1 /* 2 * Copyright (C) 2012 Alexander Block. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/bsearch.h> 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/sort.h> 23 #include <linux/mount.h> 24 #include <linux/xattr.h> 25 #include <linux/posix_acl_xattr.h> 26 #include <linux/radix-tree.h> 27 #include <linux/crc32c.h> 28 #include <linux/vmalloc.h> 29 30 #include "send.h" 31 #include "backref.h" 32 #include "locking.h" 33 #include "disk-io.h" 34 #include "btrfs_inode.h" 35 #include "transaction.h" 36 37 static int g_verbose = 0; 38 39 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__) 40 41 /* 42 * A fs_path is a helper to dynamically build path names with unknown size. 43 * It reallocates the internal buffer on demand. 44 * It allows fast adding of path elements on the right side (normal path) and 45 * fast adding to the left side (reversed path). A reversed path can also be 46 * unreversed if needed. 47 */ 48 struct fs_path { 49 union { 50 struct { 51 char *start; 52 char *end; 53 char *prepared; 54 55 char *buf; 56 int buf_len; 57 int reversed:1; 58 int virtual_mem:1; 59 char inline_buf[]; 60 }; 61 char pad[PAGE_SIZE]; 62 }; 63 }; 64 #define FS_PATH_INLINE_SIZE \ 65 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 66 67 68 /* reused for each extent */ 69 struct clone_root { 70 struct btrfs_root *root; 71 u64 ino; 72 u64 offset; 73 74 u64 found_refs; 75 }; 76 77 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128 78 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2) 79 80 struct send_ctx { 81 struct file *send_filp; 82 loff_t send_off; 83 char *send_buf; 84 u32 send_size; 85 u32 send_max_size; 86 u64 total_send_size; 87 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1]; 88 89 struct vfsmount *mnt; 90 91 struct btrfs_root *send_root; 92 struct btrfs_root *parent_root; 93 struct clone_root *clone_roots; 94 int clone_roots_cnt; 95 96 /* current state of the compare_tree call */ 97 struct btrfs_path *left_path; 98 struct btrfs_path *right_path; 99 struct btrfs_key *cmp_key; 100 101 /* 102 * infos of the currently processed inode. In case of deleted inodes, 103 * these are the values from the deleted inode. 104 */ 105 u64 cur_ino; 106 u64 cur_inode_gen; 107 int cur_inode_new; 108 int cur_inode_new_gen; 109 int cur_inode_deleted; 110 u64 cur_inode_size; 111 u64 cur_inode_mode; 112 113 u64 send_progress; 114 115 struct list_head new_refs; 116 struct list_head deleted_refs; 117 118 struct radix_tree_root name_cache; 119 struct list_head name_cache_list; 120 int name_cache_size; 121 122 struct file *cur_inode_filp; 123 char *read_buf; 124 }; 125 126 struct name_cache_entry { 127 struct list_head list; 128 /* 129 * radix_tree has only 32bit entries but we need to handle 64bit inums. 130 * We use the lower 32bit of the 64bit inum to store it in the tree. If 131 * more then one inum would fall into the same entry, we use radix_list 132 * to store the additional entries. radix_list is also used to store 133 * entries where two entries have the same inum but different 134 * generations. 135 */ 136 struct list_head radix_list; 137 u64 ino; 138 u64 gen; 139 u64 parent_ino; 140 u64 parent_gen; 141 int ret; 142 int need_later_update; 143 int name_len; 144 char name[]; 145 }; 146 147 static void fs_path_reset(struct fs_path *p) 148 { 149 if (p->reversed) { 150 p->start = p->buf + p->buf_len - 1; 151 p->end = p->start; 152 *p->start = 0; 153 } else { 154 p->start = p->buf; 155 p->end = p->start; 156 *p->start = 0; 157 } 158 } 159 160 static struct fs_path *fs_path_alloc(struct send_ctx *sctx) 161 { 162 struct fs_path *p; 163 164 p = kmalloc(sizeof(*p), GFP_NOFS); 165 if (!p) 166 return NULL; 167 p->reversed = 0; 168 p->virtual_mem = 0; 169 p->buf = p->inline_buf; 170 p->buf_len = FS_PATH_INLINE_SIZE; 171 fs_path_reset(p); 172 return p; 173 } 174 175 static struct fs_path *fs_path_alloc_reversed(struct send_ctx *sctx) 176 { 177 struct fs_path *p; 178 179 p = fs_path_alloc(sctx); 180 if (!p) 181 return NULL; 182 p->reversed = 1; 183 fs_path_reset(p); 184 return p; 185 } 186 187 static void fs_path_free(struct send_ctx *sctx, struct fs_path *p) 188 { 189 if (!p) 190 return; 191 if (p->buf != p->inline_buf) { 192 if (p->virtual_mem) 193 vfree(p->buf); 194 else 195 kfree(p->buf); 196 } 197 kfree(p); 198 } 199 200 static int fs_path_len(struct fs_path *p) 201 { 202 return p->end - p->start; 203 } 204 205 static int fs_path_ensure_buf(struct fs_path *p, int len) 206 { 207 char *tmp_buf; 208 int path_len; 209 int old_buf_len; 210 211 len++; 212 213 if (p->buf_len >= len) 214 return 0; 215 216 path_len = p->end - p->start; 217 old_buf_len = p->buf_len; 218 len = PAGE_ALIGN(len); 219 220 if (p->buf == p->inline_buf) { 221 tmp_buf = kmalloc(len, GFP_NOFS); 222 if (!tmp_buf) { 223 tmp_buf = vmalloc(len); 224 if (!tmp_buf) 225 return -ENOMEM; 226 p->virtual_mem = 1; 227 } 228 memcpy(tmp_buf, p->buf, p->buf_len); 229 p->buf = tmp_buf; 230 p->buf_len = len; 231 } else { 232 if (p->virtual_mem) { 233 tmp_buf = vmalloc(len); 234 if (!tmp_buf) 235 return -ENOMEM; 236 memcpy(tmp_buf, p->buf, p->buf_len); 237 vfree(p->buf); 238 } else { 239 tmp_buf = krealloc(p->buf, len, GFP_NOFS); 240 if (!tmp_buf) { 241 tmp_buf = vmalloc(len); 242 if (!tmp_buf) 243 return -ENOMEM; 244 memcpy(tmp_buf, p->buf, p->buf_len); 245 kfree(p->buf); 246 p->virtual_mem = 1; 247 } 248 } 249 p->buf = tmp_buf; 250 p->buf_len = len; 251 } 252 if (p->reversed) { 253 tmp_buf = p->buf + old_buf_len - path_len - 1; 254 p->end = p->buf + p->buf_len - 1; 255 p->start = p->end - path_len; 256 memmove(p->start, tmp_buf, path_len + 1); 257 } else { 258 p->start = p->buf; 259 p->end = p->start + path_len; 260 } 261 return 0; 262 } 263 264 static int fs_path_prepare_for_add(struct fs_path *p, int name_len) 265 { 266 int ret; 267 int new_len; 268 269 new_len = p->end - p->start + name_len; 270 if (p->start != p->end) 271 new_len++; 272 ret = fs_path_ensure_buf(p, new_len); 273 if (ret < 0) 274 goto out; 275 276 if (p->reversed) { 277 if (p->start != p->end) 278 *--p->start = '/'; 279 p->start -= name_len; 280 p->prepared = p->start; 281 } else { 282 if (p->start != p->end) 283 *p->end++ = '/'; 284 p->prepared = p->end; 285 p->end += name_len; 286 *p->end = 0; 287 } 288 289 out: 290 return ret; 291 } 292 293 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 294 { 295 int ret; 296 297 ret = fs_path_prepare_for_add(p, name_len); 298 if (ret < 0) 299 goto out; 300 memcpy(p->prepared, name, name_len); 301 p->prepared = NULL; 302 303 out: 304 return ret; 305 } 306 307 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2) 308 { 309 int ret; 310 311 ret = fs_path_prepare_for_add(p, p2->end - p2->start); 312 if (ret < 0) 313 goto out; 314 memcpy(p->prepared, p2->start, p2->end - p2->start); 315 p->prepared = NULL; 316 317 out: 318 return ret; 319 } 320 321 static int fs_path_add_from_extent_buffer(struct fs_path *p, 322 struct extent_buffer *eb, 323 unsigned long off, int len) 324 { 325 int ret; 326 327 ret = fs_path_prepare_for_add(p, len); 328 if (ret < 0) 329 goto out; 330 331 read_extent_buffer(eb, p->prepared, off, len); 332 p->prepared = NULL; 333 334 out: 335 return ret; 336 } 337 338 #if 0 339 static void fs_path_remove(struct fs_path *p) 340 { 341 BUG_ON(p->reversed); 342 while (p->start != p->end && *p->end != '/') 343 p->end--; 344 *p->end = 0; 345 } 346 #endif 347 348 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 349 { 350 int ret; 351 352 p->reversed = from->reversed; 353 fs_path_reset(p); 354 355 ret = fs_path_add_path(p, from); 356 357 return ret; 358 } 359 360 361 static void fs_path_unreverse(struct fs_path *p) 362 { 363 char *tmp; 364 int len; 365 366 if (!p->reversed) 367 return; 368 369 tmp = p->start; 370 len = p->end - p->start; 371 p->start = p->buf; 372 p->end = p->start + len; 373 memmove(p->start, tmp, len + 1); 374 p->reversed = 0; 375 } 376 377 static struct btrfs_path *alloc_path_for_send(void) 378 { 379 struct btrfs_path *path; 380 381 path = btrfs_alloc_path(); 382 if (!path) 383 return NULL; 384 path->search_commit_root = 1; 385 path->skip_locking = 1; 386 return path; 387 } 388 389 int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 390 { 391 int ret; 392 mm_segment_t old_fs; 393 u32 pos = 0; 394 395 old_fs = get_fs(); 396 set_fs(KERNEL_DS); 397 398 while (pos < len) { 399 ret = vfs_write(filp, (char *)buf + pos, len - pos, off); 400 /* TODO handle that correctly */ 401 /*if (ret == -ERESTARTSYS) { 402 continue; 403 }*/ 404 if (ret < 0) 405 goto out; 406 if (ret == 0) { 407 ret = -EIO; 408 goto out; 409 } 410 pos += ret; 411 } 412 413 ret = 0; 414 415 out: 416 set_fs(old_fs); 417 return ret; 418 } 419 420 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 421 { 422 struct btrfs_tlv_header *hdr; 423 int total_len = sizeof(*hdr) + len; 424 int left = sctx->send_max_size - sctx->send_size; 425 426 if (unlikely(left < total_len)) 427 return -EOVERFLOW; 428 429 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 430 hdr->tlv_type = cpu_to_le16(attr); 431 hdr->tlv_len = cpu_to_le16(len); 432 memcpy(hdr + 1, data, len); 433 sctx->send_size += total_len; 434 435 return 0; 436 } 437 438 #if 0 439 static int tlv_put_u8(struct send_ctx *sctx, u16 attr, u8 value) 440 { 441 return tlv_put(sctx, attr, &value, sizeof(value)); 442 } 443 444 static int tlv_put_u16(struct send_ctx *sctx, u16 attr, u16 value) 445 { 446 __le16 tmp = cpu_to_le16(value); 447 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 448 } 449 450 static int tlv_put_u32(struct send_ctx *sctx, u16 attr, u32 value) 451 { 452 __le32 tmp = cpu_to_le32(value); 453 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 454 } 455 #endif 456 457 static int tlv_put_u64(struct send_ctx *sctx, u16 attr, u64 value) 458 { 459 __le64 tmp = cpu_to_le64(value); 460 return tlv_put(sctx, attr, &tmp, sizeof(tmp)); 461 } 462 463 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 464 const char *str, int len) 465 { 466 if (len == -1) 467 len = strlen(str); 468 return tlv_put(sctx, attr, str, len); 469 } 470 471 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 472 const u8 *uuid) 473 { 474 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 475 } 476 477 #if 0 478 static int tlv_put_timespec(struct send_ctx *sctx, u16 attr, 479 struct timespec *ts) 480 { 481 struct btrfs_timespec bts; 482 bts.sec = cpu_to_le64(ts->tv_sec); 483 bts.nsec = cpu_to_le32(ts->tv_nsec); 484 return tlv_put(sctx, attr, &bts, sizeof(bts)); 485 } 486 #endif 487 488 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 489 struct extent_buffer *eb, 490 struct btrfs_timespec *ts) 491 { 492 struct btrfs_timespec bts; 493 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 494 return tlv_put(sctx, attr, &bts, sizeof(bts)); 495 } 496 497 498 #define TLV_PUT(sctx, attrtype, attrlen, data) \ 499 do { \ 500 ret = tlv_put(sctx, attrtype, attrlen, data); \ 501 if (ret < 0) \ 502 goto tlv_put_failure; \ 503 } while (0) 504 505 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 506 do { \ 507 ret = tlv_put_u##bits(sctx, attrtype, value); \ 508 if (ret < 0) \ 509 goto tlv_put_failure; \ 510 } while (0) 511 512 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 513 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 514 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 515 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 516 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 517 do { \ 518 ret = tlv_put_string(sctx, attrtype, str, len); \ 519 if (ret < 0) \ 520 goto tlv_put_failure; \ 521 } while (0) 522 #define TLV_PUT_PATH(sctx, attrtype, p) \ 523 do { \ 524 ret = tlv_put_string(sctx, attrtype, p->start, \ 525 p->end - p->start); \ 526 if (ret < 0) \ 527 goto tlv_put_failure; \ 528 } while(0) 529 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 530 do { \ 531 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 532 if (ret < 0) \ 533 goto tlv_put_failure; \ 534 } while (0) 535 #define TLV_PUT_TIMESPEC(sctx, attrtype, ts) \ 536 do { \ 537 ret = tlv_put_timespec(sctx, attrtype, ts); \ 538 if (ret < 0) \ 539 goto tlv_put_failure; \ 540 } while (0) 541 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 542 do { \ 543 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 544 if (ret < 0) \ 545 goto tlv_put_failure; \ 546 } while (0) 547 548 static int send_header(struct send_ctx *sctx) 549 { 550 struct btrfs_stream_header hdr; 551 552 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 553 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION); 554 555 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 556 &sctx->send_off); 557 } 558 559 /* 560 * For each command/item we want to send to userspace, we call this function. 