1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/fs.h> 8 #include <linux/file.h> 9 #include <linux/sort.h> 10 #include <linux/mount.h> 11 #include <linux/xattr.h> 12 #include <linux/posix_acl_xattr.h> 13 #include <linux/radix-tree.h> 14 #include <linux/vmalloc.h> 15 #include <linux/string.h> 16 #include <linux/compat.h> 17 #include <linux/crc32c.h> 18 #include <linux/fsverity.h> 19 #include "send.h" 20 #include "ctree.h" 21 #include "backref.h" 22 #include "locking.h" 23 #include "disk-io.h" 24 #include "btrfs_inode.h" 25 #include "transaction.h" 26 #include "compression.h" 27 #include "print-tree.h" 28 #include "accessors.h" 29 #include "dir-item.h" 30 #include "file-item.h" 31 #include "ioctl.h" 32 #include "verity.h" 33 #include "lru_cache.h" 34 35 /* 36 * Maximum number of references an extent can have in order for us to attempt to 37 * issue clone operations instead of write operations. This currently exists to 38 * avoid hitting limitations of the backreference walking code (taking a lot of 39 * time and using too much memory for extents with large number of references). 40 */ 41 #define SEND_MAX_EXTENT_REFS 1024 42 43 /* 44 * A fs_path is a helper to dynamically build path names with unknown size. 45 * It reallocates the internal buffer on demand. 46 * It allows fast adding of path elements on the right side (normal path) and 47 * fast adding to the left side (reversed path). A reversed path can also be 48 * unreversed if needed. 49 */ 50 struct fs_path { 51 union { 52 struct { 53 char *start; 54 char *end; 55 56 char *buf; 57 unsigned short buf_len:15; 58 unsigned short reversed:1; 59 char inline_buf[]; 60 }; 61 /* 62 * Average path length does not exceed 200 bytes, we'll have 63 * better packing in the slab and higher chance to satisfy 64 * an allocation later during send. 65 */ 66 char pad[256]; 67 }; 68 }; 69 #define FS_PATH_INLINE_SIZE \ 70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 71 72 73 /* reused for each extent */ 74 struct clone_root { 75 struct btrfs_root *root; 76 u64 ino; 77 u64 offset; 78 u64 num_bytes; 79 bool found_ref; 80 }; 81 82 #define SEND_MAX_NAME_CACHE_SIZE 256 83 84 /* 85 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 86 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 87 * can be satisfied from the kmalloc-192 slab, without wasting any space. 88 * The most common case is to have a single root for cloning, which corresponds 89 * to the send root. Having the user specify more than 16 clone roots is not 90 * common, and in such rare cases we simply don't use caching if the number of 91 * cloning roots that lead down to a leaf is more than 17. 92 */ 93 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 94 95 /* 96 * Max number of entries in the cache. 97 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 98 * maple tree's internal nodes, is 24K. 99 */ 100 #define SEND_MAX_BACKREF_CACHE_SIZE 128 101 102 /* 103 * A backref cache entry maps a leaf to a list of IDs of roots from which the 104 * leaf is accessible and we can use for clone operations. 105 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 106 * x86_64). 107 */ 108 struct backref_cache_entry { 109 struct btrfs_lru_cache_entry entry; 110 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 111 /* Number of valid elements in the root_ids array. */ 112 int num_roots; 113 }; 114 115 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 116 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 117 118 /* 119 * Max number of entries in the cache that stores directories that were already 120 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 121 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 122 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 123 */ 124 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 125 126 /* 127 * Max number of entries in the cache that stores directories that were already 128 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 129 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 130 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 131 */ 132 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 133 134 struct send_ctx { 135 struct file *send_filp; 136 loff_t send_off; 137 char *send_buf; 138 u32 send_size; 139 u32 send_max_size; 140 /* 141 * Whether BTRFS_SEND_A_DATA attribute was already added to current 142 * command (since protocol v2, data must be the last attribute). 143 */ 144 bool put_data; 145 struct page **send_buf_pages; 146 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 147 /* Protocol version compatibility requested */ 148 u32 proto; 149 150 struct btrfs_root *send_root; 151 struct btrfs_root *parent_root; 152 struct clone_root *clone_roots; 153 int clone_roots_cnt; 154 155 /* current state of the compare_tree call */ 156 struct btrfs_path *left_path; 157 struct btrfs_path *right_path; 158 struct btrfs_key *cmp_key; 159 160 /* 161 * Keep track of the generation of the last transaction that was used 162 * for relocating a block group. This is periodically checked in order 163 * to detect if a relocation happened since the last check, so that we 164 * don't operate on stale extent buffers for nodes (level >= 1) or on 165 * stale disk_bytenr values of file extent items. 166 */ 167 u64 last_reloc_trans; 168 169 /* 170 * infos of the currently processed inode. In case of deleted inodes, 171 * these are the values from the deleted inode. 172 */ 173 u64 cur_ino; 174 u64 cur_inode_gen; 175 u64 cur_inode_size; 176 u64 cur_inode_mode; 177 u64 cur_inode_rdev; 178 u64 cur_inode_last_extent; 179 u64 cur_inode_next_write_offset; 180 struct fs_path cur_inode_path; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 }; 308 309 struct pending_dir_move { 310 struct rb_node node; 311 struct list_head list; 312 u64 parent_ino; 313 u64 ino; 314 u64 gen; 315 struct list_head update_refs; 316 }; 317 318 struct waiting_dir_move { 319 struct rb_node node; 320 u64 ino; 321 /* 322 * There might be some directory that could not be removed because it 323 * was waiting for this directory inode to be moved first. Therefore 324 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 325 */ 326 u64 rmdir_ino; 327 u64 rmdir_gen; 328 bool orphanized; 329 }; 330 331 struct orphan_dir_info { 332 struct rb_node node; 333 u64 ino; 334 u64 gen; 335 u64 last_dir_index_offset; 336 u64 dir_high_seq_ino; 337 }; 338 339 struct name_cache_entry { 340 /* 341 * The key in the entry is an inode number, and the generation matches 342 * the inode's generation. 343 */ 344 struct btrfs_lru_cache_entry entry; 345 u64 parent_ino; 346 u64 parent_gen; 347 int ret; 348 int need_later_update; 349 /* Name length without NUL terminator. */ 350 int name_len; 351 /* Not NUL terminated. */ 352 char name[] __counted_by(name_len) __nonstring; 353 }; 354 355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 356 static_assert(offsetof(struct name_cache_entry, entry) == 0); 357 358 #define ADVANCE 1 359 #define ADVANCE_ONLY_NEXT -1 360 361 enum btrfs_compare_tree_result { 362 BTRFS_COMPARE_TREE_NEW, 363 BTRFS_COMPARE_TREE_DELETED, 364 BTRFS_COMPARE_TREE_CHANGED, 365 BTRFS_COMPARE_TREE_SAME, 366 }; 367 368 __cold 369 static void inconsistent_snapshot_error(struct send_ctx *sctx, 370 enum btrfs_compare_tree_result result, 371 const char *what) 372 { 373 const char *result_string; 374 375 switch (result) { 376 case BTRFS_COMPARE_TREE_NEW: 377 result_string = "new"; 378 break; 379 case BTRFS_COMPARE_TREE_DELETED: 380 result_string = "deleted"; 381 break; 382 case BTRFS_COMPARE_TREE_CHANGED: 383 result_string = "updated"; 384 break; 385 case BTRFS_COMPARE_TREE_SAME: 386 ASSERT(0); 387 result_string = "unchanged"; 388 break; 389 default: 390 ASSERT(0); 391 result_string = "unexpected"; 392 } 393 394 btrfs_err(sctx->send_root->fs_info, 395 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 396 result_string, what, sctx->cmp_key->objectid, 397 btrfs_root_id(sctx->send_root), 398 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 399 } 400 401 __maybe_unused 402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 403 { 404 switch (sctx->proto) { 405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 408 default: return false; 409 } 410 } 411 412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 413 414 static struct waiting_dir_move * 415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 416 417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 418 419 static int need_send_hole(struct send_ctx *sctx) 420 { 421 return (sctx->parent_root && !sctx->cur_inode_new && 422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 423 S_ISREG(sctx->cur_inode_mode)); 424 } 425 426 static void fs_path_reset(struct fs_path *p) 427 { 428 if (p->reversed) 429 p->start = p->buf + p->buf_len - 1; 430 else 431 p->start = p->buf; 432 433 p->end = p->start; 434 *p->start = 0; 435 } 436 437 static void init_path(struct fs_path *p) 438 { 439 p->reversed = 0; 440 p->buf = p->inline_buf; 441 p->buf_len = FS_PATH_INLINE_SIZE; 442 fs_path_reset(p); 443 } 444 445 static struct fs_path *fs_path_alloc(void) 446 { 447 struct fs_path *p; 448 449 p = kmalloc(sizeof(*p), GFP_KERNEL); 450 if (!p) 451 return NULL; 452 init_path(p); 453 return p; 454 } 455 456 static struct fs_path *fs_path_alloc_reversed(void) 457 { 458 struct fs_path *p; 459 460 p = fs_path_alloc(); 461 if (!p) 462 return NULL; 463 p->reversed = 1; 464 fs_path_reset(p); 465 return p; 466 } 467 468 static void fs_path_free(struct fs_path *p) 469 { 470 if (!p) 471 return; 472 if (p->buf != p->inline_buf) 473 kfree(p->buf); 474 kfree(p); 475 } 476 477 static inline int fs_path_len(const struct fs_path *p) 478 { 479 return p->end - p->start; 480 } 481 482 static int fs_path_ensure_buf(struct fs_path *p, int len) 483 { 484 char *tmp_buf; 485 int path_len; 486 int old_buf_len; 487 488 len++; 489 490 if (p->buf_len >= len) 491 return 0; 492 493 if (WARN_ON(len > PATH_MAX)) 494 return -ENAMETOOLONG; 495 496 path_len = fs_path_len(p); 497 old_buf_len = p->buf_len; 498 499 /* 500 * Allocate to the next largest kmalloc bucket size, to let 501 * the fast path happen most of the time. 502 */ 503 len = kmalloc_size_roundup(len); 504 /* 505 * First time the inline_buf does not suffice 506 */ 507 if (p->buf == p->inline_buf) { 508 tmp_buf = kmalloc(len, GFP_KERNEL); 509 if (tmp_buf) 510 memcpy(tmp_buf, p->buf, old_buf_len); 511 } else { 512 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 513 } 514 if (!tmp_buf) 515 return -ENOMEM; 516 p->buf = tmp_buf; 517 p->buf_len = len; 518 519 if (p->reversed) { 520 tmp_buf = p->buf + old_buf_len - path_len - 1; 521 p->end = p->buf + p->buf_len - 1; 522 p->start = p->end - path_len; 523 memmove(p->start, tmp_buf, path_len + 1); 524 } else { 525 p->start = p->buf; 526 p->end = p->start + path_len; 527 } 528 return 0; 529 } 530 531 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 532 char **prepared) 533 { 534 int ret; 535 int new_len; 536 537 new_len = fs_path_len(p) + name_len; 538 if (p->start != p->end) 539 new_len++; 540 ret = fs_path_ensure_buf(p, new_len); 541 if (ret < 0) 542 return ret; 543 544 if (p->reversed) { 545 if (p->start != p->end) 546 *--p->start = '/'; 547 p->start -= name_len; 548 *prepared = p->start; 549 } else { 550 if (p->start != p->end) 551 *p->end++ = '/'; 552 *prepared = p->end; 553 p->end += name_len; 554 *p->end = 0; 555 } 556 557 return 0; 558 } 559 560 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 561 { 562 int ret; 563 char *prepared; 564 565 ret = fs_path_prepare_for_add(p, name_len, &prepared); 566 if (ret < 0) 567 return ret; 568 memcpy(prepared, name, name_len); 569 570 return 0; 571 } 572 573 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) 574 { 575 return fs_path_add(p, p2->start, fs_path_len(p2)); 576 } 577 578 static int fs_path_add_from_extent_buffer(struct fs_path *p, 579 struct extent_buffer *eb, 580 unsigned long off, int len) 581 { 582 int ret; 583 char *prepared; 584 585 ret = fs_path_prepare_for_add(p, len, &prepared); 586 if (ret < 0) 587 return ret; 588 589 read_extent_buffer(eb, prepared, off, len); 590 591 return 0; 592 } 593 594 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 595 { 596 p->reversed = from->reversed; 597 fs_path_reset(p); 598 599 return fs_path_add_path(p, from); 600 } 601 602 static void fs_path_unreverse(struct fs_path *p) 603 { 604 char *tmp; 605 int len; 606 607 if (!p->reversed) 608 return; 609 610 tmp = p->start; 611 len = fs_path_len(p); 612 p->start = p->buf; 613 p->end = p->start + len; 614 memmove(p->start, tmp, len + 1); 615 p->reversed = 0; 616 } 617 618 static inline bool is_current_inode_path(const struct send_ctx *sctx, 619 const struct fs_path *path) 620 { 621 const struct fs_path *cur = &sctx->cur_inode_path; 622 623 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); 624 } 625 626 static struct btrfs_path *alloc_path_for_send(void) 627 { 628 struct btrfs_path *path; 629 630 path = btrfs_alloc_path(); 631 if (!path) 632 return NULL; 633 path->search_commit_root = 1; 634 path->skip_locking = 1; 635 path->need_commit_sem = 1; 636 return path; 637 } 638 639 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 640 { 641 int ret; 642 u32 pos = 0; 643 644 while (pos < len) { 645 ret = kernel_write(filp, buf + pos, len - pos, off); 646 if (ret < 0) 647 return ret; 648 if (ret == 0) 649 return -EIO; 650 pos += ret; 651 } 652 653 return 0; 654 } 655 656 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 657 { 658 struct btrfs_tlv_header *hdr; 659 int total_len = sizeof(*hdr) + len; 660 int left = sctx->send_max_size - sctx->send_size; 661 662 if (WARN_ON_ONCE(sctx->put_data)) 663 return -EINVAL; 664 665 if (unlikely(left < total_len)) 666 return -EOVERFLOW; 667 668 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 669 put_unaligned_le16(attr, &hdr->tlv_type); 670 put_unaligned_le16(len, &hdr->tlv_len); 671 memcpy(hdr + 1, data, len); 672 sctx->send_size += total_len; 673 674 return 0; 675 } 676 677 #define TLV_PUT_DEFINE_INT(bits) \ 678 static int tlv_put_u##bits(struct send_ctx *sctx, \ 679 u##bits attr, u##bits value) \ 680 { \ 681 __le##bits __tmp = cpu_to_le##bits(value); \ 682 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 683 } 684 685 TLV_PUT_DEFINE_INT(8) 686 TLV_PUT_DEFINE_INT(32) 687 TLV_PUT_DEFINE_INT(64) 688 689 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 690 const char *str, int len) 691 { 692 if (len == -1) 693 len = strlen(str); 694 return tlv_put(sctx, attr, str, len); 695 } 696 697 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 698 const u8 *uuid) 699 { 700 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 701 } 702 703 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 704 struct extent_buffer *eb, 705 struct btrfs_timespec *ts) 706 { 707 struct btrfs_timespec bts; 708 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 709 return tlv_put(sctx, attr, &bts, sizeof(bts)); 710 } 711 712 713 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 714 do { \ 715 ret = tlv_put(sctx, attrtype, data, attrlen); \ 716 if (ret < 0) \ 717 goto tlv_put_failure; \ 718 } while (0) 719 720 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 721 do { \ 722 ret = tlv_put_u##bits(sctx, attrtype, value); \ 723 if (ret < 0) \ 724 goto tlv_put_failure; \ 725 } while (0) 726 727 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 728 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 729 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 730 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 731 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 732 do { \ 733 ret = tlv_put_string(sctx, attrtype, str, len); \ 734 if (ret < 0) \ 735 goto tlv_put_failure; \ 736 } while (0) 737 #define TLV_PUT_PATH(sctx, attrtype, p) \ 738 do { \ 739 ret = tlv_put_string(sctx, attrtype, p->start, \ 740 fs_path_len((p))); \ 741 if (ret < 0) \ 742 goto tlv_put_failure; \ 743 } while(0) 744 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 745 do { \ 746 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 747 if (ret < 0) \ 748 goto tlv_put_failure; \ 749 } while (0) 750 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 751 do { \ 752 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 753 if (ret < 0) \ 754 goto tlv_put_failure; \ 755 } while (0) 756 757 static int send_header(struct send_ctx *sctx) 758 { 759 struct btrfs_stream_header hdr; 760 761 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 762 hdr.version = cpu_to_le32(sctx->proto); 763 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 764 &sctx->send_off); 765 } 766 767 /* 768 * For each command/item we want to send to userspace, we call this function. 769 */ 770 static int begin_cmd(struct send_ctx *sctx, int cmd) 771 { 772 struct btrfs_cmd_header *hdr; 773 774 if (WARN_ON(!sctx->send_buf)) 775 return -EINVAL; 776 777 if (unlikely(sctx->send_size != 0)) { 778 btrfs_err(sctx->send_root->fs_info, 779 "send: command header buffer not empty cmd %d offset %llu", 780 cmd, sctx->send_off); 781 return -EINVAL; 782 } 783 784 sctx->send_size += sizeof(*hdr); 785 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 786 put_unaligned_le16(cmd, &hdr->cmd); 787 788 return 0; 789 } 790 791 static int send_cmd(struct send_ctx *sctx) 792 { 793 int ret; 794 struct btrfs_cmd_header *hdr; 795 u32 crc; 796 797 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 798 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 799 put_unaligned_le32(0, &hdr->crc); 800 801 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 802 put_unaligned_le32(crc, &hdr->crc); 803 804 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 805 &sctx->send_off); 806 807 sctx->send_size = 0; 808 sctx->put_data = false; 809 810 return ret; 811 } 812 813 /* 814 * Sends a move instruction to user space 815 */ 816 static int send_rename(struct send_ctx *sctx, 817 struct fs_path *from, struct fs_path *to) 818 { 819 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 820 int ret; 821 822 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start); 823 824 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 825 if (ret < 0) 826 return ret; 827 828 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 830 831 ret = send_cmd(sctx); 832 833 tlv_put_failure: 834 return ret; 835 } 836 837 /* 838 * Sends a link instruction to user space 839 */ 840 static int send_link(struct send_ctx *sctx, 841 struct fs_path *path, struct fs_path *lnk) 842 { 843 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 844 int ret; 845 846 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start); 847 848 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 849 if (ret < 0) 850 return ret; 851 852 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 853 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 854 855 ret = send_cmd(sctx); 856 857 tlv_put_failure: 858 return ret; 859 } 860 861 /* 862 * Sends an unlink instruction to user space 863 */ 864 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 865 { 866 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 867 int ret; 868 869 btrfs_debug(fs_info, "send_unlink %s", path->start); 870 871 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 872 if (ret < 0) 873 return ret; 874 875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 876 877 ret = send_cmd(sctx); 878 879 tlv_put_failure: 880 return ret; 881 } 882 883 /* 884 * Sends a rmdir instruction to user space 885 */ 886 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 887 { 888 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 889 int ret; 890 891 btrfs_debug(fs_info, "send_rmdir %s", path->start); 892 893 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 894 if (ret < 0) 895 return ret; 896 897 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 898 899 ret = send_cmd(sctx); 900 901 tlv_put_failure: 902 return ret; 903 } 904 905 struct btrfs_inode_info { 906 u64 size; 907 u64 gen; 908 u64 mode; 909 u64 uid; 910 u64 gid; 911 u64 rdev; 912 u64 fileattr; 913 u64 nlink; 914 }; 915 916 /* 917 * Helper function to retrieve some fields from an inode item. 918 */ 919 static int get_inode_info(struct btrfs_root *root, u64 ino, 920 struct btrfs_inode_info *info) 921 { 922 int ret; 923 struct btrfs_path *path; 924 struct btrfs_inode_item *ii; 925 struct btrfs_key key; 926 927 path = alloc_path_for_send(); 928 if (!path) 929 return -ENOMEM; 930 931 key.objectid = ino; 932 key.type = BTRFS_INODE_ITEM_KEY; 933 key.offset = 0; 934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 935 if (ret) { 936 if (ret > 0) 937 ret = -ENOENT; 938 goto out; 939 } 940 941 if (!info) 942 goto out; 943 944 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 945 struct btrfs_inode_item); 946 info->size = btrfs_inode_size(path->nodes[0], ii); 947 info->gen = btrfs_inode_generation(path->nodes[0], ii); 948 info->mode = btrfs_inode_mode(path->nodes[0], ii); 949 info->uid = btrfs_inode_uid(path->nodes[0], ii); 950 info->gid = btrfs_inode_gid(path->nodes[0], ii); 951 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 952 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 953 /* 954 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 955 * otherwise logically split to 32/32 parts. 956 */ 957 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 958 959 out: 960 btrfs_free_path(path); 961 return ret; 962 } 963 964 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 965 { 966 int ret; 967 struct btrfs_inode_info info = { 0 }; 968 969 ASSERT(gen); 970 971 ret = get_inode_info(root, ino, &info); 972 *gen = info.gen; 973 return ret; 974 } 975 976 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 977 978 /* 979 * Helper function to iterate the entries in ONE btrfs_inode_ref or 980 * btrfs_inode_extref. 981 * The iterate callback may return a non zero value to stop iteration. This can 982 * be a negative value for error codes or 1 to simply stop it. 983 * 984 * path must point to the INODE_REF or INODE_EXTREF when called. 985 */ 986 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 987 struct btrfs_key *found_key, int resolve, 988 iterate_inode_ref_t iterate, void *ctx) 989 { 990 struct extent_buffer *eb = path->nodes[0]; 991 struct btrfs_inode_ref *iref; 992 struct btrfs_inode_extref *extref; 993 struct btrfs_path *tmp_path; 994 struct fs_path *p; 995 u32 cur = 0; 996 u32 total; 997 int slot = path->slots[0]; 998 u32 name_len; 999 char *start; 1000 int ret = 0; 1001 u64 dir; 1002 unsigned long name_off; 1003 unsigned long elem_size; 1004 unsigned long ptr; 1005 1006 p = fs_path_alloc_reversed(); 1007 if (!p) 1008 return -ENOMEM; 1009 1010 tmp_path = alloc_path_for_send(); 1011 if (!tmp_path) { 1012 fs_path_free(p); 1013 return -ENOMEM; 1014 } 1015 1016 1017 if (found_key->type == BTRFS_INODE_REF_KEY) { 1018 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1019 struct btrfs_inode_ref); 1020 total = btrfs_item_size(eb, slot); 1021 elem_size = sizeof(*iref); 1022 } else { 1023 ptr = btrfs_item_ptr_offset(eb, slot); 1024 total = btrfs_item_size(eb, slot); 1025 elem_size = sizeof(*extref); 1026 } 1027 1028 while (cur < total) { 1029 fs_path_reset(p); 1030 1031 if (found_key->type == BTRFS_INODE_REF_KEY) { 1032 iref = (struct btrfs_inode_ref *)(ptr + cur); 1033 name_len = btrfs_inode_ref_name_len(eb, iref); 1034 name_off = (unsigned long)(iref + 1); 1035 dir = found_key->offset; 1036 } else { 1037 extref = (struct btrfs_inode_extref *)(ptr + cur); 1038 name_len = btrfs_inode_extref_name_len(eb, extref); 1039 name_off = (unsigned long)&extref->name; 1040 dir = btrfs_inode_extref_parent(eb, extref); 1041 } 1042 1043 if (resolve) { 1044 start = btrfs_ref_to_path(root, tmp_path, name_len, 1045 name_off, eb, dir, 1046 p->buf, p->buf_len); 1047 if (IS_ERR(start)) { 1048 ret = PTR_ERR(start); 1049 goto out; 1050 } 1051 if (start < p->buf) { 1052 /* overflow , try again with larger buffer */ 1053 ret = fs_path_ensure_buf(p, 1054 p->buf_len + p->buf - start); 1055 if (ret < 0) 1056 goto out; 1057 start = btrfs_ref_to_path(root, tmp_path, 1058 name_len, name_off, 1059 eb, dir, 1060 p->buf, p->buf_len); 1061 if (IS_ERR(start)) { 1062 ret = PTR_ERR(start); 1063 goto out; 1064 } 1065 if (unlikely(start < p->buf)) { 1066 btrfs_err(root->fs_info, 1067 "send: path ref buffer underflow for key (%llu %u %llu)", 1068 found_key->objectid, 1069 found_key->type, 1070 found_key->offset); 1071 ret = -EINVAL; 1072 goto out; 1073 } 1074 } 1075 p->start = start; 1076 } else { 1077 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1078 name_len); 1079 if (ret < 0) 1080 goto out; 1081 } 1082 1083 cur += elem_size + name_len; 1084 ret = iterate(dir, p, ctx); 1085 if (ret) 1086 goto out; 1087 } 1088 1089 out: 1090 btrfs_free_path(tmp_path); 1091 fs_path_free(p); 1092 return ret; 1093 } 1094 1095 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1096 const char *name, int name_len, 1097 const char *data, int data_len, 1098 void *ctx); 1099 1100 /* 1101 * Helper function to iterate the entries in ONE btrfs_dir_item. 1102 * The iterate callback may return a non zero value to stop iteration. This can 1103 * be a negative value for error codes or 1 to simply stop it. 1104 * 1105 * path must point to the dir item when called. 1106 */ 1107 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1108 iterate_dir_item_t iterate, void *ctx) 1109 { 1110 int ret = 0; 1111 struct extent_buffer *eb; 1112 struct btrfs_dir_item *di; 1113 struct btrfs_key di_key; 1114 char *buf = NULL; 1115 int buf_len; 1116 u32 name_len; 1117 u32 data_len; 1118 u32 cur; 1119 u32 len; 1120 u32 total; 1121 int slot; 1122 int num; 1123 1124 /* 1125 * Start with a small buffer (1 page). If later we end up needing more 1126 * space, which can happen for xattrs on a fs with a leaf size greater 1127 * than the page size, attempt to increase the buffer. Typically xattr 1128 * values are small. 1129 */ 1130 buf_len = PATH_MAX; 1131 buf = kmalloc(buf_len, GFP_KERNEL); 1132 if (!buf) { 1133 ret = -ENOMEM; 1134 goto out; 1135 } 1136 1137 eb = path->nodes[0]; 1138 slot = path->slots[0]; 1139 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1140 cur = 0; 1141 len = 0; 1142 total = btrfs_item_size(eb, slot); 1143 1144 num = 0; 1145 while (cur < total) { 1146 name_len = btrfs_dir_name_len(eb, di); 1147 data_len = btrfs_dir_data_len(eb, di); 1148 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1149 1150 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1151 if (name_len > XATTR_NAME_MAX) { 1152 ret = -ENAMETOOLONG; 1153 goto out; 1154 } 1155 if (name_len + data_len > 1156 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1157 ret = -E2BIG; 1158 goto out; 1159 } 1160 } else { 1161 /* 1162 * Path too long 1163 */ 1164 if (name_len + data_len > PATH_MAX) { 1165 ret = -ENAMETOOLONG; 1166 goto out; 1167 } 1168 } 1169 1170 if (name_len + data_len > buf_len) { 1171 buf_len = name_len + data_len; 1172 if (is_vmalloc_addr(buf)) { 1173 vfree(buf); 1174 buf = NULL; 1175 } else { 1176 char *tmp = krealloc(buf, buf_len, 1177 GFP_KERNEL | __GFP_NOWARN); 1178 1179 if (!tmp) 1180 kfree(buf); 1181 buf = tmp; 1182 } 1183 if (!buf) { 1184 buf = kvmalloc(buf_len, GFP_KERNEL); 1185 if (!buf) { 1186 ret = -ENOMEM; 1187 goto out; 1188 } 1189 } 1190 } 1191 1192 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1193 name_len + data_len); 1194 1195 len = sizeof(*di) + name_len + data_len; 1196 di = (struct btrfs_dir_item *)((char *)di + len); 1197 cur += len; 1198 1199 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1200 data_len, ctx); 1201 if (ret < 0) 1202 goto out; 1203 if (ret) { 1204 ret = 0; 1205 goto out; 1206 } 1207 1208 num++; 1209 } 1210 1211 out: 1212 kvfree(buf); 1213 return ret; 1214 } 1215 1216 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1217 { 1218 int ret; 1219 struct fs_path *pt = ctx; 1220 1221 ret = fs_path_copy(pt, p); 1222 if (ret < 0) 1223 return ret; 1224 1225 /* we want the first only */ 1226 return 1; 1227 } 1228 1229 /* 1230 * Retrieve the first path of an inode. If an inode has more then one 1231 * ref/hardlink, this is ignored. 1232 */ 1233 static int get_inode_path(struct btrfs_root *root, 1234 u64 ino, struct fs_path *path) 1235 { 1236 int ret; 1237 struct btrfs_key key, found_key; 1238 struct btrfs_path *p; 1239 1240 p = alloc_path_for_send(); 1241 if (!p) 1242 return -ENOMEM; 1243 1244 fs_path_reset(path); 1245 1246 key.objectid = ino; 1247 key.type = BTRFS_INODE_REF_KEY; 1248 key.offset = 0; 1249 1250 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1251 if (ret < 0) 1252 goto out; 1253 if (ret) { 1254 ret = 1; 1255 goto out; 1256 } 1257 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1258 if (found_key.objectid != ino || 1259 (found_key.type != BTRFS_INODE_REF_KEY && 1260 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 1261 ret = -ENOENT; 1262 goto out; 1263 } 1264 1265 ret = iterate_inode_ref(root, p, &found_key, 1, 1266 __copy_first_ref, path); 1267 if (ret < 0) 1268 goto out; 1269 ret = 0; 1270 1271 out: 1272 btrfs_free_path(p); 1273 return ret; 1274 } 1275 1276 struct backref_ctx { 1277 struct send_ctx *sctx; 1278 1279 /* number of total found references */ 1280 u64 found; 1281 1282 /* 1283 * used for clones found in send_root. clones found behind cur_objectid 1284 * and cur_offset are not considered as allowed clones. 