1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2012 Alexander Block. All rights reserved. 4 */ 5 6 #include <linux/bsearch.h> 7 #include <linux/falloc.h> 8 #include <linux/fs.h> 9 #include <linux/file.h> 10 #include <linux/sort.h> 11 #include <linux/mount.h> 12 #include <linux/xattr.h> 13 #include <linux/posix_acl_xattr.h> 14 #include <linux/radix-tree.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/compat.h> 18 #include <linux/crc32c.h> 19 #include <linux/fsverity.h> 20 #include "send.h" 21 #include "ctree.h" 22 #include "backref.h" 23 #include "locking.h" 24 #include "disk-io.h" 25 #include "btrfs_inode.h" 26 #include "transaction.h" 27 #include "compression.h" 28 #include "print-tree.h" 29 #include "accessors.h" 30 #include "dir-item.h" 31 #include "file-item.h" 32 #include "ioctl.h" 33 #include "verity.h" 34 #include "lru_cache.h" 35 36 /* 37 * Maximum number of references an extent can have in order for us to attempt to 38 * issue clone operations instead of write operations. This currently exists to 39 * avoid hitting limitations of the backreference walking code (taking a lot of 40 * time and using too much memory for extents with large number of references). 41 */ 42 #define SEND_MAX_EXTENT_REFS 1024 43 44 /* 45 * A fs_path is a helper to dynamically build path names with unknown size. 46 * It reallocates the internal buffer on demand. 47 * It allows fast adding of path elements on the right side (normal path) and 48 * fast adding to the left side (reversed path). A reversed path can also be 49 * unreversed if needed. 50 */ 51 struct fs_path { 52 union { 53 struct { 54 char *start; 55 char *end; 56 57 char *buf; 58 unsigned short buf_len:15; 59 unsigned short reversed:1; 60 char inline_buf[]; 61 }; 62 /* 63 * Average path length does not exceed 200 bytes, we'll have 64 * better packing in the slab and higher chance to satisfy 65 * an allocation later during send. 66 */ 67 char pad[256]; 68 }; 69 }; 70 #define FS_PATH_INLINE_SIZE \ 71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf)) 72 73 74 /* reused for each extent */ 75 struct clone_root { 76 struct btrfs_root *root; 77 u64 ino; 78 u64 offset; 79 u64 num_bytes; 80 bool found_ref; 81 }; 82 83 #define SEND_MAX_NAME_CACHE_SIZE 256 84 85 /* 86 * Limit the root_ids array of struct backref_cache_entry to 17 elements. 87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which 88 * can be satisfied from the kmalloc-192 slab, without wasting any space. 89 * The most common case is to have a single root for cloning, which corresponds 90 * to the send root. Having the user specify more than 16 clone roots is not 91 * common, and in such rare cases we simply don't use caching if the number of 92 * cloning roots that lead down to a leaf is more than 17. 93 */ 94 #define SEND_MAX_BACKREF_CACHE_ROOTS 17 95 96 /* 97 * Max number of entries in the cache. 98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding 99 * maple tree's internal nodes, is 24K. 100 */ 101 #define SEND_MAX_BACKREF_CACHE_SIZE 128 102 103 /* 104 * A backref cache entry maps a leaf to a list of IDs of roots from which the 105 * leaf is accessible and we can use for clone operations. 106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on 107 * x86_64). 108 */ 109 struct backref_cache_entry { 110 struct btrfs_lru_cache_entry entry; 111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS]; 112 /* Number of valid elements in the root_ids array. */ 113 int num_roots; 114 }; 115 116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 117 static_assert(offsetof(struct backref_cache_entry, entry) == 0); 118 119 /* 120 * Max number of entries in the cache that stores directories that were already 121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 124 */ 125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE 64 126 127 /* 128 * Max number of entries in the cache that stores directories that were already 129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses 130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but 131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64). 132 */ 133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64 134 135 struct send_ctx { 136 struct file *send_filp; 137 loff_t send_off; 138 char *send_buf; 139 u32 send_size; 140 u32 send_max_size; 141 /* 142 * Whether BTRFS_SEND_A_DATA attribute was already added to current 143 * command (since protocol v2, data must be the last attribute). 144 */ 145 bool put_data; 146 struct page **send_buf_pages; 147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */ 148 /* Protocol version compatibility requested */ 149 u32 proto; 150 151 struct btrfs_root *send_root; 152 struct btrfs_root *parent_root; 153 struct clone_root *clone_roots; 154 int clone_roots_cnt; 155 156 /* current state of the compare_tree call */ 157 struct btrfs_path *left_path; 158 struct btrfs_path *right_path; 159 struct btrfs_key *cmp_key; 160 161 /* 162 * Keep track of the generation of the last transaction that was used 163 * for relocating a block group. This is periodically checked in order 164 * to detect if a relocation happened since the last check, so that we 165 * don't operate on stale extent buffers for nodes (level >= 1) or on 166 * stale disk_bytenr values of file extent items. 167 */ 168 u64 last_reloc_trans; 169 170 /* 171 * infos of the currently processed inode. In case of deleted inodes, 172 * these are the values from the deleted inode. 173 */ 174 u64 cur_ino; 175 u64 cur_inode_gen; 176 u64 cur_inode_size; 177 u64 cur_inode_mode; 178 u64 cur_inode_rdev; 179 u64 cur_inode_last_extent; 180 u64 cur_inode_next_write_offset; 181 bool cur_inode_new; 182 bool cur_inode_new_gen; 183 bool cur_inode_deleted; 184 bool ignore_cur_inode; 185 bool cur_inode_needs_verity; 186 void *verity_descriptor; 187 188 u64 send_progress; 189 190 struct list_head new_refs; 191 struct list_head deleted_refs; 192 193 struct btrfs_lru_cache name_cache; 194 195 /* 196 * The inode we are currently processing. It's not NULL only when we 197 * need to issue write commands for data extents from this inode. 198 */ 199 struct inode *cur_inode; 200 struct file_ra_state ra; 201 u64 page_cache_clear_start; 202 bool clean_page_cache; 203 204 /* 205 * We process inodes by their increasing order, so if before an 206 * incremental send we reverse the parent/child relationship of 207 * directories such that a directory with a lower inode number was 208 * the parent of a directory with a higher inode number, and the one 209 * becoming the new parent got renamed too, we can't rename/move the 210 * directory with lower inode number when we finish processing it - we 211 * must process the directory with higher inode number first, then 212 * rename/move it and then rename/move the directory with lower inode 213 * number. Example follows. 214 * 215 * Tree state when the first send was performed: 216 * 217 * . 218 * |-- a (ino 257) 219 * |-- b (ino 258) 220 * | 221 * | 222 * |-- c (ino 259) 223 * | |-- d (ino 260) 224 * | 225 * |-- c2 (ino 261) 226 * 227 * Tree state when the second (incremental) send is performed: 228 * 229 * . 230 * |-- a (ino 257) 231 * |-- b (ino 258) 232 * |-- c2 (ino 261) 233 * |-- d2 (ino 260) 234 * |-- cc (ino 259) 235 * 236 * The sequence of steps that lead to the second state was: 237 * 238 * mv /a/b/c/d /a/b/c2/d2 239 * mv /a/b/c /a/b/c2/d2/cc 240 * 241 * "c" has lower inode number, but we can't move it (2nd mv operation) 242 * before we move "d", which has higher inode number. 243 * 244 * So we just memorize which move/rename operations must be performed 245 * later when their respective parent is processed and moved/renamed. 246 */ 247 248 /* Indexed by parent directory inode number. */ 249 struct rb_root pending_dir_moves; 250 251 /* 252 * Reverse index, indexed by the inode number of a directory that 253 * is waiting for the move/rename of its immediate parent before its 254 * own move/rename can be performed. 255 */ 256 struct rb_root waiting_dir_moves; 257 258 /* 259 * A directory that is going to be rm'ed might have a child directory 260 * which is in the pending directory moves index above. In this case, 261 * the directory can only be removed after the move/rename of its child 262 * is performed. Example: 263 * 264 * Parent snapshot: 265 * 266 * . (ino 256) 267 * |-- a/ (ino 257) 268 * |-- b/ (ino 258) 269 * |-- c/ (ino 259) 270 * | |-- x/ (ino 260) 271 * | 272 * |-- y/ (ino 261) 273 * 274 * Send snapshot: 275 * 276 * . (ino 256) 277 * |-- a/ (ino 257) 278 * |-- b/ (ino 258) 279 * |-- YY/ (ino 261) 280 * |-- x/ (ino 260) 281 * 282 * Sequence of steps that lead to the send snapshot: 283 * rm -f /a/b/c/foo.txt 284 * mv /a/b/y /a/b/YY 285 * mv /a/b/c/x /a/b/YY 286 * rmdir /a/b/c 287 * 288 * When the child is processed, its move/rename is delayed until its 289 * parent is processed (as explained above), but all other operations 290 * like update utimes, chown, chgrp, etc, are performed and the paths 291 * that it uses for those operations must use the orphanized name of 292 * its parent (the directory we're going to rm later), so we need to 293 * memorize that name. 294 * 295 * Indexed by the inode number of the directory to be deleted. 296 */ 297 struct rb_root orphan_dirs; 298 299 struct rb_root rbtree_new_refs; 300 struct rb_root rbtree_deleted_refs; 301 302 struct btrfs_lru_cache backref_cache; 303 u64 backref_cache_last_reloc_trans; 304 305 struct btrfs_lru_cache dir_created_cache; 306 struct btrfs_lru_cache dir_utimes_cache; 307 308 /* Must be last as it ends in a flexible-array member. */ 309 struct fs_path cur_inode_path; 310 }; 311 312 struct pending_dir_move { 313 struct rb_node node; 314 struct list_head list; 315 u64 parent_ino; 316 u64 ino; 317 u64 gen; 318 struct list_head update_refs; 319 }; 320 321 struct waiting_dir_move { 322 struct rb_node node; 323 u64 ino; 324 /* 325 * There might be some directory that could not be removed because it 326 * was waiting for this directory inode to be moved first. Therefore 327 * after this directory is moved, we can try to rmdir the ino rmdir_ino. 328 */ 329 u64 rmdir_ino; 330 u64 rmdir_gen; 331 bool orphanized; 332 }; 333 334 struct orphan_dir_info { 335 struct rb_node node; 336 u64 ino; 337 u64 gen; 338 u64 last_dir_index_offset; 339 u64 dir_high_seq_ino; 340 }; 341 342 struct name_cache_entry { 343 /* 344 * The key in the entry is an inode number, and the generation matches 345 * the inode's generation. 346 */ 347 struct btrfs_lru_cache_entry entry; 348 u64 parent_ino; 349 u64 parent_gen; 350 int ret; 351 int need_later_update; 352 /* Name length without NUL terminator. */ 353 int name_len; 354 /* Not NUL terminated. */ 355 char name[] __counted_by(name_len) __nonstring; 356 }; 357 358 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */ 359 static_assert(offsetof(struct name_cache_entry, entry) == 0); 360 361 #define ADVANCE 1 362 #define ADVANCE_ONLY_NEXT -1 363 364 enum btrfs_compare_tree_result { 365 BTRFS_COMPARE_TREE_NEW, 366 BTRFS_COMPARE_TREE_DELETED, 367 BTRFS_COMPARE_TREE_CHANGED, 368 BTRFS_COMPARE_TREE_SAME, 369 }; 370 371 __cold 372 static void inconsistent_snapshot_error(struct send_ctx *sctx, 373 enum btrfs_compare_tree_result result, 374 const char *what) 375 { 376 const char *result_string; 377 378 switch (result) { 379 case BTRFS_COMPARE_TREE_NEW: 380 result_string = "new"; 381 break; 382 case BTRFS_COMPARE_TREE_DELETED: 383 result_string = "deleted"; 384 break; 385 case BTRFS_COMPARE_TREE_CHANGED: 386 result_string = "updated"; 387 break; 388 case BTRFS_COMPARE_TREE_SAME: 389 DEBUG_WARN("no change between trees"); 390 result_string = "unchanged"; 391 break; 392 default: 393 DEBUG_WARN("unexpected comparison result %d", result); 394 result_string = "unexpected"; 395 } 396 397 btrfs_err(sctx->send_root->fs_info, 398 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu", 399 result_string, what, sctx->cmp_key->objectid, 400 btrfs_root_id(sctx->send_root), 401 (sctx->parent_root ? btrfs_root_id(sctx->parent_root) : 0)); 402 } 403 404 __maybe_unused 405 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd) 406 { 407 switch (sctx->proto) { 408 case 1: return cmd <= BTRFS_SEND_C_MAX_V1; 409 case 2: return cmd <= BTRFS_SEND_C_MAX_V2; 410 case 3: return cmd <= BTRFS_SEND_C_MAX_V3; 411 default: return false; 412 } 413 } 414 415 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino); 416 417 static struct waiting_dir_move * 418 get_waiting_dir_move(struct send_ctx *sctx, u64 ino); 419 420 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen); 421 422 static int need_send_hole(struct send_ctx *sctx) 423 { 424 return (sctx->parent_root && !sctx->cur_inode_new && 425 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted && 426 S_ISREG(sctx->cur_inode_mode)); 427 } 428 429 static void fs_path_reset(struct fs_path *p) 430 { 431 if (p->reversed) 432 p->start = p->buf + p->buf_len - 1; 433 else 434 p->start = p->buf; 435 436 p->end = p->start; 437 *p->start = 0; 438 } 439 440 static void init_path(struct fs_path *p) 441 { 442 p->reversed = 0; 443 p->buf = p->inline_buf; 444 p->buf_len = FS_PATH_INLINE_SIZE; 445 fs_path_reset(p); 446 } 447 448 static struct fs_path *fs_path_alloc(void) 449 { 450 struct fs_path *p; 451 452 p = kmalloc(sizeof(*p), GFP_KERNEL); 453 if (!p) 454 return NULL; 455 init_path(p); 456 return p; 457 } 458 459 static struct fs_path *fs_path_alloc_reversed(void) 460 { 461 struct fs_path *p; 462 463 p = fs_path_alloc(); 464 if (!p) 465 return NULL; 466 p->reversed = 1; 467 fs_path_reset(p); 468 return p; 469 } 470 471 static void fs_path_free(struct fs_path *p) 472 { 473 if (!p) 474 return; 475 if (p->buf != p->inline_buf) 476 kfree(p->buf); 477 kfree(p); 478 } 479 480 static inline int fs_path_len(const struct fs_path *p) 481 { 482 return p->end - p->start; 483 } 484 485 static int fs_path_ensure_buf(struct fs_path *p, int len) 486 { 487 char *tmp_buf; 488 int path_len; 489 int old_buf_len; 490 491 len++; 492 493 if (p->buf_len >= len) 494 return 0; 495 496 if (WARN_ON(len > PATH_MAX)) 497 return -ENAMETOOLONG; 498 499 path_len = fs_path_len(p); 500 old_buf_len = p->buf_len; 501 502 /* 503 * Allocate to the next largest kmalloc bucket size, to let 504 * the fast path happen most of the time. 505 */ 506 len = kmalloc_size_roundup(len); 507 /* 508 * First time the inline_buf does not suffice 509 */ 510 if (p->buf == p->inline_buf) { 511 tmp_buf = kmalloc(len, GFP_KERNEL); 512 if (tmp_buf) 513 memcpy(tmp_buf, p->buf, old_buf_len); 514 } else { 515 tmp_buf = krealloc(p->buf, len, GFP_KERNEL); 516 } 517 if (!tmp_buf) 518 return -ENOMEM; 519 p->buf = tmp_buf; 520 p->buf_len = len; 521 522 if (p->reversed) { 523 tmp_buf = p->buf + old_buf_len - path_len - 1; 524 p->end = p->buf + p->buf_len - 1; 525 p->start = p->end - path_len; 526 memmove(p->start, tmp_buf, path_len + 1); 527 } else { 528 p->start = p->buf; 529 p->end = p->start + path_len; 530 } 531 return 0; 532 } 533 534 static int fs_path_prepare_for_add(struct fs_path *p, int name_len, 535 char **prepared) 536 { 537 int ret; 538 int new_len; 539 540 new_len = fs_path_len(p) + name_len; 541 if (p->start != p->end) 542 new_len++; 543 ret = fs_path_ensure_buf(p, new_len); 544 if (ret < 0) 545 return ret; 546 547 if (p->reversed) { 548 if (p->start != p->end) 549 *--p->start = '/'; 550 p->start -= name_len; 551 *prepared = p->start; 552 } else { 553 if (p->start != p->end) 554 *p->end++ = '/'; 555 *prepared = p->end; 556 p->end += name_len; 557 *p->end = 0; 558 } 559 560 return 0; 561 } 562 563 static int fs_path_add(struct fs_path *p, const char *name, int name_len) 564 { 565 int ret; 566 char *prepared; 567 568 ret = fs_path_prepare_for_add(p, name_len, &prepared); 569 if (ret < 0) 570 return ret; 571 memcpy(prepared, name, name_len); 572 573 return 0; 574 } 575 576 static inline int fs_path_add_path(struct fs_path *p, const struct fs_path *p2) 577 { 578 return fs_path_add(p, p2->start, fs_path_len(p2)); 579 } 580 581 static int fs_path_add_from_extent_buffer(struct fs_path *p, 582 struct extent_buffer *eb, 583 unsigned long off, int len) 584 { 585 int ret; 586 char *prepared; 587 588 ret = fs_path_prepare_for_add(p, len, &prepared); 589 if (ret < 0) 590 return ret; 591 592 read_extent_buffer(eb, prepared, off, len); 593 594 return 0; 595 } 596 597 static int fs_path_copy(struct fs_path *p, struct fs_path *from) 598 { 599 p->reversed = from->reversed; 600 fs_path_reset(p); 601 602 return fs_path_add_path(p, from); 603 } 604 605 static void fs_path_unreverse(struct fs_path *p) 606 { 607 char *tmp; 608 int len; 609 610 if (!p->reversed) 611 return; 612 613 tmp = p->start; 614 len = fs_path_len(p); 615 p->start = p->buf; 616 p->end = p->start + len; 617 memmove(p->start, tmp, len + 1); 618 p->reversed = 0; 619 } 620 621 static inline bool is_current_inode_path(const struct send_ctx *sctx, 622 const struct fs_path *path) 623 { 624 const struct fs_path *cur = &sctx->cur_inode_path; 625 626 return (strncmp(path->start, cur->start, fs_path_len(cur)) == 0); 627 } 628 629 static struct btrfs_path *alloc_path_for_send(void) 630 { 631 struct btrfs_path *path; 632 633 path = btrfs_alloc_path(); 634 if (!path) 635 return NULL; 636 path->search_commit_root = 1; 637 path->skip_locking = 1; 638 path->need_commit_sem = 1; 639 return path; 640 } 641 642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off) 643 { 644 int ret; 645 u32 pos = 0; 646 647 while (pos < len) { 648 ret = kernel_write(filp, buf + pos, len - pos, off); 649 if (ret < 0) 650 return ret; 651 if (unlikely(ret == 0)) 652 return -EIO; 653 pos += ret; 654 } 655 656 return 0; 657 } 658 659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len) 660 { 661 struct btrfs_tlv_header *hdr; 662 int total_len = sizeof(*hdr) + len; 663 int left = sctx->send_max_size - sctx->send_size; 664 665 if (WARN_ON_ONCE(sctx->put_data)) 666 return -EINVAL; 667 668 if (unlikely(left < total_len)) 669 return -EOVERFLOW; 670 671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size); 672 put_unaligned_le16(attr, &hdr->tlv_type); 673 put_unaligned_le16(len, &hdr->tlv_len); 674 memcpy(hdr + 1, data, len); 675 sctx->send_size += total_len; 676 677 return 0; 678 } 679 680 #define TLV_PUT_DEFINE_INT(bits) \ 681 static int tlv_put_u##bits(struct send_ctx *sctx, \ 682 u##bits attr, u##bits value) \ 683 { \ 684 __le##bits __tmp = cpu_to_le##bits(value); \ 685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \ 686 } 687 688 TLV_PUT_DEFINE_INT(8) 689 TLV_PUT_DEFINE_INT(32) 690 TLV_PUT_DEFINE_INT(64) 691 692 static int tlv_put_string(struct send_ctx *sctx, u16 attr, 693 const char *str, int len) 694 { 695 if (len == -1) 696 len = strlen(str); 697 return tlv_put(sctx, attr, str, len); 698 } 699 700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr, 701 const u8 *uuid) 702 { 703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE); 704 } 705 706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr, 707 struct extent_buffer *eb, 708 struct btrfs_timespec *ts) 709 { 710 struct btrfs_timespec bts; 711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts)); 712 return tlv_put(sctx, attr, &bts, sizeof(bts)); 713 } 714 715 716 #define TLV_PUT(sctx, attrtype, data, attrlen) \ 717 do { \ 718 ret = tlv_put(sctx, attrtype, data, attrlen); \ 719 if (ret < 0) \ 720 goto tlv_put_failure; \ 721 } while (0) 722 723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \ 724 do { \ 725 ret = tlv_put_u##bits(sctx, attrtype, value); \ 726 if (ret < 0) \ 727 goto tlv_put_failure; \ 728 } while (0) 729 730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data) 731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data) 732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data) 733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data) 734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \ 735 do { \ 736 ret = tlv_put_string(sctx, attrtype, str, len); \ 737 if (ret < 0) \ 738 goto tlv_put_failure; \ 739 } while (0) 740 #define TLV_PUT_PATH(sctx, attrtype, p) \ 741 do { \ 742 ret = tlv_put_string(sctx, attrtype, p->start, \ 743 fs_path_len((p))); \ 744 if (ret < 0) \ 745 goto tlv_put_failure; \ 746 } while(0) 747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \ 748 do { \ 749 ret = tlv_put_uuid(sctx, attrtype, uuid); \ 750 if (ret < 0) \ 751 goto tlv_put_failure; \ 752 } while (0) 753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \ 754 do { \ 755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \ 756 if (ret < 0) \ 757 goto tlv_put_failure; \ 758 } while (0) 759 760 static int send_header(struct send_ctx *sctx) 761 { 762 struct btrfs_stream_header hdr; 763 764 strscpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC); 765 hdr.version = cpu_to_le32(sctx->proto); 766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr), 767 &sctx->send_off); 768 } 769 770 /* 771 * For each command/item we want to send to userspace, we call this function. 772 */ 773 static int begin_cmd(struct send_ctx *sctx, int cmd) 774 { 775 struct btrfs_cmd_header *hdr; 776 777 if (WARN_ON(!sctx->send_buf)) 778 return -EINVAL; 779 780 if (unlikely(sctx->send_size != 0)) { 781 btrfs_err(sctx->send_root->fs_info, 782 "send: command header buffer not empty cmd %d offset %llu", 783 cmd, sctx->send_off); 784 return -EINVAL; 785 } 786 787 sctx->send_size += sizeof(*hdr); 788 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 789 put_unaligned_le16(cmd, &hdr->cmd); 790 791 return 0; 792 } 793 794 static int send_cmd(struct send_ctx *sctx) 795 { 796 int ret; 797 struct btrfs_cmd_header *hdr; 798 u32 crc; 799 800 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 801 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len); 802 put_unaligned_le32(0, &hdr->crc); 803 804 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size); 805 put_unaligned_le32(crc, &hdr->crc); 806 807 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 808 &sctx->send_off); 809 810 sctx->send_size = 0; 811 sctx->put_data = false; 812 813 return ret; 814 } 815 816 /* 817 * Sends a move instruction to user space 818 */ 819 static int send_rename(struct send_ctx *sctx, 820 struct fs_path *from, struct fs_path *to) 821 { 822 int ret; 823 824 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME); 825 if (ret < 0) 826 return ret; 827 828 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from); 829 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to); 830 831 ret = send_cmd(sctx); 832 833 tlv_put_failure: 834 return ret; 835 } 836 837 /* 838 * Sends a link instruction to user space 839 */ 840 static int send_link(struct send_ctx *sctx, 841 struct fs_path *path, struct fs_path *lnk) 842 { 843 int ret; 844 845 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK); 846 if (ret < 0) 847 return ret; 848 849 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 850 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk); 851 852 ret = send_cmd(sctx); 853 854 tlv_put_failure: 855 return ret; 856 } 857 858 /* 859 * Sends an unlink instruction to user space 860 */ 861 static int send_unlink(struct send_ctx *sctx, struct fs_path *path) 862 { 863 int ret; 864 865 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK); 866 if (ret < 0) 867 return ret; 868 869 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 870 871 ret = send_cmd(sctx); 872 873 tlv_put_failure: 874 return ret; 875 } 876 877 /* 878 * Sends a rmdir instruction to user space 879 */ 880 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path) 881 { 882 int ret; 883 884 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR); 885 if (ret < 0) 886 return ret; 887 888 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 889 890 ret = send_cmd(sctx); 891 892 tlv_put_failure: 893 return ret; 894 } 895 896 struct btrfs_inode_info { 897 u64 size; 898 u64 gen; 899 u64 mode; 900 u64 uid; 901 u64 gid; 902 u64 rdev; 903 u64 fileattr; 904 u64 nlink; 905 }; 906 907 /* 908 * Helper function to retrieve some fields from an inode item. 909 */ 910 static int get_inode_info(struct btrfs_root *root, u64 ino, 911 struct btrfs_inode_info *info) 912 { 913 int ret; 914 BTRFS_PATH_AUTO_FREE(path); 915 struct btrfs_inode_item *ii; 916 struct btrfs_key key; 917 918 path = alloc_path_for_send(); 919 if (!path) 920 return -ENOMEM; 921 922 key.objectid = ino; 923 key.type = BTRFS_INODE_ITEM_KEY; 924 key.offset = 0; 925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 926 if (ret) { 927 if (ret > 0) 928 ret = -ENOENT; 929 return ret; 930 } 931 932 if (!info) 933 return 0; 934 935 ii = btrfs_item_ptr(path->nodes[0], path->slots[0], 936 struct btrfs_inode_item); 937 info->size = btrfs_inode_size(path->nodes[0], ii); 938 info->gen = btrfs_inode_generation(path->nodes[0], ii); 939 info->mode = btrfs_inode_mode(path->nodes[0], ii); 940 info->uid = btrfs_inode_uid(path->nodes[0], ii); 941 info->gid = btrfs_inode_gid(path->nodes[0], ii); 942 info->rdev = btrfs_inode_rdev(path->nodes[0], ii); 943 info->nlink = btrfs_inode_nlink(path->nodes[0], ii); 944 /* 945 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's 946 * otherwise logically split to 32/32 parts. 947 */ 948 info->fileattr = btrfs_inode_flags(path->nodes[0], ii); 949 950 return 0; 951 } 952 953 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen) 954 { 955 int ret; 956 struct btrfs_inode_info info = { 0 }; 957 958 ASSERT(gen); 959 960 ret = get_inode_info(root, ino, &info); 961 *gen = info.gen; 962 return ret; 963 } 964 965 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx); 966 967 /* 968 * Helper function to iterate the entries in ONE btrfs_inode_ref or 969 * btrfs_inode_extref. 970 * The iterate callback may return a non zero value to stop iteration. This can 971 * be a negative value for error codes or 1 to simply stop it. 972 * 973 * path must point to the INODE_REF or INODE_EXTREF when called. 974 */ 975 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path, 976 struct btrfs_key *found_key, bool resolve, 977 iterate_inode_ref_t iterate, void *ctx) 978 { 979 struct extent_buffer *eb = path->nodes[0]; 980 struct btrfs_inode_ref *iref; 981 struct btrfs_inode_extref *extref; 982 BTRFS_PATH_AUTO_FREE(tmp_path); 983 struct fs_path *p; 984 u32 cur = 0; 985 u32 total; 986 int slot = path->slots[0]; 987 u32 name_len; 988 char *start; 989 int ret = 0; 990 u64 dir; 991 unsigned long name_off; 992 unsigned long elem_size; 993 unsigned long ptr; 994 995 p = fs_path_alloc_reversed(); 996 if (!p) 997 return -ENOMEM; 998 999 tmp_path = alloc_path_for_send(); 1000 if (!tmp_path) { 1001 fs_path_free(p); 1002 return -ENOMEM; 1003 } 1004 1005 1006 if (found_key->type == BTRFS_INODE_REF_KEY) { 1007 ptr = (unsigned long)btrfs_item_ptr(eb, slot, 1008 struct btrfs_inode_ref); 1009 total = btrfs_item_size(eb, slot); 1010 elem_size = sizeof(*iref); 1011 } else { 1012 ptr = btrfs_item_ptr_offset(eb, slot); 1013 total = btrfs_item_size(eb, slot); 1014 elem_size = sizeof(*extref); 1015 } 1016 1017 while (cur < total) { 1018 fs_path_reset(p); 1019 1020 if (found_key->type == BTRFS_INODE_REF_KEY) { 1021 iref = (struct btrfs_inode_ref *)(ptr + cur); 1022 name_len = btrfs_inode_ref_name_len(eb, iref); 1023 name_off = (unsigned long)(iref + 1); 1024 dir = found_key->offset; 1025 } else { 1026 extref = (struct btrfs_inode_extref *)(ptr + cur); 1027 name_len = btrfs_inode_extref_name_len(eb, extref); 1028 name_off = (unsigned long)&extref->name; 1029 dir = btrfs_inode_extref_parent(eb, extref); 1030 } 1031 1032 if (resolve) { 1033 start = btrfs_ref_to_path(root, tmp_path, name_len, 1034 name_off, eb, dir, 1035 p->buf, p->buf_len); 1036 if (IS_ERR(start)) { 1037 ret = PTR_ERR(start); 1038 goto out; 1039 } 1040 if (start < p->buf) { 1041 /* overflow , try again with larger buffer */ 1042 ret = fs_path_ensure_buf(p, 1043 p->buf_len + p->buf - start); 1044 if (ret < 0) 1045 goto out; 1046 start = btrfs_ref_to_path(root, tmp_path, 1047 name_len, name_off, 1048 eb, dir, 1049 p->buf, p->buf_len); 1050 if (IS_ERR(start)) { 1051 ret = PTR_ERR(start); 1052 goto out; 1053 } 1054 if (unlikely(start < p->buf)) { 1055 btrfs_err(root->fs_info, 1056 "send: path ref buffer underflow for key (%llu %u %llu)", 1057 found_key->objectid, 1058 found_key->type, 1059 found_key->offset); 1060 ret = -EINVAL; 1061 goto out; 1062 } 1063 } 1064 p->start = start; 1065 } else { 1066 ret = fs_path_add_from_extent_buffer(p, eb, name_off, 1067 name_len); 1068 if (ret < 0) 1069 goto out; 1070 } 1071 1072 cur += elem_size + name_len; 1073 ret = iterate(dir, p, ctx); 1074 if (ret) 1075 goto out; 1076 } 1077 1078 out: 1079 fs_path_free(p); 1080 return ret; 1081 } 1082 1083 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key, 1084 const char *name, int name_len, 1085 const char *data, int data_len, 1086 void *ctx); 1087 1088 /* 1089 * Helper function to iterate the entries in ONE btrfs_dir_item. 1090 * The iterate callback may return a non zero value to stop iteration. This can 1091 * be a negative value for error codes or 1 to simply stop it. 1092 * 1093 * path must point to the dir item when called. 1094 */ 1095 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path, 1096 iterate_dir_item_t iterate, void *ctx) 1097 { 1098 int ret = 0; 1099 struct extent_buffer *eb; 1100 struct btrfs_dir_item *di; 1101 struct btrfs_key di_key; 1102 char *buf = NULL; 1103 int buf_len; 1104 u32 name_len; 1105 u32 data_len; 1106 u32 cur; 1107 u32 len; 1108 u32 total; 1109 int slot; 1110 int num; 1111 1112 /* 1113 * Start with a small buffer (1 page). If later we end up needing more 1114 * space, which can happen for xattrs on a fs with a leaf size greater 1115 * than the page size, attempt to increase the buffer. Typically xattr 1116 * values are small. 