561 */ 562 static int begin_cmd(struct send_ctx *sctx, int cmd) 563 { 564 struct btrfs_cmd_header *hdr; 565 566 if (!sctx->send_buf) { 567 WARN_ON(1); 568 return -EINVAL; 569 } 570 571 BUG_ON(sctx->send_size); 572 573 sctx->send_size += sizeof(*hdr); 574 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 575 hdr->cmd = cpu_to_le16(cmd); 576 577 return 0; 578 } 579 580 static int send_cmd(struct send_ctx *sctx) 581 { 582 int ret; 583 struct btrfs_cmd_header *hdr; 584 u32 crc; 585 586 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 587 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr)); 588 hdr->crc = 0; 589 590 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 591 hdr->crc = cpu_to_le32(crc); 592 593 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 594 &sctx->send_off); 595 596 sctx->total_send_size += sctx->send_size; 597 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size; 598 sctx->send_size = 0; 599 600 return ret; 601 } 602 603 /* 604 * Sends a move instruction to user space 605 */ 606 static int send_rename(struct send_ctx *sctx, 607 struct fs_path *from, struct fs_path *to) 608 { 609 int ret; 610 611 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start); 612 613 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 614 if (ret < 0) 615 goto out; 616 617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 618 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 619 620 ret = send_cmd(sctx); 621 622 tlv_put_failure: 623 out: 624 return ret; 625 } 626 627 /* 628 * Sends a link instruction to user space 629 */ 630 static int send_link(struct send_ctx *sctx, 631 struct fs_path *path, struct fs_path *lnk) 632 { 633 int ret; 634 635 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start); 636 637 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 638 if (ret < 0) 639 goto out; 640 641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 643 644 ret = send_cmd(sctx); 645 646 tlv_put_failure: 647 out: 648 return ret; 649 } 650 651 /* 652 * Sends an unlink instruction to user space 653 */ 654 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 655 { 656 int ret; 657 658 verbose_printk("btrfs: send_unlink %s\n", path->start); 659 660 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 661 if (ret < 0) 662 goto out; 663 664 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 665 666 ret = send_cmd(sctx); 667 668 tlv_put_failure: 669 out: 670 return ret; 671 } 672 673 /* 674 * Sends a rmdir instruction to user space 675 */ 676 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 677 { 678 int ret; 679 680 verbose_printk("btrfs: send_rmdir %s\n", path->start); 681 682 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 683 if (ret < 0) 684 goto out; 685 686 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 687 688 ret = send_cmd(sctx); 689 690 tlv_put_failure: 691 out: 692 return ret; 693 } 694 695 /* 696 * Helper function to retrieve some fields from an inode item. 697 */ 698 static int get_inode_info(struct btrfs_root *root, 699 u64 ino, u64 *size, u64 *gen, 700 u64 *mode, u64 *uid, u64 *gid, 701 u64 *rdev) 702 { 703 int ret; 704 struct btrfs_inode_item *ii; 705 struct btrfs_key key; 706 struct btrfs_path *path; 707 708 path = alloc_path_for_send(); 709 if (!path) 710 return -ENOMEM; 711 712 key.objectid = ino; 713 key.type = BTRFS_INODE_ITEM_KEY; 714 key.offset = 0; 715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 716 if (ret < 0) 717 goto out; 718 if (ret) { 719 ret = -ENOENT; 720 goto out; 721 } 722 723 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 724 struct btrfs_inode_item); 725 if (size) 726 *size = btrfs_inode_size(path->nodes[0], ii); 727 if (gen) 728 *gen = btrfs_inode_generation(path->nodes[0], ii); 729 if (mode) 730 *mode = btrfs_inode_mode(path->nodes[0], ii); 731 if (uid) 732 *uid = btrfs_inode_uid(path->nodes[0], ii); 733 if (gid) 734 *gid = btrfs_inode_gid(path->nodes[0], ii); 735 if (rdev) 736 *rdev = btrfs_inode_rdev(path->nodes[0], ii); 737 738 out: 739 btrfs_free_path(path); 740 return ret; 741 } 742 743 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index, 744 struct fs_path *p, 745 void *ctx); 746 747 /* 748 * Helper function to iterate the entries in ONE btrfs_inode_ref. 749 * The iterate callback may return a non zero value to stop iteration. This can 750 * be a negative value for error codes or 1 to simply stop it. 751 * 752 * path must point to the INODE_REF when called. 753 */ 754 static int iterate_inode_ref(struct send_ctx *sctx, 755 struct btrfs_root *root, struct btrfs_path *path, 756 struct btrfs_key *found_key, int resolve, 757 iterate_inode_ref_t iterate, void *ctx) 758 { 759 struct extent_buffer *eb; 760 struct btrfs_item *item; 761 struct btrfs_inode_ref *iref; 762 struct btrfs_path *tmp_path; 763 struct fs_path *p; 764 u32 cur; 765 u32 len; 766 u32 total; 767 int slot; 768 u32 name_len; 769 char *start; 770 int ret = 0; 771 int num; 772 int index; 773 774 p = fs_path_alloc_reversed(sctx); 775 if (!p) 776 return -ENOMEM; 777 778 tmp_path = alloc_path_for_send(); 779 if (!tmp_path) { 780 fs_path_free(sctx, p); 781 return -ENOMEM; 782 } 783 784 eb = path->nodes[0]; 785 slot = path->slots[0]; 786 item = btrfs_item_nr(eb, slot); 787 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 788 cur = 0; 789 len = 0; 790 total = btrfs_item_size(eb, item); 791 792 num = 0; 793 while (cur < total) { 794 fs_path_reset(p); 795 796 name_len = btrfs_inode_ref_name_len(eb, iref); 797 index = btrfs_inode_ref_index(eb, iref); 798 if (resolve) { 799 start = btrfs_iref_to_path(root, tmp_path, iref, eb, 800 found_key->offset, p->buf, 801 p->buf_len); 802 if (IS_ERR(start)) { 803 ret = PTR_ERR(start); 804 goto out; 805 } 806 if (start < p->buf) { 807 /* overflow , try again with larger buffer */ 808 ret = fs_path_ensure_buf(p, 809 p->buf_len + p->buf - start); 810 if (ret < 0) 811 goto out; 812 start = btrfs_iref_to_path(root, tmp_path, iref, 813 eb, found_key->offset, p->buf, 814 p->buf_len); 815 if (IS_ERR(start)) { 816 ret = PTR_ERR(start); 817 goto out; 818 } 819 BUG_ON(start < p->buf); 820 } 821 p->start = start; 822 } else { 823 ret = fs_path_add_from_extent_buffer(p, eb, 824 (unsigned long)(iref + 1), name_len); 825 if (ret < 0) 826 goto out; 827 } 828 829 830 len = sizeof(*iref) + name_len; 831 iref = (struct btrfs_inode_ref *)((char *)iref + len); 832 cur += len; 833 834 ret = iterate(num, found_key->offset, index, p, ctx); 835 if (ret) 836 goto out; 837 838 num++; 839 } 840 841 out: 842 btrfs_free_path(tmp_path); 843 fs_path_free(sctx, p); 844 return ret; 845 } 846 847 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 848 const char *name, int name_len, 849 const char *data, int data_len, 850 u8 type, void *ctx); 851 852 /* 853 * Helper function to iterate the entries in ONE btrfs_dir_item. 854 * The iterate callback may return a non zero value to stop iteration. This can 855 * be a negative value for error codes or 1 to simply stop it. 856 * 857 * path must point to the dir item when called. 858 */ 859 static int iterate_dir_item(struct send_ctx *sctx, 860 struct btrfs_root *root, struct btrfs_path *path, 861 struct btrfs_key *found_key, 862 iterate_dir_item_t iterate, void *ctx) 863 { 864 int ret = 0; 865 struct extent_buffer *eb; 866 struct btrfs_item *item; 867 struct btrfs_dir_item *di; 868 struct btrfs_key di_key; 869 char *buf = NULL; 870 char *buf2 = NULL; 871 int buf_len; 872 int buf_virtual = 0; 873 u32 name_len; 874 u32 data_len; 875 u32 cur; 876 u32 len; 877 u32 total; 878 int slot; 879 int num; 880 u8 type; 881 882 buf_len = PAGE_SIZE; 883 buf = kmalloc(buf_len, GFP_NOFS); 884 if (!buf) { 885 ret = -ENOMEM; 886 goto out; 887 } 888 889 eb = path->nodes[0]; 890 slot = path->slots[0]; 891 item = btrfs_item_nr(eb, slot); 892 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 893 cur = 0; 894 len = 0; 895 total = btrfs_item_size(eb, item); 896 897 num = 0; 898 while (cur < total) { 899 name_len = btrfs_dir_name_len(eb, di); 900 data_len = btrfs_dir_data_len(eb, di); 901 type = btrfs_dir_type(eb, di); 902 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 903 904 if (name_len + data_len > buf_len) { 905 buf_len = PAGE_ALIGN(name_len + data_len); 906 if (buf_virtual) { 907 buf2 = vmalloc(buf_len); 908 if (!buf2) { 909 ret = -ENOMEM; 910 goto out; 911 } 912 vfree(buf); 913 } else { 914 buf2 = krealloc(buf, buf_len, GFP_NOFS); 915 if (!buf2) { 916 buf2 = vmalloc(buf_len); 917 if (!buf2) { 918 ret = -ENOMEM; 919 goto out; 920 } 921 kfree(buf); 922 buf_virtual = 1; 923 } 924 } 925 926 buf = buf2; 927 buf2 = NULL; 928 } 929 930 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 931 name_len + data_len); 932 933 len = sizeof(*di) + name_len + data_len; 934 di = (struct btrfs_dir_item *)((char *)di + len); 935 cur += len; 936 937 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 938 data_len, type, ctx); 939 if (ret < 0) 940 goto out; 941 if (ret) { 942 ret = 0; 943 goto out; 944 } 945 946 num++; 947 } 948 949 out: 950 if (buf_virtual) 951 vfree(buf); 952 else 953 kfree(buf); 954 return ret; 955 } 956 957 static int __copy_first_ref(int num, u64 dir, int index, 958 struct fs_path *p, void *ctx) 959 { 960 int ret; 961 struct fs_path *pt = ctx; 962 963 ret = fs_path_copy(pt, p); 964 if (ret < 0) 965 return ret; 966 967 /* we want the first only */ 968 return 1; 969 } 970 971 /* 972 * Retrieve the first path of an inode. If an inode has more then one 973 * ref/hardlink, this is ignored. 974 */ 975 static int get_inode_path(struct send_ctx *sctx, struct btrfs_root *root, 976 u64 ino, struct fs_path *path) 977 { 978 int ret; 979 struct btrfs_key key, found_key; 980 struct btrfs_path *p; 981 982 p = alloc_path_for_send(); 983 if (!p) 984 return -ENOMEM; 985 986 fs_path_reset(path); 987 988 key.objectid = ino; 989 key.type = BTRFS_INODE_REF_KEY; 990 key.offset = 0; 991 992 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 993 if (ret < 0) 994 goto out; 995 if (ret) { 996 ret = 1; 997 goto out; 998 } 999 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1000 if (found_key.objectid != ino || 1001 found_key.type != BTRFS_INODE_REF_KEY) { 1002 ret = -ENOENT; 1003 goto out; 1004 } 1005 1006 ret = iterate_inode_ref(sctx, root, p, &found_key, 1, 1007 __copy_first_ref, path); 1008 if (ret < 0) 1009 goto out; 1010 ret = 0; 1011 1012 out: 1013 btrfs_free_path(p); 1014 return ret; 1015 } 1016 1017 struct backref_ctx { 1018 struct send_ctx *sctx; 1019 1020 /* number of total found references */ 1021 u64 found; 1022 1023 /* 1024 * used for clones found in send_root. clones found behind cur_objectid 1025 * and cur_offset are not considered as allowed clones. 1026 */ 1027 u64 cur_objectid; 1028 u64 cur_offset; 1029 1030 /* may be truncated in case it's the last extent in a file */ 1031 u64 extent_len; 1032 1033 /* Just to check for bugs in backref resolving */ 1034 int found_itself; 1035 }; 1036 1037 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1038 { 1039 u64 root = (u64)(uintptr_t)key; 1040 struct clone_root *cr = (struct clone_root *)elt; 1041 1042 if (root < cr->root->objectid) 1043 return -1; 1044 if (root > cr->root->objectid) 1045 return 1; 1046 return 0; 1047 } 1048 1049 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1050 { 1051 struct clone_root *cr1 = (struct clone_root *)e1; 1052 struct clone_root *cr2 = (struct clone_root *)e2; 1053 1054 if (cr1->root->objectid < cr2->root->objectid) 1055 return -1; 1056 if (cr1->root->objectid > cr2->root->objectid) 1057 return 1; 1058 return 0; 1059 } 1060 1061 /* 1062 * Called for every backref that is found for the current extent. 1063 * Results are collected in sctx->clone_roots->ino/offset/found_refs 1064 */ 1065 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_) 1066 { 1067 struct backref_ctx *bctx = ctx_; 1068 struct clone_root *found; 1069 int ret; 1070 u64 i_size; 1071 1072 /* First check if the root is in the list of accepted clone sources */ 1073 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots, 1074 bctx->sctx->clone_roots_cnt, 1075 sizeof(struct clone_root), 1076 __clone_root_cmp_bsearch); 1077 if (!found) 1078 return 0; 1079 1080 if (found->root == bctx->sctx->send_root && 1081 ino == bctx->cur_objectid && 1082 offset == bctx->cur_offset) { 1083 bctx->found_itself = 1; 1084 } 1085 1086 /* 1087 * There are inodes that have extents that lie behind its i_size. Don't 1088 * accept clones from these extents. 1089 */ 1090 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL, 1091 NULL); 1092 if (ret < 0) 1093 return ret; 1094 1095 if (offset + bctx->extent_len > i_size) 1096 return 0; 1097 1098 /* 1099 * Make sure we don't consider clones from send_root that are 1100 * behind the current inode/offset. 1101 */ 1102 if (found->root == bctx->sctx->send_root) { 1103 /* 1104 * TODO for the moment we don't accept clones from the inode 1105 * that is currently send. We may change this when 1106 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same 1107 * file. 1108 */ 1109 if (ino >= bctx->cur_objectid) 1110 return 0; 1111 #if 0 1112 if (ino > bctx->cur_objectid) 1113 return 0; 1114 if (offset + bctx->extent_len > bctx->cur_offset) 1115 return 0; 1116 #endif 1117 } 1118 1119 bctx->found++; 1120 found->found_refs++; 1121 if (ino < found->ino) { 1122 found->ino = ino; 1123 found->offset = offset; 1124 } else if (found->ino == ino) { 1125 /* 1126 * same extent found more then once in the same file. 1127 */ 1128 if (found->offset > offset + bctx->extent_len) 1129 found->offset = offset; 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* 1136 * Given an inode, offset and extent item, it finds a good clone for a clone 1137 * instruction. Returns -ENOENT when none could be found. The function makes 1138 * sure that the returned clone is usable at the point where sending is at the 1139 * moment. This means, that no clones are accepted which lie behind the current 1140 * inode+offset. 1141 * 1142 * path must point to the extent item when called. 1143 */ 1144 static int find_extent_clone(struct send_ctx *sctx, 1145 struct btrfs_path *path, 1146 u64 ino, u64 data_offset, 1147 u64 ino_size, 1148 struct clone_root **found) 1149 { 1150 int ret; 1151 int extent_type; 1152 u64 logical; 1153 u64 disk_byte; 1154 u64 num_bytes; 1155 u64 extent_item_pos; 1156 u64 flags = 0; 1157 struct btrfs_file_extent_item *fi; 1158 struct extent_buffer *eb = path->nodes[0]; 1159 struct backref_ctx *backref_ctx = NULL; 1160 struct clone_root *cur_clone_root; 1161 struct btrfs_key found_key; 1162 struct btrfs_path *tmp_path; 1163 int compressed; 1164 u32 i; 1165 1166 tmp_path = alloc_path_for_send(); 1167 if (!tmp_path) 1168 return -ENOMEM; 1169 1170 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS); 1171 if (!backref_ctx) { 1172 ret = -ENOMEM; 1173 goto out; 1174 } 1175 1176 if (data_offset >= ino_size) { 1177 /* 1178 * There may be extents that lie behind the file's size. 1179 * I at least had this in combination with snapshotting while 1180 * writing large files. 1181 */ 1182 ret = 0; 1183 goto out; 1184 } 1185 1186 fi = btrfs_item_ptr(eb, path->slots[0], 1187 struct btrfs_file_extent_item); 1188 extent_type = btrfs_file_extent_type(eb, fi); 1189 if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1190 ret = -ENOENT; 1191 goto out; 1192 } 1193 compressed = btrfs_file_extent_compression(eb, fi); 1194 1195 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1196 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1197 if (disk_byte == 0) { 1198 ret = -ENOENT; 1199 goto out; 1200 } 1201 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1202 1203 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path, 1204 &found_key, &flags); 1205 btrfs_release_path(tmp_path); 1206 1207 if (ret < 0) 1208 goto out; 1209 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1210 ret = -EIO; 1211 goto out; 1212 } 1213 1214 /* 1215 * Setup the clone roots. 1216 */ 1217 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1218 cur_clone_root = sctx->clone_roots + i; 1219 cur_clone_root->ino = (u64)-1; 1220 cur_clone_root->offset = 0; 1221 cur_clone_root->found_refs = 0; 1222 } 1223 1224 backref_ctx->sctx = sctx; 1225 backref_ctx->found = 0; 1226 backref_ctx->cur_objectid = ino; 1227 backref_ctx->cur_offset = data_offset; 1228 backref_ctx->found_itself = 0; 1229 backref_ctx->extent_len = num_bytes; 1230 1231 /* 1232 * The last extent of a file may be too large due to page alignment. 1233 * We need to adjust extent_len in this case so that the checks in 1234 * __iterate_backrefs work. 1235 */ 1236 if (data_offset + num_bytes >= ino_size) 1237 backref_ctx->extent_len = ino_size - data_offset; 1238 1239 /* 1240 * Now collect all backrefs. 