1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/falloc.h> 8 #include <linux/fs.h> 9 #include <linux/file.h> 10 #include <linux/sort.h> 11 #include <linux/mount.h> 12 #include <linux/xattr.h> 13 #include <linux/posix_acl_xattr.h> 14 #include <linux/radix-tree.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/compat.h> 18 #include <linux/crc32c.h> 19 #include <linux/fsverity.h> 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * an allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 struct fs_path cur_inode_path; 182 bool cur_inode_new; 183 bool cur_inode_new_gen; 184 bool cur_inode_deleted; 185 bool ignore_cur_inode; 186 bool cur_inode_needs_verity; 187 void *verity_descriptor; 188 189 u64 send_progress; 190 191 struct list_head new_refs; 192 struct list_head deleted_refs; 193 194 struct btrfs_lru_cache name_cache; 195 196 /* 197 * The inode we are currently processing. It's not NULL only when we 198 * need to issue write commands for data extents from this inode. 199 */ 200 struct inode *cur_inode; 201 struct file_ra_state ra; 202 u64 page_cache_clear_start; 203 bool clean_page_cache; 204 205 /* 206 * We process inodes by their increasing order, so if before an 207 * incremental send we reverse the parent/child relationship of 208 * directories such that a directory with a lower inode number was 209 * the parent of a directory with a higher inode number, and the one 210 * becoming the new parent got renamed too, we can't rename/move the 211 * directory with lower inode number when we finish processing it - we 212 * must process the directory with higher inode number first, then 213 * rename/move it and then rename/move the directory with lower inode 214 * number. Example follows. 215 * 216 * Tree state when the first send was performed: 217 * 218 * . 219 * |-- a (ino 257) 220 * |-- b (ino 258) 221 * | 222 * | 223 * |-- c (ino 259) 224 * | |-- d (ino 260) 225 * | 226 * |-- c2 (ino 261) 227 * 228 * Tree state when the second (incremental) send is performed: 229 * 230 * . 231 * |-- a (ino 257) 232 * |-- b (ino 258) 233 * |-- c2 (ino 261) 234 * |-- d2 (ino 260) 235 * |-- cc (ino 259) 236 * 237 * The sequence of steps that lead to the second state was: 238 * 239 * mv /a/b/c/d /a/b/c2/d2 240 * mv /a/b/c /a/b/c2/d2/cc 241 * 242 * "c" has lower inode number, but we can't move it (2nd mv operation) 243 * before we move "d", which has higher inode number. 244 * 245 * So we just memorize which move/rename operations must be performed 246 * later when their respective parent is processed and moved/renamed. 247 */ 248 249 /* Indexed by parent directory inode number. */ 250 struct rb_root pending_dir_moves; 251 252 /* 253 * Reverse index, indexed by the inode number of a directory that 254 * is waiting for the move/rename of its immediate parent before its 255 * own move/rename can be performed. 256 */ 257 struct rb_root waiting_dir_moves; 258 259 /* 260 * A directory that is going to be rm'ed might have a child directory 261 * which is in the pending directory moves index above. In this case, 262 * the directory can only be removed after the move/rename of its child 263 * is performed. Example: 264 * 265 * Parent snapshot: 266 * 267 * . (ino 256) 268 * |-- a/ (ino 257) 269 * |-- b/ (ino 258) 270 * |-- c/ (ino 259) 271 * | |-- x/ (ino 260) 272 * | 273 * |-- y/ (ino 261) 274 * 275 * Send snapshot: 276 * 277 * . (ino 256) 278 * |-- a/ (ino 257) 279 * |-- b/ (ino 258) 280 * |-- YY/ (ino 261) 281 * |-- x/ (ino 260) 282 * 283 * Sequence of steps that lead to the send snapshot: 284 * rm -f /a/b/c/foo.txt 285 * mv /a/b/y /a/b/YY 286 * mv /a/b/c/x /a/b/YY 287 * rmdir /a/b/c 288 * 289 * When the child is processed, its move/rename is delayed until its 290 * parent is processed (as explained above), but all other operations 291 * like update utimes, chown, chgrp, etc, are performed and the paths 292 * that it uses for those operations must use the orphanized name of 293 * its parent (the directory we're going to rm later), so we need to 294 * memorize that name. 295 * 296 * Indexed by the inode number of the directory to be deleted. 297 */ 298 struct rb_root orphan_dirs; 299 300 struct rb_root rbtree_new_refs; 301 struct rb_root rbtree_deleted_refs; 302 303 struct btrfs_lru_cache backref_cache; 304 u64 backref_cache_last_reloc_trans; 305 306 struct btrfs_lru_cache dir_created_cache; 307 struct btrfs_lru_cache dir_utimes_cache; 308 }; 309 310 struct pending_dir_move { 311 struct rb_node node; 312 struct list_head list; 313 u64 parent_ino; 314 u64 ino; 315 u64 gen; 316 struct list_head update_refs; 317 }; 318 319 struct waiting_dir_move { 320 struct rb_node node; 321 u64 ino; 322 /* 323 * There might be some directory that could not be removed because it 324 * was waiting for this directory inode to be moved first. Therefore 325 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 326 */ 327 u64 rmdir_ino; 328 u64 rmdir_gen; 329 bool orphanized; 330 }; 331 332 struct orphan_dir_info { 333 struct rb_node node; 334 u64 ino; 335 u64 gen; 336 u64 last_dir_index_offset; 337 u64 dir_high_seq_ino; 338 }; 339 340 struct name_cache_entry { 341 /* 342 * The key in the entry is an inode number, and the generation matches 343 * the inode's generation. 344 */ 345 struct btrfs_lru_cache_entry entry; 346 u64 parent_ino; 347 u64 parent_gen; 348 int ret; 349 int need_later_update; 350 /* Name length without NUL terminator. */ 351 int name_len; 352 /* Not NUL terminated. */ 353 char name[] __counted_by(name_len) __nonstring; 354 }; 355 356 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 357 static_assert(offsetof(struct name_cache_entry, entry) == 0); 358 359 #define ADVANCE 1 360 #define ADVANCE_ONLY_NEXT -1 361 362 enum btrfs_compare_tree_result { 363 BTRFS_COMPARE_TREE_NEW, 364 BTRFS_COMPARE_TREE_DELETED, 365 BTRFS_COMPARE_TREE_CHANGED, 366 BTRFS_COMPARE_TREE_SAME, 367 }; 368 369 __cold 370 static void inconsistent_snapshot_error(struct send_ctx *sctx, 371 enum btrfs_compare_tree_result result, 372 const char *what) 373 { 374 const char *result_string; 375 376 switch (result) { 377 case BTRFS_COMPARE_TREE_NEW: 378 result_string = "new"; 379 break; 380 case BTRFS_COMPARE_TREE_DELETED: 381 result_string = "deleted"; 382 break; 383 case BTRFS_COMPARE_TREE_CHANGED: 384 result_string = "updated"; 385 break; 386 case BTRFS_COMPARE_TREE_SAME: 387 DEBUG_WARN("no change between trees"); 388 result_string = "unchanged"; 389 break; 390 default: 391 DEBUG_WARN("unexpected comparison result %d", result); 392 result_string = "unexpected"; 393 } 394 395 btrfs_err(sctx->send_root->fs_info, 396 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 397 result_string, what, sctx->cmp_key->objectid, 398 btrfs_root_id(sctx->send_root), 399 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 400 } 401 402 __maybe_unused 403 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 404 { 405 switch (sctx->proto) { 406 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 407 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 408 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 409 default: return false; 410 } 411 } 412 413 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 414 415 static struct waiting_dir_move * 416 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 417 418 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 419 420 static int need_send_hole(struct send_ctx *sctx) 421 { 422 return (sctx->parent_root && !sctx->cur_inode_new && 423 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 424 S_ISREG(sctx->cur_inode_mode)); 425 } 426 427 static void fs_path_reset(struct fs_path *p) 428 { 429 if (p->reversed) 430 p->start = p->buf + p->buf_len - 1; 431 else 432 p->start = p->buf; 433 434 p->end = p->start; 435 *p->start = 0; 436 } 437 438 static void init_path(struct fs_path *p) 439 { 440 p->reversed = 0; 441 p->buf = p->inline_buf; 442 p->buf_len = FS_PATH_INLINE_SIZE; 443 fs_path_reset(p); 444 } 445 446 static struct fs_path *fs_path_alloc(void) 447 { 448 struct fs_path *p; 449 450 p = kmalloc(sizeof(*p), GFP_KERNEL); 451 if (!p) 452 return NULL; 453 init_path(p); 454 return p; 455 } 456 457 static struct fs_path *fs_path_alloc_reversed(void) 458 { 459 struct fs_path *p; 460 461 p = fs_path_alloc(); 462 if (!p) 463 return NULL; 464 p->reversed = 1; 465 fs_path_reset(p); 466 return p; 467 } 468 469 static void fs_path_free(struct fs_path *p) 470 { 471 if (!p) 472 return; 473 if (p->buf != p->inline_buf) 474 kfree(p->buf); 475 kfree(p); 476 } 477 478 static inline int fs_path_len(const struct fs_path *p) 479 { 480 return p->end - p->start; 481 } 482 483 static int fs_path_ensure_buf(struct fs_path *p, int len) 484 { 485 char *tmp_buf; 486 int path_len; 487 int old_buf_len; 488 489 len++; 490 491 if (p->buf_len >= len) 492 return 0; 493 494 if (WARN_ON(len > PATH_MAX)) 495 return -ENAMETOOLONG; 496 497 path_len = fs_path_len(p); 498 old_buf_len = p->buf_len; 499 500 /* 501 * Allocate to the next largest kmalloc bucket size, to let 502 * the fast path happen most of the time. 503 */ 504 len = kmalloc_size_roundup(len); 505 /* 506 * First time the inline_buf does not suffice 507 */ 508 if (p->buf == p->inline_buf) { 509 tmp_buf = kmalloc(len, GFP_KERNEL); 510 if (tmp_buf) 511 memcpy(tmp_buf, p->buf, old_buf_len); 512 } else { 513 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 514 } 515 if (!tmp_buf) 516 return -ENOMEM; 517 p->buf = tmp_buf; 518 p->buf_len = len; 519 520 if (p->reversed) { 521 tmp_buf = p->buf + old_buf_len - path_len - 1; 522 p->end = p->buf + p->buf_len - 1; 523 p->start = p->end - path_len; 524 memmove(p->start, tmp_buf, path_len + 1); 525 } else { 526 p->start = p->buf; 527 p->end = p->start + path_len; 528 } 529 return 0; 530 } 531 532 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 533 char **prepared) 534 { 535 int ret; 536 int new_len; 537 538 new_len = fs_path_len(p) + name_len; 539 if (p->start != p->end) 540 new_len++; 541 ret = fs_path_ensure_buf(p, new_len); 542 if (ret < 0) 543 return ret; 544 545 if (p->reversed) { 546 if (p->start != p->end) 547 *--p->start = '/'; 548 p->start -= name_len; 549 *prepared = p->start; 550 } else { 551 if (p->start != p->end) 552 *p->end++ = '/'; 553 *prepared = p->end; 554 p->end += name_len; 555 *p->end = 0; 556 } 557 558 return 0; 559 } 560 561 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 562 { 563 int ret; 564 char *prepared; 565 566 ret = fs_path_prepare_for_add(p, name_len, &prepared); 567 if (ret < 0) 568 return ret; 569 memcpy(prepared, name, name_len); 570 571 return 0; 572 } 573 574 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) 575 { 576 return fs_path_add(p, p2->start, fs_path_len(p2)); 577 } 578 579 static int fs_path_add_from_extent_buffer(struct fs_path *p, 580 struct extent_buffer *eb, 581 unsigned long off, int len) 582 { 583 int ret; 584 char *prepared; 585 586 ret = fs_path_prepare_for_add(p, len, &prepared); 587 if (ret < 0) 588 return ret; 589 590 read_extent_buffer(eb, prepared, off, len); 591 592 return 0; 593 } 594 595 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 596 { 597 p->reversed = from->reversed; 598 fs_path_reset(p); 599 600 return fs_path_add_path(p, from); 601 } 602 603 static void fs_path_unreverse(struct fs_path *p) 604 { 605 char *tmp; 606 int len; 607 608 if (!p->reversed) 609 return; 610 611 tmp = p->start; 612 len = fs_path_len(p); 613 p->start = p->buf; 614 p->end = p->start + len; 615 memmove(p->start, tmp, len + 1); 616 p->reversed = 0; 617 } 618 619 static inline bool is_current_inode_path(const struct send_ctx *sctx, 620 const struct fs_path *path) 621 { 622 const struct fs_path *cur = &sctx->cur_inode_path; 623 624 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); 625 } 626 627 static struct btrfs_path *alloc_path_for_send(void) 628 { 629 struct btrfs_path *path; 630 631 path = btrfs_alloc_path(); 632 if (!path) 633 return NULL; 634 path->search_commit_root = 1; 635 path->skip_locking = 1; 636 path->need_commit_sem = 1; 637 return path; 638 } 639 640 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 641 { 642 int ret; 643 u32 pos = 0; 644 645 while (pos < len) { 646 ret = kernel_write(filp, buf + pos, len - pos, off); 647 if (ret < 0) 648 return ret; 649 if (unlikely(ret == 0)) 650 return -EIO; 651 pos += ret; 652 } 653 654 return 0; 655 } 656 657 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 658 { 659 struct btrfs_tlv_header *hdr; 660 int total_len = sizeof(*hdr) + len; 661 int left = sctx->send_max_size - sctx->send_size; 662 663 if (WARN_ON_ONCE(sctx->put_data)) 664 return -EINVAL; 665 666 if (unlikely(left < total_len)) 667 return -EOVERFLOW; 668 669 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 670 put_unaligned_le16(attr, &hdr->tlv_type); 671 put_unaligned_le16(len, &hdr->tlv_len); 672 memcpy(hdr + 1, data, len); 673 sctx->send_size += total_len; 674 675 return 0; 676 } 677 678 #define TLV_PUT_DEFINE_INT(bits) \ 679 static int tlv_put_u##bits(struct send_ctx *sctx, \ 680 u##bits attr, u##bits value) \ 681 { \ 682 __le##bits __tmp = cpu_to_le##bits(value); \ 683 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 684 } 685 686 TLV_PUT_DEFINE_INT(8) 687 TLV_PUT_DEFINE_INT(32) 688 TLV_PUT_DEFINE_INT(64) 689 690 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 691 const char *str, int len) 692 { 693 if (len == -1) 694 len = strlen(str); 695 return tlv_put(sctx, attr, str, len); 696 } 697 698 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 699 const u8 *uuid) 700 { 701 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 702 } 703 704 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 705 struct extent_buffer *eb, 706 struct btrfs_timespec *ts) 707 { 708 struct btrfs_timespec bts; 709 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 710 return tlv_put(sctx, attr, &bts, sizeof(bts)); 711 } 712 713 714 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 715 do { \ 716 ret = tlv_put(sctx, attrtype, data, attrlen); \ 717 if (ret < 0) \ 718 goto tlv_put_failure; \ 719 } while (0) 720 721 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 722 do { \ 723 ret = tlv_put_u##bits(sctx, attrtype, value); \ 724 if (ret < 0) \ 725 goto tlv_put_failure; \ 726 } while (0) 727 728 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 729 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 730 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 731 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 732 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 733 do { \ 734 ret = tlv_put_string(sctx, attrtype, str, len); \ 735 if (ret < 0) \ 736 goto tlv_put_failure; \ 737 } while (0) 738 #define TLV_PUT_PATH(sctx, attrtype, p) \ 739 do { \ 740 ret = tlv_put_string(sctx, attrtype, p->start, \ 741 fs_path_len((p))); \ 742 if (ret < 0) \ 743 goto tlv_put_failure; \ 744 } while(0) 745 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 746 do { \ 747 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 748 if (ret < 0) \ 749 goto tlv_put_failure; \ 750 } while (0) 751 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 752 do { \ 753 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 754 if (ret < 0) \ 755 goto tlv_put_failure; \ 756 } while (0) 757 758 static int send_header(struct send_ctx *sctx) 759 { 760 struct btrfs_stream_header hdr; 761 762 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 763 hdr.version = cpu_to_le32(sctx->proto); 764 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 765 &sctx->send_off); 766 } 767 768 /* 769 * For each command/item we want to send to userspace, we call this function. 770 */ 771 static int begin_cmd(struct send_ctx *sctx, int cmd) 772 { 773 struct btrfs_cmd_header *hdr; 774 775 if (WARN_ON(!sctx->send_buf)) 776 return -EINVAL; 777 778 if (unlikely(sctx->send_size != 0)) { 779 btrfs_err(sctx->send_root->fs_info, 780 "send: command header buffer not empty cmd %d offset %llu", 781 cmd, sctx->send_off); 782 return -EINVAL; 783 } 784 785 sctx->send_size += sizeof(*hdr); 786 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 787 put_unaligned_le16(cmd, &hdr->cmd); 788 789 return 0; 790 } 791 792 static int send_cmd(struct send_ctx *sctx) 793 { 794 int ret; 795 struct btrfs_cmd_header *hdr; 796 u32 crc; 797 798 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 799 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 800 put_unaligned_le32(0, &hdr->crc); 801 802 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 803 put_unaligned_le32(crc, &hdr->crc); 804 805 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 806 &sctx->send_off); 807 808 sctx->send_size = 0; 809 sctx->put_data = false; 810 811 return ret; 812 } 813 814 /* 815 * Sends a move instruction to user space 816 */ 817 static int send_rename(struct send_ctx *sctx, 818 struct fs_path *from, struct fs_path *to) 819 { 820 int ret; 821 822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 823 if (ret < 0) 824 return ret; 825 826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 828 829 ret = send_cmd(sctx); 830 831 tlv_put_failure: 832 return ret; 833 } 834 835 /* 836 * Sends a link instruction to user space 837 */ 838 static int send_link(struct send_ctx *sctx, 839 struct fs_path *path, struct fs_path *lnk) 840 { 841 int ret; 842 843 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 844 if (ret < 0) 845 return ret; 846 847 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 848 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 849 850 ret = send_cmd(sctx); 851 852 tlv_put_failure: 853 return ret; 854 } 855 856 /* 857 * Sends an unlink instruction to user space 858 */ 859 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 860 { 861 int ret; 862 863 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 864 if (ret < 0) 865 return ret; 866 867 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 868 869 ret = send_cmd(sctx); 870 871 tlv_put_failure: 872 return ret; 873 } 874 875 /* 876 * Sends a rmdir instruction to user space 877 */ 878 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 879 { 880 int ret; 881 882 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 883 if (ret < 0) 884 return ret; 885 886 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 887 888 ret = send_cmd(sctx); 889 890 tlv_put_failure: 891 return ret; 892 } 893 894 struct btrfs_inode_info { 895 u64 size; 896 u64 gen; 897 u64 mode; 898 u64 uid; 899 u64 gid; 900 u64 rdev; 901 u64 fileattr; 902 u64 nlink; 903 }; 904 905 /* 906 * Helper function to retrieve some fields from an inode item. 907 */ 908 static int get_inode_info(struct btrfs_root *root, u64 ino, 909 struct btrfs_inode_info *info) 910 { 911 int ret; 912 BTRFS_PATH_AUTO_FREE(path); 913 struct btrfs_inode_item *ii; 914 struct btrfs_key key; 915 916 path = alloc_path_for_send(); 917 if (!path) 918 return -ENOMEM; 919 920 key.objectid = ino; 921 key.type = BTRFS_INODE_ITEM_KEY; 922 key.offset = 0; 923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 924 if (ret) { 925 if (ret > 0) 926 ret = -ENOENT; 927 return ret; 928 } 929 930 if (!info) 931 return 0; 932 933 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 934 struct btrfs_inode_item); 935 info->size = btrfs_inode_size(path->nodes[0], ii); 936 info->gen = btrfs_inode_generation(path->nodes[0], ii); 937 info->mode = btrfs_inode_mode(path->nodes[0], ii); 938 info->uid = btrfs_inode_uid(path->nodes[0], ii); 939 info->gid = btrfs_inode_gid(path->nodes[0], ii); 940 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 941 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 942 /* 943 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 944 * otherwise logically split to 32/32 parts. 945 */ 946 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 947 948 return 0; 949 } 950 951 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 952 { 953 int ret; 954 struct btrfs_inode_info info = { 0 }; 955 956 ASSERT(gen); 957 958 ret = get_inode_info(root, ino, &info); 959 *gen = info.gen; 960 return ret; 961 } 962 963 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 964 965 /* 966 * Helper function to iterate the entries in ONE btrfs_inode_ref or 967 * btrfs_inode_extref. 968 * The iterate callback may return a non zero value to stop iteration. This can 969 * be a negative value for error codes or 1 to simply stop it. 970 * 971 * path must point to the INODE_REF or INODE_EXTREF when called. 972 */ 973 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 974 struct btrfs_key *found_key, bool resolve, 975 iterate_inode_ref_t iterate, void *ctx) 976 { 977 struct extent_buffer *eb = path->nodes[0]; 978 struct btrfs_inode_ref *iref; 979 struct btrfs_inode_extref *extref; 980 BTRFS_PATH_AUTO_FREE(tmp_path); 981 struct fs_path *p; 982 u32 cur = 0; 983 u32 total; 984 int slot = path->slots[0]; 985 u32 name_len; 986 char *start; 987 int ret = 0; 988 u64 dir; 989 unsigned long name_off; 990 unsigned long elem_size; 991 unsigned long ptr; 992 993 p = fs_path_alloc_reversed(); 994 if (!p) 995 return -ENOMEM; 996 997 tmp_path = alloc_path_for_send(); 998 if (!tmp_path) { 999 fs_path_free(p); 1000 return -ENOMEM; 1001 } 1002 1003 1004 if (found_key->type == BTRFS_INODE_REF_KEY) { 1005 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1006 struct btrfs_inode_ref); 1007 total = btrfs_item_size(eb, slot); 1008 elem_size = sizeof(*iref); 1009 } else { 1010 ptr = btrfs_item_ptr_offset(eb, slot); 1011 total = btrfs_item_size(eb, slot); 1012 elem_size = sizeof(*extref); 1013 } 1014 1015 while (cur < total) { 1016 fs_path_reset(p); 1017 1018 if (found_key->type == BTRFS_INODE_REF_KEY) { 1019 iref = (struct btrfs_inode_ref *)(ptr + cur); 1020 name_len = btrfs_inode_ref_name_len(eb, iref); 1021 name_off = (unsigned long)(iref + 1); 1022 dir = found_key->offset; 1023 } else { 1024 extref = (struct btrfs_inode_extref *)(ptr + cur); 1025 name_len = btrfs_inode_extref_name_len(eb, extref); 1026 name_off = (unsigned long)&extref->name; 1027 dir = btrfs_inode_extref_parent(eb, extref); 1028 } 1029 1030 if (resolve) { 1031 start = btrfs_ref_to_path(root, tmp_path, name_len, 1032 name_off, eb, dir, 1033 p->buf, p->buf_len); 1034 if (IS_ERR(start)) { 1035 ret = PTR_ERR(start); 1036 goto out; 1037 } 1038 if (start < p->buf) { 1039 /* overflow , try again with larger buffer */ 1040 ret = fs_path_ensure_buf(p, 1041 p->buf_len + p->buf - start); 1042 if (ret < 0) 1043 goto out; 1044 start = btrfs_ref_to_path(root, tmp_path, 1045 name_len, name_off, 1046 eb, dir, 1047 p->buf, p->buf_len); 1048 if (IS_ERR(start)) { 1049 ret = PTR_ERR(start); 1050 goto out; 1051 } 1052 if (unlikely(start < p->buf)) { 1053 btrfs_err(root->fs_info, 1054 "send: path ref buffer underflow for key (%llu %u %llu)", 1055 found_key->objectid, 1056 found_key->type, 1057 found_key->offset); 1058 ret = -EINVAL; 1059 goto out; 1060 } 1061 } 1062 p->start = start; 1063 } else { 1064 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1065 name_len); 1066 if (ret < 0) 1067 goto out; 1068 } 1069 1070 cur += elem_size + name_len; 1071 ret = iterate(dir, p, ctx); 1072 if (ret) 1073 goto out; 1074 } 1075 1076 out: 1077 fs_path_free(p); 1078 return ret; 1079 } 1080 1081 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1082 const char *name, int name_len, 1083 const char *data, int data_len, 1084 void *ctx); 1085 1086 /* 1087 * Helper function to iterate the entries in ONE btrfs_dir_item. 1088 * The iterate callback may return a non zero value to stop iteration. This can 1089 * be a negative value for error codes or 1 to simply stop it. 1090 * 1091 * path must point to the dir item when called. 1092 */ 1093 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1094 iterate_dir_item_t iterate, void *ctx) 1095 { 1096 int ret = 0; 1097 struct extent_buffer *eb; 1098 struct btrfs_dir_item *di; 1099 struct btrfs_key di_key; 1100 char *buf = NULL; 1101 int buf_len; 1102 u32 name_len; 1103 u32 data_len; 1104 u32 cur; 1105 u32 len; 1106 u32 total; 1107 int slot; 1108 int num; 1109 1110 /* 1111 * Start with a small buffer (1 page). If later we end up needing more 1112 * space, which can happen for xattrs on a fs with a leaf size greater 1113 * than the page size, attempt to increase the buffer. Typically xattr 1114 * values are small. 1115 */ 1116 buf_len = PATH_MAX; 1117 buf = kmalloc(buf_len, GFP_KERNEL); 1118 if (!buf) { 1119 ret = -ENOMEM; 1120 goto out; 1121 } 1122 1123 eb = path->nodes[0]; 1124 slot = path->slots[0]; 1125 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1126 cur = 0; 1127 len = 0; 1128 total = btrfs_item_size(eb, slot); 1129 1130 num = 0; 1131 while (cur < total) { 1132 name_len = btrfs_dir_name_len(eb, di); 1133 data_len = btrfs_dir_data_len(eb, di); 1134 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1135 1136 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1137 if (name_len > XATTR_NAME_MAX) { 1138 ret = -ENAMETOOLONG; 1139 goto out; 1140 } 1141 if (name_len + data_len > 1142 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1143 ret = -E2BIG; 1144 goto out; 1145 } 1146 } else { 1147 /* 1148 * Path too long 1149 */ 1150 if (name_len + data_len > PATH_MAX) { 1151 ret = -ENAMETOOLONG; 1152 goto out; 1153 } 1154 } 1155 1156 if (name_len + data_len > buf_len) { 1157 buf_len = name_len + data_len; 1158 if (is_vmalloc_addr(buf)) { 1159 vfree(buf); 1160 buf = NULL; 1161 } else { 1162 char *tmp = krealloc(buf, buf_len, 1163 GFP_KERNEL | __GFP_NOWARN); 1164 1165 if (!tmp) 1166 kfree(buf); 1167 buf = tmp; 1168 } 1169 if (!buf) { 1170 buf = kvmalloc(buf_len, GFP_KERNEL); 1171 if (!buf) { 1172 ret = -ENOMEM; 1173 goto out; 1174 } 1175 } 1176 } 1177 1178 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1179 name_len + data_len); 1180 1181 len = sizeof(*di) + name_len + data_len; 1182 di = (struct btrfs_dir_item *)((char *)di + len); 1183 cur += len; 1184 1185 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1186 data_len, ctx); 1187 if (ret < 0) 1188 goto out; 1189 if (ret) { 1190 ret = 0; 1191 goto out; 1192 } 1193 1194 num++; 1195 } 1196 1197 out: 1198 kvfree(buf); 1199 return ret; 1200 } 1201 1202 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1203 { 1204 int ret; 1205 struct fs_path *pt = ctx; 1206 1207 ret = fs_path_copy(pt, p); 1208 if (ret < 0) 1209 return ret; 1210 1211 /* we want the first only */ 1212 return 1; 1213 } 1214 1215 /* 1216 * Retrieve the first path of an inode. If an inode has more then one 1217 * ref/hardlink, this is ignored. 1218 */ 1219 static int get_inode_path(struct btrfs_root *root, 1220 u64 ino, struct fs_path *path) 1221 { 1222 int ret; 1223 struct btrfs_key key, found_key; 1224 BTRFS_PATH_AUTO_FREE(p); 1225 1226 p = alloc_path_for_send(); 1227 if (!p) 1228 return -ENOMEM; 1229 1230 fs_path_reset(path); 1231 1232 key.objectid = ino; 1233 key.type = BTRFS_INODE_REF_KEY; 1234 key.offset = 0; 1235 1236 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1237 if (ret < 0) 1238 return ret; 1239 if (ret) 1240 return 1; 1241 1242 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1243 if (found_key.objectid != ino || 1244 (found_key.type != BTRFS_INODE_REF_KEY && 1245 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1246 return -ENOENT; 1247 1248 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path); 1249 if (ret < 0) 1250 return ret; 1251 return 0; 1252 } 1253 1254 struct backref_ctx { 1255 struct send_ctx *sctx; 1256 1257 /* number of total found references */ 1258 u64 found; 1259 1260 /* 1261 * used for clones found in send_root. clones found behind cur_objectid 1262 * and cur_offset are not considered as allowed clones. 1263 */ 1264 u64 cur_objectid; 1265 u64 cur_offset; 1266 1267 /* may be truncated in case it's the last extent in a file */ 1268 u64 extent_len; 1269 1270 /* The bytenr the file extent item we are processing refers to. */ 1271 u64 bytenr; 1272 /* The owner (root id) of the data backref for the current extent. */ 1273 u64 backref_owner; 1274 /* The offset of the data backref for the current extent. */ 1275 u64 backref_offset; 1276 }; 1277 1278 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1279 { 1280 u64 root = (u64)(uintptr_t)key; 1281 const struct clone_root *cr = elt; 1282 1283 if (root < btrfs_root_id(cr->root)) 1284 return -1; 1285 if (root > btrfs_root_id(cr->root)) 1286 return 1; 1287 return 0; 1288 } 1289 1290 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1291 { 1292 const struct clone_root *cr1 = e1; 1293 const struct clone_root *cr2 = e2; 1294 1295 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1296 return -1; 1297 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1298 return 1; 1299 return 0; 1300 } 1301 1302 /* 1303 * Called for every backref that is found for the current extent. 1304 * Results are collected in sctx->clone_roots->ino/offset. 1305 */ 1306 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1307 void *ctx_) 1308 { 1309 struct backref_ctx *bctx = ctx_; 1310 struct clone_root *clone_root; 1311 1312 /* First check if the root is in the list of accepted clone sources */ 1313 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1314 bctx->sctx->clone_roots_cnt, 1315 sizeof(struct clone_root), 1316 __clone_root_cmp_bsearch); 1317 if (!clone_root) 1318 return 0; 1319 1320 /* This is our own reference, bail out as we can't clone from it. */ 1321 if (clone_root->root == bctx->sctx->send_root && 1322 ino == bctx->cur_objectid && 1323 offset == bctx->cur_offset) 1324 return 0; 1325 1326 /* 1327 * Make sure we don't consider clones from send_root that are 1328 * behind the current inode/offset. 