1285 */ 1286 u64 cur_objectid; 1287 u64 cur_offset; 1288 1289 /* may be truncated in case it's the last extent in a file */ 1290 u64 extent_len; 1291 1292 /* The bytenr the file extent item we are processing refers to. */ 1293 u64 bytenr; 1294 /* The owner (root id) of the data backref for the current extent. */ 1295 u64 backref_owner; 1296 /* The offset of the data backref for the current extent. */ 1297 u64 backref_offset; 1298 }; 1299 1300 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1301 { 1302 u64 root = (u64)(uintptr_t)key; 1303 const struct clone_root *cr = elt; 1304 1305 if (root < btrfs_root_id(cr->root)) 1306 return -1; 1307 if (root > btrfs_root_id(cr->root)) 1308 return 1; 1309 return 0; 1310 } 1311 1312 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1313 { 1314 const struct clone_root *cr1 = e1; 1315 const struct clone_root *cr2 = e2; 1316 1317 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1318 return -1; 1319 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1320 return 1; 1321 return 0; 1322 } 1323 1324 /* 1325 * Called for every backref that is found for the current extent. 1326 * Results are collected in sctx->clone_roots->ino/offset. 1327 */ 1328 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1329 void *ctx_) 1330 { 1331 struct backref_ctx *bctx = ctx_; 1332 struct clone_root *clone_root; 1333 1334 /* First check if the root is in the list of accepted clone sources */ 1335 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1336 bctx->sctx->clone_roots_cnt, 1337 sizeof(struct clone_root), 1338 __clone_root_cmp_bsearch); 1339 if (!clone_root) 1340 return 0; 1341 1342 /* This is our own reference, bail out as we can't clone from it. */ 1343 if (clone_root->root == bctx->sctx->send_root && 1344 ino == bctx->cur_objectid && 1345 offset == bctx->cur_offset) 1346 return 0; 1347 1348 /* 1349 * Make sure we don't consider clones from send_root that are 1350 * behind the current inode/offset. 1351 */ 1352 if (clone_root->root == bctx->sctx->send_root) { 1353 /* 1354 * If the source inode was not yet processed we can't issue a 1355 * clone operation, as the source extent does not exist yet at 1356 * the destination of the stream. 1357 */ 1358 if (ino > bctx->cur_objectid) 1359 return 0; 1360 /* 1361 * We clone from the inode currently being sent as long as the 1362 * source extent is already processed, otherwise we could try 1363 * to clone from an extent that does not exist yet at the 1364 * destination of the stream. 1365 */ 1366 if (ino == bctx->cur_objectid && 1367 offset + bctx->extent_len > 1368 bctx->sctx->cur_inode_next_write_offset) 1369 return 0; 1370 } 1371 1372 bctx->found++; 1373 clone_root->found_ref = true; 1374 1375 /* 1376 * If the given backref refers to a file extent item with a larger 1377 * number of bytes than what we found before, use the new one so that 1378 * we clone more optimally and end up doing less writes and getting 1379 * less exclusive, non-shared extents at the destination. 1380 */ 1381 if (num_bytes > clone_root->num_bytes) { 1382 clone_root->ino = ino; 1383 clone_root->offset = offset; 1384 clone_root->num_bytes = num_bytes; 1385 1386 /* 1387 * Found a perfect candidate, so there's no need to continue 1388 * backref walking. 1389 */ 1390 if (num_bytes >= bctx->extent_len) 1391 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1398 const u64 **root_ids_ret, int *root_count_ret) 1399 { 1400 struct backref_ctx *bctx = ctx; 1401 struct send_ctx *sctx = bctx->sctx; 1402 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1403 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits; 1404 struct btrfs_lru_cache_entry *raw_entry; 1405 struct backref_cache_entry *entry; 1406 1407 if (sctx->backref_cache.size == 0) 1408 return false; 1409 1410 /* 1411 * If relocation happened since we first filled the cache, then we must 1412 * empty the cache and can not use it, because even though we operate on 1413 * read-only roots, their leaves and nodes may have been reallocated and 1414 * now be used for different nodes/leaves of the same tree or some other 1415 * tree. 1416 * 1417 * We are called from iterate_extent_inodes() while either holding a 1418 * transaction handle or holding fs_info->commit_root_sem, so no need 1419 * to take any lock here. 1420 */ 1421 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1422 btrfs_lru_cache_clear(&sctx->backref_cache); 1423 return false; 1424 } 1425 1426 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1427 if (!raw_entry) 1428 return false; 1429 1430 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1431 *root_ids_ret = entry->root_ids; 1432 *root_count_ret = entry->num_roots; 1433 1434 return true; 1435 } 1436 1437 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1438 void *ctx) 1439 { 1440 struct backref_ctx *bctx = ctx; 1441 struct send_ctx *sctx = bctx->sctx; 1442 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1443 struct backref_cache_entry *new_entry; 1444 struct ulist_iterator uiter; 1445 struct ulist_node *node; 1446 int ret; 1447 1448 /* 1449 * We're called while holding a transaction handle or while holding 1450 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1451 * NOFS allocation. 1452 */ 1453 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1454 /* No worries, cache is optional. */ 1455 if (!new_entry) 1456 return; 1457 1458 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits; 1459 new_entry->entry.gen = 0; 1460 new_entry->num_roots = 0; 1461 ULIST_ITER_INIT(&uiter); 1462 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1463 const u64 root_id = node->val; 1464 struct clone_root *root; 1465 1466 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1467 sctx->clone_roots_cnt, sizeof(struct clone_root), 1468 __clone_root_cmp_bsearch); 1469 if (!root) 1470 continue; 1471 1472 /* Too many roots, just exit, no worries as caching is optional. */ 1473 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1474 kfree(new_entry); 1475 return; 1476 } 1477 1478 new_entry->root_ids[new_entry->num_roots] = root_id; 1479 new_entry->num_roots++; 1480 } 1481 1482 /* 1483 * We may have not added any roots to the new cache entry, which means 1484 * none of the roots is part of the list of roots from which we are 1485 * allowed to clone. Cache the new entry as it's still useful to avoid 1486 * backref walking to determine which roots have a path to the leaf. 1487 * 1488 * Also use GFP_NOFS because we're called while holding a transaction 1489 * handle or while holding fs_info->commit_root_sem. 1490 */ 1491 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1492 GFP_NOFS); 1493 ASSERT(ret == 0 || ret == -ENOMEM); 1494 if (ret) { 1495 /* Caching is optional, no worries. */ 1496 kfree(new_entry); 1497 return; 1498 } 1499 1500 /* 1501 * We are called from iterate_extent_inodes() while either holding a 1502 * transaction handle or holding fs_info->commit_root_sem, so no need 1503 * to take any lock here. 1504 */ 1505 if (sctx->backref_cache.size == 1) 1506 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1507 } 1508 1509 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1510 const struct extent_buffer *leaf, void *ctx) 1511 { 1512 const u64 refs = btrfs_extent_refs(leaf, ei); 1513 const struct backref_ctx *bctx = ctx; 1514 const struct send_ctx *sctx = bctx->sctx; 1515 1516 if (bytenr == bctx->bytenr) { 1517 const u64 flags = btrfs_extent_flags(leaf, ei); 1518 1519 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1520 return -EUCLEAN; 1521 1522 /* 1523 * If we have only one reference and only the send root as a 1524 * clone source - meaning no clone roots were given in the 1525 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1526 * it's our reference and there's no point in doing backref 1527 * walking which is expensive, so exit early. 1528 */ 1529 if (refs == 1 && sctx->clone_roots_cnt == 1) 1530 return -ENOENT; 1531 } 1532 1533 /* 1534 * Backreference walking (iterate_extent_inodes() below) is currently 1535 * too expensive when an extent has a large number of references, both 1536 * in time spent and used memory. So for now just fallback to write 1537 * operations instead of clone operations when an extent has more than 1538 * a certain amount of references. 1539 */ 1540 if (refs > SEND_MAX_EXTENT_REFS) 1541 return -ENOENT; 1542 1543 return 0; 1544 } 1545 1546 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1547 { 1548 const struct backref_ctx *bctx = ctx; 1549 1550 if (ino == bctx->cur_objectid && 1551 root == bctx->backref_owner && 1552 offset == bctx->backref_offset) 1553 return true; 1554 1555 return false; 1556 } 1557 1558 /* 1559 * Given an inode, offset and extent item, it finds a good clone for a clone 1560 * instruction. Returns -ENOENT when none could be found. The function makes 1561 * sure that the returned clone is usable at the point where sending is at the 1562 * moment. This means, that no clones are accepted which lie behind the current 1563 * inode+offset. 1564 * 1565 * path must point to the extent item when called. 1566 */ 1567 static int find_extent_clone(struct send_ctx *sctx, 1568 struct btrfs_path *path, 1569 u64 ino, u64 data_offset, 1570 u64 ino_size, 1571 struct clone_root **found) 1572 { 1573 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1574 int ret; 1575 int extent_type; 1576 u64 logical; 1577 u64 disk_byte; 1578 u64 num_bytes; 1579 struct btrfs_file_extent_item *fi; 1580 struct extent_buffer *eb = path->nodes[0]; 1581 struct backref_ctx backref_ctx = { 0 }; 1582 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1583 struct clone_root *cur_clone_root; 1584 int compressed; 1585 u32 i; 1586 1587 /* 1588 * With fallocate we can get prealloc extents beyond the inode's i_size, 1589 * so we don't do anything here because clone operations can not clone 1590 * to a range beyond i_size without increasing the i_size of the 1591 * destination inode. 1592 */ 1593 if (data_offset >= ino_size) 1594 return 0; 1595 1596 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1597 extent_type = btrfs_file_extent_type(eb, fi); 1598 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1599 return -ENOENT; 1600 1601 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1602 if (disk_byte == 0) 1603 return -ENOENT; 1604 1605 compressed = btrfs_file_extent_compression(eb, fi); 1606 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1607 logical = disk_byte + btrfs_file_extent_offset(eb, fi); 1608 1609 /* 1610 * Setup the clone roots. 1611 */ 1612 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1613 cur_clone_root = sctx->clone_roots + i; 1614 cur_clone_root->ino = (u64)-1; 1615 cur_clone_root->offset = 0; 1616 cur_clone_root->num_bytes = 0; 1617 cur_clone_root->found_ref = false; 1618 } 1619 1620 backref_ctx.sctx = sctx; 1621 backref_ctx.cur_objectid = ino; 1622 backref_ctx.cur_offset = data_offset; 1623 backref_ctx.bytenr = disk_byte; 1624 /* 1625 * Use the header owner and not the send root's id, because in case of a 1626 * snapshot we can have shared subtrees. 1627 */ 1628 backref_ctx.backref_owner = btrfs_header_owner(eb); 1629 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1630 1631 /* 1632 * The last extent of a file may be too large due to page alignment. 1633 * We need to adjust extent_len in this case so that the checks in 1634 * iterate_backrefs() work. 1635 */ 1636 if (data_offset + num_bytes >= ino_size) 1637 backref_ctx.extent_len = ino_size - data_offset; 1638 else 1639 backref_ctx.extent_len = num_bytes; 1640 1641 /* 1642 * Now collect all backrefs. 1643 */ 1644 backref_walk_ctx.bytenr = disk_byte; 1645 if (compressed == BTRFS_COMPRESS_NONE) 1646 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1647 backref_walk_ctx.fs_info = fs_info; 1648 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1649 backref_walk_ctx.cache_store = store_backref_cache; 1650 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1651 backref_walk_ctx.check_extent_item = check_extent_item; 1652 backref_walk_ctx.user_ctx = &backref_ctx; 1653 1654 /* 1655 * If have a single clone root, then it's the send root and we can tell 1656 * the backref walking code to skip our own backref and not resolve it, 1657 * since we can not use it for cloning - the source and destination 1658 * ranges can't overlap and in case the leaf is shared through a subtree 1659 * due to snapshots, we can't use those other roots since they are not 1660 * in the list of clone roots. 1661 */ 1662 if (sctx->clone_roots_cnt == 1) 1663 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1664 1665 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1666 &backref_ctx); 1667 if (ret < 0) 1668 return ret; 1669 1670 down_read(&fs_info->commit_root_sem); 1671 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1672 /* 1673 * A transaction commit for a transaction in which block group 1674 * relocation was done just happened. 1675 * The disk_bytenr of the file extent item we processed is 1676 * possibly stale, referring to the extent's location before 1677 * relocation. So act as if we haven't found any clone sources 1678 * and fallback to write commands, which will read the correct 1679 * data from the new extent location. Otherwise we will fail 1680 * below because we haven't found our own back reference or we 1681 * could be getting incorrect sources in case the old extent 1682 * was already reallocated after the relocation. 1683 */ 1684 up_read(&fs_info->commit_root_sem); 1685 return -ENOENT; 1686 } 1687 up_read(&fs_info->commit_root_sem); 1688 1689 btrfs_debug(fs_info, 1690 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu", 1691 data_offset, ino, num_bytes, logical); 1692 1693 if (!backref_ctx.found) { 1694 btrfs_debug(fs_info, "no clones found"); 1695 return -ENOENT; 1696 } 1697 1698 cur_clone_root = NULL; 1699 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1700 struct clone_root *clone_root = &sctx->clone_roots[i]; 1701 1702 if (!clone_root->found_ref) 1703 continue; 1704 1705 /* 1706 * Choose the root from which we can clone more bytes, to 1707 * minimize write operations and therefore have more extent 1708 * sharing at the destination (the same as in the source). 1709 */ 1710 if (!cur_clone_root || 1711 clone_root->num_bytes > cur_clone_root->num_bytes) { 1712 cur_clone_root = clone_root; 1713 1714 /* 1715 * We found an optimal clone candidate (any inode from 1716 * any root is fine), so we're done. 1717 */ 1718 if (clone_root->num_bytes >= backref_ctx.extent_len) 1719 break; 1720 } 1721 } 1722 1723 if (cur_clone_root) { 1724 *found = cur_clone_root; 1725 ret = 0; 1726 } else { 1727 ret = -ENOENT; 1728 } 1729 1730 return ret; 1731 } 1732 1733 static int read_symlink(struct btrfs_root *root, 1734 u64 ino, 1735 struct fs_path *dest) 1736 { 1737 int ret; 1738 struct btrfs_path *path; 1739 struct btrfs_key key; 1740 struct btrfs_file_extent_item *ei; 1741 u8 type; 1742 u8 compression; 1743 unsigned long off; 1744 int len; 1745 1746 path = alloc_path_for_send(); 1747 if (!path) 1748 return -ENOMEM; 1749 1750 key.objectid = ino; 1751 key.type = BTRFS_EXTENT_DATA_KEY; 1752 key.offset = 0; 1753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1754 if (ret < 0) 1755 goto out; 1756 if (ret) { 1757 /* 1758 * An empty symlink inode. Can happen in rare error paths when 1759 * creating a symlink (transaction committed before the inode 1760 * eviction handler removed the symlink inode items and a crash 1761 * happened in between or the subvol was snapshoted in between). 1762 * Print an informative message to dmesg/syslog so that the user 1763 * can delete the symlink. 1764 */ 1765 btrfs_err(root->fs_info, 1766 "Found empty symlink inode %llu at root %llu", 1767 ino, btrfs_root_id(root)); 1768 ret = -EIO; 1769 goto out; 1770 } 1771 1772 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1773 struct btrfs_file_extent_item); 1774 type = btrfs_file_extent_type(path->nodes[0], ei); 1775 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1776 ret = -EUCLEAN; 1777 btrfs_crit(root->fs_info, 1778 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1779 ino, btrfs_root_id(root), type); 1780 goto out; 1781 } 1782 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1783 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1784 ret = -EUCLEAN; 1785 btrfs_crit(root->fs_info, 1786 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1787 ino, btrfs_root_id(root), compression); 1788 goto out; 1789 } 1790 1791 off = btrfs_file_extent_inline_start(ei); 1792 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1793 1794 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1795 1796 out: 1797 btrfs_free_path(path); 1798 return ret; 1799 } 1800 1801 /* 1802 * Helper function to generate a file name that is unique in the root of 1803 * send_root and parent_root. This is used to generate names for orphan inodes. 1804 */ 1805 static int gen_unique_name(struct send_ctx *sctx, 1806 u64 ino, u64 gen, 1807 struct fs_path *dest) 1808 { 1809 int ret = 0; 1810 struct btrfs_path *path; 1811 struct btrfs_dir_item *di; 1812 char tmp[64]; 1813 int len; 1814 u64 idx = 0; 1815 1816 path = alloc_path_for_send(); 1817 if (!path) 1818 return -ENOMEM; 1819 1820 while (1) { 1821 struct fscrypt_str tmp_name; 1822 1823 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1824 ino, gen, idx); 1825 ASSERT(len < sizeof(tmp)); 1826 tmp_name.name = tmp; 1827 tmp_name.len = strlen(tmp); 1828 1829 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1830 path, BTRFS_FIRST_FREE_OBJECTID, 1831 &tmp_name, 0); 1832 btrfs_release_path(path); 1833 if (IS_ERR(di)) { 1834 ret = PTR_ERR(di); 1835 goto out; 1836 } 1837 if (di) { 1838 /* not unique, try again */ 1839 idx++; 1840 continue; 1841 } 1842 1843 if (!sctx->parent_root) { 1844 /* unique */ 1845 ret = 0; 1846 break; 1847 } 1848 1849 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1850 path, BTRFS_FIRST_FREE_OBJECTID, 1851 &tmp_name, 0); 1852 btrfs_release_path(path); 1853 if (IS_ERR(di)) { 1854 ret = PTR_ERR(di); 1855 goto out; 1856 } 1857 if (di) { 1858 /* not unique, try again */ 1859 idx++; 1860 continue; 1861 } 1862 /* unique */ 1863 break; 1864 } 1865 1866 ret = fs_path_add(dest, tmp, strlen(tmp)); 1867 1868 out: 1869 btrfs_free_path(path); 1870 return ret; 1871 } 1872 1873 enum inode_state { 1874 inode_state_no_change, 1875 inode_state_will_create, 1876 inode_state_did_create, 1877 inode_state_will_delete, 1878 inode_state_did_delete, 1879 }; 1880 1881 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1882 u64 *send_gen, u64 *parent_gen) 1883 { 1884 int ret; 1885 int left_ret; 1886 int right_ret; 1887 u64 left_gen; 1888 u64 right_gen = 0; 1889 struct btrfs_inode_info info; 1890 1891 ret = get_inode_info(sctx->send_root, ino, &info); 1892 if (ret < 0 && ret != -ENOENT) 1893 return ret; 1894 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1895 left_gen = info.gen; 1896 if (send_gen) 1897 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1898 1899 if (!sctx->parent_root) { 1900 right_ret = -ENOENT; 1901 } else { 1902 ret = get_inode_info(sctx->parent_root, ino, &info); 1903 if (ret < 0 && ret != -ENOENT) 1904 return ret; 1905 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1906 right_gen = info.gen; 1907 if (parent_gen) 1908 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1909 } 1910 1911 if (!left_ret && !right_ret) { 1912 if (left_gen == gen && right_gen == gen) { 1913 ret = inode_state_no_change; 1914 } else if (left_gen == gen) { 1915 if (ino < sctx->send_progress) 1916 ret = inode_state_did_create; 1917 else 1918 ret = inode_state_will_create; 1919 } else if (right_gen == gen) { 1920 if (ino < sctx->send_progress) 1921 ret = inode_state_did_delete; 1922 else 1923 ret = inode_state_will_delete; 1924 } else { 1925 ret = -ENOENT; 1926 } 1927 } else if (!left_ret) { 1928 if (left_gen == gen) { 1929 if (ino < sctx->send_progress) 1930 ret = inode_state_did_create; 1931 else 1932 ret = inode_state_will_create; 1933 } else { 1934 ret = -ENOENT; 1935 } 1936 } else if (!right_ret) { 1937 if (right_gen == gen) { 1938 if (ino < sctx->send_progress) 1939 ret = inode_state_did_delete; 1940 else 1941 ret = inode_state_will_delete; 1942 } else { 1943 ret = -ENOENT; 1944 } 1945 } else { 1946 ret = -ENOENT; 1947 } 1948 1949 return ret; 1950 } 1951 1952 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1953 u64 *send_gen, u64 *parent_gen) 1954 { 1955 int ret; 1956 1957 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1958 return 1; 1959 1960 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1961 if (ret < 0) 1962 return ret; 1963 1964 if (ret == inode_state_no_change || 1965 ret == inode_state_did_create || 1966 ret == inode_state_will_delete) 1967 return 1; 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Helper function to lookup a dir item in a dir. 1974 */ 1975 static int lookup_dir_item_inode(struct btrfs_root *root, 1976 u64 dir, const char *name, int name_len, 1977 u64 *found_inode) 1978 { 1979 int ret = 0; 1980 struct btrfs_dir_item *di; 1981 struct btrfs_key key; 1982 struct btrfs_path *path; 1983 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1984 1985 path = alloc_path_for_send(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1990 if (IS_ERR_OR_NULL(di)) { 1991 ret = di ? PTR_ERR(di) : -ENOENT; 1992 goto out; 1993 } 1994 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1995 if (key.type == BTRFS_ROOT_ITEM_KEY) { 1996 ret = -ENOENT; 1997 goto out; 1998 } 1999 *found_inode = key.objectid; 2000 2001 out: 2002 btrfs_free_path(path); 2003 return ret; 2004 } 2005 2006 /* 2007 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 2008 * generation of the parent dir and the name of the dir entry. 2009 */ 2010 static int get_first_ref(struct btrfs_root *root, u64 ino, 2011 u64 *dir, u64 *dir_gen, struct fs_path *name) 2012 { 2013 int ret; 2014 struct btrfs_key key; 2015 struct btrfs_key found_key; 2016 struct btrfs_path *path; 2017 int len; 2018 u64 parent_dir; 2019 2020 path = alloc_path_for_send(); 2021 if (!path) 2022 return -ENOMEM; 2023 2024 key.objectid = ino; 2025 key.type = BTRFS_INODE_REF_KEY; 2026 key.offset = 0; 2027 2028 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 2029 if (ret < 0) 2030 goto out; 2031 if (!ret) 2032 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2033 path->slots[0]); 2034 if (ret || found_key.objectid != ino || 2035 (found_key.type != BTRFS_INODE_REF_KEY && 2036 found_key.type != BTRFS_INODE_EXTREF_KEY)) { 2037 ret = -ENOENT; 2038 goto out; 2039 } 2040 2041 if (found_key.type == BTRFS_INODE_REF_KEY) { 2042 struct btrfs_inode_ref *iref; 2043 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2044 struct btrfs_inode_ref); 2045 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 2046 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2047 (unsigned long)(iref + 1), 2048 len); 2049 parent_dir = found_key.offset; 2050 } else { 2051 struct btrfs_inode_extref *extref; 2052 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2053 struct btrfs_inode_extref); 2054 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2055 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2056 (unsigned long)&extref->name, len); 2057 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2058 } 2059 if (ret < 0) 2060 goto out; 2061 btrfs_release_path(path); 2062 2063 if (dir_gen) { 2064 ret = get_inode_gen(root, parent_dir, dir_gen); 2065 if (ret < 0) 2066 goto out; 2067 } 2068 2069 *dir = parent_dir; 2070 2071 out: 2072 btrfs_free_path(path); 2073 return ret; 2074 } 2075 2076 static int is_first_ref(struct btrfs_root *root, 2077 u64 ino, u64 dir, 2078 const char *name, int name_len) 2079 { 2080 int ret; 2081 struct fs_path *tmp_name; 2082 u64 tmp_dir; 2083 2084 tmp_name = fs_path_alloc(); 2085 if (!tmp_name) 2086 return -ENOMEM; 2087 2088 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2089 if (ret < 0) 2090 goto out; 2091 2092 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2093 ret = 0; 2094 goto out; 2095 } 2096 2097 ret = !memcmp(tmp_name->start, name, name_len); 2098 2099 out: 2100 fs_path_free(tmp_name); 2101 return ret; 2102 } 2103 2104 /* 2105 * Used by process_recorded_refs to determine if a new ref would overwrite an 2106 * already existing ref. In case it detects an overwrite, it returns the 2107 * inode/gen in who_ino/who_gen. 2108 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2109 * to make sure later references to the overwritten inode are possible. 2110 * Orphanizing is however only required for the first ref of an inode. 2111 * process_recorded_refs does an additional is_first_ref check to see if 2112 * orphanizing is really required. 2113 */ 2114 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2115 const char *name, int name_len, 2116 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2117 { 2118 int ret; 2119 u64 parent_root_dir_gen; 2120 u64 other_inode = 0; 2121 struct btrfs_inode_info info; 2122 2123 if (!sctx->parent_root) 2124 return 0; 2125 2126 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2127 if (ret <= 0) 2128 return 0; 2129 2130 /* 2131 * If we have a parent root we need to verify that the parent dir was 2132 * not deleted and then re-created, if it was then we have no overwrite 2133 * and we can just unlink this entry. 2134 * 2135 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2136 * parent root. 2137 */ 2138 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2139 parent_root_dir_gen != dir_gen) 2140 return 0; 2141 2142 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2143 &other_inode); 2144 if (ret == -ENOENT) 2145 return 0; 2146 else if (ret < 0) 2147 return ret; 2148 2149 /* 2150 * Check if the overwritten ref was already processed. If yes, the ref 2151 * was already unlinked/moved, so we can safely assume that we will not 2152 * overwrite anything at this point in time. 2153 */ 2154 if (other_inode > sctx->send_progress || 2155 is_waiting_for_move(sctx, other_inode)) { 2156 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2157 if (ret < 0) 2158 return ret; 2159 2160 *who_ino = other_inode; 2161 *who_gen = info.gen; 2162 *who_mode = info.mode; 2163 return 1; 2164 } 2165 2166 return 0; 2167 } 2168 2169 /* 2170 * Checks if the ref was overwritten by an already processed inode. This is 2171 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2172 * thus the orphan name needs be used. 2173 * process_recorded_refs also uses it to avoid unlinking of refs that were 2174 * overwritten. 2175 */ 2176 static int did_overwrite_ref(struct send_ctx *sctx, 2177 u64 dir, u64 dir_gen, 2178 u64 ino, u64 ino_gen, 2179 const char *name, int name_len) 2180 { 2181 int ret; 2182 u64 ow_inode; 2183 u64 ow_gen = 0; 2184 u64 send_root_dir_gen; 2185 2186 if (!sctx->parent_root) 2187 return 0; 2188 2189 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2190 if (ret <= 0) 2191 return ret; 2192 2193 /* 2194 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2195 * send root. 2196 */ 2197 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2198 return 0; 2199 2200 /* check if the ref was overwritten by another ref */ 2201 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2202 &ow_inode); 2203 if (ret == -ENOENT) { 2204 /* was never and will never be overwritten */ 2205 return 0; 2206 } else if (ret < 0) { 2207 return ret; 2208 } 2209 2210 if (ow_inode == ino) { 2211 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2212 if (ret < 0) 2213 return ret; 2214 2215 /* It's the same inode, so no overwrite happened. */ 2216 if (ow_gen == ino_gen) 2217 return 0; 2218 } 2219 2220 /* 2221 * We know that it is or will be overwritten. Check this now. 2222 * The current inode being processed might have been the one that caused 2223 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2224 * the current inode being processed. 2225 */ 2226 if (ow_inode < sctx->send_progress) 2227 return 1; 2228 2229 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2230 if (ow_gen == 0) { 2231 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2232 if (ret < 0) 2233 return ret; 2234 } 2235 if (ow_gen == sctx->cur_inode_gen) 2236 return 1; 2237 } 2238 2239 return 0; 2240 } 2241 2242 /* 2243 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2244 * that got overwritten. This is used by process_recorded_refs to determine 2245 * if it has to use the path as returned by get_cur_path or the orphan name. 2246 */ 2247 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2248 { 2249 int ret = 0; 2250 struct fs_path *name = NULL; 2251 u64 dir; 2252 u64 dir_gen; 2253 2254 if (!sctx->parent_root) 2255 goto out; 2256 2257 name = fs_path_alloc(); 2258 if (!name) 2259 return -ENOMEM; 2260 2261 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2262 if (ret < 0) 2263 goto out; 2264 2265 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2266 name->start, fs_path_len(name)); 2267 2268 out: 2269 fs_path_free(name); 2270 return ret; 2271 } 2272 2273 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2274 u64 ino, u64 gen) 2275 { 2276 struct btrfs_lru_cache_entry *entry; 2277 2278 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2279 if (!entry) 2280 return NULL; 2281 2282 return container_of(entry, struct name_cache_entry, entry); 2283 } 2284 2285 /* 2286 * Used by get_cur_path for each ref up to the root. 2287 * Returns 0 if it succeeded. 2288 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2289 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2290 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2291 * Returns <0 in case of error. 2292 */ 2293 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2294 u64 ino, u64 gen, 2295 u64 *parent_ino, 2296 u64 *parent_gen, 2297 struct fs_path *dest) 2298 { 2299 int ret; 2300 int nce_ret; 2301 struct name_cache_entry *nce; 2302 2303 /* 2304 * First check if we already did a call to this function with the same 2305 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2306 * return the cached result. 