_path_reset(dest); 2400 2401 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2402 struct waiting_dir_move *wdm; 2403 2404 fs_path_reset(name); 2405 2406 if (is_waiting_for_rm(sctx, ino, gen)) { 2407 ret = gen_unique_name(sctx, ino, gen, name); 2408 if (ret < 0) 2409 goto out; 2410 ret = fs_path_add_path(dest, name); 2411 break; 2412 } 2413 2414 wdm = get_waiting_dir_move(sctx, ino); 2415 if (wdm && wdm->orphanized) { 2416 ret = gen_unique_name(sctx, ino, gen, name); 2417 stop = 1; 2418 } else if (wdm) { 2419 ret = get_first_ref(sctx->parent_root, ino, 2420 &parent_inode, &parent_gen, name); 2421 } else { 2422 ret = __get_cur_name_and_parent(sctx, ino, gen, 2423 &parent_inode, 2424 &parent_gen, name); 2425 if (ret) 2426 stop = 1; 2427 } 2428 2429 if (ret < 0) 2430 goto out; 2431 2432 ret = fs_path_add_path(dest, name); 2433 if (ret < 0) 2434 goto out; 2435 2436 ino = parent_inode; 2437 gen = parent_gen; 2438 } 2439 2440 out: 2441 fs_path_free(name); 2442 if (!ret) { 2443 fs_path_unreverse(dest); 2444 if (is_cur_inode && dest != &sctx->cur_inode_path) 2445 ret = fs_path_copy(&sctx->cur_inode_path, dest); 2446 } 2447 2448 return ret; 2449 } 2450 2451 /* 2452 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2453 */ 2454 static int send_subvol_begin(struct send_ctx *sctx) 2455 { 2456 int ret; 2457 struct btrfs_root *send_root = sctx->send_root; 2458 struct btrfs_root *parent_root = sctx->parent_root; 2459 BTRFS_PATH_AUTO_FREE(path); 2460 struct btrfs_key key; 2461 struct btrfs_root_ref *ref; 2462 struct extent_buffer *leaf; 2463 char *name = NULL; 2464 int namelen; 2465 2466 path = btrfs_alloc_path(); 2467 if (!path) 2468 return -ENOMEM; 2469 2470 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2471 if (!name) 2472 return -ENOMEM; 2473 2474 key.objectid = btrfs_root_id(send_root); 2475 key.type = BTRFS_ROOT_BACKREF_KEY; 2476 key.offset = 0; 2477 2478 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2479 &key, path, 1, 0); 2480 if (ret < 0) 2481 goto out; 2482 if (ret) { 2483 ret = -ENOENT; 2484 goto out; 2485 } 2486 2487 leaf = path->nodes[0]; 2488 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2489 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2490 key.objectid != btrfs_root_id(send_root)) { 2491 ret = -ENOENT; 2492 goto out; 2493 } 2494 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2495 namelen = btrfs_root_ref_name_len(leaf, ref); 2496 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2497 btrfs_release_path(path); 2498 2499 if (parent_root) { 2500 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2501 if (ret < 0) 2502 goto out; 2503 } else { 2504 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2505 if (ret < 0) 2506 goto out; 2507 } 2508 2509 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2510 2511 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2512 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2513 sctx->send_root->root_item.received_uuid); 2514 else 2515 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2516 sctx->send_root->root_item.uuid); 2517 2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2519 btrfs_root_ctransid(&sctx->send_root->root_item)); 2520 if (parent_root) { 2521 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2522 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2523 parent_root->root_item.received_uuid); 2524 else 2525 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2526 parent_root->root_item.uuid); 2527 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2528 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2529 } 2530 2531 ret = send_cmd(sctx); 2532 2533 tlv_put_failure: 2534 out: 2535 kfree(name); 2536 return ret; 2537 } 2538 2539 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) 2540 { 2541 if (fs_path_len(&sctx->cur_inode_path) == 0) { 2542 int ret; 2543 2544 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2545 &sctx->cur_inode_path); 2546 if (ret < 0) 2547 return ERR_PTR(ret); 2548 } 2549 2550 return &sctx->cur_inode_path; 2551 } 2552 2553 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) 2554 { 2555 struct fs_path *path; 2556 int ret; 2557 2558 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 2559 return get_cur_inode_path(sctx); 2560 2561 path = fs_path_alloc(); 2562 if (!path) 2563 return ERR_PTR(-ENOMEM); 2564 2565 ret = get_cur_path(sctx, ino, gen, path); 2566 if (ret < 0) { 2567 fs_path_free(path); 2568 return ERR_PTR(ret); 2569 } 2570 2571 return path; 2572 } 2573 2574 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) 2575 { 2576 if (path != &sctx->cur_inode_path) 2577 fs_path_free(path); 2578 } 2579 2580 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2581 { 2582 int ret = 0; 2583 struct fs_path *p; 2584 2585 p = get_path_for_command(sctx, ino, gen); 2586 if (IS_ERR(p)) 2587 return PTR_ERR(p); 2588 2589 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2590 if (ret < 0) 2591 goto out; 2592 2593 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2594 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2595 2596 ret = send_cmd(sctx); 2597 2598 tlv_put_failure: 2599 out: 2600 free_path_for_command(sctx, p); 2601 return ret; 2602 } 2603 2604 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2605 { 2606 int ret = 0; 2607 struct fs_path *p; 2608 2609 p = get_path_for_command(sctx, ino, gen); 2610 if (IS_ERR(p)) 2611 return PTR_ERR(p); 2612 2613 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2614 if (ret < 0) 2615 goto out; 2616 2617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2618 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2619 2620 ret = send_cmd(sctx); 2621 2622 tlv_put_failure: 2623 out: 2624 free_path_for_command(sctx, p); 2625 return ret; 2626 } 2627 2628 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2629 { 2630 int ret = 0; 2631 struct fs_path *p; 2632 2633 if (sctx->proto < 2) 2634 return 0; 2635 2636 p = get_path_for_command(sctx, ino, gen); 2637 if (IS_ERR(p)) 2638 return PTR_ERR(p); 2639 2640 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2641 if (ret < 0) 2642 goto out; 2643 2644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2646 2647 ret = send_cmd(sctx); 2648 2649 tlv_put_failure: 2650 out: 2651 free_path_for_command(sctx, p); 2652 return ret; 2653 } 2654 2655 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2656 { 2657 int ret = 0; 2658 struct fs_path *p; 2659 2660 p = get_path_for_command(sctx, ino, gen); 2661 if (IS_ERR(p)) 2662 return PTR_ERR(p); 2663 2664 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2665 if (ret < 0) 2666 goto out; 2667 2668 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2669 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2670 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2671 2672 ret = send_cmd(sctx); 2673 2674 tlv_put_failure: 2675 out: 2676 free_path_for_command(sctx, p); 2677 return ret; 2678 } 2679 2680 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2681 { 2682 int ret = 0; 2683 struct fs_path *p = NULL; 2684 struct btrfs_inode_item *ii; 2685 BTRFS_PATH_AUTO_FREE(path); 2686 struct extent_buffer *eb; 2687 struct btrfs_key key; 2688 int slot; 2689 2690 p = get_path_for_command(sctx, ino, gen); 2691 if (IS_ERR(p)) 2692 return PTR_ERR(p); 2693 2694 path = alloc_path_for_send(); 2695 if (!path) { 2696 ret = -ENOMEM; 2697 goto out; 2698 } 2699 2700 key.objectid = ino; 2701 key.type = BTRFS_INODE_ITEM_KEY; 2702 key.offset = 0; 2703 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2704 if (ret > 0) 2705 ret = -ENOENT; 2706 if (ret < 0) 2707 goto out; 2708 2709 eb = path->nodes[0]; 2710 slot = path->slots[0]; 2711 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2712 2713 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2714 if (ret < 0) 2715 goto out; 2716 2717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2718 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2719 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2720 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2721 if (sctx->proto >= 2) 2722 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2723 2724 ret = send_cmd(sctx); 2725 2726 tlv_put_failure: 2727 out: 2728 free_path_for_command(sctx, p); 2729 return ret; 2730 } 2731 2732 /* 2733 * If the cache is full, we can't remove entries from it and do a call to 2734 * send_utimes() for each respective inode, because we might be finishing 2735 * processing an inode that is a directory and it just got renamed, and existing 2736 * entries in the cache may refer to inodes that have the directory in their 2737 * full path - in which case we would generate outdated paths (pre-rename) 2738 * for the inodes that the cache entries point to. Instead of pruning the 2739 * cache when inserting, do it after we finish processing each inode at 2740 * finish_inode_if_needed(). 2741 */ 2742 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2743 { 2744 struct btrfs_lru_cache_entry *entry; 2745 int ret; 2746 2747 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2748 if (entry != NULL) 2749 return 0; 2750 2751 /* Caching is optional, don't fail if we can't allocate memory. */ 2752 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2753 if (!entry) 2754 return send_utimes(sctx, dir, gen); 2755 2756 entry->key = dir; 2757 entry->gen = gen; 2758 2759 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2760 ASSERT(ret != -EEXIST); 2761 if (ret) { 2762 kfree(entry); 2763 return send_utimes(sctx, dir, gen); 2764 } 2765 2766 return 0; 2767 } 2768 2769 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2770 { 2771 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2772 struct btrfs_lru_cache_entry *lru; 2773 int ret; 2774 2775 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2776 ASSERT(lru != NULL); 2777 2778 ret = send_utimes(sctx, lru->key, lru->gen); 2779 if (ret) 2780 return ret; 2781 2782 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2783 } 2784 2785 return 0; 2786 } 2787 2788 /* 2789 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2790 * a valid path yet because we did not process the refs yet. So, the inode 2791 * is created as orphan. 2792 */ 2793 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2794 { 2795 int ret = 0; 2796 struct fs_path *p; 2797 int cmd; 2798 struct btrfs_inode_info info; 2799 u64 gen; 2800 u64 mode; 2801 u64 rdev; 2802 2803 p = fs_path_alloc(); 2804 if (!p) 2805 return -ENOMEM; 2806 2807 if (ino != sctx->cur_ino) { 2808 ret = get_inode_info(sctx->send_root, ino, &info); 2809 if (ret < 0) 2810 goto out; 2811 gen = info.gen; 2812 mode = info.mode; 2813 rdev = info.rdev; 2814 } else { 2815 gen = sctx->cur_inode_gen; 2816 mode = sctx->cur_inode_mode; 2817 rdev = sctx->cur_inode_rdev; 2818 } 2819 2820 if (S_ISREG(mode)) { 2821 cmd = BTRFS_SEND_C_MKFILE; 2822 } else if (S_ISDIR(mode)) { 2823 cmd = BTRFS_SEND_C_MKDIR; 2824 } else if (S_ISLNK(mode)) { 2825 cmd = BTRFS_SEND_C_SYMLINK; 2826 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2827 cmd = BTRFS_SEND_C_MKNOD; 2828 } else if (S_ISFIFO(mode)) { 2829 cmd = BTRFS_SEND_C_MKFIFO; 2830 } else if (S_ISSOCK(mode)) { 2831 cmd = BTRFS_SEND_C_MKSOCK; 2832 } else { 2833 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2834 (int)(mode & S_IFMT)); 2835 ret = -EOPNOTSUPP; 2836 goto out; 2837 } 2838 2839 ret = begin_cmd(sctx, cmd); 2840 if (ret < 0) 2841 goto out; 2842 2843 ret = gen_unique_name(sctx, ino, gen, p); 2844 if (ret < 0) 2845 goto out; 2846 2847 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2848 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2849 2850 if (S_ISLNK(mode)) { 2851 fs_path_reset(p); 2852 ret = read_symlink(sctx->send_root, ino, p); 2853 if (ret < 0) 2854 goto out; 2855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2856 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2857 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2858 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2859 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2860 } 2861 2862 ret = send_cmd(sctx); 2863 if (ret < 0) 2864 goto out; 2865 2866 2867 tlv_put_failure: 2868 out: 2869 fs_path_free(p); 2870 return ret; 2871 } 2872 2873 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2874 { 2875 struct btrfs_lru_cache_entry *entry; 2876 int ret; 2877 2878 /* Caching is optional, ignore any failures. */ 2879 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2880 if (!entry) 2881 return; 2882 2883 entry->key = dir; 2884 entry->gen = 0; 2885 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2886 if (ret < 0) 2887 kfree(entry); 2888 } 2889 2890 /* 2891 * We need some special handling for inodes that get processed before the parent 2892 * directory got created. See process_recorded_refs for details. 2893 * This function does the check if we already created the dir out of order. 2894 */ 2895 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2896 { 2897 int ret = 0; 2898 int iter_ret = 0; 2899 BTRFS_PATH_AUTO_FREE(path); 2900 struct btrfs_key key; 2901 struct btrfs_key found_key; 2902 struct btrfs_key di_key; 2903 struct btrfs_dir_item *di; 2904 2905 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2906 return 1; 2907 2908 path = alloc_path_for_send(); 2909 if (!path) 2910 return -ENOMEM; 2911 2912 key.objectid = dir; 2913 key.type = BTRFS_DIR_INDEX_KEY; 2914 key.offset = 0; 2915 2916 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2917 struct extent_buffer *eb = path->nodes[0]; 2918 2919 if (found_key.objectid != key.objectid || 2920 found_key.type != key.type) { 2921 ret = 0; 2922 break; 2923 } 2924 2925 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2926 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2927 2928 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2929 di_key.objectid < sctx->send_progress) { 2930 ret = 1; 2931 cache_dir_created(sctx, dir); 2932 break; 2933 } 2934 } 2935 /* Catch error found during iteration */ 2936 if (iter_ret < 0) 2937 ret = iter_ret; 2938 2939 return ret; 2940 } 2941 2942 /* 2943 * Only creates the inode if it is: 2944 * 1. Not a directory 2945 * 2. Or a directory which was not created already due to out of order 2946 * directories. See did_create_dir and process_recorded_refs for details. 2947 */ 2948 static int send_create_inode_if_needed(struct send_ctx *sctx) 2949 { 2950 int ret; 2951 2952 if (S_ISDIR(sctx->cur_inode_mode)) { 2953 ret = did_create_dir(sctx, sctx->cur_ino); 2954 if (ret < 0) 2955 return ret; 2956 else if (ret > 0) 2957 return 0; 2958 } 2959 2960 ret = send_create_inode(sctx, sctx->cur_ino); 2961 2962 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 2963 cache_dir_created(sctx, sctx->cur_ino); 2964 2965 return ret; 2966 } 2967 2968 struct recorded_ref { 2969 struct list_head list; 2970 char *name; 2971 struct fs_path *full_path; 2972 u64 dir; 2973 u64 dir_gen; 2974 int name_len; 2975 struct rb_node node; 2976 struct rb_root *root; 2977 }; 2978 2979 static struct recorded_ref *recorded_ref_alloc(void) 2980 { 2981 struct recorded_ref *ref; 2982 2983 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2984 if (!ref) 2985 return NULL; 2986 RB_CLEAR_NODE(&ref->node); 2987 INIT_LIST_HEAD(&ref->list); 2988 return ref; 2989 } 2990 2991 static void recorded_ref_free(struct recorded_ref *ref) 2992 { 2993 if (!ref) 2994 return; 2995 if (!RB_EMPTY_NODE(&ref->node)) 2996 rb_erase(&ref->node, ref->root); 2997 list_del(&ref->list); 2998 fs_path_free(ref->full_path); 2999 kfree(ref); 3000 } 3001 3002 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3003 { 3004 ref->full_path = path; 3005 ref->name = (char *)kbasename(ref->full_path->start); 3006 ref->name_len = ref->full_path->end - ref->name; 3007 } 3008 3009 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3010 { 3011 struct recorded_ref *new; 3012 3013 new = recorded_ref_alloc(); 3014 if (!new) 3015 return -ENOMEM; 3016 3017 new->dir = ref->dir; 3018 new->dir_gen = ref->dir_gen; 3019 list_add_tail(&new->list, list); 3020 return 0; 3021 } 3022 3023 static void __free_recorded_refs(struct list_head *head) 3024 { 3025 struct recorded_ref *cur; 3026 3027 while (!list_empty(head)) { 3028 cur = list_first_entry(head, struct recorded_ref, list); 3029 recorded_ref_free(cur); 3030 } 3031 } 3032 3033 static void free_recorded_refs(struct send_ctx *sctx) 3034 { 3035 __free_recorded_refs(&sctx->new_refs); 3036 __free_recorded_refs(&sctx->deleted_refs); 3037 } 3038 3039 /* 3040 * Renames/moves a file/dir to its orphan name. Used when the first 3041 * ref of an unprocessed inode gets overwritten and for all non empty 3042 * directories. 3043 */ 3044 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3045 struct fs_path *path) 3046 { 3047 int ret; 3048 struct fs_path *orphan; 3049 3050 orphan = fs_path_alloc(); 3051 if (!orphan) 3052 return -ENOMEM; 3053 3054 ret = gen_unique_name(sctx, ino, gen, orphan); 3055 if (ret < 0) 3056 goto out; 3057 3058 ret = send_rename(sctx, path, orphan); 3059 if (ret < 0) 3060 goto out; 3061 3062 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 3063 ret = fs_path_copy(&sctx->cur_inode_path, orphan); 3064 3065 out: 3066 fs_path_free(orphan); 3067 return ret; 3068 } 3069 3070 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3071 u64 dir_ino, u64 dir_gen) 3072 { 3073 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3074 struct rb_node *parent = NULL; 3075 struct orphan_dir_info *entry, *odi; 3076 3077 while (*p) { 3078 parent = *p; 3079 entry = rb_entry(parent, struct orphan_dir_info, node); 3080 if (dir_ino < entry->ino) 3081 p = &(*p)->rb_left; 3082 else if (dir_ino > entry->ino) 3083 p = &(*p)->rb_right; 3084 else if (dir_gen < entry->gen) 3085 p = &(*p)->rb_left; 3086 else if (dir_gen > entry->gen) 3087 p = &(*p)->rb_right; 3088 else 3089 return entry; 3090 } 3091 3092 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3093 if (!odi) 3094 return ERR_PTR(-ENOMEM); 3095 odi->ino = dir_ino; 3096 odi->gen = dir_gen; 3097 odi->last_dir_index_offset = 0; 3098 odi->dir_high_seq_ino = 0; 3099 3100 rb_link_node(&odi->node, parent, p); 3101 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3102 return odi; 3103 } 3104 3105 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3106 u64 dir_ino, u64 gen) 3107 { 3108 struct rb_node *n = sctx->orphan_dirs.rb_node; 3109 struct orphan_dir_info *entry; 3110 3111 while (n) { 3112 entry = rb_entry(n, struct orphan_dir_info, node); 3113 if (dir_ino < entry->ino) 3114 n = n->rb_left; 3115 else if (dir_ino > entry->ino) 3116 n = n->rb_right; 3117 else if (gen < entry->gen) 3118 n = n->rb_left; 3119 else if (gen > entry->gen) 3120 n = n->rb_right; 3121 else 3122 return entry; 3123 } 3124 return NULL; 3125 } 3126 3127 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3128 { 3129 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3130 3131 return odi != NULL; 3132 } 3133 3134 static void free_orphan_dir_info(struct send_ctx *sctx, 3135 struct orphan_dir_info *odi) 3136 { 3137 if (!odi) 3138 return; 3139 rb_erase(&odi->node, &sctx->orphan_dirs); 3140 kfree(odi); 3141 } 3142 3143 /* 3144 * Returns 1 if a directory can be removed at this point in time. 3145 * We check this by iterating all dir items and checking if the inode behind 3146 * the dir item was already processed. 