1329 */ 1330 if (clone_root->root == bctx->sctx->send_root) { 1331 /* 1332 * If the source inode was not yet processed we can't issue a 1333 * clone operation, as the source extent does not exist yet at 1334 * the destination of the stream. 1335 */ 1336 if (ino > bctx->cur_objectid) 1337 return 0; 1338 /* 1339 * We clone from the inode currently being sent as long as the 1340 * source extent is already processed, otherwise we could try 1341 * to clone from an extent that does not exist yet at the 1342 * destination of the stream. 1343 */ 1344 if (ino == bctx->cur_objectid && 1345 offset + bctx->extent_len > 1346 bctx->sctx->cur_inode_next_write_offset) 1347 return 0; 1348 } 1349 1350 bctx->found++; 1351 clone_root->found_ref = true; 1352 1353 /* 1354 * If the given backref refers to a file extent item with a larger 1355 * number of bytes than what we found before, use the new one so that 1356 * we clone more optimally and end up doing less writes and getting 1357 * less exclusive, non-shared extents at the destination. 1358 */ 1359 if (num_bytes > clone_root->num_bytes) { 1360 clone_root->ino = ino; 1361 clone_root->offset = offset; 1362 clone_root->num_bytes = num_bytes; 1363 1364 /* 1365 * Found a perfect candidate, so there's no need to continue 1366 * backref walking. 1367 */ 1368 if (num_bytes >= bctx->extent_len) 1369 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1370 } 1371 1372 return 0; 1373 } 1374 1375 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1376 const u64 **root_ids_ret, int *root_count_ret) 1377 { 1378 struct backref_ctx *bctx = ctx; 1379 struct send_ctx *sctx = bctx->sctx; 1380 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1381 const u64 key = leaf_bytenr >> fs_info->nodesize_bits; 1382 struct btrfs_lru_cache_entry *raw_entry; 1383 struct backref_cache_entry *entry; 1384 1385 if (sctx->backref_cache.size == 0) 1386 return false; 1387 1388 /* 1389 * If relocation happened since we first filled the cache, then we must 1390 * empty the cache and can not use it, because even though we operate on 1391 * read-only roots, their leaves and nodes may have been reallocated and 1392 * now be used for different nodes/leaves of the same tree or some other 1393 * tree. 1394 * 1395 * We are called from iterate_extent_inodes() while either holding a 1396 * transaction handle or holding fs_info->commit_root_sem, so no need 1397 * to take any lock here. 1398 */ 1399 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1400 btrfs_lru_cache_clear(&sctx->backref_cache); 1401 return false; 1402 } 1403 1404 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1405 if (!raw_entry) 1406 return false; 1407 1408 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1409 *root_ids_ret = entry->root_ids; 1410 *root_count_ret = entry->num_roots; 1411 1412 return true; 1413 } 1414 1415 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1416 void *ctx) 1417 { 1418 struct backref_ctx *bctx = ctx; 1419 struct send_ctx *sctx = bctx->sctx; 1420 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1421 struct backref_cache_entry *new_entry; 1422 struct ulist_iterator uiter; 1423 struct ulist_node *node; 1424 int ret; 1425 1426 /* 1427 * We're called while holding a transaction handle or while holding 1428 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1429 * NOFS allocation. 1430 */ 1431 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1432 /* No worries, cache is optional. */ 1433 if (!new_entry) 1434 return; 1435 1436 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits; 1437 new_entry->entry.gen = 0; 1438 new_entry->num_roots = 0; 1439 ULIST_ITER_INIT(&uiter); 1440 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1441 const u64 root_id = node->val; 1442 struct clone_root *root; 1443 1444 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1445 sctx->clone_roots_cnt, sizeof(struct clone_root), 1446 __clone_root_cmp_bsearch); 1447 if (!root) 1448 continue; 1449 1450 /* Too many roots, just exit, no worries as caching is optional. */ 1451 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1452 kfree(new_entry); 1453 return; 1454 } 1455 1456 new_entry->root_ids[new_entry->num_roots] = root_id; 1457 new_entry->num_roots++; 1458 } 1459 1460 /* 1461 * We may have not added any roots to the new cache entry, which means 1462 * none of the roots is part of the list of roots from which we are 1463 * allowed to clone. Cache the new entry as it's still useful to avoid 1464 * backref walking to determine which roots have a path to the leaf. 1465 * 1466 * Also use GFP_NOFS because we're called while holding a transaction 1467 * handle or while holding fs_info->commit_root_sem. 1468 */ 1469 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1470 GFP_NOFS); 1471 ASSERT(ret == 0 || ret == -ENOMEM); 1472 if (ret) { 1473 /* Caching is optional, no worries. */ 1474 kfree(new_entry); 1475 return; 1476 } 1477 1478 /* 1479 * We are called from iterate_extent_inodes() while either holding a 1480 * transaction handle or holding fs_info->commit_root_sem, so no need 1481 * to take any lock here. 1482 */ 1483 if (sctx->backref_cache.size == 1) 1484 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1485 } 1486 1487 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1488 const struct extent_buffer *leaf, void *ctx) 1489 { 1490 const u64 refs = btrfs_extent_refs(leaf, ei); 1491 const struct backref_ctx *bctx = ctx; 1492 const struct send_ctx *sctx = bctx->sctx; 1493 1494 if (bytenr == bctx->bytenr) { 1495 const u64 flags = btrfs_extent_flags(leaf, ei); 1496 1497 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1498 return -EUCLEAN; 1499 1500 /* 1501 * If we have only one reference and only the send root as a 1502 * clone source - meaning no clone roots were given in the 1503 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1504 * it's our reference and there's no point in doing backref 1505 * walking which is expensive, so exit early. 1506 */ 1507 if (refs == 1 && sctx->clone_roots_cnt == 1) 1508 return -ENOENT; 1509 } 1510 1511 /* 1512 * Backreference walking (iterate_extent_inodes() below) is currently 1513 * too expensive when an extent has a large number of references, both 1514 * in time spent and used memory. So for now just fallback to write 1515 * operations instead of clone operations when an extent has more than 1516 * a certain amount of references. 1517 */ 1518 if (refs > SEND_MAX_EXTENT_REFS) 1519 return -ENOENT; 1520 1521 return 0; 1522 } 1523 1524 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1525 { 1526 const struct backref_ctx *bctx = ctx; 1527 1528 if (ino == bctx->cur_objectid && 1529 root == bctx->backref_owner && 1530 offset == bctx->backref_offset) 1531 return true; 1532 1533 return false; 1534 } 1535 1536 /* 1537 * Given an inode, offset and extent item, it finds a good clone for a clone 1538 * instruction. Returns -ENOENT when none could be found. The function makes 1539 * sure that the returned clone is usable at the point where sending is at the 1540 * moment. This means, that no clones are accepted which lie behind the current 1541 * inode+offset. 1542 * 1543 * path must point to the extent item when called. 1544 */ 1545 static int find_extent_clone(struct send_ctx *sctx, 1546 struct btrfs_path *path, 1547 u64 ino, u64 data_offset, 1548 u64 ino_size, 1549 struct clone_root **found) 1550 { 1551 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1552 int ret; 1553 int extent_type; 1554 u64 disk_byte; 1555 u64 num_bytes; 1556 struct btrfs_file_extent_item *fi; 1557 struct extent_buffer *eb = path->nodes[0]; 1558 struct backref_ctx backref_ctx = { 0 }; 1559 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1560 struct clone_root *cur_clone_root; 1561 int compressed; 1562 u32 i; 1563 1564 /* 1565 * With fallocate we can get prealloc extents beyond the inode's i_size, 1566 * so we don't do anything here because clone operations can not clone 1567 * to a range beyond i_size without increasing the i_size of the 1568 * destination inode. 1569 */ 1570 if (data_offset >= ino_size) 1571 return 0; 1572 1573 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1574 extent_type = btrfs_file_extent_type(eb, fi); 1575 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1576 return -ENOENT; 1577 1578 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1579 if (disk_byte == 0) 1580 return -ENOENT; 1581 1582 compressed = btrfs_file_extent_compression(eb, fi); 1583 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1584 1585 /* 1586 * Setup the clone roots. 1587 */ 1588 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1589 cur_clone_root = sctx->clone_roots + i; 1590 cur_clone_root->ino = (u64)-1; 1591 cur_clone_root->offset = 0; 1592 cur_clone_root->num_bytes = 0; 1593 cur_clone_root->found_ref = false; 1594 } 1595 1596 backref_ctx.sctx = sctx; 1597 backref_ctx.cur_objectid = ino; 1598 backref_ctx.cur_offset = data_offset; 1599 backref_ctx.bytenr = disk_byte; 1600 /* 1601 * Use the header owner and not the send root's id, because in case of a 1602 * snapshot we can have shared subtrees. 1603 */ 1604 backref_ctx.backref_owner = btrfs_header_owner(eb); 1605 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1606 1607 /* 1608 * The last extent of a file may be too large due to page alignment. 1609 * We need to adjust extent_len in this case so that the checks in 1610 * iterate_backrefs() work. 1611 */ 1612 if (data_offset + num_bytes >= ino_size) 1613 backref_ctx.extent_len = ino_size - data_offset; 1614 else 1615 backref_ctx.extent_len = num_bytes; 1616 1617 /* 1618 * Now collect all backrefs. 1619 */ 1620 backref_walk_ctx.bytenr = disk_byte; 1621 if (compressed == BTRFS_COMPRESS_NONE) 1622 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1623 backref_walk_ctx.fs_info = fs_info; 1624 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1625 backref_walk_ctx.cache_store = store_backref_cache; 1626 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1627 backref_walk_ctx.check_extent_item = check_extent_item; 1628 backref_walk_ctx.user_ctx = &backref_ctx; 1629 1630 /* 1631 * If have a single clone root, then it's the send root and we can tell 1632 * the backref walking code to skip our own backref and not resolve it, 1633 * since we can not use it for cloning - the source and destination 1634 * ranges can't overlap and in case the leaf is shared through a subtree 1635 * due to snapshots, we can't use those other roots since they are not 1636 * in the list of clone roots. 1637 */ 1638 if (sctx->clone_roots_cnt == 1) 1639 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1640 1641 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1642 &backref_ctx); 1643 if (ret < 0) 1644 return ret; 1645 1646 down_read(&fs_info->commit_root_sem); 1647 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1648 /* 1649 * A transaction commit for a transaction in which block group 1650 * relocation was done just happened. 1651 * The disk_bytenr of the file extent item we processed is 1652 * possibly stale, referring to the extent's location before 1653 * relocation. So act as if we haven't found any clone sources 1654 * and fallback to write commands, which will read the correct 1655 * data from the new extent location. Otherwise we will fail 1656 * below because we haven't found our own back reference or we 1657 * could be getting incorrect sources in case the old extent 1658 * was already reallocated after the relocation. 1659 */ 1660 up_read(&fs_info->commit_root_sem); 1661 return -ENOENT; 1662 } 1663 up_read(&fs_info->commit_root_sem); 1664 1665 if (!backref_ctx.found) 1666 return -ENOENT; 1667 1668 cur_clone_root = NULL; 1669 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1670 struct clone_root *clone_root = &sctx->clone_roots[i]; 1671 1672 if (!clone_root->found_ref) 1673 continue; 1674 1675 /* 1676 * Choose the root from which we can clone more bytes, to 1677 * minimize write operations and therefore have more extent 1678 * sharing at the destination (the same as in the source). 1679 */ 1680 if (!cur_clone_root || 1681 clone_root->num_bytes > cur_clone_root->num_bytes) { 1682 cur_clone_root = clone_root; 1683 1684 /* 1685 * We found an optimal clone candidate (any inode from 1686 * any root is fine), so we're done. 1687 */ 1688 if (clone_root->num_bytes >= backref_ctx.extent_len) 1689 break; 1690 } 1691 } 1692 1693 if (cur_clone_root) { 1694 *found = cur_clone_root; 1695 ret = 0; 1696 } else { 1697 ret = -ENOENT; 1698 } 1699 1700 return ret; 1701 } 1702 1703 static int read_symlink(struct btrfs_root *root, 1704 u64 ino, 1705 struct fs_path *dest) 1706 { 1707 int ret; 1708 BTRFS_PATH_AUTO_FREE(path); 1709 struct btrfs_key key; 1710 struct btrfs_file_extent_item *ei; 1711 u8 type; 1712 u8 compression; 1713 unsigned long off; 1714 int len; 1715 1716 path = alloc_path_for_send(); 1717 if (!path) 1718 return -ENOMEM; 1719 1720 key.objectid = ino; 1721 key.type = BTRFS_EXTENT_DATA_KEY; 1722 key.offset = 0; 1723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1724 if (ret < 0) 1725 return ret; 1726 if (unlikely(ret)) { 1727 /* 1728 * An empty symlink inode. Can happen in rare error paths when 1729 * creating a symlink (transaction committed before the inode 1730 * eviction handler removed the symlink inode items and a crash 1731 * happened in between or the subvol was snapshotted in between). 1732 * Print an informative message to dmesg/syslog so that the user 1733 * can delete the symlink. 1734 */ 1735 btrfs_err(root->fs_info, 1736 "Found empty symlink inode %llu at root %llu", 1737 ino, btrfs_root_id(root)); 1738 return -EIO; 1739 } 1740 1741 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1742 struct btrfs_file_extent_item); 1743 type = btrfs_file_extent_type(path->nodes[0], ei); 1744 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1745 ret = -EUCLEAN; 1746 btrfs_crit(root->fs_info, 1747 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1748 ino, btrfs_root_id(root), type); 1749 return ret; 1750 } 1751 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1752 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1753 ret = -EUCLEAN; 1754 btrfs_crit(root->fs_info, 1755 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1756 ino, btrfs_root_id(root), compression); 1757 return ret; 1758 } 1759 1760 off = btrfs_file_extent_inline_start(ei); 1761 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1762 1763 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1764 } 1765 1766 /* 1767 * Helper function to generate a file name that is unique in the root of 1768 * send_root and parent_root. This is used to generate names for orphan inodes. 1769 */ 1770 static int gen_unique_name(struct send_ctx *sctx, 1771 u64 ino, u64 gen, 1772 struct fs_path *dest) 1773 { 1774 BTRFS_PATH_AUTO_FREE(path); 1775 struct btrfs_dir_item *di; 1776 char tmp[64]; 1777 int len; 1778 u64 idx = 0; 1779 1780 path = alloc_path_for_send(); 1781 if (!path) 1782 return -ENOMEM; 1783 1784 while (1) { 1785 struct fscrypt_str tmp_name; 1786 1787 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1788 ino, gen, idx); 1789 ASSERT(len < sizeof(tmp)); 1790 tmp_name.name = tmp; 1791 tmp_name.len = len; 1792 1793 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1794 path, BTRFS_FIRST_FREE_OBJECTID, 1795 &tmp_name, 0); 1796 btrfs_release_path(path); 1797 if (IS_ERR(di)) 1798 return PTR_ERR(di); 1799 1800 if (di) { 1801 /* not unique, try again */ 1802 idx++; 1803 continue; 1804 } 1805 1806 if (!sctx->parent_root) { 1807 /* unique */ 1808 break; 1809 } 1810 1811 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1812 path, BTRFS_FIRST_FREE_OBJECTID, 1813 &tmp_name, 0); 1814 btrfs_release_path(path); 1815 if (IS_ERR(di)) 1816 return PTR_ERR(di); 1817 1818 if (di) { 1819 /* not unique, try again */ 1820 idx++; 1821 continue; 1822 } 1823 /* unique */ 1824 break; 1825 } 1826 1827 return fs_path_add(dest, tmp, len); 1828 } 1829 1830 enum inode_state { 1831 inode_state_no_change, 1832 inode_state_will_create, 1833 inode_state_did_create, 1834 inode_state_will_delete, 1835 inode_state_did_delete, 1836 }; 1837 1838 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1839 u64 *send_gen, u64 *parent_gen) 1840 { 1841 int ret; 1842 int left_ret; 1843 int right_ret; 1844 u64 left_gen; 1845 u64 right_gen = 0; 1846 struct btrfs_inode_info info; 1847 1848 ret = get_inode_info(sctx->send_root, ino, &info); 1849 if (ret < 0 && ret != -ENOENT) 1850 return ret; 1851 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1852 left_gen = info.gen; 1853 if (send_gen) 1854 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1855 1856 if (!sctx->parent_root) { 1857 right_ret = -ENOENT; 1858 } else { 1859 ret = get_inode_info(sctx->parent_root, ino, &info); 1860 if (ret < 0 && ret != -ENOENT) 1861 return ret; 1862 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1863 right_gen = info.gen; 1864 if (parent_gen) 1865 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1866 } 1867 1868 if (!left_ret && !right_ret) { 1869 if (left_gen == gen && right_gen == gen) { 1870 ret = inode_state_no_change; 1871 } else if (left_gen == gen) { 1872 if (ino < sctx->send_progress) 1873 ret = inode_state_did_create; 1874 else 1875 ret = inode_state_will_create; 1876 } else if (right_gen == gen) { 1877 if (ino < sctx->send_progress) 1878 ret = inode_state_did_delete; 1879 else 1880 ret = inode_state_will_delete; 1881 } else { 1882 ret = -ENOENT; 1883 } 1884 } else if (!left_ret) { 1885 if (left_gen == gen) { 1886 if (ino < sctx->send_progress) 1887 ret = inode_state_did_create; 1888 else 1889 ret = inode_state_will_create; 1890 } else { 1891 ret = -ENOENT; 1892 } 1893 } else if (!right_ret) { 1894 if (right_gen == gen) { 1895 if (ino < sctx->send_progress) 1896 ret = inode_state_did_delete; 1897 else 1898 ret = inode_state_will_delete; 1899 } else { 1900 ret = -ENOENT; 1901 } 1902 } else { 1903 ret = -ENOENT; 1904 } 1905 1906 return ret; 1907 } 1908 1909 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1910 u64 *send_gen, u64 *parent_gen) 1911 { 1912 int ret; 1913 1914 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1915 return 1; 1916 1917 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1918 if (ret < 0) 1919 return ret; 1920 1921 if (ret == inode_state_no_change || 1922 ret == inode_state_did_create || 1923 ret == inode_state_will_delete) 1924 return 1; 1925 1926 return 0; 1927 } 1928 1929 /* 1930 * Helper function to lookup a dir item in a dir. 1931 */ 1932 static int lookup_dir_item_inode(struct btrfs_root *root, 1933 u64 dir, const char *name, int name_len, 1934 u64 *found_inode) 1935 { 1936 int ret = 0; 1937 struct btrfs_dir_item *di; 1938 struct btrfs_key key; 1939 BTRFS_PATH_AUTO_FREE(path); 1940 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1941 1942 path = alloc_path_for_send(); 1943 if (!path) 1944 return -ENOMEM; 1945 1946 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1947 if (IS_ERR_OR_NULL(di)) 1948 return di ? PTR_ERR(di) : -ENOENT; 1949 1950 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1951 if (key.type == BTRFS_ROOT_ITEM_KEY) 1952 return -ENOENT; 1953 1954 *found_inode = key.objectid; 1955 1956 return ret; 1957 } 1958 1959 /* 1960 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1961 * generation of the parent dir and the name of the dir entry. 1962 */ 1963 static int get_first_ref(struct btrfs_root *root, u64 ino, 1964 u64 *dir, u64 *dir_gen, struct fs_path *name) 1965 { 1966 int ret; 1967 struct btrfs_key key; 1968 struct btrfs_key found_key; 1969 BTRFS_PATH_AUTO_FREE(path); 1970 int len; 1971 u64 parent_dir; 1972 1973 path = alloc_path_for_send(); 1974 if (!path) 1975 return -ENOMEM; 1976 1977 key.objectid = ino; 1978 key.type = BTRFS_INODE_REF_KEY; 1979 key.offset = 0; 1980 1981 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1982 if (ret < 0) 1983 return ret; 1984 if (!ret) 1985 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1986 path->slots[0]); 1987 if (ret || found_key.objectid != ino || 1988 (found_key.type != BTRFS_INODE_REF_KEY && 1989 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1990 return -ENOENT; 1991 1992 if (found_key.type == BTRFS_INODE_REF_KEY) { 1993 struct btrfs_inode_ref *iref; 1994 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1995 struct btrfs_inode_ref); 1996 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1997 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 1998 (unsigned long)(iref + 1), 1999 len); 2000 parent_dir = found_key.offset; 2001 } else { 2002 struct btrfs_inode_extref *extref; 2003 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2004 struct btrfs_inode_extref); 2005 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2006 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2007 (unsigned long)&extref->name, len); 2008 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2009 } 2010 if (ret < 0) 2011 return ret; 2012 btrfs_release_path(path); 2013 2014 if (dir_gen) { 2015 ret = get_inode_gen(root, parent_dir, dir_gen); 2016 if (ret < 0) 2017 return ret; 2018 } 2019 2020 *dir = parent_dir; 2021 2022 return ret; 2023 } 2024 2025 static int is_first_ref(struct btrfs_root *root, 2026 u64 ino, u64 dir, 2027 const char *name, int name_len) 2028 { 2029 int ret; 2030 struct fs_path *tmp_name; 2031 u64 tmp_dir; 2032 2033 tmp_name = fs_path_alloc(); 2034 if (!tmp_name) 2035 return -ENOMEM; 2036 2037 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2038 if (ret < 0) 2039 goto out; 2040 2041 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2042 ret = 0; 2043 goto out; 2044 } 2045 2046 ret = !memcmp(tmp_name->start, name, name_len); 2047 2048 out: 2049 fs_path_free(tmp_name); 2050 return ret; 2051 } 2052 2053 /* 2054 * Used by process_recorded_refs to determine if a new ref would overwrite an 2055 * already existing ref. In case it detects an overwrite, it returns the 2056 * inode/gen in who_ino/who_gen. 2057 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2058 * to make sure later references to the overwritten inode are possible. 2059 * Orphanizing is however only required for the first ref of an inode. 2060 * process_recorded_refs does an additional is_first_ref check to see if 2061 * orphanizing is really required. 2062 */ 2063 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2064 const char *name, int name_len, 2065 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2066 { 2067 int ret; 2068 u64 parent_root_dir_gen; 2069 u64 other_inode = 0; 2070 struct btrfs_inode_info info; 2071 2072 if (!sctx->parent_root) 2073 return 0; 2074 2075 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2076 if (ret <= 0) 2077 return 0; 2078 2079 /* 2080 * If we have a parent root we need to verify that the parent dir was 2081 * not deleted and then re-created, if it was then we have no overwrite 2082 * and we can just unlink this entry. 2083 * 2084 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2085 * parent root. 2086 */ 2087 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2088 parent_root_dir_gen != dir_gen) 2089 return 0; 2090 2091 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2092 &other_inode); 2093 if (ret == -ENOENT) 2094 return 0; 2095 else if (ret < 0) 2096 return ret; 2097 2098 /* 2099 * Check if the overwritten ref was already processed. If yes, the ref 2100 * was already unlinked/moved, so we can safely assume that we will not 2101 * overwrite anything at this point in time. 2102 */ 2103 if (other_inode > sctx->send_progress || 2104 is_waiting_for_move(sctx, other_inode)) { 2105 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2106 if (ret < 0) 2107 return ret; 2108 2109 *who_ino = other_inode; 2110 *who_gen = info.gen; 2111 *who_mode = info.mode; 2112 return 1; 2113 } 2114 2115 return 0; 2116 } 2117 2118 /* 2119 * Checks if the ref was overwritten by an already processed inode. This is 2120 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2121 * thus the orphan name needs be used. 2122 * process_recorded_refs also uses it to avoid unlinking of refs that were 2123 * overwritten. 2124 */ 2125 static int did_overwrite_ref(struct send_ctx *sctx, 2126 u64 dir, u64 dir_gen, 2127 u64 ino, u64 ino_gen, 2128 const char *name, int name_len) 2129 { 2130 int ret; 2131 u64 ow_inode; 2132 u64 ow_gen = 0; 2133 u64 send_root_dir_gen; 2134 2135 if (!sctx->parent_root) 2136 return 0; 2137 2138 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2139 if (ret <= 0) 2140 return ret; 2141 2142 /* 2143 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2144 * send root. 2145 */ 2146 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2147 return 0; 2148 2149 /* check if the ref was overwritten by another ref */ 2150 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2151 &ow_inode); 2152 if (ret == -ENOENT) { 2153 /* was never and will never be overwritten */ 2154 return 0; 2155 } else if (ret < 0) { 2156 return ret; 2157 } 2158 2159 if (ow_inode == ino) { 2160 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2161 if (ret < 0) 2162 return ret; 2163 2164 /* It's the same inode, so no overwrite happened. */ 2165 if (ow_gen == ino_gen) 2166 return 0; 2167 } 2168 2169 /* 2170 * We know that it is or will be overwritten. Check this now. 2171 * The current inode being processed might have been the one that caused 2172 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2173 * the current inode being processed. 2174 */ 2175 if (ow_inode < sctx->send_progress) 2176 return 1; 2177 2178 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2179 if (ow_gen == 0) { 2180 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2181 if (ret < 0) 2182 return ret; 2183 } 2184 if (ow_gen == sctx->cur_inode_gen) 2185 return 1; 2186 } 2187 2188 return 0; 2189 } 2190 2191 /* 2192 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2193 * that got overwritten. This is used by process_recorded_refs to determine 2194 * if it has to use the path as returned by get_cur_path or the orphan name. 2195 */ 2196 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2197 { 2198 int ret = 0; 2199 struct fs_path *name = NULL; 2200 u64 dir; 2201 u64 dir_gen; 2202 2203 if (!sctx->parent_root) 2204 goto out; 2205 2206 name = fs_path_alloc(); 2207 if (!name) 2208 return -ENOMEM; 2209 2210 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2211 if (ret < 0) 2212 goto out; 2213 2214 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2215 name->start, fs_path_len(name)); 2216 2217 out: 2218 fs_path_free(name); 2219 return ret; 2220 } 2221 2222 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2223 u64 ino, u64 gen) 2224 { 2225 struct btrfs_lru_cache_entry *entry; 2226 2227 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2228 if (!entry) 2229 return NULL; 2230 2231 return container_of(entry, struct name_cache_entry, entry); 2232 } 2233 2234 /* 2235 * Used by get_cur_path for each ref up to the root. 2236 * Returns 0 if it succeeded. 2237 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2238 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2239 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2240 * Returns <0 in case of error. 2241 */ 2242 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2243 u64 ino, u64 gen, 2244 u64 *parent_ino, 2245 u64 *parent_gen, 2246 struct fs_path *dest) 2247 { 2248 int ret; 2249 int nce_ret; 2250 struct name_cache_entry *nce; 2251 2252 /* 2253 * First check if we already did a call to this function with the same 2254 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2255 * return the cached result. 2256 */ 2257 nce = name_cache_search(sctx, ino, gen); 2258 if (nce) { 2259 if (ino < sctx->send_progress && nce->need_later_update) { 2260 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2261 nce = NULL; 2262 } else { 2263 *parent_ino = nce->parent_ino; 2264 *parent_gen = nce->parent_gen; 2265 ret = fs_path_add(dest, nce->name, nce->name_len); 2266 if (ret < 0) 2267 return ret; 2268 return nce->ret; 2269 } 2270 } 2271 2272 /* 2273 * If the inode is not existent yet, add the orphan name and return 1. 2274 * This should only happen for the parent dir that we determine in 2275 * record_new_ref_if_needed(). 2276 */ 2277 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2278 if (ret < 0) 2279 return ret; 2280 2281 if (!ret) { 2282 ret = gen_unique_name(sctx, ino, gen, dest); 2283 if (ret < 0) 2284 return ret; 2285 ret = 1; 2286 goto out_cache; 2287 } 2288 2289 /* 2290 * Depending on whether the inode was already processed or not, use 2291 * send_root or parent_root for ref lookup. 2292 */ 2293 if (ino < sctx->send_progress) 2294 ret = get_first_ref(sctx->send_root, ino, 2295 parent_ino, parent_gen, dest); 2296 else 2297 ret = get_first_ref(sctx->parent_root, ino, 2298 parent_ino, parent_gen, dest); 2299 if (ret < 0) 2300 return ret; 2301 2302 /* 2303 * Check if the ref was overwritten by an inode's ref that was processed 2304 * earlier. If yes, treat as orphan and return 1. 