2307 */ 2308 nce = name_cache_search(sctx, ino, gen); 2309 if (nce) { 2310 if (ino < sctx->send_progress && nce->need_later_update) { 2311 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2312 nce = NULL; 2313 } else { 2314 *parent_ino = nce->parent_ino; 2315 *parent_gen = nce->parent_gen; 2316 ret = fs_path_add(dest, nce->name, nce->name_len); 2317 if (ret < 0) 2318 return ret; 2319 return nce->ret; 2320 } 2321 } 2322 2323 /* 2324 * If the inode is not existent yet, add the orphan name and return 1. 2325 * This should only happen for the parent dir that we determine in 2326 * record_new_ref_if_needed(). 2327 */ 2328 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2329 if (ret < 0) 2330 return ret; 2331 2332 if (!ret) { 2333 ret = gen_unique_name(sctx, ino, gen, dest); 2334 if (ret < 0) 2335 return ret; 2336 ret = 1; 2337 goto out_cache; 2338 } 2339 2340 /* 2341 * Depending on whether the inode was already processed or not, use 2342 * send_root or parent_root for ref lookup. 2343 */ 2344 if (ino < sctx->send_progress) 2345 ret = get_first_ref(sctx->send_root, ino, 2346 parent_ino, parent_gen, dest); 2347 else 2348 ret = get_first_ref(sctx->parent_root, ino, 2349 parent_ino, parent_gen, dest); 2350 if (ret < 0) 2351 return ret; 2352 2353 /* 2354 * Check if the ref was overwritten by an inode's ref that was processed 2355 * earlier. If yes, treat as orphan and return 1. 2356 */ 2357 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2358 dest->start, fs_path_len(dest)); 2359 if (ret < 0) 2360 return ret; 2361 if (ret) { 2362 fs_path_reset(dest); 2363 ret = gen_unique_name(sctx, ino, gen, dest); 2364 if (ret < 0) 2365 return ret; 2366 ret = 1; 2367 } 2368 2369 out_cache: 2370 /* 2371 * Store the result of the lookup in the name cache. 2372 */ 2373 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2374 if (!nce) 2375 return -ENOMEM; 2376 2377 nce->entry.key = ino; 2378 nce->entry.gen = gen; 2379 nce->parent_ino = *parent_ino; 2380 nce->parent_gen = *parent_gen; 2381 nce->name_len = fs_path_len(dest); 2382 nce->ret = ret; 2383 memcpy(nce->name, dest->start, nce->name_len); 2384 2385 if (ino < sctx->send_progress) 2386 nce->need_later_update = 0; 2387 else 2388 nce->need_later_update = 1; 2389 2390 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2391 if (nce_ret < 0) { 2392 kfree(nce); 2393 return nce_ret; 2394 } 2395 2396 return ret; 2397 } 2398 2399 /* 2400 * Magic happens here. This function returns the first ref to an inode as it 2401 * would look like while receiving the stream at this point in time. 2402 * We walk the path up to the root. For every inode in between, we check if it 2403 * was already processed/sent. If yes, we continue with the parent as found 2404 * in send_root. If not, we continue with the parent as found in parent_root. 2405 * If we encounter an inode that was deleted at this point in time, we use the 2406 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2407 * that were not created yet and overwritten inodes/refs. 2408 * 2409 * When do we have orphan inodes: 2410 * 1. When an inode is freshly created and thus no valid refs are available yet 2411 * 2. When a directory lost all it's refs (deleted) but still has dir items 2412 * inside which were not processed yet (pending for move/delete). If anyone 2413 * tried to get the path to the dir items, it would get a path inside that 2414 * orphan directory. 2415 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2416 * of an unprocessed inode. If in that case the first ref would be 2417 * overwritten, the overwritten inode gets "orphanized". Later when we 2418 * process this overwritten inode, it is restored at a new place by moving 2419 * the orphan inode. 2420 * 2421 * sctx->send_progress tells this function at which point in time receiving 2422 * would be. 2423 */ 2424 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2425 struct fs_path *dest) 2426 { 2427 int ret = 0; 2428 struct fs_path *name = NULL; 2429 u64 parent_inode = 0; 2430 u64 parent_gen = 0; 2431 int stop = 0; 2432 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); 2433 2434 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { 2435 if (dest != &sctx->cur_inode_path) 2436 return fs_path_copy(dest, &sctx->cur_inode_path); 2437 2438 return 0; 2439 } 2440 2441 name = fs_path_alloc(); 2442 if (!name) { 2443 ret = -ENOMEM; 2444 goto out; 2445 } 2446 2447 dest->reversed = 1; 2448 fs_path_reset(dest); 2449 2450 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2451 struct waiting_dir_move *wdm; 2452 2453 fs_path_reset(name); 2454 2455 if (is_waiting_for_rm(sctx, ino, gen)) { 2456 ret = gen_unique_name(sctx, ino, gen, name); 2457 if (ret < 0) 2458 goto out; 2459 ret = fs_path_add_path(dest, name); 2460 break; 2461 } 2462 2463 wdm = get_waiting_dir_move(sctx, ino); 2464 if (wdm && wdm->orphanized) { 2465 ret = gen_unique_name(sctx, ino, gen, name); 2466 stop = 1; 2467 } else if (wdm) { 2468 ret = get_first_ref(sctx->parent_root, ino, 2469 &parent_inode, &parent_gen, name); 2470 } else { 2471 ret = __get_cur_name_and_parent(sctx, ino, gen, 2472 &parent_inode, 2473 &parent_gen, name); 2474 if (ret) 2475 stop = 1; 2476 } 2477 2478 if (ret < 0) 2479 goto out; 2480 2481 ret = fs_path_add_path(dest, name); 2482 if (ret < 0) 2483 goto out; 2484 2485 ino = parent_inode; 2486 gen = parent_gen; 2487 } 2488 2489 out: 2490 fs_path_free(name); 2491 if (!ret) { 2492 fs_path_unreverse(dest); 2493 if (is_cur_inode && dest != &sctx->cur_inode_path) 2494 ret = fs_path_copy(&sctx->cur_inode_path, dest); 2495 } 2496 2497 return ret; 2498 } 2499 2500 /* 2501 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2502 */ 2503 static int send_subvol_begin(struct send_ctx *sctx) 2504 { 2505 int ret; 2506 struct btrfs_root *send_root = sctx->send_root; 2507 struct btrfs_root *parent_root = sctx->parent_root; 2508 struct btrfs_path *path; 2509 struct btrfs_key key; 2510 struct btrfs_root_ref *ref; 2511 struct extent_buffer *leaf; 2512 char *name = NULL; 2513 int namelen; 2514 2515 path = btrfs_alloc_path(); 2516 if (!path) 2517 return -ENOMEM; 2518 2519 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2520 if (!name) { 2521 btrfs_free_path(path); 2522 return -ENOMEM; 2523 } 2524 2525 key.objectid = btrfs_root_id(send_root); 2526 key.type = BTRFS_ROOT_BACKREF_KEY; 2527 key.offset = 0; 2528 2529 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2530 &key, path, 1, 0); 2531 if (ret < 0) 2532 goto out; 2533 if (ret) { 2534 ret = -ENOENT; 2535 goto out; 2536 } 2537 2538 leaf = path->nodes[0]; 2539 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2540 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2541 key.objectid != btrfs_root_id(send_root)) { 2542 ret = -ENOENT; 2543 goto out; 2544 } 2545 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2546 namelen = btrfs_root_ref_name_len(leaf, ref); 2547 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2548 btrfs_release_path(path); 2549 2550 if (parent_root) { 2551 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2552 if (ret < 0) 2553 goto out; 2554 } else { 2555 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2556 if (ret < 0) 2557 goto out; 2558 } 2559 2560 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2561 2562 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2563 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2564 sctx->send_root->root_item.received_uuid); 2565 else 2566 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2567 sctx->send_root->root_item.uuid); 2568 2569 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2570 btrfs_root_ctransid(&sctx->send_root->root_item)); 2571 if (parent_root) { 2572 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2573 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2574 parent_root->root_item.received_uuid); 2575 else 2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2577 parent_root->root_item.uuid); 2578 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2579 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2580 } 2581 2582 ret = send_cmd(sctx); 2583 2584 tlv_put_failure: 2585 out: 2586 btrfs_free_path(path); 2587 kfree(name); 2588 return ret; 2589 } 2590 2591 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) 2592 { 2593 if (fs_path_len(&sctx->cur_inode_path) == 0) { 2594 int ret; 2595 2596 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2597 &sctx->cur_inode_path); 2598 if (ret < 0) 2599 return ERR_PTR(ret); 2600 } 2601 2602 return &sctx->cur_inode_path; 2603 } 2604 2605 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) 2606 { 2607 struct fs_path *path; 2608 int ret; 2609 2610 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 2611 return get_cur_inode_path(sctx); 2612 2613 path = fs_path_alloc(); 2614 if (!path) 2615 return ERR_PTR(-ENOMEM); 2616 2617 ret = get_cur_path(sctx, ino, gen, path); 2618 if (ret < 0) { 2619 fs_path_free(path); 2620 return ERR_PTR(ret); 2621 } 2622 2623 return path; 2624 } 2625 2626 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) 2627 { 2628 if (path != &sctx->cur_inode_path) 2629 fs_path_free(path); 2630 } 2631 2632 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2633 { 2634 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2635 int ret = 0; 2636 struct fs_path *p; 2637 2638 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size); 2639 2640 p = get_path_for_command(sctx, ino, gen); 2641 if (IS_ERR(p)) 2642 return PTR_ERR(p); 2643 2644 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2645 if (ret < 0) 2646 goto out; 2647 2648 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2649 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2650 2651 ret = send_cmd(sctx); 2652 2653 tlv_put_failure: 2654 out: 2655 free_path_for_command(sctx, p); 2656 return ret; 2657 } 2658 2659 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2660 { 2661 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2662 int ret = 0; 2663 struct fs_path *p; 2664 2665 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode); 2666 2667 p = get_path_for_command(sctx, ino, gen); 2668 if (IS_ERR(p)) 2669 return PTR_ERR(p); 2670 2671 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2672 if (ret < 0) 2673 goto out; 2674 2675 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2676 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2677 2678 ret = send_cmd(sctx); 2679 2680 tlv_put_failure: 2681 out: 2682 free_path_for_command(sctx, p); 2683 return ret; 2684 } 2685 2686 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2687 { 2688 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2689 int ret = 0; 2690 struct fs_path *p; 2691 2692 if (sctx->proto < 2) 2693 return 0; 2694 2695 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr); 2696 2697 p = get_path_for_command(sctx, ino, gen); 2698 if (IS_ERR(p)) 2699 return PTR_ERR(p); 2700 2701 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2702 if (ret < 0) 2703 goto out; 2704 2705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2706 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2707 2708 ret = send_cmd(sctx); 2709 2710 tlv_put_failure: 2711 out: 2712 free_path_for_command(sctx, p); 2713 return ret; 2714 } 2715 2716 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2717 { 2718 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2719 int ret = 0; 2720 struct fs_path *p; 2721 2722 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu", 2723 ino, uid, gid); 2724 2725 p = get_path_for_command(sctx, ino, gen); 2726 if (IS_ERR(p)) 2727 return PTR_ERR(p); 2728 2729 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2730 if (ret < 0) 2731 goto out; 2732 2733 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2734 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2735 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2736 2737 ret = send_cmd(sctx); 2738 2739 tlv_put_failure: 2740 out: 2741 free_path_for_command(sctx, p); 2742 return ret; 2743 } 2744 2745 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2746 { 2747 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2748 int ret = 0; 2749 struct fs_path *p = NULL; 2750 struct btrfs_inode_item *ii; 2751 struct btrfs_path *path = NULL; 2752 struct extent_buffer *eb; 2753 struct btrfs_key key; 2754 int slot; 2755 2756 btrfs_debug(fs_info, "send_utimes %llu", ino); 2757 2758 p = get_path_for_command(sctx, ino, gen); 2759 if (IS_ERR(p)) 2760 return PTR_ERR(p); 2761 2762 path = alloc_path_for_send(); 2763 if (!path) { 2764 ret = -ENOMEM; 2765 goto out; 2766 } 2767 2768 key.objectid = ino; 2769 key.type = BTRFS_INODE_ITEM_KEY; 2770 key.offset = 0; 2771 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2772 if (ret > 0) 2773 ret = -ENOENT; 2774 if (ret < 0) 2775 goto out; 2776 2777 eb = path->nodes[0]; 2778 slot = path->slots[0]; 2779 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2780 2781 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2782 if (ret < 0) 2783 goto out; 2784 2785 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2786 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2787 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2788 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2789 if (sctx->proto >= 2) 2790 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2791 2792 ret = send_cmd(sctx); 2793 2794 tlv_put_failure: 2795 out: 2796 free_path_for_command(sctx, p); 2797 btrfs_free_path(path); 2798 return ret; 2799 } 2800 2801 /* 2802 * If the cache is full, we can't remove entries from it and do a call to 2803 * send_utimes() for each respective inode, because we might be finishing 2804 * processing an inode that is a directory and it just got renamed, and existing 2805 * entries in the cache may refer to inodes that have the directory in their 2806 * full path - in which case we would generate outdated paths (pre-rename) 2807 * for the inodes that the cache entries point to. Instead of prunning the 2808 * cache when inserting, do it after we finish processing each inode at 2809 * finish_inode_if_needed(). 2810 */ 2811 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2812 { 2813 struct btrfs_lru_cache_entry *entry; 2814 int ret; 2815 2816 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2817 if (entry != NULL) 2818 return 0; 2819 2820 /* Caching is optional, don't fail if we can't allocate memory. */ 2821 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2822 if (!entry) 2823 return send_utimes(sctx, dir, gen); 2824 2825 entry->key = dir; 2826 entry->gen = gen; 2827 2828 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2829 ASSERT(ret != -EEXIST); 2830 if (ret) { 2831 kfree(entry); 2832 return send_utimes(sctx, dir, gen); 2833 } 2834 2835 return 0; 2836 } 2837 2838 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2839 { 2840 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2841 struct btrfs_lru_cache_entry *lru; 2842 int ret; 2843 2844 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2845 ASSERT(lru != NULL); 2846 2847 ret = send_utimes(sctx, lru->key, lru->gen); 2848 if (ret) 2849 return ret; 2850 2851 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2852 } 2853 2854 return 0; 2855 } 2856 2857 /* 2858 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2859 * a valid path yet because we did not process the refs yet. So, the inode 2860 * is created as orphan. 2861 */ 2862 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2863 { 2864 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 2865 int ret = 0; 2866 struct fs_path *p; 2867 int cmd; 2868 struct btrfs_inode_info info; 2869 u64 gen; 2870 u64 mode; 2871 u64 rdev; 2872 2873 btrfs_debug(fs_info, "send_create_inode %llu", ino); 2874 2875 p = fs_path_alloc(); 2876 if (!p) 2877 return -ENOMEM; 2878 2879 if (ino != sctx->cur_ino) { 2880 ret = get_inode_info(sctx->send_root, ino, &info); 2881 if (ret < 0) 2882 goto out; 2883 gen = info.gen; 2884 mode = info.mode; 2885 rdev = info.rdev; 2886 } else { 2887 gen = sctx->cur_inode_gen; 2888 mode = sctx->cur_inode_mode; 2889 rdev = sctx->cur_inode_rdev; 2890 } 2891 2892 if (S_ISREG(mode)) { 2893 cmd = BTRFS_SEND_C_MKFILE; 2894 } else if (S_ISDIR(mode)) { 2895 cmd = BTRFS_SEND_C_MKDIR; 2896 } else if (S_ISLNK(mode)) { 2897 cmd = BTRFS_SEND_C_SYMLINK; 2898 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2899 cmd = BTRFS_SEND_C_MKNOD; 2900 } else if (S_ISFIFO(mode)) { 2901 cmd = BTRFS_SEND_C_MKFIFO; 2902 } else if (S_ISSOCK(mode)) { 2903 cmd = BTRFS_SEND_C_MKSOCK; 2904 } else { 2905 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2906 (int)(mode & S_IFMT)); 2907 ret = -EOPNOTSUPP; 2908 goto out; 2909 } 2910 2911 ret = begin_cmd(sctx, cmd); 2912 if (ret < 0) 2913 goto out; 2914 2915 ret = gen_unique_name(sctx, ino, gen, p); 2916 if (ret < 0) 2917 goto out; 2918 2919 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2920 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2921 2922 if (S_ISLNK(mode)) { 2923 fs_path_reset(p); 2924 ret = read_symlink(sctx->send_root, ino, p); 2925 if (ret < 0) 2926 goto out; 2927 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2928 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2929 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2930 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2931 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2932 } 2933 2934 ret = send_cmd(sctx); 2935 if (ret < 0) 2936 goto out; 2937 2938 2939 tlv_put_failure: 2940 out: 2941 fs_path_free(p); 2942 return ret; 2943 } 2944 2945 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2946 { 2947 struct btrfs_lru_cache_entry *entry; 2948 int ret; 2949 2950 /* Caching is optional, ignore any failures. */ 2951 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2952 if (!entry) 2953 return; 2954 2955 entry->key = dir; 2956 entry->gen = 0; 2957 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2958 if (ret < 0) 2959 kfree(entry); 2960 } 2961 2962 /* 2963 * We need some special handling for inodes that get processed before the parent 2964 * directory got created. See process_recorded_refs for details. 2965 * This function does the check if we already created the dir out of order. 2966 */ 2967 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2968 { 2969 int ret = 0; 2970 int iter_ret = 0; 2971 struct btrfs_path *path = NULL; 2972 struct btrfs_key key; 2973 struct btrfs_key found_key; 2974 struct btrfs_key di_key; 2975 struct btrfs_dir_item *di; 2976 2977 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2978 return 1; 2979 2980 path = alloc_path_for_send(); 2981 if (!path) 2982 return -ENOMEM; 2983 2984 key.objectid = dir; 2985 key.type = BTRFS_DIR_INDEX_KEY; 2986 key.offset = 0; 2987 2988 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2989 struct extent_buffer *eb = path->nodes[0]; 2990 2991 if (found_key.objectid != key.objectid || 2992 found_key.type != key.type) { 2993 ret = 0; 2994 break; 2995 } 2996 2997 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2998 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2999 3000 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 3001 di_key.objectid < sctx->send_progress) { 3002 ret = 1; 3003 cache_dir_created(sctx, dir); 3004 break; 3005 } 3006 } 3007 /* Catch error found during iteration */ 3008 if (iter_ret < 0) 3009 ret = iter_ret; 3010 3011 btrfs_free_path(path); 3012 return ret; 3013 } 3014 3015 /* 3016 * Only creates the inode if it is: 3017 * 1. Not a directory 3018 * 2. Or a directory which was not created already due to out of order 3019 * directories. See did_create_dir and process_recorded_refs for details. 3020 */ 3021 static int send_create_inode_if_needed(struct send_ctx *sctx) 3022 { 3023 int ret; 3024 3025 if (S_ISDIR(sctx->cur_inode_mode)) { 3026 ret = did_create_dir(sctx, sctx->cur_ino); 3027 if (ret < 0) 3028 return ret; 3029 else if (ret > 0) 3030 return 0; 3031 } 3032 3033 ret = send_create_inode(sctx, sctx->cur_ino); 3034 3035 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 3036 cache_dir_created(sctx, sctx->cur_ino); 3037 3038 return ret; 3039 } 3040 3041 struct recorded_ref { 3042 struct list_head list; 3043 char *name; 3044 struct fs_path *full_path; 3045 u64 dir; 3046 u64 dir_gen; 3047 int name_len; 3048 struct rb_node node; 3049 struct rb_root *root; 3050 }; 3051 3052 static struct recorded_ref *recorded_ref_alloc(void) 3053 { 3054 struct recorded_ref *ref; 3055 3056 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 3057 if (!ref) 3058 return NULL; 3059 RB_CLEAR_NODE(&ref->node); 3060 INIT_LIST_HEAD(&ref->list); 3061 return ref; 3062 } 3063 3064 static void recorded_ref_free(struct recorded_ref *ref) 3065 { 3066 if (!ref) 3067 return; 3068 if (!RB_EMPTY_NODE(&ref->node)) 3069 rb_erase(&ref->node, ref->root); 3070 list_del(&ref->list); 3071 fs_path_free(ref->full_path); 3072 kfree(ref); 3073 } 3074 3075 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3076 { 3077 ref->full_path = path; 3078 ref->name = (char *)kbasename(ref->full_path->start); 3079 ref->name_len = ref->full_path->end - ref->name; 3080 } 3081 3082 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3083 { 3084 struct recorded_ref *new; 3085 3086 new = recorded_ref_alloc(); 3087 if (!new) 3088 return -ENOMEM; 3089 3090 new->dir = ref->dir; 3091 new->dir_gen = ref->dir_gen; 3092 list_add_tail(&new->list, list); 3093 return 0; 3094 } 3095 3096 static void __free_recorded_refs(struct list_head *head) 3097 { 3098 struct recorded_ref *cur; 3099 3100 while (!list_empty(head)) { 3101 cur = list_entry(head->next, struct recorded_ref, list); 3102 recorded_ref_free(cur); 3103 } 3104 } 3105 3106 static void free_recorded_refs(struct send_ctx *sctx) 3107 { 3108 __free_recorded_refs(&sctx->new_refs); 3109 __free_recorded_refs(&sctx->deleted_refs); 3110 } 3111 3112 /* 3113 * Renames/moves a file/dir to its orphan name. Used when the first 3114 * ref of an unprocessed inode gets overwritten and for all non empty 3115 * directories. 3116 */ 3117 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3118 struct fs_path *path) 3119 { 3120 int ret; 3121 struct fs_path *orphan; 3122 3123 orphan = fs_path_alloc(); 3124 if (!orphan) 3125 return -ENOMEM; 3126 3127 ret = gen_unique_name(sctx, ino, gen, orphan); 3128 if (ret < 0) 3129 goto out; 3130 3131 ret = send_rename(sctx, path, orphan); 3132 if (ret < 0) 3133 goto out; 3134 3135 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 3136 ret = fs_path_copy(&sctx->cur_inode_path, orphan); 3137 3138 out: 3139 fs_path_free(orphan); 3140 return ret; 3141 } 3142 3143 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3144 u64 dir_ino, u64 dir_gen) 3145 { 3146 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3147 struct rb_node *parent = NULL; 3148 struct orphan_dir_info *entry, *odi; 3149 3150 while (*p) { 3151 parent = *p; 3152 entry = rb_entry(parent, struct orphan_dir_info, node); 3153 if (dir_ino < entry->ino) 3154 p = &(*p)->rb_left; 3155 else if (dir_ino > entry->ino) 3156 p = &(*p)->rb_right; 3157 else if (dir_gen < entry->gen) 3158 p = &(*p)->rb_left; 3159 else if (dir_gen > entry->gen) 3160 p = &(*p)->rb_right; 3161 else 3162 return entry; 3163 } 3164 3165 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3166 if (!odi) 3167 return ERR_PTR(-ENOMEM); 3168 odi->ino = dir_ino; 3169 odi->gen = dir_gen; 3170 odi->last_dir_index_offset = 0; 3171 odi->dir_high_seq_ino = 0; 3172 3173 rb_link_node(&odi->node, parent, p); 3174 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3175 return odi; 3176 } 3177 3178 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3179 u64 dir_ino, u64 gen) 3180 { 3181 struct rb_node *n = sctx->orphan_dirs.rb_node; 3182 struct orphan_dir_info *entry; 3183 3184 while (n) { 3185 entry = rb_entry(n, struct orphan_dir_info, node); 3186 if (dir_ino < entry->ino) 3187 n = n->rb_left; 3188 else if (dir_ino > entry->ino) 3189 n = n->rb_right; 3190 else if (gen < entry->gen) 3191 n = n->rb_left; 3192 else if (gen > entry->gen) 3193 n = n->rb_right; 3194 else 3195 return entry; 3196 } 3197 return NULL; 3198 } 3199 3200 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3201 { 3202 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3203 3204 return odi != NULL; 3205 } 3206 3207 static void free_orphan_dir_info(struct send_ctx *sctx, 3208 struct orphan_dir_info *odi) 3209 { 3210 if (!odi) 3211 return; 3212 rb_erase(&odi->node, &sctx->orphan_dirs); 3213 kfree(odi); 3214 } 3215 3216 /* 3217 * Returns 1 if a directory can be removed at this point in time. 3218 * We check this by iterating all dir items and checking if the inode behind 3219 * the dir item was already processed. 3220 */ 3221 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3222 { 3223 int ret = 0; 3224 int iter_ret = 0; 3225 struct btrfs_root *root = sctx->parent_root; 3226 struct btrfs_path *path; 3227 struct btrfs_key key; 3228 struct btrfs_key found_key; 3229 struct btrfs_key loc; 3230 struct btrfs_dir_item *di; 3231 struct orphan_dir_info *odi = NULL; 3232 u64 dir_high_seq_ino = 0; 3233 u64 last_dir_index_offset = 0; 3234 3235 /* 3236 * Don't try to rmdir the top/root subvolume dir. 3237 */ 3238 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3239 return 0; 3240 3241 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3242 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3243 return 0; 3244 3245 path = alloc_path_for_send(); 3246 if (!path) 3247 return -ENOMEM; 3248 3249 if (!odi) { 3250 /* 3251 * Find the inode number associated with the last dir index 3252 * entry. This is very likely the inode with the highest number 3253 * of all inodes that have an entry in the directory. We can 3254 * then use it to avoid future calls to can_rmdir(), when 3255 * processing inodes with a lower number, from having to search 3256 * the parent root b+tree for dir index keys. 3257 */ 3258 key.objectid = dir; 3259 key.type = BTRFS_DIR_INDEX_KEY; 3260 key.offset = (u64)-1; 3261 3262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3263 if (ret < 0) { 3264 goto out; 3265 } else if (ret > 0) { 3266 /* Can't happen, the root is never empty. */ 3267 ASSERT(path->slots[0] > 0); 3268 if (WARN_ON(path->slots[0] == 0)) { 3269 ret = -EUCLEAN; 3270 goto out; 3271 } 3272 path->slots[0]--; 3273 } 3274 3275 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3276 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3277 /* No index keys, dir can be removed. */ 3278 ret = 1; 3279 goto out; 3280 } 3281 3282 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3283 struct btrfs_dir_item); 3284 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3285 dir_high_seq_ino = loc.objectid; 3286 if (sctx->cur_ino < dir_high_seq_ino) { 3287 ret = 0; 3288 goto out; 3289 } 3290 3291 btrfs_release_path(path); 3292 } 3293 3294 key.objectid = dir; 3295 key.type = BTRFS_DIR_INDEX_KEY; 3296 key.offset = (odi ? odi->last_dir_index_offset : 0); 3297 3298 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3299 struct waiting_dir_move *dm; 3300 3301 if (found_key.objectid != key.objectid || 3302 found_key.type != key.type) 3303 break; 3304 3305 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3306 struct btrfs_dir_item); 3307 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3308 3309 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3310 last_dir_index_offset = found_key.offset; 3311 3312 dm = get_waiting_dir_move(sctx, loc.objectid); 3313 if (dm) { 3314 dm->rmdir_ino = dir; 3315 dm->rmdir_gen = dir_gen; 3316 ret = 0; 3317 goto out; 3318 } 3319 3320 if (loc.objectid > sctx->cur_ino) { 3321 ret = 0; 3322 goto out; 3323 } 3324 } 3325 if (iter_ret < 0) { 3326 ret = iter_ret; 3327 goto out; 3328 } 3329 free_orphan_dir_info(sctx, odi); 3330 3331 ret = 1; 3332 3333 out: 3334 btrfs_free_path(path); 3335 3336 if (ret) 3337 return ret; 3338 3339 if (!odi) { 3340 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3341 if (IS_ERR(odi)) 3342 return PTR_ERR(odi); 3343 3344 odi->gen = dir_gen; 3345 } 3346 3347 odi->last_dir_index_offset = last_dir_index_offset; 3348 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3349 3350 return 0; 3351 } 3352 3353 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3354 { 3355 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3356 3357 return entry != NULL; 3358 } 3359 3360 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3361 { 3362 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3363 struct rb_node *parent = NULL; 3364 struct waiting_dir_move *entry, *dm; 3365 3366 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3367 if (!dm) 3368 return -ENOMEM; 3369 dm->ino = ino; 3370 dm->rmdir_ino = 0; 3371 dm->rmdir_gen = 0; 3372 dm->orphanized = orphanized; 3373 3374 while (*p) { 3375 parent = *p; 3376 entry = rb_entry(parent, struct waiting_dir_move, node); 3377 if (ino < entry->ino) { 3378 p = &(*p)->rb_left; 3379 } else if (ino > entry->ino) { 3380 p = &(*p)->rb_right; 3381 } else { 3382 kfree(dm); 3383 return -EEXIST; 3384 } 3385 } 3386 3387 rb_link_node(&dm->node, parent, p); 3388 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3389 return 0; 3390 } 3391 3392 static struct waiting_dir_move * 3393 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3394 { 3395 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3396 struct waiting_dir_move *entry; 3397 3398 while (n) { 3399 entry = rb_entry(n, struct waiting_dir_move, node); 3400 if (ino < entry->ino) 3401 n = n->rb_left; 3402 else if (ino > entry->ino) 3403 n = n->rb_right; 3404 else 3405 return entry; 3406 } 3407 return NULL; 3408 } 3409 3410 static void free_waiting_dir_move(struct send_ctx *sctx, 3411 struct waiting_dir_move *dm) 3412 { 3413 if (!dm) 3414 return; 3415 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3416 kfree(dm); 3417 } 3418 3419 static int add_pending_dir_move(struct send_ctx *sctx, 3420 u64 ino, 3421 u64 ino_gen, 3422 u64 parent_ino, 