3147 */ 3148 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3149 { 3150 int ret = 0; 3151 int iter_ret = 0; 3152 struct btrfs_root *root = sctx->parent_root; 3153 struct btrfs_path *path; 3154 struct btrfs_key key; 3155 struct btrfs_key found_key; 3156 struct btrfs_key loc; 3157 struct btrfs_dir_item *di; 3158 struct orphan_dir_info *odi = NULL; 3159 u64 dir_high_seq_ino = 0; 3160 u64 last_dir_index_offset = 0; 3161 3162 /* 3163 * Don't try to rmdir the top/root subvolume dir. 3164 */ 3165 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3166 return 0; 3167 3168 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3169 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3170 return 0; 3171 3172 path = alloc_path_for_send(); 3173 if (!path) 3174 return -ENOMEM; 3175 3176 if (!odi) { 3177 /* 3178 * Find the inode number associated with the last dir index 3179 * entry. This is very likely the inode with the highest number 3180 * of all inodes that have an entry in the directory. We can 3181 * then use it to avoid future calls to can_rmdir(), when 3182 * processing inodes with a lower number, from having to search 3183 * the parent root b+tree for dir index keys. 3184 */ 3185 key.objectid = dir; 3186 key.type = BTRFS_DIR_INDEX_KEY; 3187 key.offset = (u64)-1; 3188 3189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3190 if (ret < 0) { 3191 goto out; 3192 } else if (ret > 0) { 3193 /* Can't happen, the root is never empty. */ 3194 ASSERT(path->slots[0] > 0); 3195 if (WARN_ON(path->slots[0] == 0)) { 3196 ret = -EUCLEAN; 3197 goto out; 3198 } 3199 path->slots[0]--; 3200 } 3201 3202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3203 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3204 /* No index keys, dir can be removed. */ 3205 ret = 1; 3206 goto out; 3207 } 3208 3209 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3210 struct btrfs_dir_item); 3211 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3212 dir_high_seq_ino = loc.objectid; 3213 if (sctx->cur_ino < dir_high_seq_ino) { 3214 ret = 0; 3215 goto out; 3216 } 3217 3218 btrfs_release_path(path); 3219 } 3220 3221 key.objectid = dir; 3222 key.type = BTRFS_DIR_INDEX_KEY; 3223 key.offset = (odi ? odi->last_dir_index_offset : 0); 3224 3225 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3226 struct waiting_dir_move *dm; 3227 3228 if (found_key.objectid != key.objectid || 3229 found_key.type != key.type) 3230 break; 3231 3232 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3233 struct btrfs_dir_item); 3234 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3235 3236 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3237 last_dir_index_offset = found_key.offset; 3238 3239 dm = get_waiting_dir_move(sctx, loc.objectid); 3240 if (dm) { 3241 dm->rmdir_ino = dir; 3242 dm->rmdir_gen = dir_gen; 3243 ret = 0; 3244 goto out; 3245 } 3246 3247 if (loc.objectid > sctx->cur_ino) { 3248 ret = 0; 3249 goto out; 3250 } 3251 } 3252 if (iter_ret < 0) { 3253 ret = iter_ret; 3254 goto out; 3255 } 3256 free_orphan_dir_info(sctx, odi); 3257 3258 ret = 1; 3259 3260 out: 3261 btrfs_free_path(path); 3262 3263 if (ret) 3264 return ret; 3265 3266 if (!odi) { 3267 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3268 if (IS_ERR(odi)) 3269 return PTR_ERR(odi); 3270 3271 odi->gen = dir_gen; 3272 } 3273 3274 odi->last_dir_index_offset = last_dir_index_offset; 3275 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3276 3277 return 0; 3278 } 3279 3280 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3281 { 3282 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3283 3284 return entry != NULL; 3285 } 3286 3287 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3288 { 3289 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3290 struct rb_node *parent = NULL; 3291 struct waiting_dir_move *entry, *dm; 3292 3293 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3294 if (!dm) 3295 return -ENOMEM; 3296 dm->ino = ino; 3297 dm->rmdir_ino = 0; 3298 dm->rmdir_gen = 0; 3299 dm->orphanized = orphanized; 3300 3301 while (*p) { 3302 parent = *p; 3303 entry = rb_entry(parent, struct waiting_dir_move, node); 3304 if (ino < entry->ino) { 3305 p = &(*p)->rb_left; 3306 } else if (ino > entry->ino) { 3307 p = &(*p)->rb_right; 3308 } else { 3309 kfree(dm); 3310 return -EEXIST; 3311 } 3312 } 3313 3314 rb_link_node(&dm->node, parent, p); 3315 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3316 return 0; 3317 } 3318 3319 static struct waiting_dir_move * 3320 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3321 { 3322 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3323 struct waiting_dir_move *entry; 3324 3325 while (n) { 3326 entry = rb_entry(n, struct waiting_dir_move, node); 3327 if (ino < entry->ino) 3328 n = n->rb_left; 3329 else if (ino > entry->ino) 3330 n = n->rb_right; 3331 else 3332 return entry; 3333 } 3334 return NULL; 3335 } 3336 3337 static void free_waiting_dir_move(struct send_ctx *sctx, 3338 struct waiting_dir_move *dm) 3339 { 3340 if (!dm) 3341 return; 3342 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3343 kfree(dm); 3344 } 3345 3346 static int add_pending_dir_move(struct send_ctx *sctx, 3347 u64 ino, 3348 u64 ino_gen, 3349 u64 parent_ino, 3350 struct list_head *new_refs, 3351 struct list_head *deleted_refs, 3352 const bool is_orphan) 3353 { 3354 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3355 struct rb_node *parent = NULL; 3356 struct pending_dir_move *entry = NULL, *pm; 3357 struct recorded_ref *cur; 3358 int exists = 0; 3359 int ret; 3360 3361 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3362 if (!pm) 3363 return -ENOMEM; 3364 pm->parent_ino = parent_ino; 3365 pm->ino = ino; 3366 pm->gen = ino_gen; 3367 INIT_LIST_HEAD(&pm->list); 3368 INIT_LIST_HEAD(&pm->update_refs); 3369 RB_CLEAR_NODE(&pm->node); 3370 3371 while (*p) { 3372 parent = *p; 3373 entry = rb_entry(parent, struct pending_dir_move, node); 3374 if (parent_ino < entry->parent_ino) { 3375 p = &(*p)->rb_left; 3376 } else if (parent_ino > entry->parent_ino) { 3377 p = &(*p)->rb_right; 3378 } else { 3379 exists = 1; 3380 break; 3381 } 3382 } 3383 3384 list_for_each_entry(cur, deleted_refs, list) { 3385 ret = dup_ref(cur, &pm->update_refs); 3386 if (ret < 0) 3387 goto out; 3388 } 3389 list_for_each_entry(cur, new_refs, list) { 3390 ret = dup_ref(cur, &pm->update_refs); 3391 if (ret < 0) 3392 goto out; 3393 } 3394 3395 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3396 if (ret) 3397 goto out; 3398 3399 if (exists) { 3400 list_add_tail(&pm->list, &entry->list); 3401 } else { 3402 rb_link_node(&pm->node, parent, p); 3403 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3404 } 3405 ret = 0; 3406 out: 3407 if (ret) { 3408 __free_recorded_refs(&pm->update_refs); 3409 kfree(pm); 3410 } 3411 return ret; 3412 } 3413 3414 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3415 u64 parent_ino) 3416 { 3417 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3418 struct pending_dir_move *entry; 3419 3420 while (n) { 3421 entry = rb_entry(n, struct pending_dir_move, node); 3422 if (parent_ino < entry->parent_ino) 3423 n = n->rb_left; 3424 else if (parent_ino > entry->parent_ino) 3425 n = n->rb_right; 3426 else 3427 return entry; 3428 } 3429 return NULL; 3430 } 3431 3432 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3433 u64 ino, u64 gen, u64 *ancestor_ino) 3434 { 3435 int ret = 0; 3436 u64 parent_inode = 0; 3437 u64 parent_gen = 0; 3438 u64 start_ino = ino; 3439 3440 *ancestor_ino = 0; 3441 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3442 fs_path_reset(name); 3443 3444 if (is_waiting_for_rm(sctx, ino, gen)) 3445 break; 3446 if (is_waiting_for_move(sctx, ino)) { 3447 if (*ancestor_ino == 0) 3448 *ancestor_ino = ino; 3449 ret = get_first_ref(sctx->parent_root, ino, 3450 &parent_inode, &parent_gen, name); 3451 } else { 3452 ret = __get_cur_name_and_parent(sctx, ino, gen, 3453 &parent_inode, 3454 &parent_gen, name); 3455 if (ret > 0) { 3456 ret = 0; 3457 break; 3458 } 3459 } 3460 if (ret < 0) 3461 break; 3462 if (parent_inode == start_ino) { 3463 ret = 1; 3464 if (*ancestor_ino == 0) 3465 *ancestor_ino = ino; 3466 break; 3467 } 3468 ino = parent_inode; 3469 gen = parent_gen; 3470 } 3471 return ret; 3472 } 3473 3474 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3475 { 3476 struct fs_path *from_path = NULL; 3477 struct fs_path *to_path = NULL; 3478 struct fs_path *name = NULL; 3479 u64 orig_progress = sctx->send_progress; 3480 struct recorded_ref *cur; 3481 u64 parent_ino, parent_gen; 3482 struct waiting_dir_move *dm = NULL; 3483 u64 rmdir_ino = 0; 3484 u64 rmdir_gen; 3485 u64 ancestor; 3486 bool is_orphan; 3487 int ret; 3488 3489 name = fs_path_alloc(); 3490 from_path = fs_path_alloc(); 3491 if (!name || !from_path) { 3492 ret = -ENOMEM; 3493 goto out; 3494 } 3495 3496 dm = get_waiting_dir_move(sctx, pm->ino); 3497 ASSERT(dm); 3498 rmdir_ino = dm->rmdir_ino; 3499 rmdir_gen = dm->rmdir_gen; 3500 is_orphan = dm->orphanized; 3501 free_waiting_dir_move(sctx, dm); 3502 3503 if (is_orphan) { 3504 ret = gen_unique_name(sctx, pm->ino, 3505 pm->gen, from_path); 3506 } else { 3507 ret = get_first_ref(sctx->parent_root, pm->ino, 3508 &parent_ino, &parent_gen, name); 3509 if (ret < 0) 3510 goto out; 3511 ret = get_cur_path(sctx, parent_ino, parent_gen, 3512 from_path); 3513 if (ret < 0) 3514 goto out; 3515 ret = fs_path_add_path(from_path, name); 3516 } 3517 if (ret < 0) 3518 goto out; 3519 3520 sctx->send_progress = sctx->cur_ino + 1; 3521 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3522 if (ret < 0) 3523 goto out; 3524 if (ret) { 3525 LIST_HEAD(deleted_refs); 3526 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3527 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3528 &pm->update_refs, &deleted_refs, 3529 is_orphan); 3530 if (ret < 0) 3531 goto out; 3532 if (rmdir_ino) { 3533 dm = get_waiting_dir_move(sctx, pm->ino); 3534 ASSERT(dm); 3535 dm->rmdir_ino = rmdir_ino; 3536 dm->rmdir_gen = rmdir_gen; 3537 } 3538 goto out; 3539 } 3540 fs_path_reset(name); 3541 to_path = name; 3542 name = NULL; 3543 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3544 if (ret < 0) 3545 goto out; 3546 3547 ret = send_rename(sctx, from_path, to_path); 3548 if (ret < 0) 3549 goto out; 3550 3551 if (rmdir_ino) { 3552 struct orphan_dir_info *odi; 3553 u64 gen; 3554 3555 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3556 if (!odi) { 3557 /* already deleted */ 3558 goto finish; 3559 } 3560 gen = odi->gen; 3561 3562 ret = can_rmdir(sctx, rmdir_ino, gen); 3563 if (ret < 0) 3564 goto out; 3565 if (!ret) 3566 goto finish; 3567 3568 name = fs_path_alloc(); 3569 if (!name) { 3570 ret = -ENOMEM; 3571 goto out; 3572 } 3573 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3574 if (ret < 0) 3575 goto out; 3576 ret = send_rmdir(sctx, name); 3577 if (ret < 0) 3578 goto out; 3579 } 3580 3581 finish: 3582 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3583 if (ret < 0) 3584 goto out; 3585 3586 /* 3587 * After rename/move, need to update the utimes of both new parent(s) 3588 * and old parent(s). 3589 */ 3590 list_for_each_entry(cur, &pm->update_refs, list) { 3591 /* 3592 * The parent inode might have been deleted in the send snapshot 3593 */ 3594 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3595 if (ret == -ENOENT) { 3596 ret = 0; 3597 continue; 3598 } 3599 if (ret < 0) 3600 goto out; 3601 3602 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3603 if (ret < 0) 3604 goto out; 3605 } 3606 3607 out: 3608 fs_path_free(name); 3609 fs_path_free(from_path); 3610 fs_path_free(to_path); 3611 sctx->send_progress = orig_progress; 3612 3613 return ret; 3614 } 3615 3616 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3617 { 3618 if (!list_empty(&m->list)) 3619 list_del(&m->list); 3620 if (!RB_EMPTY_NODE(&m->node)) 3621 rb_erase(&m->node, &sctx->pending_dir_moves); 3622 __free_recorded_refs(&m->update_refs); 3623 kfree(m); 3624 } 3625 3626 static void tail_append_pending_moves(struct send_ctx *sctx, 3627 struct pending_dir_move *moves, 3628 struct list_head *stack) 3629 { 3630 if (list_empty(&moves->list)) { 3631 list_add_tail(&moves->list, stack); 3632 } else { 3633 LIST_HEAD(list); 3634 list_splice_init(&moves->list, &list); 3635 list_add_tail(&moves->list, stack); 3636 list_splice_tail(&list, stack); 3637 } 3638 if (!RB_EMPTY_NODE(&moves->node)) { 3639 rb_erase(&moves->node, &sctx->pending_dir_moves); 3640 RB_CLEAR_NODE(&moves->node); 3641 } 3642 } 3643 3644 static int apply_children_dir_moves(struct send_ctx *sctx) 3645 { 3646 struct pending_dir_move *pm; 3647 LIST_HEAD(stack); 3648 u64 parent_ino = sctx->cur_ino; 3649 int ret = 0; 3650 3651 pm = get_pending_dir_moves(sctx, parent_ino); 3652 if (!pm) 3653 return 0; 3654 3655 tail_append_pending_moves(sctx, pm, &stack); 3656 3657 while (!list_empty(&stack)) { 3658 pm = list_first_entry(&stack, struct pending_dir_move, list); 3659 parent_ino = pm->ino; 3660 ret = apply_dir_move(sctx, pm); 3661 free_pending_move(sctx, pm); 3662 if (ret) 3663 goto out; 3664 pm = get_pending_dir_moves(sctx, parent_ino); 3665 if (pm) 3666 tail_append_pending_moves(sctx, pm, &stack); 3667 } 3668 return 0; 3669 3670 out: 3671 while (!list_empty(&stack)) { 3672 pm = list_first_entry(&stack, struct pending_dir_move, list); 3673 free_pending_move(sctx, pm); 3674 } 3675 return ret; 3676 } 3677 3678 /* 3679 * We might need to delay a directory rename even when no ancestor directory 3680 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3681 * renamed. This happens when we rename a directory to the old name (the name 3682 * in the parent root) of some other unrelated directory that got its rename 3683 * delayed due to some ancestor with higher number that got renamed. 3684 * 3685 * Example: 3686 * 3687 * Parent snapshot: 3688 * . (ino 256) 3689 * |---- a/ (ino 257) 3690 * | |---- file (ino 260) 3691 * | 3692 * |---- b/ (ino 258) 3693 * |---- c/ (ino 259) 3694 * 3695 * Send snapshot: 3696 * . (ino 256) 3697 * |---- a/ (ino 258) 3698 * |---- x/ (ino 259) 3699 * |---- y/ (ino 257) 3700 * |----- file (ino 260) 3701 * 3702 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3703 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3704 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3705 * must issue is: 3706 * 3707 * 1 - rename 259 from 'c' to 'x' 3708 * 2 - rename 257 from 'a' to 'x/y' 3709 * 3 - rename 258 from 'b' to 'a' 3710 * 3711 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3712 * be done right away and < 0 on error. 3713 */ 3714 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3715 struct recorded_ref *parent_ref, 3716 const bool is_orphan) 3717 { 3718 BTRFS_PATH_AUTO_FREE(path); 3719 struct btrfs_key key; 3720 struct btrfs_key di_key; 3721 struct btrfs_dir_item *di; 3722 u64 left_gen; 3723 u64 right_gen; 3724 int ret = 0; 3725 struct waiting_dir_move *wdm; 3726 3727 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3728 return 0; 3729 3730 path = alloc_path_for_send(); 3731 if (!path) 3732 return -ENOMEM; 3733 3734 key.objectid = parent_ref->dir; 3735 key.type = BTRFS_DIR_ITEM_KEY; 3736 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3737 3738 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3739 if (ret < 0) 3740 return ret; 3741 if (ret > 0) 3742 return 0; 3743 3744 di = btrfs_match_dir_item_name(path, parent_ref->name, 3745 parent_ref->name_len); 3746 if (!di) 3747 return 0; 3748 /* 3749 * di_key.objectid has the number of the inode that has a dentry in the 3750 * parent directory with the same name that sctx->cur_ino is being 3751 * renamed to. We need to check if that inode is in the send root as 3752 * well and if it is currently marked as an inode with a pending rename, 3753 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3754 * that it happens after that other inode is renamed. 3755 */ 3756 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3757 if (di_key.type != BTRFS_INODE_ITEM_KEY) 3758 return 0; 3759 3760 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3761 if (ret < 0) 3762 return ret; 3763 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3764 if (ret < 0) { 3765 if (ret == -ENOENT) 3766 ret = 0; 3767 return ret; 3768 } 3769 3770 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3771 if (right_gen != left_gen) 3772 return 0; 3773 3774 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3775 if (wdm && !wdm->orphanized) { 3776 ret = add_pending_dir_move(sctx, 3777 sctx->cur_ino, 3778 sctx->cur_inode_gen, 3779 di_key.objectid, 3780 &sctx->new_refs, 3781 &sctx->deleted_refs, 3782 is_orphan); 3783 if (!ret) 3784 ret = 1; 3785 } 3786 return ret; 3787 } 3788 3789 /* 3790 * Check if inode ino2, or any of its ancestors, is inode ino1. 3791 * Return 1 if true, 0 if false and < 0 on error. 3792 */ 3793 static int check_ino_in_path(struct btrfs_root *root, 3794 const u64 ino1, 3795 const u64 ino1_gen, 3796 const u64 ino2, 3797 const u64 ino2_gen, 3798 struct fs_path *fs_path) 3799 { 3800 u64 ino = ino2; 3801 3802 if (ino1 == ino2) 3803 return ino1_gen == ino2_gen; 3804 3805 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3806 u64 parent; 3807 u64 parent_gen; 3808 int ret; 3809 3810 fs_path_reset(fs_path); 3811 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3812 if (ret < 0) 3813 return ret; 3814 if (parent == ino1) 3815 return parent_gen == ino1_gen; 3816 ino = parent; 3817 } 3818 return 0; 3819 } 3820 3821 /* 3822 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3823 * possible path (in case ino2 is not a directory and has multiple hard links). 3824 * Return 1 if true, 0 if false and < 0 on error. 3825 */ 3826 static int is_ancestor(struct btrfs_root *root, 3827 const u64 ino1, 3828 const u64 ino1_gen, 3829 const u64 ino2, 3830 struct fs_path *fs_path) 3831 { 3832 bool free_fs_path = false; 3833 int ret = 0; 3834 int iter_ret = 0; 3835 BTRFS_PATH_AUTO_FREE(path); 3836 struct btrfs_key key; 3837 3838 if (!fs_path) { 3839 fs_path = fs_path_alloc(); 3840 if (!fs_path) 3841 return -ENOMEM; 3842 free_fs_path = true; 3843 } 3844 3845 path = alloc_path_for_send(); 3846 if (!path) { 3847 ret = -ENOMEM; 3848 goto out; 3849 } 3850 3851 key.objectid = ino2; 3852 key.type = BTRFS_INODE_REF_KEY; 3853 key.offset = 0; 3854 3855 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3856 struct extent_buffer *leaf = path->nodes[0]; 3857 int slot = path->slots[0]; 3858 u32 cur_offset = 0; 3859 u32 item_size; 3860 3861 if (key.objectid != ino2) 3862 break; 3863 if (key.type != BTRFS_INODE_REF_KEY && 3864 key.type != BTRFS_INODE_EXTREF_KEY) 3865 break; 3866 3867 item_size = btrfs_item_size(leaf, slot); 3868 while (cur_offset < item_size) { 3869 u64 parent; 3870 u64 parent_gen; 3871 3872 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3873 unsigned long ptr; 3874 struct btrfs_inode_extref *extref; 3875 3876 ptr = btrfs_item_ptr_offset(leaf, slot); 3877 extref = (struct btrfs_inode_extref *) 3878 (ptr + cur_offset); 3879 parent = btrfs_inode_extref_parent(leaf, 3880 extref); 3881 cur_offset += sizeof(*extref); 3882 cur_offset += btrfs_inode_extref_name_len(leaf, 3883 extref); 3884 } else { 3885 parent = key.offset; 3886 cur_offset = item_size; 3887 } 3888 3889 ret = get_inode_gen(root, parent, &parent_gen); 3890 if (ret < 0) 3891 goto out; 3892 ret = check_ino_in_path(root, ino1, ino1_gen, 3893 parent, parent_gen, fs_path); 3894 if (ret) 3895 goto out; 3896 } 3897 } 3898 ret = 0; 3899 if (iter_ret < 0) 3900 ret = iter_ret; 3901 3902 out: 3903 if (free_fs_path) 3904 fs_path_free(fs_path); 3905 return ret; 3906 } 3907 3908 static int wait_for_parent_move(struct send_ctx *sctx, 3909 struct recorded_ref *parent_ref, 3910 const bool is_orphan) 3911 { 3912 int ret = 0; 3913 u64 ino = parent_ref->dir; 3914 u64 ino_gen = parent_ref->dir_gen; 3915 u64 parent_ino_before, parent_ino_after; 3916 struct fs_path *path_before = NULL; 3917 struct fs_path *path_after = NULL; 3918 int len1, len2; 3919 3920 path_after = fs_path_alloc(); 3921 path_before = fs_path_alloc(); 3922 if (!path_after || !path_before) { 3923 ret = -ENOMEM; 3924 goto out; 3925 } 3926 3927 /* 3928 * Our current directory inode may not yet be renamed/moved because some 3929 * ancestor (immediate or not) has to be renamed/moved first. So find if 3930 * such ancestor exists and make sure our own rename/move happens after 3931 * that ancestor is processed to avoid path build infinite loops (done 3932 * at get_cur_path()). 3933 */ 3934 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3935 u64 parent_ino_after_gen; 3936 3937 if (is_waiting_for_move(sctx, ino)) { 3938 /* 3939 * If the current inode is an ancestor of ino in the 3940 * parent root, we need to delay the rename of the 3941 * current inode, otherwise don't delayed the rename 3942 * because we can end up with a circular dependency 3943 * of renames, resulting in some directories never 3944 * getting the respective rename operations issued in 3945 * the send stream or getting into infinite path build 3946 * loops. 3947 */ 3948 ret = is_ancestor(sctx->parent_root, 3949 sctx->cur_ino, sctx->cur_inode_gen, 3950 ino, path_before); 3951 if (ret) 3952 break; 3953 } 3954 3955 fs_path_reset(path_before); 3956 fs_path_reset(path_after); 3957 3958 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3959 &parent_ino_after_gen, path_after); 3960 if (ret < 0) 3961 goto out; 3962 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3963 NULL, path_before); 3964 if (ret < 0 && ret != -ENOENT) { 3965 goto out; 3966 } else if (ret == -ENOENT) { 3967 ret = 0; 3968 break; 3969 } 3970 3971 len1 = fs_path_len(path_before); 3972 len2 = fs_path_len(path_after); 3973 if (ino > sctx->cur_ino && 3974 (parent_ino_before != parent_ino_after || len1 != len2 || 3975 memcmp(path_before->start, path_after->start, len1))) { 3976 u64 parent_ino_gen; 3977 3978 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 3979 if (ret < 0) 3980 goto out; 3981 if (ino_gen == parent_ino_gen) { 3982 ret = 1; 3983 break; 3984 } 3985 } 3986 ino = parent_ino_after; 3987 ino_gen = parent_ino_after_gen; 3988 } 3989 3990 out: 3991 fs_path_free(path_before); 3992 fs_path_free(path_after); 3993 3994 if (ret == 1) { 3995 ret = add_pending_dir_move(sctx, 3996 sctx->cur_ino, 3997 sctx->cur_inode_gen, 3998 ino, 3999 &sctx->new_refs, 4000 &sctx->deleted_refs, 4001 is_orphan); 4002 if (!ret) 4003 ret = 1; 4004 } 4005 4006 return ret; 4007 } 4008 4009 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4010 { 4011 int ret; 4012 struct fs_path *new_path; 4013 4014 /* 4015 * Our reference's name member points to its full_path member string, so 4016 * we use here a new path. 4017 */ 4018 new_path = fs_path_alloc(); 4019 if (!new_path) 4020 return -ENOMEM; 4021 4022 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4023 if (ret < 0) { 4024 fs_path_free(new_path); 4025 return ret; 4026 } 4027 ret = fs_path_add(new_path, ref->name, ref->name_len); 4028 if (ret < 0) { 4029 fs_path_free(new_path); 4030 return ret; 4031 } 4032 4033 fs_path_free(ref->full_path); 4034 set_ref_path(ref, new_path); 4035 4036 return 0; 4037 } 4038 4039 /* 4040 * When processing the new references for an inode we may orphanize an existing 4041 * directory inode because its old name conflicts with one of the new references 4042 * of the current inode. Later, when processing another new reference of our 4043 * inode, we might need to orphanize another inode, but the path we have in the 4044 * reference reflects the pre-orphanization name of the directory we previously 4045 * orphanized. For example: 4046 * 4047 * parent snapshot looks like: 4048 * 4049 * . (ino 256) 4050 * |----- f1 (ino 257) 4051 * |----- f2 (ino 258) 4052 * |----- d1/ (ino 259) 4053 * |----- d2/ (ino 260) 4054 * 4055 * send snapshot looks like: 4056 * 4057 * . (ino 256) 4058 * |----- d1 (ino 258) 4059 * |----- f2/ (ino 259) 4060 * |----- f2_link/ (ino 260) 4061 * | |----- f1 (ino 257) 4062 * | 4063 * |----- d2 (ino 258) 4064 * 4065 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4066 * cache it in the name cache. Later when we start processing inode 258, when 4067 * collecting all its new references we set a full path of "d1/d2" for its new 4068 * reference with name "d2". When we start processing the new references we 4069 * start by processing the new reference with name "d1", and this results in 4070 * orphanizing inode 259, since its old reference causes a conflict. Then we 4071 * move on the next new reference, with name "d2", and we find out we must 4072 * orphanize inode 260, as its old reference conflicts with ours - but for the 4073 * orphanization we use a source path corresponding to the path we stored in the 4074 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4075 * receiver fail since the path component "d1/" no longer exists, it was renamed 4076 * to "o259-6-0/" when processing the previous new reference. So in this case we 4077 * must recompute the path in the new reference and use it for the new 4078 * orphanization operation. 