2305 */ 2306 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2307 dest->start, fs_path_len(dest)); 2308 if (ret < 0) 2309 return ret; 2310 if (ret) { 2311 fs_path_reset(dest); 2312 ret = gen_unique_name(sctx, ino, gen, dest); 2313 if (ret < 0) 2314 return ret; 2315 ret = 1; 2316 } 2317 2318 out_cache: 2319 /* 2320 * Store the result of the lookup in the name cache. 2321 */ 2322 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2323 if (!nce) 2324 return -ENOMEM; 2325 2326 nce->entry.key = ino; 2327 nce->entry.gen = gen; 2328 nce->parent_ino = *parent_ino; 2329 nce->parent_gen = *parent_gen; 2330 nce->name_len = fs_path_len(dest); 2331 nce->ret = ret; 2332 memcpy(nce->name, dest->start, nce->name_len); 2333 2334 if (ino < sctx->send_progress) 2335 nce->need_later_update = 0; 2336 else 2337 nce->need_later_update = 1; 2338 2339 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2340 if (nce_ret < 0) { 2341 kfree(nce); 2342 return nce_ret; 2343 } 2344 2345 return ret; 2346 } 2347 2348 /* 2349 * Magic happens here. This function returns the first ref to an inode as it 2350 * would look like while receiving the stream at this point in time. 2351 * We walk the path up to the root. For every inode in between, we check if it 2352 * was already processed/sent. If yes, we continue with the parent as found 2353 * in send_root. If not, we continue with the parent as found in parent_root. 2354 * If we encounter an inode that was deleted at this point in time, we use the 2355 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2356 * that were not created yet and overwritten inodes/refs. 2357 * 2358 * When do we have orphan inodes: 2359 * 1. When an inode is freshly created and thus no valid refs are available yet 2360 * 2. When a directory lost all it's refs (deleted) but still has dir items 2361 * inside which were not processed yet (pending for move/delete). If anyone 2362 * tried to get the path to the dir items, it would get a path inside that 2363 * orphan directory. 2364 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2365 * of an unprocessed inode. If in that case the first ref would be 2366 * overwritten, the overwritten inode gets "orphanized". Later when we 2367 * process this overwritten inode, it is restored at a new place by moving 2368 * the orphan inode. 2369 * 2370 * sctx->send_progress tells this function at which point in time receiving 2371 * would be. 2372 */ 2373 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2374 struct fs_path *dest) 2375 { 2376 int ret = 0; 2377 struct fs_path *name = NULL; 2378 u64 parent_inode = 0; 2379 u64 parent_gen = 0; 2380 int stop = 0; 2381 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); 2382 2383 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { 2384 if (dest != &sctx->cur_inode_path) 2385 return fs_path_copy(dest, &sctx->cur_inode_path); 2386 2387 return 0; 2388 } 2389 2390 name = fs_path_alloc(); 2391 if (!name) { 2392 ret = -ENOMEM; 2393 goto out; 2394 } 2395 2396 dest->reversed = 1; 2397 fs_path_reset(dest); 2398 2399 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2400 struct waiting_dir_move *wdm; 2401 2402 fs_path_reset(name); 2403 2404 if (is_waiting_for_rm(sctx, ino, gen)) { 2405 ret = gen_unique_name(sctx, ino, gen, name); 2406 if (ret < 0) 2407 goto out; 2408 ret = fs_path_add_path(dest, name); 2409 break; 2410 } 2411 2412 wdm = get_waiting_dir_move(sctx, ino); 2413 if (wdm && wdm->orphanized) { 2414 ret = gen_unique_name(sctx, ino, gen, name); 2415 stop = 1; 2416 } else if (wdm) { 2417 ret = get_first_ref(sctx->parent_root, ino, 2418 &parent_inode, &parent_gen, name); 2419 } else { 2420 ret = __get_cur_name_and_parent(sctx, ino, gen, 2421 &parent_inode, 2422 &parent_gen, name); 2423 if (ret) 2424 stop = 1; 2425 } 2426 2427 if (ret < 0) 2428 goto out; 2429 2430 ret = fs_path_add_path(dest, name); 2431 if (ret < 0) 2432 goto out; 2433 2434 ino = parent_inode; 2435 gen = parent_gen; 2436 } 2437 2438 out: 2439 fs_path_free(name); 2440 if (!ret) { 2441 fs_path_unreverse(dest); 2442 if (is_cur_inode && dest != &sctx->cur_inode_path) 2443 ret = fs_path_copy(&sctx->cur_inode_path, dest); 2444 } 2445 2446 return ret; 2447 } 2448 2449 /* 2450 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2451 */ 2452 static int send_subvol_begin(struct send_ctx *sctx) 2453 { 2454 int ret; 2455 struct btrfs_root *send_root = sctx->send_root; 2456 struct btrfs_root *parent_root = sctx->parent_root; 2457 BTRFS_PATH_AUTO_FREE(path); 2458 struct btrfs_key key; 2459 struct btrfs_root_ref *ref; 2460 struct extent_buffer *leaf; 2461 char *name = NULL; 2462 int namelen; 2463 2464 path = btrfs_alloc_path(); 2465 if (!path) 2466 return -ENOMEM; 2467 2468 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2469 if (!name) 2470 return -ENOMEM; 2471 2472 key.objectid = btrfs_root_id(send_root); 2473 key.type = BTRFS_ROOT_BACKREF_KEY; 2474 key.offset = 0; 2475 2476 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2477 &key, path, 1, 0); 2478 if (ret < 0) 2479 goto out; 2480 if (ret) { 2481 ret = -ENOENT; 2482 goto out; 2483 } 2484 2485 leaf = path->nodes[0]; 2486 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2487 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2488 key.objectid != btrfs_root_id(send_root)) { 2489 ret = -ENOENT; 2490 goto out; 2491 } 2492 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2493 namelen = btrfs_root_ref_name_len(leaf, ref); 2494 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2495 btrfs_release_path(path); 2496 2497 if (parent_root) { 2498 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2499 if (ret < 0) 2500 goto out; 2501 } else { 2502 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2503 if (ret < 0) 2504 goto out; 2505 } 2506 2507 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2508 2509 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2510 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2511 sctx->send_root->root_item.received_uuid); 2512 else 2513 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2514 sctx->send_root->root_item.uuid); 2515 2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2517 btrfs_root_ctransid(&sctx->send_root->root_item)); 2518 if (parent_root) { 2519 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2520 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2521 parent_root->root_item.received_uuid); 2522 else 2523 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2524 parent_root->root_item.uuid); 2525 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2526 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2527 } 2528 2529 ret = send_cmd(sctx); 2530 2531 tlv_put_failure: 2532 out: 2533 kfree(name); 2534 return ret; 2535 } 2536 2537 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) 2538 { 2539 if (fs_path_len(&sctx->cur_inode_path) == 0) { 2540 int ret; 2541 2542 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2543 &sctx->cur_inode_path); 2544 if (ret < 0) 2545 return ERR_PTR(ret); 2546 } 2547 2548 return &sctx->cur_inode_path; 2549 } 2550 2551 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) 2552 { 2553 struct fs_path *path; 2554 int ret; 2555 2556 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 2557 return get_cur_inode_path(sctx); 2558 2559 path = fs_path_alloc(); 2560 if (!path) 2561 return ERR_PTR(-ENOMEM); 2562 2563 ret = get_cur_path(sctx, ino, gen, path); 2564 if (ret < 0) { 2565 fs_path_free(path); 2566 return ERR_PTR(ret); 2567 } 2568 2569 return path; 2570 } 2571 2572 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) 2573 { 2574 if (path != &sctx->cur_inode_path) 2575 fs_path_free(path); 2576 } 2577 2578 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2579 { 2580 int ret = 0; 2581 struct fs_path *p; 2582 2583 p = get_path_for_command(sctx, ino, gen); 2584 if (IS_ERR(p)) 2585 return PTR_ERR(p); 2586 2587 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2588 if (ret < 0) 2589 goto out; 2590 2591 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2592 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2593 2594 ret = send_cmd(sctx); 2595 2596 tlv_put_failure: 2597 out: 2598 free_path_for_command(sctx, p); 2599 return ret; 2600 } 2601 2602 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2603 { 2604 int ret = 0; 2605 struct fs_path *p; 2606 2607 p = get_path_for_command(sctx, ino, gen); 2608 if (IS_ERR(p)) 2609 return PTR_ERR(p); 2610 2611 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2612 if (ret < 0) 2613 goto out; 2614 2615 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2616 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2617 2618 ret = send_cmd(sctx); 2619 2620 tlv_put_failure: 2621 out: 2622 free_path_for_command(sctx, p); 2623 return ret; 2624 } 2625 2626 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2627 { 2628 int ret = 0; 2629 struct fs_path *p; 2630 2631 if (sctx->proto < 2) 2632 return 0; 2633 2634 p = get_path_for_command(sctx, ino, gen); 2635 if (IS_ERR(p)) 2636 return PTR_ERR(p); 2637 2638 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2639 if (ret < 0) 2640 goto out; 2641 2642 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2643 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2644 2645 ret = send_cmd(sctx); 2646 2647 tlv_put_failure: 2648 out: 2649 free_path_for_command(sctx, p); 2650 return ret; 2651 } 2652 2653 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2654 { 2655 int ret = 0; 2656 struct fs_path *p; 2657 2658 p = get_path_for_command(sctx, ino, gen); 2659 if (IS_ERR(p)) 2660 return PTR_ERR(p); 2661 2662 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2663 if (ret < 0) 2664 goto out; 2665 2666 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2667 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2668 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2669 2670 ret = send_cmd(sctx); 2671 2672 tlv_put_failure: 2673 out: 2674 free_path_for_command(sctx, p); 2675 return ret; 2676 } 2677 2678 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2679 { 2680 int ret = 0; 2681 struct fs_path *p = NULL; 2682 struct btrfs_inode_item *ii; 2683 BTRFS_PATH_AUTO_FREE(path); 2684 struct extent_buffer *eb; 2685 struct btrfs_key key; 2686 int slot; 2687 2688 p = get_path_for_command(sctx, ino, gen); 2689 if (IS_ERR(p)) 2690 return PTR_ERR(p); 2691 2692 path = alloc_path_for_send(); 2693 if (!path) { 2694 ret = -ENOMEM; 2695 goto out; 2696 } 2697 2698 key.objectid = ino; 2699 key.type = BTRFS_INODE_ITEM_KEY; 2700 key.offset = 0; 2701 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2702 if (ret > 0) 2703 ret = -ENOENT; 2704 if (ret < 0) 2705 goto out; 2706 2707 eb = path->nodes[0]; 2708 slot = path->slots[0]; 2709 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2710 2711 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2712 if (ret < 0) 2713 goto out; 2714 2715 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2716 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2717 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2718 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2719 if (sctx->proto >= 2) 2720 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2721 2722 ret = send_cmd(sctx); 2723 2724 tlv_put_failure: 2725 out: 2726 free_path_for_command(sctx, p); 2727 return ret; 2728 } 2729 2730 /* 2731 * If the cache is full, we can't remove entries from it and do a call to 2732 * send_utimes() for each respective inode, because we might be finishing 2733 * processing an inode that is a directory and it just got renamed, and existing 2734 * entries in the cache may refer to inodes that have the directory in their 2735 * full path - in which case we would generate outdated paths (pre-rename) 2736 * for the inodes that the cache entries point to. Instead of pruning the 2737 * cache when inserting, do it after we finish processing each inode at 2738 * finish_inode_if_needed(). 2739 */ 2740 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2741 { 2742 struct btrfs_lru_cache_entry *entry; 2743 int ret; 2744 2745 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2746 if (entry != NULL) 2747 return 0; 2748 2749 /* Caching is optional, don't fail if we can't allocate memory. */ 2750 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2751 if (!entry) 2752 return send_utimes(sctx, dir, gen); 2753 2754 entry->key = dir; 2755 entry->gen = gen; 2756 2757 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2758 ASSERT(ret != -EEXIST); 2759 if (ret) { 2760 kfree(entry); 2761 return send_utimes(sctx, dir, gen); 2762 } 2763 2764 return 0; 2765 } 2766 2767 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2768 { 2769 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2770 struct btrfs_lru_cache_entry *lru; 2771 int ret; 2772 2773 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2774 ASSERT(lru != NULL); 2775 2776 ret = send_utimes(sctx, lru->key, lru->gen); 2777 if (ret) 2778 return ret; 2779 2780 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2781 } 2782 2783 return 0; 2784 } 2785 2786 /* 2787 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2788 * a valid path yet because we did not process the refs yet. So, the inode 2789 * is created as orphan. 2790 */ 2791 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2792 { 2793 int ret = 0; 2794 struct fs_path *p; 2795 int cmd; 2796 struct btrfs_inode_info info; 2797 u64 gen; 2798 u64 mode; 2799 u64 rdev; 2800 2801 p = fs_path_alloc(); 2802 if (!p) 2803 return -ENOMEM; 2804 2805 if (ino != sctx->cur_ino) { 2806 ret = get_inode_info(sctx->send_root, ino, &info); 2807 if (ret < 0) 2808 goto out; 2809 gen = info.gen; 2810 mode = info.mode; 2811 rdev = info.rdev; 2812 } else { 2813 gen = sctx->cur_inode_gen; 2814 mode = sctx->cur_inode_mode; 2815 rdev = sctx->cur_inode_rdev; 2816 } 2817 2818 if (S_ISREG(mode)) { 2819 cmd = BTRFS_SEND_C_MKFILE; 2820 } else if (S_ISDIR(mode)) { 2821 cmd = BTRFS_SEND_C_MKDIR; 2822 } else if (S_ISLNK(mode)) { 2823 cmd = BTRFS_SEND_C_SYMLINK; 2824 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2825 cmd = BTRFS_SEND_C_MKNOD; 2826 } else if (S_ISFIFO(mode)) { 2827 cmd = BTRFS_SEND_C_MKFIFO; 2828 } else if (S_ISSOCK(mode)) { 2829 cmd = BTRFS_SEND_C_MKSOCK; 2830 } else { 2831 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2832 (int)(mode & S_IFMT)); 2833 ret = -EOPNOTSUPP; 2834 goto out; 2835 } 2836 2837 ret = begin_cmd(sctx, cmd); 2838 if (ret < 0) 2839 goto out; 2840 2841 ret = gen_unique_name(sctx, ino, gen, p); 2842 if (ret < 0) 2843 goto out; 2844 2845 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2846 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2847 2848 if (S_ISLNK(mode)) { 2849 fs_path_reset(p); 2850 ret = read_symlink(sctx->send_root, ino, p); 2851 if (ret < 0) 2852 goto out; 2853 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2854 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2855 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2856 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2857 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2858 } 2859 2860 ret = send_cmd(sctx); 2861 if (ret < 0) 2862 goto out; 2863 2864 2865 tlv_put_failure: 2866 out: 2867 fs_path_free(p); 2868 return ret; 2869 } 2870 2871 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2872 { 2873 struct btrfs_lru_cache_entry *entry; 2874 int ret; 2875 2876 /* Caching is optional, ignore any failures. */ 2877 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2878 if (!entry) 2879 return; 2880 2881 entry->key = dir; 2882 entry->gen = 0; 2883 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2884 if (ret < 0) 2885 kfree(entry); 2886 } 2887 2888 /* 2889 * We need some special handling for inodes that get processed before the parent 2890 * directory got created. See process_recorded_refs for details. 2891 * This function does the check if we already created the dir out of order. 2892 */ 2893 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2894 { 2895 int ret = 0; 2896 int iter_ret = 0; 2897 BTRFS_PATH_AUTO_FREE(path); 2898 struct btrfs_key key; 2899 struct btrfs_key found_key; 2900 struct btrfs_key di_key; 2901 struct btrfs_dir_item *di; 2902 2903 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2904 return 1; 2905 2906 path = alloc_path_for_send(); 2907 if (!path) 2908 return -ENOMEM; 2909 2910 key.objectid = dir; 2911 key.type = BTRFS_DIR_INDEX_KEY; 2912 key.offset = 0; 2913 2914 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2915 struct extent_buffer *eb = path->nodes[0]; 2916 2917 if (found_key.objectid != key.objectid || 2918 found_key.type != key.type) { 2919 ret = 0; 2920 break; 2921 } 2922 2923 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2924 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2925 2926 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2927 di_key.objectid < sctx->send_progress) { 2928 ret = 1; 2929 cache_dir_created(sctx, dir); 2930 break; 2931 } 2932 } 2933 /* Catch error found during iteration */ 2934 if (iter_ret < 0) 2935 ret = iter_ret; 2936 2937 return ret; 2938 } 2939 2940 /* 2941 * Only creates the inode if it is: 2942 * 1. Not a directory 2943 * 2. Or a directory which was not created already due to out of order 2944 * directories. See did_create_dir and process_recorded_refs for details. 2945 */ 2946 static int send_create_inode_if_needed(struct send_ctx *sctx) 2947 { 2948 int ret; 2949 2950 if (S_ISDIR(sctx->cur_inode_mode)) { 2951 ret = did_create_dir(sctx, sctx->cur_ino); 2952 if (ret < 0) 2953 return ret; 2954 else if (ret > 0) 2955 return 0; 2956 } 2957 2958 ret = send_create_inode(sctx, sctx->cur_ino); 2959 2960 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 2961 cache_dir_created(sctx, sctx->cur_ino); 2962 2963 return ret; 2964 } 2965 2966 struct recorded_ref { 2967 struct list_head list; 2968 char *name; 2969 struct fs_path *full_path; 2970 u64 dir; 2971 u64 dir_gen; 2972 int name_len; 2973 struct rb_node node; 2974 struct rb_root *root; 2975 }; 2976 2977 static struct recorded_ref *recorded_ref_alloc(void) 2978 { 2979 struct recorded_ref *ref; 2980 2981 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2982 if (!ref) 2983 return NULL; 2984 RB_CLEAR_NODE(&ref->node); 2985 INIT_LIST_HEAD(&ref->list); 2986 return ref; 2987 } 2988 2989 static void recorded_ref_free(struct recorded_ref *ref) 2990 { 2991 if (!ref) 2992 return; 2993 if (!RB_EMPTY_NODE(&ref->node)) 2994 rb_erase(&ref->node, ref->root); 2995 list_del(&ref->list); 2996 fs_path_free(ref->full_path); 2997 kfree(ref); 2998 } 2999 3000 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3001 { 3002 ref->full_path = path; 3003 ref->name = (char *)kbasename(ref->full_path->start); 3004 ref->name_len = ref->full_path->end - ref->name; 3005 } 3006 3007 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3008 { 3009 struct recorded_ref *new; 3010 3011 new = recorded_ref_alloc(); 3012 if (!new) 3013 return -ENOMEM; 3014 3015 new->dir = ref->dir; 3016 new->dir_gen = ref->dir_gen; 3017 list_add_tail(&new->list, list); 3018 return 0; 3019 } 3020 3021 static void __free_recorded_refs(struct list_head *head) 3022 { 3023 struct recorded_ref *cur; 3024 3025 while (!list_empty(head)) { 3026 cur = list_first_entry(head, struct recorded_ref, list); 3027 recorded_ref_free(cur); 3028 } 3029 } 3030 3031 static void free_recorded_refs(struct send_ctx *sctx) 3032 { 3033 __free_recorded_refs(&sctx->new_refs); 3034 __free_recorded_refs(&sctx->deleted_refs); 3035 } 3036 3037 /* 3038 * Renames/moves a file/dir to its orphan name. Used when the first 3039 * ref of an unprocessed inode gets overwritten and for all non empty 3040 * directories. 3041 */ 3042 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3043 struct fs_path *path) 3044 { 3045 int ret; 3046 struct fs_path *orphan; 3047 3048 orphan = fs_path_alloc(); 3049 if (!orphan) 3050 return -ENOMEM; 3051 3052 ret = gen_unique_name(sctx, ino, gen, orphan); 3053 if (ret < 0) 3054 goto out; 3055 3056 ret = send_rename(sctx, path, orphan); 3057 if (ret < 0) 3058 goto out; 3059 3060 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 3061 ret = fs_path_copy(&sctx->cur_inode_path, orphan); 3062 3063 out: 3064 fs_path_free(orphan); 3065 return ret; 3066 } 3067 3068 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3069 u64 dir_ino, u64 dir_gen) 3070 { 3071 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3072 struct rb_node *parent = NULL; 3073 struct orphan_dir_info *entry, *odi; 3074 3075 while (*p) { 3076 parent = *p; 3077 entry = rb_entry(parent, struct orphan_dir_info, node); 3078 if (dir_ino < entry->ino) 3079 p = &(*p)->rb_left; 3080 else if (dir_ino > entry->ino) 3081 p = &(*p)->rb_right; 3082 else if (dir_gen < entry->gen) 3083 p = &(*p)->rb_left; 3084 else if (dir_gen > entry->gen) 3085 p = &(*p)->rb_right; 3086 else 3087 return entry; 3088 } 3089 3090 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3091 if (!odi) 3092 return ERR_PTR(-ENOMEM); 3093 odi->ino = dir_ino; 3094 odi->gen = dir_gen; 3095 odi->last_dir_index_offset = 0; 3096 odi->dir_high_seq_ino = 0; 3097 3098 rb_link_node(&odi->node, parent, p); 3099 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3100 return odi; 3101 } 3102 3103 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3104 u64 dir_ino, u64 gen) 3105 { 3106 struct rb_node *n = sctx->orphan_dirs.rb_node; 3107 struct orphan_dir_info *entry; 3108 3109 while (n) { 3110 entry = rb_entry(n, struct orphan_dir_info, node); 3111 if (dir_ino < entry->ino) 3112 n = n->rb_left; 3113 else if (dir_ino > entry->ino) 3114 n = n->rb_right; 3115 else if (gen < entry->gen) 3116 n = n->rb_left; 3117 else if (gen > entry->gen) 3118 n = n->rb_right; 3119 else 3120 return entry; 3121 } 3122 return NULL; 3123 } 3124 3125 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3126 { 3127 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3128 3129 return odi != NULL; 3130 } 3131 3132 static void free_orphan_dir_info(struct send_ctx *sctx, 3133 struct orphan_dir_info *odi) 3134 { 3135 if (!odi) 3136 return; 3137 rb_erase(&odi->node, &sctx->orphan_dirs); 3138 kfree(odi); 3139 } 3140 3141 /* 3142 * Returns 1 if a directory can be removed at this point in time. 3143 * We check this by iterating all dir items and checking if the inode behind 3144 * the dir item was already processed. 3145 */ 3146 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3147 { 3148 int ret = 0; 3149 int iter_ret = 0; 3150 struct btrfs_root *root = sctx->parent_root; 3151 struct btrfs_path *path; 3152 struct btrfs_key key; 3153 struct btrfs_key found_key; 3154 struct btrfs_key loc; 3155 struct btrfs_dir_item *di; 3156 struct orphan_dir_info *odi = NULL; 3157 u64 dir_high_seq_ino = 0; 3158 u64 last_dir_index_offset = 0; 3159 3160 /* 3161 * Don't try to rmdir the top/root subvolume dir. 3162 */ 3163 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3164 return 0; 3165 3166 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3167 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3168 return 0; 3169 3170 path = alloc_path_for_send(); 3171 if (!path) 3172 return -ENOMEM; 3173 3174 if (!odi) { 3175 /* 3176 * Find the inode number associated with the last dir index 3177 * entry. This is very likely the inode with the highest number 3178 * of all inodes that have an entry in the directory. We can 3179 * then use it to avoid future calls to can_rmdir(), when 3180 * processing inodes with a lower number, from having to search 3181 * the parent root b+tree for dir index keys. 3182 */ 3183 key.objectid = dir; 3184 key.type = BTRFS_DIR_INDEX_KEY; 3185 key.offset = (u64)-1; 3186 3187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3188 if (ret < 0) { 3189 goto out; 3190 } else if (ret > 0) { 3191 /* Can't happen, the root is never empty. */ 3192 ASSERT(path->slots[0] > 0); 3193 if (WARN_ON(path->slots[0] == 0)) { 3194 ret = -EUCLEAN; 3195 goto out; 3196 } 3197 path->slots[0]--; 3198 } 3199 3200 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3201 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3202 /* No index keys, dir can be removed. */ 3203 ret = 1; 3204 goto out; 3205 } 3206 3207 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3208 struct btrfs_dir_item); 3209 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3210 dir_high_seq_ino = loc.objectid; 3211 if (sctx->cur_ino < dir_high_seq_ino) { 3212 ret = 0; 3213 goto out; 3214 } 3215 3216 btrfs_release_path(path); 3217 } 3218 3219 key.objectid = dir; 3220 key.type = BTRFS_DIR_INDEX_KEY; 3221 key.offset = (odi ? odi->last_dir_index_offset : 0); 3222 3223 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3224 struct waiting_dir_move *dm; 3225 3226 if (found_key.objectid != key.objectid || 3227 found_key.type != key.type) 3228 break; 3229 3230 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3231 struct btrfs_dir_item); 3232 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3233 3234 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3235 last_dir_index_offset = found_key.offset; 3236 3237 dm = get_waiting_dir_move(sctx, loc.objectid); 3238 if (dm) { 3239 dm->rmdir_ino = dir; 3240 dm->rmdir_gen = dir_gen; 3241 ret = 0; 3242 goto out; 3243 } 3244 3245 if (loc.objectid > sctx->cur_ino) { 3246 ret = 0; 3247 goto out; 3248 } 3249 } 3250 if (iter_ret < 0) { 3251 ret = iter_ret; 3252 goto out; 3253 } 3254 free_orphan_dir_info(sctx, odi); 3255 3256 ret = 1; 3257 3258 out: 3259 btrfs_free_path(path); 3260 3261 if (ret) 3262 return ret; 3263 3264 if (!odi) { 3265 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3266 if (IS_ERR(odi)) 3267 return PTR_ERR(odi); 3268 3269 odi->gen = dir_gen; 3270 } 3271 3272 odi->last_dir_index_offset = last_dir_index_offset; 3273 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3274 3275 return 0; 3276 } 3277 3278 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3279 { 3280 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3281 3282 return entry != NULL; 3283 } 3284 3285 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3286 { 3287 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3288 struct rb_node *parent = NULL; 3289 struct waiting_dir_move *entry, *dm; 3290 3291 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3292 if (!dm) 3293 return -ENOMEM; 3294 dm->ino = ino; 3295 dm->rmdir_ino = 0; 3296 dm->rmdir_gen = 0; 3297 dm->orphanized = orphanized; 3298 3299 while (*p) { 3300 parent = *p; 3301 entry = rb_entry(parent, struct waiting_dir_move, node); 3302 if (ino < entry->ino) { 3303 p = &(*p)->rb_left; 3304 } else if (ino > entry->ino) { 3305 p = &(*p)->rb_right; 3306 } else { 3307 kfree(dm); 3308 return -EEXIST; 3309 } 3310 } 3311 3312 rb_link_node(&dm->node, parent, p); 3313 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3314 return 0; 3315 } 3316 3317 static struct waiting_dir_move * 3318 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3319 { 3320 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3321 struct waiting_dir_move *entry; 3322 3323 while (n) { 3324 entry = rb_entry(n, struct waiting_dir_move, node); 3325 if (ino < entry->ino) 3326 n = n->rb_left; 3327 else if (ino > entry->ino) 3328 n = n->rb_right; 3329 else 3330 return entry; 3331 } 3332 return NULL; 3333 } 3334 3335 static void free_waiting_dir_move(struct send_ctx *sctx, 3336 struct waiting_dir_move *dm) 3337 { 3338 if (!dm) 3339 return; 3340 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3341 kfree(dm); 3342 } 3343 3344 static int add_pending_dir_move(struct send_ctx *sctx, 3345 u64 ino, 3346 u64 ino_gen, 3347 u64 parent_ino, 3348 struct list_head *new_refs, 3349 struct list_head *deleted_refs, 3350 const bool is_orphan) 3351 { 3352 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3353 struct rb_node *parent = NULL; 3354 struct pending_dir_move *entry = NULL, *pm; 3355 struct recorded_ref *cur; 3356 int exists = 0; 3357 int ret; 3358 3359 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3360 if (!pm) 3361 return -ENOMEM; 3362 pm->parent_ino = parent_ino; 3363 pm->ino = ino; 3364 pm->gen = ino_gen; 3365 INIT_LIST_HEAD(&pm->list); 3366 INIT_LIST_HEAD(&pm->update_refs); 3367 RB_CLEAR_NODE(&pm->node); 3368 3369 while (*p) { 3370 parent = *p; 3371 entry = rb_entry(parent, struct pending_dir_move, node); 3372 if (parent_ino < entry->parent_ino) { 3373 p = &(*p)->rb_left; 3374 } else if (parent_ino > entry->parent_ino) { 3375 p = &(*p)->rb_right; 3376 } else { 3377 exists = 1; 3378 break; 3379 } 3380 } 3381 3382 list_for_each_entry(cur, deleted_refs, list) { 3383 ret = dup_ref(cur, &pm->update_refs); 3384 if (ret < 0) 3385 goto out; 3386 } 3387 list_for_each_entry(cur, new_refs, list) { 3388 ret = dup_ref(cur, &pm->update_refs); 3389 if (ret < 0) 3390 goto out; 3391 } 3392 3393 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3394 if (ret) 3395 goto out; 3396 3397 if (exists) { 3398 list_add_tail(&pm->list, &entry->list); 3399 } else { 3400 rb_link_node(&pm->node, parent, p); 3401 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3402 } 3403 ret = 0; 3404 out: 3405 if (ret) { 3406 __free_recorded_refs(&pm->update_refs); 3407 kfree(pm); 3408 } 3409 return ret; 3410 } 3411 3412 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3413 u64 parent_ino) 3414 { 3415 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3416 struct pending_dir_move *entry; 3417 3418 while (n) { 3419 entry = rb_entry(n, struct pending_dir_move, node); 3420 if (parent_ino < entry->parent_ino) 3421 n = n->rb_left; 3422 else if (parent_ino > entry->parent_ino) 3423 n = n->rb_right; 3424 else 3425 return entry; 3426 } 3427 return NULL; 3428 } 3429 3430 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3431 u64 ino, u64 gen, u64 *ancestor_ino) 3432 { 3433 int ret = 0; 3434 u64 parent_inode = 0; 3435 u64 parent_gen = 0; 3436 u64 start_ino = ino; 3437 3438 *ancestor_ino = 0; 3439 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3440 fs_path_reset(name); 3441 3442 if (is_waiting_for_rm(sctx, ino, gen)) 3443 break; 3444 if (is_waiting_for_move(sctx, ino)) { 3445 if (*ancestor_ino == 0) 3446 *ancestor_ino = ino; 3447 ret = get_first_ref(sctx->parent_root, ino, 3448 &parent_inode, &parent_gen, name); 3449 } else { 3450 ret = __get_cur_name_and_parent(sctx, ino, gen, 3451 &parent_inode, 3452 &parent_gen, name); 3453 if (ret > 0) { 3454 ret = 0; 3455 break; 3456 } 3457 } 3458 if (ret < 0) 3459 break; 3460 if (parent_inode == start_ino) { 3461 ret = 1; 3462 if (*ancestor_ino == 0) 3463 *ancestor_ino = ino; 3464 break; 3465 } 3466 ino = parent_inode; 3467 gen = parent_gen; 3468 } 3469 return ret; 3470 } 3471 3472 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3473 { 3474 struct fs_path *from_path = NULL; 3475 struct fs_path *to_path = NULL; 3476 struct fs_path *name = NULL; 3477 u64 orig_progress = sctx->send_progress; 3478 struct recorded_ref *cur; 3479 u64 parent_ino, parent_gen; 3480 struct waiting_dir_move *dm = NULL; 3481 u64 rmdir_ino = 0; 3482 u64 rmdir_gen; 3483 u64 ancestor; 3484 bool is_orphan; 3485 int ret; 3486 3487 name = fs_path_alloc(); 3488 from_path = fs_path_alloc(); 3489 if (!name || !from_path) { 3490 ret = -ENOMEM; 3491 goto out; 3492 } 3493 3494 dm = get_waiting_dir_move(sctx, pm->ino); 3495 ASSERT(dm); 3496 rmdir_ino = dm->rmdir_ino; 3497 rmdir_gen = dm->rmdir_gen; 3498 is_orphan = dm->orphanized; 3499 free_waiting_dir_move(sctx, dm); 3500 3501 if (is_orphan) { 3502 ret = gen_unique_name(sctx, pm->ino, 3503 pm->gen, from_path); 3504 } else { 3505 ret = get_first_ref(sctx->parent_root, pm->ino, 3506 &parent_ino, &parent_gen, name); 3507 if (ret < 0) 3508 goto out; 3509 ret = get_cur_path(sctx, parent_ino, parent_gen, 3510 from_path); 3511 if (ret < 0) 3512 goto out; 3513 ret = fs_path_add_path(from_path, name); 3514 } 3515 if (ret < 0) 3516 goto out; 3517 3518 sctx->send_progress = sctx->cur_ino + 1; 3519 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3520 if (ret < 0) 3521 goto out; 3522 if (ret) { 3523 LIST_HEAD(deleted_refs); 3524 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3525 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3526 &pm->update_refs, &deleted_refs, 3527 is_orphan); 3528 if (ret < 0) 3529 goto out; 3530 if (rmdir_ino) { 3531 dm = get_waiting_dir_move(sctx, pm->ino); 3532 ASSERT(dm); 3533 dm->rmdir_ino = rmdir_ino; 3534 dm->rmdir_gen = rmdir_gen; 3535 } 3536 goto out; 3537 } 3538 fs_path_reset(name); 3539 to_path = name; 3540 name = NULL; 3541 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3542 if (ret < 0) 3543 goto out; 3544 3545 ret = send_rename(sctx, from_path, to_path); 3546 if (ret < 0) 3547 goto out; 3548 3549 if (rmdir_ino) { 3550 struct orphan_dir_info *odi; 3551 u64 gen; 3552 3553 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3554 if (!odi) { 3555 /* already deleted */ 3556 goto finish; 3557 } 3558 gen = odi->gen; 3559 3560 ret = can_rmdir(sctx, rmdir_ino, gen); 3561 if (ret < 0) 3562 goto out; 3563 if (!ret) 3564 goto finish; 3565 3566 name = fs_path_alloc(); 3567 if (!name) { 3568 ret = -ENOMEM; 3569 goto out; 3570 } 3571 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3572 if (ret < 0) 3573 goto out; 3574 ret = send_rmdir(sctx, name); 3575 if (ret < 0) 3576 goto out; 3577 } 3578 3579 finish: 3580 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3581 if (ret < 0) 3582 goto out; 3583 3584 /* 3585 * After rename/move, need to update the utimes of both new parent(s) 3586 * and old parent(s). 