3423 struct list_head *new_refs, 3424 struct list_head *deleted_refs, 3425 const bool is_orphan) 3426 { 3427 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3428 struct rb_node *parent = NULL; 3429 struct pending_dir_move *entry = NULL, *pm; 3430 struct recorded_ref *cur; 3431 int exists = 0; 3432 int ret; 3433 3434 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3435 if (!pm) 3436 return -ENOMEM; 3437 pm->parent_ino = parent_ino; 3438 pm->ino = ino; 3439 pm->gen = ino_gen; 3440 INIT_LIST_HEAD(&pm->list); 3441 INIT_LIST_HEAD(&pm->update_refs); 3442 RB_CLEAR_NODE(&pm->node); 3443 3444 while (*p) { 3445 parent = *p; 3446 entry = rb_entry(parent, struct pending_dir_move, node); 3447 if (parent_ino < entry->parent_ino) { 3448 p = &(*p)->rb_left; 3449 } else if (parent_ino > entry->parent_ino) { 3450 p = &(*p)->rb_right; 3451 } else { 3452 exists = 1; 3453 break; 3454 } 3455 } 3456 3457 list_for_each_entry(cur, deleted_refs, list) { 3458 ret = dup_ref(cur, &pm->update_refs); 3459 if (ret < 0) 3460 goto out; 3461 } 3462 list_for_each_entry(cur, new_refs, list) { 3463 ret = dup_ref(cur, &pm->update_refs); 3464 if (ret < 0) 3465 goto out; 3466 } 3467 3468 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3469 if (ret) 3470 goto out; 3471 3472 if (exists) { 3473 list_add_tail(&pm->list, &entry->list); 3474 } else { 3475 rb_link_node(&pm->node, parent, p); 3476 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3477 } 3478 ret = 0; 3479 out: 3480 if (ret) { 3481 __free_recorded_refs(&pm->update_refs); 3482 kfree(pm); 3483 } 3484 return ret; 3485 } 3486 3487 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3488 u64 parent_ino) 3489 { 3490 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3491 struct pending_dir_move *entry; 3492 3493 while (n) { 3494 entry = rb_entry(n, struct pending_dir_move, node); 3495 if (parent_ino < entry->parent_ino) 3496 n = n->rb_left; 3497 else if (parent_ino > entry->parent_ino) 3498 n = n->rb_right; 3499 else 3500 return entry; 3501 } 3502 return NULL; 3503 } 3504 3505 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3506 u64 ino, u64 gen, u64 *ancestor_ino) 3507 { 3508 int ret = 0; 3509 u64 parent_inode = 0; 3510 u64 parent_gen = 0; 3511 u64 start_ino = ino; 3512 3513 *ancestor_ino = 0; 3514 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3515 fs_path_reset(name); 3516 3517 if (is_waiting_for_rm(sctx, ino, gen)) 3518 break; 3519 if (is_waiting_for_move(sctx, ino)) { 3520 if (*ancestor_ino == 0) 3521 *ancestor_ino = ino; 3522 ret = get_first_ref(sctx->parent_root, ino, 3523 &parent_inode, &parent_gen, name); 3524 } else { 3525 ret = __get_cur_name_and_parent(sctx, ino, gen, 3526 &parent_inode, 3527 &parent_gen, name); 3528 if (ret > 0) { 3529 ret = 0; 3530 break; 3531 } 3532 } 3533 if (ret < 0) 3534 break; 3535 if (parent_inode == start_ino) { 3536 ret = 1; 3537 if (*ancestor_ino == 0) 3538 *ancestor_ino = ino; 3539 break; 3540 } 3541 ino = parent_inode; 3542 gen = parent_gen; 3543 } 3544 return ret; 3545 } 3546 3547 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3548 { 3549 struct fs_path *from_path = NULL; 3550 struct fs_path *to_path = NULL; 3551 struct fs_path *name = NULL; 3552 u64 orig_progress = sctx->send_progress; 3553 struct recorded_ref *cur; 3554 u64 parent_ino, parent_gen; 3555 struct waiting_dir_move *dm = NULL; 3556 u64 rmdir_ino = 0; 3557 u64 rmdir_gen; 3558 u64 ancestor; 3559 bool is_orphan; 3560 int ret; 3561 3562 name = fs_path_alloc(); 3563 from_path = fs_path_alloc(); 3564 if (!name || !from_path) { 3565 ret = -ENOMEM; 3566 goto out; 3567 } 3568 3569 dm = get_waiting_dir_move(sctx, pm->ino); 3570 ASSERT(dm); 3571 rmdir_ino = dm->rmdir_ino; 3572 rmdir_gen = dm->rmdir_gen; 3573 is_orphan = dm->orphanized; 3574 free_waiting_dir_move(sctx, dm); 3575 3576 if (is_orphan) { 3577 ret = gen_unique_name(sctx, pm->ino, 3578 pm->gen, from_path); 3579 } else { 3580 ret = get_first_ref(sctx->parent_root, pm->ino, 3581 &parent_ino, &parent_gen, name); 3582 if (ret < 0) 3583 goto out; 3584 ret = get_cur_path(sctx, parent_ino, parent_gen, 3585 from_path); 3586 if (ret < 0) 3587 goto out; 3588 ret = fs_path_add_path(from_path, name); 3589 } 3590 if (ret < 0) 3591 goto out; 3592 3593 sctx->send_progress = sctx->cur_ino + 1; 3594 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3595 if (ret < 0) 3596 goto out; 3597 if (ret) { 3598 LIST_HEAD(deleted_refs); 3599 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3600 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3601 &pm->update_refs, &deleted_refs, 3602 is_orphan); 3603 if (ret < 0) 3604 goto out; 3605 if (rmdir_ino) { 3606 dm = get_waiting_dir_move(sctx, pm->ino); 3607 ASSERT(dm); 3608 dm->rmdir_ino = rmdir_ino; 3609 dm->rmdir_gen = rmdir_gen; 3610 } 3611 goto out; 3612 } 3613 fs_path_reset(name); 3614 to_path = name; 3615 name = NULL; 3616 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3617 if (ret < 0) 3618 goto out; 3619 3620 ret = send_rename(sctx, from_path, to_path); 3621 if (ret < 0) 3622 goto out; 3623 3624 if (rmdir_ino) { 3625 struct orphan_dir_info *odi; 3626 u64 gen; 3627 3628 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3629 if (!odi) { 3630 /* already deleted */ 3631 goto finish; 3632 } 3633 gen = odi->gen; 3634 3635 ret = can_rmdir(sctx, rmdir_ino, gen); 3636 if (ret < 0) 3637 goto out; 3638 if (!ret) 3639 goto finish; 3640 3641 name = fs_path_alloc(); 3642 if (!name) { 3643 ret = -ENOMEM; 3644 goto out; 3645 } 3646 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3647 if (ret < 0) 3648 goto out; 3649 ret = send_rmdir(sctx, name); 3650 if (ret < 0) 3651 goto out; 3652 } 3653 3654 finish: 3655 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3656 if (ret < 0) 3657 goto out; 3658 3659 /* 3660 * After rename/move, need to update the utimes of both new parent(s) 3661 * and old parent(s). 3662 */ 3663 list_for_each_entry(cur, &pm->update_refs, list) { 3664 /* 3665 * The parent inode might have been deleted in the send snapshot 3666 */ 3667 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3668 if (ret == -ENOENT) { 3669 ret = 0; 3670 continue; 3671 } 3672 if (ret < 0) 3673 goto out; 3674 3675 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3676 if (ret < 0) 3677 goto out; 3678 } 3679 3680 out: 3681 fs_path_free(name); 3682 fs_path_free(from_path); 3683 fs_path_free(to_path); 3684 sctx->send_progress = orig_progress; 3685 3686 return ret; 3687 } 3688 3689 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3690 { 3691 if (!list_empty(&m->list)) 3692 list_del(&m->list); 3693 if (!RB_EMPTY_NODE(&m->node)) 3694 rb_erase(&m->node, &sctx->pending_dir_moves); 3695 __free_recorded_refs(&m->update_refs); 3696 kfree(m); 3697 } 3698 3699 static void tail_append_pending_moves(struct send_ctx *sctx, 3700 struct pending_dir_move *moves, 3701 struct list_head *stack) 3702 { 3703 if (list_empty(&moves->list)) { 3704 list_add_tail(&moves->list, stack); 3705 } else { 3706 LIST_HEAD(list); 3707 list_splice_init(&moves->list, &list); 3708 list_add_tail(&moves->list, stack); 3709 list_splice_tail(&list, stack); 3710 } 3711 if (!RB_EMPTY_NODE(&moves->node)) { 3712 rb_erase(&moves->node, &sctx->pending_dir_moves); 3713 RB_CLEAR_NODE(&moves->node); 3714 } 3715 } 3716 3717 static int apply_children_dir_moves(struct send_ctx *sctx) 3718 { 3719 struct pending_dir_move *pm; 3720 LIST_HEAD(stack); 3721 u64 parent_ino = sctx->cur_ino; 3722 int ret = 0; 3723 3724 pm = get_pending_dir_moves(sctx, parent_ino); 3725 if (!pm) 3726 return 0; 3727 3728 tail_append_pending_moves(sctx, pm, &stack); 3729 3730 while (!list_empty(&stack)) { 3731 pm = list_first_entry(&stack, struct pending_dir_move, list); 3732 parent_ino = pm->ino; 3733 ret = apply_dir_move(sctx, pm); 3734 free_pending_move(sctx, pm); 3735 if (ret) 3736 goto out; 3737 pm = get_pending_dir_moves(sctx, parent_ino); 3738 if (pm) 3739 tail_append_pending_moves(sctx, pm, &stack); 3740 } 3741 return 0; 3742 3743 out: 3744 while (!list_empty(&stack)) { 3745 pm = list_first_entry(&stack, struct pending_dir_move, list); 3746 free_pending_move(sctx, pm); 3747 } 3748 return ret; 3749 } 3750 3751 /* 3752 * We might need to delay a directory rename even when no ancestor directory 3753 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3754 * renamed. This happens when we rename a directory to the old name (the name 3755 * in the parent root) of some other unrelated directory that got its rename 3756 * delayed due to some ancestor with higher number that got renamed. 3757 * 3758 * Example: 3759 * 3760 * Parent snapshot: 3761 * . (ino 256) 3762 * |---- a/ (ino 257) 3763 * | |---- file (ino 260) 3764 * | 3765 * |---- b/ (ino 258) 3766 * |---- c/ (ino 259) 3767 * 3768 * Send snapshot: 3769 * . (ino 256) 3770 * |---- a/ (ino 258) 3771 * |---- x/ (ino 259) 3772 * |---- y/ (ino 257) 3773 * |----- file (ino 260) 3774 * 3775 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3776 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3777 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3778 * must issue is: 3779 * 3780 * 1 - rename 259 from 'c' to 'x' 3781 * 2 - rename 257 from 'a' to 'x/y' 3782 * 3 - rename 258 from 'b' to 'a' 3783 * 3784 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3785 * be done right away and < 0 on error. 3786 */ 3787 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3788 struct recorded_ref *parent_ref, 3789 const bool is_orphan) 3790 { 3791 struct btrfs_path *path; 3792 struct btrfs_key key; 3793 struct btrfs_key di_key; 3794 struct btrfs_dir_item *di; 3795 u64 left_gen; 3796 u64 right_gen; 3797 int ret = 0; 3798 struct waiting_dir_move *wdm; 3799 3800 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3801 return 0; 3802 3803 path = alloc_path_for_send(); 3804 if (!path) 3805 return -ENOMEM; 3806 3807 key.objectid = parent_ref->dir; 3808 key.type = BTRFS_DIR_ITEM_KEY; 3809 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3810 3811 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3812 if (ret < 0) { 3813 goto out; 3814 } else if (ret > 0) { 3815 ret = 0; 3816 goto out; 3817 } 3818 3819 di = btrfs_match_dir_item_name(path, parent_ref->name, 3820 parent_ref->name_len); 3821 if (!di) { 3822 ret = 0; 3823 goto out; 3824 } 3825 /* 3826 * di_key.objectid has the number of the inode that has a dentry in the 3827 * parent directory with the same name that sctx->cur_ino is being 3828 * renamed to. We need to check if that inode is in the send root as 3829 * well and if it is currently marked as an inode with a pending rename, 3830 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3831 * that it happens after that other inode is renamed. 3832 */ 3833 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3834 if (di_key.type != BTRFS_INODE_ITEM_KEY) { 3835 ret = 0; 3836 goto out; 3837 } 3838 3839 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3840 if (ret < 0) 3841 goto out; 3842 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3843 if (ret < 0) { 3844 if (ret == -ENOENT) 3845 ret = 0; 3846 goto out; 3847 } 3848 3849 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3850 if (right_gen != left_gen) { 3851 ret = 0; 3852 goto out; 3853 } 3854 3855 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3856 if (wdm && !wdm->orphanized) { 3857 ret = add_pending_dir_move(sctx, 3858 sctx->cur_ino, 3859 sctx->cur_inode_gen, 3860 di_key.objectid, 3861 &sctx->new_refs, 3862 &sctx->deleted_refs, 3863 is_orphan); 3864 if (!ret) 3865 ret = 1; 3866 } 3867 out: 3868 btrfs_free_path(path); 3869 return ret; 3870 } 3871 3872 /* 3873 * Check if inode ino2, or any of its ancestors, is inode ino1. 3874 * Return 1 if true, 0 if false and < 0 on error. 3875 */ 3876 static int check_ino_in_path(struct btrfs_root *root, 3877 const u64 ino1, 3878 const u64 ino1_gen, 3879 const u64 ino2, 3880 const u64 ino2_gen, 3881 struct fs_path *fs_path) 3882 { 3883 u64 ino = ino2; 3884 3885 if (ino1 == ino2) 3886 return ino1_gen == ino2_gen; 3887 3888 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3889 u64 parent; 3890 u64 parent_gen; 3891 int ret; 3892 3893 fs_path_reset(fs_path); 3894 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3895 if (ret < 0) 3896 return ret; 3897 if (parent == ino1) 3898 return parent_gen == ino1_gen; 3899 ino = parent; 3900 } 3901 return 0; 3902 } 3903 3904 /* 3905 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3906 * possible path (in case ino2 is not a directory and has multiple hard links). 3907 * Return 1 if true, 0 if false and < 0 on error. 3908 */ 3909 static int is_ancestor(struct btrfs_root *root, 3910 const u64 ino1, 3911 const u64 ino1_gen, 3912 const u64 ino2, 3913 struct fs_path *fs_path) 3914 { 3915 bool free_fs_path = false; 3916 int ret = 0; 3917 int iter_ret = 0; 3918 struct btrfs_path *path = NULL; 3919 struct btrfs_key key; 3920 3921 if (!fs_path) { 3922 fs_path = fs_path_alloc(); 3923 if (!fs_path) 3924 return -ENOMEM; 3925 free_fs_path = true; 3926 } 3927 3928 path = alloc_path_for_send(); 3929 if (!path) { 3930 ret = -ENOMEM; 3931 goto out; 3932 } 3933 3934 key.objectid = ino2; 3935 key.type = BTRFS_INODE_REF_KEY; 3936 key.offset = 0; 3937 3938 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3939 struct extent_buffer *leaf = path->nodes[0]; 3940 int slot = path->slots[0]; 3941 u32 cur_offset = 0; 3942 u32 item_size; 3943 3944 if (key.objectid != ino2) 3945 break; 3946 if (key.type != BTRFS_INODE_REF_KEY && 3947 key.type != BTRFS_INODE_EXTREF_KEY) 3948 break; 3949 3950 item_size = btrfs_item_size(leaf, slot); 3951 while (cur_offset < item_size) { 3952 u64 parent; 3953 u64 parent_gen; 3954 3955 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3956 unsigned long ptr; 3957 struct btrfs_inode_extref *extref; 3958 3959 ptr = btrfs_item_ptr_offset(leaf, slot); 3960 extref = (struct btrfs_inode_extref *) 3961 (ptr + cur_offset); 3962 parent = btrfs_inode_extref_parent(leaf, 3963 extref); 3964 cur_offset += sizeof(*extref); 3965 cur_offset += btrfs_inode_extref_name_len(leaf, 3966 extref); 3967 } else { 3968 parent = key.offset; 3969 cur_offset = item_size; 3970 } 3971 3972 ret = get_inode_gen(root, parent, &parent_gen); 3973 if (ret < 0) 3974 goto out; 3975 ret = check_ino_in_path(root, ino1, ino1_gen, 3976 parent, parent_gen, fs_path); 3977 if (ret) 3978 goto out; 3979 } 3980 } 3981 ret = 0; 3982 if (iter_ret < 0) 3983 ret = iter_ret; 3984 3985 out: 3986 btrfs_free_path(path); 3987 if (free_fs_path) 3988 fs_path_free(fs_path); 3989 return ret; 3990 } 3991 3992 static int wait_for_parent_move(struct send_ctx *sctx, 3993 struct recorded_ref *parent_ref, 3994 const bool is_orphan) 3995 { 3996 int ret = 0; 3997 u64 ino = parent_ref->dir; 3998 u64 ino_gen = parent_ref->dir_gen; 3999 u64 parent_ino_before, parent_ino_after; 4000 struct fs_path *path_before = NULL; 4001 struct fs_path *path_after = NULL; 4002 int len1, len2; 4003 4004 path_after = fs_path_alloc(); 4005 path_before = fs_path_alloc(); 4006 if (!path_after || !path_before) { 4007 ret = -ENOMEM; 4008 goto out; 4009 } 4010 4011 /* 4012 * Our current directory inode may not yet be renamed/moved because some 4013 * ancestor (immediate or not) has to be renamed/moved first. So find if 4014 * such ancestor exists and make sure our own rename/move happens after 4015 * that ancestor is processed to avoid path build infinite loops (done 4016 * at get_cur_path()). 4017 */ 4018 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 4019 u64 parent_ino_after_gen; 4020 4021 if (is_waiting_for_move(sctx, ino)) { 4022 /* 4023 * If the current inode is an ancestor of ino in the 4024 * parent root, we need to delay the rename of the 4025 * current inode, otherwise don't delayed the rename 4026 * because we can end up with a circular dependency 4027 * of renames, resulting in some directories never 4028 * getting the respective rename operations issued in 4029 * the send stream or getting into infinite path build 4030 * loops. 4031 */ 4032 ret = is_ancestor(sctx->parent_root, 4033 sctx->cur_ino, sctx->cur_inode_gen, 4034 ino, path_before); 4035 if (ret) 4036 break; 4037 } 4038 4039 fs_path_reset(path_before); 4040 fs_path_reset(path_after); 4041 4042 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 4043 &parent_ino_after_gen, path_after); 4044 if (ret < 0) 4045 goto out; 4046 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 4047 NULL, path_before); 4048 if (ret < 0 && ret != -ENOENT) { 4049 goto out; 4050 } else if (ret == -ENOENT) { 4051 ret = 0; 4052 break; 4053 } 4054 4055 len1 = fs_path_len(path_before); 4056 len2 = fs_path_len(path_after); 4057 if (ino > sctx->cur_ino && 4058 (parent_ino_before != parent_ino_after || len1 != len2 || 4059 memcmp(path_before->start, path_after->start, len1))) { 4060 u64 parent_ino_gen; 4061 4062 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 4063 if (ret < 0) 4064 goto out; 4065 if (ino_gen == parent_ino_gen) { 4066 ret = 1; 4067 break; 4068 } 4069 } 4070 ino = parent_ino_after; 4071 ino_gen = parent_ino_after_gen; 4072 } 4073 4074 out: 4075 fs_path_free(path_before); 4076 fs_path_free(path_after); 4077 4078 if (ret == 1) { 4079 ret = add_pending_dir_move(sctx, 4080 sctx->cur_ino, 4081 sctx->cur_inode_gen, 4082 ino, 4083 &sctx->new_refs, 4084 &sctx->deleted_refs, 4085 is_orphan); 4086 if (!ret) 4087 ret = 1; 4088 } 4089 4090 return ret; 4091 } 4092 4093 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4094 { 4095 int ret; 4096 struct fs_path *new_path; 4097 4098 /* 4099 * Our reference's name member points to its full_path member string, so 4100 * we use here a new path. 4101 */ 4102 new_path = fs_path_alloc(); 4103 if (!new_path) 4104 return -ENOMEM; 4105 4106 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4107 if (ret < 0) { 4108 fs_path_free(new_path); 4109 return ret; 4110 } 4111 ret = fs_path_add(new_path, ref->name, ref->name_len); 4112 if (ret < 0) { 4113 fs_path_free(new_path); 4114 return ret; 4115 } 4116 4117 fs_path_free(ref->full_path); 4118 set_ref_path(ref, new_path); 4119 4120 return 0; 4121 } 4122 4123 /* 4124 * When processing the new references for an inode we may orphanize an existing 4125 * directory inode because its old name conflicts with one of the new references 4126 * of the current inode. Later, when processing another new reference of our 4127 * inode, we might need to orphanize another inode, but the path we have in the 4128 * reference reflects the pre-orphanization name of the directory we previously 4129 * orphanized. For example: 4130 * 4131 * parent snapshot looks like: 4132 * 4133 * . (ino 256) 4134 * |----- f1 (ino 257) 4135 * |----- f2 (ino 258) 4136 * |----- d1/ (ino 259) 4137 * |----- d2/ (ino 260) 4138 * 4139 * send snapshot looks like: 4140 * 4141 * . (ino 256) 4142 * |----- d1 (ino 258) 4143 * |----- f2/ (ino 259) 4144 * |----- f2_link/ (ino 260) 4145 * | |----- f1 (ino 257) 4146 * | 4147 * |----- d2 (ino 258) 4148 * 4149 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4150 * cache it in the name cache. Later when we start processing inode 258, when 4151 * collecting all its new references we set a full path of "d1/d2" for its new 4152 * reference with name "d2". When we start processing the new references we 4153 * start by processing the new reference with name "d1", and this results in 4154 * orphanizing inode 259, since its old reference causes a conflict. Then we 4155 * move on the next new reference, with name "d2", and we find out we must 4156 * orphanize inode 260, as its old reference conflicts with ours - but for the 4157 * orphanization we use a source path corresponding to the path we stored in the 4158 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4159 * receiver fail since the path component "d1/" no longer exists, it was renamed 4160 * to "o259-6-0/" when processing the previous new reference. So in this case we 4161 * must recompute the path in the new reference and use it for the new 4162 * orphanization operation. 4163 */ 4164 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4165 { 4166 char *name; 4167 int ret; 4168 4169 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4170 if (!name) 4171 return -ENOMEM; 4172 4173 fs_path_reset(ref->full_path); 4174 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4175 if (ret < 0) 4176 goto out; 4177 4178 ret = fs_path_add(ref->full_path, name, ref->name_len); 4179 if (ret < 0) 4180 goto out; 4181 4182 /* Update the reference's base name pointer. */ 4183 set_ref_path(ref, ref->full_path); 4184 out: 4185 kfree(name); 4186 return ret; 4187 } 4188 4189 static int rename_current_inode(struct send_ctx *sctx, 4190 struct fs_path *current_path, 4191 struct fs_path *new_path) 4192 { 4193 int ret; 4194 4195 ret = send_rename(sctx, current_path, new_path); 4196 if (ret < 0) 4197 return ret; 4198 4199 ret = fs_path_copy(&sctx->cur_inode_path, new_path); 4200 if (ret < 0) 4201 return ret; 4202 4203 return fs_path_copy(current_path, new_path); 4204 } 4205 4206 /* 4207 * This does all the move/link/unlink/rmdir magic. 4208 */ 4209 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4210 { 4211 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4212 int ret = 0; 4213 struct recorded_ref *cur; 4214 struct recorded_ref *cur2; 4215 LIST_HEAD(check_dirs); 4216 struct fs_path *valid_path = NULL; 4217 u64 ow_inode = 0; 4218 u64 ow_gen; 4219 u64 ow_mode; 4220 u64 last_dir_ino_rm = 0; 4221 bool did_overwrite = false; 4222 bool is_orphan = false; 4223 bool can_rename = true; 4224 bool orphanized_dir = false; 4225 bool orphanized_ancestor = false; 4226 4227 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino); 4228 4229 /* 4230 * This should never happen as the root dir always has the same ref 4231 * which is always '..' 4232 */ 4233 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4234 btrfs_err(fs_info, 4235 "send: unexpected inode %llu in process_recorded_refs()", 4236 sctx->cur_ino); 4237 ret = -EINVAL; 4238 goto out; 4239 } 4240 4241 valid_path = fs_path_alloc(); 4242 if (!valid_path) { 4243 ret = -ENOMEM; 4244 goto out; 4245 } 4246 4247 /* 4248 * First, check if the first ref of the current inode was overwritten 4249 * before. If yes, we know that the current inode was already orphanized 4250 * and thus use the orphan name. If not, we can use get_cur_path to 4251 * get the path of the first ref as it would like while receiving at 4252 * this point in time. 4253 * New inodes are always orphan at the beginning, so force to use the 4254 * orphan name in this case. 4255 * The first ref is stored in valid_path and will be updated if it 4256 * gets moved around. 4257 */ 4258 if (!sctx->cur_inode_new) { 4259 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4260 sctx->cur_inode_gen); 4261 if (ret < 0) 4262 goto out; 4263 if (ret) 4264 did_overwrite = true; 4265 } 4266 if (sctx->cur_inode_new || did_overwrite) { 4267 ret = gen_unique_name(sctx, sctx->cur_ino, 4268 sctx->cur_inode_gen, valid_path); 4269 if (ret < 0) 4270 goto out; 4271 is_orphan = true; 4272 } else { 4273 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4274 valid_path); 4275 if (ret < 0) 4276 goto out; 4277 } 4278 4279 /* 4280 * Before doing any rename and link operations, do a first pass on the 4281 * new references to orphanize any unprocessed inodes that may have a 4282 * reference that conflicts with one of the new references of the current 4283 * inode. This needs to happen first because a new reference may conflict 4284 * with the old reference of a parent directory, so we must make sure 4285 * that the path used for link and rename commands don't use an 4286 * orphanized name when an ancestor was not yet orphanized. 4287 * 4288 * Example: 4289 * 4290 * Parent snapshot: 4291 * 4292 * . (ino 256) 4293 * |----- testdir/ (ino 259) 4294 * | |----- a (ino 257) 4295 * | 4296 * |----- b (ino 258) 4297 * 4298 * Send snapshot: 4299 * 4300 * . (ino 256) 4301 * |----- testdir_2/ (ino 259) 4302 * | |----- a (ino 260) 4303 * | 4304 * |----- testdir (ino 257) 4305 * |----- b (ino 257) 4306 * |----- b2 (ino 258) 4307 * 4308 * Processing the new reference for inode 257 with name "b" may happen 4309 * before processing the new reference with name "testdir". If so, we 4310 * must make sure that by the time we send a link command to create the 4311 * hard link "b", inode 259 was already orphanized, since the generated 4312 * path in "valid_path" already contains the orphanized name for 259. 4313 * We are processing inode 257, so only later when processing 259 we do 4314 * the rename operation to change its temporary (orphanized) name to 4315 * "testdir_2". 4316 */ 4317 list_for_each_entry(cur, &sctx->new_refs, list) { 4318 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4319 if (ret < 0) 4320 goto out; 4321 if (ret == inode_state_will_create) 4322 continue; 4323 4324 /* 4325 * Check if this new ref would overwrite the first ref of another 4326 * unprocessed inode. If yes, orphanize the overwritten inode. 4327 * If we find an overwritten ref that is not the first ref, 4328 * simply unlink it. 4329 */ 4330 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4331 cur->name, cur->name_len, 4332 &ow_inode, &ow_gen, &ow_mode); 4333 if (ret < 0) 4334 goto out; 4335 if (ret) { 4336 ret = is_first_ref(sctx->parent_root, 4337 ow_inode, cur->dir, cur->name, 4338 cur->name_len); 4339 if (ret < 0) 4340 goto out; 4341 if (ret) { 4342 struct name_cache_entry *nce; 4343 struct waiting_dir_move *wdm; 4344 4345 if (orphanized_dir) { 4346 ret = refresh_ref_path(sctx, cur); 4347 if (ret < 0) 4348 goto out; 4349 } 4350 4351 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4352 cur->full_path); 4353 if (ret < 0) 4354 goto out; 4355 if (S_ISDIR(ow_mode)) 4356 orphanized_dir = true; 4357 4358 /* 4359 * If ow_inode has its rename operation delayed 4360 * make sure that its orphanized name is used in 4361 * the source path when performing its rename 4362 * operation. 4363 */ 4364 wdm = get_waiting_dir_move(sctx, ow_inode); 4365 if (wdm) 4366 wdm->orphanized = true; 4367 4368 /* 4369 * Make sure we clear our orphanized inode's 4370 * name from the name cache. This is because the 4371 * inode ow_inode might be an ancestor of some 4372 * other inode that will be orphanized as well 4373 * later and has an inode number greater than 4374 * sctx->send_progress. We need to prevent 4375 * future name lookups from using the old name 4376 * and get instead the orphan name. 4377 */ 4378 nce = name_cache_search(sctx, ow_inode, ow_gen); 4379 if (nce) 4380 btrfs_lru_cache_remove(&sctx->name_cache, 4381 &nce->entry); 4382 4383 /* 4384 * ow_inode might currently be an ancestor of 4385 * cur_ino, therefore compute valid_path (the 4386 * current path of cur_ino) again because it 4387 * might contain the pre-orphanization name of 4388 * ow_inode, which is no longer valid. 4389 */ 4390 ret = is_ancestor(sctx->parent_root, 4391 ow_inode, ow_gen, 4392 sctx->cur_ino, NULL); 4393 if (ret > 0) { 4394 orphanized_ancestor = true; 4395 fs_path_reset(valid_path); 4396 fs_path_reset(&sctx->cur_inode_path); 4397 ret = get_cur_path(sctx, sctx->cur_ino, 4398 sctx->cur_inode_gen, 4399 valid_path); 4400 } 4401 if (ret < 0) 4402 goto out; 4403 } else { 4404 /* 4405 * If we previously orphanized a directory that 4406 * collided with a new reference that we already 4407 * processed, recompute the current path because 4408 * that directory may be part of the path. 4409 */ 4410 if (orphanized_dir) { 4411 ret = refresh_ref_path(sctx, cur); 4412 if (ret < 0) 4413 goto out; 4414 } 4415 ret = send_unlink(sctx, cur->full_path); 4416 if (ret < 0) 4417 goto out; 4418 } 4419 } 4420 4421 } 4422 4423 list_for_each_entry(cur, &sctx->new_refs, list) { 4424 /* 4425 * We may have refs where the parent directory does not exist 4426 * yet. This happens if the parent directories inum is higher 4427 * than the current inum. To handle this case, we create the 4428 * parent directory out of order. But we need to check if this 4429 * did already happen before due to other refs in the same dir. 4430 */ 4431 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4432 if (ret < 0) 4433 goto out; 4434 if (ret == inode_state_will_create) { 4435 ret = 0; 4436 /* 4437 * First check if any of the current inodes refs did 4438 * already create the dir. 4439 */ 4440 list_for_each_entry(cur2, &sctx->new_refs, list) { 4441 if (cur == cur2) 4442 break; 4443 if (cur2->dir == cur->dir) { 4444 ret = 1; 4445 break; 4446 } 4447 } 4448 4449 /* 4450 * If that did not happen, check if a previous inode 4451 * did already create the dir. 4452 */ 4453 if (!ret) 4454 ret = did_create_dir(sctx, cur->dir); 4455 if (ret < 0) 4456 goto out; 4457 if (!ret) { 4458 ret = send_create_inode(sctx, cur->dir); 4459 if (ret < 0) 4460 goto out; 4461 cache_dir_created(sctx, cur->dir); 4462 } 4463 } 4464 4465 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4466 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4467 if (ret < 0) 4468 goto out; 4469 if (ret == 1) { 4470 can_rename = false; 4471 *pending_move = 1; 4472 } 4473 } 4474 4475 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4476 can_rename) { 4477 ret = wait_for_parent_move(sctx, cur, is_orphan); 4478 if (ret < 0) 4479 goto out; 4480 if (ret == 1) { 4481 can_rename = false; 4482 *pending_move = 1; 4483 } 4484 } 4485 4486 /* 4487 * link/move the ref to the new place. If we have an orphan 4488 * inode, move it and update valid_path. If not, link or move 4489 * it depending on the inode mode. 4490 */ 4491 if (is_orphan && can_rename) { 4492 ret = rename_current_inode(sctx, valid_path, cur->full_path); 4493 if (ret < 0) 4494 goto out; 4495 is_orphan = false; 4496 } else if (can_rename) { 4497 if (S_ISDIR(sctx->cur_inode_mode)) { 4498 /* 4499 * Dirs can't be linked, so move it. For moved 4500 * dirs, we always have one new and one deleted 4501 * ref. The deleted ref is ignored later. 