4079 */ 4080 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4081 { 4082 char *name; 4083 int ret; 4084 4085 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4086 if (!name) 4087 return -ENOMEM; 4088 4089 fs_path_reset(ref->full_path); 4090 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4091 if (ret < 0) 4092 goto out; 4093 4094 ret = fs_path_add(ref->full_path, name, ref->name_len); 4095 if (ret < 0) 4096 goto out; 4097 4098 /* Update the reference's base name pointer. */ 4099 set_ref_path(ref, ref->full_path); 4100 out: 4101 kfree(name); 4102 return ret; 4103 } 4104 4105 static int rbtree_check_dir_ref_comp(const void *k, const struct rb_node *node) 4106 { 4107 const struct recorded_ref *data = k; 4108 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4109 4110 if (data->dir > ref->dir) 4111 return 1; 4112 if (data->dir < ref->dir) 4113 return -1; 4114 if (data->dir_gen > ref->dir_gen) 4115 return 1; 4116 if (data->dir_gen < ref->dir_gen) 4117 return -1; 4118 return 0; 4119 } 4120 4121 static bool rbtree_check_dir_ref_less(struct rb_node *node, const struct rb_node *parent) 4122 { 4123 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4124 4125 return rbtree_check_dir_ref_comp(entry, parent) < 0; 4126 } 4127 4128 static int record_check_dir_ref_in_tree(struct rb_root *root, 4129 struct recorded_ref *ref, struct list_head *list) 4130 { 4131 struct recorded_ref *tmp_ref; 4132 int ret; 4133 4134 if (rb_find(ref, root, rbtree_check_dir_ref_comp)) 4135 return 0; 4136 4137 ret = dup_ref(ref, list); 4138 if (ret < 0) 4139 return ret; 4140 4141 tmp_ref = list_last_entry(list, struct recorded_ref, list); 4142 rb_add(&tmp_ref->node, root, rbtree_check_dir_ref_less); 4143 tmp_ref->root = root; 4144 return 0; 4145 } 4146 4147 static int rename_current_inode(struct send_ctx *sctx, 4148 struct fs_path *current_path, 4149 struct fs_path *new_path) 4150 { 4151 int ret; 4152 4153 ret = send_rename(sctx, current_path, new_path); 4154 if (ret < 0) 4155 return ret; 4156 4157 ret = fs_path_copy(&sctx->cur_inode_path, new_path); 4158 if (ret < 0) 4159 return ret; 4160 4161 return fs_path_copy(current_path, new_path); 4162 } 4163 4164 /* 4165 * This does all the move/link/unlink/rmdir magic. 4166 */ 4167 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4168 { 4169 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4170 int ret = 0; 4171 struct recorded_ref *cur; 4172 struct recorded_ref *cur2; 4173 LIST_HEAD(check_dirs); 4174 struct rb_root rbtree_check_dirs = RB_ROOT; 4175 struct fs_path *valid_path = NULL; 4176 u64 ow_inode = 0; 4177 u64 ow_gen; 4178 u64 ow_mode; 4179 bool did_overwrite = false; 4180 bool is_orphan = false; 4181 bool can_rename = true; 4182 bool orphanized_dir = false; 4183 bool orphanized_ancestor = false; 4184 4185 /* 4186 * This should never happen as the root dir always has the same ref 4187 * which is always '..' 4188 */ 4189 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4190 btrfs_err(fs_info, 4191 "send: unexpected inode %llu in process_recorded_refs()", 4192 sctx->cur_ino); 4193 ret = -EINVAL; 4194 goto out; 4195 } 4196 4197 valid_path = fs_path_alloc(); 4198 if (!valid_path) { 4199 ret = -ENOMEM; 4200 goto out; 4201 } 4202 4203 /* 4204 * First, check if the first ref of the current inode was overwritten 4205 * before. If yes, we know that the current inode was already orphanized 4206 * and thus use the orphan name. If not, we can use get_cur_path to 4207 * get the path of the first ref as it would like while receiving at 4208 * this point in time. 4209 * New inodes are always orphan at the beginning, so force to use the 4210 * orphan name in this case. 4211 * The first ref is stored in valid_path and will be updated if it 4212 * gets moved around. 4213 */ 4214 if (!sctx->cur_inode_new) { 4215 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4216 sctx->cur_inode_gen); 4217 if (ret < 0) 4218 goto out; 4219 if (ret) 4220 did_overwrite = true; 4221 } 4222 if (sctx->cur_inode_new || did_overwrite) { 4223 ret = gen_unique_name(sctx, sctx->cur_ino, 4224 sctx->cur_inode_gen, valid_path); 4225 if (ret < 0) 4226 goto out; 4227 is_orphan = true; 4228 } else { 4229 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4230 valid_path); 4231 if (ret < 0) 4232 goto out; 4233 } 4234 4235 /* 4236 * Before doing any rename and link operations, do a first pass on the 4237 * new references to orphanize any unprocessed inodes that may have a 4238 * reference that conflicts with one of the new references of the current 4239 * inode. This needs to happen first because a new reference may conflict 4240 * with the old reference of a parent directory, so we must make sure 4241 * that the path used for link and rename commands don't use an 4242 * orphanized name when an ancestor was not yet orphanized. 4243 * 4244 * Example: 4245 * 4246 * Parent snapshot: 4247 * 4248 * . (ino 256) 4249 * |----- testdir/ (ino 259) 4250 * | |----- a (ino 257) 4251 * | 4252 * |----- b (ino 258) 4253 * 4254 * Send snapshot: 4255 * 4256 * . (ino 256) 4257 * |----- testdir_2/ (ino 259) 4258 * | |----- a (ino 260) 4259 * | 4260 * |----- testdir (ino 257) 4261 * |----- b (ino 257) 4262 * |----- b2 (ino 258) 4263 * 4264 * Processing the new reference for inode 257 with name "b" may happen 4265 * before processing the new reference with name "testdir". If so, we 4266 * must make sure that by the time we send a link command to create the 4267 * hard link "b", inode 259 was already orphanized, since the generated 4268 * path in "valid_path" already contains the orphanized name for 259. 4269 * We are processing inode 257, so only later when processing 259 we do 4270 * the rename operation to change its temporary (orphanized) name to 4271 * "testdir_2". 4272 */ 4273 list_for_each_entry(cur, &sctx->new_refs, list) { 4274 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4275 if (ret < 0) 4276 goto out; 4277 if (ret == inode_state_will_create) 4278 continue; 4279 4280 /* 4281 * Check if this new ref would overwrite the first ref of another 4282 * unprocessed inode. If yes, orphanize the overwritten inode. 4283 * If we find an overwritten ref that is not the first ref, 4284 * simply unlink it. 4285 */ 4286 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4287 cur->name, cur->name_len, 4288 &ow_inode, &ow_gen, &ow_mode); 4289 if (ret < 0) 4290 goto out; 4291 if (ret) { 4292 ret = is_first_ref(sctx->parent_root, 4293 ow_inode, cur->dir, cur->name, 4294 cur->name_len); 4295 if (ret < 0) 4296 goto out; 4297 if (ret) { 4298 struct name_cache_entry *nce; 4299 struct waiting_dir_move *wdm; 4300 4301 if (orphanized_dir) { 4302 ret = refresh_ref_path(sctx, cur); 4303 if (ret < 0) 4304 goto out; 4305 } 4306 4307 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4308 cur->full_path); 4309 if (ret < 0) 4310 goto out; 4311 if (S_ISDIR(ow_mode)) 4312 orphanized_dir = true; 4313 4314 /* 4315 * If ow_inode has its rename operation delayed 4316 * make sure that its orphanized name is used in 4317 * the source path when performing its rename 4318 * operation. 4319 */ 4320 wdm = get_waiting_dir_move(sctx, ow_inode); 4321 if (wdm) 4322 wdm->orphanized = true; 4323 4324 /* 4325 * Make sure we clear our orphanized inode's 4326 * name from the name cache. This is because the 4327 * inode ow_inode might be an ancestor of some 4328 * other inode that will be orphanized as well 4329 * later and has an inode number greater than 4330 * sctx->send_progress. We need to prevent 4331 * future name lookups from using the old name 4332 * and get instead the orphan name. 4333 */ 4334 nce = name_cache_search(sctx, ow_inode, ow_gen); 4335 if (nce) 4336 btrfs_lru_cache_remove(&sctx->name_cache, 4337 &nce->entry); 4338 4339 /* 4340 * ow_inode might currently be an ancestor of 4341 * cur_ino, therefore compute valid_path (the 4342 * current path of cur_ino) again because it 4343 * might contain the pre-orphanization name of 4344 * ow_inode, which is no longer valid. 4345 */ 4346 ret = is_ancestor(sctx->parent_root, 4347 ow_inode, ow_gen, 4348 sctx->cur_ino, NULL); 4349 if (ret > 0) { 4350 orphanized_ancestor = true; 4351 fs_path_reset(valid_path); 4352 fs_path_reset(&sctx->cur_inode_path); 4353 ret = get_cur_path(sctx, sctx->cur_ino, 4354 sctx->cur_inode_gen, 4355 valid_path); 4356 } 4357 if (ret < 0) 4358 goto out; 4359 } else { 4360 /* 4361 * If we previously orphanized a directory that 4362 * collided with a new reference that we already 4363 * processed, recompute the current path because 4364 * that directory may be part of the path. 4365 */ 4366 if (orphanized_dir) { 4367 ret = refresh_ref_path(sctx, cur); 4368 if (ret < 0) 4369 goto out; 4370 } 4371 ret = send_unlink(sctx, cur->full_path); 4372 if (ret < 0) 4373 goto out; 4374 } 4375 } 4376 4377 } 4378 4379 list_for_each_entry(cur, &sctx->new_refs, list) { 4380 /* 4381 * We may have refs where the parent directory does not exist 4382 * yet. This happens if the parent directories inum is higher 4383 * than the current inum. To handle this case, we create the 4384 * parent directory out of order. But we need to check if this 4385 * did already happen before due to other refs in the same dir. 4386 */ 4387 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4388 if (ret < 0) 4389 goto out; 4390 if (ret == inode_state_will_create) { 4391 ret = 0; 4392 /* 4393 * First check if any of the current inodes refs did 4394 * already create the dir. 4395 */ 4396 list_for_each_entry(cur2, &sctx->new_refs, list) { 4397 if (cur == cur2) 4398 break; 4399 if (cur2->dir == cur->dir) { 4400 ret = 1; 4401 break; 4402 } 4403 } 4404 4405 /* 4406 * If that did not happen, check if a previous inode 4407 * did already create the dir. 4408 */ 4409 if (!ret) 4410 ret = did_create_dir(sctx, cur->dir); 4411 if (ret < 0) 4412 goto out; 4413 if (!ret) { 4414 ret = send_create_inode(sctx, cur->dir); 4415 if (ret < 0) 4416 goto out; 4417 cache_dir_created(sctx, cur->dir); 4418 } 4419 } 4420 4421 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4422 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4423 if (ret < 0) 4424 goto out; 4425 if (ret == 1) { 4426 can_rename = false; 4427 *pending_move = 1; 4428 } 4429 } 4430 4431 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4432 can_rename) { 4433 ret = wait_for_parent_move(sctx, cur, is_orphan); 4434 if (ret < 0) 4435 goto out; 4436 if (ret == 1) { 4437 can_rename = false; 4438 *pending_move = 1; 4439 } 4440 } 4441 4442 /* 4443 * link/move the ref to the new place. If we have an orphan 4444 * inode, move it and update valid_path. If not, link or move 4445 * it depending on the inode mode. 4446 */ 4447 if (is_orphan && can_rename) { 4448 ret = rename_current_inode(sctx, valid_path, cur->full_path); 4449 if (ret < 0) 4450 goto out; 4451 is_orphan = false; 4452 } else if (can_rename) { 4453 if (S_ISDIR(sctx->cur_inode_mode)) { 4454 /* 4455 * Dirs can't be linked, so move it. For moved 4456 * dirs, we always have one new and one deleted 4457 * ref. The deleted ref is ignored later. 4458 */ 4459 ret = rename_current_inode(sctx, valid_path, 4460 cur->full_path); 4461 if (ret < 0) 4462 goto out; 4463 } else { 4464 /* 4465 * We might have previously orphanized an inode 4466 * which is an ancestor of our current inode, 4467 * so our reference's full path, which was 4468 * computed before any such orphanizations, must 4469 * be updated. 4470 */ 4471 if (orphanized_dir) { 4472 ret = update_ref_path(sctx, cur); 4473 if (ret < 0) 4474 goto out; 4475 } 4476 ret = send_link(sctx, cur->full_path, 4477 valid_path); 4478 if (ret < 0) 4479 goto out; 4480 } 4481 } 4482 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4483 if (ret < 0) 4484 goto out; 4485 } 4486 4487 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4488 /* 4489 * Check if we can already rmdir the directory. If not, 4490 * orphanize it. For every dir item inside that gets deleted 4491 * later, we do this check again and rmdir it then if possible. 4492 * See the use of check_dirs for more details. 4493 */ 4494 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4495 if (ret < 0) 4496 goto out; 4497 if (ret) { 4498 ret = send_rmdir(sctx, valid_path); 4499 if (ret < 0) 4500 goto out; 4501 } else if (!is_orphan) { 4502 ret = orphanize_inode(sctx, sctx->cur_ino, 4503 sctx->cur_inode_gen, valid_path); 4504 if (ret < 0) 4505 goto out; 4506 is_orphan = true; 4507 } 4508 4509 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4510 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4511 if (ret < 0) 4512 goto out; 4513 } 4514 } else if (S_ISDIR(sctx->cur_inode_mode) && 4515 !list_empty(&sctx->deleted_refs)) { 4516 /* 4517 * We have a moved dir. Add the old parent to check_dirs 4518 */ 4519 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list); 4520 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4521 if (ret < 0) 4522 goto out; 4523 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4524 /* 4525 * We have a non dir inode. Go through all deleted refs and 4526 * unlink them if they were not already overwritten by other 4527 * inodes. 4528 */ 4529 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4530 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4531 sctx->cur_ino, sctx->cur_inode_gen, 4532 cur->name, cur->name_len); 4533 if (ret < 0) 4534 goto out; 4535 if (!ret) { 4536 /* 4537 * If we orphanized any ancestor before, we need 4538 * to recompute the full path for deleted names, 4539 * since any such path was computed before we 4540 * processed any references and orphanized any 4541 * ancestor inode. 4542 */ 4543 if (orphanized_ancestor) { 4544 ret = update_ref_path(sctx, cur); 4545 if (ret < 0) 4546 goto out; 4547 } 4548 ret = send_unlink(sctx, cur->full_path); 4549 if (ret < 0) 4550 goto out; 4551 if (is_current_inode_path(sctx, cur->full_path)) 4552 fs_path_reset(&sctx->cur_inode_path); 4553 } 4554 ret = record_check_dir_ref_in_tree(&rbtree_check_dirs, cur, &check_dirs); 4555 if (ret < 0) 4556 goto out; 4557 } 4558 /* 4559 * If the inode is still orphan, unlink the orphan. This may 4560 * happen when a previous inode did overwrite the first ref 4561 * of this inode and no new refs were added for the current 4562 * inode. Unlinking does not mean that the inode is deleted in 4563 * all cases. There may still be links to this inode in other 4564 * places. 4565 */ 4566 if (is_orphan) { 4567 ret = send_unlink(sctx, valid_path); 4568 if (ret < 0) 4569 goto out; 4570 } 4571 } 4572 4573 /* 4574 * We did collect all parent dirs where cur_inode was once located. We 4575 * now go through all these dirs and check if they are pending for 4576 * deletion and if it's finally possible to perform the rmdir now. 4577 * We also update the inode stats of the parent dirs here. 4578 */ 4579 list_for_each_entry(cur, &check_dirs, list) { 4580 /* 4581 * In case we had refs into dirs that were not processed yet, 4582 * we don't need to do the utime and rmdir logic for these dirs. 4583 * The dir will be processed later. 4584 */ 4585 if (cur->dir > sctx->cur_ino) 4586 continue; 4587 4588 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4589 if (ret < 0) 4590 goto out; 4591 4592 if (ret == inode_state_did_create || 4593 ret == inode_state_no_change) { 4594 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4595 if (ret < 0) 4596 goto out; 4597 } else if (ret == inode_state_did_delete) { 4598 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4599 if (ret < 0) 4600 goto out; 4601 if (ret) { 4602 ret = get_cur_path(sctx, cur->dir, 4603 cur->dir_gen, valid_path); 4604 if (ret < 0) 4605 goto out; 4606 ret = send_rmdir(sctx, valid_path); 4607 if (ret < 0) 4608 goto out; 4609 } 4610 } 4611 } 4612 4613 ret = 0; 4614 4615 out: 4616 __free_recorded_refs(&check_dirs); 4617 free_recorded_refs(sctx); 4618 fs_path_free(valid_path); 4619 return ret; 4620 } 4621 4622 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4623 { 4624 const struct recorded_ref *data = k; 4625 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4626 4627 if (data->dir > ref->dir) 4628 return 1; 4629 if (data->dir < ref->dir) 4630 return -1; 4631 if (data->dir_gen > ref->dir_gen) 4632 return 1; 4633 if (data->dir_gen < ref->dir_gen) 4634 return -1; 4635 if (data->name_len > ref->name_len) 4636 return 1; 4637 if (data->name_len < ref->name_len) 4638 return -1; 4639 return strcmp(data->name, ref->name); 4640 } 4641 4642 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4643 { 4644 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4645 4646 return rbtree_ref_comp(entry, parent) < 0; 4647 } 4648 4649 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4650 struct fs_path *name, u64 dir, u64 dir_gen, 4651 struct send_ctx *sctx) 4652 { 4653 int ret = 0; 4654 struct fs_path *path = NULL; 4655 struct recorded_ref *ref = NULL; 4656 4657 path = fs_path_alloc(); 4658 if (!path) { 4659 ret = -ENOMEM; 4660 goto out; 4661 } 4662 4663 ref = recorded_ref_alloc(); 4664 if (!ref) { 4665 ret = -ENOMEM; 4666 goto out; 4667 } 4668 4669 ret = get_cur_path(sctx, dir, dir_gen, path); 4670 if (ret < 0) 4671 goto out; 4672 ret = fs_path_add_path(path, name); 4673 if (ret < 0) 4674 goto out; 4675 4676 ref->dir = dir; 4677 ref->dir_gen = dir_gen; 4678 set_ref_path(ref, path); 4679 list_add_tail(&ref->list, refs); 4680 rb_add(&ref->node, root, rbtree_ref_less); 4681 ref->root = root; 4682 out: 4683 if (ret) { 4684 if (path && (!ref || !ref->full_path)) 4685 fs_path_free(path); 4686 recorded_ref_free(ref); 4687 } 4688 return ret; 4689 } 4690 4691 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4692 { 4693 int ret; 4694 struct send_ctx *sctx = ctx; 4695 struct rb_node *node = NULL; 4696 struct recorded_ref data; 4697 struct recorded_ref *ref; 4698 u64 dir_gen; 4699 4700 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4701 if (ret < 0) 4702 return ret; 4703 4704 data.dir = dir; 4705 data.dir_gen = dir_gen; 4706 set_ref_path(&data, name); 4707 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4708 if (node) { 4709 ref = rb_entry(node, struct recorded_ref, node); 4710 recorded_ref_free(ref); 4711 } else { 4712 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4713 &sctx->new_refs, name, dir, dir_gen, 4714 sctx); 4715 } 4716 4717 return ret; 4718 } 4719 4720 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4721 { 4722 int ret; 4723 struct send_ctx *sctx = ctx; 4724 struct rb_node *node = NULL; 4725 struct recorded_ref data; 4726 struct recorded_ref *ref; 4727 u64 dir_gen; 4728 4729 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4730 if (ret < 0) 4731 return ret; 4732 4733 data.dir = dir; 4734 data.dir_gen = dir_gen; 4735 set_ref_path(&data, name); 4736 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4737 if (node) { 4738 ref = rb_entry(node, struct recorded_ref, node); 4739 recorded_ref_free(ref); 4740 } else { 4741 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4742 &sctx->deleted_refs, name, dir, 4743 dir_gen, sctx); 4744 } 4745 4746 return ret; 4747 } 4748 4749 static int record_new_ref(struct send_ctx *sctx) 4750 { 4751 int ret; 4752 4753 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4754 false, record_new_ref_if_needed, sctx); 4755 if (ret < 0) 4756 return ret; 4757 4758 return 0; 4759 } 4760 4761 static int record_deleted_ref(struct send_ctx *sctx) 4762 { 4763 int ret; 4764 4765 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4766 false, record_deleted_ref_if_needed, sctx); 4767 if (ret < 0) 4768 return ret; 4769 4770 return 0; 4771 } 4772 4773 static int record_changed_ref(struct send_ctx *sctx) 4774 { 4775 int ret; 4776 4777 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4778 false, record_new_ref_if_needed, sctx); 4779 if (ret < 0) 4780 return ret; 4781 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4782 false, record_deleted_ref_if_needed, sctx); 4783 if (ret < 0) 4784 return ret; 4785 4786 return 0; 4787 } 4788 4789 /* 4790 * Record and process all refs at once. Needed when an inode changes the 4791 * generation number, which means that it was deleted and recreated. 4792 */ 4793 static int process_all_refs(struct send_ctx *sctx, 4794 enum btrfs_compare_tree_result cmd) 4795 { 4796 int ret = 0; 4797 int iter_ret = 0; 4798 struct btrfs_root *root; 4799 BTRFS_PATH_AUTO_FREE(path); 4800 struct btrfs_key key; 4801 struct btrfs_key found_key; 4802 iterate_inode_ref_t cb; 4803 int pending_move = 0; 4804 4805 path = alloc_path_for_send(); 4806 if (!path) 4807 return -ENOMEM; 4808 4809 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4810 root = sctx->send_root; 4811 cb = record_new_ref_if_needed; 4812 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4813 root = sctx->parent_root; 4814 cb = record_deleted_ref_if_needed; 4815 } else { 4816 btrfs_err(sctx->send_root->fs_info, 4817 "Wrong command %d in process_all_refs", cmd); 4818 return -EINVAL; 4819 } 4820 4821 key.objectid = sctx->cmp_key->objectid; 4822 key.type = BTRFS_INODE_REF_KEY; 4823 key.offset = 0; 4824 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4825 if (found_key.objectid != key.objectid || 4826 (found_key.type != BTRFS_INODE_REF_KEY && 4827 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4828 break; 4829 4830 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx); 4831 if (ret < 0) 4832 return ret; 4833 } 4834 /* Catch error found during iteration */ 4835 if (iter_ret < 0) 4836 return iter_ret; 4837 4838 btrfs_release_path(path); 4839 4840 /* 4841 * We don't actually care about pending_move as we are simply 4842 * re-creating this inode and will be rename'ing it into place once we 4843 * rename the parent directory. 