1241 */ 1242 if (compressed == BTRFS_COMPRESS_NONE) 1243 extent_item_pos = logical - found_key.objectid; 1244 else 1245 extent_item_pos = 0; 1246 1247 extent_item_pos = logical - found_key.objectid; 1248 ret = iterate_extent_inodes(sctx->send_root->fs_info, 1249 found_key.objectid, extent_item_pos, 1, 1250 __iterate_backrefs, backref_ctx); 1251 1252 if (ret < 0) 1253 goto out; 1254 1255 if (!backref_ctx->found_itself) { 1256 /* found a bug in backref code? */ 1257 ret = -EIO; 1258 printk(KERN_ERR "btrfs: ERROR did not find backref in " 1259 "send_root. inode=%llu, offset=%llu, " 1260 "disk_byte=%llu found extent=%llu\n", 1261 ino, data_offset, disk_byte, found_key.objectid); 1262 goto out; 1263 } 1264 1265 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, " 1266 "ino=%llu, " 1267 "num_bytes=%llu, logical=%llu\n", 1268 data_offset, ino, num_bytes, logical); 1269 1270 if (!backref_ctx->found) 1271 verbose_printk("btrfs: no clones found\n"); 1272 1273 cur_clone_root = NULL; 1274 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1275 if (sctx->clone_roots[i].found_refs) { 1276 if (!cur_clone_root) 1277 cur_clone_root = sctx->clone_roots + i; 1278 else if (sctx->clone_roots[i].root == sctx->send_root) 1279 /* prefer clones from send_root over others */ 1280 cur_clone_root = sctx->clone_roots + i; 1281 } 1282 1283 } 1284 1285 if (cur_clone_root) { 1286 *found = cur_clone_root; 1287 ret = 0; 1288 } else { 1289 ret = -ENOENT; 1290 } 1291 1292 out: 1293 btrfs_free_path(tmp_path); 1294 kfree(backref_ctx); 1295 return ret; 1296 } 1297 1298 static int read_symlink(struct send_ctx *sctx, 1299 struct btrfs_root *root, 1300 u64 ino, 1301 struct fs_path *dest) 1302 { 1303 int ret; 1304 struct btrfs_path *path; 1305 struct btrfs_key key; 1306 struct btrfs_file_extent_item *ei; 1307 u8 type; 1308 u8 compression; 1309 unsigned long off; 1310 int len; 1311 1312 path = alloc_path_for_send(); 1313 if (!path) 1314 return -ENOMEM; 1315 1316 key.objectid = ino; 1317 key.type = BTRFS_EXTENT_DATA_KEY; 1318 key.offset = 0; 1319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1320 if (ret < 0) 1321 goto out; 1322 BUG_ON(ret); 1323 1324 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1325 struct btrfs_file_extent_item); 1326 type = btrfs_file_extent_type(path->nodes[0], ei); 1327 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1328 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE); 1329 BUG_ON(compression); 1330 1331 off = btrfs_file_extent_inline_start(ei); 1332 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 1333 1334 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1335 1336 out: 1337 btrfs_free_path(path); 1338 return ret; 1339 } 1340 1341 /* 1342 * Helper function to generate a file name that is unique in the root of 1343 * send_root and parent_root. This is used to generate names for orphan inodes. 1344 */ 1345 static int gen_unique_name(struct send_ctx *sctx, 1346 u64 ino, u64 gen, 1347 struct fs_path *dest) 1348 { 1349 int ret = 0; 1350 struct btrfs_path *path; 1351 struct btrfs_dir_item *di; 1352 char tmp[64]; 1353 int len; 1354 u64 idx = 0; 1355 1356 path = alloc_path_for_send(); 1357 if (!path) 1358 return -ENOMEM; 1359 1360 while (1) { 1361 len = snprintf(tmp, sizeof(tmp) - 1, "o%llu-%llu-%llu", 1362 ino, gen, idx); 1363 if (len >= sizeof(tmp)) { 1364 /* should really not happen */ 1365 ret = -EOVERFLOW; 1366 goto out; 1367 } 1368 1369 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1370 path, BTRFS_FIRST_FREE_OBJECTID, 1371 tmp, strlen(tmp), 0); 1372 btrfs_release_path(path); 1373 if (IS_ERR(di)) { 1374 ret = PTR_ERR(di); 1375 goto out; 1376 } 1377 if (di) { 1378 /* not unique, try again */ 1379 idx++; 1380 continue; 1381 } 1382 1383 if (!sctx->parent_root) { 1384 /* unique */ 1385 ret = 0; 1386 break; 1387 } 1388 1389 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1390 path, BTRFS_FIRST_FREE_OBJECTID, 1391 tmp, strlen(tmp), 0); 1392 btrfs_release_path(path); 1393 if (IS_ERR(di)) { 1394 ret = PTR_ERR(di); 1395 goto out; 1396 } 1397 if (di) { 1398 /* not unique, try again */ 1399 idx++; 1400 continue; 1401 } 1402 /* unique */ 1403 break; 1404 } 1405 1406 ret = fs_path_add(dest, tmp, strlen(tmp)); 1407 1408 out: 1409 btrfs_free_path(path); 1410 return ret; 1411 } 1412 1413 enum inode_state { 1414 inode_state_no_change, 1415 inode_state_will_create, 1416 inode_state_did_create, 1417 inode_state_will_delete, 1418 inode_state_did_delete, 1419 }; 1420 1421 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen) 1422 { 1423 int ret; 1424 int left_ret; 1425 int right_ret; 1426 u64 left_gen; 1427 u64 right_gen; 1428 1429 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL, 1430 NULL, NULL); 1431 if (ret < 0 && ret != -ENOENT) 1432 goto out; 1433 left_ret = ret; 1434 1435 if (!sctx->parent_root) { 1436 right_ret = -ENOENT; 1437 } else { 1438 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen, 1439 NULL, NULL, NULL, NULL); 1440 if (ret < 0 && ret != -ENOENT) 1441 goto out; 1442 right_ret = ret; 1443 } 1444 1445 if (!left_ret && !right_ret) { 1446 if (left_gen == gen && right_gen == gen) { 1447 ret = inode_state_no_change; 1448 } else if (left_gen == gen) { 1449 if (ino < sctx->send_progress) 1450 ret = inode_state_did_create; 1451 else 1452 ret = inode_state_will_create; 1453 } else if (right_gen == gen) { 1454 if (ino < sctx->send_progress) 1455 ret = inode_state_did_delete; 1456 else 1457 ret = inode_state_will_delete; 1458 } else { 1459 ret = -ENOENT; 1460 } 1461 } else if (!left_ret) { 1462 if (left_gen == gen) { 1463 if (ino < sctx->send_progress) 1464 ret = inode_state_did_create; 1465 else 1466 ret = inode_state_will_create; 1467 } else { 1468 ret = -ENOENT; 1469 } 1470 } else if (!right_ret) { 1471 if (right_gen == gen) { 1472 if (ino < sctx->send_progress) 1473 ret = inode_state_did_delete; 1474 else 1475 ret = inode_state_will_delete; 1476 } else { 1477 ret = -ENOENT; 1478 } 1479 } else { 1480 ret = -ENOENT; 1481 } 1482 1483 out: 1484 return ret; 1485 } 1486 1487 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen) 1488 { 1489 int ret; 1490 1491 ret = get_cur_inode_state(sctx, ino, gen); 1492 if (ret < 0) 1493 goto out; 1494 1495 if (ret == inode_state_no_change || 1496 ret == inode_state_did_create || 1497 ret == inode_state_will_delete) 1498 ret = 1; 1499 else 1500 ret = 0; 1501 1502 out: 1503 return ret; 1504 } 1505 1506 /* 1507 * Helper function to lookup a dir item in a dir. 1508 */ 1509 static int lookup_dir_item_inode(struct btrfs_root *root, 1510 u64 dir, const char *name, int name_len, 1511 u64 *found_inode, 1512 u8 *found_type) 1513 { 1514 int ret = 0; 1515 struct btrfs_dir_item *di; 1516 struct btrfs_key key; 1517 struct btrfs_path *path; 1518 1519 path = alloc_path_for_send(); 1520 if (!path) 1521 return -ENOMEM; 1522 1523 di = btrfs_lookup_dir_item(NULL, root, path, 1524 dir, name, name_len, 0); 1525 if (!di) { 1526 ret = -ENOENT; 1527 goto out; 1528 } 1529 if (IS_ERR(di)) { 1530 ret = PTR_ERR(di); 1531 goto out; 1532 } 1533 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1534 *found_inode = key.objectid; 1535 *found_type = btrfs_dir_type(path->nodes[0], di); 1536 1537 out: 1538 btrfs_free_path(path); 1539 return ret; 1540 } 1541 1542 /* 1543 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1544 * generation of the parent dir and the name of the dir entry. 1545 */ 1546 static int get_first_ref(struct send_ctx *sctx, 1547 struct btrfs_root *root, u64 ino, 1548 u64 *dir, u64 *dir_gen, struct fs_path *name) 1549 { 1550 int ret; 1551 struct btrfs_key key; 1552 struct btrfs_key found_key; 1553 struct btrfs_path *path; 1554 struct btrfs_inode_ref *iref; 1555 int len; 1556 1557 path = alloc_path_for_send(); 1558 if (!path) 1559 return -ENOMEM; 1560 1561 key.objectid = ino; 1562 key.type = BTRFS_INODE_REF_KEY; 1563 key.offset = 0; 1564 1565 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1566 if (ret < 0) 1567 goto out; 1568 if (!ret) 1569 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1570 path->slots[0]); 1571 if (ret || found_key.objectid != key.objectid || 1572 found_key.type != key.type) { 1573 ret = -ENOENT; 1574 goto out; 1575 } 1576 1577 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1578 struct btrfs_inode_ref); 1579 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1580 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1581 (unsigned long)(iref + 1), len); 1582 if (ret < 0) 1583 goto out; 1584 btrfs_release_path(path); 1585 1586 ret = get_inode_info(root, found_key.offset, NULL, dir_gen, NULL, NULL, 1587 NULL, NULL); 1588 if (ret < 0) 1589 goto out; 1590 1591 *dir = found_key.offset; 1592 1593 out: 1594 btrfs_free_path(path); 1595 return ret; 1596 } 1597 1598 static int is_first_ref(struct send_ctx *sctx, 1599 struct btrfs_root *root, 1600 u64 ino, u64 dir, 1601 const char *name, int name_len) 1602 { 1603 int ret; 1604 struct fs_path *tmp_name; 1605 u64 tmp_dir; 1606 u64 tmp_dir_gen; 1607 1608 tmp_name = fs_path_alloc(sctx); 1609 if (!tmp_name) 1610 return -ENOMEM; 1611 1612 ret = get_first_ref(sctx, root, ino, &tmp_dir, &tmp_dir_gen, tmp_name); 1613 if (ret < 0) 1614 goto out; 1615 1616 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 1617 ret = 0; 1618 goto out; 1619 } 1620 1621 ret = !memcmp(tmp_name->start, name, name_len); 1622 1623 out: 1624 fs_path_free(sctx, tmp_name); 1625 return ret; 1626 } 1627 1628 /* 1629 * Used by process_recorded_refs to determine if a new ref would overwrite an 1630 * already existing ref. In case it detects an overwrite, it returns the 1631 * inode/gen in who_ino/who_gen. 1632 * When an overwrite is detected, process_recorded_refs does proper orphanizing 1633 * to make sure later references to the overwritten inode are possible. 1634 * Orphanizing is however only required for the first ref of an inode. 1635 * process_recorded_refs does an additional is_first_ref check to see if 1636 * orphanizing is really required. 1637 */ 1638 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 1639 const char *name, int name_len, 1640 u64 *who_ino, u64 *who_gen) 1641 { 1642 int ret = 0; 1643 u64 other_inode = 0; 1644 u8 other_type = 0; 1645 1646 if (!sctx->parent_root) 1647 goto out; 1648 1649 ret = is_inode_existent(sctx, dir, dir_gen); 1650 if (ret <= 0) 1651 goto out; 1652 1653 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 1654 &other_inode, &other_type); 1655 if (ret < 0 && ret != -ENOENT) 1656 goto out; 1657 if (ret) { 1658 ret = 0; 1659 goto out; 1660 } 1661 1662 /* 1663 * Check if the overwritten ref was already processed. If yes, the ref 1664 * was already unlinked/moved, so we can safely assume that we will not 1665 * overwrite anything at this point in time. 1666 */ 1667 if (other_inode > sctx->send_progress) { 1668 ret = get_inode_info(sctx->parent_root, other_inode, NULL, 1669 who_gen, NULL, NULL, NULL, NULL); 1670 if (ret < 0) 1671 goto out; 1672 1673 ret = 1; 1674 *who_ino = other_inode; 1675 } else { 1676 ret = 0; 1677 } 1678 1679 out: 1680 return ret; 1681 } 1682 1683 /* 1684 * Checks if the ref was overwritten by an already processed inode. This is 1685 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 1686 * thus the orphan name needs be used. 1687 * process_recorded_refs also uses it to avoid unlinking of refs that were 1688 * overwritten. 1689 */ 1690 static int did_overwrite_ref(struct send_ctx *sctx, 1691 u64 dir, u64 dir_gen, 1692 u64 ino, u64 ino_gen, 1693 const char *name, int name_len) 1694 { 1695 int ret = 0; 1696 u64 gen; 1697 u64 ow_inode; 1698 u8 other_type; 1699 1700 if (!sctx->parent_root) 1701 goto out; 1702 1703 ret = is_inode_existent(sctx, dir, dir_gen); 1704 if (ret <= 0) 1705 goto out; 1706 1707 /* check if the ref was overwritten by another ref */ 1708 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 1709 &ow_inode, &other_type); 1710 if (ret < 0 && ret != -ENOENT) 1711 goto out; 1712 if (ret) { 1713 /* was never and will never be overwritten */ 1714 ret = 0; 1715 goto out; 1716 } 1717 1718 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL, 1719 NULL, NULL); 1720 if (ret < 0) 1721 goto out; 1722 1723 if (ow_inode == ino && gen == ino_gen) { 1724 ret = 0; 1725 goto out; 1726 } 1727 1728 /* we know that it is or will be overwritten. check this now */ 1729 if (ow_inode < sctx->send_progress) 1730 ret = 1; 1731 else 1732 ret = 0; 1733 1734 out: 1735 return ret; 1736 } 1737 1738 /* 1739 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 1740 * that got overwritten. This is used by process_recorded_refs to determine 1741 * if it has to use the path as returned by get_cur_path or the orphan name. 1742 */ 1743 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 1744 { 1745 int ret = 0; 1746 struct fs_path *name = NULL; 1747 u64 dir; 1748 u64 dir_gen; 1749 1750 if (!sctx->parent_root) 1751 goto out; 1752 1753 name = fs_path_alloc(sctx); 1754 if (!name) 1755 return -ENOMEM; 1756 1757 ret = get_first_ref(sctx, sctx->parent_root, ino, &dir, &dir_gen, name); 1758 if (ret < 0) 1759 goto out; 1760 1761 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 1762 name->start, fs_path_len(name)); 1763 1764 out: 1765 fs_path_free(sctx, name); 1766 return ret; 1767 } 1768 1769 /* 1770 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit, 1771 * so we need to do some special handling in case we have clashes. This function 1772 * takes care of this with the help of name_cache_entry::radix_list. 1773 * In case of error, nce is kfreed. 1774 */ 1775 static int name_cache_insert(struct send_ctx *sctx, 1776 struct name_cache_entry *nce) 1777 { 1778 int ret = 0; 1779 struct list_head *nce_head; 1780 1781 nce_head = radix_tree_lookup(&sctx->name_cache, 1782 (unsigned long)nce->ino); 1783 if (!nce_head) { 1784 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS); 1785 if (!nce_head) 1786 return -ENOMEM; 1787 INIT_LIST_HEAD(nce_head); 1788 1789 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head); 1790 if (ret < 0) { 1791 kfree(nce_head); 1792 kfree(nce); 1793 return ret; 1794 } 1795 } 1796 list_add_tail(&nce->radix_list, nce_head); 1797 list_add_tail(&nce->list, &sctx->name_cache_list); 1798 sctx->name_cache_size++; 1799 1800 return ret; 1801 } 1802 1803 static void name_cache_delete(struct send_ctx *sctx, 1804 struct name_cache_entry *nce) 1805 { 1806 struct list_head *nce_head; 1807 1808 nce_head = radix_tree_lookup(&sctx->name_cache, 1809 (unsigned long)nce->ino); 1810 BUG_ON(!nce_head); 1811 1812 list_del(&nce->radix_list); 1813 list_del(&nce->list); 1814 sctx->name_cache_size--; 1815 1816 if (list_empty(nce_head)) { 1817 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino); 1818 kfree(nce_head); 1819 } 1820 } 1821 1822 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 1823 u64 ino, u64 gen) 1824 { 1825 struct list_head *nce_head; 1826 struct name_cache_entry *cur; 1827 1828 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino); 1829 if (!nce_head) 1830 return NULL; 1831 1832 list_for_each_entry(cur, nce_head, radix_list) { 1833 if (cur->ino == ino && cur->gen == gen) 1834 return cur; 1835 } 1836 return NULL; 1837 } 1838 1839 /* 1840 * Removes the entry from the list and adds it back to the end. This marks the 1841 * entry as recently used so that name_cache_clean_unused does not remove it. 1842 */ 1843 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce) 1844 { 1845 list_del(&nce->list); 1846 list_add_tail(&nce->list, &sctx->name_cache_list); 1847 } 1848 1849 /* 1850 * Remove some entries from the beginning of name_cache_list. 1851 */ 1852 static void name_cache_clean_unused(struct send_ctx *sctx) 1853 { 1854 struct name_cache_entry *nce; 1855 1856 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE) 1857 return; 1858 1859 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) { 1860 nce = list_entry(sctx->name_cache_list.next, 1861 struct name_cache_entry, list); 1862 name_cache_delete(sctx, nce); 1863 kfree(nce); 1864 } 1865 } 1866 1867 static void name_cache_free(struct send_ctx *sctx) 1868 { 1869 struct name_cache_entry *nce; 1870 1871 while (!list_empty(&sctx->name_cache_list)) { 1872 nce = list_entry(sctx->name_cache_list.next, 1873 struct name_cache_entry, list); 1874 name_cache_delete(sctx, nce); 1875 kfree(nce); 1876 } 1877 } 1878 1879 /* 1880 * Used by get_cur_path for each ref up to the root. 1881 * Returns 0 if it succeeded. 