1117 */ 1118 buf_len = PATH_MAX; 1119 buf = kmalloc(buf_len, GFP_KERNEL); 1120 if (!buf) { 1121 ret = -ENOMEM; 1122 goto out; 1123 } 1124 1125 eb = path->nodes[0]; 1126 slot = path->slots[0]; 1127 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1128 cur = 0; 1129 len = 0; 1130 total = btrfs_item_size(eb, slot); 1131 1132 num = 0; 1133 while (cur < total) { 1134 name_len = btrfs_dir_name_len(eb, di); 1135 data_len = btrfs_dir_data_len(eb, di); 1136 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 1137 1138 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) { 1139 if (name_len > XATTR_NAME_MAX) { 1140 ret = -ENAMETOOLONG; 1141 goto out; 1142 } 1143 if (name_len + data_len > 1144 BTRFS_MAX_XATTR_SIZE(root->fs_info)) { 1145 ret = -E2BIG; 1146 goto out; 1147 } 1148 } else { 1149 /* 1150 * Path too long 1151 */ 1152 if (name_len + data_len > PATH_MAX) { 1153 ret = -ENAMETOOLONG; 1154 goto out; 1155 } 1156 } 1157 1158 if (name_len + data_len > buf_len) { 1159 buf_len = name_len + data_len; 1160 if (is_vmalloc_addr(buf)) { 1161 vfree(buf); 1162 buf = NULL; 1163 } else { 1164 char *tmp = krealloc(buf, buf_len, 1165 GFP_KERNEL | __GFP_NOWARN); 1166 1167 if (!tmp) 1168 kfree(buf); 1169 buf = tmp; 1170 } 1171 if (!buf) { 1172 buf = kvmalloc(buf_len, GFP_KERNEL); 1173 if (!buf) { 1174 ret = -ENOMEM; 1175 goto out; 1176 } 1177 } 1178 } 1179 1180 read_extent_buffer(eb, buf, (unsigned long)(di + 1), 1181 name_len + data_len); 1182 1183 len = sizeof(*di) + name_len + data_len; 1184 di = (struct btrfs_dir_item *)((char *)di + len); 1185 cur += len; 1186 1187 ret = iterate(num, &di_key, buf, name_len, buf + name_len, 1188 data_len, ctx); 1189 if (ret < 0) 1190 goto out; 1191 if (ret) { 1192 ret = 0; 1193 goto out; 1194 } 1195 1196 num++; 1197 } 1198 1199 out: 1200 kvfree(buf); 1201 return ret; 1202 } 1203 1204 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx) 1205 { 1206 int ret; 1207 struct fs_path *pt = ctx; 1208 1209 ret = fs_path_copy(pt, p); 1210 if (ret < 0) 1211 return ret; 1212 1213 /* we want the first only */ 1214 return 1; 1215 } 1216 1217 /* 1218 * Retrieve the first path of an inode. If an inode has more then one 1219 * ref/hardlink, this is ignored. 1220 */ 1221 static int get_inode_path(struct btrfs_root *root, 1222 u64 ino, struct fs_path *path) 1223 { 1224 int ret; 1225 struct btrfs_key key, found_key; 1226 BTRFS_PATH_AUTO_FREE(p); 1227 1228 p = alloc_path_for_send(); 1229 if (!p) 1230 return -ENOMEM; 1231 1232 fs_path_reset(path); 1233 1234 key.objectid = ino; 1235 key.type = BTRFS_INODE_REF_KEY; 1236 key.offset = 0; 1237 1238 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0); 1239 if (ret < 0) 1240 return ret; 1241 if (ret) 1242 return 1; 1243 1244 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]); 1245 if (found_key.objectid != ino || 1246 (found_key.type != BTRFS_INODE_REF_KEY && 1247 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1248 return -ENOENT; 1249 1250 ret = iterate_inode_ref(root, p, &found_key, true, __copy_first_ref, path); 1251 if (ret < 0) 1252 return ret; 1253 return 0; 1254 } 1255 1256 struct backref_ctx { 1257 struct send_ctx *sctx; 1258 1259 /* number of total found references */ 1260 u64 found; 1261 1262 /* 1263 * used for clones found in send_root. clones found behind cur_objectid 1264 * and cur_offset are not considered as allowed clones. 1265 */ 1266 u64 cur_objectid; 1267 u64 cur_offset; 1268 1269 /* may be truncated in case it's the last extent in a file */ 1270 u64 extent_len; 1271 1272 /* The bytenr the file extent item we are processing refers to. */ 1273 u64 bytenr; 1274 /* The owner (root id) of the data backref for the current extent. */ 1275 u64 backref_owner; 1276 /* The offset of the data backref for the current extent. */ 1277 u64 backref_offset; 1278 }; 1279 1280 static int __clone_root_cmp_bsearch(const void *key, const void *elt) 1281 { 1282 u64 root = (u64)(uintptr_t)key; 1283 const struct clone_root *cr = elt; 1284 1285 if (root < btrfs_root_id(cr->root)) 1286 return -1; 1287 if (root > btrfs_root_id(cr->root)) 1288 return 1; 1289 return 0; 1290 } 1291 1292 static int __clone_root_cmp_sort(const void *e1, const void *e2) 1293 { 1294 const struct clone_root *cr1 = e1; 1295 const struct clone_root *cr2 = e2; 1296 1297 if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root)) 1298 return -1; 1299 if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root)) 1300 return 1; 1301 return 0; 1302 } 1303 1304 /* 1305 * Called for every backref that is found for the current extent. 1306 * Results are collected in sctx->clone_roots->ino/offset. 1307 */ 1308 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id, 1309 void *ctx_) 1310 { 1311 struct backref_ctx *bctx = ctx_; 1312 struct clone_root *clone_root; 1313 1314 /* First check if the root is in the list of accepted clone sources */ 1315 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots, 1316 bctx->sctx->clone_roots_cnt, 1317 sizeof(struct clone_root), 1318 __clone_root_cmp_bsearch); 1319 if (!clone_root) 1320 return 0; 1321 1322 /* This is our own reference, bail out as we can't clone from it. */ 1323 if (clone_root->root == bctx->sctx->send_root && 1324 ino == bctx->cur_objectid && 1325 offset == bctx->cur_offset) 1326 return 0; 1327 1328 /* 1329 * Make sure we don't consider clones from send_root that are 1330 * behind the current inode/offset. 1331 */ 1332 if (clone_root->root == bctx->sctx->send_root) { 1333 /* 1334 * If the source inode was not yet processed we can't issue a 1335 * clone operation, as the source extent does not exist yet at 1336 * the destination of the stream. 1337 */ 1338 if (ino > bctx->cur_objectid) 1339 return 0; 1340 /* 1341 * We clone from the inode currently being sent as long as the 1342 * source extent is already processed, otherwise we could try 1343 * to clone from an extent that does not exist yet at the 1344 * destination of the stream. 1345 */ 1346 if (ino == bctx->cur_objectid && 1347 offset + bctx->extent_len > 1348 bctx->sctx->cur_inode_next_write_offset) 1349 return 0; 1350 } 1351 1352 bctx->found++; 1353 clone_root->found_ref = true; 1354 1355 /* 1356 * If the given backref refers to a file extent item with a larger 1357 * number of bytes than what we found before, use the new one so that 1358 * we clone more optimally and end up doing less writes and getting 1359 * less exclusive, non-shared extents at the destination. 1360 */ 1361 if (num_bytes > clone_root->num_bytes) { 1362 clone_root->ino = ino; 1363 clone_root->offset = offset; 1364 clone_root->num_bytes = num_bytes; 1365 1366 /* 1367 * Found a perfect candidate, so there's no need to continue 1368 * backref walking. 1369 */ 1370 if (num_bytes >= bctx->extent_len) 1371 return BTRFS_ITERATE_EXTENT_INODES_STOP; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx, 1378 const u64 **root_ids_ret, int *root_count_ret) 1379 { 1380 struct backref_ctx *bctx = ctx; 1381 struct send_ctx *sctx = bctx->sctx; 1382 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1383 const u64 key = leaf_bytenr >> fs_info->nodesize_bits; 1384 struct btrfs_lru_cache_entry *raw_entry; 1385 struct backref_cache_entry *entry; 1386 1387 if (sctx->backref_cache.size == 0) 1388 return false; 1389 1390 /* 1391 * If relocation happened since we first filled the cache, then we must 1392 * empty the cache and can not use it, because even though we operate on 1393 * read-only roots, their leaves and nodes may have been reallocated and 1394 * now be used for different nodes/leaves of the same tree or some other 1395 * tree. 1396 * 1397 * We are called from iterate_extent_inodes() while either holding a 1398 * transaction handle or holding fs_info->commit_root_sem, so no need 1399 * to take any lock here. 1400 */ 1401 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) { 1402 btrfs_lru_cache_clear(&sctx->backref_cache); 1403 return false; 1404 } 1405 1406 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0); 1407 if (!raw_entry) 1408 return false; 1409 1410 entry = container_of(raw_entry, struct backref_cache_entry, entry); 1411 *root_ids_ret = entry->root_ids; 1412 *root_count_ret = entry->num_roots; 1413 1414 return true; 1415 } 1416 1417 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids, 1418 void *ctx) 1419 { 1420 struct backref_ctx *bctx = ctx; 1421 struct send_ctx *sctx = bctx->sctx; 1422 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1423 struct backref_cache_entry *new_entry; 1424 struct ulist_iterator uiter; 1425 struct ulist_node *node; 1426 int ret; 1427 1428 /* 1429 * We're called while holding a transaction handle or while holding 1430 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a 1431 * NOFS allocation. 1432 */ 1433 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS); 1434 /* No worries, cache is optional. */ 1435 if (!new_entry) 1436 return; 1437 1438 new_entry->entry.key = leaf_bytenr >> fs_info->nodesize_bits; 1439 new_entry->entry.gen = 0; 1440 new_entry->num_roots = 0; 1441 ULIST_ITER_INIT(&uiter); 1442 while ((node = ulist_next(root_ids, &uiter)) != NULL) { 1443 const u64 root_id = node->val; 1444 struct clone_root *root; 1445 1446 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots, 1447 sctx->clone_roots_cnt, sizeof(struct clone_root), 1448 __clone_root_cmp_bsearch); 1449 if (!root) 1450 continue; 1451 1452 /* Too many roots, just exit, no worries as caching is optional. */ 1453 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) { 1454 kfree(new_entry); 1455 return; 1456 } 1457 1458 new_entry->root_ids[new_entry->num_roots] = root_id; 1459 new_entry->num_roots++; 1460 } 1461 1462 /* 1463 * We may have not added any roots to the new cache entry, which means 1464 * none of the roots is part of the list of roots from which we are 1465 * allowed to clone. Cache the new entry as it's still useful to avoid 1466 * backref walking to determine which roots have a path to the leaf. 1467 * 1468 * Also use GFP_NOFS because we're called while holding a transaction 1469 * handle or while holding fs_info->commit_root_sem. 1470 */ 1471 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry, 1472 GFP_NOFS); 1473 ASSERT(ret == 0 || ret == -ENOMEM); 1474 if (ret) { 1475 /* Caching is optional, no worries. */ 1476 kfree(new_entry); 1477 return; 1478 } 1479 1480 /* 1481 * We are called from iterate_extent_inodes() while either holding a 1482 * transaction handle or holding fs_info->commit_root_sem, so no need 1483 * to take any lock here. 1484 */ 1485 if (sctx->backref_cache.size == 1) 1486 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans; 1487 } 1488 1489 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei, 1490 const struct extent_buffer *leaf, void *ctx) 1491 { 1492 const u64 refs = btrfs_extent_refs(leaf, ei); 1493 const struct backref_ctx *bctx = ctx; 1494 const struct send_ctx *sctx = bctx->sctx; 1495 1496 if (bytenr == bctx->bytenr) { 1497 const u64 flags = btrfs_extent_flags(leaf, ei); 1498 1499 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 1500 return -EUCLEAN; 1501 1502 /* 1503 * If we have only one reference and only the send root as a 1504 * clone source - meaning no clone roots were given in the 1505 * struct btrfs_ioctl_send_args passed to the send ioctl - then 1506 * it's our reference and there's no point in doing backref 1507 * walking which is expensive, so exit early. 1508 */ 1509 if (refs == 1 && sctx->clone_roots_cnt == 1) 1510 return -ENOENT; 1511 } 1512 1513 /* 1514 * Backreference walking (iterate_extent_inodes() below) is currently 1515 * too expensive when an extent has a large number of references, both 1516 * in time spent and used memory. So for now just fallback to write 1517 * operations instead of clone operations when an extent has more than 1518 * a certain amount of references. 1519 */ 1520 if (refs > SEND_MAX_EXTENT_REFS) 1521 return -ENOENT; 1522 1523 return 0; 1524 } 1525 1526 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx) 1527 { 1528 const struct backref_ctx *bctx = ctx; 1529 1530 if (ino == bctx->cur_objectid && 1531 root == bctx->backref_owner && 1532 offset == bctx->backref_offset) 1533 return true; 1534 1535 return false; 1536 } 1537 1538 /* 1539 * Given an inode, offset and extent item, it finds a good clone for a clone 1540 * instruction. Returns -ENOENT when none could be found. The function makes 1541 * sure that the returned clone is usable at the point where sending is at the 1542 * moment. This means, that no clones are accepted which lie behind the current 1543 * inode+offset. 1544 * 1545 * path must point to the extent item when called. 1546 */ 1547 static int find_extent_clone(struct send_ctx *sctx, 1548 struct btrfs_path *path, 1549 u64 ino, u64 data_offset, 1550 u64 ino_size, 1551 struct clone_root **found) 1552 { 1553 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 1554 int ret; 1555 int extent_type; 1556 u64 disk_byte; 1557 u64 num_bytes; 1558 struct btrfs_file_extent_item *fi; 1559 struct extent_buffer *eb = path->nodes[0]; 1560 struct backref_ctx backref_ctx = { 0 }; 1561 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 }; 1562 struct clone_root *cur_clone_root; 1563 int compressed; 1564 u32 i; 1565 1566 /* 1567 * With fallocate we can get prealloc extents beyond the inode's i_size, 1568 * so we don't do anything here because clone operations can not clone 1569 * to a range beyond i_size without increasing the i_size of the 1570 * destination inode. 1571 */ 1572 if (data_offset >= ino_size) 1573 return 0; 1574 1575 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item); 1576 extent_type = btrfs_file_extent_type(eb, fi); 1577 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1578 return -ENOENT; 1579 1580 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 1581 if (disk_byte == 0) 1582 return -ENOENT; 1583 1584 compressed = btrfs_file_extent_compression(eb, fi); 1585 num_bytes = btrfs_file_extent_num_bytes(eb, fi); 1586 1587 /* 1588 * Setup the clone roots. 1589 */ 1590 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1591 cur_clone_root = sctx->clone_roots + i; 1592 cur_clone_root->ino = (u64)-1; 1593 cur_clone_root->offset = 0; 1594 cur_clone_root->num_bytes = 0; 1595 cur_clone_root->found_ref = false; 1596 } 1597 1598 backref_ctx.sctx = sctx; 1599 backref_ctx.cur_objectid = ino; 1600 backref_ctx.cur_offset = data_offset; 1601 backref_ctx.bytenr = disk_byte; 1602 /* 1603 * Use the header owner and not the send root's id, because in case of a 1604 * snapshot we can have shared subtrees. 1605 */ 1606 backref_ctx.backref_owner = btrfs_header_owner(eb); 1607 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi); 1608 1609 /* 1610 * The last extent of a file may be too large due to page alignment. 1611 * We need to adjust extent_len in this case so that the checks in 1612 * iterate_backrefs() work. 1613 */ 1614 if (data_offset + num_bytes >= ino_size) 1615 backref_ctx.extent_len = ino_size - data_offset; 1616 else 1617 backref_ctx.extent_len = num_bytes; 1618 1619 /* 1620 * Now collect all backrefs. 1621 */ 1622 backref_walk_ctx.bytenr = disk_byte; 1623 if (compressed == BTRFS_COMPRESS_NONE) 1624 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi); 1625 backref_walk_ctx.fs_info = fs_info; 1626 backref_walk_ctx.cache_lookup = lookup_backref_cache; 1627 backref_walk_ctx.cache_store = store_backref_cache; 1628 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs; 1629 backref_walk_ctx.check_extent_item = check_extent_item; 1630 backref_walk_ctx.user_ctx = &backref_ctx; 1631 1632 /* 1633 * If have a single clone root, then it's the send root and we can tell 1634 * the backref walking code to skip our own backref and not resolve it, 1635 * since we can not use it for cloning - the source and destination 1636 * ranges can't overlap and in case the leaf is shared through a subtree 1637 * due to snapshots, we can't use those other roots since they are not 1638 * in the list of clone roots. 1639 */ 1640 if (sctx->clone_roots_cnt == 1) 1641 backref_walk_ctx.skip_data_ref = skip_self_data_ref; 1642 1643 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs, 1644 &backref_ctx); 1645 if (ret < 0) 1646 return ret; 1647 1648 down_read(&fs_info->commit_root_sem); 1649 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 1650 /* 1651 * A transaction commit for a transaction in which block group 1652 * relocation was done just happened. 1653 * The disk_bytenr of the file extent item we processed is 1654 * possibly stale, referring to the extent's location before 1655 * relocation. So act as if we haven't found any clone sources 1656 * and fallback to write commands, which will read the correct 1657 * data from the new extent location. Otherwise we will fail 1658 * below because we haven't found our own back reference or we 1659 * could be getting incorrect sources in case the old extent 1660 * was already reallocated after the relocation. 1661 */ 1662 up_read(&fs_info->commit_root_sem); 1663 return -ENOENT; 1664 } 1665 up_read(&fs_info->commit_root_sem); 1666 1667 if (!backref_ctx.found) 1668 return -ENOENT; 1669 1670 cur_clone_root = NULL; 1671 for (i = 0; i < sctx->clone_roots_cnt; i++) { 1672 struct clone_root *clone_root = &sctx->clone_roots[i]; 1673 1674 if (!clone_root->found_ref) 1675 continue; 1676 1677 /* 1678 * Choose the root from which we can clone more bytes, to 1679 * minimize write operations and therefore have more extent 1680 * sharing at the destination (the same as in the source). 1681 */ 1682 if (!cur_clone_root || 1683 clone_root->num_bytes > cur_clone_root->num_bytes) { 1684 cur_clone_root = clone_root; 1685 1686 /* 1687 * We found an optimal clone candidate (any inode from 1688 * any root is fine), so we're done. 1689 */ 1690 if (clone_root->num_bytes >= backref_ctx.extent_len) 1691 break; 1692 } 1693 } 1694 1695 if (cur_clone_root) { 1696 *found = cur_clone_root; 1697 ret = 0; 1698 } else { 1699 ret = -ENOENT; 1700 } 1701 1702 return ret; 1703 } 1704 1705 static int read_symlink(struct btrfs_root *root, 1706 u64 ino, 1707 struct fs_path *dest) 1708 { 1709 int ret; 1710 BTRFS_PATH_AUTO_FREE(path); 1711 struct btrfs_key key; 1712 struct btrfs_file_extent_item *ei; 1713 u8 type; 1714 u8 compression; 1715 unsigned long off; 1716 int len; 1717 1718 path = alloc_path_for_send(); 1719 if (!path) 1720 return -ENOMEM; 1721 1722 key.objectid = ino; 1723 key.type = BTRFS_EXTENT_DATA_KEY; 1724 key.offset = 0; 1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1726 if (ret < 0) 1727 return ret; 1728 if (unlikely(ret)) { 1729 /* 1730 * An empty symlink inode. Can happen in rare error paths when 1731 * creating a symlink (transaction committed before the inode 1732 * eviction handler removed the symlink inode items and a crash 1733 * happened in between or the subvol was snapshotted in between). 1734 * Print an informative message to dmesg/syslog so that the user 1735 * can delete the symlink. 1736 */ 1737 btrfs_err(root->fs_info, 1738 "Found empty symlink inode %llu at root %llu", 1739 ino, btrfs_root_id(root)); 1740 return -EIO; 1741 } 1742 1743 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 1744 struct btrfs_file_extent_item); 1745 type = btrfs_file_extent_type(path->nodes[0], ei); 1746 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) { 1747 ret = -EUCLEAN; 1748 btrfs_crit(root->fs_info, 1749 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d", 1750 ino, btrfs_root_id(root), type); 1751 return ret; 1752 } 1753 compression = btrfs_file_extent_compression(path->nodes[0], ei); 1754 if (unlikely(compression != BTRFS_COMPRESS_NONE)) { 1755 ret = -EUCLEAN; 1756 btrfs_crit(root->fs_info, 1757 "send: found symlink extent with compression, ino %llu root %llu compression type %d", 1758 ino, btrfs_root_id(root), compression); 1759 return ret; 1760 } 1761 1762 off = btrfs_file_extent_inline_start(ei); 1763 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei); 1764 1765 return fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len); 1766 } 1767 1768 /* 1769 * Helper function to generate a file name that is unique in the root of 1770 * send_root and parent_root. This is used to generate names for orphan inodes. 1771 */ 1772 static int gen_unique_name(struct send_ctx *sctx, 1773 u64 ino, u64 gen, 1774 struct fs_path *dest) 1775 { 1776 BTRFS_PATH_AUTO_FREE(path); 1777 struct btrfs_dir_item *di; 1778 char tmp[64]; 1779 int len; 1780 u64 idx = 0; 1781 1782 path = alloc_path_for_send(); 1783 if (!path) 1784 return -ENOMEM; 1785 1786 while (1) { 1787 struct fscrypt_str tmp_name; 1788 1789 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu", 1790 ino, gen, idx); 1791 ASSERT(len < sizeof(tmp)); 1792 tmp_name.name = tmp; 1793 tmp_name.len = len; 1794 1795 di = btrfs_lookup_dir_item(NULL, sctx->send_root, 1796 path, BTRFS_FIRST_FREE_OBJECTID, 1797 &tmp_name, 0); 1798 btrfs_release_path(path); 1799 if (IS_ERR(di)) 1800 return PTR_ERR(di); 1801 1802 if (di) { 1803 /* not unique, try again */ 1804 idx++; 1805 continue; 1806 } 1807 1808 if (!sctx->parent_root) { 1809 /* unique */ 1810 break; 1811 } 1812 1813 di = btrfs_lookup_dir_item(NULL, sctx->parent_root, 1814 path, BTRFS_FIRST_FREE_OBJECTID, 1815 &tmp_name, 0); 1816 btrfs_release_path(path); 1817 if (IS_ERR(di)) 1818 return PTR_ERR(di); 1819 1820 if (di) { 1821 /* not unique, try again */ 1822 idx++; 1823 continue; 1824 } 1825 /* unique */ 1826 break; 1827 } 1828 1829 return fs_path_add(dest, tmp, len); 1830 } 1831 1832 enum inode_state { 1833 inode_state_no_change, 1834 inode_state_will_create, 1835 inode_state_did_create, 1836 inode_state_will_delete, 1837 inode_state_did_delete, 1838 }; 1839 1840 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen, 1841 u64 *send_gen, u64 *parent_gen) 1842 { 1843 int ret; 1844 int left_ret; 1845 int right_ret; 1846 u64 left_gen; 1847 u64 right_gen = 0; 1848 struct btrfs_inode_info info; 1849 1850 ret = get_inode_info(sctx->send_root, ino, &info); 1851 if (ret < 0 && ret != -ENOENT) 1852 return ret; 1853 left_ret = (info.nlink == 0) ? -ENOENT : ret; 1854 left_gen = info.gen; 1855 if (send_gen) 1856 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen); 1857 1858 if (!sctx->parent_root) { 1859 right_ret = -ENOENT; 1860 } else { 1861 ret = get_inode_info(sctx->parent_root, ino, &info); 1862 if (ret < 0 && ret != -ENOENT) 1863 return ret; 1864 right_ret = (info.nlink == 0) ? -ENOENT : ret; 1865 right_gen = info.gen; 1866 if (parent_gen) 1867 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen); 1868 } 1869 1870 if (!left_ret && !right_ret) { 1871 if (left_gen == gen && right_gen == gen) { 1872 ret = inode_state_no_change; 1873 } else if (left_gen == gen) { 1874 if (ino < sctx->send_progress) 1875 ret = inode_state_did_create; 1876 else 1877 ret = inode_state_will_create; 1878 } else if (right_gen == gen) { 1879 if (ino < sctx->send_progress) 1880 ret = inode_state_did_delete; 1881 else 1882 ret = inode_state_will_delete; 1883 } else { 1884 ret = -ENOENT; 1885 } 1886 } else if (!left_ret) { 1887 if (left_gen == gen) { 1888 if (ino < sctx->send_progress) 1889 ret = inode_state_did_create; 1890 else 1891 ret = inode_state_will_create; 1892 } else { 1893 ret = -ENOENT; 1894 } 1895 } else if (!right_ret) { 1896 if (right_gen == gen) { 1897 if (ino < sctx->send_progress) 1898 ret = inode_state_did_delete; 1899 else 1900 ret = inode_state_will_delete; 1901 } else { 1902 ret = -ENOENT; 1903 } 1904 } else { 1905 ret = -ENOENT; 1906 } 1907 1908 return ret; 1909 } 1910 1911 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen, 1912 u64 *send_gen, u64 *parent_gen) 1913 { 1914 int ret; 1915 1916 if (ino == BTRFS_FIRST_FREE_OBJECTID) 1917 return 1; 1918 1919 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen); 1920 if (ret < 0) 1921 return ret; 1922 1923 if (ret == inode_state_no_change || 1924 ret == inode_state_did_create || 1925 ret == inode_state_will_delete) 1926 return 1; 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * Helper function to lookup a dir item in a dir. 1933 */ 1934 static int lookup_dir_item_inode(struct btrfs_root *root, 1935 u64 dir, const char *name, int name_len, 1936 u64 *found_inode) 1937 { 1938 int ret = 0; 1939 struct btrfs_dir_item *di; 1940 struct btrfs_key key; 1941 BTRFS_PATH_AUTO_FREE(path); 1942 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len); 1943 1944 path = alloc_path_for_send(); 1945 if (!path) 1946 return -ENOMEM; 1947 1948 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0); 1949 if (IS_ERR_OR_NULL(di)) 1950 return di ? PTR_ERR(di) : -ENOENT; 1951 1952 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1953 if (key.type == BTRFS_ROOT_ITEM_KEY) 1954 return -ENOENT; 1955 1956 *found_inode = key.objectid; 1957 1958 return ret; 1959 } 1960 1961 /* 1962 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir, 1963 * generation of the parent dir and the name of the dir entry. 1964 */ 1965 static int get_first_ref(struct btrfs_root *root, u64 ino, 1966 u64 *dir, u64 *dir_gen, struct fs_path *name) 1967 { 1968 int ret; 1969 struct btrfs_key key; 1970 struct btrfs_key found_key; 1971 BTRFS_PATH_AUTO_FREE(path); 1972 int len; 1973 u64 parent_dir; 1974 1975 path = alloc_path_for_send(); 1976 if (!path) 1977 return -ENOMEM; 1978 1979 key.objectid = ino; 1980 key.type = BTRFS_INODE_REF_KEY; 1981 key.offset = 0; 1982 1983 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0); 1984 if (ret < 0) 1985 return ret; 1986 if (!ret) 1987 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1988 path->slots[0]); 1989 if (ret || found_key.objectid != ino || 1990 (found_key.type != BTRFS_INODE_REF_KEY && 1991 found_key.type != BTRFS_INODE_EXTREF_KEY)) 1992 return -ENOENT; 1993 1994 if (found_key.type == BTRFS_INODE_REF_KEY) { 1995 struct btrfs_inode_ref *iref; 1996 iref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1997 struct btrfs_inode_ref); 1998 len = btrfs_inode_ref_name_len(path->nodes[0], iref); 1999 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2000 (unsigned long)(iref + 1), 2001 len); 2002 parent_dir = found_key.offset; 2003 } else { 2004 struct btrfs_inode_extref *extref; 2005 extref = btrfs_item_ptr(path->nodes[0], path->slots[0], 2006 struct btrfs_inode_extref); 2007 len = btrfs_inode_extref_name_len(path->nodes[0], extref); 2008 ret = fs_path_add_from_extent_buffer(name, path->nodes[0], 2009 (unsigned long)&extref->name, len); 2010 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref); 2011 } 2012 if (ret < 0) 2013 return ret; 2014 btrfs_release_path(path); 2015 2016 if (dir_gen) { 2017 ret = get_inode_gen(root, parent_dir, dir_gen); 2018 if (ret < 0) 2019 return ret; 2020 } 2021 2022 *dir = parent_dir; 2023 2024 return ret; 2025 } 2026 2027 static int is_first_ref(struct btrfs_root *root, 2028 u64 ino, u64 dir, 2029 const char *name, int name_len) 2030 { 2031 int ret; 2032 struct fs_path *tmp_name; 2033 u64 tmp_dir; 2034 2035 tmp_name = fs_path_alloc(); 2036 if (!tmp_name) 2037 return -ENOMEM; 2038 2039 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name); 2040 if (ret < 0) 2041 goto out; 2042 2043 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) { 2044 ret = 0; 2045 goto out; 2046 } 2047 2048 ret = !memcmp(tmp_name->start, name, name_len); 2049 2050 out: 2051 fs_path_free(tmp_name); 2052 return ret; 2053 } 2054 2055 /* 2056 * Used by process_recorded_refs to determine if a new ref would overwrite an 2057 * already existing ref. In case it detects an overwrite, it returns the 2058 * inode/gen in who_ino/who_gen. 2059 * When an overwrite is detected, process_recorded_refs does proper orphanizing 2060 * to make sure later references to the overwritten inode are possible. 2061 * Orphanizing is however only required for the first ref of an inode. 2062 * process_recorded_refs does an additional is_first_ref check to see if 2063 * orphanizing is really required. 2064 */ 2065 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen, 2066 const char *name, int name_len, 2067 u64 *who_ino, u64 *who_gen, u64 *who_mode) 2068 { 2069 int ret; 2070 u64 parent_root_dir_gen; 2071 u64 other_inode = 0; 2072 struct btrfs_inode_info info; 2073 2074 if (!sctx->parent_root) 2075 return 0; 2076 2077 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen); 2078 if (ret <= 0) 2079 return 0; 2080 2081 /* 2082 * If we have a parent root we need to verify that the parent dir was 2083 * not deleted and then re-created, if it was then we have no overwrite 2084 * and we can just unlink this entry. 2085 * 2086 * @parent_root_dir_gen was set to 0 if the inode does not exist in the 2087 * parent root. 2088 */ 2089 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID && 2090 parent_root_dir_gen != dir_gen) 2091 return 0; 2092 2093 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len, 2094 &other_inode); 2095 if (ret == -ENOENT) 2096 return 0; 2097 else if (ret < 0) 2098 return ret; 2099 2100 /* 2101 * Check if the overwritten ref was already processed. If yes, the ref 2102 * was already unlinked/moved, so we can safely assume that we will not 2103 * overwrite anything at this point in time. 2104 */ 2105 if (other_inode > sctx->send_progress || 2106 is_waiting_for_move(sctx, other_inode)) { 2107 ret = get_inode_info(sctx->parent_root, other_inode, &info); 2108 if (ret < 0) 2109 return ret; 2110 2111 *who_ino = other_inode; 2112 *who_gen = info.gen; 2113 *who_mode = info.mode; 2114 return 1; 2115 } 2116 2117 return 0; 2118 } 2119 2120 /* 2121 * Checks if the ref was overwritten by an already processed inode. This is 2122 * used by __get_cur_name_and_parent to find out if the ref was orphanized and 2123 * thus the orphan name needs be used. 2124 * process_recorded_refs also uses it to avoid unlinking of refs that were 2125 * overwritten. 2126 */ 2127 static int did_overwrite_ref(struct send_ctx *sctx, 2128 u64 dir, u64 dir_gen, 2129 u64 ino, u64 ino_gen, 2130 const char *name, int name_len) 2131 { 2132 int ret; 2133 u64 ow_inode; 2134 u64 ow_gen = 0; 2135 u64 send_root_dir_gen; 2136 2137 if (!sctx->parent_root) 2138 return 0; 2139 2140 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL); 2141 if (ret <= 0) 2142 return ret; 2143 2144 /* 2145 * @send_root_dir_gen was set to 0 if the inode does not exist in the 2146 * send root. 2147 */ 2148 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen) 2149 return 0; 2150 2151 /* check if the ref was overwritten by another ref */ 2152 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len, 2153 &ow_inode); 2154 if (ret == -ENOENT) { 2155 /* was never and will never be overwritten */ 2156 return 0; 2157 } else if (ret < 0) { 2158 return ret; 2159 } 2160 2161 if (ow_inode == ino) { 2162 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2163 if (ret < 0) 2164 return ret; 2165 2166 /* It's the same inode, so no overwrite happened. */ 2167 if (ow_gen == ino_gen) 2168 return 0; 2169 } 2170 2171 /* 2172 * We know that it is or will be overwritten. Check this now. 2173 * The current inode being processed might have been the one that caused 2174 * inode 'ino' to be orphanized, therefore check if ow_inode matches 2175 * the current inode being processed. 