4844 */ 4845 return process_recorded_refs(sctx, &pending_move); 4846 } 4847 4848 static int send_set_xattr(struct send_ctx *sctx, 4849 const char *name, int name_len, 4850 const char *data, int data_len) 4851 { 4852 struct fs_path *path; 4853 int ret; 4854 4855 path = get_cur_inode_path(sctx); 4856 if (IS_ERR(path)) 4857 return PTR_ERR(path); 4858 4859 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4860 if (ret < 0) 4861 return ret; 4862 4863 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4864 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4865 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4866 4867 ret = send_cmd(sctx); 4868 4869 tlv_put_failure: 4870 return ret; 4871 } 4872 4873 static int send_remove_xattr(struct send_ctx *sctx, 4874 struct fs_path *path, 4875 const char *name, int name_len) 4876 { 4877 int ret; 4878 4879 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4880 if (ret < 0) 4881 return ret; 4882 4883 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4884 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4885 4886 ret = send_cmd(sctx); 4887 4888 tlv_put_failure: 4889 return ret; 4890 } 4891 4892 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4893 const char *name, int name_len, const char *data, 4894 int data_len, void *ctx) 4895 { 4896 struct send_ctx *sctx = ctx; 4897 struct posix_acl_xattr_header dummy_acl; 4898 4899 /* Capabilities are emitted by finish_inode_if_needed */ 4900 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4901 return 0; 4902 4903 /* 4904 * This hack is needed because empty acls are stored as zero byte 4905 * data in xattrs. Problem with that is, that receiving these zero byte 4906 * acls will fail later. To fix this, we send a dummy acl list that 4907 * only contains the version number and no entries. 4908 */ 4909 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4910 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4911 if (data_len == 0) { 4912 dummy_acl.a_version = 4913 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4914 data = (char *)&dummy_acl; 4915 data_len = sizeof(dummy_acl); 4916 } 4917 } 4918 4919 return send_set_xattr(sctx, name, name_len, data, data_len); 4920 } 4921 4922 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4923 const char *name, int name_len, 4924 const char *data, int data_len, void *ctx) 4925 { 4926 struct send_ctx *sctx = ctx; 4927 struct fs_path *p; 4928 4929 p = get_cur_inode_path(sctx); 4930 if (IS_ERR(p)) 4931 return PTR_ERR(p); 4932 4933 return send_remove_xattr(sctx, p, name, name_len); 4934 } 4935 4936 static int process_new_xattr(struct send_ctx *sctx) 4937 { 4938 return iterate_dir_item(sctx->send_root, sctx->left_path, 4939 __process_new_xattr, sctx); 4940 } 4941 4942 static int process_deleted_xattr(struct send_ctx *sctx) 4943 { 4944 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4945 __process_deleted_xattr, sctx); 4946 } 4947 4948 struct find_xattr_ctx { 4949 const char *name; 4950 int name_len; 4951 int found_idx; 4952 char *found_data; 4953 int found_data_len; 4954 }; 4955 4956 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4957 int name_len, const char *data, int data_len, void *vctx) 4958 { 4959 struct find_xattr_ctx *ctx = vctx; 4960 4961 if (name_len == ctx->name_len && 4962 strncmp(name, ctx->name, name_len) == 0) { 4963 ctx->found_idx = num; 4964 ctx->found_data_len = data_len; 4965 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4966 if (!ctx->found_data) 4967 return -ENOMEM; 4968 return 1; 4969 } 4970 return 0; 4971 } 4972 4973 static int find_xattr(struct btrfs_root *root, 4974 struct btrfs_path *path, 4975 struct btrfs_key *key, 4976 const char *name, int name_len, 4977 char **data, int *data_len) 4978 { 4979 int ret; 4980 struct find_xattr_ctx ctx; 4981 4982 ctx.name = name; 4983 ctx.name_len = name_len; 4984 ctx.found_idx = -1; 4985 ctx.found_data = NULL; 4986 ctx.found_data_len = 0; 4987 4988 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4989 if (ret < 0) 4990 return ret; 4991 4992 if (ctx.found_idx == -1) 4993 return -ENOENT; 4994 if (data) { 4995 *data = ctx.found_data; 4996 *data_len = ctx.found_data_len; 4997 } else { 4998 kfree(ctx.found_data); 4999 } 5000 return ctx.found_idx; 5001 } 5002 5003 5004 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5005 const char *name, int name_len, 5006 const char *data, int data_len, 5007 void *ctx) 5008 { 5009 int ret; 5010 struct send_ctx *sctx = ctx; 5011 char *found_data = NULL; 5012 int found_data_len = 0; 5013 5014 ret = find_xattr(sctx->parent_root, sctx->right_path, 5015 sctx->cmp_key, name, name_len, &found_data, 5016 &found_data_len); 5017 if (ret == -ENOENT) { 5018 ret = __process_new_xattr(num, di_key, name, name_len, data, 5019 data_len, ctx); 5020 } else if (ret >= 0) { 5021 if (data_len != found_data_len || 5022 memcmp(data, found_data, data_len)) { 5023 ret = __process_new_xattr(num, di_key, name, name_len, 5024 data, data_len, ctx); 5025 } else { 5026 ret = 0; 5027 } 5028 } 5029 5030 kfree(found_data); 5031 return ret; 5032 } 5033 5034 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5035 const char *name, int name_len, 5036 const char *data, int data_len, 5037 void *ctx) 5038 { 5039 int ret; 5040 struct send_ctx *sctx = ctx; 5041 5042 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5043 name, name_len, NULL, NULL); 5044 if (ret == -ENOENT) 5045 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5046 data_len, ctx); 5047 else if (ret >= 0) 5048 ret = 0; 5049 5050 return ret; 5051 } 5052 5053 static int process_changed_xattr(struct send_ctx *sctx) 5054 { 5055 int ret; 5056 5057 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5058 __process_changed_new_xattr, sctx); 5059 if (ret < 0) 5060 return ret; 5061 5062 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5063 __process_changed_deleted_xattr, sctx); 5064 } 5065 5066 static int process_all_new_xattrs(struct send_ctx *sctx) 5067 { 5068 int ret = 0; 5069 int iter_ret = 0; 5070 struct btrfs_root *root; 5071 BTRFS_PATH_AUTO_FREE(path); 5072 struct btrfs_key key; 5073 struct btrfs_key found_key; 5074 5075 path = alloc_path_for_send(); 5076 if (!path) 5077 return -ENOMEM; 5078 5079 root = sctx->send_root; 5080 5081 key.objectid = sctx->cmp_key->objectid; 5082 key.type = BTRFS_XATTR_ITEM_KEY; 5083 key.offset = 0; 5084 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5085 if (found_key.objectid != key.objectid || 5086 found_key.type != key.type) { 5087 ret = 0; 5088 break; 5089 } 5090 5091 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5092 if (ret < 0) 5093 break; 5094 } 5095 /* Catch error found during iteration */ 5096 if (iter_ret < 0) 5097 ret = iter_ret; 5098 5099 return ret; 5100 } 5101 5102 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5103 struct fsverity_descriptor *desc) 5104 { 5105 int ret; 5106 5107 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5108 if (ret < 0) 5109 return ret; 5110 5111 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5112 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5113 le8_to_cpu(desc->hash_algorithm)); 5114 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5115 1U << le8_to_cpu(desc->log_blocksize)); 5116 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5117 le8_to_cpu(desc->salt_size)); 5118 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5119 le32_to_cpu(desc->sig_size)); 5120 5121 ret = send_cmd(sctx); 5122 5123 tlv_put_failure: 5124 return ret; 5125 } 5126 5127 static int process_verity(struct send_ctx *sctx) 5128 { 5129 int ret = 0; 5130 struct btrfs_inode *inode; 5131 struct fs_path *p; 5132 5133 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5134 if (IS_ERR(inode)) 5135 return PTR_ERR(inode); 5136 5137 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); 5138 if (ret < 0) 5139 goto iput; 5140 5141 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5142 ret = -EMSGSIZE; 5143 goto iput; 5144 } 5145 if (!sctx->verity_descriptor) { 5146 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5147 GFP_KERNEL); 5148 if (!sctx->verity_descriptor) { 5149 ret = -ENOMEM; 5150 goto iput; 5151 } 5152 } 5153 5154 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); 5155 if (ret < 0) 5156 goto iput; 5157 5158 p = get_cur_inode_path(sctx); 5159 if (IS_ERR(p)) { 5160 ret = PTR_ERR(p); 5161 goto iput; 5162 } 5163 5164 ret = send_verity(sctx, p, sctx->verity_descriptor); 5165 iput: 5166 iput(&inode->vfs_inode); 5167 return ret; 5168 } 5169 5170 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5171 { 5172 return sctx->send_max_size - SZ_16K; 5173 } 5174 5175 static int put_data_header(struct send_ctx *sctx, u32 len) 5176 { 5177 if (WARN_ON_ONCE(sctx->put_data)) 5178 return -EINVAL; 5179 sctx->put_data = true; 5180 if (sctx->proto >= 2) { 5181 /* 5182 * Since v2, the data attribute header doesn't include a length, 5183 * it is implicitly to the end of the command. 5184 */ 5185 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5186 return -EOVERFLOW; 5187 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5188 sctx->send_size += sizeof(__le16); 5189 } else { 5190 struct btrfs_tlv_header *hdr; 5191 5192 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5193 return -EOVERFLOW; 5194 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5195 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5196 put_unaligned_le16(len, &hdr->tlv_len); 5197 sctx->send_size += sizeof(*hdr); 5198 } 5199 return 0; 5200 } 5201 5202 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5203 { 5204 struct btrfs_root *root = sctx->send_root; 5205 struct btrfs_fs_info *fs_info = root->fs_info; 5206 u64 cur = offset; 5207 const u64 end = offset + len; 5208 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT); 5209 struct address_space *mapping = sctx->cur_inode->i_mapping; 5210 int ret; 5211 5212 ret = put_data_header(sctx, len); 5213 if (ret) 5214 return ret; 5215 5216 while (cur < end) { 5217 pgoff_t index = (cur >> PAGE_SHIFT); 5218 unsigned int cur_len; 5219 unsigned int pg_offset; 5220 struct folio *folio; 5221 5222 folio = filemap_lock_folio(mapping, index); 5223 if (IS_ERR(folio)) { 5224 page_cache_sync_readahead(mapping, 5225 &sctx->ra, NULL, index, 5226 last_index + 1 - index); 5227 5228 folio = filemap_grab_folio(mapping, index); 5229 if (IS_ERR(folio)) { 5230 ret = PTR_ERR(folio); 5231 break; 5232 } 5233 } 5234 pg_offset = offset_in_folio(folio, cur); 5235 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset); 5236 5237 if (folio_test_readahead(folio)) 5238 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5239 last_index + 1 - index); 5240 5241 if (!folio_test_uptodate(folio)) { 5242 btrfs_read_folio(NULL, folio); 5243 folio_lock(folio); 5244 if (unlikely(!folio_test_uptodate(folio))) { 5245 folio_unlock(folio); 5246 btrfs_err(fs_info, 5247 "send: IO error at offset %llu for inode %llu root %llu", 5248 folio_pos(folio), sctx->cur_ino, 5249 btrfs_root_id(sctx->send_root)); 5250 folio_put(folio); 5251 ret = -EIO; 5252 break; 5253 } 5254 if (folio->mapping != mapping) { 5255 folio_unlock(folio); 5256 folio_put(folio); 5257 continue; 5258 } 5259 } 5260 5261 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5262 pg_offset, cur_len); 5263 folio_unlock(folio); 5264 folio_put(folio); 5265 cur += cur_len; 5266 sctx->send_size += cur_len; 5267 } 5268 5269 return ret; 5270 } 5271 5272 /* 5273 * Read some bytes from the current inode/file and send a write command to 5274 * user space. 5275 */ 5276 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5277 { 5278 int ret = 0; 5279 struct fs_path *p; 5280 5281 p = get_cur_inode_path(sctx); 5282 if (IS_ERR(p)) 5283 return PTR_ERR(p); 5284 5285 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5286 if (ret < 0) 5287 return ret; 5288 5289 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5290 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5291 ret = put_file_data(sctx, offset, len); 5292 if (ret < 0) 5293 return ret; 5294 5295 ret = send_cmd(sctx); 5296 5297 tlv_put_failure: 5298 return ret; 5299 } 5300 5301 /* 5302 * Send a clone command to user space. 5303 */ 5304 static int send_clone(struct send_ctx *sctx, 5305 u64 offset, u32 len, 5306 struct clone_root *clone_root) 5307 { 5308 int ret = 0; 5309 struct fs_path *p; 5310 struct fs_path *cur_inode_path; 5311 u64 gen; 5312 5313 cur_inode_path = get_cur_inode_path(sctx); 5314 if (IS_ERR(cur_inode_path)) 5315 return PTR_ERR(cur_inode_path); 5316 5317 p = fs_path_alloc(); 5318 if (!p) 5319 return -ENOMEM; 5320 5321 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5322 if (ret < 0) 5323 goto out; 5324 5325 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5326 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5327 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); 5328 5329 if (clone_root->root == sctx->send_root) { 5330 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5331 if (ret < 0) 5332 goto out; 5333 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5334 } else { 5335 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5336 } 5337 if (ret < 0) 5338 goto out; 5339 5340 /* 5341 * If the parent we're using has a received_uuid set then use that as 5342 * our clone source as that is what we will look for when doing a 5343 * receive. 5344 * 5345 * This covers the case that we create a snapshot off of a received 5346 * subvolume and then use that as the parent and try to receive on a 5347 * different host. 5348 */ 5349 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5350 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5351 clone_root->root->root_item.received_uuid); 5352 else 5353 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5354 clone_root->root->root_item.uuid); 5355 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5356 btrfs_root_ctransid(&clone_root->root->root_item)); 5357 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5358 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5359 clone_root->offset); 5360 5361 ret = send_cmd(sctx); 5362 5363 tlv_put_failure: 5364 out: 5365 fs_path_free(p); 5366 return ret; 5367 } 5368 5369 /* 5370 * Send an update extent command to user space. 5371 */ 5372 static int send_update_extent(struct send_ctx *sctx, 5373 u64 offset, u32 len) 5374 { 5375 int ret = 0; 5376 struct fs_path *p; 5377 5378 p = get_cur_inode_path(sctx); 5379 if (IS_ERR(p)) 5380 return PTR_ERR(p); 5381 5382 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5383 if (ret < 0) 5384 return ret; 5385 5386 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5387 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5388 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5389 5390 ret = send_cmd(sctx); 5391 5392 tlv_put_failure: 5393 return ret; 5394 } 5395 5396 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len) 5397 { 5398 struct fs_path *path; 5399 int ret; 5400 5401 path = get_cur_inode_path(sctx); 5402 if (IS_ERR(path)) 5403 return PTR_ERR(path); 5404 5405 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE); 5406 if (ret < 0) 5407 return ret; 5408 5409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5410 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode); 5411 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5412 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5413 5414 ret = send_cmd(sctx); 5415 5416 tlv_put_failure: 5417 return ret; 5418 } 5419 5420 static int send_hole(struct send_ctx *sctx, u64 end) 5421 { 5422 struct fs_path *p = NULL; 5423 u64 read_size = max_send_read_size(sctx); 5424 u64 offset = sctx->cur_inode_last_extent; 5425 int ret = 0; 5426 5427 /* 5428 * Starting with send stream v2 we have fallocate and can use it to 5429 * punch holes instead of sending writes full of zeroes. 5430 */ 5431 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE)) 5432 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 5433 offset, end - offset); 5434 5435 /* 5436 * A hole that starts at EOF or beyond it. Since we do not yet support 5437 * fallocate (for extent preallocation and hole punching), sending a 5438 * write of zeroes starting at EOF or beyond would later require issuing 5439 * a truncate operation which would undo the write and achieve nothing. 5440 */ 5441 if (offset >= sctx->cur_inode_size) 5442 return 0; 5443 5444 /* 5445 * Don't go beyond the inode's i_size due to prealloc extents that start 5446 * after the i_size. 5447 */ 5448 end = min_t(u64, end, sctx->cur_inode_size); 5449 5450 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5451 return send_update_extent(sctx, offset, end - offset); 5452 5453 p = get_cur_inode_path(sctx); 5454 if (IS_ERR(p)) 5455 return PTR_ERR(p); 5456 5457 while (offset < end) { 5458 u64 len = min(end - offset, read_size); 5459 5460 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5461 if (ret < 0) 5462 break; 5463 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5464 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5465 ret = put_data_header(sctx, len); 5466 if (ret < 0) 5467 break; 5468 memset(sctx->send_buf + sctx->send_size, 0, len); 5469 sctx->send_size += len; 5470 ret = send_cmd(sctx); 5471 if (ret < 0) 5472 break; 5473 offset += len; 5474 } 5475 sctx->cur_inode_next_write_offset = offset; 5476 tlv_put_failure: 5477 return ret; 5478 } 5479 5480 static int send_encoded_inline_extent(struct send_ctx *sctx, 5481 struct btrfs_path *path, u64 offset, 5482 u64 len) 5483 { 5484 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5485 struct fs_path *fspath; 5486 struct extent_buffer *leaf = path->nodes[0]; 5487 struct btrfs_key key; 5488 struct btrfs_file_extent_item *ei; 5489 u64 ram_bytes; 5490 size_t inline_size; 5491 int ret; 5492 5493 fspath = get_cur_inode_path(sctx); 5494 if (IS_ERR(fspath)) 5495 return PTR_ERR(fspath); 5496 5497 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5498 if (ret < 0) 5499 return ret; 5500 5501 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5502 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5503 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5504 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5505 5506 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5507 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5508 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5509 min(key.offset + ram_bytes - offset, len)); 5510 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5511 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5512 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5513 btrfs_file_extent_compression(leaf, ei)); 5514 if (ret < 0) 5515 return ret; 5516 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5517 5518 ret = put_data_header(sctx, inline_size); 5519 if (ret < 0) 5520 return ret; 5521 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5522 btrfs_file_extent_inline_start(ei), inline_size); 5523 sctx->send_size += inline_size; 5524 5525 ret = send_cmd(sctx); 5526 5527 tlv_put_failure: 5528 return ret; 5529 } 5530 5531 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5532 u64 offset, u64 len) 5533 { 5534 struct btrfs_root *root = sctx->send_root; 5535 struct btrfs_fs_info *fs_info = root->fs_info; 5536 struct btrfs_inode *inode; 5537 struct fs_path *fspath; 5538 struct extent_buffer *leaf = path->nodes[0]; 5539 struct btrfs_key key; 5540 struct btrfs_file_extent_item *ei; 5541 u64 disk_bytenr, disk_num_bytes; 5542 u32 data_offset; 5543 struct btrfs_cmd_header *hdr; 5544 u32 crc; 5545 int ret; 5546 5547 inode = btrfs_iget(sctx->cur_ino, root); 5548 if (IS_ERR(inode)) 5549 return PTR_ERR(inode); 5550 5551 fspath = get_cur_inode_path(sctx); 5552 if (IS_ERR(fspath)) { 5553 ret = PTR_ERR(fspath); 5554 goto out; 5555 } 5556 5557 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5558 if (ret < 0) 5559 goto out; 5560 5561 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5562 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5563 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5564 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5565 5566 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5567 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5568 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5569 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5570 len)); 5571 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5572 btrfs_file_extent_ram_bytes(leaf, ei)); 5573 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5574 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5575 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5576 btrfs_file_extent_compression(leaf, ei)); 5577 if (ret < 0) 5578 goto out; 5579 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5580 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5581 5582 ret = put_data_header(sctx, disk_num_bytes); 5583 if (ret < 0) 5584 goto out; 5585 5586 /* 5587 * We want to do I/O directly into the send buffer, so get the next page 5588 * boundary in the send buffer. This means that there may be a gap 5589 * between the beginning of the command and the file data. 5590 */ 5591 data_offset = PAGE_ALIGN(sctx->send_size); 5592 if (data_offset > sctx->send_max_size || 5593 sctx->send_max_size - data_offset < disk_num_bytes) { 5594 ret = -EOVERFLOW; 5595 goto out; 5596 } 5597 5598 /* 5599 * Note that send_buf is a mapping of send_buf_pages, so this is really 5600 * reading into send_buf. 5601 */ 5602 ret = btrfs_encoded_read_regular_fill_pages(inode, 5603 disk_bytenr, disk_num_bytes, 5604 sctx->send_buf_pages + 5605 (data_offset >> PAGE_SHIFT), 5606 NULL); 5607 if (ret) 5608 goto out; 5609 5610 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5611 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5612 hdr->crc = 0; 5613 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5614 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5615 hdr->crc = cpu_to_le32(crc); 5616 5617 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5618 &sctx->send_off); 5619 if (!ret) { 5620 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5621 disk_num_bytes, &sctx->send_off); 5622 } 5623 sctx->send_size = 0; 5624 sctx->put_data = false; 5625 5626 tlv_put_failure: 5627 out: 5628 iput(&inode->vfs_inode); 5629 return ret; 5630 } 5631 5632 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5633 const u64 offset, const u64 len) 5634 { 5635 const u64 end = offset + len; 5636 struct extent_buffer *leaf = path->nodes[0]; 5637 struct btrfs_file_extent_item *ei; 5638 u64 read_size = max_send_read_size(sctx); 5639 u64 sent = 0; 5640 5641 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5642 return send_update_extent(sctx, offset, len); 5643 5644 ei = btrfs_item_ptr(leaf, path->slots[0], 5645 struct btrfs_file_extent_item); 5646 /* 5647 * Do not go through encoded read for bs > ps cases. 