3587 */ 3588 list_for_each_entry(cur, &pm->update_refs, list) { 3589 /* 3590 * The parent inode might have been deleted in the send snapshot 3591 */ 3592 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3593 if (ret == -ENOENT) { 3594 ret = 0; 3595 continue; 3596 } 3597 if (ret < 0) 3598 goto out; 3599 3600 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3601 if (ret < 0) 3602 goto out; 3603 } 3604 3605 out: 3606 fs_path_free(name); 3607 fs_path_free(from_path); 3608 fs_path_free(to_path); 3609 sctx->send_progress = orig_progress; 3610 3611 return ret; 3612 } 3613 3614 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3615 { 3616 if (!list_empty(&m->list)) 3617 list_del(&m->list); 3618 if (!RB_EMPTY_NODE(&m->node)) 3619 rb_erase(&m->node, &sctx->pending_dir_moves); 3620 __free_recorded_refs(&m->update_refs); 3621 kfree(m); 3622 } 3623 3624 static void tail_append_pending_moves(struct send_ctx *sctx, 3625 struct pending_dir_move *moves, 3626 struct list_head *stack) 3627 { 3628 if (list_empty(&moves->list)) { 3629 list_add_tail(&moves->list, stack); 3630 } else { 3631 LIST_HEAD(list); 3632 list_splice_init(&moves->list, &list); 3633 list_add_tail(&moves->list, stack); 3634 list_splice_tail(&list, stack); 3635 } 3636 if (!RB_EMPTY_NODE(&moves->node)) { 3637 rb_erase(&moves->node, &sctx->pending_dir_moves); 3638 RB_CLEAR_NODE(&moves->node); 3639 } 3640 } 3641 3642 static int apply_children_dir_moves(struct send_ctx *sctx) 3643 { 3644 struct pending_dir_move *pm; 3645 LIST_HEAD(stack); 3646 u64 parent_ino = sctx->cur_ino; 3647 int ret = 0; 3648 3649 pm = get_pending_dir_moves(sctx, parent_ino); 3650 if (!pm) 3651 return 0; 3652 3653 tail_append_pending_moves(sctx, pm, &stack); 3654 3655 while (!list_empty(&stack)) { 3656 pm = list_first_entry(&stack, struct pending_dir_move, list); 3657 parent_ino = pm->ino; 3658 ret = apply_dir_move(sctx, pm); 3659 free_pending_move(sctx, pm); 3660 if (ret) 3661 goto out; 3662 pm = get_pending_dir_moves(sctx, parent_ino); 3663 if (pm) 3664 tail_append_pending_moves(sctx, pm, &stack); 3665 } 3666 return 0; 3667 3668 out: 3669 while (!list_empty(&stack)) { 3670 pm = list_first_entry(&stack, struct pending_dir_move, list); 3671 free_pending_move(sctx, pm); 3672 } 3673 return ret; 3674 } 3675 3676 /* 3677 * We might need to delay a directory rename even when no ancestor directory 3678 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3679 * renamed. This happens when we rename a directory to the old name (the name 3680 * in the parent root) of some other unrelated directory that got its rename 3681 * delayed due to some ancestor with higher number that got renamed. 3682 * 3683 * Example: 3684 * 3685 * Parent snapshot: 3686 * . (ino 256) 3687 * |---- a/ (ino 257) 3688 * | |---- file (ino 260) 3689 * | 3690 * |---- b/ (ino 258) 3691 * |---- c/ (ino 259) 3692 * 3693 * Send snapshot: 3694 * . (ino 256) 3695 * |---- a/ (ino 258) 3696 * |---- x/ (ino 259) 3697 * |---- y/ (ino 257) 3698 * |----- file (ino 260) 3699 * 3700 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3701 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3702 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3703 * must issue is: 3704 * 3705 * 1 - rename 259 from 'c' to 'x' 3706 * 2 - rename 257 from 'a' to 'x/y' 3707 * 3 - rename 258 from 'b' to 'a' 3708 * 3709 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3710 * be done right away and < 0 on error. 3711 */ 3712 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3713 struct recorded_ref *parent_ref, 3714 const bool is_orphan) 3715 { 3716 BTRFS_PATH_AUTO_FREE(path); 3717 struct btrfs_key key; 3718 struct btrfs_key di_key; 3719 struct btrfs_dir_item *di; 3720 u64 left_gen; 3721 u64 right_gen; 3722 int ret = 0; 3723 struct waiting_dir_move *wdm; 3724 3725 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3726 return 0; 3727 3728 path = alloc_path_for_send(); 3729 if (!path) 3730 return -ENOMEM; 3731 3732 key.objectid = parent_ref->dir; 3733 key.type = BTRFS_DIR_ITEM_KEY; 3734 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3735 3736 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3737 if (ret < 0) 3738 return ret; 3739 if (ret > 0) 3740 return 0; 3741 3742 di = btrfs_match_dir_item_name(path, parent_ref->name, 3743 parent_ref->name_len); 3744 if (!di) 3745 return 0; 3746 /* 3747 * di_key.objectid has the number of the inode that has a dentry in the 3748 * parent directory with the same name that sctx->cur_ino is being 3749 * renamed to. We need to check if that inode is in the send root as 3750 * well and if it is currently marked as an inode with a pending rename, 3751 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3752 * that it happens after that other inode is renamed. 3753 */ 3754 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3755 if (di_key.type != BTRFS_INODE_ITEM_KEY) 3756 return 0; 3757 3758 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3759 if (ret < 0) 3760 return ret; 3761 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3762 if (ret < 0) { 3763 if (ret == -ENOENT) 3764 ret = 0; 3765 return ret; 3766 } 3767 3768 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3769 if (right_gen != left_gen) 3770 return 0; 3771 3772 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3773 if (wdm && !wdm->orphanized) { 3774 ret = add_pending_dir_move(sctx, 3775 sctx->cur_ino, 3776 sctx->cur_inode_gen, 3777 di_key.objectid, 3778 &sctx->new_refs, 3779 &sctx->deleted_refs, 3780 is_orphan); 3781 if (!ret) 3782 ret = 1; 3783 } 3784 return ret; 3785 } 3786 3787 /* 3788 * Check if inode ino2, or any of its ancestors, is inode ino1. 3789 * Return 1 if true, 0 if false and < 0 on error. 3790 */ 3791 static int check_ino_in_path(struct btrfs_root *root, 3792 const u64 ino1, 3793 const u64 ino1_gen, 3794 const u64 ino2, 3795 const u64 ino2_gen, 3796 struct fs_path *fs_path) 3797 { 3798 u64 ino = ino2; 3799 3800 if (ino1 == ino2) 3801 return ino1_gen == ino2_gen; 3802 3803 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3804 u64 parent; 3805 u64 parent_gen; 3806 int ret; 3807 3808 fs_path_reset(fs_path); 3809 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3810 if (ret < 0) 3811 return ret; 3812 if (parent == ino1) 3813 return parent_gen == ino1_gen; 3814 ino = parent; 3815 } 3816 return 0; 3817 } 3818 3819 /* 3820 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3821 * possible path (in case ino2 is not a directory and has multiple hard links). 3822 * Return 1 if true, 0 if false and < 0 on error. 3823 */ 3824 static int is_ancestor(struct btrfs_root *root, 3825 const u64 ino1, 3826 const u64 ino1_gen, 3827 const u64 ino2, 3828 struct fs_path *fs_path) 3829 { 3830 bool free_fs_path = false; 3831 int ret = 0; 3832 int iter_ret = 0; 3833 BTRFS_PATH_AUTO_FREE(path); 3834 struct btrfs_key key; 3835 3836 if (!fs_path) { 3837 fs_path = fs_path_alloc(); 3838 if (!fs_path) 3839 return -ENOMEM; 3840 free_fs_path = true; 3841 } 3842 3843 path = alloc_path_for_send(); 3844 if (!path) { 3845 ret = -ENOMEM; 3846 goto out; 3847 } 3848 3849 key.objectid = ino2; 3850 key.type = BTRFS_INODE_REF_KEY; 3851 key.offset = 0; 3852 3853 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3854 struct extent_buffer *leaf = path->nodes[0]; 3855 int slot = path->slots[0]; 3856 u32 cur_offset = 0; 3857 u32 item_size; 3858 3859 if (key.objectid != ino2) 3860 break; 3861 if (key.type != BTRFS_INODE_REF_KEY && 3862 key.type != BTRFS_INODE_EXTREF_KEY) 3863 break; 3864 3865 item_size = btrfs_item_size(leaf, slot); 3866 while (cur_offset < item_size) { 3867 u64 parent; 3868 u64 parent_gen; 3869 3870 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3871 unsigned long ptr; 3872 struct btrfs_inode_extref *extref; 3873 3874 ptr = btrfs_item_ptr_offset(leaf, slot); 3875 extref = (struct btrfs_inode_extref *) 3876 (ptr + cur_offset); 3877 parent = btrfs_inode_extref_parent(leaf, 3878 extref); 3879 cur_offset += sizeof(*extref); 3880 cur_offset += btrfs_inode_extref_name_len(leaf, 3881 extref); 3882 } else { 3883 parent = key.offset; 3884 cur_offset = item_size; 3885 } 3886 3887 ret = get_inode_gen(root, parent, &parent_gen); 3888 if (ret < 0) 3889 goto out; 3890 ret = check_ino_in_path(root, ino1, ino1_gen, 3891 parent, parent_gen, fs_path); 3892 if (ret) 3893 goto out; 3894 } 3895 } 3896 ret = 0; 3897 if (iter_ret < 0) 3898 ret = iter_ret; 3899 3900 out: 3901 if (free_fs_path) 3902 fs_path_free(fs_path); 3903 return ret; 3904 } 3905 3906 static int wait_for_parent_move(struct send_ctx *sctx, 3907 struct recorded_ref *parent_ref, 3908 const bool is_orphan) 3909 { 3910 int ret = 0; 3911 u64 ino = parent_ref->dir; 3912 u64 ino_gen = parent_ref->dir_gen; 3913 u64 parent_ino_before, parent_ino_after; 3914 struct fs_path *path_before = NULL; 3915 struct fs_path *path_after = NULL; 3916 int len1, len2; 3917 3918 path_after = fs_path_alloc(); 3919 path_before = fs_path_alloc(); 3920 if (!path_after || !path_before) { 3921 ret = -ENOMEM; 3922 goto out; 3923 } 3924 3925 /* 3926 * Our current directory inode may not yet be renamed/moved because some 3927 * ancestor (immediate or not) has to be renamed/moved first. So find if 3928 * such ancestor exists and make sure our own rename/move happens after 3929 * that ancestor is processed to avoid path build infinite loops (done 3930 * at get_cur_path()). 3931 */ 3932 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3933 u64 parent_ino_after_gen; 3934 3935 if (is_waiting_for_move(sctx, ino)) { 3936 /* 3937 * If the current inode is an ancestor of ino in the 3938 * parent root, we need to delay the rename of the 3939 * current inode, otherwise don't delayed the rename 3940 * because we can end up with a circular dependency 3941 * of renames, resulting in some directories never 3942 * getting the respective rename operations issued in 3943 * the send stream or getting into infinite path build 3944 * loops. 3945 */ 3946 ret = is_ancestor(sctx->parent_root, 3947 sctx->cur_ino, sctx->cur_inode_gen, 3948 ino, path_before); 3949 if (ret) 3950 break; 3951 } 3952 3953 fs_path_reset(path_before); 3954 fs_path_reset(path_after); 3955 3956 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3957 &parent_ino_after_gen, path_after); 3958 if (ret < 0) 3959 goto out; 3960 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3961 NULL, path_before); 3962 if (ret < 0 && ret != -ENOENT) { 3963 goto out; 3964 } else if (ret == -ENOENT) { 3965 ret = 0; 3966 break; 3967 } 3968 3969 len1 = fs_path_len(path_before); 3970 len2 = fs_path_len(path_after); 3971 if (ino > sctx->cur_ino && 3972 (parent_ino_before != parent_ino_after || len1 != len2 || 3973 memcmp(path_before->start, path_after->start, len1))) { 3974 u64 parent_ino_gen; 3975 3976 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 3977 if (ret < 0) 3978 goto out; 3979 if (ino_gen == parent_ino_gen) { 3980 ret = 1; 3981 break; 3982 } 3983 } 3984 ino = parent_ino_after; 3985 ino_gen = parent_ino_after_gen; 3986 } 3987 3988 out: 3989 fs_path_free(path_before); 3990 fs_path_free(path_after); 3991 3992 if (ret == 1) { 3993 ret = add_pending_dir_move(sctx, 3994 sctx->cur_ino, 3995 sctx->cur_inode_gen, 3996 ino, 3997 &sctx->new_refs, 3998 &sctx->deleted_refs, 3999 is_orphan); 4000 if (!ret) 4001 ret = 1; 4002 } 4003 4004 return ret; 4005 } 4006 4007 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4008 { 4009 int ret; 4010 struct fs_path *new_path; 4011 4012 /* 4013 * Our reference's name member points to its full_path member string, so 4014 * we use here a new path. 4015 */ 4016 new_path = fs_path_alloc(); 4017 if (!new_path) 4018 return -ENOMEM; 4019 4020 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4021 if (ret < 0) { 4022 fs_path_free(new_path); 4023 return ret; 4024 } 4025 ret = fs_path_add(new_path, ref->name, ref->name_len); 4026 if (ret < 0) { 4027 fs_path_free(new_path); 4028 return ret; 4029 } 4030 4031 fs_path_free(ref->full_path); 4032 set_ref_path(ref, new_path); 4033 4034 return 0; 4035 } 4036 4037 /* 4038 * When processing the new references for an inode we may orphanize an existing 4039 * directory inode because its old name conflicts with one of the new references 4040 * of the current inode. Later, when processing another new reference of our 4041 * inode, we might need to orphanize another inode, but the path we have in the 4042 * reference reflects the pre-orphanization name of the directory we previously 4043 * orphanized. For example: 4044 * 4045 * parent snapshot looks like: 4046 * 4047 * . (ino 256) 4048 * |----- f1 (ino 257) 4049 * |----- f2 (ino 258) 4050 * |----- d1/ (ino 259) 4051 * |----- d2/ (ino 260) 4052 * 4053 * send snapshot looks like: 4054 * 4055 * . (ino 256) 4056 * |----- d1 (ino 258) 4057 * |----- f2/ (ino 259) 4058 * |----- f2_link/ (ino 260) 4059 * | |----- f1 (ino 257) 4060 * | 4061 * |----- d2 (ino 258) 4062 * 4063 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4064 * cache it in the name cache. Later when we start processing inode 258, when 4065 * collecting all its new references we set a full path of "d1/d2" for its new 4066 * reference with name "d2". When we start processing the new references we 4067 * start by processing the new reference with name "d1", and this results in 4068 * orphanizing inode 259, since its old reference causes a conflict. Then we 4069 * move on the next new reference, with name "d2", and we find out we must 4070 * orphanize inode 260, as its old reference conflicts with ours - but for the 4071 * orphanization we use a source path corresponding to the path we stored in the 4072 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4073 * receiver fail since the path component "d1/" no longer exists, it was renamed 4074 * to "o259-6-0/" when processing the previous new reference. So in this case we 4075 * must recompute the path in the new reference and use it for the new 4076 * orphanization operation. 4077 */ 4078 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4079 { 4080 char *name; 4081 int ret; 4082 4083 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4084 if (!name) 4085 return -ENOMEM; 4086 4087 fs_path_reset(ref->full_path); 4088 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4089 if (ret < 0) 4090 goto out; 4091 4092 ret = fs_path_add(ref->full_path, name, ref->name_len); 4093 if (ret < 0) 4094 goto out; 4095 4096 /* Update the reference's base name pointer. */ 4097 set_ref_path(ref, ref->full_path); 4098 out: 4099 kfree(name); 4100 return ret; 4101 } 4102 4103 static int rename_current_inode(struct send_ctx *sctx, 4104 struct fs_path *current_path, 4105 struct fs_path *new_path) 4106 { 4107 int ret; 4108 4109 ret = send_rename(sctx, current_path, new_path); 4110 if (ret < 0) 4111 return ret; 4112 4113 ret = fs_path_copy(&sctx->cur_inode_path, new_path); 4114 if (ret < 0) 4115 return ret; 4116 4117 return fs_path_copy(current_path, new_path); 4118 } 4119 4120 /* 4121 * This does all the move/link/unlink/rmdir magic. 4122 */ 4123 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4124 { 4125 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4126 int ret = 0; 4127 struct recorded_ref *cur; 4128 struct recorded_ref *cur2; 4129 LIST_HEAD(check_dirs); 4130 struct fs_path *valid_path = NULL; 4131 u64 ow_inode = 0; 4132 u64 ow_gen; 4133 u64 ow_mode; 4134 u64 last_dir_ino_rm = 0; 4135 bool did_overwrite = false; 4136 bool is_orphan = false; 4137 bool can_rename = true; 4138 bool orphanized_dir = false; 4139 bool orphanized_ancestor = false; 4140 4141 /* 4142 * This should never happen as the root dir always has the same ref 4143 * which is always '..' 4144 */ 4145 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4146 btrfs_err(fs_info, 4147 "send: unexpected inode %llu in process_recorded_refs()", 4148 sctx->cur_ino); 4149 ret = -EINVAL; 4150 goto out; 4151 } 4152 4153 valid_path = fs_path_alloc(); 4154 if (!valid_path) { 4155 ret = -ENOMEM; 4156 goto out; 4157 } 4158 4159 /* 4160 * First, check if the first ref of the current inode was overwritten 4161 * before. If yes, we know that the current inode was already orphanized 4162 * and thus use the orphan name. If not, we can use get_cur_path to 4163 * get the path of the first ref as it would like while receiving at 4164 * this point in time. 4165 * New inodes are always orphan at the beginning, so force to use the 4166 * orphan name in this case. 4167 * The first ref is stored in valid_path and will be updated if it 4168 * gets moved around. 4169 */ 4170 if (!sctx->cur_inode_new) { 4171 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4172 sctx->cur_inode_gen); 4173 if (ret < 0) 4174 goto out; 4175 if (ret) 4176 did_overwrite = true; 4177 } 4178 if (sctx->cur_inode_new || did_overwrite) { 4179 ret = gen_unique_name(sctx, sctx->cur_ino, 4180 sctx->cur_inode_gen, valid_path); 4181 if (ret < 0) 4182 goto out; 4183 is_orphan = true; 4184 } else { 4185 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4186 valid_path); 4187 if (ret < 0) 4188 goto out; 4189 } 4190 4191 /* 4192 * Before doing any rename and link operations, do a first pass on the 4193 * new references to orphanize any unprocessed inodes that may have a 4194 * reference that conflicts with one of the new references of the current 4195 * inode. This needs to happen first because a new reference may conflict 4196 * with the old reference of a parent directory, so we must make sure 4197 * that the path used for link and rename commands don't use an 4198 * orphanized name when an ancestor was not yet orphanized. 4199 * 4200 * Example: 4201 * 4202 * Parent snapshot: 4203 * 4204 * . (ino 256) 4205 * |----- testdir/ (ino 259) 4206 * | |----- a (ino 257) 4207 * | 4208 * |----- b (ino 258) 4209 * 4210 * Send snapshot: 4211 * 4212 * . (ino 256) 4213 * |----- testdir_2/ (ino 259) 4214 * | |----- a (ino 260) 4215 * | 4216 * |----- testdir (ino 257) 4217 * |----- b (ino 257) 4218 * |----- b2 (ino 258) 4219 * 4220 * Processing the new reference for inode 257 with name "b" may happen 4221 * before processing the new reference with name "testdir". If so, we 4222 * must make sure that by the time we send a link command to create the 4223 * hard link "b", inode 259 was already orphanized, since the generated 4224 * path in "valid_path" already contains the orphanized name for 259. 4225 * We are processing inode 257, so only later when processing 259 we do 4226 * the rename operation to change its temporary (orphanized) name to 4227 * "testdir_2". 4228 */ 4229 list_for_each_entry(cur, &sctx->new_refs, list) { 4230 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4231 if (ret < 0) 4232 goto out; 4233 if (ret == inode_state_will_create) 4234 continue; 4235 4236 /* 4237 * Check if this new ref would overwrite the first ref of another 4238 * unprocessed inode. If yes, orphanize the overwritten inode. 4239 * If we find an overwritten ref that is not the first ref, 4240 * simply unlink it. 4241 */ 4242 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4243 cur->name, cur->name_len, 4244 &ow_inode, &ow_gen, &ow_mode); 4245 if (ret < 0) 4246 goto out; 4247 if (ret) { 4248 ret = is_first_ref(sctx->parent_root, 4249 ow_inode, cur->dir, cur->name, 4250 cur->name_len); 4251 if (ret < 0) 4252 goto out; 4253 if (ret) { 4254 struct name_cache_entry *nce; 4255 struct waiting_dir_move *wdm; 4256 4257 if (orphanized_dir) { 4258 ret = refresh_ref_path(sctx, cur); 4259 if (ret < 0) 4260 goto out; 4261 } 4262 4263 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4264 cur->full_path); 4265 if (ret < 0) 4266 goto out; 4267 if (S_ISDIR(ow_mode)) 4268 orphanized_dir = true; 4269 4270 /* 4271 * If ow_inode has its rename operation delayed 4272 * make sure that its orphanized name is used in 4273 * the source path when performing its rename 4274 * operation. 4275 */ 4276 wdm = get_waiting_dir_move(sctx, ow_inode); 4277 if (wdm) 4278 wdm->orphanized = true; 4279 4280 /* 4281 * Make sure we clear our orphanized inode's 4282 * name from the name cache. This is because the 4283 * inode ow_inode might be an ancestor of some 4284 * other inode that will be orphanized as well 4285 * later and has an inode number greater than 4286 * sctx->send_progress. We need to prevent 4287 * future name lookups from using the old name 4288 * and get instead the orphan name. 4289 */ 4290 nce = name_cache_search(sctx, ow_inode, ow_gen); 4291 if (nce) 4292 btrfs_lru_cache_remove(&sctx->name_cache, 4293 &nce->entry); 4294 4295 /* 4296 * ow_inode might currently be an ancestor of 4297 * cur_ino, therefore compute valid_path (the 4298 * current path of cur_ino) again because it 4299 * might contain the pre-orphanization name of 4300 * ow_inode, which is no longer valid. 4301 */ 4302 ret = is_ancestor(sctx->parent_root, 4303 ow_inode, ow_gen, 4304 sctx->cur_ino, NULL); 4305 if (ret > 0) { 4306 orphanized_ancestor = true; 4307 fs_path_reset(valid_path); 4308 fs_path_reset(&sctx->cur_inode_path); 4309 ret = get_cur_path(sctx, sctx->cur_ino, 4310 sctx->cur_inode_gen, 4311 valid_path); 4312 } 4313 if (ret < 0) 4314 goto out; 4315 } else { 4316 /* 4317 * If we previously orphanized a directory that 4318 * collided with a new reference that we already 4319 * processed, recompute the current path because 4320 * that directory may be part of the path. 4321 */ 4322 if (orphanized_dir) { 4323 ret = refresh_ref_path(sctx, cur); 4324 if (ret < 0) 4325 goto out; 4326 } 4327 ret = send_unlink(sctx, cur->full_path); 4328 if (ret < 0) 4329 goto out; 4330 } 4331 } 4332 4333 } 4334 4335 list_for_each_entry(cur, &sctx->new_refs, list) { 4336 /* 4337 * We may have refs where the parent directory does not exist 4338 * yet. This happens if the parent directories inum is higher 4339 * than the current inum. To handle this case, we create the 4340 * parent directory out of order. But we need to check if this 4341 * did already happen before due to other refs in the same dir. 4342 */ 4343 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4344 if (ret < 0) 4345 goto out; 4346 if (ret == inode_state_will_create) { 4347 ret = 0; 4348 /* 4349 * First check if any of the current inodes refs did 4350 * already create the dir. 4351 */ 4352 list_for_each_entry(cur2, &sctx->new_refs, list) { 4353 if (cur == cur2) 4354 break; 4355 if (cur2->dir == cur->dir) { 4356 ret = 1; 4357 break; 4358 } 4359 } 4360 4361 /* 4362 * If that did not happen, check if a previous inode 4363 * did already create the dir. 4364 */ 4365 if (!ret) 4366 ret = did_create_dir(sctx, cur->dir); 4367 if (ret < 0) 4368 goto out; 4369 if (!ret) { 4370 ret = send_create_inode(sctx, cur->dir); 4371 if (ret < 0) 4372 goto out; 4373 cache_dir_created(sctx, cur->dir); 4374 } 4375 } 4376 4377 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4378 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4379 if (ret < 0) 4380 goto out; 4381 if (ret == 1) { 4382 can_rename = false; 4383 *pending_move = 1; 4384 } 4385 } 4386 4387 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4388 can_rename) { 4389 ret = wait_for_parent_move(sctx, cur, is_orphan); 4390 if (ret < 0) 4391 goto out; 4392 if (ret == 1) { 4393 can_rename = false; 4394 *pending_move = 1; 4395 } 4396 } 4397 4398 /* 4399 * link/move the ref to the new place. If we have an orphan 4400 * inode, move it and update valid_path. If not, link or move 4401 * it depending on the inode mode. 4402 */ 4403 if (is_orphan && can_rename) { 4404 ret = rename_current_inode(sctx, valid_path, cur->full_path); 4405 if (ret < 0) 4406 goto out; 4407 is_orphan = false; 4408 } else if (can_rename) { 4409 if (S_ISDIR(sctx->cur_inode_mode)) { 4410 /* 4411 * Dirs can't be linked, so move it. For moved 4412 * dirs, we always have one new and one deleted 4413 * ref. The deleted ref is ignored later. 4414 */ 4415 ret = rename_current_inode(sctx, valid_path, 4416 cur->full_path); 4417 if (ret < 0) 4418 goto out; 4419 } else { 4420 /* 4421 * We might have previously orphanized an inode 4422 * which is an ancestor of our current inode, 4423 * so our reference's full path, which was 4424 * computed before any such orphanizations, must 4425 * be updated. 4426 */ 4427 if (orphanized_dir) { 4428 ret = update_ref_path(sctx, cur); 4429 if (ret < 0) 4430 goto out; 4431 } 4432 ret = send_link(sctx, cur->full_path, 4433 valid_path); 4434 if (ret < 0) 4435 goto out; 4436 } 4437 } 4438 ret = dup_ref(cur, &check_dirs); 4439 if (ret < 0) 4440 goto out; 4441 } 4442 4443 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4444 /* 4445 * Check if we can already rmdir the directory. If not, 4446 * orphanize it. For every dir item inside that gets deleted 4447 * later, we do this check again and rmdir it then if possible. 4448 * See the use of check_dirs for more details. 4449 */ 4450 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4451 if (ret < 0) 4452 goto out; 4453 if (ret) { 4454 ret = send_rmdir(sctx, valid_path); 4455 if (ret < 0) 4456 goto out; 4457 } else if (!is_orphan) { 4458 ret = orphanize_inode(sctx, sctx->cur_ino, 4459 sctx->cur_inode_gen, valid_path); 4460 if (ret < 0) 4461 goto out; 4462 is_orphan = true; 4463 } 4464 4465 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4466 ret = dup_ref(cur, &check_dirs); 4467 if (ret < 0) 4468 goto out; 4469 } 4470 } else if (S_ISDIR(sctx->cur_inode_mode) && 4471 !list_empty(&sctx->deleted_refs)) { 4472 /* 4473 * We have a moved dir. Add the old parent to check_dirs 4474 */ 4475 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list); 4476 ret = dup_ref(cur, &check_dirs); 4477 if (ret < 0) 4478 goto out; 4479 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4480 /* 4481 * We have a non dir inode. Go through all deleted refs and 4482 * unlink them if they were not already overwritten by other 4483 * inodes. 