2176 */ 2177 if (ow_inode < sctx->send_progress) 2178 return 1; 2179 2180 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) { 2181 if (ow_gen == 0) { 2182 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen); 2183 if (ret < 0) 2184 return ret; 2185 } 2186 if (ow_gen == sctx->cur_inode_gen) 2187 return 1; 2188 } 2189 2190 return 0; 2191 } 2192 2193 /* 2194 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode 2195 * that got overwritten. This is used by process_recorded_refs to determine 2196 * if it has to use the path as returned by get_cur_path or the orphan name. 2197 */ 2198 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen) 2199 { 2200 int ret = 0; 2201 struct fs_path *name = NULL; 2202 u64 dir; 2203 u64 dir_gen; 2204 2205 if (!sctx->parent_root) 2206 goto out; 2207 2208 name = fs_path_alloc(); 2209 if (!name) 2210 return -ENOMEM; 2211 2212 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name); 2213 if (ret < 0) 2214 goto out; 2215 2216 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen, 2217 name->start, fs_path_len(name)); 2218 2219 out: 2220 fs_path_free(name); 2221 return ret; 2222 } 2223 2224 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx, 2225 u64 ino, u64 gen) 2226 { 2227 struct btrfs_lru_cache_entry *entry; 2228 2229 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen); 2230 if (!entry) 2231 return NULL; 2232 2233 return container_of(entry, struct name_cache_entry, entry); 2234 } 2235 2236 /* 2237 * Used by get_cur_path for each ref up to the root. 2238 * Returns 0 if it succeeded. 2239 * Returns 1 if the inode is not existent or got overwritten. In that case, the 2240 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1 2241 * is returned, parent_ino/parent_gen are not guaranteed to be valid. 2242 * Returns <0 in case of error. 2243 */ 2244 static int __get_cur_name_and_parent(struct send_ctx *sctx, 2245 u64 ino, u64 gen, 2246 u64 *parent_ino, 2247 u64 *parent_gen, 2248 struct fs_path *dest) 2249 { 2250 int ret; 2251 int nce_ret; 2252 struct name_cache_entry *nce; 2253 2254 /* 2255 * First check if we already did a call to this function with the same 2256 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes 2257 * return the cached result. 2258 */ 2259 nce = name_cache_search(sctx, ino, gen); 2260 if (nce) { 2261 if (ino < sctx->send_progress && nce->need_later_update) { 2262 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry); 2263 nce = NULL; 2264 } else { 2265 *parent_ino = nce->parent_ino; 2266 *parent_gen = nce->parent_gen; 2267 ret = fs_path_add(dest, nce->name, nce->name_len); 2268 if (ret < 0) 2269 return ret; 2270 return nce->ret; 2271 } 2272 } 2273 2274 /* 2275 * If the inode is not existent yet, add the orphan name and return 1. 2276 * This should only happen for the parent dir that we determine in 2277 * record_new_ref_if_needed(). 2278 */ 2279 ret = is_inode_existent(sctx, ino, gen, NULL, NULL); 2280 if (ret < 0) 2281 return ret; 2282 2283 if (!ret) { 2284 ret = gen_unique_name(sctx, ino, gen, dest); 2285 if (ret < 0) 2286 return ret; 2287 ret = 1; 2288 goto out_cache; 2289 } 2290 2291 /* 2292 * Depending on whether the inode was already processed or not, use 2293 * send_root or parent_root for ref lookup. 2294 */ 2295 if (ino < sctx->send_progress) 2296 ret = get_first_ref(sctx->send_root, ino, 2297 parent_ino, parent_gen, dest); 2298 else 2299 ret = get_first_ref(sctx->parent_root, ino, 2300 parent_ino, parent_gen, dest); 2301 if (ret < 0) 2302 return ret; 2303 2304 /* 2305 * Check if the ref was overwritten by an inode's ref that was processed 2306 * earlier. If yes, treat as orphan and return 1. 2307 */ 2308 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen, 2309 dest->start, fs_path_len(dest)); 2310 if (ret < 0) 2311 return ret; 2312 if (ret) { 2313 fs_path_reset(dest); 2314 ret = gen_unique_name(sctx, ino, gen, dest); 2315 if (ret < 0) 2316 return ret; 2317 ret = 1; 2318 } 2319 2320 out_cache: 2321 /* 2322 * Store the result of the lookup in the name cache. 2323 */ 2324 nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL); 2325 if (!nce) 2326 return -ENOMEM; 2327 2328 nce->entry.key = ino; 2329 nce->entry.gen = gen; 2330 nce->parent_ino = *parent_ino; 2331 nce->parent_gen = *parent_gen; 2332 nce->name_len = fs_path_len(dest); 2333 nce->ret = ret; 2334 memcpy(nce->name, dest->start, nce->name_len); 2335 2336 if (ino < sctx->send_progress) 2337 nce->need_later_update = 0; 2338 else 2339 nce->need_later_update = 1; 2340 2341 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL); 2342 if (nce_ret < 0) { 2343 kfree(nce); 2344 return nce_ret; 2345 } 2346 2347 return ret; 2348 } 2349 2350 /* 2351 * Magic happens here. This function returns the first ref to an inode as it 2352 * would look like while receiving the stream at this point in time. 2353 * We walk the path up to the root. For every inode in between, we check if it 2354 * was already processed/sent. If yes, we continue with the parent as found 2355 * in send_root. If not, we continue with the parent as found in parent_root. 2356 * If we encounter an inode that was deleted at this point in time, we use the 2357 * inodes "orphan" name instead of the real name and stop. Same with new inodes 2358 * that were not created yet and overwritten inodes/refs. 2359 * 2360 * When do we have orphan inodes: 2361 * 1. When an inode is freshly created and thus no valid refs are available yet 2362 * 2. When a directory lost all it's refs (deleted) but still has dir items 2363 * inside which were not processed yet (pending for move/delete). If anyone 2364 * tried to get the path to the dir items, it would get a path inside that 2365 * orphan directory. 2366 * 3. When an inode is moved around or gets new links, it may overwrite the ref 2367 * of an unprocessed inode. If in that case the first ref would be 2368 * overwritten, the overwritten inode gets "orphanized". Later when we 2369 * process this overwritten inode, it is restored at a new place by moving 2370 * the orphan inode. 2371 * 2372 * sctx->send_progress tells this function at which point in time receiving 2373 * would be. 2374 */ 2375 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen, 2376 struct fs_path *dest) 2377 { 2378 int ret = 0; 2379 struct fs_path *name = NULL; 2380 u64 parent_inode = 0; 2381 u64 parent_gen = 0; 2382 int stop = 0; 2383 const bool is_cur_inode = (ino == sctx->cur_ino && gen == sctx->cur_inode_gen); 2384 2385 if (is_cur_inode && fs_path_len(&sctx->cur_inode_path) > 0) { 2386 if (dest != &sctx->cur_inode_path) 2387 return fs_path_copy(dest, &sctx->cur_inode_path); 2388 2389 return 0; 2390 } 2391 2392 name = fs_path_alloc(); 2393 if (!name) { 2394 ret = -ENOMEM; 2395 goto out; 2396 } 2397 2398 dest->reversed = 1; 2399 fs_path_reset(dest); 2400 2401 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) { 2402 struct waiting_dir_move *wdm; 2403 2404 fs_path_reset(name); 2405 2406 if (is_waiting_for_rm(sctx, ino, gen)) { 2407 ret = gen_unique_name(sctx, ino, gen, name); 2408 if (ret < 0) 2409 goto out; 2410 ret = fs_path_add_path(dest, name); 2411 break; 2412 } 2413 2414 wdm = get_waiting_dir_move(sctx, ino); 2415 if (wdm && wdm->orphanized) { 2416 ret = gen_unique_name(sctx, ino, gen, name); 2417 stop = 1; 2418 } else if (wdm) { 2419 ret = get_first_ref(sctx->parent_root, ino, 2420 &parent_inode, &parent_gen, name); 2421 } else { 2422 ret = __get_cur_name_and_parent(sctx, ino, gen, 2423 &parent_inode, 2424 &parent_gen, name); 2425 if (ret) 2426 stop = 1; 2427 } 2428 2429 if (ret < 0) 2430 goto out; 2431 2432 ret = fs_path_add_path(dest, name); 2433 if (ret < 0) 2434 goto out; 2435 2436 ino = parent_inode; 2437 gen = parent_gen; 2438 } 2439 2440 out: 2441 fs_path_free(name); 2442 if (!ret) { 2443 fs_path_unreverse(dest); 2444 if (is_cur_inode && dest != &sctx->cur_inode_path) 2445 ret = fs_path_copy(&sctx->cur_inode_path, dest); 2446 } 2447 2448 return ret; 2449 } 2450 2451 /* 2452 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace 2453 */ 2454 static int send_subvol_begin(struct send_ctx *sctx) 2455 { 2456 int ret; 2457 struct btrfs_root *send_root = sctx->send_root; 2458 struct btrfs_root *parent_root = sctx->parent_root; 2459 BTRFS_PATH_AUTO_FREE(path); 2460 struct btrfs_key key; 2461 struct btrfs_root_ref *ref; 2462 struct extent_buffer *leaf; 2463 char *name = NULL; 2464 int namelen; 2465 2466 path = btrfs_alloc_path(); 2467 if (!path) 2468 return -ENOMEM; 2469 2470 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL); 2471 if (!name) 2472 return -ENOMEM; 2473 2474 key.objectid = btrfs_root_id(send_root); 2475 key.type = BTRFS_ROOT_BACKREF_KEY; 2476 key.offset = 0; 2477 2478 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root, 2479 &key, path, 1, 0); 2480 if (ret < 0) 2481 goto out; 2482 if (ret) { 2483 ret = -ENOENT; 2484 goto out; 2485 } 2486 2487 leaf = path->nodes[0]; 2488 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2489 if (key.type != BTRFS_ROOT_BACKREF_KEY || 2490 key.objectid != btrfs_root_id(send_root)) { 2491 ret = -ENOENT; 2492 goto out; 2493 } 2494 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 2495 namelen = btrfs_root_ref_name_len(leaf, ref); 2496 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen); 2497 btrfs_release_path(path); 2498 2499 if (parent_root) { 2500 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT); 2501 if (ret < 0) 2502 goto out; 2503 } else { 2504 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL); 2505 if (ret < 0) 2506 goto out; 2507 } 2508 2509 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen); 2510 2511 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid)) 2512 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2513 sctx->send_root->root_item.received_uuid); 2514 else 2515 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID, 2516 sctx->send_root->root_item.uuid); 2517 2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID, 2519 btrfs_root_ctransid(&sctx->send_root->root_item)); 2520 if (parent_root) { 2521 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid)) 2522 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2523 parent_root->root_item.received_uuid); 2524 else 2525 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 2526 parent_root->root_item.uuid); 2527 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 2528 btrfs_root_ctransid(&sctx->parent_root->root_item)); 2529 } 2530 2531 ret = send_cmd(sctx); 2532 2533 tlv_put_failure: 2534 out: 2535 kfree(name); 2536 return ret; 2537 } 2538 2539 static struct fs_path *get_cur_inode_path(struct send_ctx *sctx) 2540 { 2541 if (fs_path_len(&sctx->cur_inode_path) == 0) { 2542 int ret; 2543 2544 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 2545 &sctx->cur_inode_path); 2546 if (ret < 0) 2547 return ERR_PTR(ret); 2548 } 2549 2550 return &sctx->cur_inode_path; 2551 } 2552 2553 static struct fs_path *get_path_for_command(struct send_ctx *sctx, u64 ino, u64 gen) 2554 { 2555 struct fs_path *path; 2556 int ret; 2557 2558 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 2559 return get_cur_inode_path(sctx); 2560 2561 path = fs_path_alloc(); 2562 if (!path) 2563 return ERR_PTR(-ENOMEM); 2564 2565 ret = get_cur_path(sctx, ino, gen, path); 2566 if (ret < 0) { 2567 fs_path_free(path); 2568 return ERR_PTR(ret); 2569 } 2570 2571 return path; 2572 } 2573 2574 static void free_path_for_command(const struct send_ctx *sctx, struct fs_path *path) 2575 { 2576 if (path != &sctx->cur_inode_path) 2577 fs_path_free(path); 2578 } 2579 2580 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size) 2581 { 2582 int ret = 0; 2583 struct fs_path *p; 2584 2585 p = get_path_for_command(sctx, ino, gen); 2586 if (IS_ERR(p)) 2587 return PTR_ERR(p); 2588 2589 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE); 2590 if (ret < 0) 2591 goto out; 2592 2593 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2594 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size); 2595 2596 ret = send_cmd(sctx); 2597 2598 tlv_put_failure: 2599 out: 2600 free_path_for_command(sctx, p); 2601 return ret; 2602 } 2603 2604 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode) 2605 { 2606 int ret = 0; 2607 struct fs_path *p; 2608 2609 p = get_path_for_command(sctx, ino, gen); 2610 if (IS_ERR(p)) 2611 return PTR_ERR(p); 2612 2613 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD); 2614 if (ret < 0) 2615 goto out; 2616 2617 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2618 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777); 2619 2620 ret = send_cmd(sctx); 2621 2622 tlv_put_failure: 2623 out: 2624 free_path_for_command(sctx, p); 2625 return ret; 2626 } 2627 2628 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr) 2629 { 2630 int ret = 0; 2631 struct fs_path *p; 2632 2633 if (sctx->proto < 2) 2634 return 0; 2635 2636 p = get_path_for_command(sctx, ino, gen); 2637 if (IS_ERR(p)) 2638 return PTR_ERR(p); 2639 2640 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR); 2641 if (ret < 0) 2642 goto out; 2643 2644 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr); 2646 2647 ret = send_cmd(sctx); 2648 2649 tlv_put_failure: 2650 out: 2651 free_path_for_command(sctx, p); 2652 return ret; 2653 } 2654 2655 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid) 2656 { 2657 int ret = 0; 2658 struct fs_path *p; 2659 2660 p = get_path_for_command(sctx, ino, gen); 2661 if (IS_ERR(p)) 2662 return PTR_ERR(p); 2663 2664 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN); 2665 if (ret < 0) 2666 goto out; 2667 2668 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2669 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid); 2670 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid); 2671 2672 ret = send_cmd(sctx); 2673 2674 tlv_put_failure: 2675 out: 2676 free_path_for_command(sctx, p); 2677 return ret; 2678 } 2679 2680 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen) 2681 { 2682 int ret = 0; 2683 struct fs_path *p = NULL; 2684 struct btrfs_inode_item *ii; 2685 BTRFS_PATH_AUTO_FREE(path); 2686 struct extent_buffer *eb; 2687 struct btrfs_key key; 2688 int slot; 2689 2690 p = get_path_for_command(sctx, ino, gen); 2691 if (IS_ERR(p)) 2692 return PTR_ERR(p); 2693 2694 path = alloc_path_for_send(); 2695 if (!path) { 2696 ret = -ENOMEM; 2697 goto out; 2698 } 2699 2700 key.objectid = ino; 2701 key.type = BTRFS_INODE_ITEM_KEY; 2702 key.offset = 0; 2703 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0); 2704 if (ret > 0) 2705 ret = -ENOENT; 2706 if (ret < 0) 2707 goto out; 2708 2709 eb = path->nodes[0]; 2710 slot = path->slots[0]; 2711 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 2712 2713 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES); 2714 if (ret < 0) 2715 goto out; 2716 2717 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2718 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime); 2719 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime); 2720 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime); 2721 if (sctx->proto >= 2) 2722 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime); 2723 2724 ret = send_cmd(sctx); 2725 2726 tlv_put_failure: 2727 out: 2728 free_path_for_command(sctx, p); 2729 return ret; 2730 } 2731 2732 /* 2733 * If the cache is full, we can't remove entries from it and do a call to 2734 * send_utimes() for each respective inode, because we might be finishing 2735 * processing an inode that is a directory and it just got renamed, and existing 2736 * entries in the cache may refer to inodes that have the directory in their 2737 * full path - in which case we would generate outdated paths (pre-rename) 2738 * for the inodes that the cache entries point to. Instead of pruning the 2739 * cache when inserting, do it after we finish processing each inode at 2740 * finish_inode_if_needed(). 2741 */ 2742 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen) 2743 { 2744 struct btrfs_lru_cache_entry *entry; 2745 int ret; 2746 2747 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen); 2748 if (entry != NULL) 2749 return 0; 2750 2751 /* Caching is optional, don't fail if we can't allocate memory. */ 2752 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2753 if (!entry) 2754 return send_utimes(sctx, dir, gen); 2755 2756 entry->key = dir; 2757 entry->gen = gen; 2758 2759 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL); 2760 ASSERT(ret != -EEXIST); 2761 if (ret) { 2762 kfree(entry); 2763 return send_utimes(sctx, dir, gen); 2764 } 2765 2766 return 0; 2767 } 2768 2769 static int trim_dir_utimes_cache(struct send_ctx *sctx) 2770 { 2771 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) { 2772 struct btrfs_lru_cache_entry *lru; 2773 int ret; 2774 2775 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache); 2776 ASSERT(lru != NULL); 2777 2778 ret = send_utimes(sctx, lru->key, lru->gen); 2779 if (ret) 2780 return ret; 2781 2782 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru); 2783 } 2784 2785 return 0; 2786 } 2787 2788 /* 2789 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have 2790 * a valid path yet because we did not process the refs yet. So, the inode 2791 * is created as orphan. 2792 */ 2793 static int send_create_inode(struct send_ctx *sctx, u64 ino) 2794 { 2795 int ret = 0; 2796 struct fs_path *p; 2797 int cmd; 2798 struct btrfs_inode_info info; 2799 u64 gen; 2800 u64 mode; 2801 u64 rdev; 2802 2803 p = fs_path_alloc(); 2804 if (!p) 2805 return -ENOMEM; 2806 2807 if (ino != sctx->cur_ino) { 2808 ret = get_inode_info(sctx->send_root, ino, &info); 2809 if (ret < 0) 2810 goto out; 2811 gen = info.gen; 2812 mode = info.mode; 2813 rdev = info.rdev; 2814 } else { 2815 gen = sctx->cur_inode_gen; 2816 mode = sctx->cur_inode_mode; 2817 rdev = sctx->cur_inode_rdev; 2818 } 2819 2820 if (S_ISREG(mode)) { 2821 cmd = BTRFS_SEND_C_MKFILE; 2822 } else if (S_ISDIR(mode)) { 2823 cmd = BTRFS_SEND_C_MKDIR; 2824 } else if (S_ISLNK(mode)) { 2825 cmd = BTRFS_SEND_C_SYMLINK; 2826 } else if (S_ISCHR(mode) || S_ISBLK(mode)) { 2827 cmd = BTRFS_SEND_C_MKNOD; 2828 } else if (S_ISFIFO(mode)) { 2829 cmd = BTRFS_SEND_C_MKFIFO; 2830 } else if (S_ISSOCK(mode)) { 2831 cmd = BTRFS_SEND_C_MKSOCK; 2832 } else { 2833 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o", 2834 (int)(mode & S_IFMT)); 2835 ret = -EOPNOTSUPP; 2836 goto out; 2837 } 2838 2839 ret = begin_cmd(sctx, cmd); 2840 if (ret < 0) 2841 goto out; 2842 2843 ret = gen_unique_name(sctx, ino, gen, p); 2844 if (ret < 0) 2845 goto out; 2846 2847 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 2848 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino); 2849 2850 if (S_ISLNK(mode)) { 2851 fs_path_reset(p); 2852 ret = read_symlink(sctx->send_root, ino, p); 2853 if (ret < 0) 2854 goto out; 2855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p); 2856 } else if (S_ISCHR(mode) || S_ISBLK(mode) || 2857 S_ISFIFO(mode) || S_ISSOCK(mode)) { 2858 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev)); 2859 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode); 2860 } 2861 2862 ret = send_cmd(sctx); 2863 if (ret < 0) 2864 goto out; 2865 2866 2867 tlv_put_failure: 2868 out: 2869 fs_path_free(p); 2870 return ret; 2871 } 2872 2873 static void cache_dir_created(struct send_ctx *sctx, u64 dir) 2874 { 2875 struct btrfs_lru_cache_entry *entry; 2876 int ret; 2877 2878 /* Caching is optional, ignore any failures. */ 2879 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2880 if (!entry) 2881 return; 2882 2883 entry->key = dir; 2884 entry->gen = 0; 2885 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL); 2886 if (ret < 0) 2887 kfree(entry); 2888 } 2889 2890 /* 2891 * We need some special handling for inodes that get processed before the parent 2892 * directory got created. See process_recorded_refs for details. 2893 * This function does the check if we already created the dir out of order. 2894 */ 2895 static int did_create_dir(struct send_ctx *sctx, u64 dir) 2896 { 2897 int ret = 0; 2898 int iter_ret = 0; 2899 BTRFS_PATH_AUTO_FREE(path); 2900 struct btrfs_key key; 2901 struct btrfs_key found_key; 2902 struct btrfs_key di_key; 2903 struct btrfs_dir_item *di; 2904 2905 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0)) 2906 return 1; 2907 2908 path = alloc_path_for_send(); 2909 if (!path) 2910 return -ENOMEM; 2911 2912 key.objectid = dir; 2913 key.type = BTRFS_DIR_INDEX_KEY; 2914 key.offset = 0; 2915 2916 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) { 2917 struct extent_buffer *eb = path->nodes[0]; 2918 2919 if (found_key.objectid != key.objectid || 2920 found_key.type != key.type) { 2921 ret = 0; 2922 break; 2923 } 2924 2925 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item); 2926 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2927 2928 if (di_key.type != BTRFS_ROOT_ITEM_KEY && 2929 di_key.objectid < sctx->send_progress) { 2930 ret = 1; 2931 cache_dir_created(sctx, dir); 2932 break; 2933 } 2934 } 2935 /* Catch error found during iteration */ 2936 if (iter_ret < 0) 2937 ret = iter_ret; 2938 2939 return ret; 2940 } 2941 2942 /* 2943 * Only creates the inode if it is: 2944 * 1. Not a directory 2945 * 2. Or a directory which was not created already due to out of order 2946 * directories. See did_create_dir and process_recorded_refs for details. 2947 */ 2948 static int send_create_inode_if_needed(struct send_ctx *sctx) 2949 { 2950 int ret; 2951 2952 if (S_ISDIR(sctx->cur_inode_mode)) { 2953 ret = did_create_dir(sctx, sctx->cur_ino); 2954 if (ret < 0) 2955 return ret; 2956 else if (ret > 0) 2957 return 0; 2958 } 2959 2960 ret = send_create_inode(sctx, sctx->cur_ino); 2961 2962 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode)) 2963 cache_dir_created(sctx, sctx->cur_ino); 2964 2965 return ret; 2966 } 2967 2968 struct recorded_ref { 2969 struct list_head list; 2970 char *name; 2971 struct fs_path *full_path; 2972 u64 dir; 2973 u64 dir_gen; 2974 int name_len; 2975 struct rb_node node; 2976 struct rb_root *root; 2977 }; 2978 2979 static struct recorded_ref *recorded_ref_alloc(void) 2980 { 2981 struct recorded_ref *ref; 2982 2983 ref = kzalloc(sizeof(*ref), GFP_KERNEL); 2984 if (!ref) 2985 return NULL; 2986 RB_CLEAR_NODE(&ref->node); 2987 INIT_LIST_HEAD(&ref->list); 2988 return ref; 2989 } 2990 2991 static void recorded_ref_free(struct recorded_ref *ref) 2992 { 2993 if (!ref) 2994 return; 2995 if (!RB_EMPTY_NODE(&ref->node)) 2996 rb_erase(&ref->node, ref->root); 2997 list_del(&ref->list); 2998 fs_path_free(ref->full_path); 2999 kfree(ref); 3000 } 3001 3002 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path) 3003 { 3004 ref->full_path = path; 3005 ref->name = (char *)kbasename(ref->full_path->start); 3006 ref->name_len = ref->full_path->end - ref->name; 3007 } 3008 3009 static int dup_ref(struct recorded_ref *ref, struct list_head *list) 3010 { 3011 struct recorded_ref *new; 3012 3013 new = recorded_ref_alloc(); 3014 if (!new) 3015 return -ENOMEM; 3016 3017 new->dir = ref->dir; 3018 new->dir_gen = ref->dir_gen; 3019 list_add_tail(&new->list, list); 3020 return 0; 3021 } 3022 3023 static void __free_recorded_refs(struct list_head *head) 3024 { 3025 struct recorded_ref *cur; 3026 3027 while (!list_empty(head)) { 3028 cur = list_first_entry(head, struct recorded_ref, list); 3029 recorded_ref_free(cur); 3030 } 3031 } 3032 3033 static void free_recorded_refs(struct send_ctx *sctx) 3034 { 3035 __free_recorded_refs(&sctx->new_refs); 3036 __free_recorded_refs(&sctx->deleted_refs); 3037 } 3038 3039 /* 3040 * Renames/moves a file/dir to its orphan name. Used when the first 3041 * ref of an unprocessed inode gets overwritten and for all non empty 3042 * directories. 3043 */ 3044 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen, 3045 struct fs_path *path) 3046 { 3047 int ret; 3048 struct fs_path *orphan; 3049 3050 orphan = fs_path_alloc(); 3051 if (!orphan) 3052 return -ENOMEM; 3053 3054 ret = gen_unique_name(sctx, ino, gen, orphan); 3055 if (ret < 0) 3056 goto out; 3057 3058 ret = send_rename(sctx, path, orphan); 3059 if (ret < 0) 3060 goto out; 3061 3062 if (ino == sctx->cur_ino && gen == sctx->cur_inode_gen) 3063 ret = fs_path_copy(&sctx->cur_inode_path, orphan); 3064 3065 out: 3066 fs_path_free(orphan); 3067 return ret; 3068 } 3069 3070 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx, 3071 u64 dir_ino, u64 dir_gen) 3072 { 3073 struct rb_node **p = &sctx->orphan_dirs.rb_node; 3074 struct rb_node *parent = NULL; 3075 struct orphan_dir_info *entry, *odi; 3076 3077 while (*p) { 3078 parent = *p; 3079 entry = rb_entry(parent, struct orphan_dir_info, node); 3080 if (dir_ino < entry->ino) 3081 p = &(*p)->rb_left; 3082 else if (dir_ino > entry->ino) 3083 p = &(*p)->rb_right; 3084 else if (dir_gen < entry->gen) 3085 p = &(*p)->rb_left; 3086 else if (dir_gen > entry->gen) 3087 p = &(*p)->rb_right; 3088 else 3089 return entry; 3090 } 3091 3092 odi = kmalloc(sizeof(*odi), GFP_KERNEL); 3093 if (!odi) 3094 return ERR_PTR(-ENOMEM); 3095 odi->ino = dir_ino; 3096 odi->gen = dir_gen; 3097 odi->last_dir_index_offset = 0; 3098 odi->dir_high_seq_ino = 0; 3099 3100 rb_link_node(&odi->node, parent, p); 3101 rb_insert_color(&odi->node, &sctx->orphan_dirs); 3102 return odi; 3103 } 3104 3105 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx, 3106 u64 dir_ino, u64 gen) 3107 { 3108 struct rb_node *n = sctx->orphan_dirs.rb_node; 3109 struct orphan_dir_info *entry; 3110 3111 while (n) { 3112 entry = rb_entry(n, struct orphan_dir_info, node); 3113 if (dir_ino < entry->ino) 3114 n = n->rb_left; 3115 else if (dir_ino > entry->ino) 3116 n = n->rb_right; 3117 else if (gen < entry->gen) 3118 n = n->rb_left; 3119 else if (gen > entry->gen) 3120 n = n->rb_right; 3121 else 3122 return entry; 3123 } 3124 return NULL; 3125 } 3126 3127 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen) 3128 { 3129 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen); 3130 3131 return odi != NULL; 3132 } 3133 3134 static void free_orphan_dir_info(struct send_ctx *sctx, 3135 struct orphan_dir_info *odi) 3136 { 3137 if (!odi) 3138 return; 3139 rb_erase(&odi->node, &sctx->orphan_dirs); 3140 kfree(odi); 3141 } 3142 3143 /* 3144 * Returns 1 if a directory can be removed at this point in time. 3145 * We check this by iterating all dir items and checking if the inode behind 3146 * the dir item was already processed. 