4502 */ 4503 ret = rename_current_inode(sctx, valid_path, 4504 cur->full_path); 4505 if (ret < 0) 4506 goto out; 4507 } else { 4508 /* 4509 * We might have previously orphanized an inode 4510 * which is an ancestor of our current inode, 4511 * so our reference's full path, which was 4512 * computed before any such orphanizations, must 4513 * be updated. 4514 */ 4515 if (orphanized_dir) { 4516 ret = update_ref_path(sctx, cur); 4517 if (ret < 0) 4518 goto out; 4519 } 4520 ret = send_link(sctx, cur->full_path, 4521 valid_path); 4522 if (ret < 0) 4523 goto out; 4524 } 4525 } 4526 ret = dup_ref(cur, &check_dirs); 4527 if (ret < 0) 4528 goto out; 4529 } 4530 4531 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4532 /* 4533 * Check if we can already rmdir the directory. If not, 4534 * orphanize it. For every dir item inside that gets deleted 4535 * later, we do this check again and rmdir it then if possible. 4536 * See the use of check_dirs for more details. 4537 */ 4538 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4539 if (ret < 0) 4540 goto out; 4541 if (ret) { 4542 ret = send_rmdir(sctx, valid_path); 4543 if (ret < 0) 4544 goto out; 4545 } else if (!is_orphan) { 4546 ret = orphanize_inode(sctx, sctx->cur_ino, 4547 sctx->cur_inode_gen, valid_path); 4548 if (ret < 0) 4549 goto out; 4550 is_orphan = true; 4551 } 4552 4553 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4554 ret = dup_ref(cur, &check_dirs); 4555 if (ret < 0) 4556 goto out; 4557 } 4558 } else if (S_ISDIR(sctx->cur_inode_mode) && 4559 !list_empty(&sctx->deleted_refs)) { 4560 /* 4561 * We have a moved dir. Add the old parent to check_dirs 4562 */ 4563 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref, 4564 list); 4565 ret = dup_ref(cur, &check_dirs); 4566 if (ret < 0) 4567 goto out; 4568 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4569 /* 4570 * We have a non dir inode. Go through all deleted refs and 4571 * unlink them if they were not already overwritten by other 4572 * inodes. 4573 */ 4574 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4575 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4576 sctx->cur_ino, sctx->cur_inode_gen, 4577 cur->name, cur->name_len); 4578 if (ret < 0) 4579 goto out; 4580 if (!ret) { 4581 /* 4582 * If we orphanized any ancestor before, we need 4583 * to recompute the full path for deleted names, 4584 * since any such path was computed before we 4585 * processed any references and orphanized any 4586 * ancestor inode. 4587 */ 4588 if (orphanized_ancestor) { 4589 ret = update_ref_path(sctx, cur); 4590 if (ret < 0) 4591 goto out; 4592 } 4593 ret = send_unlink(sctx, cur->full_path); 4594 if (ret < 0) 4595 goto out; 4596 if (is_current_inode_path(sctx, cur->full_path)) 4597 fs_path_reset(&sctx->cur_inode_path); 4598 } 4599 ret = dup_ref(cur, &check_dirs); 4600 if (ret < 0) 4601 goto out; 4602 } 4603 /* 4604 * If the inode is still orphan, unlink the orphan. This may 4605 * happen when a previous inode did overwrite the first ref 4606 * of this inode and no new refs were added for the current 4607 * inode. Unlinking does not mean that the inode is deleted in 4608 * all cases. There may still be links to this inode in other 4609 * places. 4610 */ 4611 if (is_orphan) { 4612 ret = send_unlink(sctx, valid_path); 4613 if (ret < 0) 4614 goto out; 4615 } 4616 } 4617 4618 /* 4619 * We did collect all parent dirs where cur_inode was once located. We 4620 * now go through all these dirs and check if they are pending for 4621 * deletion and if it's finally possible to perform the rmdir now. 4622 * We also update the inode stats of the parent dirs here. 4623 */ 4624 list_for_each_entry(cur, &check_dirs, list) { 4625 /* 4626 * In case we had refs into dirs that were not processed yet, 4627 * we don't need to do the utime and rmdir logic for these dirs. 4628 * The dir will be processed later. 4629 */ 4630 if (cur->dir > sctx->cur_ino) 4631 continue; 4632 4633 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4634 if (ret < 0) 4635 goto out; 4636 4637 if (ret == inode_state_did_create || 4638 ret == inode_state_no_change) { 4639 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4640 if (ret < 0) 4641 goto out; 4642 } else if (ret == inode_state_did_delete && 4643 cur->dir != last_dir_ino_rm) { 4644 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4645 if (ret < 0) 4646 goto out; 4647 if (ret) { 4648 ret = get_cur_path(sctx, cur->dir, 4649 cur->dir_gen, valid_path); 4650 if (ret < 0) 4651 goto out; 4652 ret = send_rmdir(sctx, valid_path); 4653 if (ret < 0) 4654 goto out; 4655 last_dir_ino_rm = cur->dir; 4656 } 4657 } 4658 } 4659 4660 ret = 0; 4661 4662 out: 4663 __free_recorded_refs(&check_dirs); 4664 free_recorded_refs(sctx); 4665 fs_path_free(valid_path); 4666 return ret; 4667 } 4668 4669 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4670 { 4671 const struct recorded_ref *data = k; 4672 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4673 int result; 4674 4675 if (data->dir > ref->dir) 4676 return 1; 4677 if (data->dir < ref->dir) 4678 return -1; 4679 if (data->dir_gen > ref->dir_gen) 4680 return 1; 4681 if (data->dir_gen < ref->dir_gen) 4682 return -1; 4683 if (data->name_len > ref->name_len) 4684 return 1; 4685 if (data->name_len < ref->name_len) 4686 return -1; 4687 result = strcmp(data->name, ref->name); 4688 if (result > 0) 4689 return 1; 4690 if (result < 0) 4691 return -1; 4692 return 0; 4693 } 4694 4695 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4696 { 4697 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4698 4699 return rbtree_ref_comp(entry, parent) < 0; 4700 } 4701 4702 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4703 struct fs_path *name, u64 dir, u64 dir_gen, 4704 struct send_ctx *sctx) 4705 { 4706 int ret = 0; 4707 struct fs_path *path = NULL; 4708 struct recorded_ref *ref = NULL; 4709 4710 path = fs_path_alloc(); 4711 if (!path) { 4712 ret = -ENOMEM; 4713 goto out; 4714 } 4715 4716 ref = recorded_ref_alloc(); 4717 if (!ref) { 4718 ret = -ENOMEM; 4719 goto out; 4720 } 4721 4722 ret = get_cur_path(sctx, dir, dir_gen, path); 4723 if (ret < 0) 4724 goto out; 4725 ret = fs_path_add_path(path, name); 4726 if (ret < 0) 4727 goto out; 4728 4729 ref->dir = dir; 4730 ref->dir_gen = dir_gen; 4731 set_ref_path(ref, path); 4732 list_add_tail(&ref->list, refs); 4733 rb_add(&ref->node, root, rbtree_ref_less); 4734 ref->root = root; 4735 out: 4736 if (ret) { 4737 if (path && (!ref || !ref->full_path)) 4738 fs_path_free(path); 4739 recorded_ref_free(ref); 4740 } 4741 return ret; 4742 } 4743 4744 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4745 { 4746 int ret; 4747 struct send_ctx *sctx = ctx; 4748 struct rb_node *node = NULL; 4749 struct recorded_ref data; 4750 struct recorded_ref *ref; 4751 u64 dir_gen; 4752 4753 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4754 if (ret < 0) 4755 return ret; 4756 4757 data.dir = dir; 4758 data.dir_gen = dir_gen; 4759 set_ref_path(&data, name); 4760 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4761 if (node) { 4762 ref = rb_entry(node, struct recorded_ref, node); 4763 recorded_ref_free(ref); 4764 } else { 4765 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4766 &sctx->new_refs, name, dir, dir_gen, 4767 sctx); 4768 } 4769 4770 return ret; 4771 } 4772 4773 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4774 { 4775 int ret; 4776 struct send_ctx *sctx = ctx; 4777 struct rb_node *node = NULL; 4778 struct recorded_ref data; 4779 struct recorded_ref *ref; 4780 u64 dir_gen; 4781 4782 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4783 if (ret < 0) 4784 return ret; 4785 4786 data.dir = dir; 4787 data.dir_gen = dir_gen; 4788 set_ref_path(&data, name); 4789 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4790 if (node) { 4791 ref = rb_entry(node, struct recorded_ref, node); 4792 recorded_ref_free(ref); 4793 } else { 4794 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4795 &sctx->deleted_refs, name, dir, 4796 dir_gen, sctx); 4797 } 4798 4799 return ret; 4800 } 4801 4802 static int record_new_ref(struct send_ctx *sctx) 4803 { 4804 int ret; 4805 4806 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4807 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4808 if (ret < 0) 4809 return ret; 4810 4811 return 0; 4812 } 4813 4814 static int record_deleted_ref(struct send_ctx *sctx) 4815 { 4816 int ret; 4817 4818 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4819 sctx->cmp_key, 0, record_deleted_ref_if_needed, 4820 sctx); 4821 if (ret < 0) 4822 return ret; 4823 4824 return 0; 4825 } 4826 4827 static int record_changed_ref(struct send_ctx *sctx) 4828 { 4829 int ret; 4830 4831 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, 4832 sctx->cmp_key, 0, record_new_ref_if_needed, sctx); 4833 if (ret < 0) 4834 return ret; 4835 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, 4836 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx); 4837 if (ret < 0) 4838 return ret; 4839 4840 return 0; 4841 } 4842 4843 /* 4844 * Record and process all refs at once. Needed when an inode changes the 4845 * generation number, which means that it was deleted and recreated. 4846 */ 4847 static int process_all_refs(struct send_ctx *sctx, 4848 enum btrfs_compare_tree_result cmd) 4849 { 4850 int ret = 0; 4851 int iter_ret = 0; 4852 struct btrfs_root *root; 4853 struct btrfs_path *path; 4854 struct btrfs_key key; 4855 struct btrfs_key found_key; 4856 iterate_inode_ref_t cb; 4857 int pending_move = 0; 4858 4859 path = alloc_path_for_send(); 4860 if (!path) 4861 return -ENOMEM; 4862 4863 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4864 root = sctx->send_root; 4865 cb = record_new_ref_if_needed; 4866 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4867 root = sctx->parent_root; 4868 cb = record_deleted_ref_if_needed; 4869 } else { 4870 btrfs_err(sctx->send_root->fs_info, 4871 "Wrong command %d in process_all_refs", cmd); 4872 ret = -EINVAL; 4873 goto out; 4874 } 4875 4876 key.objectid = sctx->cmp_key->objectid; 4877 key.type = BTRFS_INODE_REF_KEY; 4878 key.offset = 0; 4879 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4880 if (found_key.objectid != key.objectid || 4881 (found_key.type != BTRFS_INODE_REF_KEY && 4882 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4883 break; 4884 4885 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx); 4886 if (ret < 0) 4887 goto out; 4888 } 4889 /* Catch error found during iteration */ 4890 if (iter_ret < 0) { 4891 ret = iter_ret; 4892 goto out; 4893 } 4894 btrfs_release_path(path); 4895 4896 /* 4897 * We don't actually care about pending_move as we are simply 4898 * re-creating this inode and will be rename'ing it into place once we 4899 * rename the parent directory. 4900 */ 4901 ret = process_recorded_refs(sctx, &pending_move); 4902 out: 4903 btrfs_free_path(path); 4904 return ret; 4905 } 4906 4907 static int send_set_xattr(struct send_ctx *sctx, 4908 const char *name, int name_len, 4909 const char *data, int data_len) 4910 { 4911 struct fs_path *path; 4912 int ret; 4913 4914 path = get_cur_inode_path(sctx); 4915 if (IS_ERR(path)) 4916 return PTR_ERR(path); 4917 4918 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4919 if (ret < 0) 4920 return ret; 4921 4922 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4923 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4924 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4925 4926 ret = send_cmd(sctx); 4927 4928 tlv_put_failure: 4929 return ret; 4930 } 4931 4932 static int send_remove_xattr(struct send_ctx *sctx, 4933 struct fs_path *path, 4934 const char *name, int name_len) 4935 { 4936 int ret; 4937 4938 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4939 if (ret < 0) 4940 return ret; 4941 4942 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4943 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4944 4945 ret = send_cmd(sctx); 4946 4947 tlv_put_failure: 4948 return ret; 4949 } 4950 4951 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4952 const char *name, int name_len, const char *data, 4953 int data_len, void *ctx) 4954 { 4955 struct send_ctx *sctx = ctx; 4956 struct posix_acl_xattr_header dummy_acl; 4957 4958 /* Capabilities are emitted by finish_inode_if_needed */ 4959 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4960 return 0; 4961 4962 /* 4963 * This hack is needed because empty acls are stored as zero byte 4964 * data in xattrs. Problem with that is, that receiving these zero byte 4965 * acls will fail later. To fix this, we send a dummy acl list that 4966 * only contains the version number and no entries. 4967 */ 4968 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4969 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4970 if (data_len == 0) { 4971 dummy_acl.a_version = 4972 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4973 data = (char *)&dummy_acl; 4974 data_len = sizeof(dummy_acl); 4975 } 4976 } 4977 4978 return send_set_xattr(sctx, name, name_len, data, data_len); 4979 } 4980 4981 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4982 const char *name, int name_len, 4983 const char *data, int data_len, void *ctx) 4984 { 4985 struct send_ctx *sctx = ctx; 4986 struct fs_path *p; 4987 4988 p = get_cur_inode_path(sctx); 4989 if (IS_ERR(p)) 4990 return PTR_ERR(p); 4991 4992 return send_remove_xattr(sctx, p, name, name_len); 4993 } 4994 4995 static int process_new_xattr(struct send_ctx *sctx) 4996 { 4997 return iterate_dir_item(sctx->send_root, sctx->left_path, 4998 __process_new_xattr, sctx); 4999 } 5000 5001 static int process_deleted_xattr(struct send_ctx *sctx) 5002 { 5003 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5004 __process_deleted_xattr, sctx); 5005 } 5006 5007 struct find_xattr_ctx { 5008 const char *name; 5009 int name_len; 5010 int found_idx; 5011 char *found_data; 5012 int found_data_len; 5013 }; 5014 5015 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 5016 int name_len, const char *data, int data_len, void *vctx) 5017 { 5018 struct find_xattr_ctx *ctx = vctx; 5019 5020 if (name_len == ctx->name_len && 5021 strncmp(name, ctx->name, name_len) == 0) { 5022 ctx->found_idx = num; 5023 ctx->found_data_len = data_len; 5024 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 5025 if (!ctx->found_data) 5026 return -ENOMEM; 5027 return 1; 5028 } 5029 return 0; 5030 } 5031 5032 static int find_xattr(struct btrfs_root *root, 5033 struct btrfs_path *path, 5034 struct btrfs_key *key, 5035 const char *name, int name_len, 5036 char **data, int *data_len) 5037 { 5038 int ret; 5039 struct find_xattr_ctx ctx; 5040 5041 ctx.name = name; 5042 ctx.name_len = name_len; 5043 ctx.found_idx = -1; 5044 ctx.found_data = NULL; 5045 ctx.found_data_len = 0; 5046 5047 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 5048 if (ret < 0) 5049 return ret; 5050 5051 if (ctx.found_idx == -1) 5052 return -ENOENT; 5053 if (data) { 5054 *data = ctx.found_data; 5055 *data_len = ctx.found_data_len; 5056 } else { 5057 kfree(ctx.found_data); 5058 } 5059 return ctx.found_idx; 5060 } 5061 5062 5063 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 5064 const char *name, int name_len, 5065 const char *data, int data_len, 5066 void *ctx) 5067 { 5068 int ret; 5069 struct send_ctx *sctx = ctx; 5070 char *found_data = NULL; 5071 int found_data_len = 0; 5072 5073 ret = find_xattr(sctx->parent_root, sctx->right_path, 5074 sctx->cmp_key, name, name_len, &found_data, 5075 &found_data_len); 5076 if (ret == -ENOENT) { 5077 ret = __process_new_xattr(num, di_key, name, name_len, data, 5078 data_len, ctx); 5079 } else if (ret >= 0) { 5080 if (data_len != found_data_len || 5081 memcmp(data, found_data, data_len)) { 5082 ret = __process_new_xattr(num, di_key, name, name_len, 5083 data, data_len, ctx); 5084 } else { 5085 ret = 0; 5086 } 5087 } 5088 5089 kfree(found_data); 5090 return ret; 5091 } 5092 5093 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 5094 const char *name, int name_len, 5095 const char *data, int data_len, 5096 void *ctx) 5097 { 5098 int ret; 5099 struct send_ctx *sctx = ctx; 5100 5101 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5102 name, name_len, NULL, NULL); 5103 if (ret == -ENOENT) 5104 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5105 data_len, ctx); 5106 else if (ret >= 0) 5107 ret = 0; 5108 5109 return ret; 5110 } 5111 5112 static int process_changed_xattr(struct send_ctx *sctx) 5113 { 5114 int ret; 5115 5116 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5117 __process_changed_new_xattr, sctx); 5118 if (ret < 0) 5119 return ret; 5120 5121 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5122 __process_changed_deleted_xattr, sctx); 5123 } 5124 5125 static int process_all_new_xattrs(struct send_ctx *sctx) 5126 { 5127 int ret = 0; 5128 int iter_ret = 0; 5129 struct btrfs_root *root; 5130 struct btrfs_path *path; 5131 struct btrfs_key key; 5132 struct btrfs_key found_key; 5133 5134 path = alloc_path_for_send(); 5135 if (!path) 5136 return -ENOMEM; 5137 5138 root = sctx->send_root; 5139 5140 key.objectid = sctx->cmp_key->objectid; 5141 key.type = BTRFS_XATTR_ITEM_KEY; 5142 key.offset = 0; 5143 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5144 if (found_key.objectid != key.objectid || 5145 found_key.type != key.type) { 5146 ret = 0; 5147 break; 5148 } 5149 5150 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5151 if (ret < 0) 5152 break; 5153 } 5154 /* Catch error found during iteration */ 5155 if (iter_ret < 0) 5156 ret = iter_ret; 5157 5158 btrfs_free_path(path); 5159 return ret; 5160 } 5161 5162 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5163 struct fsverity_descriptor *desc) 5164 { 5165 int ret; 5166 5167 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5168 if (ret < 0) 5169 return ret; 5170 5171 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5172 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5173 le8_to_cpu(desc->hash_algorithm)); 5174 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5175 1U << le8_to_cpu(desc->log_blocksize)); 5176 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5177 le8_to_cpu(desc->salt_size)); 5178 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5179 le32_to_cpu(desc->sig_size)); 5180 5181 ret = send_cmd(sctx); 5182 5183 tlv_put_failure: 5184 return ret; 5185 } 5186 5187 static int process_verity(struct send_ctx *sctx) 5188 { 5189 int ret = 0; 5190 struct btrfs_inode *inode; 5191 struct fs_path *p; 5192 5193 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5194 if (IS_ERR(inode)) 5195 return PTR_ERR(inode); 5196 5197 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); 5198 if (ret < 0) 5199 goto iput; 5200 5201 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5202 ret = -EMSGSIZE; 5203 goto iput; 5204 } 5205 if (!sctx->verity_descriptor) { 5206 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5207 GFP_KERNEL); 5208 if (!sctx->verity_descriptor) { 5209 ret = -ENOMEM; 5210 goto iput; 5211 } 5212 } 5213 5214 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); 5215 if (ret < 0) 5216 goto iput; 5217 5218 p = get_cur_inode_path(sctx); 5219 if (IS_ERR(p)) { 5220 ret = PTR_ERR(p); 5221 goto iput; 5222 } 5223 5224 ret = send_verity(sctx, p, sctx->verity_descriptor); 5225 iput: 5226 iput(&inode->vfs_inode); 5227 return ret; 5228 } 5229 5230 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5231 { 5232 return sctx->send_max_size - SZ_16K; 5233 } 5234 5235 static int put_data_header(struct send_ctx *sctx, u32 len) 5236 { 5237 if (WARN_ON_ONCE(sctx->put_data)) 5238 return -EINVAL; 5239 sctx->put_data = true; 5240 if (sctx->proto >= 2) { 5241 /* 5242 * Since v2, the data attribute header doesn't include a length, 5243 * it is implicitly to the end of the command. 5244 */ 5245 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5246 return -EOVERFLOW; 5247 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5248 sctx->send_size += sizeof(__le16); 5249 } else { 5250 struct btrfs_tlv_header *hdr; 5251 5252 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5253 return -EOVERFLOW; 5254 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5255 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5256 put_unaligned_le16(len, &hdr->tlv_len); 5257 sctx->send_size += sizeof(*hdr); 5258 } 5259 return 0; 5260 } 5261 5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5263 { 5264 struct btrfs_root *root = sctx->send_root; 5265 struct btrfs_fs_info *fs_info = root->fs_info; 5266 struct folio *folio; 5267 pgoff_t index = offset >> PAGE_SHIFT; 5268 pgoff_t last_index; 5269 unsigned pg_offset = offset_in_page(offset); 5270 struct address_space *mapping = sctx->cur_inode->i_mapping; 5271 int ret; 5272 5273 ret = put_data_header(sctx, len); 5274 if (ret) 5275 return ret; 5276 5277 last_index = (offset + len - 1) >> PAGE_SHIFT; 5278 5279 while (index <= last_index) { 5280 unsigned cur_len = min_t(unsigned, len, 5281 PAGE_SIZE - pg_offset); 5282 5283 again: 5284 folio = filemap_lock_folio(mapping, index); 5285 if (IS_ERR(folio)) { 5286 page_cache_sync_readahead(mapping, 5287 &sctx->ra, NULL, index, 5288 last_index + 1 - index); 5289 5290 folio = filemap_grab_folio(mapping, index); 5291 if (IS_ERR(folio)) { 5292 ret = PTR_ERR(folio); 5293 break; 5294 } 5295 } 5296 5297 WARN_ON(folio_order(folio)); 5298 5299 if (folio_test_readahead(folio)) 5300 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5301 last_index + 1 - index); 5302 5303 if (!folio_test_uptodate(folio)) { 5304 btrfs_read_folio(NULL, folio); 5305 folio_lock(folio); 5306 if (!folio_test_uptodate(folio)) { 5307 folio_unlock(folio); 5308 btrfs_err(fs_info, 5309 "send: IO error at offset %llu for inode %llu root %llu", 5310 folio_pos(folio), sctx->cur_ino, 5311 btrfs_root_id(sctx->send_root)); 5312 folio_put(folio); 5313 ret = -EIO; 5314 break; 5315 } 5316 if (folio->mapping != mapping) { 5317 folio_unlock(folio); 5318 folio_put(folio); 5319 goto again; 5320 } 5321 } 5322 5323 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5324 pg_offset, cur_len); 5325 folio_unlock(folio); 5326 folio_put(folio); 5327 index++; 5328 pg_offset = 0; 5329 len -= cur_len; 5330 sctx->send_size += cur_len; 5331 } 5332 5333 return ret; 5334 } 5335 5336 /* 5337 * Read some bytes from the current inode/file and send a write command to 5338 * user space. 5339 */ 5340 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5341 { 5342 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5343 int ret = 0; 5344 struct fs_path *p; 5345 5346 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len); 5347 5348 p = get_cur_inode_path(sctx); 5349 if (IS_ERR(p)) 5350 return PTR_ERR(p); 5351 5352 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5353 if (ret < 0) 5354 return ret; 5355 5356 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5357 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5358 ret = put_file_data(sctx, offset, len); 5359 if (ret < 0) 5360 return ret; 5361 5362 ret = send_cmd(sctx); 5363 5364 tlv_put_failure: 5365 return ret; 5366 } 5367 5368 /* 5369 * Send a clone command to user space. 5370 */ 5371 static int send_clone(struct send_ctx *sctx, 5372 u64 offset, u32 len, 5373 struct clone_root *clone_root) 5374 { 5375 int ret = 0; 5376 struct fs_path *p; 5377 struct fs_path *cur_inode_path; 5378 u64 gen; 5379 5380 btrfs_debug(sctx->send_root->fs_info, 5381 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu", 5382 offset, len, btrfs_root_id(clone_root->root), 5383 clone_root->ino, clone_root->offset); 5384 5385 cur_inode_path = get_cur_inode_path(sctx); 5386 if (IS_ERR(cur_inode_path)) 5387 return PTR_ERR(cur_inode_path); 5388 5389 p = fs_path_alloc(); 5390 if (!p) 5391 return -ENOMEM; 5392 5393 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5394 if (ret < 0) 5395 goto out; 5396 5397 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5398 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5399 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); 5400 5401 if (clone_root->root == sctx->send_root) { 5402 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5403 if (ret < 0) 5404 goto out; 5405 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5406 } else { 5407 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5408 } 5409 if (ret < 0) 5410 goto out; 5411 5412 /* 5413 * If the parent we're using has a received_uuid set then use that as 5414 * our clone source as that is what we will look for when doing a 5415 * receive. 5416 * 5417 * This covers the case that we create a snapshot off of a received 5418 * subvolume and then use that as the parent and try to receive on a 5419 * different host. 5420 */ 5421 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5422 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5423 clone_root->root->root_item.received_uuid); 5424 else 5425 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5426 clone_root->root->root_item.uuid); 5427 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5428 btrfs_root_ctransid(&clone_root->root->root_item)); 5429 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5430 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5431 clone_root->offset); 5432 5433 ret = send_cmd(sctx); 5434 5435 tlv_put_failure: 5436 out: 5437 fs_path_free(p); 5438 return ret; 5439 } 5440 5441 /* 5442 * Send an update extent command to user space. 5443 */ 5444 static int send_update_extent(struct send_ctx *sctx, 5445 u64 offset, u32 len) 5446 { 5447 int ret = 0; 5448 struct fs_path *p; 5449 5450 p = get_cur_inode_path(sctx); 5451 if (IS_ERR(p)) 5452 return PTR_ERR(p); 5453 5454 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5455 if (ret < 0) 5456 return ret; 5457 5458 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5459 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5460 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5461 5462 ret = send_cmd(sctx); 5463 5464 tlv_put_failure: 5465 return ret; 5466 } 5467 5468 static int send_hole(struct send_ctx *sctx, u64 end) 5469 { 5470 struct fs_path *p = NULL; 5471 u64 read_size = max_send_read_size(sctx); 5472 u64 offset = sctx->cur_inode_last_extent; 5473 int ret = 0; 5474 5475 /* 5476 * A hole that starts at EOF or beyond it. Since we do not yet support 5477 * fallocate (for extent preallocation and hole punching), sending a 5478 * write of zeroes starting at EOF or beyond would later require issuing 5479 * a truncate operation which would undo the write and achieve nothing. 