4484 */ 4485 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4486 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4487 sctx->cur_ino, sctx->cur_inode_gen, 4488 cur->name, cur->name_len); 4489 if (ret < 0) 4490 goto out; 4491 if (!ret) { 4492 /* 4493 * If we orphanized any ancestor before, we need 4494 * to recompute the full path for deleted names, 4495 * since any such path was computed before we 4496 * processed any references and orphanized any 4497 * ancestor inode. 4498 */ 4499 if (orphanized_ancestor) { 4500 ret = update_ref_path(sctx, cur); 4501 if (ret < 0) 4502 goto out; 4503 } 4504 ret = send_unlink(sctx, cur->full_path); 4505 if (ret < 0) 4506 goto out; 4507 if (is_current_inode_path(sctx, cur->full_path)) 4508 fs_path_reset(&sctx->cur_inode_path); 4509 } 4510 ret = dup_ref(cur, &check_dirs); 4511 if (ret < 0) 4512 goto out; 4513 } 4514 /* 4515 * If the inode is still orphan, unlink the orphan. This may 4516 * happen when a previous inode did overwrite the first ref 4517 * of this inode and no new refs were added for the current 4518 * inode. Unlinking does not mean that the inode is deleted in 4519 * all cases. There may still be links to this inode in other 4520 * places. 4521 */ 4522 if (is_orphan) { 4523 ret = send_unlink(sctx, valid_path); 4524 if (ret < 0) 4525 goto out; 4526 } 4527 } 4528 4529 /* 4530 * We did collect all parent dirs where cur_inode was once located. We 4531 * now go through all these dirs and check if they are pending for 4532 * deletion and if it's finally possible to perform the rmdir now. 4533 * We also update the inode stats of the parent dirs here. 4534 */ 4535 list_for_each_entry(cur, &check_dirs, list) { 4536 /* 4537 * In case we had refs into dirs that were not processed yet, 4538 * we don't need to do the utime and rmdir logic for these dirs. 4539 * The dir will be processed later. 4540 */ 4541 if (cur->dir > sctx->cur_ino) 4542 continue; 4543 4544 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4545 if (ret < 0) 4546 goto out; 4547 4548 if (ret == inode_state_did_create || 4549 ret == inode_state_no_change) { 4550 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4551 if (ret < 0) 4552 goto out; 4553 } else if (ret == inode_state_did_delete && 4554 cur->dir != last_dir_ino_rm) { 4555 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4556 if (ret < 0) 4557 goto out; 4558 if (ret) { 4559 ret = get_cur_path(sctx, cur->dir, 4560 cur->dir_gen, valid_path); 4561 if (ret < 0) 4562 goto out; 4563 ret = send_rmdir(sctx, valid_path); 4564 if (ret < 0) 4565 goto out; 4566 last_dir_ino_rm = cur->dir; 4567 } 4568 } 4569 } 4570 4571 ret = 0; 4572 4573 out: 4574 __free_recorded_refs(&check_dirs); 4575 free_recorded_refs(sctx); 4576 fs_path_free(valid_path); 4577 return ret; 4578 } 4579 4580 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4581 { 4582 const struct recorded_ref *data = k; 4583 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4584 4585 if (data->dir > ref->dir) 4586 return 1; 4587 if (data->dir < ref->dir) 4588 return -1; 4589 if (data->dir_gen > ref->dir_gen) 4590 return 1; 4591 if (data->dir_gen < ref->dir_gen) 4592 return -1; 4593 if (data->name_len > ref->name_len) 4594 return 1; 4595 if (data->name_len < ref->name_len) 4596 return -1; 4597 return strcmp(data->name, ref->name); 4598 } 4599 4600 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4601 { 4602 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4603 4604 return rbtree_ref_comp(entry, parent) < 0; 4605 } 4606 4607 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4608 struct fs_path *name, u64 dir, u64 dir_gen, 4609 struct send_ctx *sctx) 4610 { 4611 int ret = 0; 4612 struct fs_path *path = NULL; 4613 struct recorded_ref *ref = NULL; 4614 4615 path = fs_path_alloc(); 4616 if (!path) { 4617 ret = -ENOMEM; 4618 goto out; 4619 } 4620 4621 ref = recorded_ref_alloc(); 4622 if (!ref) { 4623 ret = -ENOMEM; 4624 goto out; 4625 } 4626 4627 ret = get_cur_path(sctx, dir, dir_gen, path); 4628 if (ret < 0) 4629 goto out; 4630 ret = fs_path_add_path(path, name); 4631 if (ret < 0) 4632 goto out; 4633 4634 ref->dir = dir; 4635 ref->dir_gen = dir_gen; 4636 set_ref_path(ref, path); 4637 list_add_tail(&ref->list, refs); 4638 rb_add(&ref->node, root, rbtree_ref_less); 4639 ref->root = root; 4640 out: 4641 if (ret) { 4642 if (path && (!ref || !ref->full_path)) 4643 fs_path_free(path); 4644 recorded_ref_free(ref); 4645 } 4646 return ret; 4647 } 4648 4649 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4650 { 4651 int ret; 4652 struct send_ctx *sctx = ctx; 4653 struct rb_node *node = NULL; 4654 struct recorded_ref data; 4655 struct recorded_ref *ref; 4656 u64 dir_gen; 4657 4658 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4659 if (ret < 0) 4660 return ret; 4661 4662 data.dir = dir; 4663 data.dir_gen = dir_gen; 4664 set_ref_path(&data, name); 4665 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4666 if (node) { 4667 ref = rb_entry(node, struct recorded_ref, node); 4668 recorded_ref_free(ref); 4669 } else { 4670 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4671 &sctx->new_refs, name, dir, dir_gen, 4672 sctx); 4673 } 4674 4675 return ret; 4676 } 4677 4678 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4679 { 4680 int ret; 4681 struct send_ctx *sctx = ctx; 4682 struct rb_node *node = NULL; 4683 struct recorded_ref data; 4684 struct recorded_ref *ref; 4685 u64 dir_gen; 4686 4687 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4688 if (ret < 0) 4689 return ret; 4690 4691 data.dir = dir; 4692 data.dir_gen = dir_gen; 4693 set_ref_path(&data, name); 4694 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4695 if (node) { 4696 ref = rb_entry(node, struct recorded_ref, node); 4697 recorded_ref_free(ref); 4698 } else { 4699 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4700 &sctx->deleted_refs, name, dir, 4701 dir_gen, sctx); 4702 } 4703 4704 return ret; 4705 } 4706 4707 static int record_new_ref(struct send_ctx *sctx) 4708 { 4709 int ret; 4710 4711 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4712 false, record_new_ref_if_needed, sctx); 4713 if (ret < 0) 4714 return ret; 4715 4716 return 0; 4717 } 4718 4719 static int record_deleted_ref(struct send_ctx *sctx) 4720 { 4721 int ret; 4722 4723 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4724 false, record_deleted_ref_if_needed, sctx); 4725 if (ret < 0) 4726 return ret; 4727 4728 return 0; 4729 } 4730 4731 static int record_changed_ref(struct send_ctx *sctx) 4732 { 4733 int ret; 4734 4735 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4736 false, record_new_ref_if_needed, sctx); 4737 if (ret < 0) 4738 return ret; 4739 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4740 false, record_deleted_ref_if_needed, sctx); 4741 if (ret < 0) 4742 return ret; 4743 4744 return 0; 4745 } 4746 4747 /* 4748 * Record and process all refs at once. Needed when an inode changes the 4749 * generation number, which means that it was deleted and recreated. 4750 */ 4751 static int process_all_refs(struct send_ctx *sctx, 4752 enum btrfs_compare_tree_result cmd) 4753 { 4754 int ret = 0; 4755 int iter_ret = 0; 4756 struct btrfs_root *root; 4757 BTRFS_PATH_AUTO_FREE(path); 4758 struct btrfs_key key; 4759 struct btrfs_key found_key; 4760 iterate_inode_ref_t cb; 4761 int pending_move = 0; 4762 4763 path = alloc_path_for_send(); 4764 if (!path) 4765 return -ENOMEM; 4766 4767 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4768 root = sctx->send_root; 4769 cb = record_new_ref_if_needed; 4770 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4771 root = sctx->parent_root; 4772 cb = record_deleted_ref_if_needed; 4773 } else { 4774 btrfs_err(sctx->send_root->fs_info, 4775 "Wrong command %d in process_all_refs", cmd); 4776 return -EINVAL; 4777 } 4778 4779 key.objectid = sctx->cmp_key->objectid; 4780 key.type = BTRFS_INODE_REF_KEY; 4781 key.offset = 0; 4782 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4783 if (found_key.objectid != key.objectid || 4784 (found_key.type != BTRFS_INODE_REF_KEY && 4785 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4786 break; 4787 4788 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx); 4789 if (ret < 0) 4790 return ret; 4791 } 4792 /* Catch error found during iteration */ 4793 if (iter_ret < 0) 4794 return iter_ret; 4795 4796 btrfs_release_path(path); 4797 4798 /* 4799 * We don't actually care about pending_move as we are simply 4800 * re-creating this inode and will be rename'ing it into place once we 4801 * rename the parent directory. 4802 */ 4803 return process_recorded_refs(sctx, &pending_move); 4804 } 4805 4806 static int send_set_xattr(struct send_ctx *sctx, 4807 const char *name, int name_len, 4808 const char *data, int data_len) 4809 { 4810 struct fs_path *path; 4811 int ret; 4812 4813 path = get_cur_inode_path(sctx); 4814 if (IS_ERR(path)) 4815 return PTR_ERR(path); 4816 4817 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4818 if (ret < 0) 4819 return ret; 4820 4821 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4822 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4823 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4824 4825 ret = send_cmd(sctx); 4826 4827 tlv_put_failure: 4828 return ret; 4829 } 4830 4831 static int send_remove_xattr(struct send_ctx *sctx, 4832 struct fs_path *path, 4833 const char *name, int name_len) 4834 { 4835 int ret; 4836 4837 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4838 if (ret < 0) 4839 return ret; 4840 4841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4842 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4843 4844 ret = send_cmd(sctx); 4845 4846 tlv_put_failure: 4847 return ret; 4848 } 4849 4850 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4851 const char *name, int name_len, const char *data, 4852 int data_len, void *ctx) 4853 { 4854 struct send_ctx *sctx = ctx; 4855 struct posix_acl_xattr_header dummy_acl; 4856 4857 /* Capabilities are emitted by finish_inode_if_needed */ 4858 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4859 return 0; 4860 4861 /* 4862 * This hack is needed because empty acls are stored as zero byte 4863 * data in xattrs. Problem with that is, that receiving these zero byte 4864 * acls will fail later. To fix this, we send a dummy acl list that 4865 * only contains the version number and no entries. 4866 */ 4867 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4868 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4869 if (data_len == 0) { 4870 dummy_acl.a_version = 4871 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4872 data = (char *)&dummy_acl; 4873 data_len = sizeof(dummy_acl); 4874 } 4875 } 4876 4877 return send_set_xattr(sctx, name, name_len, data, data_len); 4878 } 4879 4880 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4881 const char *name, int name_len, 4882 const char *data, int data_len, void *ctx) 4883 { 4884 struct send_ctx *sctx = ctx; 4885 struct fs_path *p; 4886 4887 p = get_cur_inode_path(sctx); 4888 if (IS_ERR(p)) 4889 return PTR_ERR(p); 4890 4891 return send_remove_xattr(sctx, p, name, name_len); 4892 } 4893 4894 static int process_new_xattr(struct send_ctx *sctx) 4895 { 4896 return iterate_dir_item(sctx->send_root, sctx->left_path, 4897 __process_new_xattr, sctx); 4898 } 4899 4900 static int process_deleted_xattr(struct send_ctx *sctx) 4901 { 4902 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4903 __process_deleted_xattr, sctx); 4904 } 4905 4906 struct find_xattr_ctx { 4907 const char *name; 4908 int name_len; 4909 int found_idx; 4910 char *found_data; 4911 int found_data_len; 4912 }; 4913 4914 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4915 int name_len, const char *data, int data_len, void *vctx) 4916 { 4917 struct find_xattr_ctx *ctx = vctx; 4918 4919 if (name_len == ctx->name_len && 4920 strncmp(name, ctx->name, name_len) == 0) { 4921 ctx->found_idx = num; 4922 ctx->found_data_len = data_len; 4923 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4924 if (!ctx->found_data) 4925 return -ENOMEM; 4926 return 1; 4927 } 4928 return 0; 4929 } 4930 4931 static int find_xattr(struct btrfs_root *root, 4932 struct btrfs_path *path, 4933 struct btrfs_key *key, 4934 const char *name, int name_len, 4935 char **data, int *data_len) 4936 { 4937 int ret; 4938 struct find_xattr_ctx ctx; 4939 4940 ctx.name = name; 4941 ctx.name_len = name_len; 4942 ctx.found_idx = -1; 4943 ctx.found_data = NULL; 4944 ctx.found_data_len = 0; 4945 4946 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4947 if (ret < 0) 4948 return ret; 4949 4950 if (ctx.found_idx == -1) 4951 return -ENOENT; 4952 if (data) { 4953 *data = ctx.found_data; 4954 *data_len = ctx.found_data_len; 4955 } else { 4956 kfree(ctx.found_data); 4957 } 4958 return ctx.found_idx; 4959 } 4960 4961 4962 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4963 const char *name, int name_len, 4964 const char *data, int data_len, 4965 void *ctx) 4966 { 4967 int ret; 4968 struct send_ctx *sctx = ctx; 4969 char *found_data = NULL; 4970 int found_data_len = 0; 4971 4972 ret = find_xattr(sctx->parent_root, sctx->right_path, 4973 sctx->cmp_key, name, name_len, &found_data, 4974 &found_data_len); 4975 if (ret == -ENOENT) { 4976 ret = __process_new_xattr(num, di_key, name, name_len, data, 4977 data_len, ctx); 4978 } else if (ret >= 0) { 4979 if (data_len != found_data_len || 4980 memcmp(data, found_data, data_len)) { 4981 ret = __process_new_xattr(num, di_key, name, name_len, 4982 data, data_len, ctx); 4983 } else { 4984 ret = 0; 4985 } 4986 } 4987 4988 kfree(found_data); 4989 return ret; 4990 } 4991 4992 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4993 const char *name, int name_len, 4994 const char *data, int data_len, 4995 void *ctx) 4996 { 4997 int ret; 4998 struct send_ctx *sctx = ctx; 4999 5000 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5001 name, name_len, NULL, NULL); 5002 if (ret == -ENOENT) 5003 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5004 data_len, ctx); 5005 else if (ret >= 0) 5006 ret = 0; 5007 5008 return ret; 5009 } 5010 5011 static int process_changed_xattr(struct send_ctx *sctx) 5012 { 5013 int ret; 5014 5015 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5016 __process_changed_new_xattr, sctx); 5017 if (ret < 0) 5018 return ret; 5019 5020 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5021 __process_changed_deleted_xattr, sctx); 5022 } 5023 5024 static int process_all_new_xattrs(struct send_ctx *sctx) 5025 { 5026 int ret = 0; 5027 int iter_ret = 0; 5028 struct btrfs_root *root; 5029 BTRFS_PATH_AUTO_FREE(path); 5030 struct btrfs_key key; 5031 struct btrfs_key found_key; 5032 5033 path = alloc_path_for_send(); 5034 if (!path) 5035 return -ENOMEM; 5036 5037 root = sctx->send_root; 5038 5039 key.objectid = sctx->cmp_key->objectid; 5040 key.type = BTRFS_XATTR_ITEM_KEY; 5041 key.offset = 0; 5042 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5043 if (found_key.objectid != key.objectid || 5044 found_key.type != key.type) { 5045 ret = 0; 5046 break; 5047 } 5048 5049 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5050 if (ret < 0) 5051 break; 5052 } 5053 /* Catch error found during iteration */ 5054 if (iter_ret < 0) 5055 ret = iter_ret; 5056 5057 return ret; 5058 } 5059 5060 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5061 struct fsverity_descriptor *desc) 5062 { 5063 int ret; 5064 5065 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5066 if (ret < 0) 5067 return ret; 5068 5069 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5070 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5071 le8_to_cpu(desc->hash_algorithm)); 5072 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5073 1U << le8_to_cpu(desc->log_blocksize)); 5074 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5075 le8_to_cpu(desc->salt_size)); 5076 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5077 le32_to_cpu(desc->sig_size)); 5078 5079 ret = send_cmd(sctx); 5080 5081 tlv_put_failure: 5082 return ret; 5083 } 5084 5085 static int process_verity(struct send_ctx *sctx) 5086 { 5087 int ret = 0; 5088 struct btrfs_inode *inode; 5089 struct fs_path *p; 5090 5091 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5092 if (IS_ERR(inode)) 5093 return PTR_ERR(inode); 5094 5095 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); 5096 if (ret < 0) 5097 goto iput; 5098 5099 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5100 ret = -EMSGSIZE; 5101 goto iput; 5102 } 5103 if (!sctx->verity_descriptor) { 5104 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5105 GFP_KERNEL); 5106 if (!sctx->verity_descriptor) { 5107 ret = -ENOMEM; 5108 goto iput; 5109 } 5110 } 5111 5112 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); 5113 if (ret < 0) 5114 goto iput; 5115 5116 p = get_cur_inode_path(sctx); 5117 if (IS_ERR(p)) { 5118 ret = PTR_ERR(p); 5119 goto iput; 5120 } 5121 5122 ret = send_verity(sctx, p, sctx->verity_descriptor); 5123 iput: 5124 iput(&inode->vfs_inode); 5125 return ret; 5126 } 5127 5128 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5129 { 5130 return sctx->send_max_size - SZ_16K; 5131 } 5132 5133 static int put_data_header(struct send_ctx *sctx, u32 len) 5134 { 5135 if (WARN_ON_ONCE(sctx->put_data)) 5136 return -EINVAL; 5137 sctx->put_data = true; 5138 if (sctx->proto >= 2) { 5139 /* 5140 * Since v2, the data attribute header doesn't include a length, 5141 * it is implicitly to the end of the command. 5142 */ 5143 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5144 return -EOVERFLOW; 5145 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5146 sctx->send_size += sizeof(__le16); 5147 } else { 5148 struct btrfs_tlv_header *hdr; 5149 5150 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5151 return -EOVERFLOW; 5152 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5153 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5154 put_unaligned_le16(len, &hdr->tlv_len); 5155 sctx->send_size += sizeof(*hdr); 5156 } 5157 return 0; 5158 } 5159 5160 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5161 { 5162 struct btrfs_root *root = sctx->send_root; 5163 struct btrfs_fs_info *fs_info = root->fs_info; 5164 u64 cur = offset; 5165 const u64 end = offset + len; 5166 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT); 5167 struct address_space *mapping = sctx->cur_inode->i_mapping; 5168 int ret; 5169 5170 ret = put_data_header(sctx, len); 5171 if (ret) 5172 return ret; 5173 5174 while (cur < end) { 5175 pgoff_t index = (cur >> PAGE_SHIFT); 5176 unsigned int cur_len; 5177 unsigned int pg_offset; 5178 struct folio *folio; 5179 5180 folio = filemap_lock_folio(mapping, index); 5181 if (IS_ERR(folio)) { 5182 page_cache_sync_readahead(mapping, 5183 &sctx->ra, NULL, index, 5184 last_index + 1 - index); 5185 5186 folio = filemap_grab_folio(mapping, index); 5187 if (IS_ERR(folio)) { 5188 ret = PTR_ERR(folio); 5189 break; 5190 } 5191 } 5192 pg_offset = offset_in_folio(folio, cur); 5193 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset); 5194 5195 if (folio_test_readahead(folio)) 5196 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5197 last_index + 1 - index); 5198 5199 if (!folio_test_uptodate(folio)) { 5200 btrfs_read_folio(NULL, folio); 5201 folio_lock(folio); 5202 if (unlikely(!folio_test_uptodate(folio))) { 5203 folio_unlock(folio); 5204 btrfs_err(fs_info, 5205 "send: IO error at offset %llu for inode %llu root %llu", 5206 folio_pos(folio), sctx->cur_ino, 5207 btrfs_root_id(sctx->send_root)); 5208 folio_put(folio); 5209 ret = -EIO; 5210 break; 5211 } 5212 if (folio->mapping != mapping) { 5213 folio_unlock(folio); 5214 folio_put(folio); 5215 continue; 5216 } 5217 } 5218 5219 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5220 pg_offset, cur_len); 5221 folio_unlock(folio); 5222 folio_put(folio); 5223 cur += cur_len; 5224 sctx->send_size += cur_len; 5225 } 5226 5227 return ret; 5228 } 5229 5230 /* 5231 * Read some bytes from the current inode/file and send a write command to 5232 * user space. 5233 */ 5234 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5235 { 5236 int ret = 0; 5237 struct fs_path *p; 5238 5239 p = get_cur_inode_path(sctx); 5240 if (IS_ERR(p)) 5241 return PTR_ERR(p); 5242 5243 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5244 if (ret < 0) 5245 return ret; 5246 5247 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5248 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5249 ret = put_file_data(sctx, offset, len); 5250 if (ret < 0) 5251 return ret; 5252 5253 ret = send_cmd(sctx); 5254 5255 tlv_put_failure: 5256 return ret; 5257 } 5258 5259 /* 5260 * Send a clone command to user space. 5261 */ 5262 static int send_clone(struct send_ctx *sctx, 5263 u64 offset, u32 len, 5264 struct clone_root *clone_root) 5265 { 5266 int ret = 0; 5267 struct fs_path *p; 5268 struct fs_path *cur_inode_path; 5269 u64 gen; 5270 5271 cur_inode_path = get_cur_inode_path(sctx); 5272 if (IS_ERR(cur_inode_path)) 5273 return PTR_ERR(cur_inode_path); 5274 5275 p = fs_path_alloc(); 5276 if (!p) 5277 return -ENOMEM; 5278 5279 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5280 if (ret < 0) 5281 goto out; 5282 5283 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5284 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5285 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); 5286 5287 if (clone_root->root == sctx->send_root) { 5288 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5289 if (ret < 0) 5290 goto out; 5291 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5292 } else { 5293 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5294 } 5295 if (ret < 0) 5296 goto out; 5297 5298 /* 5299 * If the parent we're using has a received_uuid set then use that as 5300 * our clone source as that is what we will look for when doing a 5301 * receive. 5302 * 5303 * This covers the case that we create a snapshot off of a received 5304 * subvolume and then use that as the parent and try to receive on a 5305 * different host. 5306 */ 5307 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5308 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5309 clone_root->root->root_item.received_uuid); 5310 else 5311 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5312 clone_root->root->root_item.uuid); 5313 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5314 btrfs_root_ctransid(&clone_root->root->root_item)); 5315 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5316 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5317 clone_root->offset); 5318 5319 ret = send_cmd(sctx); 5320 5321 tlv_put_failure: 5322 out: 5323 fs_path_free(p); 5324 return ret; 5325 } 5326 5327 /* 5328 * Send an update extent command to user space. 5329 */ 5330 static int send_update_extent(struct send_ctx *sctx, 5331 u64 offset, u32 len) 5332 { 5333 int ret = 0; 5334 struct fs_path *p; 5335 5336 p = get_cur_inode_path(sctx); 5337 if (IS_ERR(p)) 5338 return PTR_ERR(p); 5339 5340 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5341 if (ret < 0) 5342 return ret; 5343 5344 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5345 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5346 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5347 5348 ret = send_cmd(sctx); 5349 5350 tlv_put_failure: 5351 return ret; 5352 } 5353 5354 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len) 5355 { 5356 struct fs_path *path; 5357 int ret; 5358 5359 path = get_cur_inode_path(sctx); 5360 if (IS_ERR(path)) 5361 return PTR_ERR(path); 5362 5363 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE); 5364 if (ret < 0) 5365 return ret; 5366 5367 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5368 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode); 5369 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5370 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5371 5372 ret = send_cmd(sctx); 5373 5374 tlv_put_failure: 5375 return ret; 5376 } 5377 5378 static int send_hole(struct send_ctx *sctx, u64 end) 5379 { 5380 struct fs_path *p = NULL; 5381 u64 read_size = max_send_read_size(sctx); 5382 u64 offset = sctx->cur_inode_last_extent; 5383 int ret = 0; 5384 5385 /* 5386 * Starting with send stream v2 we have fallocate and can use it to 5387 * punch holes instead of sending writes full of zeroes. 5388 */ 5389 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE)) 5390 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 5391 offset, end - offset); 5392 5393 /* 5394 * A hole that starts at EOF or beyond it. Since we do not yet support 5395 * fallocate (for extent preallocation and hole punching), sending a 5396 * write of zeroes starting at EOF or beyond would later require issuing 5397 * a truncate operation which would undo the write and achieve nothing. 5398 */ 5399 if (offset >= sctx->cur_inode_size) 5400 return 0; 5401 5402 /* 5403 * Don't go beyond the inode's i_size due to prealloc extents that start 5404 * after the i_size. 5405 */ 5406 end = min_t(u64, end, sctx->cur_inode_size); 5407 5408 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5409 return send_update_extent(sctx, offset, end - offset); 5410 5411 p = get_cur_inode_path(sctx); 5412 if (IS_ERR(p)) 5413 return PTR_ERR(p); 5414 5415 while (offset < end) { 5416 u64 len = min(end - offset, read_size); 5417 5418 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5419 if (ret < 0) 5420 break; 5421 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5422 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5423 ret = put_data_header(sctx, len); 5424 if (ret < 0) 5425 break; 5426 memset(sctx->send_buf + sctx->send_size, 0, len); 5427 sctx->send_size += len; 5428 ret = send_cmd(sctx); 5429 if (ret < 0) 5430 break; 5431 offset += len; 5432 } 5433 sctx->cur_inode_next_write_offset = offset; 5434 tlv_put_failure: 5435 return ret; 5436 } 5437 5438 static int send_encoded_inline_extent(struct send_ctx *sctx, 5439 struct btrfs_path *path, u64 offset, 5440 u64 len) 5441 { 5442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5443 struct fs_path *fspath; 5444 struct extent_buffer *leaf = path->nodes[0]; 5445 struct btrfs_key key; 5446 struct btrfs_file_extent_item *ei; 5447 u64 ram_bytes; 5448 size_t inline_size; 5449 int ret; 5450 5451 fspath = get_cur_inode_path(sctx); 5452 if (IS_ERR(fspath)) 5453 return PTR_ERR(fspath); 5454 5455 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5456 if (ret < 0) 5457 return ret; 5458 5459 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5460 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5461 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5462 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5463 5464 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5465 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5466 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5467 min(key.offset + ram_bytes - offset, len)); 5468 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5469 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5470 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5471 btrfs_file_extent_compression(leaf, ei)); 5472 if (ret < 0) 5473 return ret; 5474 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5475 5476 ret = put_data_header(sctx, inline_size); 5477 if (ret < 0) 5478 return ret; 5479 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5480 btrfs_file_extent_inline_start(ei), inline_size); 5481 sctx->send_size += inline_size; 5482 5483 ret = send_cmd(sctx); 5484 5485 tlv_put_failure: 5486 return ret; 5487 } 5488 5489 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5490 u64 offset, u64 len) 5491 { 5492 struct btrfs_root *root = sctx->send_root; 5493 struct btrfs_fs_info *fs_info = root->fs_info; 5494 struct btrfs_inode *inode; 5495 struct fs_path *fspath; 5496 struct extent_buffer *leaf = path->nodes[0]; 5497 struct btrfs_key key; 5498 struct btrfs_file_extent_item *ei; 5499 u64 disk_bytenr, disk_num_bytes; 5500 u32 data_offset; 5501 struct btrfs_cmd_header *hdr; 5502 u32 crc; 5503 int ret; 5504 5505 inode = btrfs_iget(sctx->cur_ino, root); 5506 if (IS_ERR(inode)) 5507 return PTR_ERR(inode); 5508 5509 fspath = get_cur_inode_path(sctx); 5510 if (IS_ERR(fspath)) { 5511 ret = PTR_ERR(fspath); 5512 goto out; 5513 } 5514 5515 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5516 if (ret < 0) 5517 goto out; 5518 5519 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5520 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5521 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5522 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5523 5524 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5525 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5526 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5527 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5528 len)); 5529 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5530 btrfs_file_extent_ram_bytes(leaf, ei)); 5531 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5532 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5533 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5534 btrfs_file_extent_compression(leaf, ei)); 5535 if (ret < 0) 5536 goto out; 5537 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5538 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5539 5540 ret = put_data_header(sctx, disk_num_bytes); 5541 if (ret < 0) 5542 goto out; 5543 5544 /* 5545 * We want to do I/O directly into the send buffer, so get the next page 5546 * boundary in the send buffer. This means that there may be a gap 5547 * between the beginning of the command and the file data. 5548 */ 5549 data_offset = PAGE_ALIGN(sctx->send_size); 5550 if (data_offset > sctx->send_max_size || 5551 sctx->send_max_size - data_offset < disk_num_bytes) { 5552 ret = -EOVERFLOW; 5553 goto out; 5554 } 5555 5556 /* 5557 * Note that send_buf is a mapping of send_buf_pages, so this is really 5558 * reading into send_buf. 5559 */ 5560 ret = btrfs_encoded_read_regular_fill_pages(inode, 5561 disk_bytenr, disk_num_bytes, 5562 sctx->send_buf_pages + 5563 (data_offset >> PAGE_SHIFT), 5564 NULL); 5565 if (ret) 5566 goto out; 5567 5568 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5569 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5570 hdr->crc = 0; 5571 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5572 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5573 hdr->crc = cpu_to_le32(crc); 5574 5575 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5576 &sctx->send_off); 5577 if (!ret) { 5578 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5579 disk_num_bytes, &sctx->send_off); 5580 } 5581 sctx->send_size = 0; 5582 sctx->put_data = false; 5583 5584 tlv_put_failure: 5585 out: 5586 iput(&inode->vfs_inode); 5587 return ret; 5588 } 5589 5590 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5591 const u64 offset, const u64 len) 5592 { 5593 const u64 end = offset + len; 5594 struct extent_buffer *leaf = path->nodes[0]; 5595 struct btrfs_file_extent_item *ei; 5596 u64 read_size = max_send_read_size(sctx); 5597 u64 sent = 0; 5598 5599 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5600 return send_update_extent(sctx, offset, len); 5601 5602 ei = btrfs_item_ptr(leaf, path->slots[0], 5603 struct btrfs_file_extent_item); 5604 /* 5605 * Do not go through encoded read for bs > ps cases. 