1882 * Returns 1 if the inode is not existent or got overwritten. In that case, the 1883 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 1884 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 1885 * Returns <0 in case of error. 1886 */ 1887 static int __get_cur_name_and_parent(struct send_ctx *sctx, 1888 u64 ino, u64 gen, 1889 u64 *parent_ino, 1890 u64 *parent_gen, 1891 struct fs_path *dest) 1892 { 1893 int ret; 1894 int nce_ret; 1895 struct btrfs_path *path = NULL; 1896 struct name_cache_entry *nce = NULL; 1897 1898 /* 1899 * First check if we already did a call to this function with the same 1900 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 1901 * return the cached result. 1902 */ 1903 nce = name_cache_search(sctx, ino, gen); 1904 if (nce) { 1905 if (ino < sctx->send_progress && nce->need_later_update) { 1906 name_cache_delete(sctx, nce); 1907 kfree(nce); 1908 nce = NULL; 1909 } else { 1910 name_cache_used(sctx, nce); 1911 *parent_ino = nce->parent_ino; 1912 *parent_gen = nce->parent_gen; 1913 ret = fs_path_add(dest, nce->name, nce->name_len); 1914 if (ret < 0) 1915 goto out; 1916 ret = nce->ret; 1917 goto out; 1918 } 1919 } 1920 1921 path = alloc_path_for_send(); 1922 if (!path) 1923 return -ENOMEM; 1924 1925 /* 1926 * If the inode is not existent yet, add the orphan name and return 1. 1927 * This should only happen for the parent dir that we determine in 1928 * __record_new_ref 1929 */ 1930 ret = is_inode_existent(sctx, ino, gen); 1931 if (ret < 0) 1932 goto out; 1933 1934 if (!ret) { 1935 ret = gen_unique_name(sctx, ino, gen, dest); 1936 if (ret < 0) 1937 goto out; 1938 ret = 1; 1939 goto out_cache; 1940 } 1941 1942 /* 1943 * Depending on whether the inode was already processed or not, use 1944 * send_root or parent_root for ref lookup. 1945 */ 1946 if (ino < sctx->send_progress) 1947 ret = get_first_ref(sctx, sctx->send_root, ino, 1948 parent_ino, parent_gen, dest); 1949 else 1950 ret = get_first_ref(sctx, sctx->parent_root, ino, 1951 parent_ino, parent_gen, dest); 1952 if (ret < 0) 1953 goto out; 1954 1955 /* 1956 * Check if the ref was overwritten by an inode's ref that was processed 1957 * earlier. If yes, treat as orphan and return 1. 1958 */ 1959 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 1960 dest->start, dest->end - dest->start); 1961 if (ret < 0) 1962 goto out; 1963 if (ret) { 1964 fs_path_reset(dest); 1965 ret = gen_unique_name(sctx, ino, gen, dest); 1966 if (ret < 0) 1967 goto out; 1968 ret = 1; 1969 } 1970 1971 out_cache: 1972 /* 1973 * Store the result of the lookup in the name cache. 1974 */ 1975 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS); 1976 if (!nce) { 1977 ret = -ENOMEM; 1978 goto out; 1979 } 1980 1981 nce->ino = ino; 1982 nce->gen = gen; 1983 nce->parent_ino = *parent_ino; 1984 nce->parent_gen = *parent_gen; 1985 nce->name_len = fs_path_len(dest); 1986 nce->ret = ret; 1987 strcpy(nce->name, dest->start); 1988 1989 if (ino < sctx->send_progress) 1990 nce->need_later_update = 0; 1991 else 1992 nce->need_later_update = 1; 1993 1994 nce_ret = name_cache_insert(sctx, nce); 1995 if (nce_ret < 0) 1996 ret = nce_ret; 1997 name_cache_clean_unused(sctx); 1998 1999 out: 2000 btrfs_free_path(path); 2001 return ret; 2002 } 2003 2004 /* 2005 * Magic happens here. This function returns the first ref to an inode as it 2006 * would look like while receiving the stream at this point in time. 2007 * We walk the path up to the root. For every inode in between, we check if it 2008 * was already processed/sent. If yes, we continue with the parent as found 2009 * in send_root. If not, we continue with the parent as found in parent_root. 2010 * If we encounter an inode that was deleted at this point in time, we use the 2011 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2012 * that were not created yet and overwritten inodes/refs. 2013 * 2014 * When do we have have orphan inodes: 2015 * 1. When an inode is freshly created and thus no valid refs are available yet 2016 * 2. When a directory lost all it's refs (deleted) but still has dir items 2017 * inside which were not processed yet (pending for move/delete). If anyone 2018 * tried to get the path to the dir items, it would get a path inside that 2019 * orphan directory. 2020 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2021 * of an unprocessed inode. If in that case the first ref would be 2022 * overwritten, the overwritten inode gets "orphanized". Later when we 2023 * process this overwritten inode, it is restored at a new place by moving 2024 * the orphan inode. 2025 * 2026 * sctx->send_progress tells this function at which point in time receiving 2027 * would be. 2028 */ 2029 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2030 struct fs_path *dest) 2031 { 2032 int ret = 0; 2033 struct fs_path *name = NULL; 2034 u64 parent_inode = 0; 2035 u64 parent_gen = 0; 2036 int stop = 0; 2037 2038 name = fs_path_alloc(sctx); 2039 if (!name) { 2040 ret = -ENOMEM; 2041 goto out; 2042 } 2043 2044 dest->reversed = 1; 2045 fs_path_reset(dest); 2046 2047 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2048 fs_path_reset(name); 2049 2050 ret = __get_cur_name_and_parent(sctx, ino, gen, 2051 &parent_inode, &parent_gen, name); 2052 if (ret < 0) 2053 goto out; 2054 if (ret) 2055 stop = 1; 2056 2057 ret = fs_path_add_path(dest, name); 2058 if (ret < 0) 2059 goto out; 2060 2061 ino = parent_inode; 2062 gen = parent_gen; 2063 } 2064 2065 out: 2066 fs_path_free(sctx, name); 2067 if (!ret) 2068 fs_path_unreverse(dest); 2069 return ret; 2070 } 2071 2072 /* 2073 * Called for regular files when sending extents data. Opens a struct file 2074 * to read from the file. 2075 */ 2076 static int open_cur_inode_file(struct send_ctx *sctx) 2077 { 2078 int ret = 0; 2079 struct btrfs_key key; 2080 struct path path; 2081 struct inode *inode; 2082 struct dentry *dentry; 2083 struct file *filp; 2084 int new = 0; 2085 2086 if (sctx->cur_inode_filp) 2087 goto out; 2088 2089 key.objectid = sctx->cur_ino; 2090 key.type = BTRFS_INODE_ITEM_KEY; 2091 key.offset = 0; 2092 2093 inode = btrfs_iget(sctx->send_root->fs_info->sb, &key, sctx->send_root, 2094 &new); 2095 if (IS_ERR(inode)) { 2096 ret = PTR_ERR(inode); 2097 goto out; 2098 } 2099 2100 dentry = d_obtain_alias(inode); 2101 inode = NULL; 2102 if (IS_ERR(dentry)) { 2103 ret = PTR_ERR(dentry); 2104 goto out; 2105 } 2106 2107 path.mnt = sctx->mnt; 2108 path.dentry = dentry; 2109 filp = dentry_open(&path, O_RDONLY | O_LARGEFILE, current_cred()); 2110 dput(dentry); 2111 dentry = NULL; 2112 if (IS_ERR(filp)) { 2113 ret = PTR_ERR(filp); 2114 goto out; 2115 } 2116 sctx->cur_inode_filp = filp; 2117 2118 out: 2119 /* 2120 * no xxxput required here as every vfs op 2121 * does it by itself on failure 2122 */ 2123 return ret; 2124 } 2125 2126 /* 2127 * Closes the struct file that was created in open_cur_inode_file 2128 */ 2129 static int close_cur_inode_file(struct send_ctx *sctx) 2130 { 2131 int ret = 0; 2132 2133 if (!sctx->cur_inode_filp) 2134 goto out; 2135 2136 ret = filp_close(sctx->cur_inode_filp, NULL); 2137 sctx->cur_inode_filp = NULL; 2138 2139 out: 2140 return ret; 2141 } 2142 2143 /* 2144 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2145 */ 2146 static int send_subvol_begin(struct send_ctx *sctx) 2147 { 2148 int ret; 2149 struct btrfs_root *send_root = sctx->send_root; 2150 struct btrfs_root *parent_root = sctx->parent_root; 2151 struct btrfs_path *path; 2152 struct btrfs_key key; 2153 struct btrfs_root_ref *ref; 2154 struct extent_buffer *leaf; 2155 char *name = NULL; 2156 int namelen; 2157 2158 path = alloc_path_for_send(); 2159 if (!path) 2160 return -ENOMEM; 2161 2162 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS); 2163 if (!name) { 2164 btrfs_free_path(path); 2165 return -ENOMEM; 2166 } 2167 2168 key.objectid = send_root->objectid; 2169 key.type = BTRFS_ROOT_BACKREF_KEY; 2170 key.offset = 0; 2171 2172 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2173 &key, path, 1, 0); 2174 if (ret < 0) 2175 goto out; 2176 if (ret) { 2177 ret = -ENOENT; 2178 goto out; 2179 } 2180 2181 leaf = path->nodes[0]; 2182 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2183 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2184 key.objectid != send_root->objectid) { 2185 ret = -ENOENT; 2186 goto out; 2187 } 2188 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2189 namelen = btrfs_root_ref_name_len(leaf, ref); 2190 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2191 btrfs_release_path(path); 2192 2193 if (parent_root) { 2194 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2195 if (ret < 0) 2196 goto out; 2197 } else { 2198 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2199 if (ret < 0) 2200 goto out; 2201 } 2202 2203 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2204 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2205 sctx->send_root->root_item.uuid); 2206 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2207 sctx->send_root->root_item.ctransid); 2208 if (parent_root) { 2209 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2210 sctx->parent_root->root_item.uuid); 2211 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2212 sctx->parent_root->root_item.ctransid); 2213 } 2214 2215 ret = send_cmd(sctx); 2216 2217 tlv_put_failure: 2218 out: 2219 btrfs_free_path(path); 2220 kfree(name); 2221 return ret; 2222 } 2223 2224 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2225 { 2226 int ret = 0; 2227 struct fs_path *p; 2228 2229 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size); 2230 2231 p = fs_path_alloc(sctx); 2232 if (!p) 2233 return -ENOMEM; 2234 2235 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2236 if (ret < 0) 2237 goto out; 2238 2239 ret = get_cur_path(sctx, ino, gen, p); 2240 if (ret < 0) 2241 goto out; 2242 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2243 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2244 2245 ret = send_cmd(sctx); 2246 2247 tlv_put_failure: 2248 out: 2249 fs_path_free(sctx, p); 2250 return ret; 2251 } 2252 2253 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2254 { 2255 int ret = 0; 2256 struct fs_path *p; 2257 2258 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode); 2259 2260 p = fs_path_alloc(sctx); 2261 if (!p) 2262 return -ENOMEM; 2263 2264 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2265 if (ret < 0) 2266 goto out; 2267 2268 ret = get_cur_path(sctx, ino, gen, p); 2269 if (ret < 0) 2270 goto out; 2271 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2272 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2273 2274 ret = send_cmd(sctx); 2275 2276 tlv_put_failure: 2277 out: 2278 fs_path_free(sctx, p); 2279 return ret; 2280 } 2281 2282 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2283 { 2284 int ret = 0; 2285 struct fs_path *p; 2286 2287 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid); 2288 2289 p = fs_path_alloc(sctx); 2290 if (!p) 2291 return -ENOMEM; 2292 2293 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2294 if (ret < 0) 2295 goto out; 2296 2297 ret = get_cur_path(sctx, ino, gen, p); 2298 if (ret < 0) 2299 goto out; 2300 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2301 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2302 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2303 2304 ret = send_cmd(sctx); 2305 2306 tlv_put_failure: 2307 out: 2308 fs_path_free(sctx, p); 2309 return ret; 2310 } 2311 2312 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2313 { 2314 int ret = 0; 2315 struct fs_path *p = NULL; 2316 struct btrfs_inode_item *ii; 2317 struct btrfs_path *path = NULL; 2318 struct extent_buffer *eb; 2319 struct btrfs_key key; 2320 int slot; 2321 2322 verbose_printk("btrfs: send_utimes %llu\n", ino); 2323 2324 p = fs_path_alloc(sctx); 2325 if (!p) 2326 return -ENOMEM; 2327 2328 path = alloc_path_for_send(); 2329 if (!path) { 2330 ret = -ENOMEM; 2331 goto out; 2332 } 2333 2334 key.objectid = ino; 2335 key.type = BTRFS_INODE_ITEM_KEY; 2336 key.offset = 0; 2337 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2338 if (ret < 0) 2339 goto out; 2340 2341 eb = path->nodes[0]; 2342 slot = path->slots[0]; 2343 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2344 2345 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2346 if (ret < 0) 2347 goto out; 2348 2349 ret = get_cur_path(sctx, ino, gen, p); 2350 if (ret < 0) 2351 goto out; 2352 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2353 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, 2354 btrfs_inode_atime(ii)); 2355 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, 2356 btrfs_inode_mtime(ii)); 2357 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, 2358 btrfs_inode_ctime(ii)); 2359 /* TODO Add otime support when the otime patches get into upstream */ 2360 2361 ret = send_cmd(sctx); 2362 2363 tlv_put_failure: 2364 out: 2365 fs_path_free(sctx, p); 2366 btrfs_free_path(path); 2367 return ret; 2368 } 2369 2370 /* 2371 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2372 * a valid path yet because we did not process the refs yet. So, the inode 2373 * is created as orphan. 