3147 */ 3148 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen) 3149 { 3150 int ret = 0; 3151 int iter_ret = 0; 3152 struct btrfs_root *root = sctx->parent_root; 3153 struct btrfs_path *path; 3154 struct btrfs_key key; 3155 struct btrfs_key found_key; 3156 struct btrfs_key loc; 3157 struct btrfs_dir_item *di; 3158 struct orphan_dir_info *odi = NULL; 3159 u64 dir_high_seq_ino = 0; 3160 u64 last_dir_index_offset = 0; 3161 3162 /* 3163 * Don't try to rmdir the top/root subvolume dir. 3164 */ 3165 if (dir == BTRFS_FIRST_FREE_OBJECTID) 3166 return 0; 3167 3168 odi = get_orphan_dir_info(sctx, dir, dir_gen); 3169 if (odi && sctx->cur_ino < odi->dir_high_seq_ino) 3170 return 0; 3171 3172 path = alloc_path_for_send(); 3173 if (!path) 3174 return -ENOMEM; 3175 3176 if (!odi) { 3177 /* 3178 * Find the inode number associated with the last dir index 3179 * entry. This is very likely the inode with the highest number 3180 * of all inodes that have an entry in the directory. We can 3181 * then use it to avoid future calls to can_rmdir(), when 3182 * processing inodes with a lower number, from having to search 3183 * the parent root b+tree for dir index keys. 3184 */ 3185 key.objectid = dir; 3186 key.type = BTRFS_DIR_INDEX_KEY; 3187 key.offset = (u64)-1; 3188 3189 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3190 if (ret < 0) { 3191 goto out; 3192 } else if (ret > 0) { 3193 /* Can't happen, the root is never empty. */ 3194 ASSERT(path->slots[0] > 0); 3195 if (WARN_ON(path->slots[0] == 0)) { 3196 ret = -EUCLEAN; 3197 goto out; 3198 } 3199 path->slots[0]--; 3200 } 3201 3202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3203 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) { 3204 /* No index keys, dir can be removed. */ 3205 ret = 1; 3206 goto out; 3207 } 3208 3209 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3210 struct btrfs_dir_item); 3211 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3212 dir_high_seq_ino = loc.objectid; 3213 if (sctx->cur_ino < dir_high_seq_ino) { 3214 ret = 0; 3215 goto out; 3216 } 3217 3218 btrfs_release_path(path); 3219 } 3220 3221 key.objectid = dir; 3222 key.type = BTRFS_DIR_INDEX_KEY; 3223 key.offset = (odi ? odi->last_dir_index_offset : 0); 3224 3225 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 3226 struct waiting_dir_move *dm; 3227 3228 if (found_key.objectid != key.objectid || 3229 found_key.type != key.type) 3230 break; 3231 3232 di = btrfs_item_ptr(path->nodes[0], path->slots[0], 3233 struct btrfs_dir_item); 3234 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc); 3235 3236 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid); 3237 last_dir_index_offset = found_key.offset; 3238 3239 dm = get_waiting_dir_move(sctx, loc.objectid); 3240 if (dm) { 3241 dm->rmdir_ino = dir; 3242 dm->rmdir_gen = dir_gen; 3243 ret = 0; 3244 goto out; 3245 } 3246 3247 if (loc.objectid > sctx->cur_ino) { 3248 ret = 0; 3249 goto out; 3250 } 3251 } 3252 if (iter_ret < 0) { 3253 ret = iter_ret; 3254 goto out; 3255 } 3256 free_orphan_dir_info(sctx, odi); 3257 3258 ret = 1; 3259 3260 out: 3261 btrfs_free_path(path); 3262 3263 if (ret) 3264 return ret; 3265 3266 if (!odi) { 3267 odi = add_orphan_dir_info(sctx, dir, dir_gen); 3268 if (IS_ERR(odi)) 3269 return PTR_ERR(odi); 3270 3271 odi->gen = dir_gen; 3272 } 3273 3274 odi->last_dir_index_offset = last_dir_index_offset; 3275 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino); 3276 3277 return 0; 3278 } 3279 3280 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino) 3281 { 3282 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino); 3283 3284 return entry != NULL; 3285 } 3286 3287 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized) 3288 { 3289 struct rb_node **p = &sctx->waiting_dir_moves.rb_node; 3290 struct rb_node *parent = NULL; 3291 struct waiting_dir_move *entry, *dm; 3292 3293 dm = kmalloc(sizeof(*dm), GFP_KERNEL); 3294 if (!dm) 3295 return -ENOMEM; 3296 dm->ino = ino; 3297 dm->rmdir_ino = 0; 3298 dm->rmdir_gen = 0; 3299 dm->orphanized = orphanized; 3300 3301 while (*p) { 3302 parent = *p; 3303 entry = rb_entry(parent, struct waiting_dir_move, node); 3304 if (ino < entry->ino) { 3305 p = &(*p)->rb_left; 3306 } else if (ino > entry->ino) { 3307 p = &(*p)->rb_right; 3308 } else { 3309 kfree(dm); 3310 return -EEXIST; 3311 } 3312 } 3313 3314 rb_link_node(&dm->node, parent, p); 3315 rb_insert_color(&dm->node, &sctx->waiting_dir_moves); 3316 return 0; 3317 } 3318 3319 static struct waiting_dir_move * 3320 get_waiting_dir_move(struct send_ctx *sctx, u64 ino) 3321 { 3322 struct rb_node *n = sctx->waiting_dir_moves.rb_node; 3323 struct waiting_dir_move *entry; 3324 3325 while (n) { 3326 entry = rb_entry(n, struct waiting_dir_move, node); 3327 if (ino < entry->ino) 3328 n = n->rb_left; 3329 else if (ino > entry->ino) 3330 n = n->rb_right; 3331 else 3332 return entry; 3333 } 3334 return NULL; 3335 } 3336 3337 static void free_waiting_dir_move(struct send_ctx *sctx, 3338 struct waiting_dir_move *dm) 3339 { 3340 if (!dm) 3341 return; 3342 rb_erase(&dm->node, &sctx->waiting_dir_moves); 3343 kfree(dm); 3344 } 3345 3346 static int add_pending_dir_move(struct send_ctx *sctx, 3347 u64 ino, 3348 u64 ino_gen, 3349 u64 parent_ino, 3350 struct list_head *new_refs, 3351 struct list_head *deleted_refs, 3352 const bool is_orphan) 3353 { 3354 struct rb_node **p = &sctx->pending_dir_moves.rb_node; 3355 struct rb_node *parent = NULL; 3356 struct pending_dir_move *entry = NULL, *pm; 3357 struct recorded_ref *cur; 3358 int exists = 0; 3359 int ret; 3360 3361 pm = kmalloc(sizeof(*pm), GFP_KERNEL); 3362 if (!pm) 3363 return -ENOMEM; 3364 pm->parent_ino = parent_ino; 3365 pm->ino = ino; 3366 pm->gen = ino_gen; 3367 INIT_LIST_HEAD(&pm->list); 3368 INIT_LIST_HEAD(&pm->update_refs); 3369 RB_CLEAR_NODE(&pm->node); 3370 3371 while (*p) { 3372 parent = *p; 3373 entry = rb_entry(parent, struct pending_dir_move, node); 3374 if (parent_ino < entry->parent_ino) { 3375 p = &(*p)->rb_left; 3376 } else if (parent_ino > entry->parent_ino) { 3377 p = &(*p)->rb_right; 3378 } else { 3379 exists = 1; 3380 break; 3381 } 3382 } 3383 3384 list_for_each_entry(cur, deleted_refs, list) { 3385 ret = dup_ref(cur, &pm->update_refs); 3386 if (ret < 0) 3387 goto out; 3388 } 3389 list_for_each_entry(cur, new_refs, list) { 3390 ret = dup_ref(cur, &pm->update_refs); 3391 if (ret < 0) 3392 goto out; 3393 } 3394 3395 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan); 3396 if (ret) 3397 goto out; 3398 3399 if (exists) { 3400 list_add_tail(&pm->list, &entry->list); 3401 } else { 3402 rb_link_node(&pm->node, parent, p); 3403 rb_insert_color(&pm->node, &sctx->pending_dir_moves); 3404 } 3405 ret = 0; 3406 out: 3407 if (ret) { 3408 __free_recorded_refs(&pm->update_refs); 3409 kfree(pm); 3410 } 3411 return ret; 3412 } 3413 3414 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx, 3415 u64 parent_ino) 3416 { 3417 struct rb_node *n = sctx->pending_dir_moves.rb_node; 3418 struct pending_dir_move *entry; 3419 3420 while (n) { 3421 entry = rb_entry(n, struct pending_dir_move, node); 3422 if (parent_ino < entry->parent_ino) 3423 n = n->rb_left; 3424 else if (parent_ino > entry->parent_ino) 3425 n = n->rb_right; 3426 else 3427 return entry; 3428 } 3429 return NULL; 3430 } 3431 3432 static int path_loop(struct send_ctx *sctx, struct fs_path *name, 3433 u64 ino, u64 gen, u64 *ancestor_ino) 3434 { 3435 int ret = 0; 3436 u64 parent_inode = 0; 3437 u64 parent_gen = 0; 3438 u64 start_ino = ino; 3439 3440 *ancestor_ino = 0; 3441 while (ino != BTRFS_FIRST_FREE_OBJECTID) { 3442 fs_path_reset(name); 3443 3444 if (is_waiting_for_rm(sctx, ino, gen)) 3445 break; 3446 if (is_waiting_for_move(sctx, ino)) { 3447 if (*ancestor_ino == 0) 3448 *ancestor_ino = ino; 3449 ret = get_first_ref(sctx->parent_root, ino, 3450 &parent_inode, &parent_gen, name); 3451 } else { 3452 ret = __get_cur_name_and_parent(sctx, ino, gen, 3453 &parent_inode, 3454 &parent_gen, name); 3455 if (ret > 0) { 3456 ret = 0; 3457 break; 3458 } 3459 } 3460 if (ret < 0) 3461 break; 3462 if (parent_inode == start_ino) { 3463 ret = 1; 3464 if (*ancestor_ino == 0) 3465 *ancestor_ino = ino; 3466 break; 3467 } 3468 ino = parent_inode; 3469 gen = parent_gen; 3470 } 3471 return ret; 3472 } 3473 3474 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm) 3475 { 3476 struct fs_path *from_path = NULL; 3477 struct fs_path *to_path = NULL; 3478 struct fs_path *name = NULL; 3479 u64 orig_progress = sctx->send_progress; 3480 struct recorded_ref *cur; 3481 u64 parent_ino, parent_gen; 3482 struct waiting_dir_move *dm = NULL; 3483 u64 rmdir_ino = 0; 3484 u64 rmdir_gen; 3485 u64 ancestor; 3486 bool is_orphan; 3487 int ret; 3488 3489 name = fs_path_alloc(); 3490 from_path = fs_path_alloc(); 3491 if (!name || !from_path) { 3492 ret = -ENOMEM; 3493 goto out; 3494 } 3495 3496 dm = get_waiting_dir_move(sctx, pm->ino); 3497 ASSERT(dm); 3498 rmdir_ino = dm->rmdir_ino; 3499 rmdir_gen = dm->rmdir_gen; 3500 is_orphan = dm->orphanized; 3501 free_waiting_dir_move(sctx, dm); 3502 3503 if (is_orphan) { 3504 ret = gen_unique_name(sctx, pm->ino, 3505 pm->gen, from_path); 3506 } else { 3507 ret = get_first_ref(sctx->parent_root, pm->ino, 3508 &parent_ino, &parent_gen, name); 3509 if (ret < 0) 3510 goto out; 3511 ret = get_cur_path(sctx, parent_ino, parent_gen, 3512 from_path); 3513 if (ret < 0) 3514 goto out; 3515 ret = fs_path_add_path(from_path, name); 3516 } 3517 if (ret < 0) 3518 goto out; 3519 3520 sctx->send_progress = sctx->cur_ino + 1; 3521 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor); 3522 if (ret < 0) 3523 goto out; 3524 if (ret) { 3525 LIST_HEAD(deleted_refs); 3526 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID); 3527 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor, 3528 &pm->update_refs, &deleted_refs, 3529 is_orphan); 3530 if (ret < 0) 3531 goto out; 3532 if (rmdir_ino) { 3533 dm = get_waiting_dir_move(sctx, pm->ino); 3534 ASSERT(dm); 3535 dm->rmdir_ino = rmdir_ino; 3536 dm->rmdir_gen = rmdir_gen; 3537 } 3538 goto out; 3539 } 3540 fs_path_reset(name); 3541 to_path = name; 3542 name = NULL; 3543 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path); 3544 if (ret < 0) 3545 goto out; 3546 3547 ret = send_rename(sctx, from_path, to_path); 3548 if (ret < 0) 3549 goto out; 3550 3551 if (rmdir_ino) { 3552 struct orphan_dir_info *odi; 3553 u64 gen; 3554 3555 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen); 3556 if (!odi) { 3557 /* already deleted */ 3558 goto finish; 3559 } 3560 gen = odi->gen; 3561 3562 ret = can_rmdir(sctx, rmdir_ino, gen); 3563 if (ret < 0) 3564 goto out; 3565 if (!ret) 3566 goto finish; 3567 3568 name = fs_path_alloc(); 3569 if (!name) { 3570 ret = -ENOMEM; 3571 goto out; 3572 } 3573 ret = get_cur_path(sctx, rmdir_ino, gen, name); 3574 if (ret < 0) 3575 goto out; 3576 ret = send_rmdir(sctx, name); 3577 if (ret < 0) 3578 goto out; 3579 } 3580 3581 finish: 3582 ret = cache_dir_utimes(sctx, pm->ino, pm->gen); 3583 if (ret < 0) 3584 goto out; 3585 3586 /* 3587 * After rename/move, need to update the utimes of both new parent(s) 3588 * and old parent(s). 3589 */ 3590 list_for_each_entry(cur, &pm->update_refs, list) { 3591 /* 3592 * The parent inode might have been deleted in the send snapshot 3593 */ 3594 ret = get_inode_info(sctx->send_root, cur->dir, NULL); 3595 if (ret == -ENOENT) { 3596 ret = 0; 3597 continue; 3598 } 3599 if (ret < 0) 3600 goto out; 3601 3602 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 3603 if (ret < 0) 3604 goto out; 3605 } 3606 3607 out: 3608 fs_path_free(name); 3609 fs_path_free(from_path); 3610 fs_path_free(to_path); 3611 sctx->send_progress = orig_progress; 3612 3613 return ret; 3614 } 3615 3616 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m) 3617 { 3618 if (!list_empty(&m->list)) 3619 list_del(&m->list); 3620 if (!RB_EMPTY_NODE(&m->node)) 3621 rb_erase(&m->node, &sctx->pending_dir_moves); 3622 __free_recorded_refs(&m->update_refs); 3623 kfree(m); 3624 } 3625 3626 static void tail_append_pending_moves(struct send_ctx *sctx, 3627 struct pending_dir_move *moves, 3628 struct list_head *stack) 3629 { 3630 if (list_empty(&moves->list)) { 3631 list_add_tail(&moves->list, stack); 3632 } else { 3633 LIST_HEAD(list); 3634 list_splice_init(&moves->list, &list); 3635 list_add_tail(&moves->list, stack); 3636 list_splice_tail(&list, stack); 3637 } 3638 if (!RB_EMPTY_NODE(&moves->node)) { 3639 rb_erase(&moves->node, &sctx->pending_dir_moves); 3640 RB_CLEAR_NODE(&moves->node); 3641 } 3642 } 3643 3644 static int apply_children_dir_moves(struct send_ctx *sctx) 3645 { 3646 struct pending_dir_move *pm; 3647 LIST_HEAD(stack); 3648 u64 parent_ino = sctx->cur_ino; 3649 int ret = 0; 3650 3651 pm = get_pending_dir_moves(sctx, parent_ino); 3652 if (!pm) 3653 return 0; 3654 3655 tail_append_pending_moves(sctx, pm, &stack); 3656 3657 while (!list_empty(&stack)) { 3658 pm = list_first_entry(&stack, struct pending_dir_move, list); 3659 parent_ino = pm->ino; 3660 ret = apply_dir_move(sctx, pm); 3661 free_pending_move(sctx, pm); 3662 if (ret) 3663 goto out; 3664 pm = get_pending_dir_moves(sctx, parent_ino); 3665 if (pm) 3666 tail_append_pending_moves(sctx, pm, &stack); 3667 } 3668 return 0; 3669 3670 out: 3671 while (!list_empty(&stack)) { 3672 pm = list_first_entry(&stack, struct pending_dir_move, list); 3673 free_pending_move(sctx, pm); 3674 } 3675 return ret; 3676 } 3677 3678 /* 3679 * We might need to delay a directory rename even when no ancestor directory 3680 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was 3681 * renamed. This happens when we rename a directory to the old name (the name 3682 * in the parent root) of some other unrelated directory that got its rename 3683 * delayed due to some ancestor with higher number that got renamed. 3684 * 3685 * Example: 3686 * 3687 * Parent snapshot: 3688 * . (ino 256) 3689 * |---- a/ (ino 257) 3690 * | |---- file (ino 260) 3691 * | 3692 * |---- b/ (ino 258) 3693 * |---- c/ (ino 259) 3694 * 3695 * Send snapshot: 3696 * . (ino 256) 3697 * |---- a/ (ino 258) 3698 * |---- x/ (ino 259) 3699 * |---- y/ (ino 257) 3700 * |----- file (ino 260) 3701 * 3702 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257 3703 * from 'a' to 'x/y' happening first, which in turn depends on the rename of 3704 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream 3705 * must issue is: 3706 * 3707 * 1 - rename 259 from 'c' to 'x' 3708 * 2 - rename 257 from 'a' to 'x/y' 3709 * 3 - rename 258 from 'b' to 'a' 3710 * 3711 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can 3712 * be done right away and < 0 on error. 3713 */ 3714 static int wait_for_dest_dir_move(struct send_ctx *sctx, 3715 struct recorded_ref *parent_ref, 3716 const bool is_orphan) 3717 { 3718 BTRFS_PATH_AUTO_FREE(path); 3719 struct btrfs_key key; 3720 struct btrfs_key di_key; 3721 struct btrfs_dir_item *di; 3722 u64 left_gen; 3723 u64 right_gen; 3724 int ret = 0; 3725 struct waiting_dir_move *wdm; 3726 3727 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) 3728 return 0; 3729 3730 path = alloc_path_for_send(); 3731 if (!path) 3732 return -ENOMEM; 3733 3734 key.objectid = parent_ref->dir; 3735 key.type = BTRFS_DIR_ITEM_KEY; 3736 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len); 3737 3738 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0); 3739 if (ret < 0) 3740 return ret; 3741 if (ret > 0) 3742 return 0; 3743 3744 di = btrfs_match_dir_item_name(path, parent_ref->name, 3745 parent_ref->name_len); 3746 if (!di) 3747 return 0; 3748 /* 3749 * di_key.objectid has the number of the inode that has a dentry in the 3750 * parent directory with the same name that sctx->cur_ino is being 3751 * renamed to. We need to check if that inode is in the send root as 3752 * well and if it is currently marked as an inode with a pending rename, 3753 * if it is, we need to delay the rename of sctx->cur_ino as well, so 3754 * that it happens after that other inode is renamed. 3755 */ 3756 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key); 3757 if (di_key.type != BTRFS_INODE_ITEM_KEY) 3758 return 0; 3759 3760 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen); 3761 if (ret < 0) 3762 return ret; 3763 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen); 3764 if (ret < 0) { 3765 if (ret == -ENOENT) 3766 ret = 0; 3767 return ret; 3768 } 3769 3770 /* Different inode, no need to delay the rename of sctx->cur_ino */ 3771 if (right_gen != left_gen) 3772 return 0; 3773 3774 wdm = get_waiting_dir_move(sctx, di_key.objectid); 3775 if (wdm && !wdm->orphanized) { 3776 ret = add_pending_dir_move(sctx, 3777 sctx->cur_ino, 3778 sctx->cur_inode_gen, 3779 di_key.objectid, 3780 &sctx->new_refs, 3781 &sctx->deleted_refs, 3782 is_orphan); 3783 if (!ret) 3784 ret = 1; 3785 } 3786 return ret; 3787 } 3788 3789 /* 3790 * Check if inode ino2, or any of its ancestors, is inode ino1. 3791 * Return 1 if true, 0 if false and < 0 on error. 3792 */ 3793 static int check_ino_in_path(struct btrfs_root *root, 3794 const u64 ino1, 3795 const u64 ino1_gen, 3796 const u64 ino2, 3797 const u64 ino2_gen, 3798 struct fs_path *fs_path) 3799 { 3800 u64 ino = ino2; 3801 3802 if (ino1 == ino2) 3803 return ino1_gen == ino2_gen; 3804 3805 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3806 u64 parent; 3807 u64 parent_gen; 3808 int ret; 3809 3810 fs_path_reset(fs_path); 3811 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path); 3812 if (ret < 0) 3813 return ret; 3814 if (parent == ino1) 3815 return parent_gen == ino1_gen; 3816 ino = parent; 3817 } 3818 return 0; 3819 } 3820 3821 /* 3822 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any 3823 * possible path (in case ino2 is not a directory and has multiple hard links). 3824 * Return 1 if true, 0 if false and < 0 on error. 3825 */ 3826 static int is_ancestor(struct btrfs_root *root, 3827 const u64 ino1, 3828 const u64 ino1_gen, 3829 const u64 ino2, 3830 struct fs_path *fs_path) 3831 { 3832 bool free_fs_path = false; 3833 int ret = 0; 3834 int iter_ret = 0; 3835 BTRFS_PATH_AUTO_FREE(path); 3836 struct btrfs_key key; 3837 3838 if (!fs_path) { 3839 fs_path = fs_path_alloc(); 3840 if (!fs_path) 3841 return -ENOMEM; 3842 free_fs_path = true; 3843 } 3844 3845 path = alloc_path_for_send(); 3846 if (!path) { 3847 ret = -ENOMEM; 3848 goto out; 3849 } 3850 3851 key.objectid = ino2; 3852 key.type = BTRFS_INODE_REF_KEY; 3853 key.offset = 0; 3854 3855 btrfs_for_each_slot(root, &key, &key, path, iter_ret) { 3856 struct extent_buffer *leaf = path->nodes[0]; 3857 int slot = path->slots[0]; 3858 u32 cur_offset = 0; 3859 u32 item_size; 3860 3861 if (key.objectid != ino2) 3862 break; 3863 if (key.type != BTRFS_INODE_REF_KEY && 3864 key.type != BTRFS_INODE_EXTREF_KEY) 3865 break; 3866 3867 item_size = btrfs_item_size(leaf, slot); 3868 while (cur_offset < item_size) { 3869 u64 parent; 3870 u64 parent_gen; 3871 3872 if (key.type == BTRFS_INODE_EXTREF_KEY) { 3873 unsigned long ptr; 3874 struct btrfs_inode_extref *extref; 3875 3876 ptr = btrfs_item_ptr_offset(leaf, slot); 3877 extref = (struct btrfs_inode_extref *) 3878 (ptr + cur_offset); 3879 parent = btrfs_inode_extref_parent(leaf, 3880 extref); 3881 cur_offset += sizeof(*extref); 3882 cur_offset += btrfs_inode_extref_name_len(leaf, 3883 extref); 3884 } else { 3885 parent = key.offset; 3886 cur_offset = item_size; 3887 } 3888 3889 ret = get_inode_gen(root, parent, &parent_gen); 3890 if (ret < 0) 3891 goto out; 3892 ret = check_ino_in_path(root, ino1, ino1_gen, 3893 parent, parent_gen, fs_path); 3894 if (ret) 3895 goto out; 3896 } 3897 } 3898 ret = 0; 3899 if (iter_ret < 0) 3900 ret = iter_ret; 3901 3902 out: 3903 if (free_fs_path) 3904 fs_path_free(fs_path); 3905 return ret; 3906 } 3907 3908 static int wait_for_parent_move(struct send_ctx *sctx, 3909 struct recorded_ref *parent_ref, 3910 const bool is_orphan) 3911 { 3912 int ret = 0; 3913 u64 ino = parent_ref->dir; 3914 u64 ino_gen = parent_ref->dir_gen; 3915 u64 parent_ino_before, parent_ino_after; 3916 struct fs_path *path_before = NULL; 3917 struct fs_path *path_after = NULL; 3918 int len1, len2; 3919 3920 path_after = fs_path_alloc(); 3921 path_before = fs_path_alloc(); 3922 if (!path_after || !path_before) { 3923 ret = -ENOMEM; 3924 goto out; 3925 } 3926 3927 /* 3928 * Our current directory inode may not yet be renamed/moved because some 3929 * ancestor (immediate or not) has to be renamed/moved first. So find if 3930 * such ancestor exists and make sure our own rename/move happens after 3931 * that ancestor is processed to avoid path build infinite loops (done 3932 * at get_cur_path()). 3933 */ 3934 while (ino > BTRFS_FIRST_FREE_OBJECTID) { 3935 u64 parent_ino_after_gen; 3936 3937 if (is_waiting_for_move(sctx, ino)) { 3938 /* 3939 * If the current inode is an ancestor of ino in the 3940 * parent root, we need to delay the rename of the 3941 * current inode, otherwise don't delayed the rename 3942 * because we can end up with a circular dependency 3943 * of renames, resulting in some directories never 3944 * getting the respective rename operations issued in 3945 * the send stream or getting into infinite path build 3946 * loops. 3947 */ 3948 ret = is_ancestor(sctx->parent_root, 3949 sctx->cur_ino, sctx->cur_inode_gen, 3950 ino, path_before); 3951 if (ret) 3952 break; 3953 } 3954 3955 fs_path_reset(path_before); 3956 fs_path_reset(path_after); 3957 3958 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after, 3959 &parent_ino_after_gen, path_after); 3960 if (ret < 0) 3961 goto out; 3962 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before, 3963 NULL, path_before); 3964 if (ret < 0 && ret != -ENOENT) { 3965 goto out; 3966 } else if (ret == -ENOENT) { 3967 ret = 0; 3968 break; 3969 } 3970 3971 len1 = fs_path_len(path_before); 3972 len2 = fs_path_len(path_after); 3973 if (ino > sctx->cur_ino && 3974 (parent_ino_before != parent_ino_after || len1 != len2 || 3975 memcmp(path_before->start, path_after->start, len1))) { 3976 u64 parent_ino_gen; 3977 3978 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen); 3979 if (ret < 0) 3980 goto out; 3981 if (ino_gen == parent_ino_gen) { 3982 ret = 1; 3983 break; 3984 } 3985 } 3986 ino = parent_ino_after; 3987 ino_gen = parent_ino_after_gen; 3988 } 3989 3990 out: 3991 fs_path_free(path_before); 3992 fs_path_free(path_after); 3993 3994 if (ret == 1) { 3995 ret = add_pending_dir_move(sctx, 3996 sctx->cur_ino, 3997 sctx->cur_inode_gen, 3998 ino, 3999 &sctx->new_refs, 4000 &sctx->deleted_refs, 4001 is_orphan); 4002 if (!ret) 4003 ret = 1; 4004 } 4005 4006 return ret; 4007 } 4008 4009 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4010 { 4011 int ret; 4012 struct fs_path *new_path; 4013 4014 /* 4015 * Our reference's name member points to its full_path member string, so 4016 * we use here a new path. 4017 */ 4018 new_path = fs_path_alloc(); 4019 if (!new_path) 4020 return -ENOMEM; 4021 4022 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path); 4023 if (ret < 0) { 4024 fs_path_free(new_path); 4025 return ret; 4026 } 4027 ret = fs_path_add(new_path, ref->name, ref->name_len); 4028 if (ret < 0) { 4029 fs_path_free(new_path); 4030 return ret; 4031 } 4032 4033 fs_path_free(ref->full_path); 4034 set_ref_path(ref, new_path); 4035 4036 return 0; 4037 } 4038 4039 /* 4040 * When processing the new references for an inode we may orphanize an existing 4041 * directory inode because its old name conflicts with one of the new references 4042 * of the current inode. Later, when processing another new reference of our 4043 * inode, we might need to orphanize another inode, but the path we have in the 4044 * reference reflects the pre-orphanization name of the directory we previously 4045 * orphanized. For example: 4046 * 4047 * parent snapshot looks like: 4048 * 4049 * . (ino 256) 4050 * |----- f1 (ino 257) 4051 * |----- f2 (ino 258) 4052 * |----- d1/ (ino 259) 4053 * |----- d2/ (ino 260) 4054 * 4055 * send snapshot looks like: 4056 * 4057 * . (ino 256) 4058 * |----- d1 (ino 258) 4059 * |----- f2/ (ino 259) 4060 * |----- f2_link/ (ino 260) 4061 * | |----- f1 (ino 257) 4062 * | 4063 * |----- d2 (ino 258) 4064 * 4065 * When processing inode 257 we compute the name for inode 259 as "d1", and we 4066 * cache it in the name cache. Later when we start processing inode 258, when 4067 * collecting all its new references we set a full path of "d1/d2" for its new 4068 * reference with name "d2". When we start processing the new references we 4069 * start by processing the new reference with name "d1", and this results in 4070 * orphanizing inode 259, since its old reference causes a conflict. Then we 4071 * move on the next new reference, with name "d2", and we find out we must 4072 * orphanize inode 260, as its old reference conflicts with ours - but for the 4073 * orphanization we use a source path corresponding to the path we stored in the 4074 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the 4075 * receiver fail since the path component "d1/" no longer exists, it was renamed 4076 * to "o259-6-0/" when processing the previous new reference. So in this case we 4077 * must recompute the path in the new reference and use it for the new 4078 * orphanization operation. 4079 */ 4080 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref) 4081 { 4082 char *name; 4083 int ret; 4084 4085 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL); 4086 if (!name) 4087 return -ENOMEM; 4088 4089 fs_path_reset(ref->full_path); 4090 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path); 4091 if (ret < 0) 4092 goto out; 4093 4094 ret = fs_path_add(ref->full_path, name, ref->name_len); 4095 if (ret < 0) 4096 goto out; 4097 4098 /* Update the reference's base name pointer. */ 4099 set_ref_path(ref, ref->full_path); 4100 out: 4101 kfree(name); 4102 return ret; 4103 } 4104 4105 static int rename_current_inode(struct send_ctx *sctx, 4106 struct fs_path *current_path, 4107 struct fs_path *new_path) 4108 { 4109 int ret; 4110 4111 ret = send_rename(sctx, current_path, new_path); 4112 if (ret < 0) 4113 return ret; 4114 4115 ret = fs_path_copy(&sctx->cur_inode_path, new_path); 4116 if (ret < 0) 4117 return ret; 4118 4119 return fs_path_copy(current_path, new_path); 4120 } 4121 4122 /* 4123 * This does all the move/link/unlink/rmdir magic. 4124 */ 4125 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move) 4126 { 4127 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 4128 int ret = 0; 4129 struct recorded_ref *cur; 4130 struct recorded_ref *cur2; 4131 LIST_HEAD(check_dirs); 4132 struct fs_path *valid_path = NULL; 4133 u64 ow_inode = 0; 4134 u64 ow_gen; 4135 u64 ow_mode; 4136 u64 last_dir_ino_rm = 0; 4137 bool did_overwrite = false; 4138 bool is_orphan = false; 4139 bool can_rename = true; 4140 bool orphanized_dir = false; 4141 bool orphanized_ancestor = false; 4142 4143 /* 4144 * This should never happen as the root dir always has the same ref 4145 * which is always '..' 4146 */ 4147 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) { 4148 btrfs_err(fs_info, 4149 "send: unexpected inode %llu in process_recorded_refs()", 4150 sctx->cur_ino); 4151 ret = -EINVAL; 4152 goto out; 4153 } 4154 4155 valid_path = fs_path_alloc(); 4156 if (!valid_path) { 4157 ret = -ENOMEM; 4158 goto out; 4159 } 4160 4161 /* 4162 * First, check if the first ref of the current inode was overwritten 4163 * before. If yes, we know that the current inode was already orphanized 4164 * and thus use the orphan name. If not, we can use get_cur_path to 4165 * get the path of the first ref as it would like while receiving at 4166 * this point in time. 4167 * New inodes are always orphan at the beginning, so force to use the 4168 * orphan name in this case. 4169 * The first ref is stored in valid_path and will be updated if it 4170 * gets moved around. 4171 */ 4172 if (!sctx->cur_inode_new) { 4173 ret = did_overwrite_first_ref(sctx, sctx->cur_ino, 4174 sctx->cur_inode_gen); 4175 if (ret < 0) 4176 goto out; 4177 if (ret) 4178 did_overwrite = true; 4179 } 4180 if (sctx->cur_inode_new || did_overwrite) { 4181 ret = gen_unique_name(sctx, sctx->cur_ino, 4182 sctx->cur_inode_gen, valid_path); 4183 if (ret < 0) 4184 goto out; 4185 is_orphan = true; 4186 } else { 4187 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, 4188 valid_path); 4189 if (ret < 0) 4190 goto out; 4191 } 4192 4193 /* 4194 * Before doing any rename and link operations, do a first pass on the 4195 * new references to orphanize any unprocessed inodes that may have a 4196 * reference that conflicts with one of the new references of the current 4197 * inode. This needs to happen first because a new reference may conflict 4198 * with the old reference of a parent directory, so we must make sure 4199 * that the path used for link and rename commands don't use an 4200 * orphanized name when an ancestor was not yet orphanized. 4201 * 4202 * Example: 4203 * 4204 * Parent snapshot: 4205 * 4206 * . (ino 256) 4207 * |----- testdir/ (ino 259) 4208 * | |----- a (ino 257) 4209 * | 4210 * |----- b (ino 258) 4211 * 4212 * Send snapshot: 4213 * 4214 * . (ino 256) 4215 * |----- testdir_2/ (ino 259) 4216 * | |----- a (ino 260) 4217 * | 4218 * |----- testdir (ino 257) 4219 * |----- b (ino 257) 4220 * |----- b2 (ino 258) 4221 * 4222 * Processing the new reference for inode 257 with name "b" may happen 4223 * before processing the new reference with name "testdir". If so, we 4224 * must make sure that by the time we send a link command to create the 4225 * hard link "b", inode 259 was already orphanized, since the generated 4226 * path in "valid_path" already contains the orphanized name for 259. 4227 * We are processing inode 257, so only later when processing 259 we do 4228 * the rename operation to change its temporary (orphanized) name to 4229 * "testdir_2". 4230 */ 4231 list_for_each_entry(cur, &sctx->new_refs, list) { 4232 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4233 if (ret < 0) 4234 goto out; 4235 if (ret == inode_state_will_create) 4236 continue; 4237 4238 /* 4239 * Check if this new ref would overwrite the first ref of another 4240 * unprocessed inode. If yes, orphanize the overwritten inode. 4241 * If we find an overwritten ref that is not the first ref, 4242 * simply unlink it. 4243 */ 4244 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4245 cur->name, cur->name_len, 4246 &ow_inode, &ow_gen, &ow_mode); 4247 if (ret < 0) 4248 goto out; 4249 if (ret) { 4250 ret = is_first_ref(sctx->parent_root, 4251 ow_inode, cur->dir, cur->name, 4252 cur->name_len); 4253 if (ret < 0) 4254 goto out; 4255 if (ret) { 4256 struct name_cache_entry *nce; 4257 struct waiting_dir_move *wdm; 4258 4259 if (orphanized_dir) { 4260 ret = refresh_ref_path(sctx, cur); 4261 if (ret < 0) 4262 goto out; 4263 } 4264 4265 ret = orphanize_inode(sctx, ow_inode, ow_gen, 4266 cur->full_path); 4267 if (ret < 0) 4268 goto out; 4269 if (S_ISDIR(ow_mode)) 4270 orphanized_dir = true; 4271 4272 /* 4273 * If ow_inode has its rename operation delayed 4274 * make sure that its orphanized name is used in 4275 * the source path when performing its rename 4276 * operation. 4277 */ 4278 wdm = get_waiting_dir_move(sctx, ow_inode); 4279 if (wdm) 4280 wdm->orphanized = true; 4281 4282 /* 4283 * Make sure we clear our orphanized inode's 4284 * name from the name cache. This is because the 4285 * inode ow_inode might be an ancestor of some 4286 * other inode that will be orphanized as well 4287 * later and has an inode number greater than 4288 * sctx->send_progress. We need to prevent 4289 * future name lookups from using the old name 4290 * and get instead the orphan name. 4291 */ 4292 nce = name_cache_search(sctx, ow_inode, ow_gen); 4293 if (nce) 4294 btrfs_lru_cache_remove(&sctx->name_cache, 4295 &nce->entry); 4296 4297 /* 4298 * ow_inode might currently be an ancestor of 4299 * cur_ino, therefore compute valid_path (the 4300 * current path of cur_ino) again because it 4301 * might contain the pre-orphanization name of 4302 * ow_inode, which is no longer valid. 4303 */ 4304 ret = is_ancestor(sctx->parent_root, 4305 ow_inode, ow_gen, 4306 sctx->cur_ino, NULL); 4307 if (ret > 0) { 4308 orphanized_ancestor = true; 4309 fs_path_reset(valid_path); 4310 fs_path_reset(&sctx->cur_inode_path); 4311 ret = get_cur_path(sctx, sctx->cur_ino, 4312 sctx->cur_inode_gen, 4313 valid_path); 4314 } 4315 if (ret < 0) 4316 goto out; 4317 } else { 4318 /* 4319 * If we previously orphanized a directory that 4320 * collided with a new reference that we already 4321 * processed, recompute the current path because 4322 * that directory may be part of the path. 4323 */ 4324 if (orphanized_dir) { 4325 ret = refresh_ref_path(sctx, cur); 4326 if (ret < 0) 4327 goto out; 4328 } 4329 ret = send_unlink(sctx, cur->full_path); 4330 if (ret < 0) 4331 goto out; 4332 } 4333 } 4334 4335 } 4336 4337 list_for_each_entry(cur, &sctx->new_refs, list) { 4338 /* 4339 * We may have refs where the parent directory does not exist 4340 * yet. This happens if the parent directories inum is higher 4341 * than the current inum. To handle this case, we create the 4342 * parent directory out of order. But we need to check if this 4343 * did already happen before due to other refs in the same dir. 4344 */ 4345 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4346 if (ret < 0) 4347 goto out; 4348 if (ret == inode_state_will_create) { 4349 ret = 0; 4350 /* 4351 * First check if any of the current inodes refs did 4352 * already create the dir. 4353 */ 4354 list_for_each_entry(cur2, &sctx->new_refs, list) { 4355 if (cur == cur2) 4356 break; 4357 if (cur2->dir == cur->dir) { 4358 ret = 1; 4359 break; 4360 } 4361 } 4362 4363 /* 4364 * If that did not happen, check if a previous inode 4365 * did already create the dir. 4366 */ 4367 if (!ret) 4368 ret = did_create_dir(sctx, cur->dir); 4369 if (ret < 0) 4370 goto out; 4371 if (!ret) { 4372 ret = send_create_inode(sctx, cur->dir); 4373 if (ret < 0) 4374 goto out; 4375 cache_dir_created(sctx, cur->dir); 4376 } 4377 } 4378 4379 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) { 4380 ret = wait_for_dest_dir_move(sctx, cur, is_orphan); 4381 if (ret < 0) 4382 goto out; 4383 if (ret == 1) { 4384 can_rename = false; 4385 *pending_move = 1; 4386 } 4387 } 4388 4389 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root && 4390 can_rename) { 4391 ret = wait_for_parent_move(sctx, cur, is_orphan); 4392 if (ret < 0) 4393 goto out; 4394 if (ret == 1) { 4395 can_rename = false; 4396 *pending_move = 1; 4397 } 4398 } 4399 4400 /* 4401 * link/move the ref to the new place. If we have an orphan 4402 * inode, move it and update valid_path. If not, link or move 4403 * it depending on the inode mode. 4404 */ 4405 if (is_orphan && can_rename) { 4406 ret = rename_current_inode(sctx, valid_path, cur->full_path); 4407 if (ret < 0) 4408 goto out; 4409 is_orphan = false; 4410 } else if (can_rename) { 4411 if (S_ISDIR(sctx->cur_inode_mode)) { 4412 /* 4413 * Dirs can't be linked, so move it. For moved 4414 * dirs, we always have one new and one deleted 4415 * ref. The deleted ref is ignored later. 