5648 * 5649 * Encoded send is using vmallocated pages as buffer, which we can 5650 * not ensure every folio is large enough to contain a block. 5651 */ 5652 if (sctx->send_root->fs_info->sectorsize <= PAGE_SIZE && 5653 (sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5654 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5655 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5656 BTRFS_FILE_EXTENT_INLINE); 5657 5658 /* 5659 * Send the compressed extent unless the compressed data is 5660 * larger than the decompressed data. This can happen if we're 5661 * not sending the entire extent, either because it has been 5662 * partially overwritten/truncated or because this is a part of 5663 * the extent that we couldn't clone in clone_range(). 5664 */ 5665 if (is_inline && 5666 btrfs_file_extent_inline_item_len(leaf, 5667 path->slots[0]) <= len) { 5668 return send_encoded_inline_extent(sctx, path, offset, 5669 len); 5670 } else if (!is_inline && 5671 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5672 return send_encoded_extent(sctx, path, offset, len); 5673 } 5674 } 5675 5676 if (sctx->cur_inode == NULL) { 5677 struct btrfs_inode *btrfs_inode; 5678 struct btrfs_root *root = sctx->send_root; 5679 5680 btrfs_inode = btrfs_iget(sctx->cur_ino, root); 5681 if (IS_ERR(btrfs_inode)) 5682 return PTR_ERR(btrfs_inode); 5683 5684 sctx->cur_inode = &btrfs_inode->vfs_inode; 5685 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5686 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5687 5688 /* 5689 * It's very likely there are no pages from this inode in the page 5690 * cache, so after reading extents and sending their data, we clean 5691 * the page cache to avoid trashing the page cache (adding pressure 5692 * to the page cache and forcing eviction of other data more useful 5693 * for applications). 5694 * 5695 * We decide if we should clean the page cache simply by checking 5696 * if the inode's mapping nrpages is 0 when we first open it, and 5697 * not by using something like filemap_range_has_page() before 5698 * reading an extent because when we ask the readahead code to 5699 * read a given file range, it may (and almost always does) read 5700 * pages from beyond that range (see the documentation for 5701 * page_cache_sync_readahead()), so it would not be reliable, 5702 * because after reading the first extent future calls to 5703 * filemap_range_has_page() would return true because the readahead 5704 * on the previous extent resulted in reading pages of the current 5705 * extent as well. 5706 */ 5707 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5708 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5709 } 5710 5711 while (sent < len) { 5712 u64 size = min(len - sent, read_size); 5713 int ret; 5714 5715 ret = send_write(sctx, offset + sent, size); 5716 if (ret < 0) 5717 return ret; 5718 sent += size; 5719 } 5720 5721 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5722 /* 5723 * Always operate only on ranges that are a multiple of the page 5724 * size. This is not only to prevent zeroing parts of a page in 5725 * the case of subpage sector size, but also to guarantee we evict 5726 * pages, as passing a range that is smaller than page size does 5727 * not evict the respective page (only zeroes part of its content). 5728 * 5729 * Always start from the end offset of the last range cleared. 5730 * This is because the readahead code may (and very often does) 5731 * reads pages beyond the range we request for readahead. So if 5732 * we have an extent layout like this: 5733 * 5734 * [ extent A ] [ extent B ] [ extent C ] 5735 * 5736 * When we ask page_cache_sync_readahead() to read extent A, it 5737 * may also trigger reads for pages of extent B. If we are doing 5738 * an incremental send and extent B has not changed between the 5739 * parent and send snapshots, some or all of its pages may end 5740 * up being read and placed in the page cache. So when truncating 5741 * the page cache we always start from the end offset of the 5742 * previously processed extent up to the end of the current 5743 * extent. 5744 */ 5745 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5746 sctx->page_cache_clear_start, 5747 end - 1); 5748 sctx->page_cache_clear_start = end; 5749 } 5750 5751 return 0; 5752 } 5753 5754 /* 5755 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5756 * found, call send_set_xattr function to emit it. 5757 * 5758 * Return 0 if there isn't a capability, or when the capability was emitted 5759 * successfully, or < 0 if an error occurred. 5760 */ 5761 static int send_capabilities(struct send_ctx *sctx) 5762 { 5763 BTRFS_PATH_AUTO_FREE(path); 5764 struct btrfs_dir_item *di; 5765 struct extent_buffer *leaf; 5766 unsigned long data_ptr; 5767 char *buf = NULL; 5768 int buf_len; 5769 int ret = 0; 5770 5771 path = alloc_path_for_send(); 5772 if (!path) 5773 return -ENOMEM; 5774 5775 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5776 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5777 if (!di) { 5778 /* There is no xattr for this inode */ 5779 goto out; 5780 } else if (IS_ERR(di)) { 5781 ret = PTR_ERR(di); 5782 goto out; 5783 } 5784 5785 leaf = path->nodes[0]; 5786 buf_len = btrfs_dir_data_len(leaf, di); 5787 5788 buf = kmalloc(buf_len, GFP_KERNEL); 5789 if (!buf) { 5790 ret = -ENOMEM; 5791 goto out; 5792 } 5793 5794 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5795 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5796 5797 ret = send_set_xattr(sctx, XATTR_NAME_CAPS, 5798 strlen(XATTR_NAME_CAPS), buf, buf_len); 5799 out: 5800 kfree(buf); 5801 return ret; 5802 } 5803 5804 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5805 struct clone_root *clone_root, const u64 disk_byte, 5806 u64 data_offset, u64 offset, u64 len) 5807 { 5808 BTRFS_PATH_AUTO_FREE(path); 5809 struct btrfs_key key; 5810 int ret; 5811 struct btrfs_inode_info info; 5812 u64 clone_src_i_size = 0; 5813 5814 /* 5815 * Prevent cloning from a zero offset with a length matching the sector 5816 * size because in some scenarios this will make the receiver fail. 5817 * 5818 * For example, if in the source filesystem the extent at offset 0 5819 * has a length of sectorsize and it was written using direct IO, then 5820 * it can never be an inline extent (even if compression is enabled). 5821 * Then this extent can be cloned in the original filesystem to a non 5822 * zero file offset, but it may not be possible to clone in the 5823 * destination filesystem because it can be inlined due to compression 5824 * on the destination filesystem (as the receiver's write operations are 5825 * always done using buffered IO). The same happens when the original 5826 * filesystem does not have compression enabled but the destination 5827 * filesystem has. 5828 */ 5829 if (clone_root->offset == 0 && 5830 len == sctx->send_root->fs_info->sectorsize) 5831 return send_extent_data(sctx, dst_path, offset, len); 5832 5833 path = alloc_path_for_send(); 5834 if (!path) 5835 return -ENOMEM; 5836 5837 /* 5838 * There are inodes that have extents that lie behind its i_size. Don't 5839 * accept clones from these extents. 5840 */ 5841 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5842 btrfs_release_path(path); 5843 if (ret < 0) 5844 return ret; 5845 clone_src_i_size = info.size; 5846 5847 /* 5848 * We can't send a clone operation for the entire range if we find 5849 * extent items in the respective range in the source file that 5850 * refer to different extents or if we find holes. 5851 * So check for that and do a mix of clone and regular write/copy 5852 * operations if needed. 5853 * 5854 * Example: 5855 * 5856 * mkfs.btrfs -f /dev/sda 5857 * mount /dev/sda /mnt 5858 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5859 * cp --reflink=always /mnt/foo /mnt/bar 5860 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5861 * btrfs subvolume snapshot -r /mnt /mnt/snap 5862 * 5863 * If when we send the snapshot and we are processing file bar (which 5864 * has a higher inode number than foo) we blindly send a clone operation 5865 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5866 * a file bar that matches the content of file foo - iow, doesn't match 5867 * the content from bar in the original filesystem. 5868 */ 5869 key.objectid = clone_root->ino; 5870 key.type = BTRFS_EXTENT_DATA_KEY; 5871 key.offset = clone_root->offset; 5872 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5873 if (ret < 0) 5874 return ret; 5875 if (ret > 0 && path->slots[0] > 0) { 5876 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5877 if (key.objectid == clone_root->ino && 5878 key.type == BTRFS_EXTENT_DATA_KEY) 5879 path->slots[0]--; 5880 } 5881 5882 while (true) { 5883 struct extent_buffer *leaf = path->nodes[0]; 5884 int slot = path->slots[0]; 5885 struct btrfs_file_extent_item *ei; 5886 u8 type; 5887 u64 ext_len; 5888 u64 clone_len; 5889 u64 clone_data_offset; 5890 bool crossed_src_i_size = false; 5891 5892 if (slot >= btrfs_header_nritems(leaf)) { 5893 ret = btrfs_next_leaf(clone_root->root, path); 5894 if (ret < 0) 5895 return ret; 5896 else if (ret > 0) 5897 break; 5898 continue; 5899 } 5900 5901 btrfs_item_key_to_cpu(leaf, &key, slot); 5902 5903 /* 5904 * We might have an implicit trailing hole (NO_HOLES feature 5905 * enabled). We deal with it after leaving this loop. 5906 */ 5907 if (key.objectid != clone_root->ino || 5908 key.type != BTRFS_EXTENT_DATA_KEY) 5909 break; 5910 5911 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5912 type = btrfs_file_extent_type(leaf, ei); 5913 if (type == BTRFS_FILE_EXTENT_INLINE) { 5914 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5915 ext_len = PAGE_ALIGN(ext_len); 5916 } else { 5917 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5918 } 5919 5920 if (key.offset + ext_len <= clone_root->offset) 5921 goto next; 5922 5923 if (key.offset > clone_root->offset) { 5924 /* Implicit hole, NO_HOLES feature enabled. */ 5925 u64 hole_len = key.offset - clone_root->offset; 5926 5927 if (hole_len > len) 5928 hole_len = len; 5929 ret = send_extent_data(sctx, dst_path, offset, 5930 hole_len); 5931 if (ret < 0) 5932 return ret; 5933 5934 len -= hole_len; 5935 if (len == 0) 5936 break; 5937 offset += hole_len; 5938 clone_root->offset += hole_len; 5939 data_offset += hole_len; 5940 } 5941 5942 if (key.offset >= clone_root->offset + len) 5943 break; 5944 5945 if (key.offset >= clone_src_i_size) 5946 break; 5947 5948 if (key.offset + ext_len > clone_src_i_size) { 5949 ext_len = clone_src_i_size - key.offset; 5950 crossed_src_i_size = true; 5951 } 5952 5953 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5954 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5955 clone_root->offset = key.offset; 5956 if (clone_data_offset < data_offset && 5957 clone_data_offset + ext_len > data_offset) { 5958 u64 extent_offset; 5959 5960 extent_offset = data_offset - clone_data_offset; 5961 ext_len -= extent_offset; 5962 clone_data_offset += extent_offset; 5963 clone_root->offset += extent_offset; 5964 } 5965 } 5966 5967 clone_len = min_t(u64, ext_len, len); 5968 5969 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5970 clone_data_offset == data_offset) { 5971 const u64 src_end = clone_root->offset + clone_len; 5972 const u64 sectorsize = SZ_64K; 5973 5974 /* 5975 * We can't clone the last block, when its size is not 5976 * sector size aligned, into the middle of a file. If we 5977 * do so, the receiver will get a failure (-EINVAL) when 5978 * trying to clone or will silently corrupt the data in 5979 * the destination file if it's on a kernel without the 5980 * fix introduced by commit ac765f83f1397646 5981 * ("Btrfs: fix data corruption due to cloning of eof 5982 * block). 5983 * 5984 * So issue a clone of the aligned down range plus a 5985 * regular write for the eof block, if we hit that case. 5986 * 5987 * Also, we use the maximum possible sector size, 64K, 5988 * because we don't know what's the sector size of the 5989 * filesystem that receives the stream, so we have to 5990 * assume the largest possible sector size. 5991 */ 5992 if (src_end == clone_src_i_size && 5993 !IS_ALIGNED(src_end, sectorsize) && 5994 offset + clone_len < sctx->cur_inode_size) { 5995 u64 slen; 5996 5997 slen = ALIGN_DOWN(src_end - clone_root->offset, 5998 sectorsize); 5999 if (slen > 0) { 6000 ret = send_clone(sctx, offset, slen, 6001 clone_root); 6002 if (ret < 0) 6003 return ret; 6004 } 6005 ret = send_extent_data(sctx, dst_path, 6006 offset + slen, 6007 clone_len - slen); 6008 } else { 6009 ret = send_clone(sctx, offset, clone_len, 6010 clone_root); 6011 } 6012 } else if (crossed_src_i_size && clone_len < len) { 6013 /* 6014 * If we are at i_size of the clone source inode and we 6015 * can not clone from it, terminate the loop. This is 6016 * to avoid sending two write operations, one with a 6017 * length matching clone_len and the final one after 6018 * this loop with a length of len - clone_len. 6019 * 6020 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6021 * was passed to the send ioctl), this helps avoid 6022 * sending an encoded write for an offset that is not 6023 * sector size aligned, in case the i_size of the source 6024 * inode is not sector size aligned. That will make the 6025 * receiver fallback to decompression of the data and 6026 * writing it using regular buffered IO, therefore while 6027 * not incorrect, it's not optimal due decompression and 6028 * possible re-compression at the receiver. 6029 */ 6030 break; 6031 } else { 6032 ret = send_extent_data(sctx, dst_path, offset, 6033 clone_len); 6034 } 6035 6036 if (ret < 0) 6037 return ret; 6038 6039 len -= clone_len; 6040 if (len == 0) 6041 break; 6042 offset += clone_len; 6043 clone_root->offset += clone_len; 6044 6045 /* 6046 * If we are cloning from the file we are currently processing, 6047 * and using the send root as the clone root, we must stop once 6048 * the current clone offset reaches the current eof of the file 6049 * at the receiver, otherwise we would issue an invalid clone 6050 * operation (source range going beyond eof) and cause the 6051 * receiver to fail. So if we reach the current eof, bail out 6052 * and fallback to a regular write. 6053 */ 6054 if (clone_root->root == sctx->send_root && 6055 clone_root->ino == sctx->cur_ino && 6056 clone_root->offset >= sctx->cur_inode_next_write_offset) 6057 break; 6058 6059 data_offset += clone_len; 6060 next: 6061 path->slots[0]++; 6062 } 6063 6064 if (len > 0) 6065 ret = send_extent_data(sctx, dst_path, offset, len); 6066 else 6067 ret = 0; 6068 return ret; 6069 } 6070 6071 static int send_write_or_clone(struct send_ctx *sctx, 6072 struct btrfs_path *path, 6073 struct btrfs_key *key, 6074 struct clone_root *clone_root) 6075 { 6076 int ret = 0; 6077 u64 offset = key->offset; 6078 u64 end; 6079 u64 bs = sctx->send_root->fs_info->sectorsize; 6080 struct btrfs_file_extent_item *ei; 6081 u64 disk_byte; 6082 u64 data_offset; 6083 u64 num_bytes; 6084 struct btrfs_inode_info info = { 0 }; 6085 6086 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6087 if (offset >= end) 6088 return 0; 6089 6090 num_bytes = end - offset; 6091 6092 if (!clone_root) 6093 goto write_data; 6094 6095 if (IS_ALIGNED(end, bs)) 6096 goto clone_data; 6097 6098 /* 6099 * If the extent end is not aligned, we can clone if the extent ends at 6100 * the i_size of the inode and the clone range ends at the i_size of the 6101 * source inode, otherwise the clone operation fails with -EINVAL. 6102 */ 6103 if (end != sctx->cur_inode_size) 6104 goto write_data; 6105 6106 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6107 if (ret < 0) 6108 return ret; 6109 6110 if (clone_root->offset + num_bytes == info.size) { 6111 /* 6112 * The final size of our file matches the end offset, but it may 6113 * be that its current size is larger, so we have to truncate it 6114 * to any value between the start offset of the range and the 6115 * final i_size, otherwise the clone operation is invalid 6116 * because it's unaligned and it ends before the current EOF. 6117 * We do this truncate to the final i_size when we finish 6118 * processing the inode, but it's too late by then. And here we 6119 * truncate to the start offset of the range because it's always 6120 * sector size aligned while if it were the final i_size it 6121 * would result in dirtying part of a page, filling part of a 6122 * page with zeroes and then having the clone operation at the 6123 * receiver trigger IO and wait for it due to the dirty page. 6124 */ 6125 if (sctx->parent_root != NULL) { 6126 ret = send_truncate(sctx, sctx->cur_ino, 6127 sctx->cur_inode_gen, offset); 6128 if (ret < 0) 6129 return ret; 6130 } 6131 goto clone_data; 6132 } 6133 6134 write_data: 6135 ret = send_extent_data(sctx, path, offset, num_bytes); 6136 sctx->cur_inode_next_write_offset = end; 6137 return ret; 6138 6139 clone_data: 6140 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6141 struct btrfs_file_extent_item); 6142 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6143 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6144 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6145 num_bytes); 6146 sctx->cur_inode_next_write_offset = end; 6147 return ret; 6148 } 6149 6150 static int is_extent_unchanged(struct send_ctx *sctx, 6151 struct btrfs_path *left_path, 6152 struct btrfs_key *ekey) 6153 { 6154 int ret = 0; 6155 struct btrfs_key key; 6156 BTRFS_PATH_AUTO_FREE(path); 6157 struct extent_buffer *eb; 6158 int slot; 6159 struct btrfs_key found_key; 6160 struct btrfs_file_extent_item *ei; 6161 u64 left_disknr; 6162 u64 right_disknr; 6163 u64 left_offset; 6164 u64 right_offset; 6165 u64 left_offset_fixed; 6166 u64 left_len; 6167 u64 right_len; 6168 u64 left_gen; 6169 u64 right_gen; 6170 u8 left_type; 6171 u8 right_type; 6172 6173 path = alloc_path_for_send(); 6174 if (!path) 6175 return -ENOMEM; 6176 6177 eb = left_path->nodes[0]; 6178 slot = left_path->slots[0]; 6179 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6180 left_type = btrfs_file_extent_type(eb, ei); 6181 6182 if (left_type != BTRFS_FILE_EXTENT_REG) 6183 return 0; 6184 6185 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6186 left_len = btrfs_file_extent_num_bytes(eb, ei); 6187 left_offset = btrfs_file_extent_offset(eb, ei); 6188 left_gen = btrfs_file_extent_generation(eb, ei); 6189 6190 /* 6191 * Following comments will refer to these graphics. L is the left 6192 * extents which we are checking at the moment. 1-8 are the right 6193 * extents that we iterate. 6194 * 6195 * |-----L-----| 6196 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6197 * 6198 * |-----L-----| 6199 * |--1--|-2b-|...(same as above) 6200 * 6201 * Alternative situation. Happens on files where extents got split. 6202 * |-----L-----| 6203 * |-----------7-----------|-6-| 6204 * 6205 * Alternative situation. Happens on files which got larger. 6206 * |-----L-----| 6207 * |-8-| 6208 * Nothing follows after 8. 6209 */ 6210 6211 key.objectid = ekey->objectid; 6212 key.type = BTRFS_EXTENT_DATA_KEY; 6213 key.offset = ekey->offset; 6214 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6215 if (ret < 0) 6216 return ret; 6217 if (ret) 6218 return 0; 6219 6220 /* 6221 * Handle special case where the right side has no extents at all. 6222 */ 6223 eb = path->nodes[0]; 6224 slot = path->slots[0]; 6225 btrfs_item_key_to_cpu(eb, &found_key, slot); 6226 if (found_key.objectid != key.objectid || 6227 found_key.type != key.type) 6228 /* If we're a hole then just pretend nothing changed */ 6229 return (left_disknr ? 0 : 1); 6230 6231 /* 6232 * We're now on 2a, 2b or 7. 6233 */ 6234 key = found_key; 6235 while (key.offset < ekey->offset + left_len) { 6236 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6237 right_type = btrfs_file_extent_type(eb, ei); 6238 if (right_type != BTRFS_FILE_EXTENT_REG && 6239 right_type != BTRFS_FILE_EXTENT_INLINE) 6240 return 0; 6241 6242 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6243 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6244 right_len = PAGE_ALIGN(right_len); 6245 } else { 6246 right_len = btrfs_file_extent_num_bytes(eb, ei); 6247 } 6248 6249 /* 6250 * Are we at extent 8? If yes, we know the extent is changed. 