5480 */ 5481 if (offset >= sctx->cur_inode_size) 5482 return 0; 5483 5484 /* 5485 * Don't go beyond the inode's i_size due to prealloc extents that start 5486 * after the i_size. 5487 */ 5488 end = min_t(u64, end, sctx->cur_inode_size); 5489 5490 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5491 return send_update_extent(sctx, offset, end - offset); 5492 5493 p = get_cur_inode_path(sctx); 5494 if (IS_ERR(p)) 5495 return PTR_ERR(p); 5496 5497 while (offset < end) { 5498 u64 len = min(end - offset, read_size); 5499 5500 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5501 if (ret < 0) 5502 break; 5503 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5504 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5505 ret = put_data_header(sctx, len); 5506 if (ret < 0) 5507 break; 5508 memset(sctx->send_buf + sctx->send_size, 0, len); 5509 sctx->send_size += len; 5510 ret = send_cmd(sctx); 5511 if (ret < 0) 5512 break; 5513 offset += len; 5514 } 5515 sctx->cur_inode_next_write_offset = offset; 5516 tlv_put_failure: 5517 return ret; 5518 } 5519 5520 static int send_encoded_inline_extent(struct send_ctx *sctx, 5521 struct btrfs_path *path, u64 offset, 5522 u64 len) 5523 { 5524 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5525 struct fs_path *fspath; 5526 struct extent_buffer *leaf = path->nodes[0]; 5527 struct btrfs_key key; 5528 struct btrfs_file_extent_item *ei; 5529 u64 ram_bytes; 5530 size_t inline_size; 5531 int ret; 5532 5533 fspath = get_cur_inode_path(sctx); 5534 if (IS_ERR(fspath)) 5535 return PTR_ERR(fspath); 5536 5537 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5538 if (ret < 0) 5539 return ret; 5540 5541 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5542 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5543 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5544 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5545 5546 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5547 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5548 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5549 min(key.offset + ram_bytes - offset, len)); 5550 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5551 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5552 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5553 btrfs_file_extent_compression(leaf, ei)); 5554 if (ret < 0) 5555 return ret; 5556 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5557 5558 ret = put_data_header(sctx, inline_size); 5559 if (ret < 0) 5560 return ret; 5561 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5562 btrfs_file_extent_inline_start(ei), inline_size); 5563 sctx->send_size += inline_size; 5564 5565 ret = send_cmd(sctx); 5566 5567 tlv_put_failure: 5568 return ret; 5569 } 5570 5571 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5572 u64 offset, u64 len) 5573 { 5574 struct btrfs_root *root = sctx->send_root; 5575 struct btrfs_fs_info *fs_info = root->fs_info; 5576 struct btrfs_inode *inode; 5577 struct fs_path *fspath; 5578 struct extent_buffer *leaf = path->nodes[0]; 5579 struct btrfs_key key; 5580 struct btrfs_file_extent_item *ei; 5581 u64 disk_bytenr, disk_num_bytes; 5582 u32 data_offset; 5583 struct btrfs_cmd_header *hdr; 5584 u32 crc; 5585 int ret; 5586 5587 inode = btrfs_iget(sctx->cur_ino, root); 5588 if (IS_ERR(inode)) 5589 return PTR_ERR(inode); 5590 5591 fspath = get_cur_inode_path(sctx); 5592 if (IS_ERR(fspath)) { 5593 ret = PTR_ERR(fspath); 5594 goto out; 5595 } 5596 5597 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5598 if (ret < 0) 5599 goto out; 5600 5601 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5602 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5603 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5604 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5605 5606 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5607 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5608 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5609 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5610 len)); 5611 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5612 btrfs_file_extent_ram_bytes(leaf, ei)); 5613 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5614 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5615 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5616 btrfs_file_extent_compression(leaf, ei)); 5617 if (ret < 0) 5618 goto out; 5619 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5620 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5621 5622 ret = put_data_header(sctx, disk_num_bytes); 5623 if (ret < 0) 5624 goto out; 5625 5626 /* 5627 * We want to do I/O directly into the send buffer, so get the next page 5628 * boundary in the send buffer. This means that there may be a gap 5629 * between the beginning of the command and the file data. 5630 */ 5631 data_offset = PAGE_ALIGN(sctx->send_size); 5632 if (data_offset > sctx->send_max_size || 5633 sctx->send_max_size - data_offset < disk_num_bytes) { 5634 ret = -EOVERFLOW; 5635 goto out; 5636 } 5637 5638 /* 5639 * Note that send_buf is a mapping of send_buf_pages, so this is really 5640 * reading into send_buf. 5641 */ 5642 ret = btrfs_encoded_read_regular_fill_pages(inode, 5643 disk_bytenr, disk_num_bytes, 5644 sctx->send_buf_pages + 5645 (data_offset >> PAGE_SHIFT), 5646 NULL); 5647 if (ret) 5648 goto out; 5649 5650 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5651 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5652 hdr->crc = 0; 5653 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5654 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5655 hdr->crc = cpu_to_le32(crc); 5656 5657 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5658 &sctx->send_off); 5659 if (!ret) { 5660 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5661 disk_num_bytes, &sctx->send_off); 5662 } 5663 sctx->send_size = 0; 5664 sctx->put_data = false; 5665 5666 tlv_put_failure: 5667 out: 5668 iput(&inode->vfs_inode); 5669 return ret; 5670 } 5671 5672 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5673 const u64 offset, const u64 len) 5674 { 5675 const u64 end = offset + len; 5676 struct extent_buffer *leaf = path->nodes[0]; 5677 struct btrfs_file_extent_item *ei; 5678 u64 read_size = max_send_read_size(sctx); 5679 u64 sent = 0; 5680 5681 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5682 return send_update_extent(sctx, offset, len); 5683 5684 ei = btrfs_item_ptr(leaf, path->slots[0], 5685 struct btrfs_file_extent_item); 5686 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5687 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5688 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5689 BTRFS_FILE_EXTENT_INLINE); 5690 5691 /* 5692 * Send the compressed extent unless the compressed data is 5693 * larger than the decompressed data. This can happen if we're 5694 * not sending the entire extent, either because it has been 5695 * partially overwritten/truncated or because this is a part of 5696 * the extent that we couldn't clone in clone_range(). 5697 */ 5698 if (is_inline && 5699 btrfs_file_extent_inline_item_len(leaf, 5700 path->slots[0]) <= len) { 5701 return send_encoded_inline_extent(sctx, path, offset, 5702 len); 5703 } else if (!is_inline && 5704 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5705 return send_encoded_extent(sctx, path, offset, len); 5706 } 5707 } 5708 5709 if (sctx->cur_inode == NULL) { 5710 struct btrfs_inode *btrfs_inode; 5711 struct btrfs_root *root = sctx->send_root; 5712 5713 btrfs_inode = btrfs_iget(sctx->cur_ino, root); 5714 if (IS_ERR(btrfs_inode)) 5715 return PTR_ERR(btrfs_inode); 5716 5717 sctx->cur_inode = &btrfs_inode->vfs_inode; 5718 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5719 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5720 5721 /* 5722 * It's very likely there are no pages from this inode in the page 5723 * cache, so after reading extents and sending their data, we clean 5724 * the page cache to avoid trashing the page cache (adding pressure 5725 * to the page cache and forcing eviction of other data more useful 5726 * for applications). 5727 * 5728 * We decide if we should clean the page cache simply by checking 5729 * if the inode's mapping nrpages is 0 when we first open it, and 5730 * not by using something like filemap_range_has_page() before 5731 * reading an extent because when we ask the readahead code to 5732 * read a given file range, it may (and almost always does) read 5733 * pages from beyond that range (see the documentation for 5734 * page_cache_sync_readahead()), so it would not be reliable, 5735 * because after reading the first extent future calls to 5736 * filemap_range_has_page() would return true because the readahead 5737 * on the previous extent resulted in reading pages of the current 5738 * extent as well. 5739 */ 5740 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5741 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5742 } 5743 5744 while (sent < len) { 5745 u64 size = min(len - sent, read_size); 5746 int ret; 5747 5748 ret = send_write(sctx, offset + sent, size); 5749 if (ret < 0) 5750 return ret; 5751 sent += size; 5752 } 5753 5754 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5755 /* 5756 * Always operate only on ranges that are a multiple of the page 5757 * size. This is not only to prevent zeroing parts of a page in 5758 * the case of subpage sector size, but also to guarantee we evict 5759 * pages, as passing a range that is smaller than page size does 5760 * not evict the respective page (only zeroes part of its content). 5761 * 5762 * Always start from the end offset of the last range cleared. 5763 * This is because the readahead code may (and very often does) 5764 * reads pages beyond the range we request for readahead. So if 5765 * we have an extent layout like this: 5766 * 5767 * [ extent A ] [ extent B ] [ extent C ] 5768 * 5769 * When we ask page_cache_sync_readahead() to read extent A, it 5770 * may also trigger reads for pages of extent B. If we are doing 5771 * an incremental send and extent B has not changed between the 5772 * parent and send snapshots, some or all of its pages may end 5773 * up being read and placed in the page cache. So when truncating 5774 * the page cache we always start from the end offset of the 5775 * previously processed extent up to the end of the current 5776 * extent. 5777 */ 5778 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5779 sctx->page_cache_clear_start, 5780 end - 1); 5781 sctx->page_cache_clear_start = end; 5782 } 5783 5784 return 0; 5785 } 5786 5787 /* 5788 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5789 * found, call send_set_xattr function to emit it. 5790 * 5791 * Return 0 if there isn't a capability, or when the capability was emitted 5792 * successfully, or < 0 if an error occurred. 5793 */ 5794 static int send_capabilities(struct send_ctx *sctx) 5795 { 5796 struct btrfs_path *path; 5797 struct btrfs_dir_item *di; 5798 struct extent_buffer *leaf; 5799 unsigned long data_ptr; 5800 char *buf = NULL; 5801 int buf_len; 5802 int ret = 0; 5803 5804 path = alloc_path_for_send(); 5805 if (!path) 5806 return -ENOMEM; 5807 5808 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5809 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5810 if (!di) { 5811 /* There is no xattr for this inode */ 5812 goto out; 5813 } else if (IS_ERR(di)) { 5814 ret = PTR_ERR(di); 5815 goto out; 5816 } 5817 5818 leaf = path->nodes[0]; 5819 buf_len = btrfs_dir_data_len(leaf, di); 5820 5821 buf = kmalloc(buf_len, GFP_KERNEL); 5822 if (!buf) { 5823 ret = -ENOMEM; 5824 goto out; 5825 } 5826 5827 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5828 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5829 5830 ret = send_set_xattr(sctx, XATTR_NAME_CAPS, 5831 strlen(XATTR_NAME_CAPS), buf, buf_len); 5832 out: 5833 kfree(buf); 5834 btrfs_free_path(path); 5835 return ret; 5836 } 5837 5838 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5839 struct clone_root *clone_root, const u64 disk_byte, 5840 u64 data_offset, u64 offset, u64 len) 5841 { 5842 struct btrfs_path *path; 5843 struct btrfs_key key; 5844 int ret; 5845 struct btrfs_inode_info info; 5846 u64 clone_src_i_size = 0; 5847 5848 /* 5849 * Prevent cloning from a zero offset with a length matching the sector 5850 * size because in some scenarios this will make the receiver fail. 5851 * 5852 * For example, if in the source filesystem the extent at offset 0 5853 * has a length of sectorsize and it was written using direct IO, then 5854 * it can never be an inline extent (even if compression is enabled). 5855 * Then this extent can be cloned in the original filesystem to a non 5856 * zero file offset, but it may not be possible to clone in the 5857 * destination filesystem because it can be inlined due to compression 5858 * on the destination filesystem (as the receiver's write operations are 5859 * always done using buffered IO). The same happens when the original 5860 * filesystem does not have compression enabled but the destination 5861 * filesystem has. 5862 */ 5863 if (clone_root->offset == 0 && 5864 len == sctx->send_root->fs_info->sectorsize) 5865 return send_extent_data(sctx, dst_path, offset, len); 5866 5867 path = alloc_path_for_send(); 5868 if (!path) 5869 return -ENOMEM; 5870 5871 /* 5872 * There are inodes that have extents that lie behind its i_size. Don't 5873 * accept clones from these extents. 5874 */ 5875 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5876 btrfs_release_path(path); 5877 if (ret < 0) 5878 goto out; 5879 clone_src_i_size = info.size; 5880 5881 /* 5882 * We can't send a clone operation for the entire range if we find 5883 * extent items in the respective range in the source file that 5884 * refer to different extents or if we find holes. 5885 * So check for that and do a mix of clone and regular write/copy 5886 * operations if needed. 5887 * 5888 * Example: 5889 * 5890 * mkfs.btrfs -f /dev/sda 5891 * mount /dev/sda /mnt 5892 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5893 * cp --reflink=always /mnt/foo /mnt/bar 5894 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5895 * btrfs subvolume snapshot -r /mnt /mnt/snap 5896 * 5897 * If when we send the snapshot and we are processing file bar (which 5898 * has a higher inode number than foo) we blindly send a clone operation 5899 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5900 * a file bar that matches the content of file foo - iow, doesn't match 5901 * the content from bar in the original filesystem. 5902 */ 5903 key.objectid = clone_root->ino; 5904 key.type = BTRFS_EXTENT_DATA_KEY; 5905 key.offset = clone_root->offset; 5906 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5907 if (ret < 0) 5908 goto out; 5909 if (ret > 0 && path->slots[0] > 0) { 5910 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5911 if (key.objectid == clone_root->ino && 5912 key.type == BTRFS_EXTENT_DATA_KEY) 5913 path->slots[0]--; 5914 } 5915 5916 while (true) { 5917 struct extent_buffer *leaf = path->nodes[0]; 5918 int slot = path->slots[0]; 5919 struct btrfs_file_extent_item *ei; 5920 u8 type; 5921 u64 ext_len; 5922 u64 clone_len; 5923 u64 clone_data_offset; 5924 bool crossed_src_i_size = false; 5925 5926 if (slot >= btrfs_header_nritems(leaf)) { 5927 ret = btrfs_next_leaf(clone_root->root, path); 5928 if (ret < 0) 5929 goto out; 5930 else if (ret > 0) 5931 break; 5932 continue; 5933 } 5934 5935 btrfs_item_key_to_cpu(leaf, &key, slot); 5936 5937 /* 5938 * We might have an implicit trailing hole (NO_HOLES feature 5939 * enabled). We deal with it after leaving this loop. 5940 */ 5941 if (key.objectid != clone_root->ino || 5942 key.type != BTRFS_EXTENT_DATA_KEY) 5943 break; 5944 5945 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5946 type = btrfs_file_extent_type(leaf, ei); 5947 if (type == BTRFS_FILE_EXTENT_INLINE) { 5948 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5949 ext_len = PAGE_ALIGN(ext_len); 5950 } else { 5951 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5952 } 5953 5954 if (key.offset + ext_len <= clone_root->offset) 5955 goto next; 5956 5957 if (key.offset > clone_root->offset) { 5958 /* Implicit hole, NO_HOLES feature enabled. */ 5959 u64 hole_len = key.offset - clone_root->offset; 5960 5961 if (hole_len > len) 5962 hole_len = len; 5963 ret = send_extent_data(sctx, dst_path, offset, 5964 hole_len); 5965 if (ret < 0) 5966 goto out; 5967 5968 len -= hole_len; 5969 if (len == 0) 5970 break; 5971 offset += hole_len; 5972 clone_root->offset += hole_len; 5973 data_offset += hole_len; 5974 } 5975 5976 if (key.offset >= clone_root->offset + len) 5977 break; 5978 5979 if (key.offset >= clone_src_i_size) 5980 break; 5981 5982 if (key.offset + ext_len > clone_src_i_size) { 5983 ext_len = clone_src_i_size - key.offset; 5984 crossed_src_i_size = true; 5985 } 5986 5987 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5988 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5989 clone_root->offset = key.offset; 5990 if (clone_data_offset < data_offset && 5991 clone_data_offset + ext_len > data_offset) { 5992 u64 extent_offset; 5993 5994 extent_offset = data_offset - clone_data_offset; 5995 ext_len -= extent_offset; 5996 clone_data_offset += extent_offset; 5997 clone_root->offset += extent_offset; 5998 } 5999 } 6000 6001 clone_len = min_t(u64, ext_len, len); 6002 6003 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 6004 clone_data_offset == data_offset) { 6005 const u64 src_end = clone_root->offset + clone_len; 6006 const u64 sectorsize = SZ_64K; 6007 6008 /* 6009 * We can't clone the last block, when its size is not 6010 * sector size aligned, into the middle of a file. If we 6011 * do so, the receiver will get a failure (-EINVAL) when 6012 * trying to clone or will silently corrupt the data in 6013 * the destination file if it's on a kernel without the 6014 * fix introduced by commit ac765f83f1397646 6015 * ("Btrfs: fix data corruption due to cloning of eof 6016 * block). 6017 * 6018 * So issue a clone of the aligned down range plus a 6019 * regular write for the eof block, if we hit that case. 6020 * 6021 * Also, we use the maximum possible sector size, 64K, 6022 * because we don't know what's the sector size of the 6023 * filesystem that receives the stream, so we have to 6024 * assume the largest possible sector size. 6025 */ 6026 if (src_end == clone_src_i_size && 6027 !IS_ALIGNED(src_end, sectorsize) && 6028 offset + clone_len < sctx->cur_inode_size) { 6029 u64 slen; 6030 6031 slen = ALIGN_DOWN(src_end - clone_root->offset, 6032 sectorsize); 6033 if (slen > 0) { 6034 ret = send_clone(sctx, offset, slen, 6035 clone_root); 6036 if (ret < 0) 6037 goto out; 6038 } 6039 ret = send_extent_data(sctx, dst_path, 6040 offset + slen, 6041 clone_len - slen); 6042 } else { 6043 ret = send_clone(sctx, offset, clone_len, 6044 clone_root); 6045 } 6046 } else if (crossed_src_i_size && clone_len < len) { 6047 /* 6048 * If we are at i_size of the clone source inode and we 6049 * can not clone from it, terminate the loop. This is 6050 * to avoid sending two write operations, one with a 6051 * length matching clone_len and the final one after 6052 * this loop with a length of len - clone_len. 6053 * 6054 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 6055 * was passed to the send ioctl), this helps avoid 6056 * sending an encoded write for an offset that is not 6057 * sector size aligned, in case the i_size of the source 6058 * inode is not sector size aligned. That will make the 6059 * receiver fallback to decompression of the data and 6060 * writing it using regular buffered IO, therefore while 6061 * not incorrect, it's not optimal due decompression and 6062 * possible re-compression at the receiver. 6063 */ 6064 break; 6065 } else { 6066 ret = send_extent_data(sctx, dst_path, offset, 6067 clone_len); 6068 } 6069 6070 if (ret < 0) 6071 goto out; 6072 6073 len -= clone_len; 6074 if (len == 0) 6075 break; 6076 offset += clone_len; 6077 clone_root->offset += clone_len; 6078 6079 /* 6080 * If we are cloning from the file we are currently processing, 6081 * and using the send root as the clone root, we must stop once 6082 * the current clone offset reaches the current eof of the file 6083 * at the receiver, otherwise we would issue an invalid clone 6084 * operation (source range going beyond eof) and cause the 6085 * receiver to fail. So if we reach the current eof, bail out 6086 * and fallback to a regular write. 6087 */ 6088 if (clone_root->root == sctx->send_root && 6089 clone_root->ino == sctx->cur_ino && 6090 clone_root->offset >= sctx->cur_inode_next_write_offset) 6091 break; 6092 6093 data_offset += clone_len; 6094 next: 6095 path->slots[0]++; 6096 } 6097 6098 if (len > 0) 6099 ret = send_extent_data(sctx, dst_path, offset, len); 6100 else 6101 ret = 0; 6102 out: 6103 btrfs_free_path(path); 6104 return ret; 6105 } 6106 6107 static int send_write_or_clone(struct send_ctx *sctx, 6108 struct btrfs_path *path, 6109 struct btrfs_key *key, 6110 struct clone_root *clone_root) 6111 { 6112 int ret = 0; 6113 u64 offset = key->offset; 6114 u64 end; 6115 u64 bs = sctx->send_root->fs_info->sectorsize; 6116 struct btrfs_file_extent_item *ei; 6117 u64 disk_byte; 6118 u64 data_offset; 6119 u64 num_bytes; 6120 struct btrfs_inode_info info = { 0 }; 6121 6122 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6123 if (offset >= end) 6124 return 0; 6125 6126 num_bytes = end - offset; 6127 6128 if (!clone_root) 6129 goto write_data; 6130 6131 if (IS_ALIGNED(end, bs)) 6132 goto clone_data; 6133 6134 /* 6135 * If the extent end is not aligned, we can clone if the extent ends at 6136 * the i_size of the inode and the clone range ends at the i_size of the 6137 * source inode, otherwise the clone operation fails with -EINVAL. 6138 */ 6139 if (end != sctx->cur_inode_size) 6140 goto write_data; 6141 6142 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6143 if (ret < 0) 6144 return ret; 6145 6146 if (clone_root->offset + num_bytes == info.size) { 6147 /* 6148 * The final size of our file matches the end offset, but it may 6149 * be that its current size is larger, so we have to truncate it 6150 * to any value between the start offset of the range and the 6151 * final i_size, otherwise the clone operation is invalid 6152 * because it's unaligned and it ends before the current EOF. 6153 * We do this truncate to the final i_size when we finish 6154 * processing the inode, but it's too late by then. And here we 6155 * truncate to the start offset of the range because it's always 6156 * sector size aligned while if it were the final i_size it 6157 * would result in dirtying part of a page, filling part of a 6158 * page with zeroes and then having the clone operation at the 6159 * receiver trigger IO and wait for it due to the dirty page. 6160 */ 6161 if (sctx->parent_root != NULL) { 6162 ret = send_truncate(sctx, sctx->cur_ino, 6163 sctx->cur_inode_gen, offset); 6164 if (ret < 0) 6165 return ret; 6166 } 6167 goto clone_data; 6168 } 6169 6170 write_data: 6171 ret = send_extent_data(sctx, path, offset, num_bytes); 6172 sctx->cur_inode_next_write_offset = end; 6173 return ret; 6174 6175 clone_data: 6176 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6177 struct btrfs_file_extent_item); 6178 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6179 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6180 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6181 num_bytes); 6182 sctx->cur_inode_next_write_offset = end; 6183 return ret; 6184 } 6185 6186 static int is_extent_unchanged(struct send_ctx *sctx, 6187 struct btrfs_path *left_path, 6188 struct btrfs_key *ekey) 6189 { 6190 int ret = 0; 6191 struct btrfs_key key; 6192 struct btrfs_path *path = NULL; 6193 struct extent_buffer *eb; 6194 int slot; 6195 struct btrfs_key found_key; 6196 struct btrfs_file_extent_item *ei; 6197 u64 left_disknr; 6198 u64 right_disknr; 6199 u64 left_offset; 6200 u64 right_offset; 6201 u64 left_offset_fixed; 6202 u64 left_len; 6203 u64 right_len; 6204 u64 left_gen; 6205 u64 right_gen; 6206 u8 left_type; 6207 u8 right_type; 6208 6209 path = alloc_path_for_send(); 6210 if (!path) 6211 return -ENOMEM; 6212 6213 eb = left_path->nodes[0]; 6214 slot = left_path->slots[0]; 6215 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6216 left_type = btrfs_file_extent_type(eb, ei); 6217 6218 if (left_type != BTRFS_FILE_EXTENT_REG) { 6219 ret = 0; 6220 goto out; 6221 } 6222 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6223 left_len = btrfs_file_extent_num_bytes(eb, ei); 6224 left_offset = btrfs_file_extent_offset(eb, ei); 6225 left_gen = btrfs_file_extent_generation(eb, ei); 6226 6227 /* 6228 * Following comments will refer to these graphics. L is the left 6229 * extents which we are checking at the moment. 1-8 are the right 6230 * extents that we iterate. 6231 * 6232 * |-----L-----| 6233 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6234 * 6235 * |-----L-----| 6236 * |--1--|-2b-|...(same as above) 6237 * 6238 * Alternative situation. Happens on files where extents got split. 6239 * |-----L-----| 6240 * |-----------7-----------|-6-| 6241 * 6242 * Alternative situation. Happens on files which got larger. 6243 * |-----L-----| 6244 * |-8-| 6245 * Nothing follows after 8. 6246 */ 6247 6248 key.objectid = ekey->objectid; 6249 key.type = BTRFS_EXTENT_DATA_KEY; 6250 key.offset = ekey->offset; 6251 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6252 if (ret < 0) 6253 goto out; 6254 if (ret) { 6255 ret = 0; 6256 goto out; 6257 } 6258 6259 /* 6260 * Handle special case where the right side has no extents at all. 6261 */ 6262 eb = path->nodes[0]; 6263 slot = path->slots[0]; 6264 btrfs_item_key_to_cpu(eb, &found_key, slot); 6265 if (found_key.objectid != key.objectid || 6266 found_key.type != key.type) { 6267 /* If we're a hole then just pretend nothing changed */ 6268 ret = (left_disknr) ? 0 : 1; 6269 goto out; 6270 } 6271 6272 /* 6273 * We're now on 2a, 2b or 7. 6274 */ 6275 key = found_key; 6276 while (key.offset < ekey->offset + left_len) { 6277 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6278 right_type = btrfs_file_extent_type(eb, ei); 6279 if (right_type != BTRFS_FILE_EXTENT_REG && 6280 right_type != BTRFS_FILE_EXTENT_INLINE) { 6281 ret = 0; 6282 goto out; 6283 } 6284 6285 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6286 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6287 right_len = PAGE_ALIGN(right_len); 6288 } else { 6289 right_len = btrfs_file_extent_num_bytes(eb, ei); 6290 } 6291 6292 /* 6293 * Are we at extent 8? If yes, we know the extent is changed. 6294 * This may only happen on the first iteration. 6295 */ 6296 if (found_key.offset + right_len <= ekey->offset) { 6297 /* If we're a hole just pretend nothing changed */ 6298 ret = (left_disknr) ? 0 : 1; 6299 goto out; 6300 } 6301 6302 /* 6303 * We just wanted to see if when we have an inline extent, what 6304 * follows it is a regular extent (wanted to check the above 6305 * condition for inline extents too). This should normally not 6306 * happen but it's possible for example when we have an inline 6307 * compressed extent representing data with a size matching 6308 * the page size (currently the same as sector size). 6309 */ 6310 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6311 ret = 0; 6312 goto out; 6313 } 6314 6315 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6316 right_offset = btrfs_file_extent_offset(eb, ei); 6317 right_gen = btrfs_file_extent_generation(eb, ei); 6318 6319 left_offset_fixed = left_offset; 6320 if (key.offset < ekey->offset) { 6321 /* Fix the right offset for 2a and 7. */ 6322 right_offset += ekey->offset - key.offset; 6323 } else { 6324 /* Fix the left offset for all behind 2a and 2b */ 6325 left_offset_fixed += key.offset - ekey->offset; 6326 } 6327 6328 /* 6329 * Check if we have the same extent. 6330 */ 6331 if (left_disknr != right_disknr || 6332 left_offset_fixed != right_offset || 6333 left_gen != right_gen) { 6334 ret = 0; 6335 goto out; 6336 } 6337 6338 /* 6339 * Go to the next extent. 6340 */ 6341 ret = btrfs_next_item(sctx->parent_root, path); 6342 if (ret < 0) 6343 goto out; 6344 if (!ret) { 6345 eb = path->nodes[0]; 6346 slot = path->slots[0]; 6347 btrfs_item_key_to_cpu(eb, &found_key, slot); 6348 } 6349 if (ret || found_key.objectid != key.objectid || 6350 found_key.type != key.type) { 6351 key.offset += right_len; 6352 break; 6353 } 6354 if (found_key.offset != key.offset + right_len) { 6355 ret = 0; 6356 goto out; 6357 } 6358 key = found_key; 6359 } 6360 6361 /* 6362 * We're now behind the left extent (treat as unchanged) or at the end 6363 * of the right side (treat as changed). 6364 */ 6365 if (key.offset >= ekey->offset + left_len) 6366 ret = 1; 6367 else 6368 ret = 0; 6369 6370 6371 out: 6372 btrfs_free_path(path); 6373 return ret; 6374 } 6375 6376 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6377 { 6378 struct btrfs_path *path; 6379 struct btrfs_root *root = sctx->send_root; 6380 struct btrfs_key key; 6381 int ret; 6382 6383 path = alloc_path_for_send(); 6384 if (!path) 6385 return -ENOMEM; 6386 6387 sctx->cur_inode_last_extent = 0; 6388 6389 key.objectid = sctx->cur_ino; 6390 key.type = BTRFS_EXTENT_DATA_KEY; 6391 key.offset = offset; 6392 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6393 if (ret < 0) 6394 goto out; 6395 ret = 0; 6396 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6397 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6398 goto out; 6399 6400 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6401 out: 6402 btrfs_free_path(path); 6403 return ret; 6404 } 6405 6406 static int range_is_hole_in_parent(struct send_ctx *sctx, 6407 const u64 start, 6408 const u64 end) 6409 { 6410 struct btrfs_path *path; 6411 struct btrfs_key key; 6412 struct btrfs_root *root = sctx->parent_root; 6413 u64 search_start = start; 6414 int ret; 6415 6416 path = alloc_path_for_send(); 6417 if (!path) 6418 return -ENOMEM; 6419 6420 key.objectid = sctx->cur_ino; 6421 key.type = BTRFS_EXTENT_DATA_KEY; 6422 key.offset = search_start; 6423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6424 if (ret < 0) 6425 goto out; 6426 if (ret > 0 && path->slots[0] > 0) 6427 path->slots[0]--; 6428 6429 while (search_start < end) { 6430 struct extent_buffer *leaf = path->nodes[0]; 6431 int slot = path->slots[0]; 6432 struct btrfs_file_extent_item *fi; 6433 u64 extent_end; 6434 6435 if (slot >= btrfs_header_nritems(leaf)) { 6436 ret = btrfs_next_leaf(root, path); 6437 if (ret < 0) 6438 goto out; 6439 else if (ret > 0) 6440 break; 6441 continue; 6442 } 6443 6444 btrfs_item_key_to_cpu(leaf, &key, slot); 6445 if (key.objectid < sctx->cur_ino || 6446 key.type < BTRFS_EXTENT_DATA_KEY) 6447 goto next; 6448 if (key.objectid > sctx->cur_ino || 6449 key.type > BTRFS_EXTENT_DATA_KEY || 6450 key.offset >= end) 6451 break; 6452 6453 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6454 extent_end = btrfs_file_extent_end(path); 6455 if (extent_end <= start) 6456 goto next; 6457 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6458 search_start = extent_end; 6459 goto next; 6460 } 6461 ret = 0; 6462 goto out; 6463 next: 6464 path->slots[0]++; 6465 } 6466 ret = 1; 6467 out: 6468 btrfs_free_path(path); 6469 return ret; 6470 } 6471 6472 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6473 struct btrfs_key *key) 6474 { 6475 int ret = 0; 6476 6477 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6478 return 0; 6479 6480 /* 6481 * Get last extent's end offset (exclusive) if we haven't determined it 6482 * yet (we're processing the first file extent item that is new), or if 6483 * we're at the first slot of a leaf and the last extent's end is less 6484 * than the current extent's offset, because we might have skipped 6485 * entire leaves that contained only file extent items for our current 6486 * inode. These leaves have a generation number smaller (older) than the 6487 * one in the current leaf and the leaf our last extent came from, and 6488 * are located between these 2 leaves. 