4416 */ 4417 ret = rename_current_inode(sctx, valid_path, 4418 cur->full_path); 4419 if (ret < 0) 4420 goto out; 4421 } else { 4422 /* 4423 * We might have previously orphanized an inode 4424 * which is an ancestor of our current inode, 4425 * so our reference's full path, which was 4426 * computed before any such orphanizations, must 4427 * be updated. 4428 */ 4429 if (orphanized_dir) { 4430 ret = update_ref_path(sctx, cur); 4431 if (ret < 0) 4432 goto out; 4433 } 4434 ret = send_link(sctx, cur->full_path, 4435 valid_path); 4436 if (ret < 0) 4437 goto out; 4438 } 4439 } 4440 ret = dup_ref(cur, &check_dirs); 4441 if (ret < 0) 4442 goto out; 4443 } 4444 4445 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) { 4446 /* 4447 * Check if we can already rmdir the directory. If not, 4448 * orphanize it. For every dir item inside that gets deleted 4449 * later, we do this check again and rmdir it then if possible. 4450 * See the use of check_dirs for more details. 4451 */ 4452 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen); 4453 if (ret < 0) 4454 goto out; 4455 if (ret) { 4456 ret = send_rmdir(sctx, valid_path); 4457 if (ret < 0) 4458 goto out; 4459 } else if (!is_orphan) { 4460 ret = orphanize_inode(sctx, sctx->cur_ino, 4461 sctx->cur_inode_gen, valid_path); 4462 if (ret < 0) 4463 goto out; 4464 is_orphan = true; 4465 } 4466 4467 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4468 ret = dup_ref(cur, &check_dirs); 4469 if (ret < 0) 4470 goto out; 4471 } 4472 } else if (S_ISDIR(sctx->cur_inode_mode) && 4473 !list_empty(&sctx->deleted_refs)) { 4474 /* 4475 * We have a moved dir. Add the old parent to check_dirs 4476 */ 4477 cur = list_first_entry(&sctx->deleted_refs, struct recorded_ref, list); 4478 ret = dup_ref(cur, &check_dirs); 4479 if (ret < 0) 4480 goto out; 4481 } else if (!S_ISDIR(sctx->cur_inode_mode)) { 4482 /* 4483 * We have a non dir inode. Go through all deleted refs and 4484 * unlink them if they were not already overwritten by other 4485 * inodes. 4486 */ 4487 list_for_each_entry(cur, &sctx->deleted_refs, list) { 4488 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen, 4489 sctx->cur_ino, sctx->cur_inode_gen, 4490 cur->name, cur->name_len); 4491 if (ret < 0) 4492 goto out; 4493 if (!ret) { 4494 /* 4495 * If we orphanized any ancestor before, we need 4496 * to recompute the full path for deleted names, 4497 * since any such path was computed before we 4498 * processed any references and orphanized any 4499 * ancestor inode. 4500 */ 4501 if (orphanized_ancestor) { 4502 ret = update_ref_path(sctx, cur); 4503 if (ret < 0) 4504 goto out; 4505 } 4506 ret = send_unlink(sctx, cur->full_path); 4507 if (ret < 0) 4508 goto out; 4509 if (is_current_inode_path(sctx, cur->full_path)) 4510 fs_path_reset(&sctx->cur_inode_path); 4511 } 4512 ret = dup_ref(cur, &check_dirs); 4513 if (ret < 0) 4514 goto out; 4515 } 4516 /* 4517 * If the inode is still orphan, unlink the orphan. This may 4518 * happen when a previous inode did overwrite the first ref 4519 * of this inode and no new refs were added for the current 4520 * inode. Unlinking does not mean that the inode is deleted in 4521 * all cases. There may still be links to this inode in other 4522 * places. 4523 */ 4524 if (is_orphan) { 4525 ret = send_unlink(sctx, valid_path); 4526 if (ret < 0) 4527 goto out; 4528 } 4529 } 4530 4531 /* 4532 * We did collect all parent dirs where cur_inode was once located. We 4533 * now go through all these dirs and check if they are pending for 4534 * deletion and if it's finally possible to perform the rmdir now. 4535 * We also update the inode stats of the parent dirs here. 4536 */ 4537 list_for_each_entry(cur, &check_dirs, list) { 4538 /* 4539 * In case we had refs into dirs that were not processed yet, 4540 * we don't need to do the utime and rmdir logic for these dirs. 4541 * The dir will be processed later. 4542 */ 4543 if (cur->dir > sctx->cur_ino) 4544 continue; 4545 4546 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL); 4547 if (ret < 0) 4548 goto out; 4549 4550 if (ret == inode_state_did_create || 4551 ret == inode_state_no_change) { 4552 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen); 4553 if (ret < 0) 4554 goto out; 4555 } else if (ret == inode_state_did_delete && 4556 cur->dir != last_dir_ino_rm) { 4557 ret = can_rmdir(sctx, cur->dir, cur->dir_gen); 4558 if (ret < 0) 4559 goto out; 4560 if (ret) { 4561 ret = get_cur_path(sctx, cur->dir, 4562 cur->dir_gen, valid_path); 4563 if (ret < 0) 4564 goto out; 4565 ret = send_rmdir(sctx, valid_path); 4566 if (ret < 0) 4567 goto out; 4568 last_dir_ino_rm = cur->dir; 4569 } 4570 } 4571 } 4572 4573 ret = 0; 4574 4575 out: 4576 __free_recorded_refs(&check_dirs); 4577 free_recorded_refs(sctx); 4578 fs_path_free(valid_path); 4579 return ret; 4580 } 4581 4582 static int rbtree_ref_comp(const void *k, const struct rb_node *node) 4583 { 4584 const struct recorded_ref *data = k; 4585 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node); 4586 4587 if (data->dir > ref->dir) 4588 return 1; 4589 if (data->dir < ref->dir) 4590 return -1; 4591 if (data->dir_gen > ref->dir_gen) 4592 return 1; 4593 if (data->dir_gen < ref->dir_gen) 4594 return -1; 4595 if (data->name_len > ref->name_len) 4596 return 1; 4597 if (data->name_len < ref->name_len) 4598 return -1; 4599 return strcmp(data->name, ref->name); 4600 } 4601 4602 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent) 4603 { 4604 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node); 4605 4606 return rbtree_ref_comp(entry, parent) < 0; 4607 } 4608 4609 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs, 4610 struct fs_path *name, u64 dir, u64 dir_gen, 4611 struct send_ctx *sctx) 4612 { 4613 int ret = 0; 4614 struct fs_path *path = NULL; 4615 struct recorded_ref *ref = NULL; 4616 4617 path = fs_path_alloc(); 4618 if (!path) { 4619 ret = -ENOMEM; 4620 goto out; 4621 } 4622 4623 ref = recorded_ref_alloc(); 4624 if (!ref) { 4625 ret = -ENOMEM; 4626 goto out; 4627 } 4628 4629 ret = get_cur_path(sctx, dir, dir_gen, path); 4630 if (ret < 0) 4631 goto out; 4632 ret = fs_path_add_path(path, name); 4633 if (ret < 0) 4634 goto out; 4635 4636 ref->dir = dir; 4637 ref->dir_gen = dir_gen; 4638 set_ref_path(ref, path); 4639 list_add_tail(&ref->list, refs); 4640 rb_add(&ref->node, root, rbtree_ref_less); 4641 ref->root = root; 4642 out: 4643 if (ret) { 4644 if (path && (!ref || !ref->full_path)) 4645 fs_path_free(path); 4646 recorded_ref_free(ref); 4647 } 4648 return ret; 4649 } 4650 4651 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4652 { 4653 int ret; 4654 struct send_ctx *sctx = ctx; 4655 struct rb_node *node = NULL; 4656 struct recorded_ref data; 4657 struct recorded_ref *ref; 4658 u64 dir_gen; 4659 4660 ret = get_inode_gen(sctx->send_root, dir, &dir_gen); 4661 if (ret < 0) 4662 return ret; 4663 4664 data.dir = dir; 4665 data.dir_gen = dir_gen; 4666 set_ref_path(&data, name); 4667 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp); 4668 if (node) { 4669 ref = rb_entry(node, struct recorded_ref, node); 4670 recorded_ref_free(ref); 4671 } else { 4672 ret = record_ref_in_tree(&sctx->rbtree_new_refs, 4673 &sctx->new_refs, name, dir, dir_gen, 4674 sctx); 4675 } 4676 4677 return ret; 4678 } 4679 4680 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx) 4681 { 4682 int ret; 4683 struct send_ctx *sctx = ctx; 4684 struct rb_node *node = NULL; 4685 struct recorded_ref data; 4686 struct recorded_ref *ref; 4687 u64 dir_gen; 4688 4689 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen); 4690 if (ret < 0) 4691 return ret; 4692 4693 data.dir = dir; 4694 data.dir_gen = dir_gen; 4695 set_ref_path(&data, name); 4696 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp); 4697 if (node) { 4698 ref = rb_entry(node, struct recorded_ref, node); 4699 recorded_ref_free(ref); 4700 } else { 4701 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs, 4702 &sctx->deleted_refs, name, dir, 4703 dir_gen, sctx); 4704 } 4705 4706 return ret; 4707 } 4708 4709 static int record_new_ref(struct send_ctx *sctx) 4710 { 4711 int ret; 4712 4713 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4714 false, record_new_ref_if_needed, sctx); 4715 if (ret < 0) 4716 return ret; 4717 4718 return 0; 4719 } 4720 4721 static int record_deleted_ref(struct send_ctx *sctx) 4722 { 4723 int ret; 4724 4725 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4726 false, record_deleted_ref_if_needed, sctx); 4727 if (ret < 0) 4728 return ret; 4729 4730 return 0; 4731 } 4732 4733 static int record_changed_ref(struct send_ctx *sctx) 4734 { 4735 int ret; 4736 4737 ret = iterate_inode_ref(sctx->send_root, sctx->left_path, sctx->cmp_key, 4738 false, record_new_ref_if_needed, sctx); 4739 if (ret < 0) 4740 return ret; 4741 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path, sctx->cmp_key, 4742 false, record_deleted_ref_if_needed, sctx); 4743 if (ret < 0) 4744 return ret; 4745 4746 return 0; 4747 } 4748 4749 /* 4750 * Record and process all refs at once. Needed when an inode changes the 4751 * generation number, which means that it was deleted and recreated. 4752 */ 4753 static int process_all_refs(struct send_ctx *sctx, 4754 enum btrfs_compare_tree_result cmd) 4755 { 4756 int ret = 0; 4757 int iter_ret = 0; 4758 struct btrfs_root *root; 4759 BTRFS_PATH_AUTO_FREE(path); 4760 struct btrfs_key key; 4761 struct btrfs_key found_key; 4762 iterate_inode_ref_t cb; 4763 int pending_move = 0; 4764 4765 path = alloc_path_for_send(); 4766 if (!path) 4767 return -ENOMEM; 4768 4769 if (cmd == BTRFS_COMPARE_TREE_NEW) { 4770 root = sctx->send_root; 4771 cb = record_new_ref_if_needed; 4772 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) { 4773 root = sctx->parent_root; 4774 cb = record_deleted_ref_if_needed; 4775 } else { 4776 btrfs_err(sctx->send_root->fs_info, 4777 "Wrong command %d in process_all_refs", cmd); 4778 return -EINVAL; 4779 } 4780 4781 key.objectid = sctx->cmp_key->objectid; 4782 key.type = BTRFS_INODE_REF_KEY; 4783 key.offset = 0; 4784 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 4785 if (found_key.objectid != key.objectid || 4786 (found_key.type != BTRFS_INODE_REF_KEY && 4787 found_key.type != BTRFS_INODE_EXTREF_KEY)) 4788 break; 4789 4790 ret = iterate_inode_ref(root, path, &found_key, false, cb, sctx); 4791 if (ret < 0) 4792 return ret; 4793 } 4794 /* Catch error found during iteration */ 4795 if (iter_ret < 0) 4796 return iter_ret; 4797 4798 btrfs_release_path(path); 4799 4800 /* 4801 * We don't actually care about pending_move as we are simply 4802 * re-creating this inode and will be rename'ing it into place once we 4803 * rename the parent directory. 4804 */ 4805 return process_recorded_refs(sctx, &pending_move); 4806 } 4807 4808 static int send_set_xattr(struct send_ctx *sctx, 4809 const char *name, int name_len, 4810 const char *data, int data_len) 4811 { 4812 struct fs_path *path; 4813 int ret; 4814 4815 path = get_cur_inode_path(sctx); 4816 if (IS_ERR(path)) 4817 return PTR_ERR(path); 4818 4819 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR); 4820 if (ret < 0) 4821 return ret; 4822 4823 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4824 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4825 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len); 4826 4827 ret = send_cmd(sctx); 4828 4829 tlv_put_failure: 4830 return ret; 4831 } 4832 4833 static int send_remove_xattr(struct send_ctx *sctx, 4834 struct fs_path *path, 4835 const char *name, int name_len) 4836 { 4837 int ret; 4838 4839 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR); 4840 if (ret < 0) 4841 return ret; 4842 4843 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 4844 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len); 4845 4846 ret = send_cmd(sctx); 4847 4848 tlv_put_failure: 4849 return ret; 4850 } 4851 4852 static int __process_new_xattr(int num, struct btrfs_key *di_key, 4853 const char *name, int name_len, const char *data, 4854 int data_len, void *ctx) 4855 { 4856 struct send_ctx *sctx = ctx; 4857 struct posix_acl_xattr_header dummy_acl; 4858 4859 /* Capabilities are emitted by finish_inode_if_needed */ 4860 if (!strncmp(name, XATTR_NAME_CAPS, name_len)) 4861 return 0; 4862 4863 /* 4864 * This hack is needed because empty acls are stored as zero byte 4865 * data in xattrs. Problem with that is, that receiving these zero byte 4866 * acls will fail later. To fix this, we send a dummy acl list that 4867 * only contains the version number and no entries. 4868 */ 4869 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) || 4870 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) { 4871 if (data_len == 0) { 4872 dummy_acl.a_version = 4873 cpu_to_le32(POSIX_ACL_XATTR_VERSION); 4874 data = (char *)&dummy_acl; 4875 data_len = sizeof(dummy_acl); 4876 } 4877 } 4878 4879 return send_set_xattr(sctx, name, name_len, data, data_len); 4880 } 4881 4882 static int __process_deleted_xattr(int num, struct btrfs_key *di_key, 4883 const char *name, int name_len, 4884 const char *data, int data_len, void *ctx) 4885 { 4886 struct send_ctx *sctx = ctx; 4887 struct fs_path *p; 4888 4889 p = get_cur_inode_path(sctx); 4890 if (IS_ERR(p)) 4891 return PTR_ERR(p); 4892 4893 return send_remove_xattr(sctx, p, name, name_len); 4894 } 4895 4896 static int process_new_xattr(struct send_ctx *sctx) 4897 { 4898 return iterate_dir_item(sctx->send_root, sctx->left_path, 4899 __process_new_xattr, sctx); 4900 } 4901 4902 static int process_deleted_xattr(struct send_ctx *sctx) 4903 { 4904 return iterate_dir_item(sctx->parent_root, sctx->right_path, 4905 __process_deleted_xattr, sctx); 4906 } 4907 4908 struct find_xattr_ctx { 4909 const char *name; 4910 int name_len; 4911 int found_idx; 4912 char *found_data; 4913 int found_data_len; 4914 }; 4915 4916 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name, 4917 int name_len, const char *data, int data_len, void *vctx) 4918 { 4919 struct find_xattr_ctx *ctx = vctx; 4920 4921 if (name_len == ctx->name_len && 4922 strncmp(name, ctx->name, name_len) == 0) { 4923 ctx->found_idx = num; 4924 ctx->found_data_len = data_len; 4925 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL); 4926 if (!ctx->found_data) 4927 return -ENOMEM; 4928 return 1; 4929 } 4930 return 0; 4931 } 4932 4933 static int find_xattr(struct btrfs_root *root, 4934 struct btrfs_path *path, 4935 struct btrfs_key *key, 4936 const char *name, int name_len, 4937 char **data, int *data_len) 4938 { 4939 int ret; 4940 struct find_xattr_ctx ctx; 4941 4942 ctx.name = name; 4943 ctx.name_len = name_len; 4944 ctx.found_idx = -1; 4945 ctx.found_data = NULL; 4946 ctx.found_data_len = 0; 4947 4948 ret = iterate_dir_item(root, path, __find_xattr, &ctx); 4949 if (ret < 0) 4950 return ret; 4951 4952 if (ctx.found_idx == -1) 4953 return -ENOENT; 4954 if (data) { 4955 *data = ctx.found_data; 4956 *data_len = ctx.found_data_len; 4957 } else { 4958 kfree(ctx.found_data); 4959 } 4960 return ctx.found_idx; 4961 } 4962 4963 4964 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key, 4965 const char *name, int name_len, 4966 const char *data, int data_len, 4967 void *ctx) 4968 { 4969 int ret; 4970 struct send_ctx *sctx = ctx; 4971 char *found_data = NULL; 4972 int found_data_len = 0; 4973 4974 ret = find_xattr(sctx->parent_root, sctx->right_path, 4975 sctx->cmp_key, name, name_len, &found_data, 4976 &found_data_len); 4977 if (ret == -ENOENT) { 4978 ret = __process_new_xattr(num, di_key, name, name_len, data, 4979 data_len, ctx); 4980 } else if (ret >= 0) { 4981 if (data_len != found_data_len || 4982 memcmp(data, found_data, data_len)) { 4983 ret = __process_new_xattr(num, di_key, name, name_len, 4984 data, data_len, ctx); 4985 } else { 4986 ret = 0; 4987 } 4988 } 4989 4990 kfree(found_data); 4991 return ret; 4992 } 4993 4994 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key, 4995 const char *name, int name_len, 4996 const char *data, int data_len, 4997 void *ctx) 4998 { 4999 int ret; 5000 struct send_ctx *sctx = ctx; 5001 5002 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key, 5003 name, name_len, NULL, NULL); 5004 if (ret == -ENOENT) 5005 ret = __process_deleted_xattr(num, di_key, name, name_len, data, 5006 data_len, ctx); 5007 else if (ret >= 0) 5008 ret = 0; 5009 5010 return ret; 5011 } 5012 5013 static int process_changed_xattr(struct send_ctx *sctx) 5014 { 5015 int ret; 5016 5017 ret = iterate_dir_item(sctx->send_root, sctx->left_path, 5018 __process_changed_new_xattr, sctx); 5019 if (ret < 0) 5020 return ret; 5021 5022 return iterate_dir_item(sctx->parent_root, sctx->right_path, 5023 __process_changed_deleted_xattr, sctx); 5024 } 5025 5026 static int process_all_new_xattrs(struct send_ctx *sctx) 5027 { 5028 int ret = 0; 5029 int iter_ret = 0; 5030 struct btrfs_root *root; 5031 BTRFS_PATH_AUTO_FREE(path); 5032 struct btrfs_key key; 5033 struct btrfs_key found_key; 5034 5035 path = alloc_path_for_send(); 5036 if (!path) 5037 return -ENOMEM; 5038 5039 root = sctx->send_root; 5040 5041 key.objectid = sctx->cmp_key->objectid; 5042 key.type = BTRFS_XATTR_ITEM_KEY; 5043 key.offset = 0; 5044 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 5045 if (found_key.objectid != key.objectid || 5046 found_key.type != key.type) { 5047 ret = 0; 5048 break; 5049 } 5050 5051 ret = iterate_dir_item(root, path, __process_new_xattr, sctx); 5052 if (ret < 0) 5053 break; 5054 } 5055 /* Catch error found during iteration */ 5056 if (iter_ret < 0) 5057 ret = iter_ret; 5058 5059 return ret; 5060 } 5061 5062 static int send_verity(struct send_ctx *sctx, struct fs_path *path, 5063 struct fsverity_descriptor *desc) 5064 { 5065 int ret; 5066 5067 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY); 5068 if (ret < 0) 5069 return ret; 5070 5071 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5072 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM, 5073 le8_to_cpu(desc->hash_algorithm)); 5074 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE, 5075 1U << le8_to_cpu(desc->log_blocksize)); 5076 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt, 5077 le8_to_cpu(desc->salt_size)); 5078 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature, 5079 le32_to_cpu(desc->sig_size)); 5080 5081 ret = send_cmd(sctx); 5082 5083 tlv_put_failure: 5084 return ret; 5085 } 5086 5087 static int process_verity(struct send_ctx *sctx) 5088 { 5089 int ret = 0; 5090 struct btrfs_inode *inode; 5091 struct fs_path *p; 5092 5093 inode = btrfs_iget(sctx->cur_ino, sctx->send_root); 5094 if (IS_ERR(inode)) 5095 return PTR_ERR(inode); 5096 5097 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, NULL, 0); 5098 if (ret < 0) 5099 goto iput; 5100 5101 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) { 5102 ret = -EMSGSIZE; 5103 goto iput; 5104 } 5105 if (!sctx->verity_descriptor) { 5106 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE, 5107 GFP_KERNEL); 5108 if (!sctx->verity_descriptor) { 5109 ret = -ENOMEM; 5110 goto iput; 5111 } 5112 } 5113 5114 ret = btrfs_get_verity_descriptor(&inode->vfs_inode, sctx->verity_descriptor, ret); 5115 if (ret < 0) 5116 goto iput; 5117 5118 p = get_cur_inode_path(sctx); 5119 if (IS_ERR(p)) { 5120 ret = PTR_ERR(p); 5121 goto iput; 5122 } 5123 5124 ret = send_verity(sctx, p, sctx->verity_descriptor); 5125 iput: 5126 iput(&inode->vfs_inode); 5127 return ret; 5128 } 5129 5130 static inline u64 max_send_read_size(const struct send_ctx *sctx) 5131 { 5132 return sctx->send_max_size - SZ_16K; 5133 } 5134 5135 static int put_data_header(struct send_ctx *sctx, u32 len) 5136 { 5137 if (WARN_ON_ONCE(sctx->put_data)) 5138 return -EINVAL; 5139 sctx->put_data = true; 5140 if (sctx->proto >= 2) { 5141 /* 5142 * Since v2, the data attribute header doesn't include a length, 5143 * it is implicitly to the end of the command. 5144 */ 5145 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len) 5146 return -EOVERFLOW; 5147 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size); 5148 sctx->send_size += sizeof(__le16); 5149 } else { 5150 struct btrfs_tlv_header *hdr; 5151 5152 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len) 5153 return -EOVERFLOW; 5154 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size); 5155 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type); 5156 put_unaligned_le16(len, &hdr->tlv_len); 5157 sctx->send_size += sizeof(*hdr); 5158 } 5159 return 0; 5160 } 5161 5162 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len) 5163 { 5164 struct btrfs_root *root = sctx->send_root; 5165 struct btrfs_fs_info *fs_info = root->fs_info; 5166 u64 cur = offset; 5167 const u64 end = offset + len; 5168 const pgoff_t last_index = ((end - 1) >> PAGE_SHIFT); 5169 struct address_space *mapping = sctx->cur_inode->i_mapping; 5170 int ret; 5171 5172 ret = put_data_header(sctx, len); 5173 if (ret) 5174 return ret; 5175 5176 while (cur < end) { 5177 pgoff_t index = (cur >> PAGE_SHIFT); 5178 unsigned int cur_len; 5179 unsigned int pg_offset; 5180 struct folio *folio; 5181 5182 folio = filemap_lock_folio(mapping, index); 5183 if (IS_ERR(folio)) { 5184 page_cache_sync_readahead(mapping, 5185 &sctx->ra, NULL, index, 5186 last_index + 1 - index); 5187 5188 folio = filemap_grab_folio(mapping, index); 5189 if (IS_ERR(folio)) { 5190 ret = PTR_ERR(folio); 5191 break; 5192 } 5193 } 5194 pg_offset = offset_in_folio(folio, cur); 5195 cur_len = min_t(unsigned int, end - cur, folio_size(folio) - pg_offset); 5196 5197 if (folio_test_readahead(folio)) 5198 page_cache_async_readahead(mapping, &sctx->ra, NULL, folio, 5199 last_index + 1 - index); 5200 5201 if (!folio_test_uptodate(folio)) { 5202 btrfs_read_folio(NULL, folio); 5203 folio_lock(folio); 5204 if (unlikely(!folio_test_uptodate(folio))) { 5205 folio_unlock(folio); 5206 btrfs_err(fs_info, 5207 "send: IO error at offset %llu for inode %llu root %llu", 5208 folio_pos(folio), sctx->cur_ino, 5209 btrfs_root_id(sctx->send_root)); 5210 folio_put(folio); 5211 ret = -EIO; 5212 break; 5213 } 5214 if (folio->mapping != mapping) { 5215 folio_unlock(folio); 5216 folio_put(folio); 5217 continue; 5218 } 5219 } 5220 5221 memcpy_from_folio(sctx->send_buf + sctx->send_size, folio, 5222 pg_offset, cur_len); 5223 folio_unlock(folio); 5224 folio_put(folio); 5225 cur += cur_len; 5226 sctx->send_size += cur_len; 5227 } 5228 5229 return ret; 5230 } 5231 5232 /* 5233 * Read some bytes from the current inode/file and send a write command to 5234 * user space. 5235 */ 5236 static int send_write(struct send_ctx *sctx, u64 offset, u32 len) 5237 { 5238 int ret = 0; 5239 struct fs_path *p; 5240 5241 p = get_cur_inode_path(sctx); 5242 if (IS_ERR(p)) 5243 return PTR_ERR(p); 5244 5245 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5246 if (ret < 0) 5247 return ret; 5248 5249 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5250 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5251 ret = put_file_data(sctx, offset, len); 5252 if (ret < 0) 5253 return ret; 5254 5255 ret = send_cmd(sctx); 5256 5257 tlv_put_failure: 5258 return ret; 5259 } 5260 5261 /* 5262 * Send a clone command to user space. 5263 */ 5264 static int send_clone(struct send_ctx *sctx, 5265 u64 offset, u32 len, 5266 struct clone_root *clone_root) 5267 { 5268 int ret = 0; 5269 struct fs_path *p; 5270 struct fs_path *cur_inode_path; 5271 u64 gen; 5272 5273 cur_inode_path = get_cur_inode_path(sctx); 5274 if (IS_ERR(cur_inode_path)) 5275 return PTR_ERR(cur_inode_path); 5276 5277 p = fs_path_alloc(); 5278 if (!p) 5279 return -ENOMEM; 5280 5281 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE); 5282 if (ret < 0) 5283 goto out; 5284 5285 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5286 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len); 5287 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, cur_inode_path); 5288 5289 if (clone_root->root == sctx->send_root) { 5290 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen); 5291 if (ret < 0) 5292 goto out; 5293 ret = get_cur_path(sctx, clone_root->ino, gen, p); 5294 } else { 5295 ret = get_inode_path(clone_root->root, clone_root->ino, p); 5296 } 5297 if (ret < 0) 5298 goto out; 5299 5300 /* 5301 * If the parent we're using has a received_uuid set then use that as 5302 * our clone source as that is what we will look for when doing a 5303 * receive. 5304 * 5305 * This covers the case that we create a snapshot off of a received 5306 * subvolume and then use that as the parent and try to receive on a 5307 * different host. 5308 */ 5309 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid)) 5310 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5311 clone_root->root->root_item.received_uuid); 5312 else 5313 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID, 5314 clone_root->root->root_item.uuid); 5315 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID, 5316 btrfs_root_ctransid(&clone_root->root->root_item)); 5317 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p); 5318 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET, 5319 clone_root->offset); 5320 5321 ret = send_cmd(sctx); 5322 5323 tlv_put_failure: 5324 out: 5325 fs_path_free(p); 5326 return ret; 5327 } 5328 5329 /* 5330 * Send an update extent command to user space. 5331 */ 5332 static int send_update_extent(struct send_ctx *sctx, 5333 u64 offset, u32 len) 5334 { 5335 int ret = 0; 5336 struct fs_path *p; 5337 5338 p = get_cur_inode_path(sctx); 5339 if (IS_ERR(p)) 5340 return PTR_ERR(p); 5341 5342 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT); 5343 if (ret < 0) 5344 return ret; 5345 5346 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5347 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5348 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5349 5350 ret = send_cmd(sctx); 5351 5352 tlv_put_failure: 5353 return ret; 5354 } 5355 5356 static int send_fallocate(struct send_ctx *sctx, u32 mode, u64 offset, u64 len) 5357 { 5358 struct fs_path *path; 5359 int ret; 5360 5361 path = get_cur_inode_path(sctx); 5362 if (IS_ERR(path)) 5363 return PTR_ERR(path); 5364 5365 ret = begin_cmd(sctx, BTRFS_SEND_C_FALLOCATE); 5366 if (ret < 0) 5367 return ret; 5368 5369 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path); 5370 TLV_PUT_U32(sctx, BTRFS_SEND_A_FALLOCATE_MODE, mode); 5371 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5372 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len); 5373 5374 ret = send_cmd(sctx); 5375 5376 tlv_put_failure: 5377 return ret; 5378 } 5379 5380 static int send_hole(struct send_ctx *sctx, u64 end) 5381 { 5382 struct fs_path *p = NULL; 5383 u64 read_size = max_send_read_size(sctx); 5384 u64 offset = sctx->cur_inode_last_extent; 5385 int ret = 0; 5386 5387 /* 5388 * Starting with send stream v2 we have fallocate and can use it to 5389 * punch holes instead of sending writes full of zeroes. 5390 */ 5391 if (proto_cmd_ok(sctx, BTRFS_SEND_C_FALLOCATE)) 5392 return send_fallocate(sctx, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 5393 offset, end - offset); 5394 5395 /* 5396 * A hole that starts at EOF or beyond it. Since we do not yet support 5397 * fallocate (for extent preallocation and hole punching), sending a 5398 * write of zeroes starting at EOF or beyond would later require issuing 5399 * a truncate operation which would undo the write and achieve nothing. 