6251 * This may only happen on the first iteration. 6252 */ 6253 if (found_key.offset + right_len <= ekey->offset) 6254 /* If we're a hole just pretend nothing changed */ 6255 return (left_disknr ? 0 : 1); 6256 6257 /* 6258 * We just wanted to see if when we have an inline extent, what 6259 * follows it is a regular extent (wanted to check the above 6260 * condition for inline extents too). This should normally not 6261 * happen but it's possible for example when we have an inline 6262 * compressed extent representing data with a size matching 6263 * the page size (currently the same as sector size). 6264 */ 6265 if (right_type == BTRFS_FILE_EXTENT_INLINE) 6266 return 0; 6267 6268 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6269 right_offset = btrfs_file_extent_offset(eb, ei); 6270 right_gen = btrfs_file_extent_generation(eb, ei); 6271 6272 left_offset_fixed = left_offset; 6273 if (key.offset < ekey->offset) { 6274 /* Fix the right offset for 2a and 7. */ 6275 right_offset += ekey->offset - key.offset; 6276 } else { 6277 /* Fix the left offset for all behind 2a and 2b */ 6278 left_offset_fixed += key.offset - ekey->offset; 6279 } 6280 6281 /* 6282 * Check if we have the same extent. 6283 */ 6284 if (left_disknr != right_disknr || 6285 left_offset_fixed != right_offset || 6286 left_gen != right_gen) 6287 return 0; 6288 6289 /* 6290 * Go to the next extent. 6291 */ 6292 ret = btrfs_next_item(sctx->parent_root, path); 6293 if (ret < 0) 6294 return ret; 6295 if (!ret) { 6296 eb = path->nodes[0]; 6297 slot = path->slots[0]; 6298 btrfs_item_key_to_cpu(eb, &found_key, slot); 6299 } 6300 if (ret || found_key.objectid != key.objectid || 6301 found_key.type != key.type) { 6302 key.offset += right_len; 6303 break; 6304 } 6305 if (found_key.offset != key.offset + right_len) 6306 return 0; 6307 6308 key = found_key; 6309 } 6310 6311 /* 6312 * We're now behind the left extent (treat as unchanged) or at the end 6313 * of the right side (treat as changed). 6314 */ 6315 if (key.offset >= ekey->offset + left_len) 6316 ret = 1; 6317 else 6318 ret = 0; 6319 6320 return ret; 6321 } 6322 6323 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6324 { 6325 BTRFS_PATH_AUTO_FREE(path); 6326 struct btrfs_root *root = sctx->send_root; 6327 struct btrfs_key key; 6328 int ret; 6329 6330 path = alloc_path_for_send(); 6331 if (!path) 6332 return -ENOMEM; 6333 6334 sctx->cur_inode_last_extent = 0; 6335 6336 key.objectid = sctx->cur_ino; 6337 key.type = BTRFS_EXTENT_DATA_KEY; 6338 key.offset = offset; 6339 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6340 if (ret < 0) 6341 return ret; 6342 ret = 0; 6343 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6344 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6345 return ret; 6346 6347 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6348 return ret; 6349 } 6350 6351 static int range_is_hole_in_parent(struct send_ctx *sctx, 6352 const u64 start, 6353 const u64 end) 6354 { 6355 BTRFS_PATH_AUTO_FREE(path); 6356 struct btrfs_key key; 6357 struct btrfs_root *root = sctx->parent_root; 6358 u64 search_start = start; 6359 int ret; 6360 6361 path = alloc_path_for_send(); 6362 if (!path) 6363 return -ENOMEM; 6364 6365 key.objectid = sctx->cur_ino; 6366 key.type = BTRFS_EXTENT_DATA_KEY; 6367 key.offset = search_start; 6368 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6369 if (ret < 0) 6370 return ret; 6371 if (ret > 0 && path->slots[0] > 0) 6372 path->slots[0]--; 6373 6374 while (search_start < end) { 6375 struct extent_buffer *leaf = path->nodes[0]; 6376 int slot = path->slots[0]; 6377 struct btrfs_file_extent_item *fi; 6378 u64 extent_end; 6379 6380 if (slot >= btrfs_header_nritems(leaf)) { 6381 ret = btrfs_next_leaf(root, path); 6382 if (ret < 0) 6383 return ret; 6384 if (ret > 0) 6385 break; 6386 continue; 6387 } 6388 6389 btrfs_item_key_to_cpu(leaf, &key, slot); 6390 if (key.objectid < sctx->cur_ino || 6391 key.type < BTRFS_EXTENT_DATA_KEY) 6392 goto next; 6393 if (key.objectid > sctx->cur_ino || 6394 key.type > BTRFS_EXTENT_DATA_KEY || 6395 key.offset >= end) 6396 break; 6397 6398 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6399 extent_end = btrfs_file_extent_end(path); 6400 if (extent_end <= start) 6401 goto next; 6402 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6403 search_start = extent_end; 6404 goto next; 6405 } 6406 return 0; 6407 next: 6408 path->slots[0]++; 6409 } 6410 return 1; 6411 } 6412 6413 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6414 struct btrfs_key *key) 6415 { 6416 int ret = 0; 6417 6418 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6419 return 0; 6420 6421 /* 6422 * Get last extent's end offset (exclusive) if we haven't determined it 6423 * yet (we're processing the first file extent item that is new), or if 6424 * we're at the first slot of a leaf and the last extent's end is less 6425 * than the current extent's offset, because we might have skipped 6426 * entire leaves that contained only file extent items for our current 6427 * inode. These leaves have a generation number smaller (older) than the 6428 * one in the current leaf and the leaf our last extent came from, and 6429 * are located between these 2 leaves. 6430 */ 6431 if ((sctx->cur_inode_last_extent == (u64)-1) || 6432 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6433 ret = get_last_extent(sctx, key->offset - 1); 6434 if (ret) 6435 return ret; 6436 } 6437 6438 if (sctx->cur_inode_last_extent < key->offset) { 6439 ret = range_is_hole_in_parent(sctx, 6440 sctx->cur_inode_last_extent, 6441 key->offset); 6442 if (ret < 0) 6443 return ret; 6444 else if (ret == 0) 6445 ret = send_hole(sctx, key->offset); 6446 else 6447 ret = 0; 6448 } 6449 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6450 return ret; 6451 } 6452 6453 static int process_extent(struct send_ctx *sctx, 6454 struct btrfs_path *path, 6455 struct btrfs_key *key) 6456 { 6457 struct clone_root *found_clone = NULL; 6458 int ret = 0; 6459 6460 if (S_ISLNK(sctx->cur_inode_mode)) 6461 return 0; 6462 6463 if (sctx->parent_root && !sctx->cur_inode_new) { 6464 ret = is_extent_unchanged(sctx, path, key); 6465 if (ret < 0) 6466 goto out; 6467 if (ret) { 6468 ret = 0; 6469 goto out_hole; 6470 } 6471 } else { 6472 struct btrfs_file_extent_item *ei; 6473 u8 type; 6474 6475 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6476 struct btrfs_file_extent_item); 6477 type = btrfs_file_extent_type(path->nodes[0], ei); 6478 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6479 type == BTRFS_FILE_EXTENT_REG) { 6480 /* 6481 * The send spec does not have a prealloc command yet, 6482 * so just leave a hole for prealloc'ed extents until 6483 * we have enough commands queued up to justify rev'ing 6484 * the send spec. 6485 */ 6486 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6487 ret = 0; 6488 goto out; 6489 } 6490 6491 /* Have a hole, just skip it. */ 6492 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6493 ret = 0; 6494 goto out; 6495 } 6496 } 6497 } 6498 6499 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6500 sctx->cur_inode_size, &found_clone); 6501 if (ret != -ENOENT && ret < 0) 6502 goto out; 6503 6504 ret = send_write_or_clone(sctx, path, key, found_clone); 6505 if (ret) 6506 goto out; 6507 out_hole: 6508 ret = maybe_send_hole(sctx, path, key); 6509 out: 6510 return ret; 6511 } 6512 6513 static int process_all_extents(struct send_ctx *sctx) 6514 { 6515 int ret = 0; 6516 int iter_ret = 0; 6517 struct btrfs_root *root; 6518 BTRFS_PATH_AUTO_FREE(path); 6519 struct btrfs_key key; 6520 struct btrfs_key found_key; 6521 6522 root = sctx->send_root; 6523 path = alloc_path_for_send(); 6524 if (!path) 6525 return -ENOMEM; 6526 6527 key.objectid = sctx->cmp_key->objectid; 6528 key.type = BTRFS_EXTENT_DATA_KEY; 6529 key.offset = 0; 6530 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6531 if (found_key.objectid != key.objectid || 6532 found_key.type != key.type) { 6533 ret = 0; 6534 break; 6535 } 6536 6537 ret = process_extent(sctx, path, &found_key); 6538 if (ret < 0) 6539 break; 6540 } 6541 /* Catch error found during iteration */ 6542 if (iter_ret < 0) 6543 ret = iter_ret; 6544 6545 return ret; 6546 } 6547 6548 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end, 6549 int *pending_move, 6550 int *refs_processed) 6551 { 6552 int ret = 0; 6553 6554 if (sctx->cur_ino == 0) 6555 goto out; 6556 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6557 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6558 goto out; 6559 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6560 goto out; 6561 6562 ret = process_recorded_refs(sctx, pending_move); 6563 if (ret < 0) 6564 goto out; 6565 6566 *refs_processed = 1; 6567 out: 6568 return ret; 6569 } 6570 6571 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end) 6572 { 6573 int ret = 0; 6574 struct btrfs_inode_info info; 6575 u64 left_mode; 6576 u64 left_uid; 6577 u64 left_gid; 6578 u64 left_fileattr; 6579 u64 right_mode; 6580 u64 right_uid; 6581 u64 right_gid; 6582 u64 right_fileattr; 6583 int need_chmod = 0; 6584 int need_chown = 0; 6585 bool need_fileattr = false; 6586 int need_truncate = 1; 6587 int pending_move = 0; 6588 int refs_processed = 0; 6589 6590 if (sctx->ignore_cur_inode) 6591 return 0; 6592 6593 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6594 &refs_processed); 6595 if (ret < 0) 6596 goto out; 6597 6598 /* 6599 * We have processed the refs and thus need to advance send_progress. 6600 * Now, calls to get_cur_xxx will take the updated refs of the current 6601 * inode into account. 6602 * 6603 * On the other hand, if our current inode is a directory and couldn't 6604 * be moved/renamed because its parent was renamed/moved too and it has 6605 * a higher inode number, we can only move/rename our current inode 6606 * after we moved/renamed its parent. Therefore in this case operate on 6607 * the old path (pre move/rename) of our current inode, and the 6608 * move/rename will be performed later. 6609 */ 6610 if (refs_processed && !pending_move) 6611 sctx->send_progress = sctx->cur_ino + 1; 6612 6613 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6614 goto out; 6615 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6616 goto out; 6617 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6618 if (ret < 0) 6619 goto out; 6620 left_mode = info.mode; 6621 left_uid = info.uid; 6622 left_gid = info.gid; 6623 left_fileattr = info.fileattr; 6624 6625 if (!sctx->parent_root || sctx->cur_inode_new) { 6626 need_chown = 1; 6627 if (!S_ISLNK(sctx->cur_inode_mode)) 6628 need_chmod = 1; 6629 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6630 need_truncate = 0; 6631 } else { 6632 u64 old_size; 6633 6634 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6635 if (ret < 0) 6636 goto out; 6637 old_size = info.size; 6638 right_mode = info.mode; 6639 right_uid = info.uid; 6640 right_gid = info.gid; 6641 right_fileattr = info.fileattr; 6642 6643 if (left_uid != right_uid || left_gid != right_gid) 6644 need_chown = 1; 6645 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6646 need_chmod = 1; 6647 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6648 need_fileattr = true; 6649 if ((old_size == sctx->cur_inode_size) || 6650 (sctx->cur_inode_size > old_size && 6651 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6652 need_truncate = 0; 6653 } 6654 6655 if (S_ISREG(sctx->cur_inode_mode)) { 6656 if (need_send_hole(sctx)) { 6657 if (sctx->cur_inode_last_extent == (u64)-1 || 6658 sctx->cur_inode_last_extent < 6659 sctx->cur_inode_size) { 6660 ret = get_last_extent(sctx, (u64)-1); 6661 if (ret) 6662 goto out; 6663 } 6664 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6665 ret = range_is_hole_in_parent(sctx, 6666 sctx->cur_inode_last_extent, 6667 sctx->cur_inode_size); 6668 if (ret < 0) { 6669 goto out; 6670 } else if (ret == 0) { 6671 ret = send_hole(sctx, sctx->cur_inode_size); 6672 if (ret < 0) 6673 goto out; 6674 } else { 6675 /* Range is already a hole, skip. */ 6676 ret = 0; 6677 } 6678 } 6679 } 6680 if (need_truncate) { 6681 ret = send_truncate(sctx, sctx->cur_ino, 6682 sctx->cur_inode_gen, 6683 sctx->cur_inode_size); 6684 if (ret < 0) 6685 goto out; 6686 } 6687 } 6688 6689 if (need_chown) { 6690 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6691 left_uid, left_gid); 6692 if (ret < 0) 6693 goto out; 6694 } 6695 if (need_chmod) { 6696 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6697 left_mode); 6698 if (ret < 0) 6699 goto out; 6700 } 6701 if (need_fileattr) { 6702 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6703 left_fileattr); 6704 if (ret < 0) 6705 goto out; 6706 } 6707 6708 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6709 && sctx->cur_inode_needs_verity) { 6710 ret = process_verity(sctx); 6711 if (ret < 0) 6712 goto out; 6713 } 6714 6715 ret = send_capabilities(sctx); 6716 if (ret < 0) 6717 goto out; 6718 6719 /* 6720 * If other directory inodes depended on our current directory 6721 * inode's move/rename, now do their move/rename operations. 6722 */ 6723 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6724 ret = apply_children_dir_moves(sctx); 6725 if (ret) 6726 goto out; 6727 /* 6728 * Need to send that every time, no matter if it actually 6729 * changed between the two trees as we have done changes to 6730 * the inode before. If our inode is a directory and it's 6731 * waiting to be moved/renamed, we will send its utimes when 6732 * it's moved/renamed, therefore we don't need to do it here. 6733 */ 6734 sctx->send_progress = sctx->cur_ino + 1; 6735 6736 /* 6737 * If the current inode is a non-empty directory, delay issuing 6738 * the utimes command for it, as it's very likely we have inodes 6739 * with an higher number inside it. We want to issue the utimes 6740 * command only after adding all dentries to it. 6741 */ 6742 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6743 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6744 else 6745 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6746 6747 if (ret < 0) 6748 goto out; 6749 } 6750 6751 out: 6752 if (!ret) 6753 ret = trim_dir_utimes_cache(sctx); 6754 6755 return ret; 6756 } 6757 6758 static void close_current_inode(struct send_ctx *sctx) 6759 { 6760 u64 i_size; 6761 6762 if (sctx->cur_inode == NULL) 6763 return; 6764 6765 i_size = i_size_read(sctx->cur_inode); 6766 6767 /* 6768 * If we are doing an incremental send, we may have extents between the 6769 * last processed extent and the i_size that have not been processed 6770 * because they haven't changed but we may have read some of their pages 6771 * through readahead, see the comments at send_extent_data(). 6772 */ 6773 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6774 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6775 sctx->page_cache_clear_start, 6776 round_up(i_size, PAGE_SIZE) - 1); 6777 6778 iput(sctx->cur_inode); 6779 sctx->cur_inode = NULL; 6780 } 6781 6782 static int changed_inode(struct send_ctx *sctx, 6783 enum btrfs_compare_tree_result result) 6784 { 6785 int ret = 0; 6786 struct btrfs_key *key = sctx->cmp_key; 6787 struct btrfs_inode_item *left_ii = NULL; 6788 struct btrfs_inode_item *right_ii = NULL; 6789 u64 left_gen = 0; 6790 u64 right_gen = 0; 6791 6792 close_current_inode(sctx); 6793 6794 sctx->cur_ino = key->objectid; 6795 sctx->cur_inode_new_gen = false; 6796 sctx->cur_inode_last_extent = (u64)-1; 6797 sctx->cur_inode_next_write_offset = 0; 6798 sctx->ignore_cur_inode = false; 6799 fs_path_reset(&sctx->cur_inode_path); 6800 6801 /* 6802 * Set send_progress to current inode. This will tell all get_cur_xxx 6803 * functions that the current inode's refs are not updated yet. Later, 6804 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6805 */ 6806 sctx->send_progress = sctx->cur_ino; 6807 6808 if (result == BTRFS_COMPARE_TREE_NEW || 6809 result == BTRFS_COMPARE_TREE_CHANGED) { 6810 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6811 sctx->left_path->slots[0], 6812 struct btrfs_inode_item); 6813 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6814 left_ii); 6815 } else { 6816 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6817 sctx->right_path->slots[0], 6818 struct btrfs_inode_item); 6819 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6820 right_ii); 6821 } 6822 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6823 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6824 sctx->right_path->slots[0], 6825 struct btrfs_inode_item); 6826 6827 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6828 right_ii); 6829 6830 /* 6831 * The cur_ino = root dir case is special here. We can't treat 6832 * the inode as deleted+reused because it would generate a 6833 * stream that tries to delete/mkdir the root dir. 6834 */ 6835 if (left_gen != right_gen && 6836 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6837 sctx->cur_inode_new_gen = true; 6838 } 6839 6840 /* 6841 * Normally we do not find inodes with a link count of zero (orphans) 6842 * because the most common case is to create a snapshot and use it 6843 * for a send operation. However other less common use cases involve 6844 * using a subvolume and send it after turning it to RO mode just 6845 * after deleting all hard links of a file while holding an open 6846 * file descriptor against it or turning a RO snapshot into RW mode, 6847 * keep an open file descriptor against a file, delete it and then 6848 * turn the snapshot back to RO mode before using it for a send 6849 * operation. The former is what the receiver operation does. 6850 * Therefore, if we want to send these snapshots soon after they're 6851 * received, we need to handle orphan inodes as well. Moreover, orphans 6852 * can appear not only in the send snapshot but also in the parent 6853 * snapshot. Here are several cases: 6854 * 6855 * Case 1: BTRFS_COMPARE_TREE_NEW 6856 * | send snapshot | action 6857 * -------------------------------- 6858 * nlink | 0 | ignore 6859 * 6860 * Case 2: BTRFS_COMPARE_TREE_DELETED 6861 * | parent snapshot | action 6862 * ---------------------------------- 6863 * nlink | 0 | as usual 6864 * Note: No unlinks will be sent because there're no paths for it. 6865 * 6866 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6867 * | | parent snapshot | send snapshot | action 6868 * ----------------------------------------------------------------------- 6869 * subcase 1 | nlink | 0 | 0 | ignore 6870 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6871 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6872 * 6873 */ 6874 if (result == BTRFS_COMPARE_TREE_NEW) { 6875 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6876 sctx->ignore_cur_inode = true; 6877 goto out; 6878 } 6879 sctx->cur_inode_gen = left_gen; 6880 sctx->cur_inode_new = true; 6881 sctx->cur_inode_deleted = false; 6882 sctx->cur_inode_size = btrfs_inode_size( 6883 sctx->left_path->nodes[0], left_ii); 6884 sctx->cur_inode_mode = btrfs_inode_mode( 6885 sctx->left_path->nodes[0], left_ii); 6886 sctx->cur_inode_rdev = btrfs_inode_rdev( 6887 sctx->left_path->nodes[0], left_ii); 6888 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6889 ret = send_create_inode_if_needed(sctx); 6890 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6891 sctx->cur_inode_gen = right_gen; 6892 sctx->cur_inode_new = false; 6893 sctx->cur_inode_deleted = true; 6894 sctx->cur_inode_size = btrfs_inode_size( 6895 sctx->right_path->nodes[0], right_ii); 6896 sctx->cur_inode_mode = btrfs_inode_mode( 6897 sctx->right_path->nodes[0], right_ii); 6898 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6899 u32 new_nlinks, old_nlinks; 6900 6901 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6902 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6903 if (new_nlinks == 0 && old_nlinks == 0) { 6904 sctx->ignore_cur_inode = true; 6905 goto out; 6906 } else if (new_nlinks == 0 || old_nlinks == 0) { 6907 sctx->cur_inode_new_gen = 1; 6908 } 6909 /* 6910 * We need to do some special handling in case the inode was 6911 * reported as changed with a changed generation number. This 6912 * means that the original inode was deleted and new inode 6913 * reused the same inum. So we have to treat the old inode as 6914 * deleted and the new one as new. 6915 */ 6916 if (sctx->cur_inode_new_gen) { 6917 /* 6918 * First, process the inode as if it was deleted. 