2374 */ 2375 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2376 { 2377 int ret = 0; 2378 struct fs_path *p; 2379 int cmd; 2380 u64 gen; 2381 u64 mode; 2382 u64 rdev; 2383 2384 verbose_printk("btrfs: send_create_inode %llu\n", ino); 2385 2386 p = fs_path_alloc(sctx); 2387 if (!p) 2388 return -ENOMEM; 2389 2390 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL, 2391 NULL, &rdev); 2392 if (ret < 0) 2393 goto out; 2394 2395 if (S_ISREG(mode)) { 2396 cmd = BTRFS_SEND_C_MKFILE; 2397 } else if (S_ISDIR(mode)) { 2398 cmd = BTRFS_SEND_C_MKDIR; 2399 } else if (S_ISLNK(mode)) { 2400 cmd = BTRFS_SEND_C_SYMLINK; 2401 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2402 cmd = BTRFS_SEND_C_MKNOD; 2403 } else if (S_ISFIFO(mode)) { 2404 cmd = BTRFS_SEND_C_MKFIFO; 2405 } else if (S_ISSOCK(mode)) { 2406 cmd = BTRFS_SEND_C_MKSOCK; 2407 } else { 2408 printk(KERN_WARNING "btrfs: unexpected inode type %o", 2409 (int)(mode & S_IFMT)); 2410 ret = -ENOTSUPP; 2411 goto out; 2412 } 2413 2414 ret = begin_cmd(sctx, cmd); 2415 if (ret < 0) 2416 goto out; 2417 2418 ret = gen_unique_name(sctx, ino, gen, p); 2419 if (ret < 0) 2420 goto out; 2421 2422 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2423 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2424 2425 if (S_ISLNK(mode)) { 2426 fs_path_reset(p); 2427 ret = read_symlink(sctx, sctx->send_root, ino, p); 2428 if (ret < 0) 2429 goto out; 2430 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2431 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2432 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2433 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, rdev); 2434 } 2435 2436 ret = send_cmd(sctx); 2437 if (ret < 0) 2438 goto out; 2439 2440 2441 tlv_put_failure: 2442 out: 2443 fs_path_free(sctx, p); 2444 return ret; 2445 } 2446 2447 /* 2448 * We need some special handling for inodes that get processed before the parent 2449 * directory got created. See process_recorded_refs for details. 2450 * This function does the check if we already created the dir out of order. 2451 */ 2452 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2453 { 2454 int ret = 0; 2455 struct btrfs_path *path = NULL; 2456 struct btrfs_key key; 2457 struct btrfs_key found_key; 2458 struct btrfs_key di_key; 2459 struct extent_buffer *eb; 2460 struct btrfs_dir_item *di; 2461 int slot; 2462 2463 path = alloc_path_for_send(); 2464 if (!path) { 2465 ret = -ENOMEM; 2466 goto out; 2467 } 2468 2469 key.objectid = dir; 2470 key.type = BTRFS_DIR_INDEX_KEY; 2471 key.offset = 0; 2472 while (1) { 2473 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path, 2474 1, 0); 2475 if (ret < 0) 2476 goto out; 2477 if (!ret) { 2478 eb = path->nodes[0]; 2479 slot = path->slots[0]; 2480 btrfs_item_key_to_cpu(eb, &found_key, slot); 2481 } 2482 if (ret || found_key.objectid != key.objectid || 2483 found_key.type != key.type) { 2484 ret = 0; 2485 goto out; 2486 } 2487 2488 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2489 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2490 2491 if (di_key.objectid < sctx->send_progress) { 2492 ret = 1; 2493 goto out; 2494 } 2495 2496 key.offset = found_key.offset + 1; 2497 btrfs_release_path(path); 2498 } 2499 2500 out: 2501 btrfs_free_path(path); 2502 return ret; 2503 } 2504 2505 /* 2506 * Only creates the inode if it is: 2507 * 1. Not a directory 2508 * 2. Or a directory which was not created already due to out of order 2509 * directories. See did_create_dir and process_recorded_refs for details. 2510 */ 2511 static int send_create_inode_if_needed(struct send_ctx *sctx) 2512 { 2513 int ret; 2514 2515 if (S_ISDIR(sctx->cur_inode_mode)) { 2516 ret = did_create_dir(sctx, sctx->cur_ino); 2517 if (ret < 0) 2518 goto out; 2519 if (ret) { 2520 ret = 0; 2521 goto out; 2522 } 2523 } 2524 2525 ret = send_create_inode(sctx, sctx->cur_ino); 2526 if (ret < 0) 2527 goto out; 2528 2529 out: 2530 return ret; 2531 } 2532 2533 struct recorded_ref { 2534 struct list_head list; 2535 char *dir_path; 2536 char *name; 2537 struct fs_path *full_path; 2538 u64 dir; 2539 u64 dir_gen; 2540 int dir_path_len; 2541 int name_len; 2542 }; 2543 2544 /* 2545 * We need to process new refs before deleted refs, but compare_tree gives us 2546 * everything mixed. So we first record all refs and later process them. 2547 * This function is a helper to record one ref. 2548 */ 2549 static int record_ref(struct list_head *head, u64 dir, 2550 u64 dir_gen, struct fs_path *path) 2551 { 2552 struct recorded_ref *ref; 2553 char *tmp; 2554 2555 ref = kmalloc(sizeof(*ref), GFP_NOFS); 2556 if (!ref) 2557 return -ENOMEM; 2558 2559 ref->dir = dir; 2560 ref->dir_gen = dir_gen; 2561 ref->full_path = path; 2562 2563 tmp = strrchr(ref->full_path->start, '/'); 2564 if (!tmp) { 2565 ref->name_len = ref->full_path->end - ref->full_path->start; 2566 ref->name = ref->full_path->start; 2567 ref->dir_path_len = 0; 2568 ref->dir_path = ref->full_path->start; 2569 } else { 2570 tmp++; 2571 ref->name_len = ref->full_path->end - tmp; 2572 ref->name = tmp; 2573 ref->dir_path = ref->full_path->start; 2574 ref->dir_path_len = ref->full_path->end - 2575 ref->full_path->start - 1 - ref->name_len; 2576 } 2577 2578 list_add_tail(&ref->list, head); 2579 return 0; 2580 } 2581 2582 static void __free_recorded_refs(struct send_ctx *sctx, struct list_head *head) 2583 { 2584 struct recorded_ref *cur; 2585 2586 while (!list_empty(head)) { 2587 cur = list_entry(head->next, struct recorded_ref, list); 2588 fs_path_free(sctx, cur->full_path); 2589 list_del(&cur->list); 2590 kfree(cur); 2591 } 2592 } 2593 2594 static void free_recorded_refs(struct send_ctx *sctx) 2595 { 2596 __free_recorded_refs(sctx, &sctx->new_refs); 2597 __free_recorded_refs(sctx, &sctx->deleted_refs); 2598 } 2599 2600 /* 2601 * Renames/moves a file/dir to its orphan name. Used when the first 2602 * ref of an unprocessed inode gets overwritten and for all non empty 2603 * directories. 2604 */ 2605 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 2606 struct fs_path *path) 2607 { 2608 int ret; 2609 struct fs_path *orphan; 2610 2611 orphan = fs_path_alloc(sctx); 2612 if (!orphan) 2613 return -ENOMEM; 2614 2615 ret = gen_unique_name(sctx, ino, gen, orphan); 2616 if (ret < 0) 2617 goto out; 2618 2619 ret = send_rename(sctx, path, orphan); 2620 2621 out: 2622 fs_path_free(sctx, orphan); 2623 return ret; 2624 } 2625 2626 /* 2627 * Returns 1 if a directory can be removed at this point in time. 2628 * We check this by iterating all dir items and checking if the inode behind 2629 * the dir item was already processed. 2630 */ 2631 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress) 2632 { 2633 int ret = 0; 2634 struct btrfs_root *root = sctx->parent_root; 2635 struct btrfs_path *path; 2636 struct btrfs_key key; 2637 struct btrfs_key found_key; 2638 struct btrfs_key loc; 2639 struct btrfs_dir_item *di; 2640 2641 /* 2642 * Don't try to rmdir the top/root subvolume dir. 2643 */ 2644 if (dir == BTRFS_FIRST_FREE_OBJECTID) 2645 return 0; 2646 2647 path = alloc_path_for_send(); 2648 if (!path) 2649 return -ENOMEM; 2650 2651 key.objectid = dir; 2652 key.type = BTRFS_DIR_INDEX_KEY; 2653 key.offset = 0; 2654 2655 while (1) { 2656 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2657 if (ret < 0) 2658 goto out; 2659 if (!ret) { 2660 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2661 path->slots[0]); 2662 } 2663 if (ret || found_key.objectid != key.objectid || 2664 found_key.type != key.type) { 2665 break; 2666 } 2667 2668 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 2669 struct btrfs_dir_item); 2670 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 2671 2672 if (loc.objectid > send_progress) { 2673 ret = 0; 2674 goto out; 2675 } 2676 2677 btrfs_release_path(path); 2678 key.offset = found_key.offset + 1; 2679 } 2680 2681 ret = 1; 2682 2683 out: 2684 btrfs_free_path(path); 2685 return ret; 2686 } 2687 2688 /* 2689 * This does all the move/link/unlink/rmdir magic. 2690 */ 2691 static int process_recorded_refs(struct send_ctx *sctx) 2692 { 2693 int ret = 0; 2694 struct recorded_ref *cur; 2695 struct recorded_ref *cur2; 2696 struct ulist *check_dirs = NULL; 2697 struct ulist_iterator uit; 2698 struct ulist_node *un; 2699 struct fs_path *valid_path = NULL; 2700 u64 ow_inode = 0; 2701 u64 ow_gen; 2702 int did_overwrite = 0; 2703 int is_orphan = 0; 2704 2705 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino); 2706 2707 /* 2708 * This should never happen as the root dir always has the same ref 2709 * which is always '..' 2710 */ 2711 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID); 2712 2713 valid_path = fs_path_alloc(sctx); 2714 if (!valid_path) { 2715 ret = -ENOMEM; 2716 goto out; 2717 } 2718 2719 check_dirs = ulist_alloc(GFP_NOFS); 2720 if (!check_dirs) { 2721 ret = -ENOMEM; 2722 goto out; 2723 } 2724 2725 /* 2726 * First, check if the first ref of the current inode was overwritten 2727 * before. If yes, we know that the current inode was already orphanized 2728 * and thus use the orphan name. If not, we can use get_cur_path to 2729 * get the path of the first ref as it would like while receiving at 2730 * this point in time. 2731 * New inodes are always orphan at the beginning, so force to use the 2732 * orphan name in this case. 2733 * The first ref is stored in valid_path and will be updated if it 2734 * gets moved around. 2735 */ 2736 if (!sctx->cur_inode_new) { 2737 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 2738 sctx->cur_inode_gen); 2739 if (ret < 0) 2740 goto out; 2741 if (ret) 2742 did_overwrite = 1; 2743 } 2744 if (sctx->cur_inode_new || did_overwrite) { 2745 ret = gen_unique_name(sctx, sctx->cur_ino, 2746 sctx->cur_inode_gen, valid_path); 2747 if (ret < 0) 2748 goto out; 2749 is_orphan = 1; 2750 } else { 2751 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2752 valid_path); 2753 if (ret < 0) 2754 goto out; 2755 } 2756 2757 list_for_each_entry(cur, &sctx->new_refs, list) { 2758 /* 2759 * We may have refs where the parent directory does not exist 2760 * yet. This happens if the parent directories inum is higher 2761 * the the current inum. To handle this case, we create the 2762 * parent directory out of order. But we need to check if this 2763 * did already happen before due to other refs in the same dir. 2764 */ 2765 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen); 2766 if (ret < 0) 2767 goto out; 2768 if (ret == inode_state_will_create) { 2769 ret = 0; 2770 /* 2771 * First check if any of the current inodes refs did 2772 * already create the dir. 2773 */ 2774 list_for_each_entry(cur2, &sctx->new_refs, list) { 2775 if (cur == cur2) 2776 break; 2777 if (cur2->dir == cur->dir) { 2778 ret = 1; 2779 break; 2780 } 2781 } 2782 2783 /* 2784 * If that did not happen, check if a previous inode 2785 * did already create the dir. 2786 */ 2787 if (!ret) 2788 ret = did_create_dir(sctx, cur->dir); 2789 if (ret < 0) 2790 goto out; 2791 if (!ret) { 2792 ret = send_create_inode(sctx, cur->dir); 2793 if (ret < 0) 2794 goto out; 2795 } 2796 } 2797 2798 /* 2799 * Check if this new ref would overwrite the first ref of 2800 * another unprocessed inode. If yes, orphanize the 2801 * overwritten inode. If we find an overwritten ref that is 2802 * not the first ref, simply unlink it. 2803 */ 2804 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2805 cur->name, cur->name_len, 2806 &ow_inode, &ow_gen); 2807 if (ret < 0) 2808 goto out; 2809 if (ret) { 2810 ret = is_first_ref(sctx, sctx->parent_root, 2811 ow_inode, cur->dir, cur->name, 2812 cur->name_len); 2813 if (ret < 0) 2814 goto out; 2815 if (ret) { 2816 ret = orphanize_inode(sctx, ow_inode, ow_gen, 2817 cur->full_path); 2818 if (ret < 0) 2819 goto out; 2820 } else { 2821 ret = send_unlink(sctx, cur->full_path); 2822 if (ret < 0) 2823 goto out; 2824 } 2825 } 2826 2827 /* 2828 * link/move the ref to the new place. If we have an orphan 2829 * inode, move it and update valid_path. If not, link or move 2830 * it depending on the inode mode. 2831 */ 2832 if (is_orphan) { 2833 ret = send_rename(sctx, valid_path, cur->full_path); 2834 if (ret < 0) 2835 goto out; 2836 is_orphan = 0; 2837 ret = fs_path_copy(valid_path, cur->full_path); 2838 if (ret < 0) 2839 goto out; 2840 } else { 2841 if (S_ISDIR(sctx->cur_inode_mode)) { 2842 /* 2843 * Dirs can't be linked, so move it. For moved 2844 * dirs, we always have one new and one deleted 2845 * ref. The deleted ref is ignored later. 2846 */ 2847 ret = send_rename(sctx, valid_path, 2848 cur->full_path); 2849 if (ret < 0) 2850 goto out; 2851 ret = fs_path_copy(valid_path, cur->full_path); 2852 if (ret < 0) 2853 goto out; 2854 } else { 2855 ret = send_link(sctx, cur->full_path, 2856 valid_path); 2857 if (ret < 0) 2858 goto out; 2859 } 2860 } 2861 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2862 GFP_NOFS); 2863 if (ret < 0) 2864 goto out; 2865 } 2866 2867 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 2868 /* 2869 * Check if we can already rmdir the directory. If not, 2870 * orphanize it. For every dir item inside that gets deleted 2871 * later, we do this check again and rmdir it then if possible. 2872 * See the use of check_dirs for more details. 2873 */ 2874 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino); 2875 if (ret < 0) 2876 goto out; 2877 if (ret) { 2878 ret = send_rmdir(sctx, valid_path); 2879 if (ret < 0) 2880 goto out; 2881 } else if (!is_orphan) { 2882 ret = orphanize_inode(sctx, sctx->cur_ino, 2883 sctx->cur_inode_gen, valid_path); 2884 if (ret < 0) 2885 goto out; 2886 is_orphan = 1; 2887 } 2888 2889 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2890 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2891 GFP_NOFS); 2892 if (ret < 0) 2893 goto out; 2894 } 2895 } else if (S_ISDIR(sctx->cur_inode_mode) && 2896 !list_empty(&sctx->deleted_refs)) { 2897 /* 2898 * We have a moved dir. Add the old parent to check_dirs 2899 */ 2900 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 2901 list); 2902 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2903 GFP_NOFS); 2904 if (ret < 0) 2905 goto out; 2906 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 2907 /* 2908 * We have a non dir inode. Go through all deleted refs and 2909 * unlink them if they were not already overwritten by other 2910 * inodes. 2911 */ 2912 list_for_each_entry(cur, &sctx->deleted_refs, list) { 2913 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 2914 sctx->cur_ino, sctx->cur_inode_gen, 2915 cur->name, cur->name_len); 2916 if (ret < 0) 2917 goto out; 2918 if (!ret) { 2919 ret = send_unlink(sctx, cur->full_path); 2920 if (ret < 0) 2921 goto out; 2922 } 2923 ret = ulist_add(check_dirs, cur->dir, cur->dir_gen, 2924 GFP_NOFS); 2925 if (ret < 0) 2926 goto out; 2927 } 2928 2929 /* 2930 * If the inode is still orphan, unlink the orphan. This may 2931 * happen when a previous inode did overwrite the first ref 2932 * of this inode and no new refs were added for the current 2933 * inode. Unlinking does not mean that the inode is deleted in 2934 * all cases. There may still be links to this inode in other 2935 * places. 2936 */ 2937 if (is_orphan) { 2938 ret = send_unlink(sctx, valid_path); 2939 if (ret < 0) 2940 goto out; 2941 } 2942 } 2943 2944 /* 2945 * We did collect all parent dirs where cur_inode was once located. We 2946 * now go through all these dirs and check if they are pending for 2947 * deletion and if it's finally possible to perform the rmdir now. 2948 * We also update the inode stats of the parent dirs here. 2949 */ 2950 ULIST_ITER_INIT(&uit); 2951 while ((un = ulist_next(check_dirs, &uit))) { 2952 /* 2953 * In case we had refs into dirs that were not processed yet, 2954 * we don't need to do the utime and rmdir logic for these dirs. 2955 * The dir will be processed later. 