5400 */ 5401 if (offset >= sctx->cur_inode_size) 5402 return 0; 5403 5404 /* 5405 * Don't go beyond the inode's i_size due to prealloc extents that start 5406 * after the i_size. 5407 */ 5408 end = min_t(u64, end, sctx->cur_inode_size); 5409 5410 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5411 return send_update_extent(sctx, offset, end - offset); 5412 5413 p = get_cur_inode_path(sctx); 5414 if (IS_ERR(p)) 5415 return PTR_ERR(p); 5416 5417 while (offset < end) { 5418 u64 len = min(end - offset, read_size); 5419 5420 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE); 5421 if (ret < 0) 5422 break; 5423 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p); 5424 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5425 ret = put_data_header(sctx, len); 5426 if (ret < 0) 5427 break; 5428 memset(sctx->send_buf + sctx->send_size, 0, len); 5429 sctx->send_size += len; 5430 ret = send_cmd(sctx); 5431 if (ret < 0) 5432 break; 5433 offset += len; 5434 } 5435 sctx->cur_inode_next_write_offset = offset; 5436 tlv_put_failure: 5437 return ret; 5438 } 5439 5440 static int send_encoded_inline_extent(struct send_ctx *sctx, 5441 struct btrfs_path *path, u64 offset, 5442 u64 len) 5443 { 5444 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info; 5445 struct fs_path *fspath; 5446 struct extent_buffer *leaf = path->nodes[0]; 5447 struct btrfs_key key; 5448 struct btrfs_file_extent_item *ei; 5449 u64 ram_bytes; 5450 size_t inline_size; 5451 int ret; 5452 5453 fspath = get_cur_inode_path(sctx); 5454 if (IS_ERR(fspath)) 5455 return PTR_ERR(fspath); 5456 5457 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5458 if (ret < 0) 5459 return ret; 5460 5461 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5462 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5463 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei); 5464 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 5465 5466 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5467 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5468 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5469 min(key.offset + ram_bytes - offset, len)); 5470 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes); 5471 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset); 5472 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5473 btrfs_file_extent_compression(leaf, ei)); 5474 if (ret < 0) 5475 return ret; 5476 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5477 5478 ret = put_data_header(sctx, inline_size); 5479 if (ret < 0) 5480 return ret; 5481 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size, 5482 btrfs_file_extent_inline_start(ei), inline_size); 5483 sctx->send_size += inline_size; 5484 5485 ret = send_cmd(sctx); 5486 5487 tlv_put_failure: 5488 return ret; 5489 } 5490 5491 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path, 5492 u64 offset, u64 len) 5493 { 5494 struct btrfs_root *root = sctx->send_root; 5495 struct btrfs_fs_info *fs_info = root->fs_info; 5496 struct btrfs_inode *inode; 5497 struct fs_path *fspath; 5498 struct extent_buffer *leaf = path->nodes[0]; 5499 struct btrfs_key key; 5500 struct btrfs_file_extent_item *ei; 5501 u64 disk_bytenr, disk_num_bytes; 5502 u32 data_offset; 5503 struct btrfs_cmd_header *hdr; 5504 u32 crc; 5505 int ret; 5506 5507 inode = btrfs_iget(sctx->cur_ino, root); 5508 if (IS_ERR(inode)) 5509 return PTR_ERR(inode); 5510 5511 fspath = get_cur_inode_path(sctx); 5512 if (IS_ERR(fspath)) { 5513 ret = PTR_ERR(fspath); 5514 goto out; 5515 } 5516 5517 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE); 5518 if (ret < 0) 5519 goto out; 5520 5521 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5522 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 5523 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 5524 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei); 5525 5526 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath); 5527 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset); 5528 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN, 5529 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset, 5530 len)); 5531 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, 5532 btrfs_file_extent_ram_bytes(leaf, ei)); 5533 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, 5534 offset - key.offset + btrfs_file_extent_offset(leaf, ei)); 5535 ret = btrfs_encoded_io_compression_from_extent(fs_info, 5536 btrfs_file_extent_compression(leaf, ei)); 5537 if (ret < 0) 5538 goto out; 5539 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret); 5540 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0); 5541 5542 ret = put_data_header(sctx, disk_num_bytes); 5543 if (ret < 0) 5544 goto out; 5545 5546 /* 5547 * We want to do I/O directly into the send buffer, so get the next page 5548 * boundary in the send buffer. This means that there may be a gap 5549 * between the beginning of the command and the file data. 5550 */ 5551 data_offset = PAGE_ALIGN(sctx->send_size); 5552 if (data_offset > sctx->send_max_size || 5553 sctx->send_max_size - data_offset < disk_num_bytes) { 5554 ret = -EOVERFLOW; 5555 goto out; 5556 } 5557 5558 /* 5559 * Note that send_buf is a mapping of send_buf_pages, so this is really 5560 * reading into send_buf. 5561 */ 5562 ret = btrfs_encoded_read_regular_fill_pages(inode, 5563 disk_bytenr, disk_num_bytes, 5564 sctx->send_buf_pages + 5565 (data_offset >> PAGE_SHIFT), 5566 NULL); 5567 if (ret) 5568 goto out; 5569 5570 hdr = (struct btrfs_cmd_header *)sctx->send_buf; 5571 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr)); 5572 hdr->crc = 0; 5573 crc = crc32c(0, sctx->send_buf, sctx->send_size); 5574 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes); 5575 hdr->crc = cpu_to_le32(crc); 5576 5577 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size, 5578 &sctx->send_off); 5579 if (!ret) { 5580 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset, 5581 disk_num_bytes, &sctx->send_off); 5582 } 5583 sctx->send_size = 0; 5584 sctx->put_data = false; 5585 5586 tlv_put_failure: 5587 out: 5588 iput(&inode->vfs_inode); 5589 return ret; 5590 } 5591 5592 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path, 5593 const u64 offset, const u64 len) 5594 { 5595 const u64 end = offset + len; 5596 struct extent_buffer *leaf = path->nodes[0]; 5597 struct btrfs_file_extent_item *ei; 5598 u64 read_size = max_send_read_size(sctx); 5599 u64 sent = 0; 5600 5601 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) 5602 return send_update_extent(sctx, offset, len); 5603 5604 ei = btrfs_item_ptr(leaf, path->slots[0], 5605 struct btrfs_file_extent_item); 5606 /* 5607 * Do not go through encoded read for bs > ps cases. 5608 * 5609 * Encoded send is using vmallocated pages as buffer, which we can 5610 * not ensure every folio is large enough to contain a block. 5611 */ 5612 if (sctx->send_root->fs_info->sectorsize <= PAGE_SIZE && 5613 (sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) && 5614 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 5615 bool is_inline = (btrfs_file_extent_type(leaf, ei) == 5616 BTRFS_FILE_EXTENT_INLINE); 5617 5618 /* 5619 * Send the compressed extent unless the compressed data is 5620 * larger than the decompressed data. This can happen if we're 5621 * not sending the entire extent, either because it has been 5622 * partially overwritten/truncated or because this is a part of 5623 * the extent that we couldn't clone in clone_range(). 5624 */ 5625 if (is_inline && 5626 btrfs_file_extent_inline_item_len(leaf, 5627 path->slots[0]) <= len) { 5628 return send_encoded_inline_extent(sctx, path, offset, 5629 len); 5630 } else if (!is_inline && 5631 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) { 5632 return send_encoded_extent(sctx, path, offset, len); 5633 } 5634 } 5635 5636 if (sctx->cur_inode == NULL) { 5637 struct btrfs_inode *btrfs_inode; 5638 struct btrfs_root *root = sctx->send_root; 5639 5640 btrfs_inode = btrfs_iget(sctx->cur_ino, root); 5641 if (IS_ERR(btrfs_inode)) 5642 return PTR_ERR(btrfs_inode); 5643 5644 sctx->cur_inode = &btrfs_inode->vfs_inode; 5645 memset(&sctx->ra, 0, sizeof(struct file_ra_state)); 5646 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping); 5647 5648 /* 5649 * It's very likely there are no pages from this inode in the page 5650 * cache, so after reading extents and sending their data, we clean 5651 * the page cache to avoid trashing the page cache (adding pressure 5652 * to the page cache and forcing eviction of other data more useful 5653 * for applications). 5654 * 5655 * We decide if we should clean the page cache simply by checking 5656 * if the inode's mapping nrpages is 0 when we first open it, and 5657 * not by using something like filemap_range_has_page() before 5658 * reading an extent because when we ask the readahead code to 5659 * read a given file range, it may (and almost always does) read 5660 * pages from beyond that range (see the documentation for 5661 * page_cache_sync_readahead()), so it would not be reliable, 5662 * because after reading the first extent future calls to 5663 * filemap_range_has_page() would return true because the readahead 5664 * on the previous extent resulted in reading pages of the current 5665 * extent as well. 5666 */ 5667 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0); 5668 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE); 5669 } 5670 5671 while (sent < len) { 5672 u64 size = min(len - sent, read_size); 5673 int ret; 5674 5675 ret = send_write(sctx, offset + sent, size); 5676 if (ret < 0) 5677 return ret; 5678 sent += size; 5679 } 5680 5681 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) { 5682 /* 5683 * Always operate only on ranges that are a multiple of the page 5684 * size. This is not only to prevent zeroing parts of a page in 5685 * the case of subpage sector size, but also to guarantee we evict 5686 * pages, as passing a range that is smaller than page size does 5687 * not evict the respective page (only zeroes part of its content). 5688 * 5689 * Always start from the end offset of the last range cleared. 5690 * This is because the readahead code may (and very often does) 5691 * reads pages beyond the range we request for readahead. So if 5692 * we have an extent layout like this: 5693 * 5694 * [ extent A ] [ extent B ] [ extent C ] 5695 * 5696 * When we ask page_cache_sync_readahead() to read extent A, it 5697 * may also trigger reads for pages of extent B. If we are doing 5698 * an incremental send and extent B has not changed between the 5699 * parent and send snapshots, some or all of its pages may end 5700 * up being read and placed in the page cache. So when truncating 5701 * the page cache we always start from the end offset of the 5702 * previously processed extent up to the end of the current 5703 * extent. 5704 */ 5705 truncate_inode_pages_range(&sctx->cur_inode->i_data, 5706 sctx->page_cache_clear_start, 5707 end - 1); 5708 sctx->page_cache_clear_start = end; 5709 } 5710 5711 return 0; 5712 } 5713 5714 /* 5715 * Search for a capability xattr related to sctx->cur_ino. If the capability is 5716 * found, call send_set_xattr function to emit it. 5717 * 5718 * Return 0 if there isn't a capability, or when the capability was emitted 5719 * successfully, or < 0 if an error occurred. 5720 */ 5721 static int send_capabilities(struct send_ctx *sctx) 5722 { 5723 BTRFS_PATH_AUTO_FREE(path); 5724 struct btrfs_dir_item *di; 5725 struct extent_buffer *leaf; 5726 unsigned long data_ptr; 5727 char *buf = NULL; 5728 int buf_len; 5729 int ret = 0; 5730 5731 path = alloc_path_for_send(); 5732 if (!path) 5733 return -ENOMEM; 5734 5735 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino, 5736 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0); 5737 if (!di) { 5738 /* There is no xattr for this inode */ 5739 goto out; 5740 } else if (IS_ERR(di)) { 5741 ret = PTR_ERR(di); 5742 goto out; 5743 } 5744 5745 leaf = path->nodes[0]; 5746 buf_len = btrfs_dir_data_len(leaf, di); 5747 5748 buf = kmalloc(buf_len, GFP_KERNEL); 5749 if (!buf) { 5750 ret = -ENOMEM; 5751 goto out; 5752 } 5753 5754 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di); 5755 read_extent_buffer(leaf, buf, data_ptr, buf_len); 5756 5757 ret = send_set_xattr(sctx, XATTR_NAME_CAPS, 5758 strlen(XATTR_NAME_CAPS), buf, buf_len); 5759 out: 5760 kfree(buf); 5761 return ret; 5762 } 5763 5764 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path, 5765 struct clone_root *clone_root, const u64 disk_byte, 5766 u64 data_offset, u64 offset, u64 len) 5767 { 5768 BTRFS_PATH_AUTO_FREE(path); 5769 struct btrfs_key key; 5770 int ret; 5771 struct btrfs_inode_info info; 5772 u64 clone_src_i_size = 0; 5773 5774 /* 5775 * Prevent cloning from a zero offset with a length matching the sector 5776 * size because in some scenarios this will make the receiver fail. 5777 * 5778 * For example, if in the source filesystem the extent at offset 0 5779 * has a length of sectorsize and it was written using direct IO, then 5780 * it can never be an inline extent (even if compression is enabled). 5781 * Then this extent can be cloned in the original filesystem to a non 5782 * zero file offset, but it may not be possible to clone in the 5783 * destination filesystem because it can be inlined due to compression 5784 * on the destination filesystem (as the receiver's write operations are 5785 * always done using buffered IO). The same happens when the original 5786 * filesystem does not have compression enabled but the destination 5787 * filesystem has. 5788 */ 5789 if (clone_root->offset == 0 && 5790 len == sctx->send_root->fs_info->sectorsize) 5791 return send_extent_data(sctx, dst_path, offset, len); 5792 5793 path = alloc_path_for_send(); 5794 if (!path) 5795 return -ENOMEM; 5796 5797 /* 5798 * There are inodes that have extents that lie behind its i_size. Don't 5799 * accept clones from these extents. 5800 */ 5801 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 5802 btrfs_release_path(path); 5803 if (ret < 0) 5804 return ret; 5805 clone_src_i_size = info.size; 5806 5807 /* 5808 * We can't send a clone operation for the entire range if we find 5809 * extent items in the respective range in the source file that 5810 * refer to different extents or if we find holes. 5811 * So check for that and do a mix of clone and regular write/copy 5812 * operations if needed. 5813 * 5814 * Example: 5815 * 5816 * mkfs.btrfs -f /dev/sda 5817 * mount /dev/sda /mnt 5818 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo 5819 * cp --reflink=always /mnt/foo /mnt/bar 5820 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo 5821 * btrfs subvolume snapshot -r /mnt /mnt/snap 5822 * 5823 * If when we send the snapshot and we are processing file bar (which 5824 * has a higher inode number than foo) we blindly send a clone operation 5825 * for the [0, 100K[ range from foo to bar, the receiver ends up getting 5826 * a file bar that matches the content of file foo - iow, doesn't match 5827 * the content from bar in the original filesystem. 5828 */ 5829 key.objectid = clone_root->ino; 5830 key.type = BTRFS_EXTENT_DATA_KEY; 5831 key.offset = clone_root->offset; 5832 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0); 5833 if (ret < 0) 5834 return ret; 5835 if (ret > 0 && path->slots[0] > 0) { 5836 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 5837 if (key.objectid == clone_root->ino && 5838 key.type == BTRFS_EXTENT_DATA_KEY) 5839 path->slots[0]--; 5840 } 5841 5842 while (true) { 5843 struct extent_buffer *leaf = path->nodes[0]; 5844 int slot = path->slots[0]; 5845 struct btrfs_file_extent_item *ei; 5846 u8 type; 5847 u64 ext_len; 5848 u64 clone_len; 5849 u64 clone_data_offset; 5850 bool crossed_src_i_size = false; 5851 5852 if (slot >= btrfs_header_nritems(leaf)) { 5853 ret = btrfs_next_leaf(clone_root->root, path); 5854 if (ret < 0) 5855 return ret; 5856 else if (ret > 0) 5857 break; 5858 continue; 5859 } 5860 5861 btrfs_item_key_to_cpu(leaf, &key, slot); 5862 5863 /* 5864 * We might have an implicit trailing hole (NO_HOLES feature 5865 * enabled). We deal with it after leaving this loop. 5866 */ 5867 if (key.objectid != clone_root->ino || 5868 key.type != BTRFS_EXTENT_DATA_KEY) 5869 break; 5870 5871 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5872 type = btrfs_file_extent_type(leaf, ei); 5873 if (type == BTRFS_FILE_EXTENT_INLINE) { 5874 ext_len = btrfs_file_extent_ram_bytes(leaf, ei); 5875 ext_len = PAGE_ALIGN(ext_len); 5876 } else { 5877 ext_len = btrfs_file_extent_num_bytes(leaf, ei); 5878 } 5879 5880 if (key.offset + ext_len <= clone_root->offset) 5881 goto next; 5882 5883 if (key.offset > clone_root->offset) { 5884 /* Implicit hole, NO_HOLES feature enabled. */ 5885 u64 hole_len = key.offset - clone_root->offset; 5886 5887 if (hole_len > len) 5888 hole_len = len; 5889 ret = send_extent_data(sctx, dst_path, offset, 5890 hole_len); 5891 if (ret < 0) 5892 return ret; 5893 5894 len -= hole_len; 5895 if (len == 0) 5896 break; 5897 offset += hole_len; 5898 clone_root->offset += hole_len; 5899 data_offset += hole_len; 5900 } 5901 5902 if (key.offset >= clone_root->offset + len) 5903 break; 5904 5905 if (key.offset >= clone_src_i_size) 5906 break; 5907 5908 if (key.offset + ext_len > clone_src_i_size) { 5909 ext_len = clone_src_i_size - key.offset; 5910 crossed_src_i_size = true; 5911 } 5912 5913 clone_data_offset = btrfs_file_extent_offset(leaf, ei); 5914 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) { 5915 clone_root->offset = key.offset; 5916 if (clone_data_offset < data_offset && 5917 clone_data_offset + ext_len > data_offset) { 5918 u64 extent_offset; 5919 5920 extent_offset = data_offset - clone_data_offset; 5921 ext_len -= extent_offset; 5922 clone_data_offset += extent_offset; 5923 clone_root->offset += extent_offset; 5924 } 5925 } 5926 5927 clone_len = min_t(u64, ext_len, len); 5928 5929 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte && 5930 clone_data_offset == data_offset) { 5931 const u64 src_end = clone_root->offset + clone_len; 5932 const u64 sectorsize = SZ_64K; 5933 5934 /* 5935 * We can't clone the last block, when its size is not 5936 * sector size aligned, into the middle of a file. If we 5937 * do so, the receiver will get a failure (-EINVAL) when 5938 * trying to clone or will silently corrupt the data in 5939 * the destination file if it's on a kernel without the 5940 * fix introduced by commit ac765f83f1397646 5941 * ("Btrfs: fix data corruption due to cloning of eof 5942 * block). 5943 * 5944 * So issue a clone of the aligned down range plus a 5945 * regular write for the eof block, if we hit that case. 5946 * 5947 * Also, we use the maximum possible sector size, 64K, 5948 * because we don't know what's the sector size of the 5949 * filesystem that receives the stream, so we have to 5950 * assume the largest possible sector size. 5951 */ 5952 if (src_end == clone_src_i_size && 5953 !IS_ALIGNED(src_end, sectorsize) && 5954 offset + clone_len < sctx->cur_inode_size) { 5955 u64 slen; 5956 5957 slen = ALIGN_DOWN(src_end - clone_root->offset, 5958 sectorsize); 5959 if (slen > 0) { 5960 ret = send_clone(sctx, offset, slen, 5961 clone_root); 5962 if (ret < 0) 5963 return ret; 5964 } 5965 ret = send_extent_data(sctx, dst_path, 5966 offset + slen, 5967 clone_len - slen); 5968 } else { 5969 ret = send_clone(sctx, offset, clone_len, 5970 clone_root); 5971 } 5972 } else if (crossed_src_i_size && clone_len < len) { 5973 /* 5974 * If we are at i_size of the clone source inode and we 5975 * can not clone from it, terminate the loop. This is 5976 * to avoid sending two write operations, one with a 5977 * length matching clone_len and the final one after 5978 * this loop with a length of len - clone_len. 5979 * 5980 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED 5981 * was passed to the send ioctl), this helps avoid 5982 * sending an encoded write for an offset that is not 5983 * sector size aligned, in case the i_size of the source 5984 * inode is not sector size aligned. That will make the 5985 * receiver fallback to decompression of the data and 5986 * writing it using regular buffered IO, therefore while 5987 * not incorrect, it's not optimal due decompression and 5988 * possible re-compression at the receiver. 5989 */ 5990 break; 5991 } else { 5992 ret = send_extent_data(sctx, dst_path, offset, 5993 clone_len); 5994 } 5995 5996 if (ret < 0) 5997 return ret; 5998 5999 len -= clone_len; 6000 if (len == 0) 6001 break; 6002 offset += clone_len; 6003 clone_root->offset += clone_len; 6004 6005 /* 6006 * If we are cloning from the file we are currently processing, 6007 * and using the send root as the clone root, we must stop once 6008 * the current clone offset reaches the current eof of the file 6009 * at the receiver, otherwise we would issue an invalid clone 6010 * operation (source range going beyond eof) and cause the 6011 * receiver to fail. So if we reach the current eof, bail out 6012 * and fallback to a regular write. 6013 */ 6014 if (clone_root->root == sctx->send_root && 6015 clone_root->ino == sctx->cur_ino && 6016 clone_root->offset >= sctx->cur_inode_next_write_offset) 6017 break; 6018 6019 data_offset += clone_len; 6020 next: 6021 path->slots[0]++; 6022 } 6023 6024 if (len > 0) 6025 ret = send_extent_data(sctx, dst_path, offset, len); 6026 else 6027 ret = 0; 6028 return ret; 6029 } 6030 6031 static int send_write_or_clone(struct send_ctx *sctx, 6032 struct btrfs_path *path, 6033 struct btrfs_key *key, 6034 struct clone_root *clone_root) 6035 { 6036 int ret = 0; 6037 u64 offset = key->offset; 6038 u64 end; 6039 u64 bs = sctx->send_root->fs_info->sectorsize; 6040 struct btrfs_file_extent_item *ei; 6041 u64 disk_byte; 6042 u64 data_offset; 6043 u64 num_bytes; 6044 struct btrfs_inode_info info = { 0 }; 6045 6046 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size); 6047 if (offset >= end) 6048 return 0; 6049 6050 num_bytes = end - offset; 6051 6052 if (!clone_root) 6053 goto write_data; 6054 6055 if (IS_ALIGNED(end, bs)) 6056 goto clone_data; 6057 6058 /* 6059 * If the extent end is not aligned, we can clone if the extent ends at 6060 * the i_size of the inode and the clone range ends at the i_size of the 6061 * source inode, otherwise the clone operation fails with -EINVAL. 6062 */ 6063 if (end != sctx->cur_inode_size) 6064 goto write_data; 6065 6066 ret = get_inode_info(clone_root->root, clone_root->ino, &info); 6067 if (ret < 0) 6068 return ret; 6069 6070 if (clone_root->offset + num_bytes == info.size) { 6071 /* 6072 * The final size of our file matches the end offset, but it may 6073 * be that its current size is larger, so we have to truncate it 6074 * to any value between the start offset of the range and the 6075 * final i_size, otherwise the clone operation is invalid 6076 * because it's unaligned and it ends before the current EOF. 6077 * We do this truncate to the final i_size when we finish 6078 * processing the inode, but it's too late by then. And here we 6079 * truncate to the start offset of the range because it's always 6080 * sector size aligned while if it were the final i_size it 6081 * would result in dirtying part of a page, filling part of a 6082 * page with zeroes and then having the clone operation at the 6083 * receiver trigger IO and wait for it due to the dirty page. 6084 */ 6085 if (sctx->parent_root != NULL) { 6086 ret = send_truncate(sctx, sctx->cur_ino, 6087 sctx->cur_inode_gen, offset); 6088 if (ret < 0) 6089 return ret; 6090 } 6091 goto clone_data; 6092 } 6093 6094 write_data: 6095 ret = send_extent_data(sctx, path, offset, num_bytes); 6096 sctx->cur_inode_next_write_offset = end; 6097 return ret; 6098 6099 clone_data: 6100 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6101 struct btrfs_file_extent_item); 6102 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei); 6103 data_offset = btrfs_file_extent_offset(path->nodes[0], ei); 6104 ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset, 6105 num_bytes); 6106 sctx->cur_inode_next_write_offset = end; 6107 return ret; 6108 } 6109 6110 static int is_extent_unchanged(struct send_ctx *sctx, 6111 struct btrfs_path *left_path, 6112 struct btrfs_key *ekey) 6113 { 6114 int ret = 0; 6115 struct btrfs_key key; 6116 BTRFS_PATH_AUTO_FREE(path); 6117 struct extent_buffer *eb; 6118 int slot; 6119 struct btrfs_key found_key; 6120 struct btrfs_file_extent_item *ei; 6121 u64 left_disknr; 6122 u64 right_disknr; 6123 u64 left_offset; 6124 u64 right_offset; 6125 u64 left_offset_fixed; 6126 u64 left_len; 6127 u64 right_len; 6128 u64 left_gen; 6129 u64 right_gen; 6130 u8 left_type; 6131 u8 right_type; 6132 6133 path = alloc_path_for_send(); 6134 if (!path) 6135 return -ENOMEM; 6136 6137 eb = left_path->nodes[0]; 6138 slot = left_path->slots[0]; 6139 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6140 left_type = btrfs_file_extent_type(eb, ei); 6141 6142 if (left_type != BTRFS_FILE_EXTENT_REG) 6143 return 0; 6144 6145 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6146 left_len = btrfs_file_extent_num_bytes(eb, ei); 6147 left_offset = btrfs_file_extent_offset(eb, ei); 6148 left_gen = btrfs_file_extent_generation(eb, ei); 6149 6150 /* 6151 * Following comments will refer to these graphics. L is the left 6152 * extents which we are checking at the moment. 1-8 are the right 6153 * extents that we iterate. 6154 * 6155 * |-----L-----| 6156 * |-1-|-2a-|-3-|-4-|-5-|-6-| 6157 * 6158 * |-----L-----| 6159 * |--1--|-2b-|...(same as above) 6160 * 6161 * Alternative situation. Happens on files where extents got split. 6162 * |-----L-----| 6163 * |-----------7-----------|-6-| 6164 * 6165 * Alternative situation. Happens on files which got larger. 6166 * |-----L-----| 6167 * |-8-| 6168 * Nothing follows after 8. 6169 */ 6170 6171 key.objectid = ekey->objectid; 6172 key.type = BTRFS_EXTENT_DATA_KEY; 6173 key.offset = ekey->offset; 6174 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0); 6175 if (ret < 0) 6176 return ret; 6177 if (ret) 6178 return 0; 6179 6180 /* 6181 * Handle special case where the right side has no extents at all. 6182 */ 6183 eb = path->nodes[0]; 6184 slot = path->slots[0]; 6185 btrfs_item_key_to_cpu(eb, &found_key, slot); 6186 if (found_key.objectid != key.objectid || 6187 found_key.type != key.type) 6188 /* If we're a hole then just pretend nothing changed */ 6189 return (left_disknr ? 0 : 1); 6190 6191 /* 6192 * We're now on 2a, 2b or 7. 6193 */ 6194 key = found_key; 6195 while (key.offset < ekey->offset + left_len) { 6196 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 6197 right_type = btrfs_file_extent_type(eb, ei); 6198 if (right_type != BTRFS_FILE_EXTENT_REG && 6199 right_type != BTRFS_FILE_EXTENT_INLINE) 6200 return 0; 6201 6202 if (right_type == BTRFS_FILE_EXTENT_INLINE) { 6203 right_len = btrfs_file_extent_ram_bytes(eb, ei); 6204 right_len = PAGE_ALIGN(right_len); 6205 } else { 6206 right_len = btrfs_file_extent_num_bytes(eb, ei); 6207 } 6208 6209 /* 6210 * Are we at extent 8? If yes, we know the extent is changed. 6211 * This may only happen on the first iteration. 6212 */ 6213 if (found_key.offset + right_len <= ekey->offset) 6214 /* If we're a hole just pretend nothing changed */ 6215 return (left_disknr ? 0 : 1); 6216 6217 /* 6218 * We just wanted to see if when we have an inline extent, what 6219 * follows it is a regular extent (wanted to check the above 6220 * condition for inline extents too). This should normally not 6221 * happen but it's possible for example when we have an inline 6222 * compressed extent representing data with a size matching 6223 * the page size (currently the same as sector size). 6224 */ 6225 if (right_type == BTRFS_FILE_EXTENT_INLINE) 6226 return 0; 6227 6228 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei); 6229 right_offset = btrfs_file_extent_offset(eb, ei); 6230 right_gen = btrfs_file_extent_generation(eb, ei); 6231 6232 left_offset_fixed = left_offset; 6233 if (key.offset < ekey->offset) { 6234 /* Fix the right offset for 2a and 7. */ 6235 right_offset += ekey->offset - key.offset; 6236 } else { 6237 /* Fix the left offset for all behind 2a and 2b */ 6238 left_offset_fixed += key.offset - ekey->offset; 6239 } 6240 6241 /* 6242 * Check if we have the same extent. 6243 */ 6244 if (left_disknr != right_disknr || 6245 left_offset_fixed != right_offset || 6246 left_gen != right_gen) 6247 return 0; 6248 6249 /* 6250 * Go to the next extent. 6251 */ 6252 ret = btrfs_next_item(sctx->parent_root, path); 6253 if (ret < 0) 6254 return ret; 6255 if (!ret) { 6256 eb = path->nodes[0]; 6257 slot = path->slots[0]; 6258 btrfs_item_key_to_cpu(eb, &found_key, slot); 6259 } 6260 if (ret || found_key.objectid != key.objectid || 6261 found_key.type != key.type) { 6262 key.offset += right_len; 6263 break; 6264 } 6265 if (found_key.offset != key.offset + right_len) 6266 return 0; 6267 6268 key = found_key; 6269 } 6270 6271 /* 6272 * We're now behind the left extent (treat as unchanged) or at the end 6273 * of the right side (treat as changed). 6274 */ 6275 if (key.offset >= ekey->offset + left_len) 6276 ret = 1; 6277 else 6278 ret = 0; 6279 6280 return ret; 6281 } 6282 6283 static int get_last_extent(struct send_ctx *sctx, u64 offset) 6284 { 6285 BTRFS_PATH_AUTO_FREE(path); 6286 struct btrfs_root *root = sctx->send_root; 6287 struct btrfs_key key; 6288 int ret; 6289 6290 path = alloc_path_for_send(); 6291 if (!path) 6292 return -ENOMEM; 6293 6294 sctx->cur_inode_last_extent = 0; 6295 6296 key.objectid = sctx->cur_ino; 6297 key.type = BTRFS_EXTENT_DATA_KEY; 6298 key.offset = offset; 6299 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1); 6300 if (ret < 0) 6301 return ret; 6302 ret = 0; 6303 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 6304 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY) 6305 return ret; 6306 6307 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6308 return ret; 6309 } 6310 6311 static int range_is_hole_in_parent(struct send_ctx *sctx, 6312 const u64 start, 6313 const u64 end) 6314 { 6315 BTRFS_PATH_AUTO_FREE(path); 6316 struct btrfs_key key; 6317 struct btrfs_root *root = sctx->parent_root; 6318 u64 search_start = start; 6319 int ret; 6320 6321 path = alloc_path_for_send(); 6322 if (!path) 6323 return -ENOMEM; 6324 6325 key.objectid = sctx->cur_ino; 6326 key.type = BTRFS_EXTENT_DATA_KEY; 6327 key.offset = search_start; 6328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6329 if (ret < 0) 6330 return ret; 6331 if (ret > 0 && path->slots[0] > 0) 6332 path->slots[0]--; 6333 6334 while (search_start < end) { 6335 struct extent_buffer *leaf = path->nodes[0]; 6336 int slot = path->slots[0]; 6337 struct btrfs_file_extent_item *fi; 6338 u64 extent_end; 6339 6340 if (slot >= btrfs_header_nritems(leaf)) { 6341 ret = btrfs_next_leaf(root, path); 6342 if (ret < 0) 6343 return ret; 6344 if (ret > 0) 6345 break; 6346 continue; 6347 } 6348 6349 btrfs_item_key_to_cpu(leaf, &key, slot); 6350 if (key.objectid < sctx->cur_ino || 6351 key.type < BTRFS_EXTENT_DATA_KEY) 6352 goto next; 6353 if (key.objectid > sctx->cur_ino || 6354 key.type > BTRFS_EXTENT_DATA_KEY || 6355 key.offset >= end) 6356 break; 6357 6358 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6359 extent_end = btrfs_file_extent_end(path); 6360 if (extent_end <= start) 6361 goto next; 6362 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) { 6363 search_start = extent_end; 6364 goto next; 6365 } 6366 return 0; 6367 next: 6368 path->slots[0]++; 6369 } 6370 return 1; 6371 } 6372 6373 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path, 6374 struct btrfs_key *key) 6375 { 6376 int ret = 0; 6377 6378 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx)) 6379 return 0; 6380 6381 /* 6382 * Get last extent's end offset (exclusive) if we haven't determined it 6383 * yet (we're processing the first file extent item that is new), or if 6384 * we're at the first slot of a leaf and the last extent's end is less 6385 * than the current extent's offset, because we might have skipped 6386 * entire leaves that contained only file extent items for our current 6387 * inode. These leaves have a generation number smaller (older) than the 6388 * one in the current leaf and the leaf our last extent came from, and 6389 * are located between these 2 leaves. 