6919 */ 6920 if (old_nlinks > 0) { 6921 sctx->cur_inode_gen = right_gen; 6922 sctx->cur_inode_new = false; 6923 sctx->cur_inode_deleted = true; 6924 sctx->cur_inode_size = btrfs_inode_size( 6925 sctx->right_path->nodes[0], right_ii); 6926 sctx->cur_inode_mode = btrfs_inode_mode( 6927 sctx->right_path->nodes[0], right_ii); 6928 ret = process_all_refs(sctx, 6929 BTRFS_COMPARE_TREE_DELETED); 6930 if (ret < 0) 6931 goto out; 6932 } 6933 6934 /* 6935 * Now process the inode as if it was new. 6936 */ 6937 if (new_nlinks > 0) { 6938 sctx->cur_inode_gen = left_gen; 6939 sctx->cur_inode_new = true; 6940 sctx->cur_inode_deleted = false; 6941 sctx->cur_inode_size = btrfs_inode_size( 6942 sctx->left_path->nodes[0], 6943 left_ii); 6944 sctx->cur_inode_mode = btrfs_inode_mode( 6945 sctx->left_path->nodes[0], 6946 left_ii); 6947 sctx->cur_inode_rdev = btrfs_inode_rdev( 6948 sctx->left_path->nodes[0], 6949 left_ii); 6950 ret = send_create_inode_if_needed(sctx); 6951 if (ret < 0) 6952 goto out; 6953 6954 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6955 if (ret < 0) 6956 goto out; 6957 /* 6958 * Advance send_progress now as we did not get 6959 * into process_recorded_refs_if_needed in the 6960 * new_gen case. 6961 */ 6962 sctx->send_progress = sctx->cur_ino + 1; 6963 6964 /* 6965 * Now process all extents and xattrs of the 6966 * inode as if they were all new. 6967 */ 6968 ret = process_all_extents(sctx); 6969 if (ret < 0) 6970 goto out; 6971 ret = process_all_new_xattrs(sctx); 6972 if (ret < 0) 6973 goto out; 6974 } 6975 } else { 6976 sctx->cur_inode_gen = left_gen; 6977 sctx->cur_inode_new = false; 6978 sctx->cur_inode_new_gen = false; 6979 sctx->cur_inode_deleted = false; 6980 sctx->cur_inode_size = btrfs_inode_size( 6981 sctx->left_path->nodes[0], left_ii); 6982 sctx->cur_inode_mode = btrfs_inode_mode( 6983 sctx->left_path->nodes[0], left_ii); 6984 } 6985 } 6986 6987 out: 6988 return ret; 6989 } 6990 6991 /* 6992 * We have to process new refs before deleted refs, but compare_trees gives us 6993 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6994 * first and later process them in process_recorded_refs. 6995 * For the cur_inode_new_gen case, we skip recording completely because 6996 * changed_inode did already initiate processing of refs. The reason for this is 6997 * that in this case, compare_tree actually compares the refs of 2 different 6998 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6999 * refs of the right tree as deleted and all refs of the left tree as new. 7000 */ 7001 static int changed_ref(struct send_ctx *sctx, 7002 enum btrfs_compare_tree_result result) 7003 { 7004 int ret = 0; 7005 7006 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 7007 inconsistent_snapshot_error(sctx, result, "reference"); 7008 return -EIO; 7009 } 7010 7011 if (!sctx->cur_inode_new_gen && 7012 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7013 if (result == BTRFS_COMPARE_TREE_NEW) 7014 ret = record_new_ref(sctx); 7015 else if (result == BTRFS_COMPARE_TREE_DELETED) 7016 ret = record_deleted_ref(sctx); 7017 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7018 ret = record_changed_ref(sctx); 7019 } 7020 7021 return ret; 7022 } 7023 7024 /* 7025 * Process new/deleted/changed xattrs. We skip processing in the 7026 * cur_inode_new_gen case because changed_inode did already initiate processing 7027 * of xattrs. The reason is the same as in changed_ref 7028 */ 7029 static int changed_xattr(struct send_ctx *sctx, 7030 enum btrfs_compare_tree_result result) 7031 { 7032 int ret = 0; 7033 7034 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 7035 inconsistent_snapshot_error(sctx, result, "xattr"); 7036 return -EIO; 7037 } 7038 7039 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7040 if (result == BTRFS_COMPARE_TREE_NEW) 7041 ret = process_new_xattr(sctx); 7042 else if (result == BTRFS_COMPARE_TREE_DELETED) 7043 ret = process_deleted_xattr(sctx); 7044 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7045 ret = process_changed_xattr(sctx); 7046 } 7047 7048 return ret; 7049 } 7050 7051 /* 7052 * Process new/deleted/changed extents. We skip processing in the 7053 * cur_inode_new_gen case because changed_inode did already initiate processing 7054 * of extents. The reason is the same as in changed_ref 7055 */ 7056 static int changed_extent(struct send_ctx *sctx, 7057 enum btrfs_compare_tree_result result) 7058 { 7059 int ret = 0; 7060 7061 /* 7062 * We have found an extent item that changed without the inode item 7063 * having changed. This can happen either after relocation (where the 7064 * disk_bytenr of an extent item is replaced at 7065 * relocation.c:replace_file_extents()) or after deduplication into a 7066 * file in both the parent and send snapshots (where an extent item can 7067 * get modified or replaced with a new one). Note that deduplication 7068 * updates the inode item, but it only changes the iversion (sequence 7069 * field in the inode item) of the inode, so if a file is deduplicated 7070 * the same amount of times in both the parent and send snapshots, its 7071 * iversion becomes the same in both snapshots, whence the inode item is 7072 * the same on both snapshots. 7073 */ 7074 if (sctx->cur_ino != sctx->cmp_key->objectid) 7075 return 0; 7076 7077 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7078 if (result != BTRFS_COMPARE_TREE_DELETED) 7079 ret = process_extent(sctx, sctx->left_path, 7080 sctx->cmp_key); 7081 } 7082 7083 return ret; 7084 } 7085 7086 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7087 { 7088 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7089 if (result == BTRFS_COMPARE_TREE_NEW) 7090 sctx->cur_inode_needs_verity = true; 7091 } 7092 return 0; 7093 } 7094 7095 static int dir_changed(struct send_ctx *sctx, u64 dir) 7096 { 7097 u64 orig_gen, new_gen; 7098 int ret; 7099 7100 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7101 if (ret) 7102 return ret; 7103 7104 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7105 if (ret) 7106 return ret; 7107 7108 return (orig_gen != new_gen) ? 1 : 0; 7109 } 7110 7111 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7112 struct btrfs_key *key) 7113 { 7114 struct btrfs_inode_extref *extref; 7115 struct extent_buffer *leaf; 7116 u64 dirid = 0, last_dirid = 0; 7117 unsigned long ptr; 7118 u32 item_size; 7119 u32 cur_offset = 0; 7120 int ref_name_len; 7121 int ret = 0; 7122 7123 /* Easy case, just check this one dirid */ 7124 if (key->type == BTRFS_INODE_REF_KEY) { 7125 dirid = key->offset; 7126 7127 ret = dir_changed(sctx, dirid); 7128 goto out; 7129 } 7130 7131 leaf = path->nodes[0]; 7132 item_size = btrfs_item_size(leaf, path->slots[0]); 7133 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7134 while (cur_offset < item_size) { 7135 extref = (struct btrfs_inode_extref *)(ptr + 7136 cur_offset); 7137 dirid = btrfs_inode_extref_parent(leaf, extref); 7138 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7139 cur_offset += ref_name_len + sizeof(*extref); 7140 if (dirid == last_dirid) 7141 continue; 7142 ret = dir_changed(sctx, dirid); 7143 if (ret) 7144 break; 7145 last_dirid = dirid; 7146 } 7147 out: 7148 return ret; 7149 } 7150 7151 /* 7152 * Updates compare related fields in sctx and simply forwards to the actual 7153 * changed_xxx functions. 7154 */ 7155 static int changed_cb(struct btrfs_path *left_path, 7156 struct btrfs_path *right_path, 7157 struct btrfs_key *key, 7158 enum btrfs_compare_tree_result result, 7159 struct send_ctx *sctx) 7160 { 7161 int ret; 7162 7163 /* 7164 * We can not hold the commit root semaphore here. This is because in 7165 * the case of sending and receiving to the same filesystem, using a 7166 * pipe, could result in a deadlock: 7167 * 7168 * 1) The task running send blocks on the pipe because it's full; 7169 * 7170 * 2) The task running receive, which is the only consumer of the pipe, 7171 * is waiting for a transaction commit (for example due to a space 7172 * reservation when doing a write or triggering a transaction commit 7173 * when creating a subvolume); 7174 * 7175 * 3) The transaction is waiting to write lock the commit root semaphore, 7176 * but can not acquire it since it's being held at 1). 7177 * 7178 * Down this call chain we write to the pipe through kernel_write(). 7179 * The same type of problem can also happen when sending to a file that 7180 * is stored in the same filesystem - when reserving space for a write 7181 * into the file, we can trigger a transaction commit. 7182 * 7183 * Our caller has supplied us with clones of leaves from the send and 7184 * parent roots, so we're safe here from a concurrent relocation and 7185 * further reallocation of metadata extents while we are here. Below we 7186 * also assert that the leaves are clones. 7187 */ 7188 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7189 7190 /* 7191 * We always have a send root, so left_path is never NULL. We will not 7192 * have a leaf when we have reached the end of the send root but have 7193 * not yet reached the end of the parent root. 7194 */ 7195 if (left_path->nodes[0]) 7196 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7197 &left_path->nodes[0]->bflags)); 7198 /* 7199 * When doing a full send we don't have a parent root, so right_path is 7200 * NULL. When doing an incremental send, we may have reached the end of 7201 * the parent root already, so we don't have a leaf at right_path. 7202 */ 7203 if (right_path && right_path->nodes[0]) 7204 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7205 &right_path->nodes[0]->bflags)); 7206 7207 if (result == BTRFS_COMPARE_TREE_SAME) { 7208 if (key->type == BTRFS_INODE_REF_KEY || 7209 key->type == BTRFS_INODE_EXTREF_KEY) { 7210 ret = compare_refs(sctx, left_path, key); 7211 if (!ret) 7212 return 0; 7213 if (ret < 0) 7214 return ret; 7215 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7216 return maybe_send_hole(sctx, left_path, key); 7217 } else { 7218 return 0; 7219 } 7220 result = BTRFS_COMPARE_TREE_CHANGED; 7221 } 7222 7223 sctx->left_path = left_path; 7224 sctx->right_path = right_path; 7225 sctx->cmp_key = key; 7226 7227 ret = finish_inode_if_needed(sctx, 0); 7228 if (ret < 0) 7229 goto out; 7230 7231 /* Ignore non-FS objects */ 7232 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7233 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7234 goto out; 7235 7236 if (key->type == BTRFS_INODE_ITEM_KEY) { 7237 ret = changed_inode(sctx, result); 7238 } else if (!sctx->ignore_cur_inode) { 7239 if (key->type == BTRFS_INODE_REF_KEY || 7240 key->type == BTRFS_INODE_EXTREF_KEY) 7241 ret = changed_ref(sctx, result); 7242 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7243 ret = changed_xattr(sctx, result); 7244 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7245 ret = changed_extent(sctx, result); 7246 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7247 key->offset == 0) 7248 ret = changed_verity(sctx, result); 7249 } 7250 7251 out: 7252 return ret; 7253 } 7254 7255 static int search_key_again(const struct send_ctx *sctx, 7256 struct btrfs_root *root, 7257 struct btrfs_path *path, 7258 const struct btrfs_key *key) 7259 { 7260 int ret; 7261 7262 if (!path->need_commit_sem) 7263 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7264 7265 /* 7266 * Roots used for send operations are readonly and no one can add, 7267 * update or remove keys from them, so we should be able to find our 7268 * key again. The only exception is deduplication, which can operate on 7269 * readonly roots and add, update or remove keys to/from them - but at 7270 * the moment we don't allow it to run in parallel with send. 7271 */ 7272 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7273 ASSERT(ret <= 0); 7274 if (unlikely(ret > 0)) { 7275 btrfs_print_tree(path->nodes[path->lowest_level], false); 7276 btrfs_err(root->fs_info, 7277 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7278 key->objectid, key->type, key->offset, 7279 (root == sctx->parent_root ? "parent" : "send"), 7280 btrfs_root_id(root), path->lowest_level, 7281 path->slots[path->lowest_level]); 7282 return -EUCLEAN; 7283 } 7284 7285 return ret; 7286 } 7287 7288 static int full_send_tree(struct send_ctx *sctx) 7289 { 7290 int ret; 7291 struct btrfs_root *send_root = sctx->send_root; 7292 struct btrfs_key key; 7293 struct btrfs_fs_info *fs_info = send_root->fs_info; 7294 BTRFS_PATH_AUTO_FREE(path); 7295 7296 path = alloc_path_for_send(); 7297 if (!path) 7298 return -ENOMEM; 7299 path->reada = READA_FORWARD_ALWAYS; 7300 7301 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7302 key.type = BTRFS_INODE_ITEM_KEY; 7303 key.offset = 0; 7304 7305 down_read(&fs_info->commit_root_sem); 7306 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7307 up_read(&fs_info->commit_root_sem); 7308 7309 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7310 if (ret < 0) 7311 return ret; 7312 if (ret) 7313 goto out_finish; 7314 7315 while (1) { 7316 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7317 7318 ret = changed_cb(path, NULL, &key, 7319 BTRFS_COMPARE_TREE_NEW, sctx); 7320 if (ret < 0) 7321 return ret; 7322 7323 down_read(&fs_info->commit_root_sem); 7324 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7325 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7326 up_read(&fs_info->commit_root_sem); 7327 /* 7328 * A transaction used for relocating a block group was 7329 * committed or is about to finish its commit. Release 7330 * our path (leaf) and restart the search, so that we 7331 * avoid operating on any file extent items that are 7332 * stale, with a disk_bytenr that reflects a pre 7333 * relocation value. This way we avoid as much as 7334 * possible to fallback to regular writes when checking 7335 * if we can clone file ranges. 7336 */ 7337 btrfs_release_path(path); 7338 ret = search_key_again(sctx, send_root, path, &key); 7339 if (ret < 0) 7340 return ret; 7341 } else { 7342 up_read(&fs_info->commit_root_sem); 7343 } 7344 7345 ret = btrfs_next_item(send_root, path); 7346 if (ret < 0) 7347 return ret; 7348 if (ret) { 7349 ret = 0; 7350 break; 7351 } 7352 } 7353 7354 out_finish: 7355 return finish_inode_if_needed(sctx, 1); 7356 } 7357 7358 static int replace_node_with_clone(struct btrfs_path *path, int level) 7359 { 7360 struct extent_buffer *clone; 7361 7362 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7363 if (!clone) 7364 return -ENOMEM; 7365 7366 free_extent_buffer(path->nodes[level]); 7367 path->nodes[level] = clone; 7368 7369 return 0; 7370 } 7371 7372 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7373 { 7374 struct extent_buffer *eb; 7375 struct extent_buffer *parent = path->nodes[*level]; 7376 int slot = path->slots[*level]; 7377 const int nritems = btrfs_header_nritems(parent); 7378 u64 reada_max; 7379 u64 reada_done = 0; 7380 7381 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7382 ASSERT(*level != 0); 7383 7384 eb = btrfs_read_node_slot(parent, slot); 7385 if (IS_ERR(eb)) 7386 return PTR_ERR(eb); 7387 7388 /* 7389 * Trigger readahead for the next leaves we will process, so that it is 7390 * very likely that when we need them they are already in memory and we 7391 * will not block on disk IO. For nodes we only do readahead for one, 7392 * since the time window between processing nodes is typically larger. 7393 */ 7394 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7395 7396 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7397 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7398 btrfs_readahead_node_child(parent, slot); 7399 reada_done += eb->fs_info->nodesize; 7400 } 7401 } 7402 7403 path->nodes[*level - 1] = eb; 7404 path->slots[*level - 1] = 0; 7405 (*level)--; 7406 7407 if (*level == 0) 7408 return replace_node_with_clone(path, 0); 7409 7410 return 0; 7411 } 7412 7413 static int tree_move_next_or_upnext(struct btrfs_path *path, 7414 int *level, int root_level) 7415 { 7416 int ret = 0; 7417 int nritems; 7418 nritems = btrfs_header_nritems(path->nodes[*level]); 7419 7420 path->slots[*level]++; 7421 7422 while (path->slots[*level] >= nritems) { 7423 if (*level == root_level) { 7424 path->slots[*level] = nritems - 1; 7425 return -1; 7426 } 7427 7428 /* move upnext */ 7429 path->slots[*level] = 0; 7430 free_extent_buffer(path->nodes[*level]); 7431 path->nodes[*level] = NULL; 7432 (*level)++; 7433 path->slots[*level]++; 7434 7435 nritems = btrfs_header_nritems(path->nodes[*level]); 7436 ret = 1; 7437 } 7438 return ret; 7439 } 7440 7441 /* 7442 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7443 * or down. 7444 */ 7445 static int tree_advance(struct btrfs_path *path, 7446 int *level, int root_level, 7447 int allow_down, 7448 struct btrfs_key *key, 7449 u64 reada_min_gen) 7450 { 7451 int ret; 7452 7453 if (*level == 0 || !allow_down) { 7454 ret = tree_move_next_or_upnext(path, level, root_level); 7455 } else { 7456 ret = tree_move_down(path, level, reada_min_gen); 7457 } 7458 7459 /* 7460 * Even if we have reached the end of a tree, ret is -1, update the key 7461 * anyway, so that in case we need to restart due to a block group 7462 * relocation, we can assert that the last key of the root node still 7463 * exists in the tree. 7464 */ 7465 if (*level == 0) 7466 btrfs_item_key_to_cpu(path->nodes[*level], key, 7467 path->slots[*level]); 7468 else 7469 btrfs_node_key_to_cpu(path->nodes[*level], key, 7470 path->slots[*level]); 7471 7472 return ret; 7473 } 7474 7475 static int tree_compare_item(struct btrfs_path *left_path, 7476 struct btrfs_path *right_path, 7477 char *tmp_buf) 7478 { 7479 int cmp; 7480 int len1, len2; 7481 unsigned long off1, off2; 7482 7483 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7484 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7485 if (len1 != len2) 7486 return 1; 7487 7488 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7489 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7490 right_path->slots[0]); 7491 7492 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7493 7494 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7495 if (cmp) 7496 return 1; 7497 return 0; 7498 } 7499 7500 /* 7501 * A transaction used for relocating a block group was committed or is about to 7502 * finish its commit. Release our paths and restart the search, so that we are 7503 * not using stale extent buffers: 7504 * 7505 * 1) For levels > 0, we are only holding references of extent buffers, without 7506 * any locks on them, which does not prevent them from having been relocated 7507 * and reallocated after the last time we released the commit root semaphore. 7508 * The exception are the root nodes, for which we always have a clone, see 7509 * the comment at btrfs_compare_trees(); 7510 * 7511 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7512 * we are safe from the concurrent relocation and reallocation. However they 7513 * can have file extent items with a pre relocation disk_bytenr value, so we 7514 * restart the start from the current commit roots and clone the new leaves so 7515 * that we get the post relocation disk_bytenr values. Not doing so, could 7516 * make us clone the wrong data in case there are new extents using the old 7517 * disk_bytenr that happen to be shared. 7518 */ 7519 static int restart_after_relocation(struct btrfs_path *left_path, 7520 struct btrfs_path *right_path, 7521 const struct btrfs_key *left_key, 7522 const struct btrfs_key *right_key, 7523 int left_level, 7524 int right_level, 7525 const struct send_ctx *sctx) 7526 { 7527 int root_level; 7528 int ret; 7529 7530 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7531 7532 btrfs_release_path(left_path); 7533 btrfs_release_path(right_path); 7534 7535 /* 7536 * Since keys can not be added or removed to/from our roots because they 7537 * are readonly and we do not allow deduplication to run in parallel 7538 * (which can add, remove or change keys), the layout of the trees should 7539 * not change. 7540 */ 7541 left_path->lowest_level = left_level; 7542 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7543 if (ret < 0) 7544 return ret; 7545 7546 right_path->lowest_level = right_level; 7547 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7548 if (ret < 0) 7549 return ret; 7550 7551 /* 7552 * If the lowest level nodes are leaves, clone them so that they can be 7553 * safely used by changed_cb() while not under the protection of the 7554 * commit root semaphore, even if relocation and reallocation happens in 7555 * parallel. 7556 */ 7557 if (left_level == 0) { 7558 ret = replace_node_with_clone(left_path, 0); 7559 if (ret < 0) 7560 return ret; 7561 } 7562 7563 if (right_level == 0) { 7564 ret = replace_node_with_clone(right_path, 0); 7565 if (ret < 0) 7566 return ret; 7567 } 7568 7569 /* 7570 * Now clone the root nodes (unless they happen to be the leaves we have 7571 * already cloned). This is to protect against concurrent snapshotting of 7572 * the send and parent roots (see the comment at btrfs_compare_trees()). 7573 */ 7574 root_level = btrfs_header_level(sctx->send_root->commit_root); 7575 if (root_level > 0) { 7576 ret = replace_node_with_clone(left_path, root_level); 7577 if (ret < 0) 7578 return ret; 7579 } 7580 7581 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7582 if (root_level > 0) { 7583 ret = replace_node_with_clone(right_path, root_level); 7584 if (ret < 0) 7585 return ret; 7586 } 7587 7588 return 0; 7589 } 7590 7591 /* 7592 * This function compares two trees and calls the provided callback for 7593 * every changed/new/deleted item it finds. 7594 * If shared tree blocks are encountered, whole subtrees are skipped, making 7595 * the compare pretty fast on snapshotted subvolumes. 7596 * 7597 * This currently works on commit roots only. As commit roots are read only, 7598 * we don't do any locking. The commit roots are protected with transactions. 7599 * Transactions are ended and rejoined when a commit is tried in between. 7600 * 7601 * This function checks for modifications done to the trees while comparing. 7602 * If it detects a change, it aborts immediately. 