5606 * 5607 * Encoded send is using vmallocated pages as buffer, which we can 5608 * not ensure every folio is large enough to contain a block. 5609 */ 5610 if (sctx->send_root->fs_info->sectorsize <= PAGE_SIZE && 5611 (sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5612 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5613 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5614 BTRFS_FILE_EXTENT_INLINE); 5615 5616 /* 5617 * Send the compressed extent unless the compressed data is 5618 * larger than the decompressed data. This can happen if we're 5619 * not sending the entire extent, either because it has been 5620 * partially overwritten/truncated or because this is a part of 5621 * the extent that we couldn't clone in clone_range(). 5622 */ 5623 if (is_inline && 5624 btrfs_file_extent_inline_item_len(leaf, 5625 path->slots[0]) <= len) { 5626 return send_encoded_inline_extent(sctx, path, offset, 5627 len); 5628 } else if (!is_inline && 5629 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5630 return send_encoded_extent(sctx, path, offset, len); 5631 } 5632 } 5633 5634 if (sctx->cur_inode == NULL) { 5635 struct btrfs_inode *btrfs_inode; 5636 struct btrfs_root *root = sctx->send_root; 5637 5638 btrfs_inode = btrfs_iget(sctx->cur_ino, root); 5639 if (IS_ERR(btrfs_inode)) 5640 return PTR_ERR(btrfs_inode); 5641 5642 sctx->cur_inode = &btrfs_inode->vfs_inode; 5643 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5644 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5645 5646 /* 5647 * It's very likely there are no pages from this inode in the page 5648 * cache, so after reading extents and sending their data, we clean 5649 * the page cache to avoid trashing the page cache (adding pressure 5650 * to the page cache and forcing eviction of other data more useful 5651 * for applications). 5652 * 5653 * We decide if we should clean the page cache simply by checking 5654 * if the inode's mapping nrpages is 0 when we first open it, and 5655 * not by using something like filemap_range_has_page() before 5656 * reading an extent because when we ask the readahead code to 5657 * read a given file range, it may (and almost always does) read 5658 * pages from beyond that range (see the documentation for 5659 * page_cache_sync_readahead()), so it would not be reliable, 5660 * because after reading the first extent future calls to 5661 * filemap_range_has_page() would return true because the readahead 5662 * on the previous extent resulted in reading pages of the current 5663 * extent as well. 5664 */ 5665 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5666 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5667 } 5668 5669 while (sent < len) { 5670 u64 size = min(len - sent, read_size); 5671 int ret; 5672 5673 ret = send_write(sctx, offset + sent, size); 5674 if (ret < 0) 5675 return ret; 5676 sent += size; 5677 } 5678 5679 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5680 /* 5681 * Always operate only on ranges that are a multiple of the page 5682 * size. This is not only to prevent zeroing parts of a page in 5683 * the case of subpage sector size, but also to guarantee we evict 5684 * pages, as passing a range that is smaller than page size does 5685 * not evict the respective page (only zeroes part of its content). 5686 * 5687 * Always start from the end offset of the last range cleared. 5688 * This is because the readahead code may (and very often does) 5689 * reads pages beyond the range we request for readahead. So if 5690 * we have an extent layout like this: 5691 * 5692 * [ extent A ] [ extent B ] [ extent C ] 5693 * 5694 * When we ask page_cache_sync_readahead() to read extent A, it 5695 * may also trigger reads for pages of extent B. If we are doing 5696 * an incremental send and extent B has not changed between the 5697 * parent and send snapshots, some or all of its pages may end 5698 * up being read and placed in the page cache. So when truncating 5699 * the page cache we always start from the end offset of the 5700 * previously processed extent up to the end of the current 5701 * extent. 5702 */ 5703 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5704 sctx->page_cache_clear_start, 5705 end - 1); 5706 sctx->page_cache_clear_start = end; 5707 } 5708 5709 return 0; 5710 } 5711 5712 /* 5713 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5714 * found, call send_set_xattr function to emit it. 5715 * 5716 * Return 0 if there isn't a capability, or when the capability was emitted 5717 * successfully, or < 0 if an error occurred. 5718 */ 5719 static int send_capabilities(struct send_ctx *sctx) 5720 { 5721 BTRFS_PATH_AUTO_FREE(path); 5722 struct btrfs_dir_item *di; 5723 struct extent_buffer *leaf; 5724 unsigned long data_ptr; 5725 char *buf = NULL; 5726 int buf_len; 5727 int ret = 0; 5728 5729 path = alloc_path_for_send(); 5730 if (!path) 5731 return -ENOMEM; 5732 5733 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5734 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5735 if (!di) { 5736 /* There is no xattr for this inode */ 5737 goto out; 5738 } else if (IS_ERR(di)) { 5739 ret = PTR_ERR(di); 5740 goto out; 5741 } 5742 5743 leaf = path->nodes[0]; 5744 buf_len = btrfs_dir_data_len(leaf, di); 5745 5746 buf = kmalloc(buf_len, GFP_KERNEL); 5747 if (!buf) { 5748 ret = -ENOMEM; 5749 goto out; 5750 } 5751 5752 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5753 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5754 5755 ret = send_set_xattr(sctx, XATTR_NAME_CAPS, 5756 strlen(XATTR_NAME_CAPS), buf, buf_len); 5757 out: 5758 kfree(buf); 5759 return ret; 5760 } 5761 5762 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5763 struct clone_root *clone_root, const u64 disk_byte, 5764 u64 data_offset, u64 offset, u64 len) 5765 { 5766 BTRFS_PATH_AUTO_FREE(path); 5767 struct btrfs_key key; 5768 int ret; 5769 struct btrfs_inode_info info; 5770 u64 clone_src_i_size = 0; 5771 5772 /* 5773 * Prevent cloning from a zero offset with a length matching the sector 5774 * size because in some scenarios this will make the receiver fail. 5775 * 5776 * For example, if in the source filesystem the extent at offset 0 5777 * has a length of sectorsize and it was written using direct IO, then 5778 * it can never be an inline extent (even if compression is enabled). 5779 * Then this extent can be cloned in the original filesystem to a non 5780 * zero file offset, but it may not be possible to clone in the 5781 * destination filesystem because it can be inlined due to compression 5782 * on the destination filesystem (as the receiver's write operations are 5783 * always done using buffered IO). The same happens when the original 5784 * filesystem does not have compression enabled but the destination 5785 * filesystem has. 5786 */ 5787 if (clone_root->offset == 0 && 5788 len == sctx->send_root->fs_info->sectorsize) 5789 return send_extent_data(sctx, dst_path, offset, len); 5790 5791 path = alloc_path_for_send(); 5792 if (!path) 5793 return -ENOMEM; 5794 5795 /* 5796 * There are inodes that have extents that lie behind its i_size. Don't 5797 * accept clones from these extents. 5798 */ 5799 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5800 btrfs_release_path(path); 5801 if (ret < 0) 5802 return ret; 5803 clone_src_i_size = info.size; 5804 5805 /* 5806 * We can't send a clone operation for the entire range if we find 5807 * extent items in the respective range in the source file that 5808 * refer to different extents or if we find holes. 5809 * So check for that and do a mix of clone and regular write/copy 5810 * operations if needed. 5811 * 5812 * Example: 5813 * 5814 * mkfs.btrfs -f /dev/sda 5815 * mount /dev/sda /mnt 5816 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5817 * cp --reflink=always /mnt/foo /mnt/bar 5818 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5819 * btrfs subvolume snapshot -r /mnt /mnt/snap 5820 * 5821 * If when we send the snapshot and we are processing file bar (which 5822 * has a higher inode number than foo) we blindly send a clone operation 5823 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5824 * a file bar that matches the content of file foo - iow, doesn't match 5825 * the content from bar in the original filesystem. 5826 */ 5827 key.objectid = clone_root->ino; 5828 key.type = BTRFS_EXTENT_DATA_KEY; 5829 key.offset = clone_root->offset; 5830 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5831 if (ret < 0) 5832 return ret; 5833 if (ret > 0 && path->slots[0] > 0) { 5834 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5835 if (key.objectid == clone_root->ino && 5836 key.type == BTRFS_EXTENT_DATA_KEY) 5837 path->slots[0]--; 5838 } 5839 5840 while (true) { 5841 struct extent_buffer *leaf = path->nodes[0]; 5842 int slot = path->slots[0]; 5843 struct btrfs_file_extent_item *ei; 5844 u8 type; 5845 u64 ext_len; 5846 u64 clone_len; 5847 u64 clone_data_offset; 5848 bool crossed_src_i_size = false; 5849 5850 if (slot >= btrfs_header_nritems(leaf)) { 5851 ret = btrfs_next_leaf(clone_root->root, path); 5852 if (ret < 0) 5853 return ret; 5854 else if (ret > 0) 5855 break; 5856 continue; 5857 } 5858 5859 btrfs_item_key_to_cpu(leaf, &key, slot); 5860 5861 /* 5862 * We might have an implicit trailing hole (NO_HOLES feature 5863 * enabled). We deal with it after leaving this loop. 5864 */ 5865 if (key.objectid != clone_root->ino || 5866 key.type != BTRFS_EXTENT_DATA_KEY) 5867 break; 5868 5869 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5870 type = btrfs_file_extent_type(leaf, ei); 5871 if (type == BTRFS_FILE_EXTENT_INLINE) { 5872 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5873 ext_len = PAGE_ALIGN(ext_len); 5874 } else { 5875 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5876 } 5877 5878 if (key.offset + ext_len <= clone_root->offset) 5879 goto next; 5880 5881 if (key.offset > clone_root->offset) { 5882 /* Implicit hole, NO_HOLES feature enabled. */ 5883 u64 hole_len = key.offset - clone_root->offset; 5884 5885 if (hole_len > len) 5886 hole_len = len; 5887 ret = send_extent_data(sctx, dst_path, offset, 5888 hole_len); 5889 if (ret < 0) 5890 return ret; 5891 5892 len -= hole_len; 5893 if (len == 0) 5894 break; 5895 offset += hole_len; 5896 clone_root->offset += hole_len; 5897 data_offset += hole_len; 5898 } 5899 5900 if (key.offset >= clone_root->offset + len) 5901 break; 5902 5903 if (key.offset >= clone_src_i_size) 5904 break; 5905 5906 if (key.offset + ext_len > clone_src_i_size) { 5907 ext_len = clone_src_i_size - key.offset; 5908 crossed_src_i_size = true; 5909 } 5910 5911 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5912 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5913 clone_root->offset = key.offset; 5914 if (clone_data_offset < data_offset && 5915 clone_data_offset + ext_len > data_offset) { 5916 u64 extent_offset; 5917 5918 extent_offset = data_offset - clone_data_offset; 5919 ext_len -= extent_offset; 5920 clone_data_offset += extent_offset; 5921 clone_root->offset += extent_offset; 5922 } 5923 } 5924 5925 clone_len = min_t(u64, ext_len, len); 5926 5927 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5928 clone_data_offset == data_offset) { 5929 const u64 src_end = clone_root->offset + clone_len; 5930 const u64 sectorsize = SZ_64K; 5931 5932 /* 5933 * We can't clone the last block, when its size is not 5934 * sector size aligned, into the middle of a file. If we 5935 * do so, the receiver will get a failure (-EINVAL) when 5936 * trying to clone or will silently corrupt the data in 5937 * the destination file if it's on a kernel without the 5938 * fix introduced by commit ac765f83f1397646 5939 * ("Btrfs: fix data corruption due to cloning of eof 5940 * block). 5941 * 5942 * So issue a clone of the aligned down range plus a 5943 * regular write for the eof block, if we hit that case. 5944 * 5945 * Also, we use the maximum possible sector size, 64K, 5946 * because we don't know what's the sector size of the 5947 * filesystem that receives the stream, so we have to 5948 * assume the largest possible sector size. 5949 */ 5950 if (src_end == clone_src_i_size && 5951 !IS_ALIGNED(src_end, sectorsize) && 5952 offset + clone_len < sctx->cur_inode_size) { 5953 u64 slen; 5954 5955 slen = ALIGN_DOWN(src_end - clone_root->offset, 5956 sectorsize); 5957 if (slen > 0) { 5958 ret = send_clone(sctx, offset, slen, 5959 clone_root); 5960 if (ret < 0) 5961 return ret; 5962 } 5963 ret = send_extent_data(sctx, dst_path, 5964 offset + slen, 5965 clone_len - slen); 5966 } else { 5967 ret = send_clone(sctx, offset, clone_len, 5968 clone_root); 5969 } 5970 } else if (crossed_src_i_size && clone_len < len) { 5971 /* 5972 * If we are at i_size of the clone source inode and we 5973 * can not clone from it, terminate the loop. This is 5974 * to avoid sending two write operations, one with a 5975 * length matching clone_len and the final one after 5976 * this loop with a length of len - clone_len. 5977 * 5978 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 5979 * was passed to the send ioctl), this helps avoid 5980 * sending an encoded write for an offset that is not 5981 * sector size aligned, in case the i_size of the source 5982 * inode is not sector size aligned. That will make the 5983 * receiver fallback to decompression of the data and 5984 * writing it using regular buffered IO, therefore while 5985 * not incorrect, it's not optimal due decompression and 5986 * possible re-compression at the receiver. 5987 */ 5988 break; 5989 } else { 5990 ret = send_extent_data(sctx, dst_path, offset, 5991 clone_len); 5992 } 5993 5994 if (ret < 0) 5995 return ret; 5996 5997 len -= clone_len; 5998 if (len == 0) 5999 break; 6000 offset += clone_len; 6001 clone_root->offset += clone_len; 6002 6003 /* 6004 * If we are cloning from the file we are currently processing, 6005 * and using the send root as the clone root, we must stop once 6006 * the current clone offset reaches the current eof of the file 6007 * at the receiver, otherwise we would issue an invalid clone 6008 * operation (source range going beyond eof) and cause the 6009 * receiver to fail. So if we reach the current eof, bail out 6010 * and fallback to a regular write. 6011 */ 6012 if (clone_root->root == sctx->send_root && 6013 clone_root->ino == sctx->cur_ino && 6014 clone_root->offset >= sctx->cur_inode_next_write_offset) 6015 break; 6016 6017 data_offset += clone_len; 6018 next: 6019 path->slots[0]++; 6020 } 6021 6022 if (len > 0) 6023 ret = send_extent_data(sctx, dst_path, offset, len); 6024 else 6025 ret = 0; 6026 return ret; 6027 } 6028 6029 static int send_write_or_clone(struct send_ctx *sctx, 6030 struct btrfs_path *path, 6031 struct btrfs_key *key, 6032 struct clone_root *clone_root) 6033 { 6034 int ret = 0; 6035 u64 offset = key->offset; 6036 u64 end; 6037 u64 bs = sctx->send_root->fs_info->sectorsize; 6038 struct btrfs_file_extent_item *ei; 6039 u64 disk_byte; 6040 u64 data_offset; 6041 u64 num_bytes; 6042 struct btrfs_inode_info info = { 0 }; 6043 6044 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6045 if (offset >= end) 6046 return 0; 6047 6048 num_bytes = end - offset; 6049 6050 if (!clone_root) 6051 goto write_data; 6052 6053 if (IS_ALIGNED(end, bs)) 6054 goto clone_data; 6055 6056 /* 6057 * If the extent end is not aligned, we can clone if the extent ends at 6058 * the i_size of the inode and the clone range ends at the i_size of the 6059 * source inode, otherwise the clone operation fails with -EINVAL. 6060 */ 6061 if (end != sctx->cur_inode_size) 6062 goto write_data; 6063 6064 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6065 if (ret < 0) 6066 return ret; 6067 6068 if (clone_root->offset + num_bytes == info.size) { 6069 /* 6070 * The final size of our file matches the end offset, but it may 6071 * be that its current size is larger, so we have to truncate it 6072 * to any value between the start offset of the range and the 6073 * final i_size, otherwise the clone operation is invalid 6074 * because it's unaligned and it ends before the current EOF. 6075 * We do this truncate to the final i_size when we finish 6076 * processing the inode, but it's too late by then. And here we 6077 * truncate to the start offset of the range because it's always 6078 * sector size aligned while if it were the final i_size it 6079 * would result in dirtying part of a page, filling part of a 6080 * page with zeroes and then having the clone operation at the 6081 * receiver trigger IO and wait for it due to the dirty page. 6082 */ 6083 if (sctx->parent_root != NULL) { 6084 ret = send_truncate(sctx, sctx->cur_ino, 6085 sctx->cur_inode_gen, offset); 6086 if (ret < 0) 6087 return ret; 6088 } 6089 goto clone_data; 6090 } 6091 6092 write_data: 6093 ret = send_extent_data(sctx, path, offset, num_bytes); 6094 sctx->cur_inode_next_write_offset = end; 6095 return ret; 6096 6097 clone_data: 6098 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6099 struct btrfs_file_extent_item); 6100 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6101 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6102 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6103 num_bytes); 6104 sctx->cur_inode_next_write_offset = end; 6105 return ret; 6106 } 6107 6108 static int is_extent_unchanged(struct send_ctx *sctx, 6109 struct btrfs_path *left_path, 6110 struct btrfs_key *ekey) 6111 { 6112 int ret = 0; 6113 struct btrfs_key key; 6114 BTRFS_PATH_AUTO_FREE(path); 6115 struct extent_buffer *eb; 6116 int slot; 6117 struct btrfs_key found_key; 6118 struct btrfs_file_extent_item *ei; 6119 u64 left_disknr; 6120 u64 right_disknr; 6121 u64 left_offset; 6122 u64 right_offset; 6123 u64 left_offset_fixed; 6124 u64 left_len; 6125 u64 right_len; 6126 u64 left_gen; 6127 u64 right_gen; 6128 u8 left_type; 6129 u8 right_type; 6130 6131 path = alloc_path_for_send(); 6132 if (!path) 6133 return -ENOMEM; 6134 6135 eb = left_path->nodes[0]; 6136 slot = left_path->slots[0]; 6137 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6138 left_type = btrfs_file_extent_type(eb, ei); 6139 6140 if (left_type != BTRFS_FILE_EXTENT_REG) 6141 return 0; 6142 6143 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6144 left_len = btrfs_file_extent_num_bytes(eb, ei); 6145 left_offset = btrfs_file_extent_offset(eb, ei); 6146 left_gen = btrfs_file_extent_generation(eb, ei); 6147 6148 /* 6149 * Following comments will refer to these graphics. L is the left 6150 * extents which we are checking at the moment. 1-8 are the right 6151 * extents that we iterate. 6152 * 6153 * |-----L-----| 6154 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6155 * 6156 * |-----L-----| 6157 * |--1--|-2b-|...(same as above) 6158 * 6159 * Alternative situation. Happens on files where extents got split. 6160 * |-----L-----| 6161 * |-----------7-----------|-6-| 6162 * 6163 * Alternative situation. Happens on files which got larger. 6164 * |-----L-----| 6165 * |-8-| 6166 * Nothing follows after 8. 6167 */ 6168 6169 key.objectid = ekey->objectid; 6170 key.type = BTRFS_EXTENT_DATA_KEY; 6171 key.offset = ekey->offset; 6172 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6173 if (ret < 0) 6174 return ret; 6175 if (ret) 6176 return 0; 6177 6178 /* 6179 * Handle special case where the right side has no extents at all. 6180 */ 6181 eb = path->nodes[0]; 6182 slot = path->slots[0]; 6183 btrfs_item_key_to_cpu(eb, &found_key, slot); 6184 if (found_key.objectid != key.objectid || 6185 found_key.type != key.type) 6186 /* If we're a hole then just pretend nothing changed */ 6187 return (left_disknr ? 0 : 1); 6188 6189 /* 6190 * We're now on 2a, 2b or 7. 6191 */ 6192 key = found_key; 6193 while (key.offset < ekey->offset + left_len) { 6194 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6195 right_type = btrfs_file_extent_type(eb, ei); 6196 if (right_type != BTRFS_FILE_EXTENT_REG && 6197 right_type != BTRFS_FILE_EXTENT_INLINE) 6198 return 0; 6199 6200 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6201 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6202 right_len = PAGE_ALIGN(right_len); 6203 } else { 6204 right_len = btrfs_file_extent_num_bytes(eb, ei); 6205 } 6206 6207 /* 6208 * Are we at extent 8? If yes, we know the extent is changed. 6209 * This may only happen on the first iteration. 6210 */ 6211 if (found_key.offset + right_len <= ekey->offset) 6212 /* If we're a hole just pretend nothing changed */ 6213 return (left_disknr ? 0 : 1); 6214 6215 /* 6216 * We just wanted to see if when we have an inline extent, what 6217 * follows it is a regular extent (wanted to check the above 6218 * condition for inline extents too). This should normally not 6219 * happen but it's possible for example when we have an inline 6220 * compressed extent representing data with a size matching 6221 * the page size (currently the same as sector size). 6222 */ 6223 if (right_type == BTRFS_FILE_EXTENT_INLINE) 6224 return 0; 6225 6226 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6227 right_offset = btrfs_file_extent_offset(eb, ei); 6228 right_gen = btrfs_file_extent_generation(eb, ei); 6229 6230 left_offset_fixed = left_offset; 6231 if (key.offset < ekey->offset) { 6232 /* Fix the right offset for 2a and 7. */ 6233 right_offset += ekey->offset - key.offset; 6234 } else { 6235 /* Fix the left offset for all behind 2a and 2b */ 6236 left_offset_fixed += key.offset - ekey->offset; 6237 } 6238 6239 /* 6240 * Check if we have the same extent. 6241 */ 6242 if (left_disknr != right_disknr || 6243 left_offset_fixed != right_offset || 6244 left_gen != right_gen) 6245 return 0; 6246 6247 /* 6248 * Go to the next extent. 6249 */ 6250 ret = btrfs_next_item(sctx->parent_root, path); 6251 if (ret < 0) 6252 return ret; 6253 if (!ret) { 6254 eb = path->nodes[0]; 6255 slot = path->slots[0]; 6256 btrfs_item_key_to_cpu(eb, &found_key, slot); 6257 } 6258 if (ret || found_key.objectid != key.objectid || 6259 found_key.type != key.type) { 6260 key.offset += right_len; 6261 break; 6262 } 6263 if (found_key.offset != key.offset + right_len) 6264 return 0; 6265 6266 key = found_key; 6267 } 6268 6269 /* 6270 * We're now behind the left extent (treat as unchanged) or at the end 6271 * of the right side (treat as changed). 6272 */ 6273 if (key.offset >= ekey->offset + left_len) 6274 ret = 1; 6275 else 6276 ret = 0; 6277 6278 return ret; 6279 } 6280 6281 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6282 { 6283 BTRFS_PATH_AUTO_FREE(path); 6284 struct btrfs_root *root = sctx->send_root; 6285 struct btrfs_key key; 6286 int ret; 6287 6288 path = alloc_path_for_send(); 6289 if (!path) 6290 return -ENOMEM; 6291 6292 sctx->cur_inode_last_extent = 0; 6293 6294 key.objectid = sctx->cur_ino; 6295 key.type = BTRFS_EXTENT_DATA_KEY; 6296 key.offset = offset; 6297 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6298 if (ret < 0) 6299 return ret; 6300 ret = 0; 6301 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6302 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6303 return ret; 6304 6305 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6306 return ret; 6307 } 6308 6309 static int range_is_hole_in_parent(struct send_ctx *sctx, 6310 const u64 start, 6311 const u64 end) 6312 { 6313 BTRFS_PATH_AUTO_FREE(path); 6314 struct btrfs_key key; 6315 struct btrfs_root *root = sctx->parent_root; 6316 u64 search_start = start; 6317 int ret; 6318 6319 path = alloc_path_for_send(); 6320 if (!path) 6321 return -ENOMEM; 6322 6323 key.objectid = sctx->cur_ino; 6324 key.type = BTRFS_EXTENT_DATA_KEY; 6325 key.offset = search_start; 6326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6327 if (ret < 0) 6328 return ret; 6329 if (ret > 0 && path->slots[0] > 0) 6330 path->slots[0]--; 6331 6332 while (search_start < end) { 6333 struct extent_buffer *leaf = path->nodes[0]; 6334 int slot = path->slots[0]; 6335 struct btrfs_file_extent_item *fi; 6336 u64 extent_end; 6337 6338 if (slot >= btrfs_header_nritems(leaf)) { 6339 ret = btrfs_next_leaf(root, path); 6340 if (ret < 0) 6341 return ret; 6342 if (ret > 0) 6343 break; 6344 continue; 6345 } 6346 6347 btrfs_item_key_to_cpu(leaf, &key, slot); 6348 if (key.objectid < sctx->cur_ino || 6349 key.type < BTRFS_EXTENT_DATA_KEY) 6350 goto next; 6351 if (key.objectid > sctx->cur_ino || 6352 key.type > BTRFS_EXTENT_DATA_KEY || 6353 key.offset >= end) 6354 break; 6355 6356 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6357 extent_end = btrfs_file_extent_end(path); 6358 if (extent_end <= start) 6359 goto next; 6360 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6361 search_start = extent_end; 6362 goto next; 6363 } 6364 return 0; 6365 next: 6366 path->slots[0]++; 6367 } 6368 return 1; 6369 } 6370 6371 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6372 struct btrfs_key *key) 6373 { 6374 int ret = 0; 6375 6376 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6377 return 0; 6378 6379 /* 6380 * Get last extent's end offset (exclusive) if we haven't determined it 6381 * yet (we're processing the first file extent item that is new), or if 6382 * we're at the first slot of a leaf and the last extent's end is less 6383 * than the current extent's offset, because we might have skipped 6384 * entire leaves that contained only file extent items for our current 6385 * inode. These leaves have a generation number smaller (older) than the 6386 * one in the current leaf and the leaf our last extent came from, and 6387 * are located between these 2 leaves. 