6390 */ 6391 if ((sctx->cur_inode_last_extent == (u64)-1) || 6392 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) { 6393 ret = get_last_extent(sctx, key->offset - 1); 6394 if (ret) 6395 return ret; 6396 } 6397 6398 if (sctx->cur_inode_last_extent < key->offset) { 6399 ret = range_is_hole_in_parent(sctx, 6400 sctx->cur_inode_last_extent, 6401 key->offset); 6402 if (ret < 0) 6403 return ret; 6404 else if (ret == 0) 6405 ret = send_hole(sctx, key->offset); 6406 else 6407 ret = 0; 6408 } 6409 sctx->cur_inode_last_extent = btrfs_file_extent_end(path); 6410 return ret; 6411 } 6412 6413 static int process_extent(struct send_ctx *sctx, 6414 struct btrfs_path *path, 6415 struct btrfs_key *key) 6416 { 6417 struct clone_root *found_clone = NULL; 6418 int ret = 0; 6419 6420 if (S_ISLNK(sctx->cur_inode_mode)) 6421 return 0; 6422 6423 if (sctx->parent_root && !sctx->cur_inode_new) { 6424 ret = is_extent_unchanged(sctx, path, key); 6425 if (ret < 0) 6426 goto out; 6427 if (ret) { 6428 ret = 0; 6429 goto out_hole; 6430 } 6431 } else { 6432 struct btrfs_file_extent_item *ei; 6433 u8 type; 6434 6435 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 6436 struct btrfs_file_extent_item); 6437 type = btrfs_file_extent_type(path->nodes[0], ei); 6438 if (type == BTRFS_FILE_EXTENT_PREALLOC || 6439 type == BTRFS_FILE_EXTENT_REG) { 6440 /* 6441 * The send spec does not have a prealloc command yet, 6442 * so just leave a hole for prealloc'ed extents until 6443 * we have enough commands queued up to justify rev'ing 6444 * the send spec. 6445 */ 6446 if (type == BTRFS_FILE_EXTENT_PREALLOC) { 6447 ret = 0; 6448 goto out; 6449 } 6450 6451 /* Have a hole, just skip it. */ 6452 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) { 6453 ret = 0; 6454 goto out; 6455 } 6456 } 6457 } 6458 6459 ret = find_extent_clone(sctx, path, key->objectid, key->offset, 6460 sctx->cur_inode_size, &found_clone); 6461 if (ret != -ENOENT && ret < 0) 6462 goto out; 6463 6464 ret = send_write_or_clone(sctx, path, key, found_clone); 6465 if (ret) 6466 goto out; 6467 out_hole: 6468 ret = maybe_send_hole(sctx, path, key); 6469 out: 6470 return ret; 6471 } 6472 6473 static int process_all_extents(struct send_ctx *sctx) 6474 { 6475 int ret = 0; 6476 int iter_ret = 0; 6477 struct btrfs_root *root; 6478 BTRFS_PATH_AUTO_FREE(path); 6479 struct btrfs_key key; 6480 struct btrfs_key found_key; 6481 6482 root = sctx->send_root; 6483 path = alloc_path_for_send(); 6484 if (!path) 6485 return -ENOMEM; 6486 6487 key.objectid = sctx->cmp_key->objectid; 6488 key.type = BTRFS_EXTENT_DATA_KEY; 6489 key.offset = 0; 6490 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 6491 if (found_key.objectid != key.objectid || 6492 found_key.type != key.type) { 6493 ret = 0; 6494 break; 6495 } 6496 6497 ret = process_extent(sctx, path, &found_key); 6498 if (ret < 0) 6499 break; 6500 } 6501 /* Catch error found during iteration */ 6502 if (iter_ret < 0) 6503 ret = iter_ret; 6504 6505 return ret; 6506 } 6507 6508 static int process_recorded_refs_if_needed(struct send_ctx *sctx, bool at_end, 6509 int *pending_move, 6510 int *refs_processed) 6511 { 6512 int ret = 0; 6513 6514 if (sctx->cur_ino == 0) 6515 goto out; 6516 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid && 6517 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY) 6518 goto out; 6519 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs)) 6520 goto out; 6521 6522 ret = process_recorded_refs(sctx, pending_move); 6523 if (ret < 0) 6524 goto out; 6525 6526 *refs_processed = 1; 6527 out: 6528 return ret; 6529 } 6530 6531 static int finish_inode_if_needed(struct send_ctx *sctx, bool at_end) 6532 { 6533 int ret = 0; 6534 struct btrfs_inode_info info; 6535 u64 left_mode; 6536 u64 left_uid; 6537 u64 left_gid; 6538 u64 left_fileattr; 6539 u64 right_mode; 6540 u64 right_uid; 6541 u64 right_gid; 6542 u64 right_fileattr; 6543 int need_chmod = 0; 6544 int need_chown = 0; 6545 bool need_fileattr = false; 6546 int need_truncate = 1; 6547 int pending_move = 0; 6548 int refs_processed = 0; 6549 6550 if (sctx->ignore_cur_inode) 6551 return 0; 6552 6553 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move, 6554 &refs_processed); 6555 if (ret < 0) 6556 goto out; 6557 6558 /* 6559 * We have processed the refs and thus need to advance send_progress. 6560 * Now, calls to get_cur_xxx will take the updated refs of the current 6561 * inode into account. 6562 * 6563 * On the other hand, if our current inode is a directory and couldn't 6564 * be moved/renamed because its parent was renamed/moved too and it has 6565 * a higher inode number, we can only move/rename our current inode 6566 * after we moved/renamed its parent. Therefore in this case operate on 6567 * the old path (pre move/rename) of our current inode, and the 6568 * move/rename will be performed later. 6569 */ 6570 if (refs_processed && !pending_move) 6571 sctx->send_progress = sctx->cur_ino + 1; 6572 6573 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted) 6574 goto out; 6575 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino) 6576 goto out; 6577 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info); 6578 if (ret < 0) 6579 goto out; 6580 left_mode = info.mode; 6581 left_uid = info.uid; 6582 left_gid = info.gid; 6583 left_fileattr = info.fileattr; 6584 6585 if (!sctx->parent_root || sctx->cur_inode_new) { 6586 need_chown = 1; 6587 if (!S_ISLNK(sctx->cur_inode_mode)) 6588 need_chmod = 1; 6589 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size) 6590 need_truncate = 0; 6591 } else { 6592 u64 old_size; 6593 6594 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info); 6595 if (ret < 0) 6596 goto out; 6597 old_size = info.size; 6598 right_mode = info.mode; 6599 right_uid = info.uid; 6600 right_gid = info.gid; 6601 right_fileattr = info.fileattr; 6602 6603 if (left_uid != right_uid || left_gid != right_gid) 6604 need_chown = 1; 6605 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode) 6606 need_chmod = 1; 6607 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr) 6608 need_fileattr = true; 6609 if ((old_size == sctx->cur_inode_size) || 6610 (sctx->cur_inode_size > old_size && 6611 sctx->cur_inode_next_write_offset == sctx->cur_inode_size)) 6612 need_truncate = 0; 6613 } 6614 6615 if (S_ISREG(sctx->cur_inode_mode)) { 6616 if (need_send_hole(sctx)) { 6617 if (sctx->cur_inode_last_extent == (u64)-1 || 6618 sctx->cur_inode_last_extent < 6619 sctx->cur_inode_size) { 6620 ret = get_last_extent(sctx, (u64)-1); 6621 if (ret) 6622 goto out; 6623 } 6624 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) { 6625 ret = range_is_hole_in_parent(sctx, 6626 sctx->cur_inode_last_extent, 6627 sctx->cur_inode_size); 6628 if (ret < 0) { 6629 goto out; 6630 } else if (ret == 0) { 6631 ret = send_hole(sctx, sctx->cur_inode_size); 6632 if (ret < 0) 6633 goto out; 6634 } else { 6635 /* Range is already a hole, skip. */ 6636 ret = 0; 6637 } 6638 } 6639 } 6640 if (need_truncate) { 6641 ret = send_truncate(sctx, sctx->cur_ino, 6642 sctx->cur_inode_gen, 6643 sctx->cur_inode_size); 6644 if (ret < 0) 6645 goto out; 6646 } 6647 } 6648 6649 if (need_chown) { 6650 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6651 left_uid, left_gid); 6652 if (ret < 0) 6653 goto out; 6654 } 6655 if (need_chmod) { 6656 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6657 left_mode); 6658 if (ret < 0) 6659 goto out; 6660 } 6661 if (need_fileattr) { 6662 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen, 6663 left_fileattr); 6664 if (ret < 0) 6665 goto out; 6666 } 6667 6668 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY) 6669 && sctx->cur_inode_needs_verity) { 6670 ret = process_verity(sctx); 6671 if (ret < 0) 6672 goto out; 6673 } 6674 6675 ret = send_capabilities(sctx); 6676 if (ret < 0) 6677 goto out; 6678 6679 /* 6680 * If other directory inodes depended on our current directory 6681 * inode's move/rename, now do their move/rename operations. 6682 */ 6683 if (!is_waiting_for_move(sctx, sctx->cur_ino)) { 6684 ret = apply_children_dir_moves(sctx); 6685 if (ret) 6686 goto out; 6687 /* 6688 * Need to send that every time, no matter if it actually 6689 * changed between the two trees as we have done changes to 6690 * the inode before. If our inode is a directory and it's 6691 * waiting to be moved/renamed, we will send its utimes when 6692 * it's moved/renamed, therefore we don't need to do it here. 6693 */ 6694 sctx->send_progress = sctx->cur_ino + 1; 6695 6696 /* 6697 * If the current inode is a non-empty directory, delay issuing 6698 * the utimes command for it, as it's very likely we have inodes 6699 * with an higher number inside it. We want to issue the utimes 6700 * command only after adding all dentries to it. 6701 */ 6702 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0) 6703 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6704 else 6705 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen); 6706 6707 if (ret < 0) 6708 goto out; 6709 } 6710 6711 out: 6712 if (!ret) 6713 ret = trim_dir_utimes_cache(sctx); 6714 6715 return ret; 6716 } 6717 6718 static void close_current_inode(struct send_ctx *sctx) 6719 { 6720 u64 i_size; 6721 6722 if (sctx->cur_inode == NULL) 6723 return; 6724 6725 i_size = i_size_read(sctx->cur_inode); 6726 6727 /* 6728 * If we are doing an incremental send, we may have extents between the 6729 * last processed extent and the i_size that have not been processed 6730 * because they haven't changed but we may have read some of their pages 6731 * through readahead, see the comments at send_extent_data(). 6732 */ 6733 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size) 6734 truncate_inode_pages_range(&sctx->cur_inode->i_data, 6735 sctx->page_cache_clear_start, 6736 round_up(i_size, PAGE_SIZE) - 1); 6737 6738 iput(sctx->cur_inode); 6739 sctx->cur_inode = NULL; 6740 } 6741 6742 static int changed_inode(struct send_ctx *sctx, 6743 enum btrfs_compare_tree_result result) 6744 { 6745 int ret = 0; 6746 struct btrfs_key *key = sctx->cmp_key; 6747 struct btrfs_inode_item *left_ii = NULL; 6748 struct btrfs_inode_item *right_ii = NULL; 6749 u64 left_gen = 0; 6750 u64 right_gen = 0; 6751 6752 close_current_inode(sctx); 6753 6754 sctx->cur_ino = key->objectid; 6755 sctx->cur_inode_new_gen = false; 6756 sctx->cur_inode_last_extent = (u64)-1; 6757 sctx->cur_inode_next_write_offset = 0; 6758 sctx->ignore_cur_inode = false; 6759 fs_path_reset(&sctx->cur_inode_path); 6760 6761 /* 6762 * Set send_progress to current inode. This will tell all get_cur_xxx 6763 * functions that the current inode's refs are not updated yet. Later, 6764 * when process_recorded_refs is finished, it is set to cur_ino + 1. 6765 */ 6766 sctx->send_progress = sctx->cur_ino; 6767 6768 if (result == BTRFS_COMPARE_TREE_NEW || 6769 result == BTRFS_COMPARE_TREE_CHANGED) { 6770 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0], 6771 sctx->left_path->slots[0], 6772 struct btrfs_inode_item); 6773 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0], 6774 left_ii); 6775 } else { 6776 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6777 sctx->right_path->slots[0], 6778 struct btrfs_inode_item); 6779 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6780 right_ii); 6781 } 6782 if (result == BTRFS_COMPARE_TREE_CHANGED) { 6783 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0], 6784 sctx->right_path->slots[0], 6785 struct btrfs_inode_item); 6786 6787 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0], 6788 right_ii); 6789 6790 /* 6791 * The cur_ino = root dir case is special here. We can't treat 6792 * the inode as deleted+reused because it would generate a 6793 * stream that tries to delete/mkdir the root dir. 6794 */ 6795 if (left_gen != right_gen && 6796 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6797 sctx->cur_inode_new_gen = true; 6798 } 6799 6800 /* 6801 * Normally we do not find inodes with a link count of zero (orphans) 6802 * because the most common case is to create a snapshot and use it 6803 * for a send operation. However other less common use cases involve 6804 * using a subvolume and send it after turning it to RO mode just 6805 * after deleting all hard links of a file while holding an open 6806 * file descriptor against it or turning a RO snapshot into RW mode, 6807 * keep an open file descriptor against a file, delete it and then 6808 * turn the snapshot back to RO mode before using it for a send 6809 * operation. The former is what the receiver operation does. 6810 * Therefore, if we want to send these snapshots soon after they're 6811 * received, we need to handle orphan inodes as well. Moreover, orphans 6812 * can appear not only in the send snapshot but also in the parent 6813 * snapshot. Here are several cases: 6814 * 6815 * Case 1: BTRFS_COMPARE_TREE_NEW 6816 * | send snapshot | action 6817 * -------------------------------- 6818 * nlink | 0 | ignore 6819 * 6820 * Case 2: BTRFS_COMPARE_TREE_DELETED 6821 * | parent snapshot | action 6822 * ---------------------------------- 6823 * nlink | 0 | as usual 6824 * Note: No unlinks will be sent because there're no paths for it. 6825 * 6826 * Case 3: BTRFS_COMPARE_TREE_CHANGED 6827 * | | parent snapshot | send snapshot | action 6828 * ----------------------------------------------------------------------- 6829 * subcase 1 | nlink | 0 | 0 | ignore 6830 * subcase 2 | nlink | >0 | 0 | new_gen(deletion) 6831 * subcase 3 | nlink | 0 | >0 | new_gen(creation) 6832 * 6833 */ 6834 if (result == BTRFS_COMPARE_TREE_NEW) { 6835 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) { 6836 sctx->ignore_cur_inode = true; 6837 goto out; 6838 } 6839 sctx->cur_inode_gen = left_gen; 6840 sctx->cur_inode_new = true; 6841 sctx->cur_inode_deleted = false; 6842 sctx->cur_inode_size = btrfs_inode_size( 6843 sctx->left_path->nodes[0], left_ii); 6844 sctx->cur_inode_mode = btrfs_inode_mode( 6845 sctx->left_path->nodes[0], left_ii); 6846 sctx->cur_inode_rdev = btrfs_inode_rdev( 6847 sctx->left_path->nodes[0], left_ii); 6848 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) 6849 ret = send_create_inode_if_needed(sctx); 6850 } else if (result == BTRFS_COMPARE_TREE_DELETED) { 6851 sctx->cur_inode_gen = right_gen; 6852 sctx->cur_inode_new = false; 6853 sctx->cur_inode_deleted = true; 6854 sctx->cur_inode_size = btrfs_inode_size( 6855 sctx->right_path->nodes[0], right_ii); 6856 sctx->cur_inode_mode = btrfs_inode_mode( 6857 sctx->right_path->nodes[0], right_ii); 6858 } else if (result == BTRFS_COMPARE_TREE_CHANGED) { 6859 u32 new_nlinks, old_nlinks; 6860 6861 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii); 6862 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii); 6863 if (new_nlinks == 0 && old_nlinks == 0) { 6864 sctx->ignore_cur_inode = true; 6865 goto out; 6866 } else if (new_nlinks == 0 || old_nlinks == 0) { 6867 sctx->cur_inode_new_gen = 1; 6868 } 6869 /* 6870 * We need to do some special handling in case the inode was 6871 * reported as changed with a changed generation number. This 6872 * means that the original inode was deleted and new inode 6873 * reused the same inum. So we have to treat the old inode as 6874 * deleted and the new one as new. 6875 */ 6876 if (sctx->cur_inode_new_gen) { 6877 /* 6878 * First, process the inode as if it was deleted. 6879 */ 6880 if (old_nlinks > 0) { 6881 sctx->cur_inode_gen = right_gen; 6882 sctx->cur_inode_new = false; 6883 sctx->cur_inode_deleted = true; 6884 sctx->cur_inode_size = btrfs_inode_size( 6885 sctx->right_path->nodes[0], right_ii); 6886 sctx->cur_inode_mode = btrfs_inode_mode( 6887 sctx->right_path->nodes[0], right_ii); 6888 ret = process_all_refs(sctx, 6889 BTRFS_COMPARE_TREE_DELETED); 6890 if (ret < 0) 6891 goto out; 6892 } 6893 6894 /* 6895 * Now process the inode as if it was new. 6896 */ 6897 if (new_nlinks > 0) { 6898 sctx->cur_inode_gen = left_gen; 6899 sctx->cur_inode_new = true; 6900 sctx->cur_inode_deleted = false; 6901 sctx->cur_inode_size = btrfs_inode_size( 6902 sctx->left_path->nodes[0], 6903 left_ii); 6904 sctx->cur_inode_mode = btrfs_inode_mode( 6905 sctx->left_path->nodes[0], 6906 left_ii); 6907 sctx->cur_inode_rdev = btrfs_inode_rdev( 6908 sctx->left_path->nodes[0], 6909 left_ii); 6910 ret = send_create_inode_if_needed(sctx); 6911 if (ret < 0) 6912 goto out; 6913 6914 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW); 6915 if (ret < 0) 6916 goto out; 6917 /* 6918 * Advance send_progress now as we did not get 6919 * into process_recorded_refs_if_needed in the 6920 * new_gen case. 6921 */ 6922 sctx->send_progress = sctx->cur_ino + 1; 6923 6924 /* 6925 * Now process all extents and xattrs of the 6926 * inode as if they were all new. 6927 */ 6928 ret = process_all_extents(sctx); 6929 if (ret < 0) 6930 goto out; 6931 ret = process_all_new_xattrs(sctx); 6932 if (ret < 0) 6933 goto out; 6934 } 6935 } else { 6936 sctx->cur_inode_gen = left_gen; 6937 sctx->cur_inode_new = false; 6938 sctx->cur_inode_new_gen = false; 6939 sctx->cur_inode_deleted = false; 6940 sctx->cur_inode_size = btrfs_inode_size( 6941 sctx->left_path->nodes[0], left_ii); 6942 sctx->cur_inode_mode = btrfs_inode_mode( 6943 sctx->left_path->nodes[0], left_ii); 6944 } 6945 } 6946 6947 out: 6948 return ret; 6949 } 6950 6951 /* 6952 * We have to process new refs before deleted refs, but compare_trees gives us 6953 * the new and deleted refs mixed. To fix this, we record the new/deleted refs 6954 * first and later process them in process_recorded_refs. 6955 * For the cur_inode_new_gen case, we skip recording completely because 6956 * changed_inode did already initiate processing of refs. The reason for this is 6957 * that in this case, compare_tree actually compares the refs of 2 different 6958 * inodes. To fix this, process_all_refs is used in changed_inode to handle all 6959 * refs of the right tree as deleted and all refs of the left tree as new. 6960 */ 6961 static int changed_ref(struct send_ctx *sctx, 6962 enum btrfs_compare_tree_result result) 6963 { 6964 int ret = 0; 6965 6966 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 6967 inconsistent_snapshot_error(sctx, result, "reference"); 6968 return -EIO; 6969 } 6970 6971 if (!sctx->cur_inode_new_gen && 6972 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) { 6973 if (result == BTRFS_COMPARE_TREE_NEW) 6974 ret = record_new_ref(sctx); 6975 else if (result == BTRFS_COMPARE_TREE_DELETED) 6976 ret = record_deleted_ref(sctx); 6977 else if (result == BTRFS_COMPARE_TREE_CHANGED) 6978 ret = record_changed_ref(sctx); 6979 } 6980 6981 return ret; 6982 } 6983 6984 /* 6985 * Process new/deleted/changed xattrs. We skip processing in the 6986 * cur_inode_new_gen case because changed_inode did already initiate processing 6987 * of xattrs. The reason is the same as in changed_ref 6988 */ 6989 static int changed_xattr(struct send_ctx *sctx, 6990 enum btrfs_compare_tree_result result) 6991 { 6992 int ret = 0; 6993 6994 if (unlikely(sctx->cur_ino != sctx->cmp_key->objectid)) { 6995 inconsistent_snapshot_error(sctx, result, "xattr"); 6996 return -EIO; 6997 } 6998 6999 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7000 if (result == BTRFS_COMPARE_TREE_NEW) 7001 ret = process_new_xattr(sctx); 7002 else if (result == BTRFS_COMPARE_TREE_DELETED) 7003 ret = process_deleted_xattr(sctx); 7004 else if (result == BTRFS_COMPARE_TREE_CHANGED) 7005 ret = process_changed_xattr(sctx); 7006 } 7007 7008 return ret; 7009 } 7010 7011 /* 7012 * Process new/deleted/changed extents. We skip processing in the 7013 * cur_inode_new_gen case because changed_inode did already initiate processing 7014 * of extents. The reason is the same as in changed_ref 7015 */ 7016 static int changed_extent(struct send_ctx *sctx, 7017 enum btrfs_compare_tree_result result) 7018 { 7019 int ret = 0; 7020 7021 /* 7022 * We have found an extent item that changed without the inode item 7023 * having changed. This can happen either after relocation (where the 7024 * disk_bytenr of an extent item is replaced at 7025 * relocation.c:replace_file_extents()) or after deduplication into a 7026 * file in both the parent and send snapshots (where an extent item can 7027 * get modified or replaced with a new one). Note that deduplication 7028 * updates the inode item, but it only changes the iversion (sequence 7029 * field in the inode item) of the inode, so if a file is deduplicated 7030 * the same amount of times in both the parent and send snapshots, its 7031 * iversion becomes the same in both snapshots, whence the inode item is 7032 * the same on both snapshots. 7033 */ 7034 if (sctx->cur_ino != sctx->cmp_key->objectid) 7035 return 0; 7036 7037 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7038 if (result != BTRFS_COMPARE_TREE_DELETED) 7039 ret = process_extent(sctx, sctx->left_path, 7040 sctx->cmp_key); 7041 } 7042 7043 return ret; 7044 } 7045 7046 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result) 7047 { 7048 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) { 7049 if (result == BTRFS_COMPARE_TREE_NEW) 7050 sctx->cur_inode_needs_verity = true; 7051 } 7052 return 0; 7053 } 7054 7055 static int dir_changed(struct send_ctx *sctx, u64 dir) 7056 { 7057 u64 orig_gen, new_gen; 7058 int ret; 7059 7060 ret = get_inode_gen(sctx->send_root, dir, &new_gen); 7061 if (ret) 7062 return ret; 7063 7064 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen); 7065 if (ret) 7066 return ret; 7067 7068 return (orig_gen != new_gen) ? 1 : 0; 7069 } 7070 7071 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path, 7072 struct btrfs_key *key) 7073 { 7074 struct btrfs_inode_extref *extref; 7075 struct extent_buffer *leaf; 7076 u64 dirid = 0, last_dirid = 0; 7077 unsigned long ptr; 7078 u32 item_size; 7079 u32 cur_offset = 0; 7080 int ref_name_len; 7081 int ret = 0; 7082 7083 /* Easy case, just check this one dirid */ 7084 if (key->type == BTRFS_INODE_REF_KEY) { 7085 dirid = key->offset; 7086 7087 ret = dir_changed(sctx, dirid); 7088 goto out; 7089 } 7090 7091 leaf = path->nodes[0]; 7092 item_size = btrfs_item_size(leaf, path->slots[0]); 7093 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 7094 while (cur_offset < item_size) { 7095 extref = (struct btrfs_inode_extref *)(ptr + 7096 cur_offset); 7097 dirid = btrfs_inode_extref_parent(leaf, extref); 7098 ref_name_len = btrfs_inode_extref_name_len(leaf, extref); 7099 cur_offset += ref_name_len + sizeof(*extref); 7100 if (dirid == last_dirid) 7101 continue; 7102 ret = dir_changed(sctx, dirid); 7103 if (ret) 7104 break; 7105 last_dirid = dirid; 7106 } 7107 out: 7108 return ret; 7109 } 7110 7111 /* 7112 * Updates compare related fields in sctx and simply forwards to the actual 7113 * changed_xxx functions. 7114 */ 7115 static int changed_cb(struct btrfs_path *left_path, 7116 struct btrfs_path *right_path, 7117 struct btrfs_key *key, 7118 enum btrfs_compare_tree_result result, 7119 struct send_ctx *sctx) 7120 { 7121 int ret; 7122 7123 /* 7124 * We can not hold the commit root semaphore here. This is because in 7125 * the case of sending and receiving to the same filesystem, using a 7126 * pipe, could result in a deadlock: 7127 * 7128 * 1) The task running send blocks on the pipe because it's full; 7129 * 7130 * 2) The task running receive, which is the only consumer of the pipe, 7131 * is waiting for a transaction commit (for example due to a space 7132 * reservation when doing a write or triggering a transaction commit 7133 * when creating a subvolume); 7134 * 7135 * 3) The transaction is waiting to write lock the commit root semaphore, 7136 * but can not acquire it since it's being held at 1). 7137 * 7138 * Down this call chain we write to the pipe through kernel_write(). 7139 * The same type of problem can also happen when sending to a file that 7140 * is stored in the same filesystem - when reserving space for a write 7141 * into the file, we can trigger a transaction commit. 7142 * 7143 * Our caller has supplied us with clones of leaves from the send and 7144 * parent roots, so we're safe here from a concurrent relocation and 7145 * further reallocation of metadata extents while we are here. Below we 7146 * also assert that the leaves are clones. 7147 */ 7148 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem); 7149 7150 /* 7151 * We always have a send root, so left_path is never NULL. We will not 7152 * have a leaf when we have reached the end of the send root but have 7153 * not yet reached the end of the parent root. 7154 */ 7155 if (left_path->nodes[0]) 7156 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7157 &left_path->nodes[0]->bflags)); 7158 /* 7159 * When doing a full send we don't have a parent root, so right_path is 7160 * NULL. When doing an incremental send, we may have reached the end of 7161 * the parent root already, so we don't have a leaf at right_path. 7162 */ 7163 if (right_path && right_path->nodes[0]) 7164 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED, 7165 &right_path->nodes[0]->bflags)); 7166 7167 if (result == BTRFS_COMPARE_TREE_SAME) { 7168 if (key->type == BTRFS_INODE_REF_KEY || 7169 key->type == BTRFS_INODE_EXTREF_KEY) { 7170 ret = compare_refs(sctx, left_path, key); 7171 if (!ret) 7172 return 0; 7173 if (ret < 0) 7174 return ret; 7175 } else if (key->type == BTRFS_EXTENT_DATA_KEY) { 7176 return maybe_send_hole(sctx, left_path, key); 7177 } else { 7178 return 0; 7179 } 7180 result = BTRFS_COMPARE_TREE_CHANGED; 7181 } 7182 7183 sctx->left_path = left_path; 7184 sctx->right_path = right_path; 7185 sctx->cmp_key = key; 7186 7187 ret = finish_inode_if_needed(sctx, 0); 7188 if (ret < 0) 7189 goto out; 7190 7191 /* Ignore non-FS objects */ 7192 if (key->objectid == BTRFS_FREE_INO_OBJECTID || 7193 key->objectid == BTRFS_FREE_SPACE_OBJECTID) 7194 goto out; 7195 7196 if (key->type == BTRFS_INODE_ITEM_KEY) { 7197 ret = changed_inode(sctx, result); 7198 } else if (!sctx->ignore_cur_inode) { 7199 if (key->type == BTRFS_INODE_REF_KEY || 7200 key->type == BTRFS_INODE_EXTREF_KEY) 7201 ret = changed_ref(sctx, result); 7202 else if (key->type == BTRFS_XATTR_ITEM_KEY) 7203 ret = changed_xattr(sctx, result); 7204 else if (key->type == BTRFS_EXTENT_DATA_KEY) 7205 ret = changed_extent(sctx, result); 7206 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY && 7207 key->offset == 0) 7208 ret = changed_verity(sctx, result); 7209 } 7210 7211 out: 7212 return ret; 7213 } 7214 7215 static int search_key_again(const struct send_ctx *sctx, 7216 struct btrfs_root *root, 7217 struct btrfs_path *path, 7218 const struct btrfs_key *key) 7219 { 7220 int ret; 7221 7222 if (!path->need_commit_sem) 7223 lockdep_assert_held_read(&root->fs_info->commit_root_sem); 7224 7225 /* 7226 * Roots used for send operations are readonly and no one can add, 7227 * update or remove keys from them, so we should be able to find our 7228 * key again. The only exception is deduplication, which can operate on 7229 * readonly roots and add, update or remove keys to/from them - but at 7230 * the moment we don't allow it to run in parallel with send. 7231 */ 7232 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7233 ASSERT(ret <= 0); 7234 if (unlikely(ret > 0)) { 7235 btrfs_print_tree(path->nodes[path->lowest_level], false); 7236 btrfs_err(root->fs_info, 7237 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d", 7238 key->objectid, key->type, key->offset, 7239 (root == sctx->parent_root ? "parent" : "send"), 7240 btrfs_root_id(root), path->lowest_level, 7241 path->slots[path->lowest_level]); 7242 return -EUCLEAN; 7243 } 7244 7245 return ret; 7246 } 7247 7248 static int full_send_tree(struct send_ctx *sctx) 7249 { 7250 int ret; 7251 struct btrfs_root *send_root = sctx->send_root; 7252 struct btrfs_key key; 7253 struct btrfs_fs_info *fs_info = send_root->fs_info; 7254 BTRFS_PATH_AUTO_FREE(path); 7255 7256 path = alloc_path_for_send(); 7257 if (!path) 7258 return -ENOMEM; 7259 path->reada = READA_FORWARD_ALWAYS; 7260 7261 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 7262 key.type = BTRFS_INODE_ITEM_KEY; 7263 key.offset = 0; 7264 7265 down_read(&fs_info->commit_root_sem); 7266 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7267 up_read(&fs_info->commit_root_sem); 7268 7269 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0); 7270 if (ret < 0) 7271 return ret; 7272 if (ret) 7273 goto out_finish; 7274 7275 while (1) { 7276 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 7277 7278 ret = changed_cb(path, NULL, &key, 7279 BTRFS_COMPARE_TREE_NEW, sctx); 7280 if (ret < 0) 7281 return ret; 7282 7283 down_read(&fs_info->commit_root_sem); 7284 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7285 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7286 up_read(&fs_info->commit_root_sem); 7287 /* 7288 * A transaction used for relocating a block group was 7289 * committed or is about to finish its commit. Release 7290 * our path (leaf) and restart the search, so that we 7291 * avoid operating on any file extent items that are 7292 * stale, with a disk_bytenr that reflects a pre 7293 * relocation value. This way we avoid as much as 7294 * possible to fallback to regular writes when checking 7295 * if we can clone file ranges. 7296 */ 7297 btrfs_release_path(path); 7298 ret = search_key_again(sctx, send_root, path, &key); 7299 if (ret < 0) 7300 return ret; 7301 } else { 7302 up_read(&fs_info->commit_root_sem); 7303 } 7304 7305 ret = btrfs_next_item(send_root, path); 7306 if (ret < 0) 7307 return ret; 7308 if (ret) { 7309 ret = 0; 7310 break; 7311 } 7312 } 7313 7314 out_finish: 7315 return finish_inode_if_needed(sctx, 1); 7316 } 7317 7318 static int replace_node_with_clone(struct btrfs_path *path, int level) 7319 { 7320 struct extent_buffer *clone; 7321 7322 clone = btrfs_clone_extent_buffer(path->nodes[level]); 7323 if (!clone) 7324 return -ENOMEM; 7325 7326 free_extent_buffer(path->nodes[level]); 7327 path->nodes[level] = clone; 7328 7329 return 0; 7330 } 7331 7332 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen) 7333 { 7334 struct extent_buffer *eb; 7335 struct extent_buffer *parent = path->nodes[*level]; 7336 int slot = path->slots[*level]; 7337 const int nritems = btrfs_header_nritems(parent); 7338 u64 reada_max; 7339 u64 reada_done = 0; 7340 7341 lockdep_assert_held_read(&parent->fs_info->commit_root_sem); 7342 ASSERT(*level != 0); 7343 7344 eb = btrfs_read_node_slot(parent, slot); 7345 if (IS_ERR(eb)) 7346 return PTR_ERR(eb); 7347 7348 /* 7349 * Trigger readahead for the next leaves we will process, so that it is 7350 * very likely that when we need them they are already in memory and we 7351 * will not block on disk IO. For nodes we only do readahead for one, 7352 * since the time window between processing nodes is typically larger. 