7603 */ 7604 static int btrfs_compare_trees(struct btrfs_root *left_root, 7605 struct btrfs_root *right_root, struct send_ctx *sctx) 7606 { 7607 struct btrfs_fs_info *fs_info = left_root->fs_info; 7608 int ret; 7609 int cmp; 7610 BTRFS_PATH_AUTO_FREE(left_path); 7611 BTRFS_PATH_AUTO_FREE(right_path); 7612 struct btrfs_key left_key; 7613 struct btrfs_key right_key; 7614 char *tmp_buf = NULL; 7615 int left_root_level; 7616 int right_root_level; 7617 int left_level; 7618 int right_level; 7619 int left_end_reached = 0; 7620 int right_end_reached = 0; 7621 int advance_left = 0; 7622 int advance_right = 0; 7623 u64 left_blockptr; 7624 u64 right_blockptr; 7625 u64 left_gen; 7626 u64 right_gen; 7627 u64 reada_min_gen; 7628 7629 left_path = btrfs_alloc_path(); 7630 if (!left_path) { 7631 ret = -ENOMEM; 7632 goto out; 7633 } 7634 right_path = btrfs_alloc_path(); 7635 if (!right_path) { 7636 ret = -ENOMEM; 7637 goto out; 7638 } 7639 7640 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7641 if (!tmp_buf) { 7642 ret = -ENOMEM; 7643 goto out; 7644 } 7645 7646 left_path->search_commit_root = 1; 7647 left_path->skip_locking = 1; 7648 right_path->search_commit_root = 1; 7649 right_path->skip_locking = 1; 7650 7651 /* 7652 * Strategy: Go to the first items of both trees. Then do 7653 * 7654 * If both trees are at level 0 7655 * Compare keys of current items 7656 * If left < right treat left item as new, advance left tree 7657 * and repeat 7658 * If left > right treat right item as deleted, advance right tree 7659 * and repeat 7660 * If left == right do deep compare of items, treat as changed if 7661 * needed, advance both trees and repeat 7662 * If both trees are at the same level but not at level 0 7663 * Compare keys of current nodes/leafs 7664 * If left < right advance left tree and repeat 7665 * If left > right advance right tree and repeat 7666 * If left == right compare blockptrs of the next nodes/leafs 7667 * If they match advance both trees but stay at the same level 7668 * and repeat 7669 * If they don't match advance both trees while allowing to go 7670 * deeper and repeat 7671 * If tree levels are different 7672 * Advance the tree that needs it and repeat 7673 * 7674 * Advancing a tree means: 7675 * If we are at level 0, try to go to the next slot. If that's not 7676 * possible, go one level up and repeat. Stop when we found a level 7677 * where we could go to the next slot. We may at this point be on a 7678 * node or a leaf. 7679 * 7680 * If we are not at level 0 and not on shared tree blocks, go one 7681 * level deeper. 7682 * 7683 * If we are not at level 0 and on shared tree blocks, go one slot to 7684 * the right if possible or go up and right. 7685 */ 7686 7687 down_read(&fs_info->commit_root_sem); 7688 left_level = btrfs_header_level(left_root->commit_root); 7689 left_root_level = left_level; 7690 /* 7691 * We clone the root node of the send and parent roots to prevent races 7692 * with snapshot creation of these roots. Snapshot creation COWs the 7693 * root node of a tree, so after the transaction is committed the old 7694 * extent can be reallocated while this send operation is still ongoing. 7695 * So we clone them, under the commit root semaphore, to be race free. 7696 */ 7697 left_path->nodes[left_level] = 7698 btrfs_clone_extent_buffer(left_root->commit_root); 7699 if (!left_path->nodes[left_level]) { 7700 ret = -ENOMEM; 7701 goto out_unlock; 7702 } 7703 7704 right_level = btrfs_header_level(right_root->commit_root); 7705 right_root_level = right_level; 7706 right_path->nodes[right_level] = 7707 btrfs_clone_extent_buffer(right_root->commit_root); 7708 if (!right_path->nodes[right_level]) { 7709 ret = -ENOMEM; 7710 goto out_unlock; 7711 } 7712 /* 7713 * Our right root is the parent root, while the left root is the "send" 7714 * root. We know that all new nodes/leaves in the left root must have 7715 * a generation greater than the right root's generation, so we trigger 7716 * readahead for those nodes and leaves of the left root, as we know we 7717 * will need to read them at some point. 7718 */ 7719 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7720 7721 if (left_level == 0) 7722 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7723 &left_key, left_path->slots[left_level]); 7724 else 7725 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7726 &left_key, left_path->slots[left_level]); 7727 if (right_level == 0) 7728 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7729 &right_key, right_path->slots[right_level]); 7730 else 7731 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7732 &right_key, right_path->slots[right_level]); 7733 7734 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7735 7736 while (1) { 7737 if (need_resched() || 7738 rwsem_is_contended(&fs_info->commit_root_sem)) { 7739 up_read(&fs_info->commit_root_sem); 7740 cond_resched(); 7741 down_read(&fs_info->commit_root_sem); 7742 } 7743 7744 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7745 ret = restart_after_relocation(left_path, right_path, 7746 &left_key, &right_key, 7747 left_level, right_level, 7748 sctx); 7749 if (ret < 0) 7750 goto out_unlock; 7751 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7752 } 7753 7754 if (advance_left && !left_end_reached) { 7755 ret = tree_advance(left_path, &left_level, 7756 left_root_level, 7757 advance_left != ADVANCE_ONLY_NEXT, 7758 &left_key, reada_min_gen); 7759 if (ret == -1) 7760 left_end_reached = ADVANCE; 7761 else if (ret < 0) 7762 goto out_unlock; 7763 advance_left = 0; 7764 } 7765 if (advance_right && !right_end_reached) { 7766 ret = tree_advance(right_path, &right_level, 7767 right_root_level, 7768 advance_right != ADVANCE_ONLY_NEXT, 7769 &right_key, reada_min_gen); 7770 if (ret == -1) 7771 right_end_reached = ADVANCE; 7772 else if (ret < 0) 7773 goto out_unlock; 7774 advance_right = 0; 7775 } 7776 7777 if (left_end_reached && right_end_reached) { 7778 ret = 0; 7779 goto out_unlock; 7780 } else if (left_end_reached) { 7781 if (right_level == 0) { 7782 up_read(&fs_info->commit_root_sem); 7783 ret = changed_cb(left_path, right_path, 7784 &right_key, 7785 BTRFS_COMPARE_TREE_DELETED, 7786 sctx); 7787 if (ret < 0) 7788 goto out; 7789 down_read(&fs_info->commit_root_sem); 7790 } 7791 advance_right = ADVANCE; 7792 continue; 7793 } else if (right_end_reached) { 7794 if (left_level == 0) { 7795 up_read(&fs_info->commit_root_sem); 7796 ret = changed_cb(left_path, right_path, 7797 &left_key, 7798 BTRFS_COMPARE_TREE_NEW, 7799 sctx); 7800 if (ret < 0) 7801 goto out; 7802 down_read(&fs_info->commit_root_sem); 7803 } 7804 advance_left = ADVANCE; 7805 continue; 7806 } 7807 7808 if (left_level == 0 && right_level == 0) { 7809 up_read(&fs_info->commit_root_sem); 7810 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7811 if (cmp < 0) { 7812 ret = changed_cb(left_path, right_path, 7813 &left_key, 7814 BTRFS_COMPARE_TREE_NEW, 7815 sctx); 7816 advance_left = ADVANCE; 7817 } else if (cmp > 0) { 7818 ret = changed_cb(left_path, right_path, 7819 &right_key, 7820 BTRFS_COMPARE_TREE_DELETED, 7821 sctx); 7822 advance_right = ADVANCE; 7823 } else { 7824 enum btrfs_compare_tree_result result; 7825 7826 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7827 ret = tree_compare_item(left_path, right_path, 7828 tmp_buf); 7829 if (ret) 7830 result = BTRFS_COMPARE_TREE_CHANGED; 7831 else 7832 result = BTRFS_COMPARE_TREE_SAME; 7833 ret = changed_cb(left_path, right_path, 7834 &left_key, result, sctx); 7835 advance_left = ADVANCE; 7836 advance_right = ADVANCE; 7837 } 7838 7839 if (ret < 0) 7840 goto out; 7841 down_read(&fs_info->commit_root_sem); 7842 } else if (left_level == right_level) { 7843 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7844 if (cmp < 0) { 7845 advance_left = ADVANCE; 7846 } else if (cmp > 0) { 7847 advance_right = ADVANCE; 7848 } else { 7849 left_blockptr = btrfs_node_blockptr( 7850 left_path->nodes[left_level], 7851 left_path->slots[left_level]); 7852 right_blockptr = btrfs_node_blockptr( 7853 right_path->nodes[right_level], 7854 right_path->slots[right_level]); 7855 left_gen = btrfs_node_ptr_generation( 7856 left_path->nodes[left_level], 7857 left_path->slots[left_level]); 7858 right_gen = btrfs_node_ptr_generation( 7859 right_path->nodes[right_level], 7860 right_path->slots[right_level]); 7861 if (left_blockptr == right_blockptr && 7862 left_gen == right_gen) { 7863 /* 7864 * As we're on a shared block, don't 7865 * allow to go deeper. 7866 */ 7867 advance_left = ADVANCE_ONLY_NEXT; 7868 advance_right = ADVANCE_ONLY_NEXT; 7869 } else { 7870 advance_left = ADVANCE; 7871 advance_right = ADVANCE; 7872 } 7873 } 7874 } else if (left_level < right_level) { 7875 advance_right = ADVANCE; 7876 } else { 7877 advance_left = ADVANCE; 7878 } 7879 } 7880 7881 out_unlock: 7882 up_read(&fs_info->commit_root_sem); 7883 out: 7884 kvfree(tmp_buf); 7885 return ret; 7886 } 7887 7888 static int send_subvol(struct send_ctx *sctx) 7889 { 7890 int ret; 7891 7892 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7893 ret = send_header(sctx); 7894 if (ret < 0) 7895 goto out; 7896 } 7897 7898 ret = send_subvol_begin(sctx); 7899 if (ret < 0) 7900 goto out; 7901 7902 if (sctx->parent_root) { 7903 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7904 if (ret < 0) 7905 goto out; 7906 ret = finish_inode_if_needed(sctx, 1); 7907 if (ret < 0) 7908 goto out; 7909 } else { 7910 ret = full_send_tree(sctx); 7911 if (ret < 0) 7912 goto out; 7913 } 7914 7915 out: 7916 free_recorded_refs(sctx); 7917 return ret; 7918 } 7919 7920 /* 7921 * If orphan cleanup did remove any orphans from a root, it means the tree 7922 * was modified and therefore the commit root is not the same as the current 7923 * root anymore. This is a problem, because send uses the commit root and 7924 * therefore can see inode items that don't exist in the current root anymore, 7925 * and for example make calls to btrfs_iget, which will do tree lookups based 7926 * on the current root and not on the commit root. Those lookups will fail, 7927 * returning a -ESTALE error, and making send fail with that error. So make 7928 * sure a send does not see any orphans we have just removed, and that it will 7929 * see the same inodes regardless of whether a transaction commit happened 7930 * before it started (meaning that the commit root will be the same as the 7931 * current root) or not. 7932 */ 7933 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7934 { 7935 struct btrfs_root *root = sctx->parent_root; 7936 7937 if (root && root->node != root->commit_root) 7938 return btrfs_commit_current_transaction(root); 7939 7940 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 7941 root = sctx->clone_roots[i].root; 7942 if (root->node != root->commit_root) 7943 return btrfs_commit_current_transaction(root); 7944 } 7945 7946 return 0; 7947 } 7948 7949 /* 7950 * Make sure any existing delalloc is flushed for any root used by a send 7951 * operation so that we do not miss any data and we do not race with writeback 7952 * finishing and changing a tree while send is using the tree. This could 7953 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7954 * a send operation then uses the subvolume. 7955 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7956 */ 7957 static int flush_delalloc_roots(struct send_ctx *sctx) 7958 { 7959 struct btrfs_root *root = sctx->parent_root; 7960 int ret; 7961 int i; 7962 7963 if (root) { 7964 ret = btrfs_start_delalloc_snapshot(root, false); 7965 if (ret) 7966 return ret; 7967 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7968 } 7969 7970 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7971 root = sctx->clone_roots[i].root; 7972 ret = btrfs_start_delalloc_snapshot(root, false); 7973 if (ret) 7974 return ret; 7975 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7976 } 7977 7978 return 0; 7979 } 7980 7981 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7982 { 7983 spin_lock(&root->root_item_lock); 7984 root->send_in_progress--; 7985 /* 7986 * Not much left to do, we don't know why it's unbalanced and 7987 * can't blindly reset it to 0. 7988 */ 7989 if (root->send_in_progress < 0) 7990 btrfs_err(root->fs_info, 7991 "send_in_progress unbalanced %d root %llu", 7992 root->send_in_progress, btrfs_root_id(root)); 7993 spin_unlock(&root->root_item_lock); 7994 } 7995 7996 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7997 { 7998 btrfs_warn_rl(root->fs_info, 7999 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8000 btrfs_root_id(root), root->dedupe_in_progress); 8001 } 8002 8003 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) 8004 { 8005 int ret = 0; 8006 struct btrfs_fs_info *fs_info = send_root->fs_info; 8007 struct btrfs_root *clone_root; 8008 struct send_ctx *sctx = NULL; 8009 u32 i; 8010 u64 *clone_sources_tmp = NULL; 8011 int clone_sources_to_rollback = 0; 8012 size_t alloc_size; 8013 int sort_clone_roots = 0; 8014 struct btrfs_lru_cache_entry *entry; 8015 struct btrfs_lru_cache_entry *tmp; 8016 8017 if (!capable(CAP_SYS_ADMIN)) 8018 return -EPERM; 8019 8020 /* 8021 * The subvolume must remain read-only during send, protect against 8022 * making it RW. This also protects against deletion. 8023 */ 8024 spin_lock(&send_root->root_item_lock); 8025 /* 8026 * Unlikely but possible, if the subvolume is marked for deletion but 8027 * is slow to remove the directory entry, send can still be started. 8028 */ 8029 if (btrfs_root_dead(send_root)) { 8030 spin_unlock(&send_root->root_item_lock); 8031 return -EPERM; 8032 } 8033 /* Userspace tools do the checks and warn the user if it's not RO. */ 8034 if (!btrfs_root_readonly(send_root)) { 8035 spin_unlock(&send_root->root_item_lock); 8036 return -EPERM; 8037 } 8038 if (send_root->dedupe_in_progress) { 8039 dedupe_in_progress_warn(send_root); 8040 spin_unlock(&send_root->root_item_lock); 8041 return -EAGAIN; 8042 } 8043 send_root->send_in_progress++; 8044 spin_unlock(&send_root->root_item_lock); 8045 8046 /* 8047 * Check that we don't overflow at later allocations, we request 8048 * clone_sources_count + 1 items, and compare to unsigned long inside 8049 * access_ok. Also set an upper limit for allocation size so this can't 8050 * easily exhaust memory. Max number of clone sources is about 200K. 8051 */ 8052 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8053 ret = -EINVAL; 8054 goto out; 8055 } 8056 8057 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8058 ret = -EOPNOTSUPP; 8059 goto out; 8060 } 8061 8062 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8063 if (!sctx) { 8064 ret = -ENOMEM; 8065 goto out; 8066 } 8067 8068 init_path(&sctx->cur_inode_path); 8069 INIT_LIST_HEAD(&sctx->new_refs); 8070 INIT_LIST_HEAD(&sctx->deleted_refs); 8071 8072 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8073 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8074 btrfs_lru_cache_init(&sctx->dir_created_cache, 8075 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8076 /* 8077 * This cache is periodically trimmed to a fixed size elsewhere, see 8078 * cache_dir_utimes() and trim_dir_utimes_cache(). 8079 */ 8080 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8081 8082 sctx->pending_dir_moves = RB_ROOT; 8083 sctx->waiting_dir_moves = RB_ROOT; 8084 sctx->orphan_dirs = RB_ROOT; 8085 sctx->rbtree_new_refs = RB_ROOT; 8086 sctx->rbtree_deleted_refs = RB_ROOT; 8087 8088 sctx->flags = arg->flags; 8089 8090 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8091 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8092 ret = -EPROTO; 8093 goto out; 8094 } 8095 /* Zero means "use the highest version" */ 8096 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8097 } else { 8098 sctx->proto = 1; 8099 } 8100 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8101 ret = -EINVAL; 8102 goto out; 8103 } 8104 8105 sctx->send_filp = fget(arg->send_fd); 8106 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8107 ret = -EBADF; 8108 goto out; 8109 } 8110 8111 sctx->send_root = send_root; 8112 sctx->clone_roots_cnt = arg->clone_sources_count; 8113 8114 if (sctx->proto >= 2) { 8115 u32 send_buf_num_pages; 8116 8117 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8118 sctx->send_buf = vmalloc(sctx->send_max_size); 8119 if (!sctx->send_buf) { 8120 ret = -ENOMEM; 8121 goto out; 8122 } 8123 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8124 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8125 sizeof(*sctx->send_buf_pages), 8126 GFP_KERNEL); 8127 if (!sctx->send_buf_pages) { 8128 ret = -ENOMEM; 8129 goto out; 8130 } 8131 for (i = 0; i < send_buf_num_pages; i++) { 8132 sctx->send_buf_pages[i] = 8133 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8134 } 8135 } else { 8136 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8137 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8138 } 8139 if (!sctx->send_buf) { 8140 ret = -ENOMEM; 8141 goto out; 8142 } 8143 8144 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8145 sizeof(*sctx->clone_roots), 8146 GFP_KERNEL); 8147 if (!sctx->clone_roots) { 8148 ret = -ENOMEM; 8149 goto out; 8150 } 8151 8152 alloc_size = array_size(sizeof(*arg->clone_sources), 8153 arg->clone_sources_count); 8154 8155 if (arg->clone_sources_count) { 8156 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8157 if (!clone_sources_tmp) { 8158 ret = -ENOMEM; 8159 goto out; 8160 } 8161 8162 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8163 alloc_size); 8164 if (ret) { 8165 ret = -EFAULT; 8166 goto out; 8167 } 8168 8169 for (i = 0; i < arg->clone_sources_count; i++) { 8170 clone_root = btrfs_get_fs_root(fs_info, 8171 clone_sources_tmp[i], true); 8172 if (IS_ERR(clone_root)) { 8173 ret = PTR_ERR(clone_root); 8174 goto out; 8175 } 8176 spin_lock(&clone_root->root_item_lock); 8177 if (!btrfs_root_readonly(clone_root) || 8178 btrfs_root_dead(clone_root)) { 8179 spin_unlock(&clone_root->root_item_lock); 8180 btrfs_put_root(clone_root); 8181 ret = -EPERM; 8182 goto out; 8183 } 8184 if (clone_root->dedupe_in_progress) { 8185 dedupe_in_progress_warn(clone_root); 8186 spin_unlock(&clone_root->root_item_lock); 8187 btrfs_put_root(clone_root); 8188 ret = -EAGAIN; 8189 goto out; 8190 } 8191 clone_root->send_in_progress++; 8192 spin_unlock(&clone_root->root_item_lock); 8193 8194 sctx->clone_roots[i].root = clone_root; 8195 clone_sources_to_rollback = i + 1; 8196 } 8197 kvfree(clone_sources_tmp); 8198 clone_sources_tmp = NULL; 8199 } 8200 8201 if (arg->parent_root) { 8202 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8203 true); 8204 if (IS_ERR(sctx->parent_root)) { 8205 ret = PTR_ERR(sctx->parent_root); 8206 goto out; 8207 } 8208 8209 spin_lock(&sctx->parent_root->root_item_lock); 8210 sctx->parent_root->send_in_progress++; 8211 if (!btrfs_root_readonly(sctx->parent_root) || 8212 btrfs_root_dead(sctx->parent_root)) { 8213 spin_unlock(&sctx->parent_root->root_item_lock); 8214 ret = -EPERM; 8215 goto out; 8216 } 8217 if (sctx->parent_root->dedupe_in_progress) { 8218 dedupe_in_progress_warn(sctx->parent_root); 8219 spin_unlock(&sctx->parent_root->root_item_lock); 8220 ret = -EAGAIN; 8221 goto out; 8222 } 8223 spin_unlock(&sctx->parent_root->root_item_lock); 8224 } 8225 8226 /* 8227 * Clones from send_root are allowed, but only if the clone source 8228 * is behind the current send position. This is checked while searching 8229 * for possible clone sources. 8230 */ 8231 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8232 btrfs_grab_root(sctx->send_root); 8233 8234 /* We do a bsearch later */ 8235 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8236 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8237 NULL); 8238 sort_clone_roots = 1; 8239 8240 ret = flush_delalloc_roots(sctx); 8241 if (ret) 8242 goto out; 8243 8244 ret = ensure_commit_roots_uptodate(sctx); 8245 if (ret) 8246 goto out; 8247 8248 ret = send_subvol(sctx); 8249 if (ret < 0) 8250 goto out; 8251 8252 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8253 ret = send_utimes(sctx, entry->key, entry->gen); 8254 if (ret < 0) 8255 goto out; 8256 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8257 } 8258 8259 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8260 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8261 if (ret < 0) 8262 goto out; 8263 ret = send_cmd(sctx); 8264 if (ret < 0) 8265 goto out; 8266 } 8267 8268 out: 8269 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8270 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8271 struct rb_node *n; 8272 struct pending_dir_move *pm; 8273 8274 n = rb_first(&sctx->pending_dir_moves); 8275 pm = rb_entry(n, struct pending_dir_move, node); 8276 while (!list_empty(&pm->list)) { 8277 struct pending_dir_move *pm2; 8278 8279 pm2 = list_first_entry(&pm->list, 8280 struct pending_dir_move, list); 8281 free_pending_move(sctx, pm2); 8282 } 8283 free_pending_move(sctx, pm); 8284 } 8285 8286 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8287 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8288 struct rb_node *n; 8289 struct waiting_dir_move *dm; 8290 8291 n = rb_first(&sctx->waiting_dir_moves); 8292 dm = rb_entry(n, struct waiting_dir_move, node); 8293 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8294 kfree(dm); 8295 } 8296 8297 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8298 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8299 struct rb_node *n; 8300 struct orphan_dir_info *odi; 8301 8302 n = rb_first(&sctx->orphan_dirs); 8303 odi = rb_entry(n, struct orphan_dir_info, node); 8304 free_orphan_dir_info(sctx, odi); 8305 } 8306 8307 if (sort_clone_roots) { 8308 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8309 btrfs_root_dec_send_in_progress( 8310 sctx->clone_roots[i].root); 8311 btrfs_put_root(sctx->clone_roots[i].root); 8312 } 8313 } else { 8314 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8315 btrfs_root_dec_send_in_progress( 8316 sctx->clone_roots[i].root); 8317 btrfs_put_root(sctx->clone_roots[i].root); 8318 } 8319 8320 btrfs_root_dec_send_in_progress(send_root); 8321 } 8322 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8323 btrfs_root_dec_send_in_progress(sctx->parent_root); 8324 btrfs_put_root(sctx->parent_root); 8325 } 8326 8327 kvfree(clone_sources_tmp); 8328 8329 if (sctx) { 8330 if (sctx->send_filp) 8331 fput(sctx->send_filp); 8332 8333 kvfree(sctx->clone_roots); 8334 kfree(sctx->send_buf_pages); 8335 kvfree(sctx->send_buf); 8336 kvfree(sctx->verity_descriptor); 8337 8338 close_current_inode(sctx); 8339 8340 btrfs_lru_cache_clear(&sctx->name_cache); 8341 btrfs_lru_cache_clear(&sctx->backref_cache); 8342 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8343 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8344 8345 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) 8346 kfree(sctx->cur_inode_path.buf); 8347 8348 kfree(sctx); 8349 } 8350 8351 return ret; 8352 } 8353