6388 */ 6389 if ((sctx->cur_inode_last_extent == (u64)-1) || 6390 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6391 ret = get_last_extent(sctx, key->offset - 1); 6392 if (ret) 6393 return ret; 6394 } 6395 6396 if (sctx->cur_inode_last_extent < key->offset) { 6397 ret = range_is_hole_in_parent(sctx, 6398 sctx->cur_inode_last_extent, 6399 key->offset); 6400 if (ret < 0) 6401 return ret; 6402 else if (ret == 0) 6403 ret = send_hole(sctx, key->offset); 6404 else 6405 ret = 0; 6406 } 6407 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6408 return ret; 6409 } 6410 6411 static int process_extent(struct send_ctx *sctx, 6412 struct btrfs_path *path, 6413 struct btrfs_key *key) 6414 { 6415 struct clone_root *found_clone = NULL; 6416 int ret = 0; 6417 6418 if (S_ISLNK(sctx->cur_inode_mode)) 6419 return 0; 6420 6421 if (sctx->parent_root && !sctx->cur_inode_new) { 6422 ret = is_extent_unchanged(sctx, path, key); 6423 if (ret < 0) 6424 goto out; 6425 if (ret) { 6426 ret = 0; 6427 goto out_hole; 6428 } 6429 } else { 6430 struct btrfs_file_extent_item *ei; 6431 u8 type; 6432 6433 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6434 struct btrfs_file_extent_item); 6435 type = btrfs_file_extent_type(path->nodes[0], ei); 6436 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6437 type == BTRFS_FILE_EXTENT_REG) { 6438 /* 6439 * The send spec does not have a prealloc command yet, 6440 * so just leave a hole for prealloc'ed extents until 6441 * we have enough commands queued up to justify rev'ing 6442 * the send spec. 6443 */ 6444 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6445 ret = 0; 6446 goto out; 6447 } 6448 6449 /* Have a hole, just skip it. */ 6450 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6451 ret = 0; 6452 goto out; 6453 } 6454 } 6455 } 6456 6457 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6458 sctx->cur_inode_size, &found_clone); 6459 if (ret != -ENOENT && ret < 0) 6460 goto out; 6461 6462 ret = send_write_or_clone(sctx, path, key, found_clone); 6463 if (ret) 6464 goto out; 6465 out_hole: 6466 ret = maybe_send_hole(sctx, path, key); 6467 out: 6468 return ret; 6469 } 6470 6471 static int process_all_extents(struct send_ctx *sctx) 6472 { 6473 int ret = 0; 6474 int iter_ret = 0; 6475 struct btrfs_root *root; 6476 BTRFS_PATH_AUTO_FREE(path); 6477 struct btrfs_key key; 6478 struct btrfs_key found_key; 6479 6480 root = sctx->send_root; 6481 path = alloc_path_for_send(); 6482 if (!path) 6483 return -ENOMEM; 6484 6485 key.objectid = sctx->cmp_key->objectid; 6486 key.type = BTRFS_EXTENT_DATA_KEY; 6487 key.offset = 0; 6488 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6489 if (found_key.objectid != key.objectid || 6490 found_key.type != key.type) { 6491 ret = 0; 6492 break; 6493 } 6494 6495 ret = process_extent(sctx, path, &found_key); 6496 if (ret < 0) 6497 break; 6498 } 6499 /* Catch error found during iteration */ 6500 if (iter_ret < 0) 6501 ret = iter_ret; 6502 6503 return ret; 6504 } 6505 6506 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end, 6507 int *pending_move, 6508 int *refs_processed) 6509 { 6510 int ret = 0; 6511 6512 if (sctx->cur_ino == 0) 6513 goto out; 6514 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6515 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6516 goto out; 6517 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6518 goto out; 6519 6520 ret = process_recorded_refs(sctx, pending_move); 6521 if (ret < 0) 6522 goto out; 6523 6524 *refs_processed = 1; 6525 out: 6526 return ret; 6527 } 6528 6529 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end) 6530 { 6531 int ret = 0; 6532 struct btrfs_inode_info info; 6533 u64 left_mode; 6534 u64 left_uid; 6535 u64 left_gid; 6536 u64 left_fileattr; 6537 u64 right_mode; 6538 u64 right_uid; 6539 u64 right_gid; 6540 u64 right_fileattr; 6541 int need_chmod = 0; 6542 int need_chown = 0; 6543 bool need_fileattr = false; 6544 int need_truncate = 1; 6545 int pending_move = 0; 6546 int refs_processed = 0; 6547 6548 if (sctx->ignore_cur_inode) 6549 return 0; 6550 6551 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6552 &refs_processed); 6553 if (ret < 0) 6554 goto out; 6555 6556 /* 6557 * We have processed the refs and thus need to advance send_progress. 6558 * Now, calls to get_cur_xxx will take the updated refs of the current 6559 * inode into account. 6560 * 6561 * On the other hand, if our current inode is a directory and couldn't 6562 * be moved/renamed because its parent was renamed/moved too and it has 6563 * a higher inode number, we can only move/rename our current inode 6564 * after we moved/renamed its parent. Therefore in this case operate on 6565 * the old path (pre move/rename) of our current inode, and the 6566 * move/rename will be performed later. 6567 */ 6568 if (refs_processed && !pending_move) 6569 sctx->send_progress = sctx->cur_ino + 1; 6570 6571 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6572 goto out; 6573 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6574 goto out; 6575 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6576 if (ret < 0) 6577 goto out; 6578 left_mode = info.mode; 6579 left_uid = info.uid; 6580 left_gid = info.gid; 6581 left_fileattr = info.fileattr; 6582 6583 if (!sctx->parent_root || sctx->cur_inode_new) { 6584 need_chown = 1; 6585 if (!S_ISLNK(sctx->cur_inode_mode)) 6586 need_chmod = 1; 6587 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6588 need_truncate = 0; 6589 } else { 6590 u64 old_size; 6591 6592 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6593 if (ret < 0) 6594 goto out; 6595 old_size = info.size; 6596 right_mode = info.mode; 6597 right_uid = info.uid; 6598 right_gid = info.gid; 6599 right_fileattr = info.fileattr; 6600 6601 if (left_uid != right_uid || left_gid != right_gid) 6602 need_chown = 1; 6603 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6604 need_chmod = 1; 6605 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6606 need_fileattr = true; 6607 if ((old_size == sctx->cur_inode_size) || 6608 (sctx->cur_inode_size > old_size && 6609 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6610 need_truncate = 0; 6611 } 6612 6613 if (S_ISREG(sctx->cur_inode_mode)) { 6614 if (need_send_hole(sctx)) { 6615 if (sctx->cur_inode_last_extent == (u64)-1 || 6616 sctx->cur_inode_last_extent < 6617 sctx->cur_inode_size) { 6618 ret = get_last_extent(sctx, (u64)-1); 6619 if (ret) 6620 goto out; 6621 } 6622 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6623 ret = range_is_hole_in_parent(sctx, 6624 sctx->cur_inode_last_extent, 6625 sctx->cur_inode_size); 6626 if (ret < 0) { 6627 goto out; 6628 } else if (ret == 0) { 6629 ret = send_hole(sctx, sctx->cur_inode_size); 6630 if (ret < 0) 6631 goto out; 6632 } else { 6633 /* Range is already a hole, skip. */ 6634 ret = 0; 6635 } 6636 } 6637 } 6638 if (need_truncate) { 6639 ret = send_truncate(sctx, sctx->cur_ino, 6640 sctx->cur_inode_gen, 6641 sctx->cur_inode_size); 6642 if (ret < 0) 6643 goto out; 6644 } 6645 } 6646 6647 if (need_chown) { 6648 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6649 left_uid, left_gid); 6650 if (ret < 0) 6651 goto out; 6652 } 6653 if (need_chmod) { 6654 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6655 left_mode); 6656 if (ret < 0) 6657 goto out; 6658 } 6659 if (need_fileattr) { 6660 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6661 left_fileattr); 6662 if (ret < 0) 6663 goto out; 6664 } 6665 6666 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6667 && sctx->cur_inode_needs_verity) { 6668 ret = process_verity(sctx); 6669 if (ret < 0) 6670 goto out; 6671 } 6672 6673 ret = send_capabilities(sctx); 6674 if (ret < 0) 6675 goto out; 6676 6677 /* 6678 * If other directory inodes depended on our current directory 6679 * inode's move/rename, now do their move/rename operations. 6680 */ 6681 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6682 ret = apply_children_dir_moves(sctx); 6683 if (ret) 6684 goto out; 6685 /* 6686 * Need to send that every time, no matter if it actually 6687 * changed between the two trees as we have done changes to 6688 * the inode before. If our inode is a directory and it's 6689 * waiting to be moved/renamed, we will send its utimes when 6690 * it's moved/renamed, therefore we don't need to do it here. 6691 */ 6692 sctx->send_progress = sctx->cur_ino + 1; 6693 6694 /* 6695 * If the current inode is a non-empty directory, delay issuing 6696 * the utimes command for it, as it's very likely we have inodes 6697 * with an higher number inside it. We want to issue the utimes 6698 * command only after adding all dentries to it. 6699 */ 6700 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6701 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6702 else 6703 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6704 6705 if (ret < 0) 6706 goto out; 6707 } 6708 6709 out: 6710 if (!ret) 6711 ret = trim_dir_utimes_cache(sctx); 6712 6713 return ret; 6714 } 6715 6716 static void close_current_inode(struct send_ctx *sctx) 6717 { 6718 u64 i_size; 6719 6720 if (sctx->cur_inode == NULL) 6721 return; 6722 6723 i_size = i_size_read(sctx->cur_inode); 6724 6725 /* 6726 * If we are doing an incremental send, we may have extents between the 6727 * last processed extent and the i_size that have not been processed 6728 * because they haven't changed but we may have read some of their pages 6729 * through readahead, see the comments at send_extent_data(). 6730 */ 6731 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6732 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6733 sctx->page_cache_clear_start, 6734 round_up(i_size, PAGE_SIZE) - 1); 6735 6736 iput(sctx->cur_inode); 6737 sctx->cur_inode = NULL; 6738 } 6739 6740 static int changed_inode(struct send_ctx *sctx, 6741 enum btrfs_compare_tree_result result) 6742 { 6743 int ret = 0; 6744 struct btrfs_key *key = sctx->cmp_key; 6745 struct btrfs_inode_item *left_ii = NULL; 6746 struct btrfs_inode_item *right_ii = NULL; 6747 u64 left_gen = 0; 6748 u64 right_gen = 0; 6749 6750 close_current_inode(sctx); 6751 6752 sctx->cur_ino = key->objectid; 6753 sctx->cur_inode_new_gen = false; 6754 sctx->cur_inode_last_extent = (u64)-1; 6755 sctx->cur_inode_next_write_offset = 0; 6756 sctx->ignore_cur_inode = false; 6757 fs_path_reset(&sctx->cur_inode_path); 6758 6759 /* 6760 * Set send_progress to current inode. This will tell all get_cur_xxx 6761 * functions that the current inode's refs are not updated yet. Later, 6762 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6763 */ 6764 sctx->send_progress = sctx->cur_ino; 6765 6766 if (result == BTRFS_COMPARE_TREE_NEW || 6767 result == BTRFS_COMPARE_TREE_CHANGED) { 6768 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6769 sctx->left_path->slots[0], 6770 struct btrfs_inode_item); 6771 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6772 left_ii); 6773 } else { 6774 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6775 sctx->right_path->slots[0], 6776 struct btrfs_inode_item); 6777 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6778 right_ii); 6779 } 6780 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6781 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6782 sctx->right_path->slots[0], 6783 struct btrfs_inode_item); 6784 6785 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6786 right_ii); 6787 6788 /* 6789 * The cur_ino = root dir case is special here. We can't treat 6790 * the inode as deleted+reused because it would generate a 6791 * stream that tries to delete/mkdir the root dir. 6792 */ 6793 if (left_gen != right_gen && 6794 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6795 sctx->cur_inode_new_gen = true; 6796 } 6797 6798 /* 6799 * Normally we do not find inodes with a link count of zero (orphans) 6800 * because the most common case is to create a snapshot and use it 6801 * for a send operation. However other less common use cases involve 6802 * using a subvolume and send it after turning it to RO mode just 6803 * after deleting all hard links of a file while holding an open 6804 * file descriptor against it or turning a RO snapshot into RW mode, 6805 * keep an open file descriptor against a file, delete it and then 6806 * turn the snapshot back to RO mode before using it for a send 6807 * operation. The former is what the receiver operation does. 6808 * Therefore, if we want to send these snapshots soon after they're 6809 * received, we need to handle orphan inodes as well. Moreover, orphans 6810 * can appear not only in the send snapshot but also in the parent 6811 * snapshot. Here are several cases: 6812 * 6813 * Case 1: BTRFS_COMPARE_TREE_NEW 6814 * | send snapshot | action 6815 * -------------------------------- 6816 * nlink | 0 | ignore 6817 * 6818 * Case 2: BTRFS_COMPARE_TREE_DELETED 6819 * | parent snapshot | action 6820 * ---------------------------------- 6821 * nlink | 0 | as usual 6822 * Note: No unlinks will be sent because there're no paths for it. 6823 * 6824 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6825 * | | parent snapshot | send snapshot | action 6826 * ----------------------------------------------------------------------- 6827 * subcase 1 | nlink | 0 | 0 | ignore 6828 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6829 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6830 * 6831 */ 6832 if (result == BTRFS_COMPARE_TREE_NEW) { 6833 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6834 sctx->ignore_cur_inode = true; 6835 goto out; 6836 } 6837 sctx->cur_inode_gen = left_gen; 6838 sctx->cur_inode_new = true; 6839 sctx->cur_inode_deleted = false; 6840 sctx->cur_inode_size = btrfs_inode_size( 6841 sctx->left_path->nodes[0], left_ii); 6842 sctx->cur_inode_mode = btrfs_inode_mode( 6843 sctx->left_path->nodes[0], left_ii); 6844 sctx->cur_inode_rdev = btrfs_inode_rdev( 6845 sctx->left_path->nodes[0], left_ii); 6846 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6847 ret = send_create_inode_if_needed(sctx); 6848 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6849 sctx->cur_inode_gen = right_gen; 6850 sctx->cur_inode_new = false; 6851 sctx->cur_inode_deleted = true; 6852 sctx->cur_inode_size = btrfs_inode_size( 6853 sctx->right_path->nodes[0], right_ii); 6854 sctx->cur_inode_mode = btrfs_inode_mode( 6855 sctx->right_path->nodes[0], right_ii); 6856 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6857 u32 new_nlinks, old_nlinks; 6858 6859 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6860 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6861 if (new_nlinks == 0 && old_nlinks == 0) { 6862 sctx->ignore_cur_inode = true; 6863 goto out; 6864 } else if (new_nlinks == 0 || old_nlinks == 0) { 6865 sctx->cur_inode_new_gen = 1; 6866 } 6867 /* 6868 * We need to do some special handling in case the inode was 6869 * reported as changed with a changed generation number. This 6870 * means that the original inode was deleted and new inode 6871 * reused the same inum. So we have to treat the old inode as 6872 * deleted and the new one as new. 6873 */ 6874 if (sctx->cur_inode_new_gen) { 6875 /* 6876 * First, process the inode as if it was deleted. 6877 */ 6878 if (old_nlinks > 0) { 6879 sctx->cur_inode_gen = right_gen; 6880 sctx->cur_inode_new = false; 6881 sctx->cur_inode_deleted = true; 6882 sctx->cur_inode_size = btrfs_inode_size( 6883 sctx->right_path->nodes[0], right_ii); 6884 sctx->cur_inode_mode = btrfs_inode_mode( 6885 sctx->right_path->nodes[0], right_ii); 6886 ret = process_all_refs(sctx, 6887 BTRFS_COMPARE_TREE_DELETED); 6888 if (ret < 0) 6889 goto out; 6890 } 6891 6892 /* 6893 * Now process the inode as if it was new. 6894 */ 6895 if (new_nlinks > 0) { 6896 sctx->cur_inode_gen = left_gen; 6897 sctx->cur_inode_new = true; 6898 sctx->cur_inode_deleted = false; 6899 sctx->cur_inode_size = btrfs_inode_size( 6900 sctx->left_path->nodes[0], 6901 left_ii); 6902 sctx->cur_inode_mode = btrfs_inode_mode( 6903 sctx->left_path->nodes[0], 6904 left_ii); 6905 sctx->cur_inode_rdev = btrfs_inode_rdev( 6906 sctx->left_path->nodes[0], 6907 left_ii); 6908 ret = send_create_inode_if_needed(sctx); 6909 if (ret < 0) 6910 goto out; 6911 6912 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6913 if (ret < 0) 6914 goto out; 6915 /* 6916 * Advance send_progress now as we did not get 6917 * into process_recorded_refs_if_needed in the 6918 * new_gen case. 6919 */ 6920 sctx->send_progress = sctx->cur_ino + 1; 6921 6922 /* 6923 * Now process all extents and xattrs of the 6924 * inode as if they were all new. 6925 */ 6926 ret = process_all_extents(sctx); 6927 if (ret < 0) 6928 goto out; 6929 ret = process_all_new_xattrs(sctx); 6930 if (ret < 0) 6931 goto out; 6932 } 6933 } else { 6934 sctx->cur_inode_gen = left_gen; 6935 sctx->cur_inode_new = false; 6936 sctx->cur_inode_new_gen = false; 6937 sctx->cur_inode_deleted = false; 6938 sctx->cur_inode_size = btrfs_inode_size( 6939 sctx->left_path->nodes[0], left_ii); 6940 sctx->cur_inode_mode = btrfs_inode_mode( 6941 sctx->left_path->nodes[0], left_ii); 6942 } 6943 } 6944 6945 out: 6946 return ret; 6947 } 6948 6949 /* 6950 * We have to process new refs before deleted refs, but compare_trees gives us 6951 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6952 * first and later process them in process_recorded_refs. 6953 * For the cur_inode_new_gen case, we skip recording completely because 6954 * changed_inode did already initiate processing of refs. The reason for this is 6955 * that in this case, compare_tree actually compares the refs of 2 different 6956 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6957 * refs of the right tree as deleted and all refs of the left tree as new. 6958 */ 6959 static int changed_ref(struct send_ctx *sctx, 6960 enum btrfs_compare_tree_result result) 6961 { 6962 int ret = 0; 6963 6964 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 6965 inconsistent_snapshot_error(sctx, result, "reference"); 6966 return -EIO; 6967 } 6968 6969 if (!sctx->cur_inode_new_gen && 6970 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6971 if (result == BTRFS_COMPARE_TREE_NEW) 6972 ret = record_new_ref(sctx); 6973 else if (result == BTRFS_COMPARE_TREE_DELETED) 6974 ret = record_deleted_ref(sctx); 6975 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6976 ret = record_changed_ref(sctx); 6977 } 6978 6979 return ret; 6980 } 6981 6982 /* 6983 * Process new/deleted/changed xattrs. We skip processing in the 6984 * cur_inode_new_gen case because changed_inode did already initiate processing 6985 * of xattrs. The reason is the same as in changed_ref 6986 */ 6987 static int changed_xattr(struct send_ctx *sctx, 6988 enum btrfs_compare_tree_result result) 6989 { 6990 int ret = 0; 6991 6992 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 6993 inconsistent_snapshot_error(sctx, result, "xattr"); 6994 return -EIO; 6995 } 6996 6997 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 6998 if (result == BTRFS_COMPARE_TREE_NEW) 6999 ret = process_new_xattr(sctx); 7000 else if (result == BTRFS_COMPARE_TREE_DELETED) 7001 ret = process_deleted_xattr(sctx); 7002 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7003 ret = process_changed_xattr(sctx); 7004 } 7005 7006 return ret; 7007 } 7008 7009 /* 7010 * Process new/deleted/changed extents. We skip processing in the 7011 * cur_inode_new_gen case because changed_inode did already initiate processing 7012 * of extents. The reason is the same as in changed_ref 7013 */ 7014 static int changed_extent(struct send_ctx *sctx, 7015 enum btrfs_compare_tree_result result) 7016 { 7017 int ret = 0; 7018 7019 /* 7020 * We have found an extent item that changed without the inode item 7021 * having changed. This can happen either after relocation (where the 7022 * disk_bytenr of an extent item is replaced at 7023 * relocation.c:replace_file_extents()) or after deduplication into a 7024 * file in both the parent and send snapshots (where an extent item can 7025 * get modified or replaced with a new one). Note that deduplication 7026 * updates the inode item, but it only changes the iversion (sequence 7027 * field in the inode item) of the inode, so if a file is deduplicated 7028 * the same amount of times in both the parent and send snapshots, its 7029 * iversion becomes the same in both snapshots, whence the inode item is 7030 * the same on both snapshots. 7031 */ 7032 if (sctx->cur_ino != sctx->cmp_key->objectid) 7033 return 0; 7034 7035 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7036 if (result != BTRFS_COMPARE_TREE_DELETED) 7037 ret = process_extent(sctx, sctx->left_path, 7038 sctx->cmp_key); 7039 } 7040 7041 return ret; 7042 } 7043 7044 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7045 { 7046 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7047 if (result == BTRFS_COMPARE_TREE_NEW) 7048 sctx->cur_inode_needs_verity = true; 7049 } 7050 return 0; 7051 } 7052 7053 static int dir_changed(struct send_ctx *sctx, u64 dir) 7054 { 7055 u64 orig_gen, new_gen; 7056 int ret; 7057 7058 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7059 if (ret) 7060 return ret; 7061 7062 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7063 if (ret) 7064 return ret; 7065 7066 return (orig_gen != new_gen) ? 1 : 0; 7067 } 7068 7069 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7070 struct btrfs_key *key) 7071 { 7072 struct btrfs_inode_extref *extref; 7073 struct extent_buffer *leaf; 7074 u64 dirid = 0, last_dirid = 0; 7075 unsigned long ptr; 7076 u32 item_size; 7077 u32 cur_offset = 0; 7078 int ref_name_len; 7079 int ret = 0; 7080 7081 /* Easy case, just check this one dirid */ 7082 if (key->type == BTRFS_INODE_REF_KEY) { 7083 dirid = key->offset; 7084 7085 ret = dir_changed(sctx, dirid); 7086 goto out; 7087 } 7088 7089 leaf = path->nodes[0]; 7090 item_size = btrfs_item_size(leaf, path->slots[0]); 7091 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7092 while (cur_offset < item_size) { 7093 extref = (struct btrfs_inode_extref *)(ptr + 7094 cur_offset); 7095 dirid = btrfs_inode_extref_parent(leaf, extref); 7096 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7097 cur_offset += ref_name_len + sizeof(*extref); 7098 if (dirid == last_dirid) 7099 continue; 7100 ret = dir_changed(sctx, dirid); 7101 if (ret) 7102 break; 7103 last_dirid = dirid; 7104 } 7105 out: 7106 return ret; 7107 } 7108 7109 /* 7110 * Updates compare related fields in sctx and simply forwards to the actual 7111 * changed_xxx functions. 7112 */ 7113 static int changed_cb(struct btrfs_path *left_path, 7114 struct btrfs_path *right_path, 7115 struct btrfs_key *key, 7116 enum btrfs_compare_tree_result result, 7117 struct send_ctx *sctx) 7118 { 7119 int ret; 7120 7121 /* 7122 * We can not hold the commit root semaphore here. This is because in 7123 * the case of sending and receiving to the same filesystem, using a 7124 * pipe, could result in a deadlock: 7125 * 7126 * 1) The task running send blocks on the pipe because it's full; 7127 * 7128 * 2) The task running receive, which is the only consumer of the pipe, 7129 * is waiting for a transaction commit (for example due to a space 7130 * reservation when doing a write or triggering a transaction commit 7131 * when creating a subvolume); 7132 * 7133 * 3) The transaction is waiting to write lock the commit root semaphore, 7134 * but can not acquire it since it's being held at 1). 7135 * 7136 * Down this call chain we write to the pipe through kernel_write(). 7137 * The same type of problem can also happen when sending to a file that 7138 * is stored in the same filesystem - when reserving space for a write 7139 * into the file, we can trigger a transaction commit. 7140 * 7141 * Our caller has supplied us with clones of leaves from the send and 7142 * parent roots, so we're safe here from a concurrent relocation and 7143 * further reallocation of metadata extents while we are here. Below we 7144 * also assert that the leaves are clones. 7145 */ 7146 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7147 7148 /* 7149 * We always have a send root, so left_path is never NULL. We will not 7150 * have a leaf when we have reached the end of the send root but have 7151 * not yet reached the end of the parent root. 7152 */ 7153 if (left_path->nodes[0]) 7154 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7155 &left_path->nodes[0]->bflags)); 7156 /* 7157 * When doing a full send we don't have a parent root, so right_path is 7158 * NULL. When doing an incremental send, we may have reached the end of 7159 * the parent root already, so we don't have a leaf at right_path. 7160 */ 7161 if (right_path && right_path->nodes[0]) 7162 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7163 &right_path->nodes[0]->bflags)); 7164 7165 if (result == BTRFS_COMPARE_TREE_SAME) { 7166 if (key->type == BTRFS_INODE_REF_KEY || 7167 key->type == BTRFS_INODE_EXTREF_KEY) { 7168 ret = compare_refs(sctx, left_path, key); 7169 if (!ret) 7170 return 0; 7171 if (ret < 0) 7172 return ret; 7173 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7174 return maybe_send_hole(sctx, left_path, key); 7175 } else { 7176 return 0; 7177 } 7178 result = BTRFS_COMPARE_TREE_CHANGED; 7179 } 7180 7181 sctx->left_path = left_path; 7182 sctx->right_path = right_path; 7183 sctx->cmp_key = key; 7184 7185 ret = finish_inode_if_needed(sctx, 0); 7186 if (ret < 0) 7187 goto out; 7188 7189 /* Ignore non-FS objects */ 7190 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7191 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7192 goto out; 7193 7194 if (key->type == BTRFS_INODE_ITEM_KEY) { 7195 ret = changed_inode(sctx, result); 7196 } else if (!sctx->ignore_cur_inode) { 7197 if (key->type == BTRFS_INODE_REF_KEY || 7198 key->type == BTRFS_INODE_EXTREF_KEY) 7199 ret = changed_ref(sctx, result); 7200 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7201 ret = changed_xattr(sctx, result); 7202 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7203 ret = changed_extent(sctx, result); 7204 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7205 key->offset == 0) 7206 ret = changed_verity(sctx, result); 7207 } 7208 7209 out: 7210 return ret; 7211 } 7212 7213 static int search_key_again(const struct send_ctx *sctx, 7214 struct btrfs_root *root, 7215 struct btrfs_path *path, 7216 const struct btrfs_key *key) 7217 { 7218 int ret; 7219 7220 if (!path->need_commit_sem) 7221 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7222 7223 /* 7224 * Roots used for send operations are readonly and no one can add, 7225 * update or remove keys from them, so we should be able to find our 7226 * key again. The only exception is deduplication, which can operate on 7227 * readonly roots and add, update or remove keys to/from them - but at 7228 * the moment we don't allow it to run in parallel with send. 7229 */ 7230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7231 ASSERT(ret <= 0); 7232 if (unlikely(ret > 0)) { 7233 btrfs_print_tree(path->nodes[path->lowest_level], false); 7234 btrfs_err(root->fs_info, 7235 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7236 key->objectid, key->type, key->offset, 7237 (root == sctx->parent_root ? "parent" : "send"), 7238 btrfs_root_id(root), path->lowest_level, 7239 path->slots[path->lowest_level]); 7240 return -EUCLEAN; 7241 } 7242 7243 return ret; 7244 } 7245 7246 static int full_send_tree(struct send_ctx *sctx) 7247 { 7248 int ret; 7249 struct btrfs_root *send_root = sctx->send_root; 7250 struct btrfs_key key; 7251 struct btrfs_fs_info *fs_info = send_root->fs_info; 7252 BTRFS_PATH_AUTO_FREE(path); 7253 7254 path = alloc_path_for_send(); 7255 if (!path) 7256 return -ENOMEM; 7257 path->reada = READA_FORWARD_ALWAYS; 7258 7259 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7260 key.type = BTRFS_INODE_ITEM_KEY; 7261 key.offset = 0; 7262 7263 down_read(&fs_info->commit_root_sem); 7264 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7265 up_read(&fs_info->commit_root_sem); 7266 7267 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7268 if (ret < 0) 7269 return ret; 7270 if (ret) 7271 goto out_finish; 7272 7273 while (1) { 7274 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7275 7276 ret = changed_cb(path, NULL, &key, 7277 BTRFS_COMPARE_TREE_NEW, sctx); 7278 if (ret < 0) 7279 return ret; 7280 7281 down_read(&fs_info->commit_root_sem); 7282 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7283 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7284 up_read(&fs_info->commit_root_sem); 7285 /* 7286 * A transaction used for relocating a block group was 7287 * committed or is about to finish its commit. Release 7288 * our path (leaf) and restart the search, so that we 7289 * avoid operating on any file extent items that are 7290 * stale, with a disk_bytenr that reflects a pre 7291 * relocation value. This way we avoid as much as 7292 * possible to fallback to regular writes when checking 7293 * if we can clone file ranges. 7294 */ 7295 btrfs_release_path(path); 7296 ret = search_key_again(sctx, send_root, path, &key); 7297 if (ret < 0) 7298 return ret; 7299 } else { 7300 up_read(&fs_info->commit_root_sem); 7301 } 7302 7303 ret = btrfs_next_item(send_root, path); 7304 if (ret < 0) 7305 return ret; 7306 if (ret) { 7307 ret = 0; 7308 break; 7309 } 7310 } 7311 7312 out_finish: 7313 return finish_inode_if_needed(sctx, 1); 7314 } 7315 7316 static int replace_node_with_clone(struct btrfs_path *path, int level) 7317 { 7318 struct extent_buffer *clone; 7319 7320 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7321 if (!clone) 7322 return -ENOMEM; 7323 7324 free_extent_buffer(path->nodes[level]); 7325 path->nodes[level] = clone; 7326 7327 return 0; 7328 } 7329 7330 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7331 { 7332 struct extent_buffer *eb; 7333 struct extent_buffer *parent = path->nodes[*level]; 7334 int slot = path->slots[*level]; 7335 const int nritems = btrfs_header_nritems(parent); 7336 u64 reada_max; 7337 u64 reada_done = 0; 7338 7339 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7340 ASSERT(*level != 0); 7341 7342 eb = btrfs_read_node_slot(parent, slot); 7343 if (IS_ERR(eb)) 7344 return PTR_ERR(eb); 7345 7346 /* 7347 * Trigger readahead for the next leaves we will process, so that it is 7348 * very likely that when we need them they are already in memory and we 7349 * will not block on disk IO. For nodes we only do readahead for one, 7350 * since the time window between processing nodes is typically larger. 