7353 */ 7354 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize); 7355 7356 for (slot++; slot < nritems && reada_done < reada_max; slot++) { 7357 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) { 7358 btrfs_readahead_node_child(parent, slot); 7359 reada_done += eb->fs_info->nodesize; 7360 } 7361 } 7362 7363 path->nodes[*level - 1] = eb; 7364 path->slots[*level - 1] = 0; 7365 (*level)--; 7366 7367 if (*level == 0) 7368 return replace_node_with_clone(path, 0); 7369 7370 return 0; 7371 } 7372 7373 static int tree_move_next_or_upnext(struct btrfs_path *path, 7374 int *level, int root_level) 7375 { 7376 int ret = 0; 7377 int nritems; 7378 nritems = btrfs_header_nritems(path->nodes[*level]); 7379 7380 path->slots[*level]++; 7381 7382 while (path->slots[*level] >= nritems) { 7383 if (*level == root_level) { 7384 path->slots[*level] = nritems - 1; 7385 return -1; 7386 } 7387 7388 /* move upnext */ 7389 path->slots[*level] = 0; 7390 free_extent_buffer(path->nodes[*level]); 7391 path->nodes[*level] = NULL; 7392 (*level)++; 7393 path->slots[*level]++; 7394 7395 nritems = btrfs_header_nritems(path->nodes[*level]); 7396 ret = 1; 7397 } 7398 return ret; 7399 } 7400 7401 /* 7402 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 7403 * or down. 7404 */ 7405 static int tree_advance(struct btrfs_path *path, 7406 int *level, int root_level, 7407 int allow_down, 7408 struct btrfs_key *key, 7409 u64 reada_min_gen) 7410 { 7411 int ret; 7412 7413 if (*level == 0 || !allow_down) { 7414 ret = tree_move_next_or_upnext(path, level, root_level); 7415 } else { 7416 ret = tree_move_down(path, level, reada_min_gen); 7417 } 7418 7419 /* 7420 * Even if we have reached the end of a tree, ret is -1, update the key 7421 * anyway, so that in case we need to restart due to a block group 7422 * relocation, we can assert that the last key of the root node still 7423 * exists in the tree. 7424 */ 7425 if (*level == 0) 7426 btrfs_item_key_to_cpu(path->nodes[*level], key, 7427 path->slots[*level]); 7428 else 7429 btrfs_node_key_to_cpu(path->nodes[*level], key, 7430 path->slots[*level]); 7431 7432 return ret; 7433 } 7434 7435 static int tree_compare_item(struct btrfs_path *left_path, 7436 struct btrfs_path *right_path, 7437 char *tmp_buf) 7438 { 7439 int cmp; 7440 int len1, len2; 7441 unsigned long off1, off2; 7442 7443 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]); 7444 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]); 7445 if (len1 != len2) 7446 return 1; 7447 7448 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 7449 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 7450 right_path->slots[0]); 7451 7452 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 7453 7454 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 7455 if (cmp) 7456 return 1; 7457 return 0; 7458 } 7459 7460 /* 7461 * A transaction used for relocating a block group was committed or is about to 7462 * finish its commit. Release our paths and restart the search, so that we are 7463 * not using stale extent buffers: 7464 * 7465 * 1) For levels > 0, we are only holding references of extent buffers, without 7466 * any locks on them, which does not prevent them from having been relocated 7467 * and reallocated after the last time we released the commit root semaphore. 7468 * The exception are the root nodes, for which we always have a clone, see 7469 * the comment at btrfs_compare_trees(); 7470 * 7471 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so 7472 * we are safe from the concurrent relocation and reallocation. However they 7473 * can have file extent items with a pre relocation disk_bytenr value, so we 7474 * restart the start from the current commit roots and clone the new leaves so 7475 * that we get the post relocation disk_bytenr values. Not doing so, could 7476 * make us clone the wrong data in case there are new extents using the old 7477 * disk_bytenr that happen to be shared. 7478 */ 7479 static int restart_after_relocation(struct btrfs_path *left_path, 7480 struct btrfs_path *right_path, 7481 const struct btrfs_key *left_key, 7482 const struct btrfs_key *right_key, 7483 int left_level, 7484 int right_level, 7485 const struct send_ctx *sctx) 7486 { 7487 int root_level; 7488 int ret; 7489 7490 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem); 7491 7492 btrfs_release_path(left_path); 7493 btrfs_release_path(right_path); 7494 7495 /* 7496 * Since keys can not be added or removed to/from our roots because they 7497 * are readonly and we do not allow deduplication to run in parallel 7498 * (which can add, remove or change keys), the layout of the trees should 7499 * not change. 7500 */ 7501 left_path->lowest_level = left_level; 7502 ret = search_key_again(sctx, sctx->send_root, left_path, left_key); 7503 if (ret < 0) 7504 return ret; 7505 7506 right_path->lowest_level = right_level; 7507 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key); 7508 if (ret < 0) 7509 return ret; 7510 7511 /* 7512 * If the lowest level nodes are leaves, clone them so that they can be 7513 * safely used by changed_cb() while not under the protection of the 7514 * commit root semaphore, even if relocation and reallocation happens in 7515 * parallel. 7516 */ 7517 if (left_level == 0) { 7518 ret = replace_node_with_clone(left_path, 0); 7519 if (ret < 0) 7520 return ret; 7521 } 7522 7523 if (right_level == 0) { 7524 ret = replace_node_with_clone(right_path, 0); 7525 if (ret < 0) 7526 return ret; 7527 } 7528 7529 /* 7530 * Now clone the root nodes (unless they happen to be the leaves we have 7531 * already cloned). This is to protect against concurrent snapshotting of 7532 * the send and parent roots (see the comment at btrfs_compare_trees()). 7533 */ 7534 root_level = btrfs_header_level(sctx->send_root->commit_root); 7535 if (root_level > 0) { 7536 ret = replace_node_with_clone(left_path, root_level); 7537 if (ret < 0) 7538 return ret; 7539 } 7540 7541 root_level = btrfs_header_level(sctx->parent_root->commit_root); 7542 if (root_level > 0) { 7543 ret = replace_node_with_clone(right_path, root_level); 7544 if (ret < 0) 7545 return ret; 7546 } 7547 7548 return 0; 7549 } 7550 7551 /* 7552 * This function compares two trees and calls the provided callback for 7553 * every changed/new/deleted item it finds. 7554 * If shared tree blocks are encountered, whole subtrees are skipped, making 7555 * the compare pretty fast on snapshotted subvolumes. 7556 * 7557 * This currently works on commit roots only. As commit roots are read only, 7558 * we don't do any locking. The commit roots are protected with transactions. 7559 * Transactions are ended and rejoined when a commit is tried in between. 7560 * 7561 * This function checks for modifications done to the trees while comparing. 7562 * If it detects a change, it aborts immediately. 7563 */ 7564 static int btrfs_compare_trees(struct btrfs_root *left_root, 7565 struct btrfs_root *right_root, struct send_ctx *sctx) 7566 { 7567 struct btrfs_fs_info *fs_info = left_root->fs_info; 7568 int ret; 7569 int cmp; 7570 BTRFS_PATH_AUTO_FREE(left_path); 7571 BTRFS_PATH_AUTO_FREE(right_path); 7572 struct btrfs_key left_key; 7573 struct btrfs_key right_key; 7574 char *tmp_buf = NULL; 7575 int left_root_level; 7576 int right_root_level; 7577 int left_level; 7578 int right_level; 7579 int left_end_reached = 0; 7580 int right_end_reached = 0; 7581 int advance_left = 0; 7582 int advance_right = 0; 7583 u64 left_blockptr; 7584 u64 right_blockptr; 7585 u64 left_gen; 7586 u64 right_gen; 7587 u64 reada_min_gen; 7588 7589 left_path = btrfs_alloc_path(); 7590 if (!left_path) { 7591 ret = -ENOMEM; 7592 goto out; 7593 } 7594 right_path = btrfs_alloc_path(); 7595 if (!right_path) { 7596 ret = -ENOMEM; 7597 goto out; 7598 } 7599 7600 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 7601 if (!tmp_buf) { 7602 ret = -ENOMEM; 7603 goto out; 7604 } 7605 7606 left_path->search_commit_root = 1; 7607 left_path->skip_locking = 1; 7608 right_path->search_commit_root = 1; 7609 right_path->skip_locking = 1; 7610 7611 /* 7612 * Strategy: Go to the first items of both trees. Then do 7613 * 7614 * If both trees are at level 0 7615 * Compare keys of current items 7616 * If left < right treat left item as new, advance left tree 7617 * and repeat 7618 * If left > right treat right item as deleted, advance right tree 7619 * and repeat 7620 * If left == right do deep compare of items, treat as changed if 7621 * needed, advance both trees and repeat 7622 * If both trees are at the same level but not at level 0 7623 * Compare keys of current nodes/leafs 7624 * If left < right advance left tree and repeat 7625 * If left > right advance right tree and repeat 7626 * If left == right compare blockptrs of the next nodes/leafs 7627 * If they match advance both trees but stay at the same level 7628 * and repeat 7629 * If they don't match advance both trees while allowing to go 7630 * deeper and repeat 7631 * If tree levels are different 7632 * Advance the tree that needs it and repeat 7633 * 7634 * Advancing a tree means: 7635 * If we are at level 0, try to go to the next slot. If that's not 7636 * possible, go one level up and repeat. Stop when we found a level 7637 * where we could go to the next slot. We may at this point be on a 7638 * node or a leaf. 7639 * 7640 * If we are not at level 0 and not on shared tree blocks, go one 7641 * level deeper. 7642 * 7643 * If we are not at level 0 and on shared tree blocks, go one slot to 7644 * the right if possible or go up and right. 7645 */ 7646 7647 down_read(&fs_info->commit_root_sem); 7648 left_level = btrfs_header_level(left_root->commit_root); 7649 left_root_level = left_level; 7650 /* 7651 * We clone the root node of the send and parent roots to prevent races 7652 * with snapshot creation of these roots. Snapshot creation COWs the 7653 * root node of a tree, so after the transaction is committed the old 7654 * extent can be reallocated while this send operation is still ongoing. 7655 * So we clone them, under the commit root semaphore, to be race free. 7656 */ 7657 left_path->nodes[left_level] = 7658 btrfs_clone_extent_buffer(left_root->commit_root); 7659 if (!left_path->nodes[left_level]) { 7660 ret = -ENOMEM; 7661 goto out_unlock; 7662 } 7663 7664 right_level = btrfs_header_level(right_root->commit_root); 7665 right_root_level = right_level; 7666 right_path->nodes[right_level] = 7667 btrfs_clone_extent_buffer(right_root->commit_root); 7668 if (!right_path->nodes[right_level]) { 7669 ret = -ENOMEM; 7670 goto out_unlock; 7671 } 7672 /* 7673 * Our right root is the parent root, while the left root is the "send" 7674 * root. We know that all new nodes/leaves in the left root must have 7675 * a generation greater than the right root's generation, so we trigger 7676 * readahead for those nodes and leaves of the left root, as we know we 7677 * will need to read them at some point. 7678 */ 7679 reada_min_gen = btrfs_header_generation(right_root->commit_root); 7680 7681 if (left_level == 0) 7682 btrfs_item_key_to_cpu(left_path->nodes[left_level], 7683 &left_key, left_path->slots[left_level]); 7684 else 7685 btrfs_node_key_to_cpu(left_path->nodes[left_level], 7686 &left_key, left_path->slots[left_level]); 7687 if (right_level == 0) 7688 btrfs_item_key_to_cpu(right_path->nodes[right_level], 7689 &right_key, right_path->slots[right_level]); 7690 else 7691 btrfs_node_key_to_cpu(right_path->nodes[right_level], 7692 &right_key, right_path->slots[right_level]); 7693 7694 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7695 7696 while (1) { 7697 if (need_resched() || 7698 rwsem_is_contended(&fs_info->commit_root_sem)) { 7699 up_read(&fs_info->commit_root_sem); 7700 cond_resched(); 7701 down_read(&fs_info->commit_root_sem); 7702 } 7703 7704 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) { 7705 ret = restart_after_relocation(left_path, right_path, 7706 &left_key, &right_key, 7707 left_level, right_level, 7708 sctx); 7709 if (ret < 0) 7710 goto out_unlock; 7711 sctx->last_reloc_trans = fs_info->last_reloc_trans; 7712 } 7713 7714 if (advance_left && !left_end_reached) { 7715 ret = tree_advance(left_path, &left_level, 7716 left_root_level, 7717 advance_left != ADVANCE_ONLY_NEXT, 7718 &left_key, reada_min_gen); 7719 if (ret == -1) 7720 left_end_reached = ADVANCE; 7721 else if (ret < 0) 7722 goto out_unlock; 7723 advance_left = 0; 7724 } 7725 if (advance_right && !right_end_reached) { 7726 ret = tree_advance(right_path, &right_level, 7727 right_root_level, 7728 advance_right != ADVANCE_ONLY_NEXT, 7729 &right_key, reada_min_gen); 7730 if (ret == -1) 7731 right_end_reached = ADVANCE; 7732 else if (ret < 0) 7733 goto out_unlock; 7734 advance_right = 0; 7735 } 7736 7737 if (left_end_reached && right_end_reached) { 7738 ret = 0; 7739 goto out_unlock; 7740 } else if (left_end_reached) { 7741 if (right_level == 0) { 7742 up_read(&fs_info->commit_root_sem); 7743 ret = changed_cb(left_path, right_path, 7744 &right_key, 7745 BTRFS_COMPARE_TREE_DELETED, 7746 sctx); 7747 if (ret < 0) 7748 goto out; 7749 down_read(&fs_info->commit_root_sem); 7750 } 7751 advance_right = ADVANCE; 7752 continue; 7753 } else if (right_end_reached) { 7754 if (left_level == 0) { 7755 up_read(&fs_info->commit_root_sem); 7756 ret = changed_cb(left_path, right_path, 7757 &left_key, 7758 BTRFS_COMPARE_TREE_NEW, 7759 sctx); 7760 if (ret < 0) 7761 goto out; 7762 down_read(&fs_info->commit_root_sem); 7763 } 7764 advance_left = ADVANCE; 7765 continue; 7766 } 7767 7768 if (left_level == 0 && right_level == 0) { 7769 up_read(&fs_info->commit_root_sem); 7770 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7771 if (cmp < 0) { 7772 ret = changed_cb(left_path, right_path, 7773 &left_key, 7774 BTRFS_COMPARE_TREE_NEW, 7775 sctx); 7776 advance_left = ADVANCE; 7777 } else if (cmp > 0) { 7778 ret = changed_cb(left_path, right_path, 7779 &right_key, 7780 BTRFS_COMPARE_TREE_DELETED, 7781 sctx); 7782 advance_right = ADVANCE; 7783 } else { 7784 enum btrfs_compare_tree_result result; 7785 7786 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 7787 ret = tree_compare_item(left_path, right_path, 7788 tmp_buf); 7789 if (ret) 7790 result = BTRFS_COMPARE_TREE_CHANGED; 7791 else 7792 result = BTRFS_COMPARE_TREE_SAME; 7793 ret = changed_cb(left_path, right_path, 7794 &left_key, result, sctx); 7795 advance_left = ADVANCE; 7796 advance_right = ADVANCE; 7797 } 7798 7799 if (ret < 0) 7800 goto out; 7801 down_read(&fs_info->commit_root_sem); 7802 } else if (left_level == right_level) { 7803 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 7804 if (cmp < 0) { 7805 advance_left = ADVANCE; 7806 } else if (cmp > 0) { 7807 advance_right = ADVANCE; 7808 } else { 7809 left_blockptr = btrfs_node_blockptr( 7810 left_path->nodes[left_level], 7811 left_path->slots[left_level]); 7812 right_blockptr = btrfs_node_blockptr( 7813 right_path->nodes[right_level], 7814 right_path->slots[right_level]); 7815 left_gen = btrfs_node_ptr_generation( 7816 left_path->nodes[left_level], 7817 left_path->slots[left_level]); 7818 right_gen = btrfs_node_ptr_generation( 7819 right_path->nodes[right_level], 7820 right_path->slots[right_level]); 7821 if (left_blockptr == right_blockptr && 7822 left_gen == right_gen) { 7823 /* 7824 * As we're on a shared block, don't 7825 * allow to go deeper. 7826 */ 7827 advance_left = ADVANCE_ONLY_NEXT; 7828 advance_right = ADVANCE_ONLY_NEXT; 7829 } else { 7830 advance_left = ADVANCE; 7831 advance_right = ADVANCE; 7832 } 7833 } 7834 } else if (left_level < right_level) { 7835 advance_right = ADVANCE; 7836 } else { 7837 advance_left = ADVANCE; 7838 } 7839 } 7840 7841 out_unlock: 7842 up_read(&fs_info->commit_root_sem); 7843 out: 7844 kvfree(tmp_buf); 7845 return ret; 7846 } 7847 7848 static int send_subvol(struct send_ctx *sctx) 7849 { 7850 int ret; 7851 7852 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) { 7853 ret = send_header(sctx); 7854 if (ret < 0) 7855 goto out; 7856 } 7857 7858 ret = send_subvol_begin(sctx); 7859 if (ret < 0) 7860 goto out; 7861 7862 if (sctx->parent_root) { 7863 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx); 7864 if (ret < 0) 7865 goto out; 7866 ret = finish_inode_if_needed(sctx, 1); 7867 if (ret < 0) 7868 goto out; 7869 } else { 7870 ret = full_send_tree(sctx); 7871 if (ret < 0) 7872 goto out; 7873 } 7874 7875 out: 7876 free_recorded_refs(sctx); 7877 return ret; 7878 } 7879 7880 /* 7881 * If orphan cleanup did remove any orphans from a root, it means the tree 7882 * was modified and therefore the commit root is not the same as the current 7883 * root anymore. This is a problem, because send uses the commit root and 7884 * therefore can see inode items that don't exist in the current root anymore, 7885 * and for example make calls to btrfs_iget, which will do tree lookups based 7886 * on the current root and not on the commit root. Those lookups will fail, 7887 * returning a -ESTALE error, and making send fail with that error. So make 7888 * sure a send does not see any orphans we have just removed, and that it will 7889 * see the same inodes regardless of whether a transaction commit happened 7890 * before it started (meaning that the commit root will be the same as the 7891 * current root) or not. 7892 */ 7893 static int ensure_commit_roots_uptodate(struct send_ctx *sctx) 7894 { 7895 struct btrfs_root *root = sctx->parent_root; 7896 7897 if (root && root->node != root->commit_root) 7898 return btrfs_commit_current_transaction(root); 7899 7900 for (int i = 0; i < sctx->clone_roots_cnt; i++) { 7901 root = sctx->clone_roots[i].root; 7902 if (root->node != root->commit_root) 7903 return btrfs_commit_current_transaction(root); 7904 } 7905 7906 return 0; 7907 } 7908 7909 /* 7910 * Make sure any existing delalloc is flushed for any root used by a send 7911 * operation so that we do not miss any data and we do not race with writeback 7912 * finishing and changing a tree while send is using the tree. This could 7913 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and 7914 * a send operation then uses the subvolume. 7915 * After flushing delalloc ensure_commit_roots_uptodate() must be called. 7916 */ 7917 static int flush_delalloc_roots(struct send_ctx *sctx) 7918 { 7919 struct btrfs_root *root = sctx->parent_root; 7920 int ret; 7921 int i; 7922 7923 if (root) { 7924 ret = btrfs_start_delalloc_snapshot(root, false); 7925 if (ret) 7926 return ret; 7927 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7928 } 7929 7930 for (i = 0; i < sctx->clone_roots_cnt; i++) { 7931 root = sctx->clone_roots[i].root; 7932 ret = btrfs_start_delalloc_snapshot(root, false); 7933 if (ret) 7934 return ret; 7935 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 7936 } 7937 7938 return 0; 7939 } 7940 7941 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root) 7942 { 7943 spin_lock(&root->root_item_lock); 7944 root->send_in_progress--; 7945 /* 7946 * Not much left to do, we don't know why it's unbalanced and 7947 * can't blindly reset it to 0. 7948 */ 7949 if (root->send_in_progress < 0) 7950 btrfs_err(root->fs_info, 7951 "send_in_progress unbalanced %d root %llu", 7952 root->send_in_progress, btrfs_root_id(root)); 7953 spin_unlock(&root->root_item_lock); 7954 } 7955 7956 static void dedupe_in_progress_warn(const struct btrfs_root *root) 7957 { 7958 btrfs_warn_rl(root->fs_info, 7959 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)", 7960 btrfs_root_id(root), root->dedupe_in_progress); 7961 } 7962 7963 long btrfs_ioctl_send(struct btrfs_root *send_root, const struct btrfs_ioctl_send_args *arg) 7964 { 7965 int ret = 0; 7966 struct btrfs_fs_info *fs_info = send_root->fs_info; 7967 struct btrfs_root *clone_root; 7968 struct send_ctx *sctx = NULL; 7969 u32 i; 7970 u64 *clone_sources_tmp = NULL; 7971 int clone_sources_to_rollback = 0; 7972 size_t alloc_size; 7973 int sort_clone_roots = 0; 7974 struct btrfs_lru_cache_entry *entry; 7975 struct btrfs_lru_cache_entry *tmp; 7976 7977 if (!capable(CAP_SYS_ADMIN)) 7978 return -EPERM; 7979 7980 /* 7981 * The subvolume must remain read-only during send, protect against 7982 * making it RW. This also protects against deletion. 7983 */ 7984 spin_lock(&send_root->root_item_lock); 7985 /* 7986 * Unlikely but possible, if the subvolume is marked for deletion but 7987 * is slow to remove the directory entry, send can still be started. 7988 */ 7989 if (btrfs_root_dead(send_root)) { 7990 spin_unlock(&send_root->root_item_lock); 7991 return -EPERM; 7992 } 7993 /* Userspace tools do the checks and warn the user if it's not RO. */ 7994 if (!btrfs_root_readonly(send_root)) { 7995 spin_unlock(&send_root->root_item_lock); 7996 return -EPERM; 7997 } 7998 if (send_root->dedupe_in_progress) { 7999 dedupe_in_progress_warn(send_root); 8000 spin_unlock(&send_root->root_item_lock); 8001 return -EAGAIN; 8002 } 8003 send_root->send_in_progress++; 8004 spin_unlock(&send_root->root_item_lock); 8005 8006 /* 8007 * Check that we don't overflow at later allocations, we request 8008 * clone_sources_count + 1 items, and compare to unsigned long inside 8009 * access_ok. Also set an upper limit for allocation size so this can't 8010 * easily exhaust memory. Max number of clone sources is about 200K. 8011 */ 8012 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) { 8013 ret = -EINVAL; 8014 goto out; 8015 } 8016 8017 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) { 8018 ret = -EOPNOTSUPP; 8019 goto out; 8020 } 8021 8022 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL); 8023 if (!sctx) { 8024 ret = -ENOMEM; 8025 goto out; 8026 } 8027 8028 init_path(&sctx->cur_inode_path); 8029 INIT_LIST_HEAD(&sctx->new_refs); 8030 INIT_LIST_HEAD(&sctx->deleted_refs); 8031 8032 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE); 8033 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE); 8034 btrfs_lru_cache_init(&sctx->dir_created_cache, 8035 SEND_MAX_DIR_CREATED_CACHE_SIZE); 8036 /* 8037 * This cache is periodically trimmed to a fixed size elsewhere, see 8038 * cache_dir_utimes() and trim_dir_utimes_cache(). 8039 */ 8040 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0); 8041 8042 sctx->pending_dir_moves = RB_ROOT; 8043 sctx->waiting_dir_moves = RB_ROOT; 8044 sctx->orphan_dirs = RB_ROOT; 8045 sctx->rbtree_new_refs = RB_ROOT; 8046 sctx->rbtree_deleted_refs = RB_ROOT; 8047 8048 sctx->flags = arg->flags; 8049 8050 if (arg->flags & BTRFS_SEND_FLAG_VERSION) { 8051 if (arg->version > BTRFS_SEND_STREAM_VERSION) { 8052 ret = -EPROTO; 8053 goto out; 8054 } 8055 /* Zero means "use the highest version" */ 8056 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION; 8057 } else { 8058 sctx->proto = 1; 8059 } 8060 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) { 8061 ret = -EINVAL; 8062 goto out; 8063 } 8064 8065 sctx->send_filp = fget(arg->send_fd); 8066 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) { 8067 ret = -EBADF; 8068 goto out; 8069 } 8070 8071 sctx->send_root = send_root; 8072 sctx->clone_roots_cnt = arg->clone_sources_count; 8073 8074 if (sctx->proto >= 2) { 8075 u32 send_buf_num_pages; 8076 8077 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2; 8078 sctx->send_buf = vmalloc(sctx->send_max_size); 8079 if (!sctx->send_buf) { 8080 ret = -ENOMEM; 8081 goto out; 8082 } 8083 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT; 8084 sctx->send_buf_pages = kcalloc(send_buf_num_pages, 8085 sizeof(*sctx->send_buf_pages), 8086 GFP_KERNEL); 8087 if (!sctx->send_buf_pages) { 8088 ret = -ENOMEM; 8089 goto out; 8090 } 8091 for (i = 0; i < send_buf_num_pages; i++) { 8092 sctx->send_buf_pages[i] = 8093 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT)); 8094 } 8095 } else { 8096 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1; 8097 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL); 8098 } 8099 if (!sctx->send_buf) { 8100 ret = -ENOMEM; 8101 goto out; 8102 } 8103 8104 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1, 8105 sizeof(*sctx->clone_roots), 8106 GFP_KERNEL); 8107 if (!sctx->clone_roots) { 8108 ret = -ENOMEM; 8109 goto out; 8110 } 8111 8112 alloc_size = array_size(sizeof(*arg->clone_sources), 8113 arg->clone_sources_count); 8114 8115 if (arg->clone_sources_count) { 8116 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL); 8117 if (!clone_sources_tmp) { 8118 ret = -ENOMEM; 8119 goto out; 8120 } 8121 8122 ret = copy_from_user(clone_sources_tmp, arg->clone_sources, 8123 alloc_size); 8124 if (ret) { 8125 ret = -EFAULT; 8126 goto out; 8127 } 8128 8129 for (i = 0; i < arg->clone_sources_count; i++) { 8130 clone_root = btrfs_get_fs_root(fs_info, 8131 clone_sources_tmp[i], true); 8132 if (IS_ERR(clone_root)) { 8133 ret = PTR_ERR(clone_root); 8134 goto out; 8135 } 8136 spin_lock(&clone_root->root_item_lock); 8137 if (!btrfs_root_readonly(clone_root) || 8138 btrfs_root_dead(clone_root)) { 8139 spin_unlock(&clone_root->root_item_lock); 8140 btrfs_put_root(clone_root); 8141 ret = -EPERM; 8142 goto out; 8143 } 8144 if (clone_root->dedupe_in_progress) { 8145 dedupe_in_progress_warn(clone_root); 8146 spin_unlock(&clone_root->root_item_lock); 8147 btrfs_put_root(clone_root); 8148 ret = -EAGAIN; 8149 goto out; 8150 } 8151 clone_root->send_in_progress++; 8152 spin_unlock(&clone_root->root_item_lock); 8153 8154 sctx->clone_roots[i].root = clone_root; 8155 clone_sources_to_rollback = i + 1; 8156 } 8157 kvfree(clone_sources_tmp); 8158 clone_sources_tmp = NULL; 8159 } 8160 8161 if (arg->parent_root) { 8162 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root, 8163 true); 8164 if (IS_ERR(sctx->parent_root)) { 8165 ret = PTR_ERR(sctx->parent_root); 8166 goto out; 8167 } 8168 8169 spin_lock(&sctx->parent_root->root_item_lock); 8170 sctx->parent_root->send_in_progress++; 8171 if (!btrfs_root_readonly(sctx->parent_root) || 8172 btrfs_root_dead(sctx->parent_root)) { 8173 spin_unlock(&sctx->parent_root->root_item_lock); 8174 ret = -EPERM; 8175 goto out; 8176 } 8177 if (sctx->parent_root->dedupe_in_progress) { 8178 dedupe_in_progress_warn(sctx->parent_root); 8179 spin_unlock(&sctx->parent_root->root_item_lock); 8180 ret = -EAGAIN; 8181 goto out; 8182 } 8183 spin_unlock(&sctx->parent_root->root_item_lock); 8184 } 8185 8186 /* 8187 * Clones from send_root are allowed, but only if the clone source 8188 * is behind the current send position. This is checked while searching 8189 * for possible clone sources. 8190 */ 8191 sctx->clone_roots[sctx->clone_roots_cnt++].root = 8192 btrfs_grab_root(sctx->send_root); 8193 8194 /* We do a bsearch later */ 8195 sort(sctx->clone_roots, sctx->clone_roots_cnt, 8196 sizeof(*sctx->clone_roots), __clone_root_cmp_sort, 8197 NULL); 8198 sort_clone_roots = 1; 8199 8200 ret = flush_delalloc_roots(sctx); 8201 if (ret) 8202 goto out; 8203 8204 ret = ensure_commit_roots_uptodate(sctx); 8205 if (ret) 8206 goto out; 8207 8208 ret = send_subvol(sctx); 8209 if (ret < 0) 8210 goto out; 8211 8212 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) { 8213 ret = send_utimes(sctx, entry->key, entry->gen); 8214 if (ret < 0) 8215 goto out; 8216 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry); 8217 } 8218 8219 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) { 8220 ret = begin_cmd(sctx, BTRFS_SEND_C_END); 8221 if (ret < 0) 8222 goto out; 8223 ret = send_cmd(sctx); 8224 if (ret < 0) 8225 goto out; 8226 } 8227 8228 out: 8229 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)); 8230 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) { 8231 struct rb_node *n; 8232 struct pending_dir_move *pm; 8233 8234 n = rb_first(&sctx->pending_dir_moves); 8235 pm = rb_entry(n, struct pending_dir_move, node); 8236 while (!list_empty(&pm->list)) { 8237 struct pending_dir_move *pm2; 8238 8239 pm2 = list_first_entry(&pm->list, 8240 struct pending_dir_move, list); 8241 free_pending_move(sctx, pm2); 8242 } 8243 free_pending_move(sctx, pm); 8244 } 8245 8246 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)); 8247 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) { 8248 struct rb_node *n; 8249 struct waiting_dir_move *dm; 8250 8251 n = rb_first(&sctx->waiting_dir_moves); 8252 dm = rb_entry(n, struct waiting_dir_move, node); 8253 rb_erase(&dm->node, &sctx->waiting_dir_moves); 8254 kfree(dm); 8255 } 8256 8257 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs)); 8258 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) { 8259 struct rb_node *n; 8260 struct orphan_dir_info *odi; 8261 8262 n = rb_first(&sctx->orphan_dirs); 8263 odi = rb_entry(n, struct orphan_dir_info, node); 8264 free_orphan_dir_info(sctx, odi); 8265 } 8266 8267 if (sort_clone_roots) { 8268 for (i = 0; i < sctx->clone_roots_cnt; i++) { 8269 btrfs_root_dec_send_in_progress( 8270 sctx->clone_roots[i].root); 8271 btrfs_put_root(sctx->clone_roots[i].root); 8272 } 8273 } else { 8274 for (i = 0; sctx && i < clone_sources_to_rollback; i++) { 8275 btrfs_root_dec_send_in_progress( 8276 sctx->clone_roots[i].root); 8277 btrfs_put_root(sctx->clone_roots[i].root); 8278 } 8279 8280 btrfs_root_dec_send_in_progress(send_root); 8281 } 8282 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) { 8283 btrfs_root_dec_send_in_progress(sctx->parent_root); 8284 btrfs_put_root(sctx->parent_root); 8285 } 8286 8287 kvfree(clone_sources_tmp); 8288 8289 if (sctx) { 8290 if (sctx->send_filp) 8291 fput(sctx->send_filp); 8292 8293 kvfree(sctx->clone_roots); 8294 kfree(sctx->send_buf_pages); 8295 kvfree(sctx->send_buf); 8296 kvfree(sctx->verity_descriptor); 8297 8298 close_current_inode(sctx); 8299 8300 btrfs_lru_cache_clear(&sctx->name_cache); 8301 btrfs_lru_cache_clear(&sctx->backref_cache); 8302 btrfs_lru_cache_clear(&sctx->dir_created_cache); 8303 btrfs_lru_cache_clear(&sctx->dir_utimes_cache); 8304 8305 if (sctx->cur_inode_path.buf != sctx->cur_inode_path.inline_buf) 8306 kfree(sctx->cur_inode_path.buf); 8307 8308 kfree(sctx); 8309 } 8310 8311 return ret; 8312 } 8313