6489 */ 6490 if ((sctx->cur_inode_last_extent == (u64)-1) || 6491 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6492 ret = get_last_extent(sctx, key->offset - 1); 6493 if (ret) 6494 return ret; 6495 } 6496 6497 if (sctx->cur_inode_last_extent < key->offset) { 6498 ret = range_is_hole_in_parent(sctx, 6499 sctx->cur_inode_last_extent, 6500 key->offset); 6501 if (ret < 0) 6502 return ret; 6503 else if (ret == 0) 6504 ret = send_hole(sctx, key->offset); 6505 else 6506 ret = 0; 6507 } 6508 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6509 return ret; 6510 } 6511 6512 static int process_extent(struct send_ctx *sctx, 6513 struct btrfs_path *path, 6514 struct btrfs_key *key) 6515 { 6516 struct clone_root *found_clone = NULL; 6517 int ret = 0; 6518 6519 if (S_ISLNK(sctx->cur_inode_mode)) 6520 return 0; 6521 6522 if (sctx->parent_root && !sctx->cur_inode_new) { 6523 ret = is_extent_unchanged(sctx, path, key); 6524 if (ret < 0) 6525 goto out; 6526 if (ret) { 6527 ret = 0; 6528 goto out_hole; 6529 } 6530 } else { 6531 struct btrfs_file_extent_item *ei; 6532 u8 type; 6533 6534 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6535 struct btrfs_file_extent_item); 6536 type = btrfs_file_extent_type(path->nodes[0], ei); 6537 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6538 type == BTRFS_FILE_EXTENT_REG) { 6539 /* 6540 * The send spec does not have a prealloc command yet, 6541 * so just leave a hole for prealloc'ed extents until 6542 * we have enough commands queued up to justify rev'ing 6543 * the send spec. 6544 */ 6545 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6546 ret = 0; 6547 goto out; 6548 } 6549 6550 /* Have a hole, just skip it. */ 6551 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6552 ret = 0; 6553 goto out; 6554 } 6555 } 6556 } 6557 6558 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6559 sctx->cur_inode_size, &found_clone); 6560 if (ret != -ENOENT && ret < 0) 6561 goto out; 6562 6563 ret = send_write_or_clone(sctx, path, key, found_clone); 6564 if (ret) 6565 goto out; 6566 out_hole: 6567 ret = maybe_send_hole(sctx, path, key); 6568 out: 6569 return ret; 6570 } 6571 6572 static int process_all_extents(struct send_ctx *sctx) 6573 { 6574 int ret = 0; 6575 int iter_ret = 0; 6576 struct btrfs_root *root; 6577 struct btrfs_path *path; 6578 struct btrfs_key key; 6579 struct btrfs_key found_key; 6580 6581 root = sctx->send_root; 6582 path = alloc_path_for_send(); 6583 if (!path) 6584 return -ENOMEM; 6585 6586 key.objectid = sctx->cmp_key->objectid; 6587 key.type = BTRFS_EXTENT_DATA_KEY; 6588 key.offset = 0; 6589 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6590 if (found_key.objectid != key.objectid || 6591 found_key.type != key.type) { 6592 ret = 0; 6593 break; 6594 } 6595 6596 ret = process_extent(sctx, path, &found_key); 6597 if (ret < 0) 6598 break; 6599 } 6600 /* Catch error found during iteration */ 6601 if (iter_ret < 0) 6602 ret = iter_ret; 6603 6604 btrfs_free_path(path); 6605 return ret; 6606 } 6607 6608 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end, 6609 int *pending_move, 6610 int *refs_processed) 6611 { 6612 int ret = 0; 6613 6614 if (sctx->cur_ino == 0) 6615 goto out; 6616 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6617 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6618 goto out; 6619 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6620 goto out; 6621 6622 ret = process_recorded_refs(sctx, pending_move); 6623 if (ret < 0) 6624 goto out; 6625 6626 *refs_processed = 1; 6627 out: 6628 return ret; 6629 } 6630 6631 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end) 6632 { 6633 int ret = 0; 6634 struct btrfs_inode_info info; 6635 u64 left_mode; 6636 u64 left_uid; 6637 u64 left_gid; 6638 u64 left_fileattr; 6639 u64 right_mode; 6640 u64 right_uid; 6641 u64 right_gid; 6642 u64 right_fileattr; 6643 int need_chmod = 0; 6644 int need_chown = 0; 6645 bool need_fileattr = false; 6646 int need_truncate = 1; 6647 int pending_move = 0; 6648 int refs_processed = 0; 6649 6650 if (sctx->ignore_cur_inode) 6651 return 0; 6652 6653 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6654 &refs_processed); 6655 if (ret < 0) 6656 goto out; 6657 6658 /* 6659 * We have processed the refs and thus need to advance send_progress. 6660 * Now, calls to get_cur_xxx will take the updated refs of the current 6661 * inode into account. 6662 * 6663 * On the other hand, if our current inode is a directory and couldn't 6664 * be moved/renamed because its parent was renamed/moved too and it has 6665 * a higher inode number, we can only move/rename our current inode 6666 * after we moved/renamed its parent. Therefore in this case operate on 6667 * the old path (pre move/rename) of our current inode, and the 6668 * move/rename will be performed later. 6669 */ 6670 if (refs_processed && !pending_move) 6671 sctx->send_progress = sctx->cur_ino + 1; 6672 6673 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6674 goto out; 6675 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6676 goto out; 6677 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6678 if (ret < 0) 6679 goto out; 6680 left_mode = info.mode; 6681 left_uid = info.uid; 6682 left_gid = info.gid; 6683 left_fileattr = info.fileattr; 6684 6685 if (!sctx->parent_root || sctx->cur_inode_new) { 6686 need_chown = 1; 6687 if (!S_ISLNK(sctx->cur_inode_mode)) 6688 need_chmod = 1; 6689 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6690 need_truncate = 0; 6691 } else { 6692 u64 old_size; 6693 6694 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6695 if (ret < 0) 6696 goto out; 6697 old_size = info.size; 6698 right_mode = info.mode; 6699 right_uid = info.uid; 6700 right_gid = info.gid; 6701 right_fileattr = info.fileattr; 6702 6703 if (left_uid != right_uid || left_gid != right_gid) 6704 need_chown = 1; 6705 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6706 need_chmod = 1; 6707 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6708 need_fileattr = true; 6709 if ((old_size == sctx->cur_inode_size) || 6710 (sctx->cur_inode_size > old_size && 6711 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6712 need_truncate = 0; 6713 } 6714 6715 if (S_ISREG(sctx->cur_inode_mode)) { 6716 if (need_send_hole(sctx)) { 6717 if (sctx->cur_inode_last_extent == (u64)-1 || 6718 sctx->cur_inode_last_extent < 6719 sctx->cur_inode_size) { 6720 ret = get_last_extent(sctx, (u64)-1); 6721 if (ret) 6722 goto out; 6723 } 6724 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6725 ret = range_is_hole_in_parent(sctx, 6726 sctx->cur_inode_last_extent, 6727 sctx->cur_inode_size); 6728 if (ret < 0) { 6729 goto out; 6730 } else if (ret == 0) { 6731 ret = send_hole(sctx, sctx->cur_inode_size); 6732 if (ret < 0) 6733 goto out; 6734 } else { 6735 /* Range is already a hole, skip. */ 6736 ret = 0; 6737 } 6738 } 6739 } 6740 if (need_truncate) { 6741 ret = send_truncate(sctx, sctx->cur_ino, 6742 sctx->cur_inode_gen, 6743 sctx->cur_inode_size); 6744 if (ret < 0) 6745 goto out; 6746 } 6747 } 6748 6749 if (need_chown) { 6750 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6751 left_uid, left_gid); 6752 if (ret < 0) 6753 goto out; 6754 } 6755 if (need_chmod) { 6756 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6757 left_mode); 6758 if (ret < 0) 6759 goto out; 6760 } 6761 if (need_fileattr) { 6762 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6763 left_fileattr); 6764 if (ret < 0) 6765 goto out; 6766 } 6767 6768 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6769 && sctx->cur_inode_needs_verity) { 6770 ret = process_verity(sctx); 6771 if (ret < 0) 6772 goto out; 6773 } 6774 6775 ret = send_capabilities(sctx); 6776 if (ret < 0) 6777 goto out; 6778 6779 /* 6780 * If other directory inodes depended on our current directory 6781 * inode's move/rename, now do their move/rename operations. 6782 */ 6783 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6784 ret = apply_children_dir_moves(sctx); 6785 if (ret) 6786 goto out; 6787 /* 6788 * Need to send that every time, no matter if it actually 6789 * changed between the two trees as we have done changes to 6790 * the inode before. If our inode is a directory and it's 6791 * waiting to be moved/renamed, we will send its utimes when 6792 * it's moved/renamed, therefore we don't need to do it here. 6793 */ 6794 sctx->send_progress = sctx->cur_ino + 1; 6795 6796 /* 6797 * If the current inode is a non-empty directory, delay issuing 6798 * the utimes command for it, as it's very likely we have inodes 6799 * with an higher number inside it. We want to issue the utimes 6800 * command only after adding all dentries to it. 6801 */ 6802 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6803 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6804 else 6805 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6806 6807 if (ret < 0) 6808 goto out; 6809 } 6810 6811 out: 6812 if (!ret) 6813 ret = trim_dir_utimes_cache(sctx); 6814 6815 return ret; 6816 } 6817 6818 static void close_current_inode(struct send_ctx *sctx) 6819 { 6820 u64 i_size; 6821 6822 if (sctx->cur_inode == NULL) 6823 return; 6824 6825 i_size = i_size_read(sctx->cur_inode); 6826 6827 /* 6828 * If we are doing an incremental send, we may have extents between the 6829 * last processed extent and the i_size that have not been processed 6830 * because they haven't changed but we may have read some of their pages 6831 * through readahead, see the comments at send_extent_data(). 6832 */ 6833 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6834 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6835 sctx->page_cache_clear_start, 6836 round_up(i_size, PAGE_SIZE) - 1); 6837 6838 iput(sctx->cur_inode); 6839 sctx->cur_inode = NULL; 6840 } 6841 6842 static int changed_inode(struct send_ctx *sctx, 6843 enum btrfs_compare_tree_result result) 6844 { 6845 int ret = 0; 6846 struct btrfs_key *key = sctx->cmp_key; 6847 struct btrfs_inode_item *left_ii = NULL; 6848 struct btrfs_inode_item *right_ii = NULL; 6849 u64 left_gen = 0; 6850 u64 right_gen = 0; 6851 6852 close_current_inode(sctx); 6853 6854 sctx->cur_ino = key->objectid; 6855 sctx->cur_inode_new_gen = false; 6856 sctx->cur_inode_last_extent = (u64)-1; 6857 sctx->cur_inode_next_write_offset = 0; 6858 sctx->ignore_cur_inode = false; 6859 fs_path_reset(&sctx->cur_inode_path); 6860 6861 /* 6862 * Set send_progress to current inode. This will tell all get_cur_xxx 6863 * functions that the current inode's refs are not updated yet. Later, 6864 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6865 */ 6866 sctx->send_progress = sctx->cur_ino; 6867 6868 if (result == BTRFS_COMPARE_TREE_NEW || 6869 result == BTRFS_COMPARE_TREE_CHANGED) { 6870 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6871 sctx->left_path->slots[0], 6872 struct btrfs_inode_item); 6873 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6874 left_ii); 6875 } else { 6876 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6877 sctx->right_path->slots[0], 6878 struct btrfs_inode_item); 6879 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6880 right_ii); 6881 } 6882 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6883 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6884 sctx->right_path->slots[0], 6885 struct btrfs_inode_item); 6886 6887 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6888 right_ii); 6889 6890 /* 6891 * The cur_ino = root dir case is special here. We can't treat 6892 * the inode as deleted+reused because it would generate a 6893 * stream that tries to delete/mkdir the root dir. 6894 */ 6895 if (left_gen != right_gen && 6896 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6897 sctx->cur_inode_new_gen = true; 6898 } 6899 6900 /* 6901 * Normally we do not find inodes with a link count of zero (orphans) 6902 * because the most common case is to create a snapshot and use it 6903 * for a send operation. However other less common use cases involve 6904 * using a subvolume and send it after turning it to RO mode just 6905 * after deleting all hard links of a file while holding an open 6906 * file descriptor against it or turning a RO snapshot into RW mode, 6907 * keep an open file descriptor against a file, delete it and then 6908 * turn the snapshot back to RO mode before using it for a send 6909 * operation. The former is what the receiver operation does. 6910 * Therefore, if we want to send these snapshots soon after they're 6911 * received, we need to handle orphan inodes as well. Moreover, orphans 6912 * can appear not only in the send snapshot but also in the parent 6913 * snapshot. Here are several cases: 6914 * 6915 * Case 1: BTRFS_COMPARE_TREE_NEW 6916 * | send snapshot | action 6917 * -------------------------------- 6918 * nlink | 0 | ignore 6919 * 6920 * Case 2: BTRFS_COMPARE_TREE_DELETED 6921 * | parent snapshot | action 6922 * ---------------------------------- 6923 * nlink | 0 | as usual 6924 * Note: No unlinks will be sent because there're no paths for it. 6925 * 6926 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6927 * | | parent snapshot | send snapshot | action 6928 * ----------------------------------------------------------------------- 6929 * subcase 1 | nlink | 0 | 0 | ignore 6930 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6931 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6932 * 6933 */ 6934 if (result == BTRFS_COMPARE_TREE_NEW) { 6935 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6936 sctx->ignore_cur_inode = true; 6937 goto out; 6938 } 6939 sctx->cur_inode_gen = left_gen; 6940 sctx->cur_inode_new = true; 6941 sctx->cur_inode_deleted = false; 6942 sctx->cur_inode_size = btrfs_inode_size( 6943 sctx->left_path->nodes[0], left_ii); 6944 sctx->cur_inode_mode = btrfs_inode_mode( 6945 sctx->left_path->nodes[0], left_ii); 6946 sctx->cur_inode_rdev = btrfs_inode_rdev( 6947 sctx->left_path->nodes[0], left_ii); 6948 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6949 ret = send_create_inode_if_needed(sctx); 6950 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6951 sctx->cur_inode_gen = right_gen; 6952 sctx->cur_inode_new = false; 6953 sctx->cur_inode_deleted = true; 6954 sctx->cur_inode_size = btrfs_inode_size( 6955 sctx->right_path->nodes[0], right_ii); 6956 sctx->cur_inode_mode = btrfs_inode_mode( 6957 sctx->right_path->nodes[0], right_ii); 6958 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6959 u32 new_nlinks, old_nlinks; 6960 6961 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6962 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6963 if (new_nlinks == 0 && old_nlinks == 0) { 6964 sctx->ignore_cur_inode = true; 6965 goto out; 6966 } else if (new_nlinks == 0 || old_nlinks == 0) { 6967 sctx->cur_inode_new_gen = 1; 6968 } 6969 /* 6970 * We need to do some special handling in case the inode was 6971 * reported as changed with a changed generation number. This 6972 * means that the original inode was deleted and new inode 6973 * reused the same inum. So we have to treat the old inode as 6974 * deleted and the new one as new. 6975 */ 6976 if (sctx->cur_inode_new_gen) { 6977 /* 6978 * First, process the inode as if it was deleted. 6979 */ 6980 if (old_nlinks > 0) { 6981 sctx->cur_inode_gen = right_gen; 6982 sctx->cur_inode_new = false; 6983 sctx->cur_inode_deleted = true; 6984 sctx->cur_inode_size = btrfs_inode_size( 6985 sctx->right_path->nodes[0], right_ii); 6986 sctx->cur_inode_mode = btrfs_inode_mode( 6987 sctx->right_path->nodes[0], right_ii); 6988 ret = process_all_refs(sctx, 6989 BTRFS_COMPARE_TREE_DELETED); 6990 if (ret < 0) 6991 goto out; 6992 } 6993 6994 /* 6995 * Now process the inode as if it was new. 6996 */ 6997 if (new_nlinks > 0) { 6998 sctx->cur_inode_gen = left_gen; 6999 sctx->cur_inode_new = true; 7000 sctx->cur_inode_deleted = false; 7001 sctx->cur_inode_size = btrfs_inode_size( 7002 sctx->left_path->nodes[0], 7003 left_ii); 7004 sctx->cur_inode_mode = btrfs_inode_mode( 7005 sctx->left_path->nodes[0], 7006 left_ii); 7007 sctx->cur_inode_rdev = btrfs_inode_rdev( 7008 sctx->left_path->nodes[0], 7009 left_ii); 7010 ret = send_create_inode_if_needed(sctx); 7011 if (ret < 0) 7012 goto out; 7013 7014 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 7015 if (ret < 0) 7016 goto out; 7017 /* 7018 * Advance send_progress now as we did not get 7019 * into process_recorded_refs_if_needed in the 7020 * new_gen case. 7021 */ 7022 sctx->send_progress = sctx->cur_ino + 1; 7023 7024 /* 7025 * Now process all extents and xattrs of the 7026 * inode as if they were all new. 7027 */ 7028 ret = process_all_extents(sctx); 7029 if (ret < 0) 7030 goto out; 7031 ret = process_all_new_xattrs(sctx); 7032 if (ret < 0) 7033 goto out; 7034 } 7035 } else { 7036 sctx->cur_inode_gen = left_gen; 7037 sctx->cur_inode_new = false; 7038 sctx->cur_inode_new_gen = false; 7039 sctx->cur_inode_deleted = false; 7040 sctx->cur_inode_size = btrfs_inode_size( 7041 sctx->left_path->nodes[0], left_ii); 7042 sctx->cur_inode_mode = btrfs_inode_mode( 7043 sctx->left_path->nodes[0], left_ii); 7044 } 7045 } 7046 7047 out: 7048 return ret; 7049 } 7050 7051 /* 7052 * We have to process new refs before deleted refs, but compare_trees gives us 7053 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 7054 * first and later process them in process_recorded_refs. 7055 * For the cur_inode_new_gen case, we skip recording completely because 7056 * changed_inode did already initiate processing of refs. The reason for this is 7057 * that in this case, compare_tree actually compares the refs of 2 different 7058 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 7059 * refs of the right tree as deleted and all refs of the left tree as new. 7060 */ 7061 static int changed_ref(struct send_ctx *sctx, 7062 enum btrfs_compare_tree_result result) 7063 { 7064 int ret = 0; 7065 7066 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7067 inconsistent_snapshot_error(sctx, result, "reference"); 7068 return -EIO; 7069 } 7070 7071 if (!sctx->cur_inode_new_gen && 7072 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 7073 if (result == BTRFS_COMPARE_TREE_NEW) 7074 ret = record_new_ref(sctx); 7075 else if (result == BTRFS_COMPARE_TREE_DELETED) 7076 ret = record_deleted_ref(sctx); 7077 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7078 ret = record_changed_ref(sctx); 7079 } 7080 7081 return ret; 7082 } 7083 7084 /* 7085 * Process new/deleted/changed xattrs. We skip processing in the 7086 * cur_inode_new_gen case because changed_inode did already initiate processing 7087 * of xattrs. The reason is the same as in changed_ref 7088 */ 7089 static int changed_xattr(struct send_ctx *sctx, 7090 enum btrfs_compare_tree_result result) 7091 { 7092 int ret = 0; 7093 7094 if (sctx->cur_ino != sctx->cmp_key->objectid) { 7095 inconsistent_snapshot_error(sctx, result, "xattr"); 7096 return -EIO; 7097 } 7098 7099 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7100 if (result == BTRFS_COMPARE_TREE_NEW) 7101 ret = process_new_xattr(sctx); 7102 else if (result == BTRFS_COMPARE_TREE_DELETED) 7103 ret = process_deleted_xattr(sctx); 7104 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7105 ret = process_changed_xattr(sctx); 7106 } 7107 7108 return ret; 7109 } 7110 7111 /* 7112 * Process new/deleted/changed extents. We skip processing in the 7113 * cur_inode_new_gen case because changed_inode did already initiate processing 7114 * of extents. The reason is the same as in changed_ref 7115 */ 7116 static int changed_extent(struct send_ctx *sctx, 7117 enum btrfs_compare_tree_result result) 7118 { 7119 int ret = 0; 7120 7121 /* 7122 * We have found an extent item that changed without the inode item 7123 * having changed. This can happen either after relocation (where the 7124 * disk_bytenr of an extent item is replaced at 7125 * relocation.c:replace_file_extents()) or after deduplication into a 7126 * file in both the parent and send snapshots (where an extent item can 7127 * get modified or replaced with a new one). Note that deduplication 7128 * updates the inode item, but it only changes the iversion (sequence 7129 * field in the inode item) of the inode, so if a file is deduplicated 7130 * the same amount of times in both the parent and send snapshots, its 7131 * iversion becomes the same in both snapshots, whence the inode item is 7132 * the same on both snapshots. 7133 */ 7134 if (sctx->cur_ino != sctx->cmp_key->objectid) 7135 return 0; 7136 7137 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7138 if (result != BTRFS_COMPARE_TREE_DELETED) 7139 ret = process_extent(sctx, sctx->left_path, 7140 sctx->cmp_key); 7141 } 7142 7143 return ret; 7144 } 7145 7146 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7147 { 7148 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7149 if (result == BTRFS_COMPARE_TREE_NEW) 7150 sctx->cur_inode_needs_verity = true; 7151 } 7152 return 0; 7153 } 7154 7155 static int dir_changed(struct send_ctx *sctx, u64 dir) 7156 { 7157 u64 orig_gen, new_gen; 7158 int ret; 7159 7160 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7161 if (ret) 7162 return ret; 7163 7164 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7165 if (ret) 7166 return ret; 7167 7168 return (orig_gen != new_gen) ? 1 : 0; 7169 } 7170 7171 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7172 struct btrfs_key *key) 7173 { 7174 struct btrfs_inode_extref *extref; 7175 struct extent_buffer *leaf; 7176 u64 dirid = 0, last_dirid = 0; 7177 unsigned long ptr; 7178 u32 item_size; 7179 u32 cur_offset = 0; 7180 int ref_name_len; 7181 int ret = 0; 7182 7183 /* Easy case, just check this one dirid */ 7184 if (key->type == BTRFS_INODE_REF_KEY) { 7185 dirid = key->offset; 7186 7187 ret = dir_changed(sctx, dirid); 7188 goto out; 7189 } 7190 7191 leaf = path->nodes[0]; 7192 item_size = btrfs_item_size(leaf, path->slots[0]); 7193 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7194 while (cur_offset < item_size) { 7195 extref = (struct btrfs_inode_extref *)(ptr + 7196 cur_offset); 7197 dirid = btrfs_inode_extref_parent(leaf, extref); 7198 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7199 cur_offset += ref_name_len + sizeof(*extref); 7200 if (dirid == last_dirid) 7201 continue; 7202 ret = dir_changed(sctx, dirid); 7203 if (ret) 7204 break; 7205 last_dirid = dirid; 7206 } 7207 out: 7208 return ret; 7209 } 7210 7211 /* 7212 * Updates compare related fields in sctx and simply forwards to the actual 7213 * changed_xxx functions. 7214 */ 7215 static int changed_cb(struct btrfs_path *left_path, 7216 struct btrfs_path *right_path, 7217 struct btrfs_key *key, 7218 enum btrfs_compare_tree_result result, 7219 struct send_ctx *sctx) 7220 { 7221 int ret; 7222 7223 /* 7224 * We can not hold the commit root semaphore here. This is because in 7225 * the case of sending and receiving to the same filesystem, using a 7226 * pipe, could result in a deadlock: 7227 * 7228 * 1) The task running send blocks on the pipe because it's full; 7229 * 7230 * 2) The task running receive, which is the only consumer of the pipe, 7231 * is waiting for a transaction commit (for example due to a space 7232 * reservation when doing a write or triggering a transaction commit 7233 * when creating a subvolume); 7234 * 7235 * 3) The transaction is waiting to write lock the commit root semaphore, 7236 * but can not acquire it since it's being held at 1). 7237 * 7238 * Down this call chain we write to the pipe through kernel_write(). 7239 * The same type of problem can also happen when sending to a file that 7240 * is stored in the same filesystem - when reserving space for a write 7241 * into the file, we can trigger a transaction commit. 7242 * 7243 * Our caller has supplied us with clones of leaves from the send and 7244 * parent roots, so we're safe here from a concurrent relocation and 7245 * further reallocation of metadata extents while we are here. Below we 7246 * also assert that the leaves are clones. 7247 */ 7248 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7249 7250 /* 7251 * We always have a send root, so left_path is never NULL. We will not 7252 * have a leaf when we have reached the end of the send root but have 7253 * not yet reached the end of the parent root. 7254 */ 7255 if (left_path->nodes[0]) 7256 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7257 &left_path->nodes[0]->bflags)); 7258 /* 7259 * When doing a full send we don't have a parent root, so right_path is 7260 * NULL. When doing an incremental send, we may have reached the end of 7261 * the parent root already, so we don't have a leaf at right_path. 7262 */ 7263 if (right_path && right_path->nodes[0]) 7264 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7265 &right_path->nodes[0]->bflags)); 7266 7267 if (result == BTRFS_COMPARE_TREE_SAME) { 7268 if (key->type == BTRFS_INODE_REF_KEY || 7269 key->type == BTRFS_INODE_EXTREF_KEY) { 7270 ret = compare_refs(sctx, left_path, key); 7271 if (!ret) 7272 return 0; 7273 if (ret < 0) 7274 return ret; 7275 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7276 return maybe_send_hole(sctx, left_path, key); 7277 } else { 7278 return 0; 7279 } 7280 result = BTRFS_COMPARE_TREE_CHANGED; 7281 } 7282 7283 sctx->left_path = left_path; 7284 sctx->right_path = right_path; 7285 sctx->cmp_key = key; 7286 7287 ret = finish_inode_if_needed(sctx, 0); 7288 if (ret < 0) 7289 goto out; 7290 7291 /* Ignore non-FS objects */ 7292 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7293 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7294 goto out; 7295 7296 if (key->type == BTRFS_INODE_ITEM_KEY) { 7297 ret = changed_inode(sctx, result); 7298 } else if (!sctx->ignore_cur_inode) { 7299 if (key->type == BTRFS_INODE_REF_KEY || 7300 key->type == BTRFS_INODE_EXTREF_KEY) 7301 ret = changed_ref(sctx, result); 7302 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7303 ret = changed_xattr(sctx, result); 7304 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7305 ret = changed_extent(sctx, result); 7306 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7307 key->offset == 0) 7308 ret = changed_verity(sctx, result); 7309 } 7310 7311 out: 7312 return ret; 7313 } 7314 7315 static int search_key_again(const struct send_ctx *sctx, 7316 struct btrfs_root *root, 7317 struct btrfs_path *path, 7318 const struct btrfs_key *key) 7319 { 7320 int ret; 7321 7322 if (!path->need_commit_sem) 7323 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7324 7325 /* 7326 * Roots used for send operations are readonly and no one can add, 7327 * update or remove keys from them, so we should be able to find our 7328 * key again. The only exception is deduplication, which can operate on 7329 * readonly roots and add, update or remove keys to/from them - but at 7330 * the moment we don't allow it to run in parallel with send. 7331 */ 7332 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7333 ASSERT(ret <= 0); 7334 if (ret > 0) { 7335 btrfs_print_tree(path->nodes[path->lowest_level], false); 7336 btrfs_err(root->fs_info, 7337 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7338 key->objectid, key->type, key->offset, 7339 (root == sctx->parent_root ? "parent" : "send"), 7340 btrfs_root_id(root), path->lowest_level, 7341 path->slots[path->lowest_level]); 7342 return -EUCLEAN; 7343 } 7344 7345 return ret; 7346 } 7347 7348 static int full_send_tree(struct send_ctx *sctx) 7349 { 7350 int ret; 7351 struct btrfs_root *send_root = sctx->send_root; 7352 struct btrfs_key key; 7353 struct btrfs_fs_info *fs_info = send_root->fs_info; 7354 struct btrfs_path *path; 7355 7356 path = alloc_path_for_send(); 7357 if (!path) 7358 return -ENOMEM; 7359 path->reada = READA_FORWARD_ALWAYS; 7360 7361 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7362 key.type = BTRFS_INODE_ITEM_KEY; 7363 key.offset = 0; 7364 7365 down_read(&fs_info->commit_root_sem); 7366 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7367 up_read(&fs_info->commit_root_sem); 7368 7369 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7370 if (ret < 0) 7371 goto out; 7372 if (ret) 7373 goto out_finish; 7374 7375 while (1) { 7376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7377 7378 ret = changed_cb(path, NULL, &key, 7379 BTRFS_COMPARE_TREE_NEW, sctx); 7380 if (ret < 0) 7381 goto out; 7382 7383 down_read(&fs_info->commit_root_sem); 7384 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7385 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7386 up_read(&fs_info->commit_root_sem); 7387 /* 7388 * A transaction used for relocating a block group was 7389 * committed or is about to finish its commit. Release 7390 * our path (leaf) and restart the search, so that we 7391 * avoid operating on any file extent items that are 7392 * stale, with a disk_bytenr that reflects a pre 7393 * relocation value. This way we avoid as much as 7394 * possible to fallback to regular writes when checking 7395 * if we can clone file ranges. 7396 */ 7397 btrfs_release_path(path); 7398 ret = search_key_again(sctx, send_root, path, &key); 7399 if (ret < 0) 7400 goto out; 7401 } else { 7402 up_read(&fs_info->commit_root_sem); 7403 } 7404 7405 ret = btrfs_next_item(send_root, path); 7406 if (ret < 0) 7407 goto out; 7408 if (ret) { 7409 ret = 0; 7410 break; 7411 } 7412 } 7413 7414 out_finish: 7415 ret = finish_inode_if_needed(sctx, 1); 7416 7417 out: 7418 btrfs_free_path(path); 7419 return ret; 7420 } 7421 7422 static int replace_node_with_clone(struct btrfs_path *path, int level) 7423 { 7424 struct extent_buffer *clone; 7425 7426 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7427 if (!clone) 7428 return -ENOMEM; 7429 7430 free_extent_buffer(path->nodes[level]); 7431 path->nodes[level] = clone; 7432 7433 return 0; 7434 } 7435 7436 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7437 { 7438 struct extent_buffer *eb; 7439 struct extent_buffer *parent = path->nodes[*level]; 7440 int slot = path->slots[*level]; 7441 const int nritems = btrfs_header_nritems(parent); 7442 u64 reada_max; 7443 u64 reada_done = 0; 7444 7445 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7446 ASSERT(*level != 0); 7447 7448 eb = btrfs_read_node_slot(parent, slot); 7449 if (IS_ERR(eb)) 7450 return PTR_ERR(eb); 7451 7452 /* 7453 * Trigger readahead for the next leaves we will process, so that it is 7454 * very likely that when we need them they are already in memory and we 7455 * will not block on disk IO. For nodes we only do readahead for one, 7456 * since the time window between processing nodes is typically larger. 