7351 */ 7352 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7353 7354 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7355 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7356 btrfs_readahead_node_child(parent, slot); 7357 reada_done += eb->fs_info->nodesize; 7358 } 7359 } 7360 7361 path->nodes[*level - 1] = eb; 7362 path->slots[*level - 1] = 0; 7363 (*level)--; 7364 7365 if (*level == 0) 7366 return replace_node_with_clone(path, 0); 7367 7368 return 0; 7369 } 7370 7371 static int tree_move_next_or_upnext(struct btrfs_path *path, 7372 int *level, int root_level) 7373 { 7374 int ret = 0; 7375 int nritems; 7376 nritems = btrfs_header_nritems(path->nodes[*level]); 7377 7378 path->slots[*level]++; 7379 7380 while (path->slots[*level] >= nritems) { 7381 if (*level == root_level) { 7382 path->slots[*level] = nritems - 1; 7383 return -1; 7384 } 7385 7386 /* move upnext */ 7387 path->slots[*level] = 0; 7388 free_extent_buffer(path->nodes[*level]); 7389 path->nodes[*level] = NULL; 7390 (*level)++; 7391 path->slots[*level]++; 7392 7393 nritems = btrfs_header_nritems(path->nodes[*level]); 7394 ret = 1; 7395 } 7396 return ret; 7397 } 7398 7399 /* 7400 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7401 * or down. 7402 */ 7403 static int tree_advance(struct btrfs_path *path, 7404 int *level, int root_level, 7405 int allow_down, 7406 struct btrfs_key *key, 7407 u64 reada_min_gen) 7408 { 7409 int ret; 7410 7411 if (*level == 0 || !allow_down) { 7412 ret = tree_move_next_or_upnext(path, level, root_level); 7413 } else { 7414 ret = tree_move_down(path, level, reada_min_gen); 7415 } 7416 7417 /* 7418 * Even if we have reached the end of a tree, ret is -1, update the key 7419 * anyway, so that in case we need to restart due to a block group 7420 * relocation, we can assert that the last key of the root node still 7421 * exists in the tree. 7422 */ 7423 if (*level == 0) 7424 btrfs_item_key_to_cpu(path->nodes[*level], key, 7425 path->slots[*level]); 7426 else 7427 btrfs_node_key_to_cpu(path->nodes[*level], key, 7428 path->slots[*level]); 7429 7430 return ret; 7431 } 7432 7433 static int tree_compare_item(struct btrfs_path *left_path, 7434 struct btrfs_path *right_path, 7435 char *tmp_buf) 7436 { 7437 int cmp; 7438 int len1, len2; 7439 unsigned long off1, off2; 7440 7441 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7442 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7443 if (len1 != len2) 7444 return 1; 7445 7446 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7447 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7448 right_path->slots[0]); 7449 7450 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7451 7452 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7453 if (cmp) 7454 return 1; 7455 return 0; 7456 } 7457 7458 /* 7459 * A transaction used for relocating a block group was committed or is about to 7460 * finish its commit. Release our paths and restart the search, so that we are 7461 * not using stale extent buffers: 7462 * 7463 * 1) For levels > 0, we are only holding references of extent buffers, without 7464 * any locks on them, which does not prevent them from having been relocated 7465 * and reallocated after the last time we released the commit root semaphore. 7466 * The exception are the root nodes, for which we always have a clone, see 7467 * the comment at btrfs_compare_trees(); 7468 * 7469 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7470 * we are safe from the concurrent relocation and reallocation. However they 7471 * can have file extent items with a pre relocation disk_bytenr value, so we 7472 * restart the start from the current commit roots and clone the new leaves so 7473 * that we get the post relocation disk_bytenr values. Not doing so, could 7474 * make us clone the wrong data in case there are new extents using the old 7475 * disk_bytenr that happen to be shared. 7476 */ 7477 static int restart_after_relocation(struct btrfs_path *left_path, 7478 struct btrfs_path *right_path, 7479 const struct btrfs_key *left_key, 7480 const struct btrfs_key *right_key, 7481 int left_level, 7482 int right_level, 7483 const struct send_ctx *sctx) 7484 { 7485 int root_level; 7486 int ret; 7487 7488 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7489 7490 btrfs_release_path(left_path); 7491 btrfs_release_path(right_path); 7492 7493 /* 7494 * Since keys can not be added or removed to/from our roots because they 7495 * are readonly and we do not allow deduplication to run in parallel 7496 * (which can add, remove or change keys), the layout of the trees should 7497 * not change. 7498 */ 7499 left_path->lowest_level = left_level; 7500 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7501 if (ret < 0) 7502 return ret; 7503 7504 right_path->lowest_level = right_level; 7505 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7506 if (ret < 0) 7507 return ret; 7508 7509 /* 7510 * If the lowest level nodes are leaves, clone them so that they can be 7511 * safely used by changed_cb() while not under the protection of the 7512 * commit root semaphore, even if relocation and reallocation happens in 7513 * parallel. 7514 */ 7515 if (left_level == 0) { 7516 ret = replace_node_with_clone(left_path, 0); 7517 if (ret < 0) 7518 return ret; 7519 } 7520 7521 if (right_level == 0) { 7522 ret = replace_node_with_clone(right_path, 0); 7523 if (ret < 0) 7524 return ret; 7525 } 7526 7527 /* 7528 * Now clone the root nodes (unless they happen to be the leaves we have 7529 * already cloned). This is to protect against concurrent snapshotting of 7530 * the send and parent roots (see the comment at btrfs_compare_trees()). 7531 */ 7532 root_level = btrfs_header_level(sctx->send_root->commit_root); 7533 if (root_level > 0) { 7534 ret = replace_node_with_clone(left_path, root_level); 7535 if (ret < 0) 7536 return ret; 7537 } 7538 7539 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7540 if (root_level > 0) { 7541 ret = replace_node_with_clone(right_path, root_level); 7542 if (ret < 0) 7543 return ret; 7544 } 7545 7546 return 0; 7547 } 7548 7549 /* 7550 * This function compares two trees and calls the provided callback for 7551 * every changed/new/deleted item it finds. 7552 * If shared tree blocks are encountered, whole subtrees are skipped, making 7553 * the compare pretty fast on snapshotted subvolumes. 7554 * 7555 * This currently works on commit roots only. As commit roots are read only, 7556 * we don't do any locking. The commit roots are protected with transactions. 7557 * Transactions are ended and rejoined when a commit is tried in between. 7558 * 7559 * This function checks for modifications done to the trees while comparing. 7560 * If it detects a change, it aborts immediately. 7561 */ 7562 static int btrfs_compare_trees(struct btrfs_root *left_root, 7563 struct btrfs_root *right_root, struct send_ctx *sctx) 7564 { 7565 struct btrfs_fs_info *fs_info = left_root->fs_info; 7566 int ret; 7567 int cmp; 7568 BTRFS_PATH_AUTO_FREE(left_path); 7569 BTRFS_PATH_AUTO_FREE(right_path); 7570 struct btrfs_key left_key; 7571 struct btrfs_key right_key; 7572 char *tmp_buf = NULL; 7573 int left_root_level; 7574 int right_root_level; 7575 int left_level; 7576 int right_level; 7577 int left_end_reached = 0; 7578 int right_end_reached = 0; 7579 int advance_left = 0; 7580 int advance_right = 0; 7581 u64 left_blockptr; 7582 u64 right_blockptr; 7583 u64 left_gen; 7584 u64 right_gen; 7585 u64 reada_min_gen; 7586 7587 left_path = btrfs_alloc_path(); 7588 if (!left_path) { 7589 ret = -ENOMEM; 7590 goto out; 7591 } 7592 right_path = btrfs_alloc_path(); 7593 if (!right_path) { 7594 ret = -ENOMEM; 7595 goto out; 7596 } 7597 7598 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7599 if (!tmp_buf) { 7600 ret = -ENOMEM; 7601 goto out; 7602 } 7603 7604 left_path->search_commit_root = 1; 7605 left_path->skip_locking = 1; 7606 right_path->search_commit_root = 1; 7607 right_path->skip_locking = 1; 7608 7609 /* 7610 * Strategy: Go to the first items of both trees. Then do 7611 * 7612 * If both trees are at level 0 7613 * Compare keys of current items 7614 * If left < right treat left item as new, advance left tree 7615 * and repeat 7616 * If left > right treat right item as deleted, advance right tree 7617 * and repeat 7618 * If left == right do deep compare of items, treat as changed if 7619 * needed, advance both trees and repeat 7620 * If both trees are at the same level but not at level 0 7621 * Compare keys of current nodes/leafs 7622 * If left < right advance left tree and repeat 7623 * If left > right advance right tree and repeat 7624 * If left == right compare blockptrs of the next nodes/leafs 7625 * If they match advance both trees but stay at the same level 7626 * and repeat 7627 * If they don't match advance both trees while allowing to go 7628 * deeper and repeat 7629 * If tree levels are different 7630 * Advance the tree that needs it and repeat 7631 * 7632 * Advancing a tree means: 7633 * If we are at level 0, try to go to the next slot. If that's not 7634 * possible, go one level up and repeat. Stop when we found a level 7635 * where we could go to the next slot. We may at this point be on a 7636 * node or a leaf. 7637 * 7638 * If we are not at level 0 and not on shared tree blocks, go one 7639 * level deeper. 7640 * 7641 * If we are not at level 0 and on shared tree blocks, go one slot to 7642 * the right if possible or go up and right. 7643 */ 7644 7645 down_read(&fs_info->commit_root_sem); 7646 left_level = btrfs_header_level(left_root->commit_root); 7647 left_root_level = left_level; 7648 /* 7649 * We clone the root node of the send and parent roots to prevent races 7650 * with snapshot creation of these roots. Snapshot creation COWs the 7651 * root node of a tree, so after the transaction is committed the old 7652 * extent can be reallocated while this send operation is still ongoing. 7653 * So we clone them, under the commit root semaphore, to be race free. 7654 */ 7655 left_path->nodes[left_level] = 7656 btrfs_clone_extent_buffer(left_root->commit_root); 7657 if (!left_path->nodes[left_level]) { 7658 ret = -ENOMEM; 7659 goto out_unlock; 7660 } 7661 7662 right_level = btrfs_header_level(right_root->commit_root); 7663 right_root_level = right_level; 7664 right_path->nodes[right_level] = 7665 btrfs_clone_extent_buffer(right_root->commit_root); 7666 if (!right_path->nodes[right_level]) { 7667 ret = -ENOMEM; 7668 goto out_unlock; 7669 } 7670 /* 7671 * Our right root is the parent root, while the left root is the "send" 7672 * root. We know that all new nodes/leaves in the left root must have 7673 * a generation greater than the right root's generation, so we trigger 7674 * readahead for those nodes and leaves of the left root, as we know we 7675 * will need to read them at some point. 7676 */ 7677 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7678 7679 if (left_level == 0) 7680 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7681 &left_key, left_path->slots[left_level]); 7682 else 7683 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7684 &left_key, left_path->slots[left_level]); 7685 if (right_level == 0) 7686 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7687 &right_key, right_path->slots[right_level]); 7688 else 7689 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7690 &right_key, right_path->slots[right_level]); 7691 7692 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7693 7694 while (1) { 7695 if (need_resched() || 7696 rwsem_is_contended(&fs_info->commit_root_sem)) { 7697 up_read(&fs_info->commit_root_sem); 7698 cond_resched(); 7699 down_read(&fs_info->commit_root_sem); 7700 } 7701 7702 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7703 ret = restart_after_relocation(left_path, right_path, 7704 &left_key, &right_key, 7705 left_level, right_level, 7706 sctx); 7707 if (ret < 0) 7708 goto out_unlock; 7709 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7710 } 7711 7712 if (advance_left && !left_end_reached) { 7713 ret = tree_advance(left_path, &left_level, 7714 left_root_level, 7715 advance_left != ADVANCE_ONLY_NEXT, 7716 &left_key, reada_min_gen); 7717 if (ret == -1) 7718 left_end_reached = ADVANCE; 7719 else if (ret < 0) 7720 goto out_unlock; 7721 advance_left = 0; 7722 } 7723 if (advance_right && !right_end_reached) { 7724 ret = tree_advance(right_path, &right_level, 7725 right_root_level, 7726 advance_right != ADVANCE_ONLY_NEXT, 7727 &right_key, reada_min_gen); 7728 if (ret == -1) 7729 right_end_reached = ADVANCE; 7730 else if (ret < 0) 7731 goto out_unlock; 7732 advance_right = 0; 7733 } 7734 7735 if (left_end_reached && right_end_reached) { 7736 ret = 0; 7737 goto out_unlock; 7738 } else if (left_end_reached) { 7739 if (right_level == 0) { 7740 up_read(&fs_info->commit_root_sem); 7741 ret = changed_cb(left_path, right_path, 7742 &right_key, 7743 BTRFS_COMPARE_TREE_DELETED, 7744 sctx); 7745 if (ret < 0) 7746 goto out; 7747 down_read(&fs_info->commit_root_sem); 7748 } 7749 advance_right = ADVANCE; 7750 continue; 7751 } else if (right_end_reached) { 7752 if (left_level == 0) { 7753 up_read(&fs_info->commit_root_sem); 7754 ret = changed_cb(left_path, right_path, 7755 &left_key, 7756 BTRFS_COMPARE_TREE_NEW, 7757 sctx); 7758 if (ret < 0) 7759 goto out; 7760 down_read(&fs_info->commit_root_sem); 7761 } 7762 advance_left = ADVANCE; 7763 continue; 7764 } 7765 7766 if (left_level == 0 && right_level == 0) { 7767 up_read(&fs_info->commit_root_sem); 7768 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7769 if (cmp < 0) { 7770 ret = changed_cb(left_path, right_path, 7771 &left_key, 7772 BTRFS_COMPARE_TREE_NEW, 7773 sctx); 7774 advance_left = ADVANCE; 7775 } else if (cmp > 0) { 7776 ret = changed_cb(left_path, right_path, 7777 &right_key, 7778 BTRFS_COMPARE_TREE_DELETED, 7779 sctx); 7780 advance_right = ADVANCE; 7781 } else { 7782 enum btrfs_compare_tree_result result; 7783 7784 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7785 ret = tree_compare_item(left_path, right_path, 7786 tmp_buf); 7787 if (ret) 7788 result = BTRFS_COMPARE_TREE_CHANGED; 7789 else 7790 result = BTRFS_COMPARE_TREE_SAME; 7791 ret = changed_cb(left_path, right_path, 7792 &left_key, result, sctx); 7793 advance_left = ADVANCE; 7794 advance_right = ADVANCE; 7795 } 7796 7797 if (ret < 0) 7798 goto out; 7799 down_read(&fs_info->commit_root_sem); 7800 } else if (left_level == right_level) { 7801 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7802 if (cmp < 0) { 7803 advance_left = ADVANCE; 7804 } else if (cmp > 0) { 7805 advance_right = ADVANCE; 7806 } else { 7807 left_blockptr = btrfs_node_blockptr( 7808 left_path->nodes[left_level], 7809 left_path->slots[left_level]); 7810 right_blockptr = btrfs_node_blockptr( 7811 right_path->nodes[right_level], 7812 right_path->slots[right_level]); 7813 left_gen = btrfs_node_ptr_generation( 7814 left_path->nodes[left_level], 7815 left_path->slots[left_level]); 7816 right_gen = btrfs_node_ptr_generation( 7817 right_path->nodes[right_level], 7818 right_path->slots[right_level]); 7819 if (left_blockptr == right_blockptr && 7820 left_gen == right_gen) { 7821 /* 7822 * As we're on a shared block, don't 7823 * allow to go deeper. 7824 */ 7825 advance_left = ADVANCE_ONLY_NEXT; 7826 advance_right = ADVANCE_ONLY_NEXT; 7827 } else { 7828 advance_left = ADVANCE; 7829 advance_right = ADVANCE; 7830 } 7831 } 7832 } else if (left_level < right_level) { 7833 advance_right = ADVANCE; 7834 } else { 7835 advance_left = ADVANCE; 7836 } 7837 } 7838 7839 out_unlock: 7840 up_read(&fs_info->commit_root_sem); 7841 out: 7842 kvfree(tmp_buf); 7843 return ret; 7844 } 7845 7846 static int send_subvol(struct send_ctx *sctx) 7847 { 7848 int ret; 7849 7850 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7851 ret = send_header(sctx); 7852 if (ret < 0) 7853 goto out; 7854 } 7855 7856 ret = send_subvol_begin(sctx); 7857 if (ret < 0) 7858 goto out; 7859 7860 if (sctx->parent_root) { 7861 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7862 if (ret < 0) 7863 goto out; 7864 ret = finish_inode_if_needed(sctx, 1); 7865 if (ret < 0) 7866 goto out; 7867 } else { 7868 ret = full_send_tree(sctx); 7869 if (ret < 0) 7870 goto out; 7871 } 7872 7873 out: 7874 free_recorded_refs(sctx); 7875 return ret; 7876 } 7877 7878 /* 7879 * If orphan cleanup did remove any orphans from a root, it means the tree 7880 * was modified and therefore the commit root is not the same as the current 7881 * root anymore. This is a problem, because send uses the commit root and 7882 * therefore can see inode items that don't exist in the current root anymore, 7883 * and for example make calls to btrfs_iget, which will do tree lookups based 7884 * on the current root and not on the commit root. Those lookups will fail, 7885 * returning a -ESTALE error, and making send fail with that error. So make 7886 * sure a send does not see any orphans we have just removed, and that it will 7887 * see the same inodes regardless of whether a transaction commit happened 7888 * before it started (meaning that the commit root will be the same as the 7889 * current root) or not. 7890 */ 7891 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7892 { 7893 struct btrfs_root *root = sctx->parent_root; 7894 7895 if (root && root->node != root->commit_root) 7896 return btrfs_commit_current_transaction(root); 7897 7898 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 7899 root = sctx->clone_roots[i].root; 7900 if (root->node != root->commit_root) 7901 return btrfs_commit_current_transaction(root); 7902 } 7903 7904 return 0; 7905 } 7906 7907 /* 7908 * Make sure any existing delalloc is flushed for any root used by a send 7909 * operation so that we do not miss any data and we do not race with writeback 7910 * finishing and changing a tree while send is using the tree. This could 7911 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7912 * a send operation then uses the subvolume. 7913 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7914 */ 7915 static int flush_delalloc_roots(struct send_ctx *sctx) 7916 { 7917 struct btrfs_root *root = sctx->parent_root; 7918 int ret; 7919 int i; 7920 7921 if (root) { 7922 ret = btrfs_start_delalloc_snapshot(root, false); 7923 if (ret) 7924 return ret; 7925 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7926 } 7927 7928 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7929 root = sctx->clone_roots[i].root; 7930 ret = btrfs_start_delalloc_snapshot(root, false); 7931 if (ret) 7932 return ret; 7933 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7934 } 7935 7936 return 0; 7937 } 7938 7939 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7940 { 7941 spin_lock(&root->root_item_lock); 7942 root->send_in_progress--; 7943 /* 7944 * Not much left to do, we don't know why it's unbalanced and 7945 * can't blindly reset it to 0. 7946 */ 7947 if (root->send_in_progress < 0) 7948 btrfs_err(root->fs_info, 7949 "send_in_progress unbalanced %d root %llu", 7950 root->send_in_progress, btrfs_root_id(root)); 7951 spin_unlock(&root->root_item_lock); 7952 } 7953 7954 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7955 { 7956 btrfs_warn_rl(root->fs_info, 7957 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7958 btrfs_root_id(root), root->dedupe_in_progress); 7959 } 7960 7961 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) 7962 { 7963 int ret = 0; 7964 struct btrfs_fs_info *fs_info = send_root->fs_info; 7965 struct btrfs_root *clone_root; 7966 struct send_ctx *sctx = NULL; 7967 u32 i; 7968 u64 *clone_sources_tmp = NULL; 7969 int clone_sources_to_rollback = 0; 7970 size_t alloc_size; 7971 int sort_clone_roots = 0; 7972 struct btrfs_lru_cache_entry *entry; 7973 struct btrfs_lru_cache_entry *tmp; 7974 7975 if (!capable(CAP_SYS_ADMIN)) 7976 return -EPERM; 7977 7978 /* 7979 * The subvolume must remain read-only during send, protect against 7980 * making it RW. This also protects against deletion. 7981 */ 7982 spin_lock(&send_root->root_item_lock); 7983 /* 7984 * Unlikely but possible, if the subvolume is marked for deletion but 7985 * is slow to remove the directory entry, send can still be started. 7986 */ 7987 if (btrfs_root_dead(send_root)) { 7988 spin_unlock(&send_root->root_item_lock); 7989 return -EPERM; 7990 } 7991 /* Userspace tools do the checks and warn the user if it's not RO. */ 7992 if (!btrfs_root_readonly(send_root)) { 7993 spin_unlock(&send_root->root_item_lock); 7994 return -EPERM; 7995 } 7996 if (send_root->dedupe_in_progress) { 7997 dedupe_in_progress_warn(send_root); 7998 spin_unlock(&send_root->root_item_lock); 7999 return -EAGAIN; 8000 } 8001 send_root->send_in_progress++; 8002 spin_unlock(&send_root->root_item_lock); 8003 8004 /* 8005 * Check that we don't overflow at later allocations, we request 8006 * clone_sources_count + 1 items, and compare to unsigned long inside 8007 * access_ok. Also set an upper limit for allocation size so this can't 8008 * easily exhaust memory. Max number of clone sources is about 200K. 8009 */ 8010 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8011 ret = -EINVAL; 8012 goto out; 8013 } 8014 8015 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8016 ret = -EOPNOTSUPP; 8017 goto out; 8018 } 8019 8020 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8021 if (!sctx) { 8022 ret = -ENOMEM; 8023 goto out; 8024 } 8025 8026 init_path(&sctx->cur_inode_path); 8027 INIT_LIST_HEAD(&sctx->new_refs); 8028 INIT_LIST_HEAD(&sctx->deleted_refs); 8029 8030 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8031 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8032 btrfs_lru_cache_init(&sctx->dir_created_cache, 8033 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8034 /* 8035 * This cache is periodically trimmed to a fixed size elsewhere, see 8036 * cache_dir_utimes() and trim_dir_utimes_cache(). 8037 */ 8038 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8039 8040 sctx->pending_dir_moves = RB_ROOT; 8041 sctx->waiting_dir_moves = RB_ROOT; 8042 sctx->orphan_dirs = RB_ROOT; 8043 sctx->rbtree_new_refs = RB_ROOT; 8044 sctx->rbtree_deleted_refs = RB_ROOT; 8045 8046 sctx->flags = arg->flags; 8047 8048 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8049 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8050 ret = -EPROTO; 8051 goto out; 8052 } 8053 /* Zero means "use the highest version" */ 8054 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8055 } else { 8056 sctx->proto = 1; 8057 } 8058 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8059 ret = -EINVAL; 8060 goto out; 8061 } 8062 8063 sctx->send_filp = fget(arg->send_fd); 8064 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8065 ret = -EBADF; 8066 goto out; 8067 } 8068 8069 sctx->send_root = send_root; 8070 sctx->clone_roots_cnt = arg->clone_sources_count; 8071 8072 if (sctx->proto >= 2) { 8073 u32 send_buf_num_pages; 8074 8075 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8076 sctx->send_buf = vmalloc(sctx->send_max_size); 8077 if (!sctx->send_buf) { 8078 ret = -ENOMEM; 8079 goto out; 8080 } 8081 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8082 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8083 sizeof(*sctx->send_buf_pages), 8084 GFP_KERNEL); 8085 if (!sctx->send_buf_pages) { 8086 ret = -ENOMEM; 8087 goto out; 8088 } 8089 for (i = 0; i < send_buf_num_pages; i++) { 8090 sctx->send_buf_pages[i] = 8091 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8092 } 8093 } else { 8094 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8095 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8096 } 8097 if (!sctx->send_buf) { 8098 ret = -ENOMEM; 8099 goto out; 8100 } 8101 8102 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8103 sizeof(*sctx->clone_roots), 8104 GFP_KERNEL); 8105 if (!sctx->clone_roots) { 8106 ret = -ENOMEM; 8107 goto out; 8108 } 8109 8110 alloc_size = array_size(sizeof(*arg->clone_sources), 8111 arg->clone_sources_count); 8112 8113 if (arg->clone_sources_count) { 8114 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8115 if (!clone_sources_tmp) { 8116 ret = -ENOMEM; 8117 goto out; 8118 } 8119 8120 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8121 alloc_size); 8122 if (ret) { 8123 ret = -EFAULT; 8124 goto out; 8125 } 8126 8127 for (i = 0; i < arg->clone_sources_count; i++) { 8128 clone_root = btrfs_get_fs_root(fs_info, 8129 clone_sources_tmp[i], true); 8130 if (IS_ERR(clone_root)) { 8131 ret = PTR_ERR(clone_root); 8132 goto out; 8133 } 8134 spin_lock(&clone_root->root_item_lock); 8135 if (!btrfs_root_readonly(clone_root) || 8136 btrfs_root_dead(clone_root)) { 8137 spin_unlock(&clone_root->root_item_lock); 8138 btrfs_put_root(clone_root); 8139 ret = -EPERM; 8140 goto out; 8141 } 8142 if (clone_root->dedupe_in_progress) { 8143 dedupe_in_progress_warn(clone_root); 8144 spin_unlock(&clone_root->root_item_lock); 8145 btrfs_put_root(clone_root); 8146 ret = -EAGAIN; 8147 goto out; 8148 } 8149 clone_root->send_in_progress++; 8150 spin_unlock(&clone_root->root_item_lock); 8151 8152 sctx->clone_roots[i].root = clone_root; 8153 clone_sources_to_rollback = i + 1; 8154 } 8155 kvfree(clone_sources_tmp); 8156 clone_sources_tmp = NULL; 8157 } 8158 8159 if (arg->parent_root) { 8160 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8161 true); 8162 if (IS_ERR(sctx->parent_root)) { 8163 ret = PTR_ERR(sctx->parent_root); 8164 goto out; 8165 } 8166 8167 spin_lock(&sctx->parent_root->root_item_lock); 8168 sctx->parent_root->send_in_progress++; 8169 if (!btrfs_root_readonly(sctx->parent_root) || 8170 btrfs_root_dead(sctx->parent_root)) { 8171 spin_unlock(&sctx->parent_root->root_item_lock); 8172 ret = -EPERM; 8173 goto out; 8174 } 8175 if (sctx->parent_root->dedupe_in_progress) { 8176 dedupe_in_progress_warn(sctx->parent_root); 8177 spin_unlock(&sctx->parent_root->root_item_lock); 8178 ret = -EAGAIN; 8179 goto out; 8180 } 8181 spin_unlock(&sctx->parent_root->root_item_lock); 8182 } 8183 8184 /* 8185 * Clones from send_root are allowed, but only if the clone source 8186 * is behind the current send position. This is checked while searching 8187 * for possible clone sources. 8188 */ 8189 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8190 btrfs_grab_root(sctx->send_root); 8191 8192 /* We do a bsearch later */ 8193 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8194 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8195 NULL); 8196 sort_clone_roots = 1; 8197 8198 ret = flush_delalloc_roots(sctx); 8199 if (ret) 8200 goto out; 8201 8202 ret = ensure_commit_roots_uptodate(sctx); 8203 if (ret) 8204 goto out; 8205 8206 ret = send_subvol(sctx); 8207 if (ret < 0) 8208 goto out; 8209 8210 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8211 ret = send_utimes(sctx, entry->key, entry->gen); 8212 if (ret < 0) 8213 goto out; 8214 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8215 } 8216 8217 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8218 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8219 if (ret < 0) 8220 goto out; 8221 ret = send_cmd(sctx); 8222 if (ret < 0) 8223 goto out; 8224 } 8225 8226 out: 8227 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8228 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8229 struct rb_node *n; 8230 struct pending_dir_move *pm; 8231 8232 n = rb_first(&sctx->pending_dir_moves); 8233 pm = rb_entry(n, struct pending_dir_move, node); 8234 while (!list_empty(&pm->list)) { 8235 struct pending_dir_move *pm2; 8236 8237 pm2 = list_first_entry(&pm->list, 8238 struct pending_dir_move, list); 8239 free_pending_move(sctx, pm2); 8240 } 8241 free_pending_move(sctx, pm); 8242 } 8243 8244 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8245 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8246 struct rb_node *n; 8247 struct waiting_dir_move *dm; 8248 8249 n = rb_first(&sctx->waiting_dir_moves); 8250 dm = rb_entry(n, struct waiting_dir_move, node); 8251 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8252 kfree(dm); 8253 } 8254 8255 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8256 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8257 struct rb_node *n; 8258 struct orphan_dir_info *odi; 8259 8260 n = rb_first(&sctx->orphan_dirs); 8261 odi = rb_entry(n, struct orphan_dir_info, node); 8262 free_orphan_dir_info(sctx, odi); 8263 } 8264 8265 if (sort_clone_roots) { 8266 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8267 btrfs_root_dec_send_in_progress( 8268 sctx->clone_roots[i].root); 8269 btrfs_put_root(sctx->clone_roots[i].root); 8270 } 8271 } else { 8272 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8273 btrfs_root_dec_send_in_progress( 8274 sctx->clone_roots[i].root); 8275 btrfs_put_root(sctx->clone_roots[i].root); 8276 } 8277 8278 btrfs_root_dec_send_in_progress(send_root); 8279 } 8280 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8281 btrfs_root_dec_send_in_progress(sctx->parent_root); 8282 btrfs_put_root(sctx->parent_root); 8283 } 8284 8285 kvfree(clone_sources_tmp); 8286 8287 if (sctx) { 8288 if (sctx->send_filp) 8289 fput(sctx->send_filp); 8290 8291 kvfree(sctx->clone_roots); 8292 kfree(sctx->send_buf_pages); 8293 kvfree(sctx->send_buf); 8294 kvfree(sctx->verity_descriptor); 8295 8296 close_current_inode(sctx); 8297 8298 btrfs_lru_cache_clear(&sctx->name_cache); 8299 btrfs_lru_cache_clear(&sctx->backref_cache); 8300 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8301 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8302 8303 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) 8304 kfree(sctx->cur_inode_path.buf); 8305 8306 kfree(sctx); 8307 } 8308 8309 return ret; 8310 } 8311