2956 */ 2957 if (un->val > sctx->cur_ino) 2958 continue; 2959 2960 ret = get_cur_inode_state(sctx, un->val, un->aux); 2961 if (ret < 0) 2962 goto out; 2963 2964 if (ret == inode_state_did_create || 2965 ret == inode_state_no_change) { 2966 /* TODO delayed utimes */ 2967 ret = send_utimes(sctx, un->val, un->aux); 2968 if (ret < 0) 2969 goto out; 2970 } else if (ret == inode_state_did_delete) { 2971 ret = can_rmdir(sctx, un->val, sctx->cur_ino); 2972 if (ret < 0) 2973 goto out; 2974 if (ret) { 2975 ret = get_cur_path(sctx, un->val, un->aux, 2976 valid_path); 2977 if (ret < 0) 2978 goto out; 2979 ret = send_rmdir(sctx, valid_path); 2980 if (ret < 0) 2981 goto out; 2982 } 2983 } 2984 } 2985 2986 ret = 0; 2987 2988 out: 2989 free_recorded_refs(sctx); 2990 ulist_free(check_dirs); 2991 fs_path_free(sctx, valid_path); 2992 return ret; 2993 } 2994 2995 static int __record_new_ref(int num, u64 dir, int index, 2996 struct fs_path *name, 2997 void *ctx) 2998 { 2999 int ret = 0; 3000 struct send_ctx *sctx = ctx; 3001 struct fs_path *p; 3002 u64 gen; 3003 3004 p = fs_path_alloc(sctx); 3005 if (!p) 3006 return -ENOMEM; 3007 3008 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL, 3009 NULL, NULL); 3010 if (ret < 0) 3011 goto out; 3012 3013 ret = get_cur_path(sctx, dir, gen, p); 3014 if (ret < 0) 3015 goto out; 3016 ret = fs_path_add_path(p, name); 3017 if (ret < 0) 3018 goto out; 3019 3020 ret = record_ref(&sctx->new_refs, dir, gen, p); 3021 3022 out: 3023 if (ret) 3024 fs_path_free(sctx, p); 3025 return ret; 3026 } 3027 3028 static int __record_deleted_ref(int num, u64 dir, int index, 3029 struct fs_path *name, 3030 void *ctx) 3031 { 3032 int ret = 0; 3033 struct send_ctx *sctx = ctx; 3034 struct fs_path *p; 3035 u64 gen; 3036 3037 p = fs_path_alloc(sctx); 3038 if (!p) 3039 return -ENOMEM; 3040 3041 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL, 3042 NULL, NULL); 3043 if (ret < 0) 3044 goto out; 3045 3046 ret = get_cur_path(sctx, dir, gen, p); 3047 if (ret < 0) 3048 goto out; 3049 ret = fs_path_add_path(p, name); 3050 if (ret < 0) 3051 goto out; 3052 3053 ret = record_ref(&sctx->deleted_refs, dir, gen, p); 3054 3055 out: 3056 if (ret) 3057 fs_path_free(sctx, p); 3058 return ret; 3059 } 3060 3061 static int record_new_ref(struct send_ctx *sctx) 3062 { 3063 int ret; 3064 3065 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path, 3066 sctx->cmp_key, 0, __record_new_ref, sctx); 3067 if (ret < 0) 3068 goto out; 3069 ret = 0; 3070 3071 out: 3072 return ret; 3073 } 3074 3075 static int record_deleted_ref(struct send_ctx *sctx) 3076 { 3077 int ret; 3078 3079 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path, 3080 sctx->cmp_key, 0, __record_deleted_ref, sctx); 3081 if (ret < 0) 3082 goto out; 3083 ret = 0; 3084 3085 out: 3086 return ret; 3087 } 3088 3089 struct find_ref_ctx { 3090 u64 dir; 3091 struct fs_path *name; 3092 int found_idx; 3093 }; 3094 3095 static int __find_iref(int num, u64 dir, int index, 3096 struct fs_path *name, 3097 void *ctx_) 3098 { 3099 struct find_ref_ctx *ctx = ctx_; 3100 3101 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) && 3102 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) { 3103 ctx->found_idx = num; 3104 return 1; 3105 } 3106 return 0; 3107 } 3108 3109 static int find_iref(struct send_ctx *sctx, 3110 struct btrfs_root *root, 3111 struct btrfs_path *path, 3112 struct btrfs_key *key, 3113 u64 dir, struct fs_path *name) 3114 { 3115 int ret; 3116 struct find_ref_ctx ctx; 3117 3118 ctx.dir = dir; 3119 ctx.name = name; 3120 ctx.found_idx = -1; 3121 3122 ret = iterate_inode_ref(sctx, root, path, key, 0, __find_iref, &ctx); 3123 if (ret < 0) 3124 return ret; 3125 3126 if (ctx.found_idx == -1) 3127 return -ENOENT; 3128 3129 return ctx.found_idx; 3130 } 3131 3132 static int __record_changed_new_ref(int num, u64 dir, int index, 3133 struct fs_path *name, 3134 void *ctx) 3135 { 3136 int ret; 3137 struct send_ctx *sctx = ctx; 3138 3139 ret = find_iref(sctx, sctx->parent_root, sctx->right_path, 3140 sctx->cmp_key, dir, name); 3141 if (ret == -ENOENT) 3142 ret = __record_new_ref(num, dir, index, name, sctx); 3143 else if (ret > 0) 3144 ret = 0; 3145 3146 return ret; 3147 } 3148 3149 static int __record_changed_deleted_ref(int num, u64 dir, int index, 3150 struct fs_path *name, 3151 void *ctx) 3152 { 3153 int ret; 3154 struct send_ctx *sctx = ctx; 3155 3156 ret = find_iref(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key, 3157 dir, name); 3158 if (ret == -ENOENT) 3159 ret = __record_deleted_ref(num, dir, index, name, sctx); 3160 else if (ret > 0) 3161 ret = 0; 3162 3163 return ret; 3164 } 3165 3166 static int record_changed_ref(struct send_ctx *sctx) 3167 { 3168 int ret = 0; 3169 3170 ret = iterate_inode_ref(sctx, sctx->send_root, sctx->left_path, 3171 sctx->cmp_key, 0, __record_changed_new_ref, sctx); 3172 if (ret < 0) 3173 goto out; 3174 ret = iterate_inode_ref(sctx, sctx->parent_root, sctx->right_path, 3175 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx); 3176 if (ret < 0) 3177 goto out; 3178 ret = 0; 3179 3180 out: 3181 return ret; 3182 } 3183 3184 /* 3185 * Record and process all refs at once. Needed when an inode changes the 3186 * generation number, which means that it was deleted and recreated. 3187 */ 3188 static int process_all_refs(struct send_ctx *sctx, 3189 enum btrfs_compare_tree_result cmd) 3190 { 3191 int ret; 3192 struct btrfs_root *root; 3193 struct btrfs_path *path; 3194 struct btrfs_key key; 3195 struct btrfs_key found_key; 3196 struct extent_buffer *eb; 3197 int slot; 3198 iterate_inode_ref_t cb; 3199 3200 path = alloc_path_for_send(); 3201 if (!path) 3202 return -ENOMEM; 3203 3204 if (cmd == BTRFS_COMPARE_TREE_NEW) { 3205 root = sctx->send_root; 3206 cb = __record_new_ref; 3207 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 3208 root = sctx->parent_root; 3209 cb = __record_deleted_ref; 3210 } else { 3211 BUG(); 3212 } 3213 3214 key.objectid = sctx->cmp_key->objectid; 3215 key.type = BTRFS_INODE_REF_KEY; 3216 key.offset = 0; 3217 while (1) { 3218 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3219 if (ret < 0) 3220 goto out; 3221 if (ret) 3222 break; 3223 3224 eb = path->nodes[0]; 3225 slot = path->slots[0]; 3226 btrfs_item_key_to_cpu(eb, &found_key, slot); 3227 3228 if (found_key.objectid != key.objectid || 3229 found_key.type != key.type) 3230 break; 3231 3232 ret = iterate_inode_ref(sctx, root, path, &found_key, 0, cb, 3233 sctx); 3234 btrfs_release_path(path); 3235 if (ret < 0) 3236 goto out; 3237 3238 key.offset = found_key.offset + 1; 3239 } 3240 btrfs_release_path(path); 3241 3242 ret = process_recorded_refs(sctx); 3243 3244 out: 3245 btrfs_free_path(path); 3246 return ret; 3247 } 3248 3249 static int send_set_xattr(struct send_ctx *sctx, 3250 struct fs_path *path, 3251 const char *name, int name_len, 3252 const char *data, int data_len) 3253 { 3254 int ret = 0; 3255 3256 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 3257 if (ret < 0) 3258 goto out; 3259 3260 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3261 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3262 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 3263 3264 ret = send_cmd(sctx); 3265 3266 tlv_put_failure: 3267 out: 3268 return ret; 3269 } 3270 3271 static int send_remove_xattr(struct send_ctx *sctx, 3272 struct fs_path *path, 3273 const char *name, int name_len) 3274 { 3275 int ret = 0; 3276 3277 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 3278 if (ret < 0) 3279 goto out; 3280 3281 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 3282 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 3283 3284 ret = send_cmd(sctx); 3285 3286 tlv_put_failure: 3287 out: 3288 return ret; 3289 } 3290 3291 static int __process_new_xattr(int num, struct btrfs_key *di_key, 3292 const char *name, int name_len, 3293 const char *data, int data_len, 3294 u8 type, void *ctx) 3295 { 3296 int ret; 3297 struct send_ctx *sctx = ctx; 3298 struct fs_path *p; 3299 posix_acl_xattr_header dummy_acl; 3300 3301 p = fs_path_alloc(sctx); 3302 if (!p) 3303 return -ENOMEM; 3304 3305 /* 3306 * This hack is needed because empty acl's are stored as zero byte 3307 * data in xattrs. Problem with that is, that receiving these zero byte 3308 * acl's will fail later. To fix this, we send a dummy acl list that 3309 * only contains the version number and no entries. 3310 */ 3311 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 3312 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 3313 if (data_len == 0) { 3314 dummy_acl.a_version = 3315 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 3316 data = (char *)&dummy_acl; 3317 data_len = sizeof(dummy_acl); 3318 } 3319 } 3320 3321 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3322 if (ret < 0) 3323 goto out; 3324 3325 ret = send_set_xattr(sctx, p, name, name_len, data, data_len); 3326 3327 out: 3328 fs_path_free(sctx, p); 3329 return ret; 3330 } 3331 3332 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 3333 const char *name, int name_len, 3334 const char *data, int data_len, 3335 u8 type, void *ctx) 3336 { 3337 int ret; 3338 struct send_ctx *sctx = ctx; 3339 struct fs_path *p; 3340 3341 p = fs_path_alloc(sctx); 3342 if (!p) 3343 return -ENOMEM; 3344 3345 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3346 if (ret < 0) 3347 goto out; 3348 3349 ret = send_remove_xattr(sctx, p, name, name_len); 3350 3351 out: 3352 fs_path_free(sctx, p); 3353 return ret; 3354 } 3355 3356 static int process_new_xattr(struct send_ctx *sctx) 3357 { 3358 int ret = 0; 3359 3360 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path, 3361 sctx->cmp_key, __process_new_xattr, sctx); 3362 3363 return ret; 3364 } 3365 3366 static int process_deleted_xattr(struct send_ctx *sctx) 3367 { 3368 int ret; 3369 3370 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path, 3371 sctx->cmp_key, __process_deleted_xattr, sctx); 3372 3373 return ret; 3374 } 3375 3376 struct find_xattr_ctx { 3377 const char *name; 3378 int name_len; 3379 int found_idx; 3380 char *found_data; 3381 int found_data_len; 3382 }; 3383 3384 static int __find_xattr(int num, struct btrfs_key *di_key, 3385 const char *name, int name_len, 3386 const char *data, int data_len, 3387 u8 type, void *vctx) 3388 { 3389 struct find_xattr_ctx *ctx = vctx; 3390 3391 if (name_len == ctx->name_len && 3392 strncmp(name, ctx->name, name_len) == 0) { 3393 ctx->found_idx = num; 3394 ctx->found_data_len = data_len; 3395 ctx->found_data = kmalloc(data_len, GFP_NOFS); 3396 if (!ctx->found_data) 3397 return -ENOMEM; 3398 memcpy(ctx->found_data, data, data_len); 3399 return 1; 3400 } 3401 return 0; 3402 } 3403 3404 static int find_xattr(struct send_ctx *sctx, 3405 struct btrfs_root *root, 3406 struct btrfs_path *path, 3407 struct btrfs_key *key, 3408 const char *name, int name_len, 3409 char **data, int *data_len) 3410 { 3411 int ret; 3412 struct find_xattr_ctx ctx; 3413 3414 ctx.name = name; 3415 ctx.name_len = name_len; 3416 ctx.found_idx = -1; 3417 ctx.found_data = NULL; 3418 ctx.found_data_len = 0; 3419 3420 ret = iterate_dir_item(sctx, root, path, key, __find_xattr, &ctx); 3421 if (ret < 0) 3422 return ret; 3423 3424 if (ctx.found_idx == -1) 3425 return -ENOENT; 3426 if (data) { 3427 *data = ctx.found_data; 3428 *data_len = ctx.found_data_len; 3429 } else { 3430 kfree(ctx.found_data); 3431 } 3432 return ctx.found_idx; 3433 } 3434 3435 3436 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 3437 const char *name, int name_len, 3438 const char *data, int data_len, 3439 u8 type, void *ctx) 3440 { 3441 int ret; 3442 struct send_ctx *sctx = ctx; 3443 char *found_data = NULL; 3444 int found_data_len = 0; 3445 struct fs_path *p = NULL; 3446 3447 ret = find_xattr(sctx, sctx->parent_root, sctx->right_path, 3448 sctx->cmp_key, name, name_len, &found_data, 3449 &found_data_len); 3450 if (ret == -ENOENT) { 3451 ret = __process_new_xattr(num, di_key, name, name_len, data, 3452 data_len, type, ctx); 3453 } else if (ret >= 0) { 3454 if (data_len != found_data_len || 3455 memcmp(data, found_data, data_len)) { 3456 ret = __process_new_xattr(num, di_key, name, name_len, 3457 data, data_len, type, ctx); 3458 } else { 3459 ret = 0; 3460 } 3461 } 3462 3463 kfree(found_data); 3464 fs_path_free(sctx, p); 3465 return ret; 3466 } 3467 3468 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 3469 const char *name, int name_len, 3470 const char *data, int data_len, 3471 u8 type, void *ctx) 3472 { 3473 int ret; 3474 struct send_ctx *sctx = ctx; 3475 3476 ret = find_xattr(sctx, sctx->send_root, sctx->left_path, sctx->cmp_key, 3477 name, name_len, NULL, NULL); 3478 if (ret == -ENOENT) 3479 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 3480 data_len, type, ctx); 3481 else if (ret >= 0) 3482 ret = 0; 3483 3484 return ret; 3485 } 3486 3487 static int process_changed_xattr(struct send_ctx *sctx) 3488 { 3489 int ret = 0; 3490 3491 ret = iterate_dir_item(sctx, sctx->send_root, sctx->left_path, 3492 sctx->cmp_key, __process_changed_new_xattr, sctx); 3493 if (ret < 0) 3494 goto out; 3495 ret = iterate_dir_item(sctx, sctx->parent_root, sctx->right_path, 3496 sctx->cmp_key, __process_changed_deleted_xattr, sctx); 3497 3498 out: 3499 return ret; 3500 } 3501 3502 static int process_all_new_xattrs(struct send_ctx *sctx) 3503 { 3504 int ret; 3505 struct btrfs_root *root; 3506 struct btrfs_path *path; 3507 struct btrfs_key key; 3508 struct btrfs_key found_key; 3509 struct extent_buffer *eb; 3510 int slot; 3511 3512 path = alloc_path_for_send(); 3513 if (!path) 3514 return -ENOMEM; 3515 3516 root = sctx->send_root; 3517 3518 key.objectid = sctx->cmp_key->objectid; 3519 key.type = BTRFS_XATTR_ITEM_KEY; 3520 key.offset = 0; 3521 while (1) { 3522 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3523 if (ret < 0) 3524 goto out; 3525 if (ret) { 3526 ret = 0; 3527 goto out; 3528 } 3529 3530 eb = path->nodes[0]; 3531 slot = path->slots[0]; 3532 btrfs_item_key_to_cpu(eb, &found_key, slot); 3533 3534 if (found_key.objectid != key.objectid || 3535 found_key.type != key.type) { 3536 ret = 0; 3537 goto out; 3538 } 3539 3540 ret = iterate_dir_item(sctx, root, path, &found_key, 3541 __process_new_xattr, sctx); 3542 if (ret < 0) 3543 goto out; 3544 3545 btrfs_release_path(path); 3546 key.offset = found_key.offset + 1; 3547 } 3548 3549 out: 3550 btrfs_free_path(path); 3551 return ret; 3552 } 3553 3554 /* 3555 * Read some bytes from the current inode/file and send a write command to 3556 * user space. 