7457 */ 7458 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7459 7460 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7461 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7462 btrfs_readahead_node_child(parent, slot); 7463 reada_done += eb->fs_info->nodesize; 7464 } 7465 } 7466 7467 path->nodes[*level - 1] = eb; 7468 path->slots[*level - 1] = 0; 7469 (*level)--; 7470 7471 if (*level == 0) 7472 return replace_node_with_clone(path, 0); 7473 7474 return 0; 7475 } 7476 7477 static int tree_move_next_or_upnext(struct btrfs_path *path, 7478 int *level, int root_level) 7479 { 7480 int ret = 0; 7481 int nritems; 7482 nritems = btrfs_header_nritems(path->nodes[*level]); 7483 7484 path->slots[*level]++; 7485 7486 while (path->slots[*level] >= nritems) { 7487 if (*level == root_level) { 7488 path->slots[*level] = nritems - 1; 7489 return -1; 7490 } 7491 7492 /* move upnext */ 7493 path->slots[*level] = 0; 7494 free_extent_buffer(path->nodes[*level]); 7495 path->nodes[*level] = NULL; 7496 (*level)++; 7497 path->slots[*level]++; 7498 7499 nritems = btrfs_header_nritems(path->nodes[*level]); 7500 ret = 1; 7501 } 7502 return ret; 7503 } 7504 7505 /* 7506 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7507 * or down. 7508 */ 7509 static int tree_advance(struct btrfs_path *path, 7510 int *level, int root_level, 7511 int allow_down, 7512 struct btrfs_key *key, 7513 u64 reada_min_gen) 7514 { 7515 int ret; 7516 7517 if (*level == 0 || !allow_down) { 7518 ret = tree_move_next_or_upnext(path, level, root_level); 7519 } else { 7520 ret = tree_move_down(path, level, reada_min_gen); 7521 } 7522 7523 /* 7524 * Even if we have reached the end of a tree, ret is -1, update the key 7525 * anyway, so that in case we need to restart due to a block group 7526 * relocation, we can assert that the last key of the root node still 7527 * exists in the tree. 7528 */ 7529 if (*level == 0) 7530 btrfs_item_key_to_cpu(path->nodes[*level], key, 7531 path->slots[*level]); 7532 else 7533 btrfs_node_key_to_cpu(path->nodes[*level], key, 7534 path->slots[*level]); 7535 7536 return ret; 7537 } 7538 7539 static int tree_compare_item(struct btrfs_path *left_path, 7540 struct btrfs_path *right_path, 7541 char *tmp_buf) 7542 { 7543 int cmp; 7544 int len1, len2; 7545 unsigned long off1, off2; 7546 7547 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7548 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7549 if (len1 != len2) 7550 return 1; 7551 7552 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7553 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7554 right_path->slots[0]); 7555 7556 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7557 7558 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7559 if (cmp) 7560 return 1; 7561 return 0; 7562 } 7563 7564 /* 7565 * A transaction used for relocating a block group was committed or is about to 7566 * finish its commit. Release our paths and restart the search, so that we are 7567 * not using stale extent buffers: 7568 * 7569 * 1) For levels > 0, we are only holding references of extent buffers, without 7570 * any locks on them, which does not prevent them from having been relocated 7571 * and reallocated after the last time we released the commit root semaphore. 7572 * The exception are the root nodes, for which we always have a clone, see 7573 * the comment at btrfs_compare_trees(); 7574 * 7575 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7576 * we are safe from the concurrent relocation and reallocation. However they 7577 * can have file extent items with a pre relocation disk_bytenr value, so we 7578 * restart the start from the current commit roots and clone the new leaves so 7579 * that we get the post relocation disk_bytenr values. Not doing so, could 7580 * make us clone the wrong data in case there are new extents using the old 7581 * disk_bytenr that happen to be shared. 7582 */ 7583 static int restart_after_relocation(struct btrfs_path *left_path, 7584 struct btrfs_path *right_path, 7585 const struct btrfs_key *left_key, 7586 const struct btrfs_key *right_key, 7587 int left_level, 7588 int right_level, 7589 const struct send_ctx *sctx) 7590 { 7591 int root_level; 7592 int ret; 7593 7594 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7595 7596 btrfs_release_path(left_path); 7597 btrfs_release_path(right_path); 7598 7599 /* 7600 * Since keys can not be added or removed to/from our roots because they 7601 * are readonly and we do not allow deduplication to run in parallel 7602 * (which can add, remove or change keys), the layout of the trees should 7603 * not change. 7604 */ 7605 left_path->lowest_level = left_level; 7606 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7607 if (ret < 0) 7608 return ret; 7609 7610 right_path->lowest_level = right_level; 7611 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7612 if (ret < 0) 7613 return ret; 7614 7615 /* 7616 * If the lowest level nodes are leaves, clone them so that they can be 7617 * safely used by changed_cb() while not under the protection of the 7618 * commit root semaphore, even if relocation and reallocation happens in 7619 * parallel. 7620 */ 7621 if (left_level == 0) { 7622 ret = replace_node_with_clone(left_path, 0); 7623 if (ret < 0) 7624 return ret; 7625 } 7626 7627 if (right_level == 0) { 7628 ret = replace_node_with_clone(right_path, 0); 7629 if (ret < 0) 7630 return ret; 7631 } 7632 7633 /* 7634 * Now clone the root nodes (unless they happen to be the leaves we have 7635 * already cloned). This is to protect against concurrent snapshotting of 7636 * the send and parent roots (see the comment at btrfs_compare_trees()). 7637 */ 7638 root_level = btrfs_header_level(sctx->send_root->commit_root); 7639 if (root_level > 0) { 7640 ret = replace_node_with_clone(left_path, root_level); 7641 if (ret < 0) 7642 return ret; 7643 } 7644 7645 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7646 if (root_level > 0) { 7647 ret = replace_node_with_clone(right_path, root_level); 7648 if (ret < 0) 7649 return ret; 7650 } 7651 7652 return 0; 7653 } 7654 7655 /* 7656 * This function compares two trees and calls the provided callback for 7657 * every changed/new/deleted item it finds. 7658 * If shared tree blocks are encountered, whole subtrees are skipped, making 7659 * the compare pretty fast on snapshotted subvolumes. 7660 * 7661 * This currently works on commit roots only. As commit roots are read only, 7662 * we don't do any locking. The commit roots are protected with transactions. 7663 * Transactions are ended and rejoined when a commit is tried in between. 7664 * 7665 * This function checks for modifications done to the trees while comparing. 7666 * If it detects a change, it aborts immediately. 7667 */ 7668 static int btrfs_compare_trees(struct btrfs_root *left_root, 7669 struct btrfs_root *right_root, struct send_ctx *sctx) 7670 { 7671 struct btrfs_fs_info *fs_info = left_root->fs_info; 7672 int ret; 7673 int cmp; 7674 struct btrfs_path *left_path = NULL; 7675 struct btrfs_path *right_path = NULL; 7676 struct btrfs_key left_key; 7677 struct btrfs_key right_key; 7678 char *tmp_buf = NULL; 7679 int left_root_level; 7680 int right_root_level; 7681 int left_level; 7682 int right_level; 7683 int left_end_reached = 0; 7684 int right_end_reached = 0; 7685 int advance_left = 0; 7686 int advance_right = 0; 7687 u64 left_blockptr; 7688 u64 right_blockptr; 7689 u64 left_gen; 7690 u64 right_gen; 7691 u64 reada_min_gen; 7692 7693 left_path = btrfs_alloc_path(); 7694 if (!left_path) { 7695 ret = -ENOMEM; 7696 goto out; 7697 } 7698 right_path = btrfs_alloc_path(); 7699 if (!right_path) { 7700 ret = -ENOMEM; 7701 goto out; 7702 } 7703 7704 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7705 if (!tmp_buf) { 7706 ret = -ENOMEM; 7707 goto out; 7708 } 7709 7710 left_path->search_commit_root = 1; 7711 left_path->skip_locking = 1; 7712 right_path->search_commit_root = 1; 7713 right_path->skip_locking = 1; 7714 7715 /* 7716 * Strategy: Go to the first items of both trees. Then do 7717 * 7718 * If both trees are at level 0 7719 * Compare keys of current items 7720 * If left < right treat left item as new, advance left tree 7721 * and repeat 7722 * If left > right treat right item as deleted, advance right tree 7723 * and repeat 7724 * If left == right do deep compare of items, treat as changed if 7725 * needed, advance both trees and repeat 7726 * If both trees are at the same level but not at level 0 7727 * Compare keys of current nodes/leafs 7728 * If left < right advance left tree and repeat 7729 * If left > right advance right tree and repeat 7730 * If left == right compare blockptrs of the next nodes/leafs 7731 * If they match advance both trees but stay at the same level 7732 * and repeat 7733 * If they don't match advance both trees while allowing to go 7734 * deeper and repeat 7735 * If tree levels are different 7736 * Advance the tree that needs it and repeat 7737 * 7738 * Advancing a tree means: 7739 * If we are at level 0, try to go to the next slot. If that's not 7740 * possible, go one level up and repeat. Stop when we found a level 7741 * where we could go to the next slot. We may at this point be on a 7742 * node or a leaf. 7743 * 7744 * If we are not at level 0 and not on shared tree blocks, go one 7745 * level deeper. 7746 * 7747 * If we are not at level 0 and on shared tree blocks, go one slot to 7748 * the right if possible or go up and right. 7749 */ 7750 7751 down_read(&fs_info->commit_root_sem); 7752 left_level = btrfs_header_level(left_root->commit_root); 7753 left_root_level = left_level; 7754 /* 7755 * We clone the root node of the send and parent roots to prevent races 7756 * with snapshot creation of these roots. Snapshot creation COWs the 7757 * root node of a tree, so after the transaction is committed the old 7758 * extent can be reallocated while this send operation is still ongoing. 7759 * So we clone them, under the commit root semaphore, to be race free. 7760 */ 7761 left_path->nodes[left_level] = 7762 btrfs_clone_extent_buffer(left_root->commit_root); 7763 if (!left_path->nodes[left_level]) { 7764 ret = -ENOMEM; 7765 goto out_unlock; 7766 } 7767 7768 right_level = btrfs_header_level(right_root->commit_root); 7769 right_root_level = right_level; 7770 right_path->nodes[right_level] = 7771 btrfs_clone_extent_buffer(right_root->commit_root); 7772 if (!right_path->nodes[right_level]) { 7773 ret = -ENOMEM; 7774 goto out_unlock; 7775 } 7776 /* 7777 * Our right root is the parent root, while the left root is the "send" 7778 * root. We know that all new nodes/leaves in the left root must have 7779 * a generation greater than the right root's generation, so we trigger 7780 * readahead for those nodes and leaves of the left root, as we know we 7781 * will need to read them at some point. 7782 */ 7783 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7784 7785 if (left_level == 0) 7786 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7787 &left_key, left_path->slots[left_level]); 7788 else 7789 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7790 &left_key, left_path->slots[left_level]); 7791 if (right_level == 0) 7792 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7793 &right_key, right_path->slots[right_level]); 7794 else 7795 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7796 &right_key, right_path->slots[right_level]); 7797 7798 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7799 7800 while (1) { 7801 if (need_resched() || 7802 rwsem_is_contended(&fs_info->commit_root_sem)) { 7803 up_read(&fs_info->commit_root_sem); 7804 cond_resched(); 7805 down_read(&fs_info->commit_root_sem); 7806 } 7807 7808 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7809 ret = restart_after_relocation(left_path, right_path, 7810 &left_key, &right_key, 7811 left_level, right_level, 7812 sctx); 7813 if (ret < 0) 7814 goto out_unlock; 7815 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7816 } 7817 7818 if (advance_left && !left_end_reached) { 7819 ret = tree_advance(left_path, &left_level, 7820 left_root_level, 7821 advance_left != ADVANCE_ONLY_NEXT, 7822 &left_key, reada_min_gen); 7823 if (ret == -1) 7824 left_end_reached = ADVANCE; 7825 else if (ret < 0) 7826 goto out_unlock; 7827 advance_left = 0; 7828 } 7829 if (advance_right && !right_end_reached) { 7830 ret = tree_advance(right_path, &right_level, 7831 right_root_level, 7832 advance_right != ADVANCE_ONLY_NEXT, 7833 &right_key, reada_min_gen); 7834 if (ret == -1) 7835 right_end_reached = ADVANCE; 7836 else if (ret < 0) 7837 goto out_unlock; 7838 advance_right = 0; 7839 } 7840 7841 if (left_end_reached && right_end_reached) { 7842 ret = 0; 7843 goto out_unlock; 7844 } else if (left_end_reached) { 7845 if (right_level == 0) { 7846 up_read(&fs_info->commit_root_sem); 7847 ret = changed_cb(left_path, right_path, 7848 &right_key, 7849 BTRFS_COMPARE_TREE_DELETED, 7850 sctx); 7851 if (ret < 0) 7852 goto out; 7853 down_read(&fs_info->commit_root_sem); 7854 } 7855 advance_right = ADVANCE; 7856 continue; 7857 } else if (right_end_reached) { 7858 if (left_level == 0) { 7859 up_read(&fs_info->commit_root_sem); 7860 ret = changed_cb(left_path, right_path, 7861 &left_key, 7862 BTRFS_COMPARE_TREE_NEW, 7863 sctx); 7864 if (ret < 0) 7865 goto out; 7866 down_read(&fs_info->commit_root_sem); 7867 } 7868 advance_left = ADVANCE; 7869 continue; 7870 } 7871 7872 if (left_level == 0 && right_level == 0) { 7873 up_read(&fs_info->commit_root_sem); 7874 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7875 if (cmp < 0) { 7876 ret = changed_cb(left_path, right_path, 7877 &left_key, 7878 BTRFS_COMPARE_TREE_NEW, 7879 sctx); 7880 advance_left = ADVANCE; 7881 } else if (cmp > 0) { 7882 ret = changed_cb(left_path, right_path, 7883 &right_key, 7884 BTRFS_COMPARE_TREE_DELETED, 7885 sctx); 7886 advance_right = ADVANCE; 7887 } else { 7888 enum btrfs_compare_tree_result result; 7889 7890 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7891 ret = tree_compare_item(left_path, right_path, 7892 tmp_buf); 7893 if (ret) 7894 result = BTRFS_COMPARE_TREE_CHANGED; 7895 else 7896 result = BTRFS_COMPARE_TREE_SAME; 7897 ret = changed_cb(left_path, right_path, 7898 &left_key, result, sctx); 7899 advance_left = ADVANCE; 7900 advance_right = ADVANCE; 7901 } 7902 7903 if (ret < 0) 7904 goto out; 7905 down_read(&fs_info->commit_root_sem); 7906 } else if (left_level == right_level) { 7907 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7908 if (cmp < 0) { 7909 advance_left = ADVANCE; 7910 } else if (cmp > 0) { 7911 advance_right = ADVANCE; 7912 } else { 7913 left_blockptr = btrfs_node_blockptr( 7914 left_path->nodes[left_level], 7915 left_path->slots[left_level]); 7916 right_blockptr = btrfs_node_blockptr( 7917 right_path->nodes[right_level], 7918 right_path->slots[right_level]); 7919 left_gen = btrfs_node_ptr_generation( 7920 left_path->nodes[left_level], 7921 left_path->slots[left_level]); 7922 right_gen = btrfs_node_ptr_generation( 7923 right_path->nodes[right_level], 7924 right_path->slots[right_level]); 7925 if (left_blockptr == right_blockptr && 7926 left_gen == right_gen) { 7927 /* 7928 * As we're on a shared block, don't 7929 * allow to go deeper. 7930 */ 7931 advance_left = ADVANCE_ONLY_NEXT; 7932 advance_right = ADVANCE_ONLY_NEXT; 7933 } else { 7934 advance_left = ADVANCE; 7935 advance_right = ADVANCE; 7936 } 7937 } 7938 } else if (left_level < right_level) { 7939 advance_right = ADVANCE; 7940 } else { 7941 advance_left = ADVANCE; 7942 } 7943 } 7944 7945 out_unlock: 7946 up_read(&fs_info->commit_root_sem); 7947 out: 7948 btrfs_free_path(left_path); 7949 btrfs_free_path(right_path); 7950 kvfree(tmp_buf); 7951 return ret; 7952 } 7953 7954 static int send_subvol(struct send_ctx *sctx) 7955 { 7956 int ret; 7957 7958 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7959 ret = send_header(sctx); 7960 if (ret < 0) 7961 goto out; 7962 } 7963 7964 ret = send_subvol_begin(sctx); 7965 if (ret < 0) 7966 goto out; 7967 7968 if (sctx->parent_root) { 7969 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7970 if (ret < 0) 7971 goto out; 7972 ret = finish_inode_if_needed(sctx, 1); 7973 if (ret < 0) 7974 goto out; 7975 } else { 7976 ret = full_send_tree(sctx); 7977 if (ret < 0) 7978 goto out; 7979 } 7980 7981 out: 7982 free_recorded_refs(sctx); 7983 return ret; 7984 } 7985 7986 /* 7987 * If orphan cleanup did remove any orphans from a root, it means the tree 7988 * was modified and therefore the commit root is not the same as the current 7989 * root anymore. This is a problem, because send uses the commit root and 7990 * therefore can see inode items that don't exist in the current root anymore, 7991 * and for example make calls to btrfs_iget, which will do tree lookups based 7992 * on the current root and not on the commit root. Those lookups will fail, 7993 * returning a -ESTALE error, and making send fail with that error. So make 7994 * sure a send does not see any orphans we have just removed, and that it will 7995 * see the same inodes regardless of whether a transaction commit happened 7996 * before it started (meaning that the commit root will be the same as the 7997 * current root) or not. 7998 */ 7999 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 8000 { 8001 struct btrfs_root *root = sctx->parent_root; 8002 8003 if (root && root->node != root->commit_root) 8004 return btrfs_commit_current_transaction(root); 8005 8006 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 8007 root = sctx->clone_roots[i].root; 8008 if (root->node != root->commit_root) 8009 return btrfs_commit_current_transaction(root); 8010 } 8011 8012 return 0; 8013 } 8014 8015 /* 8016 * Make sure any existing dellaloc is flushed for any root used by a send 8017 * operation so that we do not miss any data and we do not race with writeback 8018 * finishing and changing a tree while send is using the tree. This could 8019 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 8020 * a send operation then uses the subvolume. 8021 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 8022 */ 8023 static int flush_delalloc_roots(struct send_ctx *sctx) 8024 { 8025 struct btrfs_root *root = sctx->parent_root; 8026 int ret; 8027 int i; 8028 8029 if (root) { 8030 ret = btrfs_start_delalloc_snapshot(root, false); 8031 if (ret) 8032 return ret; 8033 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8034 } 8035 8036 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8037 root = sctx->clone_roots[i].root; 8038 ret = btrfs_start_delalloc_snapshot(root, false); 8039 if (ret) 8040 return ret; 8041 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 8042 } 8043 8044 return 0; 8045 } 8046 8047 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 8048 { 8049 spin_lock(&root->root_item_lock); 8050 root->send_in_progress--; 8051 /* 8052 * Not much left to do, we don't know why it's unbalanced and 8053 * can't blindly reset it to 0. 8054 */ 8055 if (root->send_in_progress < 0) 8056 btrfs_err(root->fs_info, 8057 "send_in_progress unbalanced %d root %llu", 8058 root->send_in_progress, btrfs_root_id(root)); 8059 spin_unlock(&root->root_item_lock); 8060 } 8061 8062 static void dedupe_in_progress_warn(const struct btrfs_root *root) 8063 { 8064 btrfs_warn_rl(root->fs_info, 8065 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 8066 btrfs_root_id(root), root->dedupe_in_progress); 8067 } 8068 8069 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) 8070 { 8071 int ret = 0; 8072 struct btrfs_fs_info *fs_info = send_root->fs_info; 8073 struct btrfs_root *clone_root; 8074 struct send_ctx *sctx = NULL; 8075 u32 i; 8076 u64 *clone_sources_tmp = NULL; 8077 int clone_sources_to_rollback = 0; 8078 size_t alloc_size; 8079 int sort_clone_roots = 0; 8080 struct btrfs_lru_cache_entry *entry; 8081 struct btrfs_lru_cache_entry *tmp; 8082 8083 if (!capable(CAP_SYS_ADMIN)) 8084 return -EPERM; 8085 8086 /* 8087 * The subvolume must remain read-only during send, protect against 8088 * making it RW. This also protects against deletion. 8089 */ 8090 spin_lock(&send_root->root_item_lock); 8091 /* 8092 * Unlikely but possible, if the subvolume is marked for deletion but 8093 * is slow to remove the directory entry, send can still be started. 8094 */ 8095 if (btrfs_root_dead(send_root)) { 8096 spin_unlock(&send_root->root_item_lock); 8097 return -EPERM; 8098 } 8099 /* Userspace tools do the checks and warn the user if it's not RO. */ 8100 if (!btrfs_root_readonly(send_root)) { 8101 spin_unlock(&send_root->root_item_lock); 8102 return -EPERM; 8103 } 8104 if (send_root->dedupe_in_progress) { 8105 dedupe_in_progress_warn(send_root); 8106 spin_unlock(&send_root->root_item_lock); 8107 return -EAGAIN; 8108 } 8109 send_root->send_in_progress++; 8110 spin_unlock(&send_root->root_item_lock); 8111 8112 /* 8113 * Check that we don't overflow at later allocations, we request 8114 * clone_sources_count + 1 items, and compare to unsigned long inside 8115 * access_ok. Also set an upper limit for allocation size so this can't 8116 * easily exhaust memory. Max number of clone sources is about 200K. 8117 */ 8118 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8119 ret = -EINVAL; 8120 goto out; 8121 } 8122 8123 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8124 ret = -EOPNOTSUPP; 8125 goto out; 8126 } 8127 8128 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8129 if (!sctx) { 8130 ret = -ENOMEM; 8131 goto out; 8132 } 8133 8134 init_path(&sctx->cur_inode_path); 8135 INIT_LIST_HEAD(&sctx->new_refs); 8136 INIT_LIST_HEAD(&sctx->deleted_refs); 8137 8138 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8139 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8140 btrfs_lru_cache_init(&sctx->dir_created_cache, 8141 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8142 /* 8143 * This cache is periodically trimmed to a fixed size elsewhere, see 8144 * cache_dir_utimes() and trim_dir_utimes_cache(). 8145 */ 8146 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8147 8148 sctx->pending_dir_moves = RB_ROOT; 8149 sctx->waiting_dir_moves = RB_ROOT; 8150 sctx->orphan_dirs = RB_ROOT; 8151 sctx->rbtree_new_refs = RB_ROOT; 8152 sctx->rbtree_deleted_refs = RB_ROOT; 8153 8154 sctx->flags = arg->flags; 8155 8156 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8157 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8158 ret = -EPROTO; 8159 goto out; 8160 } 8161 /* Zero means "use the highest version" */ 8162 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8163 } else { 8164 sctx->proto = 1; 8165 } 8166 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8167 ret = -EINVAL; 8168 goto out; 8169 } 8170 8171 sctx->send_filp = fget(arg->send_fd); 8172 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8173 ret = -EBADF; 8174 goto out; 8175 } 8176 8177 sctx->send_root = send_root; 8178 sctx->clone_roots_cnt = arg->clone_sources_count; 8179 8180 if (sctx->proto >= 2) { 8181 u32 send_buf_num_pages; 8182 8183 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8184 sctx->send_buf = vmalloc(sctx->send_max_size); 8185 if (!sctx->send_buf) { 8186 ret = -ENOMEM; 8187 goto out; 8188 } 8189 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8190 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8191 sizeof(*sctx->send_buf_pages), 8192 GFP_KERNEL); 8193 if (!sctx->send_buf_pages) { 8194 ret = -ENOMEM; 8195 goto out; 8196 } 8197 for (i = 0; i < send_buf_num_pages; i++) { 8198 sctx->send_buf_pages[i] = 8199 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8200 } 8201 } else { 8202 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8203 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8204 } 8205 if (!sctx->send_buf) { 8206 ret = -ENOMEM; 8207 goto out; 8208 } 8209 8210 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8211 sizeof(*sctx->clone_roots), 8212 GFP_KERNEL); 8213 if (!sctx->clone_roots) { 8214 ret = -ENOMEM; 8215 goto out; 8216 } 8217 8218 alloc_size = array_size(sizeof(*arg->clone_sources), 8219 arg->clone_sources_count); 8220 8221 if (arg->clone_sources_count) { 8222 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8223 if (!clone_sources_tmp) { 8224 ret = -ENOMEM; 8225 goto out; 8226 } 8227 8228 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8229 alloc_size); 8230 if (ret) { 8231 ret = -EFAULT; 8232 goto out; 8233 } 8234 8235 for (i = 0; i < arg->clone_sources_count; i++) { 8236 clone_root = btrfs_get_fs_root(fs_info, 8237 clone_sources_tmp[i], true); 8238 if (IS_ERR(clone_root)) { 8239 ret = PTR_ERR(clone_root); 8240 goto out; 8241 } 8242 spin_lock(&clone_root->root_item_lock); 8243 if (!btrfs_root_readonly(clone_root) || 8244 btrfs_root_dead(clone_root)) { 8245 spin_unlock(&clone_root->root_item_lock); 8246 btrfs_put_root(clone_root); 8247 ret = -EPERM; 8248 goto out; 8249 } 8250 if (clone_root->dedupe_in_progress) { 8251 dedupe_in_progress_warn(clone_root); 8252 spin_unlock(&clone_root->root_item_lock); 8253 btrfs_put_root(clone_root); 8254 ret = -EAGAIN; 8255 goto out; 8256 } 8257 clone_root->send_in_progress++; 8258 spin_unlock(&clone_root->root_item_lock); 8259 8260 sctx->clone_roots[i].root = clone_root; 8261 clone_sources_to_rollback = i + 1; 8262 } 8263 kvfree(clone_sources_tmp); 8264 clone_sources_tmp = NULL; 8265 } 8266 8267 if (arg->parent_root) { 8268 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8269 true); 8270 if (IS_ERR(sctx->parent_root)) { 8271 ret = PTR_ERR(sctx->parent_root); 8272 goto out; 8273 } 8274 8275 spin_lock(&sctx->parent_root->root_item_lock); 8276 sctx->parent_root->send_in_progress++; 8277 if (!btrfs_root_readonly(sctx->parent_root) || 8278 btrfs_root_dead(sctx->parent_root)) { 8279 spin_unlock(&sctx->parent_root->root_item_lock); 8280 ret = -EPERM; 8281 goto out; 8282 } 8283 if (sctx->parent_root->dedupe_in_progress) { 8284 dedupe_in_progress_warn(sctx->parent_root); 8285 spin_unlock(&sctx->parent_root->root_item_lock); 8286 ret = -EAGAIN; 8287 goto out; 8288 } 8289 spin_unlock(&sctx->parent_root->root_item_lock); 8290 } 8291 8292 /* 8293 * Clones from send_root are allowed, but only if the clone source 8294 * is behind the current send position. This is checked while searching 8295 * for possible clone sources. 8296 */ 8297 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8298 btrfs_grab_root(sctx->send_root); 8299 8300 /* We do a bsearch later */ 8301 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8302 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8303 NULL); 8304 sort_clone_roots = 1; 8305 8306 ret = flush_delalloc_roots(sctx); 8307 if (ret) 8308 goto out; 8309 8310 ret = ensure_commit_roots_uptodate(sctx); 8311 if (ret) 8312 goto out; 8313 8314 ret = send_subvol(sctx); 8315 if (ret < 0) 8316 goto out; 8317 8318 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8319 ret = send_utimes(sctx, entry->key, entry->gen); 8320 if (ret < 0) 8321 goto out; 8322 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8323 } 8324 8325 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8326 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8327 if (ret < 0) 8328 goto out; 8329 ret = send_cmd(sctx); 8330 if (ret < 0) 8331 goto out; 8332 } 8333 8334 out: 8335 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8336 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8337 struct rb_node *n; 8338 struct pending_dir_move *pm; 8339 8340 n = rb_first(&sctx->pending_dir_moves); 8341 pm = rb_entry(n, struct pending_dir_move, node); 8342 while (!list_empty(&pm->list)) { 8343 struct pending_dir_move *pm2; 8344 8345 pm2 = list_first_entry(&pm->list, 8346 struct pending_dir_move, list); 8347 free_pending_move(sctx, pm2); 8348 } 8349 free_pending_move(sctx, pm); 8350 } 8351 8352 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8353 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8354 struct rb_node *n; 8355 struct waiting_dir_move *dm; 8356 8357 n = rb_first(&sctx->waiting_dir_moves); 8358 dm = rb_entry(n, struct waiting_dir_move, node); 8359 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8360 kfree(dm); 8361 } 8362 8363 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8364 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8365 struct rb_node *n; 8366 struct orphan_dir_info *odi; 8367 8368 n = rb_first(&sctx->orphan_dirs); 8369 odi = rb_entry(n, struct orphan_dir_info, node); 8370 free_orphan_dir_info(sctx, odi); 8371 } 8372 8373 if (sort_clone_roots) { 8374 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8375 btrfs_root_dec_send_in_progress( 8376 sctx->clone_roots[i].root); 8377 btrfs_put_root(sctx->clone_roots[i].root); 8378 } 8379 } else { 8380 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8381 btrfs_root_dec_send_in_progress( 8382 sctx->clone_roots[i].root); 8383 btrfs_put_root(sctx->clone_roots[i].root); 8384 } 8385 8386 btrfs_root_dec_send_in_progress(send_root); 8387 } 8388 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8389 btrfs_root_dec_send_in_progress(sctx->parent_root); 8390 btrfs_put_root(sctx->parent_root); 8391 } 8392 8393 kvfree(clone_sources_tmp); 8394 8395 if (sctx) { 8396 if (sctx->send_filp) 8397 fput(sctx->send_filp); 8398 8399 kvfree(sctx->clone_roots); 8400 kfree(sctx->send_buf_pages); 8401 kvfree(sctx->send_buf); 8402 kvfree(sctx->verity_descriptor); 8403 8404 close_current_inode(sctx); 8405 8406 btrfs_lru_cache_clear(&sctx->name_cache); 8407 btrfs_lru_cache_clear(&sctx->backref_cache); 8408 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8409 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8410 8411 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) 8412 kfree(sctx->cur_inode_path.buf); 8413 8414 kfree(sctx); 8415 } 8416 8417 return ret; 8418 } 8419