3557 */ 3558 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 3559 { 3560 int ret = 0; 3561 struct fs_path *p; 3562 loff_t pos = offset; 3563 int num_read = 0; 3564 mm_segment_t old_fs; 3565 3566 p = fs_path_alloc(sctx); 3567 if (!p) 3568 return -ENOMEM; 3569 3570 /* 3571 * vfs normally only accepts user space buffers for security reasons. 3572 * we only read from the file and also only provide the read_buf buffer 3573 * to vfs. As this buffer does not come from a user space call, it's 3574 * ok to temporary allow kernel space buffers. 3575 */ 3576 old_fs = get_fs(); 3577 set_fs(KERNEL_DS); 3578 3579 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len); 3580 3581 ret = open_cur_inode_file(sctx); 3582 if (ret < 0) 3583 goto out; 3584 3585 ret = vfs_read(sctx->cur_inode_filp, sctx->read_buf, len, &pos); 3586 if (ret < 0) 3587 goto out; 3588 num_read = ret; 3589 if (!num_read) 3590 goto out; 3591 3592 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 3593 if (ret < 0) 3594 goto out; 3595 3596 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3597 if (ret < 0) 3598 goto out; 3599 3600 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3601 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3602 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read); 3603 3604 ret = send_cmd(sctx); 3605 3606 tlv_put_failure: 3607 out: 3608 fs_path_free(sctx, p); 3609 set_fs(old_fs); 3610 if (ret < 0) 3611 return ret; 3612 return num_read; 3613 } 3614 3615 /* 3616 * Send a clone command to user space. 3617 */ 3618 static int send_clone(struct send_ctx *sctx, 3619 u64 offset, u32 len, 3620 struct clone_root *clone_root) 3621 { 3622 int ret = 0; 3623 struct fs_path *p; 3624 u64 gen; 3625 3626 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, " 3627 "clone_inode=%llu, clone_offset=%llu\n", offset, len, 3628 clone_root->root->objectid, clone_root->ino, 3629 clone_root->offset); 3630 3631 p = fs_path_alloc(sctx); 3632 if (!p) 3633 return -ENOMEM; 3634 3635 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 3636 if (ret < 0) 3637 goto out; 3638 3639 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p); 3640 if (ret < 0) 3641 goto out; 3642 3643 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 3644 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 3645 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 3646 3647 if (clone_root->root == sctx->send_root) { 3648 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL, 3649 &gen, NULL, NULL, NULL, NULL); 3650 if (ret < 0) 3651 goto out; 3652 ret = get_cur_path(sctx, clone_root->ino, gen, p); 3653 } else { 3654 ret = get_inode_path(sctx, clone_root->root, 3655 clone_root->ino, p); 3656 } 3657 if (ret < 0) 3658 goto out; 3659 3660 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 3661 clone_root->root->root_item.uuid); 3662 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 3663 clone_root->root->root_item.ctransid); 3664 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 3665 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 3666 clone_root->offset); 3667 3668 ret = send_cmd(sctx); 3669 3670 tlv_put_failure: 3671 out: 3672 fs_path_free(sctx, p); 3673 return ret; 3674 } 3675 3676 static int send_write_or_clone(struct send_ctx *sctx, 3677 struct btrfs_path *path, 3678 struct btrfs_key *key, 3679 struct clone_root *clone_root) 3680 { 3681 int ret = 0; 3682 struct btrfs_file_extent_item *ei; 3683 u64 offset = key->offset; 3684 u64 pos = 0; 3685 u64 len; 3686 u32 l; 3687 u8 type; 3688 3689 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3690 struct btrfs_file_extent_item); 3691 type = btrfs_file_extent_type(path->nodes[0], ei); 3692 if (type == BTRFS_FILE_EXTENT_INLINE) { 3693 len = btrfs_file_extent_inline_len(path->nodes[0], ei); 3694 /* 3695 * it is possible the inline item won't cover the whole page, 3696 * but there may be items after this page. Make 3697 * sure to send the whole thing 3698 */ 3699 len = PAGE_CACHE_ALIGN(len); 3700 } else { 3701 len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3702 } 3703 3704 if (offset + len > sctx->cur_inode_size) 3705 len = sctx->cur_inode_size - offset; 3706 if (len == 0) { 3707 ret = 0; 3708 goto out; 3709 } 3710 3711 if (!clone_root) { 3712 while (pos < len) { 3713 l = len - pos; 3714 if (l > BTRFS_SEND_READ_SIZE) 3715 l = BTRFS_SEND_READ_SIZE; 3716 ret = send_write(sctx, pos + offset, l); 3717 if (ret < 0) 3718 goto out; 3719 if (!ret) 3720 break; 3721 pos += ret; 3722 } 3723 ret = 0; 3724 } else { 3725 ret = send_clone(sctx, offset, len, clone_root); 3726 } 3727 3728 out: 3729 return ret; 3730 } 3731 3732 static int is_extent_unchanged(struct send_ctx *sctx, 3733 struct btrfs_path *left_path, 3734 struct btrfs_key *ekey) 3735 { 3736 int ret = 0; 3737 struct btrfs_key key; 3738 struct btrfs_path *path = NULL; 3739 struct extent_buffer *eb; 3740 int slot; 3741 struct btrfs_key found_key; 3742 struct btrfs_file_extent_item *ei; 3743 u64 left_disknr; 3744 u64 right_disknr; 3745 u64 left_offset; 3746 u64 right_offset; 3747 u64 left_offset_fixed; 3748 u64 left_len; 3749 u64 right_len; 3750 u64 left_gen; 3751 u64 right_gen; 3752 u8 left_type; 3753 u8 right_type; 3754 3755 path = alloc_path_for_send(); 3756 if (!path) 3757 return -ENOMEM; 3758 3759 eb = left_path->nodes[0]; 3760 slot = left_path->slots[0]; 3761 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3762 left_type = btrfs_file_extent_type(eb, ei); 3763 3764 if (left_type != BTRFS_FILE_EXTENT_REG) { 3765 ret = 0; 3766 goto out; 3767 } 3768 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3769 left_len = btrfs_file_extent_num_bytes(eb, ei); 3770 left_offset = btrfs_file_extent_offset(eb, ei); 3771 left_gen = btrfs_file_extent_generation(eb, ei); 3772 3773 /* 3774 * Following comments will refer to these graphics. L is the left 3775 * extents which we are checking at the moment. 1-8 are the right 3776 * extents that we iterate. 3777 * 3778 * |-----L-----| 3779 * |-1-|-2a-|-3-|-4-|-5-|-6-| 3780 * 3781 * |-----L-----| 3782 * |--1--|-2b-|...(same as above) 3783 * 3784 * Alternative situation. Happens on files where extents got split. 3785 * |-----L-----| 3786 * |-----------7-----------|-6-| 3787 * 3788 * Alternative situation. Happens on files which got larger. 3789 * |-----L-----| 3790 * |-8-| 3791 * Nothing follows after 8. 3792 */ 3793 3794 key.objectid = ekey->objectid; 3795 key.type = BTRFS_EXTENT_DATA_KEY; 3796 key.offset = ekey->offset; 3797 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 3798 if (ret < 0) 3799 goto out; 3800 if (ret) { 3801 ret = 0; 3802 goto out; 3803 } 3804 3805 /* 3806 * Handle special case where the right side has no extents at all. 3807 */ 3808 eb = path->nodes[0]; 3809 slot = path->slots[0]; 3810 btrfs_item_key_to_cpu(eb, &found_key, slot); 3811 if (found_key.objectid != key.objectid || 3812 found_key.type != key.type) { 3813 ret = 0; 3814 goto out; 3815 } 3816 3817 /* 3818 * We're now on 2a, 2b or 7. 3819 */ 3820 key = found_key; 3821 while (key.offset < ekey->offset + left_len) { 3822 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 3823 right_type = btrfs_file_extent_type(eb, ei); 3824 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 3825 right_len = btrfs_file_extent_num_bytes(eb, ei); 3826 right_offset = btrfs_file_extent_offset(eb, ei); 3827 right_gen = btrfs_file_extent_generation(eb, ei); 3828 3829 if (right_type != BTRFS_FILE_EXTENT_REG) { 3830 ret = 0; 3831 goto out; 3832 } 3833 3834 /* 3835 * Are we at extent 8? If yes, we know the extent is changed. 3836 * This may only happen on the first iteration. 3837 */ 3838 if (found_key.offset + right_len <= ekey->offset) { 3839 ret = 0; 3840 goto out; 3841 } 3842 3843 left_offset_fixed = left_offset; 3844 if (key.offset < ekey->offset) { 3845 /* Fix the right offset for 2a and 7. */ 3846 right_offset += ekey->offset - key.offset; 3847 } else { 3848 /* Fix the left offset for all behind 2a and 2b */ 3849 left_offset_fixed += key.offset - ekey->offset; 3850 } 3851 3852 /* 3853 * Check if we have the same extent. 3854 */ 3855 if (left_disknr != right_disknr || 3856 left_offset_fixed != right_offset || 3857 left_gen != right_gen) { 3858 ret = 0; 3859 goto out; 3860 } 3861 3862 /* 3863 * Go to the next extent. 3864 */ 3865 ret = btrfs_next_item(sctx->parent_root, path); 3866 if (ret < 0) 3867 goto out; 3868 if (!ret) { 3869 eb = path->nodes[0]; 3870 slot = path->slots[0]; 3871 btrfs_item_key_to_cpu(eb, &found_key, slot); 3872 } 3873 if (ret || found_key.objectid != key.objectid || 3874 found_key.type != key.type) { 3875 key.offset += right_len; 3876 break; 3877 } else { 3878 if (found_key.offset != key.offset + right_len) { 3879 /* Should really not happen */ 3880 ret = -EIO; 3881 goto out; 3882 } 3883 } 3884 key = found_key; 3885 } 3886 3887 /* 3888 * We're now behind the left extent (treat as unchanged) or at the end 3889 * of the right side (treat as changed). 3890 */ 3891 if (key.offset >= ekey->offset + left_len) 3892 ret = 1; 3893 else 3894 ret = 0; 3895 3896 3897 out: 3898 btrfs_free_path(path); 3899 return ret; 3900 } 3901 3902 static int process_extent(struct send_ctx *sctx, 3903 struct btrfs_path *path, 3904 struct btrfs_key *key) 3905 { 3906 int ret = 0; 3907 struct clone_root *found_clone = NULL; 3908 3909 if (S_ISLNK(sctx->cur_inode_mode)) 3910 return 0; 3911 3912 if (sctx->parent_root && !sctx->cur_inode_new) { 3913 ret = is_extent_unchanged(sctx, path, key); 3914 if (ret < 0) 3915 goto out; 3916 if (ret) { 3917 ret = 0; 3918 goto out; 3919 } 3920 } 3921 3922 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 3923 sctx->cur_inode_size, &found_clone); 3924 if (ret != -ENOENT && ret < 0) 3925 goto out; 3926 3927 ret = send_write_or_clone(sctx, path, key, found_clone); 3928 3929 out: 3930 return ret; 3931 } 3932 3933 static int process_all_extents(struct send_ctx *sctx) 3934 { 3935 int ret; 3936 struct btrfs_root *root; 3937 struct btrfs_path *path; 3938 struct btrfs_key key; 3939 struct btrfs_key found_key; 3940 struct extent_buffer *eb; 3941 int slot; 3942 3943 root = sctx->send_root; 3944 path = alloc_path_for_send(); 3945 if (!path) 3946 return -ENOMEM; 3947 3948 key.objectid = sctx->cmp_key->objectid; 3949 key.type = BTRFS_EXTENT_DATA_KEY; 3950 key.offset = 0; 3951 while (1) { 3952 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 3953 if (ret < 0) 3954 goto out; 3955 if (ret) { 3956 ret = 0; 3957 goto out; 3958 } 3959 3960 eb = path->nodes[0]; 3961 slot = path->slots[0]; 3962 btrfs_item_key_to_cpu(eb, &found_key, slot); 3963 3964 if (found_key.objectid != key.objectid || 3965 found_key.type != key.type) { 3966 ret = 0; 3967 goto out; 3968 } 3969 3970 ret = process_extent(sctx, path, &found_key); 3971 if (ret < 0) 3972 goto out; 3973 3974 btrfs_release_path(path); 3975 key.offset = found_key.offset + 1; 3976 } 3977 3978 out: 3979 btrfs_free_path(path); 3980 return ret; 3981 } 3982 3983 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end) 3984 { 3985 int ret = 0; 3986 3987 if (sctx->cur_ino == 0) 3988 goto out; 3989 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 3990 sctx->cmp_key->type <= BTRFS_INODE_REF_KEY) 3991 goto out; 3992 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 3993 goto out; 3994 3995 ret = process_recorded_refs(sctx); 3996 if (ret < 0) 3997 goto out; 3998 3999 /* 4000 * We have processed the refs and thus need to advance send_progress. 4001 * Now, calls to get_cur_xxx will take the updated refs of the current 4002 * inode into account. 4003 */ 4004 sctx->send_progress = sctx->cur_ino + 1; 4005 4006 out: 4007 return ret; 4008 } 4009 4010 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 4011 { 4012 int ret = 0; 4013 u64 left_mode; 4014 u64 left_uid; 4015 u64 left_gid; 4016 u64 right_mode; 4017 u64 right_uid; 4018 u64 right_gid; 4019 int need_chmod = 0; 4020 int need_chown = 0; 4021 4022 ret = process_recorded_refs_if_needed(sctx, at_end); 4023 if (ret < 0) 4024 goto out; 4025 4026 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 4027 goto out; 4028 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 4029 goto out; 4030 4031 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL, 4032 &left_mode, &left_uid, &left_gid, NULL); 4033 if (ret < 0) 4034 goto out; 4035 4036 if (!S_ISLNK(sctx->cur_inode_mode)) { 4037 if (!sctx->parent_root || sctx->cur_inode_new) { 4038 need_chmod = 1; 4039 need_chown = 1; 4040 } else { 4041 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, 4042 NULL, NULL, &right_mode, &right_uid, 4043 &right_gid, NULL); 4044 if (ret < 0) 4045 goto out; 4046 4047 if (left_uid != right_uid || left_gid != right_gid) 4048 need_chown = 1; 4049 if (left_mode != right_mode) 4050 need_chmod = 1; 4051 } 4052 } 4053 4054 if (S_ISREG(sctx->cur_inode_mode)) { 4055 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4056 sctx->cur_inode_size); 4057 if (ret < 0) 4058 goto out; 4059 } 4060 4061 if (need_chown) { 4062 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4063 left_uid, left_gid); 4064 if (ret < 0) 4065 goto out; 4066 } 4067 if (need_chmod) { 4068 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4069 left_mode); 4070 if (ret < 0) 4071 goto out; 4072 } 4073 4074 /* 4075 * Need to send that every time, no matter if it actually changed 4076 * between the two trees as we have done changes to the inode before. 4077 */ 4078 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4079 if (ret < 0) 4080 goto out; 4081 4082 out: 4083 return ret; 4084 } 4085 4086 static int changed_inode(struct send_ctx *sctx, 4087 enum btrfs_compare_tree_result result) 4088 { 4089 int ret = 0; 4090 struct btrfs_key *key = sctx->cmp_key; 4091 struct btrfs_inode_item *left_ii = NULL; 4092 struct btrfs_inode_item *right_ii = NULL; 4093 u64 left_gen = 0; 4094 u64 right_gen = 0; 4095 4096 ret = close_cur_inode_file(sctx); 4097 if (ret < 0) 4098 goto out; 4099 4100 sctx->cur_ino = key->objectid; 4101 sctx->cur_inode_new_gen = 0; 4102 4103 /* 4104 * Set send_progress to current inode. This will tell all get_cur_xxx 4105 * functions that the current inode's refs are not updated yet. Later, 4106 * when process_recorded_refs is finished, it is set to cur_ino + 1. 4107 */ 4108 sctx->send_progress = sctx->cur_ino; 4109 4110 if (result == BTRFS_COMPARE_TREE_NEW || 4111 result == BTRFS_COMPARE_TREE_CHANGED) { 4112 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 4113 sctx->left_path->slots[0], 4114 struct btrfs_inode_item); 4115 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 4116 left_ii); 4117 } else { 4118 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4119 sctx->right_path->slots[0], 4120 struct btrfs_inode_item); 4121 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4122 right_ii); 4123 } 4124 if (result == BTRFS_COMPARE_TREE_CHANGED) { 4125 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 4126 sctx->right_path->slots[0], 4127 struct btrfs_inode_item); 4128 4129 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 4130 right_ii); 4131 4132 /* 4133 * The cur_ino = root dir case is special here. We can't treat 4134 * the inode as deleted+reused because it would generate a 4135 * stream that tries to delete/mkdir the root dir. 4136 */ 4137 if (left_gen != right_gen && 4138 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4139 sctx->cur_inode_new_gen = 1; 4140 } 4141 4142 if (result == BTRFS_COMPARE_TREE_NEW) { 4143 sctx->cur_inode_gen = left_gen; 4144 sctx->cur_inode_new = 1; 4145 sctx->cur_inode_deleted = 0; 4146 sctx->cur_inode_size = btrfs_inode_size( 4147 sctx->left_path->nodes[0], left_ii); 4148 sctx->cur_inode_mode = btrfs_inode_mode( 4149 sctx->left_path->nodes[0], left_ii); 4150 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 4151 ret = send_create_inode_if_needed(sctx); 4152 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 4153 sctx->cur_inode_gen = right_gen; 4154 sctx->cur_inode_new = 0; 4155 sctx->cur_inode_deleted = 1; 4156 sctx->cur_inode_size = btrfs_inode_size( 4157 sctx->right_path->nodes[0], right_ii); 4158 sctx->cur_inode_mode = btrfs_inode_mode( 4159 sctx->right_path->nodes[0], right_ii); 4160 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 4161 /* 4162 * We need to do some special handling in case the inode was 4163 * reported as changed with a changed generation number. This 4164 * means that the original inode was deleted and new inode 4165 * reused the same inum. So we have to treat the old inode as 4166 * deleted and the new one as new. 4167 */ 4168 if (sctx->cur_inode_new_gen) { 4169 /* 4170 * First, process the inode as if it was deleted. 4171 */ 4172 sctx->cur_inode_gen = right_gen; 4173 sctx->cur_inode_new = 0; 4174 sctx->cur_inode_deleted = 1; 4175 sctx->cur_inode_size = btrfs_inode_size( 4176 sctx->right_path->nodes[0], right_ii); 4177 sctx->cur_inode_mode = btrfs_inode_mode( 4178 sctx->right_path->nodes[0], right_ii); 4179 ret = process_all_refs(sctx, 4180 BTRFS_COMPARE_TREE_DELETED); 4181 if (ret < 0) 4182 goto out; 4183 4184 /* 4185 * Now process the inode as if it was new. 4186 */ 4187 sctx->cur_inode_gen = left_gen; 4188 sctx->cur_inode_new = 1; 4189 sctx->cur_inode_deleted = 0; 4190 sctx->cur_inode_size = btrfs_inode_size( 4191 sctx->left_path->nodes[0], left_ii); 4192 sctx->cur_inode_mode = btrfs_inode_mode( 4193 sctx->left_path->nodes[0], left_ii); 4194 ret = send_create_inode_if_needed(sctx); 4195 if (ret < 0) 4196 goto out; 4197 4198 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 4199 if (ret < 0) 4200 goto out; 4201 /* 4202 * Advance send_progress now as we did not get into 4203 * process_recorded_refs_if_needed in the new_gen case. 4204 */ 4205 sctx->send_progress = sctx->cur_ino + 1; 4206 4207 /* 4208 * Now process all extents and xattrs of the inode as if 4209 * they were all new. 4210 */ 4211 ret = process_all_extents(sctx); 4212 if (ret < 0) 4213 goto out; 4214 ret = process_all_new_xattrs(sctx); 4215 if (ret < 0) 4216 goto out; 4217 } else { 4218 sctx->cur_inode_gen = left_gen; 4219 sctx->cur_inode_new = 0; 4220 sctx->cur_inode_new_gen = 0; 4221 sctx->cur_inode_deleted = 0; 4222 sctx->cur_inode_size = btrfs_inode_size( 4223 sctx->left_path->nodes[0], left_ii); 4224 sctx->cur_inode_mode = btrfs_inode_mode( 4225 sctx->left_path->nodes[0], left_ii); 4226 } 4227 } 4228 4229 out: 4230 return ret; 4231 } 4232 4233 /* 4234 * We have to process new refs before deleted refs, but compare_trees gives us 4235 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 4236 * first and later process them in process_recorded_refs. 4237 * For the cur_inode_new_gen case, we skip recording completely because 4238 * changed_inode did already initiate processing of refs. The reason for this is 4239 * that in this case, compare_tree actually compares the refs of 2 different 4240 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 4241 * refs of the right tree as deleted and all refs of the left tree as new. 4242 */ 4243 static int changed_ref(struct send_ctx *sctx, 4244 enum btrfs_compare_tree_result result) 4245 { 4246 int ret = 0; 4247 4248 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4249 4250 if (!sctx->cur_inode_new_gen && 4251 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 4252 if (result == BTRFS_COMPARE_TREE_NEW) 4253 ret = record_new_ref(sctx); 4254 else if (result == BTRFS_COMPARE_TREE_DELETED) 4255 ret = record_deleted_ref(sctx); 4256 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4257 ret = record_changed_ref(sctx); 4258 } 4259 4260 return ret; 4261 } 4262 4263 /* 4264 * Process new/deleted/changed xattrs. We skip processing in the 4265 * cur_inode_new_gen case because changed_inode did already initiate processing 4266 * of xattrs. The reason is the same as in changed_ref 4267 */ 4268 static int changed_xattr(struct send_ctx *sctx, 4269 enum btrfs_compare_tree_result result) 4270 { 4271 int ret = 0; 4272 4273 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4274 4275 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4276 if (result == BTRFS_COMPARE_TREE_NEW) 4277 ret = process_new_xattr(sctx); 4278 else if (result == BTRFS_COMPARE_TREE_DELETED) 4279 ret = process_deleted_xattr(sctx); 4280 else if (result == BTRFS_COMPARE_TREE_CHANGED) 4281 ret = process_changed_xattr(sctx); 4282 } 4283 4284 return ret; 4285 } 4286 4287 /* 4288 * Process new/deleted/changed extents. We skip processing in the 4289 * cur_inode_new_gen case because changed_inode did already initiate processing 4290 * of extents. The reason is the same as in changed_ref 4291 */ 4292 static int changed_extent(struct send_ctx *sctx, 4293 enum btrfs_compare_tree_result result) 4294 { 4295 int ret = 0; 4296 4297 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid); 4298 4299 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 4300 if (result != BTRFS_COMPARE_TREE_DELETED) 4301 ret = process_extent(sctx, sctx->left_path, 4302 sctx->cmp_key); 4303 } 4304 4305 return ret; 4306 } 4307 4308 /* 4309 * Updates compare related fields in sctx and simply forwards to the actual 4310 * changed_xxx functions. 4311 */ 4312 static int changed_cb(struct btrfs_root *left_root, 4313 struct btrfs_root *right_root, 4314 struct btrfs_path *left_path, 4315 struct btrfs_path *right_path, 4316 struct btrfs_key *key, 4317 enum btrfs_compare_tree_result result, 4318 void *ctx) 4319 { 4320 int ret = 0; 4321 struct send_ctx *sctx = ctx; 4322 4323 sctx->left_path = left_path; 4324 sctx->right_path = right_path; 4325 sctx->cmp_key = key; 4326 4327 ret = finish_inode_if_needed(sctx, 0); 4328 if (ret < 0) 4329 goto out; 4330 4331 /* Ignore non-FS objects */ 4332 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 4333 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 4334 goto out; 4335 4336 if (key->type == BTRFS_INODE_ITEM_KEY) 4337 ret = changed_inode(sctx, result); 4338 else if (key->type == BTRFS_INODE_REF_KEY) 4339 ret = changed_ref(sctx, result); 4340 else if (key->type == BTRFS_XATTR_ITEM_KEY) 4341 ret = changed_xattr(sctx, result); 4342 else if (key->type == BTRFS_EXTENT_DATA_KEY) 4343 ret = changed_extent(sctx, result); 4344 4345 out: 4346 return ret; 4347 } 4348 4349 static int full_send_tree(struct send_ctx *sctx) 4350 { 4351 int ret; 4352 struct btrfs_trans_handle *trans = NULL; 4353 struct btrfs_root *send_root = sctx->send_root; 4354 struct btrfs_key key; 4355 struct btrfs_key found_key; 4356 struct btrfs_path *path; 4357 struct extent_buffer *eb; 4358 int slot; 4359 u64 start_ctransid; 4360 u64 ctransid; 4361 4362 path = alloc_path_for_send(); 4363 if (!path) 4364 return -ENOMEM; 4365 4366 spin_lock(&send_root->root_times_lock); 4367 start_ctransid = btrfs_root_ctransid(&send_root->root_item); 4368 spin_unlock(&send_root->root_times_lock); 4369 4370 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 4371 key.type = BTRFS_INODE_ITEM_KEY; 4372 key.offset = 0; 4373 4374 join_trans: 4375 /* 4376 * We need to make sure the transaction does not get committed 4377 * while we do anything on commit roots. Join a transaction to prevent 4378 * this. 4379 */ 4380 trans = btrfs_join_transaction(send_root); 4381 if (IS_ERR(trans)) { 4382 ret = PTR_ERR(trans); 4383 trans = NULL; 4384 goto out; 4385 } 4386 4387 /* 4388 * Make sure the tree has not changed after re-joining. We detect this 4389 * by comparing start_ctransid and ctransid. They should always match. 4390 */ 4391 spin_lock(&send_root->root_times_lock); 4392 ctransid = btrfs_root_ctransid(&send_root->root_item); 4393 spin_unlock(&send_root->root_times_lock); 4394 4395 if (ctransid != start_ctransid) { 4396 WARN(1, KERN_WARNING "btrfs: the root that you're trying to " 4397 "send was modified in between. This is " 4398 "probably a bug.\n"); 4399 ret = -EIO; 4400 goto out; 4401 } 4402 4403 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 4404 if (ret < 0) 4405 goto out; 4406 if (ret) 4407 goto out_finish; 4408 4409 while (1) { 4410 /* 4411 * When someone want to commit while we iterate, end the 4412 * joined transaction and rejoin. 4413 */ 4414 if (btrfs_should_end_transaction(trans, send_root)) { 4415 ret = btrfs_end_transaction(trans, send_root); 4416 trans = NULL; 4417 if (ret < 0) 4418 goto out; 4419 btrfs_release_path(path); 4420 goto join_trans; 4421 } 4422 4423 eb = path->nodes[0]; 4424 slot = path->slots[0]; 4425 btrfs_item_key_to_cpu(eb, &found_key, slot); 4426 4427 ret = changed_cb(send_root, NULL, path, NULL, 4428 &found_key, BTRFS_COMPARE_TREE_NEW, sctx); 4429 if (ret < 0) 4430 goto out; 4431 4432 key.objectid = found_key.objectid; 4433 key.type = found_key.type; 4434 key.offset = found_key.offset + 1; 4435 4436 ret = btrfs_next_item(send_root, path); 4437 if (ret < 0) 4438 goto out; 4439 if (ret) { 4440 ret = 0; 4441 break; 4442 } 4443 } 4444 4445 out_finish: 4446 ret = finish_inode_if_needed(sctx, 1); 4447 4448 out: 4449 btrfs_free_path(path); 4450 if (trans) { 4451 if (!ret) 4452 ret = btrfs_end_transaction(trans, send_root); 4453 else 4454 btrfs_end_transaction(trans, send_root); 4455 } 4456 return ret; 4457 } 4458 4459 static int send_subvol(struct send_ctx *sctx) 4460 { 4461 int ret; 4462 4463 ret = send_header(sctx); 4464 if (ret < 0) 4465 goto out; 4466 4467 ret = send_subvol_begin(sctx); 4468 if (ret < 0) 4469 goto out; 4470 4471 if (sctx->parent_root) { 4472 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, 4473 changed_cb, sctx); 4474 if (ret < 0) 4475 goto out; 4476 ret = finish_inode_if_needed(sctx, 1); 4477 if (ret < 0) 4478 goto out; 4479 } else { 4480 ret = full_send_tree(sctx); 4481 if (ret < 0) 4482 goto out; 4483 } 4484 4485 out: 4486 if (!ret) 4487 ret = close_cur_inode_file(sctx); 4488 else 4489 close_cur_inode_file(sctx); 4490 4491 free_recorded_refs(sctx); 4492 return ret; 4493 } 4494 4495 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_) 4496 { 4497 int ret = 0; 4498 struct btrfs_root *send_root; 4499 struct btrfs_root *clone_root; 4500 struct btrfs_fs_info *fs_info; 4501 struct btrfs_ioctl_send_args *arg = NULL; 4502 struct btrfs_key key; 4503 struct file *filp = NULL; 4504 struct send_ctx *sctx = NULL; 4505 u32 i; 4506 u64 *clone_sources_tmp = NULL; 4507 4508 if (!capable(CAP_SYS_ADMIN)) 4509 return -EPERM; 4510 4511 send_root = BTRFS_I(fdentry(mnt_file)->d_inode)->root; 4512 fs_info = send_root->fs_info; 4513 4514 arg = memdup_user(arg_, sizeof(*arg)); 4515 if (IS_ERR(arg)) { 4516 ret = PTR_ERR(arg); 4517 arg = NULL; 4518 goto out; 4519 } 4520 4521 if (!access_ok(VERIFY_READ, arg->clone_sources, 4522 sizeof(*arg->clone_sources * 4523 arg->clone_sources_count))) { 4524 ret = -EFAULT; 4525 goto out; 4526 } 4527 4528 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS); 4529 if (!sctx) { 4530 ret = -ENOMEM; 4531 goto out; 4532 } 4533 4534 INIT_LIST_HEAD(&sctx->new_refs); 4535 INIT_LIST_HEAD(&sctx->deleted_refs); 4536 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS); 4537 INIT_LIST_HEAD(&sctx->name_cache_list); 4538 4539 sctx->send_filp = fget(arg->send_fd); 4540 if (IS_ERR(sctx->send_filp)) { 4541 ret = PTR_ERR(sctx->send_filp); 4542 goto out; 4543 } 4544 4545 sctx->mnt = mnt_file->f_path.mnt; 4546 4547 sctx->send_root = send_root; 4548 sctx->clone_roots_cnt = arg->clone_sources_count; 4549 4550 sctx->send_max_size = BTRFS_SEND_BUF_SIZE; 4551 sctx->send_buf = vmalloc(sctx->send_max_size); 4552 if (!sctx->send_buf) { 4553 ret = -ENOMEM; 4554 goto out; 4555 } 4556 4557 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE); 4558 if (!sctx->read_buf) { 4559 ret = -ENOMEM; 4560 goto out; 4561 } 4562 4563 sctx->clone_roots = vzalloc(sizeof(struct clone_root) * 4564 (arg->clone_sources_count + 1)); 4565 if (!sctx->clone_roots) { 4566 ret = -ENOMEM; 4567 goto out; 4568 } 4569 4570 if (arg->clone_sources_count) { 4571 clone_sources_tmp = vmalloc(arg->clone_sources_count * 4572 sizeof(*arg->clone_sources)); 4573 if (!clone_sources_tmp) { 4574 ret = -ENOMEM; 4575 goto out; 4576 } 4577 4578 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 4579 arg->clone_sources_count * 4580 sizeof(*arg->clone_sources)); 4581 if (ret) { 4582 ret = -EFAULT; 4583 goto out; 4584 } 4585 4586 for (i = 0; i < arg->clone_sources_count; i++) { 4587 key.objectid = clone_sources_tmp[i]; 4588 key.type = BTRFS_ROOT_ITEM_KEY; 4589 key.offset = (u64)-1; 4590 clone_root = btrfs_read_fs_root_no_name(fs_info, &key); 4591 if (!clone_root) { 4592 ret = -EINVAL; 4593 goto out; 4594 } 4595 if (IS_ERR(clone_root)) { 4596 ret = PTR_ERR(clone_root); 4597 goto out; 4598 } 4599 sctx->clone_roots[i].root = clone_root; 4600 } 4601 vfree(clone_sources_tmp); 4602 clone_sources_tmp = NULL; 4603 } 4604 4605 if (arg->parent_root) { 4606 key.objectid = arg->parent_root; 4607 key.type = BTRFS_ROOT_ITEM_KEY; 4608 key.offset = (u64)-1; 4609 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key); 4610 if (!sctx->parent_root) { 4611 ret = -EINVAL; 4612 goto out; 4613 } 4614 } 4615 4616 /* 4617 * Clones from send_root are allowed, but only if the clone source 4618 * is behind the current send position. This is checked while searching 4619 * for possible clone sources. 4620 */ 4621 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root; 4622 4623 /* We do a bsearch later */ 4624 sort(sctx->clone_roots, sctx->clone_roots_cnt, 4625 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 4626 NULL); 4627 4628 ret = send_subvol(sctx); 4629 if (ret < 0) 4630 goto out; 4631 4632 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 4633 if (ret < 0) 4634 goto out; 4635 ret = send_cmd(sctx); 4636 if (ret < 0) 4637 goto out; 4638 4639 out: 4640 if (filp) 4641 fput(filp); 4642 kfree(arg); 4643 vfree(clone_sources_tmp); 4644 4645 if (sctx) { 4646 if (sctx->send_filp) 4647 fput(sctx->send_filp); 4648 4649 vfree(sctx->clone_roots); 4650 vfree(sctx->send_buf); 4651 vfree(sctx->read_buf); 4652 4653 name_cache_free(sctx); 4654 4655 kfree(sctx); 4656 } 4657 4658 return ret; 4659 } 4660